IBM Systems - iSeries

e-business and Web serving
WebSphere Application Server - Express Version 5.1
Web services

Version 5 Release 4

IBM Systems - iSeries

e-business and Web serving
WebSphere Application Server - Express Version 5.1
Web services

Version 5 Release 4

Note
Before using this information and the product it supports, be sure to read the information in
["Notices,” on page 185,

Third Edition (February 2006)

This edition applies to version 5.1 of WebSphere Application Server - Express (5722-E51) and to all subsequent
releases and modifications until otherwise indicated in new editions. This version does not run on all reduced
instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 2004, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Web services 1 WSIF - Known restrictions54
Web services overview . 1 Assemble Web services . . . V4
Web Services Description Language (WSDL) 2 Web services assembly propertles S . .58
WSDL architecture3 Assemble a WAR file for your Web services
SOAP with Attachments API for]ava T application . . B Y |
Web services architecture . L 5 Assemble a Web services Chent L. ... L62
Web services operations 8 Deploy Web services62
Develop Web services . .8 Configure Web services63
Develop a J2EE Web service based on an ex1st1ng Web servicestools63
application9 Web services scripts63
Develop a service endpomt interface10 The Java2WSDL script.64
Develop a Web Services Description Language The WSDL2Java script.67
(WSDL) file10 The wsdeploy script70
Develop Web service deployment descrlptor The setupWebSeerceChentEnv scr1pt ..
templates from the WSDL file . . . L 11 Publish Web Services Description Language
Configure the webservices.xml deployment files.72
descriptor . . . L 12 Publish Web Serv1ces Descrlptlon Language
Develop a J2EE Web service based on an ex1st1ng files with the administrative console . . . 72
WSDL file. 12 Publish Web Services Description Language
Develop 1mplernentatron templates, files with wsadmin. . . .73
deployment descriptor templates, and Publish Web Services Descrlptlon Language
bindings from a WSDL file13 files througha URL73
Complete the Java bean or enterprise bean Multipart Web Services Descrlptlon
implementation13 Language file best practices74
Develop a Web services chent o . .13 Configure Web services security75
Set up a Web services client development Overview of Web services security. . . .76
environment R Web services security and WebSphere
Configure the webserv1ceschent xml Application Server - Express.76
deployment descriptor.14 Web services security architecture79
Use HTTP to transport Web services requests . .15 Web services securlty and J2EE role-based
Configure endpoint URL information for security.8
HTTP bindings15 Securing Web services based on
Web services development artlfacts16 WS-Security88
Map between Java, WSDL, and XML.17 Token type overview88
UDDI14J.38 Sample Web services security
Web Services Invocatlon Framework (WSIF) .. 39 configurations . . Lo 9
Goalsof WSIF40 Default bindings for Web services. . . .98
An overview of WSIF41 Configure Web services authentication . . . 100
WSIFand WSDL41 Web services authentication method
WSIF architecture . . .42 overview 101
Use WSIF with Web services that Offer Configure your Web services apphcatlon 104
multiple bindings43 Configure basic authentication for Web
WESIF usage scenarios43 services 104
Dynamic calls44 Configure identity assertlon authentlcatlon 111
Use WSIF to call Web services . . . L. 44 Configure Web services digital signature
Pass SOAP messages with attachments authentication 119
using WSIF 44 Configure LTPA authentlcatlon for Web
Use the WSIF prov1ders B V4 services 125
Develop a WSIF service48 Configure Web services for d1g1tal s1gn1ng 140
Use complex types48 Configure a key locator14
Use JNDI 49 Configure a collection certificate store .. 147
Interact with the WebSphere IZEE contalner 51 Configure trust anchors 150
WESIF system management and administration 51 Configure the Web services client for
WSIF API52 request signing. 152
Troubleshoot: Web Servrces Invocatlon Configure the Web services chent fOr
Framework53 response digital signature verification . . 154

© Copyright IBM Corp. 2004, 2006 iii

iv

Configure the Web services server for

request digital signature verification. . . 156

Configure the Web services server for

response signing . . . 158
Configure XML encryption and decryptlon 161

XML encryption lel

Configure the Web services chent for

request encryption. le4

Configure the Web services Chent for

response decryption 165

Configure the Web services server for

request decryption. 167

Configure the Web services server for

response encryption 169
Configure HTTP basic authentlcatlon for Web
services 170

Configure Chent-51de SSL for Web services 172
Troubleshoot: Web services security 173

Troubleshooting tips: Web services

security 174
Configure Web services chent bmdmgs .. 176
Configure the scope of a Web service port. . . 176

Troubleshoot Web services . . . N V4
Troubleshoot: Web services client run—tlme
environment. 177
Troubleshoot: Serlahzatlon and deserlahzatlon in
Web services178

Web services resources180

Appendix. Notices 185

Programming Interface Information. 187
Trademarks187
Terms and conditions. 187
Code license and disclaimer mformatlon 188

IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

Web services

Web services are self-contained, modular applications that you can describe, publish, locate, and invoke
over a network. Web services reflect a new, service-oriented approach to programming. This approach is
based on the idea of building applications by discovering and implementing network services or by
invoking available applications to accomplish some task. This approach is independent of specific
programming languages or operating systems. Web services delivers interoperability; the ability for
components created in different programming languages to work together as if they were created using
the same language. Web services rely on existing transport technologies, such as HTTP, and standard data
encoding techniques, such as Extensible Markup Language (XML), for invoking the implementation.

See these topics for more information about Web services:

[“Web services overview”|
This topic discusses the Web services environment, including the roles involved in the Web services

life cycle.

[Migrate Web services|
If you have Web services applications that were developed for WebSphere Application Server
Version 4 or Version 5.0.x, see this topic in Migration for migration instructions.

[“Develop Web services” on page 8§|
See this topic for information about developing Web services and Web services clients.

[“Assemble Web services” on page 57|
See this topic for information about packaging your Web services applications for deployment.

[“Deploy Web services” on page 62|
This topic describes how to install your Web services application into the application server run
time.

[“Configure Web services” on page 63|
See this topic for information about Web services configuration, including configuration scripts and
security.

[“Troubleshoot Web services” on page 177
See this topic for information about resolving problems in the various Web services components and
tools.

|“Web services resources” on page 180|
See this topic for additional information about Web services.

Web services overview

A typical Web services scenario is a business application requesting a service from a given URL using
Simple Object Access Protocol (SOAP) over a HyperText Transport Protocol (HTTP) transport. The service
receives the request, processes it, and returns a response. Examples of a simple Web service include
weather reports and stock quotes. The method call is synchronous, that is, it waits until the result is
available. Transaction Web services, supporting quotes, business-to-business (B2B) or business-to-client
(B2C) operations include airline reservations or purchase orders.

The key components of a Web service are:

© Copyright IBM Corp. 2004, 2006 1

* Simple Object Access Protocol (SOAP)
* ["Web Services Description Language (WSDL)”|

WebSphere Application Server - Express Version 5.1 and later follows these standards:
* SOAP Version 1.1

* WSDL Version 1.1

* Web Services for J2EE (JSR-109) Version 1.0

 Java API for XML-based remote procedure call (JAX-RPC) Version 1.0

* ["SOAP with Attachments API for Java” on page 4| Version 1.1

You can review the Web services client programming model in the Web services for J2EE specification
available in the ["Web services resources” on page 180| topic. The programming model is similar to the EJB
client programming model. There is a remote interface that the client uses to interact with the service. A
Java Naming and Directory Interface (JNDI) lookup method can locate the service for a client running in
a Web container or client container. The client obtains a stub that implements the remote interface and
makes calls to invoke operations on the remote service.

A WebSphere Application Server - Express Java Web service client can exist as one of the following
entities:

* As an unmanaged stand-alone Java application.
* As aJava bean or a servlet running in a Web container that is acting as a client.

These topics describe further concepts of Web services:

[“Web services architecture” on page 5|
This topic discusses how Web service providers, brokers, and requesters interact to provide and run
Web services.

[“Web services operations” on page §|
This topic discusses the life cycle of a Web service, and the roles played by providers, brokers, and
requesters in that cycle.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an Extensible Markup Language (XML)-based description
language that has been submitted to the World Wide Web Consortium (W3C) as the industry standard for
describing Web services. The power of WSDL is derived from two main architectural principles: the
ability to describe a set of business operations and the ability to separate the description into two basic
units, a description of the operations and the details of how the operation and the information associated
with it are packaged.

The WSDL document is the engine of a Java™ 2 platform, Enterprise Edition (J2EE) Web service;
without it, there is no service. The information within a WSDL file maps to the Java application to create
a Web service. WebSphere Application Server - Express Versions 5.0.2, 5.1 and 5.1.1 use standards based
on WSDL 1.1.

A WSDL document allows a service provider to specify the name and address of the Web service;
protocol and encoding style used when accessing the public operations of the Web service; and the type
information, including name, operations, parameters and data comprising the interface of the Web
service.

A WSDL document defines services as collections of network endpoints, or ports. In WSDL, the abstract

definition of endpoints and messages is separated from their concrete network deployment or data
format bindings. This allows the reuse of abstract definitions: messages, which are abstract descriptions of

2 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

the data being exchanged, and port types which are abstract collections of operations. The concrete
protocol and data format specifications for a particular port type constitutes a reusable binding. A port is
defined by associating a network address with a reusable binding, and a collection of ports define a
service. Therefore, a WSDL document is composed of several elements. See [“WSDL architecture”| for more
information and examples of the WSDL elements.

When creating a Web service for WebSphere Application Server, you must first have an implementation
bean that includes a Service Endpoint Interface. Then, you use |”The Java2WSDL script” on page 644 to
create a WSDL that defines the Web service. To learn more about how the WSDL file is used in the
development process, see|["Develop Web services” on page 8)

WSDL architecture

Web Services Description Language (WSDL) files are written in eXtensible Markup Language (XML). To
learn more about XML, see|“Web services resources” on page 180,

Operation signaturas

Messages Farameter definitions

Complex type definiions

Transport protocol and payload format

el

Sarvice Service definition element
Wieb service

implementation
Ports Supported interface bindings

A WSDL contains the following parts:

* Web service interface definition
This is where the elements are contained, as well as the namespaces.

* Web service implementation
This is where you find the definition of the service and ports.

A WSDL file describes a Web service with the following elements:
portType

The description of the operations and their associated messages. PortTypes define abstract operations.

Web services 3

<portType name="EightBall">
<operation name="getAnswer">
<input message="ebs:IngetAnswerRequest"/>
<output message="ebs:0utgetAnswerResponse"/>
</operation>
</portType>

message

The description of parameters (input and output) and return values.

<message name="IngetAnswerRequest">

<part name="methl inType" type="ebs:questionType"/>
</message>

<message name="QutgetAnswerResponse">

<part name="methl outType" type="ebs:answerType"/>
</message>

types

The schema for describing XML complex types used in the messages.

<types>

<xsd:schema targetNamespace="...">
<xsd:complexType name="questionType">
<xsd:element name="question" type="string"/>
</xsd:complexType>
<xsd:complexType name="answerType">

</£§5es>
binding

Bindings describe the protocol used to access a service, as well as the data formats for the messages
defined by a particular portType.

<binding name="EightBallBinding" type="ebs:EightBall">
<soap:binding style="rpc" transport="schemas.xmlsoap.org/soap/http">
<operation name="ebs:getAnswer">
<soap:operation soapAction="urn:EightBall"/>
<input>
<soap:body namespace="urn:EightBall" ... />

The remaining parts, services and ports, indicate where you can find the WSDL.
Service
Contains the Web service name and a list of the ports.

Ports

Contains the location of the Web service and the binding to used to access the service.

<service name="EightBall">

<port binding="ebs:EightBallBinding" name="EightBallPort">
<soap:address location="localhost:8080/axis/EightBall"/>
</port>

</service>

SOAP with Attachments API for Java

SOAP with Attachments API for Java (SAAJ) is used for SOAP messaging that works behind the scenes
in the Java API for XML-based RPC (JAX-RPC) implementation. You can also use this API to directly

4 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

write SOAP messaging applications rather than using JAX-RPC. SAA]J allows you to do XML messaging
from the Java platform by making method calls by creating, sending and consuming XML messages over
the Internet.

WebSphere Application Server - Express Version 5.1 supports SAAJ Version 1.1.

Messages created using SAA] follow SOAP standards. Many of the SAA] classes and interfaces represent
XML elements in a SOAP message and have the word element or SOAP, or both, in their names.

The two main types of SOAP messages are messages with attachments and messages without
attachments. SAA] provides the SOAPMessages class to represent a SOAP message; the SOAPPart class
to represent the SOAP part; and the SOAPEnvelope interface to represent the SOAP envelope. A SOAP
message can also include one or more attachment parts in addition to the SOAP part. The SOAP part
must only contain XML content. If any of the message content is not in XML format, it must occur in an
attachment part. SAA] provides the AttachmentPart class to represent the attachment part of a SOAP
message.

All SOAP messages are sent and received over a connection. When using SAA]J, the connection is
represented by a SOAPConnection object, which goes directly from a sender to its destination. Messages
sent using SAAJ are called request-response messages. The messages are sent over a SOAPConnection
object with the method call, which sends a message (request) and blocks the request until it receives the
reply (a response).

To review the entire SAAJ API, see [“Web services resources” on page 180

Web services architecture
The Web services architecture includes three roles:

* Service provider
Web service providers create components, then publish them to a repository. On the WebSphere
Application Server - Express platform, these components include:

— Java beans
— DB2 Universal Database stored procedures
— Server-side scripts that implement the Bean Scripting Framework (BSF)

Web service providers can also unpublish components (remove them from the repository) when they
are no longer needed.

* Service broker
Web service brokers categorize Web services as they are published, and search for them as service
requests are received. Web brokers are roughly analagous to Internet search engines, except that they
locate components instead of Web pages. The Universal Description, Discovery, and Integration (UDDI)
specification defines a way to publish and discover information about Web services.

* Service requester
Web service requesters look up, or locate and invoke components as services. They act as the client for
published Web services.

This diagram illustrates how client and server roles can interact to provide Web services.

Web services 5

Service
provider

Sernvice Service

broker S Find " requester

Refer to the following topics for more information about Web services architecture:
* Characteristics of the Web service architecture (page H)

* Properties of a service-oriented architecture (page@)

* Plan to use Web services (page Iﬂ)

Characteristics of the Web service architecture

The presented SOA employs a loose coupling between the participants, which provides greater flexibility
in the following ways:

* A client is not coupled to a server, but to a service. Therefore, the integration of the server takes place
outside the scope of the client application programs.

* Old and new functional blocks, or applications and systems, are encapsulated into components that
work as services.

* Functional components and their interfaces are separate, allowing new interfaces to be plugged in more
easily.
* Within complex applications, the control of business processes can be isolated. A business rule engine

can be incorporated to control the workflow of a defined business process. Depending on the state of
the workflow, the engine calls the respective services.

* Services can be incorporated dynamically during run time.
* Bindings are specified using configuration files and can be easily adapted to new needs.

Properties of a service-oriented architecture

The service-oriented architecture offers the following properties:
* Web services are self-contained.

On the client side, no additional software is required. A programming language with extensible
markup language (XML) and Hyper Text Transport Protocol (HTTP) client support is enough to get
you started. On the server side, a Web server and a SOAP server are required. It is possible to Web
services-enable an existing application without writing a single line of code.

* Web services are self-describing.

6 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

Neither the client nor the server knows or cares about anything besides the format and content of
request and response messages (loosely coupled application integration). The definition of the message
format travels with the message; no external metadata repositories or code generation tool are required.

Web services can be published, located, and invoked across the Internet.

This technology uses established lightweight Internet standards such as HTTP. It leverages the existing
infrastructure. Some additional standards that are required to do so include SOAP, WSDL, and UDDL

Web services are language-independent and interoperable.

Client and server can be implemented in different environments. Existing code does not have to be
changed in order to be Web service enabled.

Web services are inherently open and standard-based.

XML and HTTP are the major technical foundation for Web services. A large part of the Web service
technology has been built using open-source projects. Therefore, vendor independence and
interoperability are realistic goals this time.

Web services are dynamic.

Dynamic e-business can become reality using Web services because, with UDDI and WSDL, the Web
service description and discovery can be automated.

Web services are composable.

Simple Web services can be aggregated to more complex ones, either using workflow techniques or by
calling lower-layer Web services from a Web service implementation. Web services can be chained
together to perform higher-level business functions. This shortens development time and enables
best-of-breed implementations.

Web services build on proven mature technology.

There are a lot of commonalties, as well as a few fundamental differences to other distributed
computing frameworks. For example, the transport protocol is text based and not binary.

Web services are loosely coupled.

Traditionally, application design has depended on tight interconnections at both ends. Web services
require a simpler level of coordination that allows a more flexible re-configuration for an integration of
the services in question.

Web services provide programmatic access.

The approach provides no graphical user interface; it operates at the code level. Service consumers
need to know the interfaces to Web services but do not need to know the implementation details of
services.

Web services provide the ability to wrap existing applications.

Already existing stand-alone applications can easily be integrated into the service-oriented architecture
by implementing a Web service as an interface.

Plan to use Web services

You should plan your use of Web services that are developed and implemented based on the Web

Services for Java 2, Enterprise Edition (J2EE) specification.

To plan to use Web services based on Web Services for J2EE, consider the following decision points:

* Design Web services to fit your e-business solution.

Consider what you want to accomplish by using Web services, how Web services fit into your current
topology, applications and programming model. Decide how the Web services will process requests on
the server and how the clients will manage and use the Web service.

