WebSphere Development Studio
ILE RPG Programmer’s Guide

Version 5

SC09-2507-06

WebSphere Development Studio
ILE RPG Programmer’s Guide

Version 5

SC09-2507-06

Note!
Before using this information and the product it supports, be sure to read the general information
under [“Notices” on page 493 |

Seventh Edition (February 2006)

This edition applies to Version 5, Release 4, Modification Level 0, of IBM WebSphere® Development Studio for
iSeries™" (5722-WDS), ILE RPG compiler, and to all subsequent releases and modifications until otherwise indicated
in new editions. This edition applies only to reduced instruction set computer (RISC) systems.

This edition replaces SC09-2507-05.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address that is given below.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory
Information Development

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

You can also send your comments by FAX (attention: RCF Coordinator), or you can send your comments
electronically to IBM. See “How to Send Your Comments” for a description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About ThisGuide X

Who Should Use This Guide.ix
Prerequisite and Related Informationix
How to Send Your CommentsX
What's New . . A
Changes to this Gulde Smce V5R2 and V5R3 .o.ooxi
What's New this Release?.xi
What's New in V5R3?.XV
What's New in V5R2?Xxx
What's New in V5R1? Xxxii
What's New in V4R4? xxvii
What's New in V4R2?xxxi
What's New in V3R7? . A @ 4 4
What's New in V3R6/ V3R27 L. xxxix

Part 1. ILE RPG Introduction. 1

Chapter 1. Overview of the RPG IV
Programming Language.
RPG 1V Specifications
Cycle Programming .
Subprocedure logic .
Indicators .
Operation Codes .
Example of an ILE RPG Program o
Using the i5/0S System12
Interacting with the System
WebSphere Development Studio for 1Ser1es .. .13
WebSphere Development Studio Client for iSeries 14

NN Ul Ul W

Chapter 2. RPG Programmlng inlLE. . 17

Program Creation . . . o 17
Program Management.19
Program Call.19
Source Debugging20
Bindable APIs 020
Multithreaded Apphcatlons A |

Chapter 3. Program Creation Strategies 23

Strategy 1: OPM-Compatible Application23
Method.23
Example of OPM Compatlble Program23
Related Information 24

Strategy 2: ILE Program Using CRTBNDRPG . .25
Method. . . .25
Example of ILE Program Usmg CRTBNDRPG .25
Related Information . . .27

Strategy 3: ILE Application Usmg CRTRPGMOD .27
Method.28
Single-Language ILE Apphcatlon Scenarlo .. .28
Mixed-Language ILE Application Scenario . . . 29
Advanced Application Scenario.30
Related Information31

A Strategy to Avoid.31

© Copyright IBM Corp. 1994, 2006

Chapter 4. Creating an Application
Using Multiple Procedures 33

A Multiple Procedures Module — Overview . . .33
Main Procedures and Subprocedures33
Prototyped Calls. L34

Example of Module with Multlple Procedures. . .36
The Entire ARRSRPT Program40

Coding Considerations44
General Considerations45
Program Creation . . .)
Main Procedure Con31derat10ns B)
Subprocedure Considerations46

For Further Information46
Main Procedures46
Subprocedures46
Prototyped Call47

Part 2. Creating and Running an ILE
RPG Application.49

Chapter 5. Using Source Files. 51

Using Source Physical Files51
Creating a Library and Source Phys1ca1 Flle . .51
Using the Source Entry Utility (SEU)52
Using SQL Statements.55

Using IFS Source Files.56
Include files56

Chapter 6. Creating a Program with the
CRTBNDRPG Command 59

Using the CRTBNDRPG Command59
Creating a Program for Source Debugging . . . 61
Creating a Program with Static Binding 62
Creating an OPM-Compatible Program Ob]ect . 63

Using a Compiler Listing.65
Obtaining a Compiler Listing65
Customizing a Compiler Listing66
Correcting Compilation Errors68
Correctmg Run-time Errors70

Using a Compiler Listing for Mamtenance ... 7

Accessing the RETURNCODE Data Area71

Chapter 7. Creating a Program with the
CRTRPGMOD and CRTPGM
Commands.75

Creating a Module Object75
Using the CRTRPGMOD Command ()
Creating a Module for Source Debugging . . . 80
Additional Examples . . . L. .82
Behavior of Bound ILE RPG Modules R . A
Related CL Commands82

Binding Modules into a Program82
Using the CRTPGM Command84

iii

Additional Examples . . 86
Related CL Commands . 86
Using a Binder Listing. . 87
Changing a Module or Program . 88
Using the UPDPGM Command. . 88
Changing the Optimization Level . . 89
Removing Observability . . 89
Reducing an Object’s Size . 90
Chapter 8. Creating a Service Program 91
Service Program Overview . . .91
Strategies for Creating Service Programs . .92
Creating a Service Program Using CRTSRVPGM .92
Changing A Service Program . .93
Related CL commands. . 93
Sample Service Program . . 93
Creating the Service Program .97
Binding to a Program . .o . 98
Updating the Service Program . .99
Sample Binder Listing . 100
Chapter 9. Running a Program . . 103
Running a Program Using the CL CALL Command 103
Passing Parameters using the CL CALL
Command . . . 103
Running a Program From a Menu-Drrven
Application . . 105
Running a Program Usmg a User Created
Command . 108
Replying to Run- T1me Inqu1ry Messages . 108
Ending an ILE Program . . . 109
Managing Activation Groups . . 110
Specifying an Activation Group . 110
Running in the OPM Default Act1vatlon Group 111
Maintaining OPM RPG/400 and ILE RPG
Program Compatibility .o 111
Deleting an Activation Group . 112
Reclaim Resources Command . . . 112
Managing Dynamically-Allocated Storage . 113
Managing the Default Heap Usmg RPG
Operations . . . 115
Heap Storage Problems . . 120
Managing Your Own Heap Usmg ILE Bmdable
APIs . N A |
Chapter 10. Calling Programs and
Procedures . 129
Program /Procedure Call Overvrew . . 129
Calling Programs . . 130
Calling Procedures . 130
The Call Stack . . 131
Recursive Calls. . 131
Parameter-Passing Con51derat1ons . 133
Using a Prototyped Call. . 134
Using the CALLP Operation . 135
Calling within an Expression . . 135
Examples of Free-Form Call . 136
Passing Prototyped Parameters . 136
Parameter Passing Styles . 136
Using Operational Descriptors. . 139

iV ILE RPG Programmer’s Guide

HH H* H

Omitting Parameters . . 140
Checking for the Number of Passed Parameters 142
Passing Less Data Than Required . 147
Order of Evaluation . . . 148
Interlanguage Calls . . 148
Interlanguage Calling Cons1deratrons . 149
Using the Fixed-Form Call Operations . . 150
Examples of CALL and CALLB .. 151
Passing Parameters Using PARM and PLIST . . 151
Returning from a Called Program or Procedure . . 153
Returning from a Main Procedure . 153
Returning from a Subprocedure . . 155
Returning using ILE Bindable APIs . . 156
Using Bindable APIs . . . 156
Examples of Using Bindable APIs . 157
Calling a Graphics Routine . . 158
Calling Special Routines. . 158
Multithreading Considerations . 158
How to Share Data Across More Than One
Module . 159
How to Avoid Deadlock Between Modules . 160
Chapter 11. RPG and the eBusiness
World. . 163
RPG and XML . . 163
Processing XML Documents . 163
RPG and MQSeries . 169
RPG and Java . . 169
Introduction to Java and RPG . 169
Calling Java Methods from ILE RPG . 173
Calling methods in your own classes . 179
Controlling how the Java Virtual Machine is set
up . . . 180
RPG Nat1ve Methods . . 181
Coding Errors when calling Java from RPG . 184
Additional RPG Coding for Using Java. . 186
Additional Considerations . . . 197
Advanced JNI Coding . 198
Calling RPG programs from]ava usmg PCML 202
Part 3. Debugging and Except|on
Handling . . 205
Chapter 12. Debugging Programs . 207
The ILE Source Debugger . . 208
Debug Commands . 208
Preparing a Program for Debuggmg . 210
Creating a Root Source View . . 211
Creating a COPY Source View. . 212
Creating a Listing View . . 213
Creating a Statement View . . 213
Starting the ILE Source Debugger . 214
STRDBG Example . . . 215
Setting Debug Options . . 216
Adding/Removing Programs from a Debug
Session . 216
Example of Addmg a Serv1ce Program to a
Debug Session . . 217

Example of Removing ILE Programs from a

Debug Session . . 217
Viewing the Program Source . 218
Viewing a Different Module . 219
Changing the View of a Module . . 220
Setting and Removing Breakpoints . . 221
Setting and Removing Unconditional]ob
Breakpoints . . 222
Setting and Removmg Unconditional Thread
Breakpoints . . 224
Setting and Removmg Conditional]ob
Breakpoints . . . 225
National Language Sort Sequence (NLSS) . 227
Setting and Removing Job Breakpoints Using
Statement Numbers . . 228
Setting and Removing Conditlonal Thread
Breakpoints . . . 230
Removing All Job and Thread Breakpomts . 231
Setting and Removing Watch Conditions . . 231
Characteristics of Watches . . 231
Setting Watch Conditions . 232
Displaying Active Watches . . 234
Removing Watch Conditions . . 234
Example of Setting a Watch Condition . . 235
Stepping Through the Program Object . . 236
Stepping Over Call Statements . 237
Stepping Into Call Statements . . 238
Displaying Data and Expressions. . 241
Unexpected Results when Evaluating Vanables 243
Displaying the Contents of an Array . 244
Displaying the Contents of a Table . . 244
Displaying Data Structures . . 245
Displaying Indicators. . . 246
Displaying Fields as Hexadec1rnal Values . . 247
Displaying Fields in Character Format . . 247
Displaying UCS-2 Data . . 248
Displaying Variable-Length Fields . 248
Displaying Data Addressed by Pointers . 248
Evaluating Based Variables . . . 248
Displaying Null-Capable Fields . 249
Using Debug Built-In Functions . . 250
Debugging an XML-SAX Handling Procedure 252
Changing the Value of Fields . oL L2532
Displaying Attributes of a Field . . 254
Equating a Name with a Field, Expression, or
Command . 255
Source Debug Natlonal Language Support for ILE
RPG .. 256
Sample Source for Debug Examples . 256
Chapter 13. Handling Exceptlons . 263
Exception Handling Overview. . 263
ILE RPG Exception Handling . . 266
Using Exception Handlers . . 268
Exception Handler Priority . . 269
Nested Exceptions. . 269
Unhandled Exceptions . 269
Optimization Considerations . . 271
Using RPG-Specific Handlers . . 272
Specifying Error Indicators or the ’E’ Operation
Code Extender . . 272

Using a MONITOR Group . . 273
Using an Error Subroutine . . 275
Specifying a Return Point in the ENDSR
Operation o . 283
ILE Condition I—Iandlers . 284
Using a Condition Handler. . 284
Using Cancel Handlers . . .290
Problems when ILE CL Monitors for Notlfy and
Status Messages o .. .293
Chapter 14. Obtaining a Dump . . 297
Obtaining an ILE RPG Formatted Dump . . 297
Using the DUMP Operation Code . 298
Example of a Formatted Dump . 298
Part 4. Working with Files and
Devices . 305
Chapter 15. Defining Files . . . 307
Associating Files with Input/Output Devices. . 307
Naming Files . e . 309
Types of File Descrlptions . . 309
Using Files with External- Description as
Program-Described . . 310
Example of Some Typical Relatlonships between
Programs and Files . . 310
Defining Externally Described Files . .31
Renaming Record-Format Names. . 311
Renaming Field Names . . 312
Ignoring Record Formats . 312
Using Input Specifications to Modify an
External Description . . 313
Using Output Specifications . 315
Level Checking. . . 316
Defining Program-Described Files . 317
Data Management Operations and ILE RPG I/ O
Operations < 1 4
Chapter 16. General File
Considerations. . . 319
Overriding and Redirecting File Input and Output 319
Example of Redirecting File Input and Output 320
File Locking . .o . . 321
Record Locking. . . 322
Sharing an Open Data Path . 323
Spooling . . .o . 324
Output Spoohng . 325
SRTSEQ/ALTSEQ in an RPG Program versus a
DDS File . e . 325
Chapter 17. Accessing Database Files 327
Database Files . . 327
Physical Files and Logical Flles . 327
Data Files and Source Files . . . 327
Using Externally Described Disk Files . . 328
Record Format Specifications . . 328
Access Path . . . 328
Valid Keys for a Record or Flle . 331
Record Blocking and Unblocking . . 333

Contents V

Using Program-Described Disk Files. . 334
Indexed File. . 334
Sequential File . . 336
Record Address File . . 337

Methods for Processing Disk Flles . 338
Consecutive Processing . . 338
Sequential-by-Key Processmg . 339
Random-by-Key Processing. . . 344
Sequential-within-Limits Processing . . 346
Relative-Record-Number Processing . . 348

Valid File Operations . . 349

Using Commitment Control .o . 351
Starting and Ending Commitment Control . 352
Specifying Files for Commitment Control . . 354
Using the COMMIT Operation . 354
Specifying Conditional Commitment Control 356
Commitment Control in the Program Cycle . 356

Unexpected Results Using Keyed Files . . 357

DDM Files R . 357
Using Pre-V3R1 DDM Flles . 358

Chapter 18. Accessing Externally

Attached Devices. . 359

Types of Device Files . . 359

Accessing Printer Devices . . 359
Specifying PRINTER Files . . 360
Handling Page Overflow . 360
Using the Fetch-Overflow Routine in
Program-Described Files. . . . 363
Changing Forms Control Informatlon ina
Program-Described File . . 366

