
WebSphere Development Studio

ILE RPG Programmer’s Guide

Version 5

SC09-2507-06

���

WebSphere Development Studio

ILE RPG Programmer’s Guide

Version 5

SC09-2507-06

���

Note!

Before using this information and the product it supports, be sure to read the general information

under “Notices” on page 493.

Seventh Edition (February 2006)

This edition applies to Version 5, Release 4, Modification Level 0, of IBM WebSphere® Development Studio for

iSeries™ (5722-WDS), ILE RPG compiler, and to all subsequent releases and modifications until otherwise indicated

in new editions. This edition applies only to reduced instruction set computer (RISC) systems.

This edition replaces SC09-2507-05.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address that is given below.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory

Information Development

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

You can also send your comments by FAX (attention: RCF Coordinator), or you can send your comments

electronically to IBM. See “How to Send Your Comments” for a description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Guide ix

Who Should Use This Guide ix

Prerequisite and Related Information ix

How to Send Your Comments x

What's New x

Changes to this Guide Since V5R2 and V5R3 . . . xi

What’s New this Release? xi

What's New in V5R3? xv

What's New in V5R2? xx

What's New in V5R1? xxii

What's New in V4R4? xxvii

What's New in V4R2? xxxi

What's New in V3R7? xxxv

What's New in V3R6/V3R2? xxxix

Part 1. ILE RPG Introduction 1

Chapter 1. Overview of the RPG IV

Programming Language 3

RPG IV Specifications 3

Cycle Programming 4

Subprocedure logic 5

Indicators 5

Operation Codes 6

Example of an ILE RPG Program 6

Using the i5/OS System 12

Interacting with the System 12

WebSphere Development Studio for iSeries 13

WebSphere Development Studio Client for iSeries 14

Chapter 2. RPG Programming in ILE . . 17

Program Creation 17

Program Management 19

Program Call 19

Source Debugging 20

Bindable APIs 20

Multithreaded Applications 21

Chapter 3. Program Creation Strategies 23

Strategy 1: OPM-Compatible Application 23

Method 23

Example of OPM-Compatible Program 23

Related Information 24

Strategy 2: ILE Program Using CRTBNDRPG . . . 25

Method 25

Example of ILE Program Using CRTBNDRPG . . 25

Related Information 27

Strategy 3: ILE Application Using CRTRPGMOD . . 27

Method 28

Single-Language ILE Application Scenario . . . 28

Mixed-Language ILE Application Scenario . . . 29

Advanced Application Scenario 30

Related Information 31

A Strategy to Avoid 31

Chapter 4. Creating an Application

Using Multiple Procedures 33

A Multiple Procedures Module — Overview . . . 33

Main Procedures and Subprocedures 33

Prototyped Calls 34

Example of Module with Multiple Procedures . . . 36

The Entire ARRSRPT Program 40

Coding Considerations 44

General Considerations 45

Program Creation 45

Main Procedure Considerations 45

Subprocedure Considerations 46

For Further Information 46

Main Procedures 46

Subprocedures 46

Prototyped Call 47

Part 2. Creating and Running an ILE

RPG Application 49

Chapter 5. Using Source Files 51

Using Source Physical Files 51

Creating a Library and Source Physical File . . 51

Using the Source Entry Utility (SEU) 52

Using SQL Statements 55

Using IFS Source Files 56

Include files 56

Chapter 6. Creating a Program with the

CRTBNDRPG Command 59

Using the CRTBNDRPG Command 59

Creating a Program for Source Debugging . . . 61

Creating a Program with Static Binding 62

Creating an OPM-Compatible Program Object . . 63

Using a Compiler Listing 65

Obtaining a Compiler Listing 65

Customizing a Compiler Listing 66

Correcting Compilation Errors 68

Correcting Run-time Errors 70

Using a Compiler Listing for Maintenance . . . 71

Accessing the RETURNCODE Data Area 71

Chapter 7. Creating a Program with the

CRTRPGMOD and CRTPGM

Commands 75

Creating a Module Object 75

Using the CRTRPGMOD Command 76

Creating a Module for Source Debugging . . . 80

Additional Examples 82

Behavior of Bound ILE RPG Modules 82

Related CL Commands 82

Binding Modules into a Program 82

Using the CRTPGM Command 84

© Copyright IBM Corp. 1994, 2006 iii

||
||
##

Additional Examples 86

Related CL Commands 86

Using a Binder Listing 87

Changing a Module or Program 88

Using the UPDPGM Command 88

Changing the Optimization Level 89

Removing Observability 89

Reducing an Object’s Size 90

Chapter 8. Creating a Service Program 91

Service Program Overview 91

Strategies for Creating Service Programs 92

Creating a Service Program Using CRTSRVPGM . . 92

Changing A Service Program 93

Related CL commands 93

Sample Service Program 93

Creating the Service Program 97

Binding to a Program 98

Updating the Service Program 99

Sample Binder Listing 100

Chapter 9. Running a Program 103

Running a Program Using the CL CALL Command 103

Passing Parameters using the CL CALL

Command 103

Running a Program From a Menu-Driven

Application 105

Running a Program Using a User-Created

Command 108

Replying to Run-Time Inquiry Messages 108

Ending an ILE Program 109

Managing Activation Groups 110

Specifying an Activation Group 110

Running in the OPM Default Activation Group 111

Maintaining OPM RPG/400 and ILE RPG

Program Compatibility 111

Deleting an Activation Group 112

Reclaim Resources Command 112

Managing Dynamically-Allocated Storage 113

Managing the Default Heap Using RPG

Operations 115

Heap Storage Problems 120

Managing Your Own Heap Using ILE Bindable

APIs 121

Chapter 10. Calling Programs and

Procedures 129

Program/Procedure Call Overview 129

Calling Programs 130

Calling Procedures 130

The Call Stack 131

Recursive Calls 131

Parameter-Passing Considerations 133

Using a Prototyped Call 134

Using the CALLP Operation 135

Calling within an Expression 135

Examples of Free-Form Call 136

Passing Prototyped Parameters 136

Parameter Passing Styles 136

Using Operational Descriptors 139

Omitting Parameters 140

Checking for the Number of Passed Parameters 142

Passing Less Data Than Required 147

Order of Evaluation 148

Interlanguage Calls 148

Interlanguage Calling Considerations 149

Using the Fixed-Form Call Operations 150

Examples of CALL and CALLB 151

Passing Parameters Using PARM and PLIST . . 151

Returning from a Called Program or Procedure . . 153

Returning from a Main Procedure 153

Returning from a Subprocedure 155

Returning using ILE Bindable APIs 156

Using Bindable APIs 156

Examples of Using Bindable APIs 157

Calling a Graphics Routine 158

Calling Special Routines 158

Multithreading Considerations 158

How to Share Data Across More Than One

Module 159

How to Avoid Deadlock Between Modules . . 160

Chapter 11. RPG and the eBusiness

World 163

RPG and XML 163

Processing XML Documents 163

RPG and MQSeries 169

RPG and Java 169

Introduction to Java and RPG 169

Calling Java Methods from ILE RPG 173

Calling methods in your own classes 179

Controlling how the Java Virtual Machine is set

up 180

RPG Native Methods 181

Coding Errors when calling Java from RPG . . 184

Additional RPG Coding for Using Java 186

Additional Considerations 197

Advanced JNI Coding 198

Calling RPG programs from Java using PCML 202

Part 3. Debugging and Exception

Handling 205

Chapter 12. Debugging Programs . . . 207

The ILE Source Debugger 208

Debug Commands 208

Preparing a Program for Debugging 210

Creating a Root Source View 211

Creating a COPY Source View 212

Creating a Listing View 213

Creating a Statement View 213

Starting the ILE Source Debugger 214

STRDBG Example 215

Setting Debug Options 216

Adding/Removing Programs from a Debug

Session 216

Example of Adding a Service Program to a

Debug Session 217

iv ILE RPG Programmer’s Guide

 | |

 # #
 #
 # #

Example of Removing ILE Programs from a

Debug Session 217

Viewing the Program Source 218

Viewing a Different Module 219

Changing the View of a Module 220

Setting and Removing Breakpoints 221

Setting and Removing Unconditional Job

Breakpoints 222

Setting and Removing Unconditional Thread

Breakpoints 224

Setting and Removing Conditional Job

Breakpoints 225

National Language Sort Sequence (NLSS) . . . 227

Setting and Removing Job Breakpoints Using

Statement Numbers 228

Setting and Removing Conditional Thread

Breakpoints 230

Removing All Job and Thread Breakpoints . . 231

Setting and Removing Watch Conditions 231

Characteristics of Watches 231

Setting Watch Conditions 232

Displaying Active Watches 234

Removing Watch Conditions 234

Example of Setting a Watch Condition 235

Stepping Through the Program Object 236

Stepping Over Call Statements 237

Stepping Into Call Statements 238

Displaying Data and Expressions 241

Unexpected Results when Evaluating Variables 243

Displaying the Contents of an Array 244

Displaying the Contents of a Table 244

Displaying Data Structures 245

Displaying Indicators 246

Displaying Fields as Hexadecimal Values . . . 247

Displaying Fields in Character Format 247

Displaying UCS-2 Data 248

Displaying Variable-Length Fields 248

Displaying Data Addressed by Pointers . . . 248

Evaluating Based Variables 248

Displaying Null-Capable Fields 249

Using Debug Built-In Functions 250

Debugging an XML-SAX Handling Procedure 252

Changing the Value of Fields 252

Displaying Attributes of a Field 254

Equating a Name with a Field, Expression, or

Command 255

Source Debug National Language Support for ILE

RPG 256

Sample Source for Debug Examples 256

Chapter 13. Handling Exceptions . . . 263

Exception Handling Overview 263

ILE RPG Exception Handling 266

Using Exception Handlers 268

Exception Handler Priority 269

Nested Exceptions 269

Unhandled Exceptions 269

Optimization Considerations 271

Using RPG-Specific Handlers 272

Specifying Error Indicators or the ’E’ Operation

Code Extender 272

Using a MONITOR Group 273

Using an Error Subroutine 275

Specifying a Return Point in the ENDSR

Operation 283

ILE Condition Handlers 284

Using a Condition Handler 284

Using Cancel Handlers 290

Problems when ILE CL Monitors for Notify and

Status Messages 293

Chapter 14. Obtaining a Dump 297

Obtaining an ILE RPG Formatted Dump 297

Using the DUMP Operation Code 298

Example of a Formatted Dump 298

Part 4. Working with Files and

Devices 305

Chapter 15. Defining Files 307

Associating Files with Input/Output Devices . . . 307

Naming Files 309

Types of File Descriptions 309

Using Files with External-Description as

Program-Described 310

Example of Some Typical Relationships between

Programs and Files 310

Defining Externally Described Files 311

Renaming Record-Format Names 311

Renaming Field Names 312

Ignoring Record Formats 312

Using Input Specifications to Modify an

External Description 313

Using Output Specifications 315

Level Checking 316

Defining Program-Described Files 317

Data Management Operations and ILE RPG I/O

Operations 317

Chapter 16. General File

Considerations 319

Overriding and Redirecting File Input and Output 319

Example of Redirecting File Input and Output 320

File Locking 321

Record Locking 322

Sharing an Open Data Path 323

Spooling 324

Output Spooling 325

SRTSEQ/ALTSEQ in an RPG Program versus a

DDS File 325

Chapter 17. Accessing Database Files 327

Database Files 327

Physical Files and Logical Files 327

Data Files and Source Files 327

Using Externally Described Disk Files 328

Record Format Specifications 328

Access Path 328

Valid Keys for a Record or File 331

Record Blocking and Unblocking 333

Contents v

||

||

Using Program-Described Disk Files 334

Indexed File 334

Sequential File 336

Record Address File 337

Methods for Processing Disk Files 338

Consecutive Processing 338

Sequential-by-Key Processing 339

Random-by-Key Processing 344

Sequential-within-Limits Processing 346

Relative-Record-Number Processing 348

Valid File Operations 349

Using Commitment Control 351

Starting and Ending Commitment Control . . . 352

Specifying Files for Commitment Control . . . 354

Using the COMMIT Operation 354

Specifying Conditional Commitment Control 356

Commitment Control in the Program Cycle . . 356

Unexpected Results Using Keyed Files 357

DDM Files 357

Using Pre-V3R1 DDM Files 358

Chapter 18. Accessing Externally

Attached Devices 359

Types of Device Files 359

Accessing Printer Devices 359

Specifying PRINTER Files 360

Handling Page Overflow 360

Using the Fetch-Overflow Routine in

Program-Described Files 363

Changing Forms Control Information in a

Program-Described File 366

Accessing Tape Devices 368

Accessing Display Devices 368

Using Sequential Files 368

Specifying a Sequential File 368

Using SPECIAL Files 369

Example of Using a Special File 371

Chapter 19. Using WORKSTN Files 373

Intersystem Communications Function 373

Using Externally Described WORKSTN Files . . . 373

Specifying Function Key Indicators on Display

Device Files 375

Specifying Command Keys on Display Device

Files 376

Processing an Externally Described WORKSTN

File 376

Using Subfiles 377

Using Program-Described WORKSTN Files . . . 380

Using a Program-Described WORKSTN File

with a Format Name 381

Using a Program-Described WORKSTN File

without a Format Name 382

Valid WORKSTN File Operations 383

EXFMT Operation 383

READ Operation 384

WRITE Operation 384

Multiple-Device Files 384

Chapter 20. Example of an Interactive

Application 387

Database Physical File 387

Main Menu Inquiry 388

MAINMENU: DDS for a Display Device File 388

CUSMAIN: RPG Source 390

File Maintenance 391

CUSMSTL1: DDS for a Logical File 392

MNTMENU: DDS for a Display Device File . . 393

CUSMNT: RPG Source 395

Search by Zip Code 402

CUSMSTL2: DDS for a Logical File 403

SZIPMENU: DDS for a Display Device File . . 404

SCHZIP: RPG Source 406

Search and Inquiry by Name 410

CUSMSTL3: DDS for a Logical File 411

SNAMMENU: DDS for a Display Device File 412

SCHNAM: RPG Source 415

Part 5. Appendixes 421

Appendix A. Behavioral Differences

Between OPM RPG/400 and ILE RPG

for AS/400 423

Compiling 423

Running 423

Debugging and Exception Handling 424

I/O 425

DBCS Data in Character Fields 427

Appendix B. Using the RPG III to RPG

IV Conversion Aid 429

Conversion Overview 429

File Considerations 429

The Log File 431

Conversion Aid Tool Requirements 431

What the Conversion Aid Won’t Do 431

Converting Your Source 432

The CVTRPGSRC Command 433

Converting a Member Using the Defaults . . . 437

Converting All Members in a File 437

Converting Some Members in a File 438

Performing a Trial Conversion 438

Obtaining Conversion Reports 439

Converting Auto Report Source Members . . . 439

Converting Source Members with Embedded

SQL 440

Inserting Specification Templates 440

Converting Source from a Data File 440

Example of Source Conversion 440

Analyzing Your Conversion 443

Using the Conversion Report 443

Using the Log File 445

Resolving Conversion Problems 447

Compilation Errors in Existing RPG III Code 448

Unsupported RPG III Features 448

Use of the /COPY Compiler Directive 448

Use of Externally Described Data Structures . . 451

Run-time Differences 453

vi ILE RPG Programmer’s Guide

||

Appendix C. The Create Commands 455

Using CL Commands 455

How to Interpret Syntax Diagrams 455

CRTBNDRPG Command 456

Description of the CRTBNDRPG Command . . 459

CRTRPGMOD Command 473

Description of the CRTRPGMOD command . . 475

Appendix D. Compiler Listings 477

Reading a Compiler Listing 478

Prologue 478

Source Section 480

Additional Diagnostic Messages 485

Output Buffer Positions 486

/COPY Member Table 486

Compile-Time Data 486

Key Field Information 487

Cross-Reference Table 488

EVAL-CORR Summary 489

External References List 490

Message Summary 491

Final Summary 491

Code Generation and Binding Errors 492

Notices 493

Programming Interface Information 494

Trademarks and Service Marks 494

Bibliography 497

Index 499

Contents vii

 | |

viii ILE RPG Programmer’s Guide

About This Guide

This guide provides information that shows how to use the ILE RPG compiler (ILE

RPG) in the Integrated Language Environment. ILE RPG is an implementation of

the RPG IV language on the iSeries server with the IBM i5/OS (i5/OS) operating

system. Use this guide to create and run ILE applications from RPG IV source.

This guide shows how to:

v Enter RPG IV source statements

v Create modules

v Bind modules

v Run an ILE program

v Call other objects

v Debug an ILE program

v Handle exceptions

v Define and process files

v Access devices

v Convert programs from an RPG III format to RPG IV format

v Read compiler listings

Who Should Use This Guide

This guide is for programmers who are familiar with the RPG programming

language, but who want to learn how to use it in the ILE framework. This guide is

also for programmers who want to convert programs from the RPG III to the RPG

IV format. It is designed to guide you in the use of the ILE RPG compiler on the

iSeries system.

Though this guide shows how to use the RPG IV in an ILE framework, it does not

provide detailed information on RPG IV specifications and operations. For a

detailed description of the language, see the WebSphere Development Studio: ILE

RPG Reference, SC09-2508-06.

Before using this guide, you should:

v Know how to use applicable iSeries server menus and displays, or Control

Language (CL) commands.

v Have the appropriate authority to the CL commands and objects described here.

v Have a firm understanding of ILE as described in detail in the ILE Concepts,

SC41-5606-07.

Prerequisite and Related Information

Use the iSeries Information Center as your starting point for looking up iSeries and

AS/400e technical information. You can access the Information Center in two ways:

v From the following Web site:

http://www.ibm.com/eserver/iseries/infocenter

v From CD-ROMs that ship with your Operating System/400 order:

© Copyright IBM Corp. 1994, 2006 ix

iSeries Information Center, SK3T-4091-04. This package also includes the PDF

versions of iSeries manuals, iSeries Information Center: Supplemental Manuals,

SK3T-4092-01, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as CL

commands, system application programming interfaces (APIs), logical partitions,

clustering, Java , TCP/IP, Web serving, and secured networks. It also includes links

to related IBM Redbooks and Internet links to other IBM Web sites such as the

Technical Studio and the IBM home page.

The manuals that are most relevant to the ILE RPG compiler are listed in the

“Bibliography” on page 497.

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and

high-quality information. IBM welcomes any comments about this book or any

other iSeries documentation.

v If you prefer to send comments by mail, use the the following address:

IBM Canada Ltd. Laboratory

Information Development

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

If you are mailing a readers’ comment form from a country other than the

United States, you can give the form to the local IBM branch office or IBM

representative for postage-paid mailing.

v If you prefer to send comments by FAX, use the following number:

1–845–491–7727

v If you prefer to send comments electronically, use one of these e-mail addresses:

– Comments on books:

 toreador@ca.ibm.com
– Comments on the Information Center:

 RCHINFOC@us.ibm.com

Be sure to include the following:

v The name of the book.

v The publication number of the book.

v The page number or topic to which your comment applies.

What's New

There have been several releases of RPG IV since the first V3R1 release. The

following is a list of enhancements made for each release since V3R1 up to the

current release:

v “What’s New this Release?” on page xi

v “What's New in V5R3?” on page xv

v “What's New in V5R2?” on page xx

v “What's New in V5R1?” on page xxii

v “What's New in V4R4?” on page xxvii

v “What's New in V4R2?” on page xxxi

v “What's New in V3R7?” on page xxxv

What’s New

x ILE RPG Programmer’s Guide

|

#

v “What's New in V3R6/V3R2?” on page xxxix

You can use this section to link to and learn about new RPG IV functions.

Note: The information for this product is up-to-date with the V5R4 release of RPG

IV. If you are using a previous release of the compiler, you will need to

determine what functions are supported on your system. For example, if

you are using a V5R1 system, the functions new to the V5R4 release will not

be supported.

Changes to this Guide Since V5R2 and V5R3

This V5R4 guide, WebSphere Development Studio: ILE RPG Programmer’s Guide,

SC09-2507-06, differs in many places from the V5R3 guide, SC09-2507-05, and the

V5R2 guide, SC09–2507–04. Most of the changes are related to the enhancements

that have been made since previous releases; others reflect minor technical

corrections. To assist you in using this manual, technical changes and

enhancements are noted with a symbol in the margin:.

v Enhancements for V5R4 are marked with a vertical bar (|).

v Enhancements for V5R3 are marked with a pound sign (#).

Note: Many of the examples included in this guide have been modified to

″free-form″, rather than ″traditional″ coding style. These changed examples

have not been marked. See WebSphere Development Studio: ILE RPG Reference

for detailed explanation of the differences between the two coding styles.

What’s New this Release?

The following list describes the enhancements made to ILE RPG in V5R4:

New operation code EVAL-CORR

EVAL-CORR{(EH)} ds1 = ds2

New operation code EVAL-CORR assigns data and null-indicators from the

subfields of the source data structure to the subfields of the target data

structure. The subfields that are assigned are the subfields that have the same

name and compatible data type in both data structures.

 For example, if data structure DS1 has character subfields A, B, and C, and

data structure DS2 has character subfields B, C, and D, statement EVAL-CORR

DS1 = DS2; will assign data from subfields DS2.B and DS2.C to DS1.B and

DS1.C. Null-capable subfields in the target data structure that are affected by

the EVAL-CORR operation will also have their null-indicators assigned from

the null-indicators of the source data structure’s subfields, or set to *OFF, if the

source subfield is not null-capable.

 // DS1 subfields DS2 subfields

 // s1 character s1 packed

 // s2 character s2 character

 // s3 numeric

 // s4 date s4 date

 // s5 character

 EVAL-CORR ds1 = ds2;

 // This EVAL-CORR operation is equivalent to the following EVAL operations

 // EVAL ds1.s2 = ds2.s2

 // EVAL ds1.s4 = ds2.s4

 // Other subfields either appear in only one data structure (S3 and S5)

 // or have incompatible types (S1).

What’s New

About This Guide xi

|
|
|
|
|

|

|
|
|
|
|
|

|

|

|
|
|
|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

EVAL-CORR makes it easier to use result data structures for I/O operations to

externally-described files and record formats, allowing the automatic transfer

of data between the data structures of different record formats, when the

record formats have differences in layout or minor differences in the types of

the subfields.

New prototyped parameter option OPTIONS(*NULLIND)

 When OPTIONS(*NULLIND) is specified for a parameter, the null-byte map is

passed with the parameter, giving the called procedure direct access to the

null-byte map of the caller’s parameter.

New builtin function %XML

%XML (xmldocument { : options })

The %XML builtin function describes an XML document and specifies options

to control how the document should be parsed. The xmldocument parameter

can be a character or UCS-2 expression, and the value may be an XML

document or the name of an IFS file containing an XML document. If the value

of the xmldocument parameter has the name of a file, the ″doc=file″ option

must be specified.

 New builtin function %HANDLER

%HANDLER (handlingProcedure : communicationArea)

%HANDLER is used to identify a procedure to handle an event or a series of

events. %HANDLER does not return a value, and it can only be specified as

the first operand of XML-SAX and XML-INTO.

 The first operand, handlingProcedure, specifies the prototype of the handling

procedure. The return value and parameters specified by the prototype must

match the parameters required for the handling procedure; the requirements

are determined by the operation that %HANDLER is specified for.

 The second operand, communicationArea, specifies a variable to be passed as a

parameter on every call to the handling procedure. The operand must be an

exact match for the first prototyped parameter of the handling procedure,

according to the same rules that are used for checking prototyped parameters

passed by reference. The communication-area parameter can be any type,

including arrays and data structures.

 New operation code XML-SAX

XML-SAX{ (e) } %HANDLER(eventHandler : commArea) %XML(xmldocument { : saxOptions });

XML-SAX initiates a SAX parse for the XML document specified by the %XML

builtin function. The XML-SAX operation begins by calling an XML parser

which begins to parse the document. When the parser discovers an event such

as finding the start of an element, finding an attribute name, finding the end of

an element etc., the parser calls the eventHandler with parameters describing

the event. The commArea operand is a variable that is passed as a parameter to

the eventHandler providing a way for the XML-SAX operation code to

communicate with the handling procedure. When the eventHandler returns, the

parser continues to parse until it finds the next event and calls the eventHandler

again.

 New operation code XML-INTO

XML-INTO{ (EH) } variable %XML(xmlDoc { : options });

XML-INTO{ (EH) } %HANDLER(handler : commArea) %XML(xmlDoc { : options });

What’s New

xii ILE RPG Programmer’s Guide

|
|
|
|
|

|

|
|
|

|

|

|
|
|
|
|
|

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|

XML-INTO reads the data from an XML document in one of two ways:

v directly into a variable

v gradually into an array parameter that it passes to the procedure specified

by %HANDLER.

Various options may be specified to control the operation.

 The first operand specifies the target of the parsed data. It can contain a

variable name or the % HANDLER built-in function.

 The second operand contains the %XML builtin function specifying the source

of the XML document and any options to control how the document is parsed.

It can contain XML data or it can contain the location of the XML data. The

doc option is used to indicate what this operand specifies.

// Data structure "copyInfo" has two subfields, "from"

// and "to". Each of these subfields has two subfields

// "name" and "lib".

// File cpyA.xml contains the following XML document

// <copyinfo>

// <from><name>MASTFILE</name><lib>CUSTLIB</lib></from>

// <to><name>MYFILE</name><lib>*LIBL</lib>

// <copyinfo>

xml-into copyInfo %XML(’cpyA.xml’ : ’doc=file’);

// After the XML-INTO operation, the following

// copyInfo.from .name = ’MASTFILE ’ .lib = ’CUSTLIB ’

// copyInfo.to .name = ’MYFILE ’ .lib = ’*LIBL ’

Use the PREFIX keyword to remove characters from the beginning of field

names

PREFIX(’’ : number_of_characters)

When an empty character literal (two single quotes specified with no

intervening characters) is specified as the first parameter of the PREFIX

keyword for File and Definition specifications, the specified number of

characters is removed from the field names. For example if a file has fields

XRNAME, XRIDNUM, and XRAMOUNT, specifying PREFIX(’’:2)on the File

specification will cause the internal field names to be NAME, IDNUM, and

AMOUNT.

 If you have two files whose subfields have the same names other than a

file-specific prefix, you can use this feature to remove the prefix from the

names of the subfields of externally-described data structures defined from

those files. This would enable you to use EVAL-CORR to assign the

same-named subfields from one data structure to the other. For example, if file

FILE1 has a field F1NAME and file FILE2 has a field F2NAME, and

PREFIX(’’:2) is specified for externally-described data structures DS1 for FILE1

and DS2 for FILE2, then the subfields F1NAME and F2NAME will both

become NAME. An EVAL-CORR operation between data structures DS1 and

DS2 will assign the NAME subfield.

New values for the DEBUG keyword

DEBUG { (*INPUT *DUMP *XMLSAX *NO *YES) }

The DEBUG keyword determines what debugging aids are generated into the

module. *NO and *YES are existing values. *INPUT, *DUMP and *XMLSAX

provide more granularity than *YES.

What’s New

About This Guide xiii

|

|

|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

*INPUT

Fields that appear only on input specifications are read into the program

fields during input operations.

*DUMP

DUMP operations without the (A) extender are performed.

*XMLSAX

An array of SAX event names is generated into the module to be used

while debugging a SAX event handler.

*NO

Indicates that no debugging aids are to be generated into the module.

Specifying DEBUG(*NO) is the same as omitting the DEBUG keyword.

*YES

This value is kept for compatibility purposes. Specifying DEBUG(*YES) is

the same as specifying DEBUG without parameters, or DEBUG(*INPUT :

*DUMP).

 Syntax-checking for free-form calculations

 In SEU, free-form statements are now checked for correct syntax.

 Improved debugging support for null-capable subfields of a qualified data

structure

When debugging qualified data structures with null-capable subfields, the

null-indicators are now organized as a similar data structure with an indicator

subfield for every null-capable subfield. The name of the data structure is

_QRNU_NULL_data_structure_name, for example _QRNU_NULL_MYDS. If a

subfield of the data structure is itself a data structure with null-capable

subfields, the null- indicator data structure will similarly have a data structure

subfield with indicator subfields. For example, if data structure DS1 has

null-capable subfields DS1.FLD1, DS1.FLD2, and DS1.SUB.FLD3, you can

display all the null-indicators in the entire data structure using the debug

instruction.

===> EVAL _QRNU_NULL_DS

> EVAL _QRNU_NULL_DS1

 _QRNU_NULL_DS1.FLD1 = ’1’

 _QRNU_NULL_DS1.FLD2 = ’0’

 _QRNU_NULL_DS1.SUB.FLD3 = ’1’

===> EVAL _QRNU_NULL_DS.FLD2

 _QRNU_NULL_DS1.FLD2 = ’0’

===> EVAL _QRNU_NULL_DS.FLD2 = ’1’

===> EVAL DSARR(1).FLD2

 DSARR(1).FLD2 = ’abcde’

===> EVAL _QRNU_NULL_DSARR(1).FLD2

 _QRNU_NULL_DSARR(1).FLD2 = ’0’

Change to end-of-file behaviour with shared files

 If a module performs a keyed sequential input operation to a shared file and it

results in an EOF condition, and a different module sets the file cursor using a

positioning operation such as SETLL, a subsequent sequential input operation

by the first module may be successfully done. Before this change, the first RPG

module ignored the fact that the other module had repositioned the shared file.

 This change in behaviour is available with PTFs for releases V5R2M0 (SI13932)

and V5R3M0 (SI14185).

What’s New

xiv ILE RPG Programmer’s Guide

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

Table 1. Changed Language Elements Since V5R3

Language Unit Element Description

Control specification

keywords

DEBUG(*INPUT|*DUMP

*XMLSAX|*NO|*YES)

New parameters *INPUT,

*DUMP and *XMLSAX give

more options for debugging

aids.

File specification keywords PREFIX(’’:2) An empty literal may be

specified as the first

parameter of the PREFIX

keyword, allowing characters

to be removed from the

beginning of names.

Definition specification

keywords

OPTIONS(*NULLIND) Indicates that the null

indicator is passed with the

parameter.

PREFIX(’’:2) An empty literal may be

specified as the first

parameter of the PREFIX

keyword, allowing characters

to be removed from the

beginning of names.

 Table 2. New Language Elements Since V5R3

Language Unit Element Description

Built-in functions %HANDLER(prototype:

parameter)

Specifies a handling

procedure for an event.

%XML(document{:options}) Specifies an XML document

and options to control the

way it is parsed.

Operation codes EVAL-CORR Assigns data and

null-indicators from the

subfields of the source data

structure to the subfields of

the target data structure.

XML-INTO Reads the data from an XML

document directly into a

program variable.

XML-SAX Initiates a SAX parse of an

XML document.

What's New in V5R3?

The following list describes the enhancements made to ILE RPG in V5R3:

v New builtin function %SUBARR:

New builtin function %SUBARR allows assignment to a sub-array or returning a

sub-array as a value.

Along with the existing %LOOKUP builtin function, this enhancements enables

the implementation of dynamically sized arrays with a varying number of

elements.

%SUBARR(array : start) specifies array elements array(start) to the end of the

array

What’s New

About This Guide xv

||

|||

|
|
|
|
|
|
|
|

|||
|
|
|
|
|

|
|
||
|
|

||
|
|
|
|
|
|

||

|||

||
|
|
|

||
|
|

|||
|
|
|
|

||
|
|

||
|
|

|
#

#

#

#
#

#
#
#

#
#

%SUBARR(array : start : num) specifies array elements array(start) to array(start

+ num - 1)

Example:

 // Copy part of an array to another array:

 resultArr = %subarr(array1:start:num);

 // Copy part of an array to part of another array:

 %subarr(Array1:x:y) = %subarr(Array2:m:n);

 // Sort part of an array

 sorta %subarr(Array3:x:y);

 // Sum part of an array

 sum = %xfoot(%subarr(Array4:x:y));

v The SORTA operation code is enhanced to allow sorting of partial arrays.

When %SUBARR is specified in factor 2, the sort only affects the partial array

indicated by the %SUBARR builtin function.

v Direct conversion of date/time/timestamp to numeric, using %DEC:

%DEC is enhanced to allow the first parameter to be a date, time or timestamp,

and the optional second parameter to specify the format of the resulting numeric

value.

Example:

 D numDdMmYy s 6p 0

 D date s d datfmt(*jul)

 date = D’2003-08-21’;

 numDdMmYy = %dec(date : *dmy);

 // now numDdMmYy = 210803

v Control specification CCSID(*CHAR : *JOBRUN) for correct conversion of

character data at runtime:

The Control specification CCSID keyword is enhanced to allow a first parameter

of *CHAR. When the first parameter is *CHAR, the second parameter must be

*JOBRUN. CCSID(*CHAR : *JOBRUN) controls the way character data is

converted to UCS-2 at runtime. When CCSID(*CHAR:*JOBRUN) is specified,

character data will be assumed to be in the job CCSID; when CCSID(*CHAR :

*JOBRUN) is not specified, character data will be assumed to be in the

mixed-byte CCSID related to the job CCSID.

v Second parameter for %TRIM, %TRIMR and %TRIML indicating what

characters to trim:

%TRIM is enhanced to allow an optional second parameter giving the list of

characters to be trimmed.

Example:

 trimchars = ’*-.’;

 data = ’***a-b-c-.’

 result = %trim(data : trimchars);

 // now result = ’a-b-c’. All * - and . were trimmed from the ends of the data

v New prototype option OPTIONS(*TRIM) to pass a trimmed parameter:

When OPTIONS(*TRIM) is specified on a prototyped parameter, the data that is

passed be trimmed of leading and trailing blanks. OPTIONS(*TRIM) is valid for

character, UCS-2 and graphic parameters defined with CONST or VALUE. It is

also valid for pointer parameters defined with OPTIONS(*STRING). With

OPTIONS(*STRING : *TRIM), the passed data will be trimmed even if a pointer

is passed on the call.

Example:

D proc pr

D parm1 5a const options(*trim)

D parm2 5a const options(*trim : *rightadj)

D parm3 5a const varying options(*trim)

What’s New

xvi ILE RPG Programmer’s Guide

#
#

#

#
#
#
#
#
#
#
#
#

#

#
#

#

#
#
#

#

#
#
#
#
#

#
#

#
#
#
#
#
#
#

#
#

#
#

#

#
#
#
#

#

#
#
#
#
#
#

#

#
#
#
#

D parm4 * value options(*string : *trim)

D parm5 * value options(*string : *trim)

D ptr s *

D data s 10a

D fld1 s 5a

 /free

 data = ’ rst ’ + x’00’;

 ptr = %addr(data);

 proc (’ xyz ’ : ’ @#$ ’ : ’ 123 ’ : ’ abc ’ : ptr);

 // the called procedure receives the following parameters

 // parm1 = ’xyz ’

 // parm2 = ’ @#$’

 // parm3 = ’123’

 // parm4 = a pointer to ’abc.’ (where . is x’00’)

 // parm5 = a pointer to ’rst.’ (where . is x’00’)

v Support for 63 digit packed and zoned decimal values

Packed and zoned data can be defined with up to 63 digits and 63 decimal

positions. The previous limit was 31 digits.

v Relaxation of the rules for using a result data structure for I/O to

externally-described files and record formats

– The result data structure for I/O to a record format may be an

externally-described data structure.

– A data structure may be specified in the result field for I/O to an

externally-described file name for operation codes CHAIN, READ, READE,

READP and READPE.

Examples:

1. The following program writes to a record format using from an

externally-described data structure.

Foutfile o e k disk

D outrecDs e ds extname(outfile) prefix(O_)

/free

 O_FLD1 = ’ABCDE’;

 O_FLD2 = 7;

 write outrec outrecDs;

 *inlr = *on;

/end-free

2. The following program reads from a multi-format logical file into data

structure INPUT which contains two overlapping subfields holding the fields

of the respective record formats.

Flog if e k disk infds(infds)

D infds ds

D recname 261 270

D input ds qualified

D rec1 likerec(rec1) overlay(input)

D rec2 likerec(rec2) overlay(input)

 /free

 read log input;

 dow not %eof(log);

 dsply recname;

 if recname = ’REC1’;

 // handle rec1

 elseif recname = ’REC2’;

 // handle rec2

 endif;

 read log input;

 enddo;

 *inlr = *on;

 /end-free

What’s New

About This Guide xvii

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#

#
#

#
#

#
#
#

#

#
#

#
#
#
#
#
#
#
#

#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

v If a program/module performs a keyed sequential input operation to a shared

file and it results in an EOF condition, a subsequent sequential input operation

by the same program/module may be attempted. An input request is sent data

base and if a record is available for input, the data is moved into the

program/module and the EOF condition is set off.

v Support for new environment variables for use with RPG programs calling

Java methods

– QIBM_RPG_JAVA_PROPERTIES allows RPG users to explicitly set the java

properties used to start the JVM

This environment variable must be set before any RPG program calls a Java

method in a job.

This environment variable has contains Java options, separated and

terminated by some character that does not appear in any of the option

strings. Semicolon is usually a good choice.

Examples:

1. Specifying only one option: If the system’s default JDK is 1.3, and you

want your RPG programs to use JDK 1.4, set environment variable

QIBM_RPG_JAVA_PROPERTIES to

 ’-Djava.version=1.4;’

Note that even with just one option, a terminating character is required. This

example uses the semicolon.

2. Specifying more than one option: If you also want to set the os400.stdout

option to a different value than the default, you could set the environment

variable to the following value:

 ’-Djava.version=1.4!-Dos400.stdout=file:mystdout.txt!’

This example uses the exclamation mark as the separator/terminator. Note:

This support is also available in V5R1 and V5R2 with PTFs. V5R1: SI10069,

V5R2: SI10101.

– QIBM_RPG_JAVA_EXCP_TRACE allows RPG users to get the exception

trace when an RPG call to a Java method ends with an exception

This environment variable can be set, changed, or removed at any time.

If this environment variable contains the value ’Y’, then when a Java

exception occurs during a Java method call from RPG, or a called Java

method throws an exception to its caller, the Java trace for the exception will

be printed. By default, it will be printed to the screen, and may not be

possible to read. To get it printed to a file, set the Java option os400.stderr.

(This would have to be done in a new job; it could be done by setting the

QIBM_RPG_JAVA_PROPERTIES environment variable to

 ’-Dos400.stderr=file:stderr.txt;’

v An RPG preprocessor enabling the SQL preprocessor to handle conditional

compilation and nested /COPY

When the RPG compiler is called with a value other than *NONE for parameter

PPGENOPT, it will behave as an RPG preprocessor. It will generate a new

source file rather than generating a program. The new source file will contain

the original source lines that are accepted by the conditional compilation

directives such as /DEFINE and /IF. It will also have the source lines from files

included by /COPY statements, and optionally it will have the source lines

included by /INCLUDE statements. The new source file will have the comments

from the original source file if PPGENOPT(*DFT) or

PPGENOPT(*NORMVCOMMENT) is specified.When the SQL precompiler is

What’s New

xviii ILE RPG Programmer’s Guide

|
|
|
|
|

#
#

#
#

#
#

#
#
#

#

#
#
#

#

#
#

#
#
#

#

#
#
#

#
#

#

#
#
#
#
#
#
#

#

#
#

#
#
#
#
#
#
#
#
#

called with a value other than *NONE for new parameter RPGPPOPT, the

precompiler will use this RPG preprocessor to handle /COPY, the conditional

compilation directives and possibly the /INCLUDE directive. This will allow

SQLRPGLE source to have nested /COPY statements, and conditionally used

statements.

 Table 3. Changed Language Elements Since V5R2

Language Unit Element Description

Control specification

keywords

CCSID(*GRAPH:parameter|

*UCS2:number|

*CHAR:*JOBRUN)

Can now take a first

parameter of *CHAR, with a

second parameter of

*JOBRUN, to control how

character data is treated at

runtime.

Built-in Functions %DEC(expression {format}) Can now take a parameter of

type Date, Time or Timestamp

%TRIM(expression:expression) Can now take a second

parameter indicating the set of

characters to be trimmed

Definition

Specification

Keywords

OPTIONS(*TRIM) Indicates that blanks are to be

trimmed from passed

parameters

Definition

Specifications

Length and decimal place entries The length and number of

decimal places can be 63 for

packed and zoned fields.

Input specifications Length entry The length can be 32 for

packed fields and 63 for zoned

fields.

Decimal place entry The number of decimal places

can be 63 for packed and

zoned fields.

Calculation

specifications

Length and decimal place entries The length and number of

decimal places can be 63 for

packed and zoned fields.

CHAIN, READ, READE, READP,

AND READPE operations

Allow a data structure to be

specified in the result field

when Factor 2 is the name of

an externally-described file.

CHAIN, READ, READC, READE,

READP, READPE, WRITE,

UPDATE operations

Allow an externally-described

data structure to be specified

in the result field when Factor

2 is the name of an

externally-described record

format.

SORTA operation Now has an extended Factor

2, allowing %SUBARR to be

specified.

 Table 4. New Language Elements Since V5R2

Language Unit Element Description

Built-in Functions %SUBARR(array:starting

element {:number of

elements})

Returns a section of the

array, or allows a section of

the array to be modified.

What’s New

About This Guide xix

#
#
#
#
#

##

###

#
#
#
#
#

#
#
#
#
#
#

###
#

##
#
#

#
#
#

##
#
#

#
#
##
#
#

###
#
#

##
#
#

#
#
##
#
#

#
#
#
#
#
#

#
#
#

#
#
#
#
#
#

##
#
#
#

##

###

##
#
#

#
#
#
#

What's New in V5R2?

The following list describes the enhancements made to ILE RPG in V5R2:

v Conversion from character to numeric

Built-in functions %DEC, %DECH, %INT, %INTH, %UNS, %UNSH and

%FLOAT are enhanced to allow character parameters. For example,

%DEC(’-12345.67’ : 7 : 2) returns the numeric value -12345.67.

v Bitwise logical built-in functions

%BITAND, %BITOR, %BITXOR and %BITNOT allow direct bit manipulation

within RPG expressions.

v Complex data structures

Data structure definition is enhanced to allow arrays of data structures and

subfields of data structures defined with LIKEDS that are themselves data

structures. This allows the coding of complex structures such as arrays of arrays,

or arrays of structures containing subarrays of structures.

Example: family(f).child(i).hobbyInfo.pets(p).type = ’dog’;

 family(f).child(i).hobbyInfo.pets(p).name = ’Spot’;

In addition, data structures can be defined the same as a record format, using

the new LIKEREC keyword.

v Enhanced externally-described data structures

Externally-described data structures can hold the programmer’s choice of input,

output, both, key or all fields. Currently, externally-described data structures can

only hold input fields.

v Enhancments to keyed I/O

Programmers can specify search arguments in keyed Input/Output operations in

/FREE calculations in two new ways:

1. By specifying the search arguments (which can be expressions) in a list.

2. By specifying a data structure which contains the search arguments.
Examples: D custkeyDS e ds extname(custfile:*key)

 /free

 CHAIN (keyA : keyB : key3) custrec;

 CHAIN %KDS(custkeyDS) custrec;

v Data-structure result for externally-described files

A data structure can be specified in the result field when using I/O operations

for externally-described files. This was available only for program-described files

prior to V5R2. Using a data structure can improve performance if there are

many fields in the file.

v UPDATE operation to update only selected fields

A list of fields to be updated can be specified with an UPDATE operation. Tthis

could only be done by using exception output prior to V5R2.

Example: update record %fields(salary:status).

v 31 digit support

Supports packed and zoned numeric data with up to 31 digits and decimal

places. This is the maximum length supported by DDS. Only 30 digits and

decimal places were supported prior to V5R2.

v Performance option for FEOD

The FEOD operation is enhanced by supporting an extender N which indicates

that the operation should simply write out the blocked buffers locally, without

forcing a costly write to disk.

v Enhanced data area access

What’s New

xx ILE RPG Programmer’s Guide

|

The DTAARA keyword is enhanced to allow the name and library of the data

area to be determined at runtime

v New assignment operators

The new assignment operators +=, -=, *=, /=, **= allow a variable to be modified

based on its old value in a more concise manner.

Example: totals(current_customer) += count;

This statement adds ″count″ to the value currently in ″totals(current_customer)″

without having to code ″totals(current_customer)″ twice.

v IFS source files

The ILE RPG compiler can compile both main source files and /COPY files from

the IFS. The /COPY and /INCLUDE directives are enhanced to support IFS file

names.

v Program Call Markup Language (PCML) generation

The ILE RPG compiler will generate an IFS file containing the PCML,

representing the parameters to the program (CRTBNDRPG) or to the exported

procedures (CRTRPGMOD).

 Table 5. Changed Language Elements Since V5R1

Language Unit Element Description

Built-in functions %DEC(expression) Can now take parameters of type character.

%DECH(expression)

%FLOAT(expression)

%INT(expression)

%INTH(expression)

%UNS(expression)

%UNSH(expression)

Definition

specification

keywords

DTAARA({*VAR:}data-area-name) The data area name can be a name, a character literal

specifying ’LIBRARY/NAME’ or a character variable

which will determine the actual data area at runtime.

DIM Allowed for data structure specifications.

LIKEDS Allowed for subfield specifications.

EXTNAME(filename{:extrecname}

{:*ALL|*INPUT|*OUTPUT|*KEY}

)

The optional ″type″ parameter controls which type of

field is extracted for the externally-described data

structure.

Definition

Specifications

Length and decimal place entries The length and number of decimal places can be 31 for

packed and zoned fields.

Operation codes CHAIN, DELETEREADE, READPE,

SETGT, SETLL

In free-form operations, Factor 1 can be a list of key

values.

CHAIN, READ, READC, READE,

READP, READPE, UPDATE, WRITE

When used with externally-described files or record

formats, a data structure may be specified in the result

field.

UPDATE In free-form calculations, the final argument can contain

a list of the fields to be updated.

FEOD Operation extender N is allowed. This indicates that the

unwritten buffers must be made available to the

database, but not necessarily be written to disk.

Calculation

specifications

Length and decimal place entries The length and number of decimal places can be 31 for

packed and zoned fields.

What’s New

About This Guide xxi

Table 6. New Language Elements Since V5R1

Language Unit Element Description

Expressions Assignment Operators += -= *= /=

**=

When these assignment operators are used, the

target of the operation is also the first operand of

the operation.

Control Specification

Keywords

DECPREC(30|31) Controls the precision of decimal intermediate

values for presentation, for example, for %EDITC

and %EDITW

Definition specification

keywords

LIKEREC(intrecname{:*ALL|

*INPUT|*OUTPUT|*KEY})

Defines a data structure whose subfields are the

same as a record format.

Built-in functions %BITAND(expression : expression) Returns a result whose bits are on if the

corresponding bits of the operands are both on.

%BITNOT(expression) Returns a result whose bits are the inverse of the

bits in the argument.

%BITOR(expression : expression) Returns a result whose bits are on if either of the

corresponding bits of the operands is on.

%BITXOR(expression : expression) Returns a result whose bits are on if exactly one

of the corresponding bits of the operands is on.

%FIELDS(name{:name...}) Used in free-form ″UPDATE to specify the fields

to be updated.

%KDS(data structure) Used in free-form keyed operation codes CHAIN,

SETLL, SETGT, READE and READPE, to indicate

that the keys for the operation are in the data

structure.

What's New in V5R1?

The ILE RPG compiler is part of the IBM IBM WebSphere Development Studio for

iSeries product, which now includes the C/C++ and COBOL compilers, and the

Application Development ToolSet tools.

The major enhancements to RPG IV since V4R4 are easier interfacing with Java,

new built-in functions, free form calculation specifications, control of which file is

opened, qualified subfield names, and enhanced error handling.

The following list describes these enhancements:

v Improved support for calls between Java and ILE RPG using the Java Native

Interface (JNI):

– A new data type: Object

– A new definition specification keyword: CLASS

– The LIKE definition specification keyword has been extended to support

objects.

– The EXTPROC definition specification keyword has been extended to support

Java procedures.

– New status codes.
v New built-in functions:

– Functions for converting a number into a duration that can be used in

arithmetic expressions: %MSECONDS, %SECONDS, %MINUTES, %HOURS,

%DAYS, %MONTHS, and %YEARS.

What’s New

xxii ILE RPG Programmer’s Guide

– The %DIFF function, for subtracting one date, time, or timestamp value from

another.

– Functions for converting a character string (or date or timestamp) into a date,

time, or timestamp: %DATE, %TIME, and %TIMESTAMP.

– The %SUBDT function, for extracting a subset of a date, time, or timestamp.

– Functions for allocating or reallocating storage: %ALLOC and %REALLOC.

– Functions for finding an element in an array: %LOOKUP, %LOOKUPGT,

%LOOKUPGE, %LOOKUPLT, and %LOOKUPLE.

– Functions for finding an element in a table: %TLOOKUP, %TLOOKUPGT,

%TLOOKUPGE, %TLOOKUPLT, and %TLOOKUPLE.

– Functions for verifying that a string contains only specified characters (or

finding the first or last exception to this rule): %CHECK and %CHECKR

– The %XLATE function, for translating a string based on a list of

from-characters and to-characters.

– The %OCCUR function, for getting or setting the current occurrence in a

multiple-occurrence data structure.

– The %SHTDN function, for determining if the operator has requested

shutdown.

– The %SQRT function, for calculating the square root of a number.
v A new free-form syntax for calculation specifications. A block of free-form

calculation specifcations is delimited by the compiler directives /FREE and

/END-FREE

v You can specify the EXTFILE and EXTMBR keywords on the file specification to

control which external file is used when a file is opened.

v Support for qualified names in data structures:

– A new definition specification keyword: QUALIFIED. This keyword specifies

that subfield names will be qualified with the data structure name.

– A new definition specification keyword: LIKEDS. This keyword specifies that

subfields are replicated from another data structure. The subfield names will

be qualified with the new data structure name. LIKEDS is allowed for

prototyped parameters; it allows the parameter’s subfields to be used directly

in the called procedure.

– The INZ definition specification keyword has been extended to allow a data

structure to be initialized based on its parent data structure.
v Enhanced error handling:

– Three new operation codes (MONITOR, ON-ERROR, and ENDMON) allow

you to define a group of operations with conditional error handling based on

the status code.

Other enhancements have been made to this release as well. These include:

v You can specify parentheses on a procedure call that has no parameters.

v You can specify that a procedure uses ILE C or ILE CL calling conventions, on

the EXTPROC definition specification keyword.

v The following /DEFINE names are predefined: *VnRnMn, *ILERPG,

*CRTBNDRPG, and *CRTRPGMOD.

v The search string in a %SCAN operation can now be longer than string being

searched. (The string will not be found, but this will no longer generate an error

condition.)

v The parameter to the DIM, OCCURS, and PERRCD keywords no longer needs

to be previously defined.

What’s New

About This Guide xxiii

v The %PADDR built-in function can now take either a prototype name or an

entry point name as its argument.

v A new operation code, ELSEIF, combines the ELSE and IF operation codes

without requiring an additional ENDIF.

v The DUMP operation code now supports the A extender, which means that a

dump is always produced - even if DEBUG(*NO) was specified.

v A new directive, /INCLUDE, is equivalent to /COPY except that /INCLUDE is

not expanded by the SQL preprocessor. Included files cannot contain embedded

SQL or host variables.

v The OFLIND file-specification keyword can now take any indicator, including a

named indicator, as an argument.

v The LICOPT (licensed internal code options) keyword is now available on the

CRTRPGMOD and CRTBNDRPG commands.

v The PREFIX file description keyword can now take an uppercase character literal

as an argument. The literal can end in a period, which allows the file to be used

with qualified subfields.

v The PREFIX definition specification keyword can also take an uppercase

character literal as an argument. This literal cannot end in a period.

The following tables summarize the changed and new language elements, based

on the part of the language affected.

 Table 7. Changed Language Elements Since V4R4

Language Unit Element Description

Built-in functions %CHAR(expression{:format}) The optional second parameter specifies the

desired format for a date, time, or timestamp. The

result uses the format and separators of the

specified format, not the format and separators of

the input.

%PADDR(prototype-name) This function can now take either a prototype

name or an entry point name as its argument.

Definition specification

keywords

EXTPROC(*JAVA:class-name:proc-
name)

Specifies that a Java method is called.

EXTPROC(*CL:proc-name) Specifies a procedure that uses ILE CL

conventions for return values.

EXTPROC(*CWIDEN:proc-name) Specifies a procedure that uses ILE C conventions

with parameter widening.

EXTPROC(*CNOWIDEN:proc-name) Specifies a procedure that uses ILE C conventions

without parameter widening.

INZ(*LIKEDS) Specifies that a data structure defined with the

LIKEDS keyword inherits the initialization from

its parent data structure.

LIKE(object-name) Specifies that an object has the same class as

another object.

PREFIX(character-literal{:number}) Prefixes the subfields with the specified character

literal, optionally replacing the specified number

of characters.

File specification

keywords

OFLIND(name) This keyword can now take any named indicator

as a parameter.

PREFIX(character-literal{:number}) Prefixes the subfields with the specified character

literal, optionally replacing the specified number

of characters.

What’s New

xxiv ILE RPG Programmer’s Guide

Table 7. Changed Language Elements Since V4R4 (continued)

Language Unit Element Description

Operation codes DUMP (A) This operation code can now take the A extender,

which causes a dump to be produced even if

DEBUG(*NO) was specified.

 Table 8. New Language Elements Since V4R4

Language Unit Element Description

Data types Object Used for Java objects

Compiler directives /FREE ... /END-FREE The /FREE... /END-FREE compiler directives

denote a free-form calculation specifications block.

/INCLUDE Equivalent to /COPY, except that it is not

expanded by the SQL preprocessor. Can be used

to inlcude nested files that are within the copied

file. The copied file cannot have embedded SQlL

or host variables.

Definition specification

keywords

CLASS(*JAVA:class-name) Specifies the class for an object.

LIKEDS(dsname) Specifies that a data structure, prototyped

parameter, or return value inherits the subfields of

another data strucutre.

QUALIFIED Specifies that the subfield names in a data

structure are qualified with the data structure

name.

File specification

keywords

EXTFILE(filename) Specifies which file is opened. The value can be a

literal or a variable. The default file name is the

name specified in position 7 of the file

specification. The default library is *LIBL.

EXTMBR(membername) Specifies which member is opened. The value can

be a literal or a variable. The default is *FIRST.

What’s New

About This Guide xxv

Table 8. New Language Elements Since V4R4 (continued)

Language Unit Element Description

Built-in functions %ALLOC(num) Allocates the specified amount of storage.

%CHECK(comparator:base{:start}) Finds the first character in the base string that is

not in the comparator.

%CHECKR(comparator:base{:start}) Finds the last character in the base string that is

not in the comparator.

%DATE(expression{:date-format}) Converts the expression to a date.

%DAYS(num) Converts the number to a duration, in days.

%DIFF(op1:op2:unit) Calculates the difference (duration) between two

date, time, or timestamp values in the specified

units.

%HOURS(num) Converts the number to a duration, in hours.

%LOOKUPxx(arg:array{:startindex

{:numelems}})

Finds the specified argument, or the specified

type of near-match, in the specified array.

%MINUTES(num) Converts the number to a duration, in minutes.

%MONTHS(num) Converts the number to a duration, in months.

%MSECONDS(num) Converts the number to a duration, in

microseconds.

%OCCUR(dsn-name) Sets or gets the current position of a

multiple-occurrence data structure.

%REALLOC(pointer:number) Reallocates the specified amount of storage for the

specified pointer.

%SECONDS(num) Converts the number to a duration, in seconds.

%SHTDN Checks if the system operator has requested

shutdown.

%SQRT(numeric-expression) Calculates the square root of the specified

number.

%SUBDT(value:unit) Extracts the specified portion of a date, time, or

timestamp value.

%THIS Returns an Object value that contains a reference

to the class instance on whose behalf the native

method is being called.

%TIME(expression{:time-format}) Converts the expression to a time.

%TIMESTAMP(expression

{:*ISO|*ISO0})

Converts the expression to a timestamp.

%TLOOKUP(arg:search-table

{:alt-table})

Finds the specified argument, or the specified

type of near-match, in the specified table.

%XLATE(from:to:string{:startpos}) Translates the specified string, based on the

from-string and to-string.

%YEARS(num) Converts the number to a duration, in years.

What’s New

xxvi ILE RPG Programmer’s Guide

Table 8. New Language Elements Since V4R4 (continued)

Language Unit Element Description

Operation codes MONITOR Begins a group of operations with conditional

error handling.

ON-ERROR Performs conditional error handling, based on the

status code.

ENDMON Ends a group of operations with conditional error

handling.

ELSEIF Equivalent to an ELSE operation code followed by

an IF operation code.

CRTBNDRPG and

CRTRPGMOD keywords

LICOPT(options) Specifies Licensed Internal Code options.

What's New in V4R4?

The major enhancements to RPG IV since V4R2 are the support for running ILE

RPG modules safely in a threaded environment, the new 3-digit and 20-digit

signed and unsigned integer data types, and support for a new Universal

Character Set Version 2 (UCS-2) data type and for conversion between UCS-2 fields

and graphic or single-byte character fields.

The following list describes these enhancements:

v Support for calling ILE RPG procedures from a threaded application, such as

Domino™ or Java™.

– The new control specification keyword THREAD(*SERIALIZE) identifies

modules that are enabled to run in a multithreaded environment. Access to

procedures in the module is serialized.
v Support for new 1-byte and 8-byte integer data types: 3I and 20I signed integer,

and 3U and 20U unsigned integer

– These new integer data types provide you with a greater range of integer

values and can also improve performance of integer computations, taking full

advantage of the 64-bit AS/400 RISC processor.

– The new 3U type allows you to more easily communicate with ILE C

procedures that have single-byte character (char) return types and parameters

passed by value.

– The new INTPREC control specification keyword allows you to specify

20-digit precision for intermediate values of integer and unsigned binary

arithmetic operations in expressions.

– Built-in functions %DIV and %REM have been added to support integer

division and remainder operations.
v Support for new Universal Character Set Version 2 (UCS-2) or Unicode data type

– The UCS-2 (Unicode) character set can encode the characters for many written

languages. The field is a character field whose characters are two bytes long.

– By adding support for Unicode, a single application can now be developed

for a multinational corporation, minimizing the necessity to perform code

page conversion. The use of Unicode permits the processing of characters in

multiple scripts without loss of integrity.

– Support for conversions between UCS-2 fields and graphic or single-byte

character fields using the MOVE and MOVEL operations, and the new

%UCS2 and %GRAPH built-in functions.

What’s New

About This Guide xxvii

– Support for conversions between UCS-2 fields or graphic fields with different

Coded Character Set Identifiers (CCSIDs) using the EVAL, MOVE, and

MOVEL operations, and the new %UCS2 built-in function.

Other enhancements have been made to this release as well. These include:

v New parameters for the OPTION control specification keyword and on the

create commands:

– *SRCSTMT allows you to assign statement numbers for debugging from the

source IDs and SEU sequence numbers in the compiler listing. (The statement

number is used to identify errors in the compiler listing by the debugger, and

to identify the statement where a run-time error occurs.) *NOSRCSTMT

specifies that statement numbers are associated with the Line Numbers of the

listing and the numbers are assigned sequentially.

– Now you can choose not to generate breakpoints for input and output

specifications in the debug view with *NODEBUGIO. If this option is

selected, a STEP on a READ statement in the debugger will step to the next

calculation, rather than stepping through the input specifications.
v New special words for the INZ definition specification keyword:

– INZ(*EXTDFT) allows you to use the default values in the DDS for

initializing externally described data structure subfields.

– Character variables initialized by INZ(*USER) are initialized to the name of

the current user profile.
v The new %XFOOT built-in function sums all elements of a specified array

expression.

v The new EVALR operation code evaluates expressions and assigns the result to a

fixed-length character or graphic result. The assignment right-adjusts the data

within the result.

v The new FOR operation code performs an iterative loop and allows free-form

expressions for the initial, increment, and limit values.

v The new LEAVESR operation code can be used to exit from any point within a

subroutine.

v The new *NEXT parameter on the OVERLAY(name:*NEXT) keyword indicates

that a subfield overlays another subfield at the next available position.

v The new *START and *END values for the SETLL operation code position to the

beginning or end of the file.

v The ability to use hexadecimal literals with integer and unsigned integer fields

in initialization and free-form operations, such as EVAL, IF, etc.

v New control specification keyword OPENOPT{(*NOINZOFL | *INZOFL)} to

indicate whether the overflow indicators should be reset to *OFF when a file is

opened.

v Ability to tolerate pointers in teraspace — a memory model that allows more

than 16 megabytes of contiguous storage in one allocation.

The following tables summarize the changed and new language elements, based

on the part of the language affected.

What’s New

xxviii ILE RPG Programmer’s Guide

Table 9. Changed Language Elements Since V4R2

Language Unit Element Description

Control

specification

keywords

OPTION(*{NO}SRCSTMT) *SRCSTMT allows you to request that

the compiler use SEU sequence

numbers and source IDs when

generating statement numbers for

debugging. Otherwise, statement

numbers are associated with the Line

Numbers of the listing and the

numbers are assigned sequentially.

OPTION(*{NO}DEBUGIO) *{NO}DEBUGIO, determines if

breakpoints are generated for input

and output specifications.

Definition

specification

keywords

INZ(*EXTDFT) All externally described data structure

subfields can now be initialized to the

default values specified in the DDS.

INZ(*USER) Any character field or subfield can be

initialized to the name of the current

user profile.

OVERLAY(name:*NEXT) The special value *NEXT indicates that

the subfield is to be positioned at the

next available position within the

overlayed field.

OPTIONS(*NOPASS *OMIT

*VARSIZE *STRING

*RIGHTADJ)

The new OPTIONS(*RIGHTADJ)

specified on a value or constant

parameter in a function prototype

indicates that the character, graphic, or

UCS-2 value passed as a parameter is

to be right adjusted before being

passed on the procedure call.

Definition

specification

positions 33-39 (To

Position/Length)

3 and 20 digits allowed for I

and U data types

Added to the list of allowed values for

internal data types to support 1-byte

and 8-byte integer and unsigned data.

Internal data type C (UCS-2 fixed or

variable-length format)

Added to the list of allowed internal

data types on the definition

specifications. The UCS-2 (Unicode)

character set can encode the characters

for many written languages. The field

is a character field whose characters

are two bytes long.

Data format C (UCS-2 fixed or

variable-length format)

UCS-2 format added to the list of

allowed data formats on the input and

output specifications for program

described files.

Command

parameter

OPTION *NOSRCSTMT, *SRCSTMT,

*NODEBUGIO, and *DEBUGIO have

been added to the OPTION parameter

on the CRTBNDRPG and

CRTRPGMOD commands.

What’s New

About This Guide xxix

Table 10. New Language Elements Since V4R2

Language Unit Element Description

Control

specification

keywords

CCSID(*GRAPH: *IGNORE |

*SRC | number)

Sets the default graphic CCSID for the

module. This setting is used for

literals, compile-time data and

program-described input and output

fields and definitions. The default is

*IGNORE.

CCSID(*UCS2: number) Sets the default UCS-2 CCSID for the

module. This setting is used for

literals, compile-time data and

program-described input and output

fields and definitions. The default is

13488.

INTPREC(10 | 20) Specifies the decimal precision of

integer and unsigned intermediate

values in binary arithmetic operations

in expressions. The default,

INTPREC(10), indicates that 10-digit

precision is to be used.

OPENOPT{(*NOINZOFL |

*INZOFL)}

Indicates whether the overflow

indicators should be reset to *OFF

when a file is opened.

THREAD(*SERIALIZE) Indicates that the module is enabled to

run in a multithreaded environment.

Access to the procedures in the

module is to be serialized.

Definition

specification

keywords

CCSID(number | *DFT) Sets the graphic and UCS-2 CCSID for

the definition.

Built-in functions %DIV(n:m) Performs integer division on the two

operands n and m; the result is the

integer portion of n/m. The operands

must be numeric values with zero

decimal positions.

%GRAPH(char-expr |

graph-expr | UCS2-expr {:

ccsid})

Converts to graphic data from

single-byte character, graphic, or

UCS-2 data.

%REM(n:m) Performs the integer remainder

operation on two operands n and m;

the result is the remainder of n/m. The

operands must be numeric values with

zero decimal positions.

%UCS2(char-expr |

graph-expr | UCS2-expr {:

ccsid})

Converts to UCS-2 data from

single-byte character, graphic, or

UCS-2 data.

%XFOOT(array-expr) Produces the sum of all the elements

in the specified numeric array

expression.

What’s New

xxx ILE RPG Programmer’s Guide

Table 10. New Language Elements Since V4R2 (continued)

Language Unit Element Description

Operation codes EVALR Evaluates an assignment statement of

the form result=expression. The result

will be right-justified.

FOR Begins a group of operations and

indicates the number of times the

group is to be processed. The initial,

increment, and limit values can be

free-form expressions.

ENDFOR ENDFOR ends a group of operations

started by a FOR operation.

LEAVESR Used to exit from anywhere within a

subroutine.

What's New in V4R2?

The major enhancements to RPG IV since V3R7 are the support for variable-length

fields, several enhancements relating to indicators, and the ability to specify

compile options on the control specifications. These further improve the RPG

product for integration with the i5/OS operating system and ILE interlanguage

communication.

The following list describes these enhancements:

v Support for variable-length fields

This enhancement provides full support for variable-length character and

graphic fields. Using variable-length fields can simplify many string handling

tasks.

v Ability to use your own data structure for INDARA indicators

Users can now access logical data areas and associate an indicator data structure

with each WORKSTN and PRINTER file that uses INDARA, instead of using the

*IN array for communicating values to data management.

v Ability to use built-in functions instead of result indicators

Built-in functions %EOF, %EQUAL, %FOUND, and %OPEN have been added to

query the results of input/output operations. Built-in functions %ERROR and

%STATUS, and the operation code extender ’E’ have been added for error

handling.

v Compile options on the control specification

Compile options, specified through the CRTBNDRPG and CRTRPGMOD

commands, can now be specified through the control specification keywords.

These compile options will be used on every compile of the program.

In addition, the following new function has been added:

v Support for import and export of procedures and variables with mixed case

names

v Ability to dynamically set the DECEDIT value at runtime

v Built-in functions %CHAR and %REPLACE have been added to make string

manipulation easier

v New support for externally defined *CMDY, *CDMY, and *LONGJUL date data

formats

v An extended range for century date formats

What’s New

About This Guide xxxi

v Ability to define indicator variables

v Ability to specify the current data structure name as the parameter for the

OVERLAY keyword

v New status code 115 has been added to indicate variable-length field errors

v Support for application profiling

v Ability to handle packed-decimal data that is not valid when it is retrieved from

files using FIXNBR(*INPUTPACKED)

v Ability to specify the BNDDIR command parameter on the CRTRPGMOD

command.

The following tables summarize the changed and new language elements, based

on the part of the language affected.

 Table 11. Changed Language Elements Since V3R7

Language Unit Element Description

Control

specification

keywords

DECEDIT(*JOBRUN |

’value’)

The decimal edit value can now be

determined dynamically at runtime

from the job or system value.

Definition

specification

keywords

DTAARA {(data_area_name)} Users can now access logical data

areas.

EXPORT {(external_name)} The external name of the variable

being exported can now be specified as

a parameter for this keyword.

IMPORT {(external_name)} The external name of the variable

being imported can now be specified

as a parameter for this keyword.

OVERLAY(name{:pos}) The name parameter can now be the

name of the current data structure.

Extended century

format

*CYMD (cyy/mm/dd) The valid values for the century

character ’c’ are now:

 ’c’ Years

 0 1900-1999

 1 2000-2099

 . .

 . .

 . .

 9 2800-2899

Internal data type N (Indicator format) Added to the list of allowed internal

data types on the definition

specifications. Defines character data in

the indicator format.

Data format N (Indicator format) Indicator format added to the list of

allowed data formats on the input and

output specifications for program

described files.

Data Attribute *VAR Added to the list of allowed data

attributes on the input and output

specifications for program described

files. It is used to specify

variable-length fields.

What’s New

xxxii ILE RPG Programmer’s Guide

Table 11. Changed Language Elements Since V3R7 (continued)

Language Unit Element Description

Command

parameter

FIXNBR The *INPUTPACKED parameter has

been added to handle packed-decimal

data that is not valid.

 Table 12. New Language Elements Since V3R7

Language Unit New Description

Control

specification

keywords

ACTGRP(*NEW | *CALLER

| ’activation- group-name’)

The ACTGRP keyword allows you to

specify the activation group the

program is associated with when it is

called.

ALWNULL(*NO |

*INPUTONLY | *USRCTL)

The ALWNULL keyword specifies how

you will use records containing

null-capable fields from externally

described database files.

AUT(*LIBRCRTAUT | *ALL

| *CHANGE | *USE |

*EXCLUDE |

’authorization-list-name’)

The AUT keyword specifies the

authority given to users who do not

have specific authority to the object,

who are not on the authorization list,

and whose user group has no specific

authority to the object.

BNDDIR(’binding

-directory-name’ {:’binding-

directory-name’...})

The BNDDIR keyword specifies the list

of binding directories that are used in

symbol resolution.

CVTOPT(*{NO}DATETIME

*{NO}GRAPHIC

*{NO}VARCHAR

*{NO}VARGRAPHIC)

The CVTOPT keyword is used to

determine how the ILE RPG compiler

handles date, time, timestamp, graphic

data types, and variable-length data

types that are retrieved from externally

described database files.

DFTACTGRP(*YES | *NO) The DFTACTGRP keyword specifies

the activation group in which the

created program will run when it is

called.

ENBPFRCOL(*PEP |

*ENTRYEXIT | *FULL)

The ENBPFRCOL keyword specifies

whether performance collection is

enabled.

FIXNBR(*{NO}ZONED

*{NO}INPUTPACKED)

The FIXNBR keyword specifies

whether decimal data that is not valid

is fixed by the compiler.

GENLVL(number) The GENLVL keyword controls the

creation of the object.

INDENT(*NONE |

’character-value’)

The INDENT keyword specifies

whether structured operations should

be indented in the source listing for

enhanced readability.

LANGID(*JOBRUN | *JOB |

’language-identifier’)

The LANGID keyword indicates which

language identifier is to be used when

the sort sequence is *LANGIDUNQ or

*LANGIDSHR.

What’s New

About This Guide xxxiii

Table 12. New Language Elements Since V3R7 (continued)

Language Unit New Description

OPTIMIZE(*NONE | *BASIC

| *FULL)

The OPTIMIZE keyword specifies the

level of optimization, if any, of the

object.

OPTION(*{NO}XREF

*{NO}GEN *{NO}SECLVL

*{NO}SHOWCPY

*{NO}EXPDDS *{NO}EXT

*{NO}SHOWSKP)

The OPTION keyword specifies the

options to use when the source

member is compiled.

PRFDTA(*NOCOL | *COL) The PRFDTA keyword specifies

whether the collection of profiling data

is enabled.

SRTSEQ(*HEX | *JOB |

*JOBRUN | *LANGIDUNQ

| *LANGIDSHR |

’sort-table-name’)

The SRTSEQ keyword specifies the sort

sequence table that is to be used in the

ILE RPG source program.

TEXT(*SRCMBRTXT |

*BLANK | ’description’)

The TEXT keyword allows you to

enter text that briefly describes the

object and its function.

TRUNCNBR(*YES | *NO) The TRUNCNBR keyword specifies if

the truncated value is moved to the

result field or if an error is generated

when numeric overflow occurs while

running the object.

USRPRF(*USER | *OWNER) The USRPRF keyword specifies the

user profile that will run the created

program object.

File Description

Specification

keywords

INDDS(

data_structure_name)

The INDDS keyword lets you associate

a data structure name with the

INDARA indicators for a workstation

or printer file.

Definition

specification

keywords

VARYING Defines variable-length fields when

specified on character data or graphic

data.

Built-in functions %CHAR(graphic, date, time

or timestamp expression)

Returns the value in a character data

type.

%EOF{file name} Returns ’1’ if the most recent file input

operation or write to a subfile (for a

particular file, if specified) ended in an

end-of-file or beginning-of-file

condition; otherwise, it returns ’0’.

%EQUAL{file name} Returns ’1’ if the most recent SETLL

(for a particular file, if specified) or

LOOKUP operation found an exact

match; otherwise, it returns ’0’.

%ERROR Returns ’1’ if the most recent operation

code with extender ’E’ specified

resulted in an error; otherwise, it

returns ’0’.

What’s New

xxxiv ILE RPG Programmer’s Guide

Table 12. New Language Elements Since V3R7 (continued)

Language Unit New Description

%FOUND{file name} Returns ’1’ if the most recent relevant

operation (for a particular file, if

specified) found a record (CHAIN,

DELETE, SETGT, SETLL), an element

(LOOKUP), or a match (CHECK,

CHECKR and SCAN); otherwise, it

returns ’0’.

%OPEN(file name) Returns ’1’ if the specified file is open

and ’0’ if the specified file is closed.

%REPLACE(replacement

string: source string {:start

position {:source length to

replace}})

Returns the string produced by

inserting a replacement string into a

source string, starting at the start

position and replacing the specified

number of characters.

%STATUS{file name} If no program or file error occurred

since the most recent operation code

with extender ’E’ specified, it returns 0.

If an error occurred, it returns the most

recent value set for any program or file

status. If a file is specified, the value

returned is the most recent status for

that file.

Operation code

Extender

E Allows for error handling using the

%ERROR and %STATUS built-in

functions on the CALLP operation and

all operations that allow error

indicators.

New century

formats

*CMDY (cmm/dd/yy) To be used by the MOVE, MOVEL,

and TEST operations.

*CDMY (cdd/mm/yy) To be used by the MOVE, MOVEL,

and TEST operations.

New 4-digit year

format

*LONGJUL (yyyy/ddd) To be used by the MOVE, MOVEL,

and TEST operations.

Command

parameters

PRFDTA The PRFDTA parameter specifies

whether the collection of profiling data

is enabled.

BNDDIR The BNDDIR parameter was

previously only allowed on the

CRTBNDRPG command and not on

the CRTRPGMOD command, now it is

allowed on both commands.

What's New in V3R7?

The major enhancements to RPG IV since V3R6 are the new support for database

null fields, and the ability to better control the precision of intermediate results in

expressions. Other enhancements include the addition of a floating point data type

and support for null-terminated strings. These further improve the RPG product

for integration with the i5/OS operating system and ILE interlanguage

communication. This means greater flexibility for developing applications.

What’s New

About This Guide xxxv

The following is a list of these enhancements including a number of new built-in

functions and usability enhancements:

v Support for database null fields

This enhancement allows users to process database files which contain

null-capable fields, by allowing these fields to be tested for null and set to null.

v Expression intermediate result precision

A new control specification keyword and new operation code extenders on

free-form expression specifications allow the user better control over the

precision of intermediate results.

v New floating point data type

The new floating point data type has a much larger range of values than other

data types. The addition of this data type will improve integration with the

i5/OS database and improve interlanguage communication in an ILE

environment, specifically with the C and C++ languages.

v Support for null terminated strings

The new support for null terminated strings improves interlanguage

communication. It allows users full control over null terminated data by

allowing users to define and process null terminated strings, and to conveniently

pass character data as parameters to procedures which expect null terminated

strings.

v Pointer addition and subtraction

Free-form expressions have been enhanced to allow adding an offset to a

pointer, subtracting an offset from a pointer, and determining the difference

between two pointers.

v Support for long names

Names longer than 10 characters have been added to the RPG language.

Anything defined on the definition or procedure specifications can have a long

name and these names can be used anywhere where they fit within the bounds

of an entry. In addition, names referenced on any free-form specification may be

continued over multiple lines.

v New built-in functions

A number of new built-in functions have been added to the language which

improve the following language facilities:

– editing (%EDITW, %EDITC, %EDITFLT)

– scanning strings (%SCAN)

– type conversions (%INT, %FLOAT, %DEC, %UNS)

– type conversions with half-adjust (%INTH, %DECH, %UNSH)

– precision of intermediate results for decimal expressions (%DEC)

– length and decimals of variables and expressions (%LEN, %DECPOS)

– absolute value (%ABS)

– set and test null-capable fields (%NULLIND)

– handle null terminated strings (%STR)
v Conditional compilation

RPG IV has been extended to support conditional compilation. This support will

include the following:

– defining conditions (/DEFINE, /UNDEFINE),

– testing conditions (/IF, /ELSEIF, /ELSE, /ENDIF)

– stop reading current source file (/EOF)

What’s New

xxxvi ILE RPG Programmer’s Guide

– a new command option (DEFINE) to define up to 32 conditions on the

CRTBNDRPG and CRTRPGMOD commands.
v Date enhancements

Several enhancements have been made to improve date handling operations.

The TIME operation code is extended to support Date, Time or Timestamp fields

in the result field. Moving dates or times from and to character fields no longer

requires separator characters. Moving UDATE and *DATE fields no longer

requires a format code to be specified. Date fields can be initialized to the

system (*SYS) or job (*JOB) date on the definition specifications.

v Character comparisons with alternate collating sequence

Specific character variables can be defined so that the alternate collating

sequence is not used in comparisons.

v Nested /COPY members

You can now nest /COPY directives. That is, a /COPY member may contain one

(or more) /COPY directives which can contain further /COPY directives and so

on.

v Storage management

You can now use the new storage management operation codes to allocate,

reallocate and deallocate storage dynamically.

v Status codes for storage management and float underflow errors.

Two status codes 425 and 426 have been added to indicate storage management

errors. Status code 104 was added to indicate that an intermediate float result is

too small.

The following tables summarize the changed and new language elements, based

on the part of the language affected.

 Table 13. Changed Language Elements Since V3R6

Language Unit Element Description

Definition

specification

keywords

ALIGN ALIGN can now be used to align float

subfields along with the previously

supported integer and unsigned

alignment.

OPTIONS(*NOPASS *OMIT

*VARSIZE *STRING)

The *STRING option allows you to

pass a character value as a

null-terminated string.

Record address

type

F (Float format) Added to the list of allowed record

address types on the file description

specifications. Signals float processing

for a program described file.

Internal data type F (Float format) Added to the list of allowed internal

data types on the definition

specifications. Defines a floating point

standalone field, parameter, or data

structure subfield.

Data format F (Float format) Added to the list of allowed data

formats on the input and output

specifications for program described

files.

What’s New

About This Guide xxxvii

Table 14. New Language Elements Since V3R6

Language Unit New Description

Control

specification

keywords

COPYNEST(’1-2048’) Specifies the maximum depth for

nesting of /COPY directives.

EXPROPTS(*MAXDIGITS |

*RESDECPOS)

Expression options for type of

precision (default or ″Result Decimal

Position″ precision rules)

FLTDIV{(*NO | *YES)} Indicates that all divide operations in

expressions are computed in floating

point.

Definition

specification

keywords

ALTSEQ(*NONE) Forces the normal collating sequence to

be used for character comparison even

when an alternate collating sequence is

specified.

Built-in functions %ABS Returns the absolute value of the

numeric expression specified as the

parameter.

%DEC & %DECH Converts the value of the numeric

expression to decimal (packed) format

with the number of digits and decimal

positions specified as parameters.

%DECH is the same as %DEC, but

with a half adjust applied.

%DECPOS Returns the number of decimal

positions of the numeric variable or

expression. The value returned is a

constant, and may be used where a

constant is expected.

%EDITC This function returns a character result

representing the numeric value edited

according to the edit code.

%EDITFLT Converts the value of the numeric

expression to the character external

display representation of float.

%EDITW This function returns a character result

representing the numeric value edited

according to the edit word.

%FLOAT Converts the value of the numeric

expression to float format.

%INT & %INTH Converts the value of the numeric

expression to integer. Any decimal

digits are truncated with %INT and

rounded with %INTH.

%LEN Returns the number of digits or

characters of the variable expression.

%NULLIND Used to query or set the null indicator

for null-capable fields.

%SCAN Returns the first position of the search

argument in the source string, or 0 if it

was not found.

What’s New

xxxviii ILE RPG Programmer’s Guide

Table 14. New Language Elements Since V3R6 (continued)

Language Unit New Description

%STR Used to create or use null-terminated

strings, which are very commonly

used in C and C++ applications.

%UNS & %UNSH Converts the value of the numeric

expression to unsigned format. Any

decimal digits are truncated with

%UNS and rounded with %UNSH.

Operation code

Extenders

N Sets pointer to *NULL after successful

DEALLOC

M Default precision rules

R No intermediate value will have fewer

decimal positions than the result

(″Result Decimal Position″ precision

rules)

Operation codes ALLOC Used to allocate storage dynamically.

DEALLOC Used to deallocate storage dynamically.

REALLOC Used to reallocate storage dynamically.

What's New in V3R6/V3R2?

The major enhancement to RPG IV since V3R1 is the ability to code a module with

more than one procedure. What does this mean? In a nutshell, it means that you

can code an module with one or more prototyped procedures, where the

procedures can have return values and run without the use of the RPG cycle.

Writing a module with multiple procedures enhances the kind of applications you

can create. Any application consists of a series of logical units that are conceived to

accomplish a particular task. In order to develop applications with the greatest

flexibility, it is important that each logical unit be as independent as possible.

Independent units are:

v Easier to write from the point of view of doing a specific task.

v Less likely to change any data objects other than the ones it is designed to

change.

v Easier to debug because the logic and data items are more localized.

v Maintained more readily since it is easier to isolate the part of the application

that needs changing.

The main benefit of coding a module with multiple procedures is greater control

and better efficiency in coding a modular application. This benefit is realized in

several ways. You can now:

v Call procedures and programs by using the same call operation and syntax.

v Define a prototype to provide a check at compile time of the call interface.

v Pass parameters by value or by reference.

v Define a procedure that will return a value and call the procedure within an

expression.

v Limit access to data items by defining local definitions of variables.

v Code a module that does not make use of the cycle.

v Call a procedure recursively.

What’s New

About This Guide xxxix

The run-time behavior of the main procedure in a module is the same as that of a

V3R1 procedure. The run-time behavior of any subsequent procedures differs

somewhat from a V3R1 program, most notably in the areas of procedure end and

exception handling. These differences arise because there is no cycle code that is

generated for these procedures.

Other enhancements have been made to for this release as well. These include:

v Support for two new integer data types: signed integer (I), and unsigned integer

(U)

The use of the integer data types provides you with a greater range of values

than the binary data type. Integer data types can also improve performance of

integer computations.

v *CYMD support for the MOVE, MOVEL, and TEST operations

You can now use the *CYMD date format in certain operations to work with

system values that are already in this data format.

v Ability to copyright your programs and modules by using the COPYRIGHT

keyword on the control specification

The copyright information that is specified using this keyword becomes part of

the DSPMOD, DSPPGM, or DSPSRVPGM information.

v User control of record blocking using keyword BLOCK

You can request record blocking of DISK or SEQ files to be done even when

SETLL, SETGT, or CHAIN operations are used on the file. You can also request

that blocking not be done. Use of blocking in these cases may significantly

improve runtime performance.

v Improved PREFIX capability

Changes to the PREFIX keyword for either file-description and definition

specifications allow you to replace characters in the existing field name with the

prefix string.

v Status codes for trigger program errors

Two status codes 1223 and 1224 have been added to indicate trigger program

errors.

The following tables summarize the changed and new language elements, based

on the part of the language affected.

 Table 15. Changed Language Elements Since V3R1

Language Unit Element Description

File description

specification

keywords

PREFIX(prefix_string

{:nbr_of_char_ replaced})

Allows prefixing of string to a field

name or a partial rename of the field

name

Definition

specification

keywords

CONST{(constant)} Specifies the value of a named

constant, or indicates that a prototyped

parameter that is passed by reference

has a constant value

PREFIX(prefix_string

{:nbr_of_char_ replaced})

Allows prefixing of string to a field

name or a partial rename of the field

name

Operation codes RETURN Returns control to the caller, and

returns a value, if specified

What’s New

xl ILE RPG Programmer’s Guide

Table 16. New Language Elements Since V3R1

Language Unit New Description

Control

specification

keywords

COPYRIGHT(’copyright

string’)

Allows you to associate copyright

information with modules and

programs

EXTBININT{(*NO | *YES)} Specifies that binary fields in

externally-described files be assigned

an integer format during program

processing

NOMAIN Indicates that the module has only

subprocedures

File description

specification

keywords

BLOCK(*YES |*NO) Allows you to control whether record

blocking occurs (assuming other

conditions are met)

Definition

specification

keywords

ALIGN Specifies whether integer or unsigned

fields should be aligned

EXTPGM(name) Indicates the external name of the

prototyped program

EXTPROC(name) Indicates the external name of the

prototyped procedure

OPDESC Indicates whether operational

descriptors are to be passed for the

prototyped bound call

OPTIONS(*NOPASS *OMIT

*VARSIZE)

Specifies various options for

prototyped parameters

STATIC Specifies that the local variable is to

use static storage

VALUE Specifies that the prototyped

parameter is to be passed by value

Built-in functions %PARMS Returns the number of parameters

passed on a call

Operation codes CALLP Calls a prototyped program or

procedure

Specification type Procedure specification Signals the beginning and end of a

subprocedure definition

Definition type PR Signals the beginning of a prototype

definition

PI Signals the beginning of a procedure

interface definition

blank in positions 24-25 Defines a prototyped parameter

What’s New

About This Guide xli

What’s New

xlii ILE RPG Programmer’s Guide

Part 1. ILE RPG Introduction

Before using ILE RPG to create a program, you must know certain aspects of the

environment in which you will be using it. This part provides information on the

following topics that you should know:

v Overview of RPG IV language

v Role of Integrated Language Environment components in RPG programming

v Integrated Language Environment program creation strategies

v Overview of coding a module with more than one procedure and prototyped

calls

© Copyright IBM Corp. 1994, 2006 1

2 ILE RPG Programmer’s Guide

Chapter 1. Overview of the RPG IV Programming Language

This chapter presents a high-level review of the features of the RPG IV

programming language that distinguish RPG from other programming languages.

You should be familiar and comfortable with all of these features before you

program in the RPG IV language. The features discussed here encompass the

following subjects:

v Coding specifications

v The program cycle

v Indicators

v Operation codes

For more information on RPG IV, see the WebSphere Development Studio: ILE RPG

Reference.

RPG IV Specifications

RPG code is written on a variety of specification forms, each with a specific set of

functions. Many of the entries which make up a specification type are

position-dependent. Each entry must start in a specific position depending on the

type of entry and the type of specification.

There are seven types of RPG IV specifications. Each specification type is optional.

Specifications must be entered into your source program in the order shown below.

Main source section:

1. Control specifications provide the compiler with information about generating

and running programs, such as the program name, date format, and use of

alternate collating sequence or file translation.

2. File description specifications describe all the files that your program uses.

3. Definition specifications describe the data used by the program.

4. Input specifications describe the input records and fields used by the program.

5. Calculation specifications describe the calculations done on the data and the

order of the calculations. Calculation specifications also control certain input

and output operations.

6. Output specifications describe the output records and fields used by the

program.

Subprocedure section:

1. Procedure specifications mark the beginning and end of the subprocedure,

indicate the subprocedure name, and whether it is exported.

2. Definition specifications describe the local data used by the subprocedure.

3. Calculation specifications describe the calculations done on both the global

and local data and the order of the calculations.

© Copyright IBM Corp. 1994, 2006 3

Cycle Programming

When a system processes data, it must do the processing in a particular order. This

logical order is provided by:

v The ILE RPG compiler

v The program code

The logic the compiler supplies is called the program cycle. When you let the

compiler provide the logic for your programs, it is called cycle programming.

The program cycle is a series of steps that your program repeats until an

end-of-file condition is reached. Depending on the specifications you code, the

program may or may not use each step in the cycle.

If you want to have files controlled by the cycle, the information that you code on

RPG specifications in your source program need not specify when records for these

files are read. The compiler supplies the logical order for these operations, and

some output operations, when your source program is compiled.

If you do not want to have files controlled by the cycle, you must end your

program some other way, either by creating an end-of-file condition by setting on

the last record (LR) indicator, by creating a return condition by setting on the

return (RT) indicator, or by returning directly using the RETURN operation.

Note: No cycle code is generated for subprocedures or when NOMAIN is

specified on the control specification.

Figure 1 shows the specific steps in the general flow of the RPG program cycle.

�1� RPG processes all heading and detail lines (H or D in position 17 of the

output specifications).

Write
heading and
detail lines

Get input
record

Perform
total

calculations

Write
total

output

Perform
detail

calculations

LR on
Move fields

Start

Yes

No

End of
program

Figure 1. RPG Program Logic Cycle

RPG IV Overview

4 ILE RPG Programmer’s Guide

�2� RPG reads the next record and sets on the record identifying and control

level indicators.

�3� RPG processes total calculations (conditioned by control level indicators L1

through L9, an LR indicator, or an L0 entry).

�4� RPG processes all total output lines (identified by a T in position 17 of the

output specifications).

�5� RPG determines if the LR indicator is on. If it is on, the program ends.

�6� The fields of the selected input records move from the record to a

processing area. RPG sets on field indicators.

�7� RPG processes all detail calculations (not conditioned by control level

indicators in positions 7 and 8 of the calculation specifications). It uses the

data from the record at the beginning of the cycle.

 The first cycle

The first and last time through the program cycle differ somewhat from other

cycles. Before reading the first record the first time through the cycle, the program

does three things:

v handles input parameters, opens files, initializes program data

v writes the records conditioned by the 1P (first page) indicator

v processes all heading and detail output operations.

For example, heading lines printed before reading the first record might consist of

constant or page heading information, or special fields such as PAGE and *DATE.

The program also bypasses total calculations and total output steps on the first

cycle.

The last cycle

The last time a program goes through the cycle, when no more records are

available, the program sets the LR (last record) indicator and the L1 through L9

(control level) indicators to on. The program processes the total calculations and

total output, then all files are closed, and then the program ends.

Subprocedure logic

The general flow of a subprocedure is much simpler: the calculations of a

subprocedure are done once, and then the subprocedure returns. There is no cycle

code generated for a subprocedure.

Indicators

An indicator is a one-byte character field that is either set on (’1’) or off (’0’). It is

generally used to indicate the result of an operation or to condition (control) the

processing of an operation. Indicators are like switches in the flow of the program

logic. They determine the path the program will take during processing,

depending on how they are set or used.

Indicators can be defined as variables on the definition specifications. You can also

use RPG IV indicators, which are defined either by an entry on a specification or

by the RPG IV program itself.

RPG IV Overview

Chapter 1. Overview of the RPG IV Programming Language 5

Each RPG IV indicator has a two-character name (for example, LR, 01, H3), and is

referred to in some entries of some specifications just by the two-character name,

and in others by the special name *INxx where xx is the two-character name. You

can use several types of these indicators; each type signals something different. The

positions on the specification in which you define an indicator determine the use

of the indicator. Once you define an indicator in your program, it can limit or

control calculation and output operations.

Indicator variables can be used any place an indicator of the form *INxx may be

used with the exception of the OFLIND and EXTIND keywords on the file

description specifications.

An RPG program sets and resets certain indicators at specific times during the

program cycle. In addition, the state of indicators can be changed explicitly in

calculation operations.

Operation Codes

The RPG IV programming language allows you to do many different types of

operations on your data. Operation codes, entered on the calculation specifications,

indicate what operations will be done. For example, if you want to read a new

record, you could use the READ operation code. The following is a list of the types

of operations available.

v Arithmetic operations

v Array operations

v Bit operations

v Branching operations

v Call operations

v Compare operations

v Conversion operations

v Data-area operations

v Date operations

v Declarative operations

v Error-handling operations

v File operations

v Indicator-setting operations

v Information operations

v Initialization operations

v Memory management operations

v Move operations

v Move zone operations

v Result operations

v Size operations

v String operations

v Structured programming operations

v Subroutine operations

v Test operations

Example of an ILE RPG Program

This section illustrates a simple ILE RPG program that performs payroll

calculations.

Problem Statement

RPG IV Overview

6 ILE RPG Programmer’s Guide

The payroll department of a small company wants to create a print output that

lists employees’ pay for that week. Assume there are two disk files, EMPLOYEE

and TRANSACT, on the system.

The first file, EMPLOYEE, contains employee records. The figure below shows the

format of an employee record:

 The second file, TRANSACT, tracks the number of hours each employee worked

for that week and any bonus that employee may have received. The figure below

shows the format of a transaction record:

 Each employee’s pay is calculated by multiplying the ″hours″ (from the

TRANSACT file) and the ″rate″ (from the EMPLOYEE file) and adding the ″bonus″

from the TRANSACT file. If more than 40 hours were worked, the employee is

paid for for 1.5 times the normal rate.

Control Specifications

EMP_NUMBER

EMP_REC

1 6 22 27

EMP_NAME EMP_RATE

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A R EMP_REC

A EMP_NUMBER 5 TEXT(’EMPLOYEE NUMBER’)

A EMP_NAME 16 TEXT(’EXPLOYEE NAME’)

A EMP_RATE 5 2 TEXT(’EXPLOYEE RATE’)

A K EMP_NUMBER

Figure 2. DDS for Employee physical file

TRN_NUMBER

TRN_REC

1 6 10 16

TRN_HOURS TRN_BONUS

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A R TRN_REC

A TRN_NUMBER 5 TEXT(’EMPLOYEE NUMBER’)

A TRN_HOURS 4 1 TEXT(’HOURS WORKED’)

A TRN_BONUS 6 2 TEXT(’BONUS’)

Figure 3. DDS for TRANSACT physical file

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

HKeywords++

H DATEDIT(*DMY/)

Example of an ILE RPG Program

Chapter 1. Overview of the RPG IV Programming Language 7

Today's date will be printed in day, month, year format with ″/″ as the separator.

File Description Specifications

There are three files defined on the file description specifications:

v The TRANSACT file is defined as the Input Primary file. The ILE RPG program

cycle controls the reading of records from this file.

v The EMPLOYEE file is defined as the Input Full-Procedure file. The reading of

records from this file is controlled by operations in the calculation specifications.

v The QSYSPRT file is defined as the Output Printer file.

Definition Specifications

Using the definition specifications, declare a variable called ″Pay″ to hold an

employees’ weekly pay and two constants ″Heading1″ and ″Heading2″ to aid in

the printing of the report headings.

Calculation Specifications

The coding entries on the calculation specifications include:

v Using the CHAIN operation code, the field TRN_NUMBER from the transaction

file is used to find the record with the same employee number in the employee

file.

v If the CHAIN operation is successful (that is, indicator 99 is off), the pay for that

employee is evaluated. The result is ″rounded″ and stored in the variable called

Pay.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++

FTRANSACT IP E K DISK

FEMPLOYEE IF E K DISK

FQSYSPRT O F 80 PRINTER

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...

D+Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D Pay S 8P 2

D Heading1 C ’NUMBER NAME RATE H-

D OURS BONUS PAY ’

D Heading2 C ’______ ________________ ______ _-

D ____ _______ __________’

D CalcPay PR 8P 2

D Rate 5P 2 VALUE

D Hours 10U 0 VALUE

D Bonus 5P 2 VALUE

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...

 /free

 chain trn_number emp_rec;

 if %found(emp_rec);

 pay = CalcPay (emp_rate: trn_hours: trn_bonus);

 endif;

 /end-free

Example of an ILE RPG Program

8 ILE RPG Programmer’s Guide

Output Specifications

The output specifications describe what fields are to be written on the QSYSPRT

output:

v The Heading Lines that contain the constant string ’PAYROLL REGISTER’ as

well as headings for the detail information will be printed if indicator 1P is on.

Indicator 1P is turned on by the ILE RPG program cycle during the first cycle.

v The Detail Lines are conditioned by the indicators 1P and 99. Detail Lines are

not printed at 1P time. The N99 will only allow the Detail lines to be printed if

indicator 99 is off, which indicates that the corresponding employee record has

been found. If the indicator 99 is on, then the employee number and the

constant string ’** NOT ON EMPLOYEE FILE **’ will be printed instead.

v The Total Line contains the constant string ’END OF LISTING’. It will be printed

during the last program cycle.

A Subprocedure

The subprocedure calculates the pay for the employee using the parameters passed

to it. The resulting value is returned to the caller using the RETURN statement.

The procedure specifications indicate the beginning and end of the procedure. The

definition specifications define the return type of the procedure, the parameters to

the procedure, and the local variable Overtime.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...

OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat

OQSYSPRT H 1P 2 3

O 35 ’PAYROLL REGISTER’

O *DATE Y 60

O H 1P 2

O 60 Heading1

O H 1P 2

O 60 Heading2

O D N1PN99 2

O TRN_NUMBER 5

O EMP_NAME 24

O EMP_RATE L 33

O TRN_HOURS L 40

O TRN_BONUS L 49

O Pay 60 ’$ 0. ’

O D N1P 99 2

O TRN_NUMBER 5

O 35 ’** NOT ON EMPLOYEE FILE **’

O T LR

O 33 ’END OF LISTING’

Example of an ILE RPG Program

Chapter 1. Overview of the RPG IV Programming Language 9

The Entire Source Program

The following figure combines all the specifications used in this program. This is

what you should enter into the source file for this program.

P CalcPay B

D CalcPay PI 8P 2

D Rate 5P 2 VALUE

D Hours 10U 0 VALUE

D Bonus 5P 2 VALUE

D Overtime S 5P 2 INZ(0)

 /free

 // Determine any overtime hours to be paid.

 if Hours > 40;

 Overtime = (Hours - 40) * Rate * 1.5;

 Hours = 40;

 endif;

 // Calculate the total pay and return it to the caller.

 return Rate * Hours + Bonus + Overtime;

 /end-free

P CalcPay E

 --

 * DESCRIPTION: This program creates a printed output of employee’s pay *

 * for the week. *

 --

H DATEDIT(*DMY/)

 --

 * File Definitions *

 --

FTRANSACT IP E K DISK

FEMPLOYEE IF E K DISK

FQSYSPRT O F 80 PRINTER

 --

 * Variable Declarations *

 --

D Pay S 8P 2

Figure 4. A Sample Payroll Calculation Program (Part 1 of 3)

Example of an ILE RPG Program

10 ILE RPG Programmer’s Guide

--

 * Constant Declarations *

 --

D Heading1 C ’NUMBER NAME RATE H-

D OURS BONUS PAY ’

D Heading2 C ’______ ________________ ______ _-

D ____ _______ __________’

 --

 * Prototype Definition for subprocedure CalcPay *

 --

D CalcPay PR 8P 2

D Rate 5P 2 VALUE

D Hours 10U 0 VALUE

D Bonus 5P 2 VALUE

 --

 * For each record in the transaction file (TRANSACT), if the employee *

 * is found, compute the employee’s pay and print the details. *

 --

 /free

 chain trn_number emp_rec;

 if %found(emp_rec);

 pay = CalcPay (emp_rate: trn_hours: trn_bonus);

 endif;

 /end-free

 --

 * Report Layout *

 * -- print the heading lines if 1P is on *

 * -- if the record is found (indicator 99 is off) print the payroll *

 * details otherwise print an exception record *

 * -- print ’END OF LISTING’ when LR is on *

 --

OQSYSPRT H 1P 2 3

O 35 ’PAYROLL REGISTER’

O *DATE Y 60

O H 1P 2

O 60 Heading1

O H 1P 2

O 60 Heading2

O D N1PN99 2

O TRN_NUMBER 5

O EMP_NAME 24

O EMP_RATE L 33

O TRN_HOURS L 40

O TRN_BONUS L 49

O Pay 60 ’$ 0. ’

O D N1P 99 2

O TRN_NUMBER 5

O 35 ’** NOT ON EMPLOYEE FILE **’

O T LR

O 33 ’END OF LISTING’

Figure 4. A Sample Payroll Calculation Program (Part 2 of 3)

Example of an ILE RPG Program

Chapter 1. Overview of the RPG IV Programming Language 11

Using the i5/OS System

The operating system that controls all of your interactions with the iSeries system

is called the IBM i5/OS (i5/OS) system. From your workstation, the i5/OS system

allows you to:

v Sign on and sign off

v Interact with the displays

v Use the online help information

v Enter control commands and procedures

v Respond to messages

v Manage files

v Run utilities and programs.

You can obtain a complete list of publications that discuss the i5/OS system at the

iSeries Information Center.

Interacting with the System

You can manipulate the i5/OS system using Command Language (CL). You

interact with the system by entering or selecting CL commands. The system often

displays a series of CL commands or command parameters appropriate to the

situation on the screen. You then select the desired command or parameters.

Commonly Used Control Language Commands

The following table lists some of the most commonly used CL commands, their

function, and the reasons you might want to use them.

 --

 * Subprocedure -- calculates overtime pay. *

 --

P CalcPay B

D CalcPay PI 8P 2

D Rate 5P 2 VALUE

D Hours 10U 0 VALUE

D Bonus 5P 2 VALUE

D Overtime S 5P 2 INZ(0)

 /free

 // Determine any overtime hours to be paid.

 if Hours > 40;

 Overtime = (Hours - 40) * Rate * 1.5;

 Hours = 40;

 endif;

 // Calculate the total pay and return it to the caller.

 return Rate * Hours + Bonus + Overtime;

 /end-free

P CalcPay E

Figure 4. A Sample Payroll Calculation Program (Part 3 of 3)

Using the i5/OS System

12 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Table 17. Commonly Used CL Commands

Action CL command Result

Using System Menus

GO MAIN Display main menu

GO INFO Display help menu

GO CMDRPG List commands for RPG

GO CMDCRT List commands for creating

GO CMDxxx List commands for ’xxx’

Calling

CALL program-name

Runs a program

Compiling

CRTxxxMOD Creates xxx Module

CRTBNDxxx Creates Bound xxx Program

Binding

CRTPGM Creates a program from ILE modules

CRTSRVPGM Creates a service program

UPDPGM Updates a bound program object

Debugging

STRDBG Starts ILE source debugger

ENDDBG Ends ILE source debugger

Creating Files

CRTPRTF Creates Print File

CRTPF Creates Physical File

CRTSRCPF Creates Source Physical File

CRTLF Creates Logical File

WebSphere Development Studio for iSeries

IBM WebSphere Development Studio for iSeries is an application development

package to help you rapidly and cost-effectively increase the number of e-business

applications for the iSeries server. This package consolidates all of the key iSeries

development tools, both host and workstation, into one iSeries offering.

The host development tools have undergone major improvements. We are shipping

new C and C++ compilers, completely refreshed from the latest AIX compilers, to

replace the existing versions of these compilers. This will help customers and

solution providers port e-business solutions from other platforms. ILE RPG has

also made major enhancements. Improved Java interoperability and free-form

C-Specs top the list of enhancements. COBOL has added z/OS migration

capabilities as well as introducing some COBOL/Java interoperability capabilities.

The following components are included in WebSphere Development Studio for

iSeries.

Host components:

v ILE RPG

v ILE COBOL

v ILE C/C++

v Application Development ToolSet (ADTS)

Using the i5/OS System

Chapter 1. Overview of the RPG IV Programming Language 13

Workstation components:

v IBM WebFacing Tool

v iSeries development tools: Remote System Explorer and iSeries projects

v Java development tools (with iSeries enhancements)

v Web development tools (with iSeries enhancements)

v Struts environment support

v Database development tools

v Web services development tools

v Server development tools

v XML development tools

v CODE

v VisualAge RPG

v Integrated iSeries debugger

WebSphere Development Studio Client for iSeries

WebSphere Development Studio Client for iSeries (Development Studio Client) is

an application development package of workstation tools that helps you rapidly

and cost-effectively increase the number of e-business applications for the iSeries

server.

This package consolidates all of the key iSeries workstation-based development

tools into one iSeries offering. It is also an included entitlement for purchasers of

WebSphere Development Studio for iSeries.

WebSphere Development Studio Client for iSeries Feature List:

The workbench-based integrated development environment

IBM WebSphere Development Studio Client for iSeries uses WebSphere

Studio Workbench (WSWB) version 2.1.

The IBM WebFacing Tool

The IBM WebFacing Tool can convert your DDS display source files into an

application that can be run in a browser.

Remote System Explorer and iSeries Development Tools

The Remote System Explorer, included as a part of iSeries development

tools, encompasses the framework, user interface, editing, and file,

command, and job actions of iSeries capability.

iSeries Java development tools

Java development tools and iSeries Java development tools give you the

ability to develop Java applications and write, compile, test, debug, and

edit programs written in the Java programming language for Java

applications development.

iSeries Web development tools

Web development tools give you the ability to create new e-business

applications that use a Web-based front end to communicate with the

business logic in an ILE and non-ILE language program residing on an

iSeries host.

Struts environment support

Development Studio Client offers support for Struts and the Web Diagram

editor.

WebSphere Development Studio for iSeries

14 ILE RPG Programmer’s Guide

Database development tools

Database development tools support any local or remote database that has

a Java Database Connectivity (JDBC) driver.

Web services development tools

Web services development tools allow developers to create modular

applications that can be invoked on the World Wide Web.

Server development tools

Server development tools are used to test applications in a local or

remotely installed run-time environment.

XML development tools

XML development tools support any XML-based development.

CODE (CoOperative Development Environment)

CODE is the classic set of Windows tools for iSeries development. It gives

you a suite of utilities for creating source and DDS files, and managing

your projects.

VisualAge RPG

VisualAge RPG is a visual development environment that allows you to

create and maintain client/server applications on the workstation.

Integrated iSeries debugger

The integrated iSeries debugger helps you debug code that is running on

the iSeries system or on your Windows system, using a graphical user

interface on your workstation.

If you want to learn more about WebSphere Development Studio Client for iSeries,

see the most current information available on the World Wide Web at

ibm.com/software/awdtools/iseries/.

WebSphere Development Studio for iSeries

Chapter 1. Overview of the RPG IV Programming Language 15

16 ILE RPG Programmer’s Guide

Chapter 2. RPG Programming in ILE

ILE RPG is an implementation of the RPG IV programming language in the

Integrated Language Environment. It is one of the family of ILE compilers

available on the iSeries system.

ILE is a recent approach to programming on the iSeries system. It is the result of

major enhancements to the iSeries machine architecture and the i5/OS operating

system. The ILE family of compilers includes: ILE RPG, ILE C, ILE COBOL, ILE

CL, and VisualAge for C++. Table 18 lists the programming languages supported

by the i5/OS operating system. In addition to the support for the ILE languages,

support for the original program model (OPM) and extended program model

(EPM) languages has been retained.

 Table 18. Programming Languages Supported on the iSeries

Integrated Language

Environment (ILE)

Original Program Model

(OPM)

Extended Program Model

(EPM)

C++ BASIC (PRPQ) FORTRAN

C CL PASCAL (PRPQ)

CL COBOL

COBOL PL/I (PRPQ)

RPG RPG

Compared to OPM, ILE provides RPG users with improvements or enhancements

in the following areas of application development:

v Program creation

v Program management

v Program call

v Source debugging

v Bindable application program interfaces (APIs)

Each of the above areas is explained briefly in the following paragraphs and

discussed further in the following chapters.

Program Creation

In ILE, program creation consists of:

1. Compiling source code into modules

2. Binding (combining) one or more modules into a program object

You can create a program object much like you do in the OPM framework, with a

one-step process using the Create Bound RPG Program (CRTBNDRPG) command.

This command creates a temporary module which is then bound into a program

object. It also allows you to bind other objects through the use of a binding

directory.

Alternatively, you may create a program using separate commands for compilation

and binding. This two-step process allows you to reuse a module or update one

© Copyright IBM Corp. 1994, 2006 17

module without recompiling the other modules in a program. In addition, because

you can combine modules from any ILE language, you can create and maintain

mixed-language programs.

In the two-step process, you create a module object using the Create RPG Module

(CRTRPGMOD) command. This command compiles the source statements into a

module object. A module is a nonrunnable object; it must be bound into a program

object to be run. To bind one or more modules together, use the Create Program

(CRTPGM) command.

Service programs are a means of packaging the procedures in one or more

modules into a separately bound object. Other ILE programs can access the

procedures in the service program, although there is only one copy of the service

program on the system. The use of service programs facilitates modularity and

maintainability. You can use off-the-shelf service programs developed by third

parties or, conversely, package your own service programs for third-party use. A

service program is created using the Create Service Program (CRTSRVPGM)

command.

You can create a binding directory to contain the names of modules and service

programs that your program or service program may need. A list of binding

directories can be specified when you create a program on the CRTBNDRPG,

CRTSRVPGM, and CRTPGM commands. They can also be specified on the

CRTRPGMOD command; however, the search for a binding directory is done when

the module is bound at CRTPGM or CRTSRVPGM time. A binding directory can

reduce program size because modules or service programs listed in a binding

directory are used only if they are needed.

Figure 5 shows the two approaches to program creation.

 Once a program is created you can update the program using the Update Program

(UPDPGM) or Update Service Program (UPDSRVPGM) commands. This is useful,

because it means you only need to have the new or changed module objects

available to update the program.

For more information on the one-step process, see Chapter 6, “Creating a Program

with the CRTBNDRPG Command,” on page 59. For more information on the

two-step process, see Chapter 7, “Creating a Program with the CRTRPGMOD and

RPG IV source specifications
Externally described files
Copy source text

ILE Program
(CRTBNDRPG)

ILE HLL Modules,
Service Programs

RPG Module
(CRTRPGMOD)

One-Step Process Two-Step Process

ILE Program
(CRTPGM)

Figure 5. Program Creation in ILE

RPG Programming in ILE

18 ILE RPG Programmer’s Guide

CRTPGM Commands,” on page 75. For more information on service programs, see

Chapter 8, “Creating a Service Program,” on page 91.

Program Management

ILE provides a common basis for:

v Managing program flow

v Sharing resources

v Using application program interfaces (APIs)

v Handling exceptions during a program’s run time

It gives RPG users much better control over resources than was previously

possible.

ILE programs and service programs are activated into activation groups which are

specified at program-creation time. The process of getting a program or service

program ready to run is known as activation. Activation allocates resources within

a job so that one or more programs can run in that space. If the specified activation

group for a program does not exist when the program is called, then it is created

within the job to hold the program’s activation.

An activation group is the key element governing an ILE application’s resources

and behavior. For example, you can scope commitment-control operations to the

activation group level. You can also scope file overrides and shared open data

paths to the activation group of the running application. Finally, the behavior of a

program upon termination is also affected by the activation group in which the

program runs.

For more information on activation groups, see “Managing Activation Groups” on

page 110.

You can dynamically allocate storage for a run-time array using the bindable APIs

provided for all ILE programming languages. These APIs allow single- and

mixed-language applications to access a central set of storage management

functions and offer a storage model to languages that do not now provide one.

RPG offers some storage management capabilities using operation codes. For more

information on storage management, see “Managing Dynamically-Allocated

Storage” on page 113.

Program Call

In ILE, you can write applications in which ILE RPG programs and OPM RPG/400

programs continue to interrelate through the traditional use of dynamic program

calls. When using such calls, the calling program specifies the name of the called

program on a call statement. The called program’s name is resolved to an address

at run time, just before the calling program passes control to the called program.

You can also write ILE applications that can interrelate with faster static calls.

Static calls involve calls between procedures. A procedure is a self-contained set of

code that performs a task and then returns to the caller. An ILE RPG module

consists of an optional main procedure followed by zero or more subprocedures.

Because the procedure names are resolved at bind time (that is, when you create

the program), static calls are faster than dynamic calls.

Static calls also allow

RPG Programming in ILE

Chapter 2. RPG Programming in ILE 19

v Operational descriptors

v Omitted parameters

v The passing of parameters by value

v The use of return values

v A greater number of parameters to be passed

Operational descriptors and omitted parameters can be useful when calling

bindable APIs or procedures written in other ILE languages.

For information on running a program refer to Chapter 9, “Running a Program,”

on page 103. For information on program/procedure call, refer to Chapter 10,

“Calling Programs and Procedures,” on page 129.

Source Debugging

Use WebSphere Development Studio Client for iSeries. This is the recommended

method and documentation about debugging programs and appears in that

product’s online help. With the integrated iSeries debugger you can debug your

program running on the iSeries server from a graphical user interface on your

workstation. You can also set breakpoints directly in your source before running

the debugger. The integrated iSeries debugger client user interface also enables you

to control program execution. For example, you can run your program, set line,

watch, and service entry point breakpoints, step through program instructions,

examine variables, and examine the call stack. You can also debug multiple

applications, even if they are written in different languages, from a single debugger

window. Each session you debug is listed separately in the Debug view.

In ILE, you can perform source-level debugging on any single- or mixed-language

ILE application. The ILE source debugger also supports OPM programs. You can

control the flow of a program by using debug commands while the program is

running. You can set conditional and unconditional job or thread breakpoints prior

to running the program. After you call the program, you can then step through a

specified number of statements, and display or change variables. When a program

stops because of a breakpoint, a step command, or a run-time error, the pertinent

module is shown on the display at the point where the program stopped. At that

point, you can enter more debug commands.

For information on the debugger, refer to Chapter 12, “Debugging Programs,” on

page 207.

Bindable APIs

ILE offers a number of bindable APIs that can be used to supplement the function

currently offered by ILE RPG. The bindable APIs provide program calling and

activation capability, condition and storage management, math functions, and

dynamic screen management.

Some APIs that you may wish to consider using in an ILE RPG application

include:

v CEETREC – Signal the Termination-Imminent Condition

v CEE4ABN – Abnormal End

v CEECRHP – Create your own heap

v CEEDSHP – Discard your own heap

v CEEFRST – Free Storage in your own heap

RPG Programming in ILE

20 ILE RPG Programmer’s Guide

v CEEGTST – Get Heap Storage in your own heap

v CEECZST – Reallocate Storage in your own heap

v CEEDOD – Decompose Operational Descriptor

Note: You cannot use these or any other ILE bindable APIs from within a program

created with DFTACTGRP(*YES). This is because bound calls are not

allowed in this type of program.

For more information on these ILE bindable APIs, see Chapter 9, “Running a

Program,” on page 103.

Multithreaded Applications

The iSeries system now supports multithreading. ILE RPG does not directly

support initiating or managing program threads. However, ILE RPG procedures

can run as threads in multithreaded environments. If you want to call an ILE RPG

procedure in a multithreaded application, you must ensure that the ILE RPG

procedure is threadsafe. You must also ensure that any system functions that your

procedure accesses are also threadsafe.

The THREAD(*SERIALIZE) control specification keyword can be specified to help

you achieve thread safety for an ILE RPG module. Specifying

THREAD(*SERIALIZE) will protect most of your variables and all your internal

control structures from being accessed improperly by multiple threads. The thread

safe module will be locked when a procedure in the module is entered and

unlocked when when no procedure in the module is still running. This serialized

access, ensures that only one thread is active in any one module, within an

activation group, at any one time. However, it is still up to the programmer to

handle thread safety for storage that is shared across modules. This is done by

adding logic in the application to synchronize access to the storage.

For more information, see “Multithreading Considerations” on page 158.

RPG Programming in ILE

Chapter 2. RPG Programming in ILE 21

22 ILE RPG Programmer’s Guide

Chapter 3. Program Creation Strategies

There are many approaches you can take in creating programs using an ILE

language. This section presents three common strategies for creating ILE programs

using ILE RPG or other ILE languages.

1. Create a program using CRTBNDRPG to maximize OPM compatibility.

2. Create an ILE program using CRTBNDRPG.

3. Create an ILE program using CRTRPGMOD and CRTPGM.

The first strategy is recommended as a temporary one. It is intended for users who

have OPM applications and who, perhaps due to lack of time, cannot move their

applications to ILE all at once. The second strategy can also be a temporary one. It

allows you time to learn more about ILE, but also allows you to immediately use

some of its features. The third strategy is more involved, but offers the most

flexibility.

Both the first and second strategy make use of the one-step program creation

process, namely, CRTBNDRPG. The third strategy uses the two-step program

creation process, namely, CRTRPGMOD followed by CRTPGM.

Strategy 1: OPM-Compatible Application

Strategy 1 results in an ILE program that interacts well with OPM programs. It

allows you to take advantage of RPG IV enhancements, but not all of the ILE

enhancements. You may want such a program temporarily while you complete

your migration to ILE.

Method

Use the following general approach to create such a program:

1. Convert your source to RPG IV using the CVTRPGSRC command.

Be sure to convert all /COPY members that are used by the source you are

converting.

2. Create a program object using the CRTBNDRPG command, specifying

DFTACTGRP(*YES).

Specifying DFTACTGRP(*YES) means that the program object will run only in the

default activation group. (The default activation group is the activation group

where all OPM programs are run.) As a result, the program object will interact

well with OPM programs in the areas of override scoping, open scoping, and

RCLRSC.

When you use this approach you cannot make use of ILE static binding. This

means that you cannot code a bound procedure call in your source, nor can you

use the BNDDIR or ACTGRP parameters on the CRTBNDRPG command when

creating this program.

Example of OPM-Compatible Program

Figure 6 on page 24 shows the run-time view of a sample application where you

might want an OPM-compatible program. The OPM application consisted of a CL

© Copyright IBM Corp. 1994, 2006 23

program and two RPG programs. In this example, one of the RPG programs has

been moved to ILE; the remaining programs are unchanged.

Effect of ILE

The following deals with the effects of ILE on the way your application handles:

Program call OPM programs behave as before. The system automatically creates

the OPM default activation group when you start your job, and all

OPM applications run in it. One program can call another program

in the default activation group by using a dynamic call.

Data Storage for static data is created when the program is activated,

and it exists until the program is deactivated. When the program

ends (either normally or abnormally), the program’s storage is

deleted. To clean up storage for a program that returns without

ending, use the Reclaim Resource (RCLRSC) command.

Files File processing is the same as in previous releases. Files are closed

when the program ends normally or abnormally.

Errors As in previous releases, the compiler handles errors within each

program separately. The errors you see that originated within your

program are the same as before. However, the errors are now

communicated between programs by the ILE condition manager, so

you may see different messages between programs. The messages

may have new message IDs, so if your CL program monitors for a

specific message ID, you may have to change that ID.

Related Information

Converting to RPG IV “Converting Your Source” on page 432

One-step creation process Chapter 6, “Creating a Program with the

CRTBNDRPG Command,” on page 59

ILE static binding Chapter 10, “Calling Programs and Procedures,” on

page 129; also ILE Concepts

Job

Default Activation Group

OPM CL

ILE RPG

OPM RPG

*PGM(X)

*PGM(Y)

*PGM(Z)

Figure 6. OPM-Compatible Application

OPM-Compatible Application

24 ILE RPG Programmer’s Guide

Exception handling differences

“Differences between OPM and ILE RPG Exception

Handling” on page 268

Strategy 2: ILE Program Using CRTBNDRPG

Strategy 2 results in an ILE program that can take advantage of ILE static binding.

Your source can contain static procedure calls because you can bind the module to

other modules or service programs using a binding directory. You can also specify

the activation group in which the program will run.

Method

Use the following general approach to create such a program:

1. If starting with RPG III source, convert your source to RPG IV using the

CVTRPGSRC command.

If converting, be sure to convert all /COPY members and any programs that

are called by the source you are converting. Also, if you are using CL to call the

program, you should also make sure that you are using ILE CL instead of OPM

CL.

2. Determine the activation group the program will run in.

You may want to name it after the application name, as in this example.

3. Identify the names of the binding directories, if any, to be used.

It is assumed with this approach that if you are using a binding directory, it is

one that is already created for you. For example, there may be a third-party

service program that you may want to bind to your source. Consequently, all

you need to know is the name of the binding directory.

4. Create an ILE program using CRTBNDRPG, specifying DFTACTGRP(*NO), the

activation group on the ACTGRP parameter, and the binding directory, if any,

on the BNDDIR parameter.

Note that if ACTGRP(*CALLER) is specified and this program is called by a

program running in the default activation group, then this program will behave

according to ILE semantics in the areas of override scoping, open scoping, and

RCLRSC.

The main drawback of this strategy is that you do not have a permanent module

object that you can later reuse to bind with other modules to create an ILE

program. Furthermore, any procedure calls must be to modules or service

programs that are identified in a binding directory. If you want to bind two or

more modules without using a binding directory when you create the program,

you need to use the third strategy.

Example of ILE Program Using CRTBNDRPG

Figure 7 on page 26 shows the run-time view of an application in which an ILE CL

program calls an ILE RPG program that is bound to a supplied service program.

The application runs in the named activation group XYZ.

OPM-Compatible Application

Chapter 3. Program Creation Strategies 25

Effect of ILE

The following deals with the effects of ILE on the way your program handles:

Program call The system automatically creates the activation group if it does not

already exist, when the application starts.

 The application can contain dynamic program calls or static

procedure calls. Procedures within bound programs call each other

by using static calls. Procedures call ILE and OPM programs by

using dynamic calls.

Data The lifetime of a program’s storage is the same as the lifetime of

the activation group. Storage remains active until the activation

group is deleted.

 The ILE RPG run time manages data so that the semantics of

ending programs and reinitializing the data are the same as for

OPM RPG, although the actual storage is not deleted as it was

when an OPM RPG program ended. Data is reinitialized if the

previous call to the procedure ended with LR on, or ended

abnormally.

 Program data that is identified as exported or imported (using the

keywords EXPORT and IMPORT respectively) is external to the

individual modules. It is known among the modules that are

bound into a program.

Files By default, file processing (including opening, sharing, overriding,

and commitment control) by the system is scoped to the activation

group level. You cannot share files at the data management level

with programs in different activation groups. If you want to share

a file across activation groups, you must open it at the job level by

specifying SHARE(*YES) on an override command or create the file

with SHARE(*YES).

Errors When you call an ILE RPG program or procedure in the same

Job

XYZ Activation Group

ILE CL

ILE RPG

Supplied Service
Program

*PGM(X)

*PGM(Y)

*SRVPGM(Z)

Figure 7. ILE Program Using CRTBNDRPG

ILE Program Using CRTBNDRPG

26 ILE RPG Programmer’s Guide

activation group, if it gets an exception that would previously have

caused it to display an inquiry message, now your calling program

will see that exception first.

 If your calling program has an error indicator or *PSSR, the

program or procedure that got the exception will end abnormally

without the inquiry message being displayed. Your calling program

will behave the same (the error indicator will be set on or the

*PSSR will be invoked).

 When you call an OPM program or a program or main procedure

in a different activation group, the exception handling will be the

same as in OPM RPG, with each program handling its own

exceptions. The messages you see may have new message IDs, so

if you monitor for a specific message ID, you may have to change

that ID.

 Each language processes its own errors and can process the errors

that occur in modules written in another ILE language. For

example, RPG will handle any C errors if an error indicator has

been coded. C can handle any RPG errors.

Related Information

Converting to RPG IV “Converting Your Source” on page 432

One-step creation process Chapter 6, “Creating a Program with the

CRTBNDRPG Command,” on page 59

Activation groups “Managing Activation Groups” on page 110

RCLRSC “Reclaim Resources Command” on page 112

ILE static binding Chapter 10, “Calling Programs and Procedures,” on

page 129; also ILE Concepts

Exception handling differences

“Differences between OPM and ILE RPG Exception

Handling” on page 268

Override and open scope “Overriding and Redirecting File Input and

Output” on page 319 and “Sharing an Open Data

Path” on page 323; also ILE Concepts

Strategy 3: ILE Application Using CRTRPGMOD

This strategy allows you to fully utilize the concepts offered by ILE. However,

while being the most flexible approach, it is also more involved. This section

presents three scenarios for creating:

v A single-language application

v A mixed-language application

v An advanced application

The effect of ILE is the same as described in “Effect of ILE” on page 26.

You may want to read about the basic ILE concepts in ILE Concepts before using

this approach.

ILE Program Using CRTBNDRPG

Chapter 3. Program Creation Strategies 27

Method

Because this approach is the most flexible, it includes a number of ways in which

you might create an ILE application. The following list describes the main steps

that you may need to perform:

1. Create a module from each source member using the appropriate command, for

example, CRTRPGMOD for RPG source, CRTCLMOD for CL source, etc..

2. Determine the ILE characteristics for the application, for example:

v Determine which module will contain the procedure that will be the starting

point for the application. The module you choose as the entry module is the

first one that you want to get control. In an OPM application, this would be

the command processing program, or the program called because a menu

item was selected.

v Determine the activation group the application will run in. (Most likely you

will want to run in a named activation group, where the name is based on

the name of the application.)

v Determine the exports and imports to be used.
3. Determine if any of the modules will be bound together to create a service

program. If so, create the service programs using CRTSRVPGM.

4. Identify the names of the binding directories, if any, to be used.

It is assumed with this approach that if you are using a binding directory, it is

one that is already created for you. For example, there may be a third-party

service program that you may want to bind to your source. Consequently, all

you need to know is the name of the binding directory.

5. Bind the appropriate modules and service programs together using CRTPGM,

specifying values for the parameters based on the characteristics determined in

step 2.

An application created using this approach can run fully protected, that is, within

its own activation group. Furthermore, it can be updated easily through use of the

UPDPGM or UPDSRVPGM commands. With these commands you can add or

replace one or more modules without having to re-create the program object.

Single-Language ILE Application Scenario

In this scenario you compile multiple source files into modules and bind them into

one program that is called by an ILE RPG program. Figure 8 on page 29 shows the

run-time view of this application.

ILE Application Using CRTRPGMOD

28 ILE RPG Programmer’s Guide

The call from program X to program Y is a dynamic call. The calls among the

modules in program Y are static calls.

See “Effect of ILE” on page 26 for details on the effects of ILE on the way your

application handles calls, data, files and errors.

Mixed-Language ILE Application Scenario

In this scenario, you create integrated mixed-language applications. The main

module, written in one ILE language, calls procedures written in another ILE

language. The main module opens files that the other modules then share. Because

of the use of different languages, you may not expect consistent behavior.

However, ILE ensures that this occurs.

Figure 9 on page 30 shows the run-time view of an application containing a

mixed-language ILE program where one module calls a non-bindable API,

QUSCRTUS (Create User Space).

Job

XY Activation Group

RPG

RPG *MODULE(Y1)

RPG *MODULE(Y2)

RPG *MODULE(Y3)

RPG *MODULE(Y4)

*PGM(X)

*PGM(Y)

Figure 8. Single-Language Application Using CRTRPGMOD and CRTPGM

ILE Application Using CRTRPGMOD

Chapter 3. Program Creation Strategies 29

The call from program Y to the OPM API is a dynamic call. The calls among the

modules in program Y are static calls.

See “Effect of ILE” on page 26 for details on the effects of ILE on the way your

application handles calls, data, files and errors.

Advanced Application Scenario

In this scenario, you take full advantage of ILE function, including service

programs. The use of bound calls, used for procedures within modules and service

programs, provide improved performance especially if the service program runs in

the same activation group as the caller.

Figure 10 on page 31 shows an example in which an ILE program is bound to two

service programs.

Job

Y Activation Group

CL *MODULE(Y1)

RPG *MODULE(Y2)

C *MODULE(Y3)

RPG *MODULE(Y4)

*PGM(Y)

Default Activation Group

*PGM(QUSCRTUS)

Figure 9. Mixed-Language Application

ILE Application Using CRTRPGMOD

30 ILE RPG Programmer’s Guide

The calls from program X to service programs Y and Z are static calls.

See “Effect of ILE” on page 26 for details on the effects of ILE on the way your

application handles calls, data, files and errors.

Related Information

Two-step creation process Chapter 7, “Creating a Program with the

CRTRPGMOD and CRTPGM Commands,” on page

75

Activation groups “Managing Activation Groups” on page 110

ILE static binding Chapter 10, “Calling Programs and Procedures,” on

page 129; also ILE Concepts

Exception Handling Chapter 13, “Handling Exceptions,” on page 263;

also ILE Concepts

Service programs Chapter 8, “Creating a Service Program,” on page

91; also ILE Concepts

Updating a Program “Using the UPDPGM Command” on page 88

A Strategy to Avoid

ILE provides many alternatives for creating programs and applications. However,

not all are equally good. In general, you should avoid a situation where an

application consisting of OPM and ILE programs is split across the OPM default

activation group and a named activation group. In other words, try to avoid the

scenario shown in Figure 11 on page 32.

Job

XYZ Activation Group

CL *MODULE(X1)

RPG *MODULE(X2)

C *MODULE(Z1)

CL *MODULE(Z2)

*PGM(X)

*SRVPGM(Y)

*SRVPGM(Z)

RPG

Figure 10. Advanced Application

ILE Application Using CRTRPGMOD

Chapter 3. Program Creation Strategies 31

When an application is split across the default activation group and any named

activation group, you are mixing OPM behavior with ILE behavior. For example,

programs in the default activation group may be expecting the ILE programs to

free their resources when the program ends. However, this will not occur until the

activation group ends.

Similarly, the scope of overrides and shared ODPs will be more difficult to manage

when an application is split between the default activation group and a named

one. By default, the scope for the named group will be at the activation group

level, but for the default activation group, it can be either call level or job level, not

activation group level.

Note: Calling an ILE program from the command line, or from an OPM program

that simply makes a call, is not a problem. The problems, which can all be

solved, stem from OPM programs and ILE programs using shared resources

such as overrides and commitment control, and from OPM programs trying

to using OPM commands such as RCLRSC which have no effect on

programs running in a named activation group.

Job

CL

*PGM(X)

RPG

RPG

*PGM(Y)

*SRVPGM(Z)

Default Activation Group

QILE Activation Group

Figure 11. Scenario to Avoid. An application has a CL program in the OPM default activation

group and ILE programs in a named activation group.

A Strategy to Avoid

32 ILE RPG Programmer’s Guide

Chapter 4. Creating an Application Using Multiple Procedures

The ability to code more than one procedure in an ILE RPG module greatly

enhances your ability to code a modular application. This chapter discusses why

and how you might use such a module in your application. Specifically this

chapter presents:

v Overview of key concepts

v Example of module with more than one procedure

v Coding considerations

Refer to the end of this section to see where to look for more detailed information

on coding modules with multiple procedures.