Design your Web services for reliability, availability, manageability and security. For example, you want
your Web services to process a transaction in a reasonable time at all hours of the day and provide
users with good security characteristics, such as authentication for buyers. Planning to use Web
services to work with WebSphere Application Server - Express helps to meet these requirements.

Web services 7

To support Web services, extend WebSphere Application Server - Express to support Web services
standards. For interoperable Web services running on platforms supplied by multiple vendors,
standards are essential. WebSphere Application Server - Express uses Web services standards
developed for the Java language under the Java Community Process (JCP). These standards include the
Web Services for J2EE and JAX-RPC specifications.

* Decide what development and implementation tools to use.
You can use a variety of manual development and implementation tasks. Whether you have an existing
Web service to implement or you want to develop your own from a Java bean, you can choose
different tasks respective to your resources. You can also use the WebSphere Development Studio for
iSeries to complete development and implementation tasks.

See [“Develop Web services”| for information about developing Web services based on the Java language
through WebSphere Application Server.

Web services operations

Web services reduce programming complexity because application designers do not have to worry about
implementing the services they invoke. Interactions in Web services are bound dynamically at runtime. A
service requester describes the features of the required service and uses the service broker to find an
appropriate service.

A Web services component has this life cycle:

1. Creation
The Web services provider creates the service component by defining its interfaces and invocation
methods. WebSphere Application Server - Express supports Java beans, DB2 Universal Database
stored procedures, and Bean Scripting Framework (BSF) scripts.

2. Publication
The Web services provider publishes the service component to a repository. The Web services broker
categorizes the new Web service within its listing.

3. Location
The Web services requester looks up, or locates, a Web service component through the service broker.

4. Invocation
Once the service requester locates the service component, it invokes and implements it.

5. Unpublication
When the Web service provider decides that a Web service should no longer be available, it removes,
or unpublishes, the Web service from the repository. The service broker likewise removes the service
component from its listing.

Develop Web services

Web services are services that you use over the Internet. If you have an existing application that provides
a service that you want to make available to others (either within your own organization or beyond it),
you can use Web services technologies to provide a standard Web interface for your service. When used
in this manner, Web services can be defined as middleware. You can connect applications together no
matter how an application is implemented or where it is located.

Middleware is not new, but what is new is Web services technology and its power to connect by using
open standards. Web services operate at a level of abstraction that is similar to the Internet; they can
work with any operating system, hardware platform or programming language that can be Web-enabled.

WebSphere Application Server uses Web services standards developed for the Java language under the
Java Community Process (JCP).
* Java API for XML-based remote procedure call (JAX-RPC (JSR-101))
The JAX-RPC standard covers the programming model and bindings for using Web Services
Description Language (WSDL) for Web services in the Java language.

8 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

Web services for J2EE (JSR-109)
The Web services for J2EE standard covers the use of JAX-RPC in a J2EE environment, as well as the
deployment of Web services implementations in a J2EE server

For more information on JAX-RPC, JSR-109, tutorials, and other Web services and J2EE information, see

|”Web services resources” on page 180.|

You can also use the WebSphere Development Studio for iSeries Version 5.1 development tool to develop
Web services for WebSphere Application Server - Express V5.1.

“Develop a J2EE Web service based on an existing application”|
See this topic for information about converting your existing application into a Web service.

[“Develop a J2EE Web service based on an existing WSDL file” on page 12|
See this topic for information about developing a new Web services application.

[(“Develop a Web services client” on page 13|
See this topic for information about developing a client for a Web service.

[“Use HTTP to transport Web services requests” on page 15|
You can configure your Web service to use HITP as the transport for requests. See this topic for
more information.

[“Web services development artifacts” on page 16|

This topic describes the configuration files and interfaces that are part of a Web services application.

[(“Map between Java, WSDL, and XML” on page 17|
This topic contains reference information about how WebSphere Application Server maps between
Java and XML technologies such as XML schema, WSDL, and SOAP.

[(“UDDI4]” on page 38
This topic describes how to use the UDDI4J to generate and parse messages sent to and received
from a UDDI server.

[“Web Services Invocation Framework (WSIF)” on page 39|

WSIF is a WSDL-oriented Java API that allows you to invoke Web services dynamically, regardless
of what format the service is implemented in, or what mechanism is used to access it. This topic
describes how to enable your Web services to use WSIF.

Develop a J2EE Web service based on an existing application

1.

Access an existing Java bean Web archive (WAR) file that you want to use as a Web service. A Java
bean in a Web container requires the following:

* It must have a public default constructor.

* It must have exposed public methods.

* It must not save a client-specific state between method calls.
* It must be a public, non-final, and non-abstract class.

* It must not define a finalize() method.

“Develop a service endpoint interface” on page 10
The service endpoint interface defines which methods should be made available as a Web service.

. ['Develop a Web Services Description Language (WSDL) file” on page 10)

A WSDL file contains information that describes your Web service so it can be accessed.

[‘Develop Web service deployment descriptor templates from the WSDL file” on page 11}

[“Configure the webservices.xml deployment descriptor” on page 12.]

Web services

9

6. [Configure the ibm-webservices-bnd.xmi deployment descriptor|

Develop a service endpoint interface

The service endpoint interface defines the Web services methods. The Web service implementation must
implement methods that have the same signature as the methods on the service endpoint interface. There
are a number of restrictions on which types to use as parameters and results of service endpoint interface
methods. These restrictions are documented in the [Java API for XML remote procedure call (JAX-RPC)|

specificatio

If the Web service implementation is a Java bean, develop the service endpoint interface from the bean or
an interface the bean implements.

To develop a service endpoint interface, follow these steps:

1. Create a Java interface that contains the methods that you want to include in the service endpoint
interface.
The interface should extend the java.rmi.Remote interface. Each method throws the
java.rmi.RemoteException exception. If you start with an existing Java interface, remove any methods
that do not conform to JAX-RPC.

2. Compile the interface.
You need /QIBM/ProdData/WebASE51/ASE/lib/j2ee jar in your CLASSPATH to compile the
interface.

Develop a Web Services Description Language (WSDL) file

You need a Web Services Description Language (WSDL) file to use Web services. You can develop your
own WSDL file or get one from a Web service provider. This documentation assumes you are creating
your own.

WebSphere Application Server provides a utility, the Java2WSDL script, that generates a WSDL file for
your Web service based on your application code.

To generate a WSDL file for your Web service, follow these steps:
1. On the CL command line, run the Start Qshell (STRQSH) command to start Qshell.

2. Update your CLASSPATH environment variable to include the location of the Service Endpoint
Interface class and other referenced classes, for example:

export -s CLASSPATH=/myapp/myclass.class:/myapp/myjar.jar
3. Run the Java2WSDL command, for example:
Java2WSDL seilnterface

where seilnterface is the name of your Service Endpoint Interface class. For more information, see
Java2WSDL script” on page 64

A WSDL file named seilnterface.wsdl is created.

4. Edit the generated WSDL file and inspect the part names.
The WSDL parts have names like arg_0_0. Modify the WSDL file to use the actual names of the Java
parameters.

5. Move the WSDL file into the wsdl subdirectory of your WAR file:
* Move the WSDL file to the WEB-INF/wsdl subdirectory if you are using a Java bean.

Note: If your class file is compiled with debugging information and it is not an interface, you can
automatically generate and set the correct part names with the Java2WSDL command tool.

Generating and setting the part names is done by providing additional information to the Java2WSDL
command in the form of a Java implementation class that implements the same methods as the Service

10 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

wsdevddibm.htm
http://java.sun.com/xml/downloads/jaxrpc.html
http://java.sun.com/xml/downloads/jaxrpc.html

Endpoint Interface and is compiled with debug information on (javac -g). Parameter names are stored in
the class file with the debugging information. If your implementation class was compiled with debugging
information, you can use the Java2WSDL -implClass seilmpl seilnterface command to generate a WSDL file
having the proper part names. For more information, see [“The Java2WSDL script” on page 64.]

Develop Web service deployment descriptor templates from the WSDL file

To develop the deployment descriptor templates from a Web Services Description Language (WSDL) file,
you must obtain the Uniform Resource Locator (URL) of the WSDL file to use. If it is a local file, the URL
has this format:

file:/path/file_name.wsdl

where path is the directory path that contains the file, and file_name is the name of the wsdl file. You can
also specify local files using the absolute or relative file system path.

To develop deployment descriptor templates, run the WSDL2Java command at a command prompt.
* For a J2EE Web services application, run this command:
WSDL2Java -verbose -role develop-server -container type -gendava No wsdlURL
This command generates the server deployment descriptor files in the WEB-INF subdirectory:
— webservices.xml
— ibm-webservices-bnd.xmi
e For a Web services client, run this command:
WSDL2Java -verbose -role develop-client -container type -genJava No wsdlURL
This command generates the client deploment descriptor files in the WEB-INF subdirectory:
— webservicesclient.xml
— ibm-webservicesclient-bnd.xmi

In these commands, type is Web for a Java bean-based implementation, and wsdIURL is the URL of the
WSDL file. The value that you specify for the -container parameter determines to which subdirectory the
templates are generated. When -container Web parameter is specified, all deployment descriptors and the
JAX-RPC mapping file are generated into the WEB-INF subdirectory of the output directory.

The Java API for XML-based remote procedure call (JAX-RPC) mapping file is needed for both server and
client use, and is generated by default when you run the WSDL2Java command. To generate the
deployment descriptors only, and not any Java classes, specify the -genJava No parameter with the
WSDL.2Java command tool.

If the -verbose option is specified, the command displays a list of all generated files.
Examples
The following example uses a WSDL file named AddressBook]2WB.wsdl:

Generate the template files:

WSDL2Java -verbose -role develop-client -container Web -gendava No
META-INF\AddressBookJ2WB.wsd]1

The deployment descriptor templates are generated into the WEB-INF for client subdirectories as follows:

Parsing XML file: META-INF/AddressBookJ2WB.wsd1
Generating: WEB-INF\webservicesclient.xml
Generating: WEB-INF\ibm-webservicesclient-bnd.xmi
Generating: WEB-INF\AddressBookJ2WB_mapping.xml
Generating: META-INF\webservices.xml

Generating: META-INF\ibm-webservices-bnd.xmi
Generating: META-INF\AddressBookJ2WB_mapping.xml

Web services 11

Configure the webservices.xml deployment descriptor
This topic explains how to configure the webservices.xml deployment descriptor with the WebSphere
Studio Development Client for iSeries.

To configure the webservices.xml deployment descriptor, perform the following steps in the WebSphere
Studio Development Client for iSeries:

1.
2.

—_ —_ -
N

—
w

14.
15.

16.

17.

18.

19.

20.
21.

SO 0N O AL

Start the WebSphere Studio Development Client for iSeries.

Click File —> Import to import the WAR file into the WebSphere Studio Development Client for
iSeries.

Open the J2EE perspective by clicking Windows —> Open Perspective —> J2EE.

Switch to the Project Navigator pane by clicking the Project Navigator tab.

Locate the project that contains the Web service in the Project Navigator pane, and expand it.
Expand the directories under the project until theWEB-INF directory and its contents appear.
Right-click the webservices.xml file. Select Open. The Web Services editor opens.

Expand the Web service descriptions section.

Select the service you want to configure.

Expand the Web service description implementation details section.

Verify that the Web service description name field is unique among all the Web service descriptions
in the editor.

Verify that the WSDL file field indicates there is an existing WSDL file in the module. This file, by
convention, should be located in the WEB-INf/wsdl directory for a WAR file.

Verify the JAX-RPC mapping file field indicates an existing mapping file within the module. This
file, by convention, should be located in the WEB-INF directory for a WAR file.

Expand the Port components section.

Verify there are port component entries that correspond to the used WSDL ports in the Port
components section.

Select a port component to open the editor for that port component. The Port Components editor
opens.

Expand the Port component implementation details section.

Verify that the WSDL Port Namespace URL and WSDL Port Local part fields are set to the
namespace and local name of the corresponding port in the WSDL file. These fields are configured
by the WSDL2Java command tool when the webservices.xml file is generated.

Verify that the Service endpoint interface field names the fully qualified Service Endpoint Interface
class. This field is configured by the WSDL2Java command when the webservices.xml file is
generated.

Locate the Service implementation bean field.

Configure this field to indicate the servlet that implements the Web service. Select Servlet link for a
Web module. Use the drop down list in the Service implementation bean field to select the servlet
that is used to implement the Web service. The choices in the drop down menu come from the
servlets that are defined in the web.xml file for a Web module.

Develop a J2EE Web service based on an existing WSDL file

You can use an existing WSDL file to generate stub files that you can use to complete your Web services
implementation.

1.

W

12

“Develop implementation templates, deployment descriptor templates, and bindings from a WSDI]

file” on page 13,

“Complete the Java bean or enterprise bean implementation” on page 13/

“Configure the webservices.xml deployment descriptor.”|

. [Configure the ibm-webservices-bnd.xmi deployment descriptor]

IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

wsdevddibm.htm

Develop implementation templates, deployment descriptor templates, and bindings
from a WSDL file

To develop the deployment descriptor templates from a Web Services Description Language (WSDL) file,
you must obtain the Uniform Resource Locator (URL) of the WSDL file to use. If it is a local file, the URL
has this format:

file:/path/file_name .wsd1

where path is the directory path that contains the file, and file_name is the name of the wsdl file. You can
also specify local files using the absolute or relative file system path.

To generate implementation templates, bindings, and deployment descriptors, specify the -role
develop-server parameter and the -container parameter when you run the WSDL2Java command:

WSDL2Java -verbose -role develop-server -container type wsdlURL
where type is Web for a Java bean-based implementation, and wsd/URL is the URL of the WSDL file.

If you specify the verbose parameter, the command displays a list of all generated files

Complete the Java bean or enterprise bean implementation
To complete the implementation of a Java bean, follow these steps:

1. Inspect the remote interface template, portType_Rljava, where portType is the name of the
<wsdl:portType> element in the WSDL file. If necessary, modify the template.

2. Inspect the home interface template, portTypeHome java. If necessary, modify the template.

3. Edit the implementation template, bindinglmpl.java, where binding is the name of the <wsdl:binding>
element in the WSDL file.

a. Complete the implementation of the methods in the template.
b. (Optional) Make changes if necessary.
c. (Optional) Change the class name if the binding name is not acceptable.

4. Compile the Java classes.

5. Assemble a Web archive (WAR) file. See |[Assemble your application|for instructions on assembling
applications. Include all of the classes that the WSDL2Java command generates.

Develop a Web services client

To set up a development environment for Web services clients, see [’Set up a Web services client]
[development environment” on page 14

To create the client code and artifacts that enable the application client to access a Web service, follow
these steps:

1. Locate the Web Services Description Language (WSDL) file that defines the Web service to access.

2. [‘“Develop implementation templates, deployment descriptor templates, and bindings from a WSDI|

file.”|
Follow the steps in this task, but use the -role client -container client option with the WSDL2Java
command tool. The client-side bindings and artifacts are generated.

3. Complete the client implementation.

4. (Optional) [‘Configure the webservicesclient.xml deployment descriptor” on page 14|
Complete this step if you are developing a managed client that runs in the J2EE client container.

5. (Optional) [Configure the ibm-webservices-bnd.xmi deployment descriptor]
Complete this step if you are deploying a managed client that runs in the J2EE client container and
you want to override the default client settings. See [“Web services assembly properties” on page 5§
for more information about the ibm-webservicesclient-bnd.xmi deployment descriptor.

Web services 13

wsdevddibm.htm

If you are developing a managed client that runs in the J2EE client container, [*Assemble a Web services|
[client” on page 62.

Set up a Web services client development environment

WebSphere Application Server - Express provides several scripts that you can use to develop Web
services clients and implementations. To use the scripts, you must set up the Java environment that Web
services J2SE clients use and set the classpath variable for Web services clients.

To set up a development environment for Web services client applications, follow these steps:

1. On the CL command line, run the STRQSH (Start Qshell) command.

2. On the Qshell command line, use the cd command to change to the directory that contains the script.
For example, if you are using WebSphere Application Server - Express V5.1, run this command:
cd /QIBM/ProdData/WebASE51/ASE/bin

3. Run the setupWebServiceClientEnv script. There are no parameters to specify for this script. For
additional information on the script, see [“The setupWebServiceClientEnv script” on page 71)

Configure the webservicesclient.xml deployment descriptor
This topic explains how to configure the webservicesclient.xml deployment descriptor with the
WebSphere Studio Development Client for iSeries.

To configure the webservicesclient.xml deployment descriptor with the WebSphere Studio Development
Client for iSeries, perform the following steps:

1. Start the WebSphere Studio Development Client for iSeries.
2. Click File —> Import to import WAR file into the WebSphere Studio Development Client for iSeries.
3. Open the J2EE perspective by clicking Windows —> Open Perspective —> J2EE.
4. Switch to the Project Navigator pane by clicking the Project Navigator tab.
5. Locate the project that contains the webservicesclient.xml file in the Project Navigator pane.
6. Expand the directories under the project until the WEB-INF directory and its contents appear.
7. Right-click on the webservicesclient.xml file.
8. Select Open. The Web Services Client editor opens.
9. Expand the Service references section.

10. Select the service reference that you want to configure.

11. Expand the Service reference overview section.

12. In the Description field, enter the name of the service that the client accesses.

13. Expand the Service reference implementation details section.

14. In the Service references name field, enter the name that the Java Naming Directory Interface (JNDI)
uses to locate the service.