Accessing Tape Devices . . 368

Accessing Display Devices . . 368

Using Sequential Files . . 368
Specifying a Sequential File. . 368

Using SPECIAL Files . . . 369
Example of Using a Special F1le . . 371

Chapter 19. Using WORKSTN Files 373

Intersystem Communications Function . . 373

Using Externally Described WORKSTN Files . . 373
Specifying Function Key Indicators on Display
Device Files . . 375
Specifying Command Keys on Dlsplay Dev1ce
Files . . 376
Processing an Externally Descnbed WORKSTN
File. G V4 <)
Using Subfiles . . 377

Using Program-Described WORKSTN Flles . 380
Using a Program-Described WORKSTN File
with a Format Name . . 381
Using a Program-Described WORKSTN Flle
without a Format Name. L. . 382

Valid WORKSTN File Operations. . 383
EXFMT Operation . . . 383
READ Operation . . 384
WRITE Operation . . 384

Multiple-Device Files . . 384

Vi ILE RPG Programmer’s Guide

Chapter 20. Example of an Interactive
Application387

Database Physical File387
Main Menu Inquiry . . . 388
MAINMENU: DDS for a Dlsplay Dev1ce Flle 388
CUSMAIN: RPG Source.39
File Maintenance . . N |
CUSMSTL1: DDS for a Loglcal F1le B
MNTMENU: DDS for a Dlsplay Device File . . 393
CUSMNT: RPG Source 3%
Search by Zip Code 402
CUSMSTL2: DDS for a Loglcal F1le 403
SZIPMENU: DDS for a D1splay Device File . . 404
SCHZIP: RPG Source. 406
Search and Inquiry by Name410
CUSMSTL3: DDS for a Logical File 411
SNAMMENU: DDS for a D1sp1ay Device File 412
SCHNAM: RPG Source 415

Part 5. Appendixes 421

Appendix A. Behavioral Differences
Between OPM RPG/400 and ILE RPG
forAS/400.423

Compiling423
Running 428
Debugging and Exceptlon Handhng 424
1/0.425
DBCS Data in Character Flelds L. 427

Appendix B. Using the RPG lll to RPG
IV Conversion Aid 429

Conversion Overview429
File Considerations429
The Log File. . . . X
Conversion Aid Tool Requlrements X
What the Conversion Aid Won't Do. 431

Converting Your Source432
The CVTRPGSRC Command433
Converting a Member Using the Defaults .. 437
Converting All Members in a File 437
Converting Some Members in a File. 438
Performing a Trial Conversion. 438
Obtaining Conversion Reports. 439
Converting Auto Report Source Members . . . 439
Converting Source Members with Embedded
sQL)
Inserting Spec1f1cat10n Templates Lo 440
Converting Source from a Data File 440

Example of Source Conversion 440

Analyzing Your Conversion443
Using the Conversion Report 443
Using the Log File.445

Resolving Conversion Problems 447
Compilation Errors in Existing RPG III Code 448
Unsupported RPG III Features. 448
Use of the /COPY Compiler Directive 448
Use of Externally Described Data Structures . . 451
Run-time Differences. 453

Appendix C. The Create Commands
Using CL Commands. .

How to Interpret Syntax Diagrams .
CRTBNDRPG Command

Description of the CRTBNDRPG Command .

CRTRPGMOD Command

Description of the CRTRPGMOD command .

Appendix D. Compiler Listings .
Reading a Compiler Llstmg
Prologue . .
Source Section . .
Additional Diagnostic Messages .
Output Buffer Positions .
/COPY Member Table
Compile-Time Data

455

. 455
. 455
. 456
. 459
. 473
. 475

. 477
. 478
. 478
. 480
. 485
. 486
. 486
. 486

Key Field Information
Cross-Reference Table

EVAL-CORR Summary .

External References List .

Message Summary

Final Summary .

Code Generation and Bmdmg Errors

Notices . . B
Programming Interface Informatlon
Trademarks and Service Marks

Bibliography.

Index .

. 487
. 488
. 489
. 490
. 491
. 491
. 492

. 493

. 494
. 494

. 497

. 499

Contents

vii

viii ILE RPG Programmer’s Guide

About This Guide

This guide provides information that shows how to use the ILE RPG compiler (ILE
RPG) in the Integrated Language Environment. ILE RPG is an implementation of
the RPG IV language on the iSeries server with the IBM i5/0S (i5/0S) operating
system. Use this guide to create and run ILE applications from RPG IV source.

This guide shows how to:

* Enter RPG IV source statements
* Create modules

* Bind modules

* Run an ILE program

 Call other objects

* Debug an ILE program

* Handle exceptions

* Define and process files

* Access devices

¢ Convert programs from an RPG III format to RPG IV format
* Read compiler listings

Who Should Use This Guide

This guide is for programmers who are familiar with the RPG programming
language, but who want to learn how to use it in the ILE framework. This guide is
also for programmers who want to convert programs from the RPG III to the RPG
IV format. It is designed to guide you in the use of the ILE RPG compiler on the
iSeries system.

Though this guide shows how to use the RPG IV in an ILE framework, it does not
provide detailed information on RPG IV specifications and operations. For a
detailed description of the language, see the WebSphere Development Studio: ILE
RPG Reference, SC09-2508-06.

Before using this guide, you should:

* Know how to use applicable iSeries server menus and displays, or Control
Language (CL) commands.

* Have the appropriate authority to the CL commands and objects described here.

* Have a firm understanding of ILE as described in detail in the ILE Concepts,
SC41-5606-07.

Prerequisite and Related Information

Use the iSeries Information Center as your starting point for looking up iSeries and
AS/400e technical information. You can access the Information Center in two ways:

* From the following Web site:
http://www.ibm.com/eserver/iseries/infocenter
* From CD-ROMs that ship with your Operating System /400 order:

© Copyright IBM Corp. 1994, 2006 ix

What’s New

iSeries Information Center, SK3T-4091-04. This package also includes the PDF
versions of iSeries manuals, iSeries Information Center: Supplemental Manuals,
SK3T-4092-01, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as CL
commands, system application programming interfaces (APIs), logical partitions,
clustering, Java , TCP/IP, Web serving, and secured networks. It also includes links
to related IBM Redbooks and Internet links to other IBM Web sites such as the
Technical Studio and the IBM home page.

The manuals that are most relevant to the ILE RPG compiler are listed in the
[“Bibliography” on page 497

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and
high-quality information. IBM welcomes any comments about this book or any
other iSeries documentation.

* If you prefer to send comments by mail, use the the following address:
IBM Canada Ltd. Laboratory
Information Development

8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

If you are mailing a readers” comment form from a country other than the
United States, you can give the form to the local IBM branch office or IBM
representative for postage-paid mailing.

* If you prefer to send comments by FAX, use the following number:
1-845-491-7727

* If you prefer to send comments electronically, use one of these e-mail addresses:
- Comments on books:
toreador@ca.ibm.com

— Comments on the Information Center:
RCHINFOC®@us.ibm.com
Be sure to include the following:
* The name of the book.
* The publication number of the book.
* The page number or topic to which your comment applies.

What's New

There have been several releases of RPG IV since the first V3R1 release. The
following is a list of enhancements made for each release since V3R1 up to the
current release:

* [“What’s New this Release?” on page xi|
* ["What's New in V5R3?” on page xv|

+ [“What's New in V5R2?” on page xx|

* [“What's New in V5R1?” on page xxii|

* [“What's New in V4R4?” on page xxviil
* [“What's New in V4R2?” on page xxxil

* [“What's New in V3R7?” on page xxxv|

X ILE RPG Programmer’s Guide

What’s New

+ [“What's New in V3R6/V3R2?” on page xxxix|

You can use this section to link to and learn about new RPG IV functions.

Note: The information for this product is up-to-date with the V5R4 release of RPG
IV. If you are using a previous release of the compiler, you will need to
determine what functions are supported on your system. For example, if
you are using a V5R1 system, the functions new to the V5R4 release will not
be supported.

Changes to this Guide Since V5R2 and V5R3

This V5R4 guide, WebSphere Development Studio: ILE RPG Programmer’s Guide,
5C09-2507-06, differs in many places from the V5R3 guide, SC09-2507-05, and the
V5R2 guide, SC09-2507-04. Most of the changes are related to the enhancements
that have been made since previous releases; others reflect minor technical
corrections. To assist you in using this manual, technical changes and
enhancements are noted with a symbol in the margin:.

* Enhancements for V5R4 are marked with a vertical bar (I).

* Enhancements for V5R3 are marked with a pound sign (#).

Note: Many of the examples included in this guide have been modified to
"free-form”, rather than "traditional” coding style. These changed examples
have not been marked. See WebSphere Development Studio: ILE RPG Reference
for detailed explanation of the differences between the two coding styles.

What’s New this Release?

The following list describes the enhancements made to ILE RPG in V5R4:

New operation code EVAL-CORR
EVAL-CORR{(EH)} dsI = ds2

New operation code EVAL-CORR assigns data and null-indicators from the
subfields of the source data structure to the subfields of the target data
structure. The subfields that are assigned are the subfields that have the same
name and compatible data type in both data structures.

For example, if data structure DS1 has character subfields A, B, and C, and
data structure DS2 has character subfields B, C, and D, statement EVAL-CORR
DS1 = DS2; will assign data from subfields DS2.B and DS2.C to DS1.B and
DS1.C. Null-capable subfields in the target data structure that are affected by
the EVAL-CORR operation will also have their null-indicators assigned from
the null-indicators of the source data structure’s subfields, or set to *OFF, if the
source subfield is not null-capable.

// DS1 subfields DS2 subfields
// sl character s1 packed

// s2 character s2 character
// s3 numeric

// s4 date s4 date

// s5 character

EVAL-CORR dsl = ds2;

// This EVAL-CORR operation is equivalent to the following EVAL operations
// EVAL dsl.s2 = ds2.s2

// EVAL dsl.s4 = ds2.s4

// Other subfields either appear in only one data structure (S3 and S5)

// or have incompatible types (S1).

About This Guide X1

What’s New

EVAL-CORR makes it easier to use result data structures for I/O operations to
externally-described files and record formats, allowing the automatic transfer
of data between the data structures of different record formats, when the
record formats have differences in layout or minor differences in the types of
the subfields.

New prototyped parameter option OPTIONS(*NULLIND)

When OPTIONS(*NULLIND) is specified for a parameter, the null-byte map is
passed with the parameter, giving the called procedure direct access to the
null-byte map of the caller’s parameter.

New builtin function % XML

%XML (xmldocument { : options })

The %XML builtin function describes an XML document and specifies options
to control how the document should be parsed. The xmldocument parameter
can be a character or UCS-2 expression, and the value may be an XML
document or the name of an IFS file containing an XML document. If the value
of the xmldocument parameter has the name of a file, the "doc=file” option
must be specified.

New builtin function %HANDLER

%HANDLER (handlingProcedure : communicationArea)

%HANDLER is used to identify a procedure to handle an event or a series of
events. %9HANDLER does not return a value, and it can only be specified as
the first operand of XML-SAX and XML-INTO.

The first operand, handlingProcedure, specifies the prototype of the handling
procedure. The return value and parameters specified by the prototype must
match the parameters required for the handling procedure; the requirements
are determined by the operation that %HANDLER is specified for.

The second operand, communicationArea, specifies a variable to be passed as a
parameter on every call to the handling procedure. The operand must be an
exact match for the first prototyped parameter of the handling procedure,
according to the same rules that are used for checking prototyped parameters
passed by reference. The communication-area parameter can be any type,
including arrays and data structures.

New operation code XML-SAX

XML-SAX{ (e) } %HANDLER(eventHandler : commArea) %XML(xmldocument { : saxOptions });

XML-SAX initiates a SAX parse for the XML document specified by the %XML
builtin function. The XML-SAX operation begins by calling an XML parser
which begins to parse the document. When the parser discovers an event such
as finding the start of an element, finding an attribute name, finding the end of
an element etc., the parser calls the eventHandler with parameters describing
the event. The commArea operand is a variable that is passed as a parameter to
the eventHandler providing a way for the XML-SAX operation code to
communicate with the handling procedure. When the eventHandler returns, the
parser continues to parse until it finds the next event and calls the eventHandler
again.

New operation code XML-INTO

XML-INTO{ (EH) } variable %XML(xmlDoc { : options });
XML-INTO{ (EH) } %HANDLER(handler : commArea) %XML(xmlDoc { : options });

xii ILE RPG Programmer’s Guide

What’s New

XML-INTO reads the data from an XML document in one of two ways:
* directly into a variable

¢ gradually into an array parameter that it passes to the procedure specified
by %HANDLER.

Various options may be specified to control the operation.

The first operand specifies the target of the parsed data. It can contain a
variable name or the % HANDLER built-in function.

The second operand contains the %XML builtin function specifying the source
of the XML document and any options to control how the document is parsed.
It can contain XML data or it can contain the location of the XML data. The
doc option is used to indicate what this operand specifies.

// Data structure "copyInfo" has two subfields, "from"

// and "to". Each of these subfields has two subfields

// "name" and "1ib".