A Multiple Procedures Module — Overview

An ILE program consists of one or more modules; a module is made up of one or

more procedures. A procedure is any piece of code that can be called with a bound

call. ILE RPG has two kinds of procedures: a main procedure and a subprocedure.

The way to call a subprocedure is with a prototyped call.

Note: In the RPG documentation, the term ’procedure’ refers to both main and

subprocedures.

Main Procedures and Subprocedures

An ILE RPG module consists of a main procedure and zero or more

subprocedures. (If there are subprocedures, the main procedure is optional.) A

main procedure is a procedure that can be specified as the program entry

procedure (and so receive control when an ILE program is first called). The main

procedure is defined in the main source section, which is the set of H, F, D, I, C,

and O specifications that begin a module. In V3R1, all ILE RPG modules had a

main procedure and no other procedures.

A subprocedure is a procedure that is specified after the main source section. A

subprocedure differs from a main procedure primarily in that:

v Names that are defined within subprocedure are not accessible outside the

subprocedure.

v No cycle code is generated for the subprocedure.

v The call interface must be prototyped.

v Calls to subprocedures must be bound procedure calls.

v Only P, D, and C specifications can be used.

Subprocedures can provide independence from other procedures because the data

items are local. Local data items are normally stored in automatic storage, which

means that the value of a local variable is not preserved between calls to the

procedure.

Subprocedures offer another feature. You can pass parameters to a subprocedure

by value, and you can call a subprocedure in an expression to return a value.

© Copyright IBM Corp. 1994, 2006 33

Figure 12 shows what a module might look like with multiple procedures.

 As the picture suggests, you can now code subprocedures to handle particular

tasks. These tasks may be needed by the main procedures or by other modules in

the application. Furthermore, you can declare temporary data items in

subprocedures and not have to worry if you have declared them elsewhere in the

module.

Prototyped Calls

To call a subprocedure, you must use a prototyped call. You can also call any

program or procedure that is written in any language in this way. A prototyped

call is one where the call interface is checked at compile time through the use of a

prototype. A prototype is a definition of the call interface. It includes the following

information:

v Whether the call is bound (procedure) or dynamic (program)

v How to find the program or procedure (the external name)

v The number and nature of the parameters

v Which parameters must be passed, and which are optionally passed

P
D

C

P

specification
specifications - Data items visible only

to Subprocedure 1
specifications - Can access local and

global data items
specifications

P
D

C

P

specification
specifications - Data items visible

only to Subprocedure 2
specifications - Can access local and

global data items
specifications

H
F
D

I
C
O

specifications
specifications
specifications - Data items visible

throughout module
specifications
specifications
specifications

Main Procedure

Main
Source
Section

Global
Scope

Local
Scope

Local
Scope

Subprocedure 1

Subprocedure 2

Program Data - part of main source section

*MODULE

Figure 12. An ILE RPG module with Multiple Procedures

Multiple Procedures Module

34 ILE RPG Programmer’s Guide

v Whether operational descriptors are passed (for a procedure)

v The data type of the return value, if any (for a procedure)

The prototype is used by the compiler to call the program or procedure correctly,

and to ensure that the caller passes the correct parameters. Figure 13 shows a

prototype for a procedure FmtCust, which formats various fields of a record into

readable form. It has two output parameters.

 To format an address, the application calls a procedure FmtAddr. FmtAddr has

several input parameters, and returns a varying character field. Figure 14 shows

the prototype for FmtAddr.

 If the program or procedure is prototyped, you call it with CALLP or within an

expression if you want to use the return value. You pass parameters in a list that

follows the name of the prototype, for example, name (parm1 : parm2 : ...).

Figure 15 shows a call to FmtCust. Note that the names of the output parameters,

shown above in Figure 13, do not match those in the call statement. The parameter

names in a prototype are for documentation purposes only. The prototype serves to

describe the attributes of the call interface. The actual definition of call parameters

takes place inside the procedure itself.

 Using prototyped calls you can call (with the same syntax):

v Programs that are on the system at run time

v Exported procedures in other modules or service programs that are bound in the

same program or service program

v Subprocedures in the same module

 // Prototype for procedure FmtCust (Note the PR on definition

 // specification.) It has two output parameters.

 D FmtCust PR

 D Name 100A

 D Address 100A

Figure 13. Prototype for FmtCust Procedure

 //---

 // FmtAddr - procedure to produce an address in the form

 //---

 D FmtAddr PR 100A VARYING

 D streetNum 10I 0 CONST

 D streetName 50A CONST

 D city 20A CONST

 D state 15A CONST

 D zip 5P 0 CONST

Figure 14. Prototype for FmtAddr Procedure

 C CALLP FmtCust(RPTNAME : RPTADDR)

Figure 15. Calling the FmtCust Procedure

Multiple Procedures Module

Chapter 4. Creating an Application Using Multiple Procedures 35

FmtCust calls FmtAddr to format the address. Because FmtCust wants to use the

return value, the call to FmtAddr is made in an expression. Figure 16 shows the

call.

 The use of procedures to return values, as in the above figure, allows you to write

any user-defined function you require. In addition, the use of a prototyped call

interface enables a number of options for parameter passing.

v Prototyped parameters can be passed in several ways: by reference, by value (for

procedures only), or by read-only reference. The default method for RPG is to

pass by reference. However, passing by value or by read-only reference gives

you more options for passing parameters.

v If the prototype indicates that it is allowed for a given parameter, you may be

able to do one or more of the following:

– Pass *OMIT

– Leave out a parameter entirely

– Pass a shorter parameter than is specified (for character and graphic

parameters, and for array parameters)

Example of Module with Multiple Procedures

Now let us look at an example of a multiple procedures module. In this

’mini-application’ we are writing a program ARRSRPT to produce a report of all

customers whose accounts are in arrears. We will create the basic report as a

module, so that it can be bound to other modules, if necessary. There are two main

tasks that are required for this module:

1. Determine that a record of an account from a customer file is in arrears.

2. Format the data into a form that is suitable for the report.

We have decided to code each task as a subprocedure. Conceptually, the module

will look something like that shown in Figure 17 on page 37.

 //--

 // Call the FmtAddr procedure to handle the address

 //--

 Address = FmtAddress (STREETNUM : STREETNAME :

 CITY : STATE : ZIP);

Figure 16. Calling the FmtAddr Procedure

Multiple Procedures Module

36 ILE RPG Programmer’s Guide

Now consider the first subprocedure, InArrears, which is shown in Figure 18 on

page 38. InArrears is called by the main procedure to determine if the current

record is in arrears.

TIP

When coding subprocedures that use global fields, you may want to establish

a naming convention that shows the item to be global. In this example, the

uppercase field names indicate DDS fields. Another option would be to prefix

’g_’, or some other string to indicate global scope.

 If the record is in arrears, the subprocedure returns ’1’ to the main procedure.

Open file, read record, write
output records, close files

Subprocedure to determine if
customer record is in arrears

Subprocedure to format
customer data into report form

Main Procedure

InArrears

FmtCust

ARRSRPT MODULE

Figure 17. Components of the ARRSRPT Module

Example of Module with Multiple Procedures

Chapter 4. Creating an Application Using Multiple Procedures 37

Figure 18 shows the main elements that are common to all subprocedures.

�1� All subprocedures begin and end with procedure specifications.

�2� After the Begin-Procedure specification (B in position 24 of the procedure

specification), you code a procedure interface definition. The return value,

if any, is defined on the PI specification. Any parameters are listed after the

PI specification.

�3� Any variables or prototypes that are used by the subprocedure are defined

after the procedure interface definition.

�4� The return value, if specified, is returned to the caller with a RETURN

operation.

�5� If the record is not in arrears, the subprocedure returns ’0’ to the main

procedure.

For all subprocedures, and also for a main procedure with prototyped entry

parameters, you need to define a procedure interface. A procedure interface

definition is a repeat of the prototype information within the definition of a

procedure. It is used to define the entry parameters for the procedure. The

procedure interface definition is also used to ensure that the internal definition of

the procedure is consistent with the external definition (the prototype). In the case

of InArrears, there are no entry parameters.

Consider next the subprocedure FmtCust, which is shown in Figure 19 on page 39.

FmtCust is called by ARRSRPT to format the relevant fields of a record into an

output record for the final report. (The record represents an account that is in

 //--

 // InArrears

 //

 // Parameters: (none)

 // Globals: DUEDATE, AMOUNT, CurDate

 //

 // Returns: ’1’ if the customer is in arrears

 //--

P InArrears B �1�

D InArrears PI 1A �2�

 // Local declarations

D DaysLate S 10I 0 �3�

D DateDue S D �3�

 // Body of procedure

 /free

 DateDue = %date (DUEDATE: *ISO);

 DaysLate = %diff (CurDate: DateDue: *d);

 // The data in the input file comes from another type

 // of computer, and the AMOUNTC field is a character

 // string containing the numeric value. This string

 // must be converted to the numeric AMOUNT field

 // for printing.

 AMOUNT = %dec(AMOUNTC : 31 : 9);

 if DaysLate > 60 AND AMOUNT > 100.00;

 return ’1’; �4�

 endif;

 return ’0’; �4� �5�

 /end-free

P InArrears E �1�

Figure 18. Source for Subprocedure InArrears

Example of Module with Multiple Procedures

38 ILE RPG Programmer’s Guide

arrears.) FmtCust uses global data, and so does not have any input parameters. It

formats the data into two output fields: one for the name, and one for the address.

 Finally, consider the last subprocedure of this application, FmtAddr. Notice that

FmtAddr does not appear in the ARRSRPT module, that is shown in Figure 17 on

page 37. We decided to place FmtAddr inside another module called FMTPROCS.

FMTPROCS is a utility module that will contain any conversion procedures that

other modules might need to use.

Figure 20 on page 40 shows the source of the module FMTPROCS. Since this is a

prototyped procedure, it needs the prototype to be available. So that the prototype

can be shared, we have placed the prototype into a /COPY file.

 //--

 // FmtCust formats CUSTNAME, CUSTNUM, STREETNAME etc into

 // readable forms

 //

 // Parameters: Name (output)

 // Address (output)

 // Globals: CUSTNAME, CUSTNUM, STREETNUM, STREETNAME, CITY

 // STATE, ZIP

 //--

P FmtCust B

D FmtCust PI

D Name 100A

D Address 100A

 /free

 //--

 // CUSTNAME and CUSTNUM are formatted to look like this:

 // A&P Electronics (Customer number 157)

 //--

 Name = CUSTNAME + ’ ’ + ’(Customer number ’

 + %char(CUSTNUM) + ’)’;

 //--

 // Call the FmtAddr procedure to handle the address

 //--

 Address = FmtAddress (STREETNUM : STREETNAME :

 CITY : STATE : ZIP);

 /end-free

P FmtCust E

Figure 19. Source for Subprocedure FmtCust

Example of Module with Multiple Procedures

Chapter 4. Creating an Application Using Multiple Procedures 39

FMTPROCS is a NOMAIN module, meaning that it consists only of

subprocedures; there is no main procedure. A NOMAIN module compiles faster

and requires less storage because there is no cycle code that is created for the

module. You specify a NOMAIN module, by coding the NOMAIN keyword on the

control specification. For more information on NOMAIN modules, see “Program

Creation” on page 45.

The Entire ARRSRPT Program

The ARRSRPT program consists of two modules: ARRSRPT and FMTPROCS.

Figure 21 on page 41 shows the different pieces of our mini-application.

 //===

 // Source for module FMTPROCS. This module does not have a

 // main procedure, as indicated by the keyword NOMAIN.

 //===

 H NOMAIN

 //---

 // The prototype must be available to EACH module containing

 // a prototyped procedure. The /COPY pulls in the prototype

 // for FmtAddr.

 //---

 D/COPY QRPGLESRC,FMTPROC_P

 P FmtAddr B EXPORT

 D FmtAddr PI 100A VARYING

 D streetNum 10I 0 CONST

 D streetName 50A CONST

 D city 20A CONST

 D state 15A CONST

 D zip 5P 0 CONST

 /free

 //--

 // STREETNUM, STREETNAME, CITY, STATE, and ZIP are formatted to

 // look like:

 // 27 Garbanzo Avenue, Smallville IN 51423

 //--

 return %char(streetNum) + ’ ’ + %trimr(streetName)

 + ’, ’ + %trim(city) + ’ ’ + %trim(state)

 + ’ ’ + %editc(zip : ’X’);

 P FmtAddr E

Figure 20. Source for module FMTPROCS, containing subprocedure FmtAddr.

Example of Module with Multiple Procedures

40 ILE RPG Programmer’s Guide

Figure 22 shows the source for the entire ARRSRPT module.

Figure 21. The ARRSRPT Application

 //===

 // Source for module ARRSRPT. Contains a main procedure and

 // two subprocedures: InArrears and FmtCust.

 //

 // Related Module: CVTPROCS (CharToNum called by InArrears)

 //===

 //--

 // F I L E S

 //

 // CUSTFILE - contains customer information

 // CUSTRPT - printer file (using format ARREARS)

 //--

 FCUSTFILE IP E DISK

 FCUSTRPT O E PRINTER

 --

 * P R O T O T Y P E S

 --

 /COPY QRPGLE,FMTPROC_P

 --

 * InArrears returns ’1’ if the customer is in arrears

 --

 D InArrears PR 1A

 --

 * FmtCust formats CUSTNAME, CUSTNUM, STREETNAME etc into

 * readable forms

 --

 D FmtCust PR

 D Name 100A

 D Address 100A

Figure 22. ILE RPG Complete Source for ARRSRPT Module (Part 1 of 3)

Example of Module with Multiple Procedures

Chapter 4. Creating an Application Using Multiple Procedures 41

--

 * G L O B A L D E F I N I T I O N S

 --

 D CurDate S D

 ICUSTREC 01

 --

 * M A I N P R O C E D U R E

 --

 C IF InArrears() = ’1’

 C CALLP FmtCust(RPTNAME : RPTADDR)

 C EVAL RPTNUM = CUSTNUM

 C WRITE ARREARS

 C ENDIF

 C *INZSR BEGSR

 C MOVEL UDATE CurDate

 C ENDSR

 --

 * S U B P R O C E D U R E S

 --

 //--

 // InArrears

 //

 // Parameters: (none)

 // Globals: DUEDATE, AMOUNT, CurDate

 //

 // Returns: ’1’ if the customer is in arrears

 //--

 P InArrears B

 D InArrears PI 1A

 // Local declarations

 D DaysLate S 10I 0

 D DateDue S D

 // Body of procedure

 /free

 DateDue = %date (DUEDATE: *ISO);

 DaysLate = %diff (CurDate: DateDue: *d);

 // The data in the input file comes from another type

 // of computer, and the AMOUNTC field is a character

 // string containing the numeric value. This string

 // must be converted to the numeric AMOUNT field

 // for printing.

 AMOUNT = %dec(AMOUNTC : 31 : 9);

 if DaysLate > 60 AND AMOUNT > 100.00;

 return ’1’;

 endif;

 return ’0’;

 /end-free

 P InArrears E

Figure 22. ILE RPG Complete Source for ARRSRPT Module (Part 2 of 3)

Example of Module with Multiple Procedures

42 ILE RPG Programmer’s Guide

Note the following about ARRSRPT:

v The definition specifications begin with the prototypes for the prototyped calls.

A /COPY file is used to supply the prototype for the called procedure FmtAddr.

The prototypes do not have to be first, but you should establish an order for the

different types of definitions for consistency.

v The date field CurDate is a global field, meaning that any procedure in the

module can access it.

v The main procedure is simple to follow. It contains calculation specifications for

the two main tasks: the I/O, and an initialization routine.

v Each subprocedure that follows the main procedure contains the details of one

of the tasks.

Sample output for the program ARRSRPT is shown in Figure 23.

 //--

 // FmtCust formats CUSTNAME, CUSTNUM, STREETNAME etc into

 // readable forms

 //

 // Parameters: Name (output)

 // Address (output)

 // Globals: CUSTNAME, CUSTNUM, STREETNUM, STREETNAME, CITY

 // STATE, ZIP

 //--

P FmtCust B

D FmtCust PI

D Name 100A

D Address 100A

 /free

 //--

 // CUSTNAME and CUSTNUM are formatted to look like this:

 // A&P Electronics (Customer number 157)

 //--

 Name = CUSTNAME + ’ ’ + ’(Customer number ’

 + %char(CUSTNUM) + ’)’;

 //--

 // Call the FmtAddr procedure to handle the address

 //--

 Address = FmtAddress (STREETNUM : STREETNAME :

 CITY : STATE : ZIP);

 /end-free

P FmtCust E

Figure 22. ILE RPG Complete Source for ARRSRPT Module (Part 3 of 3)

 Customer number: 00001

 ABC Electronics (Customer number 1)

 15 Arboreal Way, Treetop MN 12345

 Amount outstanding: $1234.56 Due date: 1995-05-01

 Customer number: 00152

 A&P Electronics (Customer number 152)

 27 Garbanzo Avenue, Smallville MN 51423

 Amount outstanding: $26544.50 Due date: 1995-02-11

Figure 23. Output for ARRSRPT

Example of Module with Multiple Procedures

Chapter 4. Creating an Application Using Multiple Procedures 43

Figure 24 and Figure 25 show the DDS source for the files CUSTFILE and

CUSTRPT respectively.

Coding Considerations

This section presents some considerations that you should be aware of before you

begin designing applications with multiple-procedure modules. The items are

grouped into the following categories:

v General

v Program Creation

v Main Procedures

v Subprocedures

 A*==*

 A* FILE NAME : CUSTFILE

 A* RELATED PGMS : ARRSRPT

 A* DESCRIPTIONS : THIS IS THE PHYSICAL FILE CUSTFILE. IT HAS

 A* ONE RECORD FORMAT CALLED CUSTREC.

 A*==*

 A* CUSTOMER MASTER FILE -- CUSTFILE

 A R CUSTREC

 A CUSTNUM 5 0 TEXT(’CUSTOMER NUMBER’)

 A CUSTNAME 20 TEXT(’CUSTOMER NAME’)

 A STREETNUM 5 0 TEXT(’CUSTOMER ADDRESS’)

 A STREETNAME 20 TEXT(’CUSTOMER ADDRESS’)

 A CITY 20 TEXT(’CUSTOMER CITY’)

 A STATE 2 TEXT(’CUSTOMER STATE’)

 A ZIP 5 0 TEXT(’CUSTOMER ZIP CODE’)

 A AMOUNTC 15 TEXT(’AMOUNT OUTSTANDING’)

 A DUEDATE 10 TEXT(’DATE DUE’)

Figure 24. DDS for CUSTFILE

 A*==*

 A* FILE NAME : CUSTRPT

 A* RELATED PGMS : ARRSRPT

 A* DESCRIPTIONS : THIS IS THE PRINTER FILE CUSTRPT. IT HAS

 A* ONE RECORD FORMAT CALLED ARREARS.

 A*==*

 A R ARREARS

 A 2 6

 A ’Customer number:’

 A RPTNUM 5 0 2 23

 A TEXT(’CUSTOMER NUMBER’)

 A RPTNAME 100A 3 10

 A TEXT(’CUSTOMER NAME’)

 A RPTADDR 100A 4 10

 A TEXT(’CUSTOMER ADDRESS’)

 A 5 10’Amount outstanding:’

 A AMOUNT 10 2 5 35EDTWRD(’ $0. ’)

 A TEXT(’AMOUNT OUTSTANDING’)

 A 5 50’Due date:’

 A DUEDATE 10 5 60

 A TEXT(’DATE DUE’)

Figure 25. DDS for CUSTRPT

Example of Module with Multiple Procedures

44 ILE RPG Programmer’s Guide

General Considerations

v When coding a module with multiple procedures, you will want to make use of

/COPY files, primarily to contain any prototypes that your application may

require. If you are creating a service program, you will need to provide both the

service program and the prototypes, if any.

v Maintenance of the application means ensuring that each component is at the

most current level and that any changes do not affect the different pieces. You

may want to consider using a tool such as Application Development Manager to

maintain your applications.

For example, suppose that another programmer makes a change to the /COPY

file that contains the prototypes. When you request a rebuild of your

application, any module or program that makes use of the /COPY file will be

recompiled automatically. You will find out quickly if the changes to the /COPY

file affect the calls or procedure interfaces in your application. If there are

compilation errors, you can then decide whether to accept the change to

prototypes to avoid these errors, or whether to change the call interface.

Program Creation

v If you specify that a module does not have a main procedure then you cannot

use the CRTBNDRPG command to create the program. (A module does not have

a main procedure if the NOMAIN keyword is specified on a control

specification.) This is because the CRTBNDRPG command requires that the

module contain a program entry procedure and only a main procedure can be a

program entry procedure.

v Similarly, when using CRTPGM to create the program, keep in mind that a

NOMAIN module cannot be an entry module since it does not have a program

entry procedure.

v A program that is created to run in the default OPM activation group (by

specifying DFTACTGRP(*YES) on the CRTBNDRPG command) cannot contain

bound procedure calls.

Main Procedure Considerations

v Because the main procedure is the only procedure with a complete set of

specifications available (except the P specification), it should be used to set up

the environment of all procedures in the module.

v A main procedure is always exported, which means that other procedures in the

program can call the main procedure by using bound calls.

v The call interface of a main procedure can be defined in one of two ways:

1. Using a prototype and procedure interface

2. Using an *ENTRY PLIST without a prototype
v The functionality of an *ENTRY PLIST is similar to a prototyped call interface.

However, a prototyped call interface is much more robust since it provides

parameter checking at compile time. If you prototype the main procedure, then

you specify how it is to be called by specifying either the EXTPROC or EXTPGM

keyword on the prototype definition. If EXTPGM is specified, then an external

program call is used; if EXTPROC is specified or if neither keyword is specified,

it will be called by using a procedure call.

v You cannot define return values for a main procedure, nor can you specify that

its parameters be passed by value.

Coding Considerations

Chapter 4. Creating an Application Using Multiple Procedures 45

Subprocedure Considerations

v Any of the calculation operations may be coded in a subprocedure. However, all

files must be defined globally, so all input and output specifications must be

defined in the main source section. Similarly, all data areas must be defined in

the main procedure, although they can be used in a subprocedure.

v The control specification can only be coded in the main source section since it

controls the entire module.

v A subprocedure can be called recursively.Each recursive call causes a new

invocation of the procedure to be placed on the call stack. The new invocation

has new storage for all data items in automatic storage, and that storage is

unavailable to other invocations because it is local. (A data item that is defined

in a subprocedure uses automatic storage unless the STATIC keyword is

specified for the definition.)

The automatic storage that is associated with earlier invocations is unaffected by

later invocations. All invocations share the same static storage, so later

invocations can affect the value held by a variable in static storage.

Recursion can be a powerful programming technique when properly

understood.

v The run-time behavior of a subprocedure differs somewhat from that of a main

procedure, because there is no cycle code for the subprocedure.

– When a subprocedure ends, it simply returns to the caller. None of the usual

termination activities, such as closing of files, occurs until the main procedure

that is associated with the subprocedure itself ends. You should code a

″cleanup″ subprocedure that is called both by the program entry procedure at

application-end, and by a cancel handler enabled for the program entry

procedure.

An alternative is to code the NOMAIN module so that there is no implicit file

opening or data area locking, and that within any subprocedure, an open is

matched by a close, an IN by an OUT, a CRT<temp obj> by a DLT<temp

obj>, and so on. This alternative applies to modules that may have a

subprocedure active when the main procedure is not active.

– Exception handling within a subprocedure differs from a main procedure

primarily because there is no default exception handler for subprocedures. As

a result, situations where the default handler would be called for a main

procedure correspond to abnormal end of the subprocedure.

For Further Information

To find out more about the topics discussed here, consult the following list:

Main Procedures

Topic See

Exception handling “Exception Handling within a Main Procedure” on

page 266

Main Procedure End “Returning from a Main Procedure” on page 153

Subprocedures

Topic See

Defining Chapter on subprocedures, in the WebSphere

Development Studio: ILE RPG Reference

Coding Considerations

46 ILE RPG Programmer’s Guide

NOMAIN module “Creating a NOMAIN Module” on page 77

Exception handling “Exception Handling within Subprocedures” on

page 267

Procedure Specification Chapter on procedure specifications, in the

WebSphere Development Studio: ILE RPG Reference

Procedure Interface Chapter on defining data and prototypes in the

WebSphere Development Studio: ILE RPG Reference

Subprocedure End “Returning from a Subprocedure” on page 155

Prototyped Call

Topic See

Free-form call “Using a Prototyped Call” on page 134

General Information WebSphere Development Studio: ILE RPG Reference,

Chapter 24

Passing parameters “Passing Prototyped Parameters” on page 136

Prototypes Chapter on defining data and prototypes in the

WebSphere Development Studio: ILE RPG Reference

For Further Information

Chapter 4. Creating an Application Using Multiple Procedures 47

For Further Information

48 ILE RPG Programmer’s Guide

Part 2. Creating and Running an ILE RPG Application

This section provides you with the information that is needed to create and run

ILE RPG programs. It describes how to:

v Enter source statements

v Create modules

v Read compiler listings

v Create programs

v Create service programs

v Run programs

v Pass parameters

v Manage the run time

v Call other programs or procedures

Use WebSphere Development Studio Client for iSeries. This is the recommended

method and documentation about creating and running an ILE RPG application

appears in that product’s online help.

Many Integrated Language Environment terms and concepts are discussed briefly

in the following pages. These terms and concepts are more fully discussed in ILE

Concepts.

© Copyright IBM Corp. 1994, 2006 49

50 ILE RPG Programmer’s Guide

Chapter 5. Using Source Files

This chapter provides the information you need to enter RPG source statements. It

also briefly describes the tools necessary to complete this step.

To enter RPG source statements into the system, use one of the following methods:

v Interactively using SEU

v Interactively using Remote Systems LPEX Editor.

Use WebSphere Development Studio Client for iSeries. This is the recommended

method and documentation about editing source appears in that product’s online

help. Your program editing tasks are simplified with the Remote Systems LPEX

editor. The editor can access source files on your workstation or your iSeries server.

When a compilation results in errors, you can jump directly from the compiler

messages to an editor containing the source. The editor opens with the cursor

positioned at the offending source statements so that you can correct them.

Initially, you may want to enter your source statements into a file called

QRPGLESRC. New members of the file QRPGLESRC automatically receive a

default type of RPGLE. Furthermore, the default source file for the ILE RPG

commands that create modules and bind them into program objects is

QRPGLESRC. IBM® supplies a source file QRPGLESRC in library QGPL. It has a

record length of 112 characters.

Note: You can use mixed case when entering source. However, the ILE RPG

compiler will convert most of the source to uppercase when it compiles it. It

will not convert literals, array data or table data.

Your source can be in two different kinds of files:

1. Source physical files

2. IFS (Integrated File System) files

Using Source Physical Files

Creating a Library and Source Physical File

Source statements are entered into a member of a source physical file. Before you

can enter your program, you must have a library and a source physical file.

To create a library, use the CRTLIB command. To create a source physical, use the

Create Source Physical file (CRTSRCPF) command. The recommended record

length of the file is 112 characters. This record length takes into account the new

ILE RPG structure as shown in Figure 26 on page 52.

© Copyright IBM Corp. 1994, 2006 51

Since the system default for a source physical file is 92 characters, you should

explicitly specify a minimum record length of 112. If you specify a length less than

92 characters, the program may not compile since you may be truncating source

code.

For more information about creating libraries and source physical files, refer to the

ADTS for AS/400: Source Entry Utility manual and the ADTS/400: Programming

Development Manager manual.

Using the Source Entry Utility (SEU)

You can use the Source Entry Utility (SEU) to enter your source statements. SEU

also provides prompting for the different specification templates as well as syntax

checking. To start SEU, use the STRSEU (Start Source Entry Utility) command. For

other ways to start and use SEU, refer to the ADTS for AS/400: Source Entry Utility

manual.

If you name your source file QRPGLESRC, SEU automatically sets the source type

to RPGLE when it starts the editing session for a new member. Otherwise, you

have to specify RPGLE when you create the member.

If you need prompting after you type STRSEU, press F4. The STRSEU display

appears, lists the parameters, and supplies the default values. If you supply

parameter values before you request prompting, the display appears with those

values filled in.

In the following example you enter source statements for a program which will

print employee information from a master file. This example shows you how to:

v Create a library

v Create a source physical file

v Start an SEU editing session

v Enter source statements.
1. To create a library called MYLIB, type:

CRTLIB LIB(MYLIB)

The CRTLIB command creates a library called MYLIB.

2. To create a source physical file called QRPGLESRC type:

CRTSRCPF FILE(MYLIB/QRPGLESRC) RCDLEN(112)

TEXT(’Source physical file for ILE RPG programs’)

The CRTSRCPF command creates a source physical file QRPGLESRC in library

MYLIB.

3. To start an editing session and create source member EMPRPT type:

Seq#/Date

12 80 20

Code Comments

Minimum Record Length
(92 characters)

Recommended Record Length
(112 characters)

Figure 26. ILE RPG Record Length Breakdown

Using SEU

52 ILE RPG Programmer’s Guide

STRSEU SRCFILE(MYLIB/QRPGLESRC)

SRCMBR(EMPRPT)

TYPE(RPGLE) OPTION(2)

Entering OPTION(2) indicates that you want to start a session for a new

member. The STRSEU command creates a new member EMPRPT in file

QRPGLESRC in library MYLIB and starts an edit session.

The SEU Edit display appears as shown in Figure 27. Note that the screen is

automatically shifted so that position 6 is (for specification type) at the left

edge.

4. Type the following source in your SEU Edit display, using the following SEU

prefix commands to provide prompting:

v IPF — for file description specifications

v IPD — for definition specifications

v IPI — for input specifications

v IPC — for calculation specifications

v IPCX — for calculation specifications with extended Factor 2

v IPO — for output specifications

v IPP — for output specifications continuation

v IPPR — for procedure specifications

 Columns . . . : 6 76 Edit MYLIB/QRPGLESRC

 SEU==> ___ EMPRPT

 FMT H HKeywords++

 *************** Beginning of data *************************************

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor

 F16=Repeat find F17=Repeat change F24=More keys

Member EMPRPT added to file MYLIB/QRPGLESRC. +

Figure 27. Edit Display for a New Member

Using SEU

Chapter 5. Using Source Files 53

5. Press F3 (Exit) to go to the Exit display. Type Y (Yes) to save EMPRPT.

The member EMPRPT is saved.

Figure 29 on page 55 shows the DDS which is referenced by the EMPRPT source.

 ===

 * MODULE NAME: EMPRPT

 * RELATED FILES: EMPMST (PHYSICAL FILE)

 * QSYSPRT (PRINTER FILE)

 * DESCRIPTION: This program prints employee information

 * from the file EMPMST.

 ===

 FQSYSPRT O F 80 PRINTER

 FEMPMST IP E K DISK

 D TYPE S 8A

 D EMPTYPE PR 8A

 D CODE 1A

 IEMPREC 01

 C EVAL TYPE = EMPTYPE(ETYPE)

 OPRINT H 1P 2 6

 O 50 ’EMPLOYEE INFORMATION’

 O H 1P

 O 12 ’NAME’

 O 34 ’SERIAL #’

 O 45 ’DEPT’

 O 56 ’TYPE’

 O D 01

 O ENAME 20

 O ENUM 32

 O EDEPT 45

 O TYPE 60

 * Procedure EMPTYPE returns a string representing the employee

 * type indicated by the parameter CODE.

 P EMPTYPE B

 D EMPTYPE PI 8A

 D CODE 1A

 C SELECT

 C WHEN CODE = ’M’

 C RETURN ’Manager’

 C WHEN CODE = ’R’

 C RETURN ’Regular’

 C OTHER

 C RETURN ’Unknown’

 C ENDSL

 P EMPTYPE E

Figure 28. Source for EMPRPT member

Using SEU

54 ILE RPG Programmer’s Guide

To create a program from this source use the CRTBNDRPG command, specifying

DFTACTGRP(*NO).

Using SQL Statements

The DB2 UDB for iSeries® database can be accessed from an ILE RPG program by

embedding SQL statements into your program source. Use the following rules to

enter your SQL statements:

v Enter your SQL statements on the Calculation specification

v Start your SQL statements using the delimiter /EXEC SQL in positions 7-15

(with the / in position 7)

v You can start entering your SQL statements on the same line as the starting

delimiter

v Use the continuation line delimiter (a + in position 7) to continue your

statements on any subsequent lines

v Use the ending delimiter /END-EXEC in positions 7-15 (with the slash in

position 7) to signal the end of your SQL statements.

Note: SQL statements cannot go past position 80 in your program.

Figure 30 shows an example of embedded SQL statements.

 You must enter a separate command to process the SQL statements. For more

information, refer to the DB2 Universal Database for AS/400 section of the Database

 A***

 A* DESCRIPTION: This is the DDS for the physical file EMPMST. *

 A* It contains one record format called EMPREC. *

 A* This file contains one record for each employee *

 A* of the company. *

 A***

 A*

 A R EMPREC

 A ENUM 5 0 TEXT(’EMPLOYEE NUMBER’)

 A ENAME 20 TEXT(’EMPLOYEE NAME’)

 A ETYPE 1 TEXT(’EMPLOYEE TYPE’)

 A EDEPT 3 0 TEXT(’EMPLOYEE DEPARTMENT’)

 A ENHRS 3 1 TEXT(’EMPLOYEE NORMAL WEEK HOURS’)

 A K ENUM

Figure 29. DDS for EMPRPT

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7..

 C

 C (ILE RPG calculation operations)

 C

 C/EXEC SQL (the starting delimiter)

 C+

 C+ (continuation lines containing SQL statements)

 C+

 .

 .

 .

 C/END-EXEC (the ending delimiter)

 C

 C (ILE RPG calculation operations)

 C

Figure 30. SQL Statements in an ILE RPG Program

Using SEU

Chapter 5. Using Source Files 55

and File Systems category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Refer to the ADTS for AS/400: Source Entry Utility manual for information about

how SEU handles SQL statement syntax checking.

Using IFS Source Files

The CRTBNDRPG and CRTRPGMOD commands include parameters to allow the

source files to be either in the QSYS file system of in the IFS sile system. These are:

SRCSTMF

SRCSTMF is used instead of SRCFILE and SRCMBR to indicate a stream

file is the main source file.

INCDIR

INCDIR is used to list the directories that will contain copy files.

The stream file specified for the SRCSTMF can be an absolute path to the file

(beginning with a slash), or it can be a path relative to the current directory.

Include files

The /COPY and /INCLUDE directives allow the specification of files in either the

QSYS file system or the IFS file system. In cases where the compiler cannot tell

which file system the directive refers to, the search will begin in the file system of

the file containing the /COPY directive.

When the compiler encounters a /COPY statement, the statement could refer to a

file in the IFS or in the QSYS file system. If the name begins with a slash or is

specified in single quotes, the name can only refer to a file in the IFS. A name in

the IFS can be specified in double quotes as well. Where only part of the name is

in double quotes, for example:

 /copy "SOME-LIB"/QRPGLESRC,MBR

the name can only be a QSYS file system name.

If the name could be either in the QSYS file system or the IFS, the file system of

the file containing the /COPY statement will be searched first. Note that

upper-casing occurs for the QSYS file system (except with extended names

specified with double quotes, such as ″A/B″) but not for the IFS. (The IFS is not

case sensitive.)

 Table 19. /Copy File Name Intepretation for QSYS and IFS

/Copy statement QSYS interpretation IFS interpretation (see below for the

meaning of ″.suffix″)

/COPY MYMBR FILE(*LIBL/QRPGLESRC)

MBR(MYMBR)

MYMBR or MYMBR.suffix in one of

the directories in the include path

/COPY mymbr FILE(*LIBL/QRPGLESRC)

MBR(MYMBR)

mymbr or mymbr.suffix in one of the

directories in the include path

/COPY myfile,mymbr FILE(*LIBL/MYFILE)

MBR(MYMBR)

myfile,mymbr or myfile,mymbr.suffix

(note that MYFILE,MYMBR is a valid

name in the IFS file system)

/COPY mylib/myfile,mymbr FILE(MYLIB/MYFILE)

MBR(MYMBR)

mylib/myfile,mymbr (directory mylib

and file myfile,mymbr)

Using SQL Statements

56 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Table 19. /Copy File Name Intepretation for QSYS and IFS (continued)

/Copy statement QSYS interpretation IFS interpretation (see below for the

meaning of ″.suffix″)

/COPY ″A/b″,mymbr FILE(*LIBL/″A/b″)

MBR(MYMBR)

n/a (only part of name is in double

quotes

/COPY ″A/B″ FILE(*LIBL/QRPGLESRC)

MBR(″A/B″)

A/B

/COPY a b FILE(*LIBL/QRPGLESRC)

MBR(A) (everything after a

blank is assumed to be a

comment)

a or a.suffix (everything

after a blank is assumed

to be a comment)

/COPY ’a b’ N/A (name in single quotes) a b or a b.suffix

/COPY /home/mydir/myfile.rpg N/A (name begins with slash) /home/mydir/myfile.rpg

/COPY /QSYS.LIB/

L.LIB/F.FILE/M.MBR

N/A (name begins with slash) /QSYS.LIB/L.LIB/F.FILE/

M.MBR (which is actually a

file in the QSYS file system,

but is considered to be an

IFS file by RPG)

Note: When searching for files in the IFS, if the file name does not contain a dot,

the RPG compiler will look for files with the following suffixes (in this

order):

1. no suffix (abc)

2. .rpgleinc (abc.rpgleinc)

3. .rpgle (abc.rpgle)

Search Path Within The IFS

You have two ways to indicate where /COPY and /INCLUDE files can be found

in the IFS:

1. The INCDIR parameter, which lists the directories in the order you want them

to be searched.

2. The RPGINCDIR environment variable, which has a colon-separated list of

directores in the order you want them to be searched. To set the environment

variable, use the ADDENVVAR or CHGENVVAR command.

For Example: ADDENVVAR ENVVAR(RPGINCDIR)

VALUE(’/home/mydir:/project/prototypes’)ADDENVVAR

When searching for a relative file in the IFS (one whose path does not begin with

/), the file will be searched for in the following places, in this order

1. The current directory.

2. The path specified by the INCDIR comand parameter.

3. The directories in the RPGINCDIR environment variable.

4. The source directory (if the source is an IFS file).

For example, if:

v The current directory is /home/auser.

v The INCDIR parameter is /driver/v5r2/inc:/driver/v5r1/inc.

v The RPGINCDIR environment variable is /home/auser/temp.

v The source is in directory /home/auser/src.

Using IFS Source Files

Chapter 5. Using Source Files 57

The directory search path takes precedence over the default-suffix order. If a file

with no extension is searched for in several different directories, all suffixes will be

tried in each directory before the next directory is tried.

 Table 20. Search Order for /Copy Files

/Copy statement Files searched for

Assume the source file containing the

/COPY is /driver/src/main.rpg,

in the IFS

/COPY file.rpg

In IFS:

/home/auser/file.rpg

/driver/v5r2/inc/file.rpg

/driver/v5r1/inc/file.rpg

/home/auser/temp/file.rpg

/home/auser/src/file.rpg

In QSYS:

FILE(*LIBL/QRPGLESRC) MBR(FILE.RPG)

Assume the source file containing the

/COPY is MYLIB/QRPGLESRC

MYMBR, in the QSYS file system

/COPY file

In QSYS:

FILE(*LIBL/QRPGLESRC) MBR(FILE)

In IFS:

/home/auser/file

/home/auser/file.rpgleinc

/home/auser/file.rpgle

/driver/v5r2/inc/file

/driver/v5r2/inc/file.rpgleinc

/driver/v5r2/inc/file.rpgle

/driver/v5r1/inc/file

/driver/v5r1/inc/file.rpgleinc

/driver/v5r1/inc/file.rpgle

/home/auser/temp/file

/home/auser/temp/file.rpgleinc

/home/auser/temp/file.rpgle

/home/auser/src/file

/home/auser/src/file.rpgleinc

/home/auser/src/file.rpgle

Using IFS Source Files

58 ILE RPG Programmer’s Guide

Chapter 6. Creating a Program with the CRTBNDRPG

Command

This chapter shows you how to create an ILE program using RPG IV source with

the Create Bound RPG Program (CRTBNDRPG) command. With this command

you can create one of two types of ILE programs:

1. OPM-compatible programs with no static binding

2. Single-module ILE programs with static binding

Whether you obtain a program of the first type or the second type depends on

whether the DFTACTGRP parameter of CRTBNDRPG is set to *YES or *NO

respectively.

Creating a program of the first type produces a program that behaves like an OPM

program in the areas of open scoping, override scoping, and RCLRSC. This high

degree of compatibility is due in part to its running in the same activation group

as OPM programs, namely, in the default activation group.

However, with this high compatibility comes the inability to have static binding.

Static binding refers to the ability to call procedures (in other modules or service

programs) and to use procedure pointers. The inability to have static binding

means that you cannot:

v Use the CALLB operation in your source

v Call a prototyped procedure

v Bind to other modules during program creation

Creating a program of the second type produces a program with ILE characteristics

such as static binding. You can specify at program-creation time the activation

group the program is to run in, and any modules for static binding. In addition,

you can call procedures from your source.

Use WebSphere Development Studio Client for iSeries. This is the recommended

method and documentation about creating an ILE RPG program appears in that

product’s online help.

Using the CRTBNDRPG Command

The Create Bound RPG (CRTBNDRPG) command creates a program object from

RPG IV source in one step. It also allows you to bind in other modules or service

programs using a binding directory.

The command starts the ILE RPG compiler and creates a temporary module object

in the library QTEMP. It then binds it into a program object of type *PGM. Once

the program object is created, the temporary module used to create the program is

deleted.

The CRTBNDRPG command is useful when you want to create a program object

from standalone source code (code that does not require modules to be bound

together), because it combines the steps of creating and binding. Furthermore, it

allows you to create an OPM-compatible program.

© Copyright IBM Corp. 1994, 2006 59

Note: If you want to keep the module object in order to bind it with other

modules into a program object, you must create the module using the

CRTRPGMOD command. For more information see Chapter 7, “Creating a

Program with the CRTRPGMOD and CRTPGM Commands,” on page 75.

You can use the CRTBNDRPG command interactively, in batch, or from a

Command Language (CL) program. If you are using the command interactively

and require prompting, type CRTBNDRPG and press F4 (Prompt). If you need

help, type CRTBNDRPG and press F1 (Help).

Table 21 summarizes the parameters of the CRTBNDRPG command and shows

their default values.

 Table 21. CRTBNDRPG Parameters and Their Default Values Grouped by Function

Program Identification

PGM(*CURLIB/*CTLSPEC) Determines created program name and library

SRCFILE(*LIBL/QRPGLESRC) If specified, identifies source file and library

SRCMBR(*PGM) If specified, identifies file member containing source specifications

SRCSTMF(path) If specified, indicates the path to the source file in the IFS

INCDIR(’path to directory 1:path to directory

2’)

Identifies a list of directories to search for /copy and /include files

TEXT(*SRCMBRTXT) Provides brief description of program

Program Creation

GENLVL(10) Conditions program creation to error severity (0-20)

OPTION(*DEBUGIO) *DEBUGIO/*NODEBUGIO, determines if breakpoints are generated

for input and output specifications

OPTION(*GEN) *GEN/*NOGEN, determines if program is created

OPTION(*NOSRCSTMT) Specifies how the compiler generates statement numbers for

debugging

DBGVIEW(*STMT) Specifies type of debug view, if any, to be included in program

OPTIMIZE(*NONE) Determines level of optimization, if any

REPLACE(*YES) Determines if program should replace existing program

BNDDIR(*NONE) Specifies the binding directory to be used for symbol resolution

USRPRF(*USER) Specifies the user profile that will run program

AUT(*LIBCRTAUT) Specifies type of authority for created program

TGTRLS(*CURRENT) Specifies the release level the object is to be run on

ENBPFRCOL(*PEP) Specifies whether performance collection is enabled

DEFINE(*NONE) Specifies condition names that are defined before the compilation

begins

PRFDTA(*NOCOL) Specifies the program profiling data attribute

Compiler Listing

OUTPUT(*PRINT) Determines if there is a compiler listing

INDENT(*NONE) Determines if indentation should show in listing, and identifies

character for marking it

OPTION(*XREF *NOSECLVL *SHOWCPY

*EXPDDS *EXT *NOSHOWSKP

*NOSRCSTMT)

Specifies the contents of compiler listing

Data Conversion Options

Using the CRTBNDRPG Command

60 ILE RPG Programmer’s Guide

Table 21. CRTBNDRPG Parameters and Their Default Values Grouped by Function (continued)

CVTOPT(*NONE) Specifies how various data types from externally described files are

handled

ALWNULL(*NO) Determines if the program will accept values from null-capable

fields

FIXNBR(*NONE) Determines which decimal data that is not valid is to be fixed by the

compiler

Run-Time Considerations

DFTACTGRP(*YES) Identifies whether this program always runs in the OPM default

activation group

OPTION(*DEBUGIO) *DEBUGIO/*NODEBUGIO, determines if breakpoints are generated

for input and output specifications

ACTGRP(QILE) Identifies the activation group in which the program should run

SRTSEQ(*HEX) Specifies the sort sequence table to be used

LANGID(*JOBRUN) Used with SRTSEQ to specify the language identifier for sort

sequence

TRUNCNBR(*YES) Specifies the action to take when numeric overflow occurs for

packed-decimal, zoned-decimal, and binary fields in fixed-format

operations.

INFOSTMF(path) Used with PGMINFO, specifies the stream file in the IFS to receive

the PCML

PGMINFO(*NONE) *PCML indicates that PCML (Program Call Markup Language)

should be generated for the program

LICOPT(options) Specifies Licensed Internal Code options.

See Appendix C, “The Create Commands,” on page 455 for the syntax diagram and

parameter descriptions of CRTBNDRPG.

Creating a Program for Source Debugging

In this example you create the program EMPRPT so that you can debug it using

the source debugger. The DBGVIEW parameter on either CRTBNDRPG or

CRTRPGMOD determines what type of debug data is created during compilation.

The parameter provides six options which allow you to select which view(s) you

want:

v *STMT — allows you to display variables and set breakpoints at statement

locations using a compiler listing. No source is displayed with this view.

v *SOURCE — creates a view identical to your input source.

v *COPY — creates a source view and a view containing the source of any /COPY

members.

v *LIST — creates a view similar to the compiler listing.

v *ALL — creates all of the above views.

v *NONE — no debug data is created.

The source for EMPRPT is shown in Figure 28 on page 54.

1. To create the object type:

CRTBNDRPG PGM(MYLIB/EMPRPT) DBGVIEW(*SOURCE) DFTACTGRP(*NO)

Using the CRTBNDRPG Command

Chapter 6. Creating a Program with the CRTBNDRPG Command 61

The program will be created in the library MYLIB with the same name as the

source member on which it is based, namely, EMPRPT. Note that by default, it

will run in the default named activation group, QILE. This program object can

be debugged using a source view.

2. To debug the program type:

STRDBG EMPRPT

Figure 31 shows the screen which appears after entering the above command.

From this screen (the Display Module Source display) you can enter debug

commands to display or change field values and set breakpoints to control

program flow while debugging.

For more information on debugging see Chapter 12, “Debugging Programs,” on

page 207.

Creating a Program with Static Binding

In this example you create a program COMPUTE using CRTBNDRPG to which

you bind a service program at program-creation time.

Assume that you want to bind the program COMPUTE to services which you have

purchased to perform advanced mathematical computations. The binding directory

to which you must bind your source is called MATH. This directory contains the

name of a service program that contains the various procedures that make up the

services.

To create the object, type:

CRTBNDRPG PGM(MYLIB/COMPUTE)

 DFTACTGRP(*NO) ACTGRP(GRP1) BNDDIR(MATH)

The source will be bound to the service program specified in the binding directory

MATH at program-creation time. This means that calls to the procedures in the

service program will take less time than if they were dynamic calls.

 Display Module Source

 Program: EMPRPT Library: MYLIB Module: EMPRPT

 1 *==*

 2 * MODULE NAME: EMPRPT

 3 * RELATED FILES: EMPMST (PHYSICAL FILE)

 4 * QSYSPRT (PRINTER FILE)

 5 * DESCRIPTION: This program prints employee information

 6 * from the file EMPMST.

 7 *==*

 8 FQSYSPRT O F 80 PRINTER

 9 FEMPMST IP E K DISK

 10

 11 D TYPE S 8A

 12 D EMPTYPE PR 8A

 13 D CODE 1A

 14

 15 IEMPREC 01

 More...

 Debug . . . ___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 31. Display Module Source display for EMPRPT

Using the CRTBNDRPG Command

62 ILE RPG Programmer’s Guide

When the program is called, it will run in the named activation group GRP1. The

default value ACTGRP parameter on CRTBNDRPG is QILE. However, it is

recommended that you run your application as a unique group to ensure that the

associated resources are fully protected.

Note: DFTACTGRP must be set to *NO in order for you to enter a value for the

ACTGRP and BNDDIR parameters.

For more information on service programs, see Chapter 8, “Creating a Service

Program,” on page 91.

Creating an OPM-Compatible Program Object

In this example you use the CRTBNDRPG command to create an OPM-compatible

program object from the source for the payroll program, shown in Figure 32 on

page 64.

1. To create the object, type:

CRTBNDRPG PGM(MYLIB/PAYROLL)

 SRCFILE(MYLIB/QRPGLESRC)

 TEXT(’ILE RPG program’) DFTACTGRP(*YES)

The CRTBNDRPG command creates the program PAYROLL in MYLIB, which

will run in the default activation group. By default, a compiler listing is

produced.

Note: The setting of DFTACTGRP(*YES) is what provides the OPM

compatibility. This setting also prevents you from entering a value for

the ACTGRP and BNDDIR parameters. Furthermore, if the source

contains any bound procedure calls, an error is issued and the

compilation ends.

2. Type one of the following CL commands to see the listing that is created:

v DSPJOB and then select option 4 (Display spooled files)

v WRKJOB

v WRKOUTQ queue-name

v WRKSPLF

Using the CRTBNDRPG Command

Chapter 6. Creating a Program with the CRTBNDRPG Command 63

--

 * DESCRIPTION: This program creates a printed output of employee’s pay *

 * for the week. *

 --

H DATEDIT(*DMY/)

 --

 * File Definitions *

 --

FTRANSACT IP E K DISK

FEMPLOYEE IF E K DISK

FQSYSPRT O F 80 PRINTER

 --

 * Variable Declarations *

 --

D Pay S 8P 2

 --

 * Constant Declarations *

 --

D Heading1 C ’NUMBER NAME RATE H-

D OURS BONUS PAY ’

D Heading2 C ’______ ________________ ______ _-

D ____ _______ __________’

 --

 * For each record in the transaction file (TRANSACT), if the employee *

 * is found, compute the employees pay and print the details. *

 --

C TRN_NUMBER CHAIN EMP_REC 99

C IF NOT *IN99

C EVAL (H) Pay = EMP_RATE * TRN_HOURS + TRN_BONUS

C ENDIF

 --

 * Report Layout *

 * -- print the heading lines if 1P is on *

 * -- if the record is found (indicator 99 is off) print the payroll *

 * details otherwise print an exception record *

 * -- print ’END OF LISTING’ when LR is on *

 --

OQSYSPRT H 1P 2 3

O 35 ’PAYROLL REGISTER’

O *DATE Y 60

O H 1P 2

O 60 Heading1

O H 1P 2

O 60 Heading2

O D N1PN99 2

O TRN_NUMBER 5

O EMP_NAME 24

O EMP_RATE L 33

O TRN_HOURS L 40

O TRN_BONUS L 49

O Pay 60 ’$ 0. ’

O D N1P 99 2

O TRN_NUMBER 5

O 35 ’** NOT ON EMPLOYEE FILE **’

O T LR

O 33 ’END OF LISTING’

Figure 32. A Sample Payroll Calculation Program

Using the CRTBNDRPG Command

64 ILE RPG Programmer’s Guide

Using a Compiler Listing

This section discusses how to obtain a listing and how to use it to help you:

v Fix compilation errors

v Fix run-time errors

v Provide documentation for maintenance purposes.

See Appendix D, “Compiler Listings,” on page 477 for more information on the

different parts of the listing and for a complete sample listing.

Obtaining a Compiler Listing

To obtain a compiler listing specify OUTPUT(*PRINT) on either the CRTBNDRPG

command or the CRTRPGMOD command. (This is their default setting.) The

specification OUTPUT(*NONE) will suppress a listing.

Specifying OUTPUT(*PRINT) results in a compiler listing which consists minimally

of the following sections:

v Prologue (command option summary)

v Source Listing, which includes:

– In-Line diagnostic messages

– Match-field table (if using the RPG cycle with match fields)
v Additional diagnostic messages

v Field Positions in Output Buffer

v /COPY Member Table

v Compile Time Data which includes:

– Alternate Collating Sequence records and table or NLSS information and table

– File translation records

– Array records

– Table records
v Message summary

v Final summary

v Code generation report (appears only if there are errors)

v Binding report (applies only to CRTBNDRPG; appears only if there are errors)

The following additional information is included in a compiler listing if the

appropriate value is specified on the OPTION parameter of either create command:

*EXPDDS

Specifications of externally-described files (appear in source section of

listing)

*SHOWCPY

Source records of /COPY members (appear in source section of listing)

*SHOWSKP

Source lines excluded by conditional compilation directives (appear in

source section of listing)

*EXPDDS

Key field information (separate section)

*XREF List of Cross references (separate section)

*EXT List of External references (separate section)

Using a Compiler Listing

Chapter 6. Creating a Program with the CRTBNDRPG Command 65

*SECLVL

Second-level message text (appear in message summary section)

Note: Except for *SECLVL and *SHOWSKP, all of the above values reflect the

default settings on the OPTION parameter for both create commands. You

do not need to change the OPTION parameter unless you do not want

certain listing sections or unless you want second level text to be included.

The information contained in a compiler listing is also dependent on whether

*SRCSTMT or *NOSRCSTMT is specified for the OPTION parameter. For details on

how this information changes, see “″*NOSRCSTMT Source Heading″” on page 484

and “″*SRCSTMT Source Heading″” on page 484.

If any compile option keywords are specified on the control specification, the

compiler options in effect will appear in the source section of the listing.

Customizing a Compiler Listing

You can customize a compiler listing in any or all of the following ways:

v Customize the page heading

v Customize the spacing

v Indent structured operations

Customizing a Page Heading

The page heading information includes the product information line and the title

supplied by a /TITLE directive. The product information line includes the ILE

RPG compiler and library copyright notice, the member, and library of the source

program, the date and time when the module was created, and the page number

of the listing.

You can specify heading information on the compiler listing through the use of the

/TITLE compiler directive. This directive allows you to specify text which will

appear at the top of each page of the compiler listing. This information will

precede the usual page heading information. If the directive is the first record in

the source member, then this information will also appear in the prologue section.

You can also change the date separator, date format, and time separator used in

the page heading and other information boxes throughout the listing. Normally,

the compiler determines these by looking at the job attributes. To change any of

these, use the Change Job (CHGJOB) command. After entering this command you

can:

v Select one of the following date separators: *SYSVAL, *BLANK, slash (/),

hyphen (-) period (.) or comma (,)

v Select one of the following date formats: *SYSVAL, *YMD, *MDY, *DMY, or *JUL

v Select one of the following time separators: *SYSVAL, *BLANK, colon (:), comma

(,) or period (.)

Anywhere a date or time field appears in the listing, these values are used.

Customizing the Spacing

Each section of a listing usually starts on a new page; Each page of the listing

starts with product information, unless the source member contains a /TITLE

directive. If it does, the product information appears on the second line and the

title appears on the first line.

Using a Compiler Listing

66 ILE RPG Programmer’s Guide

You can control the spacing and pagination of the compiler listing through the use

of the /EJECT and /SPACE compiler directives. The /EJECT directive forces a

page break. The /SPACE directive controls line spacing within the listing. For more

information on these directives refer to the WebSphere Development Studio: ILE RPG

Reference.

Indenting Structured Operations

Note: Calculations can only be indented if they are written with traditional syntax.

The RPG compiler does not change the indentation of your free-form

calculations (between /FREE and /END-FREE) in the listing. You may

indent the free-form claculations directly in your source file.

If your source specifications contain structured operations (such as DO-END or

IF-ELSE-END), you may want to have these indented in the source listing. The

INDENT parameter lets you specify whether to show indentation, and specify the

character to mark the indentation. If you do not want indentation, specify

INDENT(*NONE); this is the default. If you do want indentation, then specify up

to two characters to mark the indentation.

For example, to specify that you want structured operations to be indented and

marked with a vertical bar (|) followed by a space, you specify INDENT('| ').

If you request indentation, then some of the information which normally appears

in the source listing is removed, so as to allow for the indentation. The following

columns will not appear in the listing:

v Do Num

v Last Update

v PAGE/LINE

If you specify indentation and you also specify a listing debug view, the

indentation will not appear in the debug view.

Figure 33 on page 68 shows part of source listing which was produced with

indentation. The indentation mark is '| '.

Using a Compiler Listing

Chapter 6. Creating a Program with the CRTBNDRPG Command 67

Correcting Compilation Errors

The main sections of a compiler listing that are useful for fixing compilation errors

are:

v The source section

v The Additional Messages section

v The /COPY table section

v The various summary sections.

In-line diagnostic messages, which are found in the source section, point to errors

which the compiler can flag immediately. Other errors are flagged after additional

information is received during compilation. The messages which flag these errors

are in the source section and Additional Messages section.

To aid you in correcting any compilation errors, you may want to include the

second-level message text in the listing — especially if you are new to RPG. To do

this, specify OPTION(*SECLVL) on either create command. This will add

second-level text to the messages listed in the message summary.

Finally, keep in mind that a compiler listing is a record of your program. Therefore,

if you encounter any errors when testing your program, you can use the listing to

check that the source is coded the way you intended it to be. Parts of the listing,

besides the source statements, which you may want to check include:

v Match field table

If you are using the RPG cycle with match fields, then you can use this to check

that all your match fields are the correct lengths, and in the correct positions.

v Output-buffer positions

Lists the start and end positions along with the literal text or field names. Use

this to check for errors in your output specifications.

v Compile-time data

Line <--------------------- Source Specifications --><---- Comments ----> Src Seq

Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Id Number

 33 C** 002000

 34 C* MAINLINE * 002100

 35 C** 002200

 36 C WRITE FOOT1 002300

 37 C WRITE HEAD 002400

 38 C EXFMT PROMPT 002500

 39 C* 002600

 40 C DOW NOT *IN03 002700

 41 C CSTKEY | SETLL CMLREC2 ----20 002800

 42 C | IF *IN20 002900

 43 C | | MOVE ’1’ *IN61 003000

 44 C | ELSE 003100

 45 C | | EXSR SFLPRC 003200

 46 C | END 003300

 47 C | IF NOT *IN03 003400

 48 C | | IF *IN04 003500

 49 C | | | IF *IN61 003600

 50 C | | | | WRITE FOOT1 003700

 51 C | | | | WRITE HEAD 003800

 52 C | | | ENDIF 003900

 53 C | | | EXFMT PROMPT 004000

 54 C | | ENDIF 004100

 55 C | ENDIF 004200

 56 C ENDDO 004300

 57 C* 004500

 58 C SETON LR---- 004600

Figure 33. Sample Source Part of the Listing with Indentation

Using a Compiler Listing

68 ILE RPG Programmer’s Guide

ALTSEQ and FTRANS records and tables are listed. NLSS information and

tables are listed. Tables and arrays are explicitly identified. Use this to confirm

that you have specified the compile-time data in the correct order, and that you

have specified the correct values for the SRTSEQ and LANGID parameters to the

compiler.

Using In-Line Diagnostic Messages

There are two types of in-line diagnostic messages: finger and non-finger. Finger

messages point out exactly where the error occurred. Figure 34 shows an example

of finger in-line diagnostic messages.

 In this example, an indicator has been incorrectly placed in positions 72 - 73

instead of 71 - 72 or 73 - 74. The three fingers ’aa’, ’bb’, and ’cccccc’ identify the

parts of the line where there are errors. The actual columns are highlighted with

variables which are further explained by the messages. In this case, message

RNF5051 indicates that the fields marked by ’aa’ and ’bb’ do not contain a valid

indicator. Since there is no valid indicator the compiler assumes that the fields are

blank. However, since the SETOFF operation requires an indicator, another error

arises, as pointed out by the field ’cccccc’ and message RNF5053.

Errors are listed in the order in which they are found. As a general rule, you

should focus on correcting the first few severity 30 and 40 errors, since these are

often the cause of other errors.

Non-finger in-line diagnostic messages also indicate errors. However, they are not

issued immediately following the line in error. Figure 35 shows an example of the

non-finger in-line diagnostic messages.

 In this example, FLD1 is defined like FLD2 with a length 5 bytes greater. Later,

FLD2 is defined as a date, which makes the length adjustment in the definition of

FLD1 invalid. Message RNF3479 is issued pointing at listing line 1. Note that the

SEU sequence number (000100) is also given, to aid you in finding the source line

in error more quickly. (The SEU sequence number can also be found at listing line

1).

Using Additional-Diagnostic Messages

The Additional Diagnostic Messages section identifies errors which arise when one

or more lines of code are viewed collectively. These messages are not placed within

the code where the problem is; in general, the compiler does not know at the time

of checking that portion of the source that a problem exists. However, when

Line <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Src Seq

Number 1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Id Number

 63 C SETOFF _12___ 003100

======> aabb

======> cccccc

*RNF5051 20 a 003100 Resulting-Indicator entry is not valid; defaults to blanks.

*RNF5051 20 b 003100 Resulting-Indicator entry is not valid; defaults to blanks.

*RNF5053 30 c 003100 Resulting-Indicators entry is blank for specified

Figure 34. Sample Finger In-Line Diagnostic Messages

Line <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Src Seq

Number 1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Id Number

 1 D FLD1 S +5 LIKE(FLD2) 000100

 2 D FLD2 S D 000200

*RNF3479 20 1 000100 A length adjustment is not allowed for a field of the

 specified data type.

Figure 35. Sample Non-Finger In-Line Diagnostic Messages

Using a Compiler Listing

Chapter 6. Creating a Program with the CRTBNDRPG Command 69

possible, the message line includes either the listing Line Number and SEU

sequence number, or the Statement Number of a source line which is related to the

message.

Browsing a Compiler Listing Using SEU

The SEU Split/Browse session (F15) allows you to browse a compiler listing in the

output queue. You can review the results of a previous compilation while making

the required changes to your source code.

While browsing the compiler listing, you can scan for errors and correct those

source statements that have errors. To scan for errors, type F *ERR on the SEU

command line of the browse session. The line with the first (or next) error is

highlighted, and the first-level text of the same message appears at the bottom of

the screen. You can see the second-level text by placing your cursor on the message

at the bottom and then pressing F1 (Help).

When possible, the error messages in the listing identify the SEU sequence number

of the line in error. The sequence number is found just before the message text.

For complete information on browsing a compiler listing, see ADTS for AS/400:

Source Entry Utility.

Correcting Run-time Errors

The source section of the listing is also useful for correcting run-time errors. Many

run-time error messages identify a statement number where the error in question

occurred.

If OPTION(*NOSRCSTMT) is specified, the Line Number on the left side of the

compiler listing corresponds to the statement number in the run-time error

message. The source ID number and the SEU sequence number on the right side of

the compiler listing identify the source member and record. You can use the two

together, especially if you are editing the source using SEU, to determine which

line needs to be examined.

If OPTION(*SRCSTMT) is specified, the Statement Number on the right side of the

compiler listing corresponds to the statement number in the run-time error

message. If the statement is from the main source member, this is the same as the

statement on the left side of the compiler listing, and is also the same as the SEU

sequence number.

If you have a /COPY member, you can find the source ID number of the actual file

in the /COPY Member table at the end of the listing. For an example of a /COPY

Member table, see “/COPY Member Table” on page 486.

Coordinating Listing Options with Debug View Options

Correcting run-time errors often involves debugging a program. The following

considerations may help you when you go to debug your program:

v If you use the source debugger to debug your program you have a choice of

debug views: *STMT, *SOURCE, *LIST, *COPY, *ALL.

v If you plan to use a compiler listing as an aid while debugging, then you can

obtain one by specifying OUTPUT(*PRINT). A listing is important if you intend

to debug using a statement (*STMT) view since the statement numbers for

setting breakpoints are those identified in the source listing. The statement

numbers are listed in the column labeled as the Line Number when

Using a Compiler Listing

70 ILE RPG Programmer’s Guide

OPTION(*NOSRCSTMT) is specified, and in the column labeled as the Statement

Number when OPTION(*SRCSTMT) is specified.

v If you know that you will have considerable debugging to do, you may want to

compile the source with DBGVIEW(*ALL), OUTPUT(*PRINT) and

OPTION(*SHOWCPY). This will allow you to use either a source or listing view,

and it will include /COPY members.

v If you specify DBGVIEW(*LIST), the information available to you while

debugging depends on what you specified for the OPTION parameter. The view

will include /COPY members and externally described files only if you specify

OPTION(*SHOWCPY *EXPDDS) — these are the defaults.

Using a Compiler Listing for Maintenance

A compiler listing of an error-free program can be used as documentation when:

v Teaching the program to a new programmer.

v Updating the program at a later date.

In either case it is advisable to have a full listing, namely, one produced with

OUTPUT(*PRINT) and with OPTION(*XREF *SHOWCPY *EXPDDS *EXT

*SHOWSKP).

Note: Except for *SHOWSKP, this is the default setting for each of these

parameters on both create commands.

Of particular value for program maintenance is the Prologue section of the listing.

This section tells you:

v Who compiled the module/program

v What source was used to produce the module/program

v What options were used when compiling the module/program

You may need to know about the command options (for example, the debug view

selected, or the binding directory used) when you make later changes to the

program.

The following specifications for the OPTION parameter provide additional

information as indicated:

v *SHOWCPY and *EXPDDS provide a complete description of the program,

including all specifications from /COPY members, and generated specifications

from externally described files.

v *SHOWSKP allows you to see the statements that are ignored by the compiler as

a result of /IF, /ELSEIF, /ELSE, OR /EOF directives.

v *XREF allows you to check the use of files, fields, and indicators within the

module/program.

v *EXT allows you to see which procedures and fields are imported or exported

by the module/program. It also identifies the actual files which were used for

generating the descriptions for externally described files and data structures.

Accessing the RETURNCODE Data Area

Both the CRTBNDRPG and CRTRPGMOD (see “Using the CRTRPGMOD

Command” on page 76) commands create and update a data area with the status

of the last compilation. This data area is named RETURNCODE, is 400 characters

long, and is placed into library QTEMP.

Using a Compiler Listing

Chapter 6. Creating a Program with the CRTBNDRPG Command 71

To access the RETURNCODE data area, specify RETURNCODE in factor 2 of a

*DTAARA DEFINE statement.

The data area RETURNCODE has the following format:

Byte Content and Meaning

1 For CRTRPGMOD, character '1' means that a module was created

in the specified library. For CRTBNDRPG, character '1' means a

module with the same name as the program name was created in

QTEMP.

2 Character '1' means that the compilation failed because of compiler

errors.

3 Character '1' means that the compilation failed because of source

errors.

4 Not set. Always '0'.

5 Character '1' means the translator was not called because either

OPTION(*NOGEN) was specified on the CRTRPGMOD or

CRTBNDRPG command; or the compilation failed before the

translator was called.

6-10 Number of source statements

11-12 Severity level from command

13-14 Highest severity of diagnostic messages

15-20 Number of errors that are found in the module (CRTRPGMOD) or

program (CRTBNDRPG).

21-26 Compile date

27-32 Compile time

33-100 Not set. Always blank

101-110 Module (CRTRPGMOD) name or program (CRTBNDRPG) name.

111-120 Module (CRTRPGMOD) library name or program (CRTBNDRPG)

library name.

121-130 Source file name

131-140 Source file library name

141-150 Source file member name

151-160 Compiler listing file name

161-170 Compiler listing library name

171-180 Compiler listing member name

181-329 Not set. Always blank

330-334 Total elapsed compile time to the nearest 10th of a second (or -1 if

an error occurs while this time is being calculated)

335 Not set. Always blank

336-340 Elapsed compile time to the nearest 10th of a second (or -1 if an

error occurs while this time is being calculated)

341-345 Elapsed translator time to the nearest 10th of a second (or -1 if an

error occurs while this time is being calculated)

Accessing the RETURNCODE Data Area

72 ILE RPG Programmer’s Guide

346-379 Not set. Always blank

380-384 Total compile CPU time to the nearest 10th of a second

385 Not set. Always blank

386-390 CPU time that is used by compiler to the nearest 10th of a second

391-395 CPU time that is used by the translator to the nearest 10th of a

second

396-400 Not set. Always blank

Accessing the RETURNCODE Data Area

Chapter 6. Creating a Program with the CRTBNDRPG Command 73

Accessing the RETURNCODE Data Area

74 ILE RPG Programmer’s Guide

Chapter 7. Creating a Program with the CRTRPGMOD and

CRTPGM Commands

The two-step process of program creation consists of compiling source into

modules using CRTRPGMOD and then binding one or more module objects into a

program using CRTPGM. With this process you can create permanent modules.

This in turn allows you to modularize an application without recompiling the

whole application. It also allows you to reuse the same module in different

applications.

This chapter shows how to:

v Create a module object from RPG IV source

v Bind modules into a program using CRTPGM

v Read a binder listing

v Change a module or program

Use WebSphere Development Studio Client for iSeries. This is the recommended

method and documentation about creating an ILE RPG program appears in that

product’s online help.

Creating a Module Object

A module is a nonrunnable object (type *MODULE) that is the output of an ILE

compiler. It is the basic building block of an ILE program.

An ILE RPG module consists of one or more procedures, and the file control blocks

and static storage used by all the procedures in the module. The procedures that

can make up an ILE RPG module are:

v an optional main procedure which consists of the set of H, F, D, I, C, and O

specifications that begin the source. The main procedure has its own LR

semantics and logic cycle; neither of which is affected by those of other ILE RPG

modules in the program.

v zero or more subprocedures, which are coded on P, D, and C specifications.

Subprocedures do not use the RPG cycle. A subprocedure may have local

storage that is available for use only by the subprocedure itself.

The main procedure (if coded) can always be called by other modules in the

program. Subprocedures may be local to the module or exported. If they are local,

they can only be called by other procedures in the module; if they are exported

from the module, they can be called by any procedure in the program.

Module creation consists of compiling a source member, and, if that is successful,

creating a *MODULE object. The *MODULE object includes a list of imports and

exports referenced within the module. It also includes debug data if you request

this at compile time.

A module cannot be run by itself. You must bind one or more modules together to

create a program object (type *PGM) which can then be run. You can also bind one

or more modules together to create a service program object (type *SRVPGM). You

then access the procedures within the bound modules through static procedure

calls.

© Copyright IBM Corp. 1994, 2006 75

This ability to combine modules allows you to:

v Reuse pieces of code. This generally results in smaller programs. Smaller

programs give you better performance and easier debugging capabilities.

v Maintain shared code with little chance of introducing errors to other parts of

the overall program.

v Manage large programs more effectively. Modules allow you to divide your old

program into parts that can be managed separately. If the program needs to be

enhanced, you only need to recompile those modules which have been changed.

v Create mixed-language programs where you bind together modules written in

the best language for the task required.

For more information about the concept of modules, refer to ILE Concepts.

Using the CRTRPGMOD Command

You create a module using the Create RPG Module (CRTRPGMOD) command. You

can use the command interactively, as part of a batch input stream, or from a

Command Language (CL) program.

If you are using the command interactively and need prompting, type

CRTRPGMOD and press F4 (Prompt). If you need help, type CRTRPGMOD and

press F1 (Help).

Table 22 lists the parameters of the CRTRPGMOD command and their

system-supplied defaults. The syntax diagram of the command and a description

of the parameters are found in Appendix C, “The Create Commands,” on page 455.

 Table 22. CRTRPGMOD Parameters and Their Default Values Grouped by Function

Module Identification

MODULE(*CURLIB/*CTLSPEC) Determines created module name and library

SRCFILE(*LIBL/QRPGLESRC) If specified, identifies source file and library

SRCMBR(*MODULE) If specified, identifies file member containing source specifications

SRCSTMF(path) If specified, indicates the path to the source file in the IFS

INCDIR(’path to directory 1:path to directory

2’)

Identifies a list of modules to search for /copy and /include files

TEXT(*SRCMBRTXT) Provides brief description of module

Module Creation

GENLVL(10) Conditions module creation to error severity (0-20)

OPTION(*DEBUGIO) *DEBUGIO/*NODEBUGIO, determines if breakpoints are generated

for input and output specifications

OPTION(*GEN) *GEN/*NOGEN, determines if module is created

OPTION(*NOSRCSTMT) Specifies how the compiler generates statement numbers for

debugging

DBGVIEW(*STMT) Specifies type of debug view, if any, to be included in module

OPTIMIZE(*NONE) Determines level of optimization, if any

REPLACE(*YES) Determines if module should replace existing module

AUT(*LIBCRTAUT) Specifies type of authority for created module

TGTRLS(*CURRENT) Specifies the release level the object is to be run on

BNDDIR(*NONE) Specifies the binding directory to be used for symbol resolution

Creating a Module Object

76 ILE RPG Programmer’s Guide

Table 22. CRTRPGMOD Parameters and Their Default Values Grouped by Function (continued)

ENBPFRCOL(*PEP) Specifies whether performance collection is enabled

DEFINE(*NONE) Specifies condition names that are defined before the compilation

begins

PRFDTA(*NOCOL) Specifies the program profiling data attribute

Compiler Listing

OUTPUT(*PRINT) Determines if there is a compiler listing

INDENT(*NONE) Determines if indentation should show in listing, and identify

character for marking it

OPTION(*XREF *NOSECLVL *SHOWCPY

*EXPDDS *EXT *NOSHOWSKP

*NOSRCSTMT)

Specifies the contents of compiler listing

Data Conversion Options

CVTOPT(*NONE) Specifies how various data types from externally described files are

handled

ALWNULL(*NO) Determines if the module will accept values from null-capable fields

FIXNBR(*NONE) Determines which decimal data that is not valid is to be fixed by the

compiler

Run-Time Considerations

SRTSEQ(*HEX) Specifies the sort sequence table to be used

OPTION(*DEBUGIO) *DEBUGIO/*NODEBUGIO, determines if breakpoints are generated

for input and output specifications

LANGID(*JOBRUN) Used with SRTSEQ to specify the language identifier for sort

sequence

INFOSTMF(path) Used with PGMINFO, specifies the stream file in the IFS to receive

the PCML

PGMINFO(*NONE) *PCML indicates that PCML (Program Call Markup Language)

should be generated for the module

TRUNCNBR(*YES) Specifies action to take when numeric overflow occurs for

packed-decimal, zoned-decimal, and binary fields in fixed format

operations.

LICOPT(options) Specifies Licensed Internal Code options.

When requested, the CRTRPGMOD command creates a compiler listing which is

for the most part identical to the listing that is produced by the CRTBNDRPG

command. (The listing created by CRTRPGMOD will never have a binding

section.)

For information on using the compiler listing, see “Using a Compiler Listing” on

page 65. A sample compiler listing is provided in Appendix D, “Compiler

Listings,” on page 477.

Creating a NOMAIN Module

In this example you create an NOMAIN module object TRANSSVC using the

CRTRPGMOD command and its default settings. TRANSSVC contains prototyped

procedures that perform transaction services for procedures in other modules. The

source for TRANSSVC is shown in Figure 36 on page 79. The prototypes for the

procedures in TRANSSVC are stored in a /COPY member, as shown in Figure 37

on page 80.

Creating a Module Object

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 77

1. To create a module object, type:

CRTRPGMOD MODULE(MYLIB/TRANSSVC) SRCFILE(MYLIB/QRPGLESRC)

The module will be created in the library MYLIB with the name specified in the

command, TRANSSVC. The source for the module is the source member

TRANSSVC in file QRPGLESRC in the library MYLIB.

You bind a module containing NOMAIN to another module using one of the

following commands:

a. CRTPGM command

b. CRTSRVPGM command

c. CRTBNDRPG command where the NOMAIN module is included in a

binding directory.
2. Once it is bound, this module object can be debugged using a statement view.

A compiler listing for the module is also produced.

3. Type one of the following CL commands to see the compiler listing.

v DSPJOB and then select option 4 (Display spooled files)

v WRKJOB

v WRKOUTQ queue-name

v WRKSPLF

Creating a Module Object

78 ILE RPG Programmer’s Guide

===

 * MODULE NAME: TRANSSVC (Transaction Services)

 * RELATED FILES: N/A

 * RELATED SOURCE: TRANSRPT

 * EXPORTED PROCEDURES: Trans_Inc -- calculates the income

 * for the transaction using the data in the fields in the

 * parameter list. It returns to the caller after all

 * the calculations are done.

 *

 * Prod_Name -- retrieves the product name based on the

 * input parameter with the product number.

 ===

 * This module contains only subprocedures; it is a NOMAIN module.

 H NOMAIN

 *--

 * Pull in the prototypes from the /COPY member

 *--

 /COPY TRANSP

 *--

 * Subprocedure Trans_Inc

 *--

 P Trans_Inc B EXPORT

 D Trans_Inc PI 11P 2

 D ProdNum 10P 0 VALUE

 D Quantity 5P 0 VALUE

 D Discount 2P 2 VALUE

 D Factor S 5P 0

 *

 C SELECT

 C WHEN ProdNum = 1

 C EVAL Factor = 1500

 C WHEN ProdNum = 2

 C EVAL Factor = 3500

 C WHEN ProdNum = 5

 C EVAL Factor = 20000

 C WHEN ProdNum = 8

 C EVAL Factor = 32000

 C WHEN ProdNum = 12

 C EVAL Factor = 64000

 C OTHER

 C EVAL Factor = 0

 C ENDSL

 C RETURN Factor * Quantity * (1 - Discount)

 P Trans_Inc E

Figure 36. Source for TRANSSVC member (Part 1 of 2)

Creating a Module Object

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 79

Creating a Module for Source Debugging

In this example, you create an ILE RPG module object that you can debug using

the source debugger. The module TRANSRPT contains a main procedure which

drives the report processing. It calls the procedures in TRANSSVC to perform

certain required tasks. The source for this module is shown in Figure 38 on page

81.

To create a module object, type:

CRTRPGMOD MODULE(MYLIB/TRANSRPT) SRCFILE(MYLIB/QRPGLESRC)

 DBGVIEW(*SOURCE)

The module is created in the library MYLIB with the same name as the source file

on which it is based, namely, TRANSRPT. This module object can be debugged

using a source view. For information on the other views available, see “Preparing a

Program for Debugging” on page 210.

A compiler listing for the TRANSRPT module will be produced.

 *--

 * Subprocedure Prod_Name

 *--

 P Prod_Name B EXPORT

 D Prod_Name PI 40A

 D ProdNum 10P 0 VALUE

 *

 C SELECT

 C WHEN ProdNum = 1

 C RETURN ’Large’

 C WHEN ProdNum = 2

 C RETURN ’Super’

 C WHEN ProdNum = 5

 C RETURN ’Super Large’

 C WHEN ProdNum = 8

 C RETURN ’Super Jumbo’

 C WHEN ProdNum = 12

 C RETURN ’Incredibly Large Super Jumbo’

 C OTHER

 C RETURN ’***Unknown***’

 C ENDSL

 P Prod_Name E

Figure 36. Source for TRANSSVC member (Part 2 of 2)

 * Prototype for Trans_Inc

 D Trans_Inc PR 11P 2

 D Prod 10P 0 VALUE

 D Quantity 5P 0 VALUE

 D Discount 2P 2 VALUE

 * Prototype for Prod_Name

 D Prod_Name PR 40A

 D Prod 10P 0 VALUE

Figure 37. Source for TRANSP /COPY member

Creating a Module Object

80 ILE RPG Programmer’s Guide

The DDS for the file TRNSDTA is shown in Figure 39 on page 82. The /COPY

member is shown in Figure 37 on page 80.

 ===

 * MODULE NAME: TRANSRPT

 * RELATED FILES: TRNSDTA (PF)

 * RELATED SOURCE: TRANSSVC (Transaction services)

 * EXPORTED PROCEDURE: TRANSRPT

 * The procedure TRANSRPT reads every tranasction record

 * stored in the physical file TRNSDTA. It calls the

 * subprocedure Trans_Inc which performs calculations and

 * returns a value back. Then it calls Prod_Name to

 * to determine the product name. TRANSRPT then prints

 * the transaction record out.

 ===

 FTRNSDTA IP E DISK

 FQSYSPRT O F 80 PRINTER OFLIND(*INOF)

 /COPY QRPGLE,TRANSP

 * Define the readable version of the product name like the

 * return value of the procedure ’Prod_Name’

 D ProdName S 30A

 D Income S 10P 2

 D Total S +5 LIKE(Income)

 *

 ITRNSREC 01

 * Calculate the income using subprocedure Trans_Inc

 C EVAL Income = Trans_Inc(PROD : QTY : DISC)

 C EVAL Total = Total + Income

 * Find the name of the product

 C EVAL ProdName = Prod_Name(PROD)

 OQSYSPRT H 1P 1

 O OR OF

 O 12 ’Product name’

 O 40 ’Quantity’

 O 54 ’Income’

 OQSYSPRT H 1P 1

 O OR OF

 O 30 ’----------+

 O ----------+

 O ----------’

 O 40 ’--------’

 O 60 ’------------’

 OQSYSPRT D 01 1

 O ProdName 30

 O QTY 1 40

 O Income 1 60

 OQSYSPRT T LR 1

 O ’Total: ’

 O Total 1

Figure 38. Source for TRANSRPT module

Creating a Module Object

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 81

Additional Examples

For additional examples of creating modules, see:

v “Sample Service Program” on page 93, for an example of creating a module for a

service program.

v “Binding to a Program” on page 98. for an example of creating a module to be

used with a service program.

v “Managing Your Own Heap Using ILE Bindable APIs” on page 121, for an

example of creating a module for dynamically allocating storage for a run-time

array

v “Sample Source for Debug Examples” on page 256, for example of creating an

RPG and C module for use in a sample debug program.

Behavior of Bound ILE RPG Modules

In ILE RPG, the main procedure is the boundary for the scope of LR semantics and

the RPG cycle. The module is the boundary for the scope of open files.

In any ILE program, there may be several RPG cycles active; there is one RPG

cycle for each RPG module that has a main procedure. The cycles are independent:

setting on LR in one main procedure has no effect on the cycle in another.

Related CL Commands

The following CL commands can be used with modules:

v Display Module (DSPMOD)

v Change Module (CHGMOD)

v Delete Module (DLTMOD)

v Work with Modules (WRKMOD)

For further information on these commands see the CL and APIs section of the

Programming category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Binding Modules into a Program

Binding is the process of creating a runnable ILE program by combining one or

more modules and optional service programs, and resolving symbols passed

between them. The system code that does this combining and resolving is called a

binder on the iSeries system.

 A***

 A* RELATED FILES: TRNSRPT *

 A* DESCRIPTION: This is the physical file TRNSDTA. It has *

 A* one record format called TRNSREC. *

 A***

 A* PARTS TRANSACTION FILE -- TRNSDTA

 A R TRNSREC

 A PROD 10S 0 TEXT(’Product’)

 A QTY 5S 0 TEXT(’Quantity’)

 A DISCOUNT 2S 2 TEXT(’Discount’)

Figure 39. DDS for TRNSDTA

Creating a Module Object

82 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

As part of the binding process, a procedure must be identified as the startup

procedure, or program entry procedure. When a program is called, the program

entry procedure receives the parameters from the command line and is given

initial control for the program. The user’s code associated with the program entry

procedure is the user entry procedure.

If an ILE RPG module contains a main procedure, it implicitly also contains a

program entry procedure. Therefore, any ILE RPG module may be specified as the

entry module as long as it is not a NOMAIN module.

Figure 40 gives an idea of the internal structure of a program object. It shows the

program object TRPT, which was created by binding the two modules TRANSRPT

and TRANSSVC. TRANSRPT is the entry module.

 Within a bound object, procedures can interrelate using static procedure calls.

These bound calls are faster than external calls. Therefore, an application consisting

of a single bound program with many bound calls should perform faster than a

similar application consisting of separate programs with many external

interapplication calls.

In addition to binding modules together, you can also bind them to service

programs (type *SRVPGM). Service programs allow you to code and maintain

modules separately from the program modules. Common routines can be created

as service programs and if the routine changes, the change can be incorporated by

binding the service program again. The programs that use these common routines

do not have to be recreated. For information on creating service programs see

Chapter 8, “Creating a Service Program,” on page 91.

TRANSRPT Module

TRANSSVC Module

Program Entry
Procedure

Main Source Section

Main Procedure

Trans_Inc

Prod_Name

*PGM (TRPT)

Figure 40. Structure of Program TRPT

Binding Modules into a Program

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 83

For information on the binding process and the binder, refer to the ILE Concepts.

Using the CRTPGM Command

The Create Program (CRTPGM) command creates a program object from one or

more previously created modules and, if required, one or more service programs.

You can bind modules created by any of the ILE Create Module commands,

CRTRPGMOD, CRTCMOD, CRTCBLMOD, or CRTCLMOD.

Note: The modules and/or service programs required must have been created

prior to using the CRTPGM command.

Before you create a program object using the CRTPGM command, you should:

1. Establish a program name.

2. Identify the module or modules, and if required, service programs you want to

bind into a program object.

3. Identify the entry module.

You indicate which module contains the program entry procedure through the

ENTMOD parameter of CRTPGM. The default is ENTMOD(*FIRST), meaning

that the module containing the first program entry procedure found in the list

for the MODULE parameter is the entry module.

Assuming you have only one module with a main procedure, that is, all

modules but one have NOMAIN specified, you can accept the default (*FIRST).

Alternatively, you can specify (*ONLY); this will provide a check that in fact

only one module has a main procedure. For example, in both of the following

situations you could specify ENTMOD(*ONLY).

v You bind an RPG module to a C module without a main() function.

v You bind two RPG modules, where one has NOMAIN on the control

specification.

Note: If you are binding more than one ILE RPG module with a main

procedure, then you should specify the name of the module that you

want to receive control when the program is called. You can also specify

*FIRST if the module with a main procedure precedes any other modules

with main procedures on the list specified for the MODULE parameter.

4. Identify the activation group that the program is to use.

Specify the named activation group QILE if your program has no special

requirements or if you are not sure which group to use. In general, it is a good

idea to run an application in its own activation group. Therefore, you may

want to name the activation group after the application.

Note that the default activation group for CRTPGM is *NEW. This means that

your program will run in its own activation group, and the activation group

will terminate when the program does. Whether or not you set on LR, your

program will have a fresh copy of its data the next time you call it. For more

information on activation groups see “Specifying an Activation Group” on page

110.

To create a program object using the CRTPGM command, perform the following

steps:

1. Enter the CRTPGM command.

2. Enter the appropriate values for the command parameter.

Binding Modules into a Program

84 ILE RPG Programmer’s Guide

Table 23 lists the CRTPGM command parameters and their default values. For a

full description of the CRTPGM command and its parameters, refer to the CL and

APIs section of the Programming category in the iSeries Information Center at this

Web site - http://www.ibm.com/eserver/iseries/infocenter.

 Table 23. Parameters for CRTPGM Command and their Default Values

Parameter Group Parameter(Default Value)

Identification PGM(library name/program name)

MODULE(*PGM)

Program access ENTMOD(*FIRST)

Binding BNDSRVPGM(*NONE)

BNDDIR(*NONE)

Run time ACTGRP(*NEW)

Miscellaneous OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)

DETAIL(*NONE)

ALWUPD(*YES)

ALWRINZ(*NO)

REPLACE(*YES)

AUT(*LIBCRTAUT)

TEXT(*ENTMODTXT)

TGTRLS(*CURRENT)

USRPRF(*USER)

Once you have entered the CRTPGM command, the system performs the following

actions:

1. Copies listed modules into what will become the program object, and links any

service programs to the program object.

2. Identifies the module containing the program entry procedure, and locates the

first import in this module.

3. Checks the modules in the order in which they are listed, and matches the first

import with a module export.

4. Returns to the first module, and locates the next import.

5. Resolves all imports in the first module.

6. Continues to the next module, and resolves all imports.

7. Resolves all imports in each subsequent module until all of the imports have

been resolved.

8. If any imports cannot be resolved with an export, the binding process

terminates without creating a program object.

9. Once all the imports have been resolved, the binding process completes and the

program object is created.

Note: If you have specified that a variable or procedure is to be exported (using

the EXPORT keyword), it is possible that the variable or procedure name

will be identical to a variable or procedure in another procedure within the

bound program object. In this case, the results may not be as expected. See

ILE Concepts for information on how to handle this situation.

Binding Multiple Modules

This example shows you how to use the CRTPGM command to bind two ILE RPG

modules into a program TRPT. In this program, the following occurs:

v The module TRANSRPT reads each transaction record from a file TRNSDTA.

Binding Modules into a Program

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 85

http://www.ibm.com/eserver/iseries/infocenter

v It then calls procedure Trans_Inc and Proc_Name in module TRANSSVC using

bound calls within expressions.

v Trans_Inc calculates the income pertaining to each transaction and returns the

value to the caller

v Proc_Name determines the product name and returns it

v TRANSRPT then prints the transaction record.

Source for TRANSRPT, TRANSSVC, and TRNSDTA is shown in Figure 38 on page

81, Figure 36 on page 79 and Figure 39 on page 82 respectively.

1. First create the module TRANSRPT. Type:

CRTRPGMOD MODULE(MYLIB/TRANSRPT)

2. Then create module TRANSSVC by typing:

CRTRPGMOD MODULE(MYLIB/TRANSSVC)

3. To create the program object, type:

CRTPGM PGM(MYLIB/TRPT) MODULE(TRANSRPT TRANSSVC)

 ENTMOD(*FIRST) ACTGRP(TRPT)

The CRTPGM command creates a program object TRPT in the library MYLIB.

Note that TRANSRPT is listed first in the MODULE parameter. ENTMOD(*FIRST)

will find the first module with a program entry procedure. Since only one of the

two modules has a program entry procedure, they can be entered in either order.

The program TRPT will run in the named activation group TRPT. The program

runs in a named group to ensure that no other programs can affect its resources.

Figure 41 shows an output file created when TRPT is run.

Additional Examples

For additional examples of creating programs, see:

v “Binding to a Program” on page 98, for an example of binding a module and a

service program.

v “Sample Source for Debug Examples” on page 256, for an example of creating a

program consisting of an RPG and C module.

Related CL Commands

The following CL commands can be used with programs:

v Change Program (CHGPGM)

v Delete Program (DLTPGM)

v Display Program (DSPPGM)

Product name Quantity Income

------------------------------ -------- ------------

Large 245 330,750.00

Super 15 52,500.00

Super Large 0 .00

Super Jumbo 123 2,952,000.00

Incredibly Large Super Jumbo 15 912,000.00

Unknown 12 .00

Total: 4,247,250.00

Figure 41. File QSYSPRT for TRPT

Binding Modules into a Program

86 ILE RPG Programmer’s Guide

v Display Program References (DSPPGMREF)

v Update Program (UPDPGM)

v Work with Program (WRKPGM)

For further information on these commands, see the CL and APIs section of the

Programming category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Using a Binder Listing

The binding process can produce a listing that describes the resources used,

symbols and objects encountered, and problems that were resolved or not resolved

in the binding process. The listing is produced as a spooled file for the job you use

to enter the CRTPGM command. The command default is to not produce this

information, but you can choose a DETAIL parameter value to generate it at three

levels of detail:

v *BASIC

v *EXTENDED

v *FULL

The binder listing includes the following sections depending on the value specified

for DETAIL:

 Table 24. Sections of the Binder Listing based on DETAIL Parameter

Section Name *BASIC *EXTENDED *FULL

Command Option Summary X X X

Brief Summary Table X X X

Extended Summary Table X X

Binder Information Listing X X

Cross-Reference Listing X

Binding Statistics X

The information in this listing can help you diagnose problems if the binding was

not successful, or give feedback about what the binder encountered in the process.

You may want to store the listing for an ILE program in the file where you store

the modules or the module source for a program. To copy this listing to a database

file, you can use the Copy Spool File (CPYSPLF) command.

Note: The CRTBNDRPG command will not create a binder listing. However, if any

binding errors occur during the binding phase, the errors will be noted in

your job log, and the compiler listing will include a message to this effect.

For an example of a basic binder listing, see “Sample Binder Listing” on page 100.

For more information on binder listings see ILE Concepts.

Binding Modules into a Program

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 87

http://www.ibm.com/eserver/iseries/infocenter

Changing a Module or Program

An ILE object may need to be changed for enhancements or for maintenance

reasons. You can isolate what needs to be changed by using debugging information

or the binder listing from the CRTPGM command. From this information you can

determine what module needs to change, and often, what procedure or field needs

to change.

In addition, you may want to change the optimization level or observability of a

module or program. This often happens when you want to debug an program or

module, or when you are ready to put a program into production. Such changes

can be performed more quickly and use fewer system resources than re-creating

the object in question.

Finally, you may want to reduce the program size once you have completed an

application. ILE programs have additional data added to them which may make

them larger than a similar OPM program.

Each of the above requires different data to make the change. The resources you

need may not be available to you for an ILE program.

The following sections tell you how to

v Update a program

v Change the optimization level

v Change observability

v Reduce the object size

Note: In the remainder of this section the term ’object’ will be used to refer to

either an ILE module or ILE program.

Using the UPDPGM Command

In general, you can update a program by replacing modules as needed. For

example, if you add a new procedure to a module, you recompile the module

object, and then update the program. You do not have to re-create the program.

This is helpful if you are supplying an application to other sites. You need only

send the revised modules, and the receiving site can update the application using

the UPDPGM or UPDSRVPGM command.

The UPDPGM command works with both program and module objects. The

parameters on the command are very similar to those on the CRTPGM command.

For example, to replace a module in a program, you would enter the module name

for MODULE parameter and the library name. The UPDPGM command requires

that the modules to be replaced be in the same libraries as when the program was

created. You can specify that all modules are to be replaced, or some subset.

The UPDPGM command requires that the module object be present. Thus, it is

easier to use the command when you have created the program using separate

compile and bind steps. Since the module object already exists, you simply specify

its name and library when issuing the command.

To update a program created by CRTBNDRPG command, you must ensure that the

revised module is in the library QTEMP. This is because the temporary module

Changing a Module or Program

88 ILE RPG Programmer’s Guide

used when the CRTBNDRPG command was issued, was created in QTEMP. Once

the module is in QTEMP, you can issue the UPDPGM command to replace the

module.

For more information, see ILE Concepts.

Changing the Optimization Level

Optimizing an object means looking at the compiled code, determining what can

be done to make the run-time performance as fast as possible, and making the

necessary changes. In general, the higher the optimizing request, the longer it takes

to create an object. At run time the highly optimized program or service program

should run faster than the corresponding nonoptimized program or service

program.

However, at higher levels of optimization, the values of fields may not be accurate

when displayed in a debug session, or after recovery from exception. In addition,

optimized code may have altered breakpoints and step locations used by the

source debugger, since the optimization changes may rearrange or eliminate some

statements.

To ensure that the contents of a field reflect their most current value, especially

after exception recovery, you can use the NOOPT keyword on the corresponding

Definition specification. For more information, see “Optimization Considerations”

on page 271.

To circumvent this problem while debugging, you can lower the optimization level

of a module to display fields accurately as you debug a program, and then raise

the level again afterwards to improve the program efficiency as you get the

program ready for production.

To determine the current optimization level of a program object, use the DSPPGM

command. Display 3 of this command indicates the current level. To change the

optimization level of a program, use the CHGPGM command. On the Optimize

program parameter you can specify one the following values: *FULL, *BASIC,

*NONE. These are the same values which can be specified on the OPTIMIZE

parameters of either create command. The program is automatically re-created

when the command runs.

Similarly, to determine the current optimization level of a module, use the

DSPMOD command. Display 1, page 2 of this command indicates the current level.

To change the optimization level, use the CHGMOD command. You then need to

re-create the program either using UPDPGM or CRTPGM.

Removing Observability

Observability involves the kinds of data that can be stored with an object, and that

allow the object to be changed without recompiling the source. The addition of this

data increases the size of the object. Consequently, you may want to remove the

data in order to reduce object size. But once the data is removed, observability is

also removed. You must recompile the source and recreate the program to replace

the data. The types of data are:

Create Data Represented by the *CRTDTA value. This data is necessary to

translate the code to machine instructions. The object must have

this data before you can change the optimization level.

Changing a Module or Program

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 89

Debug Data Represented by the *DBGDTA value. This data is necessary to

allow an object to be debugged.

Profiling Data Represented by the *BLKORD and *PRCORD values. This data is

necessary to allow the system to re-apply block order and

procedure order profiling data.

Use the CHGPGM command or the CHGMOD command to remove some or all

the data from a program or module respectively. Removing all observability

reduces an object to its minimum size (without compression). It is not possible to

change the object in any way unless you re-create it. Therefore, ensure that you

have all source required to create the program or have a comparable program

object with CRTDATA. To re-create it, you must have authorization to access the

source code.

Reducing an Object’s Size

The create data (*CRTDTA) associated with an ILE program or module may make

up more than half of the object’s size. By removing or compressing this data, you

will reduce the secondary storage requirements for your programs significantly.

If you remove the data, ensure that you have all source required to create the

program or have a comparable program object with CRTDATA. Otherwise you will

not be able to change the object.

An alternative is to compress the object, using the Compress Object (CPROBJ)

command. A compressed object takes up less system storage than an

uncompressed one. If the compressed program is called, the part of the object

containing the runnable code is automatically decompressed. You can also

decompress a compressed object by using the Decompress Object (DCPOBJ)

command.

For more information on these CL commands, see the CL and APIs section of the

Programming category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Changing a Module or Program

90 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Chapter 8. Creating a Service Program

This chapter provides:

v An overview of the service program concept

v Strategies for creating service programs

v A brief description of the CRTSRVPGM command

v An example of a service program

Use WebSphere Development Studio Client for iSeries. This is the recommended

method and documentation about creating a service program appears in that

product’s online help.

Service Program Overview

A service program is a bound program (type *SRVPGM) consisting of a set of

procedures that can be called by procedures in other bound programs.

Service programs are typically used for common functions that are frequently

called within an application and across applications. For example, the ILE

compilers use service programs to provide run-time services such as math

functions and input/output routines. Service programs enable reuse, simplify

maintenance, and reduce storage requirements.

A service program differs from a program in two ways:

v It does not contain a program entry procedure. This means that you cannot call

a service program using the CALL operation.

v A service program is bound into a program or other service programs using

binding by reference.

When you bind a service program to a program, the contents of the service

program are not copied into the bound program. Instead, linkage information of

the service program is bound into the program. This is called ’binding by

reference’ in contrast to the static binding process used to bind modules into

programs.

Because a service program is bound by reference to a program, you can call the

service program’s exported procedures using bound procedure calls. The initial call

has a certain amount of overhead because the binding is not completed until the

service program is called. However, subsequent calls to any of its procedures are

faster than program calls.

The set of exports contained in a service program are the interface to the services

provided by it. You can use the Display Service Program (DSPSRVPGM) command

or the service program listing to see what variable and procedure names are

available for use by the calling procedures. To see the exports associated with

service program PAYROLL, you would enter:

 DSPSRVPGM PAYROLL DETAIL(*PROCEXP *DATAEXP)

© Copyright IBM Corp. 1994, 2006 91

Strategies for Creating Service Programs

When creating a service program, you should keep in mind:

1. Whether you intend to update the program at a later date

2. Whether any updates will involve changes to the interface (namely, the imports

and exports used).

If the interface to a service program changes, then you may have to re-bind any

programs bound to the original service program. However, if the changes required

are upward-compatible, you may be able to reduce the amount of re-binding if you

created the service program using binder language. In this case, after updating the

binder language source to identify the new exports you need to re-bind only those

programs that use them.

TIP

If you are planning a module with only subprocedures (that is, with a

module with keyword NOMAIN specified on the control specification) you

may want to create it as a service program. Only one copy of a service

program is needed on a system, and so you will need less storage for the

module.

Also, you can copyright your service programs using the COPYRIGHT

keyword on the control specification.

 Binder language gives you control over the exports of a service program. This

control can be very useful if you want to:

v Mask certain service program procedures from service-program users

v Fix problems

v Enhance function

v Reduce the impact of changes to the users of an application.

See “Sample Service Program” on page 93 for an example of using binder

language to create a service program.

For information on binder language, masking exports, and other service program

concepts, see ILE Concepts.

Creating a Service Program Using CRTSRVPGM

You create a service program using the Create Service Program (CRTSRVPGM)

command. Any ILE module can be bound into a service program. The module(s)

must exist before you can create a service program with it.

Table 25 lists the CRTSRVPGM parameters and their defaults. For a full description

of the CRTSRVPGM command and its parameters, refer to the CL and APIs section

of the Programming category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

 Table 25. Parameters for CRTSRVPGM Command and their Default Values

Parameter Group Parameter(Default Value)

Identification SRVPGM(library name/service program name)

MODULE(*SRVPGM)

Strategies for Creating Service Programs

92 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Table 25. Parameters for CRTSRVPGM Command and their Default Values (continued)

Parameter Group Parameter(Default Value)

Program access EXPORT(*SRCFILE)

SRCFILE(*LIBL/QSRVSRC)

SRCMBR(*SRVPGM)

Binding BNDSRVPGM(*NONE)

BNDDIR(*NONE)

Run time ACTGRP(*CALLER)

Miscellaneous OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)

DETAIL(*NONE)

ALWUPD(*YES)

ALWRINZ(*NO)

REPLACE(*YES)

AUT(*LIBCRTAUT)

TEXT(*ENTMODTXT)

TGTRLS(*CURRENT)

USRPRF(*USER)

See “Creating the Service Program” on page 97 for an example of using the

CRTSRVPGM command.

Changing A Service Program

You can update or change a service program in the same ways available to a

program object. In other words, you can:

v Update the service program (using UPDSRVPGM)

v Change the optimization level (using CHGSRVPGM)

v Remove observability (using CHGSRVPGM)

v Reduce the size (using CPROBJ)

For more information on any of the above points, see “Changing a Module or

Program” on page 88.

Related CL commands

The following CL commands are also used with service programs:

v Change Service Program (CHGSRVPGM)

v Display Service Program (DSPSRVPGM)

v Delete Service Program (DLTSRVPGM)

v Update Service Program (UPDSRVPGM)

v Work with Service Program (WRKSRVPGM)

Sample Service Program

The following example shows how to create a service program CVTTOHEX which

converts character strings to their hexadecimal equivalent. Two parameters are

passed to the service program:

1. a character field (InString) to be converted

2. a character field (HexString) which will contain the 2-byte hexadecimal

equivalent

Creating a Service Program Using CRTSRVPGM

Chapter 8. Creating a Service Program 93

The field HexString is used to contain the result of the conversion and also to

indicate the length of the string to be converted. For example, if a character string

of 30 characters is passed, but you are only interested in converting the first ten,

you would pass a second parameter of 20 bytes (2 times 10). Based on the length

of the passed fields, the service program determines the length to handle.

Figure 42 on page 95 shows the source for the service program. Figure 43 on page

97 shows the /COPY member containing the prototype for CvtToHex.

The basic logic of the procedure contained within the service program is listed

below:

1. Operational descriptors are used to determine the length of the passed

parameters.

2. The length to be converted is determined: it is the lesser of the length of the

character string, or one-half the length of the hex string field.

3. Each character in the string is converted to a two-byte hexadecimal equivalent

using the subroutine GetHex.

Note that GetHex is coded as a subroutine rather than a subprocedure, in order

to improve run-time performance. An EXSR operation runs much faster than a

bound call, and in this example, GetHex is called many times.

4. The procedure returns to its caller.

The service program makes use of operational descriptors, which is an ILE

construct used when the precise nature of a passed parameter is not known ahead

of time, in this case the length. The operational descriptors are created on a call to

a procedure when you specify the operation extender (D) on the CALLB operation,

or when OPDESC is specified on the prototype.

To use the operational descriptors, the service program must call the ILE bindable

API, CEEDOD (Retrieve Operational Descriptor). This API requires certain

parameters which must be defined for the CALLB operation. However, it is the last

parameter which provides the information needed, namely, the length. For more

information on operational descriptors, see “Using Operational Descriptors” on

page 139.

Sample Service Program

94 ILE RPG Programmer’s Guide

===

 * CvtToHex - convert input string to hex output string

 ===

 H COPYRIGHT(’(C) Copyright MyCompany 1995’)

 D/COPY RPGGUIDE/QRPGLE,CVTHEXPR

 * Main entry parameters

 * 1. Input: string character(n)

 * 2. Output: hex string character(2 * n)

 D CvtToHex PI OPDESC

 D InString 16383 CONST OPTIONS(*VARSIZE)

 D HexString 32766 OPTIONS(*VARSIZE)

 * Prototype for CEEDOD (Retrieve operational descriptor)

 D CEEDOD PR

 D ParmNum 10I 0 CONST

 D 10I 0

 D 10I 0

 D 10I 0

 D 10I 0

 D 10I 0

 D 12A OPTIONS(*OMIT)

 * Parameters passed to CEEDOD

 D DescType S 10I 0

 D DataType S 10I 0

 D DescInfo1 S 10I 0

 D DescInfo2 S 10I 0

 D InLen S 10I 0

 D HexLen S 10I 0

 * Other fields used by the program *

 D HexDigits C CONST(’0123456789ABCDEF’)

 D IntDs DS

 D IntNum 5I 0 INZ(0)

 D IntChar 1 OVERLAY(IntNum:2)

 D HexDs DS

 D HexC1 1

 D HexC2 1

 D InChar S 1

 D Pos S 5P 0

 D HexPos S 5P 0

Figure 42. Source for Service Program CvtToHex (Part 1 of 2)

Sample Service Program

Chapter 8. Creating a Service Program 95

 * Use the operational descriptors to determine the lengths of *

 * the parameters that were passed. *

 C CALLP CEEDOD(1 : DescType : DataType :

 C DescInfo1 : DescInfo2: Inlen :

 C *OMIT)

 C CALLP CEEDOD(2 : DescType : DataType :

 C DescInfo1 : DescInfo2: HexLen :

 C *OMIT)

 * Determine the length to handle (minimum of the input length *

 * and half of the hex length) *

 C IF InLen > HexLen / 2

 C EVAL InLen = HexLen / 2

 C ENDIF

 * For each character in the input string, convert to a 2-byte *

 * hexadecimal representation (for example, ’5’ --> ’F5’) *

 C EVAL HexPos = 1

 C DO InLen Pos

 C EVAL InChar = %SUBST(InString : Pos :1)

 C EXSR GetHex

 C EVAL %SUBST(HexString : HexPos : 2) = HexDs

 C EVAL HexPos = HexPos + 2

 C ENDDO

 * Done; return to caller. *

 C RETURN

 ===

 * GetHex - subroutine to convert ’InChar’ to ’HexDs’ *

 * *

 * Use division by 16 to separate the two hexadecimal digits. *

 * The quotient is the first digit, the remainder is the second. *

 ===

 C GetHex BEGSR

 C EVAL IntChar = InChar

 C IntNum DIV 16 X1 5 0

 C MVR X2 5 0

 * Use the hexadecimal digit (plus 1) to substring the list of *

 * hexadecimal characters ’012...CDEF’. *

 C EVAL HexC1 = %SUBST(HexDigits:X1+1:1)

 C EVAL HexC2 = %SUBST(HexDigits:X2+1:1)

 C ENDSR

Figure 42. Source for Service Program CvtToHex (Part 2 of 2)

Sample Service Program

96 ILE RPG Programmer’s Guide

When designing this service program, it was decided to make use of binder

language to determine the interface, so that the program could be more easily

updated at a later date. Figure 44 shows the binder language needed to define the

exports of the service program CVTTOHEX. This source is used in the EXPORT,

SRCFILE and SRCMBR parameters of the CRTSRVPGM command.

 The parameter SIGNATURE on STRPGMEXP identifies the interface that the

service program will provide. In this case, the export identified in the binder

language is the interface. Any program bound to CVTTOHEX will make use of this

signature.

The binder language EXPORT statements identify the exports of the service

program. You need one for each procedure whose exports you want to make

available to the caller. In this case, the service program contains one module which

contains one procedure. Hence, only one EXPORT statement is required.

For more information on binder language and signatures, see ILE Concepts.

Creating the Service Program

To create the service program CVTTOHEX, follow these steps:

1. Create the module CVTTOHEX from the source in Figure 42 on page 95, by

entering:

 CRTRPGMOD MODULE(MYLIB/CVTTOHEX) SRCFILE(MYLIB/QRPGLESRC)

2. Create the service program using the module CVTTOHEX and the binder

language shown in Figure 44.

 CRTSRVPGM SRVPGM(MYLIB/CVTTOHEX) MODULE(*SRVPGM)

 EXPORT(*SRCFILE) SRCFILE(MYLIB/QSRVSRC)

 SRCMBR(*SRVPGM)

The last three parameters in the above command identify the exports which the

service program will make available. In this case, it is based on the source

found in the member CVTTOHEX in the file QSRVSRC in the library MYLIB.

Note that a binding directory is not required here because all modules needed

to create the service program have been specified with the MODULE

parameter.

 ===

 * CvtToHex - convert input string to hex output string

 *

 * Parameters

 * 1. Input: string character(n)

 * 2. Output: hex string character(2 * n)

 ===

 D CvtToHex PR OPDESC

 D InString 16383 CONST OPTIONS(*VARSIZE)

 D HexString 32766 OPTIONS(*VARSIZE)

Figure 43. Source for /COPY Member with Prototype for CvtToHex

STRPGMEXP SIGNATURE(’CVTHEX’)

 EXPORT SYMBOL(’CVTTOHEX’)

ENDPGMEXP

Figure 44. Source for Binder Language for CvtToHex

Sample Service Program

Chapter 8. Creating a Service Program 97

The service program CVTTOHEX will be created in the library MYLIB. It can be

debugged using a statement view; this is determined by the default DBGVIEW

parameter on the CRTRPGMOD command. No binder listing is produced.

Binding to a Program

To complete the example, we will create an ’application’ consisting of a program

CVTHEXPGM which is bound to the service program. It uses a seven-character

string which it passes to CVTTOHEX twice, once where the value of the hex string

is 10 (that is, convert 5 characters) and again where the value is 14, that is, the

actual length.

Note that the program CVTHEXPGM serves to show the use of the service

program CVTTOHEX. In a real application the caller of CVTTOHEX would have

another primary purpose other than testing CVTTOHEX. Furthermore, a service

program would normally be used by many other programs, or many times by a

few programs; otherwise the overhead of initial call does not justify making it into

a service program.

To create the application follow these steps:

1. Create the module from the source in Figure 45 on page 99, by entering:

 CRTRPGMOD MODULE(MYLIB/CVTHEXPGM) SRCFILE(MYLIB/QRPGLESRC)

2. Create the program by typing

 CRTPGM PGM(MYLIB/CVTHEXPGM)

 BNDSRVPGM(MYLIB/CVTTOHEX)

 DETAIL(*BASIC)

When CVTHEXPGM is created, it will include information regarding the

interface it uses to interact with the service program. This is the same as

reflected in the binder language for CVTTOHEX.

3. Call the program, by typing:

 CALL CVTHEXPGM

During the process of making CVTHEXPGM ready to run, the system verifies

that:

v The service program CVTTOHEX in library MYLIB can be found

v The public interface used by CVTHEXPGM when it was created is still valid

at run time.

If either of the above is not true, then an error message is issued.

The output of CVTHEXPGM is shown below. (The input string is ’ABC123*’.)

Result14++++++

Result10++

C1C2C3F1F2 10 character output

C1C2C3F1F2F35C 14 character output

Sample Service Program

98 ILE RPG Programmer’s Guide

Updating the Service Program

Because of the binder language, the service program could be updated and the

program CVTHEXPGM would not have to be re-compiled. For example, there are

two ways to add a new procedure to CVTTOHEX, depending on whether the new

procedure goes into the existing module or into a new one.

To add a new procedure to an existing module, you would:

 --

 * Program to test Service Program CVTTOHEX *

 * *

 * 1. Use a 7-character input string *

 * 2. Convert to a 10-character hex string (only the first five *

 * input characters will be used because the result is too *

 * small for the entire input string) *

 * 3. Convert to a 14-character hex string (all seven input *

 * characters will be used because the result is long enough) *

 --

 FQSYSPRT O F 80 PRINTER

 * Prototype for CvtToHex

 D/COPY RPGGUIDE/QRPGLE,CVTHEXPR

 D ResultDS DS

 D Result14 1 14

 D Result10 1 10

 D InString S 7

 D Comment S 25

 C EVAL InString = ’ABC123*’

 --

 * Pass character string and the 10-character result field *

 * using a prototyped call. Operational descriptors are *

 * passed, as required by the called procedure CvtToHex. *

 --

 C EVAL Comment = ’10 character output’

 C CLEAR ResultDS

 C CALLP CvtToHex(Instring : Result10)

 C EXCEPT

 --

 * Pass character string and the 14-character result field *

 * using a CALLB(D). The operation extender (D) will create *

 * operational descriptors for the passed parameters. CALLB *

 * is used here for comparison with the above CALLP. *

 --

 C EVAL Comment = ’14 character output’

 C CLEAR ResultDS

 C CALLB(D) ’CVTTOHEX’

 C PARM InString

 C PARM Result14

 C EXCEPT

 C EVAL *INLR = *ON

 OQSYSPRT H 1P

 O ’Result14++++++’

 OQSYSPRT H 1P

 O ’Result10++’

 OQSYSPRT E

 O ResultDS

 O Comment +5

Figure 45. Source for Test Program CVTHEXPGM

Sample Service Program

Chapter 8. Creating a Service Program 99

1. Add the new procedure to the existing module.

2. Recompile the changed module.

3. Modify the binder language source to handle the interface associated with the

new procedure. This would involve adding any new export statements following

the existing ones.

4. Recreate the service program using CRTSRVPGM.

To add a new procedure using a new module, you would:

1. Create a module object for the new procedure.

2. Modify the binder language source to handle the interface associated with the

new procedure, as mentioned above.

3. Bind the new module to service program CVTTOHEX by re-creating the service

program.

With either method, new programs can access the new function. Since the old

exports are in the same order they can still be used by the existing programs. Until

it is necessary to also update the existing programs, they do not have to be

re-compiled.

For more information on updating service programs, see ILE Concepts.

Sample Binder Listing

Figure 46 on page 101 shows a sample binder listing for the CVTHEXPGM. The

listing is an example of a basic listing. For more information on binder listings, see

“Using a Binder Listing” on page 87 and also ILE Concepts.

Sample Service Program

100 ILE RPG Programmer’s Guide

Create Program Page 1

5769WDS V5R2M0 020719 MYLIB/CVTHEXPGM ISERIES1 08/15/02

 23:24:00

 Program . : CVTHEXPGM

 Library . : MYLIB

 Program entry procedure module : *FIRST

 Library . :

 Activation group : *NEW

 Creation options : *GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF

 Listing detail : *BASIC

 Allow Update : *YES

 User profile : *USER

 Replace existing program : *YES

 Authority . : *LIBCRTAUT

 Target release : *CURRENT

 Allow reinitialization : *NO

 Text . : *ENTMODTXT

 Module Library Module Library Module Library Module Library

 CVTHEXPGM MYLIB

 Service Service Service Service

 Program Library Program Library Program Library Program Library

 CVTTOHEX MYLIB

 Binding Binding Binding Binding

 Directory Library Directory Library Directory Library Directory Library

 *NONE

 Create Program Page 2

5769WDS V5R2M0 020719 MYLIB/CVTHEXPGM ISERIES1 08/15/02

 23:24:00

 Brief Summary Table

 Program entry procedures : 1

 Symbol Type Library Object Identifier

 *MODULE MYLIB CVTHEXPGM _QRNP_PEP_CVTHEXPGM

 Multiple strong definitions : 0

 Unresolved references : 0

 * * * * * E N D O F B R I E F S U M M A R Y T A B L E * * * * *

 Create Program Page 3

5769WDS V5R2M0 020719 MYLIB/CVTHEXPGM ISERIES1 08/15/02

 23:24:00

 Binding Statistics

 Symbol collection CPU time : .016

 Symbol resolution CPU time : .004

 Binding directory resolution CPU time : .175

 Binder language compilation CPU time : .000

 Listing creation CPU time : .068

 Program/service program creation CPU time : .234

 Total CPU time . : .995

 Total elapsed time . : 3.531

 * * * * * E N D O F B I N D I N G S T A T I S T I C S * * * * *

*CPC5D07 - Program CVTHEXPGM created in library MYLIB.

 * * * * * E N D O F C R E A T E P R O G R A M L I S T I N G * * * * *

Figure 46. Basic Binder listing for CVTHEXPGM

Sample Service Program

Chapter 8. Creating a Service Program 101

Sample Service Program

102 ILE RPG Programmer’s Guide

Chapter 9. Running a Program

This chapter shows you how to:

v Run a program and pass parameters using the CL CALL command

v Run a program from a menu-driven application

v Run a program using a user-created command

v Manage activation groups

v Manage run-time storage.

In addition, you can run a program using:

v The Programmer Menu. The CL Programming, SC41-5721-06 manual contains

information on this menu.

v The Start Programming Development Manager (STRPDM) command. The

ADTS/400: Programming Development Manager manual contains information on

this command.

v The QCMDEXC program. The CL Programming manual contains information on

this program.

v A high-level language. Chapter 10, “Calling Programs and Procedures,” on page

129 provides information on running programs from another HLL or calling

service programs and procedures.,

Note: Use IBM WebSphere Development Studio Client for iSeries. This is the

recommended method and documentation about running a program

appears in that product’s online help.

Running a Program Using the CL CALL Command

You can use the CL CALL command to run a program (type *PGM). You can use

the command interactively, as part of a batch job, or include it in a CL program. If

you need prompting, type CALL and press F4 (Prompt). If you need help, type

CALL and press F1 (Help).

For example, to call the program EMPRPT from the command line, type:

CALL EMPRPT

The program object specified must exist in a library and this library must be

contained in the library list *LIBL. You can also explicitly specify the library in the

CL CALL command as follows:

CALL MYLIB/EMPRPT

For further information about using the CL CALL command, see the CL and APIs

section of the Programming category in the iSeries Information Center at this Web

site - http://www.ibm.com/eserver/iseries/infocenter.

Once you call your program, the i5/OS system performs the instructions found in

the program.

Passing Parameters using the CL CALL Command

You use the PARM option of the CL CALL command to pass parameters to the ILE

program when you run it.

© Copyright IBM Corp. 1994, 2006 103

http://www.ibm.com/eserver/iseries/infocenter

CALL PGM(program-name)

 PARM(parameter-1 parameter-2 ... parameter-n)

You can also type the parameters without specifying any keywords:

CALL library/program-name (parameter-1 parameter-2 ... parameter-n)

Each parameter value can be specified as a CL program variable or as one of the

following:

v A character string constant

v A numeric constant

v A logical constant

If you are passing parameters to a program where an ILE RPG procedure is the

program entry procedure, then that program must have one and only one *ENTRY

PLIST specified. The parameters that follow (in the PARM statements) should

correspond on a one-to-one basis to those passed through the CALL command.

Refer to the CALL Command in the section on ″Passing Parameters between

Programs″ in the CL Programming manual for a full description of how parameters

are handled.

For example, the program EMPRPT2 requires the correct password to be passed to

it when it first started; otherwise it will not run. Figure 47 shows the source.

1. To create the program, type:

CRTBNDRPG PGM(MYLIB/EMPRPT2)

2. To run the program, type:

CALL MYLIB/EMPRPT2 (HELLO)

When the CALL command is issued, the contents of the parameter passed by

the command is stored and the program parameter PSWORD points to its

location. The program then checks to see if the contents of PSWORD matches

the value stored in the program, ('HELLO'). In this case, the two values are the

same, and so the program continues to run.

 ===

 * PROGRAM NAME: EMPRPT2 *

 * RELATED FILES: EMPMST (PHYSICAL FILE) *

 * PRINT (PRINTER FILE) *

 * DESCRIPTION: This program prints employee information *

 * stored in the file EMPMST if the password *

 * entered is correct. *

 * Run the program by typing "CALL library name/ *

 * EMPRPT2 (PSWORD)" on the command line, where *

 * PSWORD is the password for this program. *

 * The password for this program is ’HELLO’. *

 ===

 FPRINT O F 80 PRINTER

 FEMPMST IP E K DISK

 IEMPREC 01

Figure 47. ILE RPG Program that Requires Parameters at Run Time (Part 1 of 2)

Running a Program Using the CL CALL Command

104 ILE RPG Programmer’s Guide

Figure 48 shows the DDS that is referenced by the EMPRPT2 source.

Running a Program From a Menu-Driven Application

Another way to run an ILE program is from a menu-driven application. The

workstation user selects an option from a menu, which in turn calls a particular

program. Figure 49 on page 106 illustrates an example of an application menu.

 * The entry parameter list is specified in this program. *

 * There is one parameter, called PSWORD, and it is a *

 * character field 5 characters long. *

 C *ENTRY PLIST

 C PARM PSWORD 5

 * The password for this program is ’HELLO’. The field PSWORD *

 * is checked to see whether or not it contains ’HELLO’. *

 * If it does not, the last record indicator (LR) and *IN99 *

 * are set on. *IN99 controls the printing of messages. *

 C PSWORD IFNE ’HELLO’

 C SETON LR99

 C ENDIF

 OPRINT H 1P 2 6

 O 50 ’EMPLOYEE INFORMATION’

 O H 1P

 O 12 ’NAME’

 O 34 ’SERIAL #’

 O 45 ’DEPT’

 O 56 ’TYPE’

 O D 01N99

 O ENAME 20

 O ENUM 32

 O EDEPT 45

 O ETYPE 55

 O D 99

 O 16 ’***’

 O 40 ’Invalid Password Entered’

 O 43 ’***’

Figure 47. ILE RPG Program that Requires Parameters at Run Time (Part 2 of 2)

 A***

 A* DESCRIPTION: This is the DDS for the physical file EMPMST. *

 A* It contains one record format called EMPREC. *

 A* This file contains one record for each employee *

 A* of the company. *

 A***

 A*

 A R EMPREC

 A ENUM 5 0 TEXT(’EMPLOYEE NUMBER’)

 A ENAME 20 TEXT(’EMPLOYEE NAME’)

 A ETYPE 1 TEXT(’EMPLOYEE TYPE’)

 A EDEPT 3 0 TEXT(’EMPLOYEE DEPARTMENT’)

 A ENHRS 3 1 TEXT(’EMPLOYEE NORMAL WEEK HOURS’)

 A K ENUM

Figure 48. DDS for EMPRPT2

Running a Program Using the CL CALL Command

Chapter 9. Running a Program 105

The menu shown in Figure 49 is displayed by a menu program in which each

option calls a separate ILE program. You can create the menu by using STRSDA

and selecting option 2 (’Design menus’).

Figure 50 on page 107 shows the DDS for the display file of the above PAYROLL

DEPARTMENT MENU. The source member is called PAYROL and has a source

type of MNUDDS. The file was created using SDA.

 PAYROLL DEPARTMENT MENU

 Select one of the following:

 1. Inquire into employee master

 2. Change employee master

 3. Add new employee

 Selection or command

 ===> ___

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel

 F13=Information Assistant F16=AS/400 main menu

Figure 49. Example of an Application Menu

Running a Program From a Menu-Driven Application

106 ILE RPG Programmer’s Guide

Figure 51 shows the source of the application menu illustrated in Figure 49 on page

106. The source member is called PAYROLQQ and has a source type of MNUCMD.

It was also created using SDA.

 You run the menu by entering:

GO library name/PAYROL

If the user enters 1, 2, or 3 from the application menu, the source in Figure 51 calls

the programs RPGINQ, RPGCHG, or RPGADD respectively.

 A* Free Form Menu: PAYROL

 A*

 A DSPSIZ(24 80 *DS3 -

 A 27 132 *DS4)

 A CHGINPDFT

 A INDARA

 A PRINT(*LIBL/QSYSPRT)

 A R PAYROL

 A DSPMOD(*DS3)

 A LOCK

 A SLNO(01)

 A CLRL(*ALL)

 A ALWROL

 A CF03

 A HELP

 A HOME

 A HLPRTN

 A 1 34’PAYROLL DEPARTMENT MENU’

 A DSPATR(HI)

 A 3 2’Select one of the following:’

 A COLOR(BLU)

 A 5 7’1.’

 A 6 7’2.’

 A 7 7’3.’

 A* CMDPROMPT Do not delete this DDS spec.

 A 019 2’Selection or command -

 A ’

 A 5 11’Inquire’

 A 5 19’into’

 A 5 24’employee’

 A 5 33’master’

 A 6 11’Change’

 A 6 18’employee’

 A 6 27’master’

 A 7 11’Add’

 A 7 15’new’

 A 7 19’employee’

Figure 50. Data Description Specification of an Application Menu

PAYROLQQ,1

0001 call RPGINQ

0002 call RPGCHG

0003 call RPGADD

Figure 51. Source for Menu Program

Running a Program From a Menu-Driven Application

Chapter 9. Running a Program 107

Running a Program Using a User-Created Command

You can create a command to run a program by using a command definition. A

command definition is an object (type *CMD) that contains the definition of a

command (including the command name, parameter descriptions, and

validity-checking information), and identifies the program that performs the

function requested by the command.

For example, you can create a command, PAY, that calls a program, PAYROLL,

where PAYROLL is the name of an RPG program that you want to run. You can

enter the command interactively, or in a batch job. See the CL Programming manual

for further information about using command definitions.

Replying to Run-Time Inquiry Messages

When you run a program with ILE RPG procedures, run-time inquiry messages

may be generated. They occur when the default error handler is invoked for a

function check in a main procedure. See “Exception Handling within a Main

Procedure” on page 266. The inquiry messages require a response before the

program continues running.

Note: Inquiry messages are never issued for subprocedures, since the default error

handling for a function check in a subprocedure causes the subprocedure to

be cancelled, causing the exception to percolate to the caller of the

subprocedure. See Exception Handling within Subprocedures.

If the caller of the subprocedure is an RPG procedure, the call will fail with status

00202, independent of the status code associated with the actual exception. If the

failed call causes an RPG main procedure to invoke its default handler, inquiry

message RNQ0202 will be issued.

You can add the inquiry messages to a system reply list to provide automatic

replies to the messages. The replies for these messages may be specified

individually or generally. This method of replying to inquiry messages is especially

suitable for batch programs, which would otherwise require an operator to issue

replies.

You can add the following ILE RPG inquiry messages to the system reply list:

 Table 26. ILE RPG Inquiry Messages

RNQ0100

RNQ0101

RNQ0102

RNQ0103

RNQ0104

RNQ0112

RNQ0113

RNQ0114

RNQ0115

RNQ0120

RNQ0121

RNQ0122

RNQ0123

RNQ0202

RNQ0211

RNQ0221

RNQ0222

RNQ0231

RNQ0232

RNQ0299

RNQ0301

RNQ0302

RNQ0303

RNQ0304

RNQ0305

RNQ0306

RNQ0333

RNQ0401

RNQ0402

RNQ0411

RNQ0412

RNQ0413

RNQ0414

RNQ0415

RNQ0421

RNQ0425

RNQ0426

RNQ0431

RNQ0432

RNQ0450

RNQ0501

RNQ0502

RNQ0802

RNQ0803

RNQ0804

RNQ0805

RNQ0907

RNQ1011

RNQ1021

RNQ1022

RNQ1023

RNQ1024

RNQ1031

RNQ1041

RNQ1042

RNQ1051

RNQ1071

RNQ1201

RNQ1211

RNQ1215

RNQ1216

RNQ1217

RNQ1218

RNQ1221

RNQ1222

RNQ1231

RNQ1235

RNQ1241

RNQ1251

RNQ1255

RNQ1261

RNQ1271

RNQ1281

RNQ1282

RNQ1284

RNQ1285

RNQ1286

RNQ1287

RNQ1299

RNQ1331

RNQ9998

RNQ9999

Running a Program Using a User-Created Command

108 ILE RPG Programmer’s Guide

#
#
#
#
#

#
#
#
#

#
#
#
#

Note: ILE RPG inquiry messages have a message id prefix of RNQ.

To add inquiry messages to a system reply list using the Add Reply List Entry

command enter:

ADDRPYLE sequence-no message-id

where sequence-no is a number from 1-9999, which reflects where in the list the

entry is being added, and message-id is the message number you want to add.

Repeat this command for each message you want to add.

Use the Change Job (CHGJOB) command (or other CL job command) to indicate

that your job uses the reply list for inquiry messages. To do this, you should

specify *SYSRPYL for the Inquiry Message Reply (INQMSGRPY) attribute.

The reply list is only used when an inquiry message is sent by a job that has the

Inquiry Message Reply (INQMSGRPY) attribute specified as

INQMSGRPY(*SYSRPYL). The INQMSGRPY parameter occurs on the following CL

commands:

v Change Job (CHGJOB)

v Change Job Description (CHGJOBD)

v Create Job Description (CRTJOBD)

v Submit Job (SBMJOB).

You can also use the Work with Reply List Entry (WRKRPYLE) command to

change or remove entries in the system reply list. For details of the ADDRPYLE

and WRKRPYLE commands, see the CL and APIs section of the Programming

category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Ending an ILE Program

When an ILE program ends normally, the system returns control to the caller. The

caller could be a workstation user or another program (such as the menu-handling

program).

If an ILE program ends abnormally and the program was running in a different

activation group than its caller, then the escape message CEE9901

 Error message-id caused program to end.

is issued and control is returned to the caller.