The JNDI lookup string for this service is java:comp/env/service-ref-name. By convention, the
service reference name always begins with service/.

15. In the Service interface name field, enter the class name, including package, of the generated Java
interface that is the Service Interface for this Web service.

16. In the WSDL file field, enter the WSDL file name used by the client, relative to the root of the
module.

17. In the JAX RPC mapping file field, enter the file name of the Java mapping file, relative to the root
of the module.

18. Save the application.

14 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

Use HTTP to transport Web services requests

Before you begin, run the Java2WSDL script to create a WSDL file. When you run the Java2WSDL script,
use the -transport option, along with http, to make sure you set the HTTP transport bindings. For
example:

java2wsdl -transport http -impl1Class my.pkg.MyService my.pkg.MySEI

WebSphere Application Server - Express supports the use of HTTP to transport Web services client
requests. HTTP allows your Web services clients and servers to communicate through SOAP messages.
SOAP is the underlying communication protocol used in Web services that support the Web Services for
Java 2 Enterprise Edition (J2EE) and Java API for XML-based remote procedure call (JAX-RPC)
specifications.

HTTP is the most commonly used transport for Web services.

To use HTTP to transport Web services requests:

1. Add a HTTP binding and a SOAP address to the Web Services Description Language (WSDL) file.
The WSDL file of a Web service must include an HTTP binding and a SOAP address, which specifies
an HTTP endpoint URL string, in order to be accessible on the HTTP transport. An HTTP binding is a
wsd1:binding element containing a wsd1soap:binding element whose transport attribute ends in
soap/http.

2. In addition to the HTTP binding, a wsd1:port element referencing the HTTP binding must be
included in the wsd1:service element within the WSDL file. The wsd1:port element should contain a
wsdlsoap:address element whose location attribute specifies an HTTP endpoint URL string.

Note: When you develop the Web service, a placeholder such as file:unspecified_location can be
used for the endpoint URL string.

3. [“Deploy Web services” on page 62|

4. Configure security for the HTTP connection. For a secure HTTP connection, add the basicAuth
assembly property to the ibm-webservicesclient-bnd.xmi deployment descriptor file. Set the user ID
and password attributes as needed.

5. [“Configure endpoint URL information for HTTP bindings."|

The WSDL publisher uses this partial URL string to produce the actual HTTP URL for each port
component defined in the EAR file. The published WSDL file can be used by clients needing to invoke
the Web service.

Configure endpoint URL information for HTTP bindings
Configuring a service endpoint is necessary to connect Web service clients to any Web services among the
components being assembled or to any external Web services.

You can specify HTTP URL prefixes for Web services accessed through HTTP by using Provide HTTP
endpoint URL information panel in the administrative console. The HTTP URL prefixes provide location
specific information and are used to form complete endpoint URLs that are included within published
WSDL files.

To configure these prefixes with the administrative console:

1. Click Applications —> Enterprise Applications —> application_instance —> Provide HTTP endpoint
URL information.

2. Specify the URL prefixes for the Web service.
In this step you specify the protocol (http or https), host_name and port_number to be used in the
endpoint URL. You can select a prefix from a predefined list by selecting the default HTTP URL prefix
or you can use a custom HTTP URL prefix.
a. Select Default HTTP URL prefix or Custom HTTP URL Prefix.

If you select the default HTTP URL prefix, a drop down list provides you with a list of endpoint

Web services 15

URL prefixes. The list is a combination of the module’s two sets of ports: the virtual host ports
and the application server ports. Use a prefix from this list if the Web service’s application server
is accessed directly. Select a value and also select the check box of the modules that are to use the
prefix.

If you want to use a custom HTTP URL prefix, type the value in the field. Select the check box of
the modules that are to be used in the prefix.

b. Click Apply.
The URL prefix, whether default or custom, is copied to the selected module HTTP URL prefix
field.

c. Click OK.

Configure any other URL endpoint information for J]MS bindings and direct EJB access. Then, [“Publish

[Web Services Description Language files” on page 72|

Web services development artifacts

Development artifacts enable a Java bean module to be a Web service. To create a Web service from a
Java bean module, these files are added to the Web archive (WAR) modules when you assemble the
application:

Web Services Description Language (WSDL) XML
The WSDL XML file describes the Web service.
Service Endpoint Interface

A Service Endpoint Interface is the Java interface that corresponds to the Web service port type that is
implemented. The Service Endpoint Interface is defined by the [WSDL 1.1 W3C Note}

webservices.xml

The webservices.xml file contains the J2EE Web service deployment descriptor that specifies how the
Web service is implemented. The webservices.xml file is defined in the [Web services for J2EF|

specificatio

ibm-webservices-bnd.xmi

This file contains WebSphere product-specific deployment information and is defined in
fassembly properties” on page 58

Java API for XML-based remote procedure call (JAX-RPC) mapping file

The JAX-RPC mapping deployment descriptor specifies how Java elements are mapped to and from
WSDL file elements. The JAX-RPC mapping file is defined in[*Web services assembly properties” on|

The following files are added to the application client module at assembly, allowing a J2EE application
client to access Web services:

WSDL
The WSDL file is provided by the Web service implementer.

Java interfaces for the Web service

The Java interfaces are generated from the WSDL file as specified by the JAX-RPC mapping file. These
bindings are the Service Endpoint Interface based on the WSDL port type, or the service interface,
which is based on the WSDL service.

webservicesclient.xml
The webservicesclient.xml file is the client-side deployment descriptor. This file describes the services
that are accessed. The file is defined in the [Web services for J2EE specification|

16 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

http://www.w3.org/TR/wsdl
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109

>
* ibm-webservicesclient-bnd.xmi
This file contains WebSphere product-specific deployment information such as security information.
The ibm-webservicesclient-bnd.xmi file is defined in [“Web services assembly properties” on page 58)
e Other JAX-RPC binding files
The WSDL2Java command-line tool generates additional JAX-RPC binding files based on the WSDL
file. These additional files support the client application in mapping Simple Object Access Protocol
(SOAP) to Java.

Map between Java, WSDL, and XML

This topic contains the mappings between Java and XML technologies, including XML Schema, Web
Services Description Language (WSDL) and Simple Object Access Protocol (SOAP), supported by
WebSphere Application Server - Express. Most of these mappings are specified by Java API for
XML-based remote procedure call (JAX-RPC). Some mappings optional or unspecified in JAX-RPC are
also supported.

Notational conventions

The following table specifies the namespace prefixes and corresponding namespaces used.

Namespace prefix Namespace

xsd http:/ /www.w3.0rg/2001/XMLSchema

xsi http:/ /www.w3.0rg/2001/XMLSchema-instance
soapenc http:/ /schemas.xmlsoap.org/soap/encoding/
wsdl http:/ /schemas.xmlsoap.org/wsdl/

wsdlsoap http:/ /schemas.xmlsoap.org/wsdl/soap/

ns user defined namespace

apache http:/ /xml.apache.org/xml-soap

wasws http:/ /websphere.ibm.com/webservices/

Detailed mapping information

See these sections for information on the supported mappings:
* Java-to-WSDL mapping (page

¢ WSDL-to-Java mapping (page

* Mapping between WSDL and SOAP messages (page

Java-to-WSDL mapping

This section summarizes the Java-to-WSDL mapping rules. The Java-to-WSDL mapping rules are used by

the Java2WSDL command tool for bottom-up processing. In bottom-up processing, an existing Java

service implementation is used to create a WSDL file defining the Web service. The generated WSDL file

can require additional manual editing for the following reasons:

* Not all Java classes and constructs have mappings to WSDL. For example, Java classes that do not
comply with the Java bean specification rules might not map to a WSDL construct.

* Some Java classes and constructs have multiple mappings to WSDL. For example, a java.lang.String
class can be mapped to either an xsd:string or soapenc:string. The Java2WSDL command chooses one
of these mappings, but the WSDL file must be edited if a different mapping is desired.

Web services 17

There are multiple ways to generate WSDL constructs. For example, the part element in the
wsdl:message can be generated with a type or element attribute. The Java2WSDL command makes an
informed choice based on the settings of the -style and -use options.

The WSDL file describes the instance data elements sent in the SOAP message. If you want to modify
the names or format used in the message, the WSDL file must be edited.

The WSDL file requires editing if header or attachment support is desired.
The WSDL file requires editing if a multipart WSDL, one using wsdl:import, is desired.

For simple services, the generated WSDL file is sufficient. For complicated services, the generated WSDL
file is a good starting point.

General issues

Package to namespace mapping

The JAX-RPC does not specify the default mapping of Java package names to XML namespaces. The
JAX-RPC does specify that each Java package must map to a single XML namespace, and likewise. A
default mapping algorithm is provided that constructs the namespace by reversing the names of the
Java package and adding an http:// prefix. For example, a package named, com.ibm.webservice, is
mapped to the namespace http://webservice.ibm.com.

The default mapping between XML namespaces and Java package names can be overridden using the
-NStoPkg and -PkgtoNS options of the WSDL2Java and Java2WSDL commands.

Identifier mapping

Java identifiers are mapped directly to WSDL file and XML identifiers.

Java bean property names are mapped to the WSDL file and XML identifiers. For example, a Java bean,
with getInfo and setInfo methods, maps to an XML construct with the name, info.

The Service Endpoint Interface method parameter names, if available, are mapped directly to the XML
identifiers. See the WSDL2Java command -implClass option for more details.

WSDL construction summary
The following table summarizes the mapping from a Java construct to the related WSDL and XML
construct.

Java construct WSDL and XML construct

Service Endpoint Interface wsdl:portType

Method wsdl:operation

Parameters wsdlinput, wsdl:message, wsdl:part (1)
Return wsdl:output, wsdl:message, wsdl:part (1)
Throws wsdl:fault, wsdl:message, wsdl:part (1)
Primitive types xsd and soapenc simple types

Java beans xsd:complexType

Java bean properties Nested xsd:elements of xsd:complexType
Arrays JAX-RPC defined array xsd:complexType
User defined exceptions xsd:complexType

Note: The generated WSDL file is affected by the -style and -use options. A wsdl:binding that conforms
to the generated wsdl:portType is generated. The style and use constructs of the wsdl:binding are
determined from the -style and -use options. A wsdl:service containing a port that references the
generated wsdl:binding is generated. The names and values of the wsdl:service are controlled by the
Java2WSDL command options.

Style and use
Use the -style and -use options to generate different kinds of WSDL files. The four supported
combinations are:

18 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

— -style RPC -use ENCODED

- -style DOCUMENT -use LITERAL

— -style RPC -use LITERAL

— -style DOCUMENT -use LITERAL -wrapped false

The -use LITERAL option affects the generated WSDL file in the following ways:

— The soap:body elements in the wsdl:binding are specified as use="literal”.

The soap:fault elements in the wsdl:binding are specified as use="literal”.

The soap encoded types are not used.

The soap encoded array style is not used. The maxOccurs attribute is used to indicate arrays.
The -use ENCODED option affects the generated WSDL file in the following ways:

— The soap:body elements in the wsdl:binding are specified as use="encoded” and the encodingStyle
is set.

— The soap:fault elements in the wsdl:binding are specified as use="encoded” and the encodingStyle is
set.

— The -style RPC option affects the generated WSDL file in the following ways:

— The wsdl:part elements use the type attribute to reference XML types.

— The wsdl:binding is specified as style="rpc”.

The -style DOCUMENT -wrapped false option affects the generated WSDL file in the following ways:

— The wsdl:part elements use the type attribute to reference simple types. The element attribute is
used to reference the root xsd:elements for everything that is not a simple type.

— The wsdl:binding is specified as style="document”.

The -style DOCUMENT -wrapped true option generates a WSDL file that conforms to the .NET WSDL
file format:

— A request xsd:element is generated for each method in the Service Endpoint Interface as follows:
- The name of the xsd:element is the same as the name of the wsdl:operation.
- The xsd:element contains an xsd:sequence that contains xsd:elements defining each parameter.
- The request wsdl:message references the wrapper xsd:element using a single part:
- The name of the part is parameters.
- The element attribute is used to reference the wrapper xsd:element.

— A response xsd:element is generated for each method in the Service Endpoint Interface as follows:

- The name of the xsd:element is the same as the name of the wsdl:operation appended with
Response

- The xsd:element contains an xsd:sequence that contains xsd:elements defining the return value.
- The request wsdl:message references this wrapper xsd:element using a single part.

- The element attribute is used to reference the wrapper xsd:element.

- The wsdl:binding is specified as style="document”.

Mapping of standard XML types from Java types

Some Java types map directly to standard XML types. These types do not require additional XML
definitions in the wsdl:types section.
e JAX-RPC Java primitive type mapping
The following table describes the mapping from the Java primitive and standard types to XML
standard types. For more information see the JAX-RPC specification.

Java type XML type

int xsd:int

Web services 19

Java type XML type

long xsd:long

short xsd:short

float xsd:float

double xsd:double
boolean xsd:boolean

byte xsd:byte

byte[] xsd:base64Binary

Note: The default mapping for byte[] is
xsd:base64Binary. The data in byte[] is passed over
the wire as a text string encoded in the base64
format. An alternative format is xsd:hexBinary. To use
the xsd:hexBinary format:

* Edit the WSDL file and change xsd:base64Binary to
xsd:hexBinary, or

* Change your implementation to use the specialized
com.ibm.ws.webservices.engine.types.HexBinary

class.
java.lang.String xsd:string
java.math.BigInteger xsd:integer
java.math.BigDecimal xsd:decimal
java.util.Calendar xsd:dateTime
java.util.Date xsd:date
Note: This mapping is not covered by the JAX-RPC.
java.lang.Boolean xsd:boolean xsi:nillable=true
java.lang.Float xsd:float xsi:nillable=true
java.lang.Double xsd:double xsi:nillable=true
java.lang.Integer xsd:int xsi:nillable=true
java.lang.Short xsd:short xsi:nillable=true
java.lang.Byte xsd:byte xsi:nillable=true

Note: The java.lang wrapper classes in the last six lines of the table map to the same XML construct as
the corresponding Java primitive type. In addition, the xsi:nillable attribute is generated to indicate that
such elements can be null.

* Additional Java class mappings
In addition to the standard JAX-RPC mapping, the following classes are mapped directly to XML

types:

Java type XML type
com.ibm.ws.webservices.engine.types.HexBinary xsd:hexBinary
javax.xmlnamespace.QName xsd:qname
com.ibm.ws.webservices.engine.types.Token xsd:token
com.ibm.ws.webservices.engine.types.NormalizedString xsd:normalizedString
com.ibm.ws.webservices.engine.types.Name xsd:Name
com.ibm.ws.webservices.engine.types. NCName xsd:NCName
com.ibm.ws.webservices.engine.types. NMToken xsd:NMTOKEN

20 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

Java type

XML type

com.ibm.ws.webservices.engine.types.URI

xsd:anyURI

com.ibm.ws.webservices.engine.types.UnsignedLong

xsd:unsignedLong

com.ibm.ws.webservices.engine.types.UnsignedInt

xsd:unsignedInt

com.ibm.ws.webservices.engine.types.UnsignedByte

xsd:unsignedByte

com.ibm.ws.webservices.engine.types.NonNegativelnteger

xsd:nonNegativelnteger

com.ibm.ws.webservices.engine.types.Positivelnteger

xsd:positivelnteger

com.ibm.ws.webservices.engine.types.NonPositiveInteger

xsd:nonPositivelnteger

com.ibm.ws.webservices.engine.types.Time xsd:time
com.ibm.ws.webservices.engine.types.YearMonth xsd:gYearMonth
com.ibm.ws.webservices.engine.types.Year xsd:gYear
com.ibm.ws.webservices.engine.types.Month xsd:gMonth
com.ibm.ws.webservices.engine.types.Day xsd:gDay
com.ibm.ws.webservices.engine.types.MonthDay xsd:gMonthDay

com.ibm.ws.webservices.engine.types.Duration

xsd:duration

java.util. Map

apache:Map

Note: Any classes that implement java.util. Map are
also mapped to apache:Map.

java.util.Collection

soapenc:Array

Note: Each Java array, except byte[], and every class
that implements java.util.Collection is mapped to a
JAX-RPC defined soapenc:Array type.

org.w3c.dom.Element

apache:Element

java.util.Vector

apache:Vector

java.awt.Image

Note: Used for attachment support.

apache:Image

javax.mail.internet. MimeMultiPart

Note: Used for attachment support.

apache:Multipart

javax.xml.transform.Source

Note: Used for attachment support.

apache:Source

javax.activation.DataHandler

Note: Used for attachment support.

apache:DataHandler

Generation of wsdl:types

Java types that cannot be mapped directly to standard XML types are generated in the wsdl:types section.

e Java arrays

Java arrays for the -use ENCODED option, with the exception of byte[], are generated using the
following format. See the JAX-RPC specification for more details. Alternative mappings can be found

in Table 18.1 of the JAX-RPC specification.
Java:

Item[]
Mapped to:

Web services

21

<xsd:complexType name="ArrayOfItem">
<xsd:complexContent>
<xsd:restriction base="soapenc:Array">
<xsd:attribute ref="soapenc:arrayType" wsdl:arrayType="ns:Item" />
</xsd:restriction>
</xsd:complexContent
</xsd:complexType>
* JAX-RPC value type and bean mapping
A Java class that matches the Java value type or bean pattern is mapped to an xsd:complexType. In
order for a Java class to be mapped to XML, follow these conditions:

— The class must have a public default constructor.
— The class must not implement, directly or indirectly, java.rmi.Remote.