// File cpyA.xml contains the following XML document

// <copyinfo>

// <from><name>MASTFILE</name><1ib>CUSTLIB</11ib></from>
// <to><name>MYFILE</name><1ib>*LIBL</1ib>

// <copyinfo>

xml-into copyInfo %XML('cpyA.xm1' : 'doc=file');

// After the XML-INTO operation, the following

// copyInfo.from .name = 'MASTFILE ' .1ib

= "CUSTLIB !
// copyInfo.to .name = 'MYFILE 'L lib

"«LIBL !

Use the PREFIX keyword to remove characters from the beginning of field
names

PREFIX('' : number of characters)

When an empty character literal (two single quotes specified with no
intervening characters) is specified as the first parameter of the PREFIX
keyword for File and Definition specifications, the specified number of
characters is removed from the field names. For example if a file has fields
XRNAME, XRIDNUM, and XRAMOUNT, specifying PREFIX('':2)on the File
specification will cause the internal field names to be NAME, IDNUM, and
AMOUNT.

If you have two files whose subfields have the same names other than a
file-specific prefix, you can use this feature to remove the prefix from the
names of the subfields of externally-described data structures defined from
those files. This would enable you to use EVAL-CORR to assign the
same-named subfields from one data structure to the other. For example, if file
FILE1 has a field FINAME and file FILE2 has a field F2NAME, and
PREFIX('':2) is specified for externally-described data structures DS1 for FILE1
and DS2 for FILE2, then the subfields FINAME and F2NAME will both
become NAME. An EVAL-CORR operation between data structures DS1 and
DS2 will assign the NAME subfield.

New values for the DEBUG keyword

DEBUG { (*INPUT *DUMP *XMLSAX *NO *YES) }
The DEBUG keyword determines what debugging aids are generated into the

module. *NO and *YES are existing values. *INPUT, *DUMP and *XMLSAX
provide more granularity than *YES.

About This Guide Xiii

What’s New

*INPUT
Fields that appear only on input specifications are read into the program
fields during input operations.

*DUMP
DUMP operations without the (A) extender are performed.

*XMLSAX
An array of SAX event names is generated into the module to be used
while debugging a SAX event handler.

*NO
Indicates that no debugging aids are to be generated into the module.
Specifying DEBUG(*NO) is the same as omitting the DEBUG keyword.

*YES
This value is kept for compatibility purposes. Specifying DEBUG(*YES) is
the same as specifying DEBUG without parameters, or DEBUG(*INPUT :
*DUMP).

Syntax-checking for free-form calculations

In SEU, free-form statements are now checked for correct syntax.

Improved debugging support for null-capable subfields of a qualified data
structure

When debugging qualified data structures with null-capable subfields, the
null-indicators are now organized as a similar data structure with an indicator
subfield for every null-capable subfield. The name of the data structure is
_QRNU_NULL_data_structure_name, for example _QRNU_NULL_MYDS. If a
subfield of the data structure is itself a data structure with null-capable
subfields, the null- indicator data structure will similarly have a data structure
subfield with indicator subfields. For example, if data structure DS1 has
null-capable subfields DS1.FLD1, DS1.FLD2, and DS1.SUB.FLD3, you can
display all the null-indicators in the entire data structure using the debug
instruction.
===> EVAL _QRNU_NULL_DS
> EVAL _QRNU_NULL_DS1

_QRNU_NULL_DS1.FLDL = '1'

“QRNU_NULL_DS1.FLD2 = '0"

_QRNU_NULL_DS1.SUB.FLD3 = 'I'
===> EVAL _QRNU_NULL DS.FLD2
QRNU_NULL_DS1.FLD2 = '0'
> EVAL _QRNU_NULL _DS.FLD2 = '1'
> EVAL DSARR(1).FLD2
DSARR(1).FLD2 = 'abcde’

===> EVAL _QRNU_NULL_DSARR(1).FLD2

_QRNU_NULL_DSARR(1) .FLD2 = '@

Change to end-of-file behaviour with shared files

If a module performs a keyed sequential input operation to a shared file and it
results in an EOF condition, and a different module sets the file cursor using a
positioning operation such as SETLL, a subsequent sequential input operation

by the first module may be successfully done. Before this change, the first RPG
module ignored the fact that the other module had repositioned the shared file.

This change in behaviour is available with PTFs for releases VSR2MO (S113932)
and V5R3MO (SI14185).

Xiv ILE RPG Programmer’s Guide

I Table 1. Changed Language Elements Since V5R3

What’s New

I Language Unit

Element

Description

Control specification
keywords

DEBUG(*INPUT | *DUMP
*XMLSAX | *NO | *YES)

New parameters *INPUT,
*DUMP and *XMLSAX give
more options for debugging
aids.

File specification keywords

PREFIX('':2)

An empty literal may be
specified as the first
parameter of the PREFIX
keyword, allowing characters
to be removed from the
beginning of names.

| Definition specification
I keywords

OPTIONS(*NULLIND)

Indicates that the null
indicator is passed with the
parameter.

PREFIX('':2)

An empty literal may be
specified as the first
parameter of the PREFIX
keyword, allowing characters
to be removed from the
beginning of names.

| Table 2. New Language Elements Since V5R3

I Language Unit

| Built-in functions

Element Description
%HANDLER (prototype: Specifies a handling
parameter) procedure for an event.

%XML(document{:options})

Specifies an XML document
and options to control the
way it is parsed.

Operation codes

EVAL-CORR

Assigns data and
null-indicators from the
subfields of the source data
structure to the subfields of
the target data structure.

XML-INTO

Reads the data from an XML
document directly into a
program variable.

XML-SAX

Initiates a SAX parse of an
XML document.

What's New in V5R3?

sub-array as a value.

elements.

HoHF O H HH OHFHF OH FH OH

array

The following list describes the enhancements made to ILE RPG in V5R3:
* New builtin function %SUBARR:
New builtin function %SUBARR allows assignment to a sub-array or returning a

Along with the existing %LOOKUP builtin function, this enhancements enables
the implementation of dynamically sized arrays with a varying number of

%SUBARR(array : start) specifies array elements array(start) to the end of the

About This Guide XV

HHFH OH O FHFHHHHFH OH HHFH OH OHFH OHH OHHHHFHHH OHH HHHFHH OHE OHEHHF OH OHH OH HHHFHFHFHFHHFH K K H

What’s New

%SUBARR(array : start : num) specifies array elements array(start) to array(start
+ num - 1)

Example:

// Copy part of an array to another array:
resultArr = %subarr(arrayl:start:num);

// Copy part of an array to part of another array:
%subarr(Arrayl:x:y) = %subarr(Array2:m:n);

// Sort part of an array

sorta %subarr(Array3:x:y);

// Sum part of an array
sum = %xfoot(%subarr(Arrayd:x:y));
* The SORTA operation code is enhanced to allow sorting of partial arrays.

When %SUBARR is specified in factor 2, the sort only affects the partial array
indicated by the %SUBARR builtin function.

* Direct conversion of date/time/timestamp to numeric, using %DEC:

%DEC is enhanced to allow the first parameter to be a date, time or timestamp,
and the optional second parameter to specify the format of the resulting numeric

value.

Example:

D numDdMmYy s 6p 0

D date s d datfmt (*jul)

date = D'2003-08-21";
numDdMmYy = %dec(date : *dmy);
// now numDdMmYy = 210803
* Control specification CCSID(*CHAR : *JOBRUN) for correct conversion of
character data at runtime:

The Control specification CCSID keyword is enhanced to allow a first parameter
of *CHAR. When the first parameter is *CHAR, the second parameter must be
*JOBRUN. CCSID(*CHAR : *JOBRUN) controls the way character data is
converted to UCS-2 at runtime. When CCSID(*CHAR:*JOBRUN) is specified,
character data will be assumed to be in the job CCSID; when CCSID(*CHAR :
*JOBRUN) is not specified, character data will be assumed to be in the
mixed-byte CCSID related to the job CCSID.

* Second parameter for %TRIM, %TRIMR and %TRIML indicating what
characters to trim:

%TRIM is enhanced to allow an optional second parameter giving the list of

characters to be trimmed.

Example:

trimchars = '*-.';

data = '#**a-b-c-.'

result = %trim(data : trimchars);

// now result = 'a-b-c'. A1l * - and . were trimmed from the ends of the data
* New prototype option OPTIONS(*TRIM) to pass a trimmed parameter:

When OPTIONS(*TRIM) is specified on a prototyped parameter, the data that is
passed be trimmed of leading and trailing blanks. OPTIONS(*TRIM) is valid for
character, UCS-2 and graphic parameters defined with CONST or VALUE. It is
also valid for pointer parameters defined with OPTIONS(*STRING). With
OPTIONS(*STRING : *TRIM), the passed data will be trimmed even if a pointer
is passed on the call.

Example:

D proc pr

D parml 5a const options(*trim)

D parm2 5a const options(*trim : *rightadj)
D parm3 5a const varying options(*trim)

XVi ILE RPG Programmer’s Guide

HHFHFHHFHFHHFEHFHHFHFHHF F HFHF FHHFHFIFHFHFHF O H OF OHFHH O H OFHFH OFH H FH F S

D parmd
D parmb
D ptr
D data
D fidl

w n n

/free

data = " rst ' + x'00';

ptr = %addr(data);

proc (" xyz ' : " @#$ ' : ' 123 ' :

*
*

10a
5a

value options(*string :
value options(*string :

' abc ' : ptr);

// the called procedure receives the following parameters

// parml = 'xyz

// parm2 = ' @#$'

// parm3 = '123'

// parmd = a pointer to 'abc.' (where . is x'00')
// parm5 = a pointer to 'rst.' (where . is x'00')

Support for 63 digit packed and zoned decimal values

What’s New

*trim)
*trim)

Packed and zoned data can be defined with up to 63 digits and 63 decimal
positions. The previous limit was 31 digits.

Relaxation of the rules for using a result data structure for I/O to
externally-described files and record formats

— The result data structure for I/O to a record format may be an

externally-described data structure.

— A data structure may be specified in the result field for I/O to an
externally-described file name for operation codes CHAIN, READ, READE,

READP and READPE.

Examples:

1. The following program writes to a record format using from an

externally-described data structure.
k disk

Foutfile (4] e

D outrecDs e ds
/free
0_FLD1 = 'ABCDE';
0_FLD2 = 7;

write outrec outrecDs;

*inlr = *on;
/end-free

extname (outfile) prefix(0_)

2. The following program reads from a multi-format logical file into data
structure INPUT which contains two overlapping subfields holding the fields
of the respective record formats.

Flog if e

D infds ds

D recname

D input ds

D recl

D rec2

/free
read log input;
dow not %eof(log);
dsply recname;

if recname = 'REC1';

// handle recl

261

elseif recname = 'REC2';

// handle rec2
endif;
read log input;
enddo;
*inlr = *on;
/end-free

k disk

270

infds (infds)

qualified

likerec(recl) overlay(input)
likerec(rec2) overlay(input)

About This Guide

xvii

H oH HH O HFHH O H OHFH FFHF

H o H H H H

H o oH H H H HHHF OHH O H FHHHHHHH FH OHH OFHHH

What’s New

* If a program/module performs a keyed sequential input operation to a shared

file and it results in an EOF condition, a subsequent sequential input operation
by the same program/module may be attempted. An input request is sent data
base and if a record is available for input, the data is moved into the
program/module and the EOF condition is set off.

Support for new environment variables for use with RPG programs calling
Java methods

- QIBM_RPG_JAVA_PROPERTIES allows RPG users to explicitly set the java
properties used to start the JVM

This environment variable must be set before any RPG program calls a Java
method in a job.

This environment variable has contains Java options, separated and
terminated by some character that does not appear in any of the option
strings. Semicolon is usually a good choice.

Examples:

1. Specifying only one option: If the system’s default JDK is 1.3, and you
want your RPG programs to use JDK 1.4, set environment variable
QIBM_RPG_JAVA_PROPERTIES to

'-Djava.version=1.4;"'

Note that even with just one option, a terminating character is required. This
example uses the semicolon.

2. Specifying more than one option: If you also want to set the 0s400.stdout
option to a different value than the default, you could set the environment
variable to the following value:

'-Djava.version=1.4!-Dos400.stdout=file:mystdout.txt!"'

This example uses the exclamation mark as the separator/terminator. Note:
This support is also available in V5R1 and V5R2 with PTFs. V5R1: SI10069,
V5R2: S110101.

— QIBM_RPG_JAVA_EXCP_TRACE allows RPG users to get the exception
trace when an RPG call to a Java method ends with an exception

This environment variable can be set, changed, or removed at any time.

If this environment variable contains the value "Y’, then when a Java
exception occurs during a Java method call from RPG, or a called Java
method throws an exception to its caller, the Java trace for the exception will
be printed. By default, it will be printed to the screen, and may not be
possible to read. To get it printed to a file, set the Java option 0s400.stderr.
(This would have to be done in a new job; it could be done by setting the
QIBM_RPG_JAVA_PROPERTIES environment variable to

'-Dos400.stderr=file:stderr.txt;"'

* An RPG preprocessor enabling the SQL preprocessor to handle conditional

compilation and nested /COPY

When the RPG compiler is called with a value other than *NONE for parameter
PPGENOPT, it will behave as an RPG preprocessor. It will generate a new
source file rather than generating a program. The new source file will contain
the original source lines that are accepted by the conditional compilation
directives such as /DEFINE and /IF. It will also have the source lines from files
included by /COPY statements, and optionally it will have the source lines
included by /INCLUDE statements. The new source file will have the comments
from the original source file if PPGENOPT(*DFT) or
PPGENOPT(*NORMVCOMMENT) is specified. When the SQL precompiler is

xviii ILE RPG Programmer’s Guide

HHHFH OH W HFHFH OFHFHFHFHFIFH OHFHFFH OHFHFHF OHFHHF OHFHHF OFHHF OHFHHF OHHFH OHHF HHFIFHHEHFE OH OH OHH H HH*

What’s New

called with a value other than *NONE for new parameter RPGPPOPT, the

precompiler will use this RPG preprocessor to handle /COPY, the conditional
compilation directives and possibly the /INCLUDE directive. This will allow
SQLRPGLE source to have nested /COPY statements, and conditionally used

statements.