A CL program can monitor for this exception by using the Monitor Message

(MONMSG) command. You can also monitor for exceptions in other ILE

languages.

If the ILE program is running in the same activation group as its caller and it ends

abnormally, then the message issued will depend on why the program ends. If it

ends with a function check, then CPF9999 will be issued. If the exception is issued

by an RPG procedure, then it will have a message prefix of RNX.

For more information on exception messages, see “Exception Handling Overview”

on page 263.

Replying to Run-Time Inquiry Messages

Chapter 9. Running a Program 109

http://www.ibm.com/eserver/iseries/infocenter

Managing Activation Groups

An activation group is a substructure of a job and consists of system resources (for

example, storage, commitment definitions, and open files) that are allocated to run

one or more ILE or OPM programs. Activation groups make it possible for ILE

programs running in the same job to run independently without intruding on each

other (for example, commitment control and overrides). The basic idea is that all

programs activated within one activation group are developed as one cooperative

application.

You identify the activation group that your ILE program will run in at the time of

program creation. The activation group is determined by the value specified on the

ACTGRP parameter when the program object was created. (OPM programs always

run in the default activation group; you cannot change their activation group

specification.) Once an ILE program (object type *PGM) is activated, it remains

activated until the activation group is deleted.

The remainder of this section tells you how to specify an activation group and how

to delete one. For more information on activation groups, refer to ILE Concepts.

Specifying an Activation Group

You control that activation group your ILE program will run in by specifying a

value for the ACTGRP parameter when you create your program (using CRTPGM

or CRTBNDRPG) or service program (using CRTSRVPGM).

Note: If you are using the CRTBNDRPG command, you can only specify a value

for ACTGRP if the value of DFTACTGRP is *NO.

You can choose one of the following values:

v a named activation group

A named activation group allows you to manage a collection of ILE programs

and service programs as one application. The activation group is created when

the first program that specified the activation group name on creation is called.

It is then used by all programs and service programs that specify the same

activation group name.

A named activation group ends when it is deleted using the CL command

RCLACTGRP. This command can only be used when the activation group is no

longer in use. When it is ended, all resources associated with the programs and

service programs of the named activation group are returned to the system.

The named activation group QILE is the default value of the ACTGRP parameter

on the CRTBNDRPG command. However, because activation groups are

intended to correspond to applications, it is recommended that you specify a

different value for this parameter. For example, you may want to name the

activation group after the application name.

v *NEW

When *NEW is specified, a new activation group is created whenever the

program is called. The system creates a name for the activation group. The name

is unique within your job.

An activation group created with *NEW always ends when the program(s)

associated with it end. For this reason, if you plan on returning from your

program with LR OFF in order to keep your program active, then you should

not specify *NEW for the ACTGRP parameter.

Managing Activation Groups

110 ILE RPG Programmer’s Guide

Note: This value is not valid for service programs. A service program can only

run in a named activation group or the activation group of its caller.

*NEW is the default value for the ACTGRP parameter on the CRTPGM

command.

If you create an ILE RPG program with ACTGRP(*NEW), you can then call the

program as many times as you want without returning from earlier calls. With

each call, there is a new copy of the program. Each new copy will have its own

data, open its files, etc.. However, you must ensure that there is some way to

end the calls to ’itself’; otherwise you will just keep creating new activation

groups and the programs will never return.

v *CALLER

The program or service program will be activated into the activation group of

the calling program. If an ILE program created with ACTGRP(*CALLER) is

called by an OPM program, then it will be activated into the OPM default

activation group (*DFTACTGRP).

Running in the OPM Default Activation Group

When an i5/OS job is started, the system creates an activation group to be used by

OPM programs. The symbol used to represent this activation group is

*DFTACTGRP. You cannot delete the OPM default activation group. It is deleted by

the system when your job ends.

OPM programs automatically run in the OPM default activation group. An ILE

program will also run in the OPM default activation group when one of the

following occurs:

v The program was created with DFTACTGRP(*YES) on the CRTBNDRPG

command.

v The program was created with ACTGRP(*CALLER) at the time of program

creation and the caller of the program runs in the default activation group. Note

that you can only specify ACTGRP(*CALLER) on the CRTBNDRPG command if

DFTACTGRP(*NO) is also specified.

Note: The resources associated with a program running in the OPM default

activation group via *CALLER will not be deleted until the job ends.

Maintaining OPM RPG/400 and ILE RPG Program

Compatibility

If you have an OPM application that consists of several RPG programs, you can

ensure that the migrated application will behave like an OPM one if you create the

ILE application as follows:

1. Convert each OPM source member using the CVTRPGSRC command, making

sure to convert the /COPY members.

See “Converting Your Source” on page 432 for more information.

2. Using the CRTBNDRPG command, compile and bind each converted source

member separately into a program object, specifying DFTACTGRP(*YES).

For more information on OPM-compatible programs. refer to “Strategy 1:

OPM-Compatible Application” on page 23.

Managing Activation Groups

Chapter 9. Running a Program 111

Deleting an Activation Group

When an activation group is deleted, its resources are reclaimed. The resources

include static storage and open files. A *NEW activation group is deleted when the

program it is associated with returns to its caller.

Named activation groups (such as QILE) are persistent activation groups in that

they are not deleted unless explicitly deleted or unless the job ends. The storage

associated with programs running in named activation groups is not released until

these activation groups are deleted.

An ILE RPG program created DFTACTGRP(*YES) will have its storage released

when it ends with LR on or abnormally.

Note: The storage associated with ILE programs running in the default activation

group via *CALLER is not released until you sign off (for an interactive job)

or until the job ends (for a batch job).
If many ILE RPG programs are activated (that is called at least once) system

storage may be exhausted. Therefore, you should avoid having ILE programs that

use large amounts of static storage run in the OPM default activation group, since

the storage will not be reclaimed until the job ends.

The storage associated with a service program is reclaimed only when the

activation group it is associated with ends. If the service program is called into the

default activation group, its resources are reclaimed when the job ends.

You can delete a named activation group using the RCLACTGRP command. Use

this command to delete a nondefault activation group that is not in use. The

command provides options to either delete all eligible activation groups or to

delete an activation group by name.

For more information on the RCLACTGRP command, refer to the see the CL and

APIs section of the Programming category in the iSeries Information Center at this

Web site - http://www.ibm.com/eserver/iseries/infocenter. For more information

on the RCLACTGRP and activation groups, refer to ILE Concepts.

Reclaim Resources Command

The Reclaim Resources (RCLRSC) command is designed to free the resources for

programs that are no longer active. The command works differently depending on

how the program was created. If the program is an OPM program or was created

with DFTACTGRP(*YES), then the RCLRSC command will close open files and free

static storage.

For ILE programs or service programs that were activated into the OPM default

activation group because they were created with *CALLER, files will be closed

when the RCLRSC command is issued. For programs, the storage will be

re-initialized; however, the storage will not be released. For service programs, the

storage will neither be re-initialized nor released.

Note: This means that if you have a service program that ran in the default

activation group and left files open (returning with LR off), and a RCLRSC

is issued, when you call the service program again, the files will still appear

to be open, so so any I/O operations will result in an error.

Managing Activation Groups

112 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

For ILE programs associated with a named activation group, the RCLRSC

command has no effect. You must use the RCLACTGRP command to free resources

in a named activation group.

For more information on the RCLRSC command, refer to the CL and APIs section

of the Programming category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter. For more information on the

RCLRSC and activation groups, refer to ILE Concepts.

Managing Dynamically-Allocated Storage

ILE allows you to directly manage run-time storage from your program by

managing heaps. A heap is an area of storage used for allocations of dynamic

storage. The amount of dynamic storage required by an application depends on the

data being processed by the programs and procedures that use the heap.

To manage heaps, you can use:

v The ALLOC, REALLOC, and DEALLOC operation codes

v The %ALLOC and %REALLOC built-in functions

v The ILE bindable APIs

You are not required to explicitly manage run-time storage. However, you may

want to do so if you want to make use of dynamically allocated run-time storage.

For example, you may want to do this if you do not know exactly how large an

array or multiple-occurrence data structure should be. You could define the array

or data structure as BASED, and acquire the actual storage for the array or data

structure once your program determines how large it should be.

Managing Activation Groups

Chapter 9. Running a Program 113

http://www.ibm.com/eserver/iseries/infocenter

There are two types of heaps available on the system: a default heap and a

user-created heap. The RPG storage management operations use the default heap.

The following sections show how to use RPG storage management operations with

the default heap, and also how to create and use your own heap using the storage

management APIs. For more information on user-created heaps and other ILE

storage management concepts refer to ILE Concepts.

 * Two counters are kept:

 * 1. The current number of array elements

 * 2. The number of array elements that are allocated for the array

D arrInfo DS QUALIFIED

D pArr * INZ(*NULL)

D numElems 10I 0 INZ(0)

D numAlloc 10I 0 INZ(0)

D arr S 20A VARYING DIM(32767)

D BASED(arrInfo.pArr)

D i S 10I 0

 /free

 // Allocate storage for a few array elements

 // (The number of elements that the array is considered to

 // actually have remains zero.)

 arrInfo.numAlloc = 2;

 arrInfo.pArr = %alloc(arrInfo.numAlloc * %size(arr));

 // Add two elements to the array

 if arrInfo.numAlloc < arrInfo.numElems + 2;

 // There is no room for the new elements.

 // Allocate a few more elements.

 arrInfo.numAlloc += 10;

 arrInfo.pArr = %realloc (arrInfo.pArr

 : arrInfo.numAlloc * %size(arr));

 endif;

 arrInfo.numElems += 1;

 arr(arrInfo.numElems) = ’XYZ Electronics’;

 arrInfo.numElems += 1;

 arr(arrInfo.numElems) = ’ABC Tools’;

 // Search the array

 i = %lookup (’XYZ Electronics’ : arr : 1 : arrInfo.numElems);

 // i = 1

 // Sort the array

 sorta %subarr(arr : 1 : arrInfo.numElems);

 // Search the array again

 i = %lookup (’XYZ Electronics’ : arr : 1 : arrInfo.numElems);

 // Now, i = 2, since the array is now sorted

 // Remove the last element from the array

 arrInfo.numElems -= 1;

 // Clear the array

 // This can be done simply by setting the current number of

 // elements to zero. It is not necessary to actually clear

 // the data in the previously used elements.

 arrInfo.numElems = 0;

 // Free the storage for the array

 dealloc arrInfo.pArr;

 reset arrInfo;

 return;

Figure 52. Allocating, sorting and searching dynamically-allocated arrays

Managing Dynamically-Allocated Storage

114 ILE RPG Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Managing the Default Heap Using RPG Operations

The first request for dynamic storage within an activation group results in the

creation of a default heap from which the storage allocation takes place.

Additional requests for dynamic storage are met by further allocations from the

default heap. If there is insufficient storage in the heap to satisfy the current

request for dynamic storage, the heap is extended and the additional storage is

allocated.

Allocated dynamic storage remains allocated until it is explicitly freed or until the

heap is discarded. The default heap is discarded only when the owning activation

group ends.

Programs in the same activation group all use the same default heap. If one

program accesses storage beyond what has be allocated, it can cause problems for

another program. For example, assume that two programs, PGM A and PGM B are

running in the same activation group. 10 bytes are allocated for PGM A, but 11

bytes are changed by PGM A. If the extra byte was in fact allocated for PGM B,

problems may arise for PGM B.

You can use the following RPG operations on the default heap:

v The ALLOC operation code and the %ALLOC built-in function allocate storage

within the default heap.

v The DEALLOC operation code frees one previous allocation of heap storage

from any heap.

v The REALLOC operation code and the %REALLOC built-in function change the

size of previously allocated storage from any heap.

Note: Although ALLOC and %ALLOC work only with the default heap,

DEALLOC, REALLOC, and %REALLOC work with both the default heap

and user-created heaps.

Figure 53 on page 116 shows an example of how the memory management

operation codes can be used to build a linked list of names.

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 115

 * Prototypes for subprocedures in this module *

 D AddName PR

 D name_parm 40A

 D Display PR

 D Free PR

 * Each element in the list contains a pointer to the *

 * name and a pointer to the next element *

 D elem DS BASED(elem@)

 D name@ *

 D next@ *

 D name_len 5U 0

 D nameVal S 40A BASED(name@)

 D elemSize C %SIZE(elem)

 * The first element in the list is in static storage. *

 * The name field of this element is not set to a value. *

 D first DS

 D * INZ(*NULL)

 D * INZ(*NULL)

 D 5U 0 INZ(0)

 * This is the pointer to the current element. *

 * When elem@ is set to the address of <first>, the list is *

 * empty. *

 D elem@ S * INZ(%ADDR(first))

 * Put 5 elements in the list *

 C DO 5

 C ’Name?’ DSPLY name 40

 C CALLP AddName(name)

 C ENDDO

 * Display the list and then free it. *

 C CALLP Display

 C CALLP Free

 C EVAL *INLR = ’1’

Figure 53. Memory Management - Build a Linked List of Names (Part 1 of 5)

Managing Dynamically-Allocated Storage

116 ILE RPG Programmer’s Guide

 * S U B P R O C E D U R E S *

 * AddName - add a name to the end of the list *

 P AddName B

 D AddName pi

 D name 40A

 * Allocate a new element for the array, pointed at by the *

 * ’next’ pointer of the current end of the list. *

 * *

 * Before: *

 * *

 * .-------------. *

 * | | *

 * | name *--->abc *

 * | name_len 3 | *

 * | next *-------||| *

 * | | *

 * ’-------------’ *

 * *

 C ALLOC elemSize next@

 * *

 * After: Note that the old element is still the current one *

 * because elem@ is still pointing to the old element *

 * *

 * .-------------. .--------------. *

 * | | .------>| | *

 * | name *--->abc | | | *

 * | name_len 3 | | | | *

 * | next *----------’ | | *

 * | | | | *

 * ’-------------’ ’--------------’ *

 * *

 * Now set elem@ to point to the new element *

 C EVAL elem@ = next@

Figure 53. Memory Management - Build a Linked List of Names (Part 2 of 5)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 117

 * *

 * After: Now the names name@, name_len and next@ refer *

 * to storage in the new element *

 * *

 * .-------------. .--------------. *

 * | | .------>| | *

 * | *--->abc | | name * | *

 * | 3 | | | name_len | *

 * | *----------’ | next * | *

 * | | | | *

 * ’-------------’ ’--------------’ *

 * *

 * Now set the values of the new element. *

 * The next pointer is set to *NULL to indicate that it is the *

 * end of the list. *

 C EVAL next@ = *NULL

 * Save the length of the name (not counting trailing blanks)

 C EVAL name_len = %len(%trimr(name))

 * Storage is allocated for the name and then set to the value of

 * the name.

 C ALLOC name_len name@

 C EVAL %SUBST(nameVal:1&gml.name_len) = name

 * *

 * After: *

 * *

 * .-------------. .--------------. *

 * | | .------>| | *

 * | *--->abc | | name *--->newname *

 * | 3 | | | name_len nn | *

 * | *----------’ | next *--->||| *

 * | | | | *

 * ’-------------’ ’--------------’ *

 P AddName E

Figure 53. Memory Management - Build a Linked List of Names (Part 3 of 5)

Managing Dynamically-Allocated Storage

118 ILE RPG Programmer’s Guide

 * Display - display the list *

 P Display B

 D saveElem@ S *

 D dspName S 40A

 * Save the current elem pointer so the list can be restored after *

 * being displayed and set the list pointer to the beginning of *

 * the list. *

 C EVAL saveElem@ = elem@

 C EVAL elem@ = %ADDR(first)

 * Loop through the elements of the list until the next pointer is *

 * *NULL *

 C DOW next@ <> *NULL

 C EVAL elem@ = next@

 C EVAL dspName = %SUBST(nameVal:1:name_len)

 C ’Name: ’ dsply dspName

 C ENDDO

 * Restore the list pointer to its former place

 C EVAL elem@ = saveElem@

 P Display E

Figure 53. Memory Management - Build a Linked List of Names (Part 4 of 5)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 119

Heap Storage Problems

Figure 54 on page 121 shows possible problems associated with the misuse of heap

storage.

 * Free - release the storage used by the list *

 P Free B

 D prv@ S *

 * Loop through the elements of the list until the next pointer is *

 * *NULL, starting from the first real element in the list *

 C EVAL elem@ = %ADDR(first)

 C EVAL elem@ = next@

 C DOW elem@ <> *NULL

 * Free the storage for name *

 C DEALLOC name@

 * Save the pointer to current elem@

 C EVAL prv@ = elem@

 * Advance elem@ to the next element

 C EVAL elem@ = next@

 * Free the storage for the current element

 C DEALLOC prv@

 C ENDDO

 * Ready for a new list:

 C EVAL elem@ = %ADDR(first)

 P Free E

Figure 53. Memory Management - Build a Linked List of Names (Part 5 of 5)

Managing Dynamically-Allocated Storage

120 ILE RPG Programmer’s Guide

Similarly, errors can occur in the following cases:

v A similar error can be made if a pointer is copied before being reallocated or

deallocated. Great care must be taken when copying pointers to allocated

storage, to ensure that they are not used after the storage is deallocated or

reallocated.

v If a pointer to heap storage is copied, the copy can be used to deallocate or

reallocate the storage. In this case, the original pointer should not be used until

it is set to a new value.

v If a pointer to heap storage is passed as a parameter, the callee could deallocate

or reallocate the storage. After the call returns, attempts to access the pointer

could cause problems.

v If a pointer to heap storage is set in the *INZSR, a later RESET of the pointer

could cause the pointer to get set to storage that is no longer allocated.

v Another type of problem can be caused if a pointer to heap storage is lost (by

being cleared, or set to a new pointer by an ALLOC operation, for example).

Once the pointer is lost, the storage it pointed to cannot be freed. This storage is

unavailable to be allocated since the system does not know that the storage is no

longer addressable.

The storage will not be freed until the activation group ends.

Managing Your Own Heap Using ILE Bindable APIs

You can isolate the dynamic storage used by some programs and procedures

within an activation group by creating one or more user-created heaps. For

information on creating a user-created heap refer to ILE Concepts.

The following example shows you how to manage dynamic storage for a run-time

array with a user-created heap from an ILE RPG procedure. In this example, the

procedures in the module DYNARRAY dynamically allocate storage for a

practically unbounded packed array. The procedures in the module perform the

following actions on the array:

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * Heap Storage Misuse *

D Fld1 S 25A BASED(Ptr1)

D Ptr1 S *

 /FREE

 Ptr1 = %ALLOC(25);

 DEALLOC Ptr1;

 // After this point, Fld1 should not be accessed since the

 // basing pointer Ptr1 no longer points to allocated storage.

 SomePgm();

 // During the previous call to ’SomePgm’, several storage allocations

 // may have been done. In any case, it is extremely dangerous to

 // make the following assignment, since 25 bytes of storage will

 // be filled with ’a’. It is impossible to know what that storage

 // is currently being used for.

 Fld1 = *ALL’a’;

 /END-FREE

Figure 54. Heap Storage Misuse

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 121

v Initialize the array

v Add an element to the array

v Return the value of an element

v Release the storage for the array.

DYNARRAY performs these actions using the three ILE bindable storage APIs,

CEECRHP (Create Heap), CEEGTST (Get Storage), and CEEDSHP (Discard Heap),

as well as the REALLOC operation code. For specific information about the storage

management bindable APIs, refer to the CL and APIs section of the Programming

category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Figure 55 shows the /COPY file DYNARRI containing the prototypes for the

procedures in DYNARRAY. This /COPY file is used by the DYNARRAY module as

well as any other modules that call the procedures in DYNARRAY.

DYNARRAY has been defined for use with a (15,0) packed decimal array. It could

easily be converted to handle a character array simply by changing the definition

of DYNA_TYPE to a character field.

 Figure 56 on page 123 shows the beginning of module DYNARRAY containing the

Control specification, and Definition specifications.

 *===

 * DYNARRAY : Handle a (practically) unbounded run-time

 * Packed(15,0) array. The DYNARRAY module contains

 * procedures to allocate the array, return or set

 * an array value and deallocate the array.

 *===

 D DYNA_TYPE S 15P 0

 D DYNA_INIT PR

 D DYNA_TERM PR

 D DYNA_SET PR

 D Element VALUE LIKE(DYNA_TYPE)

 D Index 5I 0 VALUE

 D DYNA_GET PR LIKE(DYNA_TYPE)

 D Index 5I 0 VALUE

Figure 55. /COPY file DYNARRI containing prototypes for DYNARRAY module

Managing Dynamically-Allocated Storage

122 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

*===

 * DYNARRAY : Handle a (practically) unbounded run-time

 * Packed(15,0) array. This module contains

 * procedures to allocate the array, return or set

 * an array value and deallocate the array.

 *===

 H NOMAIN

 *---

 * Prototypes for the procedures in this module.

 *---

 /COPY DYNARRI

 *---

 * Interface to the CEEGTST API (Get Heap Storage).

 * 1) HeapId = Id of the heap.

 * 2) Size = Number of bytes to allocate

 * 3) RetAddr= Return address of the allocated storage

 * 4) *OMIT = The feedback parameter. Specifying *OMIT here

 * means that we will receive an exception from

 * the API if it cannot satisfy our request.

 * Since we do not monitor for it, the calling

 * procedure will receive the exception.

 *---

 D CEEGTST PR

 D HeapId 10I 0 CONST

 D Size 10I 0 CONST

 D RetAddr *

 D Feedback 12A OPTIONS(*OMIT)

 *---

 * Interface to the CEECRHP API (Create Heap).

 * 1) HeapId = Id of the heap.

 * 2) InitSize = Initial size of the heap.

 * 3) Incr = Number of bytes to increment if heap must be

 * enlarged.

 * 4) AllocStrat = Allocation strategy for this heap. We will

 * specify a value of 0 which allows the system

 * to choose the optimal strategy.

 * 5) *OMIT = The feedback parameter. Specifying *OMIT here

 * means that we will receive an exception from

 * the API if it cannot satisfy our request.

 * Since we do not monitor for it, the calling

 * procedure will receive the exception.

 *---

 D CEECRHP PR

 D HeapId 10I 0

 D InitSize 10I 0 CONST

 D Incr 10I 0 CONST

 D AllocStrat 10I 0 CONST

 D Feedback 12A OPTIONS(*OMIT)

Figure 56. Global variables and local prototypes for DYNARRAY (Part 1 of 2)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 123

Figure 57 on page 125 shows the subprocedures in DYNARRAY.

 *---

 * Interface to the CEEDSHP API (Discard Heap).

 * 1) HeapId = Id of the heap.

 * 2) *OMIT = The feedback parameter. Specifying *OMIT here

 * means that we will receive an exception from

 * the API if it cannot satisfy our request.

 * Since we do not monitor for it, the calling

 * procedure will receive the exception.

 *---

 D CEEDSHP PR

 D HeapId 10I 0

 D Feedback 12A OPTIONS(*OMIT)

 *---

 * Global variables.

 *---

 D HeapVars DS

 D HeapId 10I 0

 D DynArr@ *

 *---

 * Define the dynamic array. We code the number of elements

 * as the maximum allowed, noting that no storage will actually

 * be declared for this definition (because it is BASED).

 *---

 D DynArr S DIM(32767) BASED(DynArr@)

 D LIKE(DYNA_TYPE)

 *---

 * Global to keep track of the current number of elements

 * in the dynamic array.

 *---

 D NumElems S 10I 0 INZ(0)

 *---

 * Initial number of elements that will be allocated for the

 * array, and minimum number of elements that will be added

 * to the array on subsequent allocations.

 *---

 D INITALLOC C 100

 D SUBSALLOC C 100

Figure 56. Global variables and local prototypes for DYNARRAY (Part 2 of 2)

Managing Dynamically-Allocated Storage

124 ILE RPG Programmer’s Guide

*===

 * DYNA_INIT: Initialize the array.

 *

 * Function: Create the heap and allocate an initial amount of

 * storage for the run time array.

 *===

 P DYNA_INIT B EXPORT

 *---

 * Local variables.

 *---

 D Size S 10I 0

 *

 * Start with a pre-determined number of elements.

 *

 C Z-ADD INITALLOC NumElems

 *

 * Determine the number of bytes needed for the array.

 *

 C EVAL Size = NumElems * %SIZE(DynArr)

 *

 * Create the heap

 *

 C CALLP CEECRHP(HeapId : Size : 0 : 0 : *OMIT)

 *

 * Allocate the storage and set the array basing pointer

 * to the pointer returned from the API.

 *

 * Note that the ALLOC operation code uses the default heap so

 * we must use the CEEGTST API to specify a different heap.

 *

 C CALLP CEEGTST(HeapId : Size : DynArr@ : *OMIT)

 *

 * Initialize the storage for the array.

 *

 C 1 DO NumElems I 5 0

 C CLEAR DynArr(I)

 C ENDDO

 P DYNA_INIT E

 *===

 * DYNA_TERM: Terminate array handling.

 *

 * Function: Delete the heap.

 *===

 P DYNA_TERM B EXPORT

 C CALLP CEEDSHP(HeapId : *OMIT)

 C RESET HeapVars

 P DYNA_TERM E

Figure 57. DYNARRAY Subprocedures (Part 1 of 4)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 125

*===

 * DYNA_SET: Set an array element.

 *

 * Function: Ensure the array is big enough for this element,

 * and set the element to the provided value.

 *===

 P DYNA_SET B EXPORT

 *---

 * Input parameters for this procedure.

 *---

 D DYNA_SET PI

 D Element VALUE LIKE(DYNA_TYPE)

 D Index 5I 0 VALUE

 *---

 * Local variables.

 *---

 D Size S 10I 0

 *---

 * If the user selects to add to the array, then first check

 * if the array is large enough, if not then increase its

 * size. Add the element.

 *---

 C Index IFGT NumElems

 C EXSR REALLOC

 C ENDIF

 C EVAL DynArr(Index) = Element

 *===

 * REALLOC: Reallocate storage subroutine

 *

 * Function: Increase the size of the dynamic array

 * and initialize the new elements.

 *===

 C REALLOC BEGSR

 *

 * Remember the old number of elements

 *

 C Z-ADD NumElems OldElems 5 0

Figure 57. DYNARRAY Subprocedures (Part 2 of 4)

Managing Dynamically-Allocated Storage

126 ILE RPG Programmer’s Guide

The logic of the subprocedures is as follows:

 *

 * Calculate the new number of elements. If the index is

 * greater than the current number of elements in the array

 * plus the new allocation, then allocate up to the index,

 * otherwise, add a new allocation amount onto the array.

 *

 C IF Index > NumElems + SUBSALLOC

 C Z-ADD Index NumElems

 C ELSE

 C ADD SUBSALLOC NumElems

 C ENDIF

 *

 * Calculate the new size of the array

 *

 C EVAL Size = NumElems * %SIZE(DynArr)

 *

 * Reallocate the storage. The new storage has the same value

 * as the old storage.

 *

 C REALLOC Size DynArr@

 *

 * Initialize the new elements for the array.

 *

 C 1 ADD OldElems I

 C I DO NumElems I 5 0

 C CLEAR DynArr(I)

 C ENDDO

 C ENDSR

 P DYNA_SET E

Figure 57. DYNARRAY Subprocedures (Part 3 of 4)

 *===

 * DYNA_GET: Return an array element.

 *

 * Function: Return the current value of the array element if

 * the element is within the size of the array, or

 * the default value otherwise.

 *===

 P DYNA_GET B EXPORT

 *---

 * Input parameters for this procedure.

 *---

 D DYNA_GET PI LIKE(DYNA_TYPE)

 D Index 5I 0 VALUE

 *---

 * Local variables.

 *---

 D Element S LIKE(DYNA_TYPE) INZ

 *---

 * If the element requested is within the current size of the

 * array then return the element’s current value. Otherwise

 * the default (initialization) value can be used.

 *---

 C Index IFLE NumElems

 C EVAL Element = DynArr(Index)

 C ENDIF

 C RETURN Element

 P DYNA_GET E

Figure 57. DYNARRAY Subprocedures (Part 4 of 4)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 127

1. DYNA_INIT creates the heap using the ILE bindable API CEECRHP (Create

Heap), storing the heap Id in a global variable HeapId. It allocates heap storage

based on initial value of the array (in this case 100) by calling the ILE bindable

API CEEGTST (Get Heap Storage).

2. DYNA_TERM destroys the heap using the ILE bindable API CEEDSHP

(Discard Heap).

3. DYNA_SET sets the value of an element in the array.

Before adding an element to the array, the procedure checks to see if there is

sufficient heap storage. If not, it uses operation code REALLOC to acquire

additional storage.

4. DYNA_GET returns the value of a specified element. The procedure returns to

the caller either the element requested, or zeros. The latter occurs if the

requested element has not actually been stored in the array.

To create the module DYNARRAY, type:

CRTRPGMOD MODULE(MYLIB/DYNARRAY) SRCFILE(MYLIB/QRPGLESRC)

The procedure can then be bound with other modules using CRTPGM or

CRTSRVPGM.

Figure 58 shows another module that tests the procedures in DYNARRAY.

 *===

 * DYNTEST: Test program for DYNARRAY module.

 *===

 /COPY EXAMPLES,DYNARRI

 D X S LIKE(DYNA_TYPE)

 * Initialize the array

 C CALLP DYNA_INIT

 * Set a few elements

 C CALLP DYNA_SET (25 : 3)

 C CALLP DYNA_SET (467252232 : 1)

 C CALLP DYNA_SET (-2311 : 750)

 * Retrieve a few elements

 C EVAL X = DYNA_GET (750)

 C ’750’ DSPLY X

 C EVAL X = DYNA_GET (8001)

 C ’8001’ DSPLY X

 C EVAL X = DYNA_GET (2)

 C ’2’ DSPLY X

 * Clean up

 C CALLP DYNA_TERM

 C SETON LR

Figure 58. Sample module using procedures in DYNARRAY

Managing Dynamically-Allocated Storage

128 ILE RPG Programmer’s Guide

Chapter 10. Calling Programs and Procedures

In ILE, it is possible to call either a program or procedure. Furthermore, ILE RPG

provides the ability to call prototyped or non-prototyped programs and

procedures. (A prototype is an external definition of the call interface that allows

the compiler to check the interface at compile time.)

The recommended way to call a program or procedure is to use a prototyped call.

The syntax for calling and passing parameters to prototyped procedures or

programs uses the same free-form syntax that is used with built-in functions or

within expressions. For this reason, a prototyped call is sometimes referred to as a

’free-form’ call.

Use the CALL or CALLB operations to call a program or procedure when:

v You have an extremely simple call interface

v You require the power of the PARM operation with factor 1 and factor 2.

v You want more flexibility than is allowed by prototyped parameter checking.

This chapter describes how to:

v Call a program or procedure

v Use a prototyped call

v Pass prototyped parameters

v Use a fixed-form call

v Return from a program or procedure

v Use ILE bindable APIs

v Call a Graphics routine

v Call special routines

Program/Procedure Call Overview

Program processing within ILE occurs at the procedure level. ILE programs consist

of one or more modules which in turn consist of one or more procedures. An ILE

RPG module contains an optional main procedure and zero or more

subprocedures. In this chapter, the term ’procedure’ applies to both main

procedures and subprocedures.

An ILE ’program call’ is a special form of procedure call; that is, it is a call to the

program entry procedure. A program entry procedure is the procedure that is

designated at program creation time to receive control when a program is called. If

the entry module of the program is an ILE RPG module, then the main procedure

of that module is called by the program entry procedure immediately after the

program is called.

This section contains general information on:

v Program call compared to procedure call

v Call stack (or how a series of calls interact)

v Recursion

v Parameter passing considerations

© Copyright IBM Corp. 1994, 2006 129

Calling Programs

You can call OPM or ILE programs by using program calls. A program call is a call

that is made to a program object (*PGM). The called program’s name is resolved to

an address at run time, just before the calling program passes control to the called

program for the first time. For this reason, program calls are often referred to as

dynamic calls.

Calls to an ILE program, an EPM program, or an OPM program are all examples

of program calls. A call to a non-bindable API is also an example of a program call.

You use the CALLP operation or both the CALL and PARM operations to make a

program call. If you use the CALL and PARM operations, then the compiler cannot

perform type checking on the parameters, which may result in run-time errors.

When an ILE program is called, the program entry procedure receives the program

parameters and is given initial control for the program. In addition, all procedures

within the program become available for procedure calls.

Calling Procedures

Unlike OPM programs, ILE programs are not limited to using program calls. ILE

programs can also use static procedure calls or procedure pointer calls to call other

procedures. Procedure calls are also referred to as bound calls.

A static procedure call is a call to an ILE procedure where the name of the

procedure is resolved to an address during binding — hence, the term static. As a

result, run-time performance using static procedure calls is faster than run-time

performance using program calls. Static calls allow operational descriptors, omitted

parameters, and they extend the limit (to 399) on the number of parameters that

are passed.

Procedure pointer calls provide a way to call a procedure dynamically. For

example, you can pass a procedure pointer as a parameter to another procedure

which would then run the procedure that is specified in the passed parameter. You

can also manipulate arrays of procedure names or addresses to dynamically route

a procedure call to different procedures. If the called procedure is in the same

activation group, the cost of a procedure pointer call is almost identical to the cost

of a static procedure call.

Using either type of procedure call, you can call:

v A procedure in a separate module within the same ILE program or service

program.

v A procedure in a separate ILE service program.

Any procedure that can be called by using a static procedure call can also be called

through a procedure pointer.

For a list of examples using static procedure calls, see “Examples of Free-Form

Call” on page 136 and “Examples of CALL and CALLB” on page 151. For

examples of using procedure pointers, see the section on the procedure pointer

data type in WebSphere Development Studio: ILE RPG Reference.

You use the CALLP or both the CALLB and PARM operations to make a

procedure call. You can also call a prototyped procedure with an expression if the

Program/Procedure Call Overview

130 ILE RPG Programmer’s Guide

procedure returns a value. If you use the CALLB and PARM operations, then the

compiler cannot perform type checking on the parameters, which may result in

run-time errors.

The Call Stack

The call stack is a list of call stack entries, in a last-in-first-out (LIFO) order. A call

stack entry is a call to a program or procedure. There is one call stack per job.

When an ILE program is called, the program entry procedure is first added to the

call stack. The system then automatically performs a procedure call, and the

associated user’s procedure (the main procedure) is added. When a procedure is

called, only the user’s procedure (a main procedure or subprocedure) is added;

there is no overhead of a program entry procedure.

Figure 59 shows a call stack for an application consisting of an OPM program

which calls an ILE program. The RPG main procedure of the ILE program calls an

RPG subprocedure, which in turn calls a C procedure. Note that in the diagrams in

this book, the most recent entry is at the bottom of the stack.

Note: In a program call, the calls to the program entry procedure and the user

entry procedure (UEP) occur together, since the call to the UEP is automatic.

Therefore, from now on, the two steps of a program call will be combined in

later diagrams involving the call stack in this and remaining chapters.

Recursive Calls

Recursive calls are only allowed for subprocedures. A recursive call is one where

procedure A calls itself or calls procedure B which then calls procedure A again.

Each recursive call causes a new invocation of the procedure to be placed on the

call stack. The new invocation has new storage for all data items in automatic

storage, and that storage is unavailable to other invocations because it is local. (A

data item that is defined in a subprocedure uses automatic storage unless the

Program
Entry Proc.

Sub-
Procedure

Program Call

CALL STACK

PEP
Procedure Call (by system)

Procedure Call
Procedure

Procedure

Procedure

Procedure Call

Program A

OPM
OPM

C Module

ILE
RPG Module

ILE

ILE

ILE

ILE

Main
Procedure

Procedure

Figure 59. Program and Procedure Calls on the Call Stack

Program/Procedure Call Overview

Chapter 10. Calling Programs and Procedures 131

STATIC keyword is specified for the definition.) Note also that the automatic

storage that is associated with earlier invocations is unaffected by later invocations.

A main procedure that is on the call stack cannot be called until it returns to its

caller. Therefore, be careful not to call a procedure that might call an already active

main procedure.

Try to avoid situations that might inadvertently lead to recursive calls. For

example, suppose there are three modules, as shown in Figure 60.

 You are running a program where procedure A in module X calls procedure B in

module Y. You are not aware of what procedure B does except that it processes

some fields. Procedure B in turn calls procedure C, which in turn calls procedure

A. Once procedure C calls procedure A, a recursive call has been made. The call

stack sequence is shown in Figure 61. Note that the most recent call stack entry is

at the bottom.

 So while subprocedures can be called recursively, if you are not aware that

recursion is occurring, you may exhaust system resources.

main proc. X main proc. Y

CALLP prc_B CALLP prc_C

CALLP prc_A

MODULE X MODULE Y MODULE Z

NOMAIN

PRC_A PRC_B

PRC_D

PRC_C

Figure 60. Three Modules, each with subprocedures

PGM X

PRC_B

PRC_A

PRC_C

Recursive Call

Call Stack (bottom entry is most recent)

PRC_A

Figure 61. Recursive Call Stack To Be Avoided

Program/Procedure Call Overview

132 ILE RPG Programmer’s Guide

Attention!

Unconditional recursive calls can lead to infinite recursion which leads to

excessive use of system resources. Infinite recursion can be avoided with

proper programming. In general, a proper recursive procedure begins with a

test to determine if the desired result has been obtained. If it has been

obtained, then the recursive procedure returns to the most recent caller.

Parameter-Passing Considerations

When designing a call interface, you must make a number of decisions in terms of

how parameters will be passed. On the other hand, if you are the caller then most

of the decisions have already been made for you. The following lists some of the

parameter-passing considerations to keep in mind when you are designing a call

interface.

v Compile-time parameter checking

The call interface of a prototyped call is checked at compile time. This checking

ensures that:

– the data types are correctly used

– all required parameters are passed

– *OMIT is only passed where it is allowed.
v Parameter passing method

Each HLL provides one or more ways of passing parameters. These may

include: passing a pointer to the parameter value, passing a copy of the value,

or passing the value itself.

v Passing operational descriptors

Sometimes you may not be sure of the exact format of the data that is being

passed to you. In this case you may request that operational descriptor be

passed to provide additional information regarding the format of the passed

parameters.

v Number of parameters

In general, you should pass the same number of parameters as expected by the

called program or procedure. If you pass fewer parameters than are expected,

and the callee references a parameter for which no data was passed, then the

callee will get an error.

v Passing less data

If you pass a parameter and you pass too little data, your application may not

work correctly. If changing the parameter, you may overwrite storage. If using

the parameter, you may misinterpret the parameter. By prototyping the

parameter, the compiler will check to see that the length is appropriate for the

parameter.

If the callee has indicated (through documentation or through that prototype)

that a parameter can be shorter than the maximum length, you can safely pass

shorter parameters. (Note, however, that the called procedure must be written in

a way to handle less data than required.)

v Order of evaluation

There is no guaranteed order for evaluation of parameters on a prototyped call.

This fact may be important, if a parameter occurs more than once in the

parameter list, and there is the possibility of side effects.

v Interlanguage call considerations

Program/Procedure Call Overview

Chapter 10. Calling Programs and Procedures 133

Different HLLs support different ways of representing data as well as different

ways of sending and receiving data between programs and procedures. In

general, you should only pass data which has a data type common to the calling

and called program or procedure, using a method supported by both.

Table 27 associates the above considerations with the two types parameters:

prototyped or non-prototyped.

 Table 27. Parameter Passing Options

Parameter Option Prototyped Not

Prototyped

See Page

Compile-time parameter checking Yes 136

Pass by reference Yes Yes 137

Pass by value Yes (b) 137

Pass by read-only reference Yes 137

Pass operational descriptors Yes (b) Yes (b) 139

Pass *OMIT Yes Yes (b) 140

Control parameter omission Yes Yes 141

Get number of passed parameters Yes Yes 142

Disallow incorrect parameter

length

Yes 147

Note: (b) – applies to bound procedures only.

Using a Prototyped Call

A prototyped call is one for which there is a prototype that is available to do

parameter checking. It has a much simpler call interface and offers more function.

For example, using a prototyped call you can call (with the same syntax):

v Programs that are on the system at run time

v Exported procedures in other modules or service programs that are bound in the

same program or service program

v Subprocedures in the same module

In RPG, prototyped calls are also known as free-form calls. Free-form call refers to

the call syntax where the arguments for the call are specified using free-form

syntax, much like the arguments for built-in functions. It contrasts with fixed-form

call, where the arguments are placed in separate specifications. There are two ways

to make a free-form call, depending on whether there is a return value that is to be

used. If there is no return value, use the CALLP operation. If there is one, and you

want to use the value that is returned, then place the prototyped procedure within

an expression, for example, with EVAL. If you use CALLP to a procedure that

returns a value, the return value is ignored.

Note: Only prototyped procedures can return values; prototyped programs cannot.

You can optionally code parentheses on procedure calls that do not have any

parameters. This makes it easier to distinguish procedure calls from scalar variable

names.

For information on passing prototyped parameters, see “Passing Prototyped

Parameters” on page 136.

Program/Procedure Call Overview

134 ILE RPG Programmer’s Guide

|

Using the CALLP Operation

You use the CALLP (Call a Prototyped procedure) operation to call a prototyped

program or procedure written in any language. The CALLP operation uses the

following extended-factor 2 syntax:

 C CALLP NAME{ (PARM1 {:PARM2 ...}) }

In free-form calculations, you can omit CALLP if there are no operation extenders.

The free-form operation can use either of the following forms:

 /free

 callp name { (parm1 { :parm2 ...}) };

 name({parm1 {:parm2 ... }});

 /end-free

To call a prototyped program or procedure follow these general steps:

1. Include the prototype of the program or procedure to be called in the definition

specifications.

2. Enter the prototype name of the program or procedure in the extended Factor-2

field, followed by the parameters if any, within parentheses. Separate the

parameters with a colon (:). Factor 1 must be blank.

The following example shows a call to a procedure Switch, which changes the state

of the indicator that is passed to it, in this case *IN10..

 C CALLP Switch(*in10)

A maximum of 255 parameters are allowed on a program call, and a maximum of

399 for a procedure call.

You can use CALLP from anywhere within the module. If the keyword EXTPGM is

specified on the prototype, the call will be a dynamic external call; otherwise it will

be a bound procedure call.

Note that if CALLP is used to call a procedure which returns a value, that value

will not be available to the caller. If the value is required, call the prototyped

procedure within an expression.

Calling within an Expression

If a prototyped procedure is defined to return a value then you must call the

procedure within an expression if you want to make use of the return value. Use

the procedure name in a manner that is consistent with the data type of the

specified return value. For example, if a procedure is defined to return a numeric,

then the call to the procedure within an expression must be where a numeric

would be expected.

Figure 62 on page 136 shows the prototype for a procedure CVTCHR that takes a

numeric input parameter and returns a character string. Figure 63 on page 136

shows how the procedure might be used in an expression.

Using a Prototyped Call

Chapter 10. Calling Programs and Procedures 135

Examples of Free-Form Call

For examples of using the CALLP operation, see:

v Figure 22 on page 41

v Figure 43 on page 97

v Figure 125 on page 257

v Figure 71 on page 146

v Figure 138 on page 288

For examples of calling by using an expression, see:

v Figure 4 on page 10

v Figure 19 on page 39

v Figure 38 on page 81

v Figure 125 on page 257

Passing Prototyped Parameters

When you pass prototyped parameters:

v The compiler verifies, when compiling both the caller and the callee, that the

parameter definitions match, provided as both are compiled using the prototype.

v Fewer specifications are needed, since you do not need the PARM operations.

This section discusses the various options that are available when defining

prototyped parameters, and the impact of these options on the call interface.

Parameter Passing Styles

Program calls, including system API calls, require that parameters be passed by

reference. However, there is no such requirement for procedure calls. ILE RPG

allows three methods for passing and receiving prototyped parameters:

v By reference

v By value

v By read-only reference

Parameters that are not prototyped may only be passed by reference.

 * Prototype for CVTCHR

 * - returns a character representation of the numeric parameter

 * Examples: CVTCHR(5) returns ’5 ’

 * CVTCHR(15-124) returns ’-109 ’

 D CVTCHR PR 31A

 D NUM 30P 0 VALUE

Figure 62. Prototype for CVTCHR

 C EVAL STRING = ’Address: ’ +

 C %TRIM(CVTCHR(StreetNum))

 C + ’ ’ + StreetName

 * If STREETNUM = 427 and STREETNAME = ’Mockingbird Lane’, after the

 * EVAL operation STRING = ’ADDRESS: 427 Mockingbird Lane’

Figure 63. Calling a Prototyped Procedure within an Expression

Using a Prototyped Call

136 ILE RPG Programmer’s Guide

Passing by Reference

The default parameter passing style for ILE RPG is to pass by reference.

Consequently, you do not have to code any keywords on the parameter definition

to pass the parameter by reference. You should pass parameters by reference to a

procedure when you expect the callee to modify the field passed. You may also

want to pass by reference to improve run-time performance, for example, when

passing large character fields. Note also that parameters that are passed on external

program calls can only be passed by reference.

Passing by Value

With a prototyped procedure, you can pass a parameter by value instead of by

reference. When a parameter is passed by value, the compiler passes the actual

value to the called procedure.

When a parameter is passed by value, the called program or procedure can change

the value of the parameter, but the caller will never see the changed value.

To pass a parameter by value, specify the keyword VALUE on the parameter

definition in the prototype, as shown in the figures below.

Note: i5/OS program calls require that parameters be passed by reference.

Consequently, you cannot pass a parameter by value to a program.

Passing by Read-Only Reference

An alternative means of passing a parameter to a prototyped procedure or

program is to pass it by read-only reference. Passing by read-only reference is

useful if you must pass the parameter by reference and you know that the value of

the parameter will not be changed during the call. For example, many system APIs

have read-only parameters specifying formats, or lengths.

Passing a parameter by read-only reference has the same advantages as passing by

value. In particular, this method allows you to pass literals and expressions. It is

important, however, that you know that the parameter would not be changed

during the call.

When a parameter is passed by read-only reference, the compiler may copy the

parameter to a temporary field and pass the address of the temporary. Some

conditions that would cause this are: the passed parameter is an expression or the

passed parameter has a different format.

Note: If the called program or procedure is compiled using a prototype in a

language that enforces the read-only reference method (either ILE RPG

using prototypes, or C), then the parameter will not be changed. If the called

program or procedure does not use a prototype, then the compiler cannot

ensure that the parameter is not changed. In this case, the person defining

the prototype must be careful when specifying this parameter-passing

method.

To pass a parameter by read-only reference, specify the keyword CONST on the

definition specification of the parameter definition in the prototype. Figure 66 on

page 139 shows an example of a prototype definition for the ILE CEE API

CEETSTA (Test for omitted argument).

Advantages of passing by value or read-only reference

Passing by value or read-only reference allows you to:

v Pass literals and expressions as parameters.

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 137

#
#

#

v Pass parameters that do not match exactly the type and length that are expected.

v Pass a variable that, from the caller’s perspective, will not be modified.

One primary use for passing by value or read-only reference is that you can allow

less stringent matching of the attributes of the passed parameter. For example, if

the definition is for a numeric field of type packed-decimal and length 5 with 2

decimal positions, you must pass a numeric value, but it can be:

v A packed, zoned or binary constant or variable, with any number of digits and

number of decimal positions

v A built-in function returning a numeric value

v A procedure returning a numeric value

v A complex numeric expression such as

 2 * (Min(Length(First) + Length(Last) + 1): %size(Name))

If the prototype requires an array of 4 elements, the passed parameter can be:

v An array with fewer than 4 elements. In this case, the remaining elements in the

received parameter will contain the default value for the type.

v An array with 4 elements. In this case, each element of the received parameter

will correspond to an element of the passed parameter.

v An array with more than 4 elements. In this case, some of the elements of the

passed array will not be passed to the received parameter.

v A non-array. In this case, each element of the received parameter will contain the

passed parameter value.

Choosing between parameter passing styles

If you are calling an existing program or procedure, you must pass the parameters

in the way the procedure expects them, either by reference or by value. If the

parameter must be passed by reference, and it will not be modified by the called

procedure program or procedure, pass it by read-only reference (using the CONST

keyword). When you are free to choose between passing by value or by read-only

reference, pass by read-only reference for large parameters. Use the following

general guideline:

v If the parameter is numeric or pointer, and it is not an array, pass it by

read-only reference or by value. Passing these data types by value may have a

very slight performance benefit.

v Otherwise, pass it by read-only reference.

 *---

 * The procedure returns a value of a 10-digit integer value.

 * The 3 parameters are all 5-digit integers passed by value.

 *---

 D MyFunc PR 10I 0 EXTPROC(’DO_CALC’)

 D 5I 0 VALUE

 D 5I 0 VALUE

 D 5I 0 VALUE

Figure 64. Prototype for Procedure DO_CALC with VALUE Parameters

Passing Prototyped Parameters

138 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
##
#
#

#

#

#
#
#
#

#
#

#

#

#

#

#

#
#

#
#

#
#

#
#

#
#
#
#
#
#
#
#

#
#
#

#

##

The second parameter passed to CEETSTA can be any numeric field, a literal, a

built-in function, or expression.

Using Operational Descriptors

Sometimes it is necessary to pass a parameter to a procedure even though the data

type is not precisely known to the called procedure, (for example, different types

of strings). In these instances you can use operational descriptors to provide

descriptive information to the called procedure regarding the form of the

parameter. The additional information allows the procedure to properly interpret

the string. You should only use operational descriptors when they are expected by

the called procedure.

Many ILE bindable APIs expect operational descriptors. If any parameter is

defined as ’by descriptor’, then you should pass operational descriptors to the API.

An example of this is the ILE CEE API CEEDATM (Convert Seconds to Character

Timestamp). The second and third parameters require an operational descriptor.

Note: Currently, the ILE RPG compiler only supports operational descriptors for

character and graphic types. Operational descriptors are not available for

arrays or tables, or for data of type numeric, date, timestamp, basing pointer

 P DO_CALC B EXPORT

 *---

 * This procedure performs a function on the 3 numeric values

 * passed to it as value parameters. It also returns a value.

 *---

 D DO_CALC PI 10I 0

 D Term1 5I 0 VALUE

 D Term2 5I 0 VALUE

 D Term3 5I 0 VALUE

 D Result S 10I 0

 C EVAL Result = Term1 ** 2 * 17

 C + Term2 * 7

 C + Term3

 C RETURN Result * 45 + 23

 P E

Figure 65. Procedure Interface Definition for DO_CALC Procedure

 *--

 * CEETSTA (Test for omitted argument) -- ILE CEE API

 * 1. Presence flag Output Binary(4)

 * 2. Argument number Input Binary(4)

 *--

 D CEETSTA PR EXTPROC(’CEETSTA’)

 D Present 10I 0

 D ArgNum 10I 0 CONST

 D Feedback 12A OPTIONS(*OMIT)

 ...

 D HaveParm S 10I 0

 ...

 C CALLP CEETSTA(HaveParm : 3 : *OMIT)

 C IF HaveParm = 1

 * do something with third parameter

 C ENDIF

Figure 66. Prototype for ILE CEE API CEETSTA with CONST Parameter

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 139

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

#

#
#

|
|
|

or procedure pointer. In addition, operational descriptors are not available

for data structures for non-protototyped calls made using CALLB. However,

for prototyped calls, data structures are considered to be character data, and

operational descriptors are available.

Operational descriptors have no effect on the parameters being passed or in the

way that they are passed. When a procedure is passed operational descriptors

which it does not expect, the operational descriptors are simply ignored.

You can request operational descriptors for both prototyped and non-prototyped

parameters. For prototyped parameters, you specify the keyword OPDESC on the

prototype definition. For non-prototyped parameters, you specify (D) as the

operation code extender of the CALLB operation. In either case, operational

descriptors are then built by the calling procedure and passed as hidden

parameters to the called procedure. Operational descriptors will not be built for

omitted parameters.

You can retrieve information from an operational descriptor using the ILE bindable

APIs Retrieve Operational Descriptor Information (CEEDOD) and Get Descriptive

Information About a String Argument (CEESGI).

Note that operational descriptors are only allowed for bound calls. Furthermore,

for non-prototyped calls, an error message will be issued by the compiler if the ’D’

operation code extender is specified on a CALL operation.

Figure 67 shows an example of the keyword OPDESC.

 For an example of how to use operational descriptors see “Sample Service

Program” on page 93. The example consists of a service program which converts

character strings which are passed to it to their hexadecimal equivalent. The

service program uses operational descriptors to determine the length of the

character string and the length to be converted.

Omitting Parameters

When calling a program or procedure, you may sometimes want to leave out a

parameter. It may be that it is not relevant to the called procedure. For example,

this situation might arise when you are calling the ILE bindable APIs. Another

reason might be that you are calling an older procedure that does not handle this

particular parameter. If you need to omit a parameter on a call, you have two

choices:

v Specify OPTIONS(*OMIT) and pass *OMIT

v Specify OPTIONS(*NOPASS) and do not pass the parameter.

 *---

 * Len returns a 10-digit integer value. The parameter

 * is a character string passed by read-only reference.

 * Operational descriptors are required so that Len knows

 * the length of the parameter.

 * OPTIONS(*VARSIZE) is required so that the parameter can

 * be less than 32767 bytes.

 *---

 D Len PR 10I 0 OPDESC

 D 32767A OPTIONS(*VARSIZE) CONST

Figure 67. Requesting Operational Descriptors for a Prototyped Procedure

Passing Prototyped Parameters

140 ILE RPG Programmer’s Guide

|
|
|
|

|

The primary difference between the two methods has to do with how you check to

see if a parameter has been omitted. In either case, an omitted parameter cannot be

referenced by the called procedure; if it is, unpredictable results will occur. So if

the called procedure is designed to handle different numbers of parameters, you

will have to check for the number of parameters passed. If *OMIT is passed, it will

’count’ as a parameter.

Passing *OMIT

You can pass *OMIT for a prototyped parameter if the called procedure is aware

that *OMIT might be passed. In other words, you can pass *OMIT if the keyword

OPTIONS(*OMIT) is specified on the corresponding parameter definition in the

prototype. When *OMIT is specified, the compiler will generate the necessary code

to indicate to the called procedure that the parameter has been omitted.

Note: *OMIT can only be specified for parameters passed by reference.

To determine if *OMIT has been passed to an ILE RPG procedure, use the %ADDR

built-in function to check the address of the parameter in question. If the address is

*NULL, then *OMIT has been passed. You can also use the CEETSTA (Check for

Omitted Argument) bindable API. (See Figure 66 on page 139 for a brief example.)

The following is a simple example of how *OMIT can be used. In this example, a

procedure calls the ILE bindable API CEEDOD in order to decompose an

operational descriptor. The CEEDOD API expects to receive seven parameters; yet

only six have been defined in the calling procedure. The last parameter of

CEEDOD (and of most bindable APIs) is the feedback code which can be used to

determine how the API ended. However, the calling procedure has been designed

to receive any error messages via an exception rather than this feedback code.

Consequently, on the call to CEEDOD, the procedure must indicate that the

parameter for the feedback code has been omitted.

See “Sample Service Program” on page 93 for an example of using *OMIT.

Leaving Out Parameters

The other way to omit a parameter is to simply leave it out on the call. This must

be expected by the called procedure, which means that it must be indicated on the

prototype. To indicate that a prototyped parameter does not have to be passed on

a call, specify the keyword OPTIONS(*NOPASS) on the corresponding parameter

definition. Note that all parameters following the first *NOPASS one must also be

specified with OPTIONS(*NOPASS).

You can specify both *NOPASS and *OMIT for the same parameter, in either order,

that is, OPTIONS(*NOPASS:*OMIT) or OPTIONS(*OMIT:*NOPASS).

As an example of OPTIONS(*NOPASS), consider the system API QCMDEXC

(Execute Command) which has an optional third parameter. To allow for this

parameter, the prototype for QCMDEXC could be written as shown in Figure 68 on

page 142.

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 141

Checking for the Number of Passed Parameters

At times it may be necessary to check for the number of parameters that are

passed on a call. Depending on how the procedure has been written, this number

may allow you to avoid references to parameters that are not passed. For example,

suppose that you want to write a procedure which will sometimes be passed three

parameters and sometimes four parameters. This might arise when a new

parameter is required. You can write the called procedure to process either number

depending on the value that is returned by the built-in function %PARMS. New

calls may pass the parameter. Old calls can remain unchanged.

%PARMS does not take any parameters. The value returned by %PARMS also

includes any parameters for which *OMIT has been passed. For the main

procedure, %PARMS returns the same value as contained in the *PARMS field in a

PSDS, although to use the *PARMS field, you must also code the PSDS.

For both *PARMS and %PARMS, if the number of passed parameters is not known,

the value -1 is returned. (In order to determine the number of parameters passed, a

minimal operational descriptor must be passed. ILE RPG always passes one on a

call; however other ILE languages may not.) If the main procedure is not active,

*PARMS is unreliable. It is not recommended to reference *PARMS from a

subprocedure.

Using %PARMS

In this example, a procedure FMTADDR has been changed several times to allow

for a change in the address information for the employees of a company.

FMTADDR is called by three different procedures. The procedures differ only in

the number of parameters they use to process the employee information. That is,

new requirements for the FMTADDR have arisen, and to support them, new

parameters have been added. However, old procedures calling FMTADDR are still

supported and do not have to be changed or recompiled.

The changes to the employee address can be summarized as follows:

v Initially only the street name and number were required because all employees

lived in the same city. Thus, the city and province could be supplied by default.

v At a later point, the company expanded, and so the city information became

variable for some company-wide applications.

v Further expansion resulted in variable province information.

The procedure processes the information based on the number of parameters

passed. The number may vary from 3 to 5. The number tells the program whether

 *---

 * This prototype for QCMDEXC defines three parameters:

 * 1- a character field that may be shorter in length

 * than expected

 * 2- any numeric field

 * 3- an optional character field

 *---

 D qcmdexc PR EXTPGM(’QCMDEXC’)

 D cmd 3000A OPTIONS(*VARSIZE) CONST

 D cmdlen 15P 5 CONST

 D 3A CONST OPTIONS(*NOPASS)

Figure 68. Prototype for System API QCMDEXC with Optional Parameter

Passing Prototyped Parameters

142 ILE RPG Programmer’s Guide

to provide default city or province values or both. Figure 69 on page 144 shows the

source for this procedure. Figure 70 on page 145 shows the source for /COPY

member containing the prototype.

The main logic of FMTADDR is as follows:

1. Check to see how many parameters were passed by using %PARMS. This

built-in function returns the number of passed parameters.

v If the number is greater than 4, then the default province is replaced with the

actual province supplied by the fifth parameter P_Province.

v If the number is greater than 3, then the default city is replaced with the

actual city supplied by the fourth parameter P_City.
2. Correct the street number for printing using the subroutine GetStreet#.

3. Concatenate the complete address.

4. Return.

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 143

===

 * FMTADDR - format an address

 *

 * Interface parameters

 * 1. Address character(70)

 * 2. Street number packed(5,0)

 * 3. Street name character(20)

 * 4. City character(15) (some callers do not pass)

 * 5. Province character(15) (some callers do not pass)

 ===

 * Pull in the prototype from the /COPY member

 /COPY FMTADDRP

 DFmtAddr PI

 D Address 70

 D Street# 5 0 CONST

 D Street 20 CONST

 D P_City 15 OPTIONS(*NOPASS) CONST

 D P_Province 15 OPTIONS(*NOPASS) CONST

 * Default values for parameters that might not be passed.

 D City S 15 INZ(’Toronto’)

 D Province S 15 INZ(’Ontario’)

 * Check whether the province parameter was passed. If it was,

 * replace the default with the parameter value.

 C IF %PARMS > 4

 C EVAL Province = P_Province

 C ENDIF

 * Check whether the city parameter was passed. If it was, *

 * replace the default with the parameter value. *

 C IF %PARMS > 3

 C EVAL City = P_City

 C ENDIF

 * Set ’CStreet#’ to be character form of ’Street#’ *

 C EXSR GetStreet#

 * Format the address as Number Street, City, Province *

 C EVAL ADDRESS = %TRIMR(CSTREET#) + ’ ’ +

 C %TRIMR(CITY) + ’ ,’ +

 C %TRIMR(PROVINCE)

 C RETURN

Figure 69. Source for procedure FMTADDR (Part 1 of 2)

Passing Prototyped Parameters

144 ILE RPG Programmer’s Guide

Figure 71 on page 146 shows the source for the procedure PRTADDR. This

procedure serves to illustrate the use of FMTADDR. For convenience, the three

procedures which would each call FMTADDR are combined into this single

procedure. Also, for the purposes of the example, the data is program-described.

Since PRTADDR is 'three procedures-in-one', it must define three different address

data structures. Similarly, there are three parts in the calculation specifications, each

one corresponding to programs at each stage. After printing the address, the

procedure PRTADDR ends.

 ===

 * SUBROUTINE: GetStreet#

 * Get the character form of the street number, left-adjusted *

 * and padded on the right with blanks. *

 ===

 C GetStreet# BEGSR

 C MOVEL Street# CStreet# 10

 * Find the first non-zero. *

 C ’0’ CHECK CStreet# Non0 5 0

 * If there was a non-zero, substring the number starting at *

 * non-zero. *

 C IF Non0 > 0

 C SUBST(P) CStreet#:Non0 CStreet#

 * If there was no non-zero, just use ’0’ as the street number. *

 C ELSE

 C MOVEL(P) ’0’ CStreet#

 C ENDIF

 C ENDSR

Figure 69. Source for procedure FMTADDR (Part 2 of 2)

 ===

 * Prototype for FMTADDR - format an address

 ===

 DFmtAddr PR

 D addr 70

 D strno 5 0 CONST

 D st 20 CONST

 D cty 15 OPTIONS(*NOPASS) CONST

 D prov 15 OPTIONS(*NOPASS) CONST

Figure 70. Source for /COPY member with Prototype for Procedure FMTADDR

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 145

===

 * PRTADDR - Print an address

 * Calls FmtAddr to format the address

 ===

 FQSYSPRT O F 80 PRINTER

 * Prototype for FmtAddr

 DFmtAddr PR

 D addr 70

 D strno 5 0

 D st 20

 D cty 15 OPTIONS(*NOPASS)

 D prov 15 OPTIONS(*NOPASS)

 DAddress S 70

 * Stage1: Original address data structure.

 * Only street and number are variable information.

 D Stage1 DS

 D Street#1 5P 0 DIM(2) CTDATA

 D StreetNam1 20 DIM(2) ALT(Street#1)

 * Stage2: Revised address data structure as city information

 * now variable.

 D Stage2 DS

 D Street#2 5P 0 DIM(2) CTDATA

 D Addr2 35 DIM(2) ALT(Street#2)

 D StreetNam2 20 OVERLAY(Addr2:1)

 D City2 15 OVERLAY(Addr2:21)

 * Stage3: Revised address data structure as provincial

 * information now variable.

 D Stage3 DS

 D Street#3 5P 0 DIM(2) CTDATA

 D Addr3 50 DIM(2) ALT(Street#3)

 D StreetNam3 20 OVERLAY(Addr3:1)

 D City3 15 OVERLAY(Addr3:21)

 D Province3 15 OVERLAY(Addr3:36)

 * ’Program 1’- Use of FMTADDR before city parameter was added.

 C DO 2 X 5 0

 C CALLP FMTADDR (Address:Street#1(X):StreetNam1(X))

 C EXCEPT

 C ENDDO

Figure 71. Source for procedure PRTADDR (Part 1 of 2)

Passing Prototyped Parameters

146 ILE RPG Programmer’s Guide

To create these programs, follow these steps:

1. To create FMTADDR, using the source in Figure 69 on page 144, type:

CRTRPGMOD MODULE(MYLIB/FMTADDR)

2. To create PRTADDR, using the source in Figure 71 on page 146, type:

CRTRPGMOD MODULE(MYLIB/PRTADDR)

3. To create the program, PRTADDR, type:

CRTPGM PGM(MYLIB/PRTADDR) MODULE(PRTADDR FMTADDR)

4. Call PRTADDR. The output is shown below:

123 Bumble Bee Drive, Toronto, Ontario

1243 Hummingbird Lane, Toronto, Ontario

3 Cowslip Street, Toronto, Ontario

1150 Eglinton Avenue, North York, Ontario

12 Jasper Avenue, Edmonton, Alberta

27 Avenue Road, Sudbury, Ontario

Passing Less Data Than Required

When a parameter is prototyped, the compiler will check to see that the length is

appropriate for the parameter. If the callee has indicated (through documentation

or through that prototype) that a parameter can be shorter than the maximum

length, you can safely pass shorter parameters.

Figure 72 on page 148 shows the prototype for QCMDEXC, where the first

parameter is defined with OPTIONS(*VARSIZE) meaning that you can pass

parameters of different lengths for the first parameter. Note that OPTIONS

 * ’Program 2’- Use of FMTADDR before province parameter was added.*

 C DO 2 X 5 0

 C CALLP FMTADDR (Address:Street#2(X):

 C StreetNam2(X):City2(X))

 C EXCEPT

 C ENDDO

 * ’Program 3’ - Use of FMTADDR after province parameter was added.*

 C DO 2 X 5 0

 C CALLP FMTADDR (Address:Street#3(X):

 C StreetNam3(X):City3(X):Province3(X))

 C EXCEPT

 C ENDDO

 C SETON LR

 * Print the address. *

 OQSYSPRT E

 O Address

**

00123Bumble Bee Drive

01243Hummingbird Lane

**

00003Cowslip Street Toronto

01150Eglinton Avenue North York

**

00012Jasper Avenue Edmonton Alberta

00027Avenue Road Sudbury Ontario

Figure 71. Source for procedure PRTADDR (Part 2 of 2)

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 147

*VARSIZE can only be specified for a character field, a UCS-2 field, a graphic field,

or an array.

Order of Evaluation

There is no guaranteed order for evaluation of parameters on a prototyped call.

This fact may be important when using parameters that cause side effects, as the

results may not be what you would expect.

A side effect occurs if the processing of the parameter changes:

v The value of a reference parameter

v The value of a global variable

v An external object, such as a file or data area

If a side effect occurs, then, if the parameter is used elsewhere in the parameter

list, then the value used for the parameter in one part of the list may not be the

same as the value used in another part. For example, consider this call statement.

 CALLP procA (fld : procB(fld) : fld)

Assume that procA has all value parameters, and procB has a reference parameter.

Assume also that fld starts off with the value 3, and that procB modifies fld to be 5,

and returns 10. Depending on the order in which the parameters are evaluated,

procA will receive either 3, 10, and 5 or possibly, 3, 10, and 3. Or possibly, 5, 10,

and 3; or even 5, 10, and 5.

In short, it is important to be aware of the possibility of side effects occurring. In

particular, if you are providing an application for third-party use, where the end

user may not know the details of some of the procedures, it is important ensure

that the values of the passed parameters are the expected ones.

Interlanguage Calls

When passing or receiving data from a program or procedure written in another

language, it is important to know whether the other language supports the same

parameter passing methods and the same data types as ILE RPG. Table 28 shows

the different parameter passing methods allowed by ILE RPG and, where

applicable, how they would be coded in the other the ILE languages. The table

also includes the OPM RPG/400® compiler for comparison.

 Table 28. RPG Parameter Passing Methods

Passing By Reference

ILE RPG – prototype D proc PR

 D parm 1A

 C CALLP proc(fld)

 *---

 * This prototype for QCMDEXC defines three parameters. The

 * first parameter can be passed character fields of

 * different lengths, since it is defined with *VARSIZE.

 *---

 D qcmdexc PR EXTPGM(’QCMDEXC’)

 D cmd 3000A OPTIONS(*VARSIZE) CONST

 D cmdlen 15P 5 CONST

 D 3A CONST OPTIONS(*NOPASS)

Figure 72. Prototype for System API QCMDEXC with *VARSIZE Parameter

Passing Prototyped Parameters

148 ILE RPG Programmer’s Guide

Table 28. RPG Parameter Passing Methods (continued)

ILE C void proc(char *parm);

proc(&fld);

ILE COBOL CALL PROCEDURE "PROC" USING BY REFERENCE PARM

RPG – non-prototyped C CALL ’PROC’

 C PARM FLD

ILE CL CALL PROC (&FLD)

Passing By Value

ILE RPG – prototype D proc PR

 D parm 1A VALUE

 C CALLP proc(’a’)

ILE C void proc(char parm);

proc(’a’);

ILE COBOL CALL PROCEDURE "PROC" USING BY VALUE PARM

RPG – non-prototyped N/A

ILE CL N/A

Passing By Read-Only Reference

ILE RPG – prototype D proc PR

 D parm 1A CONST

 C CALLP proc(fld)

ILE C void proc(const char *parm);

proc(&fld);

ILE COBOL N/A1

RPG – non-prototyped N/A

ILE CL N/A

Notes:

1. Do not confuse passing by read-only reference with COBOL’s passing BY CONTENT.

In RPG terms, to pass Fld1 by content, you would code:

 C PARM Fld1 TEMP

Fld1 is protected from being changed, but TEMP is not. There is no expectation that the

parameter will not be changed.

For information on the data types supported by different HLLs, consult the

appropriate language manual.

Interlanguage Calling Considerations

1. To ensure that your RPG procedure will communicate correctly with an ILE CL

procedure, code EXTPROC(*CL:’procedurename’) on the prototype for the ILE

CL procedure or on the prototype for the RPG procedure that is called by the

ILE CL procedure.

2. To ensure that your RPG procedure will communicate correctly with an ILE C

procedure, code EXTPROC(*CWIDEN:’procedurename’) or

EXTPROC(*CNOWIDEN:’procedurename’) on the prototype for the ILE C procedure

or on the prototype for the RPG procedure that is called by the ILE C

procedure. Use *CNOWIDEN if the ILE C source contains #pragma

argument(procedure-name,nowiden) for the procedure; otherwise, use

*CWIDEN.

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 149

3. If you want your RPG procecure to be used successfully by every ILE

language, do not specify any special value on the EXTPROC keyword. Instead,

avoid the following types for parameters that are passed by value or return

values:

v Character of length 1 (1A or 1N)

v UCS-2 of length 1 (1C)

v Graphic of length 1 (1G)

v 4-byte float (4F)

v 1-byte or 2-byte integer or unsigned (3I, 3U, 5I, or 5U)
4. Using ILE C and other languages, you can declare pointers to teraspace

memory. ILE C requires a special compile-time option to address this type of

storage, but ILE RPG can always address this storage if compiled with a target

release of V4R4M0 or later. For more information on pointers in teraspace, see

the ILE Concepts, SC41-5606-07 publication.

Using the Fixed-Form Call Operations

You use the CALL (Call a Program) operation to make a program call and the

CALLB (Call a Bound Procedure) operation to make a procedure call to programs

or procedures that are not prototyped. The two call operations are very similar in

their syntax and their use. To call a program or procedure, follow these general

steps:

1. Identify the object to be called in the Factor 2 entry.

2. Optionally code an error indicator (positions 73 and 74) or an LR indicator

(positions 75 and 76) or both.

When a called object ends in error the error indicator, if specified, is set on.

Similarly, if the called object returns with LR on, the LR indicator, if specified,

is set on.

3. To pass parameters to the called object, either specify a PLIST in the Result

field of the call operation or follow the call operation immediately by PARM

operations.

Either operation transfers control from the calling to the called object. After the

called object is run, control returns to the first operation that can be processed after

the call operation in the calling program or procedure.

The following considerations apply to either call operation:

v The Factor 2 entry can be a variable, literal, or named constant. Note that the

entry is case-sensitive.

For CALL only: The Factor 2 entry can be library name/program name, for

example, MYLIB/PGM1. If no library name is specified, then the library list is

used to find the program. The name of the called program can be provided at

run time by specifying a character variable in the Factor 2 entry.

For CALLB only: To make a procedure pointer call you specify the name of the

procedure pointer which contains the address of the procedure to be called.

v A procedure can contain multiple calls to the same object with the same or

different PLISTs specified.

v When an ILE RPG procedure (including a program entry procedure) is first

called, the fields are initialized and the procedure is given control. On

subsequent calls to the same procedure, if it did not end on the previous call,

then all fields, indicators, and files in the called procedure are the same as they

were when it returned on the preceding call.

Passing Prototyped Parameters

150 ILE RPG Programmer’s Guide

v The system records the names of all programs called within an RPG procedure.

When an RPG procedure is bound into a program (*PGM) you can query these

names using DSPPGMREF, although you cannot tell which procedure or module

is doing the call.

If you call a program using a variable, you will see an entry with the name

*VARIABLE (and no library name).

For a module, you can query the names of procedures called using DSPMOD

DETAIL(*IMPORT). Some procedures on this list will be system procedures; the

names of these will usually begin with underscores or contain blanks and you

do not have to be concerned with these.

v For CALLB only: The compiler creates an operational descriptor indicating the

number of parameters passed on the CALLB operation and places this value in

the *PARMS field of the called procedure’s program status data structure. This

number includes any parameters which are designated as omitted (*OMIT on

the PARM operation).

If the (D) operation extender is used with the CALLB operation the compiler

also creates an operational descriptor for each character and graphic field and

subfield.

For more information on operational descriptors, see “Using Operational

Descriptors” on page 139.

v There are further restrictions that apply when using the CALL or CALLB

operation codes. For a detailed description of these restrictions, see the

WebSphere Development Studio: ILE RPG Reference.

Examples of CALL and CALLB

For examples of using the CALL operation, see:

v “Sample Source for Debug Examples” on page 256, for example of calling an

RPG program.

For examples of using the CALLB operation, see:

v Figure 45 on page 99, for an example of calling a procedure in a service

program.

v Figure 57 on page 125, for an example of calling bindable APIs.

v “CUSMAIN: RPG Source” on page 390, for an example of a main inquiry

program calling various RPG procedures.

Passing Parameters Using PARM and PLIST

When you pass parameters using fixed-form call, you must pass parameters using

the PARM and PLIST operations. All parameters are passed by reference. You can

specify that an operational descriptor is to be passed and can also indicate that a

parameter is omitted.

Using the PARM operation

The PARM operation is used to identify the parameters which are passed from or

received by a procedure. Each parameter is defined in a separate PARM operation.

You specify the name of the parameter in the Result field; the name need not be

the same as in the calling/called procedure.

The Factor 1 and factor 2 entries are optional and indicate variables or literals

whose value is transferred to or received from the Result Field entry depending on

whether these entries are in the calling program/procedure or the called

program/procedure. Table 29 on page 152 shows how factor 1 and factor 2 are

used.

Using the Fixed-Form Call Operations

Chapter 10. Calling Programs and Procedures 151

Table 29. Meaning of Factor 1 and Factor 2 Entries in PARM Operation

Status Factor 1 Factor 2

In calling

procedure

Value transferred from Result Field

entry upon return.

Value placed in Result Field entry

when call occurs.

In called

procedure

Value transferred from Result Field

entry when call occurs.

Value placed in Result Field entry

upon return.

Note: The moves to either the factor 1 entry or the result-field entry occur only

when the called procedure returns normally to its caller. If an error occurs

while attempting to move data to either entry, then the move is not

completed.

If insufficient parameters are specified when calling a procedure, an error occurs

when an unresolved parameter is used by the called procedure. To avoid the error,

you can either:

v Check %PARMS to determine the number of parameters passed. For an example

using %PARMS, see “Checking for the Number of Passed Parameters” on page

142.

v Specify *OMIT in the result field of the PARM operations of the unpassed

parameters. The called procedure can then check to see if the parameter has

been omitted by checking to see if the parameter has value of *NULL, using

%ADDR(parameter) = *NULL. For more information, refer to “Omitting

Parameters” on page 140.

Keep in mind the following when specifying a PARM operation:

v One or more PARM operations must immediately follow a PLIST operation.

v One or more PARM operations can immediately follow a CALL or CALLB

operation.

v When a multiple occurrence data structure is specified in the Result field of a

PARM operation, all occurrences of the data structure are passed as a single

field.

v Factor 1 and the Result field of a PARM operation cannot contain a literal, a

look-ahead field, a named constant, or a user-date reserved word.

v The following rules apply to *OMIT for non-prototyped parameters:

– *OMIT is only allowed in PARM operations that immediately follows a

CALLB operation or in a PLIST used with a CALLB.

– Factor 1 and Factor 2 of a PARM operation must be blank, if *OMIT is

specified.

– *OMIT is not allowed in a PARM operation that is part of a *ENTRY PLIST.
v There are other restrictions that apply when using the PARM operation code. For

a detailed description of these restrictions, see the WebSphere Development Studio:

ILE RPG Reference.

For examples of the PARM operation see:

v Figure 47 on page 104

v Figure 42 on page 95

v Figure 137 on page 285

Using the PLIST Operation

The PLIST operation:

Using the Fixed-Form Call Operations

152 ILE RPG Programmer’s Guide

v Defines a name by which a list of parameters can be referenced. The list of

parameters is specified by PARM operations immediately following the PLIST

operation.

v Defines the entry parameter list (*ENTRY PLIST).

Factor 1 of the PLIST operation must contain the PLIST name. This name can be

specified in the Result field of one or more call operations. If the parameter list is

the entry parameter list of a called procedure, then Factor 1 must contain *ENTRY.

Multiple PLISTs can appear in a procedure. However, only one *ENTRY PLIST can

be specified, and only in the main procedure.

For examples of the PLIST operation see Figure 47 on page 104 and Figure 137 on

page 285.

Returning from a Called Program or Procedure

When a program or procedure returns, its call stack entry is removed from the call

stack. (If it is a program, the program entry procedure is removed as well.) A

procedure ends abnormally when something outside the procedure ends its

invocation. For example, this would occur if an ILE RPG procedure X calls another

procedure (such as a CL procedure) that issues an escape message directly to the

procedure calling X. This would also occur if the procedure gets an exception that

is handled by an exception handler (a *PSSR or error indicator) of a procedure

further up the call stack.

Because of the cycle code associated with main procedures, their return is also

associated with certain termination routines. This section discusses the different

ways that main procedures and subprocedures can return, and the actions that

occur with each.

Returning from a Main Procedure

A return from a main procedure causes the following to occur:

v If LR is on, files are closed and other resources are freed.

v The procedure’s call stack entry is removed from the call stack.

v If the procedure was called by the program entry procedure, then that program

entry procedure is also removed from the call stack.

A main procedure returns control to the calling procedure in one of the following

ways:

v With a normal end

v With an abnormal end

v Without an end.

A description of the ways to return from a called main procedure follows.

For a detailed description of where the LR, H1 through H9, and RT indicators are

tested in the RPG program cycle, see the section on the RPG program cycle in the

WebSphere Development Studio: ILE RPG Reference.

Normal End

A main procedure ends normally and control returns to the calling procedure

when the LR indicator is on and the H1 through H9 indicators are not on. The LR

indicator can be set on:

Using the Fixed-Form Call Operations

Chapter 10. Calling Programs and Procedures 153

v implicitly, as when the last record is processed from a primary or secondary file

during the RPG program cycle

v explicitly, as when you set LR on.

A main procedure also ends normally if:

v The RETURN operation (with a blank factor 2) is processed, the H1 through H9

indicators are not on, and the LR indicator is on.

v The RT indicator is on, the H1 through H9 indicators are not on, and the LR

indicator is on.

When a main procedure ends normally, the following occurs:

v The Factor-2-to-Result-field move of a *ENTRY PARM operation is performed.

v All arrays and tables with a ’To file name’ specified on the Definition

specifications, and all locked data area data structures are written out.

v Any data areas locked by the procedure are unlocked.

v All files that are open are closed.

v A return code is set to indicate to the caller that the procedure has ended

normally, and control then returns to the caller.

On the next call to the main procedure, with the exception of exported variables, a

fresh copy is available for processing. (Exported variables are initialized only once,

when the program is first activated in an activation group. They retain their last

assigned value on a new call, even if LR was on for the previous call. If you want

to re-initialize them, you have to reset them manually.)

TIP

If you are accustomed to ending with LR on to cause storage to be released,

and you are running in a named (persistent) activation group, you may want

to consider returning without an end. The reasons are:

v The storage is not freed until the activation group ends so there is no

storage advantage to ending with LR on.

v Call performance is improved if the program is not re-initialized for each

call.

You would only want to do this if you did not need your program

re-initialized each time.

Abnormal End

A main procedure ends abnormally and control returns to the calling procedure

when one of the following occurs:

v The cancel option is taken when an ILE RPG inquiry message is issued.

v An ENDSR *CANCL operation in a *PSSR or INFSR error subroutine is

processed. (For further information on the *CANCL return point for the *PSSR

and INFSR error subroutines, see “Specifying a Return Point in the ENDSR

Operation” on page 283).

v An H1 through H9 indicator is on when a RETURN operation (with a blank

factor 2) is processed.

v An H1 through H9 indicator is on when last record (LR) processing occurs in the

RPG cycle.

When a main procedure ends abnormally, the following occurs:

Returning from a Called Program or Procedure

154 ILE RPG Programmer’s Guide

v All files that are open are closed.

v Any data areas locked by the procedure are unlocked.

v If the main procedure ended because of a cancel reply to an inquiry message,

then it was a function check that caused the abnormal end. In this case, the

function check is percolated to the caller. If it ended because of an error

subroutine ending with ’*CANCL’, then escape message RNX9001 is issued

directly to the caller. Otherwise the caller will see whatever exception caused the

abnormal end.

On the next call to the procedure, a fresh copy is available for processing. (For

more information on exception handlers, see “Using RPG-Specific Handlers” on

page 272.)

Returning without Ending

A main procedure can return control to the calling procedure without ending when

none of the LR or H1 through H9 indicators are on and one of the following

occurs:

v The RETURN operation (with a blank factor 2) is processed.

v The RT indicator is on and control reaches the *GETIN part of the RPG cycle, in

which case control returns immediately to the calling procedure. (For further

information on the RT indicator, see the WebSphere Development Studio: ILE RPG

Reference)

If you call a main procedure and it returns without ending, when you call the

procedure again, all fields, indicators, and files in the procedure will hold the same

values they did when you left the procedure. However, there are three exceptions:

v This is not true if the program is running in a *NEW activation group, since the

activation group is deleted when the program returns. In that case, the next time

you call your program will be the same as if you had ended with LR on.

v If you are sharing files, the state of the file may be different from the state it

held when you left the procedure.

v If another procedure in the same module was called in between, then the results

are unpredictable.

You can use either the RETURN operation (with a blank factor 2) or the RT

indicator in conjunction with the LR indicator and the H1 through H9 indicators.

Be aware of the testing sequence in the RPG program cycle for the RETURN

operation, the RT indicator, and the H1 through H9 indicators. A return will cause

an end if the LR indicator or any of the halt indicators is on and either of the

following conditions is true:

v A RETURN operation is done

v The RT would cause a return without an end

Returning from a Subprocedure

A subprocedure returns normally when a RETURN operation is performed

successfully or when the last statement in the procedure (not a RETURN

operation) is processed. However, other than the removal of the subprocedure from

the call stack no termination actions are performed until the main procedure of the

program ends. In other words, all the actions listed for the normal end of a main

procedure take place only for the main procedure.

Returning from a Called Program or Procedure

Chapter 10. Calling Programs and Procedures 155

A subprocedure ends abnormally and control returns to the calling procedure

when an unhandled exception occurs. Again, no further actions occur until the

main procedure ends.

If the main procedure is never called (and therefore cannot end) then any files,

data areas, etcetera, will not be closed. If you think this might arise for a

subprocedure, you should code a termination procedure that gets called when the

subprocedure ends. This is especially true if the subprocedure is in a module with

NOMAIN specified on the control specification.

Returning using ILE Bindable APIs

You can end a procedure normally by using the ILE bindable API CEETREC.

However, the API will end all call stack entries that are in the same activation

group up to the control boundary. When a procedure is ended using CEETREC it

follows normal termination processing as described above for main procedures and

subprocedures. On the next call to the procedure, a fresh copy is available for

processing.

Similarly, you can end a procedure abnormally using the ILE bindable API

CEE4ABN. The procedure will then follow abnormal termination as described

above.

Note: You cannot use either of these APIs in a program created with

DFTACTGRP(*YES), since procedure calls are not allowed in these

procedures.

Note that if the main procedure is not active, or if there is no main, then nothing

will get closed or freed. In this case, you should enable an ILE cancel handler,

using CEERTX. If the cancel handler is in the same module, it can close the files,

unlock the data areas, and perform the other termination actions.

For more information on CEETREC and CEE4ABN, refer to the CL and APIs

section of the Programming category in the iSeries Information Center at this Web

site - http://www.ibm.com/eserver/iseries/infocenter.

Using Bindable APIs

Bindable application programming interfaces (APIs) are available to all ILE

languages. In some cases they provide additional function beyond that provided

by a specific ILE language. They are also useful for mixed-language applications

because they are HLL independent.

The bindable APIs provide a wide range of functions including:

v Activation group and control flow management

v Storage management

v Condition management

v Message services

v Source Debugger

v Math functions

v Call management

v Operational descriptor access

Returning from a Called Program or Procedure

156 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

You access ILE bindable APIs using the same call mechanisms used by ILE RPG to

call procedures, that is, the CALLP operation or the CALLB operation. If the API

returns a value and you want to use it, call the API in an expression. For the

information required to define a prototype for an API, see the description of the

API in the CL and APIs section of the Programming category in the iSeries

Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter. Figure 73 shows a sample ’call’

to a bindable API.

 where

v CEExxxx is the name of the bindable API

v parm1, parm2, ... parmn are omissible or required parameters passed to or

returned from the called API.

v feedback is an omissible feedback code that indicates the result of the bindable

API.

Note: Bindable APIs cannot be used if DFTACTGRP(*YES) is specified on the

CRTBNDRPG command.

For more information on bindable APIs, refer to the CL and APIs section of the

Programming category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Examples of Using Bindable APIs

For examples of using bindable APIs, see:

v “Sample Service Program” on page 93, for an example of using CEEDOD

v “Managing Your Own Heap Using ILE Bindable APIs” on page 121. for an

example of using CEEGTST, CEEFRST, and CEECZST.

v “Using a Condition Handler” on page 284, for an example of using CEEHDLR

and CEEHDLU.

v “Using Cancel Handlers” on page 290, for an example of using CEERTX and

CEEUTX.

D CEExxxx PR EXTPROC(’CEExxxx’)

D parm1 ...

D ...

C CALLP CEExxxx(parm1 : parm2 : ... :

 parmn : feedback)

 or

C CALLB ’CEExxxx’

C PARM parm1

C PARM parm2

 ...

C PARM parmn

C PARM feedback

Figure 73. Sample Call Syntax for ILE Bindable APIs

Using Bindable APIs

Chapter 10. Calling Programs and Procedures 157

http://www.ibm.com/eserver/iseries/infocenter
http://www.ibm.com/eserver/iseries/infocenter

Calling a Graphics Routine

ILE RPG supports the use of the CALL or CALLP operation to call i5/OS

Graphics, which includes the Graphical Data Display Manager (GDDM®, a set of

graphics primitives for drawing pictures), and Presentation Graphics Routines (a

set of business charting routines). Factor 2 must contain the literal or named

constant ’GDDM’ (not a variable). Use the PLIST and PARM operations to pass the

following parameters:

v The name of the graphics routine you want to run.

v The appropriate parameters for the specified graphics routine. These parameters

must be of the data type required by the graphics routine and cannot have a

float format.

The procedure that processes the CALL does not implicitly start or end i5/OS

graphics routines.

For more information on i5/OS Graphics, graphics routines and parameters, see

the GDDM Programming Guide manual and the GDDM Reference.

Note: You can call i5/OS Graphics using the CALL operation. You can also use

CALLP if you define a prototype for the routine and specify the EXTPGM

keyword on the prototype. You cannot use the CALLB operation. You

cannot pass Date, Time, Timestamp, or Graphic fields to GDDM®, nor can

you pass pointers to it.

Calling Special Routines

ILE RPG supports the use of the following special routines using the CALL and

PARM operations or the CALLP operation:

v Message-retrieving routine (SUBR23R3)

v Moving Bracketed Double-byte Data and Deleting Control Characters

(SUBR40R3)

v Moving Bracketed Double-byte Data and Adding Control Characters

(SUBR41R3).

Note: You cannot use the CALLB operation to call these special subroutines. You

can use CALLP if you define a prototype for the subroutines.

While the message retrieval routine is still supported, it is recommended that you

use the QMHRTVM message API, which is more powerful.

Similarly, the routines SUBR40R3 and SUBR41R3 are being continued for

compatibility reasons only. They will not be updated to reflect the level of graphic

support provided by RPG IV via the new graphic data type.

Multithreading Considerations

Normally, running an application in multiple threads can improve the performance

of the application. In the case of ILE RPG, this is not true in general. In fact, the

performance of a multithreaded application could be worse than that of a

single-thread version when the thread-safety is achieved by serialization of the

procedures at the module level.

Calling a Graphics Routine

158 ILE RPG Programmer’s Guide

Running ILE RPG procedures in a multithreaded environment is only

recommended when required by other aspects of the application (for example,

when writing a Domino exit program or when calling a short-running RPG

procedure from Java). For long-running RPG programs called from Java, we

recommend using a separate process for the RPG program.

The THREAD(*SERIALIZE) control specification keyword can be specified to help

you achieve thread safety for an ILE RPG module. Specifying

THREAD(*SERIALIZE) will protect most of your variables and all your internal

control structures from being accessed improperly by multiple threads. The thread

safe module will be locked when a procedure in the module is entered and

unlocked when no procedure in the module is still running. This serialized access,

ensures that only one thread is active in any one module, within an activation

group, at any one time. However, it is still up to the programmer to handle thread

safety for storage that is shared across modules. This is done by adding logic in

the application to synchronize access to the storage. For example, shared files,

exported and imported storage, and storage accessed by the address of a

parameter may be shared across modules from multiple threads. To synchronize

access to this type of storage, you can do one or both of the following:

v Structure the application such that the shared resources are not accessed

simultaneously from multiple threads.

v If you are going to access resources simultaneously from separate threads,

synchronize access using facilities such as semaphores or mutexes. For more

information, refer to the Multithreaded Applications document under the

Programming topic at the following URL:

http://www.ibm.com/eserver/iseries/infocenter

How to Share Data Across More Than One Module

Serializing access to modules using the THREAD(*SERIALIZE) control specification

keyword ensures sequential access to global data within each module, but it does

not ensure sequential access to shared data across modules. It is up to the

programmer to ensure that only one thread can access shared data at one time.

Two or more modules can access the same data if:

v EXPORT/IMPORT keywords are used on the definition specifications

v Files are shared across modules

v Data is based on a pointer where the pointer is available to more than one

module

For example, procedure A in module A passes a pointer to procedure B in module

B, and procedure B saves the pointer in a static variable. Now both modules have

access to the based storage at the same time as the thread running in module A is

accessing the storage. Once procedure B returns, another thread could call a

procedure in module B and access the based storage. Serialization of access to

static storage within modules A and B would not prevent simultaneous access of

the same storage in each module. The following is an example of two modules that

can access the same data.

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 159

When ProcA calls ProcB (line �2�), no other thread can access the storage pointed

to by MyPtr, since both module A and and module B are being used by one

thread. ProcB saves the pointer in module B’s static storage (line �6�) and returns

(line �7�). Now, no thread is active in module B, so another thread is free to call

module B. If another thread calls ProcB2, it is possible that the first thread could

process line �3� before, at the same time, or after the second thread processes line

�8�. The order of these events is not defined; the code used to test if SomeStorage

= ’Init value’ could succeed one time and fail the next time.

You can synchronize access to the shared data, by using logic in the program or by

using synchronization techniques provided by C or by platform functions. For

more details, refer to the Multithreaded Applications document under the

Programming topic at the following URL:

http://www.ibm.com/eserver/iseries/infocenter

How to Avoid Deadlock Between Modules

In some situations, it may be necessary for you to control the synchronization of

modules using facilities other than the THREAD(*SERIALIZE) control specification

keyword. For example, consider the situation where two procedures are being

called at the same time: PROC1 and PROC3. Even though there is no actual

recursive calling; if PROC1 calls PROC4, it will wait for MOD2 to unlock; and if

PROC3 calls PROC2, it will wait for MOD1 to unlock. The procedures will not be

able to complete their calls, since each module will be locked by the thread in the

 *---

 * .---------------.

 * | |

 * | some storage |<---------------- pointer to shared storage

 * | | (called MyPtr in module A)

 * ’---------------’ (saved as a static variable in module B)

 * Module A

 * Global variables in Module A

D MyPtr S *

D SomeStorage S 10A based(MyPtr)

C eval SomeStorage = ’Init value’

C callp ProcB(MyPtr) �2�

C eval SomeStorage = *BLANKS �3�

 *---

 * Module B

 * Global variables in Module B

D SavedPtr S *

D SomeStorage S 10A based(SavedPtr)

 * ProcB in module B

P ProcB B export

D ProcB PI

D PtrParm *

C eval SavedPtr = PtrParm �6�

C return �7�

P E

 * ProcB2 in module B

P ProcB2 B export

D ProcB2 PI

D PtrParm *

C if SomeStorage = ’Init value’ �8�

C

C return

P E

Figure 74. Example of Sharing Data in a Multithreaded Environment

Multithreading Considerations

160 ILE RPG Programmer’s Guide

other module. This type of problem can occur even with serialization of calls to a

module and is referred to as deadlock.

This example shows that you cannot access more than one procedure in the same

module at the same time using ILE RPG synchronization techniques.

To avoid the problem in the above example and ensure thread safe applications,

you can control the synchronization of modules using techniques provided by C or

by platform functions. Any callers of PROC1 or PROC3 for each thread should do

the following:

1. Restrict access to the modules for all threads except the current thread, always

in the same order (MOD1 then MOD2)

2. In the current thread, call the procedures in the modules (PROC1 and PROC3)

3. Relinquish access to the modules for all threads in the reverse order of step 1

(MOD2 then MOD1).

One thread would be successful in restricting access to MOD1. Since all users of

MOD1 and MOD2 use the protocol of restricting access to MOD1 and MOD2 in

that order, no other thread can call procedures in MOD1 or MOD2 while the first

thread has restricted access to the modules. In this situation you have access to

more than one procedure in the same module at the same time, but since it is only

available to the current thread, it is thread safe.

This method should also be used to synchronize access to shared storage.

MOD1

PROC1

CALLP PROC4

PROC2

thread-1

MOD2

PROC3

CALLP PROC2

PROC4

thread-2

Figure 75. Deadlock Example

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 161

Multithreading Considerations

162 ILE RPG Programmer’s Guide

Chapter 11. RPG and the eBusiness World

This chapter describes how you can use ILE RPG as part of an eBusiness solution.

It includes:

v “RPG and XML”

v “RPG and MQSeries” on page 169

v “RPG and Java” on page 169

RPG and XML

The Extensible Markup Language (XML) is a subset of SGML that is developed by

the World Wide Web Consortium (W3C). Its goal is to enable generic SGML to be

served, received, and processed on the Web in the way that is now possible with

HTML. XML has been designed for ease of implementation and for interoperability

with both SGML and HTML.

For more information about XML, see http://www.w3.org/XML

You can use the XML-INTO and XML-SAX operation codes to process your XML

documents. For more information, see “Processing XML Documents.”

XML Toolkit for iSeries (5733XT1) allows your ILE RPG programs to create new

XML documents and parse existing ones. You can use XML as both a datastore and

I/O mechanism.

Processing XML Documents

You can process XML documents from your RPG program by using the

XML-INTO or XML-SAX statements. These statements are the RPG language

interface to the high-speed XML parser. The parser currently being used by RPG is

a non-validating parser, although it checks XML documents for many

well-formedness errors. See the ″XML Conformance″ section in the ″XML Reference

Material″ appendix of the ILE COBOL Programmer’s Guide for more information on

the XML parser.

The XML documents can be in a character or UCS-2 RPG variable, or they can be

in an Integrated File System file.

The parser is a SAX parser. A SAX parser operates by reading the XML document

character by character. Whenever it has located a fragment of the XML document,

such as an element name, or an attribute value, it calls back to a handling

procedure provided by the caller of the parser, passing it information about the

fragment of XML that it has found. For example, when the parser has found an

XML element name, it calls the handling procedure indicating that the ″event″ is a

″start element″ event and passing it the name of the element.

The handling procedure processes the information and returns to the parser which

continues to read the XML document until it has enough information to call the

handling procedure with another event. This process repeats until the entire XML

document has been parsed, or until the handling procedure indicates that parsing

should end.

For example, consider the following XML document:

© Copyright IBM Corp. 1994, 2006 163

|
|

#
#
#

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

<email type="text">

 <sendto>JohnDoe@there</sendto>

</email>

The following are the fragments of text that the parser would read, the events that

it would generate, and the data associated with each event. Note: The term

″whitespace″ refers to end-of-line characters, tab characters and blanks.

 Parsed text Event Event data

start document

<email start element ″email″

type= attribute name ″type″

″text″ attribute value ″text″

>whitespace element content the whitespace

<sendto> start element ″sendto″

JohnDoe@there element content ″JohnDoe@there″

</sendto> end element ″sendto″

whitespace element content the whitespace

</email> end element ″email″

end document

The XML-SAX and XML-INTO operation codes allow you to use the XML parser.

1. The XML-SAX operation allows you to specify an event handling procedure to

handle every event that the parser generates. This is useful if you do not know

in advance what an XML document may contain.

For example, if you know that an XML document will contain an XML attribute

with the name type, and you want to know the value of this attribute, your

handling procedure can wait for the ″attribute name″ event to have a value of

″type″. Then the next time the handler is called, it should be an ″attribute

value″ event, with the required data (″text″ in the example above).

2. The XML-INTO operation allows you to read the contents of an XML document

directly into an RPG variable. This is useful if you know the format of the XML

document and you know that the names of the XML elements in the document

will be the same as the names you have given to your RPG variables.

For example, if you know that the XML document will always have the form of

the document above, you can define an RPG data structure with the name

″email″, and with subfields ″type″ and ″sendto″. Then you can use the

XML-INTO operation to read the XML document directly into the data

structure. When the operation is complete, the ″type″ subfield would have the

value ″text″ and the ″sendto″ subfield would have the value ″JohnDoe@there″.

3. The XML-INTO operation also allows you to obtain the values of an unknown

number of repeated XML elements. You provide a handling procedure that

receives the values of a fixed number of elements each time the handling

procedure is called. This is useful if you know that the XML document will

contain a series of identical XML elements, but you don’t know in advance

how many there will be.

The XML data is always returned by the parser in text form. If the data is known

to represent other data types such as numeric data, or date data, the XML-SAX

handling procedure must use conversion functions such as %INT or %DATE to

convert the data.

164 ILE RPG Programmer’s Guide

|
|
|

|
|
|

||||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

The XML-INTO operation will automatically convert the character data to the type

of the field or subfield specified as the receiver.

Both the XML-SAX and XML-INTO operations allow you to specify a series of

options that control the operation. The options are specified in a single character

expression in the form

’opt1=val1 opt2=val2’

Each operation has its own set of valid options. The options that are common to

both operation codes are

doc

The ″doc″ option specifies whether the XML document that you provide to the

operation is the name of an Integrated File System file containing the

document, or the document itself. The default is ″doc=string″ indicating that

you have provided an actual XML document. You use the option ″doc=file″ to

indicate that you have provided the name of a file containing the actual XML

document.

ccsid

The ″ccsid″ option specifies the CCSID in which the XML parser will return

data. For the XML-SAX operation, you can specify any CCSID that the parser

supports. For the XML-INTO operation, you can only control whether the

parsing will be done in single-byte character or UCS-2. See the information in

the ILE RPG Reference for more information on the ″ccsid″ option for each of

these operation.

XML Parser Error Codes

If the XML parser detects an error in the XML document during parsing, message

RNX0351 will be issued. From the message, you can get the specific error code

associated with the error, as well as the offset in the document where the error was

discovered.

The following table shows the meaning of each parser error code:

 XML

Parser

Error Code Description

1 The parser found an invalid character while scanning white space outside

element content.

2 The parser found an invalid start of a processing instruction, element,

comment, or document type declaration outside element content.

3 The parser found a duplicate attribute name.

4 The parser found the markup character ’<’ in an attribute value.

5 The start and end tag names of an element did not match.

6 The parser found an invalid character in element content.

7 The parser found an invalid start of an element, comment, processing

instruction, or CDATA section in element content.

8 The parser found in element content the CDATA closing character sequence

’]]>’ without the matching opening character sequence ’<![CDATA[’.

9 The parser found an invalid character in a comment.

10 The parser found in a comment the character sequence ’--’ (two hyphens) not

followed by ’>’.

Chapter 11. RPG and the eBusiness World 165

|
|

|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

||
|
||

||
|

||
|

||

||

||

||

||
|

||
|

||

||
|

XML

Parser

Error Code Description

11 The parser found an invalid character in a processing instruction data

segment.

12 A processing instruction target name was ’xml’ in lowercase, uppercase or

mixed case.

13 The parser found an invalid digit in a hexadecimal character reference (of the

form �, for example ັ).

14 The parser found an invalid digit in a decimal character reference (of the form

&#dddd;).

15 A character reference did not refer to a legal XML character.

16 The parser found an invalid character in an entity reference name.

17 The parser found an invalid character in an attribute value.

18 The parser found a possible invalid start of a document type declaration.

19 The parser found a second document type declaration.

20 An element name was not specified correctly. The first character was not a

letter, ’_’, or ’:’, or the parser found an invalid character either in or following

the element name.

21 An attribute was not specified correctly. The first character of the attribute

name was not a letter, ’_’, or ’:’, or a character other than ’=’ was found

following the attribute name, or one of the delimiters of the value was not

correct, or an invalid character was found in or following the name.

22 An empty element tag was not terminated by a ’>’ following the ’/’.

23 The element end tag was not specified correctly. The first character was not a

letter, ’_’, or ’:’, or the tag was not terminated by ’>’.

24 The parser found an invalid start of a comment or CDATA section in element

content.

25 A processing instruction target name was not specified correctly. The first

character of the processing instruction target name was not a letter, ’_’, or ’:’,

or the parser found an invalid character in or following the processing

instruction target name.

26 A processing instruction was not terminated by the closing character sequence

’?>’.

27 The parser found an invalid character following ’&’ in a character reference or

entity reference.

28 The version information was not present in the XML declaration.

29 The ’version’ in the XML declaration was not specified correctly. ’version’ was

not followed by ’=’, or the value was missing or improperly delimited, or the

value specified a bad character, or the start and end delimiters did not match,

or the parser found an invalid character following the version information

value closing delimiter in the XML declaration.

30 The parser found an invalid attribute instead of the optional encoding

declaration in the XML declaration.

31 The encoding declaration value in the XML declaration was missing or

incorrect. The value did not begin with lowercase or uppercase A through Z,

or ’encoding’ was not followed by ’=’, or the value was missing or improperly

delimited or it specified a bad character, or the start and end delimiters did

not match, or the parser found an invalid character following the closing

delimiter.

166 ILE RPG Programmer’s Guide

|
|
||

||
|

||
|

||
|

||
|

||

||

||

||

||

||
|
|

||
|
|
|

||

||
|

||
|

||
|
|
|

||
|

||
|

||

||
|
|
|
|

||
|

||
|
|
|
|
|

XML

Parser

Error Code Description

32 The parser found an invalid attribute instead of the optional standalone

declaration in the XML declaration.

33 The ’standalone’ attribute in the XML declaration was not specified correctly.

’standalone’ was not followed by a ’=’, or the value was either missing or

improperly delimited, or the value was neither ’yes’ nor ’no’, or the value

specified a bad character, or the start and end delimiters did not match, or the

parser found an invalid character following the closing delimiter.

34 The XML declaration was not terminated by the proper character sequence

’?>’, or contained an invalid attribute.

35 The parser found the start of a document type declaration after the end of the

root element.

36 The parser found the start of an element after the end of the root element.

300 The parser reached the end of the document before the document was

complete.

301 The %HANDLER procedure for XML-INTO or XML-SAX returned a non-zero

value, causing the XML parsing to end.

302 The parser does not support the requested CCSID value or the first character

of the XML document was not ’<’.

303 The document was too large for the parser to handle. The parser attempted to

parse the incomplete document, but the data at the end of the document was

necessary for the parsing to complete.

500-999 Internal error in the external parser. Please report the error to your service

representative.

10001-
19999

Internal error in the parser. Please report the error to your service

representative.

Limitations of the XML Parser

v An RPG character variable can only be 65535 bytes long. If your program has a

pointer to XML data that is longer than that, for example from an MQSeries®

call, you will have to write the XML data to a temporary file in the Integrated

File System, and parse the XML data from your temporary file. See Figure 76 on

page 168 for a sample procedure that does this.

v If the parsing is done in a single-byte character CCSID, the maximum number of

characters that the parser can handle is 2147483408.

v If the parsing is done in UCS-2, the maximum number of UCS-2 characters that

the parser can handle is 1073741704.

v The parser does not support every CCSID. If your job CCSID is one of the

CCSIDs that the parser does not handle, you must parse your document in

UCS-2.

– The following EBCDIC CCSIDs are supported: 1047, 37, 1140, 273, 1141, 277,

1142, 278, 1143, 280, 1144, 284, 1145, 285, 1146, 297, 1147, 500, 1148, 871, and

1149.

– The following ASCII CCSIDs are supported: 819, 813, 920.

– The following Unicode CCSIDs are supported: 1200, 13488, 17584.
v The parser does not support entity references. When it encounters an entity

reference, it generates either an ″unknown reference″ or ″unknown attribute

reference″ event. The value of the event is the reference in the form ″&name;″.

Chapter 11. RPG and the eBusiness World 167

|
|
||

||
|

||
|
|
|
|

||
|

||
|

||

||
|

||
|

||
|

||
|
|

||
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

|

|

|
|
|

v The parser does not parse the DOCTYPE declaration. The text of the DOCTYPE

declaration is passed as the data value for the ″DOCTYPE declaration″ event.

v The parser does not support name spaces. It ignores the colons in XML element

and attribute names.

v The parser does not generate ″start prefix mapping″ and ″end prefix mapping″

events. It ignores the colons in XML element and attribute names.

 * Parameters:

 * 1. path : a pointer to a null-terminated string containing

 * the path to the file to be written

 * 2. dataPtr : a pointer to the data to be written

 * 3. dataLen : the length of the data in bytes

 * 4. dataCcsid : the CCSID of the data

 * 5. fileCcsid : the desired CCSID of the file

 * Sample RPG coding:

 * ifsWrite (’/home/mydir/temp.xml’ : xmlPtr : xmlLen : 37 : 37);

 * xml-into ds %xml(’/home/mydir/temp.xml’ : ’doc=file’);

 * To delete the file, use the system command

 * rmvlnk ’/home/mydir/temp.xml’

 * Note: This module requires BNDDIR(QC2LE)

 P ifsWrite B EXPORT

D ifsWrite PI

D path * VALUE OPTIONS(*STRING)

D dataPtr * VALUE

D dataLen 10I 0 VALUE

D dataCcsid 10I 0 VALUE

D fileCcsid 10I 0 VALUE

D O_CREAT C x’00000008’

D O_TRUNC C x’00000040’

D O_WRONLY C x’00000002’

D O_RDWR C x’00000004’

D O_CCSID C x’00000020’

D O_TEXT_CREAT C x’02000000’

D O_TEXTDATA C x’01000000’

D O_SHARE_NONE C x’00080000’

D S_IRUSR C x’0100’

D S_IROTH C x’0004’

D S_IRGRP C x’0020’

D S_IWUSR C x’0080’

D S_IWOTH C x’0002’

Figure 76. Writing data to an Integrated File System file (Part 1 of 2)

168 ILE RPG Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|

|
|

|
|

|

|

RPG and MQSeries

With MQSeries®, a program can communicate with other programs on the same

platform or a different platform using the same messaging product. MQSeries

manages network interfaces, assures delivery, deals with communications

protocols, and handles recovery after system problems. MQSeries is available on

over 35 platforms.

RPG and Java

Introduction to Java and RPG

The Java programming language is a high-level object-oriented language

developed by Sun Microsystems. Java programs can be developed using the

VisualAge® for Java component of WebSphere Development Studio for iSeries.

D ssize_t S 10I 0

D size_t S 10U 0

D open PR 10I 0 EXTPROC(’open’)

D path * VALUE OPTIONS(*STRING)

D flag 10I 0 VALUE

D mode 10I 0 VALUE

D fileCcsid 10I 0 VALUE options(*nopass)

D dataCcsid 10I 0 VALUE options(*nopass)

D writeFile PR LIKE(ssize_t)

D EXTPROC(’write’)

D handle 10I 0 VALUE

D data * VALUE

D len VALUE LIKE(size_t)

D closeFile PR 10I 0 EXTPROC(’close’)

D handle 10I 0 VALUE

D oflag S 10I 0

D omode S 10I 0

D handle S 10I 0

D rc S 10I 0

D sysErrno PR * EXTPROC(’__errno’)

D errno S 10I 0 BASED(pErrno)

 /FREE

 pErrno = sysErrno();

 oflag = 0 + O_WRONLY + O_CREAT + O_TEXT_CREAT + O_TRUNC

 + O_CCSID + O_TEXTDATA + O_SHARE_NONE;

 omode = 0 + S_IRUSR + S_IWUSR + S_IRGRP + S_IROTH;

 handle = open(path : oflag : omode : fileCcsid : dataCcsid);

// insert error handling if handle is less than zero

 rc = writeFile (handle : dataPtr : dataLen);

 // insert error handling if rc is not zero

 rc = closeFile (handle);

 // insert error handling if rc is not zero

 /END-FREE

P ifswrite E

Figure 76. Writing data to an Integrated File System file (Part 2 of 2)

Chapter 11. RPG and the eBusiness World 169

|

In object-oriented programming, a ″method″ is a programmed procedure that is

defined as part of a ″class″, which is a collection of methods and variables. Java

methods can be called from your RPG program. While most Java methods are

written in Java, a method can also be written in another high-level language, such

as RPG. This is known as a ″native method″. This section includes information on

calling Java methods from RPG and on writing RPG native methods.

The Object Data Type and CLASS Keyword

Fields that can store objects are declared using the O data type. To declare a field

of type O, code O in column 40 of the D-specification and use the CLASS keyword

to provide the class of the object. The CLASS keyword accepts two parameters:

CLASS(*JAVA:class_name)

*JAVA identifies the object as a Java object. Class_name specifies the class of the

object. It must be a character literal or named constant, and the class name must be

fully qualified. The class name is case sensitive.

For example, to declare a field that will hold an object of type BigDecimal:

D bdnum S O CLASS(*JAVA:’java.math.BigDecimal’)

To declare a field that will hold an object of type String:

D string S O CLASS(*JAVA:’java.lang.String’)

Note that both class names are fully qualified and that their case exactly matches

that of the Java class.

Fields of type O cannot be defined as subfields of data structures. It is possible to

have arrays of type O fields, but pre-runtime and compile-time tables and arrays

of type O are not allowed.

Prototyping Java Methods

Like subprocedures, Java methods must be prototyped in order to call them

correctly. The ILE RPG compiler must know the name of the method, the class it

belongs to, the data types of the parameters and the data type of the returned

value (if any), and whether or not the method is a static method.

The extended EXTPROC keyword can be used to specify the name of the method

and the class it belongs to. When prototyping a Java method, the expected format

of the EXTPROC keyword is:

EXTPROC(*JAVA:class_name:method_name)

Both the class name and the method name must be character constants. The class

name must be a fully qualified Java class name and is case sensitive. The method

name must be the name of the method to be called, and is case sensitive.

Use *JAVA when creating a prototype for either a method written in Java or a

native method written in RPG. Use the STATIC keyword to indicate that a method

is static.

Java and RPG Definitions and Data Types: The data types of the parameters and

the returned value of the method are specified in the same way as they are when

prototyping a subprocedure, but the data types actually map to Java data types.

The following table shows the mappings of ILE RPG data types to and from Java

data types.

170 ILE RPG Programmer’s Guide

Table 30.

Java Data Type ILE RPG Data Type RPG Definitions

boolean indicator N

byte

1 integer 3I 0

character 1A

byte[] character length > 1 (See 3.) nA

array of character length=1 (See 4.) 1A DIM(x)

date D

time T

timestamp Z

short 2–byte integer 5I 0

char UCS-2 length=1 1C

char[] UCS-2 length>1 (See 3.) nC

array of UCS-2 length=1 (See 4.) 1C DIM(x)

int 4–byte integer 10I 0

long 8–byte integer 20I 0

float 4–byte float 4F

double 8–byte float 8F

any object object O CLASS(x)

any array array of equivalent type (See 4.) DIM(x)

Notes:

1. When a Java byte type is converted to or from a character (1A) data type,

ASCII conversion occurs. When a Java byte type is converted to or from an

integer (3I) data type, ASCII conversion does not occur.

2. For arrays of any type in Java, you can declare an array of the equivalent type

in RPG. However, note that you cannot use an array of character length greater

than 1 or UCS-2 length greater than 1 data types.

3. For UCS-2 length greater than 1 and character length greater than 1 data types,

the VARYING keyword is allowed. In general, it’s recommended to use the

VARYING keyword, since Java byte[] and char[] cannot be declared with a

fixed length.

4. For RPG array data types, OPTIONS(*VARSIZE) should normally be coded for

array parameters, since Java arrays cannot be declared with a fixed length.

Zoned, Packed, Binary, and Unsigned data types are not available in Java. If you

pass a Zoned, Packed, Binary, or Unsigned field as a parameter, the compiler will

do the appropriate conversion, but this may result in truncation and/or loss of

precision.

When calling a method, the compiler will accept arrays as parameters only if the

parameter is prototyped using the DIM keyword.

If the return value or a parameter of a method is an object, you must provide the

class of the object by coding the CLASS keyword on the prototype. The class name

specified will be that of the object being returned or the parameter being passed.

(Use the EXTPROC keyword to specify the class of the method being called.)

Chapter 11. RPG and the eBusiness World 171

If the method being called is a static method, then you must specify the STATIC

keyword on the prototype. If the method is a constructor, you must specify

*CONSTRUCTOR as the name of the method.

In Java, the following data types can only be passed by value:

boolean

byte

int

short

long

float

double

Parameters of these types must have the VALUE keyword specified for them on

the prototype.

Note that objects can only be passed by reference. The VALUE keyword cannot be

specified with type O. Since arrays are seen by Java as objects, parameters

mapping to arrays must also be passed by reference. This includes character and

byte arrays. The CONST keyword can be used.

Examples of Prototyping Java Methods: This section presents some examples of

prototyping Java methods.

Example 1: The Java Integer class contains a static method called toString, which

accepts an int parameter, and returns a String object. It is declared in Java as

follows:

static String Integer.toString(int)

This method would be prototyped as follows:

D tostring PR O EXTPROC(*JAVA:

D ’java.lang.Integer’:

D ’toString’)

D CLASS(*JAVA:’java.lang.String’)

D STATIC

D num 10I 0 VALUE

The EXTPROC keyword identifies the method as a Java method. It also indicates

that the method name is ’toString’, and that it is found in class ’java.lang.Integer’.

The O in column 40 and the CLASS keyword tell the compiler that the method

returns an object, and the class of that object is ’java.lang.String’.

The STATIC keyword indicates that the method is a static method, meaning that an

Integer object is not required to call the method.

The data type of the parameter is specified as 10I, which maps to the Java int data

type. Because the parameter is an int, it must be passed by value, and the VALUE

keyword is required.

Example 2: The Java Integer class contains a static method called getInteger, which

accepts String and Integer objects as parameters, and returns an Integer object. It is

declared in Java as follows:

static Integer Integer.getInteger(String, Integer)

This method would be prototyped as follows:

172 ILE RPG Programmer’s Guide

D getint PR O EXTPROC(*JAVA:

D ’java.lang.Integer’:

D ’getInteger’)

D CLASS(*JAVA:’java.lang.Integer’)

D STATIC

D string O CLASS(*JAVA:’java.lang.String’) CONST

D num O CLASS(*JAVA:’java.lang.Integer’) CONST

This method accepts two objects as parameters. O is coded in column 40 of the

D-specification and the CLASS keyword specifies the class of each object

parameter. Because both parameters are input-only, the CONST keyword is

specified.

Example 3: The Java Integer class contains a method called shortValue, which

returns the short representation of the Integer object used to invoke the method. It

is declared in Java as follows:

short shortValue()

This method would be prototyped as follows:

D shortval PR 5I 0 EXTPROC(*JAVA:

D ’java.lang.Integer’:

D ’shortValue’

The STATIC keyword is not specified because the method is not a static method.

The method takes no parameters, so none are coded. When you call this method,

you will specify the Integer instance as the first parameter. The returned value is

specified as 5I, which maps to the Java short data type.

Example 4: The Java Integer class contains a method called equals, which accepts

an Object as parameter and returns a boolean. It is declared in Java as follows:

boolean equals(Object)

This method would be prototyped as follows:

D equals PR N EXTPROC(*JAVA:

D ’java.lang.Integer’:

D ’equals’)

D obj O CLASS(*JAVA:’java.lang.Object’)

The returned value is specified as N, which maps to the Java boolean data type.

Because this is not a static method, a call to this method will have two parameters

with the instance parameter coded first.

Calling Java Methods from ILE RPG

This section describes how to call Java methods from ILE RPG programs.

If the method is not a static method, then it is called an ″instance method″ and an

object instance must be coded as an extra first parameter in order to call the

method. For example, if an instance method is prototyped with one parameter, you

must call it with two parameters, the first being the instance parameter.

The following steps describe the call from ILE RPG to a Java method:

1. Java methods can be called using existing operation codes CALLP (when no

return value is expected) and EVAL (when a return value is expected). When

your RPG procedure attempts to make call to a Java method, RPG will check to

see if the Java Virtual Machine (JVM) has been started. If not, RPG will start

the JVM for you. It is also possible to start JVM yourself using the JNI function

described in “Creating the Java Virtual Machine (JVM)” on page 189

Chapter 11. RPG and the eBusiness World 173

2. If you are using your own classes (or any classes outside the normal java.xxx

classes), be sure to have your CLASSPATH environment variable setup before

you call any Java methods. When RPG starts up the JVM for you, it will add

the classes in your CLASSPATH environment variable to the standard

classpath, so when you use your own classes, Java will be able to find them.

Set the CLASSPATH environment variable interactively like this:

===>ADDENVVAR ENVVAR(CLASSPATH)

 VALUE(’/myclasses/:/xyzJava/classes/’)

The directories must be separated by colons.

3. Normally, Java does its own garbage collection, detecting when an object is no

longer needed. When you create objects by calling Java constructors from your

non-native RPG procedure, Java has no way of knowing that the object can be

destroyed, so it never destroys them. You can enable garbage collection for

several objects at once by calling the JNI functions described in “Telling Java to

free several objects at once” on page 186. If you know you are not going to

need an object any more, you should tell this to Java by calling the JNI function

described in “Telling Java you are finished with a temporary object” on page

187.

CAUTION:

Since Java uses threads, the THREAD(*SERIALIZE) keyword must be coded in

all modules that interact with Java. RPG relies heavily on static storage even in

subprocedures that apparently only use automatic storage.

THREAD(*SERIALIZE) is necessary to ensure the correct handling of this static

storage. This applies not only to modules that contain calls to Java methods, but

also to any modules that might be called during interactions with Java.

See “Additional RPG Coding for Using Java” on page 186 for more information

about the various JNI functions.

Example 1

In this example, the goal is to add two BigDecimal values together. In order to do

this, two BigDecimal objects must be instantiated by calling the constructor for the

BigDecimal class, fields must be declared to store the BigDecimal objects, and the

add() method in the BigDecimal class must be called.

174 ILE RPG Programmer’s Guide

* Prototype the BigDecimal constructor that accepts a String

 * parameter. It returns a new BigDecimal object.

 * Since the string parameter is not changed by the constructor, we will

 * code the CONST keyword. This will make it more convenient

 * to call the constructor.

 *

D bdcreate1 PR O EXTPROC(*JAVA:

D ’java.math.BigDecimal’:

D *CONSTRUCTOR)

D str O CLASS(*JAVA:’java.lang.String’)

D CONST

 *

 * Prototype the BigDecimal constructor that accepts a double

 * parameter. 8F maps to the Java double data type and so must

 * be passed by VALUE. It returns a BigDecimal object.

 *

D bdcreate2 PR O EXTPROC(*JAVA:

D ’java.math.BigDecimal’:

D *CONSTRUCTOR)

D double 8F VALUE

Figure 77. RPG Code Example Calling BigDecimal Java Class (Part 1 of 2)

Chapter 11. RPG and the eBusiness World 175

Here is the code that does the call.

 * Define fields to store the BigDecimal objects.

 *

D bdnum1 S O CLASS(*JAVA:’java.math.BigDecimal’)

D bdnum2 S O CLASS(*JAVA:’java.math.BigDecimal’)

 *

 * Since one of the constructors we are using requires a String object,

 * we will also need to construct one of those. Prototype the String

 * constructor that accepts a byte array as a parameter. It returns

 * a String object.

 *

D makestring PR O EXTPROC(*JAVA:

D ’java.lang.String’:

D *CONSTRUCTOR)

D bytes 30A CONST VARYING

 *

 * Define a field to store the String object.

 *

D string S O CLASS(*JAVA:’java.lang.String’)

 *

 * Prototype the BigDecimal add method. It accepts a BigDecimal object

 * as a parameter, and returns a BigDecimal object (the sum of the parameter

 * and of the BigDecimal object used to make the call).

 *

D add PR O EXTPROC(*JAVA:

D ’java.math.BigDecimal’:

D ’add’)

D CLASS(*JAVA:’java.math.BigDecimal’)

D bd1 O CLASS(*JAVA:’java.math.BigDecimal’)

D CONST

 *

 * Define a field to store the sum. *

D sum S O CLASS(*JAVA:’java.math.BigDecimal’)

D

D double S 8F INZ(1.1)

D fld1 S 10A

 * Define a prototype to retrieve the String version of the BigDecimal

D getBdString PR O CLASS(*JAVA:’java.lang.String’)

D EXTPROC(*JAVA:

D ’java.lang.BigDecimal’:

D ’toString’)

 * Define a prototype to retrieve the value of a String

D getBytes PR 65535A VARYING

D EXTPROC(*JAVA:

D ’java.lang.String’:

D ’getBytes’)

 * Define a variable to hold the value of a BigDecimal object

D bdVal S 63P 5

Figure 77. RPG Code Example Calling BigDecimal Java Class (Part 2 of 2)

176 ILE RPG Programmer’s Guide

|
|
|
|
|

|
|
|
|

|

Example 2

This example shows how to perform a TRIM in Java by using the trim() method as

an alternative to the ILE RPG %TRIM built-in function. The trim() method in the

String class is not a static method, so a String object is needed in order to call it.

 * Call the constructor for the String class, to create a String

 * object from fld1. Since we are calling the constructor, we

 * do not need to pass a String object as the first parameter.

 *

C EVAL string = makestring(’123456789012345678901234567890’)

 *

 * Call the BigDecimal constructor that accepts a String

 * parameter, using the String object we just instantiated.

 *

C EVAL bdnum1 = bdcreate1(string)

 *

 * Call the BigDecimal constructor that accepts a double

 * as a parameter.

 *

C EVAL bdnum2 = bdcreate2(double)

 *

 * Add the two BigDecimal objects together by calling the

 * add method. The prototype indicates that add accepts

 * one parameter, but since add is not a static method, we

 * must also pass a BigDecimal object in order to make the

 * call, and it must be passed as the first parameter.

 * bdnum1 is the object we are using to make the

 * call, and bdnum2 is the parameter.

 *

C EVAL sum = add(bdnum1:bdnum2)

 * sum now contains a BigDecimal object with the value

 * bdnum1 + bdnum2.

C EVAL bdVal = %DECH(getBdString(sum) : 63 : 5)

 * val now contains a value of the sum.

 * If the value of the sum is larger than the variable "val" can

 * hold, an overflow exception would occur.

Figure 78.

Chapter 11. RPG and the eBusiness World 177

|
|
|
|

The call is coded as follows:

 Static methods are called in the same way, except that an object is not required to

make a call. If the getBytes() method above was static, the call would look like the

example below.

C EVAL fld = getBytes()

If the method does not return a value, use the CALLP operation code.

Creating Objects

In order to call a non-static method, an object is required. The class of the object

must be the same as the class containing the method. You may already have an

object available, but you may sometimes need to instantiate a new object. You do

this by calling a class constructor. A class constructor is neither a static method nor

an instance method, and therefore it does not need an instance parameter. The

special method name *CONSTRUCTOR is used when prototyping a constructor.

 * Define a field to store the String object we wish to trim

 *

D str S O CLASS(*JAVA:’java.lang.String’)

 *

 * Prototype the constructor for the String class. The

 * constructor expects a byte array.

 *

D makestring PR O EXTPROC(*JAVA:

D ’java.lang.String’:

D *CONSTRUCTOR)

D CLASS(*JAVA:’java.lang.String’)

D parm 10A

 *

 * Prototype the String method getBytes which converts a String to a byte

 * array. We can then store this byte array in an alpha field.

 *

D getBytes PR 10A EXTPROC(*JAVA:

D ’java.lang.String’:

D ’getBytes’) VARYING

 *

 * Prototype the String method trim. It doesn’t take any parameters,

 * but since it is not a static method, must be called using a String

 * object.

 *

D trimstring PR O EXTPROC(*JAVA:

D ’java.lang.String’:

D ’trim’)

D fld S 10A INZ(’ hello ’) VARYING

Figure 79. RPG Code Example Using trim() Java Method

 * Call the String constructor

 *

C EVAL str = makestring(fld)

 *

 * Trim the string by calling the String trim() method.

 * We will reuse the str field to store the result.

 *

C EVAL str = trimstring(str)

 *

 * Convert the string back to a byte array and store it

 * in fld.

 *

C EVAL fld = getBytes(str)

Figure 80. RPG Call to the String constructor

178 ILE RPG Programmer’s Guide

For example, class BigDecimal has a constructor that accepts a float parameter.

This constructor would be prototyped as follows:

D bdcreate PR O EXTPROC(*JAVA:

D ’java.math.BigDecimal’:

D *CONSTRUCTOR)

D dnum 4F VALUE

Note that the parameter must be passed by value because it maps to the Java float

data type.

You would call this constructor like this:

D bd S O CLASS(*JAVA:

D ’java.math.BigDecimal’)

 /free

 bd = bdcreate(5.2E9);

 /end-free

The class of the returned object is the same as the class of the constructor itself, so

the CLASS keyword is redundant for a constructor, but it may be coded.

Calling methods in your own classes

When you use your own Java classes, the class that you specify in the EXTPROC

and CLASS keywords is simply the name of the class. If the class is part of a

package, you include the package information in the keywords. For example,

consider the following two classes:

 If the Simple class file is /home/myclasses/Simple.class, you would specify the

directory /home/myclasses in your CLASSPATH environment variable, and you

would specify ’Simple’ as the class name in your RPG keywords.

If the PkgClass class file is /home/mypackages/MyPkg/PkgClass.class, you

would specify the directory /home/mypackages (the directory containing the

package) in your CLASSPATH environment variable, and you would specify

’MyPkg.PkgClass’ (the package-qualified Java class) as the class name in your RPG

keywords.

 class Simple

 {

 static void method (void)

 {

 System.out.println ("Simple method");

 }

 }

 package MyPkg;

 class PkgClass

 {

 static void method (void)

 {

 System.out.println ("PkgClass method");

 }

 }

Figure 81.

Chapter 11. RPG and the eBusiness World 179

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

#

#
#
#
#
#

#
#
#

#
#
#
#
#

The class name for your RPG keywords is the same name as you would specify in

your import statements in your Java classes. You use the CLASSPATH environment

variable to specify the location of the class files, or the location of the directory

containing the package.

Note: Note: If you have classes in a jar file, you specify the jar file itself in your

classpath.

===> ADDENVVAR CLASSPATH ’/home/myclasses:/home/mypackages:/home/myjarfiles/j1.jar’

Controlling how the Java Virtual Machine is set up

When RPG starts the Java Virtual Machine (JVM), there are several options that

control how the JVM is started. See the Java System Properties section in the iSeries

Information Center.

v You can place these options in the SystemDefault.properties file.

v You can use the CLASSPATH environment variable to specify the classpath (see

above).

v You can place these options in an environment variable called

QIBM_RPG_JAVA_PROPERTIES. Any options placed in this environment

variable will override the options in the SystemDefault.properties file. If you

specify the java.class.path option in this environment variable, and you also

specified the CLASSPATH environment variable, it is undefined which value

will take precedence for the classpath.

To specify options in the QIBM_RPG_JAVA_PROPERTIES environment variable,

you code the options in a string, one after the other, separated by any character

that does not appear in any of the options. Then you end the string with the

separator character. For example, if you want to specify the options

java.version=1.4

os400.stderr=file:stderr.txt

then you would add the environment variable using the following command:

ADDENVVAR ENVVAR(QIBM_RPG_JAVA_PROPERTIES)

VALUE(’-Djava.version=1.4;-Dos400.stderr=file:stderr.txt;’)

If the options string is not valid, Java may reject one of the options. Message

JVAB55A will appear in the joblog indicating which option was not valid. If this

happens, RPG will try to start the JVM again without any of the options, but still

including the java.class.path option if it came from the CLASSPATH environment

variable.

 D simpleMethod PR EXTPROC(*JAVA

 D : ’Simple’

 D : ’method’)

 D STATIC

 D pkgMethod PR EXTPROC(*JAVA

 D : ’Pkg.PkgClass’

 D : ’method’)

 D STATIC

Figure 82. Creating an RPG prototype for a Java method in a package

180 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
#
#
##
#
#

#
#
#
#

#
#

#

#

#

#
#
#

|

#
#

#
#
|
#
#
#

#
#
#
#

#
#

#

#
#

#
#
#
#
#

RPG Native Methods

To define an RPG native method, you code the prototype the same way as you

would code the prototype for an ordinary Java method. Then, you write the RPG

subprocedure normally. You must code the EXPORT keyword on the

Procedure-Begin Specification for the native method.