— Public, nonstatic, nonfinal, nontransient fields are mapped. The class can contain other fields and
methods, but they are not mapped.

— If the class follows the Java bean pattern and has public getter and setter methods, the property is
mapped.

Additional mapping rules can be found in the JAX-RPC specification. This example indicates the
mapping for sample base and derived Java classes:

Java:

public abstract class Base {
public Base() {}

public int a; // mapped

private int b; // mapped via setter/getter
private int c; // not mapped

private int[] d; // mapped via indexed setter/getter
public int getB() { return b;} // map property b

public void setB(int b) {this.b = b;}

public int[] getD() { return d;} // map indexed property d
public void setD(int[] d) {this.d = d;}

public int getD(int index) { return d[index];}

public void setB(int index, int value) {this.d[index] = value;}

public void someMethod() {...} // not mapped
}

public class Derived extends Base {

public int x; // mapped
private int y; // not mapped
}
Mapped to:

<xsd:complexType name="Base" abstract="true">
<xsd:sequence>
<xsd:element name="a" type="xsd:int" />
<xsd:element name="b" type="xsd:int" />
<xsd:element name="d" minOccurs="0" maxOccurs="unbounded" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Derived">
<xsd:complexContent>
<xsd:extension base="ns:Base">
<xsd:sequence>
<xsd:element name="x" type="xsd:int" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Inheritance and abstract classes

22 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

The example contains two optional JAX-RPC features that are supported by WebSphere Application
Server:

— An abstract class is mapped to an xsd:complexType with abstract="true”.

— An indexed bean property (see the methods for d in Base) are mapped to a nested element specified
with maxOccurs="“unbounded”. This format is similar to an XML array, but the SOAP message is
different. An XML array defines an element for the array and nested elements for each item in the
array. An element defined with maxOccurs indicates a series of items without the surrounding array
wrapper element. Both formats are popular.

* JAX-RPC enumeration class mapping
Section 4.2.4 of the JAX-RPC specification defines the mapping from an XML enumeration to a Java
class. Though not specifically required by the JAX-RPC, the Java2WSDL command performs the reverse
mapping. If you have a class that has the same format as a JAX-RPC enumeration class, it is mapped
to an XML enumeration.

* Holder classes
The JAX-RPC specification defines Holder classes in section 4.3.5. A Holder class is used to support in
and out parameter passing. Every Holder class implements thejavax.xml.rpc.holders.Holder interface.
The Java2WSDL command maps Holder classes to the same XML type as the held type. In addition,
references to Holder classes affect the generation of wsdl:messages.

* Exception classes
If a class extends the exception, java.lang.Exception, it is mapped to an xsd:complexType similar to the
Java bean mapping. The getter methods of the exception are mapped as nested xsd:elements of the
xsd:complexType. See section 5.5.5 of the JAX-RPC specification for more details.

Note: You need to generate implementation specific exception classes by invoking the WSDL2]Java
command on the resulting WSDL file.

* Unsupported classes
If a class cannot be mapped to an XML type, the Java2WSDL command issues a message and an
xsd:anyType reference is generated in the WSDL file. In these situations, modify the Web service
implementation to use the JAX-RPC compliant classes.

* Generation of root elements
If the Java2WSDL command generates an xsd:complexType or xsd:simpleType for a parameter
reference, a corresponding xsd:element is also generated. The xsd:element has the same name as the
xsd:complexType/xsd:simpleType and uses the type attribute to reference the
xsd:complexType/xsd:simpleType. The wsdl:message part can use the element attribute or the type
attribute to reference the xsd:element or type. This choice is determined by the -style and -use options.

Generation from the interface or implementation class

The class passed to the Java2WSDL command represents the interface of the wsdl:service. The
wsdl:portType and wsdl:message elements generate from this interface or implementation class.

* Generation of the wsdl:portType
The name of the wsdl:portType is the name of the class unless overridden by the -portTypeName
option.

* Generation of wsdl:operation
A wsdl:operation generates for each public method in the interface that throws the exception,
java.rmi.RemoteException.

— The name of the wsdl:operation is the name of the method.

— The wsdl:operation has a parameterOrder attribute, which defines the order of the parameters in the
signature. Specifically, the parameterOrder lists the order of the parts of the request or response
wsdl:messages.

— The wsdl:operation has a nested wsdl:input element that references the request wsdl:message using
the message attribute.

Web services 23

— The wsdl:operation has a nested wsdl:output element that references the response wsdl:message
using the message attribute.

— The wsdl:operation has a nested wsdl:fault element that references the default wsdl:message using
the message attribute.

See sections 5.5.4 and 5.5.5 of the JAX-RPC specification for more information.

* Generation of wsdl:message
Generating the wsdl:message is directly related to the -style and -use options. The following is the
default mapping (-style RPC -use ENCODED):

— A wsdl:message is created to represent the request. A wsdl:part representing each parameter is
added to the wsdl:message.

- The wsdl:part has the same name as the parameter.
- The wsdl:part uses the type attribute to locate the XML type of the parameter.

— A wsdl:message is created to represent the response. A wsdl:part representing the method return is
created.

- The wsdl:part has the same name as the method with Return appended.

Note: The name of the part is not specified by the JAX-RPC and is typically not checked by SOAP
engines. The wsdl:part has the same name as the parameter.

- The wsdl:part uses the type attribute to locate the XML type of the parameter.

- A wsdlpart is created for each parameter that is a Holder.

- The wsdl:part has the same name as the parameter.

- A wsdl:message is created to represent the fault if the operation has a wsdl:fault.

- A wsdl:part representing the fault is created.

- The wsdl:part has the same name as the exception.

- The wsdl:part uses the type attribute to locate the complexType representing the exception.

The same mapping is used as described if you use the -style RPC and -use LITERAL options. It is also
valid to use the wsdl:part element attribute instead of the type attribute to reference the XML schema.
If you use the -style DOCUMENT -wrapped false and -use LITERAL options, the same mapping is
used as described except the wsdl:part element attribute is used to reference the XML schema. If the
XML schema is a primitive type, like xsd:string, the type attribute is used to reference the XML type.
The -style DOCUMENT, -wrapped true and -use LITERAL options result in completely different
mappings for the request and response messages. For example:

— A request xsd:element is generated for each method in the Service Endpoint Interface.
- The name of the xsd:element is the same as the name of the wsdl:operation.
- The xsd:element contains an xsd:sequence that contains xsd:elements defining each parameter.
- The request wsdl:message references the wrapper xsd:element using a single part.
* The name of the part is parameters.
e The element attribute is used to reference the wrapper xsd:element.
— A response xsd:element is generated for each method in the Service Endpoint Interface.

- The name of the xsd:element is the same as the name of the wsdl:operation appended with
Response.

- The xsd:element contains an xsd:sequence that contains xsd:elements defining the return value.
- The request wsdl:message references this wrapper xsd:element using a single part.
- The element attribute is used to reference the wrapper xsd:element.

* Generation of wsdl:binding
Generate a wsdl:binding with a name defined by the Java2WSDL -bindingName command.

— The wsdlsoap:binding style attribute is set to rpc if you use the -style RPC option; otherwise it is set
to document.

— A wsdl:operation generates for each wsdl:operation defined in the wsdl:portType.

24 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

— Each wsdl:operation has corresponding wsdl:input, wsdl:output and wsdl:fault elements.
— The wsdlinput, wsdl:output and wsdl:fault elements each contain a wsdlsoap:body element.

— The wsdlsoap:body use attribute is set to literal or encoded according to the -use argument. Set the
encodingStyle attribute to http://schemas.xmlsoap.org/soap/encoding/ when use is encoded.

Generation of the wsdl:service
Generate a wsdl:service with a name defined by the Java2WSDL -serviceElement command. For
example:

The wsdl:service contains a port with a name defined by the Java2WSL -servicePortName command.

The port references the generated wsdl:binding with the binding attribute.

The port contains a wsdlsoap:address element with a

The location attribute is set to the value of the Java2WSDL -location command.

WSDL-to-Java mapping

The WSDL2Java command tool uses the following rules to generate Java classes when developing your
Web services client and server. In addition, implementation specific Java classes are generated that assist
in the serialization and deserialization, and invocation of the Web service.

General issues

Mapping of namespace to package

The JAX-RPC does not specify the mapping of XML namespaces to Java package names. The JAX-RPC
does specify that each Java package map to a single XML namespace, and likewise. A default mapping
algorithm omits any protocol from the XML namespace and reverses the names. For example, an XML
namespace http://websphere.ibm.com becomes a Java package with the name com.ibm.websphere.

The default mapping of XML namespace to Java package disregards the context-root. If two
namespaces are the same up until the first slash, they map to the same Java package. For example, the
XML namespaces http://websphere.ibm.com/foo and http://websphere.ibm.com/bar map to the Java
package com.ibm.websphere. The default mapping between XML namespaces and Java package names
can be overridden using the -NStoPkg and -PkgtoNS options of WSDL2Java and Java2WSDL
commands.

Identifier mapping

XML names are much richer than Java identifiers. They can include characters that are not permitted in
Java identifiers. See section 20 of the JAX-RPC specification for the rules to map an XML name to a
Java identifier.

The mapping rules attempt to follow accepted Java coding conventions. Class names always begin
with an uppercase letter. Method names begin with a lowercase letter. The WSDL2Java command
generates metadata in the _Helper class so that the values are serialized or deserialized using the XML
names specified in the WSDL file.

Java construction summary

WSDL and XML Java

xsd:complexType (struct) Java Bean Class

Note: The xsd:complexType can also represent a Java Note: The classes, _Helper, _Ser, and _Deser, generate for
exception if referenced by a wsdl:message for a each Java bean class. These implementation classes aid
wsdl:fault. serialization and deserialization.

nested xsd:element/xsd:attribute Java bean property

xsd:complexType (array) Java array

xsd:simpleType (enumeration) JAX-RPC enumeration class

Web services 25

WSDL and XML

Java

xsd:complexType (wrapper) The method parameter
signature typically is determined by the wsdl:message.
However, if the WSDL file is a .NET wrapped style, the
method parameter signature is determined by the
wrapper xsd:element

Service Endpoint Interface method parameter signature

Note: If a parameter is out or inout, a Holder class
generates.

wsdl:message The method parameter signature typically
is determined by the wsdl:message. However, if the
WSDL file is a .NET wrapped style, the method
parameter signature is determined by the wrapper
xsd:element

Service Endpoint Interface method signature

Note: If a parameter is out or inout, a Holder class
generates.

wsdl:portType

Service Endpoint Interface

wsdl:operation

Service Endpoint Interface method

wsdl:binding

Stub

Note: The Stub and ServiceLocator classes are
implementation specific.

wsdl:service

Service Interface and ServiceLocator

Note: The Stub and ServiceLocator classes are
implementation specific.

wsdl:port

Port accessor method in Service Interface

Mapping standard XML types
* JAX-RPC simple XML types mapping

The following mappings are XML types to Java types. For more information about these mappings, see

section 4.2.1 of the JAX-RPC specification.

Note: If an element with this type has the xsi:nillable
attribute set to true, it is mapped to the Java wrapper
class of the primitive type.

XML type Java type
xsd:string java.lang.String
xsd:integer java.math.BigInteger
xsd:int int

Note: If an element with this type has the xsi:nillable

attribute set to true, it is mapped to the Java wrapper

class of the primitive type.

xsd:long long

Note: If an element with this type has the xsi:nillable

attribute set to true, it is mapped to the Java wrapper

class of the primitive type.

xsd:short short

xsd:decimal

java.math.BigDecimal

xsd:float

Note: If an element with this type has the xsi:nillable
attribute set to true, it is mapped to the Java wrapper
class of the primitive type.

float

26 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

XML type

Java type

xsd:double

Note: If an element with this type has the xsi:nillable
attribute set to true, it is mapped to the Java wrapper
class of the primitive type.

double

xsd:boolean

Note: If an element with this type has the xsi:nillable
attribute set to true, it is mapped to the Java wrapper
class of the primitive type.

boolean

xsd:byte

Note: If an element with this type has the xsi:nillable
attribute set to true, it is mapped to the Java wrapper
class of the primitive type.

byte

xsd:dateTime

java.util.Calendar

xsd:date

Note: This mapping is not supported by the JAX-RPC.

java.util.Date

xsd:base64Binary byte[]
xsd:hexBinary byte[]
soapenc:base64 byte[]
soapenc:base64Binary byte[]

soapenc:string

java.lang.String

soapenc:boolean

java.lang.Boolean

soapenc:float

java.lang.Float

soapenc:double

java.lang.Double

soapenc:decimal

java.math.BigDecimal

soapenc:int

java.lang.Integer

soapenc:integer java.math.BigInteger
Note: This mapping is not supported by the JAX-RPC.
soapenc:short java.lang.Short

soapenc:long

Note: This mapping is not supported by the JAX-RPC.

java.lang.Long

soapenc:byte

java.lang.Byte

* JAX-RPC optional simple XML type mapping

The WSDL2Java command supports the following JAX-RPC optional simple XML types.

XML type Java type

xsd:gname javax.xml.namespace.QName

xsd:time com.ibm.ws.webservices.engine.types.Time
xsd:gYearMonth com.ibm.ws.webservices.engine.types.YearMonth
xsd:gYear com.ibm.ws.webservices.engine.types.Year
xsd:gMonth com.ibm.ws.webservices.engine.types.Month
xsd:gDay com.ibm.ws.webservices.engine.types.Day

Web services

27

XML type

Java type

xsd:gMonthDay

com.ibm.ws.webservices.engine.types.MonthDay

xsd:token

com.ibm.ws.webservices.engine.types.Token

xsd:normalizedString

com.ibm.ws.webservices.engine.types.NormalizedString

xsd:unsignedLong

com.ibm.ws.webservices.engine.types.UnsignedLong

xsd:unsignedInt

com.ibm.ws.webservices.engine.types.UnsignedInt

xsd:unsignedShort

com.ibm.ws.webservices.engine.types.UnsignedShort

xsd:unsignedByte

com.ibm.ws.webservices.engine.types.UnsignedByte

xsdmnonNegativelnteger

com.ibm.ws.webservices.engine.types.NonNegativelnteger

xsd:negativelnteger

com.ibm.ws.webservices.engine.types.Negativelnteger

xsd:positivelnteger

com.ibm.ws.webservices.engine.types.Positivelnteger

xsd:nonPositivelnteger

com.ibm.ws.webservices.engine.types.NonPositiveInteger

xsd:Name com.ibm.ws.webservices.engine.types.Name
xsd:NCName com.ibm.ws.webservices.engine.types.NCName
xsd:NMTOKEN com.ibm.ws.webservices.engine.types. NMTOKEN

xsd:duration

com.ibm.ws.webservices.engine.types.Duration

xsd:anyURI

com.ibm.ws.webservices.engine.types.URI

¢ JAX-RPC xsd:anyType mapping
The WSDL2Java command maps an xsd:anyType to a java.lang.Object. This is an optional feature of
the JAX-RPC specification. The xsd:anyType can be used to store any XML type other than the XML
primitive type. An xsd:anyType is always serialized along with an xsi:type that specifies the actual

type.

* Additional supported mappings
The following mappings are also supported by the WSDL2Java command. These mappings are not
defined by the JAX-RPC specification.

XML type

Java type

apache:PlainText

Note: For MIME attachments.

java.lang.String

apache:Map

java.util. Map

apache:Element

org.w3c.dom.Element

wasws:SOAPElement

com.ibm.ws.webservices.xmlsoap.SOAPElement

apache:Vector

java.util.Vector

apache:Image

Note: For MIME attachments.

java.awt.Image

apache:Multipart

Note: For MIME attachments.

javax.mail.internet. MimeMultipart

apache:Source

Note: For MIME attachments.

javax.xml.transform.Source

apache:octetStream

Note: For MIME attachments.

javax.activation.DataHandler

28 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

XML type Java type

apache:DataHandler javax.activation.DataHandler

Note: For MIME attachments.

Mapping XML defined in the wsdl:types section

The WSDL2Java command generates Java types for the XML schema constructs defined in the wsdl:types
section. The XML schema language is broader than the required or optional subset defined by the
JAX-RPC specification. The WSDL2Java command supports all required mappings and most optional
mappings. In addition, the command supports some XML schema mappings that are outside the
JAX-RPC specification. In general, the WSDL2Java command ignores constructs that it does not support.
For example, the WSDL2Java command does not support the default attribute. If an xsd:element is
defined with the default attribute, the default attribute is ignored. In some cases it maps unsupported
constructs to wasws:SOAPElement.

* Mapping of xsd:complexType to Java bean
The most common mapping is from an xsd:complexType to a Java bean class.

— Standard Java bean mapping
The standard Java bean mapping is defined in section 4.2.3 of the JAX-RPC specification The
xsd:complexType defines the type. The nested xsd:elements within the xsd:sequence or xsd:all
groups are mapped to Java bean properties. For example:

XML:

<xsd:complexType name="Sample">
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" maxOccurs="unbounded" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

Java:
public class Sample {

/] ..
public Sample() {}

// Bean Property a
public String getA() {...}
public void setA(String value) {...}

// Indexed Bean Property b

public String[] getB() {...}

public String getB(int index) {...}

public void setB(String[] values) {...}

public void setB(int index, String value) {...}

}

— Methods equals() and hashCode()
The generated Java bean classes contain an implementation of the equals() method. The generation
of this method is outside the JAX-RPC specification. The equals() method returns true if equals() is
true for each contained bean property. The implementation accounts for self-referencing loops. This
version of the equals() method is typically more useful than the “identity” equals provided by
java.lang.Object. A corresponding hashCode() method is also generated in the Java bean class.