Table 3. Changed Language Elements Since V5R2

Language Unit Element Description

Control specification | CCSID(*GRAPH:parameter | Can now take a first

keywords *UCS2:number | parameter of *CHAR, with a
*CHAR:*JOBRUN) second parameter of

*JOBRUN, to control how
character data is treated at
runtime.

Built-in Functions

%DEC (expression {format})

Can now take a parameter of
type Date, Time or Timestamp

%TRIM(expression:expression)

Can now take a second
parameter indicating the set of
characters to be trimmed

Definition OPTIONS(*TRIM) Indicates that blanks are to be
Specification trimmed from passed
Keywords parameters

Definition Length and decimal place entries | The length and number of
Specifications decimal places can be 63 for

packed and zoned fields.

Input specifications

Length entry

The length can be 32 for
packed fields and 63 for zoned
fields.

Decimal place entry

The number of decimal places
can be 63 for packed and
zoned fields.

Calculation
specifications

Length and decimal place entries

The length and number of
decimal places can be 63 for
packed and zoned fields.

CHAIN, READ, READE, READP,
AND READPE operations

Allow a data structure to be
specified in the result field
when Factor 2 is the name of
an externally-described file.

CHAIN, READ, READC, READE,
READP, READPE, WRITE,
UPDATE operations

Allow an externally-described
data structure to be specified
in the result field when Factor
2 is the name of an
externally-described record
format.

SORTA operation

Now has an extended Factor
2, allowing %SUBARR to be
specified.

Table 4. New Language Elements Since V5R2

Language Unit

Element

Description

Built-in Functions

%SUBARR (array:starting
element {inumber of
elements})

Returns a section of the
array, or allows a section of
the array to be modified.

About This Guide X1X

What’s New

What's New in V5R2?

The following list describes the enhancements made to ILE RPG in V5R2:

* Conversion from character to numeric
Built-in functions %DEC, %DECH, %INT, %INTH, %UNS, %UNSH and
%FLOAT are enhanced to allow character parameters. For example,
%DEC(’-12345.67" : 7 : 2) returns the numeric value -12345.67.

* Bitwise logical built-in functions
%BITAND, %BITOR, %BITXOR and %BITNOT allow direct bit manipulation
within RPG expressions.

* Complex data structures

Data structure definition is enhanced to allow arrays of data structures and
subfields of data structures defined with LIKEDS that are themselves data
structures. This allows the coding of complex structures such as arrays of arrays,
or arrays of structures containing subarrays of structures.

Example: family(f).child(i).hobbyInfo.pets(p).type
family(f).child(i).hobbyInfo.pets(p).name

'dog';
'Spot';

In addition, data structures can be defined the same as a record format, using
the new LIKEREC keyword.

* Enhanced externally-described data structures
Externally-described data structures can hold the programmer’s choice of input,
output, both, key or all fields. Currently, externally-described data structures can
only hold input fields.

* Enhancments to keyed I/0
Programmers can specify search arguments in keyed Input/Output operations in
/FREE calculations in two new ways:
1. By specifying the search arguments (which can be expressions) in a list.
2. By specifying a data structure which contains the search arguments.

Examples: D custkeyDS e ds extname(custfile:xkey)
/free
CHAIN (keyA : keyB : key3) custrec;
CHAIN %KDS(custkeyDS) custrec;

* Data-structure result for externally-described files

A data structure can be specified in the result field when using I/O operations
for externally-described files. This was available only for program-described files
prior to V5R2. Using a data structure can improve performance if there are
many fields in the file.

* UPDATE operation to update only selected fields

A list of fields to be updated can be specified with an UPDATE operation. Tthis
could only be done by using exception output prior to V5R2.

Example: update record %fields(salary:status).
* 31 digit support

Supports packed and zoned numeric data with up to 31 digits and decimal
places. This is the maximum length supported by DDS. Only 30 digits and
decimal places were supported prior to V5R2.

* Performance option for FEOD

The FEOD operation is enhanced by supporting an extender N which indicates
that the operation should simply write out the blocked buffers locally, without
forcing a costly write to disk.

¢ Enhanced data area access

XX ILE RPG Programmer’s Guide

What’s New

The DTAARA keyword is enhanced to allow the name and library of the data
area to be determined at runtime

* New assignment operators

The new assignment operators +=, -=, *=

, /=, **= allow a variable to be modified

based on its old value in a more concise manner.

Example: totals(current_customer) += count;

This statement adds "count” to the value currently in "totals(current_customer)”
without having to code "totals(current_customer)” twice.

e IFS source files

The ILE RPG compiler can compile both main source files and /COPY files from
the IFS. The /COPY and /INCLUDE directives are enhanced to support IFS file

names.

¢ Program Call Markup Language (PCML) generation

The ILE RPG compiler will generate an IFS file containing the PCML,
representing the parameters to the program (CRTBNDRPG) or to the exported

procedures (CRTRPGMOD).

Table 5. Changed Language Elements Since V5R1

Language Unit Element Description
Built-in functions expression) Can now take parameters of type character.
expression)
%FLOAT|expression)
expression)
expression)
expression)
expression)
Definition {*VAR:}data—area—name) The data area name can be a name, a character literal
specification specifying '‘LIBRARY/NAME’ or a character variable
keywords which will determine the actual data area at runtime.
Allowed for data structure specifications.
IKED Allowed for subfield specifications.
EXTNAMEfilenamef{:extrecname} The optional "type” parameter controls which type of
{*ALL I*INPUT | *OUTPUT I *KEY} field is extracted for the externally-described data
) structure.
Definition Length and decimal place entries The length and number of decimal places can be 31 for
Specifications packed and zoned fields.

Operation codes

(CHAIN| [DELETHREADE| [READPE]
SETGT}|SETLLJ

In free-form operations, Factor 1 can be a list of key
values.

CHAIN} [READ| READC| [READE]
READP|[READPE| [UPDATE| [WRITE]|

When used with externally-described files or record
formats, a data structure may be specified in the result
field.

PDATE] In free-form calculations, the final argument can contain
a list of the fields to be updated.
FEOD) Operation extender N is allowed. This indicates that the

unwritten buffers must be made available to the
database, but not necessarily be written to disk.

Calculation
specifications

Length and decimal place entries

The length and number of decimal places can be 31 for
packed and zoned fields.

About This Guide XXx1

What’s New

Table 6. New Language Elements Since V5R1

Language Unit

Element

Description

Expressions

Assignment Operators += -= *= /=
*k_

When these assignment operators are used, the
target of the operation is also the first operand of
the operation.

Control Specification
Keywords

[IDECPREC(30 | 31)|

Controls the precision of decimal intermediate
values for presentation, for example, for %EDITC
and %EDITW

Definition specification
keywords

IKERE(C|intrecname{:*ALL |

*INPUT [*OUTPUT | *KEY})

Defines a data structure whose subfields are the
same as a record format.

Built-in functions

%BITAND[expression : expression)

Returns a result whose bits are on if the
corresponding bits of the operands are both on.

%BITNOT[expression)

Returns a result whose bits are the inverse of the
bits in the argument.

%BITOR|expression : expression)

Returns a result whose bits are on if either of the
corresponding bits of the operands is on.

%BITXOR[expression : expression)

Returns a result whose bits are on if exactly one
of the corresponding bits of the operands is on.

%oFIELDS[name{:name...})

Used in free-form "UPDATE to specify the fields
to be updated.

data structure)

Used in free-form keyed operation codes CHAIN,
SETLL, SETGT, READE and READPE, to indicate
that the keys for the operation are in the data
structure.

What's New in V5R1?

The ILE RPG compiler is part of the IBM IBM WebSphere Development Studio for
iSeries product, which now includes the C/C++ and COBOL compilers, and the
Application Development ToolSet tools.

The major enhancements to RPG IV since V4R4 are easier interfacing with Java,
new built-in functions, free form calculation specifications, control of which file is
opened, qualified subfield names, and enhanced error handling.

The following list describes these enhancements:

* Improved support for calls between Java and ILE RPG using the Java Native

Interface (JNI):
— A new data type: Object

— A new definition specification keyword: CLASS
— The LIKE definition specification keyword has been extended to support

objects.

— The EXTPROC definition specification keyword has been extended to support

Java procedures.
— New status codes.
¢ New built-in functions:

— Functions for converting a number into a duration that can be used in
arithmetic expressions: %MSECONDS, %SECONDS, %MINUTES, %HOURS,
%DAYS, %MONTHS, and %YEARS.

XXii ILE RPG Programmer’s Guide

What’s New

— The %DIFF function, for subtracting one date, time, or timestamp value from
another.

— Functions for converting a character string (or date or timestamp) into a date,
time, or timestamp: %DATE, %TIME, and %TIMESTAMP.

— The %SUBDT function, for extracting a subset of a date, time, or timestamp.

— Functions for allocating or reallocating storage: %ALLOC and %REALLOC.

— Functions for finding an element in an array: %LOOKUP, %LOOKUPGT,
%LOOKUPGE, %LOOKUPLT, and %LOOKUPLE.

— Functions for finding an element in a table: %TLOOKUP, %TLOOKUPGT,
%TLOOKUPGE, %TLOOKUPLT, and %TLOOKUPLE.

— Functions for verifying that a string contains only specified characters (or
finding the first or last exception to this rule): %CHECK and %CHECKR

— The %XLATE function, for translating a string based on a list of
from-characters and to-characters.

— The %OCCUR function, for getting or setting the current occurrence in a
multiple-occurrence data structure.

— The %SHTDN function, for determining if the operator has requested
shutdown.

— The %SQRT function, for calculating the square root of a number.

A new free-form syntax for calculation specifications. A block of free-form

calculation specifcations is delimited by the compiler directives /FREE and
/END-FREE

You can specify the EXTFILE and EXTMBR keywords on the file specification to
control which external file is used when a file is opened.

Support for qualified names in data structures:

— A new definition specification keyword: QUALIFIED. This keyword specifies
that subfield names will be qualified with the data structure name.

— A new definition specification keyword: LIKEDS. This keyword specifies that
subfields are replicated from another data structure. The subfield names will
be qualified with the new data structure name. LIKEDS is allowed for
prototyped parameters; it allows the parameter’s subfields to be used directly
in the called procedure.

— The INZ definition specification keyword has been extended to allow a data
structure to be initialized based on its parent data structure.

Enhanced error handling:

— Three new operation codes (MONITOR, ON-ERROR, and ENDMON) allow
you to define a group of operations with conditional error handling based on
the status code.

Other enhancements have been made to this release as well. These include:

You can specify parentheses on a procedure call that has no parameters.

You can specify that a procedure uses ILE C or ILE CL calling conventions, on
the EXTPROC definition specification keyword.

The following /DEFINE names are predefined: *VnRnMn, *ILERPG,
*CRTBNDRPG, and *CRTRPGMOD.

The search string in a %SCAN operation can now be longer than string being
searched. (The string will not be found, but this will no longer generate an error
condition.)

The parameter to the DIM, OCCURS, and PERRCD keywords no longer needs
to be previously defined.

About This Guide Xxxiii

What’s New

The %PADDR built-in function can now take either a prototype name or an
entry point name as its argument.

A new operation code, ELSEIF, combines the ELSE and IF operation codes
without requiring an additional ENDIFE.

The DUMP operation code now supports the A extender, which means that a
dump is always produced - even if DEBUG(*NO) was specified.

A new directive, /INCLUDE, is equivalent to /COPY except that /INCLUDE is
not expanded by the SQL preprocessor. Included files cannot contain embedded
SQL or host variables.

The OFLIND file-specification keyword can now take any indicator, including a
named indicator, as an argument.

The LICOPT (licensed internal code options) keyword is now available on the
CRTRPGMOD and CRTBNDRPG commands.

The PREFIX file description keyword can now take an uppercase character literal
as an argument. The literal can end in a period, which allows the file to be used
with qualified subfields.

The PREFIX definition specification keyword can also take an uppercase
character literal as an argument. This literal cannot end in a period.

The following tables summarize the changed and new language elements, based

on the part of the language affected.

Table 7. Changed Language Elements Since V4R4

Language Unit

Element

Description

Built-in functions

expression{:format})

The optional second parameter specifies the
desired format for a date, time, or timestamp. The
result uses the format and separators of the
specified format, not the format and separators of
the input.

% PADDR|prototype-name)

This function can now take either a prototype
name or an entry point name as its argument.

Definition specification
keywords

XTPROC[*JAVA:class-name:proc-

name)

Specifies that a Java method is called.

EXTPROC|*CL:proc-name)

Specifies a procedure that uses ILE CL
conventions for return values.

XTPROC[*CWIDEN:proc-name)

Specifies a procedure that uses ILE C conventions
with parameter widening.

XTPROC[*CNOWIDEN:proc-name)

Specifies a procedure that uses ILE C conventions
without parameter widening.

INZ[*LIKEDS)

Specifies that a data structure defined with the
LIKEDS keyword inherits the initialization from
its parent data structure.

object-name)

Specifies that an object has the same class as
another object.