You must have your native methods in a service program in your library list. In

your Java class that is calling your native methods, you must have a static

statement like this:

 static

 {

 System.loadLibrary ("MYSRVPGM");

 }

This will enable Java to find your native methods. Aside from adding *JAVA and

the class to the EXTPROC keyword for the prototype of a native method, you

write your native method like any subprocedure. Figure 83 is an example of a Java

class that calls a native method.

 CAUTION:

If you are using environment variables to control how the JVM is started, you

must be sure that the environment variables exist in the job before any RPG

programs call Java methods. If you use ADDENVVAR LEVEL(*SYS), the

environment variable will be added at the system level, and by default, every

job will start with that environment variable set. If you do this, be sure that the

classpath includes all the directories containing the Java classes that may be

needed by any application on the system.

Figure 84 on page 182 is a prototype of an RPG native method.

 class MyClass

 {

 static

 {

 System.loadLibrary ("MYSRVPGM");

 }

 native boolean checkCust (byte custName[]);

 void anotherMethod ()

 {

 boolean found;

 // call the native method

 found = checkCust (str.getBytes());

 }

 }

Figure 83. Java Class Calling a Native Method

Chapter 11. RPG and the eBusiness World 181

The native method itself is coded just like any subprocedure. Figure 85 is an

example of a native method coded in RPG.

Java calls your service program from the default activation group. If your service

program is created with activation group *CALLER, it will run in the default

activation group. This can sometimes cause problems:

v If you are debugging your native methods, and you want to make a change to

the code, you will have to sign off and sign back on again before Java will see

the new version.

v If you are calling other procedures in the service program from other RPG code

that is not running in the default activation group, then you will not be able to

share any global variables between the ″ordinary procedures″ and the native

methods. This scenario can arise if a procedure in your RPG service program

sets up some global variables, and then calls a Java class which then calls a

native method in that service program. Those native methods will not see the

same data that the first procedure set up.

If you create any Java objects in your native methods, by default they will be

destroyed by Java when the native method returns. If you want the object to be

available after the native method returns (for example, if you want to use it from

another native method later), then you must tell Java that you want to make a

global reference, by calling the JNI wrapper procedure getNewGlobalRef . When

you are finished with the global reference, you will call JNI wrapper procedure

freeGlobalRef, so Java can reclaim the object. See “Telling Java you want an object

to be permanent” on page 188 and “Telling Java you are finished with a permanent

object” on page 189 for more information about these wrapper procedures.

If your RPG native method ends abnormally with an unhandled exception, the

RPG compiler will throw an exception to Java. The exception is of class

java.lang.Exception, and has the form RPG nnnnn, where nnnnn is the RPG status

code.

 try

 {

 nativeMethod ();

 }

 catch (Exception exc)

 {

 ...

 }

D checkCust PR N EXTPROC(*JAVA

D : ’MyClass’

D : ’checkCust’)

D custName 100A VARYING CONST

Figure 84. RPG Native Method Prototype

P checkCust B EXPORT

D checkCust PI N

D custName 100A VARYING CONST

 /free chain custName rec;

 return %found;

 /end-free

P checkCust E

Figure 85. Native Method Coded in RPG

182 ILE RPG Programmer’s Guide

Getting the Instance Parameter in Non-Static Native Methods

When a non-static native method is called, one of the parameters that Java passes

to the native method is the object that the method applies to. This is called the

″instance parameter″, referred to as ″this″ in a Java method. Within the native

method itself, you can use the built-in function %THIS to get the instance

parameter. You do not code this parameter in your Procedure Interface.

Passing Character Parameters from Java to Native Methods

You have two choices when dealing with character parameters:

v If you want your Java code to be a simple as possible, define the parameter as a

String in your Java native method declaration. Your RPG code would have to

retrieve the value of the string itself (see “Using String Objects in RPG”).

v If you want the character data to be immediately available to your RPG

program, code the parameter in the Java native method declaration as a byte

array or a char array, and code it in your RPG prototype as a character field,

UCS-2 field, or a Date, Time or Timestamp. That way, RPG will handle the

conversion for you.

Using String Objects in RPG: If you have a String object in your RPG code, you

can retrieve its length and contents using the code in Figure 86.

You can define the returned value from the getBytes method as character data of

any length, either varying or non-varying, choosing the length based on your own

knowledge of the length of data in the Java String. You can also define the return

value as a Date, Time or Timestamp, if you are sure that the String object will have

the correct format.

Alternately, you can retrieve the string value as a UCS-2 value, by calling the

getChars method instead of getBytes.

D stringBytes PR 100A VARYING

D EXTPROC(*JAVA

D : ’java.lang.String’

D : ’getBytes’)

D stringLength PR like(jint)

D EXTPROC(*JAVA

D : ’java.lang.String’

D : ’length’)

D string S like(jstring)

D len S like(jint)

D data S 100A VARYING

 /free len = stringLength (string);

 data = stringBytes (string);

 if (len > %len(data));

 error (’Actual string was too long’);

 endif;

 /end-free

Figure 86. Retrieving String object length and contents from Java

Chapter 11. RPG and the eBusiness World 183

Coding Errors when calling Java from RPG

Incorrectly specifying the method parameters in the RPG

prototype

When coding the prototype for a Java method, if you do not specify the types of

the return value and parameters correctly, the RPG compiler will build the method

signature incorrectly. When the program is run, either the wrong method will be

called, or the call will fail with a NoSuchMethodError Java exception.

If the call fails with a NoSuchMethodError Java exception, the RPG error message

will indicate the signature that was used for the method call. The following table

shows the mappings between Java types and method signature values. Refer to

Table 30 on page 171 to see the mapping between Java types and RPG types.

 Java type Signature

boolean Z

byte B

char C

short S

int I

long J

float F

double D

any object Lclass;

any array [type

To see the list of valid signatures for the methods in the Java class, use the QSH

command

 javap -s classname

where classname is specified with the package, for example java.lang.String. If the

class is not in the standard classpath, you can specify a classpath option for javap:

javap -s classname -classpath classlocation

By comparing the valid signatures for the method with the signature being used

by RPG for your method call, and working from the mapping tables, you should

be able to determine the error in your prototype.

Failure to free Java resources

When you create a Java object by calling a constructor, or by calling a method that

returns an object, that object will remain in existence until it is freed. It is freed

when:

1. The RPG program calls a JNI function to free the object (see “Additional RPG

Coding for Using Java” on page 186).

2. When the native method returns, if the object was created during a call from

Java to a native method.

3. When the JVM ends.

If the RPG procedure calling the Java method is not itself an RPG native method,

and the RPG procedure does not take care to free objects it has created, then the

job may eventually be unable to create any more objects.

184 ILE RPG Programmer’s Guide

|
|
|
|
|
|

|
|
|
|

|||

||

||

||

||

||

||

||

||

||

||
|

|
|

|

|
|

|

|
|
|

Consider the following code fragment:

 strObject = newString (’abcde’);

 strObject = trim (strObject);

 data = getBytes (strObject);

 freeLocalRef (strObject);

It appears that this code is taking care to free the object, but in fact this code

creates two objects. The first object is created by the called to newString(), and the

second is created by the call to trim(). Here are two ways to correct this code

fragment:

1. By freeing several objects at once:

 beginObjGroup();

 strObject = newString (’abcde’);

 strObject = trim (strObject);

 data = getBytes (strObject);

 endObjGroup();

2. By keeping track of all objects used, and freeing them individually:

 strObject = newString (’abcde’);

 trimmedStrObject = trim (strObject);

 data = getBytes (trimmedStrObject);

 freeLocalRef (strObject);

 freeLocalRef (trimmedStrObject);

Another problem can be created by calling Java methods as parameters to other

Java methods. In the following example, the program is creating a BigDecimal

object from the constructor that takes a String parameter:

 bigDec = newBigDecimal (newString (’12.345’));

 ...

 freeLocalRef (bigDec);

The problem with this code is that a String object has been created for the

parameter, but it can never be freed by the RPG procedure. This problem can be

corrected by calling beginObjGroup() before the RPG code that calls Java and

calling endObjGroup() after, or by coding as follows:

 tempObj = newString (’12.2345’);

 bigDec = newBigDecimal (tempObj);

 freeLocalRef (tempObj);

 ...

 freeLocalRef (bigDec);

Using objects that no longer exist

If you have static Object variables in your native method (STATIC keyword on the

definition), or your native method uses static global Object variables (variables

declared in the main source section), then the Object variables will retain their

values between calls to the native method. However, by default, Java will free any

objects created during a call to a native method. (See “Additional RPG Coding for

Using Java” on page 186 to see how to prevent Java from freeing objects.)

An RPG ″Object″ is really a numeric object reference. When a Java object is freed,

the numeric object reference can be reused. If the RPG native method refers to a

static Object variable that has not been explicitly protected from being freed, one of

two things can happen:

1. The object reference may be invalid, if the numeric object reference has not

been reused.

2. The object reference may have been reused, but since it refers to a different

object, any attempt to use it in the RPG native method will probably be

incorrect.

Chapter 11. RPG and the eBusiness World 185

To prevent problems with attempting to reuse objects illegally, the RPG

programmer may do one or more of the following:

v Avoid declaring any Object variables in static storage. Instead, declare all Object

variables in local storage of subprocedures, without using the STATIC keyword.

v Before returning from a native method, explicitly set all static object references to

*NULL.

v Upon entering a native method, explicitly set all static object references to some

initial values.

Additional RPG Coding for Using Java

When you are using ILE RPG with Java, there are some functions normally

handled by Java that must be handled by your RPG code. The RPG compiler takes

care of some of these for you, but you must handle some of them yourself. This

section shows you some sample RPG wrappers to do this work, explains how and

when to call them, and suggests how to handle JNI exceptions.

The module that you create to hold these JNI wrapper functions should begin with

the following statements:

 H thread(*serialize)

 H nomain

 /define OS400_JVM_12

 /copy qsysinc/qrpglesrc,jni

The following RPG wrappers for JNI functions are described. See Figure 91 on

page 195 below for a complete working example.

v “Telling Java to free several objects at once”

v “Telling Java you are finished with a temporary object” on page 187

v “Telling Java you want an object to be permanent” on page 188

v “Telling Java you are finished with a permanent object” on page 189

v “Creating the Java Virtual Machine (JVM)” on page 189

v “Obtaining the JNI environment pointer” on page 189

Telling Java to free several objects at once

You can free many local references at once by calling the JNI function

PushLocalFrame before a section of RPG code that uses Java and then calling

PopLocalFrame at the end of the section of RPG code. When you call

PopLocalFrame, any local references created since the call to PushLocalFrame will

be freed. For more information about the parameters to these JNI functions, see the

JNI documentation at http://java.sun.com.

D JNI_GROUP_ADDED...

D c 0

D JNI_GROUP_NOT_ADDED...

D c -1

D JNI_GROUP_ENDED...

D c 0

 *--

 * beginObjGroup - start a new group of objects that can all

 * be deleted together later

 *--

P beginObjGroup b export

D beginObjGroup pi 10i 0

D env * const

D capacityParm 10i 0 value options(*nopass)

D rc s 10i 0

D capacity s 10i 0 inz(100)

 /free

 JNIENV_p = env;

 if (%parms >= 2);

186 ILE RPG Programmer’s Guide

|
|

#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

capacity = capacityParm;

 endif;

 rc = PushLocalFrame (JNIENV_p : capacity);

 if (rc <> 0);

 return JNI_GROUP_NOT_ADDED;

 endif;

 return JNI_GROUP_ADDED;

 /end-free

P beginObjGroup e

 *--

 * endObjGroup - end the group of objects that was started

 * most recently

 *--

P endObjGroup b export

D endObjGroup pi 10i 0

D env * const

D refObject

P o class(*java:’java.lang.Object’)

D const

D options(*nopass)

D newObject

P o class(*java:’java.lang.Object’)

D options(*nopass)

D retVal s o class(*java:’java.lang.Object’)

D refObject s like(refObjectP) inz(*null)

D newObject s like(newObjectP)

 /free

 JNIENV_p = env;

 if %parms() >= 2;

 refObject = refObjectP;

 endif;

 newObject = PopLocalFrame (JNIENV_p : refObject);

 if %parms() >= 3;

 newObjectP = newObject;

 endif;

 return JNI_GROUP_ENDED;

 /end-free

P endObjGroup e

Note: You need the JNI environment pointer (described in “Obtaining the JNI

environment pointer” on page 189 below) to call this wrapper.

Telling Java you are finished with a temporary object

If you have created an object using a Java constructor, or if you have called a Java

method that returned an object to you, this object will only be available to be

destroyed by Java’s garbage collection when it knows you do not need the object

any more. This will happen for a native method (called by java) when the native

method returns, but otherwise it will never happen unless you explicitly inform

Java that you no longer need the object. You do this by calling the RPG wrapper

procedure freeLocalRef.

CALLP freeLocalRef (JNIEnv_P : string);

Figure 87 on page 188 contains the sample source code for freeLocalRef.

Chapter 11. RPG and the eBusiness World 187

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#

Note: You need the JNI environment pointer (described in “Obtaining the JNI

environment pointer” on page 189 below) to call this wrapper.

Telling Java you want an object to be permanent

If you have a reference to a Java object that was either passed to you as a

parameter or was created by calling a Java method or constructor, and you want to

use that object after your native method returns, you must tell Java that you want

the object to be permanent, or ″global″. Do this by calling the RPG wrapper

procedure getNewGlobalRef and saving the result in a global variable.

EVAL globalString = getNewGlobalRef (JNIENV_P : string);

Figure 88 contains the sample source code for getNewGlobalRef.

Note: You need the JNI environment pointer (described in “Obtaining the JNI

environment pointer” on page 189 below) to call this wrapper.

/*--*/

/* freeLocalRef */

/*--*/

P freeLocalRef...

P B EXPORT

D freeLocalRef...

D PI

D env * VALUE

D localRef O CLASS(*JAVA

D : ’java.lang.Object’)

D VALUE

 /free

 jniEnv_P = env;

 DeleteLocalRef (env : localRef);

 /end-free

P freeLocalRef...

P E

Figure 87. Source Code for freeLocalRef

/*--*/

/* getNewGlobalRef */

/*--*/

P getNewGlobalRef...

P B EXPORT

D getNewGlobalRef...

D PI O CLASS(*JAVA

D : ’java.lang.Object’)

D env * VALUE

D localRef O CLASS(*JAVA

D : ’java.lang.Object’)

D VALUE

 /free

 jniEnv_P = env;

 return NewGlobalRef (env : localRef);

 /end-free

P getNewGlobalRef...

P E

Figure 88. Source Code for getNewGlobalRef

188 ILE RPG Programmer’s Guide

Telling Java you are finished with a permanent object

If you have created a global reference, and you know that you no longer need this

object, then you should tell Java that as far as you are concerned, the object can be

destroyed when Java next performs its garbage collection. (The object will only be

destroyed if there are no other global references to it, and if there are no other

references within Java itself.) To tell Java that you no longer need the reference to

the object, call the RPG wrapper procedure freeGlobalRef .

CALLP freeGlobalRef (JNIEnv_P : globalString);

Figure 89 contains sample source code for freeGlobalRef.

Note: You need the JNI environment pointer (described in “Obtaining the JNI

environment pointer” below) to call this wrapper.

Creating the Java Virtual Machine (JVM)

If the JVM has not already been created when your RPG code is ready to call a

Java method, RPG will create the JVM for you, using the default classpath plus the

classpath in your CLASSPATH environment variable. However, if you want to

create the JVM yourself, you can see an example of this coding in the last part of

Figure 90 on page 190.

Obtaining the JNI environment pointer

If you need to call any JNI functions, use the /COPY file JNI from

QSYSINC/QRPGLESRC. Most of the JNI functions are called through a procedure

pointer. The procedure pointers are part of a data structure that it itself based on a

pointer called the ″JNI environment pointer″. This pointer is called JNIEnv_P in the

JNI /COPY file. To obtain this pointer, call the JNI wrapper procedure getJniEnv.

EVAL JNIEnv_P = getJniEnv();

Figure 90 on page 190 contains sample source code for getJniEnv.

 /*--*/

 /* freeGlobalRef */

 /*--*/

 P freeGlobalRef...

 P B EXPORT

 D freeGlobalRef...

 D PI

 D env * VALUE

 D globalRef O CLASS(*JAVA

 D : ’java.lang.Object’)

 D VALUE

 /free

 jniEnv_P = env;

 DeleteGlobalRef (env : globalRef);

 /end-free

 P freeGlobalRef...

 P E

Figure 89. Source Code for freeGlobalRef

Chapter 11. RPG and the eBusiness World 189

*--

* getJniEnv - attach-to or start the JVM

*

* Parameters:

* 1. inputOpts - string of options separated by whatever the

* last character in the string is.

* For example

* -Djava.pool.size=800;-Dcompile=none;

* - ignored if the JVM is already started

* - classpath is taken from the CLASSPATH environment

* variable, but it could be passed to this procedure

* using the -Djava.class.path option.

* Sample calls:

* env = getJniEnv() // take the defaults

* env = getJniEnv(’-Djava.poolsize=800;’

* + ’-Dcompile=none;’) // specify 2 options

* env = getJniEnv(’-Djava.poolsize=800!’

* + ’-Dcompile=none!’) // use ! as separator

*

*--

P getJniEnv b export

D getJniEnv pi *

D inputOpts 65535a varying const options(*nopass)

D env s

* inz(*null)

/free

 env = attachJvm();

 if (env = *null);

 if %parms() = 0

 or %len(inputOpts) = 0;

 env = startJvm();

 else;

 env = startJvm(inputOpts);

 endif;

 endif;

 return env;

/end-free

P getJniEnv e

Figure 90. Source Code for getJniEnv (Part 1 of 6)

190 ILE RPG Programmer’s Guide

*--

* startJvm - try to start the JVM

*

* Parameters:

* 1. inputOpts - string of options separated by whatever the

* first character in the string is

* - ignored if the JVM is already started

*--

 P startJvm b export

D startJvm pi *

D inputOptsP 65535a varying const options(*nopass)

D initArgs ds likeds(JavaVMInitArgs)

D options ds likeds(JavaVMOption) occurs(10)

D jvm s like(JavaVM_p)

D env s like(JNIENV_p) inz(*null)

D rc s 10i 0

D len s 10i 0

D prefix s 100a varying

D pOptions s * inz(%addr(options))

D i s 10i 0

D classpath S 65535a varying

 * For handling the input options

D splitChar s 1a

D pos s 10i 0

D nextPos s 10i 0

D inputOpts s 65535a varying

D inputOptsPtr s *

D freeThisOccur s n dim(%elem(options)) inz(*off)

/free

 monitor;

 initArgs = *allx’00’;

 JNI_GetDefaultJavaVMInitArgs (%addr(initArgs));

 initArgs.version = JNI_VERSION_1_2;

 // add the classpath option, if necessary

 classpath = getClasspath();

 if (%len(classpath) > 0);

 initArgs.nOptions = initArgs.nOptions + 1;

 %occur(options) = initArgs.nOptions;

 freeThisOccur(initArgs.nOptions) = *on;

 options = *allx’00’;

 prefix = ’-Djava.class.path=:’;

 len = %len(prefix) + %len(classpath) + 1;

 options.optionString = %alloc (len);

 %str(options.optionString : len) =

 cvtToAscii(prefix)

 + cvtToAscii(classpath);

 endif;

Figure 90. Source Code for getJniEnv (Part 2 of 6)

Chapter 11. RPG and the eBusiness World 191

// add any other options that were passed in

 if %parms > 0

 and %len(inputOptsP) > 0;

 inputOpts = cvtToAscii(inputOptsP);

 inputOptsPtr = %addr(inputOpts) + 2;

 splitChar = %subst(inputOpts : %len(inputOpts) : 1);

 pos = 1;

 dow pos <= %len(inputOpts);

 nextPos = %scan(splitChar : inputOpts : pos);

 len = nextPos - pos;

 %subst(inputOpts : nextPos : 1) = x’00’;

 initArgs.nOptions = initArgs.nOptions + 1;

 %occur(options) = initArgs.nOptions;

 options = *allx’00’;

 options.optionString = inputOptsPtr + pos - 1;

 pos = nextPos + 1;

 enddo;

 endif;

 if initArgs.nOptions > 0;

 initArgs.options = pOptions;

 endif;

 rc = JNI_CreateJavaVM (jvm : env : %addr(initArgs));

 if (rc <> 0);

 env = *null;

 endif;

 rc = JNI_CreateJavaVM (jvm : env : %addr(initArgs));

 if (rc <> 0);

 env = *null;

 endif;

 on-error;

 env = *null;

 endmon;

 // free any storage allocated for the options

 for i = 1 to initArgs.nOptions;

 if (freeThisOccur(i));

 %occur(options) = i;

 dealloc(n) options.optionString;

 endif;

 endfor;

 return env;

 /end-free

P startJvm e

Figure 90. Source Code for getJniEnv (Part 3 of 6)

192 ILE RPG Programmer’s Guide

*--

* attachJvm - try to attach to the JVM

*--

P attachJvm b export

D attachJvm pi *

D attachArgs ds likeds(JavaVMAttachArgs)

D jvm s like(JavaVM_p) dim(1)

D nVms s like(jsize)

D env s * inz(*null)

D rc s 10i 0

/free

 monitor;

 rc = JNI_GetCreatedJavaVMs(jvm : 1 : nVms);

 if (rc <> 0);

 return *null;

 endif;

 if (nVms = 0);

 return *null;

 endif;

 JavaVM_P = jvm(1);

 attachArgs = *allx’00’;

 attachArgs.version = JNI_VERSION_1_2;

 rc = AttachCurrentThread (jvm(1) : env : %addr(attachArgs));

 if (rc <> 0);

 env = *null;

 endif;

 on-error;

 env = *null;

 endmon;

 return env;

/end-free

P attachJvm e

Figure 90. Source Code for getJniEnv (Part 4 of 6)

*--

* getClasspath - retreive the CLASSPATH environment variable

*--

P getClasspath B export

D getClasspath PI 65535A varying

D Qp0zGetEnvNoInit...

D PR * extproc(’Qp0zGetEnvNoInit’)

D name * value options(*string)

D envVarP S *

/free

 envvarP = Qp0zGetEnvNoInit(’CLASSPATH’);

 if (envvarP = *NULL);

 return ’’;

 else;

 return %str(envvarP : 65535);

 endif;

/end-free

P getClasspath E

Figure 90. Source Code for getJniEnv (Part 5 of 6)

Chapter 11. RPG and the eBusiness World 193

*--

* cvtToAscii - convert from EBCDIC to ASCII

*--

P cvtToAscii B export

D cvtToAscii PI 65535A varying

D input 65535A const varying

D QDCXLATE PR extpgm(’QDCXLATE’)

D len 5P 0 const

D cnvData 65535A options(*varsize)

D cnvTbl 10A const

D cnvLib 10A const

D retval S like(input)

D retvalRef S 1A based(retvalPtr)

/free

 retval = input;

 retvalPtr = %addr(retval) + 2; // set ptr after the length part

 QDCXLATE(%len(retval): retvalRef : ’QASCII’: ’QSYS’);

 return retval;

/end-free

P cvtToAscii E

Figure 90. Source Code for getJniEnv (Part 6 of 6)

194 ILE RPG Programmer’s Guide

Java class

class TestClass{

 String name = "name not set";

 TestClass (byte name[]) {

 this.name = new String(name);

 }

 void setName (byte name[]) {

 this.name = new String(name);

 }

 String getName () {

 return this.name;

 }

}

RPG program

H THREAD(*SERIALIZE)

H BNDDIR(’JAVAUTIL’)

 // (JAVAUTIL is assumed to the binding directory that lists

 // the service program containing the procedures described

 // below)

 /copy JAVAUTIL

 // (JAVAUTIL is assumed to be the source member containing the

 // prototypes for the procedures described below)

D TestClass C ’TestClass’

D StringClass C ’java.lang.String’

D newTest PR O EXTPROC(*JAVA : TestClass

D : *CONSTRUCTOR)

D name 25A VARYING CONST

D getName PR O CLASS(*JAVA : StringClass)

D extproc(*JAVA : TestClass

D : ’getName’)

D setName PR extproc(*JAVA : TestClass

D : ’setName’)

D newName 25A VARYING CONST

D newString PR O EXTPROC(*JAVA : StringClass

D : *CONSTRUCTOR)

D value 65535A VARYING CONST

D nameValue PR 25A VARYING

D extproc(*JAVA : StringClass

D : ’getBytes’)

D myTestObj S LIKE(newTest)

D myString S LIKE(newString)

D env S LIKE(getJniEnv)

 /free

 // Let the RPG runtime start the JVM, by calling a

 // Java method before calling any JNI functions

 myString = newString (’’);

 // Get the JNI environment pointer so that JNI functions

 // can be called. The "myString" object should be freed now

Figure 91. Using the wrappers for the JNI functions (Part 1 of 2)

Chapter 11. RPG and the eBusiness World 195

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

env = getJniEnv();

 freeLocalRef (env : myString);

 // Set the beginning marker for an "object group"

 // so that any objects created between now and the

 // "end object group" can be freed all at once.

 beginObjGroup (env);

 // Create a Test object to work with

 // We do not want this object to be freed with the

 // other objects in the object group, so we make it

 // a permanent object

 myTestObj = newTest (’RPG Dept’);

 myTestObj = getNewGlobalRef (env : myTestObj);

 // Get the current "name" from the Test object

 // This creates a local reference to the Name object

 myString = getName (myTestObj);

 dsply (nameValue(myString));

 // Change the name

 setName (myTestObj : ’RPG Department’);

 // Get the current "name" again. This will cause

 // access to the previous local reference to the old name

 // to be lost, making it impossible for this RPG

 // program to explicitly free the object. If the object

 // is never freed by this RPG program, Java could never

 // do garbage-collection on it, even though the old String

 // object is not needed any more. However, endObjGroup

 // will free the old reference, allowing garbage collection

 myString = getName (myTestObj);

 dsply (nameValue(myString));

 // End the object group. This will free all local

 // references created since the previous beginObjGroup call.

 // This includes the two references created by the calls

 // to getName.

 endObjGroup (env);

 // Since the original Test object was made global, it can

 // still be used.

 setName (myTestObj : ’RPG Compiler Dept’);

 // The original Test object must be freed explicitly

 // Note: An alternative way to handle this situation

 // would be to use nested object groups, removing

 // the need to create a global reference

 // beginObjGroup ------------.

 // create myTestObj |

 // beginObjGroup ---------. |

 // ... | |

 // endObjGroup ---------’ |

 // use myTestObj again |

 // endObjGroup ------------’

 freeGlobalRef (env : myTestObj);

 return;

 /end-free

Figure 91. Using the wrappers for the JNI functions (Part 2 of 2)

196 ILE RPG Programmer’s Guide

|

Handling JNI Exceptions

In ILE RPG, an exception causes an exception message to be signaled. Programs do

not need to check explicitly for exceptions; instead, you can code exception

handlers to get control when an exception occurs. You only have to handle JNI

exceptions yourself when you are making your own JNI calls. When a call to a JNI

function results in an unhandled Java exception, there is no accompanying

exception message. Instead, the JNI programmer must check whether an exception

occurred after each call to a JNI function. This is done by calling the

ExceptionOccurred JNI function, which returns a Java Exception object (or the Java

null object which has a value of 0 in the JNI). Once you have determined that an

exception has occurred, the only JNI calls you can make are ExceptionClear and

ExceptionDescribe. After you have called ExceptionClear, you are free to make JNI

calls again. If you make a non-exception JNI call before calling ExceptionClear, the

exception will disappear, and you will not be able to get any further details. RPG

always converts a JNI exception into an RPG exception (it signals one of the

RNX030x messages, depending on the RPG function that was being done at the

time).

Tip!

You may want to include this type of exception-handling code in your

versions of the JNI wrapper procedures above.

Additional Considerations

Common Runtime Errors

The compiler will not attempt to resolve classes at compile time. If a class cannot

be located at run time, a runtime error will occur. It will indicate that an

UnresolvedLinkException object was received from the Java environment.

The compiler does no type checking of parameters at compile time. If there is a

conflict between the prototype and the method being called, an error will be

received at run time.

Debugging Hints

A Java object is viewed as an object reference in RPG. This object reference is an

integer value, which behaves like a pointer. Normal object references are positive

values, assigned in increasing order from 1. Global references, which can be

created using JNI function NewGlobalRef , are negative values. These values are

assigned in increasing order from the smallest negative number (-2147483647).

Normally, these values are not visible within the RPG code. However, this

information may be useful when debugging RPG code.

Creating String objects in RPG

If you need a String object to pass to a Java method, you can create it like this:

D newString PR O EXTPROC(*JAVA

D : ’java.lang.String’

D : *CONSTRUCTOR)

D value 65535A CONST VARYING

D string S like(jstring)

 /free

 string = newString (’abcde’);

 ...

 /end-free

Chapter 11. RPG and the eBusiness World 197

If you want to create a string with UCS-2 data or graphic data, use this code:

D newStringC PR O EXTPROC(*JAVA

D : ’java.lang.String’

D : *CONSTRUCTOR)

D value 16383C CONST VARYING

D string S like(jstring)

D graphicData S 15G

D ucs2Data S 100C

 /free

 string = newStringC (%UCS2(graphicData));

 ...

 string = newStringC (ucs2Data);

 /end-free

Getting information about exceptions thrown by called Java

methods

When RPG calls a Java method that ends with an exception, RPG handles the Java

exception and signals escape message RNX0301. This message has the string value

of the Exception, but it does not have the trace information that is normally

available when Java calls a method that ends with an exception.

If you want to see the Java exception trace information, do the following:

1. ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE(’Y’)

Note: This step must be done before the JVM is started.

2. Ensure that the os400.stderr option in your SystemProperties.default file is set

to file:myfilename, for example os400.stderr=file:/home/mydir/stderr.txt. See

“Controlling how the Java Virtual Machine is set up” on page 180.

Note: This step must be done before the JVM is started.

3. ADDENVVAR ENVVAR(QIBM_RPG_JAVA_EXCP_TRACE) VALUE(’Y’)

Note: This step can be done at any time. To stop the exception trace being

done by RPG, you can remove the environment variable, or set it to a

value other than ’Y’.

4. After the exception has occurred, the trace information will be in the file that

you specified in the os400.stderr option.

Advanced JNI Coding

The RPG IV compiler support for calling Java methods and for writing RPG native

methods hides almost all the JNI coding from the RPG programmer. However,

RPG’s support is not necessarily the most efficient. For example, it always converts

arrays between RPG and Java on calls and on entry and exit from native methods,

but you may want to handle your own array conversions to improve performance.

The RPG support only gives you access to Java methods. If you want to access the

fields in a class, you would have to add ″get″ and ″set″ methods to the Java class,

or do JNI coding (see “Accessing Fields in Java Classes” on page 199).

Figure 92 on page 199 is an example of a JNI call in RPG.

198 ILE RPG Programmer’s Guide

#
#
#
#
#
#

#

#

#

#
#
#

#

#

#
#
#

#
#

Note that the pointers JNIEnv_P and jvalue_P are defined in the JNI /COPY file.

Converting Java Character Data

In Java, character data is ASCII rather than EBCDIC, so you will have to ensure

that class names, method names, and field names are in ASCII for calls to JNI

functions like FindClass. Character data that comes from Java is ASCII. To use it in

your RPG program, you will probably want to convert it to EBCDIC. The RPG

compiler handles these conversions for you, but if you are making the JNI calls

yourself, you will have to do the conversions between ASCII and EBSDIC.

Accessing Fields in Java Classes

RPG only supports calling Java methods; it does not support accessing Java fields.

Normally, fields can be accessed through ″get″ and ″set″ methods, but it is also

possible to access fields using JNI calls. Here is an example showing JNI calls

necessary to access the fields of a Java class or object.

Note: This example is intended to be an example of using the JNI. It is not

intended to be a recommendation to access fields directly rather than using

″get″ and ″set″ methods.

 /COPY JNI

D objectId s like(jobject)

D methodId s like(jmethodID)

D string s like(jstring)

D parms s like(jvalue) dim(2)

 /free

 jvalue_P = %addr(parms(1));

 jvalue.i = 10;

 jvalue_P = %addr(parms(2));

 jvalue.l = string;

 CallVoidMethodA (JNIEnv_P : objectId : methodId : parms);

 /end-free

Figure 92. JNI Call in RPG

 *--

 * This example shows how to use JNI to access the fields of a

 * class or an object.

 *

 * This program creates a Rectangle object and accesses the

 * width and height variables directly, using JNI calls.

 *

 * In this particular case, the getWidth(), getHeight,

 * setWidth() and setHeight() methods could have been used

 * to access these fields, avoiding the use of JNI calls.

 *--

H THREAD(*SERIALIZE)

 /DEFINE JNI_COPY_FIELD_FUNCTIONS

 /COPY JNI

 /COPY JNIRPG_PR

 *--

 * JAVA classes and methods

 *--

Figure 93. Using JNI to Access Fields of Java Classes and Objects (Part 1 of 3)

Chapter 11. RPG and the eBusiness World 199

D Rectangle C ’java.awt.Rectangle’

D NewRectangle PR O EXTPROC(*JAVA

D : Rectangle

D : *CONSTRUCTOR)

D x 10I 0 VALUE

D y 10I 0 VALUE

D width 10I 0 VALUE

D height 10I 0 VALUE

 *--

 * Constants with ASCII representations of Java names

 *--

 * One way to determine these values is to use %UCS2 to convert

 * a character value to UCS-2, and display the result in hex

 * in the debugger.

 *

 * The ASCII value is in every second byte of the UCS-2 characters.

 *

 * For example, %UCS2(’abc’) = X’006100620063’

 * -- -- --

 * The ASCII representation of ’abc’ is X’616263’

 *--

D ASCII_I C x’49’

D ASCII_x C x’78’

D ASCII_y C x’79’

D ASCII_width C X’7769647468’

D ASCII_height C X’686569676874’

 * Note that this is ’java/awt/Rectangle’, not ’java.awt.Rectangle’

 * because the JNI uses slash as a separator.

D ASCII_Rectangle...

D C X’6A6176612F6177742F52656-

D 374616E676C65’

 *--

 * Cancel handling

 *--

D EnableCanHdlr PR EXTPROC(’CEERTX’)

D Handler * CONST PROCPTR

D CommArea * CONST OPTIONS(*OMIT)

D Feedback 12A OPTIONS(*OMIT)

D CanHdlr PR

D CommArea * CONST

 *--

 * Variables and procedures

 *--

D rect s O CLASS(*JAVA : Rectangle)

D x S 10I 0

D y S 10I 0

D rectClass S LIKE(jclass)

D fieldId S LIKE(jfieldID)

D msg S 52A

D Cleanup PR

 *--

 * Enable the cancel handler to ensure cleanup is done

 *--

C CALLP EnableCanHdlr (%PADDR(CanHdlr)

C : *OMIT : *OMIT)

 *--

 * Create a new rectangle with x,y co-ordinates (5, 15),

 * width 100 and height 200.

 *--

C EVAL rect = NewRectangle (5 : 15 : 100 : 200)

 *--

 * Prepare to call JNI functions to access the Rectangle’s fields

 *--

Figure 93. Using JNI to Access Fields of Java Classes and Objects (Part 2 of 3)

200 ILE RPG Programmer’s Guide

Calling Java Methods Using the JNI Rather than RPG *JAVA

Prototypes

The first three parameters are always the same:

1. the JNI environment pointer

2. the object (for instance methods) or the class (for static methods)

3. the method

C EVAL JNIEnv_P = getJniEnv ()

C EVAL rectClass = FindClass (JNIEnv_P

C : ASCII_Rectangle)

 *--

 * Call JNI functions to retrieve the Rectangle’s width and height

 *--

C eval fieldId = GetFieldID (JNIEnv_P

C : rectClass

C : ASCII_width

C : ASCII_I)

C eval width = GetIntField (JNIEnv_P

C : rect

C : fieldId)

C eval fieldId = GetFieldID (JNIEnv_P

C : rectClass

C : ASCII_height

C : ASCII_I)

C eval height = GetIntField (JNIEnv_P

C : rect

C : fieldId)

C eval msg = ’The rectangle has dimensions (’

C + %trim(%editc(width : ’1’))

C + ’, ’

C + %trim(%editc(height : ’1’))

C + ’)’

C msg dsply

 *--

 * Call the Cleanup procedure

 *--

C callp Cleanup()

C eval *INLR = ’1’

 *--

 * Cleanup. * - Free objects if necessary

 *--

P Cleanup B

C if rect <> *NULL and

C JNIEnv_P <> *NULL

C callp DeleteLocalRef(JNIEnv_P : rect)

C endif

C eval rect = *NULL

C eval JNIEnv_P = *NULL

P Cleanup E

 *--

 * Cancel handler. Ensures that cleanup is done.

 *--

P CanHdlr B

D CanHdlr PI

D CommArea * CONST

C callp Cleanup()

P CanHdlr E

Figure 93. Using JNI to Access Fields of Java Classes and Objects (Part 3 of 3)

Chapter 11. RPG and the eBusiness World 201

The method-specific parameters are coded after these three parameters, in one of

three different ways. For example, if the method does not return a value (the

return type is ″void″),

CallVoidMethod:

Choose this way if you are going to call the same method many times,

since it makes the method very easy to call. This expects the parameters to

be passed normally. To call this JNI function, an RPG programmer would

copy the CallVoidMethod prototype from the JNI /COPY file, and code

additional parameters. These functions require at least one parameter to be

coded with OPTIONS(*NOPASS). If you don’t want to make the method

parameters optional, add an extra “dummy” parameter with

OPTIONS(*NOPASS). For example, for the method

void mymethod (int len, String str);

you could code the following prototype for CallVoidMethod:

CallVoidMethodA:

Choose this way if you do not want to create a separate prototype for

calling a method. This expects an array of jvalue structures, with each

element of the array holding one parameter. Figure 92 on page 199 above is

an example of this.

CallVoidMethodV:

Do not use this in RPG code. It expects a C construct that is extremely

awkward to code in RPG.

The actual function to call depends on the type of the return value. For example, if

the method returns an integer, you would use CallIntMethodA. To get the class

and methodID parameters for these functions, use the FindClass and GetMethodID

or GetStaticMethodID.

Note: When calling the JNI directly, the class names must be specified with a slash

(/) rather than a period (.) as the separator. For example, use

’java/lang/String’ rather than ’java.lang.String’.

Calling RPG programs from Java using PCML

An RPG program or procedure can be called from Java using a Program Call

Markup Language (PCML) source file that describes the parameters for the RPG

program or procedure. The Java application can use PCML by constructing a

ProgramCallDocument object with a reference to the PCML source file.

D CallMyMethod PR EXTPROC(*CWIDEN

D : JNINativeInterface.

D CallVoidMethod_P)

D env LIKE(JNIEnv_P) VALUE

D obj LIKE(jobject) VALUE

D methodID LIKE(jmethodID) VALUE

D len LIKE(jint) VALUE

D str LIKE(jstring) CONST

D dummy 1a OPTIONS (*NOPASS)

...

CallMyMethod (JNIEnv_P : objectId : methodId : 10 : string);

Figure 94. Sample RPG Code for Calling CallVoidMethod

202 ILE RPG Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

The ILE RPG compiler will generate PCML source for your ILE RPG program or

module when you specify the PGMINFO(*PCML) compiler parameter along with

the INFOSTMF compiler parameter to specify the name of an IFS output file to

receive the generated PCML. For CRTBNDRPG, PCML is generated based on the

contents of the *ENTRY PLIST or the Procedure Interface of the main procedure.

For CRTRPGMOD, PCML is also generated based on the Procedure Interfaces of

any exported subprocedures (except Java native methods).

When you use CRTRPGMOD, and create a service program, you specify the

service program in your Java code using the setPath(String) method of the

ProgramCallDocument class. For example:

 AS400 as400;

 ProgramCallDocument pcd;

 String path = "/QSYS.LIB/MYLIB.LIB/MYSRVPGM.SRVPGM";

 as400 = new AS400 ();

 pcd = new ProgramCallDocument (as400, "myModule");

 pcd.setPath ("MYFUNCTION", path);

 pcd.setValue ("MYFUNCTION.PARM1", "abc");

 rc = pcd.callProgram("MYFUNCTION");

PCML Restrictions

The following are restrictions imposed by PCML regarding parameter and return

value types.

v The following data types are not supported by PCML:

– Date

– Time

– Timestamp

– Pointer

– Procedure Pointer

– 1-Byte Integer

– 8-byte Unsigned Integer
v Return values and parameters passed by value can only be 4 byte integers (10i

0).

v Varying-length arrays, and data structures containing varying-length subfields

are not supported.

v When a data structure is used as a parameter for a *ENTRY PLIST, or a

prototyped parameter is defined with LIKEDS, some PCML restrictions apply:

– The data structure may not have any overlapping subfields.

– The subfields must be coded in order; that is, the start position of each

subfield must follow the end position of the previous subfield.

– If there are gaps between the subfields, the generated PCML for the structure

will have subfields named ″_unnamed_1″, ″_unnamed_2″ etc, of type ″char″.
v RPG does not have the concept of output-only parameters. Any parameters that

do not have CONST or VALUE coded have a usage of ″inputoutput″. For

inputoutput parameters, the ProgramCallDocument class requires the input

values for the parameter to be set before the program can be called. If the

parameter is truly an output parameter, you should edit the PCML to change

″inputoutput″ to ″output″.

The compile will fail if you generate PCML for a program or module that violates

one of the restrictions. The PCML will be generated, but it will contain error

messages as comments. For example, if you use a Date field as a parameter, the

PCML for that parameter might look like this:

Chapter 11. RPG and the eBusiness World 203

<data name="DATE" type=" " length="10" usage="input" />

<!-- Error: unsupported data type -->

204 ILE RPG Programmer’s Guide

Part 3. Debugging and Exception Handling

This section describes how to:

v Debug an Integrated Language Environment application by using the Integrated

Language Environment source debugger

v Write programs that handle exceptions

v Obtain a dump

© Copyright IBM Corp. 1994, 2006 205

206 ILE RPG Programmer’s Guide

Chapter 12. Debugging Programs

Debugging allows you to detect, diagnose, and eliminate run-time errors in a

program. You can debug ILE and OPM programs using the ILE source debugger.

Use WebSphere Development Studio Client for iSeries. This is the recommended

method and documentation about debugging programs appears in that product’s

online help. With the integrated iSeries debugger you can debug your program

running on the iSeries server from a graphical user interface on your workstation.

You can also set breakpoints directly in your source before running the debugger.

The integrated iSeries debugger client user interface also enables you to control

program execution. For example, you can run your program, set line, watch, and

service entry point breakpoints, step through program instructions, examine

variables, and examine the call stack. You can also debug multiple applications,

even if they are written in different languages, from a single debugger window.

Each session you debug is listed separately in the Debug view.

This chapter describes how to use the ILE source debugger to:

v Prepare your ILE RPG program for debugging

v Start a debug session

v Add and remove programs from a debug session

v View the program source from a debug session

v Set and remove breakpoints and watch conditions

v Step through a program

v Display and change the value of fields

v Display the attributes of fields

v Equate a shorthand name to a field, expression, or debug command

While debugging and testing your programs, ensure that your library list is

changed to direct the programs to a test library containing test data so that any

existing real data is not affected.

You can prevent database files in production libraries from being modified

unintentionally by using one of the following commands:

v Use the Start Debug (STRDBG) command and retain the default *NO for the

UPDPROD parameter

v Use the Change Debug (CHGDBG) command and specify the *NO value of the

UPDPROD parameter

v Use the SET debug command in the Display Module Source display and specify

UPDPROD NO

See the chapter on debugging in ILE Concepts for more information on the ILE

source debugger (including authority required to debug a program or service

program and the effects of optimization levels).

If you are unfamiliar with using the debugger, follow these steps to create and

debug a program. The source for the program PROOF is available in QGPL on all

systems.

1. ===> CRTBNDRPG QTEMP/PROOF DBGVIEW(*ALL)

© Copyright IBM Corp. 1994, 2006 207

2. ===> STRDBG QTEMP/PROOF

3. Set a breakpoint on one of the calculation lines by putting your cursor on the

line and pressing F6

4. Exit the DSPMODSRC screen with F12

5. ===> CALL QTEMP/PROOF

You will see the source again, with your breakpoint line highlighted .

6. Move your cursor over one of the variables in the program source (Definition,

Input, Calculation or Output Specifications) and press F11. The value of the

variable will appear at the bottom of the screen

7. Step through the rest of the program by pressing F10, or run to the end with

F12

8.

After setting breakpoints, you do not have to call the program directly. You can

start an application that will eventually call the program.

If you step through the whole program, it will step through the Input and Output

specifications. If you prefer to skip over Input and Output specifications, you can

specify OPTION(*NODEBUGIO) in your Header specification or when you

compile your program.

More details on these steps will be given in the rest of this chapter.

The ILE Source Debugger

The ILE source debugger is used to detect errors in and eliminate errors from

program objects and service programs. Using debug commands with any ILE

program that contains debug data you can:

v View the program source or change the debug view

v Set and remove breakpoints and watch conditions

v Step through a specified number of statements

v Display or change the value of fields, structures, and arrays

v Equate a shorthand name with a field, expression, or debug command

Before you can use the source debugger, you must select a debug view when you

create a module object or program object using CRTRPGMOD or CRTBNDRPG.

After starting the debugger you can set breakpoints and then call the program.

When a program stops because of a breakpoint or a step command, the pertinent

module object’s view is shown on the display at the point where the program

stopped. At this point you can perform other actions such as displaying or

changing field values.

Note: If your program has been optimized, you can still display fields, but their

values may not be reliable. To ensure that the content of fields or data

structures contain their correct (current) values, specify the NOOPT keyword

on the appropriate Definition specification. To change the optimization level,

see “Changing the Optimization Level” on page 89.

Debug Commands

Many debug commands are available for use with the ILE source debugger. The

debug commands and their parameters are entered on the debug command line

The ILE Source Debugger

208 ILE RPG Programmer’s Guide

displayed on the bottom of the Display Module Source and Evaluate Expression

displays. These commands can be entered in uppercase, lowercase, or mixed case.

Note: The debug commands entered on the debug command line are not CL

commands.

The debug commands are listed below.

Command Description

ATTR Permits you to display the attributes of a variable. The attributes

are the size and type of the variable as recorded in the debug

symbol table.

BREAK Permits you to enter either an unconditional or conditional job

breakpoint at a position in the program being tested. Use BREAK

line-number WHEN expression to enter a conditional job breakpoint.

CLEAR Permits you to remove conditional and unconditional breakpoints,

or to remove one or all active watch conditions.

DISPLAY Allows you to display the names and definitions assigned by using

the EQUATE command. It also allows you to display a different

source module than the one currently shown on the Display

Module Source display. The module object must exist in the current

program object.

EQUATE Allows you to assign an expression, variable, or debug command

to a name for shorthand use.

EVAL Allows you to display or change the value of a variable or to

display the value of expressions, records, structures, or arrays.

QUAL Allows you to define the scope of variables that appear in

subsequent EVAL or WATCH commands. Currently, it does not

apply to ILE RPG.

SET Allows you to change debug options, such as the ability to update

production files, specify if find operations are to be case sensitive,

or to enable OPM source debug support.

STEP Allows you to run one or more statements of the procedure being

debugged.

TBREAK Permits you to enter either an unconditional or conditional

breakpoint in the current thread at a position in the program being

tested.

THREAD Allows you to display the Work with Debugged Threads display or

change the current thread.

WATCH Allows you to request a breakpoint when the contents of a

specified storage location is changed from its current value.

FIND Searches forwards or backwards in the module currently displayed

for a specified line number or string or text.

UP Moves the displayed window of source towards the beginning of

the view by the amount entered.

DOWN Moves the displayed window of source towards the end of the

view by the amount entered.

The ILE Source Debugger

Chapter 12. Debugging Programs 209

LEFT Moves the displayed window of source to the left by the number

of columns entered.

RIGHT Moves the displayed window of source to the right by the number

of columns entered.

TOP Positions the view to show the first line.

BOTTOM Positions the view to show the last line.

NEXT Positions the view to the next breakpoint in the source currently

displayed.

PREVIOUS Positions the view to the previous breakpoint in the source

currently displayed.

HELP Shows the online help information for the available source

debugger commands.

The online help for the ILE source debugger describes the debug commands,

explains their allowed abbreviations, and provides syntax diagrams for each

command. It also provides examples in each of the ILE languages of displaying

and changing variables using the source debugger.

Follow these steps to access the online help information for ILE RPG:

1. Enter STRDBG library-name/program-name where program-name is any ILE

program with debug data in library library-name.

2. Enter DSPMODSRC to show the source view if this screen does not appear

following step 1.

3. Enter PF1 (Help)

4. Put your cursor on EVAL and press enter to bring up the EVAL command help.

5. Put your cursor on Expressions and press enter to bring up help for

expressions.

6. Put your cursor on RPG language and press enter to bring up RPG language

examples.

7. From the help panel which appears, you can select a number of topics

pertaining to RPG, such as displaying variables, displaying table, and

displaying multiple-occurrence data structures.

Preparing a Program for Debugging

A program or module must have debug data available if you are to debug it. Since

debug data is created during compilation, you specify whether a module is to

contain debug data when you create it using CRTBNDRPG or CRTRPGMOD. You

use the DBGVIEW parameter on either of these commands to indicate what type of

data (if any) is to be created during compilation.

The type of debug data that can be associated with a module is referred to as a

debug view. You can create one of the following views for each module that you

want to debug. They are:

v Root source view

v COPY source view

v Listing view

v Statement view

The ILE Source Debugger

210 ILE RPG Programmer’s Guide

The default value for both CRTBNDRPG and CRTRPGMOD is to create a

statement view. This view provides the closest level of debug support to previous

releases.

If you do not want debug data to be included with the module or if you want

faster compilation time, specify DBGVIEW(*NONE) when the module is created.

However, a formatted dump will not list the values of program variables when no

debug data is available.

Note also that the storage requirements for a module or program will vary

somewhat depending on the type of debug data included with it. The following

values for the DBGVIEW parameter are listed in increasing order based on their

effect on secondary storage requirements:

1. *NONE

2. *STMT

3. *SOURCE

4. *COPY

5. *LIST

6. *ALL

Once you have created a module with debug data and bound it into a program

object (*PGM), you can start to debug your program.

Note: An OPM program must be compiled with OPTION(*SRCDBG) or

OPTION(*LSTDBG) in order to debug it using the ILE source debugger. For

more information, see “Starting the ILE Source Debugger” on page 214

The debug views are summarized in the following table:

 Table 31. Debug Views

Debug View Debug Data DBGVIEW Parameter

Value

None No debug data *NONE

Statement view

(default)

No source displayed (use statement numbers

in source section of compiler listing)

*STMT

Root source view Root source member information *SOURCE

COPY source view Root source member and /COPY members

information

*COPY

Listing view Compiler listing (dependent on OPTION

parameter)

*LIST

All Data from root source, COPY source, and

listing views

*ALL

Creating a Root Source View

A root source view contains text from the root source member. This view does not

contain any /COPY members. Furthermore, it is not available if the root source

member is a DDM file.

You create a root source view to debug a module by using the *SOURCE, *COPY

or *ALL options on the DBGVIEW parameter for either the CRTRPGMOD or

CRTBNDRPG commands when you create the module.

Preparing a Program for Debugging

Chapter 12. Debugging Programs 211

The compiler creates the root source view while the module object (*MODULE) is

being compiled. The root source view is created using references to locations of

text in the root source member rather than copying the text of the member into the

module object. For this reason, you should not modify, rename, or move root

source members between the module creation of these members and the

debugging of the module created from these members. If you do, the views for

these source members may not be usable.

For example, to create a root source view for a program DEBUGEX when using

CRTBNDRPG, type:

CRTBNDRPG PGM(MYLIB/DEBUGEX) SRCFILE(MYLIB/QRPGLESRC)

 TEXT(’ILE RPG/400 program DEBUGEX’)

 DBGVIEW(*SOURCE)

To create a root source view for a module DBGEX when using CRTRPGMOD,

type:

CRTRPGMOD MODULE(MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC)

 TEXT(’Entry module for program DEBUGEX’)

 DBGVIEW(*SOURCE)

Specifying DBGVIEW(*SOURCE) with either create command creates a root source

view for debugging module DBGEX. By default, a compiler listing with /COPY

members and expanded DDS, as well as other additional information is produced.

Creating a COPY Source View

A COPY source view contains text from the root source member, as well as the

text of all /COPY members expanded into the text of the source. When you use

the COPY view, you can debug the root source member of the program using the

root source view and the /COPY members of the program using the COPY source

view.

The view of the root source member generated by DBGVIEW(*COPY) is the same

view generated by DBGVIEW(*SOURCE). As with the root source view, a COPY

source view is not available if the source file is a DDM file.

You create a COPY source view to debug a module by using the *COPY or *ALL

option on the DBGVIEW parameter.

The compiler creates the COPY view while the module object (*MODULE) is being

compiled. The COPY view is created using references to locations of text in the

source members (both root source member and /COPY members) rather than

copying the text of the members into the view. For this reason, you should not

modify, rename, or move source members between the time the module object is

created and the debugging of the module created from these members. If you do,

the views for these source members may not be usable.

For example, to create a source view of a program TEST1 that contains /COPY

members type:

CRTBNDRPG PGM(MYLIB/TEST1) SRCFILE(MYLIB/QRPGLESRC)

 TEXT(’ILE RPG/400 program TEST1’)

 DBGVIEW(*COPY)

Specifying DBGVIEW(*COPY) with either create command creates a root source

view with /COPY members for debugging module TEST1. By default, a compiler

listing is produced. The compiler listing will include /COPY members as well,

since OPTION(*SHOWCPY) is a default value.

Preparing a Program for Debugging

212 ILE RPG Programmer’s Guide

Creating a Listing View

A listing view contains text similar to the text in the compiler listing that is

produced by the ILE RPG compiler. The information contained in the listing view

is dependent on whether OPTION(*SHOWCPY), OPTION(*EXPDDS), and

OPTION(*SRCSTMT) are specified for either create command.

OPTION(*SHOWCPY) includes /COPY members in the listing;

OPTION(*EXPDDS) includes externally described files. OPTION(*SRCSTMT)

allows the program object to be debugged using the Statement Numbers instead of

the Line Numbers of the compiler listing.

Note: Some information that is available in the compiler listing will not appear on

the listing view. For example, if you specify indentation in the compiler

listing (via the INDENT parameter), the indentation will not appear in the

listing view. If you specify OPTION(*SHOWSKP) in the compiler listing, the

skipped statements will not appear in the listing view.

You create a listing view to debug a module by using the *LIST or *ALL options

on the DBGVIEW parameter for either the CRTRPGMOD or CRTBNDRPG

commands when you create a module.

The compiler creates the listing view while the module object (*MODULE) is being

generated. The listing view is created by copying the text of the appropriate source

members into the module object. There is no dependency on the source members

upon which it is based, once the listing view is created.

For example, to create a listing view for a program TEST1 that contains expanded

DDS type:

CRTBNDRPG PGM(MYLIB/TEST1) SRCFILE(MYLIB/QRPGLESRC)

 SRCMBR(TEST1) OUTPUT(*PRINT)

 TEXT(’ILE RPG/400 program TEST1’)

 OPTION(*EXPDDS) DBGVIEW(*LIST)

Specifying DBGVIEW(*LIST) for the DBGVIEW parameter and *EXPDDS for the

OPTION parameter on either create command creates a listing view with expanded

DDS for debugging the source for TEST1. Note that OUTPUT(*PRINT) and

OPTION(*EXPDDS) are both default values.

Creating a Statement View

A statement view allows the module object to be debugged using statement

numbers and the debug commands. Since the source will not be displayed, you

must make use of statement numbers which are shown in the source section of the

compiler listing. In other words, to effectively use this view, you will need a

compiler listing. In addition, the statement numbers generated for debugging are

dependent on whether *SRCSTMT or *NOSRCSTMT is specified for the OPTION

parameter. *NOSRCSTMT means that statement numbers are assigned sequentially

and are displayed as Line Numbers on the left-most column of the source section

of the compiler listing. *SRCSTMT allows you to request that the compiler use SEU

sequence numbers and source IDs when generating statement numbers for

debugging. The Statement Numbers are shown on the right-most column of the

source section of the compiler listing.

You create a statement view to debug a module by using the *STMT option on the

DBGVIEW parameter for either the CRTRPGMOD or CRTBNDRPG commands

when you create a module.

Preparing a Program for Debugging

Chapter 12. Debugging Programs 213

Use this view when:

v You have storage constraints, but do not want to recompile the module or

program if you need to debug it.

v You are sending compiled objects to other users and want to be able to diagnose

problems in your code using the debugger, but you do not want these users to

see your actual code.

For example, to create a statement view for the program DEBUGEX using

CRTBNDRPG, type:

CRTBNDRPG PGM(MYLIB/DEBUGEX) SRCFILE(MYLIB/QRPGLESRC)

 TEXT(’ILE RPG/400 program DEBUGEX’)

To create a statement view for a module using CRTRPGMOD, type:

CRTRPGMOD MODULE(MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC)

 TEXT(’Entry module for program DEBUGEX’)

By default a compiler listing and a statement view are produced. Using a compiler

listing to obtain the statement numbers, you debug the program using the debug

commands.

If the default values for either create command have been changed, you must

explicitly specify DBGVIEW(*STMT) and OUTPUT(*PRINT).

Starting the ILE Source Debugger

Once you have created the debug view (statement, source, COPY, or listing), you

can begin debugging your application. To start the ILE source debugger, use the

Start Debug (STRDBG) command. Once the debugger is started, it remains active

until you enter the End Debug (ENDDBG) command.

Initially you can add as many as 20 program objects to a debug session by using

the Program (PGM) parameter on the STRDBG command. They can be any

combination of OPM or ILE programs. (Depending on how the OPM programs

were compiled and also on the debug environment settings, you may be able to

debug them by using the ILE source debugger.) In addition, you can initially add

as many as 20 service program objects to a debug session by using the Service

Programs (SRVPGM) parameter on the STRDBG command. The rules for

debugging a service program are the same as those for debugging a program:

v The program or service program must have debug data.

v You must have *CHANGE authority to a program or service program object to

include it in a debug session.

Note: If debugging a program using the COPY or root source view, the source

code must be on the same system as the program object being debugged. In

addition, the source code must be in a library/file(member) with the same

name as when it was compiled.

For an ILE program, the entry module is shown if it has debug data; otherwise, the

first module bound to the ILE program with debug data is shown.

For an OPM program, the first program specified on the STRDBG command is

shown if it has debug data, and the OPMSRC parameter is *YES. That is, if an

OPM program is in a debug session, then you can debug it using the ILE source

debugger if the following conditions are met:

Preparing a Program for Debugging

214 ILE RPG Programmer’s Guide

1. The OPM program was compiled with OPTION(*LSTDBG) or

OPTION(*SRCDBG). (Three OPM languages are supported: RPG, COBOL, and

CL. RPG and COBOL programs can be compiled with *LSTDBG or *SRCDBG,

but CL programs must be compiled with *SRCDBG.

2. The ILE debug environment is set to accept OPM programs. You can do this by

specifying OPMSRC(*YES) on the STRDBG command. (The system default is

OPMSRC(*NO).)

If these two conditions are not met, then you must debug the OPM program with

the OPM system debugger.

If an OPM program compiled without *LSTDBG or *SRCDBG is specified and a

service program is specified, the service program is shown if it has debug data. If

there is no debug data, then the DSPMODSRC screen will be empty. If an ILE

program and a service program are specified, then the ILE program will be shown.

STRDBG Example

To start a debug session for the sample debug program DEBUGEX and a called

OPM program RPGPGM, type:

STRDBG PGM(MYLIB/DEBUGEX MYLIB/RPGPGM) OPMSRC(*YES)

The Display Module Source display appears as shown in Figure 95. DEBUGEX

consists of two modules, an RPG module DBGEX and a C module cproc. See

“Sample Source for Debug Examples” on page 256 for the source for DBGEX,

cproc, and RPGPGM.

If the entry module has a root source, COPY, or listing view, then the display will

show the source of the entry module of the first program. In this case, the program

was created using DBGVIEW(*ALL) and so the source for the main module,

DBGEX, is shown.

Note: Up to 20 service programs can initially be added to the debug session by

using the Service Program (SRVPGM) parameter on the STRDBG command.

You can also add ILE service programs to a debug session by using option 1

 Display Module Source

 Program: DEBUGEX Library: MYLIB Module: DBGEX

 1 *===

 2 * DEBUGEX - Program designed to illustrate use of ILE source

 3 * debugger with ILE RPG source. Provides a

 4 * sample of different data types and data structures.

 5 *

 6 * Can also be used to produce sample formatted dumps.

 7 *===

 8

 9 *---

 10 * The DEBUG keyword enables the formatted dump facility.

 11 *---

 12 H DEBUG

 13

 14 *---

 15 * Define standalone fields for different ILE RPG data types.

 More...

 Debug . . . ___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 95. Display Module Source display for program DEBUGEX

Starting the ILE Source Debugger

Chapter 12. Debugging Programs 215

(Add) on the Work with Module List display (F14) or by letting the source

debugger add it as part of a STEP INTO debug command.

Setting Debug Options

After you start a debug session, you can set or change the following debug

options:

v Whether database files can be updated while debugging your program. (This

option corresponds to the UPDPROD parameter of the STRDBG command.)

v Whether text searches using FIND are case-sensitive.

v Whether OPM programs are to be debugged using the ILE source debugger.

(This option corresponds to the OPMSRC parameter.)

Changing the debug options using the SET debug command affects the value for

the corresponding parameter, if any, specified on the STRDBG command. You can

also use the Change Debug (CHGDBG) command to set debug options. However,

the OPMSRC option can not be changed by the CHGDBG command. OPMSRC can

only be changed by the debug SET command.

Suppose you are in a debug session working with an ILE program and you decide

you should also debug an OPM program that has debug data available. To enable

the ILE source debugger to accept OPM programs, follow these steps:

1. After entering STRDBG, if the current display is not the Display Module Source

display, type:

DSPMODSRC

The Display Module Source display appears.

2. Type

SET

3. The Set Debug Options display appears. On this display type Y (Yes) for the

OPM source debug support field, and press Enter to return to the Display Module

Source display.

You can now add the OPM program, either by using the Work with Module

display, or by processing a call statement to that program.

Adding/Removing Programs from a Debug Session

You can add more programs to, and remove programs from a debug session, after

starting a debug session. You must have *CHANGE authority to a program to add

it to or remove it from a debug session.

For ILE programs, you use option 1 (Add program) on the Work with Module List

display of the DSPMODSRC command. To remove an ILE program or service

program, use option 4 (Remove program) on the same display. When an ILE

program or service program is removed, all breakpoints for that program are

removed. There is no limit to the number of ILE programs or service programs

that can be in or removed from a debug session at one time.

For OPM programs, you have two choices depending on the value specified for

OPMSRC. If you specified OPMSRC(*YES), by using either STRDBG, the SET

debug command, or CHGDBG, then you add or remove an OPM program using

the Work With Module Display. (Note that there will not be a module name listed

Starting the ILE Source Debugger

216 ILE RPG Programmer’s Guide

for an OPM program.) There is no limit to the number of OPM programs that can

be included in a debug session when OPMSRC(*YES) is specified.

If you specified OPMSRC(*NO), then you must use the Add Program (ADDPGM)

command or the Remove Program (RMVPGM) command. Only 20 OPM programs

can be in a debug session at one time when OPMSRC(*NO) is specified.

Note: You cannot debug an OPM program with debug data from both an ILE and

an OPM debug session. If OPM program is already in an OPM debug

session, you must first remove it from that session before adding it to the

ILE debug session or stepping into it from a call statement. Similarly, if you

want to debug it from an OPM debug session, you must first remove it from

an ILE debug session.

Example of Adding a Service Program to a Debug Session

In this example you add the service program CVTTOHEX to the debug session

which already previously started. (See “Sample Service Program” on page 93 for a

discussion of the service program).

1. If the current display is not the Display Module Source display, type:

DSPMODSRC

The Display Module Source display appears.

2. Press F14 (Work with module list) to show the Work with Module List display

as shown in Figure 96.

3. To add service program CVTTOHEX, on the first line of the display, type: 1

(Add program), CVTTOHEX for the Program/module field, MYLIB for the Library

field. Change the default program type from *PGM to *SRVPGM and press

Enter.

4. Press F12 (Cancel) to return to the Display Module Source display.

Example of Removing ILE Programs from a Debug Session

In this example you remove the ILE program CVTHEXPGM and the service

program CVTTOHEX from a debug session.

1. If the current display is not the Display Module Source display, type:

DSPMODSRC

The Display Module Source display appears.

2. Press F14 (Work with module list) to show the Work with Module List display

as shown in Figure 97 on page 218.

 Work with Module List

 System: AS400S1

 Type options, press enter.

 1=Add program 4=Remove program 5=Display module source

 8=Work with module breakpoints

 Opt Program/module Library Type

 1 cvttohex mylib *SRVPGM

 RPGPGM MYLIB *PGM

 DEBUGEX MYLIB *PGM

 DBGEX *MODULE Selected

 CPROC *MODULE

 Bottom

 Command

 ===> __

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 96. Adding an ILE Service Program to a Debug Session

Adding/Removing Programs from a Debug Session

Chapter 12. Debugging Programs 217

3. On this display type 4 (Remove program) on the line next to CVTHEXPGM

and CVTTOHEX, and press Enter.

4. Press F12 (Cancel) to return to the Display Module Source display.

Viewing the Program Source

The Display Module Source display shows the source of an ILE program object one

module object at a time. The source of an ILE module object can be shown if the

module object was compiled using one of the following debug view options:

v DBGVIEW(*SOURCE)

v DBGVIEW(*COPY)

v DBGVIEW(*LIST)

v DBGVIEW(*ALL)

The source of an OPM program can be shown if the following conditions are met:

1. The OPM program was compiled with OPTION(*LSTDBG) or

OPTION(*SRCDBG). (Only RPG and COBOL programs can be compiled with

*LSTDBG.)

2. The ILE debug environment is set to accept OPM programs; that is the value of

OPMSRC is *YES. (The system default is OPMSRC(*NO).)

There are two methods to change what is shown on the Display Module Source

display:

v Change to a different module

v Change the view of a module

When you change a view, the ILE source debugger maps to equivalent positions in

the view you are changing to. When you change the module, the runnable

statement on the displayed view is stored in memory and is viewed when the

module is displayed again. Line numbers that have breakpoints set are highlighted.

When a breakpoint, step, or message causes the program to stop, and the display

to be shown, the statement where the breakpoint occurred is highlighted.

 Work with Module List

 System: AS400S1

 Type options, press enter.

 1=Add program 4=Remove program 5=Display module source

 8=Work with module breakpoints

 Opt Program/module Library Type

 *LIBL *PGM

 4 CVTHEXPGM MYLIB *PGM

 CVTHEXPG *MODULE

 4 CVTTOHEX MYLIB *SRVPGM

 CVTTOHEX *MODULE

 RPGPGM MYLIB *PGM

 DEBUGEX MYLIB *PGM

 DBGEX *MODULE Selected

 CPROC *MODULE

 Bottom

 Command

 ===> __

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 97. Removing an ILE Program from a Debug Session

Adding/Removing Programs from a Debug Session

218 ILE RPG Programmer’s Guide

Viewing a Different Module

To change the module object that is shown on the Display Module Source display,

use option 5 (Display module source) on the Work with Module List display. You

access the Work with Module List display from the Display Module Source display

by pressing F14 (Work with Module List).

If you use this option with an ILE program object, the entry module with a root

source, COPY, or listing view is shown (if it exists). Otherwise, the first module

object bound to the program object with debug data is shown. If you use this

option with an OPM program object, then the source or listing view is shown (if

available).

An alternate method of viewing a different module object is to use the DISPLAY

debug command. On the debug command line, type:

DISPLAY MODULE module-name

The module object module-name is shown. The module object must exist in a

program object that has been added to the debug session.

For example, to change from the module DBGEX in Figure 95 on page 215 to the

module cproc using the Display module source option, follow these steps:

1. To work with modules type DSPMODSRC, and press Enter. The Display Module

Source display is shown.

2. Press F14 (Work with module list) to show the Work with Module List display.

Figure 98 shows a sample display.

3. To select cproc, type 5 (Display module source) next to it and press Enter. Since

a root source view is available, it is shown, as in Figure 99 on page 220. If a

root source was not available, the first module object bound to the program

object with debug data is shown.

 Work with Module List

 System: AS400S1

 Type options, press enter.

 1=Add program 4=Remove program 5=Display module source

 8=Work with module breakpoints

 Opt Program/module Library Type

 *LIBL *PGM

 RPGPGM MYLIB *PGM

 DEBUGEX MYLIB *PGM

 DBGEX *MODULE Selected

 5 CPROC *MODULE

 Bottom

 Command

 ===> __

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 98. Changing to a Different Module

Viewing the Program Source

Chapter 12. Debugging Programs 219

Changing the View of a Module

Several different views of an ILE RPG module can be displayed depending on the

values you specify when you create the module. They are:

v Root source view

v COPY source view

v Listing view

You can change the view of the module object that is shown on the Display

Module Source display through the Select View display. The Select View display

can be accessed from the Display Module Source display by pressing F15 (Select

View). The Select View display is shown in Figure 100 on page 221. The current

view is listed at the top of the window, and the other views that are available are

shown below. Each module object in a program object can have a different set of

views available, depending on the debug options used to create it.

For example, to change the view of the module from root source to listing, follow

these steps:

1. Type DSPMODSRC, and press Enter. The Display Module Source display is shown.

2. Press F15 (Select view). The Select View window is shown in Figure 100 on

page 221.

 Display Module Source

 Program: DEBUGEX Library: MYLIB Module: CPROC

 1 #include <stdlib.h>

 2 #include <string.h>

 3 #include <stdio.h>

 4 extern char EXPORTFLD[6];

 5

 6 char *c_proc(unsigned int size, char *inzval)

 7 {

 8 char *ptr;

 9 ptr = malloc(size);

 10 memset(ptr, *inzval, size);

 11 printf("import string: %6s.\n",EXPORTFLD);

 12 return(ptr);

 13 }

 Bottom

 Debug . . . ___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 99. Source View of ILE C procedure cproc

Viewing the Program Source

220 ILE RPG Programmer’s Guide

The current view is listed at the top of the window, and the other views that

are available are shown below. Each module in a program can have a different

set of views available, depending on the debug options used to create it.

Note: If a module is created with DBGVIEW(*ALL), the Select View window

will show three views available: root source, COPY, and listing. If the

module has no /COPY members, then the COPY view is identical to the

root source view.

3. Type a 1 next to the listing view, and press Enter. The Display Module Source

display appears showing the module with a listing view.

Setting and Removing Breakpoints

You can use breakpoints to halt a program object at a specific point when it is

running. An unconditional breakpoint stops the program object at a specific

statement. A conditional breakpoint stops the program object when a specific

condition at a specific statement is met.

There are two types of breakpoints: job and thread. Each thread in a threaded

application may have it’s own thread breakpoint at the same position at the same

time. Both job and thread breakpoints can be unconditional or conditional. In

general, there is one set of debug commands and Function keys for job breakpoints

and another for thread breakpoints. For the rest of this section on breakpoints, the

word breakpoint refers to both job and thread, unless specifically mentioned

otherwise.

Note: Breakpoints are automatically generated for input and output specifications

if the default OPTION(*DEBUGIO) is specified. If you do not want to

generate breakpoints, specify OPTION(*NODEBUGIO).

You set the breakpoints prior to running the program. When the program object

stops, the Display Module Source display is shown. The appropriate module object

is shown with the source positioned at the line where the breakpoint occurred.

This line is highlighted. At this point, you can evaluate fields, set more

breakpoints, and run any of the debug commands.

 Display Module Source

 ..

 : Select View :

 : :

 : Current View . . . : ILE RPG Copy View :

 : :

 : Type option, press Enter. :

 : 1=Select :

 : :

 : Opt View :

 : 1 ILE RPG Listing View :

 : ILE RPG Source View :

 : ILE RPG Copy View :

 : :

 : Bottom :

 : F12=Cancel :

 : :

 :..:

 More...

 Debug . . . ___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 100. Changing a View of a Module

Viewing the Program Source

Chapter 12. Debugging Programs 221

You should know the following characteristics about breakpoints before using

them:

v When a breakpoint is set on a statement, the breakpoint occurs before that

statement is processed.

v When a statement with a conditional breakpoint is reached, the conditional

expression associated with the breakpoint is evaluated before the statement is

processed. If the expression is true, the breakpoint takes effect and the program

stops on that line.

v If the line on which you want to set a breakpoint is not a runnable statement,

the breakpoint will be set on the next runnable statement.

v If a breakpoint is bypassed that breakpoint is not processed.

v Breakpoint functions are specified through debug commands. These functions

include:

– Adding breakpoints to program objects

– Removing breakpoints from program objects

– Displaying breakpoint information

– Resuming the running of a program object after a breakpoint has been

reached

– You can either have a job or thread breakpoint on a specified position at the

same time, but not both.

If you change the view of the module after setting breakpoints, then the line

numbers of the breakpoints are mapped to the new view by the source debugger.

If you are debugging a module or program created with a statement view, then

you can set or remove breakpoints using statement numbers obtained from the

compiler listing. For more information on using statement numbers, see “Setting

and Removing Job Breakpoints Using Statement Numbers” on page 228.

Setting and Removing Unconditional Job Breakpoints

You can set or remove an unconditional Job breakpoint by using:

v F6 (Add/Clear breakpoint) or F13 (Work with module breakpoints) from the

Display Module Source display

v The BREAK debug command to set a job breakpoint

v The CLEAR debug command to remove a jobbreakpoint

v The Work with Module Breakpoints display.

The simplest way to set and remove an unconditional job breakpoint is to use F6

(Add/Clear breakpoint). The function key acts as a toggle and so it will remove a

breakpoint from the line your cursor is on, if a breakpoint is already set on that

line.

To remove an unconditional job breakpoint using F13 (Work with module

breakpoints), press F13 (Work with module breakpoints) from the Display Module

Source display. A list of options appear which allow you to set or remove

breakpoints. If you select 4 (Clear), a job breakpoint is removed from the line.

An alternate method of setting and removing unconditional job breakpoints is to

use the BREAK and CLEAR debug commands. To set an unconditional job

breakpoint using the BREAK debug command, type:

BREAK line-number

Setting and Removing Breakpoints

222 ILE RPG Programmer’s Guide

on the debug command line. The variable line-number is the line number in the

currently displayed view of the module object on which you want to set a

breakpoint.

To remove an unconditional job breakpoint using the CLEAR debug command,

type:

CLEAR line-number

on the debug command line. The variable line-number is the line number in the

currently displayed view of the module object from which you want to remove a

breakpoint. When a job breakpoint is cleared, it is also cleared for all threads.

Example of Setting an Unconditional Job Breakpoint

In this example you set an unconditional job breakpoint using F6 (Add/Clear

breakpoint). The breakpoint is to be set on the first runnable Calculation

specification so that the various fields and data structures can be displayed.

1. To work with a module type DSPMODSRC and press Enter. The Display Module

Source display is shown.

2. If you want to set the job breakpoint in the module shown, continue with step

3. If you want to set a job breakpoint in a different module, type:

DISPLAY MODULE module-name

on the debug command line where module-name is the name of the module that

you want to display.

3. To set an unconditional breakpoint on the first Calculation specification, place

the cursor on line 88.

4. Press F6 (Add/Clear breakpoint). If there is no breakpoint on the line 88, then

an unconditional breakpoint is set on that line, as shown in Figure 101 on page

224. If there is a breakpoint on the line, it is removed.

Note: Because we want the breakpoint on the first Calculation specification, we

could have placed the cursor on any line before the start of the

calculation specifications and the breakpoint would still have been

placed on line 88, since it is the first runnable statement.

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 223

5. After the breakpoint is set, press F3 (Exit) to leave the Display Module Source

display. The breakpoint is not removed.

6. Call the program. When a breakpoint is reached, the program stops and the

Display Module Source display is shown again, with the line containing the

breakpoint highlighted. At this point you can step through the program or

resume processing.

Setting and Removing Unconditional Thread Breakpoints

You can set or remove an unconditional thread breakpoint by using:

v The Work with Module Breakpoints display

v The TBREAK debug command to set a thread breakpoint in the current thread

v The CLEAR debug command to remove a thread breakpoint

To set an unconditional thread breakpoint using the Work with Module

Breakpoints display:

v Type 1 (Add) in the Opt field.

v In the Thread field, type the thread identifier.

v Fill in the remaining fields as if it were an unconditional job breakpoint.

v Press Enter.

Note: The Thread field is displayed when the DEBUG option on the SPAWN

command is greater than or equal to one.

The TBREAK debug command has the same syntax as the BREAK debug

command. Where the BREAK debug command sets a job breakpoint at the same

position in all threads, the TBREAK debug command sets a thread breakpoint in a

single thread — the current thread.

The current thread is the thread that is currently being debugged. Debug

commands are issued to this thread. When a debug stop occurs, such as a

breakpoint, the current thread is set to the thread where the debug stop happened.

The debug THREAD command and the ’Work with Debugged Threads’ display

can be used to change the current thread.

 Display Module Source

 Program: DEBUGEX Library: MYLIB Module: DBGEX

 84 *---

 85 * Move ’a’s to the data structure DS2. After the move, the

 86 * first occurrence of DS2 contains 10 character ’a’s.

 87 *---

 88 C MOVE *ALL’a’ DS2

 89

 90 *---

 91 * Change the occurrence of DS2 to 2 and move ’b’s to DS2,

 92 * making the first 10 bytes ’a’s and the second 10 bytes ’b’s

 93 *---

 94 C 2 OCCUR DS2

 95 C MOVE *ALL’b’ DS2

 96

 97 *---

 98 * Fld1a is an overlay field of Fld1. Since Fld1 is initialized

 More...

 Debug . . . ___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

 Breakpoint added to line 88.

Figure 101. Setting an Unconditional Job Breakpoint

Setting and Removing Breakpoints

224 ILE RPG Programmer’s Guide

To remove an unconditional thread breakpoint use the CLEAR debug command.

When a thread breakpoint is cleared, it is cleared for the current thread only.

Setting and Removing Conditional Job Breakpoints

You can set or remove a conditional job breakpoint by using:

v The Work with Module Breakpoints display

v The BREAK debug command to set a job breakpoint

v The CLEAR debug command to remove a breakpoint

Note: The relational operators supported for conditional breakpoints are <, >, =,

<=, >=, and <> (not equal).

One way you can set or remove conditional job breakpoints is through the Work

with Module Breakpoints display. You access the Work with Module Breakpoints

display from the Display Module Source display by pressing F13 (Work with

module breakpoints). The display provides you with a list of options which allow

you to either add or remove conditional and unconditional job breakpoints. An

example of the display is shown in Figure 102 on page 226.

To make the job breakpoint conditional, specify a conditional expression in the

Condition field. If the line on which you want to set a job breakpoint is not a

runnable statement, the breakpoint will be set at the next runnable statement.

If a thread column is shown, before pressing Enter, type *JOB in the Thread field.

Once you have finished specifying all of the job breakpoints, you call the program.

You can use F21 (Command Line) from the Display Module Source display to call

the program object from a command line or call the program after exiting from the

display.

When a statement with a conditional job breakpoint is reached, the conditional

expression associated with the job breakpoint is evaluated before the statement is

run. If the result is false, the program object continues to run. If the result is true,

the program object stops, and the Display Module Source display is shown. At this

point, you can evaluate fields, set more breakpoints, and run any of the debug

commands.

An alternate method of setting and removing conditional breakpoints is to use the

BREAK and CLEAR debug commands.

To set a conditional breakpoint using the BREAK debug command, type:

BREAK line-number WHEN expression

on the debug command line. The variable line-number is the line number in the

currently displayed view of the module object on which you want to set a

breakpoint and expression is the conditional expression that is evaluated when the

breakpoint is encountered. The relational operators supported for conditional

breakpoints are noted at the beginning of this section.

In non-numeric conditional breakpoint expressions, the shorter expression is

implicitly padded with blanks before the comparison is made. This implicit

padding occurs before any National Language Sort Sequence (NLSS) translation.

See “National Language Sort Sequence (NLSS)” on page 227 for more information

on NLSS.

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 225

To remove a conditional breakpoint using the CLEAR debug command, type:

CLEAR line-number

on the debug command line. The variable line-number is the line number in the

currently displayed view of the module object from which you want to remove a

breakpoint.

Example of Setting a Conditional Job Breakpoint Using F13

In this example you set a conditional job breakpoint using F13 (Work with module

breakpoints).

1. To set a conditional job breakpoint press F13 (Work with module breakpoints).

The Work with Module Breakpoints display is shown.

2. On this display type 1 (Add) on the first line of the list to add a conditional

breakpoint.

3. To set a conditional breakpoint at line 127 when *IN02=’1’, type 127 for the Line

field, *IN02=’1’ for the Condition field.

4. If a thread column is shown, before pressing Enter, type *JOB in the thread

field.

Figure 102 shows the Work with Module Breakpoints display after adding the

conditional breakpoint.

A conditional job breakpoint is set on line 127. The expression is evaluated

before the statement is run. If the result is true (in the example, if *IN02=’1’),

the program stops, and the Display Module Source display is shown. If the

result is false, the program continues to run.

An existing breakpoint is always replaced by a new breakpoint entered at the

same location.

5. After the breakpoint is set, press F12 (Cancel) to leave the Work with Module

Breakpoints display. Press F3 (End Program) to leave the ILE source debugger.

Your breakpoint is not removed.

6. Call the program. When a breakpoint is reached, the program stops, and the

Display Module Source display is shown again. At this point you can step

through the program or resume processing.

Example of Setting a Conditional Job Breakpoint Using the

BREAK Command

In this example, we want to stop the program when the date field BigDate has a

certain value. To specify the conditional job breakpoint using the BREAK

command:

 Work with Module Breakpoints

 System: TORASD80

 Program . . . : DEBUGEX Library . . . : MYLIB

 Module . . . : DBGEX Type : *PGM

 Type options, press Enter.

 1=Add 4=Clear

 Opt Line Condition

 127 *in02=’1’

 88

 102

 Bottom

 Command

 ===> __

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

 Breakpoint added to line 127.

Figure 102. Setting a Conditional Job Breakpoint

Setting and Removing Breakpoints

226 ILE RPG Programmer’s Guide

1. From the Display Module Source display, enter:

break 128 when BigDate=’1994-09-30’

A conditional job breakpoint is set on line 128.

2. After the breakpoint is set, press F3 (End Program) to leave the ILE source

debugger. Your breakpoint is not removed.

3. Call the program. When a breakpoint is reached, the program stops, and the

Display Module Source display is shown again.

National Language Sort Sequence (NLSS)

Non-numeric conditional breakpoint expressions are divided into the following

two types:

v Char- 8: each character contains 8 bits

This corresponds to the RPG data types of character, date, time, and timestamp.

v Char-16: each character contains 16 bits (DBCS)

This corresponds to the RPG graphic data type.

NLSS applies only to non-numeric conditional breakpoint expressions of type

Char-8. See Table 32 on page 228 for the possible combinations of non-numeric

conditional breakpoint expressions.

The sort sequence table used by the source debugger for expressions of type

Char-8 is the sort sequence table specified on the SRTSEQ parameter for the

CRTRPGMOD or CRTBNDRPG commands.

If the resolved sort sequence table is *HEX, no sort sequence table is used.

Therefore, the source debugger uses the hexadecimal values of the characters to

determine the sort sequence. Otherwise, the specified sort sequence table is used to

assign weights to each byte before the comparison is made. Bytes between, and

including, shift-out/shift-in characters are not assigned weights. This differs from

the way ILE RPG handles comparisons; all characters, including the

shift-out/shift-in characters, are assigned weights.

 Display Module Source

 Program: DEBUGEX Library: MYLIB Module: DBGEX

 122

 123 *---

 124 * After the following SETON operation, *IN02 = ’1’.

 125 *---

 126 C SETON

 127 C IF *IN02

 128 C MOVE ’1994-09-30’ BigDate

 129 C ENDIF

 130

 131 *---

 132 * Put a new value in the second cell of Arry.

 133 *---

 134 C MOVE 4 Arry

 135

 136 *---

 More...

 Debug . . . break 128 when BigDate=’1994-09-30’______________________________

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 103. Setting a Conditional Job Breakpoint Using the BREAK Command

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 227

Notes:

1. The alternate sequence specified by ALTSEQ (*SRC) on the Control specification

is not available to the ILE source debugger. Instead the source debugger uses

the *HEX sort sequence table.

2. The name of the sort sequence table is saved during compilation. At debug

time, the source debugger uses the name saved from the compilation to access

the sort sequence table. If the sort sequence table specified at compilation time

resolves to something other than *HEX or *JOBRUN, it is important the sort

sequence table does not get altered before debugging is started. If the table

cannot be accessed because it is damaged or deleted, the source debugger uses

the *HEX sort sequence table.

 Table 32. Non-numeric Conditional Breakpoint Expressions

Type Possible

Char-8 v Character field compared to character field

v Character field compared to character literal

1

v Character field compared to hex literal

2

v Character literal

1 compared to character field

v Character literal

1 compared to character literal

1

v Character literal

1 compared to hex literal

2

v Hex literal

2 compared to character field

1

v Hex literal

2 compared to character literal

1

v Hex literal

2 compared to hex literal

2

Char-16 v Graphic field compared to graphic field

v Graphic field compared to graphic literal

3

v Graphic field compared to hex literal

2

v Graphic literal

3 compared to graphic field

v Graphic literal

3 compared to graphic literal

3

v Graphic literal

3 compared to hex literal

2

v Hex literal

2 compared to graphic field

v Hex literal

2 compared to graphic literal

3

Notes:

1. Character literal is of the form 'abc'.

2. Hexadecimal literal is of the form X'hex digits'.

3. Graphic literal is of the form G'oK1K2i'. Shift-out is represented as o and shift-in is

represented as i.

Setting and Removing Job Breakpoints Using Statement

Numbers

You set and remove conditional or unconditional job breakpoints using the

statement numbers found in the compiler listing for the module in question. This

is necessary if you want to debug a module which was created with

DBGVIEW(*STMT).

To set an unconditional job breakpoint using the BREAK debug command, type:

BREAK procedure-name/statement-number

on the debug command line. The variable procedure-name is the name of the

procedure in which you are setting the breakpoint. Since ILE RPG allows more

Setting and Removing Breakpoints

228 ILE RPG Programmer’s Guide

than one procedure per module, the procedure-name can be either the name of the

main procedure or one of the subprocedures in a module. The variable

statement-number is the statement number from the compiler listing on which you

want to set a breakpoint.

Note: The statement number in the source listing is labeled as the Line Number

when OPTION(*NOSRCSTMT) is specified, and as the Statement Number

when OPTION(*SRCSTMT) is specified. For example, Figure 104 shows a

sample section of a listing with OPTION(*NOSRCSTMT). Figure 105 shows

the same section with OPTION(*SRCSTMT).

In this example, a Statement View is used to set a breakpoint for the procedure

TEST. To set a breakpoint for the module with the *NOSRCSTMT listing, type:

BREAK TEST/2

To set a breakpoint for the module with the *SRCSTMT listing, type:

BREAK TEST/200

In both cases, the breakpoint is set on the ’SETON LR----’ line.

For all other debug views, the statement numbers can be used in addition to the

program line-numbers in the debugger. For example, to set a breakpoint at the

beginning of subprocedure FmtCust in the Listing View below, type:

BREAK 34

Or

BREAK FmtCust/2600

Line <--------------------- Source Specifications --><---- Comments ----> Src Seq

Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Id Number

 S o u r c e L i s t i n g

 1 C MOVE ’123’ BI_FLD1 000100

 2 C SETON LR---- 000200

 * * * * * E N D O F S O U R C E * * * * *

Figure 104. Sample Section of the Listing with OPTION(*NOSRCSTMT)

Seq <--------------------- Source Specifications --><---- Comments ----> Statement

Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Number

 S o u r c e L i s t i n g

000100 C MOVE ’123’ BI_FLD1 000100

000200 C SETON LR---- 000200

 * * * * * E N D O F S O U R C E * * * * *

Figure 105. Sample Section of the Compiler Listing with OPTION(*SRCSTMT)

 Display Module Source

 Program: TEST Library: MYLIB Module: TEST

 (Source not available.)

 Bottom

 Debug . . . break TEST/2___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

 Breakpoint added to statement 2 of procedure TEST.

Figure 106. Setting a Breakpoint Using Statement View

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 229

In both cases, the breakpoint is set on the ’P FmtCust B’ line.

To set a conditional job breakpoint using the BREAK debug command, type:

BREAK procedure-name/statement-number WHEN expression

on the debug command line. The variables procedure-name and statement-number are

the same as for unconditional breakpoints. The variable expression is the conditional

expression that is evaluated when the breakpoint is encountered.

To remove an unconditional or conditional breakpoint using the CLEAR debug

command, type:

CLEAR procedure-name/statement-number

on the debug command line.

Setting and Removing Conditional Thread Breakpoints

You can set or remove a conditional thread breakpoint by using:

v The Work with Module Breakpoints display

v The TBREAK debug command to set a conditional thread breakpoint in the

current thread

v The CLEAR debug command to remove a conditional thread breakpoint.

Using the Work with Module Breakpoints Display

To set a conditional thread breakpoint using the Work with Module Breakpoints

display:

1. Type 1 (Add) in the Opt field.

2. In the Thread field, type the thread identifier.

3. Fill in the remaining fields as if it were a conditional job breakpoint.

4. Press Enter.

 Display Module Source

 Program: MYPGM Library: MYLIB Module: MYPGM

 33 002500 * Begin-procedure

 34 002600 P FmtCust B

 35 002700 D FmtCust PI 25A

 36 002800 * Procedure-interface (same as the prototype)

 37 002900 D FirstName 10A

 38 003000 D LastName 15A

 39 003100 D ValidRec N

 40 003200 * Calculations

 41 003300 C IF ValidRec = ’0’

 42 003400 C RETURN %TRIMR(FirstName) + ’ ’ + Last

 43 003500 C ENDIF

 44 003600 C RETURN ’Last Customer’

 45 003700 * End-procedure

 46 003800 P E

 47 *MAIN PROCEDURE EXIT

 More...

 Debug . . . BREAK fmtcust/2600___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

 Breakpoint added to line 34.

Figure 107. Setting a Breakpoint using Statement Numbers and a Listing View with

OPTION(*SRCSTMT)

Setting and Removing Breakpoints

230 ILE RPG Programmer’s Guide

To remove a conditional thread breakpoint using the Work with Module

Breakpoints display:

1. Type 4 (Clear) in the Opt field next to the breakpoint you want to remove.

2. Press Enter.

Using the TBREAK or CLEAR Debug Commands

You use the same syntax for the TBREAK debug command as you would for the

BREAK debug command. The difference between these commands is that the

BREAK debug command sets a conditional job breakpoint at the same position in

all threads, while the TBREAK debug command sets a conditional thread

breakpoint in the current thread.

To remove a conditional thread breakpoint, use the CLEAR debug command.

When a conditional thread breakpoint is removed, it is removed for the current

thread only.

Removing All Job and Thread Breakpoints

You can remove all job and thread breakpoints, conditional and unconditional,

from a program object that has a module object shown on the Display Module

Source display by using the CLEAR PGM debug command. To use the debug

command, type:

CLEAR PGM

on the debug command line. The breakpoints are removed from all of the modules

bound to the program.

Setting and Removing Watch Conditions

You use a watch condition to monitor if the current value of an expression or a

variable changes while your program runs. Setting watch conditions is similar to

setting conditional breakpoints, with one important difference:

v Watch conditions stop the program as soon as the value of a watched expression

or variable changes from its current value.

v Conditional job breakpoints stop the program only if a variable changes to the

value specified in the condition.

The debugger watches an expression or a variable through the contents of a

storage address, computed at the time the watch condition is set. When the

content at the storage address is changed from the value it had when the watch

condition was set or when the last watch condition occurred, the program stops.

Note: After a watch condition has been registered, the new contents at the

watched storage location are saved as the new current value of the

corresponding expression or variable. The next watch condition will be

registered if the new contents at the watched storage location change

subsequently.

Characteristics of Watches

You should know the following characteristics about watches before working with

them:

v Watches are monitored system-wide, with a maximum number of 256 watches

that can be active simultaneously. This number includes watches set by the

system.

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 231

Depending on overall system use, you may be limited in the number of watch

conditions you can set at a given time. If you try to set a watch condition while

the maximum number of active watches across the system is exceeded, you

receive an error message and the watch condition is not set.

Note: If an expression or a variable crosses a page boundary, two watches are

used internally to monitor the storage locations. Therefore, the maximum

number of expressions or variables that can be watched simultaneously

system-wide ranges from 128 to 256.

v Watch conditions can only be set when a program is stopped under debug, and

the expression or variable to be watched is in scope. If this is not the case, an

error message is issued when a watch is requested, indicating that the

corresponding call stack entry does not exist.

v Once the watch condition is set, the address of a storage location watched does

not change. Therefore, if a watch is set on a temporary location, it could result in

spurious watch-condition notifications.

An example of this is the automatic storage of an ILE RPG subprocedure, which

can be re-used after the subprocedure ends.

A watch condition may be registered although the watched variable is no longer

in scope. You must not assume that a variable is in scope just because a watch

condition has been reported.

v Two watch locations in the same job must not overlap in any way. Two watch

locations in different jobs must not start at the same storage address; otherwise,

overlap is allowed. If these restrictions are violated, an error message is issued.

Note: Changes made to a watched storage location are ignored if they are made

by a job other than the one that set the watch condition.

v After the command is successfully run, your application is stopped if a program

in your session changes the contents of the watched storage location, and the

Display Module Source display is shown.

If the program has debug data, and a source text view is available, it will be

shown. The source line of the statement that was about to be run when the

content change at the storage-location was detected is highlighted. A message

indicates which watch condition was satisfied.

If the program cannot be debugged, the text area of the display will be blank.

v Eligible programs are automatically added to the debug session if they cause the

watch-stop condition.

v When multiple watch conditions are hit on the same program statement, only

the first one will be reported.

v You can set watch conditions also when you are using service jobs for

debugging, that is when you debug one job from another job.

Setting Watch Conditions

Before you can set a watch condition, your program must be stopped under debug,

and the expression or variable you want to watch must be in scope:

v To watch a global variable, you must ensure that the program in which the

variable is defined is active before setting the watch condition.

v To watch a local variable, you must step into the procedure in which the

variable is defined before setting the watch condition.

You can set a watch condition by using:

Setting and Removing Watch Conditions

232 ILE RPG Programmer’s Guide

v F17 (Watch Variable) to set a watch condition for a variable on which the cursor

is positioned.

v The WATCH debug command with or without its parameters.

Using the WATCH Command

If you use the WATCH command, it must be entered as a single command; no

other debug commands are allowed on the same command line.

v To access the Work With Watch display shown below, type:

WATCH

on the debug command line, without any parameters.

The Work with Watch display shows all watches currently active in the debug

session. You can clear, and display watches from this display. When you select

Option 5 Display, the Display Watch window shown below displays

information about the currently active watch.

v To specify a variable or expression to be watched, type:

WATCH expression

on the debug command line.

This command requests a breakpoint to be set if the value of expression is

changed from its current value.

 Work with Watch

 System: DEBUGGER

 Type options, press Enter.

 4=Clear 5=Display

 Opt Num Variable Address Length

 - 1 SALARY 080090506F027004 4

 Bottom

 Command

 ===>__

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 108. Example of a Work with Watch Display

 Work with Watch

 ..

 : Display Watch : DEBUGGER

 : :

 : Watch Number : 1 :

 : Address : 080090506F027004 :

 : Length : 4 :

 : Number of Hits ..: 0 :

 : :

 : Scope when watch was set: :

 : Program/Library/Type: PAYROLL ABC *PGM :

 : :

 : Module...: PAYROLL :

 : Procedure: PAYROLL :

 : Variable.: SALARY :

 : :

 : F12=Cancel :

 : :

 ..

 Bottom

 Command

 ===>__

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 109. Example of a Display Watch Window

Setting and Removing Watch Conditions

Chapter 12. Debugging Programs 233

Note: expression is used to determine the address of the storage location to

watch and must resolve to a location that can be assigned to, for example:

%SUBSTR(X 1 5)

The scope of the expression variables in a watch is defined by the most recently

issued QUAL command.

v To set a watch condition and specify a watch length, type:

WATCH expression : watch length

on a debug command line.

Each watch allows you to monitor and compare a maximum of 128 bytes of

contiguous storage. If the maximum length of 128 bytes is exceeded, the watch

condition will not be set, and the debugger issues an error message.

By default, the length of the expression type is also the length of the

watch-comparison operation. The watch-length parameter overrides this default.

It determines the number of bytes of an expression that should be compared to

determine if a change in value has occurred.

For example, if a 4-byte integer is specified as the variable, without the

watch-length parameter, the comparison length is four bytes. However, if the

watch-length parameter is specified, it overrides the length of the expression in

determining the watch length.

Displaying Active Watches

To display a system-wide list of active watches and show which job set them, type:

DSPDBGWCH

on a debug command line. This command brings up the Display Debug Watches

display shown below.

Note: This display does not show watch conditions set by the system.

Removing Watch Conditions

Watches can be removed in the following ways:

v The CLEAR command used with the WATCH keyword selectively ends one or

all watches. For example, to clear the watch identified by watch-number, type:

CLEAR WATCH watch-number

The watch number can be obtained from the Work With Watches display.

To clear all watches for your session, type:

CLEAR WATCH ALL

on a debug command line.

 Display Debug Watches

 System: DEBUGGER

 ------------Job--------------- NUM LENGTH ADDRESS

 MYJOBNAME1 MYUSERPRF1 123456 1 5 080090506F027004

 JOB4567890 PRF4567890 222222 1 8 09849403845A2C32

 JOB4567890 PRF4567890 222222 2 2 098494038456AA00

 JOB PROFILE 333333 14 4 040689578309AF09

 SOMEJOB SOMEPROFIL 444444 3 4 005498348048242A

Bottom

 Press Enter to continue

 F3=Exit F5=Refresh F12=Cancel

Figure 110. Example of a Display Debug Watch Display

Setting and Removing Watch Conditions

234 ILE RPG Programmer’s Guide

Note: While the CLEAR PGM command removes all breakpoints in the program

that contains the module being displayed, it has no effect on watches. You

must explicitly use the WATCH keyword with the CLEAR command to

remove watch conditions.

v The CL End Debug (ENDDBG) command removes watches set in the local job or

in a service job.

Note: ENDDBG will be called automatically in abnormal situations to ensure

that all affected watches are removed.

v The initial program load (IPL) of your iSeries system removes all watch

conditions system-wide.

Example of Setting a Watch Condition

In this example, you watch a variable SALARY in program MYLIB/PAYROLL. To set the

watch condition, type:

WATCH SALARY

on a debug line, accepting the default value for the watch-length.

If the value of the variable SALARY changes subsequently, the application stops and

the Display Module Source display is shown, as illustrated in Figure 111.

v The line number of the statement where the change to the watch variable was

detected is highlighted. This is typically the first executable line following the

statement that changed the variable.

v A message indicates that the watch condition was satisfied.

Note: If a text view is not available, a blank Display Module Source display is

shown, with the same message as above in the message area.

The following programs cannot be added to the ILE debug environment:

 Display Module Source

 Program: PAYROL Library: MYLIB Module: PAYROLL

 52 C eval cnt = 1

 53 C dow (cnt < EMPMAX)

 54 C eval Pay_exmpt(cnt) = eflag(cnt)

 55 C eval cnt = cnt + 1

 56 C enddo

 57 C

 58 C eval index = 1

 59 C dow index <= cnt

 60 C if Pay_exmpt(index) = 1

 61 C eval SALARY = 40 * Pay_wage(index)

 62 C eval numexmpt = numexmpt + 1

 63 C else

 64 C eval SALARY = Pay_hours(index)*Pay_wage(index)

 65 C endif

 66 C eval index = index + 1

 67 C enddo

 More...

 Debug . . . ___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

 Watch number 1 at line 65, variable: SALARY

Figure 111. Example of Message Stating WATCH was Successfully Set

Setting and Removing Watch Conditions

Chapter 12. Debugging Programs 235

1. ILE programs without debug data

2. OPM programs with non-source debug data only

3. OPM programs without debug data

In the first two cases, the stopped statement number is passed. In the third case,

the stopped MI instruction is passed. The information is displayed at the bottom of

a blank Display Module Source display as shown below. Instead of the line

number, the statement or the instruction number is given.

Stepping Through the Program Object

After a breakpoint is encountered, you can run a specified number of statements of

a program object, then stop the program again and return to the Display Module

Source display. You do this by using the step function of the ILE source debugger.

The program object resumes running on the next statement of the module object in

which the program stopped. Typically, a breakpoint is used to stop the program

object.

Breakpoints can be set before the program is called and while you are stepping

through the program. Breakpoints can also be automatically generated for input

and output specifications if the default OPTION(*DEBUGIO) is specified. If this

option is selected, a STEP on a READ statement will stop at the input specification.

You can choose not to generate breakpoints for input and output specifications

with OPTION(*NODEBUGIO).

You can step into an OPM program if it has debug data available and if the debug

session accepts OPM programs for debugging.

You can step through a program object by using:

v F10 (Step) or F22 (Step into) on the Display Module Source display

v The STEP debug command

The simplest way to step through a program object one statement at a time is to

use F10 (Step) or F22 (Step into) on the Display Module Source display. When you

press F10 (Step) or F22 (Step into), then next statement of the module object shown

in the Display Module Source display is run, and the program object is stopped

again.

Note: You cannot specify the number of statements to step through when you use

F10 (Step) or F22 (Step into). Pressing F10 (Step) or F22 (Step into) performs

a single step.

Another way to step through a program object is to use the STEP debug command.

The STEP debug command allows you to run more than one statement in a single

step. The default number of statements to run, using the STEP debug command, is

one. To step through a program object using the STEP debug command, type:

STEP number-of-statements

 Display Module Source

 (Source not available)

 F3=End program F12=Resume F14=Work with module list F18=Work with watch

 F21=Command entry F22=Step into F23=Display output

 Watch number 1 at instruction 18, variable: SALARY

Figure 112. Example of a Display Module Source Panel

Example of Setting a Watch Condition

236 ILE RPG Programmer’s Guide

on the debug command line. The variable number-of-statements is the number of

statements of the program object that you want to run in the next step before the

program object is halted again. For example, if you type

STEP 5

on the debug command line, the next five statements of your program object are

run, then the program object is stopped again and the Display Module Source

display is shown.

When a call statement to another program or procedure is encountered in a debug

session, you can:

v Step over the call statement, or

v Step into the call statement.

A call statement for ILE RPG includes any of the following operations:

v CALL

v CALLB

v CALLP

v Any operation where there is an expression in the extended-factor 2 field, and

the expression contains a call to a procedure.

If you choose to step over the call statement, then you will stay inside the current

procedure. The call statement is processed as a single step and the cursor moves to

the next step after the call. Step over is the default step mode.

If you choose to step into the call statement, then each statement inside the call

statement is run as a single step. Depending on the number of steps specified, the

step command may end inside the call statement, in which case the source for the

call statement is shown in the Display Module Source display.

Note: You cannot step over or step into RPG subroutines. You can, however, step

over and into subprocedures.

Stepping Over Call Statements

You can step over call statements by using:

v F10 (Step) on the Display Module Source display

v The STEP OVER debug command

You can use F10 (Step) on the Display Module Source display to step over a call

statement in a debug session. If the call statement to be run is a CALL operation to

another program object, then pressing F10 (Step) will cause the called program

object to run to completion before the calling program object is stopped again.

Similarly, if the call statement is an EVAL operation where a procedure is called in

the expression, then the complete EVAL operation is performed, including the call

to the procedure, before the calling program or procedure is stopped again.

Alternately, you can use the STEP OVER debug command to step over a call

statement in a debug session. To use the STEP OVER debug command, type:

STEP number-of-statements OVER

on the debug command line. The variable number-of-statements is the number of

statements that you want to run in the next step before processing is halted again.

If this variable is omitted, the default is 1.

Stepping Through the Program Object

Chapter 12. Debugging Programs 237

Stepping Into Call Statements

You can step into a call statement by using:

v F22 (Step into) on the Display Module Source display

v The STEP INTO debug command

You can use F22 (Step into) on the Display Module Source display to step into a

called program or procedure in a debug session. If the next statement to be run is

a call statement to another program or procedure, then pressing F22 (Step into)

will cause the first runnable statement in the called program or procedure to be

run. The called program or procedure will then be shown in the Display Module

Source display.

Note: The called program or procedure must have debug data associated with it in

order for it to be shown in the Display Module Source display.

Alternately, you can use the STEP INTO debug command to step into a call

statement in a debug session. To use the STEP INTO debug command, type:

STEP number-of-statements INTO

on the debug command line. The variable number-of-statements is the number of

statements that you want to run in the next step before processing is halted again.

If this variable is omitted, the default is 1.

If one of the statements that are run contains a call statement the debugger will

step into the called program or procedure. Each statement in the called program or

procedure will be counted in the step. If the step ends in the called program or

procedure, then the called program or procedure will be shown in the Display

Module Source display. For example, if you type

STEP 5 INTO

on the debug command line, the next five statements of the program object are

run. If the third statement is a CALL operation to another program object, then

two statements of the calling program object are run and the first three statements

of the called program object are run.

In the example of DEBUGEX, if you enter STEP INTO (or press F22) while on the

EVAL operation that calls the procedure c_proc, then you would step into the C

module.

The STEP INTO command works with the CL CALL command as well. You can

take advantage of this to step through your program after calling it. After starting

the source debugger, from the initial Display Module Source display, enter

STEP 1 INTO

This will set the step count to 1. Use the F12 key to return to the command line

and then call the program. The program will stop at the first statement with debug

data.

TIP

In order to display data immediately before or after a subprocedure is run,

place breakpoints on the procedure specifications that begin and end the

subprocedure.

Stepping Through the Program Object

238 ILE RPG Programmer’s Guide

Example of Stepping Into an OPM Program Using F22

In this example, you use the F22 (Step Into) to step into the OPM program

RPGPGM from the program DEBUGEX.

1. Ensure that the Display Module Source display shows the source for DBGEX.

2. To set an unconditional breakpoint at line 102, which is the last runnable

statement before the CALL operation, type Break 102 and press Enter.

3. Press F3 (End program) to leave the Display Module Source display.

4. Call the program. The program stops at breakpoint 102, as shown in Figure 113.

5. Press F22 (Step into). One statement of the program runs, and then the Display

Module Source display of RPGPGM is shown, as in Figure 114 on page 240.

In this case, the first runnable statement of RPGPGM is processed (line 13) and

then the program stops.

Note: You cannot specify the number of statements to step through when you

use F22. Pressing F22 performs a single step.

 Display Module Source

 Program: DEBUGEX Library: MYLIB Module: DBGEX

 98 * Fld1a is an overlay field of Fld1. Since Fld1 is initialized

 99 * to ’ABCDE’, the value of Fld1a(1) is ’A’. After the

 100 * following MOVE operation, the value of Fld1a(1) is ’1’.

 101 *---

 102 C MOVE ’1’ Fld1a(1)

 103

 104 *---

 105 * Call the program RPGPGM, which is a separate program object.

 106 *---

 107 C Plist1 PLIST

 108 C PARM PARM1

 109 C CALL ’RPGPGM’ Plist1

 110

 111 *---

 112 * Call c_proc, which imports ExportFld from the main procedure.

 More...

 Debug . . . ___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

 Breakpoint at line 102.

Figure 113. Display Module Source display of DBGEX Before Stepping Into RPGPGM

Stepping Through the Program Object

Chapter 12. Debugging Programs 239

If the ILE source debugger is not set to accept OPM programs, or if there is no

debug data available, then you will see a blank Display Module Source display

with a message indicating that the source is not available. (An OPM program has

debug data if it was compiled with OPTION(*SRCDBG) or OPTION(*LSTDBG).)

Example of Stepping Into a Subprocedure

In this example, you use the F22 (Step Into) to step into the subprocedure Switch,

which is in the module DEBUGEX.

1. Ensure that the Display Module Source display shows the source for DBGEX.

2. To set an unconditional breakpoint at line 120, which is the last runnable

statement before the CALLP operation, type Break 120 and press Enter.

3. Press F3 (End program) to leave the Display Module Source display.

4. Call the program. The program stops at breakpoint 119.

5. Press F22 (Step into). The call statement is run and then the display moves to

the subprocedure, as in Figure 115 on page 241. The first runnable statement of

RPGPGM is processed (line 13) and then processing stops.

 Display Module Source

 Program: RPGPGM Library: MYLIB

 1 *===

 2 * RPGPGM - Program called by DEBUGEX to illustrate the STEP

 3 * functions of the ILE source debugger.

 4 *

 5 * This program receives a parameter InputParm from DEBUGEX,

 6 * displays it, then returns.

 7 *===

 8

 9 D InputParm S 4P 3

 10

 11 C *ENTRY PLIST

 12 C PARM InputParm

 13 C InputParm DSPLY

 14 C SETON

 Bottom

 Debug . . . ___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

 Step completed at line 13.

Figure 114. Stepping into RPGPGM

Stepping Through the Program Object

240 ILE RPG Programmer’s Guide

Displaying Data and Expressions

You can display the contents of fields, data structures, and arrays, and you can

evaluate expressions. There are two ways to display or evaluate:

v F11 (Display Variable)

v EVAL debug command

For simple qualified names, of the form DS.SUBF, you can use either of these

commands to display or change the variable:

EVAL SUBF OF DS

EVAL DS.SUBF

For complex qualified names, use the dot-qualification form of the name:

EVAL FAMILY.CHILD(2).PETS.PET(3).NAME

The scope of the fields used in the EVAL command can be defined by using the

QUAL command in languages such as ILE C. However, this command does not

currently apply to ILE RPG,

Note: You cannot display return values because there is no external name available

for use with the EVAL debug command.

The easiest way to display data or an expression is to use F11 (Display variable) on

the Display Module Source display. To display a field using F11 (Display variable),

place your cursor on the field that you want to display and press F11 (Display

variable). The current value of the field is shown on the message line at the bottom

of the Display Module Source display.

In cases where you are evaluating structures, records, or arrays, the message

returned when you press F11 (Display variable) may span several lines. Messages

that span several lines are shown on the Evaluate Expression display to show the

 Display Module Source

 Program: DEBUGEX Library: MYLIB Module: DBGEX

 141

 142 *===

 143 * Define the subprocedure Switch.

 144 *===

 145 P Switch B

 146 D Switch PI

 147 D Parm 1A

 148 *---

 149 * Define a local variable for debugging purposes.

 150 *---

 151 D Local S 5A INZ(’aaaaa’)

 152

 153 C IF Parm = ’1’

 154 C EVAL Parm = ’0’

 155 C ELSE

 Debug . . . ___

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

 Step completed at line 145.

Figure 115. Stepping into Subprocedure Switch

Stepping Through the Program Object

Chapter 12. Debugging Programs 241

entire text of the message. Once you have finished viewing the message on the

Evaluate Expression display, press Enter to return to the Display Module Source

display.

To display data using the EVAL debug command, type:

EVAL field-name

on the debug command line. The variable field-name is the name of the field, data

structure, or array that you want to display or evaluate. The value is shown on the

message line if the EVAL debug command is entered from the Display Module

Source display and the value can be shown on a single line. Otherwise, it is shown

on the Evaluate Expression display.

Figure 116 shows an example of using the EVAL debug command to display the

contents of a subfield LastName.

 Figure 117 on page 243 shows the use of the EVAL command with different types

of RPG fields. The fields are based on the source in Figure 125 on page 257.

Additional examples are also provided in the source debugger online help.

 Display Module Source

 Program: DEBUGEX Library: MYLIB Module: DBGEX

 61 D LastName 10A INZ(’Jones ’)

 62 D FirstName 10A INZ(’Fred ’)

 63

 64 *---

 65 * Define prototypes for called procedures c_proc and switch

 66 *---

 67 D c_proc PR * EXTPROC(’c_proc’)

 68 D size 10U 0 VALUE

 69 D inzval 1A CONST

 70

 71 D Switch PR

 72 D Parm 1A

 73

 74 *---

 75 * Define parameters for non-prototyped call

 More...

 Debug . . . eval LastName__

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable

 F12=Resume F17=Watch variable F18=Work with watch F24=More keys

 LASTNAME = ’Jones ’

Figure 116. Displaying a Field using the EVAL debug command

Stepping Through the Program Object

242 ILE RPG Programmer’s Guide

Unexpected Results when Evaluating Variables

If you are surprised at the value of variables while debugging, check if any of the

following is true:

v Your module is optimized. If the module is optimized, the debugger may not

show the most current value of a variable. Also if you change a variable using

the debugger, the effects of your change may not be reflected in the way the

program runs.

v Some input fields are not being read from the file. Normally, input fields that are

not used in the program are not affected by an input operation. If you specify

the DEBUG keyword on your control specification with no parameters, or with a

parameter of either *INPUT or *YES, all input fields will be read in.

Scalar Fields RPG Definition

> EVAL String 6A INZ(’ABCDEF’)

 STRING = ’ABCDEF’

> EVAL Packed1D0 5P 2 INZ(-93.4)

 PACKED1D0 = -093.40

> EVAL ZonedD3D2 3S 2 INZ(-3.21)

 ZONEDD3D2 = -3.21

> EVAL Bin4D3 4B 3 INZ(-4.321)

 BIN4D3 = -4.321

> EVAL Int3 3I 0 INZ(-128)

 INT3 = -128

> EVAL Int5 5I 0 INZ(-2046)

 INT5 = -2046

> EVAL Int10 10I 0 INZ(-31904)

 INT10 = -31904

> EVAL Int20 20I 0 INZ(-463972)

 INT20 = -463972

> EVAL Unsigned3 3U 0 INZ(128)

 UNSIGNED3 = 128

> EVAL Unsigned5 5U 0 INZ(2046)

 UNSIGNED5 = 2046

> EVAL Unsigned10 10U 0 INZ(31904)

 UNSIGNED10 = 31904

> EVAL Unsigned20 20U 0 INZ(463972)

 UNSIGNED20 = 463972

> EVAL DBCSString 3G INZ(G’~BBCCDD~’)

 DBCSSTRING = ’"BBCCDD"’

> EVAL NullPtr * INZ(*NULL)

 NULLPTR = SYP:*NULL

Based Fields

> EVAL String 6A INZ(’ABCDEF’)

 STRING = ’ABCDEF’

> EVAL BasePtr * INZ(%ADDR(String))

 BASEPTR = SPP:C01947001218

> EVAL BaseString 6A BASED(BasePtr)

 BASESTRING = ’ABCDEF’

Date, Time, Timestamp Fields

> EVAL BigDate D INZ(D’9999-12-31’)

 BIGDATE = ’9999-12-31’

> EVAL BigTime T INZ(T’12.00.00’)

 BIGTIME = ’12.00.00’

> EVAL BigTstamp Z INZ(Z’9999-12-31-12.00.00.000000

 BIGTSTAMP = ’9999-12-31-12.00.00.000000’

Figure 117. Sample EVAL commands based on Module DBGEX

Stepping Through the Program Object

Chapter 12. Debugging Programs 243

|
|
|

Displaying the Contents of an Array

Specifying an array name with EVAL will display the full array. To display one

element of an array, specify the index of the element you wish to display in

parentheses.

To display a range of elements use the following range notation:

EVAL field-name (n...m)

The variable field-name is the name of the array, the variable n is a number

representing the start of the range, and the variable m is a number representing the

end of the range.

Figure 118 shows the use of EVAL with the array in DBGEX.

Displaying the Contents of a Table

Using EVAL on a table will result in a display of the current table element. You can

display the whole table using the range notation. For example, to display a

3-element table, type:

EVAL TableA(1..3)

You can change the current element using the %INDEX built-in function. To

determine the value of the table index, enter the following command:

EVAL _QRNU_TABI_name

where name represents the table name in question.

Figure 119 on page 245 shows the use of EVAL with the table in DBGEX.

> EVAL Arry 3S 2 DIM(2) INZ(1.23)

 ARRY(1) = 1.23 ** Display full array **

 ARRY(2) = 1.23

> EVAL Arry(2) ** Display second element **

 ARRY(2) = 1.23

> EVAL Arry(1..2) ** Display range of elements **

 ARRY(1) = 1.23

 ARRY(2) = 1.23

Figure 118. Sample EVAL commands for an Array

Stepping Through the Program Object

244 ILE RPG Programmer’s Guide

Displaying Data Structures

You display the contents of a data structure or its subfields as you would any

standalone field. You simply use the data structure name after EVAL to see the

entire contents, or the subfield name to see a subset.

If the data structure is qualified, specify the subfields using either of the following

notations:

EVAL subfield-name OF datastructure-name

EVAL datastructure-name.subfield-name:

For example, to display subfield NAME of qualified data structure INFO, type one

of the following:

EVAL NAME OF INFO

EVAL NAME OF INFO EVAL INFO.NAME

When displaying a multiple-occurrence data structure, an EVAL on the data

structure name will show the subfields using the current index. To specify a

particular occurrence, specify the index in parentheses following the data structure

name. For example, to display the contents of the second occurrence of DS1, type:

EVAL DS1(2)

Similarly, to view the contents of a particular occurrence of a subfield, use the

index notation.

To determine the value of the current index, enter the following command:

EVAL _QRNU_DSI_name

where name represents the data structure name in question.

If a subfield is defined as an array overlay of another subfield, to see the contents

of the overlay subfield, you can use the %INDEX built-in function to specify the

occurrence, and the index notation to specify the array.

 3 DIM(3) CTDATA

 Compile-time data: **

> EVAL TableA ** Show value at aaa

 TABLEA = ’aaa’ current index bbb

 ccc

> EVAL TableA(1) ** Specify index 1 **

 TABLEA(1) = ’aaa’

> EVAL TableA(2) ** Specify index 2 **

 TABLEA(2) = ’bbb’

> EVAL _QRNU_TABI_TableA ** Display value of current index **

 _QRNU_TABI_TABLEA = 1

> EVAL TableA(1..3) ** Specify the whole table **

 TABLEA(1) = ’aaa’

 TABLEA(2) = ’bbb’

 TABLEA(3) = ’ccc’

> EVAL TableA=%INDEX(3) ** Change current index to 3 **

> EVAL TableA

 TABLEA = ’ccc’

Figure 119. Sample EVAL commands for a Table

Stepping Through the Program Object

Chapter 12. Debugging Programs 245

#
#

#

#

#
#

#

#

#

An alternative way of displaying a subfield which is an array overlay is to use the

following notation:

EVAL subfield-name(occurrence-index,array-index)

where the variable subfield-name is the name of the subfield you wish to display,

occurrence-index is the number of the array occurrence to display, and array-index is

the number of the element to display.

Figure 120 shows some examples of using EVAL with the the data structures

defined in DBGEX.

 To display a data structure for which no subfields have been defined, you must

use the character display function of EVAL which is discussed below.

Displaying Indicators

Indicators are defined as 1-byte character fields. Except for indicators such as

*INLR, you can display indicators either as ’*INxx’ or ’*IN(xx)’. Because the system

** Note that you can enter the data structure name or a subfield name. **

> EVAL DS3

 TITLE OF DS3 = ’Mr. ’ 5A INZ(’Mr. ’)

 LASTNAME OF DS3 = ’Jones ’ 10A INZ(’Jones ’)

 FIRSTNAME OF DS3 = ’Fred ’ 10A INZ(’Fred ’)

> EVAL LastName

 LASTNAME = ’Jones ’

> EVAL DS1 OCCURS(3)

 FLD1 OF DS1 = ’ABCDE’ 5A INZ(’ABCDE’)

 FLD1A OF DS1(1) = ’A’ 1A DIM(5) OVERLAY(Fld1)

 FLD1A OF DS1(2) = ’B’ 5B 2 INZ(123.45)

 FLD1A OF DS1(3) = ’C’

 FLD1A OF DS1(4) = ’D’

 FLD1A OF DS1(5) = ’E’

 FLD2 OF DS1 = 123.45

> EVAL _QRNU_DSI_DS1 ** Determine current index value **

 _QRNU_DSI_DS1 = 1

> EVAL DS1=%INDEX(2) ** Change the occurrence of DS1 **

 DS1=%INDEX(2) = 2

> EVAL Fld1 ** Display a Subfield **

 FLD1 = ’ABCDE’ (current occurrence)

> EVAL fld1(2)

 FLD1(2) = ’ABCDE’ (second occurrence)

> EVAL Fld1a ** Display an Array Overlay Subfield **

 FLD1A OF DS1(1) = ’A’ (current occurrence)

 FLD1A OF DS1(2) = ’B’

 FLD1A OF DS1(3) = ’C’

 FLD1A OF DS1(4) = ’D’

 FLD1A OF DS1(5) = ’E’

> EVAL Fld1a(2,1) ** Display 2nd occurrence, 1st element **

 FLD1A(2,1) = ’A’

> EVAL Fld1a(2,1..2) ** Display 2nd occurrence, 1st - 2nd elements **

 FLD1A(2,1) = ’A’

 FLD1A(2,2) = ’B’

> EVAL QUALDS.ID_NUM ** Display a subfield of a qualified DS

 QUALDS.ID_NUM = 1100022

> EVAL LIKE_QUALDS.ID_NUM ** Display the same subfield in a different DS

 LIKE_QUALDS.ID_NUM = 0

> EVAL LIKE_QUALDS.COUNTRY(1) ** An array element from a qualified DS

 LIKE_QUALDS.COUNTRY(1) = ’CANADA’

> EVAL cust(1).parts.item(2).Id_Num ** Display a subfield of a complex structure

 CUST(1).PARTS.ITEM(2).ID_NUM = 15

Figure 120. Using EVAL with Data Structures

Stepping Through the Program Object

246 ILE RPG Programmer’s Guide

stores indicators as an array, you can display them all or some subset of them

using the range notation. For example, if you enter EVAL *IN, you will get a list of

indicators 01 to 99. To display indicators *IN01 to *IN06 you would enter EVAL

*IN(1..6).

Figure 121 shows each of these ways using the indicators as they were set in

DBGEX.

Displaying Fields as Hexadecimal Values

You can use the EVAL debug command to display the value of fields in

hexadecimal format. To display a variable in hexadecimal format, type:

EVAL field-name: x number-of-bytes

on the debug command line. The variable field-name is the name of the field that

you want to display in hexadecimal format. 'x' specifies that the field is to be

displayed in hexadecimal format. The variable number-of-bytes indicates the number

of bytes displayed. If no length is specified after the 'x', the size of the field is used

as the length. A minimum of 16 bytes is always displayed. If the length of the field

is less than 16 bytes, then the remaining space is filled with zeroes until the 16 byte

boundary is reached.

For example, the field String is defined as six-character string. To find out the

hexadecimal equivalent of the first 3 characters, you would enter:

EVAL String: x 3

 Result:

 00000 C1C2C3.. - ABC.............

Displaying Fields in Character Format

You can use the EVAL debug command to display a field in character format. To

display a variable in character format, type:

EVAL field-name: c number-of-characters

on the debug command line. The variable field-name is the name of the field that

you want to display in character format. 'c' specifies the number of characters to

display.

> EVAL IN02

 Identifier does not exist.

> EVAL *IN02

 *IN02 = ’1’

> EVAL *IN(02)

 *IN(02) = ’1’

> EVAL *INLR

 *INLR = ’0’

> EVAL *IN(LR)

 Identifier does not exist.

> EVAL *IN(1..6) ** To display a range of indicators **

 *IN(1) = ’0’

 *IN(2) = ’1’

 *IN(3) = ’0’

 *IN(4) = ’1’

 *IN(5) = ’0’

 *IN(6) = ’1’

Figure 121. Sample EVAL commands for an Array

Stepping Through the Program Object

Chapter 12. Debugging Programs 247

For example, in the program DEBUGEX, data structure DS2 does not have any

subfields defined. Several MOVE operations move values into the subfield.

Because there are no subfields defined, you cannot display the data structure.

Therefore, to view its contents you can use the character display function of EVAL.

EVAL DS2:C 20 Result: DS2:C 20 = ’aaaaaaaaaabbbbbbbbbb’

Displaying UCS-2 Data

The value displayed for UCS-2 fields has been translated into readable characters.

For example, if a UCS-2 field has been set to %UCS2(’abcde’), then the value

displayed for that field would be ’abcde’. You can display UCS-2 data in any field

by using the :u suffix for EVAL.

Displaying Variable-Length Fields

When you use EVAL fldname for a variable length field, only the data portion of

the field is shown. When you use any suffix such as :c or :x for the field, the entire

field including the length is shown. To determine the current length of a variable

length field, use EVAL fldname:x. The length is the first four hexadecimal digits, in

binary format. You must convert this value to decimal form to get the length; for

example, if the result is 003DF1F2..., the length is 003D which is (3 * 16) + 13 = 61.

Displaying Data Addressed by Pointers

If you want to see what a pointer is pointing to, you can use the EVAL command

with the :c or :x suffix. For example, if pointer field PTR1 is pointing to 10 bytes of

character data,

EVAL PTR1:c 10

will show the contents of those 10 bytes.

You can also show the contents in hexadecimal using:

EVAL PTR1:x 10

This would be especially useful when the data that the pointer addresses is not

stored in printable form, such as packed or binary data.

Evaluating Based Variables

When a variable is based on a pointer, the variable might not be available for

evaluation by the debugger using a normal EVAL command. This can happen

when the basing pointer is itself based, or when the basing pointer is an entry

parameter passed by reference (including read-only reference using the CONST

keyword).

For example, in the following program, ″basedFld″ is based on pointer ″parmPtr″

which is an input parameter.

 To evaluate ″basedFld″ in the debugger, use one of these methods:

 /copy myPgmProto

D myPgm pi

D parmPtr *

D basedFld s 5a based(parmPtr)

Stepping Through the Program Object

248 ILE RPG Programmer’s Guide

|
|
|
|

|

|
|
|
|
|

|
|

||

1. Evaluate the basing pointer using the :c or :x notation described in “Displaying

Data Addressed by Pointers” on page 248. For example

 ===> eval parmPtr:c

 ===> eval parmPtr:x

Note: this method does not work well with data that has a hexadecimal

representation that does not resemble the natural representation, such as

packed, integer or UCS-2 data.

2. Use the debugger’s ″arrow″ notation to explicitly specify the basing pointer.

This method can also be used to change the variable.

 ===> eval parmPtr->basedFld

 ===> eval parmPtr->basedFld = ’abcde’

If a variable has more than two levels of basing pointer, the second method must

be used. For example, in the following program, variable ″basedVal″ has three

levels of basing pointer; it is based on pointer ″p1″ which is based on pointer ″p2″

which is further based on pointer ″p3″. Variable ″basedVal″ cannot be evaluated in

the debugger using simply ″EVAL basedVal″.

 To display a variable such as ″basedVal″, use the debugger’s p1->p2->name notation

to explicitly specify the basing pointer. To use this notation, specify the variable

you want to display, then working to the left, specify the basing pointer name

followed by an arrow (->). If the basing pointer is itself based, specify the second

basing pointer followed by an arrow, to the left of the previous basing pointer.

For example, to evaluate basedVal:

 ===> EVAL p3->p2->p1->basedVal

 aaaaaaaa

 bbbb

 cccc

 dddd

 a. variable name

 b. basing pointer of variable ->

 c. basing pointer of basing pointer ->

 d. and so on

Displaying Null-Capable Fields

You can use the EVAL debug command to display the null indicator of a

null-capable field. The null indicator is an internal variable (similar to the index

variable for multiple-occurrence DS) which is named _QRNU_NULL_fieldname.

The fieldname can be the name of an array if the array is null-capable.

When the debugger displays a null-capable field, the content of the field is

displayed regardless of whether the field is considered null. For example, suppose

D storage s 5a inz(’abcde’)

D val s 5a

D basedVal s 5a based(p1)

D p1 s * based(p2)

D p2 s * based(p3)

D p3 s *

D ptr1 s * inz(%addr(storage))

D ptr2 s * inz(%addr(ptr1))

D ptr3 s * inz(%addr(ptr2))

C eval p3 = ptr3

C eval p2 = ptr2

C eval p1 = ptr1

C eval val = basedVal

Stepping Through the Program Object

Chapter 12. Debugging Programs 249

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
||

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

FLD1 is null-capable, and is currently null. Then the result of EVAL

_QRNU_NULL_FLD1 is ’1’ and EVAL FLD1 shows the current content of FLD1,

even though its null indicator is on.

EVAL _QRNU_NULL_FLD1 Result: _QRNU_NULL_FLD1 = ’1’

EVAL FLD1 Result: FLD1 = ’abcde’

If a data structure has null-capable subfields, the null indicators for all the

null-capable subfields of the data structure are themselves stored as subfields of

the data structure _QRNU_NULL_dsname.

If the data structure is not qualified, the null indicator data structure is not

qualified. The names of the null capable subfields are in the form

_QRNU_NULL_subfieldname.