— Properties and indexed properties
In the standard Java bean mapping example, the nested xsd:element for property a is mapped to a
Java bean property. In addition, the WSDL2Java command maps a nested xsd:element with
maxOccurs > 1 to a Java bean indexed property.

Web services 29

30

— Attributes

The WSDL2Java command also supports the xsd:attribute element, as shown in the following
example.

Attribute a is mapped as a Java bean property, which is exactly the same mapping as a nested
xsd:element. Implementation specific metadata is generated in the Sample2_Helper class to ensure
that property a is serialized and deserialized as an attribute, and not as a nested element. For
example:

XML:

<xsd:complexType name="Sample2">
<xsd:sequence>
<xsd:attribute name="a" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

Java:
public class Sample2 {
//

pubi%c Sample2() {}

// Bean Property a

public String getA()

public void setA(String value) {...}
}

Qualified versus unqualified names

The WSDL2Java command supports the elementForm and attributeForm schema attributes. This
support is not specified in the JAX-RPC specification. These attributes are used to indicate whether
an element or attribute is serialized and deserialized with a qualified or unqualified name. The
default setting for elementForm is qualified and the default setting for attributeForm is unqualified.
These settings do not affect the Java bean class that is generated, but the information is captured in
the _Helper class metadata.

Extension and the abstract attribute
The WSDL2Java command supports extension of an xsd:complexType through the xsd:extension
element. This support is required by the JAX-RPC specification.

The WSDL2Java command supports the abstract attribute. This feature is listed as optional by the
JAX-RPC specification.

The following example shows the accepted use of the extension and abstract constructs. WebSphere
Application Server uses the extension and abstract constructs to support polymorphism.

XML:

<xsd:complexType name="Base" abstract="true">
<xsd:sequence>
<xsd:element name="a" type="xsd:int" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Derived">
<xsd:complexContent>
<xsd:extension base="ns:Base">
<xsd:sequence>
<xsd:element name="b" type="xsd:int" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Java:
public abstract class Base {
/...
public Base() {}
public int getA() {...}

IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

public void setA(int a) {...}
1

public class Derived extends Base {

/]l ...
public Derived() {}

public int getB() {...}
public void setB(int b) {...}
1

— Support for xsd:any
The WSDL2Java command supports xsd:anyelement, which is different than xsd:anyType. This
feature is not defined within the JAX-RPC specification and is subject to change.

If an <xsd:any/> element is defined within xsd:sequence or xsd:all group, SOAP values that do
match one of the xsd:elements are stored in the Java bean as
com.ibm.ws.webservices.engine.xmlsoap.SOAPElement objects. Values can be accessed from the Java
bean using the get_any() and set_any() methods.

* Mapping of xsd:element

An xsd:element is a construct that has a name or name attribute, and a type defined by a complexType
or primitive type. There are two different kinds of xsd:elements:

— Root: Defined directly underneath the schema elements and referenced by other constructs.

— Nested: Nested underneath group elements and are not referenced by other constructs.

Root elements are referenced by the WSDL file constructs, especially if the WSDL file is used to
describe a literal service. Typically, root elements and types have the same names, which is allowed in
the schema language. Under most circumstances the WSDL2Java command can produce Java artifacts
without name collisions.

— Four ways to reference a type
There are four ways that a nested or root xsd:element can reference a type:

Use the type attribute:

This is the most common way to reference a type, for example:

<xsd:element name="one" type="ns:myType" />

The WSDL2Java command recognizes the type attribute as a reference to a complexType or
simpleType named, myType. The WSDL2Java command generates a Java type based on the
characteristics of myType. Support for the type attribute is required by the JAX-RPC specification.
Use the ref attribute:

For example:

<xsd:element ref="ns:myElement" />

The WSDL2Java command recognizes the ref attribute as a reference to another root element
named myElement. The name of the element is obtained from the referenced element, such as
myElement. The type of the element is the type of the referenced element. The WSDL2Java
command generates a Java type based on the characteristics of the referenced type. The ref
attribute is an optional feature of the JAX-RPC specification.

Use no attribute:

For example:

<xsd:element name="three" />

When you do not use an attribute, the WSDL2Java command recognizes a reference to the
xsd:anyType as defined by the XML schema specification. The xsd:anyType is an optional type of
the JAX-RPC specification.

Use an anonymous type:

For example:

<xsd:element name="four">
<xsd:complexType>
<xsd:sequence>

Web services 31

<xsd:element name="foo" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</ xsd:element>
When you use an anonymous type, the WSDL2]Java command recognizes a reference to the type
defined within the element.

Note: The complexType does not have a name.

The WSDL2Java command generates a Java type based on the characteristics of this type. Since
the anonymous type does not have a name, the WSDL2Java command uses the name of the
container element, which can result in collisions with defined types and other anonymous types.
The WSDL2Java command automatically detects and renames classes to avoid collisions. Support
for anonymous types is not defined by the JAX-RPC specification, however using anonymous
types is common. Note: An xsd:attribute is like an xsd:element; it contains a name and refers to a
type. An xsd:attribute can refer to its type with the type attribute or using an anonymous type.

— Element specific attributes
Some attributes can be applied to xsd:elements and not to XML types.

The maxOccurs attribute indicates the maximum number of occurrences of the element in the SOAP
message. The default value is 1. If the value is greater than 1, or unbounded, the WSDL2]Java
command maps the construct to a Java array or bean indexed property. Metadata is also generated
to properly serialize and deserialize a series of elements versus a normal XML array. The maxOccurs
attribute is an optional feature of the JAX-RPC specification.

The minOccurs attribute indicates the minimum number of occurrences of the element in the SOAP
message. The default value is 1. The xsi:nillable attribute indicates whether the element can have a
nil value. The minOccurs and xsi:nillable settings affect how a null value is serialized in a SOAP
message. If minOccurs=0, the null value is not serialized. If xsi:nillable=true, the value is serialized
with the xsi:nil=true attribute.

* Mapping of xsd:complexType to Java array
The WSDL2Java command maps the following three kinds of XML formats to Java arrays:

XML

<xsd:element name="arrayl" type="soapenc:Array" />
Java:

Object[] arrayl;

XML:

<xsd:complexType name="arrayOfInt">
<xsd:complexContent>
<xsd:restriction base:"soapenc:Array">
<xsd:attribute ref:"soapenc:arrayType" wsdl:arrayType="xsd:int[]" />
</xsd:restriction>
</xsd:complexContext>
</xsd:complexType>
<xsd:element name="array2" type="ns:arrayOfInt" />

Java:
int[] array2;
XML

<xsd:complexType name="arrayOfInt">
<xsd:complexContent>
<xsd:restriction base:"soapenc:Array">
<xsd:sequence>
<xsd:element name="item" type="xsd:int" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
<xsd:element name="array3" type="ns:arrayOfInt" />

Java:

32 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

int[] array3;
* Mapping of xsd:simpleType enumeration

The WSDL2Java command maps the following XML enumeration to a JAX-RPC specified enumeration

class. See section 4.2.4 of the JAX-RPC specification for more details.

<xsd:simpleType name="EyeColorType" >
<xsd:restriction base="xsd:string">
<xsd:enumeration value="brown"/>
<xsd:enumeration value="green"/>
<xsd:enumeration value="blue"/>
</xsd:restriction>
</xsd:simpleType>
¢ Mapping of xsd:complexType to exception class
If a complexType is referenced in a wsdl:message for a wsdl:fault, the complexType is mapped to a
class that extends the exception, java.lang.Exception. This mapping is similar to the mapping of a
complexType to a Java bean class, except a full constructor is generated, and only getter methods are
generated. See section 4.3.6 of the JAX-RPC specification for more details.

e Other mappings

The WSDL2Java command supports the mapping of xsd:simpleType and xsd:complexTypes that extend

xsd:simpleTypes. These constructs are mapped to Java bean classes. The simple value is mapped to a
Java bean property named, value. This is an optional feature of the JAX-RPC specification.

Mapping of wsdl:portType

The wsdl:portType construct is mapped to the Service Endpoint Interface. The name of the wsdl:portType

is mapped to the name of the class of the Service Endpoint Interface.
Mapping of wsdl:operation

A wsdl:operation within a wsdl:portType is mapped to a method of the Service Endpoint Interface. The
name of the wsdl:operation is mapped to the name of the method. The wsdl:operation contains
wsdlinput and wsdl:output elements that reference the request and response wsdl:message constructs
using the message attribute. The wsdl:operation can contain a wsdl:fault element that references a
wsdl:message describing the fault. These faults are mapped to Java classes that extend the exception,
java.lang.Exception as discussed in section 4.3.6 of the JAX-RPC specification.

* Effect of document literal wrapped format
If the WSDL file uses the .NET document and literal wrapped format, the method parameters are
mapped from the wrapper xsd:element. The NET document and literal format is automatically
detected by the WSDL2Java command. The following criteria must be met:
— The WSDL file must have style="document” in its wsdl:binding constructs.
— The WSDL file must have use="literal” in its wsdl:binding constructs.
— The wsdl:message referenced by the wsdl:operation input construct must have a single part.
— The part must use the element attribute to reference an xsd:element.
— The referenced xsd:element, or wrapper element, must have the same name as the wsdl:operation.
— The wrapper element must not contain any xsd:attributes.

In such cases, each parameter name is mapped from a nested xsd:element contained within wrapper
element. The type of the parameter is mapped from the type of the nested xsd:element. For example:

XML:

<xsd:element name="myMethod" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="paraml" type="xsd:string" />
<xsd:element name="param2" type="xsd:int" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Web services

33

<wsd1l:message name="response" />
<part name="parameters" element="ns:myMethod" />
</wsd1:message name="response" />

<wsdl:message name="response" />

<wsd1:operation name="myMethod">
<input name="input" message="request" />
<output name="output" message="response" />
</wsd1:operation>

Java:
void myMethod(String paraml, int param2) ...

Parameter mapping
If the document and literal wrapped format is not detected, the parameter mapping follows the normal
JAX-RPC mapping rules set in section 4.3.4 of the JAX-RPC specification.

Each parameter is defined by a wsdl:message part referenced from the input and output elements.
— A wsdl:part in the request wsdl:message is mapped to an input parameter.

— A wsdl:part in the response wsdl:message is mapped to the return value. If there are multiple
wsdl:parts in the response message, they are mapped to output parameters.

- A Holder class is generated for each output parameter as discussed in section 4.3.5 of the
JAX-RPC specification.

— A wsdl:part that is both the request and response wsdl:message is mapped to an inout parameter.
- A Holder class is generated for each inout parameter as discussed in section 4.3.5 of the JAX-RPC
specification.
- The wsdl:operation parameterOrder attribute defines the order of the parameters.

The WSDL2Java command supports overloaded methods, but confirm that the part names of the
overloaded methods are unique. For example:

XML:

<wsdl:message name="request" >
<part name="paraml" type="xsd:string" />
<part name="param2" type="xsd:int" />
</wsd1:message name="response" />

<wsd1l:message name="response" />

<wsdl:operation name="myMethod" parameterOrder="paraml, param2">
<input name="input" message="request" />
<output name="output" message="response" />

</wsd1:operation>

Java:

void myMethod(String paraml, int param2) ...

Mapping of wsdl:binding

The WSDL2Java command uses the wsdl:binding information to generate an implementation specific
client side stub. WebSphere Application Server uses the wsdl:binding information on the server side to
properly deserialize the request, invoke the Web service, and serialize the response. The information in
the wsdl:binding should not affect the generation of the Service Endpoint Interface, but it can when the
document and literal wrapped format is used or when there are MIME attachments.

MIME attachments

For a WSDL 1.1 compliant WSDL file, a part of an operation message, which is defined in the binding
to be a MIME attachment, becomes a parameter of the type of the attachment regardless of the part
declared. For example:

XML:

34 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

<wsd1:types>
<schema ...>
<complexType name="ArrayOfBinary">
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:binary[]" />
</restriction>
</complexType>
</schema>
</wsd1:types>

<wsd1:message name="request">
<part name="paraml" type="ns:ArrayOfBinary" />
<wsdl:message name="response" />

<wsdl:message name="response" />

<wsd1:operation name="myMethod">
<input name="input" message="request" />
<output name="output" message="response" />
</wsd1:operation>

<binding ...
<wsd1:operation name="myMethod">
<input>
<mime:multipartRelated>
<mime:part>
<mime:content part="paraml" type="image/jpeg"/>
</mime:part>
</mime:multipartRelated>
</input>

</wsd1:operation>
Java:

void myMethod(java.awt.Image paraml) ...
The JAX-RPC requires support for the following MIME types:

MIME type Java type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

multipart/* javax.mail.internet. MimeMultipart
text/xml javax.xml.transform.Source
application/xml javax.xml.transform.Source

There are a number of problems with MIME attachments as they are defined in WSDL 1.1, including:

— The semantics of the mime:multipartRelated clause are not fully defined.
— The semantics do not allow for arrays of MIME attachments.

Because of these problems, several types are not specified by the JAX-RPC for MIME attachments.
These types are defined in the supported mappings previously discussed.
* Headers
A wsdl:binding can also define SOAP headers, for example:
XML:

<wsd]:message name="request">
<part name="paraml" type="xsd:string" />
</wsd1:message/>

Web services

35

<wsdl:message name="response" />

<wsdl:operation name="myMethod">
<input name="input" message="request" />
<output name="output" message="response" />
</wsd1:operation>

<binding ...
<wsdl:operation name="myMethod">
<input>
<soap:header message="request" part="paraml" use="literal" />
</input>

</wsd1:operation>
Java:
void myMethod(String paraml) ...

This is an example of an explicit header or a header with a value determined from a method
parameter. Instead of appearing in the soap:body SOAP message, the value of paraml now appears in
the soap:header SOAP message. The WSDL2Java command supports explicit headers and does not
support implicit headers. Implicit headers have a value not determined by a parameter. For example,
you could replace the soap:header clause in the example with:
<soap:header message="someOtherMsgNotAppearingInthePortType"

part="someOtherPart" use="literal"/>
Note: The WSDL2Java command supports explicit headers, but it is not considered good programming
practice to use them. Headers are typically used for middleware logic, not business logic. Explicit
headers place parameters used in business logic into the header.

Mapping of wsdl:service

The wsdl:service element is mapped to a Generated Service interface. The Generated Service interface
contains methods to access each of the ports in the wsdl:service. The Generated Service interface is
discussed in sections 4.3.9, 4.3.10, and 4.3.11 of the JAX-RPC specification.

In addition, the wsdl:service element is mapped to the implementation-specific ServiceLocator class,
which is an implementation of the Generated Service interface.

Mapping between WSDL and SOAP messages

The WSDL file defines the format of the SOAP message that is sent over the wire. The WSDL2]Java
command and the WebSphere Application Server run time use the information in the WSDL file to
confirm that the SOAP message is properly serialized and deserialized.

Document versus RPC, literal versus encoded

If a wsdl:binding indicates a message is sent using an RPC format, the SOAP message contains an
element defining the operation. If a wsdl:binding indicates the message is sent using a document format,
the SOAP message does not contain the operation element.

If the wsdl:part is defined using the type attribute, the name and type of the part are used in the
message. If the wsdl:part is defined using the element attribute, the name and type of the element are
used in the message. The element attribute is not allowed by the JAX-RPC specification when
use="encoded”.

If a wsdl:binding indicates a message is encoded, the values in the message are sent with xsi:type

information. If a wsdl:binding indicates that a message is literal, the values in the message are typically
not sent with xsi:type information. For example:

36 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

WSDL:

<xsd:element name="c" type="xsd:int" />

<wsdl:message name="request">
<part name="a" type="xsd:string" />
<part name="b" element="ns:c" />
</wsd1:message>

<wsd1:operation name="method" >
<input message="request" />

RPC/ENCODED:

<soap:body>
<ns:method>
<a xsi:type="xsd:string">ABC

<element attribute is not allowed in rpc/encoded mode>

</ns:method>
</soap:body>

DOCUMENT/LITERAL:

<soap:body>
<a>AB(C
<c>123

</soap:body>

DOCUMENT/LITERAL wrapped:

<soap:body>
<ns:method_wrapper>
<a>ABC
<c>123
<ns:method_wrapper>
</soap:body>

The document and literal wrapped mode is the same as the document and literal mode. However, in the
document and literal wrapped mode, there is only a single element within the body, and the element has

the same name as the operation.

Multi-ref processing

If use=encoded, XML types that are not simpleTypes are passed in the SOAP message using the multi-ref
attributes, href and id. The following example assumes that parameters one and two reference the same

Java bean named, info containing fields a and b:

Note: Deserialization produces a single instance of the info class for the encoded case, and two instances

for the literal case.

RPC/ENCODED:

<soap:body>
<ns:method>
<paraml href="#id1" />
<param2 href="#id2" />
<ns:method>
<multiref id="id1l" xsi:type="ns:info">
<a xsi:type="xsi:string">hello<a>
<b xsi:type="xsi:string">world
</multiref>
</soap:body>

RPC/LITERAL:

Web services

37

<soap:body>
<ns:method>
<paraml>
<a>hello
world
</paraml>
<param2>
<a>hello
world
</param2>
<ns:method>
</soap:body>

XML arrays and the maxOccurs attribute

A SOAP message is affected by whether the element is defined by an XML array or using the maxOccurs
attribute.