REFIX|character-literal{:number})

Prefixes the subfields with the specified character
literal, optionally replacing the specified number
of characters.

File specification OFLIND[name) This keyword can now take any named indicator
keywords as a parameter.

REFIX|character-literal{:number}) Prefixes the subfields with the specified character
literal, optionally replacing the specified number
of characters.

XXiV ILE RPG Programmer’s Guide

Table 7. Changed Language Elements Since V4R4 (continued)

What’s New

Language Unit Element

Description

Operation codes DUMP (A

This operation code can now take the A extender,
which causes a dump to be produced even if
DEBUG(*NO) was specified.

Table 8. New Language Elements Since V4R4

Language Unit Element

Description

Data types

Used for Java objects

Compiler directives |/FREE ... /END-FREF|

The /FREE... /END-FREE compiler directives
denote a free-form calculation specifications block.

/INCLUDE

Equivalent to /COPY, except that it is not
expanded by the SQL preprocessor. Can be used
to inlcude nested files that are within the copied
file. The copied file cannot have embedded SQIL
or host variables.

Definition specification LASS[(*JAVA:class-name)

Specifies the class for an object.

keywords IKEDS(dsname)

Specifies that a data structure, prototyped
parameter, or return value inherits the subfields of
another data strucutre.

Specifies that the subfield names in a data
structure are qualified with the data structure
name.

XTFILE[filename)

File specification
keywords

Specifies which file is opened. The value can be a
literal or a variable. The default file name is the
name specified in position 7 of the file
specification. The default library is *LIBL.

XTMBR{membername)

Specifies which member is opened. The value can
be a literal or a variable. The default is *FIRST.

About This Guide XXV

What’s New

Table 8. New Language Elements Since V4R4 (continued)

Language Unit

Element

Description

Built-in functions

% ALLOC|(num)

Allocates the specified amount of storage.

%CHECK|comparator:base{:start})

Finds the first character in the base string that is
not in the comparator.

%CHECKR|comparator:base{:start})

Finds the last character in the base string that is
not in the comparator.

%DATE[expression{:date-format})

Converts the expression to a date.

PeDAYSrum)

Converts the number to a duration, in days.

%DIFF[(op1l:0p2:unit)

Calculates the difference (duration) between two
date, time, or timestamp values in the specified
units.

%oHOURS|(num)

Converts the number to a duration, in hours.

%LOOKUPxx{arg:array{:startindex

{numelems}})

Finds the specified argument, or the specified
type of near-match, in the specified array.

%MINUTES(num)

Converts the number to a duration, in minutes.

%MONTHS(num)

Converts the number to a duration, in months.

%MSECONDS|(num)

Converts the number to a duration, in
microseconds.

%OCCUR[dsn-name)

Sets or gets the current position of a
multiple-occurrence data structure.

%REALLOC|pointer:number)

Reallocates the specified amount of storage for the
specified pointer.

%,SECONDS|num)

Converts the number to a duration, in seconds.

Checks if the system operator has requested
shutdown.

numeric-expression)

Calculates the square root of the specified
number.

%SUBDT|value:unit)

Extracts the specified portion of a date, time, or
timestamp value.

Returns an Object value that contains a reference
to the class instance on whose behalf the native
method is being called.

% TIME|expression{:time-format})

Converts the expression to a time.

% TIMESTAMP|expression

{*ISO 1*1SO0})

Converts the expression to a timestamp.

% TLOOKUPfarg:search-table

{:alt-table})

Finds the specified argument, or the specified
type of near-match, in the specified table.

% XLATE|from:to:string{:startpos})

Translates the specified string, based on the
from-string and to-string.

% YEARS(num)

Converts the number to a duration, in years.

XXVi ILE RPG Programmer’s Guide

Table 8. New Language Elements Since V4R4 (continued)

What’s New

Language Unit

Element

Description

Operation codes

ONITO

Begins a group of operations with conditional
error handling.

N-ERRO

Performs conditional error handling, based on the
status code.

NDMO

Ends a group of operations with conditional error
handling.

LSEI

i : :
ey

Equivalent to an ELSE operation code followed by
an IF operation code.

CRTBNDRPG and

CRTRPGMOD keywords

LICOPT(options)

Specifies Licensed Internal Code options.

What's New in V4R4?

The major enhancements to RPG IV since V4R2 are the support for running ILE
RPG modules safely in a threaded environment, the new 3-digit and 20-digit
signed and unsigned integer data types, and support for a new Universal
Character Set Version 2 (UCS-2) data type and for conversion between UCS-2 fields
and graphic or single-byte character fields.

The following list describes these enhancements:

¢ Support for calling ILE RPG procedures from a threaded application, such as

. ™ ™
Domino = or Java .

— The new control specification keyword THREAD(*SERIALIZE) identifies
modules that are enabled to run in a multithreaded environment. Access to
procedures in the module is serialized.

* Support for new 1-byte and 8-byte integer data types: 31 and 201 signed integer,

and 3U and 20U unsigned integer

— These new integer data types provide you with a greater range of integer
values and can also improve performance of integer computations, taking full
advantage of the 64-bit AS/400 RISC processor.

— The new 3U type allows you to more easily communicate with ILE C
procedures that have single-byte character (char) return types and parameters

passed by value.

— The new INTPREC control specification keyword allows you to specify
20-digit precision for intermediate values of integer and unsigned binary
arithmetic operations in expressions.

— Built-in functions %DIV and %REM have been added to support integer
division and remainder operations.

* Support for new Universal Character Set Version 2 (UCS-2) or Unicode data type

— The UCS-2 (Unicode) character set can encode the characters for many written
languages. The field is a character field whose characters are two bytes long.

— By adding support for Unicode, a single application can now be developed
for a multinational corporation, minimizing the necessity to perform code
page conversion. The use of Unicode permits the processing of characters in
multiple scripts without loss of integrity.

— Support for conversions between UCS-2 fields and graphic or single-byte
character fields using the MOVE and MOVEL operations, and the new
%UCS2 and %GRAPH built-in functions.

About This Guide XXVii

What’s New

XXViii

— Support for conversions between UCS-2 fields or graphic fields with different
Coded Character Set Identifiers (CCSIDs) using the EVAL, MOVE, and
MOVEL operations, and the new %UCS2 built-in function.

Other enhancements have been made to this release as well. These include:

* New parameters for the OPTION control specification keyword and on the
create commands:

— *SRCSTMT allows you to assign statement numbers for debugging from the
source IDs and SEU sequence numbers in the compiler listing. (The statement
number is used to identify errors in the compiler listing by the debugger, and
to identify the statement where a run-time error occurs.) *“NOSRCSTMT
specifies that statement numbers are associated with the Line Numbers of the
listing and the numbers are assigned sequentially.

— Now you can choose not to generate breakpoints for input and output
specifications in the debug view with *NODEBUGIO. If this option is
selected, a STEP on a READ statement in the debugger will step to the next
calculation, rather than stepping through the input specifications.

* New special words for the INZ definition specification keyword:

- INZ(*EXTDEFT) allows you to use the default values in the DDS for
initializing externally described data structure subfields.

— Character variables initialized by INZ(*USER) are initialized to the name of
the current user profile.

¢ The new %XFOOT built-in function sums all elements of a specified array
expression.

* The new EVALR operation code evaluates expressions and assigns the result to a
fixed-length character or graphic result. The assignment right-adjusts the data
within the result.

* The new FOR operation code performs an iterative loop and allows free-form
expressions for the initial, increment, and limit values.

* The new LEAVESR operation code can be used to exit from any point within a
subroutine.

¢ The new *NEXT parameter on the OVERLAY (name:*NEXT) keyword indicates
that a subfield overlays another subfield at the next available position.

* The new *START and *END values for the SETLL operation code position to the
beginning or end of the file.

* The ability to use hexadecimal literals with integer and unsigned integer fields
in initialization and free-form operations, such as EVAL, IF, etc.

* New control specification keyword OPENOPT{(*NOINZOFL | *INZOFL)} to
indicate whether the overflow indicators should be reset to *OFF when a file is
opened.

* Ability to tolerate pointers in teraspace — a memory model that allows more
than 16 megabytes of contiguous storage in one allocation.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

ILE RPG Programmer’s Guide

Table 9. Changed Language Elements Since V4R2

What’s New

Language Unit

Element

Description

Control
specification
keywords

[OPTION}*{NOJSRCSTMT)

*SRCSTMT allows you to request that
the compiler use SEU sequence
numbers and source IDs when
generating statement numbers for
debugging. Otherwise, statement
numbers are associated with the Line
Numbers of the listing and the
numbers are assigned sequentially.

[OPTION|*(NOJDEBUGIO)

*{NOJDEBUGIO, determines if
breakpoints are generated for input
and output specifications.

Definition
specification
keywords

INZ(*EXTDEFT)

All externally described data structure
subfields can now be initialized to the
default values specified in the DDS.

[NZ*USER)

Any character field or subfield can be
initialized to the name of the current
user profile.

OVERLAY|[name:*NEXT)

The special value *NEXT indicates that
the subfield is to be positioned at the
next available position within the
overlayed field.

OPTIONS(*NOPASS *OMIT

*VARSIZE *STRING
*RIGHTADY)

The new OPTIONS(*RIGHTAD]J)
specified on a value or constant
parameter in a function prototype
indicates that the character, graphic, or
UCS-2 value passed as a parameter is
to be right adjusted before being
passed on the procedure call.

Definition

specification
positions 33-39| (To

Position/Length)

3 and 20 digits allowed for I
and U data types

Added to the list of allowed values for
internal data types to support 1-byte
and 8-byte [integer| and [unsigned| data.

I|Internal data type

C (UCS-2 fixed o1

[variable-length format)

Added to the list of allowed internal
data types on the definition
specifications. The UCS-2 (Unicode)
character set can encode the characters
for many written languages. The field
is a whose characters

are two bytes long.

Data format

C (IGCS—Z fixed oﬂ

[variable-length format)

outputf specifications for program

UCS-2 format added to the list of
allowed data formats on the and

described files.

Command
parameter

OPTION

*NOSRCSTMT, *SRCSTMT,
*NODEBUGIO, and *DEBUGIO have
been added to the OPTION parameter
on the CRTBNDRPG and
CRTRPGMOD commands.

About This Guide XX1X

What’s New

XXX

Table 10. New Language Elements Since V4R2

Language Unit

Element

Description

Control
specification
keywords

[CCSIDI*GRAPH: *IGNORE |

*SRC | number)

Sets the default graphic CCSID for the
module. This setting is used for
literals, compile-time data and
program-described input and output
fields and definitions. The default is
*IGNORE.

*UCS2: number)

Sets the default UCS-2 CCSID for the
module. This setting is used for
literals, compile-time data and
program-described input and output
fields and definitions. The default is
13488.

INTPREC[10 | 20)

Specifies the decimal precision of
integer and unsigned intermediate
values in binary arithmetic operations
in expressions. The default,
INTPREC(10), indicates that 10-digit
precision is to be used.

OPENOPTJ(*NOINZOFL |

*INZOFL)}

Indicates whether the overflow
indicators should be reset to *OFF
when a file is opened.

HREAD|*SERIALIZE)

Indicates that the module is enabled to
run in a multithreaded environment.
Access to the procedures in the
module is to be serialized.

Definition
specification
keywords

number | *DFT)

Sets the graphic and UCS-2 CCSID for
the definition.

Built-in functions

BeDIVn:mm)

Performs integer division on the two
operands n and m; the result is the
integer portion of n/m. The operands
must be numeric values with zero
decimal positions.

%GRAPH|char-expr |

graph-expr | UCS2-expr {:
ccsid})

Converts to graphic data from
single-byte character, graphic, or
UCS-2 data.

n:m)

Performs the integer remainder
operation on two operands n and m;
the result is the remainder of n/m. The
operands must be numeric values with
zero decimal positions.

%UCS2|char-expr |
graph-expr | UCS2-expr {:
ccsid})

Converts to UCS-2 data from
single-byte character, graphic, or
UCS-2 data.

%XFOOT|array-expr)

Produces the sum of all the elements
in the specified numeric array
expression.

ILE RPG Programmer’s Guide

What’s New

Table 10. New Language Elements Since V4R2 (continued)

Language Unit Element Description

Operation codes VAL Evaluates an assignment statement of

the form result=expression. The result
will be right-justified.

@

Begins a group of operations and
indicates the number of times the
group is to be processed. The initial,
increment, and limit values can be
free-form expressions.

[ENDFO ENDFOR ends a group of operations
started by a FOR operation.
EAVES Used to exit from anywhere within a
subroutine.

What's New in V4R2?

The major enhancements to RPG IV since V3R7 are the support for variable-length
fields, several enhancements relating to indicators, and the ability to specify
compile options on the control specifications. These further improve the RPG
product for integration with the i5/0S operating system and ILE interlanguage
communication.

The following list describes these enhancements:

Support for variable-length fields

This enhancement provides full support for variable-length character and
graphic fields. Using variable-length fields can simplify many string handling
tasks.

Ability to use your own data structure for INDARA indicators

Users can now access logical data areas and associate an indicator data structure
with each WORKSTN and PRINTER file that uses INDARA, instead of using the
*IN array for communicating values to data management.

Ability to use built-in functions instead of result indicators

Built-in functions %EOF, %EQUAL, %FOUND, and %OPEN have been added to
query the results of input/output operations. Built-in functions %ERROR and
%STATUS, and the operation code extender 'E” have been added for error
handling.