For example, if qualified data structure DS1 has null-capable subfields FLD1 and

FLD2 and non-null-capable subfield FLD3, then the data structure

_QRNU_NULL_DS1 would have indicator subfields _QRNU_NULL_NULLFLD1

and NULL2. To display all the null-capable subfields of the data structure, use the

debug command

EVAL _QRNU_NULL_DS1 Result: _QRNU_NULL_FLD1 OF _QRNU_NULL_DS1 = ’1’

 _QRNU_NULL_FLD1 OF _QRNU_NULL_DS1 = ’0’

If the data structure is qualified, the null indicator data structure is qualified. The

names of the null capable subfields are the same as the names of the data structure

subfields.

For example, if qualified data structure DS2 has null-capable subfields F1 and F2

and non-null-capable subfield F3, then the data structure _QRNU_NULL_DS2

would have indicator subfields F1 and F2. To display all the null-capable subfields

of the data structure, use this debug command:

EVAL _QRNU_NULL_DS2 Result: _QRNU_NULL_DS2.F1 = ’0’

 _QRNU_NULL_DS2.F2 = ’1’

To display the null indicator of a variable, use the same EVAL expression in the

debugger as you would use to access the variable itself, replacing the outermost

name with _QRNU_NULL_name.

EVAL FLD1 Result: ’abc’

EVAL _QRNU_NULL_FLD1 Result: ’0’

EVAL SUBF2 Result: 0

EVAL _QRNU_NULL_SUBF2 Result: ’1’

EVAL ARR(3) Result: 13

EVAL _QRNU_NULL_ARR(3) Result: ’1’

EVAL DS3.INFO(2).SUB4 Result: ’xyz’

EVAL _QRNU_NULL_DS3.INFO(2).SUB4 Result: ’0’

Using Debug Built-In Functions

The following built-in functions are available while using the ILE source debugger:

%SUBSTR

Substring a string field.

%ADDR

Retrieve the address of a field.

Stepping Through the Program Object

250 ILE RPG Programmer’s Guide

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

%INDEX

Change the index of a table or multiple-occurrence data structure.

%VARS

Identifies the specified parameter as a variable.

The %SUBSTR built-in function allows you to substring a string variable. The first

parameter must be a string identifier, the second parameter is the starting position,

and the third parameter is the number of single-byte or double-byte characters. In

addition. the second and third parameters must be positive, integer literals.

Parameters are delimited by one or more spaces.

Use the %SUBSTR built-in function to:

v Display a portion of a character field

v Assign a portion of a character field

v Use a portion of a character field on either side of a conditional break

expression.

Figure 122 shows some examples of the use of %SUBSTR based on the source in

Figure 125 on page 257.

 To change the current index, you can use the %INDEX built-in function, where the

index is specified in parentheses following the function name. An example of

%INDEX is found in the table section of Figure 119 on page 245 and Figure 120 on

page 246.

 > EVAL String

 STRING = ’ABCDE ’

** Display the first two characters of String **

 > EVAL %substr (String 1 2)

 %SUBSTR (STRING 1 2) = ’AB’

 > EVAL TableA

 TABLEA = ’aaa’

** Display the first character in the first table element **

 > EVAL %substr(TableA 1 1)

 %SUBSTR(TABLEA 1 1) = ’a’

 > EVAL BigDate

 BIGDATE = ’1994-10-23’

** Set String equal to the first four characters of BigDate **

 > EVAL String=%substr(BigDate 1 4)

 STRING=%SUBSTR(BIGDATE 1 4) = ’1994 ’

 > EVAL Fld1 (5 characters)

 FLD1 = ’ABCDE’

 > EVAL String (6 characters)

 STRING = ’123456’

** Set the characters 2-5 of String equal to the

 first four characters of Fld1 **

 > EVAL %substr(String 2 4) = %substr(Fld1 1 4)

 %SUBSTR(STRING 2 4) = %SUBSTR(FLD1 1 4) = ’ABCD’

 > EVAL String

 STRING = ’1ABCD6’

** You can only use %SUBSTR on character or graphic strings! **

 > EVAL %substr (Packed1D0 1 2)

 String type error occurred.

Figure 122. Examples of %SUBSTR using DBGEX

Stepping Through the Program Object

Chapter 12. Debugging Programs 251

Note: %INDEX will change the current index to the one specified. Therefore, any

source statements which refer to the table or multiple-occurrence data

structure subsequent to the EVAL statement may be operating with a

different index than expected.

Use the %VARS debug built-in function when the variable name conflicts with any

of the debug command names. For example, EVAL %VAR(EVAL) can be used to

evaluate a variable named EVAL, whereas EVAL EVAL would be a syntax error.

Debugging an XML-SAX Handling Procedure

The second parameter passed to an XML-SAX event handling procedure is a

numeric value indicating which SAX event was discovered by the parser.

In your RPG code, you can test the event value using special values like

*XML_START_ELEMENT and *XML_DOCTYPE_DECL.

However, these special values are not available in the debugger. Instead, you can

use a special array that is made available if you code the DEBUG(*XMLSAX)

keyword in your Control specification. The name of the array is _QRNU_XMLSAX;

the values of the array elements are the same as the names of the special words,

minus the leading ″*XML_″.

For example, if the name of the second parameter of your XML-SAX event

handling procedure is ″xmlEvent″, then use the following debugger expression to

determine the name of the event:

EVAL _QRNU_XMLSAX(xmlEvent)

Result: _QRNU_XMLSAX(XMLEVENT) = ’START_DOCUMENT ’

The third parameter passed to the event handler is a pointer to the data. See

“Displaying Data Addressed by Pointers” on page 248, using the value of the

fourth parameter to determine the length of the data, in bytes.

For an Exception event, the fifth parameter holds the error code related to the

parsing exception. See “Processing XML Documents” on page 163 for the meanings

of the error codes.

Changing the Value of Fields

You can change the value of fields by using the EVAL command with an

assignment operator (=).

The scope of the fields used in the EVAL command is defined by using the QUAL

command. However, you do not need to specifically define the scope of the fields

contained in an ILE RPG module because they are all of global scope.

To change the value of the field, type:

EVAL field-name = value

on the debug command line. field-name is the name of the variable that you want

to change and value is an identifier, literal, or constant value that you want to

assign to variable field-name. For example,

EVAL COUNTER=3

changes the value of COUNTER to 3 and shows

Stepping Through the Program Object

252 ILE RPG Programmer’s Guide

|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

COUNTER=3 = 3

on the message line of the Display Module Source display.

Use the EVAL debug command to assign numeric, alphabetic, and alphanumeric

data to fields. You can also use the %SUBSTR built-in function in the assignment

expression.

When you assign values to a character field, the following rules apply:

v If the length of the source expression is less than the length of the target

expression, then the data is left justified in the target expression and the

remaining positions are filled with blanks.

v If the length of the source expression is greater than the length of the target

expression, then the data is left justified in the target expression and truncated to

the length of the target expression.

Note: Graphic fields can be assigned any of the following:

v Another graphic field

v A graphic literal of the form G'oK1K2i'

v A hexadecimal literal of the form X'hex digits'

UCS-2 fields must be changed using hexadecimal constants. For example, since

%UCS2(’AB’) = U’00410042’, then to set a UCS-2 field to the UCS-2 form of ’AB’ in

the debugger, you would use EVAL ucs2 = X’00410042’.

Variable-length fields can be assigned using, for example, EVAL varfldname =

’abc’. This sets the data part of the field to ’abc’ and the length part to 3. To set the

length part without changing the data, determine the hexadecimal value of the

length (for example 11 is X’000B’), and use EVAL %SUBSTR(varfldname 1 2) =

X’000B’.

When assigning literals to fields, the normal RPG rules apply:

v Character literals should be in quotes.

v Graphic literals should be specified as G’oDDDDi’, where o is shift-out and i is

shift-in.

v Hexadecimal literals should be in quotes, preceded by an 'x'.

v Numeric literals should not be in quotes.

Note: You cannot assign a figurative constant to a field using the EVAL debug

command. Figurative constants are not supported by the EVAL debug

command.

To change the null indicator of a variable, use the same EVAL expression in the

debugger as you would use to access the variable itself, replacing the outermost

name with _QRNU_NULL_name.

EVAL FLD1 = 3

EVAL _QRNU_NULL_FLD1 = ’0’

EVAL SUBF2 = 5

EVAL _QRNU_NULL_SUBF2 = ’0’

EVAL ARR(3) = 0

Changing the Value of Fields

Chapter 12. Debugging Programs 253

|
|
|

|
|
|
|
|
|
|

EVAL _QRNU_NULL_ARR(3) = ’1’

EVAL DS3.INFO(2).SUB4 = ’some value’

EVAL _QRNU_NULL_DS3.INFO(2).SUB4 = ’0’

For more information on debugging null-capable fields, see “Displaying

Null-Capable Fields” on page 249. Figure 123 shows some examples of changing

field values based on the source in Figure 125 on page 257. Additional examples

are also provided in the source debugger online help.

Displaying Attributes of a Field

You can display the attributes of a field using the Attribute (ATTR) debug

command. The attributes are the size (in bytes) and type of the variable as

recorded in the debug symbol table.

** Target Length = Source Length **

 > EVAL String=’123456’ (6 characters)

 STRING=’123456’ = ’123456’

 > EVAL ExportFld (6 characters)

 EXPORTFLD = ’export’

 > EVAL String=ExportFld

 STRING=EXPORTFLD = ’export’

** Target Length < Source Length **

 > EVAL String (6 characters)

 STRING = ’ABCDEF’

 > EVAL LastName (10 characters)

 LASTNAME=’Williamson’ = ’Williamson’

 > EVAL String=LastName

 STRING=LASTNAME = ’Willia’

** Target Length > Source Length **

 > EVAL String (6 characters)

 STRING = ’123456’

 > EVAL TableA (3 characters)

 TABLEA = ’aaa’

 > EVAL String=TableA

 STRING=TABLEA = ’aaa ’

** Using %SUBSTR **

 > EVAL BigDate

 BIGDATE = ’1994-10-23’

 > EVAL String=%SUBSTR(BigDate 1 4)

 STRING=%SUBSTR(BIGDATE 1 4) = ’1994 ’

** Substring Target Length > Substring Source Length **

 > EVAL string = ’123456’

 STRING = ’123456’ = ’123456’

 > EVAL LastName=’Williamson’

 LASTNAME=’Williamson’ = ’Williamson’

 > EVAL String = %SUBSTR(Lastname 1 8)

 STRING = %SUBSTR(LASTNAME 1 8) = ’Willia’

** Substring Target Length < Substring Source Length **

 > EVAL TableA

 TABLEA = ’aaa’

 > EVAL String

 STRING = ’123456’

 > EVAL String=%SUBSTR(TableA 1 4)

 Substring extends beyond end of string. ** Error **

 > EVAL String

 STRING = ’123456’

Figure 123. Examples of Changing the Values of Fields based on DBGEX

Changing the Value of Fields

254 ILE RPG Programmer’s Guide

|
|
|
|

|
|

Figure 124 shows some examples of displaying field attributes based on the source

in Figure 125 on page 257. Additional examples are also provided in the source

debugger online help.

Equating a Name with a Field, Expression, or Command

You can use the EQUATE debug command to equate a name with a field,

expression or debug command for shorthand use. You can then use that name

alone or within another expression. If you use it within another expression, the

value of the name is determined before the expression is evaluated. These names

stay active until a debug session ends or a name is removed.

To equate a name with a field, expression or debug command, type:

EQUATE shorthand-name definition

on the debug command line. shorthand-name is the name that you want to equate

with a field, expression, or debug command, and definition is the field, expression,

or debug command that you are equating with the name.

For example, to define a shorthand name called DC which displays the contents of

a field called COUNTER, type:

EQUATE DC EVAL COUNTER

 > ATTR NullPtr

 TYPE = PTR, LENGTH = 16 BYTES

 > ATTR ZonedD3D2

 TYPE = ZONED(3,2), LENGTH = 3 BYTES

 > ATTR Bin4D3

 TYPE = BINARY, LENGTH = 2 BYTES

 > ATTR Int3

 TYPE = INTEGER, LENGTH = 1 BYTES

 > ATTR Int5

 TYPE = INTEGER, LENGTH = 2 BYTES

 > ATTR Unsigned10

 TYPE = CARDINAL, LENGTH = 4 BYTES

 > ATTR Unsigned20

 TYPE = CARDINAL, LENGTH = 8 BYTES

 > ATTR Float4

 TYPE = REAL, LENGTH = 4 BYTES

 > ATTR Float8

 TYPE = REAL, LENGTH = 8 BYTES

 > ATTR Arry

 TYPE = ARRAY, LENGTH = 6 BYTES

 > ATTR tablea

 TYPE = FIXED LENGTH STRING, LENGTH = 3 BYTES

 > ATTR tablea(2)

 TYPE = FIXED LENGTH STRING, LENGTH = 3 BYTES

 > ATTR BigDate

 TYPE = FIXED LENGTH STRING, LENGTH = 10 BYTES

 > ATTR DS1

 TYPE = RECORD, LENGTH = 9 BYTES

 > ATTR SpcPtr

 TYPE = PTR, LENGTH = 16 BYTES

 > ATTR String

 TYPE = FIXED LENGTH STRING, LENGTH = 6 BYTES

 > ATTR *IN02

 TYPE = CHAR, LENGTH = 1 BYTES

 > ATTR DBCSString

 TYPE = FIXED LENGTH STRING, LENGTH = 6 BYTES

Figure 124. Examples of Displaying the Attributes of Fields based on DBGEX

Displaying Attributes of a Field

Chapter 12. Debugging Programs 255

on the debug command line. Now, each time DC is typed on the debug command

line, the command EVAL COUNTER is performed.

The maximum number of characters that can be typed in an EQUATE command is

144. If a definition is not supplied and a previous EQUATE command defined the

name, the previous definition is removed. If the name was not previously defined,

an error message is shown.

To see the names that have been defined with the EQUATE debug command for a

debug session, type:

DISPLAY EQUATE

on the debug command line. A list of the active names is shown on the Evaluate

Expression display.

Source Debug National Language Support for ILE RPG

You should be aware of the following conditions that exist when you are working

with source debug National Language Support for ILE RPG

v When a view is displayed on the Display Module Source display, the source

debugger converts all data to the Coded Character Set Identifier (CCSID) of the

debug job.

v When assigning literals to fields, the source debugger will not perform CCSID

conversion on quoted literals (for example, 'abc'). Also, quoted literals are case

sensitive.

See the chapter on debugging in ILE Concepts for more information on NLS

restrictions.

Sample Source for Debug Examples

Figure 125 on page 257 shows the source for the main procedure of the program

DEBUGEX. Most of the examples and screens shown in this chapter are based on

this source. Figure 126 on page 260 and Figure 127 on page 261 show the source for

the called program RPGPGM and procedure cproc respectively.

The program DEBUGEX is designed to show the different aspects of the ILE source

debugger and ILE RPG formatted dumps. The sample dumps are provided in the

next chapter.

The following steps describe how the program DEBUGEX was created for use in

these examples:

1. To create the module DBGEX using the source in Figure 125 on page 257, type:

CRTRPGMOD MODULE(MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC) DBGVIEW(*ALL)

 TEXT(’Main module for Sample Debug Program’)

DBGVIEW(*ALL) was chosen in order to show the different views available.

2. To create the C module using the source in Figure 127 on page 261, type:

CRTCMOD MODULE(MYLIB/cproc) SRCFILE(MYLIB/QCLESRC) DBGVIEW(*SOURCE)

 TEXT(’C procedure for Sample Debug Program’)

3. To create the program DEBUGEX, type:

CRTPGM PGM(MYLIB/DEBUGEX) MODULE(MYLIB/DBGEX MYLIB/CPROC)

 TEXT(’Sample Debug Program’)

The first module DBGEX is the entry module for this program. The program

will run in a new activation group (that is, *NEW) when it is called.

Equating a Name with a Field, Expression, or Command

256 ILE RPG Programmer’s Guide

4. To create the called RPG program using the source in Figure 126 on page 260,

type:

CRTBNDRPG PGM(MYLIB/RPGPGM) DFTACTGRP(*NO)

 DBGVIEW(*SOURCE) ACTGRP(*NEW)

 TEXT(’RPG program for Sample Debug Program’)

We could have created RPGPGM to run in the OPM default activation group.

However, we decided to have it run in the same activation group as

DEBUGEX, and since DEBUGEX needs only a temporary activation group,

*NEW was chosen for both programs.

 ===

 * DEBUGEX - Program designed to illustrate use of ILE source

 * debugger with ILE RPG source. Provides a

 * sample of different data types and data structures.

 *

 * Can also be used to produce sample formatted dumps.

 ===

 * The DEBUG keyword enables the formatted dump facility.

 H DEBUG

 * Define standalone fields for different ILE RPG data types.

 D String S 6A INZ(’ABCDEF’)

 D Packed1D0 S 5P 2 INZ(-93.4)

 D ZonedD3D2 S 3S 2 INZ(-3.21)

 D Bin4D3 S 4B 3 INZ(-4.321)

 D Bin9D7 S 9B 7 INZ(98.7654321)

 D DBCSString S 3G INZ(G’"BBCCDD"’)

 D UCS2String S 5C INZ(%UCS2(’ucs-2’))

 D CharVarying S 5A INZ(’abc’) VARYING

 D Int3 S 3I 0 INZ(-128)

 D Int5 S 5I 0 INZ(-2046)

 D Int10 S 10I 0 INZ(-31904)

 D Int20 S 20I 0 INZ(-463972)

 D Unsigned3 S 3U 0 INZ(128)

 D Unsigned5 S 5U 0 INZ(2046)

 D Unsigned10 S 10U 0 INZ(31904)

 D Unsigned20 S 20U 0 INZ(463972)

 D Float4 S 4f INZ(7.2098)

 D Float8 S 8f INZ(-129.0978652)

 D DBCSString S 3G INZ(G’"BBCCDD"’)

Figure 125. Source for Module DBGEX (Part 1 of 4). DBGEX is the main module of the

program DEBUGEX.

Sample Source for Debug Examples

Chapter 12. Debugging Programs 257

* Pointers

 D NullPtr S * INZ(*NULL)

 D BasePtr S * INZ(%ADDR(String))

 D ProcPtr S * ProcPtr INZ(%PADDR(’c_proc’))

 D BaseString S 6A BASED(BasePtr)

 D BaseOnNull S 10A BASED(NullPtr)

 *

 D Spcptr S *

 D SpcSiz C 8

 * Date, Time, Timestamp

 D BigDate S D INZ(D’9999-12-31’)

 D BigTime S T INZ(T’12.00.00’)

 D BigTstamp S Z INZ(Z’9999-12-31-12.00.00.000000’)

 * Array

 D Arry S 3S 2 DIM(2) INZ(1.23)

 * Table

 D TableA S 3 DIM(3) CTDATA

 * Define different types of data structures.

 D DS1 DS OCCURS(3)

 D Fld1 5A INZ(’ABCDE’)

 D Fld1a 1A DIM(5) OVERLAY(Fld1)

 D Fld2 5B 2 INZ(123.45)

 *

 D DS2 DS 10 OCCURS(2)

 *

 D DS3 DS

 D Title 5A INZ(’Mr. ’)

 D LastName 10A INZ(’Jones ’)

 D FirstName 10A INZ(’Fred ’)

 D QUALDS DS QUALIFIED

 D Id_Num 8S 0

 D Country 20A DIM(10)

 D LIKE_QUALDS DS LIKEDS(QUALDS)

 D itemInfo DS QUALIFIED

 D ID_Num 10I 0

 D name 25A

 D items DS QUALIFIED

 D numItems 10I 0

 D item LIKEDS(itemInfo) DIM(10)

 D cust DS QUALIFIED DIM(10)

 D name 50A

 D parts LIKEDS(items)

 * Define prototypes for called procedures c_proc and switch

 D c_proc PR * EXTPROC(’c_proc’)

 D size 10U 0 VALUE

 D inzval 1A CONST

 D Switch PR

 D Parm 1A

 * Define parameters for non-prototyped call

 * PARM1 is used when calling RPGPROG program.

 D PARM1 S 4P 3 INZ(6.666)

 D EXPORTFLD S 6A INZ(’export’) EXPORT

Figure 125. Source for Module DBGEX (Part 2 of 4). DBGEX is the main module of the

program DEBUGEX.

Sample Source for Debug Examples

258 ILE RPG Programmer’s Guide

===

 * Now the operation to modify values or call other objects.

 ===

 * Move ’a’s to the data structure DS2. After the move, the

 * first occurrence of DS2 contains 10 character ’a’s.

 C MOVE *ALL’a’ DS2

 * Change the occurrence of DS2 to 2 and move ’b’s to DS2,

 * making the first 10 bytes ’a’s and the second 10 bytes ’b’s.

 C 2 OCCUR DS2

 C MOVE *ALL’b’ DS2

 * Fld1a is an overlay field of Fld1. Since Fld1 is initialized

 * to ’ABCDE’, the value of Fld1a(1) is ’A’. After the

 * following MOVE operation, the value of Fld1a(1) is ’1’.

 C MOVE ’1’ Fld1a(1)

 * Call the program RPGPGM, which is a separate program object.

 C Plist1 PLIST

 C PARM Parm1

 C CALL ’RPGPGM’ Plist1

 * Call c_proc, which imports ExportFld from the main procedure.

 C EVAL SpcPtr = c_proc(SpcSiz : ’P’)

 * Call a local subprocedure Switch, which reverses the value of

 * an indicator.

 C EVAL *IN10 = ’0’

 C CALLP Switch(*in10)

Figure 125. Source for Module DBGEX (Part 3 of 4). DBGEX is the main module of the

program DEBUGEX.

Sample Source for Debug Examples

Chapter 12. Debugging Programs 259

 * After the following SETON operation, *IN02 = 1.

 C SETON 020406

 C IF *IN02 = ’1’

 C MOVE ’1994-09-30’ BigDate

 C ENDIF

 * Put a new value in the second cell of Arry.

 C MOVE 4 Arry

 * Now start a formatted dump and return, by setting on LR.

 C DUMP

 C SETON LR

 ===

 * Define the subprocedure Switch.

 ===

 P Switch B

 D Switch PI

 D Parm 1A

 * Define a local variable for debugging purposes.

 D Local S 5A INZ(’aaaaa’)

 C IF Parm = ’1’

 C EVAL Parm = ’0’

 C ELSE

 C EVAL Parm = ’1’

 C ENDIF

 P Switch E

 ===

 * Compile-time data section for Table. *

 ===

**

aaa

bbb

ccc

Figure 125. Source for Module DBGEX (Part 4 of 4). DBGEX is the main module of the

program DEBUGEX.

 ===

 * RPGPGM - Program called by DEBUGEX to illustrate the STEP *

 * functions of the ILE source debugger. *

 * *

 * This program receives a parameter InputParm from DEBUGEX, *

 * displays it, then returns. *

 ===

 D InputParm S 4P 3

 C *ENTRY PLIST

 C PARM InputParm

 C InputParm DSPLY

 C SETON LR

Figure 126. Source for OPM Program RPGPGM

Sample Source for Debug Examples

260 ILE RPG Programmer’s Guide

#include <stdlib.h>

 #include <string.h>

 #include <stdio.h>

 extern char EXPORTFLD[6];

 char *c_proc(unsigned int size, char *inzval)

 {

 char *ptr;

 ptr = malloc(size);

 memset(ptr, *inzval, size);

 printf("import string: %6s.\n",EXPORTFLD);

 return(ptr);

 }

Figure 127. Source for C Procedure cproc. cproc is called by DBGEX.

Sample Source for Debug Examples

Chapter 12. Debugging Programs 261

Sample Source for Debug Examples

262 ILE RPG Programmer’s Guide

Chapter 13. Handling Exceptions

This chapter explains how ILE RPG exception handling works, and how to use:

v Exception handlers

v ILE RPG-specific handlers

v ILE condition handlers

v Cancel handlers

ILE RPG supports the following types of exception handlers:

v RPG-specific handlers, for example, the use of an error indicator, an ’E’

operation code extender, a MONITOR group, or a *PSSR or INFSR error

subroutine.

v ILE condition handlers, user-written exception handlers that you register at run

time using the ILE condition handler bindable API CEEHDLR.

v ILE cancel handler which can be used when a procedure ends abnormally.

Most programs benefit from some sort of planned exception handling because it

can minimize the number of unnecessary abnormal ends (namely, those associated

with function checks). ILE condition handlers also allow you to handle exceptions

in mixed-language applications in a consistent manner.

You can use the RPG exception handlers to handle most situations that might arise

in a RPG application. The minimum level of exception handling which RPG

provides is the use of error indicators on certain operations. To learn how to use

them, read the following sections in this chapter:

v “ILE RPG Exception Handling” on page 266

v “Specifying Error Indicators or the ’E’ Operation Code Extender” on page 272

v “Using a File Error (INFSR) Subroutine” on page 276

v “Using a MONITOR Group” on page 273

v “Using a Program Error Subroutine” on page 279

Additionally, to learn how ILE exception handling works, read:

v “Exception Handling Overview” (for general concepts)

v “Using RPG-Specific Handlers” on page 272

v The sections on error handling in ILE Concepts.

For information on exception handling and the RPG cycle, see WebSphere

Development Studio: ILE RPG Reference.

Note: In this book the term ’exception handling’ is used to refer to both exception

handling and error handling. However, for consistency with other RPG

terms, the term ’error’ is used in the context of ’error indicator’ and ’error

subroutine’.

Exception Handling Overview

Exception handling is the process of:

v Examining an exception message which has been issued as a result of a run-time

error

© Copyright IBM Corp. 1994, 2006 263

v Optionally modifying the exception to show that it has been received (that is,

handled)

v Optionally recovering from the exception by passing the exception information

to a piece of code to take any necessary actions.

When a run-time error occurs, an exception message is generated. An exception

message has one of the following types depending on the error which occurred:

*ESCAPE Indicates that a severe error has been detected.

*STATUS Describes the status of work being done by a program.

*NOTIFY Describes a condition requiring corrective action or reply from the

calling program.

Function Check

Indicates that one of the three previous exceptions occurred and

was not handled.

Exception messages are associated with call stack entries. Each call stack entry is in

turn associated with a list of exception handlers defined for that entry. (See “The

Call Stack” on page 131 for further discussion of a call stack.)

Figure 128 on page 265 shows a call stack where an OPM program calls an

ILEprogram consisting of several modules and therefore several procedures. Refer

to this figure in the discussions which follow.

In general, when an exception occurs, the handlers associated with the call stack

entry are given a chance to handle the exception. If the exception is not handled by

any of the handlers on the list then it is considered to be unhandled, at which

point the following default actions are taken for the unhandled exception:

1. If the exception is a function check, the call stack entry is removed from the

stack.

2. The exception is moved (percolated) to the previous call stack entry.

3. The exception handling process is restarted for this call stack entry.

The action of allowing the previous call stack entry to handle an exception is

referred to as percolation. Percolation continues until the exception is handled, or

until the control boundary is reached. A control boundary is a call stack entry for

which the immediately preceding call stack entry is in a different activation group

or is an OPM program. In Figure 128 on page 265 Procedure P1 is the control

boundary.

Exception Handling Overview

264 ILE RPG Programmer’s Guide

In OPM, the exception message is associated with the program which is active on

the call stack. If the exception is not handled by the associated exception handlers,

then a function check is sent to the same call stack entry which received the

Program A

Program A Sending
Terminating
Exception CEE9901

Proc. P1

Proc. P1

Proc. P2

Proc. P2

Proc. P3
exception
occurs

Proc. P3
exception
occurs

Exception
Handlers
for P2

Exception
Handlers
for P2

Percolate
Unhandled
Exception

Percolate
Function
Check
(CPF9999)

for P3

for P3

OPM

OPM

ILE

ILE

Activation

Activation

Pass 1

Pass 2

ILE

ILE

ILE

ILE

Call Stack

Call Stack

Figure 128. Call Stack and Exception Message Percolation

Exception Handling Overview

Chapter 13. Handling Exceptions 265

exception. If it remains unhandled, then the entry is removed and the function

check is percolated. The process repeats until the exception is handled.

In ILE, an exception message is associated with the procedure which is active on the

call stack. When the exception is percolated, it is not converted to a function check.

Each call stack entry is given a chance to handle the original exception until the

control boundary is reached. Only then is the exception converted to a function

check, at which point the exception processing starts all over again beginning with

the procedure which received the exception. This time each call stack entry is given

a chance to handle the function check. If the control boundary is reached and the

exception is still unhandled then a generic failure exception message CEE9901 is

sent to the caller of the procedure at the control boundary. In addition, any call

stack entry which did not to handle the message is removed.

ILE RPG Exception Handling

ILE RPG provides four types of exception handling mechanisms:

v An error indicator or an ’E’ operation code extender handler

v A MONITOR group

v An error subroutine handler

v A default exception handler

RPG categorizes exceptions into two classes, program and file; this determines

which type of error subroutine is called. Some examples of program exceptions are

division by zero, out-of-bounds array index, or SQRT of a negative number. Some

examples of file exceptions are undefined record type or a device error.

There are five ways for you to indicate that RPG should handle an exception. You

can:

1. Specify an error indicator in positions 73 - 74 of the calculation specifications of

the appropriate operation code.

2. Specify the operation code extender ’E’ for the appropriate operation code.

3. Include the code that produces the exception within a MONITOR group.

4. Code a file error subroutine, which is defined by the INFSR keyword on a file

description specification, for file exceptions. The file error subroutine can only

be coded in the main source section. You cannot code an INFSR for a file that is

used in a subprocedure.

5. Code a program error subroutine, which is named *PSSR, for program

exceptions. Note that a *PSSR is local to the procedure in which it is coded.

This means that a *PSSR in a main procedure will handle only those program

errors associated with the main procedure. Similarly, a *PSSR in a subprocedure

will only handle the errors in that subprocedure.

Exception Handling within a Main Procedure

When an exception occurs within a main procedure ILE RPG does the following:

1. If an error indicator is present on the calculation specification and the exception

is one that is expected for that operation:

a. The indicator is set on

b. The exception is handled

c. Control resumes with the next ILE RPG operation.
2. If an ’E’ operation code extender is present on the calculation specification and

the exception is one that is expected for that operation:

a. The return values for the built-in funtions %STATUS and %ERROR are set.

Exception Handling Overview

266 ILE RPG Programmer’s Guide

Note: %STATUS is set when any exception occurs even if the ’E’ extender is

not specified.

b. The exception is handled

c. Control resumes with the next ILE RPG operation.
3. If no error indicator or ’E’ extender is persent and the code that generates the

exception is in the MONITOR block of a MONITOR group, control will pass to

the on-error section of the MONITOR group.

4. If no error indicator or ’E’ extender is present, no active MONITOR group

could handle the exception, and

v you have coded a *PSSR error subroutine and the exception is a program

exception

or

v you have coded a INFSR error subroutine for the file and the exception is an

I/O exception,

then the exception will be handled and control will resume at the first

statement of the error subroutine.

5. If no error indicator, ’E’ extender, or error subroutine is coded and no active

MONITOR group could handle the exception, then the RPG default error

handler is invoked.

v If the exception is not a function check, then the exception will be percolated.

v If the exception is a function check, then an inquiry message will be

displayed. If the ’G’ or ’R’ option is chosen, the function check will be

handled and control will resume at the appropriate point (*GETIN for ’G’ or

the same calculation specification that received the exception for ’R’) in the

procedure. Otherwise,the function check will be percolated and the

procedure will be abnormally terminated.

See “Unhandled Exceptions” on page 269 for a full description of the RPG default

handler.

Exception Handling within Subprocedures

Exception handling within a subprocedure differs from a main procedure in the

following ways:

v Because you cannot code an INFSR subroutine, you should handle file errors

using error indicators, the ’E’ operation code extender, or a MONITOR group.

v There is no default handler; in other words, users will never see an inquiry

message.

Exception handling within a subprocedure differs from a main procedure primarily

because there is no RPG cycle code generated for subprocedures. As a result there

is no default exception handler for subprocedures and so situations where the

default handler would be called for a main procedure correspond to abnormal end

of the subprocedure. This means that:

v Factor 2 of an ENDSR operation for a *PSSR subroutine within a subprocedure

must be blank. A blank factor 2 in a main procedure would result in control

being passed to the default handler. In a subprocedure, if the ENDSR is reached,

then the subprocedure will end abnormally and RNX9001 will be signalled to

the caller of the subprocedure.

v If there is no *PSSR and a function check occurs, the procedure is removed from

the call stack and the exception is percolated to the caller.

v Since an inquiry message is never issued for an error in a subprocedure, you do

not have access to the ’Retry’ function available for some I/O errors. If you

Exception Handling Overview

Chapter 13. Handling Exceptions 267

expect record-lock errors in a subprocedure, you should code an error indicator

or an ’E’ extender and check if the status is related to a record being locked.

Note that the PSDS and INFDS have module scope. Both main procedures and

subprocedures can access them.

TIP

A *PSSR is local to the procedure in which it is coded; therefore, to have a

common error routine, you can code a procedure to handle the error and call

the procedure from each local *PSSR.

Differences between OPM and ILE RPG Exception Handling

For the most part, exception handling behaves the same in OPM RPG and ILE

RPG. The key difference lies in the area of unhandled exceptions.

In OPM, if an exception occurs and there is no RPG-specific handler enabled, then

an inquiry message is issued. In ILE, this will only occur if the exception is a

function check. If it is not, then the exception will be passed to the caller of the

procedure or program, and any eligible higher call stack entries are given a chance

to handle the exception. For example, consider the following example:

v PGM A calls PGM B, which in turn calls PGM C.

v PGM B has an error indicator coded for the call.

v PGM C has no error indicator or *PSSR error subroutine coded.

v PGM C gets an exception.

In OPM, an inquiry message would be issued for PGM C. In ILE, the exception is

percolated to PGM B, since it is unhandled by PGM C. The error indicator in PGM

B is turned on allowing PGM B to handle the error, and in the process PGM C

ends abnormally. There is no inquiry message.

If PGM C has a *PSSR error subroutine coded, then in both OPM and ILE, the

exception is handled by PGM C and the error subroutine is run.

Note: Inquiry messages issued by ILE RPG will start with the prefix ’RNQ’, not

’RPG’, as in OPM RPG.

Certain behavioral differences exist for some specific errors. See Appendix A,

“Behavioral Differences Between OPM RPG/400 and ILE RPG for AS/400,” on

page 423 for further information.

Using Exception Handlers

Planning the exception handling capability of your application means making the

following decisions:

1. Decide if you will use the RPG-specific means of handling errors (e.g., error

indicator, ’E’ extender, or error subroutine) or whether you will write a separate

exception handling routine which you will register using the ILE API

CEEHDLR. You might also choose to use both.

2. Decide on the recovery action, that is, where the program will resume

processing if you use a separate exception handling routine.

In addition, keep in mind the following when planning your exception handlers:

Exception Handling Overview

268 ILE RPG Programmer’s Guide

v Priority of handlers

v Nested exceptions

v Default actions for unhandled exceptions

v Effect of optimization level

Exception Handler Priority

Exception handler priority becomes important if you use both language-specific

error handling and ILE condition handlers. For an ILE RPG procedure, exception

handlers have the following priority:

1. Either an error indicator or an ’E’ extender handler

2. MONITOR group

3. ILE condition handler

4. I/O error subroutine handler (for file errors) and Program error subroutine

handler (for all other errors)

5. RPG default handler for unhandled exceptions (main procedure only)

Nested Exceptions

Exceptions can be nested. A nested exception is an exception that occurs while

another exception is being handled. When this happens, the processing of the first

exception is temporarily suspended. Exception handling begins again with the

most recently generated exception.

Unhandled Exceptions

An unhandled exception is one that has not been handled by an exception handler

associated with the call stack entry that first received the exception. When an

exception is unhandled, one of the following actions occurs:

If the message type is a function check (CPF9999) associated with a main procedure

then the RPG default handler will issue an inquiry message describing the

originating condition.

v If you pick the D(ump) or C(ancel) option then the procedure which first

received the exception terminates and the function check is percolated to the

caller.

v If you pick the R(etry) or G(et Input) option then the function check is handled,

exception processing ends, and the procedure resumes processing at *GETIN

(when G is chosen) or at the I/O operation in which the exception occurred

(when R is chosen). For example, any read operation will be retried if the read

failed because of record locking.

For other types of messages the exception is percolated up the call stack to the

caller of the procedure. That procedure is presented with the exception and given a

chance to handle it. If it does not, then the exception is percolated up the call stack

until it reaches the control boundary, at which point the exception is converted to a

function check, and exception handling starts over as described above.

Example of Unhandled Escape Message

The following scenario describes the events which occur when an escape message

is issued and cannot be handled by the procedure in which it occurred. This

scenario has the following assumptions:

1. There are two programs, PGM1 and PGM2 which run in the same activation

group. Each contains a procedure, PRC1 and PRC2 respectively.

2. PRC1 calls PGM2 dynamically and PRC2 receives control.

Using Exception Handlers

Chapter 13. Handling Exceptions 269

3. The CALL operation code in PRC1 has an error indicator for the call.

4. No RPG exception handlers have been coded in PRC2. That is, there is no error

indicator coded for the SUBST operation and there is no *PSSR error

subroutine.

5. PRC2 has a SUBST operation where the Factor 1 entry is a negative number.

When PGM1 calls PGM2, and the SUBST operation is attempted, an exception

message, RNX0100, is generated. Figure 129 depicts this scenario and the events

which occur.

 The following then occurs:

1. Since there is no error indicator, active MONITOR group, or *PSSR error

subroutine coded on the SUBST operation in PRC2, PRC2 cannot handle the

program error, and so it is unhandled.

2. Since it is not a function check, it is percolated (passed up the call stack) to

PRC1.

3. PRC1 receives (handles) the same exception message, and sets on the error

indicator on the CALL operation with the side effect that PRC2 is terminated.

4. Processing then continues in PRC1 with the statement following the CALL

operation.

Note: The same exception handling events described would apply to a procedure

call (CALLB operation) as well.

Example of Unhandled Function Check

The following scenario describes the events which occur when a function check

occurs in a main procedure and is not handled. This scenario has the following

assumptions:

1. There are two programs, PGM1 and PGM2, each containing a procedure, PRC1

and PRC2 respectively.

2. PRC1 calls PGM2 dynamically and PRC2 receives control.

3. The CALL operation code in PRC1 does not have an error indicator coded.

4. No RPG exception handlers have been coded in PRC2. That is, there is no error

indicator, no active MONITOR group, and no *PSSR error subroutine.

5. PRC2 has a pointer address error.

When PGM1 calls PGM2, a pointer error occurs because the basing pointer is

defined as null. Consequently, MCH1306 is generated. A function check occurs

Procedure PRC2
-1 SUBST

RNX0100 issued

Procedure PRC1
CALL PRC2

Error Ind. Hdlr

RPG default Hdlr

RPG default Hdlr

Active Exception Handler List

Percolate
Unhandled
Exception

Call Stack

Figure 129. Scenario for Unhandled Escape Message

Using Exception Handlers

270 ILE RPG Programmer’s Guide

when PRC2 tries to percolate the exception past the control boundary. Figure 130

depicts this scenario and the events which occur.

 The following then occurs:

1. Since there are no error handlers in PRC2, PRC2 cannot handle the function

check, and so it is unhandled.

2. Since it is a function check, an inquiry message is issued describing the

originating condition.

3. Depending on the response to the inquiry message, PRC2 may be terminated

and the exception percolated to PRC1 (response is ’C’) or processing may

continue in PRC2 (response is ’G’).

Optimization Considerations

While running a *FULL optimized program, the optimizer may keep frequently

used values in machine registers and restore them to storage only at predefined

points during normal program processing. Exception handling may break this

normal processing and consequently program variables contained in registers may

not be returned to their assigned storage locations.

Procedure PRC2

D FLD S 5A BASED(PTR)
C EVAL PTR=NULL
C EVAL FLD='ABCDE'

MCH3601 issued

Procedure PRC2

D FLD S 5A BASED(PTR)
C EVAL PTR=NULL
C EVAL FLD='ABCDE'

CPF9999 issued

Procedure PRC1
CALL PRC2

Procedure PRC1
CALL PRC2

RPG default Hdlr

RPG default Hdlr

RPG default Hdlr

RPG default Hdlr

Active Exception Handler List

Active Exception Handler List

Percolate
MCH3601

Percolate
CPF9999

PASS 1

PASS 2

Call Stack

Call Stack

Figure 130. Scenario for Unhandled Function Check

Using Exception Handlers

Chapter 13. Handling Exceptions 271

Specifically, variables may not contain their current values if an exception occurs

and you recover from it using one of:

v Monitor group

v *PSSR error subroutine

v INFSR error subroutine

v User-defined exception handler

v The Go (’G’) option from an inquiry message.

v The Retry (’R’) option from an inquiry message.

ILE RPG automatically defines indicators such that they contain their current

values even with full optimization. To ensure that the content of fields or data

structures contain their correct (current) values, specify the NOOPT keyword on

the appropriate Definition specification.

For more information on the NOOPT keyword, see WebSphere Development Studio:

ILE RPG Reference. For more information on optimization, see “Changing the

Optimization Level” on page 89.

Using RPG-Specific Handlers

ILE RPG provides four ways for you to enable HLL-specific handlers and to

recover from the exception:

1. error indicators or ’E’ operation code extender

2. MONITOR group

3. INFSR error subroutine

4. *PSSR error subroutine.

You can obtain more information about the error which occurred by coding the

appropriate data structures and querying the relevant data structure fields.

If you are using the ’E’ extender instead of error indicators, the relevant program

and file error information can be obtained by using the %STATUS and %ERROR

built-in-functions.

This section provides some examples of how to use each of these RPG constructs.

The WebSphere Development Studio: ILE RPG Reference provides more information on

the *PSSR and INFSR error subroutines, on the EXSR operation code, and on the

INFDS and PSDS data structures.

Specifying Error Indicators or the ’E’ Operation Code Extender

Operation codes that allow an error indicator also allow the ’E’ operation code

extender. The CALLP operation also allows the ’E’ extender although it does not

allow an error indicator. This provides two ILE RPG error handling methods that

are essentially the same. Either an error indicator or the ’E’ extender can be used to

handle the exception for the same operation code, not both.

Note: If an error indicator or and ’E’ extender is coded on an operation, but the

error which occurs is not related to the operation (for example, an

array-index error on a CHAIN operation), any error indicator or ’E’ extender

would be ignored. The error would be treated like any other program error.

To enable the RPG error indicator handler, you specify an error indicator in

positions 73 and 74 for the operation codes listed in Table 33 on page 273 (except

Using Exception Handlers

272 ILE RPG Programmer’s Guide

for CALLP). If an exception occurs on the operation, the indicator is set on, the

appropriate data structure (PSDS or INFDS) is updated, and control returns to the

next sequential instruction. You can then test the indicator to determine what

action to take.

To enable the ’E’ operation code extender handler, you specify an ’E’ (or ’e’) with

any of the operation codes in Table 33. Coding the ’E’ extender affects the value

returned by the built-in functions %ERROR and %STATUS for exceptions. Before

the operation begins, the value returned by these built-in functions is set to zero. If

an exception occurs on the operation, the return values for these built-in functions

are updated accordingly, the appropriate data structure (PSDS or INFDS) is

updated, and control returns to the next sequential instruction. You can then use

these built-in functions to test the returned values and determine what action to

take.

 Table 33. Operation Codes Allowing Extender ’E’ or an Error Indicator in Positions 73-74

ACQ (e) ADDDUR (e) ALLOC (e) CALL (e)

CALLB(d e) CALLP (e m/r)1 CHAIN (e n) CHECK (e)

CHECKR (e) CLOSE (e) COMMIT (e) DEALLOC(e/n)

DELETE (e) DSPLY (e) EXFMT (e) EXTRCT (e)

FEOD (e) IN (e) NEXT (e) OCCUR (e)

OPEN (e) OUT (e) POST (e) READ (e n)

READC (e) READE (e n) READP (e n) READPE (e n)

REALLOC (e) REL (e) RESET (e) ROLBK (e)

SCAN (e) SETGT (e) SETLL (e) SUBDUR (e)

SUBST (e p) TEST (e d/t/z) UNLOCK (e) UPDATE (e)

WRITE (e) XLATE (e p)

Notes:

1. CALLP (e m/r) is an extended Factor-2 operation code and cannot have an error

indictator. However, program status and error conditions can be determined by

specifying the ’e’ extender with this operation code.

When you specify an error indicator or an ’E’ extender on an operation code, you

can explicitly call a file error subroutine (INFSR) or a program error subroutine

(*PSSR) with the EXSR operation. If either INFSR or *PSSR is explicitly called by

the EXSR operation and Factor 2 of the ENDSR operation is blank or the field

specified has a value of blank, control returns to the next sequential instruction

following the EXSR operation.

Using a MONITOR Group

A MONITOR group performs conditional error handling based on the status code.

If an error occurs, control passes to the appropriate ON-ERROR group within the

MONITOR group.

If all the statements in the MONITOR block are processed without errors, control

passes to the statement following the ENDMON statement.

The MONITOR group can be specified anywhere in calculations. It can be nested

within IF, DO, SELECT, or other MONITOR groups. The IF, DO, and SELECT

groups can be nested within MONITOR groups.

Chapter 13. Handling Exceptions 273

If a MONITOR group is nested within another MONITOR group, the innermost

group is considered first when an error occurs. If that MONITOR group does not

handle the error condition, the next group is considered.

Level indicators can be used on the MONITOR operation, to indicate that the

MONITOR group is part of total calculations. For documentation purposes, you

can also specify a level indicator on an ON-ERROR or ENDMON operation but

this level indicator will be ignored.

Conditioning indicators can be used on the MONITOR statement. If they are not

satisfied, control passes immediately to the statement following the ENDMON

statement of the MONITOR group. Conditioning indicators cannot be used on

ON-ERROR operations individually.

If a MONITOR block contains a call to a subprocedure, and the subprocedure has

an error, the subprocedure’s error handling will take precedence. For example, if

the subprocedure has a *PSSR subroutine, it will get called. The MONITOR group

containing the call will only be considered if the subprocedure fails to handle the

error and the call fails with the error-in-call status of 00202.

The MONITOR group does handle errors that occur in a subroutine. If the

subroutine contains its own MONITOR groups, they are considered first.

Branching operations are not allowed within a MONITOR block, but are allowed

within an ON-ERROR block.

A LEAVE or ITER operation within a MONITOR block applies to any active DO

group that contains the MONITOR block. A LEAVESR or RETURN operation

within a MONITOR block applies to any subroutine, subprocedure, or procedure

that contains the MONITOR block.

On each ON-ERROR statment, you specify which error conditions the ON-ERROR

group handles. You can specify any combination of the following, separated by

colons:

nnnnn A status code

*PROGRAM Handles all program-error status codes, from 00100 to 00999

*FILE Handles all file-error status codes, from 01000 to 09999

*ALL Handles both program-error and file-error codes, from 00100 to

09999. This is the default.

Status codes outside the range of 00100 to 09999, for example codes from 0 to 99,

are not monitored for. You cannot specify these values for an ON-ERROR group.

You also cannot specify any status codes that are not valid for the particular

version of the compiler being used.

If the same status code is covered by more than one ON-ERROR group, only the

first one is used. For this reason, you should specify special values such as *ALL

after the specific status codes.

Any errors that occur within an ON-ERROR group are not handled by the

MONITOR group. To handle errors, you can specify a MONITOR group within an

ON-ERROR group.

274 ILE RPG Programmer’s Guide

Using an Error Subroutine

When you write a error subroutine you are doing two things:

1. Enabling the RPG subroutine error handler

The subroutine error handler will handle the exception and pass control to your

subroutine.

2. Optionally specifying a recovery action.

You can use the error subroutine to take specific actions based on the error

which occurred or you can have a generic action (for example, issuing an

inquiry message for all errors).

The following considerations apply to error subroutines:

v You can explicitly call an error subroutine by specifying the name of the

subroutine in Factor 2 of the EXSR operation.

v You can control the point where processing resumes in a main procedure by

specifying a value in Factor 2 of the ENDSR operation of the subroutine. In a

subprocedure, factor 2 of the ENDSR must be blank. Use either a GOTO or a

RETURN operation prior to the ENDSR operation to prevent the subprocedure

from ending abnormally.

v If an error subroutine is called, the RPG error subroutine handler has already

handled the exception. Thus, the call to the error subroutine reflects a return to

program processing. If an exception occurs while the subroutine is running, the

subroutine is called again. The procedure will loop unless you code the

subroutine to avoid this problem.

 * The MONITOR block consists of the READ statement and the IF

 * group.

 * - The first ON-ERROR block handles status 1211 which

 * is issued for the READ operation if the file is not open.

 * - The second ON-ERROR block handles all other file errors.

 * - The third ON-ERROR block handles the string-operation status

 * code 00100 and array index status code 00121.

 * - The fourth ON-ERROR block (which could have had a factor 2

 * of *ALL) handles errors not handled by the specific ON-ERROR

 * operations.

 *

 * If no error occurs in the MONITOR block, control passes from the

 * ENDIF to the ENDMON.

C MONITOR

C READ FILE1

C IF NOT %EOF

C EVAL Line = %SUBST(Line(i) :

C %SCAN(’***’: Line(i)) + 1)

C ENDIF

C ON-ERROR 1211

C ... handle file-not-open

C ON-ERROR *FILE

C ... handle other file errors

C ON-ERROR 00100 : 00121

C ... handle string error and array-index error

C ON-ERROR

C ... handle all other errors

C ENDMON

Figure 131. MONITOR Operation

Chapter 13. Handling Exceptions 275

To see how to code an error subroutine to avoid such a loop, see “Avoiding a

Loop in an Error Subroutine” on page 282.

Using a File Error (INFSR) Subroutine

To handle a file error or exception in a main procedure you can write a file error

(INFSR) subroutine. When a file exception occurs:

1. The INFDS is updated.

2. A file error subroutine (INFSR) receives control if the exception occurs:

v On an implicit (primary or secondary) file operation

v On an explicit file operation that does not have an indicator specified in

positions 73 - 74.

A file error subroutine can handle errors in more than one file.

The following restrictions apply:

v If a file exception occurs during the start or end of a program, (for example, on

an implicit open at the start of the cycle) control passes to the ILE RPG default

exception handler, and not to the error subroutine handler. Consequently, the file

error subroutine will not be processed.

v If an error occurs that is not related to the operation (for example, an

array-index error on a CHAIN operation), then any INFSR error subroutine

would be ignored. The error would be treated like any other program error.

v An INFSR cannot handle errors in a file used by a subprocedure.

To add a file error subroutine to your program, you do the following steps:

1. Enter the name of the subroutine after the keyword INFSR on a File

Description specification. The subroutine name can be *PSSR, which indicates

that the program error subroutine is given control for the exception on this file.

2. Optionally identify the file information data structure on a File Description

specification using the keyword INFDS.

3. Enter a BEGSR operation where the Factor 1 entry contains the same

subroutine name that is specified for the keyword INFSR.

4. Identify a return point, if any, and code it on the ENDSR operation in the

subroutine. For a discussion of the valid entries for Factor 2, see “Specifying a

Return Point in the ENDSR Operation” on page 283.

5. Code the rest of the file error subroutine. While any of the ILE RPG compiler

operations can be used in the file error subroutine, it is not recommended that

you use I/O operations to the same file that got the error. The ENDSR

operation must be the last specification for the file error subroutine.

Figure 132 on page 277 shows an example of exception handling using an INFSR

error subroutine. The program TRNSUPDT is a simple inventory update program.

It uses a transaction file TRANSACT to update a master inventory file PRDMAS. If

an I/O error occurs, then the INFSR error subroutine is called. If it is a record lock

error, then the record is written to a backlog file. Otherwise, an inquiry message is

issued.

Note that the File specification for PRDMAS identifies both the INFDS and

identifies the INFSR to be associated with it.

The following is done for each record in the TRANSACT file:

1. The appropriate record in the product master file is located using the

transaction product number.

276 ILE RPG Programmer’s Guide

2. If the record is found, then the quantity of the inventory is updated.

3. If an error occurs on the UPDATE operation, then control is passed to the

INFSR error subroutine.

4. If the record is not found, then the product number is written to an error

report.

 ===

 * TRNSUPDT: This program is a simple inventory update program. *

 * The transaction file (TRANSACT) is processed consecutively. *

 * The product number in the transaction is used as key to access *

 * the master file (PRDMAS) randomly. *

 * 1. If the record is found, the quantity of the inventory will *

 * be updated. *

 * 2. If the record is not found, an error will be printed on a *

 * report. *

 * 3. If the record is currently locked, the transaction will be *

 * written to a transaction back log file which will be *

 * processed later. *

 * 4. Any other unexpected error will cause a runtime error *

 * message. *

 ===

 * Define the files: *

 * 1) PRDMAS - Product master file *

 * 2) TRANSACT - Transaction file *

 * 3) TRNBACKLG - Transaction backlog file *

 * 2) PRINT - Error report. *

 FPRDMAS UF E K DISK

 F INFSR(PrdInfsr)

 F INFDS(PrdInfds)

 FTRANSACT IP E DISK

 FTRNBACKLG O E DISK

 FPRINT O F 80 PRINTER

 * Define the file information data structure for file PRDMAS. *

 * The *STATUS field is used to determine what action to take. *

 D PrdInfds DS

 D PrdStatus *STATUS

 * List of expected exceptions. *

 D ErrRecLock C CONST(1218)

Figure 132. Example of File Exception Handling (Part 1 of 2)

Chapter 13. Handling Exceptions 277

When control is passed to the error subroutine, the following occurs:

v If the error is due to a record lock, then the record is written to a backlog file

and control returns to the main part with the next transaction (via *GETIN as

the return point).

v If the error is due to some other reason, then blanks are moved to ReturnPt. This

will result in the RPG default handler receiving control. The recovery action at

that point will depend on the nature of the error.

Note that the check for a record lock error is done by matching the *STATUS

subfield of the INFDS for PRDMAS against the field ErrRecLock which is defined

with the value of the record lock status code. The INFSR could be extended to

handle other types of I/O errors by defining other errors, checking for them, and

then taking an appropriate action.

 * Access the product master file using the transaction product *

 * number. *

 C TRNPRDNO CHAIN PRDREC 10

 * If the record is found, update the quantity in the master file. *

 C IF NOT *IN10

 C SUB TRNQTY PRDQTY

 C UPDATE PRDREC

 * If the record is not found, write to the error report *

 C ELSE

 C EXCEPT NOTFOUND

 C ENDIF

 C SETON LR

 * Error handling routine. *

 C PrdInfsr BEGSR

 * If the master record is currently locked, write the transaction *

 * record to the back log file and skip to next transaction. *

 C PrdStatus DSPLY

 C IF (PrdStatus = ErrRecLock)

 C WRITE TRNBREC

 C MOVE ’*GETIN’ ReturnPt 6

 * If unexpected error occurs, cause inquiry message to be issued. *

 C ELSE

 C MOVE *BLANK ReturnPt

 C ENDIF

 C ENDSR ReturnPt

 * Error report format. *

 OPRINT E NOTFOUND

 O TRNPRDNO

 O 29 ’NOT IN PRDMAS FILE’

Figure 132. Example of File Exception Handling (Part 2 of 2)

278 ILE RPG Programmer’s Guide

Using a Program Error Subroutine

To handle a program error or exception you can write a program error subroutine

(*PSSR). When a program error occurs:

1. The program status data structure is updated.

2. If an indicator is not specified in positions 73 and 74 for the operation code, the

error is handled and control is transferred to the *PSSR.

You can explicitly transfer control to a program error subroutine after a file

error by specifying *PSSR after the keyword INFSR on the File Description

specifications.

You can code a *PSSR for any (or all) procedures in the module. Each *PSSR is

local to the procedure in which it is coded.

To add a *PSSR error subroutine to your program, you do the following steps:

1. Optionally identify the program status data structure (PSDS) by specifying an S

in position 23 of the definition specification.

2. Enter a BEGSR operation with a Factor 1 entry of *PSSR.

3. Identify a return point, if any, and code it on the ENDSR operation in the

subroutine. For subprocedures, factor 2 must be blank. For a discussion of the

valid entries for Factor 2, see “Specifying a Return Point in the ENDSR

Operation” on page 283.

4. Code the rest of the program error subroutine. Any of the ILE RPG compiler

operations can be used in the program error subroutine. The ENDSR operation

must be the last specification for the program error subroutine.

Figure 133 on page 280 shows an example of a program error subroutine in a main

procedure.

Chapter 13. Handling Exceptions 279

The program-status data structure is defined on the Definition specifications. The

predefined subfields *STATUS, *ROUTINE, *PARMS, and *PROGRAM are

specified, and names are assigned to the subfields.

The *PSSR error subroutine is coded on the calculation specifications. If a program

error occurs, ILE RPG passes control to the *PSSR error subroutine. The subroutine

checks to determine if the exception was caused by a divide operation in which the

divisor is zero. If it was, 1 is added to the divisor (Divisor), and the literal ‘*DETC’

is moved to the field ReturnPt, to indicate that the program should resume

processing at the beginning of the detail calculations routine

If the exception was not a divide by zero, the literal ‘*CANCL’ is moved into the

ReturnPt field, and the procedure ends.

Figure 134 on page 281 and Figure 135 on page 281 show how you would code

similar program error subroutines in a subprocedure. In one example, you code a

GOTO and in the other you code a RETURN operation.

 * Define relevant parts of program status data structure *

 D Psds SDS

 D Loc *ROUTINE

 D Err *STATUS

 D Parms *PARMS

 D Name *PROC

 * BODY OF CODE GOES HERE

 * An error occurs when division by zero takes place.

 * Control is passed to the *PSSR subroutine.

 ===

 * *PSSR: Error Subroutine for the main procedure. We check for a

 * division by zero error, by checking if the status is

 * 102. If it is, we add 1 to the divisor and continue

 * by moving *GETIN to ReturnPt.

 ===

 C *PSSR BEGSR

 C IF Err = 102

 C ADD 1 Divisor

 C MOVE ’*GETIN’ ReturnPt 6

 * An unexpected error has occurred, and so we move

 * *CANCL to ReturnPt to end the procedure.

 C ELSE

 C MOVE ’*CANCL’ ReturnPt

 C ENDIF

 C ENDSR ReturnPt

Figure 133. Example of *PSSR Subroutine in Main Procedure

280 ILE RPG Programmer’s Guide

 * Start of subprocedure definition

 P SubProc B

 D SubProc PI 5P 0

 ...

 * Body of code goes here including recovery code.

 C TryAgain TAG

 C X DIV Divisor Result

 C Return Result

 * An error occurs when division by zero takes place.

 * Control is passed to the *PSSR subroutine.

 C *PSSR BEGSR

 * If this is a divide-by-zero error, add 1 to the divisor

 * and try again

 C IF Err = 102

 C ADD 1 Divisor

 C GOTO TryAgain

 C ENDIF

 * If control reaches ENDSR, the procedure will fail

 C ENDSR

 P E

Figure 134. Example of Subprocedure *PSSR Subroutine with GOTO

 * Start of subprocedure definition

 P SubProc B

 D SubProc PI 5P 0

 ...

 * Body of code goes here including division operation.

 C X DIV Divisor Result

 C Return Result

 * An error occurs when division by zero takes place.

 * Control is passed to the *PSSR subroutine.

 C *PSSR BEGSR

 * If this is a divide-by-zero error, return 0 from the subprocedure

 C IF Err = 102

 C RETURN 0

 C ENDIF

 * If control reaches ENDSR, the procedure will fail

 C ENDSR

 P E

Figure 135. Example of Subprocedure *PSSR Subroutine with RETURN

Chapter 13. Handling Exceptions 281

Avoiding a Loop in an Error Subroutine

In the previous example, it is unlikely that an error would occur in the *PSSR and

thereby cause a loop. However, depending on how the *PSSR is written, loops may

occur if an exception occurs while processing the *PSSR.

One way to avoid such a loop is to set a first-time switch in the subroutine. If it is

not the first time through the subroutine, you can specify an appropriate return

point, such as *CANCL, for the Factor 2 entry of the ENDSR operation.

Figure 136 shows a program NOLOOP which is designed to generate exceptions in

order to show how to avoid looping within a *PSSR subroutine. The program

generates an exception twice:

1. In the main body of the code, to pass control to the *PSSR

2. Inside the *PSSR to potentially cause a loop.

 To create the program and start debugging it, using the source in Figure 136, type:

CRTBNDRPG PGM(MYLIB/NOLOOP) DBGVIEW(*SOURCE)

STRDBG PGM(MYLIB/NOLOOP)

 ===

 * NOLOOP: Show how to avoid recursion in a *PSSR subroutine. *

 ===

 * Array that will be used to cause an error *

 D Arr1 S 10A DIM(5)

 * Generate an array out of bounds error to pass control to *PSSR. *

 C Z-ADD -1 Neg1 5 0

 C MOVE Arr1(Neg1) Arr1(Neg1)

 C MOVE *ON *INLR

 ===

 * *PSSR: Error Subroutine for the procedure. We use the *

 * variable InPssr to detect recursion in the PSSR. *

 * If we detect recursion, then we *CANCL the procedure. *

 ===

 C *PSSR BEGSR

 C IF InPssr = 1

 C MOVE ’*CANCL’ ReturnPt 6

 C Z-ADD 0 InPssr 1 0

 C ELSE

 C Z-ADD 1 InPssr

 * *

 * We now generate another error in the PSSR to see *

 * how the subroutine cancels the procedure. *

 * *

 C MOVE Arr1(Neg1) Arr1(Neg1)

 * *

 * Note that the next two operations will not be *

 * processed if Neg1 is still negative. *

 * *

 C MOVE ’*GETIN’ ReturnPt

 C Z-ADD 0 InPssr

 C ENDIF

 C ENDSR ReturnPt

Figure 136. Avoiding a Loop in an Error Subroutine

282 ILE RPG Programmer’s Guide

Set a break point on the BEGSR line of the *PSSR subroutine so you can step

through the *PSSR subroutine.

When you call the program, the following occurs:

1. An exception occurs when the program tries to do a MOVE operation on an

array using a negative index. Control is passed to the *PSSR.

2. Since this is the first time through the *PSSR, the variable In_Pssr is not already

set on. To prevent a future loop, the variable In_Pssr is set on.

3. Processing continues within the *PSSR with the MOVE after the ELSE. Again,

an exception occurs and so processing of the *PSSR begins anew.

4. This time through, the variable In_Pssr is already set to 1. Since this indicates

that the subroutine is in a loop, the procedure is canceled by setting the

ReturnPt field to *CANCL.

5. The ENDSR operation receives control, and the procedure is canceled.

The approach used here to avoid looping can also be used within an INFSR error

subroutine.

Specifying a Return Point in the ENDSR Operation

When using an INFSR or *PSSR error subroutine in a main procedure, you can

indicate the return point at which the program will resume processing, by entering

one of the following as the Factor 2 entry of the ENDSR statement. The entry must

be a six-position character field, literal, named constant, array element, or table

name whose value specifies one of the following return points.

Note: If the return points are specified as literals, they must be enclosed in

apostrophes and entered in uppercase (for example, *DETL, not *detl). If

they are specified in fields or array elements, the value must be left-adjusted

in the field or array element.

*DETL Continue at the beginning of detail lines.

*GETIN Continue at the get input record routine.

*TOTC Continue at the beginning of total calculations.

*TOTL Continue at the beginning of total lines.

*OFL Continue at the beginning of overflow lines.

*DETC Continue at the beginning of detail calculations.

*CANCL Cancel the processing of the program.

Blanks Return control to the ILE RPG default exception handler. This will

occur when Factor 2 is a value of blanks and when Factor 2 is not

specified. If the subroutine was called by the EXSR operation and

Factor 2 is blank, control returns to the next sequential instruction.

After the ENDSR operation of the INFSR or the *PSSR subroutine is run, the ILE

RPG compiler resets the field or array element specified in Factor 2 to blanks.

Because Factor 2 is set to blanks, you can specify the return point within the

subroutine that is best suited for the exception that occurred.

If this field contains blanks at the end of the subroutine, the ILE RPG default

exception handler receives control following the running of the subroutine, unless

the INFSR or the *PSSR subroutine was called by the EXSR operation. If the

Chapter 13. Handling Exceptions 283

subroutine was called by the EXSR operation and Factor 2 of the ENDSR operation

is blank, control returns to the next sequential instruction following the EXSR

operation.

Note: You cannot specify a factor 2 entry for an ENDSR in a subprocedure. If you

want to resume processing in the subprocedure, you have to use a GOTO

operation to a TAG in the body of the subprocedure. Alternatively, you can

code a RETURN operation in the *PSSR. The subprocedure will then return

to the caller.

ILE Condition Handlers

ILE condition handlers are exception handlers that are registered at run time using

the Register ILE Condition Handler (CEEHDLR) bindable API. They are used to

handle, percolate or promote exceptions. The exceptions are presented to the

condition handlers in the form of an ILE condition. You can register more than one

ILE condition handler. ILE condition handlers may be unregistered by calling the

Unregister ILE Condition Handler (CEEHDLU) bindable API.

There are several reasons why you might want to use an ILE condition handler:

v You can bypass language-specific handling by handling the exception in your

own handler.

This enables you to provide the same exception handling mechanism in an

application with modules in different ILE HLLs.

v You can use this API to scope exception handling to a call stack entry.

The ILE bindable API CEEHDLR is scoped to the invocation that contains it. It

remains in effect until you unregister it, or until the procedure returns.

Note: Any call to the CEEHDLR API from any detail, total or subroutine

calculation will make the condition handler active for the entire

procedure, including all input, calculation, and output operations.

However, it will not affect subprocedures, nor will a subprocedure calling

CEEHDLR affect the main procedure.

If a subprocedure is called recursively, only the invocation that calls CEEHDLR

is affected by it. If you want the condition handler active for every invocation,

then CEEHDLR must be called by each invocation.

For information on how to use ILE condition handlers, refer to ILE Concepts.

Using a Condition Handler

The following example shows you how to:

1. Code a condition handler to handle the RPG ’out-of-bounds’ error

2. Register a condition handler

3. Deregister a condition handler

4. Code a *PSSR error subroutine.

The example consists of two procedures:

v RPGHDLR, which consists of a user-written condition handler for out-of-bound

substring errors

v SHOWERR, which tests the RPGHDLR procedure.

While SHOWERR is designed primarily to show how RPGHDLR works, the two

procedures combined are also useful for determining ’how’ ILE exception handling

284 ILE RPG Programmer’s Guide

works. Both procedures write to QSYSPRT the ’actions’ which occur as they are

processed. You might want to modify these procedures in order to simulate other

aspects of ILE exception handling which you would like to explore.

Figure 137 shows the source for the procedure RPGHDLR. The procedure defines

three procedure parameters: an ILE condition token structure, a pointer to a

communication area between SHOWERR and RPGHDLR, and a field to contain

the possible actions, resume or percolate. (RPGHDLR does not promote any

exceptions).

The basic logic of RPGHDLR is the following:

1. Test to see if it is an out-of-bounds error by testing the message ID

v If it is, and if SHOWERR has indicated that out-of-bounds errors maybe

ignored, it writes ’Handling...’ to QSYSPRT and then sets the action to

’Resume’.

v Otheriwse, it writes out ’Percolating’ to QSYSPRT, and then sets the action to

’Percolate’.
2. Return.

 ===

 * RPGHDLR: RPG exception handling procedure. *

 * This procedure does the following: *

 * Handles the exception if it is the RPG *

 * out of bounds error (RNX0100) *

 * otherwise *

 * percolates the exception *

 * It also prints out what it has done. *

 * *

 * Note: This is the exception handling procedure for the *

 * SHOWERR procedure. *

 ===

 FQSYSPRT O F 132 PRINTER

 D RPGHDLR PR

 D Parm1 LIKE(CondTok)

 D Parm2 *

 D Parm3 10I 0

 D Parm4 LIKE(CondTok)

 * Procedure parameters *

 * 1. Input: Condition token structure *

 * 2. Input: Pointer to communication area containing *

 * a. A pointer to the PSDS of the procedure being handled *

 * b. An indicator telling whether a string error is valid *

 * 3. Output: Code identifying actions to be performed on the *

 * exception *

 * 4. Output: New condition if we decide to promote the *

 * condition. Since this handler only resumes and *

 * percolates, we will ignore this parameter. *

 D RPGHDLR PI

 D InCondTok LIKE(CondTok)

 D pCommArea *

 D Action 10I 0

 D OutCondTok LIKE(CondTok)

Figure 137. Source for Condition Handler for Out-of-Bounds Substring Error (Part 1 of 2)

ILE Condition Handlers

Chapter 13. Handling Exceptions 285

Figure 138 on page 288 shows the source for the procedure SHOWERR, in which

the condition handler RPGHDLR is registered.

The procedure parameters include a procedure pointer to RPGHDLR and a pointer

to the communication area which contains a pointer to the module’s PSDS and an

indicator telling whether the out-of-bounds string error can be ignored. In

addition, it requires a definition for the error-prone array ARR1, and identification

of the parameter lists used by the ILE bindable APIs CEEHDLR and CEEHDLU.

The basic logic of the program is as follows:

 D CondTok DS BASED(pCondTok)

 D MsgSev 5I 0

 D MsgNo 2A

 D 1A

 D MsgPrefix 3A

 D MsgKey 4A

 D CommArea DS BASED(pCommArea)

 D pPSDS *

 D AllowError 1N

 D PassedPSDS DS BASED(pPSDS)

 D ProcName 1 10

 *

 * Action codes are:

 *

 D Resume C 10

 D Percolate C 20

 * Point to the input condition token *

 C EVAL pCondTok = %ADDR(InCondTok)

 * If substring error, then handle else percolate. *

 * Note that the message number value (MsgNo) is in hex. *

 C EXCEPT

 C IF MsgPrefix = ’RNX’ AND

 C MsgNo = X’0100’ AND

 C AllowError = ’1’

 C EXCEPT Handling

 C EVAL Action = Resume

 C ELSE

 C EXCEPT Perclating

 C EVAL Action = Percolate

 C ENDIF

 C RETURN

 ===

 * Procedure Output *

 ===

 OQSYSPRT E

 O ’HDLR: In Handler for ’

 O ProcName

 OQSYSPRT E Handling

 O ’HDLR: Handling...’

 OQSYSPRT E Perclating

 O ’HDLR: Percolating...’

Figure 137. Source for Condition Handler for Out-of-Bounds Substring Error (Part 2 of 2)

ILE Condition Handlers

286 ILE RPG Programmer’s Guide

1. Register the handler RPGHDLR using the subroutine RegHndlr. This

subroutine calls the CEEHDLR API, passing it the procedure pointer to

RPGHDLR.

2. Indicate to RPGHDLR that the out-of-bounds error is allowed, and then

generate an out-of-bounds substring error, then set off the indicator so that

RPGHDLR will not allow any unexpected out-of-bounds string errors.

The handler RPGHDLR is automatically called. It handles the exception, and

indicates that processing should resumes in the next machine instruction

following the error. Note that the next machine instruction may not be at the

beginning of the next RPG operation.

3. Generate an out-of-bounds array error.

Again, RPGHDLR is automatically called. However, this time it cannot handle

the exception, and so it percolates it to the next exception handler associated

with the procedure, namely, the *PSSR error subroutine.

The *PSSR cancels the procedure.

4. Unregister the condition handler RPGHDLR via a call to CEEHDLU.

5. Return

As with the RPGHDLR procedure, SHOWERR writes to QSYSPRT to show what is

occurring as it is processed.

ILE Condition Handlers

Chapter 13. Handling Exceptions 287

===

 * SHOWERR: Show exception handling using a user-defined *

 * exception handler. *

 ===

 FQSYSPRT O F 132 PRINTER

 * The following are the parameter definitions for the CEEHDLR *

 * API. The first is the procedure pointer to the *

 * procedure which will handle the exception. The second *

 * is a pointer to a communication area which will be passed *

 * to the exception handling procedure. In this example, this *

 * area will contain a pointer to the PSDS of this module, and *

 * an indicator telling whether an error is allowed. *

 * *

 * We should make sure this program (SHOWERR) does not ignore any *

 * handled errors, so we will check the ’Error’ indicator after *

 * any operation that might cause an error that RPGHDLR will *

 * "allow". We will also check at the end of the program to make *

 * sure we didn’t miss any errors. *

 D pConHdlr S * PROCPTR

 D INZ(%paddr(’RPGHDLR’))

 * Communication area *

 D CommArea DS NOOPT

 D pPsds * INZ(%ADDR(DSPsds))

 D AllowError 1N INZ(’0’)

 * PSDS *

 D DSPsds SDS NOOPT

 D ProcName *PROC

 * Variables that will be used to cause errors *

 D Arr1 S 10A DIM(5)

 D Num S 5P 0

 * CEEHDLR Interface *

 D CEEHDLR PR

 D pConHdlr * PROCPTR

 D CommArea * CONST

 D Feedback 12A OPTIONS(*OMIT)

 * CEEHDLU Interface *

 D CEEHDLU PR

 D pConHdlr * PROCPTR

 D Feedback 12A OPTIONS(*OMIT)

Figure 138. Source for Registering a Condition Handler (Part 1 of 3)

ILE Condition Handlers

288 ILE RPG Programmer’s Guide

 * Register the handler and generate errors *

 C EXSR RegHndlr

 * Generate a substring error *

 * This is an "allowed" error for this example (RPGHDLR *

 * handles the exception, allowing control to return to the *

 * next instruction after the error). *

 * RPGHDLR will not allow the error unless the "AllowError" *

 * indicator is set on. This ensures that if, for example, *

 * a SCAN operation is added to SHOWERR later, RPGHDLR will *

 * not by default allow it to have an error. *

 C Z-ADD -1 Num

 C EVAL AllowError = ’1’

 C Num SUBST ’Hello’ Examp 10

 C EVAL AllowError = ’0’

 * The exception was handled by the handler and control *

 * resumes here. *

 C EXCEPT ImBack

 * Generate an array out of bounds error *

 * This is not an "expected" error for this example. *

 C Z-ADD -1 Num

 C MOVE Arr1(Num) Arr1(Num)

 * The exception was not handled by the handler, so, *

 * control does not return here. The exception is *

 * percolated and control resumes in the *PSSR. *

 * Deregister the handler *

 * Note: If an exception occurs before the handler is *

 * deregistered, it will be automatically deregistered *

 * when the procedure is cancelled. *

 C EXSR DeRegHndlr

 C SETON LR

 ===

 * RegHdlr - Call the API to register the Handler *

 ===

 C RegHndlr BEGSR

 C CALLP CEEHDLR(pConHdlr : %ADDR(CommArea) : *OMIT)

 C ENDSR

 ===

 * DeRegHndlr - Call the API to unregister the Handler *

 ===

 C DeRegHndlr BEGSR

 C CALLP CEEHDLU(pConHdlr : *OMIT)

 C ENDSR

Figure 138. Source for Registering a Condition Handler (Part 2 of 3)

ILE Condition Handlers

Chapter 13. Handling Exceptions 289

If you want to try these procedures, follow these steps:

1. To create the procedure RPGHDLR, using the source shown in Figure 137 on

page 285, type:

CRTRPGMOD MODULE(MYLIB/RPGHDLR)

2. To create the procedure SHOWERR, using the source shown in Figure 138 on

page 288, type:

CRTRPGMOD MODULE(MYLIB/SHOWERR)

3. To create the program, ERRORTEST, type

CRTPGM PGM(MYLIB/ERRORTEST) MODULE(SHOWERR RPGHDLR)

4. To run the program ERRORTEST, type:

OVRPRTF FILE(QSYSPRT) SHARE(*YES)

CALL PGM(MYLIB/ERRORTEST)

The output is shown below:

 HDLR: In Handler for SHOWERR

 HDLR: Handling...

 I’m Back

 HDLR: In Handler for SHOWERR

 HDLR: Percolating...

 In PSSR

 Cancelling...

Using Cancel Handlers

Cancel handlers provide an important function by allowing you to get control for

clean-up and recovery actions when call stack entries are terminated by something

other than a normal return. For example, you might want one to get control when

a procedure ends via a system request ’2’, or because an inquiry message was

answered with ’C’ (Cancel).

The Register Call Stack Entry Termination User Exit Procedure (CEERTX) and the

Call Stack Entry Termination User Exit Procedure (CEEUTX) ILE bindable APIs

provide a way of dynamically registering a user-defined routine to be run when

the call stack entry for which it is registered is cancelled. Once registered, the

cancel handler remains in effect until the call stack entry is removed, or until

CEEUTX is called to disable it. For more information on these ILE bindable APIs,

see the CL and APIs section of the Programming category in the iSeries Information

Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter.

 ===

 * *PSSR: Error Subroutine for the procedure *

 ===

 C *PSSR BEGSR

 C EXCEPT InPssr

 C EXCEPT Cancelling

 C ENDSR ’*CANCL’

 ===

 * Procedure Output *

 ===

 OQSYSPRT E ImBack

 O ’I’’m Back’

 OQSYSPRT E InPssr

 O ’In PSSR’

 OQSYSPRT E Cancelling

 O ’Cancelling...’

Figure 138. Source for Registering a Condition Handler (Part 3 of 3)

ILE Condition Handlers

290 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Figure 139 shows an example of enabling and coding a cancel handler for a

subprocedure. (Cancel handlers can also be enabled for main procedures in the

same way.)

 *---

 * Define the prototype for the cancel handler. This procedure is

 * a local procedure.

 *---

 D CanHdlr PR

 D pMsg *

 *---

 * Define the prototype for a subprocedure to enable the cancel

 * handler.

 *---

 D Enabler PR

 *---

 * Define the prototype for a subprocedure to call Enabler

 *---

 D SubProc PR

 *---

 * Main procedure. Call SubProc three times.

 *---

 C CALLP SubProc

 C CALLP SubProc

 C CALLP SubProc

 C SETON LR

 *---

 * Procedure SubProc. Call Enabler. Since this call will fail,

 * define a local *PSSR subroutine to handle the error.

 *---

 P SubProc B

 C CALLP Enabler

 *---

 * The PSSR has a RETURN operation, so the call from the main

 * procedure to SubProc will not fail.

 *---

 C *PSSR BEGSR

 C ’Subproc PSSR’DSPLY

 C RETURN

 C ENDSR

 P SubProc E

Figure 139. Enabling and Coding a Cancel Handler for a Subprocedure (Part 1 of 3)

Chapter 13. Handling Exceptions 291

*---

 * Procedure Enabler. This procedure enables a cancel handler,

 * then gets an error which causes Enabler to be canceled.

 *---

 P Enabler B

 * Local variables

 D Handler S * PROCPTR INZ(%PADDR(’CANHDLR’))

 D Msg S 20A

 D pMsg S * INZ(%ADDR(Msg))

 D Zero S 5P 0 INZ(0)

 D Count S 5I 0 INZ(0) STATIC

 D Array S 1A DIM(2)

 *---

 * Enable the cancel handler. When this procedure gets canceled,

 * procedure ’CANHDLR’ will be called.

 *---

 C CALLB ’CEERTX’

 C PARM Handler

 C PARM pMsg

 C PARM *OMIT

 *---

 * This procedure will be called three times. The first two times

 * will get an error while the cancel handler is enabled.

 *---

 C EVAL Count = Count + 1

 C SELECT

 C WHEN Count = 1

 C EVAL Msg = ’Divide by zero’

 C EVAL Zero = Zero / Zero

 C WHEN Count = 2

 C EVAL Msg = ’String error’

 C ’A’ SCAN ’ABC’:Zero Zero

 *---

 * On the third call, disable the cancel handler. The array index

 * error will cause the procedure to fail, but the handler will

 * not be invoked.

 *---

 C WHEN Count = 3

 C CALLB ’CEEUTX’

 C PARM Handler

 C PARM *OMIT

 C EVAL Msg = ’Array index error’

 C EVAL Array(Zero) = ’x’

 C ENDSL

 P Enabler E

Figure 139. Enabling and Coding a Cancel Handler for a Subprocedure (Part 2 of 3)

292 ILE RPG Programmer’s Guide

The following is the output from program CANHDLR. Note that the *PSSR of the

procedure SubProc is called three times but the cancel handler is only called twice

because it was disabled before the third error.

Problems when ILE CL Monitors for Notify and Status Messages

If your ILE RPG procedure is called by an ILE CL procedure in the same activation

group, and the caller is monitoring for status or notify messages, then your ILE CL

caller may get control prematurely because of a notify or status message that the

ILE RPG procedure was trying to ignore.

For example, if the ILE RPG procedure writes a record to a printer file and the

actual printer file has a shorter record length that was declared in the RPG

procedure, notify message CPF4906 is sent to the RPG procedure. The RPG

exception handling percolates this message which causes the default reply of ’I’ to

ignore the message. This should allow the output operation to continue normally,

and the RPG procedure should proceed to the next instruction.

However, when the ILE CL MONMSG gets control, control passes immediately to

the action for the MONMSG or the next statement in the ILE CL procedure.

Note: For this problem to occur, the procedure monitoring for the message does

not have to be the immediate caller of the RPG procedure.

This problem is most likely to occur with a MONMSG in an ILE CL caller, but it

can also occur with other ILE languages that can monitor for notify and status

messages, including ILE RPG using ILE condition handlers enabled using

CEEHDLR.

If you encounter this problem, you have two possible ways to avoid it:

 *---

 * Define the cancel handler. The parameter is a pointer to the

 * ’communication area’, a message to be displayed.

 *---

 P CanHdlr B

 D CanHdlr PI

 D pMsg *

 *---

 * Define a field based on the input pointer pMsg.

 *---

 D Msg S 20A BASED(pMsg)

 *---

 * Display the message set by the procedure that enabled the

 * handler.

 *---

 C ’Cancel Hdlr ’DSPLY Msg

 P CanHdlr E

Figure 139. Enabling and Coding a Cancel Handler for a Subprocedure (Part 3 of 3)

DSPLY Cancel Hdlr Divide by zero

DSPLY Subproc PSSR

DSPLY Cancel Hdlr String error

DSPLY Subproc PSSR

DSPLY Subproc PSSR

Figure 140. Output from CANHDLR program

Chapter 13. Handling Exceptions 293

1. Ensure that the caller is in a different activation group from the ILE RPG

procedure.

2. Enable an ILE condition handler in the RPG procedure. In the handler, if the

message is one that you want to ignore, indicate that the message should be

handled. Otherwise, indicate that it should be percolated.

You could also make this handler more generic, and have it ignore all messages

with a severity of 0 (information) and 1 (warning).

Figure 141 shows an example of a ILE condition handler that ignores CPF4906.

Figure 142 on page 295 shows how you would code the calculations if you

wanted to ignore all status and notify messages. Escape messages and function

checks have a severity of 2 (Error) or higher.

 *--

 * Handler definitions

 *--

 D Action S 10I 0

 D Token DS

 D MsgSev 5I 0

 D MsgNo 2A

 D 1A

 D Prefix 3A

 D 4A

 *--

 * Actions

 *--

 D Handle C 10

 D Percolate C 20

 *--

 * Severities

 *--

 D Info C 0

 D Warning C 1

 D Error C 2

 D Severe C 3

 D Critical C 4

 C *ENTRY PLIST

 C PARM Token

 C PARM dummy 1

 C PARM Action

 *--

 * If this is CPF4906, handle the notify msg, otherwise percolate

 *--

 C IF Prefix = ’CPF’ AND

 C MsgNo = X’4906’

 C EVAL Action = Handle

 C ELSE

 C EVAL Action = Percolate

 C ENDIF

 C RETURN

Figure 141. ILE Condition Handler that Ignores CPF4906

294 ILE RPG Programmer’s Guide

*--

 * Handle information or warning messages, otherwise percolate

 *--

 C IF MsgSev <= Warning

 C EVAL Action = Handle

 C ELSE

 C EVAL Action = Percolate

 C ENDIF

 C RETURN

Figure 142. How to Ignore Status and Notify Messages

Chapter 13. Handling Exceptions 295

296 ILE RPG Programmer’s Guide

Chapter 14. Obtaining a Dump

This chapter describes how to obtain an ILE RPG formatted dump and provides a

sample formatted dump.

Obtaining an ILE RPG Formatted Dump

To obtain an ILE RPG formatted dump (printout of storage) for a procedure while

it is running, you can:

v Code one or more DUMP operation codes in the calculation specifications

v Respond to a run-time message with a D or F option. It is also possible to

automatically reply to make a dump available. Refer to the “System Reply List”

discussion in the CL Programming manual.

The formatted dump includes field contents, data structure contents, array and

table contents, the file information data structures, and the program status data

structure. The dump is written to the file called QPPGMDMP. (A system abnormal

dump is written to the file QPSRVDMP.)

If you respond to an ILE RPG run-time message with an F option, the dump also

includes the hexadecimal representation of the open data path (ODP, a data

management control block).

The dump information includes the global data associated with the module.

Depending on whether the main procedure is active, the global data may not

represent the values assigned during processing of the *INZSR. If a program

consists of more than one procedure, the information in the formatted dump also

reflects information about every procedure that is active at the time of the dump

request. If a procedure is not active, the values of variables in automatic storage

will not be valid. If a procedure has not been called yet, the static storage will not

be initialized yet. If a procedure has been called recursively, only the information

for the most recent invocation will be shown.

There are two occasions when dump data may not be available:

v If the program object was created with debug view *NONE. The dump will

contain only the PSDS, file information, and the *IN indicators.

v If a single variable or structure requires more than 16 MB of dump data. This

typically occurs with variables or structures that are larger than 5 MB.

If you do not want a user to be able to see the values of your program’s variables

in a formatted dump, do one of the following:

v Ensure that debug data is not present in the program by removing observability.

v Give the user sufficient authority to run the program, but not to perform the

formatted dump. This can be done by giving *OBJOPR plus *EXECUTE

authority.

© Copyright IBM Corp. 1994, 2006 297

#
#

#

#
|
|

Using the DUMP Operation Code

You can code one or more DUMP operation codes in the calculations of your

source to obtain a ILE RPG formatted dump. A new QPPGMDMP spool file is

created whenever the DUMP operation occurs.

Note the following about the DUMP operation:

v To determine whether a DUMP operation will cause a formatted dump to be

produced, you must check the operation extender on the DUMP operation, and

the DEBUG keyword on the control specification. The formatted dump will be

produced if the (A) extender on the DUMP operation is specified, or if the

DEBUG keyword was specified with no parameter or with a parameter of

*DUMP or *YES. Otherwise, the DUMP operation is checked for errors and the

statement is printed on the listing, but the DUMP is not processed.

v If the DUMP operation is conditioned, it occurs only if the condition is met.

v If a DUMP operation is bypassed by a GOTO operation, the DUMP operation

does not occur.

Example of a Formatted Dump

The following figures show an example of a formatted dump of a module similar

to DBGEX (see “Sample Source for Debug Examples” on page 256). In order to

show how data buffers are handled in a formatted dump we added the output file

QSYSPRT.

The dump for this example is a full-formatted dump; that is, it was created when

an inquiry message was answered with an ’F’.

Program Status Information

Using the DUMP Operation Code

298 ILE RPG Programmer’s Guide

|

�A� Procedure Identification: the procedure name, the program and library

name, and the module name.

�B� Current status code.

�C� Previous status code.

�D� ILE RPG source statement in error.

�E� ILE RPG routine in which the exception or error occurred.

�F� CPF or MCH for a machine exception.

�G� Information about the last file used in the program before an exception or

error occurred. In this case, no files were used.

�H� Program information. ’*N/A*’ indicates fields for which information is not

available in the program. These fields are only updated if they are

included in the PSDS.

 Feedback Areas

Procedure Name
Program Name

Library
Module Name
Program Status
Previous Status
Statement in Error
RPG Routine
Number of Parameters
Message Type
Additional Message Info
Message Data

Program signature violation.
Status that caused RNX9001
Last File Used
Last File Status
Last File Operation
Last File Routine
Last File Statement
Last File Record Name
Job Name
User Name
Job Number
Date Entered System
Date Started
Time Started
Compile Date
Compile Time
Compiler Level
Source File

Library
Member

:
:
:
:
:
:
:
:
:
:
:
:

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.
.

.

.

.
.
.

.

.
.

.

.

.

DBGEX2
TEST
MYLIB
DBGEX2
00202
00000
00000088
RPGPGM

MCH
4431

.

.

.
.
.

.

.

.
.
.

.

. .

.

.

. .
.

.

.

. .

.

MYUSERID
MYUSERID
002273
09/30/1995
N/A
N/A
123095
153438
0001
QRPGLESRC
MYLIB
DBGEX2

A

F

G

H

B
C
D
E

Program Status Area:

Figure 143. Program Status Information section of Formatted Dump

Example of a Formatted Dump

Chapter 14. Obtaining a Dump 299

�I� This is the file feedback section of the INFDS. Only fields applicable to the

file type are printed. The rest of the INFDS feedback sections are not

dumped, since they are only updated if they have been declared in the

program.

�J� This is the file open feedback information for the file. For a description of

the fields, refer to the DB2 Universal Database for AS/400 section of the

 INFDS FILE FEEDBACK �I�

 File : QSYSPRT

 File Open : YES

 File at EOF : NO

 File Status : 00000

 File Operation : OPEN I

 File Routine : *INIT

 Statement Number : *INIT

 Record Name :

 Message Identifier :

 OPEN FEEDBACK �J�

 ODP type : SP

 File Name : QSYSPRT

 Library : QSYS

 Member : Q501383525 .

 Spool File : Q04079N002

 Library : QSPL

 Spool File Number : 7

 Primary Record Length : 80

 Input Block Length : 0

 Output Block Length : 80

 Device Class : PRINTER

 Lines per Page : 66

 Columns per Line : 132

 Allow Duplicate Keys : *N/A*

 Records to Transfer : 1

 Overflow Line : 60

 Block Record Increment : 0

 File Sharing Allowed : NO

 Device File Created with DDS : NO

 IGC or graphic capable file. : NO

 File Open Count. : 1

 Separate Indicator Area. : NO

 User Buffers : NO

 Open Identifier. : Q04079N002

 Maximum Record Length. : 0

 ODP Scoped to Job. : NO

 Maximum Program Devices. : 1

 Current Program Device Defined : 1

 Device Name : *N

 Device Description Name. : *N

 Device Class : ’02’X

 Device Type. : ’08’X

 COMMON I/O FEEDBACK �K�

 Number of Puts : 0

 Number of Gets : 0

 Number of Put/Gets : 0

 Number of other I/O : 0

 Current Operation : ’00’X

 Record Format :

 Device Class and Type. : ’0208’X

 Device Name : *N

 Length of Last Record : 80

 Number of Records Retrieved. : 80

 Last I/O Record Length : 0

 Current Block Count. : 0

 PRINTER FEEDBACK:

 Current Line Number. : 1

 Current Page : 1

 Major Return Code. : 00

 Minor Return Code. : 00

 Output Buffer:

 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 0020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 0040 00000000 00000000 00000000 00000000 * *

Figure 144. Feedback Areas section of Formatted Dump

Example of a Formatted Dump

300 ILE RPG Programmer’s Guide

Database and File Systems category in the iSeries Information Center at this

Web site - http://www.ibm.com/eserver/iseries/infocenter.

�K� This is the common I/O feedback information for the file. For a description

of the fields, see the above Web site.

 Information with Full-Formatted Dump

 The common open data path and the feedback areas associated with the file are

included in the dump if you respond to an ILE RPG inquiry message with an F

option.

Data Information

 Open Data Path:

 0000 64800000 00001AF0 00001B00 000000B0 00000140 000001C6 00000280 000002C0 * 0 F *

 0020 00000530 00000000 00000000 00000380 00000000 06000000 00000000 00000000 * *

 0040 00008000 00000000 003AC02B A00119FF 000006C0 00003033 00000000 00000000 * *

 0060 80000000 00000000 003AC005 CF001CB0 00000000 00000000 00000000 00000000 * *

 0080 80000000 00000000 003AA024 D0060120 01900000 00010000 00000050 00000000 * & *

 00A0 1F000000 00000000 00000000 00000000 E2D7D8E2 E8E2D7D9 E3404040 D8E2E8E2 * SPQSYSPRT QSYS*

 00C0 40404040 4040D8F0 F4F0F7F9 D5F0F0F2 * Q04079N002QSPL & *

 Open Feedback:

 0000 E2D7D8E2 E8E2D7D9 E3404040 D8E2E8E2 40404040 4040D8F0 F4F0F7F9 D5F0F0F2 *SPQSYSPRT QSYS Q04079N002*

 0020 D8E2D7D3 40404040 40400007 00500000 D8F5F0F1 F3F8F3F5 F2F50000 00000000 *QSPL & Q501383525 *

 0040 00500002 00000000 42008400 00000000 0000D5A4 00100000 00000008 00000000 * & d Nu *

 0060 00000000 00000000 00000100 3C000000 0005E000 5CD54040 40404040 40400001 * *N *

 0080 00000000 00001300 00000000 00000000 00010001 5CD54040 40404040 40400000 * *N *

 00A0 07100000 00000000 00450045 00450045 07A10045 00450045 00700045 00450045 * *

 00C0 00450045 00450045 002F0030 00040005 5CD54040 40404040 40400208 00000000 * *N *

 00E0 20000000 00000000 00000000 00000000 00000000 00000001 C2200000 00059A00 * B *

 0100 00000000 00000000 00000000 00000000 00000000 4040 * *

 Common I/O Feedback:

 0000 00900000 00000000 00000000 00000000 00000000 00000000 00000000 00000208 * *

 0020 5CD54040 40404040 40400000 00500000 00000000 00000000 00000000 00000000 **N & *

 0040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 0060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 0080 00000000 00000000 00000000 00000000 * *

 I/O Feedback for Device:

 0000 00010000 00010000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 0020 0000F0F0 0001 * 0000 *

Figure 145. Information Provided for Full-Formatted Dump

Example of a Formatted Dump

Chapter 14. Obtaining a Dump 301

http://www.ibm.com/eserver/iseries/infocenter

ILE RPG FORMATTED DUMP

 Module Name. : DBGEX2

 Optimization Level : *NONE �L� �M�

 Halt Indicators:

 H1 ’0’ H2 ’0’ H3 ’0’ H4 ’0’ H5 ’0’ H6 ’0’ H7 ’0’ H8 ’0’ H9 ’0’

 Command/Function Key Indicators:

 KA ’0’ KB ’0’ KC ’0’ KD ’0’ KE ’0’ KF ’0’ KG ’0’ KH ’0’ KI ’0’ KJ ’0’

 KK ’0’ KL ’0’ KM ’0’ KN ’0’ KP ’0’ KQ ’0’ KR ’0’ KS ’0’ KT ’0’ KU ’0’

 KV ’0’ KW ’0’ KX ’0’ KY ’0’

 Control Level Indicators:

 L1 ’0’ L2 ’0’ L3 ’0’ L4 ’0’ L5 ’0’ L6 ’0’ L7 ’0’ L8 ’0’ L9 ’0’

 Overflow Indicators:

 OA ’0’ OB ’0’ OC ’0’ OD ’0’ OE ’0’ OF ’0’ OG ’0’ OV ’0’

 External Indicators:

 U1 ’0’ U2 ’0’ U3 ’0’ U4 ’0’ U5 ’0’ U6 ’0’ U7 ’0’ U8 ’0’

 General Indicators:

 01 ’0’ 02 ’1’ 03 ’0’ 04 ’1’ 05 ’0’ 06 ’1’ 07 ’0’ 08 ’0’ 09 ’0’ 10 ’0’

 11 ’0’ 12 ’0’ 13 ’0’ 14 ’0’ 15 ’0’ 16 ’0’ 17 ’0’ 18 ’0’ 19 ’0’ 20 ’0’

 21 ’0’ 22 ’0’ 23 ’0’ 24 ’0’ 25 ’0’ 26 ’0’ 27 ’0’ 28 ’0’ 29 ’0’ 30 ’0’

 31 ’0’ 32 ’0’ 33 ’0’ 34 ’0’ 35 ’0’ 36 ’0’ 37 ’0’ 38 ’0’ 39 ’0’ 40 ’0’

 41 ’0’ 42 ’0’ 43 ’0’ 44 ’0’ 45 ’0’ 46 ’0’ 47 ’0’ 48 ’0’ 49 ’0’ 50 ’0’

 51 ’0’ 52 ’0’ 53 ’0’ 54 ’0’ 55 ’0’ 56 ’0’ 57 ’0’ 58 ’0’ 59 ’0’ 60 ’0’

 61 ’0’ 62 ’0’ 63 ’0’ 64 ’0’ 65 ’0’ 66 ’0’ 67 ’0’ 68 ’0’ 69 ’0’ 70 ’0’

 71 ’0’ 72 ’0’ 73 ’0’ 74 ’0’ 75 ’0’ 76 ’0’ 77 ’0’ 78 ’0’ 79 ’0’ 80 ’0’

 81 ’0’ 82 ’0’ 83 ’0’ 84 ’0’ 85 ’0’ 86 ’0’ 87 ’0’ 88 ’0’ 89 ’0’ 90 ’0’

 91 ’0’ 92 ’0’ 93 ’0’ 94 ’0’ 95 ’0’ 96 ’0’ 97 ’0’ 98 ’0’ 99 ’0’

 Internal Indicators:

 LR ’0’ MR ’0’ RT ’0’ 1P ’0’

 �N�

 NAME ATTRIBUTES VALUE

 _QRNU_DSI_DS1 INT(10) 1 ’00000001’X �O�

 _QRNU_DSI_DS2 INT(10) 2 ’00000002’X

 _QRNU_NULL_ARR CHAR(1) DIM(8) �P�

 (1-2) ’1’ ’F1’X

 (3) ’0’ ’F0’X

 (4) ’1’ ’F1’X

 (5-6) ’0’ ’F0’X

 (7) ’1’ ’F1’X

 (8) ’0’ ’F0’X

 _QRNU_NULL_FLDNULL CHAR(1) ’1’ ’F1’X

 _QRNU_TABI_TABLEA INT(10) 1 ’00000001’X �Q�

 ARR CHAR(2) DIM(8)

 (1-3) ’AB’ ’C1C2’X

 (4-7) ’ ’ ’4040’X

 (8) ’1’ ’F1’X

 ARRY ZONED(3,2) DIM(2)

 (1-2) 1.24 ’F1F2F4’X

 BASEONNULL CHAR(10) NOT ADDRESSABLE

 BASEPTR POINTER SPP:E30095A62F001208

 BASESTRING CHAR(6) ’ABCDEF’ ’C1C2C3C4C5C6’X

 BIGDATE DATE(10) ’1994-09-30’ ’F1F9F9F460F0F960F3F0’X

 BIGTIME TIME(8) ’12.00.00’ ’F1F24BF0F04BF0F0’X

 BIGTSTAMP TIMESTAMP(26) ’9999-12-31-12.00.00.000000’

 VALUE IN HEX ’F9F9F9F960F1F260F3F160F1F24BF0F04BF0F04BF0F0F0F0F0F0’X

 BIN4D3 BIN(4,3) -4.321 ’EF1F’X

 BIN9D7 BIN(9,7) 98.7654321 ’3ADE68B1’X

 DBCSSTRING GRAPHIC(3) ’ BBCCDD ’ ’C2C2C3C3C4C4’X

Figure 146. Data section of Formatted Dump (Part 1 of 2)

Example of a Formatted Dump

302 ILE RPG Programmer’s Guide

�L� Optimization level

�M� General indicators 1-99 and their current status (’1’ is on, ’0’ is off). Note

that indicators *IN02, *IN04, and *IN06 were not yet set.

�N� Beginning of user variables, listed in alphabetical order, and grouped by

procedure. Data that is local to a subprocedure is stored in automatic

 DS1 DS OCCURS(3) �R�

 OCCURRENCE(1)

 FLD1 CHAR(5) ’1BCDE’ ’F1C2C3C4C5’X

 FLD1A CHAR(1) DIM(5)

 (1) ’1’ ’F1’X

 (2) ’B’ ’C2’X

 (3) ’C’ ’C3’X

 (4) ’D’ ’C4’X

 (5) ’E’ ’C5’X

 FLD2 BIN(5,2) 123.45 ’00003039’X

 OCCURRENCE(2)

 FLD1 CHAR(5) ’ABCDE’ ’C1C2C3C4C5’X

 FLD1A CHAR(1) DIM(5)

 (1) ’A’ ’C1’X

 (2) ’B’ ’C2’X

 (3) ’C’ ’C3’X

 (4) ’D’ ’C4’X

 (5) ’E’ ’C5’X

 FLD2 BIN(5,2) 123.45 ’00003039’X

 OCCURRENCE(3)

 FLD1 CHAR(5) ’ABCDE’ ’C1C2C3C4C5’X

 FLD1A CHAR(1) DIM(5)

 (1) ’A’ ’C1’X

 (2) ’B’ ’C2’X

 (3) ’C’ ’C3’X

 (4) ’D’ ’C4’X

 (5) ’E’ ’C5’X

 FLD2 BIN(5,2) 123.45 ’00003039’X

 DS2 CHAR(1O) DIM(2) �S�

 (1) ’aaaaaaaaaa’ ’81818181818181818181’X

 (2) ’bbbbbbbbbb’ ’82828282828282828282’X

 DS3 DS �T�

 FIRSTNAME CHAR(10) ’Fred ’ ’C6998584404040404040’X

 LASTNAME CHAR(10) ’Jones ’ ’D1969585A24040404040’X

 TITLE CHAR(5) ’Mr. ’ ’D4994B4040’X

 EXPORTFLD CHAR(6) ’export’ ’85A7979699A3’X

 FLDNULL ZONED(3,1) 24.3 ’F2F4F3’X

 FLOAT1 FLT(4) 1.234500000000E+007 �U�

 VALUE IN HEX ’4B3C5EA8’X

 FLOAT2 FLT(8) 3.962745000000E+047

 VALUE IN HEX ’49D15A640A93FCFF’X

 INT10 INT(10) -31904 ’FFFF8360’X

 INT5 INT(5) -2046 ’F802’X

 NEG_INF FLT(8) -HUGE_VAL �V�

 VALUE IN HEX ’FFF0000000000000’X

 NOT_NUM FLT(4) *NaN �W�

 VALUE IN HEX ’7FFFFFFF’X

 NULLPTR POINTER SYP:*NULL

 PACKED1D0 PACKED(5,2) -093.40 ’09340D’X

 PARM1 PACKED(4,3) 6.666 ’06666F’X

 POS_INF FLT(8) HUGE_VAL �X�

 VALUE IN HEX ’7FF0000000000000’X

 PROCPTR POINTER PRP:A00CA02EC200 �Y�

 SPCPTR POINTER SPP:A026FA0100C0

 SPCSIZ BIN(9,0) 000000008. ’00000008’X

 STRING CHAR(6) ’ABCDEF’ ’C1C2C3C4C5C6’X

 TABLEA CHAR(3) DIM(3)

 (1) ’aaa’ ’818181’X

 (2) ’bbb’ ’828282’X

 (3) ’ccc’ ’838383’X

 UNSIGNED10 UNS(10) 31904 ’00007CA0’X

 UNSIGNED5 UNS(5) 2046 ’07FE’X

 ZONEDD3D2 ZONED(3,2) -3.21 ’F3F2D1’X

 Local variables for subprocedure SWITCH: �Z�

 NAME ATTRIBUTES VALUE

 _QRNL_PSTR_PARM POINTER SYP:*NULL

 LOCAL CHAR(5) ’ ’ ’0000000000’X

 PARM CHAR(1) NOT ADDRESSABLE

 * * * * * E N D O F R P G D U M P * * * * *

Figure 146. Data section of Formatted Dump (Part 2 of 2)

Example of a Formatted Dump

Chapter 14. Obtaining a Dump 303

storage and is not available unless the subprocedure is active. Note that

the hexadecimal values of all variables are displayed. :nt Names longer

than 131 characters, will appear in the dump listing split across multiple

lines. The entire name will be printed with the characters ’...’ at the end of

the lines. If the final portion of the name is longer than 21 characters, the

attributes and values will be listed starting on the following line.

�O� Internally defined fields which contain indexes multiple-occurrence data

structures.

�P� Internally defined fields which contain the null indicators for null-capable

fields.

�Q� Internally defined fields which contain indexes for tables.

�R� Multiple-occurrence data structure.

�S� Data structures with no subfields are displayed as character strings.

�T� Data structure subfields are listed in alphabetical order, not in the order in

which they are defined. Gaps in the subfield definitions are not shown.

�U� 4-byte and 8-byte float fields.

�V� Indicates negative infinity.

�W� Stands for ’not a number’ indicating that the value is not a valid

floating-point number.

�X� Indicates positive infinity.

�Y� The attribute does not differentiate between basing and procedure pointer.

�Z� The local data inside subprocedures is listed separately from the main

source section.

Example of a Formatted Dump

304 ILE RPG Programmer’s Guide

Part 4. Working with Files and Devices

This section describes how to use files and devices in ILE RPG programs.

Specifically, it shows how to:

v Associate a file with a device

v Define a file (as program-described or externally-described)

v Process files

v Access database files

v Access externally-attached devices

v Write an interactive application

Note: The term ’RPG IV program’ refers to an Integrated Language Environment

program that contains one or more procedures written in RPG IV.

© Copyright IBM Corp. 1994, 2006 305

306 ILE RPG Programmer’s Guide

Chapter 15. Defining Files

Files serve as the connecting link between a program and the device used for I/O.

Each file on the system has an associated file description which describes the file

characteristics and how the data associated with the file is organized into records

and fields.

In order for a program to perform any I/O operations, it must identify the file

description(s) the program is referencing, what type of I/O device is being used,

and how the data is organized. This chapter provides general information on:

v Associating file descriptions with input/output devices

v Defining externally described files

v Defining program-described files

v Data management operations

Information on how to use externally and program-described files with different

device types is found in subsequent chapters.

Associating Files with Input/Output Devices

The key element for all I/O operations on the iSeries is the file. The system

supports the following file types:

database files

allow storage of data permanently on system

device files

allow access to externally attached devices. Include display files, printer

files, tape files, diskette files, and ICF files.

save files

used to store saved data on disk

DDM files

allow access to data files stored on remote systems.

Each I/O device has a corresponding file description of one of the above types

which the program uses to access that device. The actual device association is

made when the file is processed: the data is read from or written to the device

when the file is used for processing.

RPG also allows access to files and devices not directly supported by the system,

through the use of SPECIAL files. With a SPECIAL file, you must provide a

program that handles the association of the name to the file, and the data

management for the file. With other types of files, this is handled by RPG and the

operating system.

To indicate to the operating system which file description(s) your program will

use, you specify a file name in positions 7 through 16 of a file description

specification for each file used. In positions 36 through 42 you specify an RPG

device name. The device name defines which RPG operations can be used with the

associated file. The device name can be one of: DISK, PRINTER, WORKSTN, SEQ,

© Copyright IBM Corp. 1994, 2006 307

or SPECIAL. Figure 147 shows a file description specification for a display

(WORKSTN) file FILEX.

 Note that it is the file name, not the device name (specified in positions 36 through

42) which points to the i5/OS file description that contains the specifications for

the actual device.

The RPG device types correspond to the above file types as follows:

 Table 34. Correlation of RPG Device Types with iSeries File Types

RPG Device Type iSeries File Type

DISK database, save, DDM files

PRINTER printer files

WORKSTN display, ICF files

SEQ tape, diskette, save, printer, database

SPECIAL N/A

Figure 148 illustrates the association of the RPG file name FILEX, as coded in

Figure 147, with a system file description for a display file.

 At compilation time, certain RPG operations are valid only for a specific RPG

device name. In this respect, the RPG operation is device dependent. One example

of device dependency is that the EXFMT operation code is valid only for a

WORKSTN device.

Other operation codes are device independent, meaning that they can be used with

any device type. For example, WRITE is a device-independent operation.

The SEQ Device

The device SEQ is an independent device type. Figure 149 on page 309 illustrates

the association of the RPG file name FILEY with a system file description for a

sequential device. When the program is run, the actual I/O device is specified in

the description of FILEY. For example, the device might be PRINTER.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

FFILEX CF E WORKSTN

Figure 147. Identifying a Display File in an RPG Program

RPG program FILEX

Device type =
DISPLAY

File name = FILEX
Device = WORKSTN

Figure 148. Associating a file name with a display file description

Associating Files with Input/Output Devices

308 ILE RPG Programmer’s Guide

Although the file name and file type are coded in the RPG program, in many cases

you can change the type of file or the device used in a program without changing

the program. To find out how, see “Overriding and Redirecting File Input and

Output” on page 319.

Naming Files

On the iSeries system, files are made up of members. These files are organized into

libraries. The convention for naming files is library-name/file-name.

In an ILE RPG program, file names are identified in positions 7 through 16 in file

description specifications. File names can be up to ten characters long and must be

unique.

You do not qualify the file name with a library within a program. At run time, the

system searches the library list associated with your job to find the file. If you wish

to change the name, member, or specify a particular library, you can use a file

override command. See “Overriding and Redirecting File Input and Output” on

page 319 for more information on file overrides.

Types of File Descriptions

When identifying the file description your program will be using, you must

indicate whether it is a program-described file or an externally described file.

v For a program-described file, the description of the fields are coded within the

RPG source member on input and/or output specifications.

The description of the file to the operating system includes information about

where the data comes from and the length of the records in the file.

v For an externally described file, the compiler retrieves the description of the

fields from an external file-description which was created using DDS, IDDU, or

SQL commands. Therefore, you do not have to code the field descriptions on

input and/or output specifications within the RPG source member.

The external description includes information about where the data comes from,

such as the database or a specific device, and a description of each field and its

attributes. The file must exist and be accessible from the library list before you

compile your program.

Externally described files offer the following advantages:

v Less coding in programs. If the same file is used by many programs, the fields

can be defined once to the operating system and used by all the programs. This

practice eliminates the need to code input and output specifications for RPG

programs that use externally described files.

RPG program FILEY

File name - FILEY
Device = SEQ

Device type =
PRINTER

File type =
DEVICE

Figure 149. Associating a file name with a display file description

Associating Files with Input/Output Devices

Chapter 15. Defining Files 309

v Less maintenance activity when the file’s record format is changed. You can

often update programs by changing the file’s record format and then

recompiling the programs that use the files without changing any coding in the

program.

v Improved documentation because programs using the same files use consistent

record-format and field names.

v Improved reliability. If level checking is specified, the RPG program will notify

the user if there are changes in the external description. See “Level Checking” on

page 316 for further information.

If an externally described file (identified by an E in position 22 of the file

description specification) is specified for the devices SEQ or SPECIAL, the RPG

program uses the field descriptions for the file, but the interface to the operating

system is as though the file were a program-described file. Externally described

files cannot specify device-dependent functions such as forms control for PRINTER

files because this information is already defined in the external description.

Using Files with External-Description as Program-Described

A file created from external descriptions can be used as a program-described file in

the program. To use an externally described file as a program-described file,

1. Specify the file as program-described (F in position 22) in the file description

specification of the program.

2. Describe the fields in the records on the input or/and output specifications of

the program.

At compile time, the compiler uses the field descriptions in the input or/and

output specifications. It does not retrieve the external descriptions.

Example of Some Typical Relationships between Programs

and Files

�1� The program uses the field-level description of a file that is defined to the

operating system. An externally described file is identified by an E in

position 22 of the file description specifications. At compilation time, the

compiler copies in the external field-level description.

�2� An externally described file (that is, a file with field-level external

description) is used as a program-described file in the program. A

program-described file is identified by an F in position 22 of the file

description specifications. This entry tells the compiler not to copy in the

external field-level descriptions. This file does not have to exist at

compilation time.

1 2 3 4

Field-Level
Description of
a File

Record-Level
Description of
a File

i5/OS

RPG RPG RPG RPG

i5/OS i5/OS

Field-Level
Description of
a File

Externally
Described File
(E in position 22)

Program-Described
File (F in position
22) - The compiler
does not copy in
field-level description

Program-Described
File (F in position 22)

Externally
Described File
(E in position 22)

Figure 150. Typical Relationships between an RPG Program and Files on the iSeries System

Types of File Descriptions

310 ILE RPG Programmer’s Guide

�3� A file is described only at the record level to the operating system. The

fields in the record are described within the program; therefore, position 22

of the file description specifications must contain an F. This file does not

have to exist at compilation time.

�4� A file name can be specified at compilation time (that is, coded in the RPG

source member), and a different file name can be specified at run time. The

E in position 22 of the file description specifications indicates that the

external description of the file is to be copied in at compilation time. At

run time, a file override command can be used so that a different file is

accessed by the program. To override a file at run time, you must make

sure that record names in both files are the same. The RPG program uses

the record-format name on the input/output operations, such as a READ

operation where it specifies what record type is expected. See “Overriding

and Redirecting File Input and Output” on page 319 for more information.

Defining Externally Described Files

You can use DDS to describe files to the i5/OS system. Each record type in the file

is identified by a unique record-format name.

An E entry in position 22 of the file description specifications identifies an

externally described file. The E entry indicates to the compiler that it is to retrieve

the external description of the file from the system when the program is compiled.

The information in this external description includes:

v File information, such as file type, and file attributes, such as access method (by

key or relative record number)

v Record-format description, which includes the record format name and field

descriptions (names, locations, and attributes).

The information the compiler retrieves from the external description is printed on

the compiler listing as long as OPTION(*EXPDDS) is specified on either the

CRTRPGMOD or CRTBNDRPG command when compiling the source member.

(The default for both of these commands is OPTION(*EXPDDS).)

The following section describes how to use a file description specification to

rename or ignore record formats and how to use input and output specifications to

modify external descriptions. Remember that input and output specifications for

externally described files are optional.

Renaming Record-Format Names

Many of the functions that you can specify for externally described files (such as

the CHAIN operation) operate on either a file name or a record-format name.

Consequently, each file and record-format name in the program must be a unique

symbolic name.

To rename a record-format name, use the RENAME keyword on the file

description specifications for the externally described file as shown in Figure 151

on page 312. The format is RENAME(old name:new name).

Types of File Descriptions

Chapter 15. Defining Files 311

The RENAME keyword is generally used if the program contains two files which

have the same record-format names. In Figure 151, the record format

ITEMFORMAT in the externally described file ITMMSTL is renamed MSTITM for

use in this program.

Renaming Field Names

You can partially rename all fields in an externally described file by using the

PREFIX keyword on the file-description specification for the file. You can either

add a prefix to the existing field name or you can replace part of the existing field

name with a sequence of characters. The format is PREFIX(prefix-string:

{nbr_of_char_replaced}). Figure 152 shows some examples of the use of PREFIX.

Ignoring Record Formats

If a record format in an externally described file is not to be used in a program,

you can use the IGNORE keyword to make the program run as if the record

format did not exist in the file. For logical files, this means that all data associated

with that format is inaccessible to the program. Use the IGNORE keyword on a file

description specifications for the externally described file as shown in Figure 153

on page 313.

The file must have more than one record format, and not all of them can be

ignored; at least one must remain. Except for that requirement, any number of

record formats can be ignored for a file.

Once a record-format is ignored, it cannot be specified for any other keyword

(SFILE, RENAME, or INCLUDE), or for another IGNORE.

Ignored record-format names appear on the cross-reference listing, but they are

flagged as ignored.

To indicate that a record format from an externally described file, is to be ignored,

enter the keyword and parameter IGNORE(record-format name) on the file

description specification in the Keyword field.

Alternatively, the INCLUDE keyword can be used to include only those record

format names that are to be used in a program. All other record formats contained

in the file will be excluded.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

FITMMSTL IP E K DISK RENAME(ITEMFORMAT:MSTITM)

 *

Figure 151. RENAME Keyword for Record Format Names in an Externally Described File

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

 * Add the prefix MST to each name in the record format

FITMMSTL IP E K DISK PREFIX(MST)

 *

 * Change the prefix YTD to YE for each name in the record format

FSALESMSTR IP E K DISK PREFIX(YE:3)

Figure 152. Prefix Keyword for Record Format Names in an Externally Described File

Defining Externally Described Files

312 ILE RPG Programmer’s Guide

Using Input Specifications to Modify an External Description

You can use the input specifications to override certain information in the external

description of an input file or to add RPG functions to the external description. On

the input specifications, you can:

v Assign record-identifying indicators to record formats as shown in Figure 154 on

page 314.

v Rename a field as shown in Figure 154 on page 314.

v Assign control-level indicators to fields as shown in Figure 154 on page 314.

v Assign match-field values to fields for matching record processing as shown in

Figure 155 on page 314.

v Assign field indicators as shown in Figure 155 on page 314.

You cannot use the input specifications to override field locations in an externally

described file. The fields in an externally described file are placed in the records in

the order in which they are listed in the data description specifications. Also,

device-dependent functions such as forms control, are not valid in an RPG

program for externally described files.

Note: You can explicitly rename a field on an input specification, even when the

PREFIX keyword is specified for a file. The compiler will recognize (and

require) the name that is first used in your program. For example, if you

specify the prefixed name on an input specification to associate the field

with an indicator, and you then try to rename the field referencing the

unprefixed name, you will get an error. Conversely, if you first rename the

field to something other than the prefixed name, and you then use the

prefixed name on a specification, you will get an error.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

 *

 * Assume the file ITMMSTL contains the following record formats:

 * EMPLNO, NAME, ADDR, TEL, WAGE. To make the program run as if only the

 * EMPLNO and NAME records existed, either of the following two methods

 * can be used:

 *

FITMMSTL UF E K DISK IGNORE(ADDR:TEL:WAGE)

 *

 * OR:

 *

FITMMSTL UF E K DISK INCLUDE(EMPLNO:NAME)

 *

Figure 153. IGNORE Keyword for Record Formats in an Externally Described File

Defining Externally Described Files

Chapter 15. Defining Files 313

�1� To assign a record-identifying indicator to a record in an externally

described file, specify the record-format name in positions 7 through 16 of

the input specifications and assign a valid record-identifying indicator in

positions 21 and 22. A typical use of input specifications with externally

described files is to assign record-identifying indicators.

 In this example, record-identifying indicator 01 is assigned to the record

MSTRITEM and indicator 02 to the record MSTRWHSE.

�2� To rename a field in an externally described record, specify the external

name of the field, left-adjusted, in positions 21 through 30 of the

field-description line. In positions 49 through 62, specify the name that is

to be used in the program.

 In this example, the field ITEMNUMB in both records is renamed ITEM for

this program.

�3� To assign a control-level indicator to a field in an externally described

record, specify the name of the field in positions 49 through 62 and specify

a control-level indicator in positions 63 and 64.

 In this example, the ITEM field in both records MSTRITEM and

MSTRWHSE is specified to be the L1 control field.

�1� To assign a match value to a field in an externally described record, specify

the record-format name in positions 7 through 16 of the

record-identification line. On the field-description line specify the name of

the field in positions 49 through 62 and assign a match-level value in

positions 65 and 66.

 In this example, the CUSTNO field in both records MSTREC and WKREC

is assigned the match-level value M1.

�2� To assign a field indicator to a field in an externally described record,

specify the record-format name in positions 7 through 16 of the

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

IRcdname+++....In...*

IMSTRITEM 01 �1�

I..............Ext-field+..................Field+++++++++L1M1..PlMnZr......

I ITEMNUMB �2� ITEM L1 �3�

 *

IMSTRWHSE 02

I ITEMNUMB ITEM L1

 *

Figure 154. Overriding and Adding RPG Functions to an External Description

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................

IMSTREC 01 �1�

I..............Ext-field+..................Field+++++++++L1M1..PlMnZr......

I CUSTNO M1 �1�

 *

IWKREC 02

I CUSTNO M1

I BALDUE 98 �2�

 *

Figure 155. Adding RPG Functions to an External Description

Defining Externally Described Files

314 ILE RPG Programmer’s Guide

record-identification line. On the field-description line, specify the field

name in positions 49 through 62, and specify an indicator in positions 69

through 74.

 In this example, the field BALDUE in the record WKREC is tested for zero

when it is read into the program. If the field’s value is zero, indicator 98 is

set on.

Using Output Specifications

Output specifications are optional for an externally described file. RPG supports

file operation codes such as WRITE and UPDATE that use the external

record-format description to describe the output record without requiring output

specifications for the externally described file.

You can use output specification to control when the data is to be written, or to

specify selective fields that are to be written. The valid entries for the

field-description line for an externally described file are output indicators

(positions 21 - 29), field name (positions 30 - 43), and blank after (position 45). Edit

words and edit codes for fields written to an externally described file are specified

in the DDS for the file. Device-dependent functions such as fetch overflow

(position 18) or space/skip (positions 40 - 51) are not valid in an RPG program for

externally described files. The overflow indicator is not valid for externally

described files either. For a description of how to specify editing in the DDS, refer

to the DB2 Universal Database for AS/400 section of the Database and File Systems

category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

If output specifications are used for an externally described file, the record-format

name is specified in positions 7 - 16 instead of the file name.

If all the fields in an externally described file are to be placed in the output record,

enter *ALL in positions 30 through 43 of the field-description line. If *ALL is

specified, you cannot specify other field description lines for that record.

If you want to place only certain fields in the output record, enter the field name

in positions 30 through 43. The field names you specify in these positions must be

the field names defined in the external record description, unless the field was

renamed on the input specifications. See Figure 156 on page 316.

You should know about these considerations for using the output specifications for

an externally described file:

v In the output of an update record, only those fields specified in the output field

specifications and meeting the conditions specified by the output indicators are

placed in the output record to be rewritten. Fields not specified in the output

specifications are rewritten using the values that were read. This technique offers

a good method of control as opposed to the UPDATE operation code that

updates all fields.

v In the creation of a new record, the fields specified in the output field

specifications are placed in the record. Fields not specified in the output field

specifications or not meeting the conditions specified by the output indicators

are written as default values, which depend on the data format specified in the

external description (for example: a blank for character fields; zero for numeric

fields).

Defining Externally Described Files

Chapter 15. Defining Files 315

http://www.ibm.com/eserver/iseries/infocenter

�1� For an update file, all fields in the record are written to the externally

described record ITMREC using the current values in the program for all

fields in the record.

 For the creation of a new record, all fields in the record are written to the

externally described record ITMREC using the current values in the

program for the fields in the record.

�2� To update a record, the fields SLSNAM and COMRAT are written to the

externally described record SLSREC when indicator 30 is on. The field

BONUS is written to the SLSREC record when indicators 30 and 15 are on.

All other fields in the record are written with the values that were read.

 To create a new record, the fields SLSNAM and COMRAT are written to

the externally described record SLSREC when indicator 30 is on. The field

BONUS is written when indicators 30 and 15 are on. All other fields in the

record are written as default values, which depend on their data type (for

example: a blank for character fields; zero for numeric fields).

Level Checking

HLL programs are dependent on receiving, at run time, an externally described file

whose format agrees with what was copied into the program at compilation time.

For this reason, the system provides a level-check function that ensures that the

format is the same.

The RPG compiler always provides the information required by level checking

when an externally described DISK, WORKSTN, or PRINTER file is used. The

level-check function can be requested on the create, change, and override file

commands. The default on the create file command is to request level checking.

Level checking occurs on a record-format basis when the file is opened unless you

specify LVLCHK(*NO) when you issue a file override command or create a file. If

the level-check values do not match, the program is notified of the error. The RPG

program then handles the OPEN error as described in Chapter 13, “Handling

Exceptions,” on page 263.

The RPG program does not provide level checking for program-described files or

for files using the devices SEQ or SPECIAL.

For more information on how to specify level checking, refer to the DB2 Universal

Database for AS/400 section of the Database and File Systems category in the iSeries

Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+............................*

OITMREC D 20

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++

O *ALL �1�

 *

OSLSREC D 30

O SLSNAM �2�

O COMRAT

O 15 BONUS

 *

Figure 156. Output Specifications for an Externally Described File

Defining Externally Described Files

316 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Defining Program-Described Files

Program-described files are files whose records and fields are described on

input/output specifications in the program that uses the file. To use a

program-described file in an RPG program you must:

1. Identify the file(s) in the file description specifications.

2. If it is an input file, describe the record and fields in the input specifications.

The file name in positions 7 through 16 in the input specifications must be the

same as the corresponding name entered in the file specifications.

On the record-identification entries you indicate whether you want to perform

sequence checking of records within the file.

3. Enter the same file name as in step 1 in the FACTOR 2 field of those calculation

specifications which require it. For example, WRITE operations to a

program-described file require a data structure name in the result field.

4. If it is an output file, describe the record and fields in the output specifications.

In addition, you specify how the output is to be printed. The file name in

positions 7 through 16 in the output specifications must be the same as the

corresponding name entered in the file specifications.

A program-described file must exist on the system, and be in your library list,

before the program can run. To create a file, use one of the Create File commands,

which can be found in the CL and APIs section of the Programming category in the

iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Data Management Operations and ILE RPG I/O Operations

Data management is the part of the operating system that controls the storing and

accessing of data by an application program. Table 35 shows the data management

operations provided by the iSeries system and their corresponding ILE RPG

operation. It also shows which operations are allowed for which ILE RPG device

type.

 Table 35. Data Management Operations and the Corresponding RPG I/O Operation

Data Management Operation ILE RPG I/O Operation

OPEN

OPEN

READ

 By relative

 record number

 By key

 Sequential

 Previous

 Next

 Invited Device

READ, CHAIN

READ, READE, CHAIN, primary and

secondary file

READ

READP, READPE

READ, READE

READ

WRITE-READ

EXFMT

WRITE

 By relative

 record number

 By key

 Sequential

WRITE

WRITE, EXCEPT, primary and secondary file

WRITE, EXCEPT

Defining Program-Described Files

Chapter 15. Defining Files 317

http://www.ibm.com/eserver/iseries/infocenter

Table 35. Data Management Operations and the Corresponding RPG I/O

Operation (continued)

Data Management Operation ILE RPG I/O Operation

FEOD

FEOD

UPDATE

 By relative

 record number

 By key

UPDATE, primary and secondary file

UPDATE, primary and secondary file

DELETE

 By relative

 record number

 By key

DELETE, primary and secondary file

DELETE, primary and secondary file

ACQUIRE

ACQ

RELEASE

REL

COMMIT

COMMIT

ROLLBACK

ROLBK

CLOSE

CLOSE, LR RETURN

Data Management Operations and ILE RPG I/O Operations

318 ILE RPG Programmer’s Guide

Chapter 16. General File Considerations

This chapter provides information on the following aspects of file processing on

the iSeries system using RPG:

v overriding and redirecting file input and output

v file locking by an RPG program

v record locking by an RPG program

v sharing an open data path

v iSeries spooling functions

v using SRTSEQ/ALTSEQ in an RPG program versus a DDS file

Overriding and Redirecting File Input and Output

i5/OS commands can be used to override a parameter in the specified file

description or to redirect a file at compilation time or run time. File redirection

allows you to specify a file at run time to replace the file specified in the program

(at compilation time):

 In the preceding example, the CL command OVRDBF (Override With Database

File) allows the program to run with an entirely different device file than was

specified at compilation time.

To override a file at run time, you must make sure that record names in both files

are the same. The RPG program uses the record-format name on the input/output

operations, such as a READ operation where it specifies what record type is

expected.

Not all file redirections or overrides are valid. At run time, checking ensures that

the specifications within the RPG program are valid for the file being processed.

The i5/OS system allows some file redirections even if device specifics are

contained in the program. For example, if the RPG device name is PRINTER, and

RPG program

Diskette

FILEY

Compile
Time

Override Command:
OVRDBF FILE (FILEY) TOFILE (FILEA)

Execution
Time

FILEA

File name = FILEY
Device = DISK

File type =
DEVICE

Device type =
DISKETTE

File type =
PHYSICAL

Figure 157. Overriding File Input and Output Example

© Copyright IBM Corp. 1994, 2006 319

the actual file the program connects to is not a printer, the i5/OS system ignores

the RPG print spacing and skipping specifications.

There are other file redirections that the i5/OS system does not allow and that

cause the program to end. For example, if the RPG device name is WORKSTN and

the EXFMT operation is specified in the program, the program is stopped if the

actual file the program connects to is not a display or ICF file.

In ILE, overrides are scoped to the activation group level, job level, or call level.

Overrides that are scoped to the activation group level remain in effect until they

are deleted, replaced, or until the activation group in which they are specified

ends. Overrides that are scoped to the job level remain in effect until they are

deleted, replaced, or until the job in which they are specified ends. This is true

regardless of the activation group in which the overrides were specified. Overrides

that are scoped to the call level remain in effect until they are deleted, replaced, or

until the program or procedure in which they are specified ends.

The default scope for overrides is the activation group. For job-level scope, specify

OVRSCOPE(*JOB) on the override command. For call-level scope, specify

OVRSCOPE(*CALLLVL) on the override command.

For more detailed information on valid file redirections and file overrides, refer to

the DB2 Universal Database for AS/400® section of the Database and File Systems

category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

ILE Concepts also contains information about overrides and activation group vs. job

level scope.

Example of Redirecting File Input and Output

The following example shows the use of a file override at compilation time.

Assume that you want to use an externally described file for a TAPE device which

does not have field-level description. You must:

1. Define a physical file named FMT1 with one record format that contains the

description of each field in the record format. The record format is defined on

the data description specifications (DDS). For a tape device, the externally

described file should contain only one record format.

2. Create the file named FMT1 with a Create Physical File CL command.

3. Specify the file name of QTAPE (which is the IBM-supplied device file name

for magnetic tape devices) in the RPG program. This identifies the file as

externally described (indicated by an E in position 22 of the file description

specifications), and specifies the device name SEQ in positions 36 through 42.

4. Use an override command–OVRDBF FILE(QTAPE) TOFILE(FMT1)–at

compilation time to override the QTAPE file name and use the FMT1 file name.

This command causes the compiler to copy in the external description of the

FMT1 file, which describes the record format to the RPG compiler.

5. Create the RPG program using the CRTBNDRPG command or the CRTPGM

command.

6. Call the program at run time. The override to file FMT1 should not be in effect

while the program is running. If the override is in effect, use the CL command

DLTOVR (Delete Override) before calling the program.