WSDL:
<element name="foo" type="ns:Array0fString" />

Literal Instance:

<foo>
<item>A</item>
<item>B</item>
<item>C</item>
</foo>

WSDL:
<element name="foo" maxOccurs="unbounded" type="xsd:string"/>

Literal Instance:

<foo>A</foo>
<foo>B</foo>
<foo>C</foo>

minOccurs and nillable attributes

An element specified with minOccurs=0 that has a null value is not serialized in the SOAP message. An
element specifying nillable="true” has a null value and is serialized into a SOAP message with the
xsimil=true attribute. For example:

<a xsi:nil="true" />
Qualified versus unqualified

The XML schema attributeForm and elementForm attributes indicate whether the attributes and nested
elements are serialized with qualified or unqualified names. If a part name is serialized, it is always
serialized as an unqualified name.

uDDI4J

UDDI4] is a Java™ class library that provides an API that is used to interact with a UDDI registry. This
class library generates and parses messages sent to and received from a UDDI server. The central class in
this set of APIs is com.ibm.uddi.client. UDDIProxy.

This class is a proxy for the UDDI server that is accessed from the client code. Its methods map to the
[UDDI Specification|

38 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

http://www.uddi.org/specification.html

O

Note: this document is in PDF format. You must have the Adobe Acrobat Reader installed as a plugin to
your browser to view this document.

The classes within com.ibm.uddi.datatype represent data objects that send or receive UDDI information.
In the business and service model, the data objects are also known as subpackages.

e com.ibm.uddi.request
The subpackage com.ibm.uddi.request contains messages sent to the server. Generally, these classes are
not used directly; rather, they are invoked by the UDDIProxy class.

* com.ibm.uddi.response
The subpackage com.ibm.uddi.response represents response messages from a UDDI server.

UDDI4]J error handling

The com.ibm.uddi.client. UDDIProxy package contains the following Java exceptions:

e UDDIException
UDDIException is thrown when errors are received from the UDDI proxy when invoking UDDIProxy
inquiry methods. UDDIException can contain a DispositionReport with information regarding the error.
APIs that do not return a data object provide the disposition report.

* SOAPException
SOAPException is thrown if a communication error occurs or if the resulting data cannot be parsed as
a valid SOAP message.

For more information, visit the [BM DeveloperWorks uddi4j Project site|

5

Web Services Invocation Framework (WSIF)

The Web Services Invocation Framework (WSIF) is a WSDL-oriented Java API that allows you to call Web
services dynamically, regardless of what format the service is implemented in, or what device is used to
access it.

WEIF enables you, as a Web services developer, to move away from the typical Web services
programming model of working directly with the SOAP APIs, toward a model where you interact with
representations of the services. You can work with the same programming model regardless of how the
service is implemented and accessed.

For more information about WSIF, see these topics:

[“Goals of WSIF” on page 40|
This topic describes the goals of WSIF.

[“An overview of WSIF” on page 41|
This topic provides an overview of WSIF including a description of the chitecture and usage
scenarios.

“Use WSIF to call Web services” on page 44|
This topic describes how to use WSIF to call Web services.

Web services 39

http://oss.software.ibm.com/developerworks/projects/uddi4j

[“WSIF system management and administration” on page 51|
This topic describes how to enable security for WSIF, and how to maintain the WSIF properties file.

[“WSIF API” on page 52|
This topic describes the WSIF APIs.

[“Troubleshoot: Web Services Invocation Framework” on page 53|
this topic describes how to resolve common problems with WSIFE.

Goals of WSIF

SOAP bindings for Web services are part of the WSDL specification. When most developers think of
using a Web service, they immediately think of assembling a SOAP message and sending it across the
network to the service endpoint, using some SOAP client API. For example: with Apache SOAP the client
creates and populates a Call object which encapsulates the service endpoint, the identification of the
SOAP operation to be called, the parameters that have to be sent, and so on.

Although this works for SOAP, it is limited in its use as a general model for invoking Web services for
these reasons:

* Web services are not just SOAP services.

You can deploy as a Web service any program with a WSDL description of its functional aspects and
access protocols; and in the J2EE environment, the same component is available over multiple
transports and protocols.

For example, you can have a database stored procedure, which is then exposed as a stateless session
bean, and then deployed into a SOAP router to become a SOAP service. At each stage, the
fundamental service is the same. All that changes is the access device: from JDBC to RMI-IIOP and
then to SOAP.

The WSDL specification defines a SOAP binding for Web services, but you can add binding extensions
to the WSDL so that, for example, you can offer an enterprise bean as a Web service using RMI/IIOP
as the access protocol. You can even treat a single Java class as a Web service, with in-thread Java
method calls as the access protocol. With this broader definition of a Web service, you need a
binding-independent device for service calls.

¢ Tying client code to a particular protocol implementation is restricting.

If your client code is tightly bound to a client library for a particular protocol implementation, it can
become hard to maintain. For example if you move from Apache SOAP to a different SOAP
implementation, the process can take a lot of time and effort. To avoid these problems, you need a
protocol implementation-independent device for service calls.

* Incorporating new bindings into client code is hard.

If you want to make an application that uses a custom protocol work as a Web service, you can add
extensibility elements to WSDL to define the new bindings. But in practice, achieving this is hard. For
example you have to design the client APIs for using this protocol; and if your application uses just the
abstract interface of the Web service, you have to write tools to generate the stubs that enable an
abstraction layer. These are tasks that can take a lot of time and effort. What you need is a service call
device that allows bindings to be updated or new bindings to be plugged in easily.

* Multiple bindings can be used in flexible ways.

Imagine that you have successfully deployed an application that uses a Web service offering multiple
bindings. For example, imagine that you have a SOAP binding for the service and a local Java binding
that lets you to treat the local service implementation (a Java class) as a Web service.

The local Java binding for the service can only be used if the client is deployed in the same
environment as the service itself, and if this is the case it is far more efficient to communicate with the
service by making direct Java calls than using the SOAP binding.

If your clients can switch the actual binding used based on run-time information, they can choose the
most efficient available binding for each situation. In order to take advantage of Web services that offer

40 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

multiple bindings, you need a service call device that allows you to switch between the available
service bindings at runtime, without having to generate or recompile a stub.

A freer Web services environment enables intermediaries.

Web services offer application integrators a loosely-coupled paradigm. In such environments,
intermediaries can be very powerful. Intermediaries can add value to the service call without specific
programming. Facilities such as logging, high-availability and transformation can be provided by a
intermediary. WSIF is designed to make building intermediaries both possible and simple.

The goals of WSIF are therefore:

To give a binding-independent device for Web service call.

To free client code from the complexities of any particular protocol used to access a Web service.
To enable dynamic selection between multiple bindings to a Web service.

To help the development of Web service intermediaries.

An overview of WSIF
WESIF provides a Java API for invoking Web services, independent of the format of the service or the
transport protocol through which it is called. It addresses all of the issues identified in the goals of WSIFE.

WESIF provides these features:

It has an API that provides binding-independent access to any Web service.

It is closely based on WSDL, so it can call any service that can be described in WSDL.
It allows stubless (completely dynamic) call of a Web service.

You can plug a new or updated implementation of a binding into WSIF at run time.
You can defer the choice of a binding until run time.

WESIF is designed to work both in an unmanaged environment (stand-alone) and inside a managed
container. You can use JNDI to find the WSIF service, or else read in the WSDL definition.

For more conceptual information about WSIF and WSDL, see these topics:

[“WSIF and WSDL”|
This topic compares the semantics of Web Services Description Language (WSDL) and WSIF.

[“WSIF architecture” on page 42|
This topic describes the WSIF architecture.

[“Use WSIF with Web services that offer multiple bindings” on page 43|
This topic describes how to use WSIF with Web Services with multiple bindings.

[“WSIF usage scenarios” on page 43|
This topic describes two brief scenarios that illustrate the role that Web Services Invocation
Framework (WSIF) plays in the emerging Web services environment.

[“Dynamic calls” on page 44|
This topic describes dynamic call of WSIFE.

WSIF and WSDL: In Web Services Description Language (WSDL), a service is defined in three distinct
parts:

¢ The PortType The PortType defines the abstract interface offered by the service. A PortType defines a

set of operations. Each operation can be In-Out (request-response), In-Only, Out-Only and Out-In

(Solicit-Response). Each operation defines the input and output messages. A message is defined as a set

of parts, and each part has a schema-defined type.

Web services

41

* The Binding A binding defines how to map between the abstract PortType and a real service format
and protocol. For example, the Simple Object Access Protocol (SOAP) binding defines the encoding
style, the SOAPAction header, and the namespace of the body (the targetURI).

* The Port. This defines the actual location (endpoint) of the available service. For example, the HTTP
URL on which a SOAP service is available.

Currently in WSDL, each Port has one and only one binding, and each binding has a single PortType. But
each Service (PortType) can have multiple Ports, each of which represents an alternative location and
binding for accessing that service.

Web Services Invocation Framework (WSIF) follows the semantics of WSDL as much as possible:

* The WSIF dynamic call API directly exposes run time equivalents of the model from WSDL. For
example, calling an operation involves executing an operation with an Input Message.

* WSDL has extension points that allow new ports and bindings to be added so that WSDL can describe
new systems. The equivalent concept in WSIF is a provider, that allows WSIF to understand a class of
extensions, and therefore support new service implementation types.

As a metadata-based call framework, WSIF follows the design of the metadata. As WSDL is extended,
WEIF is updated accordingly.

Note: The implicit and primary type system of WSIF is XML Schema, not Java. WSIF supports calls using
dynamic proxies, which support Java type systems, but when you use the WSIFMessage interface it is
your responsibility to populate WSIFMessage objects with data based on the XML Schema types as
defined in the WSDL document. You should define types of objects by a canonical and fixed mapping
from schema types into the run time.

WSIF architecture: The WSIF architecture is shown in this figure. The components of this architecture
are described after the figure.

1. Load WSDL document

WSOL
document
N WSDL describes
service inferface
2. Create WSIF 3. Use WSIF service fo \
senvice get operation A
WSIF -
operation o Service
4. Creale message 5 Invoke service with WSIF
operation name and provider
message

42 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

WSIF architecture.

The WSIF architecture, shows a Web service called by loading a WSDL document, creating a WSIF
service, using the service to get a WSIF operation, then invoking the target Web service by providing the
WESIF operation with the target service operation’s name and the message that it needs.

WSIF provider

A WSIF provider is an implementation of a WSDL binding that can run a WSDL operation through a
binding-specific protocol. WebSphere Application Server - Express includes WSIF providers for SOAP
over HTTP, and Java. For more information, see [‘Use the WSIF providers” on page 47

WSIFOperation

The runtime representation of an operation, called WSIFOperation is responsible for invoking a service
based on a particular binding.

WSIFService
The WSIFService is responsible for generating an instance of WSIFOperation to be used for a particular
call of a service operation.

WSDL documents
The Web service WSDL document contains the location of the Web service. The binding document defines
the protocol and format for operations and messages defined by a particular portType.

Use WSIF with Web services that offer multiple bindings: You can use WSIF to enable client
applications to switch between service bindings at run time, to enable them to use the optimum binding,
and to call operations on a Web service provider.

For example, a Web service provider can offer a SOAP binding for the service and a local Java binding
that allows you to treat the local service implementation (a Java class) as a Web service. If the client is
deployed in the same environment as the service, the local Java binding for the service can be used and
provides more efficient communication with the service by making direct Java calls rather than using the
SOAP binding.

WSIF usage scenarios: This topic describes two brief scenarios that illustrate the role that Web Services
Invocation Framework (WSIF) plays in the emerging Web services environment.

Scenario: Redevelopment and redeployment

If you are implementing Web services today, you are probably working with simple prototypes. As your
Web services move into production, you need to reimplement and redeploy them. WSIF uses the same
API calls with different underlying technologies. If you use WSIF you can reimplement and redeploy
your services without changing the client code, and you can use existing highly reliable and
high-performance infrastructures like RMI-IIOP without sacrificing the location-independence that the
Web service model offers.

Scenario: Service Flow composition

A service flow typically calls a Web service, then passes the response from one Web service into the next
Web service, perhaps performing some transformation in the middle.

There are two key aspects to this that WSIF provides:
* A representation of the service calls based on the metadata in WSDL.
¢ The ability to build calls based on the portType only, which can be used on any implementation.

Web services 43

For example, imagine that you build a meta-service that uses a number of services to build a process.
Initially several of those services are simple JavaBean prototypes that are written and exposed through
Simple Object Access Protocol (SOAP), but you plan to reimplement some of them as other components,
and to out-source others.

If you use SOAP, it ties up multiple threads for every onward call, as they pass through the webserver
and servlet engine into the SOAP router. If you use WSIF to call the beans directly, you get much better
performance compared to SOAP, and you don’t lose access or location transparency. Using WSIF, you can
move some of the Web services from local implementations to external SOAP services you just update the
WSDL.

Dynamic calls: In WSIF, dynamic calls means providing these levels of support when invoking Web

services:

1. Support, through the use of providers, for WSDL extensions and bindings that were not known at
build time.

2. Support, by using the WSDL description to access the target service, for Web services that were not
known at build time.

Use WSIF to call Web services

You call a Web service dynamically by using the WSIF API directly. You only specify the location of the
WSDL file for the service, the name of the operation to be called, and any operation arguments needed.
All the information needed to access the Web service is available through WSDL; the abstract interface,
the binding, and the service endpoint.

This kind of call does not generate stub classes and does not need a separate compilation cycle.

More information about using WSIF to call Web services is given in these topics:

[“Pass SOAP messages with attachments using WSIF”|
This topic describes how to pass SOAP messages with attachments using WSIF.

[“Use the WSIF providers” on page 47|
This topic describes how to use these providers: the SOAP provider and the Java provider.

[“Develop a WSIF service” on page 48|
To develop a Web Services Invocation Framework (WSIF) service, you first develop the Web service.
This topic describes how to develop a WSIF service.

[“Use complex types” on page 48
This topic describes how to use complex types in your WSIFE.

[“Use JNDI” on page 49|
This example task shows you how to use WSIF to bind a reference to a Web service, then look up
the reference using JNDL

[“Interact with the WebSphere J2EE container” on page 51|
This topic describes the interaction of WSIF with the J2EE container.

Pass SOAP messages with attachments using WSIF: W3C SOAP Messages with Attachments

&

describes a standard way to associate a SOAP message with one or more attachments in their native
format (for example GIF or JPEG) by using a multipart MIME structure for transport. It defines specific
usage of the Multipart/Related MIME media type and rules for the usage of URI references to see entities
bundled within the MIME package. It outlines a technique for a SOAP 1.1

44 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

message to be carried within a MIME multipart/related message in such a way that the SOAP processing
rules for a standard SOAP message are not changed.

WHSIF supports passing attachments in a MIME message using the SOAP provider. For more information,
see[“Use the SOAP provider” on page 48] The attachment is a javax.activation.DataHandler. The
mime:multipartRelated, mime:part and mime:content tags are used to describe the attachment in the
WSDL.

For more information, see the following topics:
* ["Write the WSDL extensions.”|
* ['Pass attachments to WSIF” on page 46/

* ["Types and type mappings” on page 46|

These scenarios are not supported:

* Using DIME.

* Passing in javax.xml.transform.Source and javax.mail.internet.MimeMultipart.
* Using the mime:mimeXml WSDL tag.

* Nesting a mime:multipartRelated inside a mime:part.

* Using types that extend DataHandler, Image, and so forth.

* Using types that contain DataHandler, Image, and so forth.

* Using Arrays or Vectors of DataHandlers, Images, and so forth.

* Using multiple in/out or output attachments.

The MIME headers from the incoming message are not preserved for referenced attachments. The
outgoing message contains new MIME headers for Content-Type, Content-Id and Content-Transfer-
Encoding that are created by WSIFE.

Write the WSDL extensions: The following WSDL illustrates a simple operation that has one attachment
called attch:

<binding name="MyBinding" type="tns:abc" >
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="MyOperation">
<soap:operation soapAction=""/>
<input>
<mime:multipartRelated>
<mime:part>
<soap:body use="encoded" namespace="http://mynamespace"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>
</mime:part>
<mime:part>
<mime:content part="attch" type="text/html"/>
</mime:part>
</mime:multipartRelated>
</input>
</operation>
</binding>

Notes:

¢ There must be a part (in this example attch) on the input message for the operation (in this example
MyOperation). There can be other input parts to MyOperation that are not attachments.

¢ In the binding input there must either be a <soap:body tag or a <mime:multipartRelated tag, but not
both.

Web services 45

* For MIME messages, the soap:body is inside a mime:part. There must only be one mime:part that
contains a soap:body in the binding input and that must not contain a mime:content as well, because a
content type of text/xml is assumed for the soap:body.

¢ There can be multiple attachments in a MIME message, each described by a mime:part.

* Each mime:part (that is not a soap:body) contains a mime:content that describes the attachment itself.
The type attribute inside the mime:content is not checked or used by WSIE. It is there to suggest to the
application using WSIF what the attachment contains. Multiple mime: contents inside a single
mime:part means that the backend service expecta a single attachment with a type specified by one of
the mime:contents inside that mime:part.

* The parts="..." attribute (optional) inside the soap:body is assumed to contain the names of all the
MIME parts as well as the names of all the SOAP parts in the message.