Compile options on the control specification

Compile options, specified through the CRTBNDRPG and CRTRPGMOD
commands, can now be specified through the control specification keywords.
These compile options will be used on every compile of the program.

In addition, the following new function has been added:

Support for import and export of procedures and variables with mixed case
names

Ability to dynamically set the DECEDIT value at runtime

Built-in functions %CHAR and %REPLACE have been added to make string
manipulation easier

New support for externally defined *CMDY, *CDMY, and *LONGJUL date data
formats

An extended range for century date formats

About This Guide XXxi

What’s New

* Ability to define indicator variables

* Ability to specify the current data structure name as the parameter for the
OVERLAY keyword

* New status code 115 has been added to indicate variable-length field errors

* Support for application profiling

* Ability to handle packed-decimal data that is not valid when it is retrieved from
files using FIXNBR(*INPUTPACKED)

* Ability to specify the BNDDIR command parameter on the CRTRPGMOD

command.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 11. Changed Language Elements Since V3R7

Language Unit Element Description

Control DECEDIT[*JOBRUN | The decimal edit value can now be
specification "value’) determined dynamically at runtime
keywords from the job or system value.
Definition {(data_area_name)} | Users can now access logical data
specification areas.

keywords

XPORT] {(external_name)}

The external name of the variable
being exported can now be specified as
a parameter for this keyword.

IMPORT] {(external_name)}

The external name of the variable
being imported can now be specified
as a parameter for this keyword.

OVERLAY|name{:pos})

The name parameter can now be the
name of the current data structure.

Extended century
format

(cyy/mm/dd)

The valid values for the century
character 'c’ are now:

¢! Years
0 1900-1999
1 2000-2099
9 2800-2899

[Internal data type]

N (Indicator format)

Added to the list of allowed internal
data types on the definition

specifications. Defines [character datalin

the indicator format.

Data format

N (Indicator format)

Indicator format added to the list of
allowed data formats on the and

specifications for program

described files.

Data Attribute

*VAR

Added to the list of allowed data
attributes on the and
specifications for program described
files. It is used to specify
variable-length fields.

xxxil ILE RPG Programmer’s Guide

What’s New

Table 11. Changed Language Elements Since V3R7 (continued)

Language Unit Element Description
Command FIXNBR The *INPUTPACKED parameter has
parameter been added to handle packed-decimal

data that is not valid.

Table 12. New Language Elements Since V3R7

Language Unit

New

Description

Control
specification
keywords

ACTGRP(*NEW | *CALLER

| “activation- group-name”)

The ACTGRP keyword allows you to
specify the activation group the
program is associated with when it is
called.

ALWNULL{*NO |

*INPUTONLY | *USRCTL)

The ALWNULL keyword specifies how
you will use records containing
null-capable fields from externally
described database files.

[AUT|*LIBRCRTAUT | *ALL
| *CHANGE | *USE |
*EXCLUDE |
’authorization-list-name’)

The AUT keyword specifies the
authority given to users who do not
have specific authority to the object,
who are not on the authorization list,
and whose user group has no specific
authority to the object.

BNDDIR| 'binding
-directory-name’ {:'binding-
directory-name’...})

The BNDDIR keyword specifies the list
of binding directories that are used in
symbol resolution.

VTOPT*{NO}DATETIME

*INOJGRAPHIC
*INOJVARCHAR
*{NO}VARGRAPHIC)

The CVTOPT keyword is used to
determine how the ILE RPG compiler
handles date, time, timestamp, graphic
data types, and variable-length data
types that are retrieved from externally
described database files.

DFTACTGRP(*YES | *NO)

The DFTACTGRP keyword specifies
the activation group in which the
created program will run when it is
called.

[ENBPFRCOL{*PEP |

*ENTRYEXIT | *FULL)

The ENBPFRCOL keyword specifies
whether performance collection is
enabled.

[FIXNBR|*{NO}ZONED The FIXNBR keyword specifies
*INOJINPUTPACKED) whether decimal data that is not valid
is fixed by the compiler.
ENLVL{number) The GENLVL keyword controls the
creation of the object.
INDENT(*NONE | The INDENT keyword specifies

‘character-value’)

whether structured operations should
be indented in the source listing for
enhanced readability.

[LANGID|*JOBRUN | *OB |

"language-identifier’)

The LANGID keyword indicates which
language identifier is to be used when
the sort sequence is *LANGIDUNQ or
*LANGIDSHR.

About This Guide Xxxiii

What’s New

XXXiv

Table 12. New Language Elements Since V3R7 (continued)

Language Unit

New

Description

OPTIMIZE|*NONE | *BASIC
| *FULL)

The OPTIMIZE keyword specifies the
level of optimization, if any, of the
object.

[OPTION|*{NO}XREF
*INOJGEN *{NOJSECLVL
*INOJSHOWCPY
*INOJEXPDDS *NOJEXT
*INOJSHOWSKP)

The OPTION keyword specifies the
options to use when the source
member is compiled.

[PREDTA}*NOCOL | *COL)

The PRFDTA keyword specifies
whether the collection of profiling data
is enabled.

[BRTSEQ{*HEX | *OB |
*JOBRUN | *LANGIDUNQ
| *LANGIDSHR |
’sort-table-name”)

The SRTSEQ keyword specifies the sort
sequence table that is to be used in the
ILE RPG source program.

*SRCMBRTXT |

*BLANK | ’"description’)

The TEXT keyword allows you to
enter text that briefly describes the
object and its function.

RUNCNBR[*YES | *NO)

The TRUNCNBR keyword specifies if
the truncated value is moved to the
result field or if an error is generated
when numeric overflow occurs while
running the object.

*USER | *OWNER)

The USRPRF keyword specifies the
user profile that will run the created
program object.

File Description

The INDDS keyword lets you associate
a name with the

Specification data_structure_name)

keywords INDARA indicators for a workstation
or printer file.

Definition Defines variable-length fields when

specification specified on |character data or |graphid

keywords |datal

Built-in functions

graphic, date, time

or timestamp expression)

Returns the value in a character data

type.

ﬁle name}

Returns ‘1" if the most recent file input
operation or write to a subfile (for a
particular file, if specified) ended in an
end-of-file or beginning-of-file
condition; otherwise, it returns '0’.

%EQUAIL{file name} Returns '1” if the most recent SETLL
(for a particular file, if specified) or
LOOKUP operation found an exact
match; otherwise, it returns '0’.

%ERRO Returns “1” if the most recent operation

code with extender "E’ specified
resulted in an error; otherwise, it
returns '0’.

ILE RPG Programmer’s Guide

What’s New

Table 12. New Language Elements Since V3R7 (continued)

Language Unit New Description

% FOUNDJfile name} Returns '1” if the most recent relevant
operation (for a particular file, if
specified) found a record (CHAIN,
DELETE, SETGT, SETLL), an element
(LOOKUP), or a match (CHECK,
CHECKR and SCAN); otherwise, it
returns ‘0.

%OPEN[file name) Returns 1" if the specified file is open

and ‘0’ if the specified file is closed.

%REPLACE([replacement

string: source string {:start
position {:source length to
replace}})

Returns the string produced by
inserting a replacement string into a
source string, starting at the start
position and replacing the specified
number of characters.

%STATUS(file name}

If no program or file error occurred
since the most recent operation code
with extender 'E’ specified, it returns 0.
If an error occurred, it returns the most
recent value set for any program or file
status. If a file is specified, the value
returned is the most recent status for
that file.

. E Allows for Error handlina using the
[%ERROR| and [%STATUS| built-in
functions on the CALLP operation and
all operations that allow error
indicators.
New century (cmm/dd/yy) To be used by the MOVE, MOVEL,
formats and TEST operations.
(cdd/mm/yy) To be used by the MOVE, MOVEL,
and TEST operations.
New 4-digit year [FLONGJUL|(yyyy/ddd) To be used by the MOVE, MOVEL,
format and TEST operations.
Command PRFDTA The PRFDTA parameter specifies
parameters whether the collection of profiling data
is enabled.
BNDDIR The BNDDIR parameter was

previously only allowed on the
CRTBNDRPG command and not on
the CRTRPGMOD command, now it is
allowed on both commands.

What's New in V3R7?

The major enhancements to RPG IV since V3R6 are the new support for database
null fields, and the ability to better control the precision of intermediate results in
expressions. Other enhancements include the addition of a floating point data type
and support for null-terminated strings. These further improve the RPG product
for integration with the i5/OS operating system and ILE interlanguage
communication. This means greater flexibility for developing applications.

About This Guide XXXV

What’s New

XXXV1

The following is a list of these enhancements including a number of new built-in
functions and usability enhancements:

Support for database null fields

This enhancement allows users to process database files which contain
null-capable fields, by allowing these fields to be tested for null and set to null.

Expression intermediate result precision

A new control specification keyword and new operation code extenders on
free-form expression specifications allow the user better control over the
precision of intermediate results.

New floating point data type

The new floating point data type has a much larger range of values than other
data types. The addition of this data type will improve integration with the
i5/0S database and improve interlanguage communication in an ILE
environment, specifically with the C and C++ languages.

Support for null terminated strings

The new support for null terminated strings improves interlanguage
communication. It allows users full control over null terminated data by
allowing users to define and process null terminated strings, and to conveniently
pass character data as parameters to procedures which expect null terminated
strings.

Pointer addition and subtraction

Free-form expressions have been enhanced to allow adding an offset to a
pointer, subtracting an offset from a pointer, and determining the difference
between two pointers.

Support for long names

Names longer than 10 characters have been added to the RPG language.
Anything defined on the definition or procedure specifications can have a long
name and these names can be used anywhere where they fit within the bounds
of an entry. In addition, names referenced on any free-form specification may be
continued over multiple lines.

New built-in functions

A number of new built-in functions have been added to the language which
improve the following language facilities:

- editing (%EDITW, %EDITC, %EDITFLT)

— scanning strings (%SCAN)

— type conversions (%INT, %FLOAT, %DEC, %UNS)

— type conversions with half-adjust (%INTH, %DECH, %UNSH)

— precision of intermediate results for decimal expressions (%DEC)

— length and decimals of variables and expressions (%LEN, %DECPOS)
— absolute value (%ABS)

— set and test null-capable fields (%NULLIND)

— handle null terminated strings (%STR)

Conditional compilation

RPG IV has been extended to support conditional compilation. This support will
include the following;:

— defining conditions (/DEFINE, /UNDEFINE),
— testing conditions (/IF, /ELSEIF, /ELSE, /ENDIF)

— stop reading current source file (/EOF)

ILE RPG Programmer’s Guide

What’s New

— anew command option (DEFINE) to define up to 32 conditions on the
CRTBNDRPG and CRTRPGMOD commands.

Date enhancements

Several enhancements have been made to improve date handling operations.
The TIME operation code is extended to support Date, Time or Timestamp fields
in the result field. Moving dates or times from and to character fields no longer
requires separator characters. Moving UDATE and *DATE fields no longer
requires a format code to be specified. Date fields can be initialized to the
system (*SYS) or job (*JOB) date on the definition specifications.

Character comparisons with alternate collating sequence

Specific character variables can be defined so that the alternate collating
sequence is not used in comparisons.

Nested /COPY members

You can now nest /COPY directives. That is, a /COPY member may contain one
(or more) /COPY directives which can contain further /COPY directives and so
on.

Storage management

You can now use the new storage management operation codes to allocate,
reallocate and deallocate storage dynamically.

Status codes for storage management and float underflow errors.

Two status codes 425 and 426 have been added to indicate storage management
errors. Status code 104 was added to indicate that an intermediate float result is
too small.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 13. Changed Language Elements Since V3R6

Language Unit Element Description
Definition ALIGN can now be used to align float
specification subfields along with the previously
keywords supported integer and unsigned
alignment.
OPTIONS(*NOPASS *OMIT | The *STRING option allows you to
*VARSIZE *STRING) pass a character value as a
null-terminated string.
[IRecord address F (Float format Added to the list of allowed record
type) address types on the file description

specifications. Signals float processing
for a program described file.

[Internal data type| |F (Float format) Added to the list of allowed internal

data types on the definition
specifications. Defines a floating point
standalone field, parameter, or data
structure subfield.

Data format F (Float format Added to the list of allowed data
formats on the and

specifications for program described
files.

About This Guide XXXxVvii

What’s New

XXXVIiii

Table 14. New Language Elements Since V3R6

Language Unit

New

Description

Control OPYNEST]|"1-2048") Specifies the maximum depth for
specification nesting of /COPY directives.
keywords
XPROPTS(*MAXDIGITS | | Expression options for type of
*RESDECPOS) precision (default or "Result Decimal
Position” precision rules)
FLTDIV{(*NO | *YES)} Indicates that all divide operations in
expressions are computed in floating
point.
Definition *NONE) Forces the normal collating sequence to
specification be used for character comparison even
keywords when an alternate collating sequence is

specified.

Built-in functions

% AB!

Returns the absolute value of the
numeric expression specified as the
parameter.

%DEC| & [%DECH]

Converts the value of the numeric
expression to decimal (packed) format
with the number of digits and decimal
positions specified as parameters.
%DECH is the same as %DEC, but
with a half adjust applied.

=]

o DECPO!

Returns the number of decimal
positions of the numeric variable or
expression. The value returned is a
constant, and may be used where a
constant is expected.

o

JoEDITC

This function returns a character result
representing the numeric value edited
according to the edit code.

o

JoEDITFLT]

Converts the value of the numeric
expression to the character external
display representation of float.