Note: You may need to use the CL command OVRTAPF before you call the

program to provide information necessary for opening the tape file.

Overriding and Redirecting File Input and Output

320 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

File Locking

The i5/OS system allows a lock state (exclusive, exclusive allow read, shared for

update, shared no update, or shared for read) to be placed on a file used during

the execution of a job. Programs within a job are not affected by file lock states. A

file lock state applies only when a program in another job tries to use the file

concurrently. The file lock state can be allocated with the CL command ALCOBJ

(Allocate Object). For more information on allocating resources and lock states,

refer to the DB2 Universal Database for AS/400 section of the Database and File

Systems category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

The i5/OS system places the following lock states on database files when it opens

the files:

 File Type Lock State

Input Shared for read

Update Shared for update

Add Shared for update

Output Shared for update

The shared-for-read lock state allows another user to open the file with a lock state

of shared for read, shared for update, shared no update, or exclusive allow read,

but the user cannot specify the exclusive use of the file. The shared-for-update lock

state allows another user to open the file with shared-for-read or shared-for-update

lock state.

The RPG program places an exclusive-allow-read lock state on device files.

Another user can open the file with a shared-for-read lock state.

The lock state placed on the file by the RPG program can be changed if you use

the Allocate Object command.

RPG program

Execution Time:
No Override

File name = QTAPE
Format = E
Device = SEQ

Compile Time:
Override File
QTAPE to
File FMT1

QTAPE

FMT1

File type =
DEVICE

Device type =
TAPE

Figure 158. Redirecting File Input and Output Example

Overriding and Redirecting File Input and Output

Chapter 16. General File Considerations 321

http://www.ibm.com/eserver/iseries/infocenter

Record Locking

When a record is read by a program, it is read in one of two modes: input or

update. If a program reads a record for update, a lock is placed on that record.

Another program cannot read the same record for update until the first program

releases that lock. If a program reads a record for input, no lock is placed on the

record. A record that is locked by one program can be read for input by another

program.

In RPG IV programs, you use an update file to read records for update. A record

read from a file with a type other than update can be read for inquiry only. By

default, any record that is read from an update file will be read for update. For

update files, you can specify that a record be read for input by using one of the

input operations CHAIN, READ, READE, READP, or READPE and specifying an

operation code extender (N) in the operation code field following the operation

code name.

When a record is locked by an RPG IV program, that lock remains until one of the

following occurs:

v the record is updated.

v the record is deleted.

v another record is read from the file (either for inquiry or update).

v a SETLL or SETGT operation is performed against the file

v an UNLOCK operation is performed against the file.

v an output operation defined by an output specification with no field names

included is performed against the file.

Note: An output operation that adds a record to a file does not result in a

record lock being released.

If your program reads a record for update and that record is locked through

another program in your job or through another job, your read operation will wait

until the record is unlocked (except in the case of shared files, see “Sharing an

Open Data Path” on page 323). If the wait time exceeds that specified on the

WAITRCD parameter of the file, an exception occurs. If your program does not

handle this exception (RNX1218) then the default error handler is given control

when a record lock timeout occurs, an RNQ1218 inquiry message will be issued.

One of the options listed for this message is to retry the operation on which the

timeout occurred. This will cause the operation on which the timeout occurred to

be re-issued, allowing the program to continue as if the record lock timeout had

not occurred. Note that if the file has an INFSR specified in which an I/O

operation is performed on the file before the default error handler is given control,

unexpected results can occur if the input operation that is retried is a sequential

operation, since the file cursor may have been modified.

Note: Subprocedures do not get inquiry message, and so this situation should be

handled by using an error indicator on the read operation and checking for

status 1218 following the read.

If no changes are required to a locked record, you can release it from its locked

state, without modifying the file cursor, by using the UNLOCK operation or by

processing output operations defined by output specifications with no field names

included. These output operations can be processed by EXCEPT output, detail

output, or total output.

Record Locking

322 ILE RPG Programmer’s Guide

(There are exceptions to these rules when operating under commitment control.

See “Using Commitment Control” on page 351 for more information.)

Sharing an Open Data Path

An open data path is the path through which all input and output operations for a

file are performed. Usually a separate open data path is defined each time a file is

opened. If you specify SHARE(*YES) for the file creation or on an override, the

first program’s open data path for the file is shared by subsequent programs that

open the file concurrently.

The position of the current record is kept in the open data path for all programs

using the file. If you read a record in one program and then read a record in a

called program, the record retrieved by the second read depends on whether the

open data path is shared. If the open data path is shared, the position of the

current record in the called program is determined by the current position in the

calling program. If the open data path is not shared, each program has an

independent position for the current record.

If your program holds a record lock in a shared file and then calls a second

program that reads the shared file for update, you can release the first program’s

lock by :

v performing a READ operation on the update file by the second program, or

v using the UNLOCK or the read-no-lock operations.

In ILE, shared files are scoped to either the job level or the activation group level.

Shared files that are scoped to the job level can be shared by any programs

running in any activation group within the job. Shared files that are scoped to the

activation group level can be shared only by the programs running in the same

activation group.

The default scope for shared files is the activation group. For job-level scope,

specify OVRSCOPE(*JOB) on the override command.

ILE RPG offers several enhancements in the area of shared ODPs. If a program or

procedure performs a read operation, another program or procedure can update

the record as long as SHARE(*YES) is specified for the file in question. In addition,

when using multiple-device files, if one program acquires a device, any other

program sharing the ODP can also use the acquired device. It is up to the

programmer to ensure that all data required to perform the update is available to

the called program.

If a program performs a sequential input operation, and it results in an end-of-file

condition, the normal operation is for any subsequent sequential input operation in

the same module to immediately result in an end-of-file condition without any

physical input request to the database. However, if the file is shared, the RPG

runtime will always send a physical input request to the database, and the input

operation will be successful if the file has been repositioned by a call to another

program or module using the shared file.

Sharing an open data path improves performance because the i5/OS system does

not have to create a new open data path. However, sharing an open data path can

cause problems. For example, an error is signaled in the following cases:

Record Locking

Chapter 16. General File Considerations 323

|
|
|
|
|
|
|

v If a program sharing an open data path attempts file operations other than those

specified by the first open (for example, attempting input operations although

the first open specified only output operations)

v If a program sharing an open data path for an externally described file tries to

use a record format that the first program ignored

v If a program sharing an open data path for a program described file specifies a

record length that exceeds the length established by the first open.

When several files in one program are overridden to one shared file at run time,

the file opening order is important. In order to control the file opening order, you

should use a programmer-controlled open or use a CL program to open the files

before calling the program.

If a program shares the open data path for a primary or secondary file, the

program must process the detail calculations for the record being processed before

calling another program that shares that open data path. Otherwise, if lookahead is

used or if the call is at total time, sharing the open data path for a primary or

secondary file may cause the called program to read data from the wrong record in

the file.

You must make sure that when the shared file is opened for the first time, all of

the open options that are required for subsequent opens of the file are specified. If

the open options specified for subsequent opens of a shared file are not included in

those specified for the first open of a shared file, an error message is sent to the

program.

Table 36 details the system open options allowed for each of the open options you

can specify.

 Table 36. System Open Options Allowed with User Open Options

RPG User

Open Options

System

Open Options

INPUT INPUT

OUTPUT OUTPUT (program created file)

UPDATE INPUT, UPDATE, DELETE

ADD OUTPUT (existing file)

For additional information about sharing an open data path and activation group

versus job level scope, see the ILE Concepts manual.

Spooling

Spooling is a system function that puts data into a storage area to wait for

processing. The iSeries system provides for the use of input and output spooling

functions. Each iSeries file description contains a spool attribute that determines

whether spooling is used for the file at run time. The RPG program is not aware

that spooling is being used. The actual physical device from which a file is read or

to which a file is written is determined by the spool reader or the spool writer. For

more detailed information on spooling, refer to the DB2 Universal Database for

AS/400 section of the Database and File Systems category in the iSeries Information

Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter.

Sharing an Open Data Path

324 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Output Spooling

Output spooling is valid for batch or interactive jobs. The description of the file

that is specified in the RPG program by the file name contains the specification for

spooling as shown in the following diagram:

 File override commands can be used at run time to override the spooling options

specified in the file description, such as the number of copies to be printed. In

addition, iSeries spooling support allows you to redirect a file after the program

has run. You can direct the same printed output to a different device such as a

diskette.

SRTSEQ/ALTSEQ in an RPG Program versus a DDS File

When a keyed file is created using SRTSEQ and LANGID, the SRTSEQ specified is

used when comparing character keys in the file during CHAIN, SETLL, SETGT,

READE and READPE operations. You do not have to specify the same, or any,

SRTSEQ value when creating the RPG program or module.

When a value for SRTSEQ is specified on CRTBNDRPG or CRTRPGMOD, then all

character comparison operations in the program will use this SRTSEQ. This value

affects the comparison of all fields, including key fields, fields from other files and

fields declared in the program.

You should decide whether to use SRTSEQ for your RPG program based on how

you want operations such as IFxx, COMP, and SORTA, to work on your character

data, not on what was specified when creating your files.

RPG program

Spooled
File

QPRINT Spooling

Queue

QPRINT

Execution Time

Start
Printer
writer

Start Printer
writer Time

Device

File name = QPRINT
Device = PRINTER

SPOOL (*YES)
QUEUE (QPRINT)

Figure 159. Output Spooling Example

Spooling

Chapter 16. General File Considerations 325

SRTSEQ/ALTSEQ

326 ILE RPG Programmer’s Guide

Chapter 17. Accessing Database Files

You can access a database file from your program by associating the file name with

the device DISK in the appropriate file specification.

DISK files of an ILE RPG program also associate with distributed data

management (DDM) files, which allow you to access files on remote systems as

database files.

Database Files

Database files are objects of type *FILE on the iSeries system. They can be either

physical or logical files and either externally described or program-described. You

access database files by associating the file name with the device DISK in positions

36 through 42 of the file description specifications.

Database files can be created by i5/OS Create File commands. For more

information on describing and creating database files, refer to the DB2 Universal

Database for AS/400 section of the Database and File Systems category in the iSeries

Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Physical Files and Logical Files

Physical files contain the actual data that is stored on the system, and a

description of how data is to be presented to or received from a program. They

contain only one record format, and one or more members. Records in database

files can be externally or program-described.

A physical file can have a keyed sequence access path. This means that data is

presented to a program in a sequence based on one or more key fields in the file.

Logical files do not contain data. They contain a description of records found in

one or more physical files. A logical file is a view or representation of one or more

physical files. Logical files that contain more than one format are referred to as

multi-format logical files.

If your program processes a logical file which contains more than one record

format, you can use a read by record format to set the format you wish to use.

Data Files and Source Files

A data file contains actual data, or a view of the data. Records in data files are

grouped into members. All the records in a file can be in one member or they can

be grouped into different members. Most database commands and operations by

default assume that database files which contain data have only one member. This

means that when your program accesses database files containing data, you do not

need to specify the member name for the file unless your file contains more than

one member. If your file contains more than one member and a particular member

is not specified, the first member is used.

Usually, database files that contain source programs are made up of more than one

member. Organizing source programs into members within database files allows

© Copyright IBM Corp. 1994, 2006 327

http://www.ibm.com/eserver/iseries/infocenter

you to better manage your programs. The source member contains source

statements that the system uses to create program objects.

Using Externally Described Disk Files

Externally described DISK files are identified by an E in position 22 of the file

description specifications. The E indicates that the compiler is to retrieve the

external description of the file from the system when the program is compiled.

Therefore, you must create the file before the program is compiled.

The external description for a DISK file includes:

v The record-format specifications that contain a description of the fields in a

record

v Access path specifications that describe how the records are to be retrieved.

These specifications result from the DDS for the file and the i5/OS create file

command that is used for the file.

Record Format Specifications

The record-format specifications allow you to describe the fields in a record and

the location of the fields in a record. The fields are located in the record in the

order specified in the DDS. The field description generally includes the field name,

the field type, and the field length (including the number of decimal positions in a

numeric field). Instead of specifying the field attributes in the record format for a

physical or logical file, you can define them in a field-reference file.

In addition, the DDS keywords can be used to:

v Specify that duplicate key values are not allowed for the file (UNIQUE)

v Specify a text description for a record format or a field (TEXT).

For a complete list of the DDS keywords that are valid for a database file, refer to

the DB2 Universal Database for AS/400 section of the Database and File Systems

category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Figure 160 on page 329 shows an example of the DDS for a database file, and

Figure 161 on page 330 for a field-reference file that defines the attributes for the

fields used in the database file. See the above Web site for more information on

field-reference files.

Access Path

The description of an externally described file contains the access path that

describes how records are to be retrieved from the file. Records can be retrieved

based on an arrival sequence (non-keyed) access path or on a keyed-sequence

access path.

The arrival sequence access path is based on the order in which the records are

stored in the file. Records are added to the file one after another.

For the keyed-sequence access path, the sequence of records in the file is based on

the contents of the key field that is defined in the DDS for the file. For example, in

the DDS shown in Figure 160 on page 329, CUST is defined as the key field. The

keyed-sequence access path is updated whenever records are added, deleted, or

when the contents of a key field change.

Database Files

328 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

For a complete description of the access paths for an externally described database

file, refer to the DB2 Universal Database for AS/400 section of the Database and File

Systems category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

 The sample DDS are for the customer master logical file CUSMSTL. The file

contains one record format CUSREC (customer master record). The data for this

file is contained in the physical file CUSMSTP, which is identified by the keyword

PFILE. The UNIQUE keyword is used to indicate that duplicate key values are not

allowed for this file. The CUST field is identified by a K in position 17 of the last

line as the key field for this record format.

The fields in this record format are listed in the order they are to appear in the

record. The attributes for the fields are obtained from the physical file CUSMSTP.

The physical file, in turn, refers to a field-reference file to obtain the attributes for

the fields. The field-reference file is shown in Figure 161 on page 330.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A** LOGICAL CUSMSTL CUSTOMER MASTER FILE

A UNIQUE

A R CUSREC PFILE(CUSMSTP)

A TEXT(’Customer Master Record’)

A CUST

A NAME

A ADDR

A CITY

A STATE

A ZIP

A SRHCOD

A CUSTYP

A ARBAL

A ORDBAL

A LSTAMT

A LSTDAT

A CRDLMT

A SLSYR

A SLSLYR

A K CUST

Figure 160. Example of the Data Description Specifications for a Database File

Using Externally Described Disk Files

Chapter 17. Accessing Database Files 329

http://www.ibm.com/eserver/iseries/infocenter

This example of a field-reference file shows the definitions of the fields that are

used by the CUSMSTL (customer master logical) file as shown in Figure 160 on

page 329. The field-reference file normally contains the definitions of fields that are

used by other files. The following text describes some of the entries for this

field-reference file.

�1� The BASDAT field is edited by the Y edit code, as indicated by the

keyword EDTCDE(Y). If this field is used in an externally described output

file for an ILE RPG program, the edit code used is the one specified in this

field-reference file; it cannot be overridden in the ILE RPG program. If the

field is used in a program-described output file for an ILE RPG program,

an edit code must be specified for the field in the output specifications.

�2� The CHECK(MF) entry specifies that the field is a mandatory fill field

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A**FLDRED DSTREF DISTRIBUTION APPLICATION FIELD REFERENCE

A R DSTREF TEXT(’Distribution Field Ref’)

A* COMMON FIELDS USED AS REFERENCE

A BASDAT 6 0 EDTCDE(Y) �1�

A TEXT(’Base Date Field’)

A* FIELDS USED BY CUSTOMER MASTER FILE

A CUST 5 CHECK(MF) �2�

A COLHDG(’Customer’ ’Number’)

A NAME 20 COLHDG(’Customer Name’)

A ADDR R REFFLD(NAME) �3�

A COLHDG(’Customer Address’)

A CITY R REFFLD(NAME) �3�

A COLHDG(’Customer City’)

A STATE 2 CHECK(MF) �2�

A COLHDG(’State’)

A SRHCOD 6 CHECK(MF) �2�

A COLHDG(’Search’ ’Code’)

A TEXT(’Customer Number Search +

A Code’)

A ZIP 5 0 CHECK(MF) �2�

A COLHDG(’Zip’ ’Code’)

A CUSTYP 1 0 RANGE(1 5) �4�

A COLHDG(’Cust’ ’Type’)

A TEXT(’Customer Type 1=Gov 2=Sch+

A 3=Bus 4=Pvt 5=Oth’)

A ARBAL 8 2 COLHDG(’Accts Rec’ ’Balance’) �5�

A EDTCDE(J) �6�

A ORDBAL R REFFLD(ARBAL)

A COLHDG(’A/R Amt in’ ’Order +

A File’)

A LSTAMT R REFFLD(ARBAL)

A COLHDG(’Last’ ’Amount’ ’Paid’)

A TEXT(’Last Amount Paid in A/R’)

A LSTDAT R REFFLD(BASDAT)

A COLHDG(’Last’ ’Date’ ’Paid’)

A TEXT(’Last Date Paid in A/R’)

A CRDLMT R REFFLD(ARBAL)

A COLHDG(’Credit’ ’Limit’)

A TEXT(’Customer Credit Limit’)

A SLSYR R+ 2 REFFLD(ARBAL)

A COLHDG(’Sales’ ’This’ ’Year’)

A TEXT(’Customer Sales This Year’)

A SLSLYR R+ 2 REFFLD(ARBAL)

A COLHDG(’Sales’ ’Last’ ’Year’)

A TEXT(’Customer Sales Last Year’) �7�

Figure 161. Example of a field Reference File

Using Externally Described Disk Files

330 ILE RPG Programmer’s Guide

when it is entered from a display work station. Mandatory fill means that

all characters for the field must be entered from the display work station.

�3� The ADDR and CITY fields share the same attributes that are specified for

the NAME field, as indicated by the REFFLD keyword.

�4� The RANGE keyword, which is specified for the CUSTYP field, ensures

that the only valid numbers that can be entered into this field from a

display work station are 1 through 5.

�5� The COLHDG keyword provides a column head for the field if it is used

by the Interactive Database Utilities (IDU).

�6� The ARBAL field is edited by the J edit code, as indicated by the keyword

EDTCDE(J).

�7� A text description (TEXT keyword) is provided for some fields. The TEXT

keyword is used for documentation purposes and appears in various

listings.

Valid Keys for a Record or File

For a keyed-sequence access path, you can define one or more fields in the DDS to

be used as the key fields for a record format. All record types in a file do not have

to have the same key fields. For example, an order header record can have the

ORDER field defined as the key field, and the order detail records can have the

ORDER and LINE fields defined as the key fields.

The key for a file is determined by the valid keys for the record types in that file.

The file’s key is determined in the following manner:

v If all record types in a file have the same number of key fields defined in the

DDS that are identical in attributes, the key for the file consists of all fields in the

key for the record types. (The corresponding fields do not have to have the same

name.) For example, if the file has three record types and the key for each record

type consists of fields A, B, and C, the file’s key consists of fields A, B, and C.

That is, the file’s key is the same as the records’ key.

v If all record types in the file do not have the same key fields, the key for the file

consists of the key fields common to all record types. For example, a file has three

record types and the key fields are defined as follows:

– REC1 contains key field A.

– REC2 contains key fields A and B.

– REC3 contains key fields A, B, and C.
The file’s key is field A–the key field common to all record types.

v If no key field is common to all record types, there is no key for the file.

In an ILE RPG program, you can specify a search argument on certain file

operation codes to identify the record you want to process. The ILE RPG program

compares the search argument with the key of the file or record, and processes the

specified operation on the record whose key matches the search argument.

Valid Search Arguments

You can specify a search argument in the ILE RPG operations CHAIN, DELETE,

READE, READPE, SETGT, and SETLL that specify a file name or a record name.

For an operation to a file name, the maximum number of fields that you can

specify in a search argument is equal to the total number of key fields valid for the

file’s key. For example, if all record types in a file do not contain all of the same

Using Externally Described Disk Files

Chapter 17. Accessing Database Files 331

key fields, you can use a key list (KLIST) to specify a search argument that is

composed only of the number of fields common to all record types in the file. If a

file contains three record types, the key fields are defined as follows:

– REC1 contains key field A.

– REC2 contains key fields A and B.

– REC3 contains key fields A, B, and C.

The search argument can only be a single field with attributes identical to field A

because field A is the only key field common to all record types.

Note: Null-capable key fields cannot be used with ALWNULL(*YES) or

ALWNULL(*INPUTONLY).

For an operation to a record name, the maximum number of fields that you can

specify in a search argument is equal to the total number of key fields valid for

that record type.

If the search argument consists of one or more fields, you can specify a KLIST, a

figurative constant, and in free-form calculations only, a list of expressions

(enclosed by parentheses) or a %KDS. If the search argument consists of only one

field, in addition to the above, you can also specify a literal or variable name.

To process null-valued keys, you can:

v code the search argument using KLIST, in which case the null indicator can be

specified in Factor 2 of the KFLD opcode

v code a null-capable field as the search argument in a list (enclosed by

parentheses)

v code a null-capable field in the data structure specified in %KDS

For the latter two, the current value of the %NULLIND() for the search argument

is used in the search.

The attributes of each field in the search argument must be identical to the

attributes of the corresponding field in the file or record key. The attributes include

the length, the data type and the number of decimal positions. The attributes are

listed in the key-field-information data table of the compiler listing. See the

example in “Key Field Information” on page 487. For search arguments in a list or

%KDS used in an I/O operation in free-form calculations, the search argument

only needs to match in type. Length and format may be different than the key

defined in the file.

In all these file operations (CHAIN, DELETE, READE, READPE, SETGT, and

SETLL), you can also specify a search argument that contains fewer than the total

number of fields valid for the file or record. Such a search argument refers to a

partial key.

Referring to a Partial Key

To specify a partial key, you can use a KLIST with fewer KFLD specifications. In

free-form calculations, you can also use %KDS with a second parameter indicating

the number of keys, or a list of expressions with as many keys as you want. For

example, if the file has three keys, but you only want to specify two keys, you can

specify the partial key in any of the following ways.

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D keys DS LIKEREC(rec : *KEY)

CL0N01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+HiLoEq

Using Externally Described Disk Files

332 ILE RPG Programmer’s Guide

|
|

#

#
#

#
#

#

#
#

C klist2 KLIST

C KFLD k1

C KFLD k2

 /free

 CHAIN klist2 rec; // KLIST with two KFLD entries

 CHAIN %KDS(keys : 2) rec; // %KDS with two keys

 CHAIN (name : %char(id_no)) rec; // a list of two expressions

The rules for the specification of a search argument that refers to a partial key are

as follows:

v The search argument is composed of fields that correspond to the leftmost

(high-order) fields of the key for the file or record.

v Only the rightmost fields can be omitted from the list of keys for a search

argument that refers to a partial key. For example, if the total key for a file or

record is composed of key fields A, B, and C, the valid search arguments that

refer to a partial key are field A, and fields A and B.

v Each field in the search argument must be identical in attributes to the

corresponding key field in the file or record. For search arguments in a list or

%KDS used in an I/O operation in free-form calculations, the search argument

only needs to match in type. Length and format may be different than the key

defined in the file. The attributes include the length, data type, the number of

decimal positions, and format (for example, packed or zoned).

v A search argument cannot refer to a portion of a key field.

If a search argument refers to a partial key, the file is positioned at the first record

that satisfies the search argument or the record retrieved is the first record that

satisfies the search argument. For example, the SETGT and SETLL operations

position the file at the first record on the access path that satisfies the operation

and the search argument. The CHAIN operation retrieves the first record on the

access path that satisfies the search argument. The DELETE operation deletes the

first record on the access path that satisfies the search argument. The READE

operation retrieves the next record if the portion of the key of that record (or the

record of the specified type) on the access path matches the search argument. The

READPE operation retrieves the prior record if the portion of the key of that

record (or the record of the specified type) on the access path matches the search

argument. For more information on the above operation codes, see the WebSphere

Development Studio: ILE RPG Reference.

Record Blocking and Unblocking

By default, the RPG compiler unblocks input records and blocks output records to

improve run-time performance in SEQ or DISK files when the following conditions

are met:

1. The file is program-described or, if externally described, it has only one record

format.

2. The keyword RECNO is not used in the file-description specification.

Note: If RECNO is used, the ILE RPG compiler will not allow record blocking.

However, if the file is an input file and RECNO is used, Data

Management may still block records if fast sequential access is set. This

means that updated records might not be seen right away.

3. One of the following is true:

a. The file is an output file.

b. If the file is a combined file, then it is an array or table file.

Using Externally Described Disk Files

Chapter 17. Accessing Database Files 333

c. The file is an input-only file; it is not a record-address file or processed by a

record-address file; and uses only the OPEN, CLOSE FEOD, and READ file

operations. (In other words, the following file operations are not allowed:

READE, READPE, SETGT, SETLL, and CHAIN.)

The RPG compiler generates object program code to block and unblock records for

all SEQ or DISK files that satisfy the above conditions. Certain i5/OS system

restrictions may prevent blocking and unblocking. In those cases, performance is

not improved.

You can explicitly request record blocking by specifying the keyword

BLOCK(*YES) on the file-description specification for the file. The only difference

between the default record blocking and user-requested record blocking is that

when BLOCK(*YES) is specified for input files, then the operations SETLL, SETGT

and CHAIN can be used with the input file (see condition 3c above) and blocking

will still occur. If the BLOCK keyword is not specified and these operations are

used, no record blocking will occur.

You can also prevent the default blocking of records by specifying the keyword

BLOCK(*NO) on the file-description specification. If BLOCK(*NO) is specified,

then no record blocking is done by the compiler, nor by data management. If the

keyword BLOCK is not specified, then default blocking occurs as described above.

The input/output and device-specific feedback of the file information data

structure are not updated after each read or write (except for the RRN and Key

information on block reads) for files in which the records are blocked and

unblocked by the RPG compiler. The feedback area is updated each time a block of

records is transferred. (For further details on the file information data structure see

the WebSphere Development Studio: ILE RPG Reference.)

You can obtain valid updated feedback information by preventing the file from

being blocked and unblocked. Use one of the following ways to prevent blocking:

v Specify BLOCK(*NO) on the file description specification.

v At run time, use the CL command OVRDBF (Override with Database File) with

SEQONLY(*NO) specified.

Using Program-Described Disk Files

Program-described files, which are identified by an F in position 22 of the file

description specifications, can be described as indexed files, as sequential files, or

as record-address files.

Indexed File

An indexed file is a program-described DISK file whose access path is built on key

values. You must create the access path for an indexed file by using data

description specifications.

An indexed file is identified by an I in position 35 of the file description

specifications.

The key fields identify the records in an indexed file. You specify the length of the

key field in positions 29 through 33, the format of the key field in position 34, and

the starting location of the key field in the KEYLOC keyword of the file

description specifications.

Using Externally Described Disk Files

334 ILE RPG Programmer’s Guide

An indexed file can be processed sequentially by key, sequentially within limits, or

randomly by key.

Valid Search Arguments

For a program-described file, a search argument must be a single field. For the

CHAIN and DELETE operations, the search argument must be the same length as

the key field that is defined on the file description specifications for the indexed

file. For the other file operations, the search argument may be a partial field.

The DDS specifies the fields to be used as a key field. The KEYLOC keyword of

the file description specifications specify the starting position of the first key field.

The entry in positions 29 through 33 of the file description specifications must

specify the length of the key as defined in the DDS.

Figure 162 and Figure 163 on page 336 show examples of how to use the DDS to

describe the access path for indexed files.

 You must use data description specifications to create the access path for a

program-described indexed file.

In the DDS for the record format FORMATA for the logical file ORDDTLL, the

field ORDER, which is five digits long, is defined as the key field, and is in packed

format. The definition of ORDER as the key field establishes the keyed access for

this file. Two other fields, FLDA and FLDB, describe the remaining positions in this

record as character fields.

The program-described input file ORDDTLL is described on the file description

specifications as an indexed file. Positions 29 through 33 must specify the number

of positions in the record required for the key field as defined in the DDS: three

positions. The KEYLOC keyword specifies position 15 as the starting position of

the key field in the record. Because the file is defined as program-described by the

F in position 22, the ILE RPG compiler does not retrieve the external field-level

description of the file at compilation time. Therefore, you must describe the fields

in the record on the input specifications.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A R FORMATA PFILE(ORDDTLP)

A TEXT(’Access Path for Indexed +

A File’)

A FLDA 14

A ORDER 5 0

A FLDB 101

A K ORDER

A*

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

FORDDTLL IP F 118 3PIDISK KEYLOC(15)

F*

Figure 162. DDS and corresponding File-Description Specification Detail Flow of RPG IV

Exception/Error Handling

Using Program-Described Disk Files

Chapter 17. Accessing Database Files 335

In this example, the data description specifications define two key fields for the

record format FORMAT in the logical file ORDDTLL. For the two fields to be used

as a composite key for a program described indexed file, the key fields must be

contiguous in the record.

On the file description specifications, the length of the key field is defined as 10 in

positions 29 through 33 (the combined number of positions required for the

ORDER and ITEM fields). The starting position of the key field is described as 15

using the keyword KEYLOC (starting in position 44). The starting position must

specify the first position of the first key field.

 When the DDS specifies a composite key, you must build a search argument in the

program to CHAIN to the file. (A KLIST cannot be used for a program-described

file.) One way is to create a data structure (using definition specifications) with

subfields equal to the key fields defined in the DDS. Then, in the calculations, set

the subfields equal to the value of the key fields, and use the data-structure name

as the search argument in the CHAIN operation.

In this example, the MOVE operations set the subfields K1 and K2 equal to the

value of ORDER and ITEM, respectively. The data-structure name (KEY) is then

used as the search argument in the CHAIN operation.

Sequential File

Sequential files are files where the order of the records in the file is based on the

order the records are placed in the file (that is, in arrival sequence). For example,

the tenth record placed in the file occupies the tenth record position.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A R FORMAT PFILE(ORDDTLP)

A TEXT(’Access Path for Indexed +

A File’)

A FLDA 14

A ORDER 5

A ITEM 5

A FLDB 96

A K ORDER

A K ITEM

Figure 163. (Part 1 of 2). Using Data Description Specifications to Define the Access Path

(Composite Key) for an Indexed File

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

FORDDTLL IP F 120 10AIDISK KEYLOC(15)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

DKEY DS

D K1 1 5

D K2 6 10

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVE ORDER K1

C MOVE ITEM K2

C KEY CHAIN ORDDTLL 99

Figure 164. (Part 2 of 2). Using Data Description Specifications to Define the Access Path

(Composite Key) for an Indexed File

Using Program-Described Disk Files

336 ILE RPG Programmer’s Guide

Sequential files can be processed randomly by relative record number,

consecutively, or by a record-address file. You can use either the SETLL or SETGT

operation code to set limits on the file.

Record Address File

You can use a record-address file to process another file. A record-address file can

contain (1) limits records that are used to process a file sequentially within limits,

or (2) relative record numbers that are used to process a file by relative record

numbers. The record-address file itself must be processed sequentially.

A record-address file is identified by an R in position 18 of the file description

specifications. If the record-address file contains relative record numbers, position

35 must contain a T. The name of the file to be processed by the record-address file

must be specified on the file description specification. You identify the file using

the keyword RAFDATA(file-name).

Limits Records

For sequential-within-limits processing, the record-address file contains limits

records. A limits record contains the lowest record key and the highest record key

of the records in the file to be read.

The format of the limits records in the record-address file is as follows:

v The low key begins in position 1 of the record; the high key immediately follows

the low key. No blanks can appear between the keys.

v Each record in the record-address file can contain only one set of limits. The

record length must be greater than or equal to twice the length of the record key.

v The low key and the high key in the limits record must be the same length. The

length of the keys must be equal to the length of the key field of the file to be

processed.

v A blank entry equal in length to the record key field causes the ILE RPG

compiler to read the next record in the record-address file.

Relative Record Numbers

For relative-record-number processing, the record-address file contains relative

record numbers. Each record retrieved from the file being processed is based on a

relative record number in the record-address file. A record-address file containing

relative record numbers cannot be used for limits processing. Each relative record

number in the record-address file is a multi-byte binary field where each field

contains a relative record number.

You can specify the record-address file length as 4, 3, or blank, depending on the

source of the file. When using a record-address file from the iSeriesenvironment,

specify the record-address file length as 4, since each field is 4 bytes in length.

When using a record-address file created for the System/36 Environment™, specify

the record-address file length as 3, since each field is 3 bytes in length. If you

specify the record-address file length as blank, the compiler will check the primary

record length at run time and determine whether to treat the record-address file as

3 byte or as 4 byte.

A minus 1 (-1 or hexadecimal FFFFFFFF) relative-record-number value stops the

use of a relative-record-address file record. End of file occurs when all records

from the record-address file have been processed.

Using Program-Described Disk Files

Chapter 17. Accessing Database Files 337

Methods for Processing Disk Files

The methods of disk file processing include:

v Consecutive processing

v Sequential-by-key processing

v Random-by-key processing

v Sequential-within-limits processing.

v Relative-record-number processing

Table 37 shows the valid entries for positions 28, 34, and 35 of the file description

specification for the various file types and processing methods. The subsequent

text describes each method of processing.

 Table 37. Processing Methods for DISK Files

Processing Method Limits

Processing

(Pos. 28)

Record

Address

Type

(Pos. 34)

File

Organization

(Pos. 35)

Externally Described Files

With Keys

 Sequentially

 Randomly

 Sequential within limits

 (by record-address file)

Without Keys

 Randomly/consecutively

Blank

Blank

L

Blank

K

K

K

Blank

Blank

Blank

Blank

Blank

Program Described Files

With Keys (indexed file)

 Sequentially

 Randomly

 Sequential within limits

 (by record-address file)

Without Keys

 Randomly/consecutively

 By record-address file

 As record-address file

 (relative record numbers)

 As record-address limits file

Blank

Blank

L

Blank

Blank

Blank

Blank

A, D, G, P,

 T, Z, or F

A, D, G, P,

 T, Z, or F

A, D, G, P,

 T, Z, or F

Blank

Blank

Blank

A, D, G, P,

 T, Z, F, or

Blank

I

I

I

Blank

Blank

T

Blank

Consecutive Processing

During consecutive processing, records are read in the order they appear in the

file.

Methods for Processing Disk Files

338 ILE RPG Programmer’s Guide

For output and input files that do not use random functions (such as SETLL,

SETGT, CHAIN, or ADD), the ILE RPG compiler defaults to or operates as though

SEQONLY(*YES) had been specified on the CL command OVRDBF (Override with

Database File). (The ILE RPG compiler does not operate as though

SEQONLY(*YES) had been specified for update files.) SEQONLY(*YES) allows

multiple records to be placed in internal data management buffers; the records are

then passed to the ILE RPG compiler one at a time on input.

If, in the same job or activation group, two logical files use the same physical file,

and one file is processed consecutively and one is processed for random update, a

record can be updated that has already been placed in the buffer that is presented

to the program. In this case, when the record is processed from the consecutive

file, the record does not reflect the updated data. To prevent this problem, use the

CL command OVRDBF and specify the option SEQONLY(*NO), which indicates

that you do not want multiple records transferred for a consecutively processed

file.

For more information on sequential only processing, refer to the DB2 Universal

Database for AS/400 section of the Database and File Systems category in the iSeries

Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Sequential-by-Key Processing

For the sequential-by-key method of processing, records are read from the file in

key sequence.

The sequential-by-key method of processing is valid for keyed files used as

primary, secondary, or full procedural files.

For output files and for input files that do not use random functions (such as

SETLL, SETGT, CHAIN, or ADD) and that have only one record format, the ILE

RPG compiler defaults to or operates as though SEQONLY(*YES) had been

specified on the CL command OVRDBF. (The ILE RPG compiler does not operate

as though SEQONLY(*YES) had been specified for update files.) SEQONLY(*YES)

allows multiple records to be placed in internal data management buffers; the

records are then passed to the ILE RPG compiler one at a time on input.

If, in the same job, two files use the same physical file, and one file is processed

sequentially and one is processed for random update, a record could be updated

that has already been placed in the buffer that is presented to the program. In this

case, when the record is processed from the sequential file, the record does not

reflect the updated data. To prevent this problem, use the CL command OVRDBF

and specify the option SEQONLY(*NO), which indicates that you do not want

multiple records transferred for a sequentially processed file.

For more information on sequential only processing, refer to the DB2 Universal

Database for AS/400 section of the Database and File Systems category in the iSeries

Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Examples of Sequential-by-Key Processing

The following three examples show you different ways of using the

sequential-by-key method of processing data.

DATA DESCRIPTION SPECIFICATIONS (DDS): Figure 165 on page 340 and

Figure 166 on page 340 shows the data description specifications (DDS) for the

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 339

http://www.ibm.com/eserver/iseries/infocenter
http://www.ibm.com/eserver/iseries/infocenter

physical files used by the examples. Figure 167 shows the DDS for the logical file

used by the first three examples.

EXAMPLE PROGRAM 1 (Sequential-by-Key Using Primary File): In this

example, the employee master record (EMPREC) and the weekly hours worked

record (RCWEEK) are contained in the same logical file EMPL1. The EMPL1 file is

defined as a primary input file and is read sequentially by key. In the data

description specifications for the file, the key for the EMPREC record is defined as

the ENUM (employee number) field, and the key for the RCWEEK record is

defined as the ENUM field plus the WEEKNO (week number) field, which is a

composite key.

 A***

 A* DESCRIPTION: This is the DDS for the physical file EMPMST. *

 A* It contains one record format called EMPREC. *

 A* This file contains one record for each employee *

 A* of the company. *

 A***

 A*

 A R EMPREC

 A ENUM 5 0 TEXT(’EMPLOYEE NUMBER’)

 A ENAME 20 TEXT(’EMPLOYEE NAME’)

 A ETYPE 1 TEXT(’EMPLOYEE TYPE’)

 A EDEPT 3 0 TEXT(’EMPLOYEE DEPARTMENT’)

 A ENHRS 3 1 TEXT(’EMPLOYEE NORMAL WEEK HOURS’)

 A K ENUM

Figure 165. DDS for database file EMPMST (physical file)

 A***

 A* DESCRIPTION: This is the DDS for the physical file TRWEEK. *

 A* It contains one record format called RCWEEK. *

 A* This file contains all weekly entries made to *

 A* the time reporting system. *

 A***

 A*

 A R RCWEEK

 A ENUM 5 0 TEXT(’EMPLOYEE NUMBER’)

 A WEEKNO 2 0 TEXT(’WEEK NUMBER OF CURRENT YEAR’)

 A EHWRK 4 1 TEXT(’EMPLOYEE HOURS WORKED’)

 A K ENUM

 A K WEEKNO

Figure 166. DDS for database file TRWEEK (physical file)

 A***

 A* RELATED FILES: EMPMST (Physical File) *

 A* TRWEEK (Physical File) *

 A* DESCRIPTION: This is the DDS for the logical file EMPL1. *

 A* It contains two record formats called *

 A* EMPREC and RCWEEK. *

 A***

 A R EMPREC PFILE(EMPMST)

 A K ENUM

 A*

 A R RCWEEK PFILE(TRWEEK)

 A K ENUM

 A K WEEKNO

Figure 167. DDS for database file EMPL1 (logical file)

Methods for Processing Disk Files

340 ILE RPG Programmer’s Guide

EXAMPLE PROGRAM 2 (Sequential-by-Key Using READ): This example is the

same as the previous example except that the EMPL1 file is defined as a

full-procedural file, and the reading of the file is done by the READ operation

code.

 * PROGRAM NAME: YTDRPT1 *

 * RELATED FILES: EMPL1 (Logical File) *

 * PRINT (Printer File) *

 * DESCRIPTION: This program shows an example of processing *

 * records using the sequential-by-key method. *

 * This program prints out each employee’s *

 * information and weekly hours worked. *

 FPRINT O F 80 PRINTER

 FEMPL1 IP E K DISK

 * A record-identifying indicator is assigned to each record; these

 * record-identifying indicators are used to control processing for

 * the different record types.

 IEMPREC 01

 I*

 IRCWEEK 02

 I*

 * Since the EMPL1 file is read sequentially by key, for

 * a valid employee number, the ENUM in a RCWEEK record

 * must be the same as the ENUM in the last retrieved EMPREC

 * record. This must be checked for and is done here by saving

 * ENUMs of the EMPREC record into the field EMPNO and comparing

 * it with the ENUMs read from RCWEEK records.

 * If the ENUM is a valid one, *IN12 will be seton. *IN12 is

 * used to control the printing of the RCWEEK record.

 C SETOFF 12

 C 01 MOVE ENUM EMPNO 5 0

 C*

 C IF (*IN02=’1’) AND (ENUM=EMPNO)

 C SETON 12

 C ENDIF

 OPRINT H 1P 2 6

 O 40 ’EMPLOYEE WEEKLY WORKING ’

 O 52 ’HOURS REPORT’

 O H 01 1

 O 12 ’EMPLOYEE: ’

 O ENAME 32

 O H 01 1

 O 12 ’SERIAL #: ’

 O ENUM 17

 O 27 ’DEPT: ’

 O EDEPT 30

 O 40 ’TYPE: ’

 O ETYPE 41

 O H 01 1

 O 20 ’WEEK #’

 O 50 ’HOURS WORKED’

 O D 12 1

 O WEEKNO 18

 O EHWRK 3 45

Figure 168. Sequential-by-Key Processing, Example 1

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 341

 * PROGRAM NAME: YTDRPT2 *

 * RELATED FILES: EMPL1 (Logical File) *

 * PRINT (Printer File) *

 * DESCRIPTION: This program shows an example of processing *

 * records using the read operation code. *

 * This program prints out each employee’s *

 * information and weekly hours worked. *

 FPRINT O F 80 PRINTER

 FEMPL1 IF E K DISK

 * The two records (EMPREC and RCWEEK) are contained in the same

 * file, and a record-identifying indicator is assigned to each

 * record. The record-identifying indicators are used to control

 * processing for the different record types. No control levels

 * or match fields can be specified for a full-procedural file.

 IEMPREC 01

 I*

 IRCWEEK 02

 I*

 * The READ operation code reads a record from the EMPL1 file. An

 * end-of-file indicator is specified in positions 58 and 59. If

 * the end-of-file indicator 99 is set on by the READ operation,

 * the program branches to the EOFEND tag and processes the end-of-

 * file routine.

 C SETOFF 12

 C READ EMPL1 99

 C 99 GOTO EOFEND

 C*

 C 01 MOVE ENUM EMPNO 5 0

 C*

 C IF (*IN02=’1’) AND (ENUM=EMPNO)

 C SETON 12

 C ENDIF

 * Since EMPL1 is defined as a full-procedural file, indicator

 * *INLR has to be seton to terminate the program after processing

 * the last record.

 C EOFEND TAG

 C 99 SETON LR

Figure 169. Sequential-by-Key Processing, Example 2 (Part 1 of 2)

Methods for Processing Disk Files

342 ILE RPG Programmer’s Guide

EXAMPLE PROGRAM 3 (Matching-Record Technique): In this example, the

TRWEEK file is defined as a secondary input file. The EMPREC and RCWEEK

records are processed as matching records, with the ENUM field in both records

assigned the match level value of M1. Record-identifying indicators 01 and 02 are

assigned to the records to control the processing for the different record types.

 OPRINT H 1P 2 6

 O 40 ’EMPLOYEE WEEKLY WORKING ’

 O 52 ’HOURS REPORT’

 O H 01 1

 O 12 ’EMPLOYEE: ’

 O ENAME 32

 O H 01 1

 O 12 ’SERIAL #: ’

 O ENUM 17

 O 27 ’DEPT: ’

 O EDEPT 30

 O 40 ’TYPE: ’

 O ETYPE 41

 O H 01 1

 O 20 ’WEEK #’

 O 50 ’HOURS WORKED’

 O D 12 1

 O WEEKNO 18

 O EHWRK 3 45

Figure 169. Sequential-by-Key Processing, Example 2 (Part 2 of 2)

 * PROGRAM NAME: YTDRPT5 *

 * RELATED FILES: EMPMST (Physical File) *

 * TRWEEK (Physical File) *

 * PRINT (Printer File) *

 * DESCRIPTION: This program shows an example of processing *

 * records using the matching record method. *

 * This program prints out each employee’s *

 * information, weekly worked hours and amount *

 * of overtime. *

 FPRINT O F 80 PRINTER

 FEMPMST IP E K DISK

 FTRWEEK IS E K DISK

 IEMPREC 01

 I ENUM M1

 IRCWEEK 02

 I ENUM M1

Figure 170. Sequential-by-Key Processing, Example 3 (Part 1 of 2)

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 343

Random-by-Key Processing

For the random-by-key method of processing, a search argument that identifies the

key of the record to be read is specified in factor 1 of the calculation specifications

for the CHAIN operation. Figure 172 on page 346 shows an example of an

externally described DISK file being processed randomly by key. The specified

record can be read from the file either during detail calculations or during total

calculations.

 C 01 Z-ADD 0 TOTHRS 5 1

 C 01 Z-ADD 0 TOTOVT 5 1

 C 01 SETOFF 12

 C*

 C MR IF (*IN02=’1’)

 C ADD EHWRK TOTHRS

 C EHWRK SUB ENHRS OVTHRS 4 111

 C 11 ADD OVTHRS TOTOVT

 C SETON 12

 C ENDIF

 OPRINT H 1P 2 6

 O 50 ’YTD PAYROLL SUMMARY’

 O D 01 1

 O 12 ’EMPLOYEE: ’

 O ENAME 32

 O D 01 1

 O 12 ’SERIAL #: ’

 O ENUM 17

 O 27 ’DEPT: ’

 O EDEPT 30

 O 40 ’TYPE: ’

 O ETYPE 41

 O D 02 MR 1

 O 8 ’WEEK #’

 O WEEKNO 10

 O 32 ’HOURS WORKED = ’

 O EHWRK 3 38

 * These 2 detail output lines are processed if *IN01 is on

 * and no matching records found (that means no RCWEEK records

 * for that employee found). Obviously, the total fields

 * (TOTHRS and TOTOVT) are equal to zeros in this case.

 O D 01NMR 1

 O 70 ’YTD HOURS WORKED = ’

 O TOTHRS 3 78

 O D 01NMR 1

 O 70 ’YTD OVERTIME HOURS = ’

 O TOTHRS 3 78

 * These 2 total output lines are processed before performing

 * detail calcualations. Therefore, the total fields

 * (TOTHRS and TOTOVT) for the employee in the last retrieved

 * record will be printed out if the specified indicators are on.

 O T 01 12 1

 O OR LR 12

 O 70 ’YTD HOURS WORKED = ’

 O TOTHRS 3 78

 O T 01 12 1

 O OR LR 12

 O 70 ’YTD OVERTIME HOURS = ’

 O TOTOVT 3 78

Figure 170. Sequential-by-Key Processing, Example 3 (Part 2 of 2)

Methods for Processing Disk Files

344 ILE RPG Programmer’s Guide

The random-by-key method of processing is valid for a full procedural file

designated as an input file or an update file.

For an externally described file, position 34 of the file description specification

must contain a K, which indicates that the file is processed according to an access

path that is built on keys.

The data description specifications (DDS) for the file specifies the field that

contains the key value (the key field). Position 35 of the file description

specification must be blank.

A program-described file must be designated as an indexed file (I in position 35),

and position 34 of the file description specification must contain an A, D, G, P, T,

or Z. The length of the key field is identified in positions 29-33 of the file

description specification, and the starting location of the key field is specified on

the KEYLOC keyword. Data description specifications must be used to create the

access path for a program described input file (see “Indexed File” on page 334).

Example of Random-by-Key Processing

The following is an example of how to use the random-by-key method of

processing data. Figure 165 on page 340 and Figure 171 show the data description

specifications (DDS) for the physical files used by EMSTUPD (Figure 172 on page

346).

EXAMPLE PROGRAM: In this example, the EMPMST file is defined as an

Update Full-Procedural file. The update file CHANGE is to be processed by keys.

The DDS for each of the externally described files (EMPMST and CHANGE)

identify the ENUM field as the key field. The read/update processes are all

controlled by the operations specified in the Calculation Specifications.

 A***

 A* RELATED PGMS: EMSTUPD *

 A* DESCRIPTIONS: This is the DDS for the physical file CHANGE. *

 A* It contains one record format called CHGREC. *

 A* This file contains new data that is used to *

 A* update the EMPMST file. *

 A***

 A*

 A R CHGREC

 A ENUM 5 0 TEXT(’EMPLOYEE NUMBER’)

 A NNAME 20 TEXT(’NEW NAME’)

 A NTYPE 1 TEXT(’NEW TYPE’)

 A NDEPT 3 0 TEXT(’NEW DEPARTMENT’)

 A NNHRS 3 1 TEXT(’NEW NORMAL WEEK HOURS’)

 A K ENUM

Figure 171. DDS for database file CHANGE (physical file)

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 345

Sequential-within-Limits Processing

Sequential-within-limits processing by a record-address file is specified by an L in

position 28 of the file description specifications and is valid for a file with a keyed

access.

You can specify sequential-within-limits processing for an input or an update file

that is designated as a primary, secondary, or full-procedural file. The file can be

externally described or program-described (indexed). The file should have keys in

ascending sequence.

To process a file sequentially within limits from a record-address file, the program

reads:

v A limits record from the record-address file

v Records from the file being processed within limits with keys greater than or

equal to the low-record key and less than or equal to the high-record key in the

limits record. If the two limits supplied by the record-address file are equal, only

the records with the specified key are retrieved.

 * PROGRAM NAME: EMSTUPD *

 * RELATED FILES: EMPMST (Physical File) *

 * CHANGE (Physical File) *

 * DESCRIPTION: This program shows the processing of records *

 * using the random-by-key method. The CHAIN *

 * operation code is used. *

 * The physical file CHANGE contains all the *

 * changes made to the EMPMST file. Its record *

 * format name is CHGREC. There may be some *

 * fields in the CHGREC that are left blank, *

 * in that case, no changes are made to those *

 * fields. *

 FCHANGE IP E K DISK

 FEMPMST UF E K DISK

 * As each record is read from the primary input file, CHANGE,

 * the employee number (ENUM) is used as the search argument

 * to chain to the corresponding record in the EMPMST file.

 * *IN03 will be set on if no corresponding record is found, which

 * occurs when an invalid ENUM is entered into the CHGREC record.

 C ENUM CHAIN EMPREC 03

 C 03 GOTO NEXT

 C NNAME IFNE *BLANK

 C MOVE NNAME ENAME

 C ENDIF

 C NTYPE IFNE *BLANK

 C MOVE NTYPE ETYPE

 C ENDIF

 C NDEPT IFNE *ZERO

 C MOVE NDEPT EDEPT

 C ENDIF

 C NNHRS IFNE *ZERO

 C MOVE NNHRS ENHRS

 C ENDIF

 C UPDATE EMPREC

 C*

 C NEXT TAG

Figure 172. Random-by-Key Processing of an Externally Described File

Methods for Processing Disk Files

346 ILE RPG Programmer’s Guide

The program repeats this procedure until the end of the record-address file is

reached.

Examples of Sequential-within-Limits Processing

Figure 173 shows an example of an indexed file being processed sequentially

within limits. Figure 175 on page 348 shows the same example with externally

described files instead of program-described files.

Figure 165 on page 340 shows the data description specifications (DDS) for the

physical file used by the program ESWLIM1 (Figure 173) and ESWLIM2 (

Figure 175 on page 348).

EXAMPLE PROGRAM 1 (Sequential-within-Limits Processing): EMPMST is

processed sequentially within limits (L in position 28) by the record address file

LIMITS. Each set of limits from the record-address file consists of the low and high

employee numbers of the records in the EMPMST file to be processed. Because the

employee number key field (ENUM) is five digits long, each set of limits consists

of two 5-digits keys. (Note that ENUM is in packed format, therefore, it requires

three positions instead of five.)

 * PROGRAM NAME: ESWLIM1 *

 * RELATED FILES: EMPMST (Physical File) *

 * LIMITS (Physical File) *

 * PRINT (Printer File) *

 * DESCRIPTION: This program shows the processing of an *

 * indexed file sequentially within limits. *

 * This program prints out information for the *

 * employees whose employee numbers are within *

 * the limits given in the file LIMITS. *

 FLIMITS IR F 6 3 DISK RAFDATA(EMPMST)

 FEMPMST IP F 28L 3PIDISK KEYLOC(1)

 FPRINT O F 80 PRINTER

 * Input specifications must be used to describe the records in the

 * program-described file EMPMST.

 IEMPMST NS 01

 I P 1 3 0ENUM

 I 4 23 ENAME

 I 24 24 ETYPE

 I P 25 26 0EDEPT

 * As EMPMST is processed within each set of limits, the corres-

 * ponding records are printed. Processing of the EMPMST file is

 * complete when the record-address file LIMITS reaches end of file.

 OPRINT H 1P 1

 O 12 ’SERIAL #’

 O 22 ’NAME’

 O 45 ’DEPT’

 O 56 ’TYPE’

 O D 01 1

 O ENUM 10

 O ENAME 35

 O EDEPT 45

 O ETYPE 55

Figure 173. Sequential-within-Limits Processing of an Externally Described File

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 347

EXAMPLE PROGRAM 2 (Sequential-within-Limits Processing): Figure 174

shows the data description specifications (DDS) for the record-address limits file

used by the program ESWLIM2 (Figure 175).

 This program performs the same job as the previous program. The only difference

is that the physical file EMPMST is defined as an externally described file instead

of a program-described file.

Relative-Record-Number Processing

Random input or update processing by relative record number applies to full

procedural files only. The desired record is accessed by the CHAIN operation code.

 A***

 A* RELATED PROGRAMS: ESWLIM *

 A* DESCRIPTION: This is the DDS for the physical file *

 A* LIMITS. *

 A* It contains a record format named LIMIT. *

 A***

 A

 A R LIMIT

 A LOW 5 0

 A HIGH 5 0

Figure 174. DDS for record address file LIMITS (physical file)

 * PROGRAM NAME: ESWLIM2 *

 * RELATED FILES: EMPMST (Physical File) *

 * LIMITS (Physical File) *

 * PRINT (Printer File) *

 * DESCRIPTION: This program shows the processing of an *

 * externally described file sequentially *

 * within limits. *

 * This program prints out information for the *

 * employees whose employee numbers are within *

 * the limits given in the file LIMITS. *

 FLIMITS IR F 6 3 DISK RAFDATA(EMPMST)

 FEMPMST IP E L K DISK

 FPRINT O F 80 PRINTER

 * Input Specifications are optional for an externally described

 * file. Here, *IN01 is defined as the record-identifying

 * indicator for the record-format EMPREC to control the

 * processing of this record.

 IEMPREC 01

 OPRINT H 1P 1

 O 12 ’SERIAL #’

 O 22 ’NAME’

 O 45 ’DEPT’

 O 56 ’TYPE’

 O D 01 1

 O ENUM 10

 O ENAME 35

 O EDEPT 45

 O ETYPE 55

 O*

Figure 175. Sequential-within-Limits Processing of a Program-Described File

Methods for Processing Disk Files

348 ILE RPG Programmer’s Guide

Relative record numbers identify the positions of the records relative to the

beginning of the file. For example, the relative record numbers of the first, fifth,

and seventh records are 1, 5, and 7, respectively.

For an externally described file, input or update processing by relative record

number is determined by a blank in position 34 of the file description

specifications and the use of the CHAIN operation code. Output processing by

relative record number is determined by a blank in position 34 and the use of the

RECNO keyword on the file description specification line for the file.

Use the RECNO keyword on a file description specifications to specify a numeric

field that contains the relative record number that specifies where a new record is

to be added to this file. The RECNO field must be defined as numeric with zero

decimal positions. The field length must be large enough to contain the largest

record number for the file. A RECNO field must be specified if new records are to

be placed in the file by using output specifications or a WRITE operation.

When you update or add a record to a file by relative record number, the record

must already have a place in the member. For an update, that place must be a

valid existing record; for a new record, that place must be a deleted record.

You can use the CL command INZPFM to initialize records for use by relative

record number. The current relative record number is placed in the RECNO field

for all retrieval operations or operations that reposition the file (for example,

SETLL, CHAIN, READ).

Valid File Operations

Table 38 shows the valid file operation codes allowed for DISK files processed by

keys and Table 39 on page 350 for DISK files processed by non-keyed methods.

The operations shown in these figures are valid for externally described DISK files

and program-described DISK files.

Before running your program, you can override a file to another file. In particular,

you can override a sequential file in your program to an externally described,

keyed file. (The file is processed as a sequential file.) You can also override a keyed

file in your program to another keyed file, providing the key fields are compatible.

For example, the overriding file must not have a shorter key field than you

specified in your program.

Note: When a database record is deleted, the physical record is marked as deleted.

Deleted records can occur in a file if the file has been initialized with

deleted records using the Initialize Physical File Member (INZPFM)

command. Once a record is deleted, it cannot be read. However, you can use

the relative record-number to position to the record and then write over its

contents.

 Table 38. Valid File Operations for Keyed Processing Methods (Random by Key, Sequential

by Key, Sequential within Limits)

File-Description

Specifications Positions

Calculation Specifications Positions

17 18 20 281 342 26-35

I P/S K/A/P/G/

D/T/Z/F

CLOSE, FEOD, FORCE

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 349

Table 38. Valid File Operations for Keyed Processing Methods (Random by Key, Sequential

by Key, Sequential within Limits) (continued)

File-Description

Specifications Positions

Calculation Specifications Positions

I P/S A K/A/P/G/

D/T/Z/F

WRITE, CLOSE, FEOD, FORCE

I P/S L K/A/P/G/

D/T/Z/F

CLOSE, FEOD, FORCE

U P/S K/A/P/G/

D/T/Z/F

UPDATE, DELETE, CLOSE, FEOD,

FORCE

U P/S A K/A/P/G/

D/T/Z/F

UPDATE, DELETE, WRITE, CLOSE,

FEOD, FORCE

U P/S L K/A/P/G/

D/T/Z/F

UPDATE, DELETE, CLOSE, FEOD,

FORCE

I F K/A/P/G/

D/T/Z/F

READ, READE, READPE, READP,

SETLL, SETGT, CHAIN, OPEN, CLOSE,

FEOD

I F A K/A/P/G/

D/T/Z/F

WRITE, READ, READPE, READE,

READP, SETLL, SETGT, CHAIN, OPEN,

CLOSE, FEOD

I F L K/A/P/G/

D/T/Z/F

READ, OPEN, CLOSE, FEOD

U F K/A/P/G/

D/T/Z/F

READ, READE, READPE, READP,

SETLL, SETGT, CHAIN, UPDATE,

DELETE, OPEN, CLOSE, FEOD

U F A K/A/P/G/

D/T/Z/F

WRITE, UPDATE, DELETE, READ,

READE, READPE, READP, SETLL,

SETGT, CHAIN, OPEN, CLOSE, FEOD

U F L K/A/P/G/

D/T/Z/F

READ, UPDATE, DELETE, OPEN,

CLOSE, FEOD

O Blank A K/A/P/G/

D/T/Z/F

WRITE (add new records to a file),

OPEN, CLOSE, FEOD

O Blank K/A/P/G/

D/T/Z/F

WRITE (initial load of a new file)3,

OPEN, CLOSE, FEOD

Notes:

1. An L must be specified in position 28 to specify sequential-within-limits processing by a

record-address file for an input or an update file.

2. Externally described files require a K in position 34; program-described files require an

A,P,G,D,T,Z, or F in position 34 and an I in position 35.

3. An A in position 20 is not required for the initial loading of records into a new file. If A

is specified in position 20, ADD must be specified on the output specifications. The file

must have been created with the i5/OS CREATE FILE command.

 Table 39. Valid File Operations for Non-keyed Processing Methods (Sequential, Random by

Relative Record Number, and Consecutive)

File-Description

Specifications Positions

Calculation Specifications Positions

17 18 20 34 44-80 26-35

I P/S Blank CLOSE, FEOD, FORCE

I P/S Blank RECNO CLOSE, FEOD, FORCE

Valid File Operations

350 ILE RPG Programmer’s Guide

Table 39. Valid File Operations for Non-keyed Processing Methods (Sequential, Random by

Relative Record Number, and Consecutive) (continued)

File-Description

Specifications Positions

Calculation Specifications Positions

U P/S Blank UPDATE, DELETE, CLOSE, FEOD, FORCE

U P/S Blank RECNO UPDATE, DELETE, CLOSE, FEOD, FORCE

I F Blank READ, READP, SETLL, SETGT, CHAIN,

OPEN, CLOSE, FEOD

I F Blank RECNO READ, READP, SETLL, SETGT,

U F Blank READ, READP, SETLL, SETGT, CHAIN,

UPDATE, DELETE, OPEN, CLOSE, FEOD

U F Blank RECNO READ, READP, SETLL, SETGT, CHAIN,

UPDATE, DELETE, OPEN, CLOSE, FEOD

U F A Blank RECNO WRITE (overwrite a deleted record), READ,

READP, SETLL, SETGT, CHAIN, UPDATE,

DELETE, OPEN, CLOSE, FEOD

I R A/P/G/

D/T/Z/

F/

Blank1

 OPEN, CLOSE, FEOD

I R Blank2

 OPEN, CLOSE, FEOD

O Blank A Blank RECNO WRITE3 (add records to a file), OPEN,

CLOSE, FEOD

O Blank Blank RECNO WRITE4 (initial load of a new file), OPEN,

CLOSE, FEOD

O Blank Blank Blank WRITE (sequentially load or extend a file),

OPEN, CLOSE, FEOD

Notes:

1. If position 34 is blank for a record-address-limits file, the format of the keys in the

record-address file is the same as the format of the keys in the file being processed.

2. A record-address file containing relative record numbers requires a T in position 35.

3. The RECNO field that contains the relative record number must be set prior to the WRITE

operation or if ADD is specified on the output specifications.

4. An A in position 20 is not required for the initial loading of the records into a new file;

however, if A is specified in position 20, ADD must be specified on output specifications.

The file must have been created with one of the i5/OS file creation commands.

Using Commitment Control

This section describes how to use commitment control to process file operations as

a group. With commitment control, you ensure one of two outcomes for the file

operations:

v all of the file operations are successful (a commit operation)

v none of the file operations has any effect (a rollback operation).

In this way, you process a group of operations as a unit.

To use commitment control, you do the following:

v On the iSeries system:

Valid File Operations

Chapter 17. Accessing Database Files 351

1. Prepare for using commitment control:. Use the CL commands CRTJRN

(Create Journal), CRTJRNRCV (Create Journal Receiver) and STRJRNPF (Start

Journal Physical File).

2. Notify the iSeries system when to start and end commitment control: Use the

CL commands STRCMTCTL (Start Commitment Control) and ENDCMTCTL

(End Commitment Control). For information on these commands, see the CL

and APIs section of the Programming category in the iSeries Information

Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter.
v In the RPG program:

1. Specify commitment control (COMMIT) on the file-description specifications

of the files you want under commitment control.

2. Use the COMMIT (commit) operation code to apply a group of changes to

files under commitment control, or use the ROLBK (Roll Back) operation

code to eliminate the pending group of changes to files under commitment

control. For information on how the rollback function is performed by the

system, refer to the Backup and Recovery manual.

Note: Commitment control applies only to database files.

Starting and Ending Commitment Control

The CL command STRCMTCTL notifies the system that you want to start

commitment control.

The LCKLVL(Lock Level) parameter allows you to select the level at which records

are locked under commitment control. See “Commitment Control Locks” and the

CL Programming manual for further details on lock levels.

You can make commitment control conditional, in the sense that the decision

whether to process a file under commitment control is made at run time. For

further information, see “Specifying Conditional Commitment Control” on page

356.

When you complete a group of changes with a COMMIT operation, you can

specify a label to identify the end of the group. In the event of an abnormal job

end, this identification label is written to a file, message queue, or data area so that

you know which group of changes is the last group to be completed successfully.

You specify this file, message queue, or data area on the STRCMTCTL command.

Before you call any program that processes files specified for commitment control,

issue the STRCMTCTL command. If you call a program that opens a file specified

for commitment control before you issue the STRCMTCTL command, the opening

of the file will fail.

The CL command ENDCMTCTL notifies the system that your activation group or

job has finished processing files under commitment control. For further

information on the STRCMTCTL and ENDCMTCTL commands, see the CL and

APIs section of the Programming category in the iSeries Information Center at this

Web site - http://www.ibm.com/eserver/iseries/infocenter.

Commitment Control Locks

On the STRCMTCTL command, you specify a level of locking, either

LCKLVL(*ALL), LCKLVL(*CHG), or LCKLVL(*CS). When your program is

operating under commitment control and has processed an input or output

operation on a record in a file under commitment control, the record is locked by

commitment control as follows:

Using Commitment Control

352 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter
http://www.ibm.com/eserver/iseries/infocenter

v Your program can access the record.

v Another program in your activation group or job, with this file under

commitment control, can read the record. If the file is a shared file, the second

program can also update the record.

v Another program in your activation group or job that does not have this file

under commitment control cannot read or update the record.

v Another program in a separate activation group or job, with this file under

commitment control, can read the record if you specified LCKLVL(*CHG), but it

cannot read the record if you specified LCKLVL(*ALL). With either lock level,

the next program cannot update the record.

v Another program that does not have this file under commitment control and

that is not in your activation group or job can read but not update the record.

v Commitment control locks are different than normal locks, depend on the

LCKLVL specified, and can only be released by the COMMIT and ROLBK

operations.

The COMMIT and ROLBK operations release the locks on the records. The

UNLOCK operation will not release records locked using commitment control. For

details on lock levels, see the CL and APIs section of the Programming category in

the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

The number of entries that can be locked under commitment control before the

COMMIT or ROLBK operations are required may be limited. For more

information, see the Backup and Recovery manual.

Note: The SETLL and SETGT operations will lock a record in the same cases

where a read operation (not for update) would lock a record for

commitment control.

Commitment Control Scoping

When commitment control is started by using the STRCMTCTL command, the

system creates a commitment definition. A commitment definition contains

information pertaining to the resources being changed under commitment control

within that job. Each commitment definition is known only to the job that issued

the STRCMTCTL command and is ended when you issue the ENDCMTCTL

command.

The scope for commitment definition indicates which programs within the job use

that commitment definition. A commitment definition can be scoped at the

activation group level or at the job level.

The default scope for a commitment definition is to the activation group of the

program issuing the STRCMTCTL command, that is, at the activation group level.

Only programs that run within that activation group will use that commitment

definition. OPM programs will use the *DFTACTGRP commitment definition. ILE

programs will use the activation group they are associated with.

You specify the scope for a commitment definition on the commitment scope

(CMTSCOPE) parameter of the STRCMTCTL command. For further information on

the commitment control scope within ILE, refer to ″Data Management Scoping″ in

ILE Concepts.

Using Commitment Control

Chapter 17. Accessing Database Files 353

http://www.ibm.com/eserver/iseries/infocenter

Specifying Files for Commitment Control

To indicate that a DISK file is to run under commitment control, enter the keyword

COMMIT in the keyword field of the file description specification.

When a program specifies commitment control for a file, the specification applies

only to the input and output operations made by this program for this file.

Commitment control does not apply to operations other than input and output

operations. It does not apply to files that do not have commitment control

specified in the program doing the input or output operation.

When more than one program accesses a file as a shared file, all or none of the

programs must specify the file to be under commitment control.

Using the COMMIT Operation

The COMMIT operation tells the system that you have completed a group of

changes to the files under commitment control. The ROLBK operation eliminates

the current group of changes to the files under commitment control. For

information on how to specify these operation codes and what each operation

does, see the WebSphere Development Studio: ILE RPG Reference.

If the system fails, it implicitly issues a ROLBK operation. You can check the

identity of the last successfully completed group of changes using the label you

specify in factor 1 of the COMMIT operation code, and the notify-object you

specify on the STRCMTCTL command.

At the end of an activation group or job, or when you issue the ENDCMTCTL

command, the i5/OS system issues an implicit ROLBK, which eliminates any

changes since the last ROLBK or COMMIT operation that you issued. To ensure

that all your file operations have effect, issue a COMMIT operation before ending

an activation group or job operating under commitment control.

The OPEN operation permits input and output operations to be made to a file and

the CLOSE operation stops input and output operations from being made to a file.

However, the OPEN and CLOSE operations do not affect the COMMIT and

ROLBK operations. A COMMIT or ROLBK operation affects a file, even after the

file has been closed. For example, your program may include the following steps:

1. Issue COMMIT (for files already opened under commitment control).

2. Open a file specified for commitment control.

3. Perform some input and output operations to this file.

4. Close the file.

5. Issue ROLBK.

The changes made at step 3 are rolled back by the ROLBK operation at step 5,

even though the file has been closed at step 4. The ROLBK operation could be

issued from another program in the same activation group or job.

A program does not have to operate all its files under commitment control, and to

do so may adversely affect performance. The COMMIT and ROLBK operations

have no effect on files that are not under commitment control.

Note: When multiple devices are attached to an application program, and

commitment control is in effect for the files this program uses, the COMMIT

or ROLBK operations continue to work on a file basis and not by device.

The database may be updated with partially completed COMMIT blocks or

Using Commitment Control

354 ILE RPG Programmer’s Guide

changes that other users have completed may be eliminated. It is your

responsibility to ensure this does not happen.

Example of Using Commitment Control

This example illustrates the specifications and CL commands required for a

program to operate under commitment control.

To prepare for using commitment control, you issue the following CL commands:

1. CRTJRNRCV JRNRCV (RECEIVER)

This command creates a journal receiver RECEIVER.

2. CRTJRN JRN(JOURNAL) JRNRCV(RECEIVER)

This command creates a journal JOURNAL and attaches the journal receiver

RECEIVER.

3. STRJRNPF FILE(MASTER TRANS) JRN(JOURNAL)

This command directs journal entries for the file MASTER and the file TRANS

to the journal JOURNAL.

In your program, you specify COMMIT for the file MASTER and the file TRANS:

 To operate your program (named REVISE) under commitment control, you issue

the commands:

1. STRCMTCTL LCKLVL(*ALL)

This command starts commitment control with the highest level of locking.

2. CALL REVISE

This command calls the program REVISE.

3. ENDCMTCTL

This command ends commitment control and causes an implicit Roll Back

operation.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++

FMASTER UF E K DISK COMMIT

FTRANS UF E K DISK COMMIT

F*

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C :

C :

 *

 * Use the COMMIT operation to complete a group of operations if

 * they were successful or rollback the changes if they were not

 * successful.

 *

C UPDATE MAST_REC 90

C UPDATE TRAN_REC 91

C IF *IN90 OR *IN91

C ROLBK

C ELSE

C COMMIT

C ENDIF

Figure 176. Example of Using Commitment Control

Using Commitment Control

Chapter 17. Accessing Database Files 355

Specifying Conditional Commitment Control

You can write a program so that the decision to open a file under commitment

control is made at run time. By implementing conditional commitment control, you

can avoid writing and maintaining two versions of the same program: one which

operates under commitment control, and one which does not.

The COMMIT keyword has an optional parameter which allows you to specify

conditional commitment control. You enter the COMMIT keyword in the keyword

section of the file description specifications for the file(s) in question. The ILE RPG

compiler implicitly defines a one-byte character field with the same name as the

one specified as the parameter. If the parameter is set to ’1’, the file will run under

commitment control.

The COMMIT keyword parameter must be set prior to opening the file. You can

set the parameter by passing in a value when you call the program or by explicitly

setting it to ’1’ in the program.

For shared opens, if the file in question is already open, the COMMIT keyword

parameter has no effect, even if it is set to ’1’.

Figure 177 is an example showing conditional commitment control.

Commitment Control in the Program Cycle

Commitment control is intended for full procedural files, where the input and

output is under your control. Do not use commitment control with primary and

secondary files, where input and output is under the control of the RPG program

cycle. The following are some of the reasons for this recommendation:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++

FMASTER UF E K DISK COMMIT(COMITFLAG)

FTRANS UF E K DISK COMMIT(COMITFLAG)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

 * If COMITFLAG = ’1’ the files are opened under commitment control,

 * otherwise they are not.

C *ENTRY PLIST

C PARM COMITFLAG

C :

C :

 *

 * Use the COMMIT operation to complete a group of operations if

 * they were successful or rollback the changes if they were not

 * successful. You only issue the COMIT or ROLBK if the files

 * were opened for commitment control (ie. COMITFLAG = ’1’)

 *

C UPDATE MAST_REC 90

C UPDATE TRAN_REC 91

C IF COMITFLAG = ’1’

C IF *IN90 OR *IN91

C ROLBK

C ELSE

C COMMIT

C ENDIF

C ENDIF

C*

Figure 177. Example of Using Conditional Commitment Control

Using Commitment Control

356 ILE RPG Programmer’s Guide

v You cannot issue a COMMIT operation for the last total output in your program.

v It is difficult to program within the cycle for recovery from a locked-record

condition.

v Level indicators are not reset by the ROLBK operation.

v After a ROLBK operation, processing matching records may produce a sequence

error.

Unexpected Results Using Keyed Files

When using READE, READPE, SETLL for equality, or Sequential-within-limits

processing by a record address file, normally the key comparisons are done at the

data management level. However, there are some situations that do not allow the

key comparison to be done at the data management level. When data management

cannot perform the key comparison, the comparison is done using the hexadecimal

collation sequence. This may cause unexpected results. For example, if ABSVAL is

used on a numeric key, both -1 and 1 would be seen as valid search arguments for

a key in the file with a value of 1. Using the hexadecimal collating sequence, a

search argument of -1 will not succeed for an actual key of 1.

Some of the features that cause the key comparison to differ are:

v A Get Next Key Equal following a Read Multiple does not require a search key

to be provided. To circumvent this situation, issue an OVRDBF command with

either SEQONLY(*NO) or SEQONLY(*YES 1) specified so a Read multiple will

read only one record.

v Keyed feedback was not requested for the file at open time.

v The Read request was performed via a group-by view of the data. To circumvent

this situation, use a physical copy of the group-by data.

v The file is a Distributed Data Management (DDM) file and the remote file was

created before Version 3 Release 1 Modification 0.

Some of the features that will cause a hexadecimal key comparison to differ from a

key comparison performed by data management are:

v ALTSEQ was specified for the file

v ABSVAL, ZONE, UNSIGNED or DIGIT keywords on key fields

v Variable length, Date, Time or Timestamp key fields

v ALWNULL(*USRCTL) is specified as a keyword on a control specification or as

a command parameter and a key in the record or search argument has a null

value. The key in the file or search argument has null values. This applies only

to externally described files.

v SRTSEQ for the file is not hexadecimal

v A numeric sign is different from the system-preferred sign

v The CCSID of a key in the file is different from the CCSID of the job

DDM Files

ILE RPG programs access files on remote systems through distributed data

management (DDM). DDM allows application programs on one system to use files

stored on a remote system as database files. No special statements are required in

ILE RPG programs to support DDM files.

A DDM file is created by a user or program on a local (source) system. This file

(with object type *FILE) identifies a file that is kept on a remote (target) system.

Using Commitment Control

Chapter 17. Accessing Database Files 357

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|

|
|

|
|

|

|

|

|
|
|
|

|

|

|

The DDM file provides the information needed for a local system to locate a

remote system and to access the data in the source file. For more information

about using DDM and creating DDM files, refer to the DB2 Universal Database for

AS/400 section of the Database and File Systems category in the iSeries Information

Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter.

Using Pre-V3R1 DDM Files

If you are using a pre-Version 3 Release 1.0 DDM file, the key comparison is not

done at the Data Management level during a READE or READPE operation, EQ

indicator for SETLL, or during sequential-within-limits processing by a record

address file. The READE or READPE operation, EQ indicator for SETLL, or during

sequential-within-limits processing by a record address file, will instead compare

the keys using the *HEX collating sequence.

This may give different results than expected when DDS features are used that

cause more than one search argument to match a given key in the file. For

example, if ABSVAL is used on a numeric key, both -1 and 1 would succeed as

search arguments for a key in the file with a value of 1. Using the hexadecimal

collating sequence, a search argument of -1 will not succeed for an actual key of 1.

Some of the DDS features that cause the key comparison to differ are:

v ALTSEQ specified for the file

v ABSVAL, ZONE, UNSIGNED, or DIGIT keywords on key fields

v Variable length, Date, Time, or Timestamp key fields

v The SRTSEQ for the file is not *HEX

v ALWNULL(*USRCTL) was specified on the creation command and a key in the

record or the search argument has a null value (this applies only to externally

described files)

In addition, if the sign of a numeric field is different from the system preferred

sign, the key comparison will also differ.

The first time that the key comparison is not done at the Data Management level

on a pre-V3R1 DDM file during the READE or READPE operation, EQ indicator

for SETLL, or during sequential-within-limits processing by a record address file,

an informational message (RNI2002) will be issued.

Note: The performance of I/O operations that have the possibility of not finding a

record (SETLL, CHAIN, SETGT, READE, READPE), will be slower than the

pre-Version 3 Release 1.0 equivalent.

DDM Files

358 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Chapter 18. Accessing Externally Attached Devices

You can access externally attached devices from RPG by using device files. Device

files are files that provide access to externally attached hardware such as printers,

tape units, diskette units, display stations, and other systems that are attached by a

communications line.

This chapter describes how to access externally attached devices using RPG device

names PRINTER, SEQ, and SPECIAL. For information on display stations and ICF

devices see Chapter 19, “Using WORKSTN Files,” on page 373

Types of Device Files

Before your program can read or write to the devices on the system, a device

description that identifies the hardware capabilities of the device to the operating

system must be created when the device is configured. A device file specifies how

a device can be used. By referring to a specific device file, your RPG program uses

the device in the way that it is described to the system. The device file formats

output data from your RPG program for presentation to the device, and formats

input data from the device for presentation to your RPG program.

You use the device files listed in Table 40 to access the associated externally

attached devices:

 Table 40. AS/400 Device Files, Related CL commands, and RPG Device Name

Device File Associated Externally Attached Device CL

commands

RPG Device

Name

Printer Files Provide access to printer devices and

describe the format of printed output.

CRTPRTF

CHGPRTF

OVRPRTF

PRINTER

Tape Files Provide access to data files which are

stored on tape devices.

CRTTAPF

CHGTAPF

OVRTAPF

SEQ

Diskette Files Provide access to data files which are

stored on diskette devices.

CRTDKTF

CHGDKTF

OVRDKTF

DISK

Display Files Provide access to display devices. CRTDSPF

CHGDSPF

OVRDSPF

WORKSTN

ICF Files Allow a program on one system to

communicate with a program on the same

system or another system.

CRTICFF

CHGICFF

OVRICFF

WORKSTN

The device file contains the file description, which identifies the device to be used;

it does not contain data.

Accessing Printer Devices

PRINTER files of ILE RPG programs associate with the printer files on the AS/400

system:

© Copyright IBM Corp. 1994, 2006 359

Printer files allow you to print output files. This chapter provides information on

how to specify and use printer files in ILE RPG programs.

Specifying PRINTER Files

To indicate that you want your program to access printer files, specify PRINTER as

the device name for the file in a File Description specification. Each file must have

a unique file name. A maximum of eight printer files is allowed per program.

PRINTER files can be either externally-described or program-described. Overflow

indicators OA-OG and OV, fetch overflow, space/skip entries, and the PRTCTL

keyword are not allowed for an externally-described PRINTER file. See the

WebSphere Development Studio: ILE RPG Reference for the valid output specification

entries for an externally-described file.

For an externally-described PRINTER file, you can specify the DDS keyword

INDARA. If you try to use this keyword for a program-described PRINTER file,

you get a run-time error.

You can use the CL command CRTPRTF (Create Print File) to create a printer file,

or you can use the IBM-supplied file names.

For information on the CRTPRTF command, see the CL and APIs section of the

Programming category in the iSeries Information Center at this Web site —

http://www.ibm.com/eserver/iseries/infocenter.

For information on IBM-supplied file names and the DDS for externally-described

printer files, refer to the DB2 Universal Database for AS/400 section of the Database

and File Systems category in the iSeries Information Center at the above Web site.

The file operation codes that are valid for a PRINTER file are WRITE, OPEN,

CLOSE, and FEOD. For a complete description of these operation codes, see the

WebSphere Development Studio: ILE RPG Reference.

Handling Page Overflow

An important consideration when you use a PRINTER file is page overflow. For an

externally-described PRINTER file, you are responsible for handling page overflow.

Do one of the following:

v Specify an indicator, *IN01 through *IN99, as the overflow indicator using the

keyword OFLIND(overflow indicator) in the Keywords field of the file description

specifications.

v Check the printer device feedback section of the INFDS for line number and

page overflow. Refer to the WebSphere Development Studio: ILE RPG Reference for

more information.

v Count the number of output lines per page.

v Check for a file exception/error by specifying an indicator in positions 73 and 74

of the calculation specifications that specify the output operation, or by

specifying an INFSR that can handle the error. The INFDS has detailed

information on the file exception/error. See Chapter 13, “Handling Exceptions,”

on page 263 for further information on exception and error handling.

For either a program-described or an externally-described file, you can specify an

indicator, *IN01 through *IN99, using the keyword OFLIND(overflow indicator) on

the File Description specification. This indicator is set on when a line is printed on

the overflow line, or the overflow line is reached or passed during a space or skip

Accessing Printer Devices

360 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

operation. Use the indicator to condition your response to the overflow condition.

The indicator does not condition the RPG overflow logic as an overflow indicator

(*INOA through *INOG, *INOV) does. You are responsible for setting the indicator

off.

For both program-described and externally-described files, the line number and

page number are available in the printer feedback section of the INFDS for the file.

To access this information specify the INFDS keyword on the file specification. On

the specification, define the line number in positions 367-368 and define the page

number in positions 369-372 of the data structure. Both the line number and the

page number fields must be defined as binary with no decimal positions. Because

the INFDS will be updated after every output operation to the printer file, these

fields can be used to determine the current line and page number without having

line-count logic in the program.

Note: If you override a printer file to a different device, such as a disk, the printer

feedback section of the INFDS will not be updated, and your line count

logic will not be valid.

For a program-described PRINTER file, the following sections on overflow

indicators and fetch overflow logic apply.

Using Overflow Indicators in Program-Described Files

An overflow indicator (OA through OG, OV) is set on when the last line on a page

has been printed or passed. An overflow indicator can be used to specify the lines

to be printed on the next page. Overflow indicators can be specified only for

program-described PRINTER files and are used primarily to condition the printing

of heading lines. An overflow indicator is specified using the keyword OFLIND on

the file description specifications and can be used to condition operations in the

calculation specifications (positions 9 through 11) and output specifications

(positions 21 through 29). If an overflow indicator is not specified, the compiler

assigns the first unused overflow indicator to the PRINTER file. Overflow

indicators can also be specified as resulting indicators on the calculation

specifications (positions 71 through 76).

The compiler sets on an overflow indicator only the first time an overflow

condition occurs on a page. An overflow condition exists whenever one of the

following occurs:

v A line is printed past the overflow line.

v The overflow line is passed during a space operation.

v The overflow line is passed during a skip operation.

Table 41 on page 362 shows the results of the presence or absence of an overflow

indicator on the file description and output specifications.

The following considerations apply to overflow indicators used on the output

specifications:

v Spacing past the overflow line sets the overflow indicator on.

v Skipping past the overflow line to any line on the same page sets the overflow

indicator on.

v Skipping past the overflow line to any line on the new page does not set the

overflow indicator on unless a skip-to is specified past the specified overflow

line.

Accessing Printer Devices

Chapter 18. Accessing Externally Attached Devices 361

v A skip to a new page specified on a line not conditioned by an overflow

indicator sets the overflow indicator off after the forms advance to a new page.

v If you specify a skip to a new line and the printer is currently on that line, a

skip does not occur. The overflow indicator is set to off, unless the line is past

the overflow line.

v When an OR line is specified for an output print record, the space and skip

entries of the preceding line are used. If they differ from the preceding line,

enter space and skip entries on the OR line.

v Control level indicators can be used with an overflow indicator so that each

page contains information from only one control group. See Figure 179 on page

363.

v For conditioning an overflow line, an overflow indicator can appear in either an

AND or an OR relationship. For an AND relationship, the overflow indicator

must appear on the main specification line for that line to be considered an

overflow line. For an OR relationship, the overflow indicator can be specified on

either the main specification line or the OR line. Only one overflow indicator can

be associated with one group of output indicators. For an OR relationship, only

the conditioning indicators on the specification line where an overflow indicator

is specified is used for the conditioning of the overflow line.

v If an overflow indicator is used on an AND line, the line is not an overflow line.

In this case, the overflow indicator is treated like any other output indicator.

v When the overflow indicator is used in an AND relationship with a record

identifying indicator, unusual results are often obtained because the record type

might not be the one read when overflow occurred. Therefore, the record

identifying indicator is not on, and all lines conditioned by both overflow and

record identifying indicators do not print.

v An overflow indicator conditions an exception line (E in position 17), and

conditions fields within the exception record.

 Table 41. Results of the Presence or Absence of an Overflow Indicator

File Description

Specifications

Positions 44-80

Output

Specifications

Positions 21-29

Action

No entry No entry First unused overflow indicator used to

condition skip to next page at overflow.

No entry Entry Error at compile time; overflow indicator

dropped from output specifications. First unused

overflow indicator used to condition skip to next

page at overflow.

OFLIND (indicator) No entry Continuous printing; no overflow recognized.

OFLIND (indicator) Entry Processes normal overflow.

Example of Printing Headings on Every Page

Figure 178 on page 363 shows an example of the coding necessary for printing

headings on every page: first page, every overflow page, and each new page to be

started because of a change in control fields (L2 is on). The first line allows the

headings to be printed at the top of a new page (skip to 06) only when an

overflow occurs (OA is on and L2 is not on).

The second line allows printing of headings on the new page only at the beginning

of a new control group (L2 is on). This way, duplicate headings caused by both L2

and OA being on at the same time do not occur. The second line allows headings

to be printed on the first page after the first record is read because the first record

Accessing Printer Devices

362 ILE RPG Programmer’s Guide

always causes a control break (L2 turns on) if control fields are specified on the

record.

Example of Printing a Field on Every Page

Figure 179shows the necessary coding for the printing of certain fields on every

page; a skip to 06 is done either on an overflow condition or on a change in

control level (L2). The NL2 indicator prevents the line from printing and skipping

twice in the same cycle.

Using the Fetch-Overflow Routine in Program-Described Files

When there is not enough space left on a page to print the remaining detail, total,

exception, and heading lines conditioned by the overflow indicator, the fetch

overflow routine can be called. This routine causes an overflow. To determine

when to fetch the overflow routine, study all possible overflow situations. By

counting lines and spaces, you can calculate what happens if overflow occurs on

each detail, total, and exception line.

The fetch-overflow routine allows you to alter the basic ILE RPG overflow logic to

prevent printing over the perforation and to let you use as much of the page as

possible. During the regular program cycle, the compiler checks only once,

immediately after total output, to see if the overflow indicator is on. When the

fetch overflow function is specified, the compiler checks overflow on each line for

which fetch overflow is specified.

Figure 180 on page 364 shows the normal processing of overflow printing when

fetch overflow is set on and when it is set off.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................

OPRINT H OANL2 3 6

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++

O OR L2

O 8 ’DATE’

O 18 ’ACCOUNT’

O 28 ’N A M E’

O 46 ’BALANCE’

O*

Figure 178. Printing a Heading on Every Page

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................

OPRINT D OANL2 3 6

O OR L2

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++

O ACCT 8

O*

Figure 179. Printing a Field on Every Page

Accessing Printer Devices

Chapter 18. Accessing Externally Attached Devices 363

�A� When fetch overflow is not specified, the overflow lines print after total

output. No matter when overflow occurs (OA is on), the overflow indicator

OA remains on through overflow output time and is set off after heading

and detail output time.

�B� When fetch overflow is specified, the overflow lines are written before the

output line for which fetch overflow was specified, if the overflow

indicator OA is on. When OA is set on, it remains on until after heading

Overflow
Occurs
During

Get a
Record

Total
Calculations

Total
Output

Overflow
Printing

T = Total

H = Heading

D = Detail

E = Exception

Detail
Calculations

Heading
and

Detail
Output

Set Off
Overflow
Indicators

Overflow Printing and Setting of the OA Overflow Indicator

Without Fetch

Normal Output

Detail
Output

Normal Output Exception Output

Detail
Calc

Total
Calc

0 A
Print

0 A
Print

0 A
Print

Print Print Print Print

0 A
Print

Total
Output

Total
Output

Exception Output

0 A

0 A

0 A

Off Off Off Off Off Off Off Off

0 A

Detail
Output

Detail
Calc

Total
Calc

With Fetch

Figure 180. Overflow Printing: Setting of the Overflow Indicator

Accessing Printer Devices

364 ILE RPG Programmer’s Guide

and detail output time. The overflow lines are not written a second time at

overflow output time unless overflow is sensed again since the last time

the overflow lines were written.

Specifying Fetch Overflow

Specify fetch overflow with an F in position 18 of the output specifications on any

detail, total, or exception lines for a PRINTER file. The fetch overflow routine does

not automatically cause forms to advance to the next page.

During output, the conditioning indicators on an output line are tested to

determine if the line is to be written. If the line is to be written and an F is

specified in position 18, the compiler tests to determine if the overflow indicator is

on. If the overflow indicator is on, the overflow routine is fetched and the

following operations occur:

1. Only the overflow lines for the file with the fetch specified are checked for

output.

2. All total lines conditioned by the overflow indicator are written.

3. Forms advance to a new page when a skip to a line number less than the line

number the printer is currently on is specified in a line conditioned by an

overflow indicator.

4. Heading, detail, and exception lines conditioned by the overflow indicator are

written.

5. The line that fetched the overflow routine is written.

6. Any detail and total lines left to be written for that program cycle are written.

Position 18 of each OR line must contain an F if the overflow routine is to be used

for each record in the OR relationship. Fetch overflow cannot be used if an

overflow indicator is specified in positions 21 through 29 of the same specification

line. If this is the case, the overflow routine is not fetched.

Example of Specifying Fetch Overflow

Figure 181 shows the use of fetch overflow.

 The total lines with an F coded in position 18 can fetch the overflow routine. They

only do so if overflow is sensed prior to the printing of one of these lines. Before

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................

OPRINTER H OA 3 05

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++

O 15 ’EMPLOYEE TOTAL’

O TF L1 1

O EMPLTOT 25

O T L1 1

O EMPLTOT 35

O T L1 1

O EMPLTOT 45

O TF L1 1

O EMPLTOT 55

O T L1 1

O EMPLTOT 65

O T L1 1

O EMPLTOT 75

O T L1 1

O*

Figure 181. Use of Fetch Overflow

Accessing Printer Devices

Chapter 18. Accessing Externally Attached Devices 365

fetch overflow is processed, a check is made to determine whether the overflow

indicator is on. If it is on, the overflow routine is fetched, the heading line

conditioned by the overflow indicator is printed, and the total operations are

processed.

Changing Forms Control Information in a Program-Described

File

The PRTCTL (printer control) keyword allows you to change forms control

information and to access the current line value within the program for a

program-described PRINTER file. Specify the keyword PRTCTL(data structure name)

on the File Description specification for the PRINTER file.

You can specify two types of PRTCTL data structures in your source: an

OPM-defined data structure, or an ILE data structure. The default is to use the ILE

data structure layout which is shown in Table 42. To use the OPM-defined data

structure layout, specify PRTCTL(data-structure name:*COMPAT). The OPM

PRTCTL data structure layout is shown in Table 43.

The ILE PRTCTL data structure must be defined on the Definition specifications. It

requires a minimum of 15 bytes and must contain at least the following five

subfields specified in the following order:

 Table 42. Layout of ILE PRTCTL Data Structure

Positions Subfield Contents

1-3 A three-position character field that contains the space-before value

(valid values: blank or 0-255)

4-6 A three-position character field that contains the space-after value

(valid values: blank or 0-255)

7-9 A three-position character field that contains the skip-before value

(valid values: blank or 0-255)

10-12 A three-position character field that contains the skip-after value

(valid values: blank or 0-255)

13-15 A three-digit numeric field with zero decimal positions that

contains the current line count value.

The OPM PRTCTL data structure must be defined on the Definition specifications

and must contain at least the following five subfields specified in the following

order:

 Table 43. Layout of OPM PRTCTL Data Structure

Positions Subfield Contents

1 A one-position character field that contains the space-before value

(valid values: blank or 0-3)

2 A one-position character field that contains the space-after value

(valid values: blank or 0-3)

3-4 A two-position character field that contains the skip-before value

(valid values: blank, 1-99, A0-A9 for 100-109, B0-B2 for 110-112)

5-6 A two-position character field that contains the skip-after value

(valid values: blank, 1-99, A0-A9 for 100-109, B0-B2 for 110-112)

7-9 A two-digit numeric field with zero decimal positions that contains

the current line count value.

Accessing Printer Devices

366 ILE RPG Programmer’s Guide

The values contained in the first four subfields of the ILE PRTCTL data structure

are the same as those allowed in positions 40 through 51 (space and skip entries)

of the output specifications. If the space/skip entries (positions 40 through 51) of

the output specifications are blank, and if subfields 1 through 4 are also blank, the

default is to space 1 after. If the PRTCTL keyword is specified, it is used only for

the output records that have blanks in positions 40 through 51. You can control the

space and skip value (subfields 1 through 4) for the PRINTER file by changing the

values in these subfields of the PRTCTL data structure while the program is

running.

Subfield 5 contains the current line count value. The compiler does not initialize

subfield 5 until after the first output line is printed. The compiler then changes

subfield 5 after each output operation to the file.

Example of Changing Forms Control Information

Figure 182 shows an example of the coding necessary to change the forms control

information using the PRTCTL keyword.

 On the file description specifications, the PRTCTL keyword is specified for the

PRINT file. The name of the associated data structure is LINE.

The LINE data structure is defined on the input specifications as having only those

subfields that are predefined for the PRTCTL data structure. The first four

subfields in positions 1 through 12 are used to supply space and skip information

that is generally specified in positions 40 through 51 of the output specifications.

The PRTCTL keyword allows you to change these specifications within the

program.

In this example, the value in the SpAfter subfield is changed to 3 when the value

in the CurLine (current line count value) subfield is equal to 10. (Assume that

indicator 01 was set on as a record identifying indicator.)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

FPRINT O F 132 PRINTER PRTCTL(LINE)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

DLINE DS

D SpBefore 1 3

D SpAfter 4 6

D SkBefore 7 9

D SkAfter 10 12

D CurLine 13 15 0

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C EXCEPT

C 01CurLine COMP 10 49

C 01

CAN 49 MOVE ’3’ SpAfter

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................

OPRINT E 01

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++

O DATA 25

Figure 182. Example of the PRTCTL Option

Accessing Printer Devices

Chapter 18. Accessing Externally Attached Devices 367

Accessing Tape Devices

Use the SEQ device specifications whenever you write to a tape file. To write

variable-length records to a tape file, use the RCDBLKFMT parameter of the CL

command CRTTAPF or OVRTAPF. When you use the RCDBLKFMT parameter, the

length of each record to be written to tape is determined by:

v the highest end position specified in the output specifications for the record or,

v if you do not specify an end position, the compiler calculates the record length

from the length of the fields.

Read variable-length records from tape just like you would read records from any

sequentially organized file. Ensure the record length specified on the file

description specification accommodates the longest record in the file.

Accessing Display Devices

You use display files to exchange information between your program and a display

device such as a workstation. A display file is used to define the format of the

information that is to be presented on a display, and to define how the information

is to be processed by the system on its way to and from the display.

See Chapter 19, “Using WORKSTN Files,” on page 373 for a discussion on how to

use WORKSTN files.

Using Sequential Files

Sequential files in an ILE RPG program associate with any sequentially organized

file on the AS/400 system, such as:

v Database file

v Diskette file

v Printer file

v Tape file.

The file name of the SEQ file in the file description specifications points to an

AS/400 file. The file description of the AS/400 file specifies the actual I/O device,

such as tape, printer or diskette.

You can also use the CL override commands, for example OVRDBF, OVRDKTF

and OVRTAPF, to specify the actual I/O device when the program is run.

Specifying a Sequential File

A sequential (SEQ) device specification, entered in positions 36 through 42 in the

file description specification, indicates that the input or output is associated with a

sequentially-organized file. Refer to Figure 183 on page 369. The actual device to be

associated with the file while running the program can be specified by a i5/OS

override command or by the file description that is pointed to by the file name. If

SEQ is specified in a program, no device-dependent functions such as space/skip,

or CHAIN can be specified.

Accessing Tape Devices

368 ILE RPG Programmer’s Guide

The following figure shows the operation codes allowed for a SEQ file.

 Table 44. Valid File Operation Codes for a Sequential File

File Description Specifications

Positions

Calculation Specifications Positions

17 18 26-35

I P/S CLOSE, FEOD

I F READ, OPEN, CLOSE, FEOD

O WRITE, OPEN, CLOSE, FEOD

Note: No print control specifications are allowed for a sequential file.

Example of Specifying a Sequential File

Figure 183 shows an example of how to specify a SEQ file in an ILE RPG source

member.

 A SEQ device is specified for the PAYOTIME file. When the program is run, you

can use a i5/OS override command to specify the actual device (such as printer,

tape, or diskette) to be associated with the file while the program is running. For

example, diskette can be specified for some program runs while printer can be

specified for others. The file description, pointed to by the file name, can specify

the actual device, in which case an override command need not be used.

Using SPECIAL Files

The RPG device name SPECIAL (positions 36 - 42 of the file description

specifications) allows you to specify an input and/or output device that is not

directly supported by the ILE RPG operations. The input and output operations for

the file are controlled by a user-written routine. The name of the user-written

routine, must be identified in the file description specifications using the keyword

PGMNAME(’program name’).

ILE RPG calls this user-written routine to open the file, read and write the records,

and close the file. ILE RPG also creates a parameter list for use by the user-written

routine. The parameter list contains:

v option code parameter (option)

v return status parameter (status)

v error-found parameter (error)

v record area parameter (area).

This parameter list is accessed by the ILE RPG compiler and by the user-written

routine; it cannot be accessed by the program that contains the SPECIAL file.

The following describes the parameters in this RPG-created parameter list:

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+ ...

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

FTIMECDS IP E DISK

FPAYOTIME O F 132 SEQ

 *

Figure 183. SEQ Device

Using Sequential Files

Chapter 18. Accessing Externally Attached Devices 369

Option

The option parameter is a one-position character field that indicates the

action the user-written routine is to process. Depending on the operation

being processed on the SPECIAL file (OPEN, CLOSE, FEOD, READ,

WRITE, DELETE, UPDATE), one of the following values is passed to the

user-written routine from ILE RPG:

Value Passed

Description

O Open the file.

C Close the file.

F Force the end of file.

R Read a record and place it in the area defined by the area

parameter.

W The ILE RPG program has placed a record in the area defined by

the area parameter; the record is to be written out.

D Delete the record.

U The record is an update of the last record read.

Status The status parameter is a one-position character field that indicates the

status of the user-written routine when control is returned to the ILE RPG

program. Status must contain one of the following return values when the

user-written routine returns control to the ILE RPG program:

Return Value

Description

0 Normal return. The requested action was processed.

1 The input file is at end of file, and no record has been returned. If

the file is an output file, this return value is an error.

2 The requested action was not processed; error condition exists.

Error The error parameter is a five-digit zoned numeric field with zero decimal

positions. If the user-written routine detects an error, the error parameter

contains an indication or value representing the type of error. The value is

placed in the first five positions of location *RECORD in the INFDS when

the status parameter contains 2.

Area The area parameter is a character field whose length is equal to the record

length associated with the SPECIAL file. This field is used to pass the

record to or receive the record from the ILE RPG program.

You can add additional parameters to the RPG-created parameter list. Specify the

keyword PLIST(parameter list name) on the file description specifications for the

SPECIAL file. See Figure 184 on page 371. Then use the PLIST operation in the

calculation specifications to define the additional parameters.

The user-written routine, specified by the keyword PGMNAME of the file

description specifications for the SPECIAL file, must contain an entry parameter

list that includes both the RPG-created parameters and the user-specified

parameters.

If the SPECIAL file is specified as a primary file, the user-specified parameters

must be initialized before the first primary read. You can initialize these

Using SPECIAL Files

370 ILE RPG Programmer’s Guide

parameters with a factor 2 entry on the PARM statements or by the specification of

a compile-time array or an array element as a parameter.

Table 45 shows the file operation codes that are valid for a SPECIAL file.

 Table 45. Valid File Operations for a SPECIAL File

File Description Specifications

Positions

Calculation Specifications Positions

17 18 26-35

I P/S CLOSE, FEOD

C P/S WRITE, CLOSE, FEOD

U P/S UPDATE, DELETE, CLOSE, FEOD

O WRITE, OPEN, CLOSE, FEOD

I F READ, OPEN, CLOSE, FEOD

C F READ, WRITE, OPEN, CLOSE, FEOD

U F READ, UPDATE, DELETE, OPEN, CLOSE,

FEOD

Example of Using a Special File

Figure 184 shows how to use the RPG device name SPECIAL in a program. In this

example, a file description found in the file EXCPTN is associated with the device

SPECIAL.

 Figure 185 on page 372 shows the user-written program USERIO.

 *.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

 FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++

 FEXCPTN O F 20 SPECIAL PGMNAME(’USERIO’)

 F PLIST(SPCL)

 *.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

 DName+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++++

 D OUTBUF DS

 D FLD 1 20

 *.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

 CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

 C SPCL PLIST

 C PARM FLD1

 C MOVEL ’HELLO’ FLD

 C MOVE ’1’ FLD1 1

 C WRITE EXCPTN OUTBUF

 C MOVE ’2’ FLD1 1

 C WRITE EXCPTN OUTBUF

 C SETON LR

Figure 184. SPECIAL Device

Using SPECIAL Files

Chapter 18. Accessing Externally Attached Devices 371

The I/O operations for the SPECIAL device are controlled by the user-written

program USERIO. The parameters specified for the programmer-defined

PLIST(SPCL) are added to the end of the RPG-created parameter list for the

SPECIAL device. The programmer-specified parameters can be accessed by the

user ILE RPG program and the user-written routine USERIO; whereas the

RPG-created parameter list can be accessed only by internal ILE RPG logic and the

user-written routine.

 *.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

 DName+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++++

 D ERROR S 5S 0

 *.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

 CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

 --

 * The first 4 parameters are ILE RPG created parameter list. *

 * The rest are defined by the programmer-defined PLIST. *

 --

 C *ENTRY PLIST

 C PARM OPTION 1

 C PARM STATUS 1

 C PARM ERROR 5 0

 C PARM AREA 20

 C PARM FLD1 1

 --

 * The user written program will perform the file I/O according *

 * to the option passed. *

 --

 C SELECT

 C WHEN OPTION = ’O’

 C* perform OPEN operation

 C WHEN OPTION = ’W’

 C* perform WRITE operation

 C WHEN OPTION = ’C’

 C* perform CLOSE operation

 C ENDSL

 C RETURN

Figure 185. User-written program USERIO

Using SPECIAL Files

372 ILE RPG Programmer’s Guide

Chapter 19. Using WORKSTN Files

Interactive applications on the iSeries server generally involve communication

with:

v One or more work station users via display files

v One or more programs on a remote system via ICF files

v One or more devices on a remote system via ICF files.

Display files are objects of type *FILE with attribute of DSPF on the iSeries

system. You use display files to communicate interactively with users at display

terminals. Like database files, display files can be either externally-described or

program-described.

ICF files are objects of type *FILE with attribute of ICFF on the iSeries system. You

use ICF files to communicate with (send data to and receive data from) other

application programs on remote systems (iSeries or non-iSeries). An ICF file

contains the communication formats required for sending and receiving data

between systems. You can write programs that use ICF files which allow you to

communicate with (send data to and receive data from) other application programs

on remote systems.

When a file in an RPG program is identified with the WORKSTN device name

then that program can communicate interactively with a work-station user or use

the Intersystem Communications Function (ICF) to communicate with other

programs. This chapter describes how to use:

v Intersystem Communications Function (ICF)

v Externally-described WORKSTN files

v Program-described WORKSTN files

v Multiple-device files.

Intersystem Communications Function

To use the ICF, define a WORKSTN file in your program that refers to an ICF

device file. Use either the system supplied file QICDMF or a file created using the

i5/OS command CRTICFF.

You code for ICF by using the ICF as a file in your program. The ICF is similar to

a display file and it contains the communications formats required for the sending

and receiving of data between systems.

For further information on the ICF, refer to ICF Programming manual.

Using Externally Described WORKSTN Files

An RPG WORKSTN file can use an externally described display-device file or

ICF-device file, which contains file information and a description of the fields in

the records to be written. The most commonly used externally described

WORKSTN file is a display file. (For information about describing and creating

display files, refer to the DB2 Universal Database for AS/400 section of the Database

and File Systems category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.)

© Copyright IBM Corp. 1994, 2006 373

http://www.ibm.com/eserver/iseries/infocenter

In addition to the field descriptions (such as field names and attributes), the DDS

for a display-device file are used to:

v Format the placement of the record on the screen by specifying the line-number

and position-number entries for each field and constant.

v Specify attention functions such as underlining and highlighting fields, reverse

image, or a blinking cursor.

v Specify validity checking for data entered at the display work station.

Validity-checking functions include detecting fields where data is required,

detecting mandatory fill fields, detecting incorrect data types, detecting data for

a specific range, checking data for a valid entry, and processing modules 10 or

11 check-digit verification.

v Control screen management functions, such as determining if fields are to be

erased, overlaid, or kept when new data is displayed.

v Associate indicators 01 through 99 with command attention keys or command

function keys. If a function key is described as a command function key (CF),

both the response indicator and the data record (with any modifications entered

on the screen) are returned to the program. If a function key is described as a

command attention key (CA), the response indicator is returned to the program

but the data record remains unmodified. Therefore, input-only character fields

are blank and input-only numeric field are filled with zeros, unless these fields

have been initialized otherwise.

v Assign an edit code (EDTCDE) or edit word (EDTWRD) keyword to a field to

specify how the field’s values are to be displayed.

v Specify subfiles.

A display-device-record format contains three types of fields:

v Input fields. Input fields are passed from the device to the program when the

program reads a record. Input fields can be initialized with a default value. If

the default value is not changed, the default value is passed to the program.

Input fields that are not initialized are displayed as blanks into which the

work-station user can enter data.

v Output fields. Output fields are passed from the program to the device when the

program writes a record to a display. Output fields can be provided by the

program or by the record format in the device file.

v Output/input (both) fields. An output/input field is an output field that can be

changed. It becomes an input field if it is changed. Output/input fields are

passed from the program when the program writes a record to a display and

passed to the program when the program reads a record from the display.

Output/input fields are used when the user is to change or update the data that

is written to the display from the program.

If you specify the keyword INDARA in the DDS for a WORKSTN file, the RPG

program passes indicators to the WORKSTN file in a separate indicator area, and

not in the input/output buffer.

For a detailed description of an externally-described display-device file and for a

list of valid DDS keywords, refer to the DB2 Universal Database for AS/400 section

of the Database and File Systems category in the iSeries Information Center at this

Web site - http://www.ibm.com/eserver/iseries/infocenter.

Figure 186 on page 375 shows an example of the DDS for a display-device file.

Using Externally Described WORKSTN Files

374 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

This display device file contains two record formats: PROMPT and RESPONSE.

�1� The attributes for the fields in this file are defined in the DSTREF field

reference file.

�2� The OVERLAY keyword is used so that both record formats can be used

on the same display.

�3� Function key 3 is associated with indicator 98, which is used by the

programmer to end the program.

�4� The PUTRETAIN keyword allows the value that is entered in the ITEM

field to be kept in the display. In addition, the ITEM field is defined as an

input field by the I in position 38. ITEM is the only input field in these

record formats. All of the other fields in the record are output fields since

position 38 is blank for each of them.

�5� The ERRMSG keyword identifies the error message that is displayed if

indicator 61 is set on in the program that uses this record format.

�6� The LOCK keyword prevents the work-station user from using the

keyboard when the RESPONSE record format is initially-displayed.

�7� The constants such as ‘Description’, ‘Price’, and ‘Warehouse Location’

describe the fields that are written out by the program.

�8� The line and position entries identify where the fields or constants are

written on the display.

Specifying Function Key Indicators on Display Device Files

The function key indicators, KA through KN and KP through KY are valid for a

program that contains a display device WORKSTN file if the associated function

key is specified in the DDS.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A** ITEM MASTER INQUIRY

A REF(DSTREF) �1�

A R PROMPT TEXT(’Item Prompt Format’)

A 73N61 OVERLAY �2�

A CA03(98 ’End of Program’) �3�

A 1 2’Item Inquiry’

A 3 2’Item Number’

A ITEM R I 3 15PUTRETAIN �4�

A 61 ERRMSG(’Invalid Item Number’ 61)�5�

A R RESPONSE TEXT(’Response Format’)

A OVERLAY �2�

A LOCK �6�

A 5 2’Description’

A DESCRP R 5 15

A 5 37’Price’

A PRICE R 5 44

A 7 2’Warehouse Location’ �7�

A WHSLOC R 7 22

A 9 2’On Hand’

A ONHAND R 9 10

A 9 19’Allocated’ �8�

A ALLOC R 9 30

A 9 40’Available’

A AVAIL R 9 51

A*

Figure 186. Example of the Data Description Specifications for a Display Device File

Using Externally Described WORKSTN Files

Chapter 19. Using WORKSTN Files 375

The function key indicators relate to the function keys as follows: function key

indicator KA corresponds to function key 1, KB to function key 2 ... KX to function

key 23, and KY to function key 24.

Function keys are specified in the DDS with the CFxx (command function) or

CAxx (command attention) keyword. For example, the keyword CF01 allows

function key 1 to be used. When you press function key 1, function key indicator

KA is set on in the RPG program. If you specify the function key as CF01 (99),

both function key indicator KA and indicator 99 are set on in the RPG program. If

the work-station user presses a function key that is not specified in the DDS, the

i5/OS system informs the user that an incorrect key was pressed.

If the work-station user presses a specified function key, the associated function

key indicator in the RPG program is set on when fields are extracted from the

record (move fields logic) and all other function key indicators are set off. If a

function key is not pressed, all function key indicators are set off at move fields

time. The function key indicators are set off if the user presses the Enter key.

Specifying Command Keys on Display Device Files

You can specify the command keys Help, Roll Up, Roll Down, Print, Clear, and

Home in the DDS for a display device file with the keywords HELP, ROLLUP,

ROLLDOWN, PRINT, CLEAR, and HOME.

Command keys are processed by an RPG program whenever the compiler

processes a READ or an EXFMT operation on a record format for which the

appropriate keywords are specified in the DDS. When the command keys are in

effect and a command key is pressed, the i5/OS system returns control to the RPG

program. If a response indicator is specified in the DDS for the command selected,

that indicator is set on and all other response indicators that are in effect for the

record format and the file are set off.

If a response indicator is not specified in the DDS for a command key, the

following happens:

v For the Print key without *PGM specified, the print function is processed.

v For the Roll Up and Roll Down keys used with subfiles, the displayed subfile

rolls up or down, within the subfile. If you try to roll beyond the start or end of

a subfile, you get a run-time error.

v For the Print Key specified with *PGM, Roll Up and Roll Down keys used

without subfiles, and for the Clear, Help, and Home keys, one of the *STATUS

values 1121-1126 is set, respectively, and processing continues.

Processing an Externally Described WORKSTN File

When an externally-described WORKSTN file is processed, the i5/OS system

transforms data from the program to the format specified for the file and displays

the data. When data is passed to the program, the data is transformed to the

format used by the program.

The i5/OS system provides device-control information for processing input/output

operations for the device. When an input record is requested from the device, the

i5/OS system issues the request, and then removes device-control information from

the data before passing the data to the program. In addition, the i5/OS system can

pass indicators to the program indicating which fields, or if any fields, in the

record have been changed.

Using Externally Described WORKSTN Files

376 ILE RPG Programmer’s Guide

When the program requests an output operation, it passes the output record to the

i5/OS system. The i5/OS system provides the necessary device-control information

to display the record. It also adds any constant information specified for the record

format when the record is displayed.

When a record is passed to a program, the fields are arranged in the order in

which they are specified in the DDS. The order in which the fields are displayed is

based on the display positions (line numbers and position) assigned to the fields in

the DDS. The order in which the fields are specified in the DDS and the order in

which they appear on the screen need not be the same.

For more information on processing WORKSTN files, see “Valid WORKSTN File

Operations” on page 383.

Using Subfiles

Subfiles can be specified in the DDS for a display-device file to allow you to

handle multiple records of the same type on the display. (See Figure 187 on page

378.) A subfile is a group of records that is read from or written to a display-device

file. For example, a program reads records from a database file and creates a

subfile of output records. When the entire subfile has been written, the program

sends the entire subfile to the display device in one write operation. The

work-station user can change data or enter additional data in the subfile. The

program then reads the entire subfile from the display device into the program and

processes each record in the subfile individually.

Records that you want to be included in a subfile are specified in the DDS for the

file. The number of records that can be included in a subfile must also be specified

in the DDS. One file can contain more than one subfile, and up to 12 subfiles can

be active concurrently. Two subfiles can be displayed at the same time.

The DDS for a subfile consists of two record formats: a subfile-record format and a

subfile control-record format. The subfile-record format contains the field

information that is transferred to or from the display file under control of the

subfile control-record format. The subfile control-record format causes the physical

read, write, or control operations of a subfile to take place. Figure 188 on page 379

shows an example of the DDS for a subfile-record format, and Figure 189 on page

380 shows an example of the DDS for a subfile control-record format.

For a description of how to use subfile keywords, refer to the DB2 Universal

Database for AS/400 section of the Database and File Systems category in the iSeries

Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter..

Using Externally Described WORKSTN Files

Chapter 19. Using WORKSTN Files 377

http://www.ibm.com/eserver/iseries/infocenter

To use a subfile for a display device file in an RPG program, you must specify the

SFILE keyword on a file description specification for the WORKSTN file. The

format of the SFILE keyword is SFILE(record format name:RECNO field name). The

WORKSTN file must be an externally-described file (E in position 22).

You must specify for the SFILE keyword the name of the subfile record format (not

the control-record format) and the name of the field that contains the relative

record number to be used in processing the subfile.

In an RPG program, relative record number processing is defined as part of the

SFILE definition. The SFILE definition implies a full-procedural update file with

ADD for the subfile. Therefore, the file operations that are valid for the subfile are

not dependent on the definition of the main WORKSTN file. That is, the

WORKSTN file can be defined as a primary file or a full-procedural file.

Use the CHAIN, READC, UPDATE, or WRITE operation codes with the subfile

record format to transfer data between the program and the subfile. Use the

READ, WRITE, or EXFMT operation codes with the subfile control-record format

to transfer data between the program and the display device or to process subfile

control operations.

Subfile processing follows the rules for relative-record-number processing. The

RPG program places the relative-record number of any record retrieved by a

READC operation into the field named in the second position of the SFILE

keyword. This field is also used to specify the record number that the RPG

program uses for WRITE operation to the subfile or for output operations that use

ADD. The RECNO field name specified for the SFILE keyword must be defined as

numeric with zero decimal positions. The field must have enough positions to

contain the largest record number for the file. (See the SFLSIZ keyword in the DB2

Universal Database for AS/400 section of the Database and File Systems category in the

iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.) The WRITE operation code and

the ADD specification on the output specifications require that a

Customer Name Search

Search Code _______

Number Name Address City State

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

Figure 187. Subfile Display

Using Externally Described WORKSTN Files

378 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

relative-record-number field be specified in the second position of the SFILE

keyword on the file description specification.

If a WORKSTN file has an associated subfile, all implicit input operations and

explicit calculation operations that refer to the file name are processed against the

main WORKSTN file. Any operations that specify a record format name that is not

designated as a subfile are processed on the main WORKSTN file.

If you press a specified function key during a read of a non-subfile record,

subsequent reads of a subfile record will cause the corresponding function key

indicator to be set on again, even if the function key indicator has been set off

between the reads. This will continue until a non-subfile record is read from the

WORKSTN file.

 The data description specifications (DDS) for a subfile record format describe the

records in the subfile:

�1� The attributes for the fields in the record format are contained in the field

reference file DSTREF as specified by the REF keyword.

�2� The SFL keyword identifies the record format as a subfile.

�3� The line and position entries define the location of the fields on the

display.

Use of Subfiles

Some typical ways you can make use of subfiles include:

v Display only. The work-station user reviews the display.

v Display with selection. The user requests more information about one of the

items on the display.

v Modification. The user changes one or more of the records.

v Input only, with no validity checking. A subfile is used for a data entry function.

v Input only, with validity checking. A subfile is used for a data entry function,

but the records are checked.

v Combination of tasks. A subfile can be used as a display with modification, plus

the input of new records.

The following figure shows an example of data description specifications for a

subfile control-record format. For an example of using a subfile in an RPG

program, see “Search by Zip Code” on page 402.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A** CUSTOMER NAME SEARCH

A REF(DSTREF) �1�

A R SUBFIL SFL �2�

A TEXT(’Subfile Record’)

A CUST R 7 3

A NAME R 7 10

A ADDR R 7 32 �3�

A CITY R 7 54

A STATE R 7 77

A*

Figure 188. Data Description Specifications for a Subfile Record Format

Using Externally Described WORKSTN Files

Chapter 19. Using WORKSTN Files 379

The subfile control-record format defines the attributes of the subfile, the search

input field, constants, and function keys. The keywords you can use indicate the

following:

v SFLCTL names the associated subfile (SUBFIL).

v SFLCLR indicates when the subfile should be cleared (when indicator 70 is off).

v SFLDSPCTL indicates when to display the subfile control record (when indicator

70 is on).

v SFLDSP indicates when to display the subfile (when indicator 71 is on).

v SFLSIZ indicates the total number of records to be included in the subfile (15).

v SFLPAG indicates the total number of records in a page (15).

v ROLLUP indicates that indicator 97 is set on in the program when the user

presses the Roll Up key.

v HELP allows the user to press the Help key for a displayed message that

describes the valid function keys.

v PUTRETAIN allows the value that is entered in the SRHCOD field to be kept in

the display.

In addition to the control information, the subfile control-record format also

defines the constants to be used as column headings for the subfile record format.

Using Program-Described WORKSTN Files

You can use a program-described WORKSTN file with or without a format name

specified on the output specifications. The format name, if specified, refers to the

name of a data description specifications record format. This record format

describes:

v How the data stream sent from an RPG program is formatted on the screen

v What data is sent

v What ICF functions to perform.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R FILCTL SFLCTL(SUBFIL)

A N70 SFLCLR

A 70 SFLDSPCTL

A 71 SFLDSP

A SFLSIZ(15)

A SFLPAG(15)

A TEXT(’Subfile Control Record’)

A OVERLAY

A 71 ROLLUP(97 ’Continue Search’)

A CA01(98 ’End of Program’)

A HELP(99 ’Help Key’)

A 1 2’Customer Name Search’

A 3 2’Search Code’

A SRHCOD R I 3 14PUTRETAIN

A 5 2’Number’

A 5 10’Name’

A 5 32’Address’

A 5 54’City’

A 5 76’State’

A*

Figure 189. Data Description Specifications for a Subfile Control-Record Format

Using Externally Described WORKSTN Files

380 ILE RPG Programmer’s Guide

If a format name is used, input and output specifications must be used to describe

the input and output records.

You can specify PASS(*NOIND) on a file description specification for a

program-described WORKSTN file. The PASS(*NOIND) keyword indicates that the

RPG program will not additionally pass indicators to data management on output

or receive them on input. It is your responsibility to pass indicators by describing

them as fields (in the form *INxx, *IN, or *IN(x)) in the input or output record.

They must be specified in the sequence required by the data description

specifications (DDS). You can use the DDS listing to determine this sequence.

Using a Program-Described WORKSTN File with a Format

Name

The following specifications apply to using a format name for a program-described

WORKSTN file.

Output Specifications

On the output specifications, you must specify the WORKSTN file name in

positions 7 through 16. The format name, which is the name of the DDS record

format, is specified as a literal or named constant in positions 53 through 80 on the

succeeding field description line. K1 through K10 must be specified

(right-adjusted) in positions 47 through 51 on the line containing the format name.

The K identifies the entry as a length rather than an end position, and the number

indicates the length of the format name. For example, if the format name is

CUSPMT, the entry in positions 47 through 51 is K6. (Leading zeros following the

K are allowed.) The format name cannot be conditioned (indicators in positions 21

through 29 are not valid).

Output fields must be located in the output record in the same order as defined in

the DDS; however, the field names do not have to be the same. The end position

entries for the fields refer to the end position in the output record passed from the

RPG program to data management, and not to the location of the fields on the

screen.

To pass indicators on output, do one of the following:

v Specify the keyword INDARA in the DDS for the WORKSTN file. Do not use

the PASS(*NOIND) keyword on the file description specification and do not

specify the indicators on the output specifications. The program and file use a

separate indicator area to pass the indicators.

v Specify the PASS(*NOIND) keyword on the file description specification. Specify

the indicators in the output specifications as fields in the form *INxx. The

indicator fields must precede other fields in the output record, and they must

appear in the order specified by the WORKSTN file DDS. You can determine

this order from the DDS listing.

Input Specifications

The input specifications describe the record that the RPG program receives from

the display or ICF device. The WORKSTN file name must be specified in positions

7 through 16. Input fields must be located in the input record in the same sequence

as defined in the DDS; however, the field names do not have to be the same. The

field location entries refer to the location of the fields in the input record.

To receive indicators on input, do one of the following:

v Specify the keyword INDARA in the DDS for the WORKSTN file. Do not use

the PASS(*NOIND) keyword on the file description specification and do not

Using Program-Described WORKSTN Files

Chapter 19. Using WORKSTN Files 381

specify the indicators on the input specifications. The program and file use a

separate indicator area to pass the indicators.

v Specify the PASS(*NOIND) keyword on the file description specification. Specify

the indicators in the input specifications as fields in the form *INxx. They must

appear in the input record in the order specified by the WORKSTN file DDS.

You can determine this order from the DDS listing.

A record identifying indicator should be assigned to each record in the file to

identify the record that has been read from the WORKSTN file. A hidden field

with a default value can be specified in the DDS for the record identification code.

Calculation Specifications

The operation code READ is valid for a program-described WORKSTN file that is

defined as a combined, full-procedural file. See Table 46 on page 383. The file name

must be specified in factor 2 for this operation. A format must exist at the device

before any input operations can take place. This requirement can be satisfied on a

display device by conditioning an output record with 1P or by writing the first

format to the device in another program (for example, in the CL program). The

EXFMT operation is not valid for a program-described WORKSTN file. You can

also use the EXCEPT operation to write to a WORKSTN file.

Additional Considerations

When using a format name with a program-described WORKSTN file, you must

also consider the following:

v The name specified in positions 53 through 80 of the output specifications is

assumed to be the name of a record format in the DDS that was used to create

the file.

v If a Kn specification is present for an output record, it must also be used for any

other output records for that file. If a Kn specification is not used for all output

records to a file, a run-time error will occur.

Using a Program-Described WORKSTN File without a Format

Name

When a record-format name is not used, a program-described display-device file

describes a file containing one record-format description with one field. The fields

in the record must be described within the program that uses the file.

When you create the display file by using the Create Display File command, the

file has the following attributes:

v A variable record length can be specified; therefore, the actual record length

must be specified in the using program. (The maximum record length allowed is

the screen size minus one.)

v No indicators are passed to or from the program.

v No function key indicators are defined.

v The record is written to the display beginning in position 2 of the first available

line.

Input File

For an input file, the input record, which is treated by the i5/OS device support as

a single input field, is initialized to blanks when the file is opened. The cursor is

positioned at the beginning of the field, which is position 2 on the display.

Using Program-Described WORKSTN Files

382 ILE RPG Programmer’s Guide

Output File

For an output file, the i5/OS device support treats the output record as a string of

characters to be sent to the display. Each output record is written as the next

sequential record in the file; that is, each record displayed overlays the previous

record displayed.

Combined File

For a combined file, the record, which is treated by the i5/OS device support as a

single field, appears on the screen and is both the output record and the input

record. Device support initializes the input record to blanks, and the cursor is

placed in position 2.

For more information on program-described-display-device files, refer to the DB2

Universal Database for AS/400 section of the Database and File Systems category in the

iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Valid WORKSTN File Operations

Table 46 shows the valid file operation codes for a WORKSTN file.

 Table 46. Valid File Operation Codes for a WORKSTN File

File Description

Specifications

Positions

Calculation Specifications Positions

17 18 26-35

I P/S CLOSE, ACQ, REL, NEXT, POST, FORCE

I P/S WRITE1, CLOSE, ACQ, REL, NEXT, POST, FORCE

I F READ, OPEN, CLOSE, ACQ, REL, NEXT, POST

C F READ, WRITE1, EXFMT2, OPEN, CLOSE, ACQ, REL, NEXT,

POST, UPDATE3, CHAIN3, READC3

O Blank WRITE1, OPEN, CLOSE, ACQ, REL, POST

Notes:

1. The WRITE operation is not valid for a program-described file used with a format name.

2. If the EXFMT operation is used, the file must be externally described (an E in position 19

of the file description specifications).

3. For subfile record formats, the UPDATE, CHAIN, and READC operations are also valid.

The following further explains the EXFMT, READ, and WRITE operation codes

when used to process a WORKSTN file.

EXFMT Operation

The EXFMT operation is a combination of a WRITE followed by a READ to the

same record format (it corresponds to a data management WRITE-READ

operation). If you define a WORKSTN file on the file description specifications as a

full-procedural (F in position 18) combined file (C in position 17) that uses

externally-described data (E in position 22) the EXFMT (execute format) operation

code can be used to write and read from the display.

Using Program-Described WORKSTN Files

Chapter 19. Using WORKSTN Files 383

http://www.ibm.com/eserver/iseries/infocenter

READ Operation

The READ operation is valid for a full-procedural combined file or a

full-procedural input file that uses externally-described data or program-described

data. The READ operation retrieves a record from the display. However, a format

must exist at the device before any input operations can occur. This requirement

can be satisfied on a display device by conditioning an output record with the 1P

indicator, by writing the first format to the device from another program, or, if the

read is by record-format name, by using the keyword INZRCD on the record

description in the DDS.

WRITE Operation

The WRITE operation writes a new record to a display and is valid for a combined

file or an output file. Output specifications and the EXCEPT operation can also be

used to write to a WORKSTN file. See the WebSphere Development Studio: ILE RPG

Reference for a complete description of each of these operation codes.

Multiple-Device Files

Any RPG WORKSTN file with at least one of the keywords DEVID, SAVEIND,

MAXDEV(*FILE) or SAVEDS specified on the file description specification is a

multiple-device file. Through a multiple-device file, your program may access

more than one device.

The RPG program accesses devices through program devices, which are symbolic

mechanisms for directing operations to an actual device. When you create a file

(using the DDS and commands such as the create file commands), you consider

such things as which device is associated with a program device, whether or not a

file has a requesting program device, which record formats will be used to invite

devices to respond to a READ-by-file-name operation, and how long this READ

operation will wait for a response. For detailed information on the options and

requirements for creating a multiple-device file, see the chapter on display files in

the DB2 Universal Database for AS/400 section of the Database and File Systems

category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter. You can also refer to information

on ICF files in ICF Programming manual.

With multiple-device files, you make particular use of the following operation

codes:

v In addition to opening a file, the OPEN operation implicitly acquires the device

you specify when you create the file.

v The ACQ (acquire) operation acquires any other devices for a multiple-device

file.

v The REL (release) operation releases a device from the file.

v The WRITE operation, when used with the DDS keyword INVITE, invites a

program device to respond to subsequent read-from-invited- program-devices

operations. See the section on inviting a program device in ICF Programming

manual.

v The READ operation either processes a read-from-invited-program-devices

operation or a read-from-one-program-device operation. When no NEXT

operation is in effect, a program-cycle-read or READ-by-file-name operation

waits for input from any of the devices that have been invited to respond

(read-from-invited-program-device). Other input and output operations,

including a READ-by-file-name after a NEXT operation, and a

READ-by-format-name, process a read-from-one-program-device operation using

Valid WORKSTN File Operations

384 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

the program device indicated in a special field. (The field is named in the

DEVID keyword of the file description specification lines.)

This device may be the device used on the last input operation, a device you

specify, or the requesting program device. See the sections on reading from

invited program devices and on reading from one program device in ICF

Programming manual.

v The NEXT operation specifies which device is to be used in the next

READ-by-file-name operation or program-cycle-read operation.

v The POST operation puts information in the INFDS information data structure.

The information may be about a specific device or about the file. (The POST

operation is not restricted to use with multiple-device files.)

See the WebSphere Development Studio: ILE RPG Reference for details of the RPG

operation codes.

On the file description specification you can specify several keywords to control

the processing of multiple-device files.

v The MAXDEV keyword indicates whether it is a single or multiple device file.

Specify MAXDEV(*FILE) to process a multiple device file with the maximum

number of devices taken from the definition of the file being processed. Specify

MAXDEV(*ONLY) to process only one device.

v The DEVID keyword allows you to specify the name of a program device to

which input and output operations are directed.

When a read-from-one-program-device or WRITE operation is issued, the device

used for the operation is the device specified as the parameter to the DEVID

keyword. This field is initialized to blanks and is updated with the name of the

device from which the last successful input operation occurred. It can also be set

explicitly by moving a value to it. The ACQ operation code does not affect the

value of this field. If the DEVID keyword is not specified, the input operation is

performed against the device from which the last successful input operation

occurred. A blank device name is used if a read operation has not yet been

performed successfully from a device.

When a read-from-one-program device or WRITE operation is issued with a

blank device name, the RPG compiler implicitly uses the device name of the

requestor device for the program. If you call an RPG program interactively and

acquire an ICF device against which you want to perform one of these

operations, you must explicitly move the device name of the ICF device into the

field name specified with the DEVID keyword prior to performing the operation.