Pass attachments to WSIF: The following code fragment can call the service described by the example
WSDL given in [“Write the WSDL extensions” on page 45

import javax.activation.DataHandler;

DataHandler dh = new DataHandler(new FileDataSource("myimage.jpg"));

WSIFServiceFactory factory = WSIFServiceFactory.newInstance();

WSIFService service = factory.getService("my.wsd1",null,null,"http://mynamespace","abc");
WSIFOperation op = service.getPort().createOperation("MyOperation");

WSIFMessage in = op.createlnputMessage();

in.setObjectPart("attch",dh);

op.executeInputOnlyOperation(in);

The associated type mapping in the DeploymentDescriptor.xml file depends upon your SOAP server. For
example if you use Tomcat with SOAP 2.3, then DeploymentDescriptor.xml contains the following type
mapping:

<isd:mappings>

<isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:x="http://mynamespace"

gname="x:datahandler"

javaType="javax.activation.DataHandler"
java2XMLClassName="org.apache.soap.encoding.soapenc.MimePartSerializer"
xml2JavaClassName="org.apache.soap.encoding.soapenc.MimePartSerializer" />

</isd:mappings>

In this case, the backend service is called with the following signature:
public void MyOperation(DataHandler dh);

Attachments can also be passed in to WSIF using stubs:

DataHandler dh = new DataHandler(new FileDataSource("myimage.jpg"));

WSIFServiceFactory factory = WSIFServiceFactory.newInstance();

WSIFService service = factory.getService("my.wsd1",null,null,"http://mynamespace”,"abc");
MyInterface stub = (MyInterface)service.getStub(MyInterface.class);

stub.MyOperation(dh);

Attachments can also be returned from an operation, but only one attachment can be returned as the
return parameter.

Types and type mappings: By default, attachments are passed into WSIF as DataHandlers. If the part on the
message which is the DataHandTer maps to a mime:part in the WSDL, then WSIF automatically maps the
fully qualified name of the WSDL type to DataHandler.class and sets up that type mapping with the
SOAP provider.

In your WSDL, you might have defined a schema for the attachment (for instance as a binary[]).
Whether or not you have done this, WSIF silently ignores this mapping and treats the attachment as a

46 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

DataHandler, unless you have explicitly issued mapType (). WSIF lets the SOAP provider set the MIME
content type based on the type of the DataHandler, instead of the mime:content type specified in the
WSDL.

Use the WSIF providers: A WSIF provider is an implementation of a WSDL binding that can run a
WSDL operation through a binding-specific protocol.

Providers implement the interface between the WSIF API and the actual implementation of a service.
Providers are pluggable within the WSIF framework and are registered based upon the namespace of the
WSDL extension that they implement.

WebSphere Application Server - Express includes these WSIF providers:
* [“Use the SOAP provider” on page 48|

nl

* ["Use the Java provider

Note: Some providers use the J2EE programming model to use J2EE services. If a provider is available,
but its required class libraries are not, the provider is disabled.

Use the Java provider: The WSIF Java Provider allows WSIF to call Java classes and JavaBeans. This means
that in a thin-client environment, such as a Java virtual machine, you can define shortcuts to local Java
code.

The WSIF Java Provider is not intended to be used in a J2EE environment. There is a difference between
a client that uses the WSIF Java Provider to call a Java component and one that implements a Web

service as a Java component on the server side.

The Java binding exploits the format binding for type mapping. The format binding allows WSDL to
define the mapping between XML Schema types and Java types.

The Java provider requires the targeted Java classes to be in the class path of the client. The Java method
is called synchronously, in-process, in-thread, with the current thread and ORB contexts.

The Java provider is not transactional.
The Java provider - writing the WSDL extension

The Java provider allows the call of a method on a local Java object. To use the Java provider, you require
this binding specified in the WSDL:

Note: For legal information about this code example, see the [’Code license and disclaimer information”]
‘

<!-- Java binding -->
<binding >
<java:binding />
<format:typeMapping style="Java" encoding="Java"/>?
<format:typeMap name="gname" formatType="nmtoken"/>*
</format:typeMapping>
<operation>*
<java:operation
methodName="nmtoken"
parameterOrder="nmtoken"
returnPart="nmtoken"?
methodType="instance|constructor" />
<input name="nmtoken"? />?
<output name="nmtoken"? />?
<fault name="nmtoken"? />?
</operation>
</binding>

Web services 47

where ? means optional and * means 0 or more.

Notes:

¢ The format:typeMap name attribute is a qualified name of a simple or complex type used by one of the
Java operations.

* The format:typeMap formatType attribute is the fully qualified Class name for the Java Class that the
element specified by name maps to.

* The java:operation methodName attribute is the name of the method on the Java object that is called
by the operation.

* The java:operation parameterOrder attribute contains a whitespace-separated list of part names that
define the order in which they are passed to the Java Object’s method.

* The java:operation methodType attribute must be set to either instance or constructor. The value
specifies whether the method being called on the object is an instance method or a constructor for the
object.

<service ... >

<port>*
<java:address
className="nmtoken" />
</port>
</service>

Note: The java:address className attribute specifies the fully qualified class name of the object
containing the method to call.

Use the SOAP provider: The SOAP provider allows WSIF stubs and dynamic clients to call SOAP services.
The provider supports SOAP 1.1 over HTTP. The WSIF SOAP Provider uses ApacheSOAP 2.3 to parse
and to create SOAP messages but is not limited to invoking services served by ApacheSOAP.

The WSIF SOAP provider supports:
* SOAP-ENC encoding
* RPC style

The SOAP provider is not transactional.

Note: Before you deploy a Web service that you expect to be used by multiple clients connecting over
SOAP to WebSphere Application Server - Express, you must set up your application’s deployment
descriptor file (dds.xml) to handle multiple connections correctly.

Develop a WSIF service: To develop a Web Services Invocation Framework (WSIF) service, you first
develop the Web service (or use an existing Web service), then develop the WSIF client based on the
WSDL document for that Web service.

To develop a WSIF service, complete the following steps:

1. Develop the Web service.
Use Web services tools to discover, create, and publish the Web service. You can develop Java bean
and URL Web services. You can use Web service tools to create a framework Java bean and a sample
application from a WSDL document. For example, you can use a Java class as a Web service, with
local Java calls as the access protocol.

2. Develop the WSIF client.

Use complex types: WSIF supports the use of user defined complex types through the mapping of
complex types to Java classes. This mapping must be specified by the user. The method to use to create
these mappings depends on the provider being used. For the Java provider, the mappings are specified in
the wsdl file in the binding element. .

48 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

The format:typeMap name attribute is a qualified name of a complex type or simple type used by one of
the operations.

The format:typeMap formatType attribute is the fully qualified Class name for the Java Class that the
element specified by name maps to.

If using the Apache SOAP provider then the mapping of a complex type to a Java Class is specified in
the client code through two methods on the org.apache.wsif. WSIFService interface:

public void mapType(QName elementType, Class javaType)

and

public void mapPackage(String namespaceURI, String packageName)

The mapType allows you to specify a mapping between a WSDL element and method takes a QName
representing the complex type or simple type and the corresponding Java Class it maps to.

The mapPackage method allows you to specify a more general mapping between a namespace and a Java
package. Any custom complex or simple types whose namespace matches that of the mapping is mapped
to a Java Class in the corresponding package. The name of the actual class is derived from the name of
the complex type using standard xml to Java naming conventions.

Use JNDI: This example task shows you how to use WSIF to bind a reference to a Web service, then
look up the reference using JNDI.

You access a Web service through information given in the WSDL document for the service. If you do not
know where to find the WSDL document for the service, but you know that it has been registered in a
UDDI registry, you look it up in the registry. Java programs access java objects and resources in a similar
manner, but using a JNDI interface.

The following example shows how, using WSIF, you can bind a reference to a Web service then look up
the reference using JNDL

Specifying the argument values for the Web Service

The Web service is represented in WSIF by an instance of the org.apache.wsif.naming. WSIFServiceRef
class. This simple Referencable object has the following constructor:

public WSIFServiceRef(
String WSDL,
String sNS,
String sName,
String ptNS,
String ptName)

[...]

{
}

where
* WSDL is the location of the WSDL file containing the definition of the service.

¢ sNS is the full namespace for the service definition (null can be specified if only one service is defined
in the WSDL file).

* sName is the local name for the service definition (null can be specified if only one service is defined in
the WSDL file).

* ptNS is the full namespace for the port type within the service that you want to use (null can be
specified if only one port type is available for the service).

* ptName is the local name for the port type (null can be specified if only one port type is available for
the service).

Web services 49

For example, if the WSDL file for the Web service is available from the URL
http:/ /localhost/WSDL/Example. WSDL and contains these service and port type definitions -

<definitions targetNamespace="http://hostname/namespace/example"
xmlIns:abc="http://hostname/namespace/abc"
[...]

<portType name="ExamplePT">
<operation name="exampleOp">
<input name="examplelnput" message="tns:ExamplelnputMsg"/>
</operation>
</portType>
[...]

<service name="abc:ExampleService">

[...]

</service>
[

.;}iefinitionp

then you specify these argument values for WSIFServiceRef:
* WSDL is http:/ /localhost/WSDL/Example. WSDL

* sNS is http:/ /hostname/namespace/abc

* sName is ExampleService

e ptNS is http:/ /hostname /namespace/example

* ptName is ExamplePT

* Binding the service using JNDI

To bind the service reference in the naming directory using JNDI, you can use the WebSphere Application
Server - Express IndiHelper com.ibm.websphere.naming.JndiHelper class as follows:
[...]

import com.ibm.websphere.naming.JdndiHelper;
import org.apache.wsif.naming.*;

[...
try {
Context startingContext = new InitialContext();
WSIFServiceRef ref = new WSIFServiceRef("http://localhost/WSDL/Example.WSDL,
"http://localhost/WSDL/Example.WSDL",
"http://hostname/namespace/abc"
"ExampleService",
"http://hostname/namespace/example",
"ExamplePT");
JndiHelper.recursiveRebind(startingContext, "myContext/mySubContext/myServiceRef", ref);
}
catch (NamingException e) {
// Handle error.
1
[...]

Looking up the service using JNDI

This code fragment shows the lookup of a service using JNDI:

Note: For lei al information about this code example, see the [“Code license and disclaimer information”

[...]
try {
[...]
InitialContext ic = new InitialContext();
WSIFService myService = (WSIFService) ic.lookup("myContext/mySubContext/myServiceRef");
[...]

}

50 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

catch (NamingException e) {
// Handle error.
}

[...]

Interact with the WebSphere J2EE container: Interaction with a container is limited to these aspects:

1. The WebSphere administrative console and WCCM allow users to define Web services to WebSphere.
As part of the definition of a service, the administrator might define a preferred port.

2. WSIF makes log and trace calls to the WebSphere Server JRAS services.

3. Some providers use the J2EE programming model to use J2EE services.

4. WSIF wraps the use of container services so that when WSIF is run in an unmanaged (thin)
environment, the operation can succeed.

WSIF system management and administration
WHSIF is provided as a stand-alone JAR file called wsif.jar. The JAR file contains the core WSIF classes,
and the Java and SOAP over HTTP providers. Additional providers are packaged as separate JAR files.

When you install WebSphere Application Server - Express, wsif jar is put on the WebSphere or Java
virtual machine class path.

WESIF requires no further configuration. WSIF is a thin abstraction layer between application code and the
relevant call infrastructure.

Maintaining the WSIF properties file

WESIF properties are stored in a properties file (in wsifjar) called wsif.properties. This file is kept on the
class path, so that WSIF can find it, and the client administrator can use it to configure WSIE.

Here are the initial contents of wsif.properties. All the possible properties are listed and described.

Two properties are used to override which WSIFProvider is selected when there
exists multiple providers supporting the same namespace URI. These properties are:

wsif.provider.default.CLASSNAME=N
wsif.provider.uri.M.CLASSNAME=URI

#
#
#
#
#
#
CLASSNAME is the WSIFProvider class name

N is the number of following default wsif.provider.uri.M.CLASSNAME properties

M is a number from 1 to N to uniquely identify each wsif.provider.uri.M.CLASSNAME
property key.

For example the following two properties would override the default SOAP provider
to be the Apache SOAP provider:

#
#
#
#
#

wsif.provider.default.org.apache.wsif.providers.soap.apacheaxis.WSIFDynamicProvider ApacheAxis=1
wsif.provider.uri.l.org.apache.wsif.providers.soap.apacheaxis.WSIFDynamicProvider_ ApacheAxis=\
http://schemas.xmlsoap.org/wsd1/soap/

maximum number of milliseconds to wait for a response to a synchronous request.
Default value if not defined is to wait forever.
wsif.syncrequest.timeout=10000

maximum number of seconds to wait for a response to an async request.
if not defined on invalid defaults to no timeout
wsif.asyncrequest.timeout=60

Enabling security for WSIF

This is how WSIF interacts with a security manager:
* WESIF runs in the current J2EE security context without modifying it.

Web services 51

* When WSIF is run under a J2EE container, Port implementations can use security context to pass on
security tokens or credentials as necessary.

* WSIF implementations can automatically convert J2EE security context into appropriate context for
onward services.

For WSIF to interact effectively with the WebSphere Application Server - Express’s security manager,
these permissions must be set in the server.policy file:

¢ FilePermission to load the WSDL (this is only required when a WSDL file is referred to using the
file:/// protocol)

* RuntimePermission “getClassLoader” for the current thread’s context class loader.

* RuntimePermission “accessDeclaredMembers” (this is required by both portions)

* PropertyPermission for system properties (this is required by SOAP and many others; read and write
access is required for the SOAP and Java portion)

* NetPermission “specifyStreamHandler” (this must be in either the SOAP and Java portion, but it need
not be in both).

* SocketPermission “host_name”, “resolve” (this is not required by the SOAP and Java portion)

/a7

* SocketPermission “host_name:port_no”, “connect” (this is required by both portions)

where host_name is your host name (for example localhost), and port_no is your port number (for example
9080).

WSIF API
The WSIF API supports the call of Services defined in WSDL. WSIF is intended to be used in both WSIF
clients and also in Web service intermediaries.

The WSIF API is driven by the abstract service description in WSDL; it is completely independent of the
actual binding used. This makes the API more natural to work with, because it uses WSDL terms to see
message parts, operations, and so on.

The WSIF API was designed for the WSDL usage model; to pick a port that supports the port type
needed, then call the operation by providing the necessary abstract input message consisting of the

required parts, without worrying about how the message is mapped to a specific binding protocol.

Other Web service APIs, for example SOAP APIs, are not designed on WSDL, but for a specific binding
protocol with its associated syntax; for example, target URIs and encoding styles.

The WSIF API's main interfaces are described in the following help topics:

* [Creating a message for sending to a port|

(the WSIFMessage interface).
« [WSIF API reference: Finding a port factory or service|

(the WSIFService interface and the WSIFServiceFactory class).
* |WSIF API reference: Using ports|

(the WSIFPort interface and the WSIFOperation interface).

Note: You must ensure that your application uses only one thread to call WSIFE.

52 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

For more information, see these help topics:
* |WSIFService interface|

[WSIFServiceFactory class|

[WSIFPort interface]

* [WSIFOperation interface]

* [WSIFOperation - Contex]

* [WSIFOperation - Asynchronous interactions reference|

+ [WSIFOperation - Synchronous and asynchronous timeouts reference]

Troubleshoot: Web Services Invocation Framework

If you encounter a problem that you think might be related to WSIF, you can check for error messages in
the WebSphere Application Server administrative console, and in the application server stdout.1og file.
You can also enable the application server debug trace to provide a detailed exception dump.

A list of the main known restrictions that apply when using WSIF is provided in ["WSIF - Knowr|
frestrictions” on page 54

Here is a checklist of major WSIF activities, with advice on common problems associated with each
activity:

Create service
Handcrafted |“WSIF and WSDL” on page 41| can cause numerous problems. To help ensure that your
WSDL is valid, use a tool such as WebSphere Studio to create your service.

Compile code (client and service)
Check that the build path against code is correct, and that it contains the correct levels of JAR files.
Create a valid EAR file for your service in preparation for deployment to a Web server.

Deploy service
When you install and deploy the service EAR file, check carefully any messages given when the service is
deployed.

Server setup and start
Make sure that the WebSphere Application Server - Express server.policy file (in the /properties

directory) has the correct security settings. For more information, see ['WSIF system management and|
ladministration” on page 51)

Web services 53

WSIF setup
Check that the wsif.properties file is correctly set up.

Here is a list of common errors, and information on their probable causes:
* “No class definition” errors received when running client code.

This problem usually indicates an error in the class path setup. Check that the relevant JAR files are
included.

e “Cannot find WSDL” error.
Some likely causes are:

The application server is not running.

The server location and port number in the WSDL are not correct.

The WSDL is badly formed (check the error messages in the application server stdout.log file).

The application server has not been restarted since the service was installed.
You might also try the following checks:
— Can you load the WSDL into your Web browser from the location specified in the error message?
— Can you load the corresponding WSDL binding files into your Web browser?

* Your Web service EAR file does not install correctly onto the application server.

It is likely that the EAR file is badly formed. Open the
http:/ /pathToServer/WebServiceName/admin/list.jsp page (if you have the SOAP administration
pages installed). This page lists all currently installed Web services.

* There is a permissions problem or security error.
Check that the WebSphere Application Server - Express server.policy file (in the /properties directory)
has the correct security settings. For more information, see “Enabling security for WSIF” in["WSIE
ksystem management and administration” on page 51|

* Using WSIF with multiple clients causes a SOAP parsing error.