X
™
g
—

This function returns a character result
representing the numeric value edited
according to the edit word.

%FLOA Converts the value of the numeric
expression to float format.

%INT]| & |7%INTH] Converts the value of the numeric
expression to integer. Any decimal
digits are truncated with %INT and
rounded with %INTH.

%LE Returns the number of digits or
characters of the variable expression.

%NULLIND Used to query or set the null indicator
for null-capable fields.

%SCA Returns the first position of the search

argument in the source string, or 0 if it
was not found.

ILE RPG Programmer’s Guide

What’s New

Table 14. New Language Elements Since V3R6 (continued)

Language Unit

New

Description

Used to create or use null-terminated
strings, which are very commonly
used in C and C++ applications.

[%UNS] & [%UNSH]|

Converts the value of the numeric
expression to unsigned format. Any
decimal digits are truncated with
%UNS and rounded with %UNSH.

. N Sets pointer to *NULL after successful
DEALLOC
M Default [precision ruled
R No intermediate value will have fewer
decimal positions than the result
"Result Decimal Position”
rules)
[Operation codes| |[ALLOC| Used to allocate storage dynamically.
DEALLOC Used to deallocate storage dynamically.
REALLOC Used to reallocate storage dynamically.

What's New in V3R6/V3R2?

The major enhancement to RPG IV since V3R1 is the ability to code a module with
more than one procedure. What does this mean? In a nutshell, it means that you
can code an module with one or more prototyped procedures, where the
procedures can have return values and run without the use of the RPG cycle.

Writing a module with multiple procedures enhances the kind of applications you
can create. Any application consists of a series of logical units that are conceived to
accomplish a particular task. In order to develop applications with the greatest
flexibility, it is important that each logical unit be as independent as possible.
Independent units are:

 Easier to write from the point of view of doing a specific task.

* Less likely to change any data objects other than the ones it is designed to

change.

* Easier to debug because the logic and data items are more localized.

* Maintained more readily since it is easier to isolate the part of the application
that needs changing.

The main benefit of coding a module with multiple procedures is greater control
and better efficiency in coding a modular application. This benefit is realized in
several ways. You can now:

* Call procedures and programs by using the same call operation and syntax.

* Define a prototype to provide a check at compile time of the call interface.

* Pass parameters by value or by reference.

* Define a procedure that will return a value and call the procedure within an

expression.

* Limit access to data items by defining local definitions of variables.

* Code a module that does not make use of the cycle.

* Call a procedure recursively.

About This Guide XXXiX

What’s New

The run-time behavior of the main procedure in a module is the same as that of a
V3R1 procedure. The run-time behavior of any subsequent procedures differs
somewhat from a V3R1 program, most notably in the areas of procedure end and
exception handling. These differences arise because there is no cycle code that is
generated for these procedures.

Other enhancements have been made to for this release as well. These include:

Support for two new integer data types: signed integer (I), and unsigned integer
L)

The use of the integer data types provides you with a greater range of values
than the binary data type. Integer data types can also improve performance of
integer computations.

*CYMD support for the MOVE, MOVEL, and TEST operations

You can now use the *CYMD date format in certain operations to work with
system values that are already in this data format.

Ability to copyright your programs and modules by using the COPYRIGHT
keyword on the control specification

The copyright information that is specified using this keyword becomes part of
the DSPMOD, DSPPGM, or DSPSRVPGM information.

User control of record blocking using keyword BLOCK

You can request record blocking of DISK or SEQ files to be done even when
SETLL, SETGT, or CHAIN operations are used on the file. You can also request
that blocking not be done. Use of blocking in these cases may significantly
improve runtime performance.

Improved PREFIX capability

Changes to the PREFIX keyword for either file-description and definition
specifications allow you to replace characters in the existing field name with the
prefix string.

Status codes for trigger program errors

Two status codes 1223 and 1224 have been added to indicate trigger program
errors.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 15. Changed Language Elements Since V3R1

Language Unit Element Description
File description IPREFIX|[prefix_string Allows prefixing of string to a field
specification {inbr_of_char_ replaced}) name or a partial rename of the field
keywords name
Definition ONST{(constant)} Specifies the value of a named
specification constant, or indicates that a prototyped
keywords parameter that is passed by reference
has a constant value
[PREFIX|[prefix_string Allows prefixing of string to a field
{inbr_of_char_ replaced}) name or a partial rename of the field
name
[Operation codes| [RETURN] Returns control to the caller, and

returns a value, if specified

xl 1LE RPG Programmer’s Guide

Table 16. New Language Elements Since V3R1

What’s New

Language Unit

New

Description

Control
specification
keywords

OPYRIGHT{ copyright

string’)

Allows you to associate copyright
information with modules and
programs

XTBININT[(*NO | *YES)}

Specifies that binary fields in
externally-described files be assigned
an integer format during program
processing

NOMAIN

Indicates that the module has only
subprocedures

File description

[BLOCK]*YES |*NO)

Allows you to control whether record

specification blocking occurs (assuming other
keywords conditions are met)

Definition Specifies whether integer or unsigned
specification fields should be aligned

keywords

XTPGM|name)

Indicates the external name of the
prototyped program

XTPROC|name)

Indicates the external name of the
prototyped procedure

Indicates whether operational
descriptors are to be passed for the
prototyped bound call

OPTIONS(*NOPASS *OMIT

*VARSIZE)

Specifies various options for
prototyped parameters

STATIC

Specifies that the local variable is to
use static storage

Specifies that the prototyped
parameter is to be passed by value

Built-in functions |[%PARMS Returns the number of parameters
passed on a call
[Operation codes| [CALLP| Calls a prototyped program or

procedure

[Specification type|

[Procedure specification|

Signals the beginning and end of a
subprocedure definition

PR Signals the beginning of a prototype
definition
PI Signals the beginning of a procedure

interface definition

blank in positions 24-25

Defines a prototyped parameter

About This Guide xli

What’s New

xlii ILE RPG Programmer’s Guide

Part 1. ILE RPG Introduction

Before using ILE RPG to create a program, you must know certain aspects of the
environment in which you will be using it. This part provides information on the
following topics that you should know:

¢ Overview of RPG IV language
* Role of Integrated Language Environment components in RPG programming
* Integrated Language Environment program creation strategies

¢ Overview of coding a module with more than one procedure and prototyped
calls

© Copyright IBM Corp. 1994, 2006

2 ILE RPG Programmer’s Guide

Chapter 1. Overview of the RPG IV Programming Language

This chapter presents a high-level review of the features of the RPG IV
programming language that distinguish RPG from other programming languages.
You should be familiar and comfortable with all of these features before you
program in the RPG IV language. The features discussed here encompass the
following subjects:

* Coding specifications
¢ The program cycle
* Indicators

* Operation codes

For more information on RPG 1V, see the WebSphere Development Studio: ILE RPG
Reference.

RPG IV Specifications

RPG code is written on a variety of specification forms, each with a specific set of
functions. Many of the entries which make up a specification type are
position-dependent. Each entry must start in a specific position depending on the
type of entry and the type of specification.

There are seven types of RPG 1V specifications. Each specification type is optional.
Specifications must be entered into your source program in the order shown below.

Main source section:

1. Control specifications provide the compiler with information about generating
and running programs, such as the program name, date format, and use of
alternate collating sequence or file translation.

File description specifications describe all the files that your program uses.
Definition specifications describe the data used by the program.
Input specifications describe the input records and fields used by the program.

S S A

Calculation specifications describe the calculations done on the data and the
order of the calculations. Calculation specifications also control certain input
and output operations.

6. Output specifications describe the output records and fields used by the
program.

Subprocedure section:

1. Procedure specifications mark the beginning and end of the subprocedure,
indicate the subprocedure name, and whether it is exported.

2. Definition specifications describe the local data used by the subprocedure.

3. Calculation specifications describe the calculations done on both the global
and local data and the order of the calculations.

© Copyright IBM Corp. 1994, 2006 3

RPG IV Overview

Cycle Programming

When a system processes data, it must do the processing in a particular order. This
logical order is provided by:

¢ The ILE RPG compiler
* The program code

The logic the compiler supplies is called the program cycle. When you let the
compiler provide the logic for your programs, it is called cycle programming.

The program cycle is a series of steps that your program repeats until an
end-of-file condition is reached. Depending on the specifications you code, the
program may or may not use each step in the cycle.

If you want to have files controlled by the cycle, the information that you code on
RPG specifications in your source program need not specify when records for these
files are read. The compiler supplies the logical order for these operations, and
some output operations, when your source program is compiled.

If you do not want to have files controlled by the cycle, you must end your
program some other way, either by creating an end-of-file condition by setting on
the last record (LR) indicator, by creating a return condition by setting on the
return (RT) indicator, or by returning directly using the RETURN operation.

Note: No cycle code is generated for subprocedures or when NOMAIN is
specified on the control specification.

shows the specific steps in the general flow of the RPG program cycle.

(Start 4

Write . Perform
. Get input |
Y heading and total
S record .
detail lines calculations

Perform No Write
detail < Move fields Do — total
calculations output

End of
program

Figure 1. RPG Program Logic Cycle

4

RPG processes all heading and detail lines (H or D in position 17 of the
output specifications).

ILE RPG Programmer’s Guide

RPG IV Overview

RPG reads the next record and sets on the record identifying and control
level indicators.

RPG processes total calculations (conditioned by control level indicators L1
through L9, an LR indicator, or an LO entry).

RPG processes all total output lines (identified by a T in position 17 of the
output specifications).

RPG determines if the LR indicator is on. If it is on, the program ends.

The fields of the selected input records move from the record to a
processing area. RPG sets on field indicators.

[~

RPG processes all detail calculations (not conditioned by control level
indicators in positions 7 and 8 of the calculation specifications). It uses the
data from the record at the beginning of the cycle.

The first cycle

The first and last time through the program cycle differ somewhat from other
cycles. Before reading the first record the first time through the cycle, the program
does three things:

* handles input parameters, opens files, initializes program data
* writes the records conditioned by the 1P (first page) indicator
¢ processes all heading and detail output operations.

For example, heading lines printed before reading the first record might consist of
constant or page heading information, or special fields such as PAGE and *DATE.
The program also bypasses total calculations and total output steps on the first
cycle.

The last cycle

The last time a program goes through the cycle, when no more records are
available, the program sets the LR (last record) indicator and the L1 through L9
(control level) indicators to on. The program processes the total calculations and
total output, then all files are closed, and then the program ends.

Subprocedure logic

The general flow of a subprocedure is much simpler: the calculations of a
subprocedure are done once, and then the subprocedure returns. There is no cycle
code generated for a subprocedure.

Indicators

An indicator is a one-byte character field that is either set on ("1") or off ('0"). It is
generally used to indicate the result of an operation or to condition (control) the
processing of an operation. Indicators are like switches in the flow of the program
logic. They determine the path the program will take during processing,
depending on how they are set or used.

Indicators can be defined as variables on the definition specifications. You can also

use RPG IV indicators, which are defined either by an entry on a specification or
by the RPG IV program itself.

Chapter 1. Overview of the RPG IV Programming Language 5

RPG IV Overview

Each RPG IV indicator has a two-character name (for example, LR, 01, H3), and is
referred to in some entries of some specifications just by the two-character name,
and in others by the special name *INxx where xx is the two-character name. You
can use several types of these indicators; each type signals something different. The
positions on the specification in which you define an indicator determine the use
of the indicator. Once you define an indicator in your program, it can limit or
control calculation and output operations.

Indicator variables can be used any place an indicator of the form *INxx may be
used with the exception of the OFLIND and EXTIND keywords on the file
description specifications.

An RPG program sets and resets certain indicators at specific times during the
program cycle. In addition, the state of indicators can be changed explicitly in
calculation operations.

Operation Codes

The RPG IV programming language allows you to do many different types of
operations on your data. Operation codes, entered on the calculation specifications,
indicate what operations will be done. For example, if you want to read a new
record, you could use the READ operation code. The following is a list of the types
of operations available.

* Arithmetic operations

* Array operations

* Bit operations

* Branching operations

* Call operations

¢ Compare operations

* Conversion operations

* Data-area operations

* Date operations

* Declarative operations

* Error-handling operations

* File operations

* Indicator-setting operations

¢ Information operations

* Initialization operations

* Memory management operations

* Move operations

* Move zone operations

* Result operations

* Size operations

* String operations

* Structured programming operations

* Subroutine operations

* Test operations

Example of an

ILE RPG Program

This section illustrates a simple ILE RPG program that performs payroll
calculations.

Problem Statement

6 ILE RPG Programmer’s Guide

Example of an ILE RPG Program

The payroll department of a small company wants to create a print output that
lists employees’ pay for that week. Assume there are two disk files, EMPLOYEE
and TRANSACT, on the system.