If this is not done, the device name used will either be blank (in which case the

interactive requestor device name is used), or the device name used is the one

from the last successful input operation. Once you have performed an I/O

operation to the ICF device, you do not need to modify the value again unless

an input operation completes successfully with a different device.

v The SAVEDS keyword indicates a data structure that is saved and restored for

each device acquired to a file. The SAVEIND keyword indicates a set of

indicators to be saved and restored for each device acquired to a file. Before an

input operation, the current set of indicators and data structure are saved. After

the input operation, the RPG compiler restores the indicators and data structure

for the device associated with the operation. This may be a different set of

indicators or data structure than was available before the input operation.

v The INFDS keyword specifies the file information data structure for the

WORKSTN file. The RPG *STATUS field and the major/minor return code for

Multiple-Device Files

Chapter 19. Using WORKSTN Files 385

the I/O operation can be accessed through this data structure. Particularly when

ICF is being used, both fields are useful for detecting errors that occurred during

I/O operations to multiple-device files.

Note: When specifying these control options, you must code the MAXDEV

option before the DEVID, SAVEIND or SAVEDS options.

Multiple-Device Files

386 ILE RPG Programmer’s Guide

Chapter 20. Example of an Interactive Application

This chapter illustrates some common workstation applications and their ILE RPG

coding.

The application program presented in this chapter consists of four modules. Each

module illustrates a common use for WORKSTN files. The first module

(CUSMAIN) provides the main menu for the program. Based on the user's

selection, it calls the procedure in the appropriate module which provides the

function requested.

Each module uses a WORKSTN file to prompt the user for input and display

information on the screen. Each module, except for the main module CUSMAIN,

also uses a logical file which presents a view of the master database file. This view

consists of only the fields of the master file which the module requires for its

processing.

Note: Each module, except CUSMAIN, can be compiled as a free standing

program, that is, they can each be used as an independent program.

 Table 47. Description of Each Module in the Interactive Application Example

Module Description

“Main Menu Inquiry” on page 388 An example of a basic menu inquiry program that

uses a WORKSTN file to display menu choices and

accept input.

“File Maintenance” on page 391 An example of a maintenance program which allows

customer records in a master file to be updated,

deleted, added, and displayed.

“Search by Zip Code” on page 402 An example program which uses WORKSTN subfile

processing to display all matched records for a

specified zip code.

“Search and Inquiry by Name” on

page 410

An example program which uses WORKSTN subfile

processing to display all matched records for a

specified customer name, and then allows the user to

select a record from the subfile to display the

complete customer information.

Database Physical File

Figure 190 on page 388 shows the data description specifications (DDS) for the

master customer file. This file contains important information for each customer,

such as name, address, account balance, and customer number. Every module

which requires customer information uses this database file (or a logical view of it).

© Copyright IBM Corp. 1994, 2006 387

Main Menu Inquiry

The following illustrates a simple inquiry program using a WORKSTN file to

display menu choices and accept input.

MAINMENU: DDS for a Display Device File

The DDS for the MAINMENU display device file specifies file level entries and

describe one record format: HDRSCN. The file level entries define the screen size

(DSPSIZ), input defaults (CHGINPDFT), print key (PRINT), and a separate

indicator area (INDARA).

The HDRSCN record format contains the constant ’CUSTOMER MAIN INQUIRY’,

which identifies the display. It also contains the keywords TIME and DATE, which

will display the current time and date on the screen. The CA keywords define the

function keys that can be used and associate the function keys with indicators in

the RPG program.

 A***

 A* FILE NAME: CUSMST *

 A* RELATED PGMS: CUSMNT, SCHZIP, SCHNAM *

 A* RELATED FILES: CUSMSTL1, CUSMSTL2, CUSMSTL3 (LOGICAL FILES) *

 A* DESCRIPTION: THIS IS THE PHYSICAL FILE CUSMST. IT HAS *

 A* ONE RECORD FORMAT CALLED CUSREC. *

 A***

 A* CUSTOMER MASTER FILE -- CUSMST

 A R CUSREC

 A CUST 5 0 TEXT(’CUSTOMER NUMBER’)

 A NAME 20 TEXT(’CUSTOMER NAME’)

 A ADDR1 20 TEXT(’CUSTOMER ADDRESS’)

 A ADDR2 20 TEXT(’CUSTOMER ADDRESS’)

 A CITY 20 TEXT(’CUSTOMER CITY’)

 A STATE 2 TEXT(’CUSTOMER STATE’)

 A ZIP 5 0 TEXT(’CUSTOMER ZIP CODE’)

 A ARBAL 10 2 TEXT(’ACCOUNTS RECEIVABLE BALANCE’)

Figure 190. DDS for master database file CUSMST (physical file)

Main Menu Inquiry

388 ILE RPG Programmer’s Guide

In addition to describing the constants, fields, line numbers, and horizontal

positions for the screen, the record formats also define the display attributes for

these entries.

Note: Normally, the field attributes are defined in a field-reference file rather than

in the DDS for a file. The attributes are shown on the DDS so you can see

what they are.

 A***

 A* FILE NAME: MAINMENU *

 A* RELATED PGMS: CUSMAIN *

 A* DESCRIPTION: THIS IS THE DISPLAY FILE MAINMENU. IT HAS 1 *

 A* RECORD FORMAT CALLED HDRSCN. *

 A***

 A DSPSIZ(24 80 *DS3)

 A CHGINPDFT(CS)

 A PRINT(QSYSPRT)

 A INDARA

 A R HDRSCN

 A CA03(03 ’END OF INQUIRY’)

 A CA05(05 ’MAINTENANCE MODE’)

 A CA06(06 ’SEARCH BY ZIP MODE’)

 A CA07(07 ’SEARCH BY NAME MODE’)

 A 2 4TIME

 A DSPATR(HI)

 A 2 28’CUSTOMER MAIN INQUIRY’

 A DSPATR(HI)

 A DSPATR(RI)

 A 2 70DATE

 A EDTCDE(Y)

 A DSPATR(HI)

 A 6 5’Press one of the following’

 A 6 32’PF keys.’

 A 8 22’F3 End Job’

 A 9 22’F5 Maintain Customer File’

 A 10 22’F6 Search Customer by Zip Code’

 A 11 22’F7 Search Customer by Name’

Figure 191. DDS for display device file MAINMENU

Main Menu Inquiry

Chapter 20. Example of an Interactive Application 389

CUSMAIN: RPG Source

 //**

 // PROGRAM NAME: CUSMAIN *

 // RELATED FILES: MAINMENU (DSPF) *

 // RELATED PGMS: CUSMNT (ILE RPG PGM) *

 // SCHZIP (ILE RPG PGM) *

 // SCHNAM (ILE RPG PGM) *

 // DESCRIPTION: This is a customer main inquiry program. *

 // It prompts the user to choose from one of the *

 // following actions: *

 // 1.Maintain (add, update, delete and display) *

 // customer records. *

 // 2.Search customer record by zip code. *

 // 3.Search customer record by name. *

 //**

 Fmainmenu cf e workstn indds(indicators)

 // Prototype definitions:

 D CustMaintain pr extproc(’CUSMNT’)

 D SearchZip pr extproc(’SCHZIP’)

 D SearchName pr extproc(’SCHNAM’)

 // Field definitions:

 D indicators ds

 D exitKey n overlay(indicators:3)

 D maintainKey n overlay(indicators:5)

 D srchZipKey n overlay(indicators:6)

 D srchCustKey n overlay(indicators:7)

 /free

 // Keep looping until exit key is pressed

 dow ’1’;

 // Display main menu

 exfmt hdrscn;

 // Perform requested action

 if exitKey;

 // Exit program

 leave;

 elseif maintainKey;

 // Maintain customer data

 CustMaintain();

 elseif srchZipKey;

 // Search customer data on ZIP code

 SearchZip();

 elseif srchCustKey;

 // Search customer data on customer name

 SearchName();

 endif;

 enddo;

 *inlr = *on;

 /end-free

Figure 192. Source for module CUSMAIN

Main Menu Inquiry

390 ILE RPG Programmer’s Guide

This module illustrates the use of the CALLB opcode. The appropriate RPG

module (CUSMNT, SCHZIP, or SCHNAM) is called by CUSMAIN depending on

the user’s menu item selection.

To create the program object:

1. Create a module for each source member (CUSMAIN, CUSMNT, SCHZIP, and

SCHNAM) using CRTRPGMOD.

2. Create the program by entering:

CRTPGM PGM(MYPROG) MODULE(CUSMAIN CUSMNT SCHZIP SCHNAM) ENTMOD(*FIRST)

Note: The *FIRST option specifies that the first module in the list, CUSMAIN,

is selected as the program entry procedure.

3. Call the program by entering:

CALL MYPROG

The ″main menu″ will appear as in Figure 193.

File Maintenance

The following illustrates a maintenance program using the WORKSTN file. It

allows you to add, delete, update, and display records of the master customer file.

 22:30:05 CUSTOMER MAIN INQUIRY 9/30/94

 Press one of the following PF keys.

 F3 End Job

 F5 Maintain Customer File

 F6 Search Customer by Zip Code

 F7 Search Customer by Name

Figure 193. Customer Main Inquiry prompt screen

Main Menu Inquiry

Chapter 20. Example of an Interactive Application 391

CUSMSTL1: DDS for a Logical File

 The DDS for the database file used by this program describe one record format:

CMLREC1. Each field in the record format is described, and the CUST field is

identified as the key field for the record format.

 A***

 A* FILE NAME: CUSMSTL1 *

 A* RELATED PGMS: CUSMNT *

 A* RELATED FILES: CUSMST (PHYSICAL FILE) *

 A* DESCRIPTION: THIS IS LOGICAL FILE CUSMSTL1. *

 A* IT CONTAINS ONE RECORD FORMAT CALLED CMLREC1. *

 A* LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMST) *

 A* BY CUSTOMER NUMBER (CUST) *

 A***

 A R CMLREC1 PFILE(CUSMST)

 A CUST

 A NAME

 A ADDR1

 A ADDR2

 A CITY

 A STATE

 A ZIP

 A K CUST

Figure 194. DDS for logical file CUSMSTL1

File Maintenance

392 ILE RPG Programmer’s Guide

MNTMENU: DDS for a Display Device File

 A***

 A* FILE NAME: MNTMENU *

 A* RELATED PGMS: CUSMNT *

 A* RELATED FILES: CUSMSTL1 (LOGICAL FILE) *

 A* DESCRIPTION: THIS IS THE DISPLAY FILE MNTMENU. IT HAS 3 *

 A* RECORD FORMATS. *

 A***

 A REF(CUSMSTL1)

 A CHGINPDFT(CS)

 A PRINT(QSYSPRT)

 A INDARA

 A R HDRSCN

 A TEXT(’PROMPT FOR CUST NUMBER’)

 A CA03(03 ’END MAINTENANCE’)

 A CF05(05 ’ADD MODE’)

 A CF06(06 ’UPDATE MODE’)

 A CF07(07 ’DELETE MODE’)

 A CF08(08 ’DISPLAY MODE’)

 A MODE 8A O 1 4DSPATR(HI)

 A 1 13’MODE’

 A DSPATR(HI)

 A 2 4TIME

 A DSPATR(HI)

 A 2 28’CUSTOMER FILE MAINTENANCE’

 A DSPATR(HI RI)

 A 2 70DATE

 A EDTCDE(Y)

 A DSPATR(HI)

 A CUST R Y I 10 25DSPATR(CS)

 A CHECK(RZ)

 A 51 ERRMSG(’CUSTOMER ALREADY ON +

 A FILE’ 51)

 A 52 ERRMSG(’CUSTOMER NOT ON FILE’ +

 A 52)

 A 10 33’<--Enter Customer Number’

 A DSPATR(HI)

 A 23 4’F3 End Job’

 A 23 21’F5 Add’

 A 23 34’F6 Update’

 A 23 50’F7 Delete’

 A 23 66’F8 Display’

Figure 195. DDS for display device file MNTMENU (Part 1 of 2)

File Maintenance

Chapter 20. Example of an Interactive Application 393

The DDS for the MNTMENU display device file contains three record formats:

HDRSCN, CSTINQ, and CSTBLD. The HDRSCN record prompts for the customer

number and the mode of processing. The CSTINQ record is used for the Update,

 A R CSTINQ

 A TEXT(’DISPLAY CUST INFO’)

 A CA12(12 ’PREVIOUS SCREEN’)

 A MODE 8A O 1 4DSPATR(HI)

 A 1 13’MODE’

 A DSPATR(HI)

 A 2 4TIME

 A DSPATR(HI)

 A 2 28’CUSTOMER FILE MAINTENANCE’

 A DSPATR(HI)

 A DSPATR(RI)

 A 2 70DATE

 A EDTCDE(Y)

 A DSPATR(HI)

 A 4 14’Customer:’

 A DSPATR(HI)

 A DSPATR(UL)

 A CUST R O 4 25DSPATR(HI)

 A NAME R B 6 25DSPATR(CS)

 A 04 DSPATR(PR)

 A ADDR1 R B 7 25DSPATR(CS)

 A 04 DSPATR(PR)

 A ADDR2 R B 8 25DSPATR(CS)

 A 04 DSPATR(PR)

 A CITY R B 9 25DSPATR(CS)

 A 04 DSPATR(PR)

 A STATE R B 10 25DSPATR(CS)

 A 04 DSPATR(PR)

 A ZIP R B 10 40DSPATR(CS)

 A EDTCDE(Z)

 A 04 DSPATR(PR)

 A 23 2’F12 Cancel’

 A MODE1 8 O 23 13

 A R CSTBLD TEXT(’ADD CUST RECORD’)

 A CA12(12 ’PREVIOUS SCREEN’)

 A MODE 8 O 1 4DSPATR(HI)

 A 1 13’MODE’ DSPATR(HI)

 A 2 4TIME

 A DSPATR(HI)

 A 2 28’CUSTOMER FILE MAINTENANCE’

 A DSPATR(HI RI)

 A 2 70DATE

 A EDTCDE(Y)

 A DSPATR(HI)

 A 4 14’Customer:’ DSPATR(HI UL)

 A CUST R O 4 25DSPATR(HI)

 A 6 20’Name’ DSPATR(HI)

 A NAME R I 6 25

 A 7 17’Address’ DSPATR(HI)

 A ADDR1 R I 7 25

 A 8 17’Address’ DSPATR(HI)

 A ADDR2 R I 8 25

 A 9 20’City’ DSPATR(HI)

 A CITY R I 9 25

 A 10 19’State’ DSPATR(HI)

 A STATE R I 10 25

 A 10 36’Zip’ DSPATR(HI)

 A ZIP R Y I 10 40

 A 23 2’F12 Cancel Addition’

Figure 195. DDS for display device file MNTMENU (Part 2 of 2)

File Maintenance

394 ILE RPG Programmer’s Guide

Delete, and Display modes. The fields are defined as output/input (B in position

38). The fields are protected when Display or Delete mode is selected

(DSPATR(PR)). The CSTBLD record provides only input fields (I in position 38) for

a new record.

The HDRSCN record format contains the constant ’Customer File Maintenance’.

The ERRMSG keyword defines the messages to be displayed if an error occurs.

The CA keywords define the function keys that can be used and associate the

function keys with indicators in the RPG program.

CUSMNT: RPG Source

 //**

 // PROGRAM NAME: CUSMNT *

 // RELATED FILES: CUSMSTL1 (LF) *

 // MNTMENU (DSPF) *

 // DESCRIPTION: This program shows a customer master *

 // maintenance program using a workstn file. *

 // This program allows the user to add, update, *

 // delete and display customer records. *

 // PF3 is used to quit the program. *

 //**

 Fcusmstl1 uf a e k disk

 Fmntmenu cf e workstn indds(indicators)

 // Field definitions:

 D indicators ds

 D exitKey n overlay(indicators:3)

 D disableInput n overlay(indicators:4)

 D addKey n overlay(indicators:5)

 D updateKey n overlay(indicators:6)

 D deleteKey n overlay(indicators:7)

 D displayKey n overlay(indicators:8)

 D prevKey n overlay(indicators:12)

 D custExists n overlay(indicators:51)

 D custNotFound n overlay(indicators:52)

 // Key list definitions:

 C CSTKEY KLIST

 C KFLD CUST

Figure 196. Source for module CUSMNT (Part 1 of 5)

File Maintenance

Chapter 20. Example of an Interactive Application 395

//***

 // MAINLINE *

 //***

 /free

 mode = ’DISPLAY’;

 exfmt hdrscn;

 // Loop until exit key is pressed

 dow not exitKey;

 exsr SetMaintenanceMode;

 if cust <> 0;

 if mode = ’ADD’;

 exsr AddSub;

 elseif mode = ’UPDATE’;

 exsr UpdateSub;

 elseif mode = ’DELETE’;

 exsr DeleteSub;

 elseif mode = ’DISPLAY’;

 exsr InquirySub;

 endif;

 endif;

 exfmt hdrscn;

 custExists = *off; // turn off error messages

 CustNotFound = *off;

 enddo;

 *inlr = *on;

Figure 196. Source for module CUSMNT (Part 2 of 5)

File Maintenance

396 ILE RPG Programmer’s Guide

//**

 // SUBROUTINE - AddSub *

 // PURPOSE - Add new customer to file *

 //**

 begsr AddSub;

 // Is customer number already in file?

 chain CstKey cmlrec1;

 if %found(cusmstl1);

 // Customer number is already being used

 custExists = *on;

 leavesr;

 endif;

 // Initialize new customer data

 custExists = *off; // turn off error messages

 CustNotFound = *off;

 name = *blank;

 addr1 = *blank;

 addr2 = *blank;

 city = *blank;

 state = *blank;

 zip = 0;

 // Prompt for updated data for this customer record

 exfmt cstbld;

 // If OK, add customer to the customer file

 if not *in12;

 write cmlrec1;

 endif;

 endsr; // end of subroutine AddSub

 //**

 // SUBROUTINE - UpdateSub *

 // PURPOSE - Update customer master record *

 //**

 begsr UpdateSub;

 // Lookup customer number

 chain cstkey cmlrec1;

 if not %found(cusmstl1);

 // Customer is not found in file

 custNotFound = *on;

 leavesr;

 endif;

 // Display information for this customer

 disableInput = *off;

 exfmt cstinq;

 if not prevKey;

 // Update information in file

 update cmlrec1;

 else;

 // If we don’t want to update, at least unlock

 // the record.

 unlock cusmstl1;

 endif;

 endsr; // end of subroutine UpdateSub;

Figure 196. Source for module CUSMNT (Part 3 of 5)

File Maintenance

Chapter 20. Example of an Interactive Application 397

//**

 // SUBROUTINE - DeleteSub *

 // PURPOSE - Delete customer master record *

 //**

 begsr DeleteSub;

 // Lookup customer number

 chain cstkey cmlrec1;

 if not %found(cusmstl1);

 // Customer is not found in file

 custNotFound = *on;

 leavesr;

 endif;

 // Display information for this customer

 disableInput = *on;

 exfmt cstinq;

 if not prevKey;

 // Delete customer record

 delete cmlrec1;

 else;

 // If we don’t want to delete, at least unlock

 // the record.

 unlock cusmstl1;

 endif;

 endsr; // end of subroutine DeleteSub

 //**

 // SUBROUTINE - InquirySub *

 // PURPOSE - Display customer master record *

 //**

 begsr InquirySub;

 // Lookup customer number

 chain(n) cstkey cmlrec1; // don’t lock record

 if not %found(cusmstl1);

 // Customer is not found in file

 custNotFound = *on;

 leavesr;

 endif;

 // Display information for this customer

 disableInput = *on;

 exfmt cstinq;

 endsr; // end of subroutine InquirySub;

Figure 196. Source for module CUSMNT (Part 4 of 5)

File Maintenance

398 ILE RPG Programmer’s Guide

This program maintains a customer master file for additions, changes, and

deletions. The program can also be used for inquiry.

The program first sets the default (display) mode of processing and displays the

customer maintenance prompt screen. The workstation user can press F3, which

turns on indicator 03, to request end of job. Otherwise, to work with customer

information, the user enters a customer number and presses Enter. The user can

change the mode of processing by pressing F5 (ADD), F6 (UPDATE), F7 (DELETE),

or F8 (DISPLAY).

To add a new record to the file, the program uses the customer number as the

search argument to chain to the master file. If the record does not exist in the file,

the program displays the CSTBLD screen to allow the user to enter a new

customer record. If the record is already in the file, an error message is displayed.

The user can press F12, which sets on indicator 12, to cancel the add operation and

release the record. Otherwise, to proceed with the add operation, the user enters

information for the new customer record in the input fields and writes the new

record to the master file.

To update, delete, or display an existing record, the program uses the customer

number as the search argument to chain to the master file. If a record for that

customer exists in the file, the program displays the customer file inquiry screen

CSTINQ. If the record is not in the file, an error message is displayed. If the mode

of processing is display or delete, the input fields are protected from modification.

Otherwise, to proceed with the customer record, the user can enter new

information in the customer record input fields. The user can press F12, which sets

on indicator 12, to cancel the update or delete operation, and release the record.

Display mode automatically releases the record when Enter is pressed.

In Figure 197 on page 400, the workstation user responds to the prompt by

entering customer number 00007 to display the customer record.

 //**

 // SUBROUTINE - SetMaintenanceMode *

 // PURPOSE - Set maintenance mode *

 //**

 begsr SetMaintenanceMode;

 if addKey;

 mode = ’ADD’;

 elseif updateKey;

 mode = ’UPDATE’;

 elseif deleteKey;

 mode = ’DELETE’;

 elseif displayKey;

 mode = ’DISPLAY’;

 endif;

 endsr; // end of subroutine SetMaintenanceMode

 /end-free

Figure 196. Source for module CUSMNT (Part 5 of 5)

File Maintenance

Chapter 20. Example of an Interactive Application 399

Because the customer record for customer number 00007 exists in the Master File,

the data is displayed as show in Figure 198.

 The workstation user responds to the add prompt by entering a new customer

number as shown in Figure 199 on page 401.

 DISPLAY MODE

 22:30:21 CUSTOMER FILE MAINTENANCE 9/30/94

 00007 <--Enter Customer Number

 F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 197. ’Customer File Maintenance’ Display Mode prompt screen

 DISPLAY MODE

 22:31:06 CUSTOMER FILE MAINTENANCE 9/30/94

 Customer: 00007

 Mikhail Yuri

 1001 Bay Street

 Suite 1702

 Livonia

 MI 11201

 F12 Cancel DISPLAY

Figure 198. ’Customer File Maintenance’ Display Mode screen

File Maintenance

400 ILE RPG Programmer’s Guide

In Figure 200 a new customer is added to the Customer Master File.

 The workstation user responds to the delete prompt by entering a customer

number as shown in Figure 201 on page 402.

 ADD MODE

 22:31:43 CUSTOMER FILE MAINTENANCE 9/30/94

 00012 <--Enter Customer Number

 F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 199. ’Customer File Maintenance’ Add Mode prompt screen

 ADD MODE

 22:32:04 CUSTOMER FILE MAINTENANCE 9/30/94

 Customer: 00012

 Name JUDAH GOULD

 Address 2074 BATHURST AVENUE

 Address

 City YORKTOWN

 State NY Zip 70068

 F12 Cancel Addition

Figure 200. ’Customer File Maintenance’ Add Mode prompt screen

File Maintenance

Chapter 20. Example of an Interactive Application 401

The workstation user responds to the update prompt by entering a customer

number as shown in Figure 202.

Search by Zip Code

The following illustrates WORKSTN subfile processing (display only). Subfiles are

used to display all matched records for a specified zip code.

 DELETE MODE

 22:32:55 CUSTOMER FILE MAINTENANCE 9/30/94

 00011 <--Enter Customer Number

 F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 201. ’Customer File Maintenance’ Delete Mode prompt screen

 UPDATE MODE

 22:33:17 CUSTOMER FILE MAINTENANCE 9/30/94

 00010 <--Enter Customer Number

 F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 202. ’Customer File Maintenance’ Update Mode prompt screen

File Maintenance

402 ILE RPG Programmer’s Guide

CUSMSTL2: DDS for a Logical File

 The DDS for the database file used by this program describe one record format:

CMLREC2. The logical file CUSMSTL2 keyed by zip code is based on the physical

file CUSMST, as indicated by the PFILE keyword. The record format created by the

logical file will include only those fields specified in the logical file DDS. All other

fields will be excluded.

 A***

 A* FILE NAME: CUSMSTL2 *

 A* RELATED PGMS: SCHZIP *

 A* RELATED FILES: CUSMST (PHYSICAL FILE) *

 A* DESCRIPTION: THIS IS LOGICAL FILE CUSMSTL2. *

 A* IT CONTAINS ONE RECORD FORMAT CALLED CMLREC2. *

 A* LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMST) *

 A* BY CUSTOMER ZIP CODE (ZIP) *

 A***

 A R CMLREC2 PFILE(CUSMST)

 A ZIP

 A NAME

 A ARBAL

 A K ZIP

Figure 203. DDS for logical file CUSMSTL2

Search by Zip Code

Chapter 20. Example of an Interactive Application 403

SZIPMENU: DDS for a Display Device File

 A***

 A* FILE NAME: SZIPMENU *

 A* RELATED PGMS: SCHZIP *

 A* RELATED FILES: CUSMSTL2 (LOGICAL FILE) *

 A* DESCRIPTION: THIS IS THE DISPLAY FILE SZIPMENU. IT HAS 6 *

 A* RECORD FORMATS. *

 A***

 A REF(CUSMSTL2)

 A CHGINPDFT(CS)

 A PRINT(QSYSPRT)

 A INDARA

 A CA03(03 ’END OF JOB’)

 A R HEAD

 A OVERLAY

 A 2 4TIME

 A DSPATR(HI)

 A 2 28’CUSTOMER SEARCH BY ZIP’

 A DSPATR(HI RI)

 A 2 70DATE

 A EDTCDE(Y)

 A DSPATR(HI)

 A R FOOT1

 A 23 6’ENTER - Continue’

 A DSPATR(HI)

 A 23 29’F3 - End Job’

 A DSPATR(HI)

 A R FOOT2

 A 23 6’ENTER - Continue’

 A DSPATR(HI)

 A 23 29’F3 - End Job’

 A DSPATR(HI)

 A 23 47’F4 - RESTART ZIP CODE’

 A DSPATR(HI)

 A R PROMPT

 A OVERLAY

 A 4 4’Enter Zip Code’

 A DSPATR(HI)

 A ZIP R Y I 4 19DSPATR(CS)

 A CHECK(RZ)

 A 61 ERRMSG(’ZIP CODE NOT FOUND’ +

 A 61)

 A R SUBFILE SFL

 A NAME R 9 4

 A ARBAL R 9 27EDTCDE(J)

 A R SUBCTL SFLCTL(SUBFILE)

 A 55 SFLCLR

 A 55 SFLCLR

 A N55 SFLDSPCTL

 A N55 SFLDSP

 A SFLSIZ(13)

 A SFLPAG(13)

 A ROLLUP(95 ’ROLL UP’)

 A OVERLAY

 A CA04(04 ’RESTART ZIP CDE’)

 A 4 4’Zip Code’

 A ZIP R O 4 14DSPATR(HI)

 A 7 4’Customer Name’

 A DSPATR(HI UL)

 A 7 27’A/R Balance’

 A DSPATR(HI UL)

Figure 204. DDS for display device file SZIPMENU

Search by Zip Code

404 ILE RPG Programmer’s Guide

The DDS for the SZIPMENU display device file contains six record formats:

HEAD, FOOT1, FOOT2, PROMPT, SUBFILE, and SUBCTL.

The PROMPT record format requests the user to enter a zip code. If the zip code is

not found in the file, an error message is displayed. The user can press F3, which

sets on indicator 03, to end the program.

The SUBFILE record format must be defined immediately preceding the

subfile-control record format SUBCTL. The subfile record format, which is defined

with the keyword SFL, describes each field in the record, and specifies the location

where the first record is to appear on the display (here, on line 9).

The subfile-control record format contains the following unique keywords:

v SFLCTL identifies this format as the control record format and names the

associated subfile record format.

v SFLCLR describes when the subfile is to be cleared of existing records (when

indicator 55 is on). This keyword is needed for additional displays.

v SFLDSPCTL indicates when to display the subfile-control record format (when

indicator 55 is off).

v SFLDSP indicates when to display the subfile (when indicator 55 is off).

v SFLSIZ specifies the total size of the subfile. In this example, the subfile size is

13 records that are displayed on lines 9 through 21.

v SFLPAG defines the number of records on a page. In this example, the page size

is the same as the subfile size.

v ROLLUP indicates that indicator 95 is set on in the program when the roll up

function is used.

The OVERLAY keyword defines this subfile-control record format as an overlay

format. This record format can be written without the i5/OS system erasing the

screen first. F4 is valid for repeating the search with the same zip code. (This use

of F4 allows a form of roll down.)

Search by Zip Code

Chapter 20. Example of an Interactive Application 405

SCHZIP: RPG Source

 //**

 //PROGRAM NAME: SCHZIP *

 // RELATED FILES: CUSMSTL2 (LOGICAL FILE) *

 // SZIPMENU (WORKSTN FILE) *

 // DESCRIPTION: This program shows a customer master search *

 // program using workstn subfile processing. *

 // This program prompts the user for the zip code*

 // and displays the customer master records by *

 // zip code. *

 // Roll up key can be used to look at another *

 // page. PF3 us used to quit the program. *

 //**

 Fcusmstl2 if e k disk

 Fszipmenu cf e workstn sfile(subfile:recnum)

 F indds(indicators)

 // Field definitions:

 D recnum s 5p 0

 D recordFound s n

 D indicators ds

 D exitKey n overlay(indicators:3)

 D restartKey n overlay(indicators:4)

 D sflClear n overlay(indicators:55)

 D zipNotFound n overlay(indicators:61)

 D rollupKey n overlay(indicators:95)

 // Key list definitions:

 C cstkey klist

 C kfld zip

Figure 205. Source for module SCHZIP (Part 1 of 3)

Search by Zip Code

406 ILE RPG Programmer’s Guide

//***

 // MAINLINE *

 //***

 /free

 // Write out initial menu

 write foot1;

 write head;

 exfmt prompt;

 // loop until PF03 is pressed

 dow not exitKey;

 setll cstkey cmlrec2;

 recordFound = %equal(cusmstl2);

 if recordFound;

 exsr ProcessSubfile;

 endif;

 // Quit loop if PF03 was pressed in the subfile display

 if exitKey;

 leave;

 endif;

 // If PF04 was pressed, then redo search with the same

 // zip code.

 if restartKey;

 iter;

 endif;

 // Prompt for new zip code.

 if not recordFound;

 // If we didn’t find a zip code, don’t write header

 // and footer again

 write foot1;

 write head;

 endif;

 zipNotFound = not recordFound;

 exfmt prompt;

 enddo;

 *inlr = *on;

Figure 205. Source for module SCHZIP (Part 2 of 3)

Search by Zip Code

Chapter 20. Example of an Interactive Application 407

//**

 // SUBROUTINE - ProcessSubfile *

 // PURPOSE - Process subfile and display it *

 //**

 begsr ProcessSubfile;

 // Keep looping while roll up key is pressed

 dou not rollupKey;

 // Do we have more information to add to subfile?

 if not %eof(cusmstl2);

 // Clear and fill subfile with customer data

 exsr ClearSubfile;

 exsr FillSubfile;

 endif;

 // Write out subfile and wait for response

 write foot2;

 exfmt subctl;

 enddo;

 endsr; // end of subroutine ProcessSubfile

 //**

 // SUBROUTINE - FillSubfile *

 // PURPOSE - Fill subfile with customer records matching *

 // specified zip code. *

 //**

 begsr FillSubfile;

 // Loop through all customer records with specified zip code

 recnum = 0;

 dou %eof(szipmenu);

 // Read next record with specified zip code

 reade zip cmlrec2;

 if %eof(cusmstl2);

 // If no more records, we’re done

 leavesr;

 endif;

 // Add information about this record to the subfile

 recnum = recnum + 1;

 write subfile;

 enddo;

 endsr; // end of subroutine FillSubfile;

 //**

 // SUBROUTINE - ClearSubfile *

 // PURPOSE - Clear subfile records *

 //**

 begsr ClearSubfile;

 sflClear = *on;

 write subctl;

 sflClear = *off;

 endsr; // end of subroutine ClearSubfile

 /end-free

Figure 205. Source for module SCHZIP (Part 3 of 3)

Search by Zip Code

408 ILE RPG Programmer’s Guide

The file description specifications identify the disk file to be searched and the

display device file to be used (SZIPMENU). The SFILE keyword for the

WORKSTN file identifies the record format (SUBFILE) that is to be used as a

subfile. The relative-record-number field (RECNUM) specified controls which

record within the subfile is being accessed.

The program displays the PROMPT record format and waits for the workstation

user’s response. F3 sets on indicator 03, which controls the end of the program.

The zip code (ZIP) is used to position the CUSMSTL2 file by the SETLL operation.

Notice that the record format name CMLREC2 is used in the SETLL operation

instead of the file name CUSMSTL2. If no record is found, an error message is

displayed.

The SFLPRC subroutine handles the processing for the subfile: clearing, filling, and

displaying. The subfile is prepared for additional requests in subroutine SFLCLR. If

indicator 55 is on, no action occurs on the display, but the main storage area for

the subfile records is cleared. The SFLFIL routine fills the subfile with records. A

record is read from the CUSMSTL2 file. If the zip code is the same, the record

count (RECNUM) is incremented and the record is written to the subfile. This

subroutine is repeated until either the subfile is full (indicator 21 on the WRITE

operation) or end of file occurs on the CUSMSTL2 file (indicator 71 on the READE

operation). When the subfile is full or end of file occurs, the subfile is written to

the display by the EXFMT operation by the subfile-control record control format.

The user reviews the display and decides whether:

v To end the program by pressing F3.

v To restart the zip code by pressing F4. The PROMPT record format is not

displayed, and the subfile is displayed starting over with the same zip code.

v To fill another page by pressing ROLL UP. If end of file has occurred on the

CUSMSTL2 file, the current page is re-displayed; otherwise, the subfile is cleared

and the next page is displayed.

v To continue with another zip code by pressing ENTER. The PROMPT record

format is displayed. The user can enter a zip code or end the program.

In Figure 206 on page 410, the user enters a zip code in response to the prompt.

Search by Zip Code

Chapter 20. Example of an Interactive Application 409

The subfile is written to the screen as shown in Figure 207.

Search and Inquiry by Name

The following illustrates WORKSTN subfile processing (display with selection).

Subfiles are used to display all matched records for a specified customer name,

and then the user is allowed to make a selection from the subfile, such that

additional information about the customer can be displayed.

 22:34:38 CUSTOMER SEARCH BY ZIP 9/30/94

 Enter Zip Code 11201

 ENTER - Continue F3 - End Job

Figure 206. ’Customer Search by Zip’ prompt screen

 22:34:45 CUSTOMER SEARCH BY ZIP 9/30/94

 Zip Code 11201

 Customer Name A/R Balance

 Rick Coupland 300.00

 Mikhail Yuri 150.00

 Karyn Sanders 5.00

 ENTER - Continue F3 - End Job F4 - RESTART ZIP CODE

Figure 207. ’Customer Search by Zip’ screen

Search by Zip Code

410 ILE RPG Programmer’s Guide

CUSMSTL3: DDS for a Logical File

 The DDS for the database file used in this program defines one record format

named CUSREC and identifies the NAME field as the key fields.

 A***

 A* FILE NAME: CUSMSTL3 *

 A* RELATED PGMS: SCHNAM *

 A* RELATED FILES: CUSMST *

 A* DESCRIPTION: THIS IS THE LOGICAL FILE CUSMSTL3. IT HAS *

 A* ONE RECORD FORMAT CALLED CUSREC. *

 A* LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMST) *

 A* BY NAME (NAME) *

 A***

 A R CUSREC PFILE(CUSMST)

 A K NAME

 A*

 A***

 A* NOTE: SINCE THE RECORD FORMAT OF THE PHYSICAL FILE (CUSMST) *

 A* HAS THE SAME RECORD-FORMAT-NAME, NO LISTING OF FIELDS *

 A* IS REQUIRED IN THIS DDS FILE. *

 A***

Figure 208. DDS for logical file CUSMSTL3

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 411

SNAMMENU: DDS for a Display Device File

 A***

 A* FILE NAME: SNAMMENU *

 A* RELATED PGMS: SCHNAM *

 A* RELATED FILES: CUSMSTL3 (LOGICAL FILE) *

 A* DESCRIPTION: THIS IS THE DISPLAY FILE SNAMMENU. IT HAS 7 *

 A* RECORD FORMATS. *

 A***

 A REF(CUSMSTL3)

 A CHGINPDFT(CS)

 A PRINT(QSYSPRT)

 A INDARA

 A CA03(03 ’END OF JOB’)

 A R HEAD

 A OVERLAY

 A 2 4TIME

 A DSPATR(HI)

 A 2 25’CUSTOMER SEARCH & INQUIRY BY NAME’

 A DSPATR(HI UL)

 A 2 70DATE

 A EDTCDE(Y)

 A DSPATR(HI)

 A R FOOT1

 A 23 6’ENTER - Continue’

 A DSPATR(HI)

 A 23 29’F3 - End Job’

 A DSPATR(HI)

 A R FOOT2

 A 23 6’ENTER - Continue’

 A DSPATR(HI)

 A 23 29’F3 - End Job’

 A DSPATR(HI)

 A 23 47’F4 - Restart Name’

 A DSPATR(HI)

 A R PROMPT

 A OVERLAY

 A 5 4’Enter Search Name’

Figure 209. DDS for display device file SNAMMENU (Part 1 of 2)

Search and Inquiry by Name

412 ILE RPG Programmer’s Guide

The DDS for the SNAMMENU display device file contains seven record formats:

HEAD, FOOT1, FOOT2, PROMPT, SUBFILE, SUBCTL, and CUSDSP.

The PROMPT record format requests the user to enter a zip code and search name.

If no entry is made, the display starts at the beginning of the file. The user can

press F3, which sets on indicator 03, to end the program.

The SUBFILE record format must be defined immediately preceding the

subfile-control record format SUBCTL. The subfile-record format defined with the

keyword SFL, describes each field in the record, and specifies the location where

the first record is to appear on the display (here, on line 9).

 A DSPATR(HI)

 A SRCNAM R I 5 23REFFLD(NAME CUSMSTL3)

 A DSPATR(CS)

 A R SUBFILE SFL

 A CHANGE(99 ’FIELD CHANGED’)

 A SEL 1A B 9 8DSPATR(CS)

 A VALUES(’ ’ ’X’)

 A ZIP R O 9 54

 A CUST R O 9 43

 A NAME R O 9 17

 A R SUBCTL SFLCTL(SUBFILE)

 A SFLSIZ(0013)

 A SFLPAG(0013)

 A 55 SFLCLR

 A N55 SFLDSPCTL

 A N55 SFLDSP

 A ROLLUP(95 ’ROLL UP’)

 A OVERLAY

 A CF04(04 ’RESTART SEARCH NAME’)

 A 5 4’Search Name’

 A SRCNAM R O 5 17REFFLD(NAME CUSMSTL3)

 A DSPATR(HI)

 A 7 6’Select’

 A DSPATR(HI)

 A 8 6’ "X" Customer Name ’

 A DSPATR(HI)

 A DSPATR(UL)

 A 8 42’ Number Zip Code ’

 A DSPATR(HI)

 A DSPATR(UL)

 A R CUSDSP

 A OVERLAY

 A 6 25’Customer’

 A CUST 5S 0O 6 35DSPATR(HI)

 A 8 25’Name’

 A NAME 20A O 8 35DSPATR(HI)

 A 10 25’Address’

 A ADDR1 20A O 10 35DSPATR(HI)

 A ADDR2 20A O 11 35DSPATR(HI)

 A 13 25’City’

 A CITY 20A O 13 35DSPATR(HI)

 A 15 25’State’

 A STATE 2A O 15 35DSPATR(HI)

 A 15 41’Zip Code’

 A ZIP 5S 0O 15 50DSPATR(HI)

 A 17 25’A/R Balance’

 A ARBAL 10Y 2O 17 42DSPATR(HI)

 A EDTCDE(J)

Figure 209. DDS for display device file SNAMMENU (Part 2 of 2)

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 413

The subfile-control record format SUBCTL contains the following unique

keywords:

v SFLCTL identifies this format as the control record format and names the

associated subfile record format.

v SFLCLR describes when the subfile is to be cleared of existing records (when

indicator 55 is on). This keyword is needed for additional displays.

v SFLDSPCTL indicates when to display the subfile-control record format (when

indicator 55 is off).

v SFLDSP indicates when to display the subfile (when indicator 55 is off).

v SFLSIZ specifies the total size of the subfile. In this example, the subfile size is

13 records that are displayed on lines 9 through 21.

v SFLPAG defines the number of records on a page. In this example, the page size

is the same as the subfile size.

v ROLLUP indicates that indicator 95 is set on in the program when the roll up

function is used.

The OVERLAY keyword defines this subfile-control record format as an overlay

format. This record format can be written without the i5/OS system erasing the

screen first. F4 is valid for repeating the search with the same name. (This use of

F4 allows a form of roll down.)

The CUSDSP record format displays information for the selected customers.

Search and Inquiry by Name

414 ILE RPG Programmer’s Guide

SCHNAM: RPG Source

 //**

 // PROGRAM NAME: SCHNAM *

 // RELATED FILES: CUSMSTL3 (LOGICAL FILE) *

 // SNAMMENU (WORKSTN FILE) *

 // DESCRIPTION: This program shows a customer master search *

 // program using workstn subfile processing. *

 // This program prompts the user for the customer*

 // name and uses it to position the cusmstl3 *

 // file by the setll operation. Then it displays *

 // the records using subfiles. *

 // To fill another page, press the rollup key. *

 // To display customer detail, enter ’X’ beside *

 // that customer and press enter. *

 // To quit the program, press PF3. *

 //**

 Fcusmstl3 if e k disk

 Fsnammenu cf e workstn sfile(subfile:recnum)

 F indds(indicators)

 // Field definitions:

 D recnum s 5p 0

 D indicators ds

 D exitKey n overlay(indicators:3)

 D restartKey n overlay(indicators:4)

 D sflClear n overlay(indicators:55)

 D rollupKey n overlay(indicators:95)

 // Key list definitions:

 C cstkey klist

 C kfld srcnam

 C zipkey klist

 C kfld name

Figure 210. Source for module SCHNAM (Part 1 of 4)

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 415

//**

 // MAINLINE *

 //**

 /free

 write foot1;

 write head;

 exfmt prompt;

 // loop until exit key is pressed

 dow not exitKey;

 setll cstkey cusrec;

 exsr ProcessSubfile;

 exsr DisplayCustomerDetail;

 // If exit key pressed in subfile display, leave loop

 if exitKey;

 leave;

 endif;

 // If restart key pressed in subfile display, repeat loop

 if restartKey;

 iter;

 endif;

 write foot1;

 write head;

 exfmt prompt;

 enddo;

 *inlr = *on;

 //***

 // SUBROUTINE - ProcessSubfile *

 // PURPOSE - Process subfile and display *

 //***

 begsr ProcessSubfile;

 // Keep looping while roll up key is pressed

 dou not rollupKey;

 // Do we have more information to add to subfile?

 if not %eof(cusmstl3);

 // Clear and fill subfile with customer data

 exsr ClearSubfile;

 exsr FillSubfile;

 endif;

 // Write out subfile and wait for response

 write foot2;

 exfmt subctl;

 enddo;

 endsr; // end of subroutine ProcessSubfile

Figure 210. Source for module SCHNAM (Part 2 of 4)

Search and Inquiry by Name

416 ILE RPG Programmer’s Guide

//**

 // SUBROUTINE - FillSubfile *

 // PURPOSE - Fill subfile *

 //**

 begsr FillSubfile;

 // Loop through all customer records with specified zip code

 recnum = 0;

 dou %eof(snammenu);

 // Read next record with specified zip code

 read cusrec;

 if %eof(cusmstl3);

 // If no more records, we’re done

 leavesr;

 endif;

 // Add information about this record to the subfile

 recnum = recnum + 1;

 sel = *blank;

 write subfile;

 enddo;

 endsr; // end of subroutine FillSubfile;

 //**

 // SUBROUTINE - ClearSubfile *

 // PURPOSE - Clear subfile records *

 //**

 begsr ClearSubfile;

 sflClear = *on;

 write subctl;

 sflClear = *off;

 endsr; // end of subroutine ClearSubfile

Figure 210. Source for module SCHNAM (Part 3 of 4)

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 417

The file description specifications identify the disk file to be searched and the

display device file to be used (SNAMMENU). The SFILE keyword for the

WORKSTN file identifies the record format (SUBFILE) to be used as a subfile. The

relative-record-number field (RECNUM) specifies which record within the subfile

is being accessed.

The program displays the PROMPT record format and waits for the workstation

user’s response. F3 sets on indicator 03, which controls the end of the program.

The name (NAME) is used as the key to position the CUSMSTL3 file by the SETLL

operation. Notice that the record format name CUSREC is used in the SETLL

operation instead of the file name CUSMSTL3.

The SFLPRC subroutine handles the processing for the subfile: clearing, filling, and

displaying. The subfile is prepared for additional requests in subroutine SFLCLR. If

indicator 55 is on, no action occurs on the display, but the main storage area for

the subfile records is cleared. The SFLFIL routine fills the subfile with records. A

record is read from the CUSMSTL3 file, the record count (RECNUM) is

incremented, and the record is written to the subfile. This subroutine is repeated

until either the subfile is full (indicator 21 on the WRITE operation) or end of file

occurs on the CUSMSTL3 file (indicator 71 on the READ operation). When the

subfile is full or end of file occurs, the subfile is written to the display by the

EXFMT operation by the subfile-control record control format. The user reviews

the display and decides:

v To end the program by pressing F3.

v To restart the subfile by pressing F4. The PROMPT record format is not

displayed, and the subfile is displayed starting over with the same name.

 //***

 // SUBROUTINE - DisplayCustomerDetail *

 // PURPOSE - Display selected customer records *

 //***

 begsr DisplayCustomerDetail;

 // Loop through all changed record in subfile

 readc subfile;

 dow not %eof(snammenu);

 // Restart the display of requested customer records

 restartKey = *on;

 // Lookup customer record and display it

 chain zipkey cusrec;

 exfmt cusdsp;

 // If exit key pressed, exit loop

 if exitKey;

 leave;

 endif;

 readc subfile;

 enddo;

 endsr; // end of subroutine ChangeSubfile

 /end-free

Figure 210. Source for module SCHNAM (Part 4 of 4)

Search and Inquiry by Name

418 ILE RPG Programmer’s Guide

v To fill another page by pressing the ROLL UP keys. If end of file has occurred

on the CUSMSTL3 file, the current page is displayed again; otherwise, the

subfile is cleared, and the next page is displayed.

v To display customer detail by entering X, and pressing ENTER. The user can

then return to the PROMPT screen by pressing ENTER, display the subfile again

by pressing F4, or end the program by pressing F3.

In Figure 211, the user responds to the initial prompt by entering a customer name.

 The user requests more information by entering an X as shown in Figure 212.

 22:35:26 CUSTOMER SEARCH & INQUIRY BY NAME 9/30/94

 Enter Search Name JUDAH GOULD

 ENTER - Continue F3 - End Job

Figure 211. ’Customer Search and Inquiry by Name’ prompt screen

 22:35:43 CUSTOMER SEARCH & INQUIRY BY NAME 9/30/94

 Search Name JUDAH GOULD

 Select

 "X" Customer Name Number Zip Code

 X JUDAH GOULD 00012 70068

 JUDAH GOULD 00209 31088

 ENTER - Continue F3 - End Job F4 - Restart Name

Figure 212. ’Customer Search and Inquiry by Name’ information screen

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 419

The detailed information for the customer selected is shown in Figure 213. At this

point the user selects the appropriate function key to continue or end the inquiry.

 23:39:48 CUSTOMER SEARCH & INQUIRY BY NAME 9/30/94

 Customer 00012

 Name JUDAH GOULD

 Address 2074 BATHURST AVENUE

 City YORKTOWN

 State NY Zip Code 70068

 A/R Balance .00

 ENTER - Continue F3 - End Job F4 - Restart Name

Figure 213. ’Customer Search and Inquiry by Name’ detailed information screen

Search and Inquiry by Name

420 ILE RPG Programmer’s Guide

Part 5. Appendixes

© Copyright IBM Corp. 1994, 2006 421

422 ILE RPG Programmer’s Guide

Appendix A. Behavioral Differences Between OPM RPG/400

and ILE RPG for AS/400

The following lists note differences in the behavior of the OPM RPG/400 compiler

and ILE RPG.

Compiling

1. If you specify CVTOPT(*NONE) in OPM RPG, all externally described fields

that are of a type or with attributes not supported by RPG will be ignored. If

you specify CVTOPT(*NONE) in ILE RPG, all externally described fields will

be brought into the program with the same type as specified in the external

description.

2. In RPG IV there is no dependency between DATEDIT and DECEDIT in the

control specification.

3. Regarding the ILE RPG create commands (CRTBNDRPG and CRTRPGMOD):

v The IGNDECERR parameter on the CRTRPGPGM command has been

replaced by the FIXNBR parameter on the ILE RPG create commands.

IGNDECDTA ignores any decimal data errors and continues with the next

machine instruction. In some cases, this can cause fields to be updated with

incorrect and sometimes unpredictable values. FIXNBR corrects the data in a

predictable manner before it is used.

v There is a new parameter, TRUNCNBR, for controlling whether numeric

overflow is allowed.

v There are no auto report features or commands in RPG IV.

v You cannot request an MI listing from the compiler.
4. In a compiler listing, line numbers start at 1 and increment by 1 for each line of

source or generated specifications, when the default OPTION(*NOSRCSTMT) is

specified. If OPTION(*SRCSTMT) is specified, sequence numbers are printed

instead of line numbers. Source IDs are numeric, that is, there are no more

AA000100 line numbers for /COPY members or expanded DDS.

5. RPG IV requires that all compiler directives appear before compile-time data,

including /TITLE. When RPG IV encounters a /TITLE directive, it will treat it

as data. (RPG III treats /TITLE specifications as compiler directives anywhere

in the source.)

The Conversion Aid will remove any /TITLE specifications it encounters in

compile-time data.

6. ILE RPG is more rigorous in detecting field overlap in data structures. For

some calculation operations involving overlapping operands, ILE RPG issues a

message while the OPM compiler does not.

7. In ILE RPG the word NOT cannot be used as a variable name. NOT is a special

word that is used as an operator in expressions.

8. At compile time, the source is read using the CCSID of the main source file,

while for OPM RPG, the source is read using the CCSID of the job.

Running

1. The FREE operation is not supported by RPG IV.

© Copyright IBM Corp. 1994, 2006 423

2. Certain MCH messages may appear in the job log that do not appear under

OPM (for example, MCH1202). The appearance of these messages does not

indicate a change in the behavior of the program.

3. If you use the nonbindable API QMHSNDPM to send messages from your

program, you may need to add 1 to the stack offset parameter to allow for the

presence of the program-entry procedure in the stack. This will only be the case

if the ILE procedure is the user-entry procedure, and if you used the special

value of ’*’ for the call message queue and a value of greater than 0 for the

stack offset.

4. ILE RPG does not interpret return codes that are not 0 or 1 for calls to

programs or procedures that end without an exception.

5. When the cancel handler for an ILE RPG program receives control, it will set

the system return code to 2. The cancel handler for an OPM RPG program does

not modify the setting of the system return code.

6. When recursion is detected, OPM RPG/400 displays inquiry message RPG8888.

ILE RPG signals escape message RNX8888; no inquiry message is displayed for

this condition. Note that this only applies to main procedures. Recursion is

allowed for subprocedures.

7. If decimal-data errors occur during the initialization of a zoned-decimal or

packed-decimal subfield, then the reset values (those values use to restore the

subfield with the RESET operation) may not be valid. For example, it may be

that the subfield was not initialized, or that it was overlaid on another

initialized subfield of a different type. If a RESET operation is attempted for

that subfield, then in OPM RPG/400, a decimal-data error would occur.

However, a RESET to the same subfield in ILE RPG will complete successfully;

after the RESET, the subfield has the same invalid value. As a result, attempts

to use the value will get a decimal data error.

8. In ILE RPG, positions 254-263 of the program status data structure (PSDS)

contain the user name of the originating job. In OPM RPG, these positions

reflect the current user profile. The current user profile in ILE RPG can be

found in positions 358-367.

Debugging and Exception Handling

1. The DEBUG operation is not supported in RPG IV.

2. You cannot use RPG tags, subroutine names, or points in the cycle such as

*GETIN and *DETC for setting breakpoints when using the ILE source

debugger.

3. Function checks are normally left in the job log by both OPM RPG and ILE

RPG. However, in ILE RPG, if you have coded an error indicator, ’E’ extender,

or *PSSR error routine, then the function check will not appear.

You should remove any code that deletes function checks, since the presence of

the indicator, ’E’ extender, or *PSSR will prevent function checks from

occurring.

4. Call performance for LR-on will be greatly improved by having no PSDS, or a

PSDS no longer than 80 bytes, since some of the information that fills the PSDS

after 80 bytes is costly to obtain. If the PSDS is not coded, or is too short to

contain the date and time the program started, these two values will not be

available in a formatted dump. All other PSDS values will be available, no

matter how long the PSDS is.

5. The prefix for ILE RPG inquiry messages is RNQ, so if you use the default

reply list, you must add RNQ entries similar to your existing RPG entries.

Differences Between OPM RPG/400 and ILE RPG

424 ILE RPG Programmer’s Guide

6. In OPM, if a CL program calls your RPG program followed by a MONMSG,

and the RPG program receives a notify or status message, the CL MONMSG

will not handle the notify or status message. If you are calling ILE RPG from

ILE CL and both are in the same activation group, the ILE CL MONMSG will

handle the notify or status message and the RPG procedure will halt

immediately without an RPG error message being issued. For more information

see “Problems when ILE CL Monitors for Notify and Status Messages” on page

293.

7. When displaying a variable using the ILE source debugger, you will get

unreliable results if:

v the ILE RPG program uses an externally described file and

v the variable is defined in the data base file but not referenced in the ILE RPG

program.
8. If your RPG III program has a parameter-mismatch problem (for example, it

passes a parameter of length 10 to a program that expects a parameter of

length 20, and the called program changes all 20 bytes), your program will

experience a storage corruption problem. This problem may not always result

in an error, if the storage that is corrupted is not important to the running of

the program.

When this program is converted to RPG IV, the layout of storage may be

different, so that the corrupted storage is used by the program. This can cause

an unexpected exception to occur, for example exception MCH3601 on a file

operation such as a SETLL. If you experience mysterious errors that seem

unrelated to your application, you should check the parameters of all your call

operations to ensure the parameters all have the correct length.

9. In OPM, the formatted dump can be performed when a programmer has *USE

authority to the program. In ILE, the formatted dump requires *CHANGE

authority to the program or service program.

I/O

 1. In ILE RPG you can read a record in a file opened for update, and created or

overridden with SHARE(*YES), and then update this locked record in another

program that has opened the same file for update.

 2. If a program performs a sequential input operation, and it results in an

end-of-file condition, the normal operation is for any subsequent sequential

input operation in the same module to immediately result in an end-of-file

condition without any physical input request to the database. However, if the

file is shared, the RPG runtime will always send a physical input request to

the database, and the input operation will be successful if the file has been

repositioned by a call to another program or module using the shared file.

 3. You cannot modify the MR indicator using the MOVE or SETON operations.

(RPG III only prevents using SETON with MR.)

 4. The File Type entry on the File specification no longer dictates the type of I/O

operations that must be present in the calculation specifications.

For example, in RPG III, if you define a file as an update file, then you must

have an UPDAT operation later in the program. This is no longer true in RPG

IV. However, your file definition still must be consistent with the I/O

operations present in the program. So if you have an UPDATE operation in

your source, the file must be defined as an update file.

 5. ILE RPG will allow record blocking even if the COMMIT keyword is specified

on the file description specification.

Differences Between OPM RPG/400 and ILE RPG

Appendix A. Behavioral Differences Between OPM RPG/400 and ILE RPG for AS/400 425

#
#
#

|
|
|
|
|
|
|

6. In RPG IV, a file opened for update will also be opened as delete capable. You

do not need any DELETE operations to make it delete capable.

 7. In RPG IV, you do not have to code an actual number for the number of

devices that will be used by a multiple-device file. If you specify

MAXDEV(*FILE) on a file description specification, then the number of save

areas created for SAVEDS and SAVEIND is based on the number of devices

that your file can handle. (The SAVEDS, SAVEIND, and MAXDEV keywords

on an RPG IV file description specification correspond to the SAVDS, IND,

and NUM options on a RPG III file description specification continuation line,

respectively.)

In ILE RPG, the total number of program devices that can be acquired by the

program cannot be different from the maximum number of devices defined in

the device file. OPM RPG/400 allows this through the NUM option.

 8. In ILE RPG, the ACQ and REL operation codes can be used with single device

files.

 9. In ILE RPG, the relative record number and key fields in the database-specific

feedback section of the INFDS are updated on each input operation when

doing blocked reads.

10. When a referential constraint error occurs in OPM RPG/400, the status code is

set to ″01299″ (I/O error). In ILE RPG, the status code is set to ″01022″,

″01222″, or ″01299″, depending on the type of referential constraint error that

occurs:

v If data management is not able to allocate a record due to a referential

constraint error, a CPF502E notify message is issued. ILE RPG will set the

status code to ″01222″ and OPM RPG/400 will set the status code to

″01299″.

If you have no error indicator, ’E’ extender, or INFSR error subroutine, ILE

RPG will issue the RNQ1222 inquiry message, and OPM RPG/400 will

issue the RPG1299 inquiry message. The main difference between these two

messages is that RNQ1222 allows you to retry the operation.

v If data management detects a referential constraint error that has caused it

to issue either a CPF503A, CPF502D, or CPF502F notify message, ILE RPG

will set the status code to ″01022″ and OPM RPG/400 will set the status

code to ″01299″.

If you have no error indicator, ’E’ extender, or INFSR error subroutine, ILE

RPG will issue the RNQ1022 inquiry message, and OPM RPG will issue the

RPG1299 inquiry message.

v All referential constraint errors detected by data management that cause

data management to issue an escape message will cause both OPM and ILE

RPG to set the status code to ″01299″.
11. In ILE RPG, the database-specific feedback section of the INFDS is updated

regardless of the outcome of the I/O operation. In OPM RPG/400, this

feedback section is not updated if the record-not-found condition is

encountered.

12. ILE RPG relies more on data-management error handling than does OPM

RPG/400. This means that in some cases you will find certain error messages

in the job log of an ILE RPG program, but not an OPM RPG/400 program.

Some differences you will notice in error handling are:

v When doing an UPDATE on a record in a database file that has not been

locked by a previous input operation, both ILE RPG and OPM RPG/400 set

the status code to ″01211″. ILE RPG detects this situation when data

management issues a CPF501B notify message and places it in the job log.

Differences Between OPM RPG/400 and ILE RPG

426 ILE RPG Programmer’s Guide

v When handling WORKSTN files and trying to do I/O to a device that has

not been acquired or defined, both ILE and OPM RPG will set the status to

″01281″. ILE RPG detects this situation when data management issues a

CPF5068 escape message and places it in the job log.
13. When doing READE, REDPE (READPE in ILE), SETLL on a database file, or

when doing sequential-within-limits processing by a record-address-file, OPM

RPG/400 does key comparisons using the *HEX collating sequence. This may

give different results than expected when DDS features are used that cause

more than one search argument to match a given key in the file.

For example, if ABSVAL is used on a numeric key, both -1 and 1 would

succeed as search arguments for a key in the file with a value of 1. Using the

hexadecimal collating sequence, a search argument of -1 will not succeed for

an actual key of 1.

ILE RPG does key comparisons using *HEX collating sequence only for

pre-V3R1 DDM files. See “Using Pre-V3R1 DDM Files” on page 358 for more

information.

14. ILE RPG allows the To File and the From File specified for prerun-time arrays

and tables to be different. In OPM RPG, both file names must be the same; if

they are different the diagnostic message QRG3038 is issued.

15. When translation of a RAF-Controlled file is specified, the results using ILE

RPG may differ from OPM RPG/400, depending on the translation table. This

is due to the different sequence of operations. In OPM RPG/400 the sequence

is: retrieve record, translate and compare; in ILE RPG the sequence is:

translate, compare and retrieve record.

DBCS Data in Character Fields

1. In OPM RPG/400, position 57 (Transparency Check) of the control specification

allows you to specify whether the RPG/400 compiler should scan character

literals and constants for DBCS characters. If you specify that the compiler

should scan for transparent literals, and if a character literal that starts with an

apostrophe followed by a shift-out fails the transparency check, the literal is

reparsed as a literal that is not transparent.

In ILE RPG, there is no option on the control specification to specify whether

the compiler should perform transparency check on character literals. If a

character literal contains a shift-out control character, regardless of the position

of the shift-out character within the character literal, the shift-out character

signifies the beginning of DBCS data. The compiler will check for the following:

v A matching shift-in for each shift-out (that is, the shift-out and shift-in

control characters should be balanced)

v An even number (minimally two) between the shift-in and the shift-out

v The absence of an embedded shift-out in the DBCS data
If the above conditions are not met, the compiler will issue a diagnostic

message, and the literal will not be reparsed. As a result, if there are character

literals in your OPM RPG programs that fail the transparency check performed

by the OPM RPG compiler, such programs will get compilation errors in ILE

RPG.

2. In OPM RPG/400, if there are two consecutive apostrophes enclosed within

shift-out and shift-in control characters inside a character literal, the two

consecutive apostrophes are considered as one single apostrophe if the

character literal is not a transparent literal. The character literal will not be a

transparent literal if:

Differences Between OPM RPG/400 and ILE RPG

Appendix A. Behavioral Differences Between OPM RPG/400 and ILE RPG for AS/400 427

v The character literal does not start with an apostrophe followed by a

shift-out

v The character literal fails the transparency check performed by the compiler

v The user has not specified that a transparency check should be performed by

the compiler
In ILE RPG, if there are two consecutive apostrophes enclosed within shift-out

and shift-in control characters inside a character literal, the apostrophes will not

be considered as a single apostrophe. A pair of apostrophes inside a character

literal will only be considered as a single apostrophe if they are not enclosed

within shift-out and shift-in control characters.

3. In ILE RPG, if you want to avoid the checking of literals for shift-out characters

(that is, you do not want a shift-out character to be interpreted as such), then

you should specify the entire literal as a hexadecimal literal. For example, if

you have a literal ’AoB’ where ’o’ represents a shift-out control character, you

should code this literal as X’C10EC2’.

Differences Between OPM RPG/400 and ILE RPG

428 ILE RPG Programmer’s Guide

Appendix B. Using the RPG III to RPG IV Conversion Aid

The RPG IV source specification layouts differ significantly from the System/38™

environment RPG III and the OPM RPG/400 layouts. For example, the positions of

entries on the specifications have changed and the types of specifications available

have also changed. The RPG IV specification layouts are not compatible with the

previous layouts. To take advantage of RPG IV features, you must convert RPG III

and RPG/400 source members in your applications to the RPG IV source format.

Note: The valid types of source members you can convert are RPG, RPT, RPG38,

RPT38, SQLRPG, and blank. The Conversion Aid does not support

conversion of RPG36, RPT36, and other non-RPG source member types.

If you are in a hurry and want to get started, go to “Converting Your Source” on

page 432 and follow the general directions.

Conversion Overview

You convert source programs to the RPG IV source format by calling the

Conversion Aid through the CL command Convert RPG Source (CVTRPGSRC).

The Conversion Aid converts:

v A single member

v All members in a source physical file

v All members with a common member-name prefix in the same file

To minimize the likelihood of there being conversion problems, you can optionally

have the /COPY members included in the converted source code. For convenience

in reading the code, you can also optionally include specification templates in the

converted source code.

The Conversion Aid converts each source member on a line-by-line basis. After

each member conversion, it updates a log file on the status of the conversion if you

specified a log file on the command. You can also obtain a conversion report that

includes information such as conversion errors, /COPY statements, CALL

operations, and conversion status.

The Conversion Aid assumes that your source code is free of any compilation

errors. If this is the case, then it will successfully convert most of your source code.

In some cases, there may be a small amount of code that you may have to convert

manually. Some of these cases are identified by the Conversion Aid. Others are not

detected until you attempt to compile the converted source. To see which ones the

Conversion Aid can identify, you can run the Conversion Aid using the

unconverted member as input, and specify a conversion report but no output

member. For information on the types of coding that cannot be converted, see

“Resolving Conversion Problems” on page 447.

File Considerations

The Conversion Aid operates on file members. This section presents information

on different aspects of files that must be taken into consideration when using the

Conversion Aid.

© Copyright IBM Corp. 1994, 2006 429

Source Member Types

Table 48 lists the various source member types, indicates whether the member type

can be converted, and indicates the output source member type.

 Table 48. Source Member Types and their Conversion Status

Source Member Type Convert? Converted Member Type

RPG Yes RPGLE

RPG38 Yes RPGLE

RPT Yes RPGLE

RPT38 Yes RPGLE

'blank' Yes RPGLE

RPG36 No N/A

RPT36 No N/A

SQLRPG Yes SQLRPGLE

Any other type No N/A

If the source member type is 'blank', then the Conversion Aid will assume it has a

member type of RPG. If the source member type is blank for an auto report source

member, then you should assign the correct source member type (RPT or RPT38)

to the member before converting it. If you do, then the Conversion Aid will

automatically expand the auto report source member so that it can be converted

properly. The expansion is necessary since ILE RPG does not support auto report

source members.

For more information on converting auto report source members, see “Converting

Auto Report Source Members” on page 439.

File Record Length

The recommended record length for the converted source physical file is 112

characters. This record length takes into account the RPG IV structure as shown in

Figure 214. The recommended record length of 112 characters also corresponds to

the maximum amount of information that fits on a line of a compiler listing.

 If the converted source file has a record length less than 92 characters then an error

message will be issued and the conversion will stop. This is because the record

length is not long enough to contain the 80 characters allowed for source code and

so some code is likely to be lost.

File and Member Names

The unconverted member and the member for the converted output can only have

the same name if they are in different files or libraries.

Seq. No.

12 80 20

Code Comments

Minimum Record Length
(92 characters)

Recommended Record Length
(112 characters)

Figure 214. RPG IV Record Length Breakdown

Conversion Overview

430 ILE RPG Programmer’s Guide

The name of the converted source member(s) depends on whether you are

converting one or several members. If you are converting one member, the default

is to give the converted source member the same name as the unconverted

member. You can, of course, specify a different name for the output member. If you

are converting all source members in a file, or a group of them using a generic

name, then the members will automatically be given the same name as the

unconverted source members.

Note that specifying the file, library and member name for the converted output is

optional. If you do not specify any of these names, the converted output will be

placed in the file QRPGLESRC and have a member name the same as the

unconverted member name. (The library list will be searched for the file

QRPGLESRC.)

The Log File

The Conversion Aid uses a log file to provide audit trails on the status of each

source member conversion. By browsing the log file, you can determine the status

of previous conversions. You can access the log file with a user-written program

for further processing, for example, compiling and binding programs.

If you specify that a log file is to be updated, then its record format must match

the format of the IBM-suppled ″model″ database file QARNCVTLG in library

QRPGLE. Figure 221 on page 447 shows the DDS for this file. Use the following

CRTDUPOBJ command to create a copy of this model in your own library, referred

to here as MYLIB. You may want to name your log file QRNCVTLG, as this is the

default log file name for the Conversion Aid.

CRTDUPOBJ OBJ(QARNCVTLG) FROMLIB(QRPGLE) OBJTYPE(*FILE)

 TOLIB(MYLIB) NEWOBJ(QRNCVTLG)

You must have object management, operational and add authority to the log file

that is accessed by the Conversion Aid.

For information on using the log file see “Using the Log File” on page 445.

Conversion Aid Tool Requirements

To use the Conversion Aid, you need the following authority:

v *USE authority for the CVTRPGSRC command

v *USE authority to the library that contains the source file and source members

v *CHANGE authority to the new library that will contain the source file and

converted source members

v object management, operational, and add authority to the log file used by the

Conversion Aid

In addition to object-authority requirements, there may be additional storage

requirements. Each converted source program is, on average, about 25 percent

larger than the size of the program before conversion. To use the Conversion Aid

you need sufficient storage to store the converted source files.

What the Conversion Aid Won’t Do

v The Conversion Aid does not support conversion from the RPG IV format back

to the RPG III or RPG/400 format.

v The RPG IV compiler does not support automatic conversion of RPG III or

RPG/400 source members to the RPG IV source format at compile time.

Conversion Overview

Appendix B. Using the RPG III to RPG IV Conversion Aid 431

v The Conversion Aid does not support converting RPG II source programs to the

RPG IV source format. However, you can use the RPG II to RPG III

Conversion Aid first and then the RPG III to RPG IV Conversion Aid.

v The Conversion Aid does not re-engineer source code, except where required

(for example, the number of conditioning indicators.)

v The Conversion Aid does not create files. The log file and the output file must

exist prior to running it.

Converting Your Source

This section explains how to convert source programs to the RPG IV format. It

discusses the command CVTRPGSRC, which starts the Conversion Aid, and how

to use it.

To convert your source code to the RPG IV format, follow these general steps:

1. If you use a data area as a control specification, you must create a new data

area in the RPG IV format. Refer to the chapter on control specifications in

WebSphere Development Studio: ILE RPG Reference for more information.

2. Create a log file, if necessary.

Unless you specify LOGFILE(*NONE), there must be a log file for the

Conversion Aid to access. If you do not have one, then you can create one by

using the CRTDUPOBJ command. For more information, see “The Log File” on

page 431 and “Using the Log File” on page 445.

3. Create the file for the converted source members.

The Conversion Aid will not create any files. You must create the output file for

the converted source prior to running the CVTRPGSRC command. The

recommended name and record length for the output file is QRPGLESRC and

112 characters respectively. For additional file information see “File

Considerations” on page 429.

4. Convert your source using the CVTRPGSRC command.

You need to enter the name of the file and member to be converted. If you

accept the defaults, you will get a converted member in the file QRPGLESRC.

The name of the member will correspond to the name of the unconverted

source member. /COPY members will not be expanded in the converted source

member, unless it is of type RPT or RPT38. A conversion report will be

generated.

See “The CVTRPGSRC Command” on page 433 for more information.

5. Check the log file or the error report for any errors. For more information, see

“Analyzing Your Conversion” on page 443.

6. If there are errors, correct them and go to step 4.

7. If there are no errors, create your program. For information on how to create

ILE RPG programs, see Chapter 6, “Creating a Program with the CRTBNDRPG

Command,” on page 59.

8. If your converted source member still has compilation problems, these are most

likely caused because your primary source member contains /COPY compiler

directives. You have two choices to correct this situation:

a. Reconvert your source member specifying EXPCPY(*YES) to expand copy

members into your converted source member.

b. Manually correct any remaining errors using the compiler listing as a guide.

Refer to “Resolving Conversion Problems” on page 447 for further information.

Conversion Overview

432 ILE RPG Programmer’s Guide

9. Once your converted source member has compiled successfully, retest the

program before putting it back into production.

The CVTRPGSRC Command

To convert your RPG III or RPG/400 source to the new RPG IV format, you use

the CVTRPGSRC command to start the Conversion Aid. Table 49 shows the

parameters of the command based on their function.

 Table 49. CVTRPGSRC Parameters and Their Default Values Grouped by Function

Program Identification

FROMFILE Identifies library and file name of RPG source to be

converted

FROMMBR Identifies which source members are to be converted

TOFILE(*LIBL/QRPGLESRC) Identifies library and file name of converted output

TOMBR(*FROMMBR) Identifies file member names of converted source

Conversion Processing

TOMBR If *NONE is specified, then no file members are saved

EXPCPY(*NO) Determines if /COPY statements are included in

converted output

INSRTPL(*NO) Indicates if specification templates are to be included in

converted output

Conversion Feedback

CVTRPT(*YES) Determines whether to produce conversion report

SECLVL(*NO) Determines whether to include second-level message text

LOGFILE(*LIBL/QRNCVTLG) Identifies log file for audit report

LOGMBR(*FIRST) Identifies which member of the log file to use for audit

report

The syntax for the CVTRPGSRC command is shown below.

Job: B,I Pgm: B,I REXX: B,I Exec

��

CVTRPGSRC
 *LIBL/

FROMFILE

(

source-file-name

)

*CURLIB/

library-name/

�

�
 source-file-member-name

FROMMBR

(

*ALL

)

generic*-member-name

�

�
*LIBL/

QRPGLESRC

TOFILE

(

source-file-name

)

*CURLIB/

library-name/

*NONE

 �

Converting Your Source

Appendix B. Using the RPG III to RPG IV Conversion Aid 433

�
 (1)

*FROMMBR

TOMBR

(

source-file-member-name

)

*NO

EXPCPY

(

*YES

)

�

�
*YES

CVTRPT

(

*NO

)

*NO

SECLVL

(

*YES

)

 �

�
*NO

INSRTPL

(

*YES

)

 �

�
*LIBL/

QRNCVTLG

LOGFILE

(

log-file-name

)

*CURLIB/

library-name/

*NONE

 �

�
*FIRST

LOGMBR

(

*LAST

)

log-file-member-name

 ��

Notes:

1 All parameters preceding this point can be specified by position.

The parameters and their possible values follow the syntax diagram. If you need

prompting, type CVTRPGSRC and press F4. The CVTRPGSRC screen appears, lists

the parameters, and supplies default values. For a description of a parameter on

the display, place your cursor on the parameter and press F1. Extended help for all

of the parameters is available by pressing F1 on any parameter and then pressing

F2.

FROMFILE

Specifies the name of the source file that contains the RPG III or RPG source

code to be converted and the library where the source file is stored. This is a

required parameter; there is no default file name.

source-file-name

Enter the name of the source file that contains the source member(s) to be

converted.

*LIBL

The system searches the library list to find the library where the source file

is stored.

*CURLIB

The current library is used to find the source file. If you have not specified

a current library, then the library QGPL is used.

library-name

Enter the name of the library where the source file is stored.

Converting Your Source

434 ILE RPG Programmer’s Guide

FROMMBR

Specifies the name(s) of the member(s) to be converted. This is a required

parameter; there is no default member name.

 The valid source member types of source members to be converted are RPG,

RPT, RPG38, RPT38, SQLRPG and blank. The Convert RPG Source command

does not support source member types RPG36, RPT36, and other non-RPG

source member types (for example, CLP and TXT).

source-file-member-name

Enter the name of the source member to be converted.

*ALL

The command converts all the members in the source file specified.

generic*-member-name

Enter the generic name of members having the same prefix in their names

followed by a ’*’ (asterisk). The command converts all the members having

the generic name in the source file specified. For example, specifying

FROMMBR(PR*) will result in the conversion of all members whose names

begin with ’PR’.

 (See the CL Programmer’s Guide for more information on the generic

name.)

TOFILE

Specifies the name of the source file that contains converted source members

and the library where the converted source file is stored. The converted source

file must exist and should have a record length of 112 characters: 12 for the

sequence number and date, 80 for the code and 20 for the comments.

QRPGLESRC

The default source file QRPGLESRC contains the converted source

member(s).

*NONE

No converted member is generated. The TOMBR parameter value is

ignored. CVTRPT(*YES) must also be specified or the conversion will end

immediately.

 This feature allows you to find some potential problems without having to

create the converted source member.

source-file-name

Enter the name of the converted source file that contains the converted

source member(s).

 The TOFILE source file name must be different from the FROMFILE source

file name if the TOFILE library name is the same as the FROMFILE library.

*LIBL

The system searches the library list to find the library where the converted

source file is stored.

*CURLIB

The current library is used to find the converted source file. If you have

not specified a current library, then the library QGPL is used.

library-name

Enter the name of the library where the converted source file is stored.

TOMBR

Specifies the name(s) of the converted source member(s) in the converted

Converting Your Source

Appendix B. Using the RPG III to RPG IV Conversion Aid 435

source file. If the value specified on the FROMMBR parameter is *ALL or

generic*, then TOMBR must be equal to *FROMMBR.

*FROMMBR

The member name specified in the FROMMBR parameter is used as the

converted source member name. If FROMMBR(*ALL) is specified, then all

the source members in the FROMFILE are converted. The converted source

members have the same names as those of the original source members. If

a generic name is specified in the FROMMBR parameter, then all the

source members specified having the same prefix in their names are

converted. The converted source members have the same names as those

of the original generic source members.

source-file-member-name

Enter the name of the converted source member. If the member does not

exist it will be created.

EXPCPY

Specifies whether or not /COPY member(s) is expanded into the converted

source member. EXPCPY(*YES) should be specified only if you are having

conversion problems pertaining to /COPY members.

Note: If the member is of type RPT or RPT38, EXPCPY(*YES) or

EXPCPY(*NO) has no effect because the auto report program will

always expand the /COPY members.

*NO

Do not expand the /COPY file member(s) into the converted source.

*YES

Expands the /COPY file member(s) into the converted source.

CVTRPT

Specifies whether or not a conversion report is printed.

*YES

The conversion report is printed.

*NO

The conversion report is not printed.

SECLVL

Specifies whether second-level text is printed in the conversion report in the

message summary section.

*NO

Second-level message text is not printed in the conversion report.

*YES

Second-level message text is printed in the conversion report.

INSRTPL

Specifies if the ILE RPG specification templates (H-, F-, D-, I-, C- and/or

O-specification template), are inserted in the converted source member(s). The

default value is *NO.

*NO

A specification template is not inserted in the converted source member.

*YES

A specification template is inserted in the converted source member. Each

specification template is inserted at the beginning of the appropriate

specification section.

Converting Your Source

436 ILE RPG Programmer’s Guide

LOGFILE

Specifies the name of the log file that is used to track the conversion

information. Unless *NONE is specified, there must be a log file. The file must

already exist, and it must be a physical data file. Create the log file by using

the CPYF command with the ″From object″ file QARNCVTLG in library

QRPGLE and the ″New object″ file QRNCVTLG in your library.

QRNCVTLG

The default log file QRNCVTLG is used to contain the conversion

information.

*NONE

Conversion information is not written to a log file.

log-file-name

Enter the name of the log file that is to be used to track the conversion

information.

*LIBL

The system searches the library list to find the library where the log file is

stored.

library-name

Enter the name of the library where the log file is stored.

LOGMBR

Specifies the name of the log file member used to track conversion information.

The new information is added to the existing data in the specified log file

member.

 If the log file contains no members, then a member having the same name as

the log file is created.

*FIRST

The command uses the first member in the specified log file.

*LAST

The command uses the last member in the specified log file.

log-file-member-name

Enter the name of the log file member used to track conversion

information.

Converting a Member Using the Defaults

You can take advantage of the default values supplied on the CVTRPGSRC

command. Simply enter:

CVTRPGSRC FROMFILE(file name) FROMMBR(member name)

This will result in the conversion of the specified source member. The output will

be placed in the file QRPGLESRC in whichever library in the library list contains

this file. The /COPY members will not be expanded, no specification templates

will be inserted, and the conversion report will be produced. The log file

QRNCVTLG will be updated.

Note: The files QRPGLESRC and QRNCVTLG must already exist.

Converting All Members in a File

You can convert all of the members in a source physical file by specifying

FROMMBR(*ALL) and TOMBR(*FROMMBR) on the CVTRPGSRC command. The

Converting Your Source

Appendix B. Using the RPG III to RPG IV Conversion Aid 437

Conversion Aid will attempt to convert all members in the file specified. If one

member should fail to convert, the conversion process will still continue.

For example, if you want to convert all source members in the file QRPGSRC to

the file QRPGLESRC, you would enter:

CVTRPGSRC FROMFILE(OLDRPG/QRPGSRC)

 FROMMBR(*ALL)

 TOFILE(NEWRPG/QRPGLESRC)

 TOMBR(*FROMMBR)

This command converts all of the source members in library OLDRPG in the

source physical file QRPGSRC. The new members are created in library NEWRPG

in the source physical file QRPGLESRC.

If you prefer to keep all source (DDS source, RPG source, etc.) in the same file, you

can still convert the RPG source members in one step, by specifying

FROMMBR(*ALL). The Conversion Aid will only convert members with a valid

RPG type (see Table 48 on page 430).

Converting Some Members in a File

If you need to convert only some members that are in a source physical file, and

these members share a common prefix in the member name, then you can convert

them by specifying the prefix followed by an * (asterisk).

For example, if you want to convert all members with a prefix of PAY, you would

enter:

CVTRPGSRC FROMFILE(OLDRPG/QRPGSRC)

 FROMMBR(PAY*)

 TOFILE(NEWRPG/QRPGLESRC)

 TOMBR(*FROMMBR)

This command converts all of the source members in library OLDRPG in the

source physical file QRPGSRC. The new members are created in library NEWRPG

in the source physical file QRPGLESRC.

Performing a Trial Conversion

You can do a trial run for any source member that you suspect you may have

problems converting. You will then get a conversion report for the converted

source member that may identify certain conversion errors.

For example, to perform a trial conversion on the source member PAYROLL, type:

CVTRPGSRC FROMFILE(OLDRPG/QRPGSRC)

 FROMMBR(PAYROLL)

 TOFILE(*NONE)

The TOMBR parameter should be specified as *FROMMBR. However, since this is

the default, you do not need to specify it unless the default value has been

changed. The CVTRPT parameter should be specified as *YES — this is also the

default. If it is not, then the conversion will stop immediately.

Using the TOFILE(*NONE) parameter stops the Conversion Aid from generating a

converted member, but still allows it to produce a conversion report. For more

information on the conversion report, see “Analyzing Your Conversion” on page

443.

Converting Your Source

438 ILE RPG Programmer’s Guide

Obtaining Conversion Reports

The Conversion Aid normally produces a conversion report each time you issue

the command. The name of the spooled file corresponds to the file name specified

in the TOFILE parameter. If you try to convert a member that already exists or has

an unsupported member type, then a message is printed in the job log indicating

that these members have not been converted. The log file, if requested, is also

updated to reflect that no conversion has occurred. However, no information

regarding these members is placed in the report.

The conversion report includes the following information:

v CVTRPGSRC command options

v Source section that includes:

– conversion errors or warnings

– CALL operations

– /COPY directives
v Message summary

v Final summary

The conversion error messages provide you with suggestions on how to correct the

error. In addition, any CALL operations and /COPY directives in the unconverted

source are flagged to help you in identifying the various parts of the application

you are converting. In general, you should convert all RPG components of an

application at the same time.

If you do not want a conversion report, then specify CVTRPT(*NO).

Converting Auto Report Source Members

When an auto report source member (type RPT or RPT38) is detected in an RPG III

or OPM RPG/400 source program, the Conversion Aid calls the CRTRPTPGM

command to expand the source member and then converts it. (This is because auto

report is not supported by ILE RPG.)

The auto report program produces a spooled file each time it is called by the

Conversion Aid. You may want to check this file to see if any errors occurred on

the auto report expansion, since these errors will not be in the conversion report.

In particular, you may want to check the auto report spooled file for an error

message indicating that /COPY members were not found. The Conversion Aid will

not know if these files are missing. However, without these files, it may not be able

to successfully convert your source.

Note: If the source member type of the member to be converted is not RPT or

RPT38 and the member is an auto report source member, you should assign

the correct source member type (RPT or RPT38) to the member before

converting it; otherwise conversion errors may occur.

Auto Report supports compile-time data in /COPY members. RPG IV does not

support this. If you are keeping compile-time data in /COPY members so that

several programs can use the data, consider moving the compile-time data to a

user-space and accessing it through the user-space APIs.

Converting Your Source

Appendix B. Using the RPG III to RPG IV Conversion Aid 439

Converting Source Members with Embedded SQL

When converting code that contains embedded SQL and the SQL code is continued

over multiple lines, the following will occur:

v If there are continuation lines but column 74 is blank, the line is simply copied

to the ILE member.

Note: This could be a problem if column 74 happens to be a blank character

inside a character string.

v If column 74 is not blank, all of the SQL code from that line to the /END-EXEC

will be concatenated and copied to the ILE member filling up all 80 columns. If

this occurs:

– Any comments in column 75 on, will be ignored.

– Any embedded comment lines (C*) will be copied to the ILE member before

the concatenated code is copied.

– Problems could arise if DBCS literals are split.

If you do not want this concatenation and re-formatting to occur, ensure that

column 74 is blank.

Inserting Specification Templates

Because the source specifications for RPG IV are new, you may want to have

specification templates inserted into the converted source. To have templates

inserted, specify INSRTPL(*YES) on the CVTRPGSRC command. The default is

INSRTPL(*NO).

Converting Source from a Data File

The Conversion Aid will convert source from a data file. Because data files

generally do not have sequence numbers, the minimum record length of the file for

placing the converted output is 80 characters. (See Figure 214 on page 430.) The

recommended record length is 100 characters for a data file.

Note: If your data file has sequence numbers, you should remove them prior to

running the Conversion Aid.

Example of Source Conversion

The example shows a sample RPG III source member which is to be converted to

RPG IV. Figure 215 on page 441 shows the source of the RPG III version.

Converting Your Source

440 ILE RPG Programmer’s Guide

To convert this source, enter:

CVTRPGSRC FROMFILE(MYLIB/QRPGSRC) FROMMBR(TEST1)

 TOFILE(MYLIB/QRPGLESRC) INSRTPL(*YES)

The converted source is shown in Figure 216 on page 442.

 H TSTPGM

 FFILE1 IF E DISK COMM1

 FQSYSPRT O F 132 OF LPRINTER

 LQSYSPRT 60FL 56OL

 E ARR1 3 3 1 COMM2

 E ARR2 3 3 1

 IFORMAT1

 I OLDNAME NAME

 I* DATA STRUCTURE COMMENT

 IDS1 DS

 I 1 3 FIELD1

 I* NAMED CONSTANT COMMENT

 I ’XYZ’ C CONST1 COMM3

 I 4 6 ARR1

 C ARR1,3 DSPLY

 C READ FORMAT1 01

 C NAME DSPLY

 C SETON LR

 C EXCPTOUTPUT

 OQSYSPRT E 01 OUTPUT

 O ARR2,3 10

**

123

**

456

Figure 215. RPG III Source for TEST1

Example of Source Conversion

Appendix B. Using the RPG III to RPG IV Conversion Aid 441

Note the following about the converted source:

v The new specification types are H (control), F (file), D (definition), I (input), C

(calculation), and O (output); they must be entered in this order.

The converted source contains specification templates for the new types, since

INSRTPL(*YES) was specified on CVTRPGSRC.

v The control, file, and definition specifications are keyword-oriented. See lines 2,

4 - 7, and 9 - 16.

v The ILE member has a new specification type, definition. It is used to define

standalone fields, arrays and named constants as well as data structures.

In this example,

– ARR2 is defined as a standalone array (Line 9)

– Data structure DS1 is defined as a data structure with two subfields FIELD1

and ARR1 (Lines 11 - 14)

– Constant CONST1 is defined as a constant (Line 16)

The input (I) specifications are now used only to define records and fields of a

file. See Lines 19 - 20.

v The extension (E) specifications have been eliminated. Arrays and tables are now

defined using definition specifications.

v Record address file (RAF) entries on extension specifications have been replaced

by the keyword RAFDATA on the File Description specification.

v The line counter specifications have been eliminated. They have been replaced

by the keywords FORMLEN and FORMOFL on the file description specification.

See Lines 6 and 7.

 1H*unctions+++Comments+++++++++

 2 H DFTNAME(TSTPGM)

 3F*ilename++IPEASFRlen+LKlen+AIDevice+.Functions++++++++++++++++++++++++++++Comments+++++++++

 4 FFILE1 IF E DISK COMM1

 5 FQSYSPRT O F 132 PRINTER OFLIND(*INOF)

 6 F FORMLEN(60)

 7 F FORMOFL(56)

 8D*ame+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++++Comments+++++++++

 9 D ARR2 S 1 DIM(3) CTDATA PERRCD(3)

10 D* DATA STRUCTURE COMMENT

11 D DS1 DS

12 D FIELD1 1 3

13 D ARR1 4 6

14 D DIM(3) CTDATA PERRCD(3) COMM2

15 D* NAMED CONSTANT COMMENT

16 D CONST1 C CONST(’XYZ’) COMM3

17 I*ilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................Comments+++++++++

18 I*.............Ext_field+Fmt+SPFrom+To+++DcField+++++++++L1M1FrP1MnZr......Comments+++++++++

19 IFORMAT1

20 I OLDNAME NAME

21 C*0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....Comments+++++++++

22 C ARR1(3) DSPLY

23 C READ FORMAT1 01

24 C NAME DSPLY

25 C SETON LR

26 C EXCEPT OUTPUT

27 OQSYSPRT E OUTPUT 01

28 O ARR2(3) 10

29 **CTDATA ARR1

30 123

31 **CTDATA ARR2

32 456

Figure 216. Converted (RPG IV) Source for TEST1

Example of Source Conversion

442 ILE RPG Programmer’s Guide

v All specification types have been expanded to allow for 10-character names for

fields and files.

v In RPG IV, data structures (which are defined using definition specifications)

must precede the input specifications.

Note that in the converted source, the data structure DS1 (Line 11) has been

moved to precede the specification containing the FORMAT1 information (Line

19).

v In RPG III, named constants can appear in the middle of a data structure. This is

not allowed in RPG IV.

In the converted source, CONST1 (Line 16) has been moved to follow data

structure DS1 (Line 11).

v If a specification is moved, any comment that precedes it is also moved.

In the converted source, the comments above CONST1 and DS1 were moved

with the following specifications.

v In RPG III, to define an array as a data structure subfield, you define both the

array and a data structure subfield with the same name. This double definition

is not allowed in RPG IV. Instead you specify the array attributes when you

define the subfields using the new keyword syntax.

In this example, ARR1 is defined twice in the OPM version, but has been

merged into a single definition in converted source. See Lines 13 and 14.

The merging of RPG III array specifications may result in the reordering of the

array definitions. If the reordered arrays are compile-time arrays, then the

loading of array data may be affected. To overcome this problem, RPG IV

provides a keyword format for the ** records. Following **, you enter one of the

keywords FTRANS, ALTSEQ, or CTDATA. If the keyword is CTDATA, you enter

the array or table name in positions 10 - 19.

In this example, the array ARR2 now precedes array ARR1, due to the merging

of the two RPG III specifications for ARR2. The Conversion Aid has inserted the

keywords and array names in the converted ** records, which ensures the

correct loading of the compile-time data. See Lines 29 and 31.

v Note that array syntax has changed. The notation ARR1,3 in RPG III is ARR1(3)

in RPG IV. See line 28.

Analyzing Your Conversion

The Conversion Aid provides you with two ways to analyze your conversion

results. They are:

v The conversion error report

v The log file

Using the Conversion Report

The Conversion Aid generates a conversion report if you specify the

CVTRPT(*YES) parameter on the CVTRPGSRC command. The spooled file name is

the same as the file name specified on the TOFILE parameter.

The conversion report consists of four parts:

1. CVTRPGSRC command options

2. source section

3. message summary

4. final summary

Example of Source Conversion

Appendix B. Using the RPG III to RPG IV Conversion Aid 443

The first part of the listing includes a summary of the command options used by

CVTRPGSRC. Figure 217 shows the command summary for a sample conversion.

 The source section includes lines that have informational, warning, or error

messages associated with them. These lines have an asterisk (*) in column 1 for

ease of browsing in SEU. The message summary contains all three message types.

Two informational messages which may be of particular interest are:

v RNM0508 — flags /COPY statements

v RNM0511 — flags CALL operations

All /COPY members in an program must be converted in order for the

corresponding ILE RPG program to compile without errors. Similarly, you may

want to convert all members related by CALL at the same time. Use this part of

the report to assist you in identifying these members. Figure 218 shows the source

section for the sample conversion.

 The message summary of the listing shows you the different messages that were

issued. If you specify SECLVL(*YES), second-level messages will appear in the

message summary. Figure 219 on page 445 shows the messages section for the

sample conversion, including second-level messages.

5769WDS V5R2M0 020719 RN IBM ILE RPG ISERIES1 08/15/02 20:41:35 Page 1

 Command : CVTRPGSRC

 Issued by : DAVE

 From file : QRPGSRC

 Library : MYLIB

 From member : REPORT

 To file. : QRPGLESRC

 Library : MYLIB

 To member : *FROMMBR

 Log file : *NONE

 Library :

 Log member : *FIRST

 Expand copy members. : *NO

 Print conversion report : *YES

 Include second level text. . . . : *YES

 Insert specification template. . : *YES

Figure 217. Command Summary of Sample Conversion Report

5769WDS V5R2M0 020719 RN IBM ILE RPG ISERIES1 08/15/02 20:41:35 Page 2

 From file : MYLIB/QRPGSRC(REPORT)

 To file. : MYLIB/QRPGLESRC(REPORT)

 Log file : *NONE

 C o n v e r s i o n R e p o r t

Sequence <----------------------- Source Specifications ---------------------------><-------------- Comments --------------> Page

Number 1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10....+...11....+...12 Line

 000002 C CALL PROG1

*RNM0511 00 CALL operation code found.

 000003 C/COPY COPYCODE

*RNM0508 00 /COPY compiler directive found.

 000004 C FREE PROG2

*RNM0506 30 FREE operation code is not supported in RPG IV.

 * * * * * E N D O F S O U R C E * * * * *

Figure 218. Sample Source Section of Conversion Report

Analyzing Your Conversion

444 ILE RPG Programmer’s Guide

The final summary of the listing provides message and record statistics. A final

status message is also placed in the job log. Figure 220 shows the messages section

for the sample conversion.

Using the Log File

By browsing the log file, you can see the results of your conversions. The log file is

updated after each conversion operation. It tracks:

v Source members and their library names

v Converted source file names and their library names

v Highest severity error found

For example, if no errors are found, the conversion status is set to 0. If severe

errors are found, the status is set to 30.

If you try to convert a member with an unsupported member type or a member

that already exists, then the conversion will not take place, as this is a severe error

5769WDS V5R2M0 020719 RN IBM ILE RPG ISERIES1 08/15/02 20:41:35 Page 2

 M e s s a g e S u m m a r y

 Msg id Sv Number Message text

*RNM0508 00 1 /COPY compiler directive found.

 Cause : In order for this RPG IV source to

 compile correctly, ensure that all /COPY source members

 included in this source member have also been converted to

 RPG IV.

 Recovery . . . : Ensure that all /COPY source

 members are converted prior to compiling in RPG IV. In some

 cases, problems may result when attempting to convert and

 compile source members that make use of the /COPY compiler

 directive. If this situation results, specify *YES for the

 EXPCPY parameter on the CVTRPGSRC command to expand the

 /COPY member(s) into the converted source. For further

 information see the ILE RPG for AS/400 Programmers Guide.

*RNM0511 00 1 CALL operation code found.

 Cause : RPG specifications that contain CALL

 operation codes have been identified because the user may

 wish to:

 -- change the CALL operation code to CALLB to take

 advantage of static binding

 -- convert all programs in an application to RPG IV.

 Recovery . . . : Convert the CALL

 operation code to a CALLB if you wish to take advantage of

 static binding or convert the called program to RPG IV if

 you wish to convert all programs in an application.

*RNM0506 30 1 FREE operation code is not supported in RPG IV.

 Cause : The RPG III or RPG/400 program contains

 the FREE operation code which is not supported in RPG IV.

 Recovery . . . : Remove the FREE operation and replace

 it with alternative code so that the programming logic is

 not affected prior to compiling the converted source.

 * * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

Figure 219. Sample Message Summary of Conversion Report

 F i n a l S u m m a r y

 Message Totals:

 Information (00) : 2

 Warning (10) : 0

 Severe Error (30+) : 1

 --------------------------------- -------

 Total : 3

 Source Totals:

 Original Records Read : 3

 Converted Records Written : 4

 Highest Severity Message Issued . : 30

 * * * * * E N D O F F I N A L S U M M A R Y * * * * *

 * * * * * E N D O F C O N V E R S I O N * * * * *

Figure 220. Sample Final Summary of Conversion Report

Analyzing Your Conversion

Appendix B. Using the RPG III to RPG IV Conversion Aid 445

(severity 40 or higher). A record will be added to the log file with the conversion

status set to 40. The TOFILE, TOMBR, and TO LIBRARY will be set to blank to

indicate that a TOMBR was not generated (as the conversion did not take place).

The log file is an externally described, physical database file. A ″model″ of this file

is provided in library QRPGLE in file QARNCVTLG. It has one record format

called QRNCVTLG. All field names are six characters in length and follow the

naming convention LGxxxx, where xxxx describes the fields. Figure 221 on page

447 shows the DDS for this file.

Use the following CPYF command to create a copy of this model in your own

library, referred to here as MYLIB. You may want to name your log file

QRNCVTLG, as this is the default log file name for the Conversion Aid.

CPYF FROMFILE(QRPGLE/QARNCVTLG) TOFILE(MYLIB/QRNCVTLG)

 CRTFILE(*YES)

Analyzing Your Conversion

446 ILE RPG Programmer’s Guide

Resolving Conversion Problems

Conversion problems may arise for one or more of the following reasons:

v The RPG III source has compilation errors

v Certain features of the RPG III language are not supported by RPG IV

v One or more /COPY compiler directives exists in the RPG III source

 A R QRNCVTFM

 A LGCENT 1A COLHDG(’CVT’ ’CENT’)

 A TEXT(’Conversion Century: 0-20th 1-+

 A 21st’)

 A LGDATE 6A COLHDG(’CVT’ ’DATE’)

 A TEXT(’Conversion Date : format is Y+

 A YMMDD’)

 A LGTIME 6A COLHDG(’CVT’ ’TIME’)

 A TEXT(’Conversion Time : format is H+

 A HMMSS’)

 A LGSYST 8A COLHDG(’CVT’ ’SYST’)

 A TEXT(’Name of the system running co+

 A nversion’)

 A LGUSER 10A COLHDG(’CVT’ ’USER’)

 A TEXT(’User Profile name of the user+

 A running conversion’)

 A LGFRFL 10A COLHDG(’FROM’ ’FILE’)

 A TEXT(’From File’)

 A LGFRLB 10A COLHDG(’FROM’ ’LIB’)

 A TEXT(’From Library’)

 A LGFRMR 10A COLHDG(’FROM’ ’MBR’)

 A TEXT(’From Member’)

 A LGFRMT 10A COLHDG(’FMBR’ ’TYPE’)

 A TEXT(’From Member Type’)

 A LGTOFL 10A COLHDG(’TO’ ’FILE’)

 A TEXT(’To File’)

 A LGTOLB 10A COLHDG(’TO’ ’LIB’)

 A TEXT(’To Library’)

 A LGTOMR 10A COLHDG(’TO’ ’MBR’)

 A TEXT(’To Member’)

 A LGTOMT 10A COLHDG(’TMBR’ ’TYPE’)

 A TEXT(’To Member Type’)

 A LGLGFL 10A COLHDG(’LOG’ ’FILE’)

 A TEXT(’Log File’)

 A LGLGLB 10A COLHDG(’LOG’ ’LIB’)

 A TEXT(’Log Library’)

 A LGLGMR 10A COLHDG(’LOG’ ’MBR’)

 A TEXT(’Log Member’)

 A LGCEXP 1A COLHDG(’CPY’ ’EXP’)

 A TEXT(’Copy Member Expanded: Y=Yes, +

 A N=No’)

 A LGERRL 1A COLHDG(’CVT’ ’RPT’)

 A TEXT(’Conversion Report Printed: Y=+

 A Yes, N=No’)

 A LGSECL 1A COLHDG(’SEC’ ’LVL’)

 A TEXT(’Second Level Text Printed: Y=+

 A Yes, N=No’)

 A LGINSR 1A COLHDG(’INSR’ ’TPL’)

 A TEXT(’Template Inserted: Y=Yes, N=N+

 A o’)

 A LGSTAT 2A COLHDG(’CVT’ ’STAT’)

 A TEXT(’Conversion Status’)

 A LGMRDS 50A COLHDG(’MBR’ ’DESC’)

 A TEXT(’Member Description’)

Figure 221. DDS for model log file QARNCVTLG in library QRPGLE

Resolving Conversion Problems

Appendix B. Using the RPG III to RPG IV Conversion Aid 447

v Use of externally described data structures

v Behavioral differences between the OPM and ILE run time

Each of these areas is discussed in the sections which follow.

Compilation Errors in Existing RPG III Code

The Conversion Aid assumes that you are attempting to convert a valid RPG III

program, that is, a program with no compilation errors. If this is not the case, then

unpredictable results may occur during conversion. If you believe your program

contains compilation errors, compile it first using the RPG III compiler and correct

any errors before performing the conversion.

Unsupported RPG III Features

A few features of the RPG III language are not supported in RPG IV. The most

notable of these are:

v The auto report function

v The FREE operation code

v The DEBUG operation code

Since the auto report function is not supported, the Conversion Aid will

automatically expand these programs (that is, call auto report) prior to performing

the conversion if the type is RPT or RPT38.

You must replace the FREE or DEBUG operation code with equivalent logic either

before or after conversion.

If you specify the CVTRPT(*YES) option on the CVTRPGSRC command, you will

receive a conversion report that identifies most of these types of problems.

For further information on converting auto report members, see “Converting Auto

Report Source Members” on page 439. For further information on differences

between RPG III and RPG IV, see Appendix A, “Behavioral Differences Between

OPM RPG/400 and ILE RPG for AS/400,” on page 423.

Use of the /COPY Compiler Directive

In some cases, errors will not be found until you actually compile the converted

RPG IV source. Conversion errors of this type are usually related to the use of the

/COPY compiler directive. These errors fall into two categories: merging problems

and context-sensitive problems. Following is a discussion of why these problems

occur and how you might resolve them.

Merging Problems

Because of differences between the RPG III and RPG IV languages, the Conversion

Aid must reorder certain source statements. An example of this reordering is

shown in “Example of Source Conversion” on page 440 for the RPG III source

member TEST1. If you compare the placement of the data structure DS1 in

Figure 215 on page 441 and in Figure 216 on page 442, you can see that the data

structure DS1 was moved so that it precedes the record format FORMAT1.

Now suppose that the RPG III member TEST1 was split into two members, TEST2

and COPYDS1, where the data structure DS1 and the named constant CONST1 are

in a copy member COPYDS1. This copy member is included in source TEST2.

Resolving Conversion Problems

448 ILE RPG Programmer’s Guide

Figure 222 and Figure 223 show the source for TEST2 and COPYDS1 respectively.

 In this situation, the Conversion Aid would convert both member TEST2 and the

copy member COPYDS1 correctly. However, when the copy member is included at

compile time, it will be inserted below FORMAT1, because this is where the

/COPY directive is located. As a result, all source lines in the copy member

COPYDS1 will get a ″source record is out of sequence″ error. In RPG IV, definition

specifications must precede input specifications.

Note that the Conversion Aid could not move the /COPY directive above

FORMAT1 because the contents of /COPY member are unknown.

There are two methods of correcting this type of problem:

1. Use the EXPCPY(*YES) option of the CVTRPGSRC command to include all

/COPY members in the converted RPG IV source member.

This approach is easy and will work most of the time. However, including the

/COPY members in each source member reduces the maintainability of your

application.

2. Manually correct the code after conversion using the information in the ILE

RPG compiler listing and the WebSphere Development Studio: ILE RPG Reference.

Other examples of this type of problem include:

v Line Specifications and Record Address Files

In RPG III the line counter specification and the Record Address File of the

extension specification are changed to keywords (RAFDATA, FORMLEN, and

 H TSTPGM

 FFILE1 IF E DISK COMM1

 FQSYSPRT O F 132 OF LPRINTER

 LQSYSPRT 60FL 56OL

 E ARR1 3 3 1 COMM2

 E ARR2 3 3 1

 IFORMAT1

 I OLDNAME NAME

 /COPY COPYDS1

 C ARR1,3 DSPLY

 C READ FORMAT1 01

 C NAME DSPLY

 C SETON LR

 C EXCPTOUTPUT

 OQSYSPRT E 01 OUTPUT

 O ARR2,3 10

**

123

**

456

Figure 222. RPG III Source for TEST2

 I* DATA STRUCTURE COMMENT

 IDS1 DS

 I 1 3 FIELD1

 I* NAMED CONSTANT COMMENT

 I ’XYZ’ C CONST1 COMM3

 I 4 6 ARR1

Figure 223. RPG III Source for COPYDS1

Resolving Conversion Problems

Appendix B. Using the RPG III to RPG IV Conversion Aid 449

FORMOFL) on the file description specification. If the content of a /COPY

member contains only the line counter specification and/or the Record Address

File of the extension specification but not the corresponding file description

specification, the Conversion Aid does not know where to insert the keywords.

v Extension Specification Arrays and Data Structure Subfields

As mentioned in “Example of Source Conversion” on page 440, you are not

allowed to define a standalone array and a data structure subfield with the same

name in RPG IV. Therefore, as shown in the example TEST1 (Figure 216 on page

442), the Conversion Aid must merge these two definitions. However, if the

array and the data structure subfield are not in the same source member (that is,

one or both is in a /COPY member), this merging cannot take place and a

compile-time error will result.

v Merged compile-time array and compile-time data (**) records

As shown in the example TEST1 (Figure 216 on page 442), if compile-time

arrays are merged with data structure subfield definitions, the loading of array

data may be affected. To overcome this problem, compile-time array data are

changed to the new **CTDATA format if at least one compile-time array is

merged. However, if the arrays and the data do not reside in the same source

file (that is, one or both is in a COPY member) the naming of compile-time data

records using the **CTDATA format cannot proceed properly.

Context-Sensitive Problems

In RPG III, there are occasions when it is impossible to determine the type of

specifications in a /COPY member without the context of the surrounding

specifications of the primary source member. There are two instances of this

problem:

v In data structure subfields or program-described file fields

v In renaming an externally described data structure field or an externally

described file field

In the above two instances, a data structure is assumed and definition

specifications are produced. A block of comments containing the input specification

code is also produced. For example, the Conversion Aid will convert the source in

 I* If the RPG III source member contains only the source

 I* statements describing fields FIELD1 and FIELD2 below, the

 I* Conversion Aid is unsure how to convert them. These

 I* statements may be data structure fields (which are converted

 I* to definition specifications) or program-described file

 I* fields (which are converted to input specifications).

 I 1 3 FIELD1

 I 4 6 FIELD2

Figure 224. RPG III /COPY file with input fields only

 I* If the RPG III source member contains only the source

 I* statement describing field CHAR below, the Conversion

 I* Aid is unsure how to convert it. This statement may be

 I* a rename of an externally described data structure field

 I* which is converted to a definition specification) or

 I* a rename of an externally described file field)

 I* (which is converted to an input specification).

 I CHARACTER CHAR

Figure 225. RPG III Source with a renamed field

Resolving Conversion Problems

450 ILE RPG Programmer’s Guide

Figure 224 on page 450 to the code shown in Figure 226. If Input specification code

is required, delete the definition specifications and blank out the asterisks from the

corresponding Input specifications.

 Remember that you have two ways of correcting these types of problems. Either

use the EXPCPY(*YES) option of the CVTRPGSRC command, or manually correct

the code after conversion.

Use of Externally Described Data Structures

There are two problems that you may have to fix manually even though you

specify the EXPCPY(*YES) option on the CVTRPGSRC command.

v The merging of an array with an externally described DS subfield

v The renaming and initializing of an externally described DS subfield

These problems are related to the use of externally described data structures.

Because these problems will generate compile-time errors, you can use the

information in the ILE RPG compiler listing and the WebSphere Development Studio:

ILE RPG Reference to correct them.

Merging an Array with an Externally Described DS Subfield

As mentioned earlier, you are not allowed to define a standalone array and a data

structure subfield with the same name in RPG IV. In general, the Conversion Aid

will merge these two definitions. However, if the subfield is in an externally

described data structure, this merging is not handled and you will be required to

manually correct the converted source member.

For example, the field ARRAY in Figure 227 is included twice in Figure 228 on

page 452. It is included once as a standalone array and once in the externally

described data structure EXTREC. When converted, the RPG IV source generated is

shown in Figure 229 on page 452. This code will not compile since ARRAY is

defined twice. In order to correct this problem, delete the standalone array and add

a subfield with the keywords to data structure DSONE as shown in Figure 230 on

page 452.

 D* If the RPG III source member contains only the source

 D* statements describing fields FIELD1 and FIELD2 below, the

 D* Conversion Aid is unsure how to convert them. These

 D* statements may be data structure fields (which are converted

 D* to definition specifications) or program-described file

 D* fields (which are converted to input specifications).

 D FIELD1 1 3

 D FIELD2 4 6

 I* 1 3 FIELD1

 I* 4 6 FIELD2

Figure 226. RPG IV source after converting source with input fields only

 A R RECORD

 A CHARACTER 10

 A ARRAY 10

Figure 227. DDS for external data structure

Resolving Conversion Problems

Appendix B. Using the RPG III to RPG IV Conversion Aid 451

Renaming and Initializing an Externally Described DS Subfield

In RPG III, when both renaming and initializing a field in an externally described

data structure, you had to use two source lines, as shown for the field CHAR in

Figure 231. The converted source also contains two source lines, as shown in

Figure 232. This use of two source lines for a field will result in a compile-time

error, as the field CHAR is defined twice. To correct this code you must combine

the keywords of the field CHAR into a single line as shown in Figure 233 on page

453, where the key fields INZ and EXTFLD have been combined and only one

instance on the field CHAR is shown.

 E ARRAY 10 1

 IDSONE E DSEXTREC

 C CHAR DSPLY

 C SETON LR

Figure 228. RPG III source using external data structure with array

 D ARRAY S 1 DIM(10)

 D DSONE E DS EXTNAME(EXTREC)

 C CHAR DSPLY

 C SETON LR

Figure 229. RPG IV source with two definitions for the array

 D DSONE E DS EXTNAME(EXTREC)

 D ARRAY E DIM(10)

 C CHAR DSPLY

 C SETON LR

Figure 230. Corrected RPG IV source with a single definition for the array

 IDSONE E DSEXTREC

 I CHARACTER CHAR

 I I ’XYZ’ CHAR

 C CHAR DSPLY

 C SETON LR

Figure 231. RPG III source with renamed and initialized external subfield

 D DSONE E DS EXTNAME(EXTREC)

 D CHAR E EXTFLD(CHARACTER)

 D CHAR E INZ(’XYZ’)

 C CHAR DSPLY

 C SETON LR

Figure 232. RPG IV source with two definitions for renamed subfield

Resolving Conversion Problems

452 ILE RPG Programmer’s Guide

Run-time Differences

If you have prerun-time arrays that overlap in data structures, the order of loading

these arrays at run time may be different in RPG III and in RPG IV. This difference

in order can cause the data in the overlapping section to differ. The order in which

the arrays are loaded is the order in which they are encountered in the source. This

order may have changed when the arrays were been merged with the subfields

during conversion.

In general, you should avoid situations where an application consists of OPM and

ILE programs that are split across the OPM default activation group and a named

activation group. When spilt across these two activation groups, you are mixing

OPM behavior with ILE behavior and your results may be hard to predict. Refer to

Chapter 3, “Program Creation Strategies,” on page 23 or ILE Concepts for further

information.

 D DSONE E DS EXTNAME(EXTREC)

 D CHAR E EXTFLD(CHARACTER) INZ(’XYZ’)

 C CHAR DSPLY

 C SETON LR

Figure 233. Corrected RPG IV source with a single definition

Resolving Conversion Problems

Appendix B. Using the RPG III to RPG IV Conversion Aid 453

Resolving Conversion Problems

454 ILE RPG Programmer’s Guide

Appendix C. The Create Commands

This section provides information on:

v Using CL commands

v Syntax diagram and description of CRTBNDRPG

v Syntax diagram and description of CRTRPGMOD

For information on the Create Program and Create Service Program commands, see

the CL and APIs section of the Programming category in the iSeries Information

Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter.

Using CL Commands

Control Language (CL) commands, parameters, and keywords can be entered in

either uppercase or lowercase characters. In the syntax diagram they are shown in

uppercase (for example, PARAMETER, PREDEFINED-VALUE). Variables appear in

lowercase italic letters (for example, user-defined-value). Variables are user-defined

names or values.

How to Interpret Syntax Diagrams

The syntax diagrams in this book use the following conventions:

�� PARAMETER (user-defined-value)

PREDEFINED-VALUE
 ��

Read the syntax diagram from left to right, and from top to bottom, following the

path of the line.

The ��── symbol indicates the beginning of the syntax diagram.

The ──�� symbol indicates the end of the syntax diagram.

The ───� symbol indicates that the statement syntax is continued on the next line.

The �─── symbol indicates that a statement is continued from the previous line.

The ──(──)── symbol indicates that the parameter or value must be entered in

parentheses.

Required parameters appear on the base line and must be entered. Optional

parameters appear below the base line and do not need to be entered. In the

following sample, you must enter REQUIRED-PARAMETER and a value for it, but

you do not need to enter OPTIONAL-PARAMETER or a value for it.

�� REQUIRED-PARAMETER (PREDEFINED-VALUE)

user-defined-value
 �

© Copyright IBM Corp. 1994, 2006 455

http://www.ibm.com/eserver/iseries/infocenter

�
OPTIONAL-PARAMETER

(

PREDEFINED-VALUE

)

user-defined-value

 ��

Default values appear above the base line and do not need to be entered. They are

used when you do not specify a parameter. In the following sample, you can enter

DEFAULT-VALUE, OTHER-PREDEFINED-VALUE, or nothing. If you enter

nothing, DEFAULT-VALUE is assumed.

��
 DEFAULT-VALUE

PARAMETER

(

OTHER-PREDEFINED-VALUE

)

��

Optional values are indicated by a blank line. The blank line indicates that a value

from the first group (OPTIONAL-VALUE1, OPTIONAL-VALUE2, user-defined-value)

does not need to be entered. For example, based on the syntax below, you could

enter KEYWORD(REQUIRED-VALUE).

��
 OPTIONAL-VALUE1

PARAMETER

(

REQUIRED-VALUE

)

OPTIONAL-VALUE2

user-defined-value

��

Repeated values can be specified for some parameters. The comma (,) in the

following sample indicates that each user-defined-value must be separated by a

comma.

��

�

 ,

KEYWORD

(

user-defined-value

)

��

CRTBNDRPG Command

The Create Bound RPG (CRTBNDRPG) command performs the combined tasks of

the Create RPG Module (CRTRPGMOD) and Create Program (CRTPGM)

commands by creating a temporary module object from the source code, and then

creating the program object. Once the program object is created, CRTBNDRPG

deletes the module object it created. The entire syntax diagram for the

CRTBNDRPG command is shown below.

Job: B,I Pgm: B,I REXX: B,I Exec

�� CRTBNDRPG

*CURLIB/

*CTLSPEC

PGM

(

program-name

)

library-name/

 �

�
*LIBL/

QRPGLESRC

SRCFILE

(

source-file-name

)

*CURLIB/

library-name/

 �

Reading Syntax Diagrams

456 ILE RPG Programmer’s Guide

�
*PGM

SRCMBR

(

source-file-member-name

)

SRCSTMF

(

source-stream-file-name

)
 �

�
 (1)

*PRINT

OUTPUT

(

*NONE

)

10

GENLVL

(

severity-level-value

)

�

�
*SRCMBRTXT

TEXT

(

*BLANK

)

'description'

*YES

DFTACTGRP

(

*NO

)

 �

�
OPTION

(

OPTION Details

)

*STMT

DBGVIEW

(

*SOURCE

)

*LIST

*COPY

*ALL

*NONE

 �

�
*PRINT

OUTPUT

(

*NONE

)

*NONE

OPTIMIZE

(

*BASIC

)

*FULL

 �

�
*NONE

INDENT

(

character-value

)

 �

�
*NONE

CVTOPT

(

)

*DATETIME

*GRAPHIC

*VARCHAR

*VARGRAPHIC

 �

�
*HEX

SRTSEQ

(

*JOB

)

*JOBRUN

*LANGIDUNQ

*LANGIDSHR

sort-table-name

*LIBL/

*CURLIB/

library-name/

 �

�
*JOBRUN

LANGID

(

*JOB

)

language-identifier

*YES

REPLACE

(

*NO

)

 �

�
*USER

USRPRF

(

*OWNER

)

*LIBCRTAUT

AUT

(

*ALL

)

*CHANGE

*USE

*EXCLUDE

authorization-list-name

 �

�
*YES

TRUNCNBR

(

*NO

)

*NONE

FIXNBR

(

*ZONED

)

*INPUTPACKED

 �

CRTBNDRPG Command

Appendix C. The Create Commands 457

�
*CURRENT

TGTRLS

(

*PRV

)

VxRxMx

*NO

ALWNULL

(

*INPUTONLY

)

*USRCTL

*YES

 �

�
*NONE

BNDDIR

(

)

*LIBL/

binding-directory-name

*CURLIB/

*USRLIBL/

library-name/

 �

�
QILE

ACTGRP

(

*NEW

)

*CALLER

activation-group-name

*PEP

ENBPFRCOL

(

*ENTRYEXIT

)

*FULL

 �

�
*NONE

DEFINE

(

condition-name

)

*NOCOL

PRFDTA

(

*COL

)

 �

�
LICOPT

(

options

)

*NONE

INCDIR

(

directory

)

*NO

PGMINFO

(

*PCML

)

 �

�
INFOSTMF

(

program-interface-stream-file-name

)
 �

�
*NONE

PPGENOPT

(

)

*DFT

*RMVCOMMENT

*EXPINCLUDE

*NOSEQSRC

*NORMVCOMMENT

*NOEXPINCLUDE

*SEQSRC

 �

�
*CURLIB

PPSRCSFILE

(

output-source-file-name

)

library-name

 �

�
*PGM

PPSRCSMBR

(

output-source-member-name

)

 �

�
*SRCSTMF

PPSRCSTMF

(

output-stream-file-name

)

 ��

Notes:

1 All parameters preceding this point can be specified by position.

OPTION Details:

 *XREF

*NOXREF

 *GEN

*NOGEN

 *NOSECLVL

*SECLVL

 *SHOWCPY

*NOSHOWCPY

 *EXPDDS

*NOEXPDDS

�

CRTBNDRPG Command

458 ILE RPG Programmer’s Guide

�
 *EXT

*NOEXT

 *NOSHOWSKP

*SHOWSKP

 *NOSRCSTMT

*SRCSTMT

 *DEBUGIO

*NODEBUGIO

 *NOEVENTF

*EVENTF

Description of the CRTBNDRPG Command

The parameters, keywords, and variables of the CRTBNDRPG command are listed

below. The same information is available online. Enter the command name on a

command line, press PF4 (Prompt) and then press PF1 (Help) for any parameter

you want information on.

PGM

Specifies the program name and library name for the program object (*PGM)

you are creating. The program name and library name must conform to iSeries

naming conventions. If no library is specified, the created program is stored in

the current library.

*CTLSPEC

The name for the compiled program is taken from the name specified in

the DFTNAME keyword of the control specification. If the program name

is not specified on the control specification and the source member is from

a database file, the member name, specified by the SRCMBR parameter, is

used as the program name. If the source is not from a database file then

the program name defaults to RPGPGM.

program-name

Enter the name of the program object.

*CURLIB

The created program object is stored in the current library. If you have not

specified a current library, QGPL is used.

library-name

Enter the name of the library where the created program object is to be

stored.

SRCFILE

Specifies the name of the source file that contains the ILE RPG source member

to be compiled and the library where the source file is located. The

recommended source physical file length is 112 characters: 12 for the sequence

number and date, 80 for the code and 20 for the comments. This is the

maximum amount of source that is shown on the compiler listing.

QRPGLESRC

The default source file QRPGLESRC contains the ILE RPG source member

to be compiled.

source-file-name

Enter the name of the source file that contains the ILE RPG source member

to be compiled.

*LIBL

The system searches the library list to find the library where the source file

is stored. This is the default.

*CURLIB

The current library is used to find the source file. If you have not specified

a current library, QGPL is used.

library-name

Enter the name of the library where the source file is stored.

CRTBNDRPG Command

Appendix C. The Create Commands 459

SRCMBR

Specifies the name of the member of the source file that contains the ILE RPG

source program to be compiled.

*PGM

Use the name specified by the PGM parameter as the source file member

name. The compiled program object will have the same name as the source

file member. If no program name is specified by the PGM parameter, the

command uses the first member created in or added to the source file as

the source member name.

source-file-member-name

Enter the name of the member that contains the ILE RPG source program.

SRCSTMF

Specifies the path name of the stream file containing the ILE RPG source code

to be compiled.

 The path name can be either absolutely or relatively qualified. An absolute

path name starts with ’/’; a relative path name starts with a character other

than ’/’.

 If absolutely-qualified, the path name is complete. If relatively-qualified, the

path name is completed by appending the job’s current working directory to

the path name.

 The SRCMBR and SRCFILE parameters cannot be specified with the SRCSTMF

parameter.

GENLVL

Controls the creation of the program object. The program object is created if all

errors encountered during compilation have a severity level less than or equal

to the generation severity level specified.

10 A program object will not be generated if you have messages with a

severity-level greater than 10.

severity-level-value

Enter a number, 0 through 20 inclusive. For errors greater than severity 20,

the program object will not be generated.

TEXT

Allows you to enter text that briefly describes the program and its function.

The text appears whenever program information is displayed.

*SRCMBRTXT

The text of the source member is used.

*BLANK

No text appears.

’description’

Enter the text that briefly describes the function of the source

specifications. The text can be a maximum of 50 characters and must be

enclosed in apostrophes. The apostrophes are not part of the 50-character

string. Apostrophes are not required if you are entering the text on the

prompt screen.

DFTACTGRP

Specifies whether the created program is intended to always run in the default

activation group.

CRTBNDRPG Command

460 ILE RPG Programmer’s Guide

*YES

When this program is called it will always run in the default activation

group. The default activation group is the activation group where all

original program model (OPM) programs are run.

 Specifying DFTACTGRP(*YES) allows ILE RPG programs to behave like

OPM programs in the areas of override scoping, open scoping, and

RCLRSC.

 ILE static binding is not available when a program is created with

DFTACTGRP(*YES). This means that you cannot use the BNDDIR or

ACTGRP parameters when creating this program. In addition, any call

operation in your source must call a program and not a procedure.

 DFTACTGRP(*YES) is useful when attempting to move an application on a

program-by-program basis to ILE RPG.

*NO

The program is associated with the activation group specified by the

ACTGRP parameter. Static binding is allowed when *NO is specified.

 If ACTGRP(*CALLER) is specified and this program is called by a program

running in the default activation group, then this program will behave

according to ILE semantics in the areas of file sharing, file scoping and

RCLRSC.

 DFTACTGRP(*NO) is useful when you intend to take advantage of ILE

concepts; for example, running in a named activation group or binding to

a service program.

OPTION

Specifies the options to use when the source member is compiled. You can

specify any or all of the options in any order. Separate the options with one or

more blank spaces. If an option is specified more than once, the last one is

used.

*XREF

Produces a cross-reference listing (when appropriate) for the source

member.

*NOXREF

A cross-reference listing is not produced.

*GEN

Create a program object if the highest severity level returned by the

compiler does not exceed the severity specified in the GENLVL option.

*NOGEN

Do not create a program object.

*NOSECLVL

Do not print second-level message text on the line following the first-level

message text.

*SECLVL

Print second-level message text on the line following the first-level

message text in the Message Summary section.

*SHOWCPY

Show source records of members included by the /COPY compiler

directive.

CRTBNDRPG Command

Appendix C. The Create Commands 461

*NOSHOWCPY

Do not show source records of members included by the /COPY compiler

directive.

*EXPDDS

Show the expansion of externally described files in the listing and display

key field information.

*NOEXPDDS

Do not show the expansion of externally described files in the listing or

display key field information.

*EXT

Show the list of external procedures and fields referenced during the

compile on the listing.

*NOEXT

Do not show the list of external procedures and fields referenced during

the compilation on the listing.

*NOSHOWSKP

Do not show ignored statements in the source part of the listing. The

compiler ignores statements as a result of /IF, /ELSEIF or /ELSE

directives.

*SHOWSKP

Show all statements in the source part of the listing, regardless of whether

or not the compiler has skipped them.

*NOSRCSTMT

Line Numbers in the listing are assigned sequentially; these numbers are

used when debugging using statement numbers. Line Numbers are shown

on the left-most column of the listing. The source IDs and SEU Sequence

Numbers are shown on the two right-most columns of the listing.

*SRCSTMT

Statement numbers for debugging are generated using SEU sequence

numbers and source IDs as follows:

Statement_Number = source_ID * 1000000 + source_SEU_sequence_number

SEU Sequence Numbers are shown on the left-most column of the listing.

Statement Numbers are shown on the right-most column of the listing;

these numbers are used when debugging using statement numbers.

Note: When OPTION(*SRCSTMT) is specified, all sequence numbers in the

source files must contain valid numeric values. If there are duplicate

sequence numbers in the same source file, the behavior of the

debugger may be unpredictable and statement numbers for

diagnostic messages or cross reference entries may not be

meaningful.

*DEBUGIO

Generate breakpoints for all input and output specifications.

*NODEBUGIO

Do not generate breakpoints for input and output specifications.

*NOEVENTF

Do not create an Event File for use by CoOperative Development

Environment/400 (CODE/400). CODE/400 uses this file to provide error

CRTBNDRPG Command

462 ILE RPG Programmer’s Guide

feedback integrated with the CODE/400 editor. An Event File is normally

created when you create a module or program from within CODE/400.

*EVENTF

Create an Event File for use by CoOperative Development

Environment/400 (CODE/400). The Event File is created as a member in

file EVFEVENT in the library where the created module or program object

is to be stored. If the file EVFEVENT does not exist it is automatically

created. The Event File member name is the same as the name of the object

being created.

 CODE/400 uses this file to provide error feedback integrated with the

CODE/400 editor. An Event File is normally created when you create a

module or program from within CODE/400.

DBGVIEW

Specifies which level of debugging is available for the compiled program

object, and which source views are available for source-level debugging.

*STMT

Allows the program object to be debugged using the Line Numbers or

Statement Numbers of the compiler listing. Line Numbers are shown on

the left-most column of the source section of the compiler listing when

OPTION(*NOSRCSTMT) is specified. Statement Numbers are shown on

the right-most column of the source section of the compiler listing when

OPTION(*SRCSTMT) is specified.

*SOURCE

Generates the source view for debugging the compiled program object.

This view is not available if the root source member is a DDM file. Also, if

changes are made to any source members after the compile and before

attempting to debug the program, the views for those source members

may not be usable.

*LIST

Generates the listing view for debugging the compiled program object. The

information contained in the listing view is dependent on whether

*SHOWCPY, *EXPDDS, and *SRCSTMT are specified for the OPTION

parameter.

Note: The listing view will not show any indentation that you may have

requested using the Indent option.

*COPY

Generates the source and copy views for debugging the compiled program

object. The source view for this option is the same source view generated

for the *SOURCE option. The copy view is a debug view which has all the

/COPY source members included. These views will not be available if the

root source member is a DDM file. Also, if changes are made to any source

members after the compile and before attempting to debug the program,

the views for those source members may not be usable.

*ALL

Generates the listing, source and copy views for debugging the compiled

program object. The information contained in the listing view is dependent

on whether *SHOWCPY, *EXPDDS, and *SRCSTMT are specified for the

OPTION parameter.

CRTBNDRPG Command

Appendix C. The Create Commands 463

*NONE

Disables all of the debug options for debugging the compiled program

object.

OUTPUT

Specifies if a compiler listing is generated.

*PRINT

Produces a compiler listing, consisting of the ILE RPG program source and

all compile-time messages. The information contained in the listing is

dependent on whether *XREF, *SECLVL, *SHOWCPY, *EXPDDS, *EXT,

*SHOWSKP, and *SRCSTMT are specified for the OPTION parameter.

*NONE

Do not generate the compiler listing.

OPTIMIZE

Specifies the level of optimization, if any, of the program.

*NONE

Generated code is not optimized. This is the fastest in terms of translation

time. It allows you to display and modify variables while in debug mode.

*BASIC

Some optimization is performed on the generated code. This allows user

variables to be displayed but not modified while the program is in debug

mode.

*FULL

Optimization which generates the most efficient code. Translation time is

the longest. In debug mode, user variables may not be modified but may

be displayed although the presented values may not be current values.

INDENT

Specifies whether structured operations should be indented in the source

listing for enhanced readability. Also specifies the characters that are used to

mark the structured operation clauses.

Note: Any indentation that you request here will not be reflected in the listing

debug view that is created when you specify DBGVIEW(*LIST).

*NONE

Structured operations will not be indented in the source listing.

character-value

The source listing is indented for structured operation clauses. Alignment

of statements and clauses are marked using the characters you choose. You

can choose any character string up to 2 characters in length. If you want to

use a blank in your character string, you must enclose the string in single

quotation marks.

Note: The indentation may not appear as expected if there are errors in the

program.

CVTOPT

Specifies how the ILE RPG compiler handles date, time, timestamp, graphic

data types, and variable-length data types which are retrieved from externally

described database files.

*NONE

Ignores variable-length database data types and use the native RPG date,

time, timestamp and graphic data types.

CRTBNDRPG Command

464 ILE RPG Programmer’s Guide

*DATETIME

Specifies that date, time, and timestamp database data types are to be

declared as fixed-length character fields.

*GRAPHIC

Specifies that double-byte character set (DBCS) graphic data types are to be

declared as fixed-length character fields.