Before you deploy a Web service to WebSphere Application Server, you must decide on the scope of
the Web service. The deployment descriptor file dds.xml for the Web service includes the following
line:

<isd:provider type="java" scope="Application"

You can set the Scope attribute to Application or Session. The default setting is Application, and this
value is correct if each request to the Web service does not require objects to be maintained for longer
than a single instance. If Scope is set to Application the objects are not available to another request
during the execution of the single instance, and they are released on completion. If your Web service
needs objects to be maintained for multiple requests, and to be unique within each request, you must
set the scope to Session. If Scope is set to Session, the objects are not available to another request
during the life of the session, and they are released on completion of the session. If scope is set to
Application instead of Session, you might get the following SOAP error:

SOAPException: SOAP-ENV:ClientParsing error, response was:

FWKOO5 parse may not be called while parsing.; nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=Parsing error, response was:

FWKOO5 parse may not be called while parsing.;

targetException=org.xml.sax.SAXException:

FWKOO5 parse may not be called while parsing.]

WSIF - Known restrictions: This topic lists the main known restrictions that apply when using WSIF.

Threading
WESIF is not thread-safe.

External Standards
WSIF supports:

* SOAP Version 1.1 (not 1.2 or later).

54 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

* WSDL Version 1.1 (not 1.2 or later).

WSIF does not provide WS-I compliance, and it does not support the Java API for XML-based
Remote Procedure Calls (JAX-RPC) Version 1.1 (or later).

Full schema parsing
WESIF does not support full schema parsing. For example, WSDL references in complex types in the
schema are not handled, and attributes are not handled.

SOAP
WSIF does not support:

* SOAP headers that are passed as <parts>.
* Unreferenced attachments in SOAP responses.

¢ Document Encoded style SOAP messages.

Note: This is not primarily a WSIF restriction. Although you can specify Document Encoded style in
WSDL, it is not generally considered to be a valid option and is not supported by the

[[nteroperability Organization (WS-I)

5

(http:/ /www.ws-i.org/).

SOAP provider interoperability

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully
interoperate with services that are running on the former (Apache SOAP) provider. This restriction is due
to the fact that the IBM Web Service SOAP provider is designed to interoperate fully with a JAX-RPC
compliant Web service, and Apache SOAP cannot provide such a service. For information on how to
overcome this restriction, see [“WSIF SOAP provider: work with legacy applications” on page 56

Type mappings

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) conforms to the
JAX-RPC type mapping rules that were finalized after the former (Apache SOAP) provider was created.
The majority of types are mapped the same way by both providers. The exceptions are: xsd:date,
xsd:dateTime, xsd:hexBinary and xsd:QName. Both client and service need to use the same mapping
rules if any of these four types are used. Below is a table detailing the mapping rules for these four types:

XML Data Type Apache SOAP Java Mapping JAX-RPC Java Mapping
xsd:date java.util.Date Not supported

xsd:dateTime Not supported java.util.Calendar
xsd:hexBinary Hexadecimal string byte []

xsd:QName org.apache.soap.util. xml.QName javax.xml.namespace.QName

Arrays and complex types

WESIF does not support general complex types, it only handles complex types that map to Java Beans. To
use schema complex types, you must write your own custom serializers. The specific complex type and
array support for WSIF outbound invocation of Web services are:

* WESIF supports Java classes generated by WebSphere Studio Application Developer - Integration
Edition (WSAD-IE) message generators (the normal case when WSDL files are downloaded from
somewhere else). The WSAD-IE-based generation happens automatically when you use the BPEL
editor, or the generation actions available on the Enterprise Services context menu, or the Business
Integration toolbar.

* WESIF does not support Java beans generated by other tools, including the base WSAD tool.

Web services 55

http://www.ws-i.org
http://www.ws-i.org

* For WSAD-IE generated Java beans, attributes defined in the WSDL do not work. That is to say that
these attributes, although they appear in the Java beans generated to represent the complex type, do
not appear in the SOAP request created by WSIF.

* WSIF does not support arrays when they are a field of a Java bean. WSIF only supports an array that
is passed in as a named <part>. If an array is contained inside a Java bean, the array is not serialized
in the same way.

Object Serialization
WSIF does not support serialization of objects across different releases.

Asynchronous invocation
WESIF only supports asynchronous invocation for the J]MS and the SOAP over JMS providers, which are
not supported in WebSphere Application Server - Express.

Running outside WebSphere Application Server - Express
WESIF is not supported for use outside WebSphere Application Server - Express.

WSIF SOAP provider: work with legacy applications: The current WSIF default SOAP provider (the IBM
Web Service SOAP provider) does not fully interoperate with services that are designed to run on the
former (Apache SOAP) provider. This is due to the fact that the IBM Web Service SOAP provider is
designed to interoperate fully with a JAX-RPC compliant Web service, and Apache SOAP cannot provide
such a service.

As a result of this change in SOAP providers, previous WSIF clients might not work in either of the
following cases:

1. The Web service uses any of the following parameter types: xsd:date, xsd:dateTime, xsd:hexBinary or
xsd:QName (for more information, see the Type Mappings section of |“WSIF - Known restrictions” on|

2. The Web service was built upon the former (Apache SOAP) provider.

To get your legacy services working again, you have two options:

* [“Change the default WSIF SOAP provider”|back to the former Apache SOAP provider (in which case
any future invocations to a JAX-RPC compliant Web service will not work if that Web service uses
parameter types xsd:date, xsd:dateTime, xsd:hexBinary or xsd:QName).

* ["Modifying Web services to use the IBM Web Service SOAP provider” on page 57/

Change the default WSIF SOAP provider: The current WSIF default SOAP provider (the IBM Web Service
SOAP provider) is designed to interoperate fully with a JAX-RPC compliant Web service, and therefore
the current default provider does not fully interoperate with services that are running on the former
(Apache SOAP) provider. To get your legacy services working again, you can either ["Modifying Web|
lservices to use the IBM Web Service SOAP provider” on page 57| or you can change the WSIF default
provider back to Apache SOAP as described in this topic.

WSIF uses a properties file named [“WSIF system management and administration” on page 51| to choose
what SOAP provider to use. The SOAP provider is a node-wide setting, so all servers on the node must
be restarted for any changes to take effect. The [“WSIF system management and administration” on page|
file is shipped in the wsif jar file that is located in the install_root/lib directory (where install_root is
the root directory for your installation of IBM WebSphere Application Server), and the “as shipped”
properties file is accessed in this location by being put on the class path. However when you make
changes to the file, you do not replace the original copy in the wsif jar file. Instead, you save the
modified version in the install_root/1ib/properties directory.

To change the WSIF default SOAP provider back to Apache SOAP, complete the following steps:

1. Extract the wsif.properties file from the wsif jar file that is located in the install_root/lib directory
(where install_root is the root directory for your installation of IBM WebSphere Application Server).

56 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

2. Open the wsif.properties file in a text editor.
3. Remove the leading “#” character from the following lines:

wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=1
wsif.provider.uri.l.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ ApacheSOAP=\

http://schemas.xmlsoap.org/wsd1/soap/

#

After the update, the preceding lines should look like this:

wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ ApacheSOAP=1
wsif.provider.uri.l.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=\
http://schemas.xmlsoap.org/wsd1/soap/

#

4. Save the updated wsif.properties file in the ${USER_INSTALL_ROOT}/1ib/properties directory.
5. Stop then restart all application servers on the node.

Modifying Web services to use the IBM Web Service SOAP provider: The current WSIF default SOAP
provider (the IBM Web Service SOAP provider) is designed to interoperate fully with a JAX-RPC
compliant Web service, therefore the current default provider does not fully interoperate with services
that are running on the former (Apache SOAP) provider. To get your legacy services working again, you
can either modify your Web services to use the current IBM Web Service SOAP provider as described in
this topic or you can [“Change the default WSIF SOAP provider” on page 56)

To modify a legacy Web service, use WebSphere Studio Development Client for iSeries to complete the
following steps and thereby generate new deployment artifacts for access to the service from the IBM
Web Service provider:

1. Import into the Workspace the project that contains your legacy Web services.
2. For every legacy SOAP service in the project, repeat the following steps:
a. From the pop-up menu for yourService.wsdl, select Generate Deploy Code.

b. In the Generate Deploy Code window, change the Inbound Binding Type from SOAP to IBM Web
Service then click Finish.

3. Export the EAR file that contains all of the deployment artifacts for the IBM Web Service Web service.

Assemble Web services

Before you can deploy your Web services application, you must assemble (or package) the application. If
you are using a development tool such as WebSphere Development Studio Client for iSeries, the tool
automatically performs much of the assembly process for you. You need only specify any necessary
assembly properties. You can then export your application EAR file for deployment. See your product
documentation for more information.

You can also manually assemble your Web services application with command-line tools.

See the following topics for information about packaging your Web services application into a WAR or
JAR file:

[“Web services assembly properties” on page 5§
See this topic for a list of assembly properties for Web services applications.

[“Assemble a WAR file for your Web services application” on page 61|

This topic describes how to package your Web services application into a Web archive (WAR) file. If
you are using a development tool, such as WebSphere Development Studio Client for iSeries, that
automatically creates a WAR file for you, you can skip this step.

[“Assemble a Web services client” on page 62|
This topic describes how to assemble your Web services client application.

Web services 57

Use the WebSphere Development Studio Client for iSeries (or other development tool) to assemble the
Web services-enabled WAR file into an EAR file. The EAR file can contain Web applications (WAR files)
and metadata that describes the applications (application.xml files).

Web services assembly properties

ibm-webservices-bnd.xmi properties

The ibm-webservices-bnd.xmi file is a deployment descriptor for a Web Services-enabled Web module
(WAR file). It contains information for the Web services runtime that is either WebSphere product-specific
or is not specified by the Web services for J2EE specification.

You can edit these properties with the WebSphere Studio Development Client for iSeries:
1. Locate the webservices.xml file in the module.
2. Double-click the webservices.xml file to open the Web Services editor.

3. Click the Bindings tab to access the Web Services Bindings editor.
4. Click the Binding Configurations tab to access the Web Services Binding Configurations editor.
5. After you edit the properties, click File —> Save to save your changes.

The following user-definable assembly properties are supported:

* wsDescNameLink
Attribute of the wsdescBindings element that specifies the link to the corresponding
<webservice-description-name> in webservices.xml. To set this property with the WebSphere Studio
Development Client for iSeries, follow these steps:
1. Click the Bindings tab.
2. Expand the Web Service Description Bindings section.

3. Click Add and choose the Web services description binding properties for which you want to apply
the change.

4. Click OK.
* pc-name-link
Attribute of the pcBindings element that specifies the link to the <port-component-name> in the

webservices.xml file. To set this property with the WebSphere Studio Development Client for iSeries,
follow these steps:

1. Click the Bindings tab.
2. Expand the Port Component Binding section.
3. Click Add.
4. Select the port component name from the drop down list in the PC Name Link field.
* scope
Attribute of the pcBindings element that specifies when new instances of implementation beans are

created. Possible values are Request, Session, and Application. The value of scope for a deployed Web
service can be changed using the administrative console:

1. In the administrative console navigation menu, expand Applications and click Enterprise

Applications.
2. Click the name of your enterprise application.
3. Under Additional Properties, click Web Modules.
4. Click the name of your Web Module.
5. Under Additional Properties, click Web Services Implementation Scope.

To set this property for an undeployed Web service, perform the following steps in the WebSphere
Studio Development Client for iSeries:

1. Click the Bindings tab.

58 1BM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

2. Expand the Port Component Binding section.
3. Click Add.

4. Select the implementation scope name from the drop down list in the Scope field.

ibm-webservicesclient-bnd.xmi properties

The ibm-webservicesclient-bnd.xmi file contains information for the Web Services runtime that is
WebSphere product-specific.

You can edit these properties with the WebSphere Studio Development Client for iSeries:

1.

ok 0N

Locate the webservicesclient.xml file in the module.

Double-click the webservicesclient.xml file to open the Web Services Client editor.
Click the Client Binding tab to access the Web Services Client Bindings editor.
Click the Port Bindings tab to access the Web Services Client Port Bindings editor.
After you edit the properties, click File —> Save to save your changes.

Assembly properties

The following user-definable assembly properties are supported:

componentNameLink

Attribute of the componentScopedRefs element that specifies the link to the corresponding
<component-scoped-refs> element in webservicesclient.xml file. To set this property with the
WebSphere Studio Development Client for iSeries, follow these steps:

1. Click the Client Binding tab.

2. Expand the Component scoped references section.

3. Click Add.

4. Select the component scoped references defined in the webservicesclient.xml file from the list.
serviceRefLink

Attribute of the serviceRefs element that specifies the link to the <service-ref-name> in the
webservicesclient.xml file. To set this property with the WebSphere Studio Development Client for
iSeries, follow these steps:

1. Click the Services References tab.

2. Click Add.
3. From the list, select the service references that are defined in the webservicesclient.xml file.
deployedWSDLFile

Attribute of the serviceRefs element is optional and permits an alternate WSDL file to be used other
than that specified in the <wsdl-file> element of webservicesclient.xml file. If this attribute is specified,
the alternate WSDL file must be packaged in the same module and must be compatible with the
development WSDL file. The deployedWSDLFile property is used to supply a new WSDL file
containing a different endpoint URL than the original WSDL file.

To set this property with the WebSphere Studio Development Client for iSeries, follow these steps:
Select the service references or component scoped reference that you want.

Expand the Service reference details section.

Click Browse on the Deployed WSDL file field.

Select the new WSDL file.

5. Click OK.

defaultMappings element
Identifies which port should be used for a given portType when none is explicitly selected by the
client. This element has the following attributes: portTypeNamespace, portTypeLocalName,

Ao~

Web services 59

portNamespace, portLocalName. These attributes identify which wsdl:port should be used for a
wsdl:portType. To edit this property with the WebSphere Studio Development Client for iSeries, follow
these steps:

1. Click Default Mappings.
2. Click Add.

3. Edit the entries in the new row to establish a mapping between a portType and port in the WSDL
file. There can only be one entry for each portType.

4. Click OK.
syncTimeout
Attribute of the portQnameBindings element that specifies how long, in seconds, to wait for a response

from a synchronous call. To edit this property with the WebSphere Studio Development Client for
iSeries, perform these steps:

1. Create a Port Qualified Name Bindings for the port.

2. Confirm that a service reference is selected in either the Component scoped references or Service
references section.

3. Expand the Port qualified name bindings section.
4. Click Add. A new entry is added to the Port qualified name bindings list.

5. Click the new port qualified name bindings entry. The Web Services Client Port Bindings editor
opens.

6. Expand the Port qualified name bindings details section.

7. In the Port Namespace Link field, enter the namespace of the WSDL file port that you want to
configure.

8. In the Port Local Name Link field, enter the local name of the WSDL file port that you want to
configure. The name that is displayed in the Port qualified name bindings list is the local name
of the WSDL file port.

9. Click OK.

10. To configure the syncTimeout property, locate the Synchronization timeout field and enter the
desired value.

basicAuth

Element of the portQnameBindings element that can be used to authenticate a service client to the
service endpoint, independent of the underlying transport that includes, HTTP, HTTPS, and JMS. Set
the user ID and password attributes as needed. To configure this property with the WebSphere Studio
Development Client for iSeries, follow these steps:

1. Expand the Basic authentication section.
2. Type the desired values in the User ID and Password fields.
3. Click OK.

sslConfig

Element of the portQnameBindings element that specifies the Secure Sockets Layer (SSL) configuration
of an HTTPS outbound request. The name attribute is the name of a SSL configuration entry or alias
defined in the SSL Configuration Repertoire.

Note: This attribute is only used when the client is running in the WebSphere Application Server -
Express for iSeries.

To edit this property with the WebSphere Studio Development Client for iSeries, perform these steps:
1. Expand the SSL Configuration section.

2. Type the desired value in the Name field.

3. Click OK.

The values of deployedWSDLFile and the defaultMappings of a deployed Web service can also be

changed using the administrative console. Using application management, navigate to the Web module of

the Web service application and select Web Services Client Bindings.

60

IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5.1 Web services

Example bindings files

The following examples demonstrate the spelling and position of the various attributes. You cannot cut
and paste these examples because they do not contain the required ID attributes. If you add elements to a
binding file template generated by the WSDL2Java command, you must confirm that each element has an
ID attribute whose value is a unique string. Review the template xmi files generated by the WSDL2Java
command for examples of ID strings.

Example ibm-webservices-bnd.xmi file

<com.ibm.etools.webservice.wsbnd:WSBinding xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI" xmins:com.ibm.etools.webservice.wsbnd=
"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsbnd.xmi">
<wsdescBindings wsDescNamelLink="AddressBookService">
<pcBindings pcNamelLink="AddressBook" scope="Application"/>
</wsdescBindings>
</com.ibm.etools.webservice.wsbnd:WSBinding>

Example ibm-webservicesclient-bnd.xmi file

<com.ibm.etools.webservice.wscbnd:ClientBinding xmi:version="2.0"
xmins:xmi="http://www.omg.org/XMI" xmins:com.ibm.etools.webservice.wschnd=
"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscbnd.xmi">
<componentScopedRefs componentNameLink="myComponent ref"/>
<serviceRefs serviceRefLink="myService ref" deployedWSDLFile="META-INF/wsdl/alternate.wsdl">
<defaultMappings portTypeLocalName="AddressBook"
portTypeNamespace="http://www.com.ibm" portLocalName="AddressBookPort"
portNamespace="http://www.com.ibm"/>
<portQnameBindings portQnameNamespaceLink="http://www.com.ibm"
portQnameLocalNameLink="AddressB