*VARCHAR

Specifies that variable-length character data types are to be declared as

fixed-length character fields.

*VARGRAPHIC

Specifies that variable-length double-byte character set (DBCS) graphic data

types are to be declared as fixed-length character fields.

SRTSEQ

Specifies the sort sequence table that is to be used in the ILE RPG source

program.

*HEX

No sort sequence table is used.

*JOB

Use the SRTSEQ value for the job when the *PGM is created.

*JOBRUN

Use the SRTSEQ value for the job when the *PGM is run.

*LANGIDUNQ

Use a unique-weight table. This special value is used in conjunction with

the LANGID parameter to determine the proper sort sequence table.

*LANGIDSHR

Use a shared-weight table. This special value is used in conjunction with

the LANGID parameter to determine the proper sort sequence table.

sort-table-name

Enter the qualified name of the sort sequence table to be used with the

program.

*LIBL

The system searches the library list to find the library where the sort

sequence table is stored.

*CURLIB

The current library is used to find the sort sequence table. If you have not

specified a current library, QGPL is used.

library-name

Enter the name of the library where the sort sequence table is stored.

 If you want to use the SRTSEQ and LANGID parameters to determine the

alternate collating sequence, you must also specify ALTSEQ(*EXT) on the

control specification.

LANGID

Specifies the language identifier to be used when the sort sequence is

*LANGIDUNQ and *LANGIDSHR. The LANGID parameter is used in

conjunction with the SRTSEQ parameter to select the sort sequence table.

CRTBNDRPG Command

Appendix C. The Create Commands 465

*JOBRUN

Use the LANGID value associated with the job when the RPG program is

executed.

*JOB

Use the LANGID value associated with the job when the RPG program is

created.

language-identifier

Use the language identifier specified. (For example, FRA for French and

DEU for German.)

REPLACE

Specifies if a new program is created when a program of the same name

already exists in the specified (or implied) library. The intermediate module

created during the processing of the CRTBNDRPG command are not subject to

the REPLACE specifications, and have an implied REPLACE(*NO) against the

QTEMP library. The intermediate modules is deleted once the CRTBNDRPG

command has completed processing.

*YES

A new program is created in the specified library. The existing program of

the same name in the specified library is moved to library QRPLOBJ.

*NO

A new program is not created if a program of the same name already

exists in the specified library. The existing program is not replaced, a

message is displayed, and compilation stops.

USRPRF

Specifies the user profile that will run the created program object. The profile

of the program owner or the program user is used to run the program and to

control which objects can be used by the program (including the authority the

program has for each object). This parameter is not updated if the program

already exists. To change its value, you must delete the program and recompile

using the new value (or, if the constituent *MODULE objects exist, you may

choose to invoke the CRTPGM command).

*USER

The program runs under the user profile of the program’s user.

*OWNER

The program runs under the user profile of both the program’s user and

owner. The collective set of object authority in both user profiles are used

to find and access objects while the program is running. Any objects

created during the program are owned by the program’s user.

AUT

Specifies the authority given to users who do not have specific authority to the

object, who are not on the authorization list, and whose user group has no

specific authority to the object. The authority can be altered for all users or for

specified users after the program is created with the CL commands Grant

Object Authority (GRTOBJAUT) or Revoke Object Authority (RVKOBJAUT).

For further information on these commands, see the CL and APIs section of the

Programming category in the iSeries Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

*LIBCRTAUT

The public authority for the object is taken from the CRTAUT keyword of

the target library (the library that contains the object). The value is

CRTBNDRPG Command

466 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

determined when the object is created. If the CRTAUT value for the library

changes after the create, the new value will not affect any existing objects.

*ALL

Authority for all operations on the program object, except those limited to

the owner or controlled by authorization list management authority. The

user can control the program object’s existence, specify this security for it,

change it, and perform basic functions on it, but cannot transfer its

ownership.

*CHANGE

Provides all data authority and the authority to perform all operations on

the program object except those limited to the owner or controlled by

object authority and object management authority. The user can change the

object and perform basic functions on it.

*USE

Provides object operational authority and read authority; that is, authority

for basic operations on the program object. The user is prevented from

changing the object.

*EXCLUDE

The user is prevented from accessing the object.

authorization-list name

Enter the name of an authorization list of users and authorities to which

the program is added. The program object will be secured by this

authorization list, and the public authority for the program object will be

set to *AUTL. The authorization list must exist on the system when the

CRTBNDRPG command is issued.

Note: Use the AUT parameter to reflect the security requirements of your

system. The security facilities available are described in detail in the

iSeries Security Reference manual.

TRUNCNBR

Specifies if the truncated value is moved to the result field or an error is

generated when numeric overflow occurs while running the program.

Note: The TRUNCNBR option does not apply to calculations performed

within expressions. (Expressions are found in the Extended-Factor 2

field.) If overflow occurs for these calculations, an error will always

occur. In addition, overflow is always signalled for any operation where

the value that is assigned to an integer or unsigned field is out of range.

*YES

Ignore numeric overflow and move the truncated value to the result field.

*NO

When numeric overflow is detected, a run time error is generated with

error code RNX0103.

FIXNBR

Specifies whether decimal data that is not valid is fixed by the compiler.

*NONE

Indicates that decimal data that is not valid will result in decimal data

errors during run time if used.

*ZONED

Zoned-decimal data that is not valid will be fixed by the compiler on the

CRTBNDRPG Command

Appendix C. The Create Commands 467

conversion to packed data. Blanks in numeric fields will be treated as

zeroes. Each decimal digit will be checked for validity. If a decimal digit is

not valid, it is replaced with zero. If a sign is not valid, the sign will be

forced to a positive sign code of hex ’F’. If the sign is valid, it will be

changed to either a positive sign hex ’F’ or a negative sign hex ’D’, as

appropriate. If the resulting packed data is not valid, it will not be fixed.

*INPUTPACKED

Indicates that if packed decimal data that is not valid is encountered while

processing input specifications, the internal variable will be set to zero.

TGTRLS

Specifies the release level of the operating system on which you intend to use

the object being created. In the examples given for the *CURRENT and *PRV

values, and when specifying the target-release value, the format VxRxMx is

used to specify the release, where Vx is the version, Rx is the release, and Mx

is the modification level. For example, V2R3M0 is version 2, release 3,

modification level 0.

 Valid values for this parameter change every release. The possible values are:

*CURRENT

The object is to be used on the release of the operating system currently

running on your system. For example, if V2R3M5 is running on the

system, *CURRENT means that you intend to use the object on a system

with V2R3M5 installed. You can also use the object on a system with any

subsequent release of the operating system installed.

Note: If V2R3M5 is running on the system, and the object is to be used on

a system with V2R3M0 installed, specify TGTRLS(V2R3M0), not

TGTRLS(*CURRENT).

*PRV

The object is to be used on the previous release with modification level 0

of the operating system. For example, if V2R3M5 is running on your

system, *PRV means you intend to use the object on a system with

V2R2M0 installed. You can also use the object on a system with any

subsequent release of the operating system installed.

target-release

Specify the release in the format VxRxMx. You can use the object on a

system with the specified release or with any subsequent release of the

operating system installed.

 Valid values depend on the current version, release, and modification level,

and they change with each new release. If you specify a target-release that is

earlier than the earliest release level supported by this command, an error

message is sent indicating the earliest supported release.

Note: The current version of the command may support options that are not

available in previous releases of the command. If the command is used

to create objects that are to be used on a previous release, it will be

processed by the compiler appropriate to that release, and any

unsupported options will not be recognized. The compiler will not

necessarily issue any warnings regarding options that it is unable to

process.

ALWNULL

Specifies how the ILE RPG module will be allowed to use records containing

null-capable fields from externally described database files.

CRTBNDRPG Command

468 ILE RPG Programmer’s Guide

*NO

Specifies that the ILE RPG module will not process records with null-value

fields from externally-described files. If you attempt to retrieve a record

containing null values, no data in the record is accessible to the ILE RPG

module and a data-mapping error occurs.

*INPUTONLY

Specifies that the ILE RPG module can successfully read records with

null-capable fields containing null values from externally-described

input-only database files. When a record containing null values is

retrieved, no data-mapping errors occur and the database default values

are placed into any fields that contain null values. The module cannot do

any of the following:

v use null-capable key fields

v create or update records containing null-capable fields

v determine whether a null-capable field is actually null while the module

is running

v set a null-capable field to be null.

*USRCTL

Specifies that the ILE RPG module can read, write, and update records

with null values from externally-described database files. Records with null

keys can be retrieved using keyed operations. The module can determine

whether a null-capable field is actually null, and it can set a null-capable

field to be null for output or update. The programmer is responsible for

ensuring that fields containing null values are used correctly within the

module.

*YES

Same as *INPUTONLY.

BNDDIR

Specifies the list of binding directories that are used in symbol resolution.

*NONE

No binding directory is specified.

binding-directory-name

Specify the name of the binding directory used in symbol resolution.

 The directory name can be qualified with one of the following library

values:

*LIBL

The system searches the library list to find the library where the binding

directory is stored.

*CURLIB

The current library for the job is searched. If no library is specified as the

current library for the job, library QGPL is used.

*USRLIBL

Only the libraries in the user portion of the job’s library list are searched.

library-name

Specify the name of the library to be searched.

ACTGRP

Specifies the activation group this program is associated with when it is called.

CRTBNDRPG Command

Appendix C. The Create Commands 469

QILE

When this program is called, it is activated into the named activation

group QILE.

*NEW

When this program is called, it is activated into a new activation group.

*CALLER

When this program is called, it is activated into the caller’s activation

group.

activation-group-name

Specify the name of the activation group to be used when this program is

called.

ENBPFRCOL

Specifies whether performance collection is enabled.

*PEP

Performance statistics are gathered on the entry and exit of the program

entry procedure only. This applies to the actual program-entry procedure

for a program, not to the main procedure of the modules within the

program. This is the default.

*NEW

When this program is called, it is activated into a new activation group.

*ENTRYEXIT

Performance statistics are gathered on the entry and exit of all procedures

of the program.

*FULL

Performance statistics are gathered on entry and exit of all procedures.

Also, statistics are gathered before and after each call to an external

procedure.

DEFINE

Specifies condition names that are defined before the compilation begins. Using

the parameter DEFINE(condition-name) is equivalent to coding the /DEFINE

condition-name directive on the first line of the source file.

*NONE

No condition names are defined. This is the default.

condition-name

Up to 32 condition names can be specified. Each name can be up to 50

characters long. The condition names will be considered to be defined at

the start of compilation.

PRFDTA

Specifies the program profiling data attribute for the program. Program

profiling is an advanced optimization technique used to reorder procedures

and code within the procedures based on statistical data (profiling data).

*NOCOL

This program is not enabled to collect profiling data. This is the default.

*COL

The program is enabled to collect profiling data. *COL can be specified

only when the optimization level of the module is *FULL, and when

compiling with a target release of *CURRENT.

CRTBNDRPG Command

470 ILE RPG Programmer’s Guide

LICOPT

Specifies one or more Licensed Internal Code compile-time options. This

parameter allows individual compile-time options to be selected, and is

intended for the advanced programmer who understands the potential benefits

and drawbacks of each selected type of compiler option.

INCDIR

Specifies one or more directories to add to the search path used by the

compiler to find copy files.

 The compiler will search the directories specified here if the relatively specified

copy files in the source program can not be resolved by looking in the current

directory.If the copy file cannot be found in the current directory or the

directories specified in the INCDIR parameter, the directories specified in the

RPGINCDIR environment variable will be searched, followed by the directory

containing the main source file.

*NONE

No directories are specified.

directory

Specify up to 32 directories in which to search for copy files.

PGMINFO

Specifies whether program interface information should be generated into a

stream file.

 The possible values are:

*NO

This option specifies the default which does not generate program nterface

information.

*PCML

Specifies that PCML (Program Call Markup Language) should be

generated into a stream file.

 The generated PCML makes it easier for Java methods to call the

procedures in this RPG module, with less Java code.The name of a stream

file that will contain the generated PCML must be specified on the

INFOSTMF option.

INFOSTMF

 Specifies the path name of the stream file to contain the generated program

interface information specifed on the PGMINFO option.

 The path name can be either absolutely or relatively qualified. An absolute

path name starts with ’/’; a relative path name starts with a character other

than ’/’.

 If absolutely-qualified, the path name is complete. If relatively-qualified, the

path name is completed by appending the job’s current working directory to

the path name.

 This parameter can only be specified when the PGMINFO parameter has a

value other than *NO.

PPGENOPT

Specifies the preprocessor generation options to use when the source code is

compiled.

 The possible options are:

CRTBNDRPG Command

Appendix C. The Create Commands 471

#
#
#

#

*NONE

Run the entire compiler against the source file. Do not copy the

preprocessor output to a file.

*DFT

Run the preprocessor against the input source. *RMVCOMMENT,

*EXPINCLUDE and *NOSEQSRC will be used as the options for

generating the preprocessor output. Use PPSRCFILE and PPSRCMBR to

specify an output source file and member, or PPSRCSTMF to specify a

stream file to contain the preprocessor output.

*RMVCOMMENT

Remove comments, blank lines, and most directives during preprocessing.

Retain only the RPG specifications and any directives necessary for the

correct interpretation of the specifications..

*NORMVCOMMENT

Preserve comments, blank lines and listing-control directives (for example

/EJECT, /TITLE) during preprocessing. Transform source-control directives

(for example /COPY, /IF) to comments during preprocessing.

*EXPINCLUDE

Expand /INCLUDE directives in the generated output file.

*NOEXPINCLUDE

/INCLUDE directives are placed unchanged in the generated output file.

Note: /COPY directives are always expanded

*SEQSRC

If PPSRCFILE is specified, the generated output member has sequential

sequence numbers, starting at 000001 and incremented by 000001.

*NOSEQSRC

If PPSRCFILE is specified, the generated output member has the same

sequence numbers as the original source read by the preprocessor

PPSRCFILE

Specifies the source file name and library for the preprocessor output.

 source-file-name

Specify the name of the source file for the preprocessor output.

 The possible library values are:

*CURLIB

The preprocessor output is created in the current library. If a job does

not have a current library, the preprocessor output file is created in the

QGPL library.

library-name

Specify the name of the library for the preprocessor output.

PPSRCMBR

Specifies the name of the source file member for the preprocessor output.

*PGM

The name supplied on the PGM parameter is used as the preprocessor

output member name.

member-name

Specify the name of the member for the preprocessor output.

CRTBNDRPG Command

472 ILE RPG Programmer’s Guide

#
#
#

#
#
#
#
#
#

#
#
#
#

#
#
#
#

#
#

#
#

#

#
#
#

#
#
#

#
#

#
#

#

#
#
#
#

#
#

#
#

#
#
#

#
#

PPSRCSTMF

Specifies the path name of the stream file for the preprocessor output.

*SRCSTMF

The path name supplied on the SRCSTMF parameter is used as the

preprocessor output path name. The file will have the extension ’.i’.

’path-name’

Specify the path name for the preprocessor output stream file.

 The path name can be either absolutely or relatively-qualified. An absolute

path name starts with ’/’; a relative path name starts with a character other

than ’/’.

 If absolutely-qualified, the path name is complete. If relatively-qualified,

the path name is completed by appending the job’s current working

directory to the path name.

CRTRPGMOD Command

The Create RPG Module (CRTRPGMOD) command compiles ILE RPG source code

to create a module object (*MODULE). The entire syntax diagram for the

CRTRPGMOD command is shown below.

Job: B,I Pgm: B,I REXX: B,I Exec

�� CRTRPGMOD

*CURLIB/

*CTLSPEC

MODULE

(

module-name

)

library-name/

 �

�
*LIBL/

QRPGLESRC

SRCFILE

(

source-file-name

)

*CURLIB/

library-name/

 �

�
*MODULE

SRCMBR

(

source-file-member-name

)

SRCSTMF

(

source-stream-file-name

)
 �

�
 (1)

*PRINT

OUTPUT

(

*NONE

)

10

GENLVL

(

severity-level-value

)

�

�
*SRCMBRTXT

TEXT

(

*BLANK

)

'description'

OPTION

(

OPTION Details

)
 �

�
*STMT

DBGVIEW

(

*SOURCE

)

*LIST

*COPY

*ALL

*NONE

*PRINT

OUTPUT

(

*NONE

)

*NONE

OPTIMIZE

(

*BASIC

)

*FULL

 �

�
*NONE

INDENT

(

character-value

)

 �

CRTBNDRPG Command

Appendix C. The Create Commands 473

#
#

#
#
#

#
#

#
#
#

#
#
#

�
*NONE

CVTOPT

(

)

*DATETIME

*GRAPHIC

*VARCHAR

*VARGRAPHIC

 �

�
*HEX

SRTSEQ

(

*JOB

)

*JOBRUN

*LANGIDUNQ

*LANGIDSHR

sort-table-name

*LIBL/

*CURLIB/

library-name/

 �

�
*JOBRUN

LANGID

(

*JOB

)

language-identifier

*YES

REPLACE

(

*NO

)

 �

�
*LIBCRTAUT

AUT

(

*ALL

)

*CHANGE

*USE

*EXCLUDE

authorization-list-name

*YES

TRUNCNBR

(

*NO

)

 �

�
*NONE

FIXNBR

(

*ZONED

)

*INPUTPACKED

*CURRENT

TGTRLS

(

*PRV

)

VxRxMx

 �

�
*NO

ALWNULL

(

*INPUTONLY

)

*USRCTL

*YES

 �

�
*NONE

BNDDIR

(

)

*LIBL/

binding-directory-name

*CURLIB/

library-name/

 �

�
*PEP

ENBPFRCOL

(

*ENTRYEXIT

)

*FULL

*NONE

DEFINE

(

condition-name

)

 �

�
*NOCOL

PRFDTA

(

*COL

)

LICOPT

(

options

)

*NONE

INCDIR

(

directory

)

 �

�
*NO

PGMINFO

(

*PCML

)

INFOSTMF

(

program-interface-stream-file-name

)
 �

CRTRPGMOD Command

474 ILE RPG Programmer’s Guide

�
*NONE

PPGENOPT

(

)

*DFT

*RMVCOMMENT

*EXPINCLUDE

*NOSEQSRC

*NORMVCOMMENT

*NOEXPINCLUDE

*SEQSRC

 �

�
*CURLIB

PPSRCSFILE

(

output-source-file-name

)

library-name

 �

�
*MODULE

PPSRCSMBR

(

output-source-member-name

)

 �

�
*SRCSTMF

PPSRCSTMF

(

output-stream-file-name

)

 ��

Notes:

1 All parameters preceding this point can be specified by position.

OPTION Details:

 *XREF

*NOXREF

 *GEN

*NOGEN

 *NOSECLVL

*SECLVL

 *SHOWCPY

*NOSHOWCPY

 *EXPDDS

*NOEXPDDS

�

�
 *EXT

*NOEXT

 *NOSHOWSKP

*SHOWSKP

 *NOSRCSTMT

*SRCSTMT

 *DEBUGIO

*NODEBUGIO

 *NOEVENTF

*EVENTF

Description of the CRTRPGMOD command

For a description of the parameters, options and variables for the CRTRPGMOD

command see the corresponding description in the CRTBNDRPG command. They

correspond exactly, except that those in CRTRPGMOD refer to modules and not to

programs. (When looking at the CRTBNDRPG descriptions, keep in mind that

CRTRPGMOD does not have the following parameters: ACTGRP, DFTACTGRP,

USRPRF.)

A description of CRTRPGMOD is also available online. Enter the command name

on a command line, press PF4 (Prompt) and then press PF1 (Help) for any

parameter you want information on.

CRTRPGMOD Command

Appendix C. The Create Commands 475

CRTRPGMOD Command

476 ILE RPG Programmer’s Guide

Appendix D. Compiler Listings

Compiler listings provide you with information regarding the correctness of your

code with respect to the syntax and semantics of the RPG IV language. The listings

are designed to help you to correct any errors through a source editor; as well as

assist you while you are debugging a module. This section tells you how to

interpret an ILE RPG compiler listing. See “Using a Compiler Listing” on page 65

for information on how to use a listing.

To obtain a compiler listing specify OUTPUT(*PRINT) on either the CRTRPGMOD

command or the CRTBNDRPG command. (This is their default setting.) The

specification OUTPUT(*NONE) will suppress a listing.

Table 50 summarizes the keyword specifications and their associated compiler

listing information.

 Table 50. Sections of the Compiler Listing

Listing Section1 OPTION2 Description

Prologue Command option summary

Source listing Source specifications

 In-line diagnostic messages Errors contained within one line of source

 /COPY members *SHOWCPY /COPY member source records

 Skipped statements *SHOWSKP Source lines excluded by conditional compilation

directives.

 Externally described files *EXPDDS Generated specifications

 Matching field table Lengths that are matched based on matching fields

Additional diagnostic messages Errors spanning more than one line of source

Field Positions in Output Buffer Start and end positions of programmed-described

output fields

/COPY member table List of /COPY members and their external names

Compile-time data Compilation source records

 Alternate collating sequences ALTSEQ records and table or NLSS information and

table

 File translation File translation records

 Arrays Array records

 Tables Table records

Key field information *EXPDDS Key field attributes

Cross reference *XREF File and record, and field and indicator references

EVAL-CORR Summary *XREF4 Summary of subfields for EVAL-CORR operations

External references *EXT List of external procedures and fields referenced during

compilation

Message summary List of messages and number of times they occurred

 Second-level text *SECLVL Second-level text of messages

Final summary Message and source record totals, and final compilation

message

© Copyright IBM Corp. 1994, 2006 477

Table 50. Sections of the Compiler Listing (continued)

Listing Section1 OPTION2 Description

Code generation errors3 Errors (if any) which occur during code generation

phase.

Binding section3 Errors (if any) which occur during binding phase for

CRTBNDRPG command

Notes:

1. The information contained in the listing section is dependent on whether *SRCSTMT or *NOSRCSTMT is

specified for the OPTION parameter. For details on how this information changes, see “″*NOSRCSTMT Source

Heading″” on page 484 and “″*SRCSTMT Source Heading″” on page 484. *SRCSTMT allows you to request that

the compiler use SEU sequence numbers and source IDs when generating statement numbers for debugging.

Otherwise, statement numbers are associated with the Line Numbers of the listing and the numbers are assigned

sequentially.

2. The OPTION column indicates what value to specify on the OPTION parameter to obtain this information. A

blank entry means that the information will always appear if OUTPUT(*PRINT) is specified.

3. The sections containing the code generation errors and binding errors appear only if there are errors. There is no

option to suppress these sections.

4. If OPTION(*XREF) is specified, the summary lists information about all subfields, whether or not they are

handled by the EVAL-CORR operation. If OPTION(*NOXREF) is specified, the summary lists only information

about subfields that are not handled by the EVAL-CORR operation. The EVAL-CORR summary section is not

printed if there are no EVAL-CORR operations.

Reading a Compiler Listing

The following text contains a brief discussion and an example of each section of

the compiler listing. The sections are presented in the order in which they appear

in a listing.

Prologue

The prologue section summarizes the command parameters and their values as

they were processed by the CL command analyzer. If *CURLIB or *LIBL was

specified, the actual library name is listed. Also indicated in the prologue is the

effect of overrides. Figure 234 on page 479 illustrates how to interpret the Prologue

section of the listing for the program MYSRC, which was compiled using the

CRTBNDRPG command.

Compiler Listings

478 ILE RPG Programmer’s Guide

�1� Page Heading

The page heading information includes the product information line 1b

and the text supplied by a /TITLE directive 1a. “Customizing a Compiler

Listing” on page 66 describes how you can customize the page heading

and spacing in a compiler listing.

�2� Module or Program

The name of the created module object (if using CRTRPGMOD) or the

name of the created program object (if using CRTBNDRPG)

�3� Source member

The name of the source member from which the source records were

retrieved (this can be different from �2� if you used command overrides).

�4� Source

The name of the file actually used to supply the source records. If the file

is overridden, the name of the overriding source is used.

�5�Compiler options

The compiler options in effect at the time of compilation, as specified on

either the CRTRPGMOD command or the CRTBNDRPG command.

Title from first source line �1a�

5722WDS V5R2M0 020719 RN IBM ILE RPG MYLIB/MYSRC �1b� ISERIES1 02/08/15 12:58:46 Page 1

 Command : CRTBNDRPG

 Issued by : MYUSERID

 Program : MYSRC �2�

 Library : MYLIB

 Text ’description’ : Text specified on the Command

 Source Member : MYSRC �3�

 Source File : QRPGLESRC �4�

 Library : MYLIB

 CCSID : 37

 Text ’description’ : Text specified on the Source Member

 Last Change : 98/07/27 12:50:13

 Generation severity level . . . : 10

 Default activation group : *NO

 Compiler options : *XREF *GEN *SECLVL *SHOWCPY �5�

 *EXPDDS *EXT *SHOWSKP *NOSRCSTMT

 *DEBUGIO *NOEVENTF

 Debugging views : *ALL

 Output : *PRINT

 Optimization level : *NONE

 Source listing indentation . . . : ’| ’ �6�

 Type conversion options : *NONE

 Sort sequence : *HEX

 Language identifier : *JOBRUN

 Replace program : *YES

 User profile : *USER

 Authority : *LIBCRTAUT

 Truncate numeric : *YES

 Fix numeric : *ZONED *INPUTPACKED

 Target release : *CURRENT

 Allow null values : *NO

 Binding directory : BNDDIRA BNDDIRB

 Library : CMDLIBA CMDLIBB

 Activation group : CMDACTGRP

 Define condition names : ABC �7�

 DEF

 Enable performance collection . : *PEP

 Profiling data : *NOCOL

 Generate program interface . . . : *PCML

 Program interface stream file . : /home/mydir/MYSRC.pcml �8�

 Include directory : /projects/ABC Electronics Corporation/copy files/prototypes

 : /home/mydir �9�

Figure 234. Sample Prologue for CRTBNDRPG

Compiler Listings

Appendix D. Compiler Listings 479

�6�Indentation Mark

The character used to mark structured operations in the source section of

the listing.

�7�Define condition names

Specifies the condition names that take effect before the source is read.

�8� Specifies the IFS file that the PCML (Program Call Markup Language) is to

be written to.

�9� Specifies the directories that can be searched for /COPY or /INCLUDE

files.

Source Section

The source section shows records that comprise the ILE RPG source specifications.

The root source member records are always shown. If OPTION(*EXPDDS) is also

specified, then the source section shows records generated from externally

described files, and marks them with a ’=’ in the column beside the line number.

These records are not shown if *NOEXPDDS is specified. If OPTION(*SHOWCPY)

is specified, then it also shows the records from /COPY members specified in the

source, and marks them with a ’+’ in the column beside the line number. These

records are not shown if *NOSHOWCPY is specified.

The source section also shows the conditional compilation process. All lines with

/IF, /ELSEIF, /ELSE and /ENDIF directives and source lines selected by the /IF

groups are printed and given a listing line number. If OPTION(*SHOWSKP) is

specified, it shows all statements that have been excluded by the /IF, /ELSEIF, and

/ELSE directives, and marks them with a ’-------’ in the column beside the

statement. Line numbers in the listing are not incremented for excluded lines. All

skipped statements are printed exactly as specified, but are not interpreted in any

way. For example, an excluded statement with an /EJECT directive does not cause

a page break. Similarly, /SPACE, /TITLE, /COPY and /EOF compiler directives

are ignored if they are encountered in excluded lines. These statements are not

shown if the default OPTION(*NOSHOWSKP) is specified; instead a message is

printed giving the number of lines excluded.

The source section identifies any syntax errors in the source, and includes a

match-field table, when appropriate.

If OPTION(*NOSRCSTMT) is specified, line numbers are printed sequentially on

the left side of the listing to reflect the compiled source line numbers. Source IDs

and SEU sequence numbers are printed on the right side of the listing to identify

the source members and records respectively. For example, Figure 235 on page 481

shows a section of the listing with a /COPY statement in line 35. In the root source

member, the next line is a DOWEQ operation. In the listing, however, the DOWEQ

operation is on line 39. The three intervening lines shown in the listing are from

the /COPY source member.

Compiler Listings

480 ILE RPG Programmer’s Guide

If OPTION(*SRCSTMT) is specified, sequence numbers are printed on the left side

of the listing to reflect the SEU sequence numbers. Statement numbers are printed

on the right side of the listing. The statement number information is identical to

the source ID and SEU sequence number information. For example, Figure 236

shows a section of the listing that has a /COPY statement with sequence number

001600. The next line in the root source member is the same as the line with the

next sequence number in the listing: sequence number 001700. The three

intervening lines are assigned the SEU sequence numbers from the /COPY source

member. The corresponding statement numbers are genereated from source IDs

and SEU sequence numbers of the root and /COPY source members.

 Figure 237 on page 482 shows the entire source section for MYSRC with

OPTION(*NOSRCSTMT) specified.

Line <--------------------- Source Specifications --><---- Comments ----> Src Seq

Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Id Number

 34 C MOVE ’123’ BI_FLD1 001500

 35 C/COPY MYCPY 971104 001600

 --

 * RPG member name : MYCPY * 5

 * External name : RPGGUIDE/QRPGLESRC(MYCPY) * 5

 * Last change : 98/07/24 16:20:04 * 5

 * Text ’description’ : Text on copy member * 5

 --

 36+C Blue(1) DSPLY 5000100

 37+C Green(4) DSPLY 5000200

 38+C Red(2) DSPLY 5000300

 39 C *in20 doweq *OFF 001700

Figure 235. Sample Section of the Listing with OPTION(*NOSRCSTMT)

Seq <--------------------- Source Specifications --><---- Comments ----> Statement

Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Number

001500 C MOVE ’123’ BI_FLD1 001500

001600 C/COPY MYCPY 971104 001600

 --

 * RPG member name : MYCPY * 5

 * External name : RPGGUIDE/QRPGLESRC(MYCPY) * 5

 * Last change : 98/07/24 16:20:04 * 5

 * Text ’description’ : Text on copy member * 5

 --

000100+C Blue(1) DSPLY 5000100

000200+C Green(4) DSPLY 5000200

000300+C Red(2) DSPLY 5000300

001700 C *in20 doweq *OFF 001700

Figure 236. Sample Section of the Listing with OPTION(*SRCSTMT)

Compiler Listings

Appendix D. Compiler Listings 481

5769WDS V5R2M0 020719 RN IBM ILE RPG MYLIB/MYSRC ISERIES1 02/08/15 14:21:00 Page 2

 �1a�

Line <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Src Seq

Number1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Id Number

 S o u r c e L i s t i n g

 1 H DFTACTGRP(*NO) ACTGRP(’Srcactgrp’) CCSID(*GRAPH:*SRC) 980727 000100

 2 H OPTION(*NODEBUGIO) 980727 000200

 3 H BNDDIR(’SRCLIB1/BNDDIR1’ : ’SRCLIB2/BNDDIR2’ : ’"ext.nam"’) 971104 000300

 4 H ALTSEQ(*SRC) 971104 000400

 5 H FIXNBR(*ZONED) 980728 000500

 6 H TEXT(’Text specified on the Control Specification’) 971104 000600

 -- �2�

 * Compiler Options in Effect: *

 --

 * Text ’description’ : *

 * Text specified on the Control Specification *

 * Generation severity level . . . : 10 *

 * Default activation group : *NO *

 * Compiler options : *XREF *GEN *

 * *SECLVL *SHOWCPY *

 * *EXPDDS *EXT *

 * *SHOWSKP *NOSRCSTMT *

 * *NODEBUGIO *NOEVENTF *

 * Optimization level : *NONE *

 * Source listing indentation . . . : ’| ’ *

 * Type conversion options : *NONE *

 * Sort sequence : *HEX *

 * Language identifier : *JOBRUN *

 * User profile : *USER *

 * Authority : *LIBCRTAUT *

 * Truncate numeric : *YES *

 * Fix numeric : *ZONED *INPUTPACKED *

 * Allow null values : *NO *

 * Binding directory from Command . : BNDDIRA BNDDIRB *

 * Library : CMDLIBA CMDLIBB *

 * Binding directory from Source . : BNDDIR1 BNDDIR2 *

 * Library : SRCLIB1 SRCLIB2 *

 * "ext.nam" *

 * *LIBL *

 * Activation group : Srcactgrp *

 * Enable performance collection . : *PEP *

 * Profiling data : *NOCOL *

 --

 7 FInFile IF E DISK 971104 000700

 -- �3�

 * RPG name External name *

 * File name. : INFILE MYLIB/INFILE *

 * Record format(s) : INREC INREC *

 --

 8 FKEYL6 IF E K DISK 971104 000800

 --

 * RPG name External name *

 * File name. : KEYL6 MYLIB/KEYL6 *

 * Record format(s) : REC1 REC1 *

 * REC2 REC2 *

 --

 9 FOutfile O E DISK 971104 000900

 --

 * RPG name External name *

 * File name. : OUTFILE MYLIB/OUTFILE *

 * Record format(s) : OUTREC OUTREC *

 --

 10 D Blue S 4 DIM(5) CTDATA PERRCD(1) 971104 001000

 11 D Green S 2 DIM(5) ALT(Blue) 971104 001100

 12 D Red S 4 DIM(2) CTDATA PERRCD(1) 980727 001200

 13 D DSEXT1 E DS 100 PREFIX(BI_) INZ(*EXTDFT) 980727 001300

 14 D FLD3 E INZ(’111’) 980727 001400

Figure 237. Sample Source Part of the Listing (Part 1 of 3)

Compiler Listings

482 ILE RPG Programmer’s Guide

-- �4� 1

 * Data structure : DSEXT1 * 1

 * Prefix : BI_ : 0 * 1

 * External format : REC1 : MYLIB/DSEXT1 * 1

 * Format text : Record format description * 1

 -- 1

 �5�

 15=D BI_FLD1 5A EXTFLD (FLD1) FLD1 description 1000001

 16=D INZ (*BLANK) 1000002

 17=D BI_FLD2 10A EXTFLD (FLD2) FLD2 description 1000003

 18=D INZ (*BLANK) 1000004

 19=D BI_FLD3 18A EXTFLD (FLD3) FLD3 description 1000005

 20=D INZ (’111’) 1000006

 21=IINREC 2000001

 -- 2

 * RPG record format : INREC * 2

 * External format : INREC : MYLIB/INFILE * 2

 -- 2

 22=I A 1 25 FLDA 2000002

 23=I A 26 90 FLDB 2000003

 24=I 13488 *VAR C 91 112 UCS2FLD 2000004

 25=IREC1 3000001

 -- 3

 * RPG record format : REC1 * 3

 * External format : REC1 : MYLIB/KEYL6 * 3

 -- 3

 26=I *ISO-D 1 10 FLD12 3000002

 27=I A 11 13 FLD13 3000003

 28=I A 14 17 FLD14 3000004

 29=I A 18 22 FLD15 3000005

 30=I 13488 C 23 32 FLDC 3000006

 31=I 13488 *VAR C 33 44 FLDCV 3000007

 32=I 835 G 45 54 FLDG 3000008

 33=IREC2 4000001

 -- 4

 * RPG record format : REC2 * 4

 * External format : REC2 : MYLIB/KEYL6 * 4

 -- 4

 34=I *ISO-D 1 10 FLD22 4000002

 35=I A 11 13 FLD23 4000003

 36=I A 14 17 FLD24 4000004

 37=I A 18 22 FLD25 4000005

Line <--------------------- Source Specifications --><---- Comments ----> Src Seq

Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Id Number

 38 C MOVE ’123’ BI_FLD1 001500

 39 C/COPY MYCPY 971104 001600

 -- �6�

 * RPG member name : MYCPY * 5

 * External name : MYLIB/QRPGLESRC(MYCPY) * 5

 * Last change : 98/07/24 16:20:04 * 5

 * Text ’description’ : Text specified on Copy Member * 5

 --

 �7�

 40+C Blue(1) DSPLY 5000100

 41+C Green(4) DSPLY 5000200

 42+C Red(2) DSPLY 5000300

 �8�

 43 C *in20 doweq *OFF 001700

 44 C | READ InRec ----20 001800

 45 C | if NOT *in20 001900

 46 C FLDA | | DSPLY 002000

 47 C | endif 002100

 48 C enddo 002200

 49 C write outrec 002300

 �9�

 50 C SETON LR---- 002400

 47 C/DEFINE ABC 971104 002500

 51 C/IF DEFINED(ABC) 971104 002600

 52 C MOVEL ’x’ Y 10 002700

 54 C MOVEL ’x’ Z 10 002800

 55 C/ELSE 971104 002900

 �10�

------ C MOVEL ’ ’ Y 10 971104 003000

------ C MOVEL ’ ’ Z 10 971104 003100

 56 C/ENDIF 971104 003200

Figure 237. Sample Source Part of the Listing (Part 2 of 3)

Compiler Listings

Appendix D. Compiler Listings 483

�1a� *NOSRCSTMT Source Heading

The source heading shown in the above example was generated with

OPTION(*NOSRCSTMT) specified.

Line Number

Starts at 1 and increments by 1 for each source or generated record.

Use this number when debugging using statement numbers.

Ruler Line

This line adjusts when indentation is specified.

Do Number

Identifies the level of the structured operations. This number will

not appear if indentation is requested.

Page Line

Shows the first 5 columns of the source record.

Source Id

Identifies the source (either /COPY or DDS) of the record. For

/COPY members, it can be used to obtain the external member

name from the /COPY member table.

Sequence Number (on right side of listing)

Shows the SEU sequence number of the record from a member in a

source physical file. Shows an incremental number for records from

a /COPY member or records generated from DDS.

�1b� *SRCSTMT Source Heading

When OPTION(*SRCSTMT) is specified, the source heading changes to:

 The Ruler Line, Do Number, and Page Line remain unchanged.

Sequence Number (on left side of listing)

Shows the SEU sequence number of the record from a member in a

source physical file. Shows an incremental number for records from

a /COPY member or records generated from DDS.

Statement Number

Shows the statement number generated from the source ID number

and the SEU sequence number as follows:

stmt_num = source_ID * 1000000 + source_SEU_sequence_number

Use this number when debugging using statement numbers.

Line <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Src Seq

Number1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Id Number

 57=OOUTREC 6000001

 -- 6

 * RPG record format : OUTREC * 6

 * External format : OUTREC : MYLIB/OUTFILE * 6

 -- 6

 58=O FLDY 100A CHAR 100 6000002

 59=O FLDZ 132A CHAR 32 6000003

 60=O GRAPHFLD 156G GRPH 12 835 6000004

 * * * * * E N D O F S O U R C E * * * * *

Figure 237. Sample Source Part of the Listing (Part 3 of 3)

 �1b�

Seq <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Statement

Number1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Number

Compiler Listings

484 ILE RPG Programmer’s Guide

�2� Compiler Options in Effect

Identifies the compiler options in effect. Displayed when compile-option

keywords are specified on the control specification.

�3� File/Record Information

Identifies the externally described file and the records it contains.

�4� DDS Information

Identifies from which externally described file the field information is

extracted. Shows the prefix value, if specified. Shows the format record text

if specified in the DDS.

�5� Generated Specifications

Shows the specifications generated from the DDS, indicated by ’=’ beside

the Line Number. Shows up to 50 characters of field text if it is specified in

the DDS. Shows the initial value as specified by the INZ keyword on the

definition specification. If INZ(*EXTDFT) is specified for externally

described data structure subfields, the DDS default value is displayed.

Default values that are too long to fit on one line are truncated and

suffixed with '...'.

�6� /COPY Member Information

Identifies which /COPY member is used. Shows the member text, if any.

Shows the date and time of the last change to the member.

�7� /COPY Member Records

Shows the records from the /COPY member, indicated by a ’+’ beside the

Line Number.

�8� Indentation

Shows how structured operations appear when you request that they be

marked.

�9� Indicator Usage

Shows position of unused indicators, when an indicator is used.

�10� OPTION(*SHOWSKP) Usage

Shows two statements excluded by an /IF directive, indicated by a ’-------’

beside the statements. If the OPTION(*NOSHOWSKP) was specified these

two statements would be replaced by: LINES EXCLUDED: 2.

Additional Diagnostic Messages

The Additional Diagnostic Messages section lists compiler messages which indicate

errors spanning more than one line. When possible, the messages indicate the line

number and sequence number of the source which is in error. Figure 238 shows an

example.

 A d d i t i o n a l D i a g n o s t i c M e s s a g e s

 Msg id Sv Number Seq Message text

*RNF7066 00 8 000800 Record-Format REC1 not used for input or output.

*RNF7066 00 8 000800 Record-Format REC2 not used for input or output.

*RNF7086 00 60 000004 RPG handles blocking for file INFILE. INFDS is updated only

 when blocks of data are transferred.

*RNF7086 00 60 000004 RPG handles blocking for file OUTFILE. INFDS is updated

 only when blocks of data are transferred.

 * * * * * E N D O F A D D I T I O N A L D I A G N O S T I C M E S S A G E S * * * * *

Figure 238. Sample Additional Diagnostic Messages with OPTION(*NOSRCSTMT)

Compiler Listings

Appendix D. Compiler Listings 485

If OPTION(*SRCSTMT) is specified, the messages will have only the statement

number shown. Figure 239 shows an example.

Output Buffer Positions

The Field Positions in Output Buffer Positions table is included in the listing

whenever the source contains programmed-described Output specifications. For

each variable or literal that is output, the table contains the line number of output

field specification and its start and end positions within the output buffer. Literals

that are too long for the table are truncated and suffixed with '...' with no ending

apostrophe (for example, 'Extremely long-litera...'). Figure 240 shows an example of

an Output Buffer Position table.

/COPY Member Table

The /COPY member table identifies any /COPY members specified in the source

and lists their external names. You can find the name and location of a member

using the Source ID number. The table is also useful as a record of what members

are used by the module/program. Figure 241 shows an example.

Compile-Time Data

The Compile-Time Data section includes information on ALTSEQ or NLSS tables,

and on tables and arrays. In this example, there is an alternate collating sequence

and two arrays, as shown in Figure 242 on page 487.

 A d d i t i o n a l D i a g n o s t i c M e s s a g e s

 Msg id Sv Statement Message text

*RNF7066 00 000800 Record-Format REC1 not used for input or output.

*RNF7066 00 000800 Record-Format REC2 not used for input or output.

*RNF7086 00 6000004 RPG handles blocking for file INFILE. INFDS is updated only

 when blocks of data are transferred.

*RNF7086 00 6000004 RPG handles blocking for file OUTFILE. INFDS is updated

 only when blocks of data are transferred.

 * * * * * E N D O F A D D I T I O N A L D I A G N O S T I C M E S S A G E S * * * * *

Figure 239. Sample Additional Diagnostic Messages with OPTION(*SRCSTMT)

 O u t p u t B u f f e r P o s i t i o n s

Line Start End Field or Constant

Number Pos Pos

 58 1 100 FLDY

 59 101 132 FLDZ

 60 133 156 GRAPHFLD

 * * * * * E N D O F O U T P U T B U F F E R P O S I T I O N * * * * *

Figure 240. Output Buffer Position Table

 / C o p y M e m b e r s

Line Src RPG name <-------- External name -------> CCSID <- Last change ->

Number Id Library File Member Date Time

 39 5 MYCPY MYLIB QRPGLESRC MYCPY 37 98/07/24 16:20:04

 * * * * * E N D O F / C O P Y M E M B E R S * * * * *

Figure 241. Sample /COPY Member Table

Compiler Listings

486 ILE RPG Programmer’s Guide

�1� Total Number of Characters Altered

Shows the number of characters whose sort sequence has been altered.

�2� Character to be Altered

The rows and columns of the table together identify the characters to be

altered. For example, the new value for character 3A is 65, found in

column 3_ and row _A.

�3� Alternate Sequence

The new hexadecimal sort value of the selected character.

�4� Array/Table information

Identifies the name of the array or table for which the compiler is

expecting data. The name of the alternate array is also shown, if it is

defined.

Key Field Information

The Key Field Information section shows information about key fields for each

keyed file. It also shows information on any keys that are common to multiple

records (that is, common keys). Figure 243 on page 488 shows an example.

 C o m p i l e T i m e D a t a

 61 ** 971104 003300

 --

 * Alternate Collating Sequence Table Data: *

 --

 62 ALTSEQ 1122ACAB4B7C36F83A657D73 971104 003400

Line <---------------------- Data Records --> Change Src Seq

Number+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Date Id Number

 --

 * Alternate Collating Sequence Table: *

 * Number of characters with an altered sequence : 6 �1� *

 * �2� 0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_ A_ B_ C_ D_ E_ F_ *

 * _0 _0 *

 * _1 . 22 �3�. _1 *

 * _2 _2 *

 * _3 _3 *

 * _4 _4 *

 * _5 _5 *

 * _6 . . . F8 _6 *

 * _7 _7 *

 * _8 _8 *

 * _9 _9 *

 * _A . . . 65 _A *

 * _B 7C _B *

 * _C AB _C *

 * _D 73 _D *

 * _E _E *

 * _F _F *

 * 0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_ A_ B_ C_ D_ E_ F_ *

 --

 63 ** 971104 003500

 --

 * Array . . . : BLUE �4� Alternating Array : GREEN *

 --

 64 1234ZZ 971104 003600

 65 ABCDYY 971104 003700

 66 5432XX 971104 003800

 67 EDCBWW 971104 003900

 68 ABCDEF 0980728 004000

 69 ** 971104 00410

 --

 * Array . . . : RED *

 --

 70 3861 971104 00420

 71 TJKL 971104 00430

 * * * * * E N D O F C O M P I L E T I M E D A T A * * * * *

Figure 242. Sample Compile-Time Data Section

Compiler Listings

Appendix D. Compiler Listings 487

Cross-Reference Table

The Cross-Reference table contains at least three lists:

v files and records

v global fields

v indicators

In addition, it contains the local fields that are used by each subprocedure. Use this

table to check where files, fields and indicators are used within the

module/program.

Note that the informational message RNF7031, which is issued when an identifier

is not referenced, will only appear in the cross-reference section of the listing and

in the message summary. It does not appear in the source section of the listing.

Names longer than 122 characters, will appear in the cross-reference section of the

listing split across multiple lines. The entire name will be printed with the

characters ’...’ at the end of the lines. If the final portion of the name is longer than

17 characters, the attributes and line numbers will be listed starting on the

following line. Figure 244 on page 489 shows an example for the module

TRANSRPT, which has two subprocedures.

In this example, the Cross-Reference table shows the line numbers for each

reference. If you specify OPTION(*SRCSTMT) instead of OPTION(*NOSRCSTMT),

the statement numbers will be displayed for each reference and the cross reference

listing can extend beyond the first 80 columns of the listing.

 K e y F i e l d I n f o r m a t i o n

 File Internal External

 Record field name field name Attributes

 2 KEYL6

 Common Keys:

 DATE *ISO- 10

 CHAR 3

 REC1

 FLD12 DATE *ISO- 10

 FLD13 CHAR 3

 FLD15 CHAR 5

 FLDC UCS2 5 13488

 FLDCV VUC2 5 13488

 FLDG GRPH 5 835

 REC2

 FLD22 DATE *ISO- 10

 FLD23 CHAR 3

 * * * * * E N D O F K E Y F I E L D I N F O R M A T I O N * * * * *

Figure 243. Sample Key Field Information

Compiler Listings

488 ILE RPG Programmer’s Guide

EVAL-CORR Summary

When OPTION(*XREF) is specified, the EVAL-CORR summary lists every subfield

in either the source or the target data structure indicating

v whether the subfield is assigned

v the reason the source and target subfields are not considered to correspond, if

the subfield is not assigned

v for subfields that are assigned, additional information that may affect the

assignment such as a difference in the number of array elements or the

null-capability of the subfields

 C r o s s R e f e r e n c e

 File and Record References:

 File Device References (D=Defined)

 Record

 CUSTFILE DISK 8D

 CUSTREC 0 44

*RNF7031 CUSTRPT DISK 9D

 ARREARS 0 60 79

 Global Field References:

 Field Attributes References (D=Defined M=Modified)

 *INZSR BEGSR 63D

 AMOUNT P(10,2) 56M 83 95

 CITY A(20) 53D 132

 CURDATE D(10*ISO-) 42D 64M 92

 CUSTNAME A(20) 50D 122

 CUSTNUM P(5,0) 49D 124

 DUEDATE A(10) 57M 84 91

 EXTREMELY_LONG_PROCEDURE_NAME_THAT_REQUIRES_MORE_THAN_ONE_LINE_IN_THE_CROSS_REFERENCE_EVEN_THOUGH_THE_ENTIRE_LINE_UP_TO_.

 COLUMN_132_IS_USED_TO_PRINT_THE_NAME...

 I(5,0) 9D

 PROTOTYPE

 FMTCUST PROTOTYPE 35D 59 113 114

 134

 INARREARS A(1) 30D 58 85 86

 PROTOTYPE 101

 LONG_FLOAT F(8) 7D 11M 12M

 NUMTOCHAR A(31) 22D 124 130

 PROTOTYPE

 RPTADDR A(100) 59 82

 RPTNAME C(100) 59 81

 CCSID(13488)

 RPTNUM P(5,0) 80

 SHORT_FLOAT F(4) 8D 10M

*RNF7031 STATE A(2) 54D

 STREETNAME A(20) 52D 131

 STREETNUM P(5,0) 51D 130

 THIS_NAME_IS_NOT_QUITE_SO_LONG...

 A(5) 7D

 UDATE S(6,0) 64

*RNF7031 ZIP P(5,0) 55D

 INARREARS Field References:

 Field Attributes References (D=Defined M=Modified)

 DAYSLATE I(10,0) 88D 92M 94

 DATEDUE D(10*ISO-) 89D 91M 92

 FMTCUST Field References:

 Field Attributes References (D=Defined M=Modified)

 NAME A(100) 115D 122M

 BASED(_QRNL_PST+)

 ADDRESS A(100) 116D 130M

 BASED(_QRNL_PST+)

 Indicator References:

 Indicator References (D=Defined M=Modified)

*RNF7031 01 44D

 * * * * * E N D O F C R O S S R E F E R E N C E * * * * *

Figure 244. Sample Cross-Reference Table with OPTION(*NOSRCSTMT)

Compiler Listings

Appendix D. Compiler Listings 489

|

|
|

|

|
|

|
|
|

When OPTION(*NOXREF) is specified, the EVAL-CORR summary does not list

any information about corresponding subfields. It only lists the subfields that do

not correspond, with the reason that the subfields are not considered to

correspond.

�1� EVAL-CORR Summary Number

Messages in the Additional Diagnostics section refer to the relevant

EVAL-CORR summary by number.

�2� EVAL-CORR Statement Numbers

EVAL-CORR operations with the same (either identical or related through

LIKEDS or LIKEREC) source and target data structures share the same

EVAL-CORR summary. In this example, there are five EVAL-CORR

operations with one pair of data structure definitions, and one

EVAL-CORR operation with the other pair.

�3� Additional Information for a Subfield

The subfield is assigned. Additional information is listed on separate lines.

�4� Message Indicating that the Subfield is not Assigned

The subfield is not assigned. The error message and text indicate the

reason the subfields are not considered to correspond is given.

�5� Data Structure Subfields

If the subfield is a data structure, its subfields are listed with indentation.

External References List

The External References section lists the external procedures and fields which are

required from or available to other modules at bind time. This section is shown

whenever the source contains statically bound procedures, imported Fields, or

exported fields.

The statically bound procedures portion contains the procedure name, and the

references to the name on a CALLB operation or %PADDR built-in function, or the

name of a prototyped bound procedure called by CALLP or within an expression.

The imported fields and exported fields portions contain the field name, the

dimension if it is an array, the field attribute and its definition reference. Figure 246

on page 491 shows an example.

 EVAL-CORR summary 1 �1� 13 14 19 24 �2�

 28

 FLD1 Assigned; exact match

 FLD2 Assigned; target and source are compatible

 Target subfield has fewer elements than source subfield�3�

 FLD3 Assigned; exact match

 Target subfield is null-capable; source subfield is

�4�*RNF7349 FLD5 Not same data type in source and target

 EVAL-CORR summary 2 22

 FLD1 Assigned; exact match

 SUBDS �5�

 SUBF1 Assigned; exact match

 Target subfield is defined using OVERLAY

 FLD2 Assigned; exact match

 *RNF7341 FLD3 In target only.

Figure 245. EVAL-CORR summary

Compiler Listings

490 ILE RPG Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

Message Summary

The message summary contains totals by severity of the errors that occurred. If

OPTION(*SECLVL) is specified, it also provides second-level message text.

Figure 247 shows an example.

Final Summary

The final summary section provides final message statistics and source statistics. It

also specifies the status of the compilation. Figure 248 on page 492 shows an

example.

 E x t e r n a l R e f e r e n c e s

 Statically bound procedures:

 Procedure References

 PROTOTYPED 2 2

 PADDR_PROC 4

 CALLB_PROC 6

 Imported fields:

 Field Attributes Defined

 IMPORT_FLD P(5,0) 3

 Exported fields:

 Field Attributes Defined

 EXPORT_ARR(2) A(5) 2

 * * * * * E N D O F E X T E R N A L R E F E R E N C E S * * * * *

Figure 246. Sample External References

 M e s s a g e S u m m a r y

 Msg id Sv Number Message text

*RNF7031 00 16 The name or indicator is not referenced.

 Cause : The field, subfield, TAG, data

 structure, PLIST, KLIST, subroutine, indicator, or

 prototype is defined in the program, but not referenced.

 Recovery . . . : Reference the item, or remove it from

 the program. Compile again.

*RNF7066 00 2 Record-Format name of Externally-Described file is not used.

 Cause : There is a Record-Format name for an

 Externally-Described File that is not used on a valid

 input or output operation.

 Recovery . . . : Use the Record-Format name of the

 Externally-Described File for input or output, or specify

 the name as a parameter for keyword IGNORE. Compile

 again.

*RNF7086 00 2 RPG handles blocking for the file. INFDS is updated only when

 blocks of data are transferred.

 Cause : RPG specifies MLTRCD(*YES) in the UFCB

 (User-File-Control Block). Records are passed between RPG

 and data management in blocks. Positions 241 through the

 end of the INFDS (File-Information-Data Structure) are

 updated only when a block of records is read or written.

 Recovery . . . : If this information is needed after

 each read or write of a record, specify the OVRDBF

 command for the file with SEQONLY(*NO).

 * * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

Figure 247. Sample Message Summary

Compiler Listings

Appendix D. Compiler Listings 491

Code Generation and Binding Errors

Following the final summary section, you may find a section with code generation

errors and/or binding errors.

The code generation error section will appear only if errors occur while the

compiler is generating code for the module object. Generally, this section will not

appear. The binding errors section will appear whenever there are messages arising

during the binding phase of the CRTBNDRPG command. A common error is the

failure to specify the location of all the external procedures and fields referenced in

the source at the time the CRTBNDRPG command was issued.

 F i n a l S u m m a r y

 Message Totals:

 Information (00) : 20

 Warning (10) : 0

 Error (20) : 0

 Severe Error (30+) : 0

 --------------------------------- -------

 Total : 20

 Source Totals:

 Records : 71

 Specifications : 55

 Data records : 8

 Comments : 0

 * * * * * E N D O F F I N A L S U M M A R Y * * * * *

Program MYSRC placed in library MYLIB. 00 highest severity. Created on 98/07/28 at 14:21:03.

 * * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 248. Sample Final Summary

Compiler Listings

492 ILE RPG Programmer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2006 493

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Canada Ltd. Laboratory

Information Development

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Programming Interface Information

This publication is intended to help you create programs using RPG IV source.

This publication documents General-Use Programming Interface and Associated

Guidance Information provided by the ILE RPG compiler.

General-Use programming interfaces allow the customer to write programs that

obtain the services of the ILE RPG compiler.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines

Corporation in the United States, or other countries, or both:

 400® IBM®

alphaWorks® IBMLink

AFP Integrated Language Environment®

AS/400® iSeries

494 ILE RPG Programmer’s Guide

C/400® MQSeries®

DB2 Universal Database Redbooks

e (logo)® RPG/400®

Eserver VisualAge®

GDDM® WebSphere®

Domino is a trademark of the Lotus Development Corporation in the United

States, or other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries

licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be the trademarks or service

marks of others.

Registered trademarks and unregistered trademarks are denoted by

® and

™

respectively.

Notices 495

496 ILE RPG Programmer’s Guide

Bibliography

For additional information about topics related to

ILE RPG programming on the iSeries system,

refer to the following IBM iSeries publications:

v ADTS/400: Programming Development Manager,

SC09-1771-00, provides information about using

the Programming Development Manager

(PDM) to work with lists of libraries, objects,

members, and user-defined options to easily do

such operations as copy, delete, and rename.

Contains activities and reference material to

help the user learn PDM. The most commonly

used operations and function keys are

explained in detail using examples.

v ADTS for AS/400: Source Entry Utility,

SC09-2605-00, provides information about using

the Application Development ToolSet Source

Entry Utility (SEU) to create and edit source

members. The manual explains how to start

and end an SEU session and how to use the

many features of this full-screen text editor. The

manual contains examples to help both new

and experienced users accomplish various

editing tasks, from the simplest line commands

to using pre-defined prompts for high-level

languages and data formats.

v Application Display Programming, SC41-5715-01,

provides information about:

– Using DDS to create and maintain displays

for applications;

– Creating and working with display files on

the system;

– Creating online help information;

– Using UIM to define panels and dialogs for

an application;

– Using panel groups, records, or documents
v Backup and Recovery, SC41-5304-08, provides

information about setting up and managing the

following:

– Journaling, access path protection, and

commitment control

– User auxiliary storage pools (ASPs)

– Disk protection (device parity, mirrored, and

checksum)

Provides performance information about

backup media and save/restore operations.

Also includes advanced backup and recovery

topics, such as using save-while-active support,

saving and restoring to a different release, and

programming tips and techniques.

v CL Programming, SC41-5721-06, provides a

wide-ranging discussion of iSeries

programming topics including a general

discussion on objects and libraries, CL

programming, controlling flow and

communicating between programs, working

with objects in CL programs, and creating CL

programs. Other topics include predefined and

impromptu messages and message handling,

defining and creating user-defined commands

and menus, application testing, including

debug mode, breakpoints, traces, and display

functions.

v Communications Management, SC41-5406-02,

provides information about work management

in a communications environment,

communications status, tracing and diagnosing

communications problems, error handling and

recovery, performance, and specific line speed

and subsystem storage information.

v GDDM Programming Guide, SC41-0536-00,

provides information about using i5/OS

graphical data display manager (GDDM) to

write graphics application programs. Includes

many example programs and information to

help users understand how the product fits into

data processing systems.

v GDDM Reference, SC41-3718-00, provides

information about using i5/OS graphical data

display manager (GDDM) to write graphics

application programs. This manual provides

detailed descriptions of all graphics routines

available in GDDM. Also provides information

about high-level language interfaces to GDDM.

v ICF Programming, SC41-5442-00, provides

information needed to write application

programs that use iSeries communications and

the i5/OS intersystem communications function

(i5/OS-ICF). Also contains information on data

description specifications (DDS) keywords,

system-supplied formats, return codes, file

transfer support, and program examples.

v IDDU Use, SC41-5704-00, describes how to use

the iSeries interactive data definition utility

(IDDU) to describe data dictionaries, files, and

records to the system. Includes:

© Copyright IBM Corp. 1994, 2006 497

– An introduction to computer file and data

definition concepts

– An introduction to the use of IDDU to

describe the data used in queries and

documents

– Representative tasks related to creating,

maintaining, and using data dictionaries,

files, record formats, and fields

– Advanced information about using IDDU to

work with files created on other systems and

information about error recovery and

problem prevention.
v WebSphere Development Studio: ILE C/C++

Programmer’s Guide, SC09-2712-05, provides

information on how to develop applications

using the ILE C language. It includes

information about creating, running and

debugging programs. It also includes

programming considerations for interlanguage

program and procedure calls, locales, handling

exceptions, database, externally described and

device files. Some performance tips are also

described. An appendix includes information

on migrating source code from EPM C/400® or

System C/400 to ILE C.

v WebSphere Development Studio: ILE COBOL

Programmer’s Guide, SC09-2540-05, provides

information about how to write, compile, bind,

run, debug, and maintain ILE COBOL

programs on the iSeries system. It provides

programming information on how to call other

ILE COBOL and non-ILE COBOL programs,

share data with other programs, use pointers,

and handle exceptions. It also describes how to

perform input/output operations on externally

attached devices, database files, display files,

and ICF files.

v ILE Concepts, SC41-5606-07, explains concepts

and terminology pertaining to the Integrated

Language Environment® (ILE) architecture of

the i5/OS licensed program. Topics covered

include creating modules, binding, running

programs, debugging programs, and handling

exceptions.

v WebSphere Development Studio: ILE RPG

Reference, SC09-2508-06, provides information

about the ILE RPG programming language.

This manual describes, position by position and

keyword by keyword, the valid entries for all

RPG IV specifications, and provides a detailed

description of all the operation codes and

built-in functions. This manual also contains

information on the RPG logic cycle, arrays and

tables, editing functions, and indicators.

v Printer Device Programming, SC41-5713-06,

provides information to help you understand

and control printing. Provides specific

information on printing elements and concepts

of the iSeries system, printer file and print

spooling support for printing operations, and

printer connectivity. Includes considerations for

using personal computers, other printing

functions such as Business Graphics Utility

(BGU), advanced function printing (AFP™), and

examples of working with the iSeries system

printing elements such as how to move spooled

output files from one output queue to a

different output queue. Also includes an

appendix of control language (CL) commands

used to manage printing workload. Fonts

available for use with the iSeries system are

also provided. Font substitution tables provide

a cross-reference of substituted fonts if attached

printers do not support application-specified

fonts.

v iSeries Security Reference, SC41-5302-09, tells

how system security support can be used to

protect the system and the data from being

used by people who do not have the proper

authorization, protect the data from intentional

or unintentional damage or destruction, keep

security information up-to-date, and set up

security on the system.

v Install, upgrade, or delete i5/OS and related

software, SC41-5120-09, provides step-by-step

procedures for initial installation, installing

licensed programs, program temporary fixes

(PTFs), and secondary languages from IBM.

This manual is also for users who already have

an iSeries system with an installed release and

want to install a new release.

v Who Knew You Could Do That with RPG IV? A

Sorcerer’s Guide to System Access and More

provides hints and tips for iSeries system

programmers who want to take full advantage

of RPG IV and the Integrated Language

Environment (ILE). It is available from the IBM

Redbooks Web Site:

http://www.redbooks.ibm.com/

498 ILE RPG Programmer’s Guide

Index

Special characters
/COPY statement

conversion problems 439, 448

COPY debug view 212

in a conversion report 444

table in compiler listing 486

using source files 56

*CALLER 111

*CANCL 283

*DETC 283

*DETL 283

*ENTRY PLIST 153

*EXTDFT
example 481

in compiler listing 485

*GETIN 283

*JOB
sort sequence, SRTSEQ 465

*JOBRUN
language identifier, LANGID 466

sort sequence, SRTSEQ 465

*NEW 110

*OFL 283

*OMIT 140, 141

*TOTC 283

*TOTL 283

*USER
user profile, USRPRF 466

%ADDR (Get Address of Variable)
omitted parameters 141

%ADDR debug built-in 250

%ALLOC built-in function 115

%INDEX debug built-in 250

%PARMS (Return Number of Parameters)
checking for number of

parameters 142

%REALLOC built-in function 115

%SUBSTR debug built-in
changing values 253

examples 251

%VARS debug built-in 250

Numerics
01-99 indicators

displaying while debugging 246

in a sample formatted dump 303

A
abnormal program/procedure end 154

access path
example of 335

for externally described DISK

file 328

for indexed file 334

ACTGRP parameter
CRTBNDRPG command 60, 469

CRTPGM command 84

specifying 110

ACTGRP parameter (continued)
using 62

activation group
*CALLER 111

running in OPM default 111

specifying 111

*NEW 84, 155

ending 110

specifying 110

definition 110

deleting 112

identifying 84, 110

managing 110

named 84

deleting 110

specifying 110

OPM default 111

QILE 84, 110

role in exception handling 264

activation, program 110

Add Reply List Entry (ADDRPLYE)

command
adding to system reply list 109

adding objects to a debug session 216

additional diagnostic messages section of

compiler listing 485

ADDRPLYE command
See Add Reply List Entry

(ADDRPLYE) command

ALLOC (allocate storage) operation

code 115

allocating storage for a run-time

array 121

alternate collating sequence
debug considerations 227

ALWNULL parameter
CRTBNDRPG command 60, 468

CRTRPGMOD command 76

analyzing your conversion 443

application design
See creating programs

application programming interface (API)
calling non-bindable 130

QMHSNDPM 424

Retrieve Message (QMHRTVM)

API 158

area parameter for SPECIAL PLIST 370

array
conversion problems 451

displaying while debugging 244

loading 453

prerun-time arrays 453

arrival sequence access path 328

ATTR debug command
definition 209

example 254

using 254

audit file
See log file

AUT parameter
CRTBNDRPG command 60, 466

AUT parameter (continued)
CRTRPGMOD command 76

authority to commands ix

auto report program
converting to ILE RPG 439

avoiding a loop in an error

subroutine 282

B
behavior of bound ILE RPG modules 82

behavioral differences between OPM

RPG/400 and ILE RPG 423

bibliography 497

bindable APIs
calling conventions 156

CEE4ABN 156

CEECRHP (Create Heap) 20, 122

CEECZST (Reallocate Storage) 21

CEEDSHP (Discard Heap) 20, 122

CEEFRST (Free Storage) 20

CEEGTST (Get Heap Storage) 21, 122

CEEHDLR (Register ILE Condition

Handler) 284

CEEHDLU (Unregister ILE Condition

Handler) 284

CEERTX (Register Call Stack Entry

Termination User Exit

Procedure) 290

CEETREC 156

CEETSTA (Check for Omitted

Argument) 141

CEEUTX (Call Stack Entry

Termination User Exit

Procedure) 290

Create Heap (CEECRHP) 20, 122

description 156

Discard Heap (CEEDSHP) 20, 122

Free Storage (CEEFRST) 20

Get Descriptive Information About a

String Argument (CEESGI) 140

Get Heap Storage (CEEGTST) 21, 122

overview 20

passing operational descriptors

to 139

Reallocate Storage (CEECZST) 21

Retrieve Operational Descriptor

Information (CEEDOD) 140

returning from a procedure 156

sample coding 156

binder language
example 97

reasons for using 92

binder listing
as maintenance resource 88

basic 100

creating 87

determining exports in service

program 91

sections of 87

© Copyright IBM Corp. 1994, 2006 499

binding
after modifying a module 88

definition 82

modules into a program 82

service program to a program 98

binding errors in compiler listing 492

binding multiple modules 85

blocking/unblocking records 333

BNDDIR parameter on CRTBNDRPG
CRTBNDRPG command 60, 469

CRTRPGMOD command 76

static binding 62

BREAK debug command
definition 209

example 226

using 222, 225, 229

breakpoints
conditional

setting and removing for job 225

setting and removing for

thread 230

removing all 231

setting and removing 221

setting using statement numbers 228

testing 221

unconditional
setting and removing for job 222

setting and removing for

thread 224

browsing a compiler listing using

SEU 70

built-in functions
%ADDR 141

C
calculation specifications

general description 3

program-described WORKSTN

file 382

CALL (call a program) operation code
in a conversion report 444

using 150

CALL CL command
example passing parameters 104

passing parameters 103

running a program 103

call operations
calling programs 150

DSPPGMREF 151

fixed-form call 150

free-form call 135

query names of called

procedures 151

special routines 158

using 135

call stack 131, 264

Call Stack Entry Termination User Exit

Procedure (CEEUTX) 290

CALLB (call a bound procedure)

operation code
calling programs 150

using 150

calling
Java from RPG 173

RPG from Java 181

calling a graphics routine 158

calling programs/procedures
abnormal program/procedure

end 154

call stack 131

calling bindable APIs 156

calling graphics 158

calling procedures 130

calling programs 130

calling special routines 158

fixed-form call 150

free-form call 135

interlanguage calls 148

normal program/procedure end 153

overview 129

parameter passing methods 136

recursive calls 131

returning from a called program or

procedure 153

returning values 135

returning without ending 155

static calls 130

using the CALL operation 150

using the CALLB operation 150

within ILE 19

CALLP (call a prototyped program or

procedure) operation code
using 135

cancel handler 263

CEERTX (Register Call Stack Entry

Termination User Exit

Procedure) 290

CEEUTX (Call Stack Entry

Termination User Exit

Procedure) 290

example 290

using 290

CCSIDs
indicated in compiler listing 484

CEE4ABN 156

CEECRHP (Create Heap) bindable

API 20, 122

CEECZST (Reallocate Storage) bindable

API 21

CEEDOD (Retrieve Operational

Descriptor Information) 94

example 140

operational descriptors 140

CEEDSHP (Discard Heap) bindable

API 20, 122

CEEFRST (Free Storage) bindable

API 20

CEEGTST (Get Heap Storage) bindable

API 21, 122

CEEHDLR (Register ILE Condition

Handler) 284

CEEHDLU (Unregister ILE Condition

Handler) 284

CEERTX (Register Call Stack Entry

Termination User Exit Procedure) 290

CEESGI (Get Descriptive Information

About a String Argument) 140

CEETREC 156

CEETSTA (Check for Omitted

Argument) 141

CEEUTX (Call Stack Entry Termination

User Exit Procedure) 290

Change Module (CHGMOD)

command 89

removing observability 90

Change Program (CHGPGM) command
optimization parameters 89

removing observability 90

Change Service Program (CHGSRVPGM)

command 99

changing a module 88

changing a program 88

changing a service program 93

changing field values while

debugging 252

changing optimization level
of a program or module 89

changing the debug view of a

module 220

character format
character CCSID

indicated in compiler listing 484

displaying while debugging 247

Check for Omitted Argument

(CEETSTA) 141

checking for the number of passed

parameters 142

checking, level 316

CHGMOD command
See Change Module (CHGMOD)

command

CHGPGM command
See Change Program (CHGPGM)

command

CHGSRVPGM
See Change Service Program

(CHGSRVPGM) command

CL commands
Add Program (ADDPGM) 217

additional service program

commands 93

ADDRPLYE 109

authority ix

CALL 103

Change Module (CHGMOD) 89

CHGPGM 90

commonly used commands 12

CRTPGM command 84

CRTRPGMOD 76

CVTRPGSRC 433

Display Module Source

(DSPMODSRC) 216, 217, 219

DSPMOD 151

DSPPGMREF 151

End Debug (ENDDBG) 214

module-related 82

MONMSG 293

program-related 86

RCLACTGR 110

RCLRSC 112

reading syntax diagrams 455

Remove Program (RMVPGM) 217

Start Debug (STRDBG) 214, 216

UPDPGM 88

using 455

WRKRPLYE 109

clear command 376

CLEAR debug command
definition 209

500 ILE RPG Programmer’s Guide

CLEAR debug command (continued)
removing all 231

using 223, 226, 230

code conversion constraints 447

code generation errors in compiler

listing 492

combined file 383

command attention (CA) keys 374

command definition 108

command function (CF) keys 374

COMMIT (commit) operation code
commitment control 354

system considerations 354

with multiple devices 354

commitment control 351

COMMIT operation 354

conditional 356

example 355

in program cycle 356

locks 352

scoping 353

specifying files 354

starting and ending 352

communication
accessing other programs and

systems 373

compatibility differences between OPM

RPG/400 and ILE RPG 423

compilation errors, correcting 68

compile time array or table
section in compiler listing 486

compiler directives
changing a listing heading 66

compiler listing
additional diagnostic messages 69

browsing using SEU 70

coordinating listing options with

debug view options 70

correcting compilation errors 68

correcting run-time errors 70

default information 65

in-line diagnostic messages 69

indenting structured operations 67

obtaining 65

reading 477

sample listing 478

sections of 65, 478

specifying the format of 66

using 65

using as documentation 71

compiling
creating modules 75

differences between ILE RPG and

OPM RPG/400 423

in ILE 17

using CRTBNDRPG command 59

compressing an object 90

condition handler 263

example 284

overview 284

percolate an exception 285

recursive calls 284

registering 284

conditional breakpoint
definition 221

setting 226

setting and removing for job 225

conditional breakpoint (continued)
setting and removing for thread 230

using statement numbers 228

conditional commitment control,

specifying 356

conditioning output
overflow indicators 361

consecutive processing 338

control boundary 264

control break
example 362

control language (CL) program
See also ILE CL

as module in ILE program 27

commands used with ILE RPG 12

commonly used commands 12

in OPM-compatible application 23

control specification keywords
compile-option keywords

compiler listing example 478

control specifications
conversion considerations 432

example 7

general description 3

control-record format, subfile 377

Conversion Aid
See converting to RPG IV

conversion reports
obtaining 439

sections of 443

using 443

conversion, analyzing 443

converting to RPG IV
analyzing your conversion 443

constraints 431

conversion problems 447

converting 432

converting all file members 437

converting auto report source

members 439

converting some file members 438

converting source from a data

file 440

converting source members with

embedded SQL 440

CVTRPGSRC command 433

example 440

file and member names 430

file considerations 429

file record length 430

log file 431

obtaining conversion reports 439

overview 429

performing a trial conversion 438

requirements 431

using a conversion error report 443

using the log file 445

valid source member types 430

CoOperative Development

Environment/400 (CODE/400)
event file 462

coordinating listing options with debug

view options 70

correcting compilation errors 68

correcting run-time errors 70

Create Bound RPG Program

(CRTBNDRPG) command
and ILE 18

coordinating listing options with

debug view 70

creating programs 59

default parameter values 60

examples
OPM-compatible program 63

program for source debugging 61

program with static binding 62

parameter description 459

parameters grouped by function 60

program creation strategy 23, 25

RETURNCODE data area 71

syntax diagram 456

using 59

Create Heap (CEECRHP) bindable

API 20, 122

Create Program (CRTPGM)

command 27

and ILE 18

creating a program 75

examples 98

binding multiple modules 85

parameters 85

system actions 85

using 84

Create RPG Module (CRTRPGMOD)

command
and ILE 18

default values of parameters 76

defaults 77

examples 97, 98

parameter description 475

parameter grouping by function 76

program creation strategy 27

syntax diagram 473

using 76

Create Service Program (CRTSRVPGM)

command
and ILE 18

example 97

parameters 92

creating a binder listing 87

creating a debug view
COPY 212

listing 213

root source 211

statement 213

creating a library 51

creating a module
general discussion 75

using CRTRPGMOD 76

using CRTRPGMOD defaults 77

creating a program with the

CRTBNDRPG command 59

creating a source physical file 51

creating programs
coding considerations 45

examples of 61, 62, 63, 85

OPM-compatible
creating 23

strategy to avoid 31

strategies for 23

CRTPGM command 84

Index 501

creating programs (continued)
strategies for (continued)

ILE application using

CRTRPGMOD 27

OPM-compatible 23

strategy to avoid 31

using CRTBNDRPG 25

using CRTRPGMOD and

CRTPGM 75

using the one-step process 59

creating service programs
about 91

strategies 92

cross-reference listing 488

CRTBNDRPG command 460

See Create Bound RPG Program

(CRTBNDRPG) command

CRTPGM command
See Create Program (CRTPGM)

command

CRTRPGMOD command
See Create RPG Module

(CRTRPGMOD) command

CRTRPTPGM (create auto report

program) command
converting auto report members 439

CRTSRVPGM command
See Create Service Program

(CRTSRVPGM) command

CVTOPT parameter
CRTBNDRPG command 60, 464

CRTRPGMOD command 76

CVTRPGSRC (Convert RPG Source)

command
default parameter values 433

example 437

parameter description 434

syntax diagram 433

using the command defaults 437

CVTRPT parameter 436, 439, 443

cycle-free module 77

cycle, program
commitment control 356

fetch overflow logic 363

general description 4

last cycle 5

D
data areas

RETURNCODE 71

data file, converting source from 440

data management operations 317

data structures
multiple-occurrence

displaying while debugging 245

subfields
conversion problems 451

displaying while debugging 245

using EVAL debug command 245

database data
updating while debugging 216

database file
data file 327

field level description 327

general discussion 327

physical and logical files 327

database file (continued)
record level description 327

source member 327

DB2 for AS/400 SQL
entering SQL statements 55

DBCS
in RPG IV character fields 427

NLSS debug considerations 227

DBGVIEW parameter
coordinating with listing options 70

CRTBNDRPG command 60, 463

CRTRPGMOD command 76

preparing a program for

debugging 210

using 61

values for viewing source 218

DDM
See distributed data management

(DDM)

DEALLOC (free storage) operation

code 115

debug commands
ATTR 254

CLEAR 223

DISPLAY 219

EQUATE 255

equating with a name while

debugging 255

EVAL 241, 252

general discussion 208

STEP 236, 237

STEP INTO 238

STEP OVER 237

WATCH 231

debug data
creating 210

effect on object size 211

none 211

removing from a module 90

debug view
changing while debugging 220

COPY source 212

default 213

definition 210

listing 213

root source 211

statement 213

debugging
adding an object to a session 216

built-in functions
%ADDR 250

%INDEX 250

%SUBSTR 250

%VARS 250

changing values using

%SUBSTR 253

examples 251

general discussion 250

changing field values 252

changing modules while

debugging 219

coordinating with listing options 70

creating a program for debugging 61

differences between ILE RPG and

OPM RPG/400 424

displaying attributes of 254

debugging (continued)
displaying data addressed by

pointers 248

displaying data and expressions 241

displaying fields as hexadecimal

values 247

displaying fields in character

format 247

displaying fields in UCS-2

format 248

displaying fields in variable-length

format 248

displaying indicators 246

displaying multiple-occurrence data

structures 245

displaying the contents of a table 244

displaying the contents of an

array 244

general discussion 207

National Language Support 256

NLSS considerations 227

obtaining a formatted dump 297

OPM program limit in debug

session 217

optimization effects 89, 208

overview 20

preparing a program 210

removing an object from a

session 216, 217

rules for assigning values using

EVAL 253

setting and removing

breakpoints 221

setting debug options 216

setting watch conditions 231

starting the source debugger 214

stepping through 236

unexpected results 243

updating production files 216

viewing shorthand names 256

viewing source 218

decimal positions
input specifications

program-described WORKSTN

file 381

with external descriptions 313

decompressing an object 90

default activation group 23, 31, 111

running in 111

default exception handler, RPG 266

default heap 115

DEFINE parameter
CRTBNDRPG command 60, 470

CRTRPGMOD command 76

definition specifications
general description 3

deleting an activation group 112

description of parameters
CRTBNDRPG command 459

CRTRPGMOD command 475

CVTRPGSRC command 434

descriptors, operational
definition 139

example 94

DETAIL parameter
creating a binder listing 87

DETC 283

502 ILE RPG Programmer’s Guide

detecting errors in a program 207

DETL 283

device files
device dependence 307

device independence 307

DISK files 327

general discussion 359

multiple-device 384

PRINTER files 359

SEQ files 368

workstation files 373

device name, function of 308

devices
WORKSTN 373

DFTACTGRP parameter on CRTBNDRPG
CRTBNDRPG command 60

description 460

running in OPM default 111

using 59, 62, 63

diagnosing errors in a program 207

differences between OPM and ILE RPG
behavioral differences 423

exception handling 268

different views of a module 220

Discard Heap (CEEDSHP) bindable

API 20, 122

DISK file
externally described

access path 328

as program-described 310

examples 329

general description 328

record format specifications 328

file operation codes allowed
for keyed processing

methods 350

for non-keyed processing

methods 350

general description 327

processing methods
consecutive processing 338

overview 338

random-by-key processing 345

relative-record-number

processing 348

sequential-by-key processing 339

sequential-within-limits

processing 346

program-described
indexed file 334

processing 338

record-address file 337

sequential file 336

record-format specifications 328

DISPLAY debug command
definition 209

using 219

viewing shorthand names 256

Display Module (DSPMOD)

command 151

Display Module Source (DSPMODSRC)

command 216, 217, 219

Display Program (DSPPGM) command
determining optimization level 89

Display Program References

(DSPPGMREF) command 151

Display Service Program (DSPSRVPGM)

command 91

displaying attributes of a field 254

displaying data and expressions while

debugging 241

distributed data management (DDM)
files 357

documentation of programs 71

double byte character set
in RPG IV character fields 427

NLSS debug considerations 227

DSPMODSRC command
See Display Module Source

(DSPMODSRC) command

DSPPGMREF command
See Display Program References

(DSPPGMREF) command

DUMP (program dump) operation code
obtaining a formatted dump 297

using 298

dump, formatted 297

dynamic array
allocating storage during

run-time 121

dynamic calls 19, 130

dynamic storage 113

E
edit source (STRSEU) command 52

eliminating errors in a program 207

ENBPFRCOL parameter
CRTBNDRPG command 60, 470

CRTRPGMOD command 76

End Debug (ENDDBG) command 214

ending a program or procedure
abnormal end 154

after system call 109

normal end 153

return overview 153

returning without ending 155

using bindable APIs 156

ending commitment control 352

ENDSR (end of subroutine) operation

code
specifying a return point 283

ENTMOD parameter 84

entry module 28

See program entry procedure (PEP)

environment
See Integrated Language Environment

(ILE)

EQUATE debug command
definition 209

example 255

using 255

equating a name with a field, expression,

or command 255

error indicators
specifying 272

error subroutines
avoiding a loop 282

for file errors 276

program 279

using 275

errors
See also exception

errors (continued)
correcting compilation 68

correcting run-time 70

file 266

program 266

runtime, Java 197

when calling Java from RPG 184

escape messages
definition 264

unhandled 269

EVAL debug command
changing values 252

contents of a table 244

contents of an array 244

definition 209

displaying data structures 245

example 242, 254

in character format 247

in UCS-2 format 248

in variable-length format 248

indicators 246

rules for assigning values 253

using 241

event file for CODE/400 462

examples
compiling

binding multiple modules 85

OPM-compatible program 63

program for source debugging 61

program with static binding 62

sample binder listing 100

service program 93

converting to RPG IV
all members in a file 437

performing a trial conversion 438

sample conversion 440

some members in a file 438

debugging
adding a service program to a

session 217

changing field values 254

changing the debug view of a

module 220

displaying attributes of a

field 254

displaying data addressed by

pointers 248

displaying fields as hexadecimal

values 247

displaying fields in character

format 247

displaying fields in UCS-2

format 248

displaying fields in variable-length

format 248

displaying indicators 246

displaying multiple-occurrence

data structures 245

displaying the contents of a

table 244

displaying the contents of an

array 244

removing programs from a

session 217

setting a conditional

breakpoint 226

Index 503

examples (continued)
debugging (continued)

setting an unconditional

breakpoint 223

setting debug options 216

source for debug examples 256

using %SUBSTR to display field

values 251

viewing a different module in a

debug session 219

handling exceptions
*PSSR error subroutine 279

avoiding a loop in an error

subroutine 282

cancel handler 290

file error subroutine 276

unhandled escape message 269

unhandled function check 270

using a cancel handler 290

using a condition handler 284

I/O
data maintenance 391

inquiry by zip code and search on

name 410

inquiry program 388

subfile processing 402

interactive application 387

managing your own heap 121

module with multiple procedures 40

passing parameters using the CL

CALL command 104

program/procedure call
checking number of passed

parameters 142

using omitted parameters 94

sample ILE RPG program 6

subprocedures 37

creating a NOMAIN module 77

exception
monitoring during run time 109

nested, 269

exception handler
priority of 269

RPG-specific 266, 272

exception messages
percolation 264

types of 264

unexpectedly handled by CL

MONMSG 293

unhandled 269

exception/error handling
*PSSR error subroutine 279

avoiding a loop 282

cancel handler 290

condition handler 284

differences between ILE RPG and

OPM RPG/400 268, 424

error indicators 272

error/exception subroutine

overview 275

exceptions 197

file error/exception (INFSR)

subroutine 276

general considerations 268

MONITOR group 273

NOOPT keyword 271

optimization considerations 271

exception/error handling (continued)
overview 263

percolation 264

RPG-specific 266

specifying a return point 283

types of 263

unhandled 269

using ’E’ extender 272

EXFMT (write/then read format)

operation code 383

EXPCPY parameter 436

EXPORT keyword
duplicate names 85

expressions
returning values 135

extension specifications
conversion problems 442, 449

external-references list in compiler

listing 490

externally described file
access path 328

adding to external description 311

advantages 307

as program-described 310

as WORKSTN file 373, 376

definition 309

file description specifications for 311

output specifications for 315

overriding 313

physical and logical files 327

record format specifications 328

renaming field names 312

renaming record format 311

specifications 311

F
fetch overflow

general description 363

logic 363

field
changing the value while

debugging 252

displaying attributes of while

debugging 254

displaying while debugging
as hexadecimal values 247

in character format 247

in UCS-2 format 248

in variable-length format 248

using EVAL 241

equating with a name while

debugging 255

maintaining current values while

debugging 208

field-reference file, example of 329

file
device dependence 307

device independence 307

differences between ILE RPG and

OPM RPG/400 425

DISK 327

externally described 307

externally described disk 328

general considerations 307

indexed 334

locking 321

file (continued)
name

externally described 307

override 313

program-described 317

naming conventions 309

open options 323

override 313

PRINTER 359

processing charts
sequential file 369

SPECIAL file 371

WORKSTN file 384

program described 307, 317

redirection 308

SEQ 336, 368

sharing 323

valid keys 331

WORKSTN 373

file description specifications
commitment control 354

for externally described files 311

general description 3

file exception/error subroutine (INFSR)
description 276

example 276

specifications for 276

file exception/errors
definition 266

example 276

using an INFSR subroutine 276

file information data structure
example 276

using in an error subroutine 276

file locking 321

file operations
allowed with DISK file 350

allowed with PRINTER file 359

allowed with sequential file 369

allowed with SPECIAL file 371

allowed with WORKSTN file 383

file overrides 313

example 320

general discussion 319, 349

indicated in compiler listing 479

file record length, conversion

considerations 430

file sharing 323

final summary in compiler listing 491

FIND debug command 209

FIXNBR parameter
CRTBNDRPG command 60, 467

CRTRPGMOD command 76

flowchart
fetch-overflow logic 363

format name 381

format of compiler listing, specifying 66

formatted dump 297

FREE (deactivate a program) operation

code 445

Free Storage (CEEFRST) bindable

API 20

freeing resources of ILE programs 112

FROMFILE parameter 434

FROMMBR parameter 435, 437

function check
definition 264

504 ILE RPG Programmer’s Guide

function check (continued)
unhandled 270

function keys
indicators 375

with WORKSTN file 375

G
GDDM 158

generating a program
See compiling

GENLVL parameter
CRTBNDRPG command 60, 460

CRTRPGMOD command 76

Get Descriptive Information About a

String Argument (CEESGI) 140

Get Heap Storage (CEEGTST) bindable

API 21, 122

graphic format
graphic CCSID

indicated in compiler listing 484

NLSS debug considerations 227

rules for assigning values using

EVAL 253

graphic support 158

Graphical Data Display

Manager(GDDM) 158

H
halt (H1-H9) indicators

used to end a

program/procedure 153, 154, 155

handling exceptions/errors
*PSSR error subroutine 279

avoiding a loop 282

cancel handler 290

condition handler 284

differences between ILE RPG and

OPM RPG/400 268, 424

error indicators 272

error/exception subroutine

overview 275

file error/exception (INFSR)

subroutine 276

general considerations 268

NOOPT keyword 271

optimization considerations 271

overview 263

percolation 264

RPG-specific 266

specifying a return point 283

types of 263

unhandled 269

using ’E’ extender 272

heap
default heap 115

definition 113

example 121

help command key 376

hexadecimal values, displaying while

debugging 247

home command key 376

I
I/O differences between ILE RPG and

OPM RPG/400 425

ICF communications file 373

identifying an activation group 110

IGNORE keyword 312

ignoring record format 312

ILE
See Integrated Language Environment

(ILE)

ILE C
as ILE language 17

in advanced application 30

in mixed-language application 29

parameter passing method 148

source for module in debug

example 260

ILE CL
as ILE language 17

as module in ILE program 27

calling ILE RPG program 28

calling RPG program 25

in advanced application 30

in mixed-language application 29

parameter passing method 148

unexpectedly handling status and

notify exceptions 293

ILE COBOL
as ILE language 17

parameter passing method 148

ILE RPG
behavior of bound modules 82

behavioral differences between OPM

RPG/400 423

converting to 429

data management operations 317

device types supported 359

exception handling overview 266

logic chart 4

overview of RPG IV language 3

sample program 6

ILE source debugger
debug commands 208

description 208

starting 214

include source view, creating 212

INDENT parameter 213

CRTBNDRPG command 60, 464

CRTRPGMOD command 76

indenting structured operations in the

compiler listing 67

indexed file
access path 334

general description 334

valid search arguments 335

indicators
as error indicators 272

displaying while debugging 246

error 272

function key (KA-KN, KP-KY)
with WORKSTN file 375

halt (H1-H9)
used to end a

program/procedure 153, 154,

155

last record (LR)
general description 5

indicators (continued)
last record (LR) (continued)

used to end a

program/procedure 153, 154,

155

overflow
examples 363

fetch overflow logic 363

general description 359

presence or absence of 361

relation to program cycle 363

setting of 363

with PRINTER file 359

return (RT)
used to end a

program/procedure 153, 154,

155

using 5

input
file 382

input record
unblocking 333

input specifications
general description 3

inquiry messages
list of 108

replying to 108

inserting specification templates 440

INSRTPL parameter 436, 440

integer format
TRUNCNBR parameter 467

Integrated Language Environment (ILE)
effect on

OPM-compatible program 24

program using CRTBNDRPG 26

ending an ILE program 109

family of ILE compilers 17

interlanguage calling

considerations 149

interlanguage calls 148

internal structure of program 83

overview 17

program call 19

program creation 17

program creation strategies 23, 25, 27

program management 19

interlanguage calls 148

Intersystem Communications Function

(ICF) 373

J
Java

calling Java from RPG 173

calling Java methods 173

calling RPG from Java 181

calling RPG programs using

PCML 202

coding errors 184

Java Virtual Machine (JVM) 186

native methods 181

prototyping 170

runtime errors 197

JNI functions, wrappers for 186

Index 505

K
key

composite 332

for a record or a file 331

partial 332

key field information in compiler

listing 487

keyed processing 357

access path 328

indexed file 334

record-address limits file 337

sequential-within-limits 346

unexpected results 357

keyed-sequence access path 328

keywords
*OMIT 141

DDS 327

EXPORT 85

for continuation line 327

CLEAR 376

HELP 376

HOME 376

PRINT 376

ROLLDOWN 376

ROLLUP 376

for display device file
CLEAR 376

HELP 376

HOME 376

PRINT 376

ROLLDOWN 376

ROLLUP 376

NOOPT 89, 271

L
LANGID parameter

CRTBNDRPG command 60, 465

CRTRPGMOD command 76

languages, ILE 17

last record (LR) indicator
used to end a

program/procedure 153, 154, 155

length of record in a file, conversion

considerations 430

level checking 316

library, creating 51

LICOPT parameter
CRTBNDRPG command 471

limitations of the XML parser 167

limits records 329

listing view, creating 213

listing, binder
as maintenance resource 88

basic 100

creating 87

determining exports in service

program 91

sections of 87

listing, compiler
additional diagnostic messages 69

browsing using SEU 70

coordinating listing options with

debug view options 70

correcting compilation errors 68

correcting run-time errors 70

listing, compiler (continued)
default information 65

in-line diagnostic messages 69

indenting structured operations 67

obtaining 65

reading 477

sample listing 478

sections of 65, 478

specifying the format of 66

using 65

using as documentation 71

local variable
in formatted dump 304

locking
file 321

read without locking 322

record locking wait time 322

retry on timeout 322

standalone 322

under commitment control 352

UNLOCK 322

log file
about 431

DDS for 445

using 445

LOGFILE parameter 437

logical file
general 327

multi-format 327

LOGMBR parameter 437

long names
in compiler listing 488

loop, avoiding in an error

subroutine 282

M
main procedure

coding considerations 45

overview 33

returning from 153

scope of files 82

maintaining OPM compatibility 63, 111

managing activation groups 110

managing dynamically-allocated

storage 113

managing programs 19

managing run-time storage 113

managing the default heap using RPG

operations 115

manual code conversion 447

MCH3601 425

memory management operations
%ALLOC built-in function 115

%REALLOC built-in function 115

ALLOC (allocate storage) operation

code 115

DEALLOC (free storage) operation

code 115

REALLOC (reallocate storage with

new length) operation code 115

message summary in compiler

listing 491

messages
additional diagnostic 69

exception
example 269

messages (continued)
exception (continued)

types of 264

unhandled 269

in-line diagnostic 69

inquiry
replying to 108

migrating to ILE RPG
See converting to RPG IV

modifying a module 88

module
about 75

behavior of bound ILE RPG 82

binding into a program 82

binding multiple 85

changing optimization level 89

changing while debugging 219

creating 75

creating a NOMAIN module 77

CRTRPGMOD command 76

determining the entry module 84

different debug views 220

effect of debug data on size 211

information in dump listing 297

modifying and rebinding 88

overview of multiple-procedure

module 33

preparing for debugging 210

reducing size 90

related CL commands 82

relationship to program 83

removing observability 89

replacing in a program 88

viewing source while debugging 218

module creation
general discussion 75

using CRTRPGMOD 76

using CRTRPGMOD defaults 77

module observability 89

MODULE parameter 84

CRTBNDRPG command 459

CRTRPGMOD command 76

MONITOR group 273

MQSeries 169

multiple devices attached to application

program 354

multiple-device file
WORKSTN 384

N
named activation group 110

National Language Support (NLS) of

source debugger 256

nested exceptions 269

no debug data 211

NOMAIN module
coding considerations 45

creating 77

nonkeyed processing 349

NOOPT keyword
and handling exceptions 271

maintaining current values while

debugging 208

program optimization level 89

normal program/procedure end 153

506 ILE RPG Programmer’s Guide

NOT
Behavioral difference between ILE

RPG and RPG/400 423

null value support
displaying null-capable fields 249

O
observability 89

obtaining a compiler listing 65

obtaining conversion reports 439

OFL 283

omitted parameters 140

*OMIT 141

ON-ERROR group 273

one-step process of program creation 59

online information
for create commands 459

for ILE source debugger 210

open data path
sharing 323

operation codes 383

allowed with DISK file 350

allowed with PRINTER file 359

allowed with sequential file 368

allowed with SPECIAL file 371

allowing ’E’ extender 273

allowing error indicators 273

general discussion 6

operational descriptors
definition 139

example 94

OPM compatibility, maintaining 63, 111

OPM default activation group 23, 31

running in 111

optimization
definition 89

effect on fields when debugging 208

exception handling

considerations 271

level of
changing an object’s 89

checking 89

OPTIMIZE parameter
CRTBNDRPG command 60, 464

CRTRPGMOD command 76

OPTION parameter
coordinating listing and debug view

options 213

coordinating with debug view

options 70

CRTBNDRPG command 60, 461

CRTRPGMOD command 76

using 65, 71

OPTIONS keyword
*NOPASS 141

*OMIT 141

order of evaluation
on prototyped call 148

output
specifications

program-described WORKSTN

file 381

output buffer positions, in compiler

listing 486

output file 383

OUTPUT parameter
CRTBNDRPG command 60, 464

CRTRPGMOD command 76

using 65

output record
blocking 333

output specifications
example 9

general description 3

program-described WORKSTN

file 381

with external descriptions 315

output spooling 325

overflow
indicators 361

page 360

overflow indicators
conditioning output 361

examples 363

fetch-overflow logic 363

general description 361

presence or absence of 361

relation to program cycle 363

setting of 363

with PRINTER file 359

overrides, file 313

example 320

general discussion 319, 349

indicated in compiler listing 479

overriding external description 313

P
page headings 66

page number, in PRINTER file 360

page overflow, in PRINTER file 360

parameter descriptions
CRTBNDRPG command 459

CRTRPGMOD command 475

CVTRPGSRC command 434

parameter list
created by PARM 153

identifying 133

rules for specifying 152

parameter table
CRTBNDRPG command 60

CRTRPGMOD command 76

CVTRPGSRC command 433

parameters
checking number passed 142

match data type requirements 139

omitted 140

operational descriptors 139

passing 133

passing using the CL CALL

command 103

specifying 151

PARM (identify parameters) operation

code 104

*OMIT 140, 141

rules for specifying 152

using 151

partial key 332

parts of an ILE RPG program 6

passing parameters
by read-only reference 137

by reference 136, 137

passing parameters (continued)
by value 137

checking number passed 142

example 104

match data type requirements 139

omitted parameters 140

operational descriptors 139

overview 133

passing less data 147

passing methods for ILE

languages 148

using PARM 151

using PLIST 152

using the CL CALL command 103

PCML
see Program call Markup

Language 202

PEP
See program entry procedure (PEP)

percolate an exception
using a condition handler 285

percolation of an exception 264

performance considerations
subroutines vs. subprocedures 94

performance tips
call for LR-on 424

program call 154

performing a quick conversion 437

performing a trial conversion 438

PGM parameter
CRTBNDRPG command 60

physical file 327

PLIST (identify a parameter list)

operation code 104

*ENTRY PLIST 153

using 152

pointers
in teraspace memory 150

PREFIX keyword 312

preparing a program for debugging 210

Presentation Graphics Routines

(PGR) 158

preventing printing over perforation 363

PRFDTA parameter
CRTBNDRPG command 60, 470

CRTRPGMOD command 76

removing observability 90

print command key 376

PRINTER file
access current line value 366

fetch-overflow logic 363

file operation codes allowed 359

maximum number of files allowed in

program 359

modify forms control 366

overflow indicators 359

page overflow 360

PRTCTL (printer control) 366

procedure
abnormal ending 154

calling 129

dump information 297

normal ending 153

passing parameters 133

procedure pointer call 130

returning from 153

returning without ending 155

Index 507

procedure (continued)
static procedure call 130

stepping over 237

procedure pointer calls 130

processing methods
consecutive 338

for DISK file 338

nonkeyed 349

random-by-key 344

relative-record-number 348

sequential only 339, 349

sequential-by-key 339

sequential-within-limits 346

WORKSTN file 376, 383

processing XML documents 163

limitations of the XML parser 167

XML parser error codes 165

program
abnormal ending 154

advanced ILE 30

binding modules 82

calling 129, 130

calling using expressions 135

calling using the CALL

operation 150

calling using the CALLP

operation 135

changing 88

changing optimization level 89

changing while debugging 219

different debug views 220

effect of debug data on size 211

ending 109

entering source 51

entering SQL statements 55

example 6

freeing resources 112

internal structure 83

mixed-language 29

multiple-module
general creation strategy 27

normal ending 153

OPM-compatible
creation method 23

effect of ILE 24

example 23

program creation strategy 23, 31

passing parameters 133

preparing for debugging 210

program entry procedure 82

reducing size 90

related CL commands 86

removing observability 89

returning from 153

returning without ending 155

running 103

running from a menu-driven

application 105

running in the OPM default activation

group 111

running using a user-created

command 108

setting watch conditions 231

single-language 28

effect of ILE 26

stepping into 238

stepping over 237

program (continued)
stepping through 236

updating 88

viewing source while debugging 218

program activation 110

program creation
coding considerations 45

examples of 61, 62, 63, 85

OPM-compatible
creating 23

strategy to avoid 31

strategies for 23

CRTPGM command 84

ILE application using

CRTRPGMOD 27

OPM-compatible 23

strategy to avoid 31

using CRTBNDRPG 25

using CRTRPGMOD and

CRTPGM 75

using the one-step process 59

program cycle
commitment control 356

fetch overflow logic 363

general description 4

last cycle 5

program entry procedure (PEP)
and the call stack 131

definition 82

determining 84

program exception/error subroutine
description 279

example 279

program exception/errors
avoiding a loop 282

definition 266

example 279, 284

using a *PSSR subroutine 279

program management 19

program name
*FROMMBR parameter 436

program status data structure
example 151, 279

using in an error subroutine 279

program-described file
as DISK file 334

as WORKSTN file 380, 381, 382

definition 309

physical and logical files 327

valid search arguments 335

program/procedure call
abnormal program/procedure

end 154

call stack 131

calling bindable APIs 156

calling graphics 158

calling procedures 130

calling programs 130

calling special routines 158

fixed-form call 150

free-form call 135

interlanguage calls 148

normal program/procedure end 153

overview 129

parameter passing methods 136

recursive calls 131

program/procedure call (continued)
returning from a called program or

procedure 153

returning values 135

returning without ending 155

static calls 130

using the CALL operation 150

using the CALLB operation 150

within ILE 19

program/procedure end
abnormal end 154

after system call 109

normal end 153

return overview 153

returning without ending 155

using bindable APIs 156

programming tips
creating NOMAIN module 92

setting subprocedure breakpoints 238

prologue section of compiler listing 478

prototype
description 34

using 134

prototyped call
order of evaluation of

parameters 148

prototyped program or procedure
prototyped call 34

prototyping, Java methods 170

PRTCTL (printer control)
example 367

general information 366

Q
QUAL debug command

definition 209

ILE RPG 252

querying names of called

programs/procedures 151

R
random-by-key processing

example 345

general discussion 344

RCLACTGRP command
See Reclaim Activation Group

(RCLACTGRP) command

RCLRSC command
See Reclaim Resources (RCLRSC)

command

reading a record 384

reading next record
with WORKSTN subfile 379

REALLOC (reallocate storage with new

length) operation code 115

Reallocate Storage (CEECZST) bindable

API 21

rebinding 88

Reclaim Activation Group (RCLACTGRP)

command
deleting activation groups 112

named activation groups 110

Reclaim Resources (RCLRSC) command
ILE program 26

508 ILE RPG Programmer’s Guide

Reclaim Resources (RCLRSC) command

(continued)
OPM-compatible program 24

to free storage 112

RECNO keyword
with relative-record-number

processing 348

record
limits 337

locking 322

releasing 322

valid keys 331

record address file
conversion problems 442, 449

relative-record number 337

sequential-within-limits 337

with limits records 337

with relative record numbers 337

record format
for a subfile 377

ignoring 312

renaming 311

specifications for externally described

file 328

record length of files, conversion

considerations 430

record locking 322

recursion
calling condition handlers 284

recursive calls 46, 131

redirection, file
definition 308

general description 308

reducing object size 90, 211

Register Call Stack Entry Termination

User Exit Procedure(CEERTX) 290

Register ILE Condition Handler

(CEEHDLR) API 284

relative-record number 337

relative-record-number processing 348

releasing a locked record 322

removing breakpoints
about 221

all 231

conditional job breakpoints 225

conditional thread breakpoints 230

unconditional job breakpoints 222

unconditional thread breakpoints 224

using statement numbers 228

removing objects from a debug

session 216

removing observability 89

RENAME keyword 311

renaming field names 312

renaming fields 312

renaming record-format names 311

REPLACE parameter
CRTBNDRPG command 60, 466

CRTRPGMOD command 76

replacing modules in a program 88

reply list of messages
adding to 108

changing 109

replying to run-time inquiry

messages 108

requirements of Conversion Aid 431

reserved words
*CANCL 283

*DETC 283

*DETL 283

*GETIN 283

*OFL 283

*TOTC 283

*TOTL 283

resulting indicators (01-99, H1-H9,

OA-OG, OV, L1-L9, LR, U1-U8, KA-KN,

KP-KY, RT)
as error indicators 272

resume point 283

Retrieve Operational Descriptor

Information (CEEDOD) 94

example 140

operational descriptors 140

retry on a record lock timeout 322

RETURN (return to caller) operation code
returning without ending 155

role in abnormal end 154

role in normal end 153

return (RT) indicator
used to end a

program/procedure 153, 154, 155

return points, specifying in ENDSR 283

return status parameter 370

return value
returning using expressions 135

RETURNCODE data area 71

returning from a called main

procedure 153

returning from a called procedure 153

returning from a main procedure 153

returning from a subprocedure 155

returning using ILE bindable APIs 156

returning without ending 155

rolldown command key 376

rollup command key 376

root source view, creating 211

RPG IV
See also ILE RPG

behavioral differences between RPG

III 423

converting to 23, 25, 429

overview 3

unsupported RPG III features 448

run-time array
allocating storage during

run-time 121

run-time errors, correcting with a

compiler listing 70

run-time inquiry messages, replying

to 108

run-time storage, managing 113

running a program
differences between ILE RPG and

OPM RPG/400 423

from a menu-driven application 105

in the OPM default activation

group 111

overview 103

using a user-created command 108

using the CL CALL command 103

S
sample programs

See examples

scope
of files 82

screen design aid (SDA) 106

search argument
externally described file

description 331

referencing a partial key 332

valid 331

program-described file 335

SECLVL parameter 436

SEQ file
example 369

file operation codes allowed 369

general description 368

processing chart 369

restrictions 368

variable-length 368

sequence checking
on input specifications 317

sequential file 336

sequential-by-key processing
examples 339

general discussion 339

sequential-only processing 338, 339

sequential-within-limits processing
examples 347

general discussion 346

service program
adding to a debug session 216

binder language 97

binding with CRTBNDRPG 62

changing 93

creating 91

example 93

in advanced application 30

reasons for using 91

reclaiming resources 112

related CL commands 93

sample binder listing 100

strategies for creating 92

updating 99

service program creation
about 91

strategies 92

SET debug command
definition 209

SETLL
exception MCH3601 425

setting breakpoints
about 221

conditional job breakpoints 225

conditional thread breakpoints 230

example 223, 226

unconditional job breakpoints 222

unconditional thread breakpoints 224

using statement numbers 228

setting debug options 216

SEU
See source entry utility (SEU)

sharing an open data path for a file 323

sort sequence
affect of SRTSEQ parameter 325

ALTSEQ table in compiler listing 486

debug considerations 227

Index 509

source debugging
adding an object to a session 216

built-in functions
%ADDR 250

%INDEX 250

%SUBSTR 250

%VARS 250

changing values using

%SUBSTR 253

examples 251

general discussion 250

changing field values 252

changing modules while

debugging 219

coordinating with listing options 70

creating a program for debugging 61

differences between ILE RPG and

OPM RPG/400 424

displaying attributes of 254

displaying data addressed by

pointers 248

displaying data and expressions 241

displaying fields as hexadecimal

values 247

displaying fields in character

format 247

displaying fields in UCS-2

format 248

displaying fields in variable-length

format 248

displaying indicators 246

displaying multiple-occurrence data

structures 245

displaying the contents of a table 244

displaying the contents of an

array 244

general discussion 207

National Language Support 256

NLSS considerations 227

obtaining a formatted dump 297

OPM program limit in debug

session 217

optimization effects 89, 208

overview 20

preparing a program 210

removing an object from a

session 216, 217

rules for assigning values using

EVAL 253

setting and removing

breakpoints 221

setting debug options 216

setting watch conditions 231

starting the source debugger 214

stepping through 236

unexpected results 243

updating production files 216

viewing shorthand names 256

viewing source 218

source entry utility (SEU) 51

browsing a compiler listing 70

entering source 52

source from a data file, converting 440

source member types, conversion of 430

source physical file, creating 51

source program
converting all members 437

source program (continued)
converting auto report source

members 439

converting some members 438

converting to ILE RPG 432

entering into system 51

entering SQL statements 55

file and member names when

converting 430

record length of when

converting 430

source member types when

converting 430

source section of compiler listing 480

special command keys 376

SPECIAL file
deleting records from 371

general discussion 369, 371

valid file operations 371

special routines, calling 158

specification templates, inserting 440

specifications
description of 3

externally described file 311

file description 311

order 3

record format 328

types 3

specifying a return point 283

specifying an activation group 110

specifying error indicators 272

specifying the format of compiler

listing 66

spooling 324

SQL
See DB2 for AS/400 SQL

SRCFILE parameter
CRTBNDRPG command 60, 459

CRTRPGMOD command 76

SRCMBR parameter
CRTBNDRPG command 60, 460

CRTRPGMOD command 76

SRTSEQ parameter
affect on key comparisons 325

CRTBNDRPG command 60, 465

CRTRPGMOD command 76

debug considerations 227

stack, call 131, 264

Start Debug (STRDBG) command 214

Update Production files (UPDPROD)

parameter 216

starting commitment control 352

starting the ILE source debugger 214

statement view
creating 213

using for debug 228

static binding
See binding

static calls 19, 130

static procedure call 130

status codes
data management errors 426

STEP debug command
definition 209

into 238

over 237

stepping while debugging
into a program or procedure 238

over a program or procedure 237

through a program 236

storage management
allocating during run-time 121

dynamic storage 113

managing run-time 113

strategies for creating ILE programs 23

STRDBG command
See Start Debug (STRDBG) command

STRSEU (edit source) command 52

structured operations
indenting 67

Structured Query Language (SQL)
See DB2 for AS/400 SQL

subfields
for file information data

structure 299, 301

for program status data structure 298

for PRTCTL 366

subfiles
control-record format 377

descriptions 377

examples 379

file operation codes allowed

with 378

general description 377, 378

record format 377

uses of 379

subprocedures
coding considerations 46

debugging 240

example 9

information in compiler listing 490

local data in dump listing 304

logic flow 5

overview 33

returning from 155

scope of files 82

stepping into 238

stepping over 237

SUBR23R3 (message retrieval) 158

SUBR40R3 (manipulating Double Byte

Characters variables) 158

SUBR41R3 (manipulating Double Byte

Characters variables) 158

subroutines
avoiding a loop 282

calling SUBR routines 158

error 275

file error (INFSR) 276

program error (*PSSR) 279

substring of character or graphic literal
ILE debug built-in %SUBSTR 251

summary tables
file operation codes allowed with

DISK 349

PRINTER 359

sequential 369

SPECIAL 371

WORKSTN 383

sequential file processing 369

SPECIAL file processing 371

syntax diagrams
CRTBNDRPG command 456

CRTRPGMOD command 473

510 ILE RPG Programmer’s Guide

syntax diagrams (continued)
CVTRPGSRC command 433

interpreting 455

system functions
spooling 324

system reply list
adding to 108

changing 109

T
table

displaying while debugging 244

table of parameters
CRTBNDRPG command 60

CRTRPGMOD command 76

CVTRPGSRC command 433

tape file 336

TBREAK debug command
definition 209

using 224, 230

templates, inserting specification 440

teraspace memory 150

test library, using 216

testing breakpoints 221

TEXT parameter
CRTBNDRPG command 60, 460

CRTRPGMOD command 76

TGTRLS parameter
CRTBNDRPG command 60, 468

CRTRPGMOD command 76

THREAD debug command
definition 209

using 224

threaded applications
coding considerations 158

debugging 221

locking and unlocking

procedures 160

overview 21

TOFILE parameter 435, 438

TOMBR parameter 435, 437

TOTC 283

TOTL 283

trial conversion, performing 438

TRUNCNBR parameter
CRTBNDRPG command 60, 467

CRTRPGMOD command 76

two-step process of program creation 75

types of exception handlers 263

U
UCS-2 format

displaying while debugging 248

UCS-2 CCSID
indicated in compiler listing 484

UEP
See user entry procedure (UEP)

unblocking/blocking records 333

unconditional breakpoint
definition 221

setting 223

setting and removing for job 222

setting and removing for thread 224

using statement numbers 228

unhandled escape message 269

unhandled exceptions 269

unhandled function check 270

Unregister ILE Condition Handler

(CEEHDLU) API 284

unsigned integer format
TRUNCNBR parameter 467

Update Program (UPDPGM) command
using 88

updating a service program 99

UPDPGM command
See Update Program (UPDPGM)

command

user entry procedure (UEP)
and the call stack 131

role in program 83

user-created command, running an RPG

program 108

USRPRF parameter on CRTBNDRPG
CRTBNDRPG command 60, 466

V
valid file operations

SPECIAL file 371

valid keys
for file 331

for records 331

variable-length format
displaying while debugging 248

variable-length records 368

view, debug
changing while debugging 220

COPY source 212

default 213

definition 210

listing 213

root source 211

statement 213

viewing source while debugging 218

W
WATCH debug command

definition 209

example 235

setting conditions 231

Work with Reply List Entry (WRKRPLYE)

command
changing a system reply list 109

WORKSTN file
definition 373

examples 387

externally described
processing 376

externally-described 373

file operation codes allowed

with 383

function key indicators with 375

multiple-device 384

processing 383

program-described
calculation specifications 382

combined file 383

considerations 382

general 380

WORKSTN file (continued)
program-described (continued)

input file 382

input specifications 381

output file 383

output specifications 381

with format name 381

without format name 382

sample data maintenance

program 391

sample inquiry and search

program 410

sample inquiry program 388

sample subfile processing

program 402

subfiles
control-record format 377

examples 379

for display-device file 377

record format 377

uses of 379

using 373

WRKRPLYE command
See Work with Reply List Entry

(WRKRPLYE) command

X
XML 163

processing XML documents 163

limitations of the XML parser 167

XML parser error codes 165

XML parser error codes 165

Index 511

512 ILE RPG Programmer’s Guide

���

Program Number: 5722-WDS

Printed in U.S.A.

SC09-2507-06

	Contents
	About This Guide
	Who Should Use This Guide
	Prerequisite and Related Information
	How to Send Your Comments
	Whats New
	Changes to this Guide Since V5R2 and V5R3
	What's New this Release?
	Whats New in V5R3?
	Whats New in V5R2?
	Whats New in V5R1?
	Whats New in V4R4?
	Whats New in V4R2?
	Whats New in V3R7?
	Whats New in V3R6/V3R2?

	Part 1. ILE RPG Introduction
	Chapter 1. Overview of the RPG IV Programming Language
	RPG IV Specifications
	Cycle Programming
	Subprocedure logic

	Indicators
	Operation Codes
	Example of an ILE RPG Program
	Using the i5/OS System
	Interacting with the System

	WebSphere Development Studio for iSeries
	WebSphere Development Studio Client for iSeries

	Chapter 2. RPG Programming in ILE
	Program Creation
	Program Management
	Program Call
	Source Debugging
	Bindable APIs
	Multithreaded Applications

	Chapter 3. Program Creation Strategies
	Strategy 1: OPM-Compatible Application
	Method
	Example of OPM-Compatible Program
	Effect of ILE

	Related Information

	Strategy 2: ILE Program Using CRTBNDRPG
	Method
	Example of ILE Program Using CRTBNDRPG
	Effect of ILE

	Related Information

	Strategy 3: ILE Application Using CRTRPGMOD
	Method
	Single-Language ILE Application Scenario
	Mixed-Language ILE Application Scenario
	Advanced Application Scenario
	Related Information

	A Strategy to Avoid

	Chapter 4. Creating an Application Using Multiple Procedures
	A Multiple Procedures Module — Overview
	Main Procedures and Subprocedures
	Prototyped Calls

	Example of Module with Multiple Procedures
	The Entire ARRSRPT Program

	Coding Considerations
	General Considerations
	Program Creation
	Main Procedure Considerations
	Subprocedure Considerations

	For Further Information
	Main Procedures
	Subprocedures
	Prototyped Call

	Part 2. Creating and Running an ILE RPG Application
	Chapter 5. Using Source Files
	Using Source Physical Files
	Creating a Library and Source Physical File
	Using the Source Entry Utility (SEU)
	Using SQL Statements

	Using IFS Source Files
	Include files
	Search Path Within The IFS

	Chapter 6. Creating a Program with the CRTBNDRPG Command
	Using the CRTBNDRPG Command
	Creating a Program for Source Debugging
	Creating a Program with Static Binding
	Creating an OPM-Compatible Program Object

	Using a Compiler Listing
	Obtaining a Compiler Listing
	Customizing a Compiler Listing
	Customizing a Page Heading
	Customizing the Spacing
	Indenting Structured Operations

	Correcting Compilation Errors
	Using In-Line Diagnostic Messages
	Using Additional-Diagnostic Messages
	Browsing a Compiler Listing Using SEU

	Correcting Run-time Errors
	Coordinating Listing Options with Debug View Options

	Using a Compiler Listing for Maintenance

	Accessing the RETURNCODE Data Area

	Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands
	Creating a Module Object
	Using the CRTRPGMOD Command
	Creating a NOMAIN Module

	Creating a Module for Source Debugging
	Additional Examples
	Behavior of Bound ILE RPG Modules
	Related CL Commands

	Binding Modules into a Program
	Using the CRTPGM Command
	Binding Multiple Modules

	Additional Examples
	Related CL Commands

	Using a Binder Listing
	Changing a Module or Program
	Using the UPDPGM Command
	Changing the Optimization Level
	Removing Observability
	Reducing an Object's Size

	Chapter 8. Creating a Service Program
	Service Program Overview
	Strategies for Creating Service Programs
	Creating a Service Program Using CRTSRVPGM
	Changing A Service Program
	Related CL commands

	Sample Service Program
	Creating the Service Program
	Binding to a Program
	Updating the Service Program
	Sample Binder Listing

	Chapter 9. Running a Program
	Running a Program Using the CL CALL Command
	Passing Parameters using the CL CALL Command

	Running a Program From a Menu-Driven Application
	Running a Program Using a User-Created Command
	Replying to Run-Time Inquiry Messages
	Ending an ILE Program
	Managing Activation Groups
	Specifying an Activation Group
	Running in the OPM Default Activation Group
	Maintaining OPM RPG/400 and ILE RPG Program Compatibility
	Deleting an Activation Group
	Reclaim Resources Command

	Managing Dynamically-Allocated Storage
	Managing the Default Heap Using RPG Operations
	Heap Storage Problems
	Managing Your Own Heap Using ILE Bindable APIs

	Chapter 10. Calling Programs and Procedures
	Program/Procedure Call Overview
	Calling Programs
	Calling Procedures
	The Call Stack
	Recursive Calls
	Parameter-Passing Considerations

	Using a Prototyped Call
	Using the CALLP Operation
	Calling within an Expression
	Examples of Free-Form Call

	Passing Prototyped Parameters
	Parameter Passing Styles
	Passing by Reference
	Passing by Value
	Passing by Read-Only Reference
	Advantages of passing by value or read-only reference
	Choosing between parameter passing styles

	Using Operational Descriptors
	Omitting Parameters
	Passing *OMIT
	Leaving Out Parameters

	Checking for the Number of Passed Parameters
	Using %PARMS

	Passing Less Data Than Required
	Order of Evaluation
	Interlanguage Calls

	Interlanguage Calling Considerations
	Using the Fixed-Form Call Operations
	Examples of CALL and CALLB
	Passing Parameters Using PARM and PLIST
	Using the PARM operation
	Using the PLIST Operation

	Returning from a Called Program or Procedure
	Returning from a Main Procedure
	Normal End
	Abnormal End
	Returning without Ending

	Returning from a Subprocedure
	Returning using ILE Bindable APIs

	Using Bindable APIs
	Examples of Using Bindable APIs

	Calling a Graphics Routine
	Calling Special Routines
	Multithreading Considerations
	How to Share Data Across More Than One Module
	How to Avoid Deadlock Between Modules

	Chapter 11. RPG and the eBusiness World
	RPG and XML
	Processing XML Documents
	XML Parser Error Codes
	Limitations of the XML Parser

	RPG and MQSeries
	RPG and Java
	Introduction to Java and RPG
	The Object Data Type and CLASS Keyword
	Prototyping Java Methods

	Calling Java Methods from ILE RPG
	Creating Objects

	Calling methods in your own classes
	Controlling how the Java Virtual Machine is set up
	RPG Native Methods
	Getting the Instance Parameter in Non-Static Native Methods
	Passing Character Parameters from Java to Native Methods

	Coding Errors when calling Java from RPG
	Incorrectly specifying the method parameters in the RPG prototype
	Failure to free Java resources
	Using objects that no longer exist

	Additional RPG Coding for Using Java
	Telling Java to free several objects at once
	Telling Java you are finished with a temporary object
	Telling Java you want an object to be permanent
	Telling Java you are finished with a permanent object
	Creating the Java Virtual Machine (JVM)
	Obtaining the JNI environment pointer
	Handling JNI Exceptions

	Additional Considerations
	Common Runtime Errors
	Debugging Hints
	Creating String objects in RPG
	Getting information about exceptions thrown by called Java methods

	Advanced JNI Coding
	Converting Java Character Data
	Accessing Fields in Java Classes
	Calling Java Methods Using the JNI Rather than RPG *JAVA Prototypes

	Calling RPG programs from Java using PCML
	PCML Restrictions

	Part 3. Debugging and Exception Handling
	Chapter 12. Debugging Programs
	The ILE Source Debugger
	Debug Commands

	Preparing a Program for Debugging
	Creating a Root Source View
	Creating a COPY Source View
	Creating a Listing View
	Creating a Statement View

	Starting the ILE Source Debugger
	STRDBG Example
	Setting Debug Options

	Adding/Removing Programs from a Debug Session
	Example of Adding a Service Program to a Debug Session
	Example of Removing ILE Programs from a Debug Session

	Viewing the Program Source
	Viewing a Different Module
	Changing the View of a Module

	Setting and Removing Breakpoints
	Setting and Removing Unconditional Job Breakpoints
	Example of Setting an Unconditional Job Breakpoint

	Setting and Removing Unconditional Thread Breakpoints
	Setting and Removing Conditional Job Breakpoints
	Example of Setting a Conditional Job Breakpoint Using F13
	Example of Setting a Conditional Job Breakpoint Using the BREAK Command

	National Language Sort Sequence (NLSS)
	Setting and Removing Job Breakpoints Using Statement Numbers
	Setting and Removing Conditional Thread Breakpoints
	Using the Work with Module Breakpoints Display
	Using the TBREAK or CLEAR Debug Commands

	Removing All Job and Thread Breakpoints

	Setting and Removing Watch Conditions
	Characteristics of Watches
	Setting Watch Conditions
	Using the WATCH Command

	Displaying Active Watches
	Removing Watch Conditions

	Example of Setting a Watch Condition
	Stepping Through the Program Object
	Stepping Over Call Statements
	Stepping Into Call Statements
	Example of Stepping Into an OPM Program Using F22
	Example of Stepping Into a Subprocedure

	Displaying Data and Expressions
	Unexpected Results when Evaluating Variables
	Displaying the Contents of an Array
	Displaying the Contents of a Table
	Displaying Data Structures
	Displaying Indicators
	Displaying Fields as Hexadecimal Values
	Displaying Fields in Character Format
	Displaying UCS-2 Data
	Displaying Variable-Length Fields
	Displaying Data Addressed by Pointers
	Evaluating Based Variables
	Displaying Null-Capable Fields
	Using Debug Built-In Functions
	Debugging an XML-SAX Handling Procedure

	Changing the Value of Fields
	Displaying Attributes of a Field
	Equating a Name with a Field, Expression, or Command
	Source Debug National Language Support for ILE RPG
	Sample Source for Debug Examples

	Chapter 13. Handling Exceptions
	Exception Handling Overview
	ILE RPG Exception Handling
	Exception Handling within a Main Procedure
	Exception Handling within Subprocedures
	Differences between OPM and ILE RPG Exception Handling

	Using Exception Handlers
	Exception Handler Priority
	Nested Exceptions
	Unhandled Exceptions
	Example of Unhandled Escape Message
	Example of Unhandled Function Check

	Optimization Considerations

	Using RPG-Specific Handlers
	Specifying Error Indicators or the 'E' Operation Code Extender
	Using a MONITOR Group
	Using an Error Subroutine
	Using a File Error (INFSR) Subroutine
	Using a Program Error Subroutine
	Avoiding a Loop in an Error Subroutine

	Specifying a Return Point in the ENDSR Operation

	ILE Condition Handlers
	Using a Condition Handler

	Using Cancel Handlers
	Problems when ILE CL Monitors for Notify and Status Messages

	Chapter 14. Obtaining a Dump
	Obtaining an ILE RPG Formatted Dump
	Using the DUMP Operation Code
	Example of a Formatted Dump

	Part 4. Working with Files and Devices
	Chapter 15. Defining Files
	Associating Files with Input/Output Devices
	Naming Files
	Types of File Descriptions
	Using Files with External-Description as Program-Described
	Example of Some Typical Relationships between Programs and Files

	Defining Externally Described Files
	Renaming Record-Format Names
	Renaming Field Names
	Ignoring Record Formats
	Using Input Specifications to Modify an External Description
	Using Output Specifications
	Level Checking

	Defining Program-Described Files
	Data Management Operations and ILE RPG I/O Operations

	Chapter 16. General File Considerations
	Overriding and Redirecting File Input and Output
	Example of Redirecting File Input and Output

	File Locking
	Record Locking
	Sharing an Open Data Path
	Spooling
	Output Spooling

	SRTSEQ/ALTSEQ in an RPG Program versus a DDS File

	Chapter 17. Accessing Database Files
	Database Files
	Physical Files and Logical Files
	Data Files and Source Files

	Using Externally Described Disk Files
	Record Format Specifications
	Access Path
	Valid Keys for a Record or File
	Valid Search Arguments
	Referring to a Partial Key

	Record Blocking and Unblocking

	Using Program-Described Disk Files
	Indexed File
	Valid Search Arguments

	Sequential File
	Record Address File
	Limits Records
	Relative Record Numbers

	Methods for Processing Disk Files
	Consecutive Processing
	Sequential-by-Key Processing
	Examples of Sequential-by-Key Processing

	Random-by-Key Processing
	Example of Random-by-Key Processing

	Sequential-within-Limits Processing
	Examples of Sequential-within-Limits Processing

	Relative-Record-Number Processing

	Valid File Operations
	Using Commitment Control
	Starting and Ending Commitment Control
	Commitment Control Locks
	Commitment Control Scoping

	Specifying Files for Commitment Control
	Using the COMMIT Operation
	Example of Using Commitment Control

	Specifying Conditional Commitment Control
	Commitment Control in the Program Cycle

	Unexpected Results Using Keyed Files
	DDM Files
	Using Pre-V3R1 DDM Files

	Chapter 18. Accessing Externally Attached Devices
	Types of Device Files
	Accessing Printer Devices
	Specifying PRINTER Files
	Handling Page Overflow
	Using Overflow Indicators in Program-Described Files
	Example of Printing Headings on Every Page
	Example of Printing a Field on Every Page

	Using the Fetch-Overflow Routine in Program-Described Files
	Specifying Fetch Overflow
	Example of Specifying Fetch Overflow

	Changing Forms Control Information in a Program-Described File
	Example of Changing Forms Control Information

	Accessing Tape Devices
	Accessing Display Devices
	Using Sequential Files
	Specifying a Sequential File
	Example of Specifying a Sequential File

	Using SPECIAL Files
	Example of Using a Special File

	Chapter 19. Using WORKSTN Files
	Intersystem Communications Function
	Using Externally Described WORKSTN Files
	Specifying Function Key Indicators on Display Device Files
	Specifying Command Keys on Display Device Files
	Processing an Externally Described WORKSTN File
	Using Subfiles
	Use of Subfiles

	Using Program-Described WORKSTN Files
	Using a Program-Described WORKSTN File with a Format Name
	Output Specifications
	Input Specifications
	Calculation Specifications
	Additional Considerations

	Using a Program-Described WORKSTN File without a Format Name
	Input File
	Output File
	Combined File

	Valid WORKSTN File Operations
	EXFMT Operation
	READ Operation
	WRITE Operation

	Multiple-Device Files

	Chapter 20. Example of an Interactive Application
	Database Physical File
	Main Menu Inquiry
	MAINMENU: DDS for a Display Device File
	CUSMAIN: RPG Source

	File Maintenance
	CUSMSTL1: DDS for a Logical File
	MNTMENU: DDS for a Display Device File
	CUSMNT: RPG Source

	Search by Zip Code
	CUSMSTL2: DDS for a Logical File
	SZIPMENU: DDS for a Display Device File
	SCHZIP: RPG Source

	Search and Inquiry by Name
	CUSMSTL3: DDS for a Logical File
	SNAMMENU: DDS for a Display Device File
	SCHNAM: RPG Source

	Part 5. Appendixes
	Appendix A. Behavioral Differences Between OPM RPG/400 and ILE RPG for AS/400
	Compiling
	Running
	Debugging and Exception Handling
	I/O
	DBCS Data in Character Fields

	Appendix B. Using the RPG III to RPG IV Conversion Aid
	Conversion Overview
	File Considerations
	Source Member Types
	File Record Length
	File and Member Names

	The Log File
	Conversion Aid Tool Requirements
	What the Conversion Aid Won't Do

	Converting Your Source
	The CVTRPGSRC Command
	Converting a Member Using the Defaults
	Converting All Members in a File
	Converting Some Members in a File
	Performing a Trial Conversion
	Obtaining Conversion Reports
	Converting Auto Report Source Members
	Converting Source Members with Embedded SQL
	Inserting Specification Templates
	Converting Source from a Data File

	Example of Source Conversion
	Analyzing Your Conversion
	Using the Conversion Report
	Using the Log File

	Resolving Conversion Problems
	Compilation Errors in Existing RPG III Code
	Unsupported RPG III Features
	Use of the /COPY Compiler Directive
	Merging Problems
	Context-Sensitive Problems

	Use of Externally Described Data Structures
	Merging an Array with an Externally Described DS Subfield
	Renaming and Initializing an Externally Described DS Subfield

	Run-time Differences

	Appendix C. The Create Commands
	Using CL Commands
	How to Interpret Syntax Diagrams

	CRTBNDRPG Command
	Description of the CRTBNDRPG Command

	CRTRPGMOD Command
	Description of the CRTRPGMOD command

	Appendix D. Compiler Listings
	Reading a Compiler Listing
	Prologue
	Source Section
	Additional Diagnostic Messages
	Output Buffer Positions
	/COPY Member Table
	Compile-Time Data
	Key Field Information
	Cross-Reference Table
	EVAL-CORR Summary
	External References List
	Message Summary
	Final Summary
	Code Generation and Binding Errors

	Notices
	Programming Interface Information
	Trademarks and Service Marks

	Bibliography
	Index