The first file, EMPLOYEE, contains employee records. The figure below shows the
format of an employee record:

EMP_REC
EMP_NUMBER EMP_NAME EMP_RATE
1 6 22 27
. R AN . BN DIPTSR O TP T PR U AR
. P T.Name++++++RLen++TDpB. FUNCL T ONS++++t+ttttttttbtrtttx
A R EMP_REC
A EMP_NUMBER 5 TEXT('EMPLOYEE NUMBER')
A EMP_NAME 16 TEXT("EXPLOYEE NAME')
A EMP_RATE 5 2 TEXT('EXPLOYEE RATE')
A K EMP_NUMBER

Figure 2. DDS for Employee physical file

The second file, TRANSACT, tracks the number of hours each employee worked
for that week and any bonus that employee may have received. The figure below
shows the format of a transaction record:

TRN_REC
TRN_NUMBER TRN_HOURS | TRN_BONUS
1 6 10 16
L R A . P UMY S R TENDAE UM R I A
Avevvonn, T.Name++++++RLen++TDpB...... Functions+++++t+ttttttttttt++x
A R TRN_REC
A TRN_NUMBER 5 TEXT('EMPLOYEE NUMBER')
A TRN_HOURS 4 1 TEXT('HOURS WORKED')
A TRN_BONUS 6 2 TEXT('BONUS')

Figure 3. DDS for TRANSACT physical file

Each employee’s pay is calculated by multiplying the "hours” (from the
TRANSACT file) and the "rate” (from the EMPLOYEE file) and adding the "bonus”
from the TRANSACT file. If more than 40 hours were worked, the employee is
paid for for 1.5 times the normal rate.

Control Specifications

cee 3 4 5 6
HKeywords+++++ttt bttt

H DATEDIT(*DMY/)

Chapter 1. Overview of the RPG IV Programming Language 7

Example of an ILE RPG Program

8

Today's date will be printed in day, month, year format with "/” as the separator.

File Description Specifications

LA R S ST TR AP SR DAL TS S R SR A T
FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords++++++t+tttttttttttttttt+++
FTRANSACT IP E K DISK

FEMPLOYEE IF E K DISK

FQSYSPRT 0 F 80 PRINTER

There are three files defined on the file description specifications:

e The TRANSACT file is defined as the Input Primary file. The ILE RPG program
cycle controls the reading of records from this file.

¢ The EMPLOYEE file is defined as the Input Full-Procedure file. The reading of
records from this file is controlled by operations in the calculation specifications.

* The QSYSPRT file is defined as the Output Printer file.

Definition Specifications

LA R S SPUIC IRPUPE AP SRR UL TP PP R U AP DU
D+Name++++++++++ETDSFrom+++To/ L+++IDc. Keywords++++++++ttttttttttttttttt

D Pay S 8P 2

D Headingl C 'NUMBER NAME RATE H-
D OURS BONUS PAY !

D Heading2 C ! _-
D 1

D CalcPay PR 8P 2

D Rate 5P 2 VALUE

D Hours 10U 0 VALUE

D Bonus 5P 2 VALUE

Using the definition specifications, declare a variable called "Pay” to hold an
employees” weekly pay and two constants "Headingl” and "Heading2” to aid in
the printing of the report headings.

Calculation Specifications

chain trn_number emp_rec;
if %found(emp_rec);
pay = CalcPay (emp_rate: trn_hours: trn_bonus);
endif;
/end-free

The coding entries on the calculation specifications include:

» Using the CHAIN operation code, the field TRN_NUMBER from the transaction
file is used to find the record with the same employee number in the employee
file.

* If the CHAIN operation is successful (that is, indicator 99 is off), the pay for that
employee is evaluated. The result is "rounded” and stored in the variable called
Pay.

ILE RPG Programmer’s Guide

Example of an ILE RPG Program

Output Specifications

L R SR UM RIS DI THAE AV SRDIPUAE PPN ¢ SEPRPE AP A SN
OFilename++DF. .NOINO2NO3Excnam++++B++A++Sh+Sa+. ... ovvieniie i e,
[0 NOINO2NO3Field+++++++++YB,End++PConstant/editword/DTformat
O0QSYSPRT H 1p 2 3

0 35 'PAYROLL REGISTER'

0 *DATE Y 60

0 H 1P 2

0 60 Headingl

0 H 1p 2

0 60 Heading2

0 D NIPN99 2

0 TRN_NUMBER 5

0 EMP_NAME 24

0 EMP_RATE L 33

0 TRN_HOURS L 40

0 TRN_BONUS L 49

0 Pay 60 '$ 0. '

0 D N1P 99 2

0 TRN_NUMBER 5

0 35 '"xx NOT ON EMPLOYEE FILE *='
0 T LR

0 33 '"END OF LISTING'

The output specifications describe what fields are to be written on the QSYSPRT
output:

* The Heading Lines that contain the constant string 'PAYROLL REGISTER’ as

well as headings for the detail information will be printed if indicator 1P is on.
Indicator 1P is turned on by the ILE RPG program cycle during the first cycle.

¢ The Detail Lines are conditioned by the indicators 1P and 99. Detail Lines are
not printed at 1P time. The N99 will only allow the Detail lines to be printed if
indicator 99 is off, which indicates that the corresponding employee record has
been found. If the indicator 99 is on, then the employee number and the
constant string "** NOT ON EMPLOYEE FILE **” will be printed instead.

¢ The Total Line contains the constant string "END OF LISTING'. It will be printed
during the last program cycle.

A Subprocedure

The subprocedure calculates the pay for the employee using the parameters passed
to it. The resulting value is returned to the caller using the RETURN statement.

The procedure specifications indicate the beginning and end of the procedure. The

definition specifications define the return type of the procedure, the parameters to
the procedure, and the local variable Overtime.

Chapter 1. Overview of the RPG IV Programming Language 9

Example of an ILE RPG Program

10

P CalcPay B

D CalcPay PI 8P 2

D Rate 5P 2 VALUE
D Hours 10U 0 VALUE
D Bonus 5P 2 VALUE
D Overtime S 5P 2 INZ(0)
/free

// Determine any overtime hours to be paid.
if Hours > 40;
Overtime = (Hours - 40) * Rate * 1.5;
Hours = 40;
endif;
// Calculate the total pay and return it to the caller.
return Rate * Hours + Bonus + Overtime;
/end-free
P CalcPay E

The Entire Source Program

The following figure combines all the specifications used in this program. This is
what you should enter into the source file for this program.

K e e e e e *
* DESCRIPTION: This program creates a printed output of employee's pay =*
* for the week. *
K *
H DATEDIT (+DMY/)

K *
* File Definitions *
K e e e e *
FTRANSACT IP E K DISK

FEMPLOYEE IF E K DISK

FQSYSPRT 0 F 80 PRINTER

e e e L T e e e T e *
* Variable Declarations *
K o e *
D Pay S 8P 2

Figure 4. A Sample Payroll Calculation Program (Part 1 of 3)

ILE RPG Programmer’s Guide

Example of an ILE RPG Program

K o *
D Headingl C 'NUMBER NAME RATE H-
D OURS BONUS PAY !

D Heading2 C ! _-
D 1

K o *

* Prototype Definition for subprocedure CalcPay *

K o *
D CalcPay PR 8P 2
D Rate 5P 2 VALUE
D Hours 16U 0 VALUE
D Bonus 5P 2 VALUE

K o *

* For each record in the transaction file (TRANSACT), if the employee

*

* is found, compute the employee's pay and print the details. *
K *
/free

chain trn_number emp_rec;
if %found(emp_rec);

pay = CalcPay (emp_rate: trn_hours: trn_bonus);

endif;

/end-free
K *
* Report Layout *
* -- print the heading Tines if 1P is on *
* -- if the record is found (indicator 99 is off) print the payroll *
* details otherwise print an exception record *
* -- print "END OF LISTING' when LR is on *
K e e e *
0QSYSPRT H 1p 2 3

0 35 'PAYROLL REGISTER'

0 *DATE Y 60

0 H 1P 2

0 60 Headingl

0 H 1p 2

0 60 Heading2

0 D NI1PN99 2

0 TRN_NUMBER 5

0 EMP_NAME 24

0 EMP_RATE L 33

0 TRN_HOURS L 40

0 TRN_BONUS L 49

0 Pay 60 '$ 0. '

0 D NIP 99 2

0 TRN_NUMBER 5

0 35 '+ NOT ON EMPLOYEE FILE **'

0 T LR

0 33 '"END OF LISTING'

Figure 4. A Sample Payroll Calculation Program (Part 2 of 3)

Chapter 1. Overview of the RPG IV Programming Language

11

Using the i5/0S System

K *
* Subprocedure -- calculates overtime pay. *
K o *
P CalcPay B

D CalcPay PI 8P 2

D Rate 5P 2 VALUE

D Hours 10U 0 VALUE

D Bonus 5P 2 VALUE

D Overtime S 5P 2 INZ(0)

/free

// Determine any overtime hours to be paid.
if Hours > 40;
Overtime = (Hours - 40) * Rate * 1.5;
Hours = 40;
endif;
// Calculate the total pay and return it to the caller.
return Rate * Hours + Bonus + Overtime;
/end-free
P CalcPay E

Figure 4. A Sample Payroll Calculation Program (Part 3 of 3)

Using the i5/0S System

12

The operating system that controls all of your interactions with the iSeries system
is called the IBM i5/0S (i5/0S) system. From your workstation, the i5/0S system
allows you to:

* Sign on and sign off

* Interact with the displays

* Use the online help information

* Enter control commands and procedures
* Respond to messages

¢ Manage files

* Run utilities and programs.

You can obtain a complete list of publications that discuss the i5/0S system at the
iSeries Information Center

Interacting with the System

You can manipulate the i5/0S system using Command Language (CL). You
interact with the system by entering or selecting CL commands. The system often
displays a series of CL commands or command parameters appropriate to the
situation on the screen. You then select the desired command or parameters.

Commonly Used Control Language Commands

The following table lists some of the most commonly used CL commands, their
function, and the reasons you might want to use them.

ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Using the i5/0S System

Table 17. Commonly Used CL Commands

Action CL command Result
Using System Menus GO MAIN Display main menu
GO INFO Display help menu
GO CMDRPG List commands for RPG
GO CMDCRT List commands for creating
GO CMDxxx List commands for "xxx’
Calling CALL program-name
Runs a program
Compiling CRTxxxMOD Creates xxx Module
CRTBNDxxx Creates Bound xxx Program
Binding CRTPGM Creates a program from ILE modules
CRTSRVPGM Creates a service program
UPDPGM Updates a bound program object
Debugging STRDBG Starts ILE source debugger
ENDDBG Ends ILE source debugger
Creating Files CRTPRTF Creates Print File
CRTPF Creates Physical File
CRTSRCPF Creates Source Physical File
CRTLF Creates Logical File

WebSphere Development Studio for iSeries

IBM WebSphere Development Studio for iSeries is an application development
package to help you rapidly and cost-effectively increase the number of e-business
applications for the iSeries server. This package consolidates all of the key iSeries
development tools, both host and workstation, into one iSeries offering.

The host development tools have undergone major improvements. We are shipping
new C and C++ compilers, completely refreshed from the latest AIX compilers, to
replace the existing versions of these compilers. This will help customers and
solution providers port e-business solutions from other platforms. ILE RPG has
also made major enhancements. Improved Java interoperability and free-form
C-Specs top the list of enhancements. COBOL has added z/OS migration
capabilities as well as introducing some COBOL/Java interoperability capabilities.

The following components are included in WebSphere Development Studio for
iSeries.

Host components:

» ILE RPG

 ILE COBOL

¢ ILE C/C++

* Application Development ToolSet (ADTS)

Chapter 1. Overview of the RPG IV Programming Language 13

WebSphere Development Studio for iSeries

Workstation components:

* IBM WebFacing Tool

* iSeries development tools: Remote System Explorer and iSeries projects
* Java development tools (with iSeries enhancements)
* Web development tools (with iSeries enhancements)
* Struts environment support

* Database development tools

* Web services development tools

* Server development tools

* XML development tools

* CODE

* VisualAge RPG

* Integrated iSeries debugger

WebSphere Development Studio Client for iSeries

14

WebSphere Development Studio Client for iSeries (Development Studio Client) is
an application development package of workstation tools that helps you rapidly

and cost-effectively increase the number of e-business applications for the iSeries
server.

This package consolidates all of the key iSeries workstation-based development
tools into one iSeries offering. It is also an included entitlement for purchasers of
WebSphere Development Studio for iSeries.

WebSphere Development Studio Client for iSeries Feature List:

The workbench-based integrated development environment
IBM WebSphere Development Studio Client for iSeries uses WebSphere
Studio Workbench (WSWB) version 2.1.

The IBM WebFacing Tool
The IBM WebFacing Tool can convert your DDS display source files into an
application that can be run in a browser.

Remote System Explorer and iSeries Development Tools
The Remote System Explorer, included as a part of iSeries development
tools, encompasses the framework, user interface, editing, and file,
command, and job actions of iSeries capability.

iSeries Java development tools
Java development tools and iSeries Java development tools give you the
ability to develop Java applications and write, compile, test, debug, and
edit programs written in the Java programming language for Java
applications development.

iSeries Web development tools
Web development tools give you the ability to create new e-business
applications that use a Web-based front end to communicate with the
business logic in an ILE and non-ILE language program residing on an
iSeries host.

Struts environment support
Development Studio Client offers support for Struts and the Web Diagram
editor.

ILE RPG Programmer’s Guide

WebSphere Development Studio for iSeries

Database development tools
Database development tools support any local or remote database that has
a Java Database Connectivity (JDBC) driver.

Web services development tools
Web services development tools allow developers to create modular
applications that can be invoked on the World Wide Web.

Server development tools
Server development tools are used to test applications in a local or
remotely installed run-time environment.

XML development tools
XML development tools support any XML-based development.

CODE (CoOperative Development Environment)
CODE is the classic set of Windows tools for iSeries development. It gives
you a suite of utilities for creating source and DDS files, and managing
your projects.

VisualAge RPG
VisualAge RPG is a visual development environment that allows you to
create and maintain client/server applications on the workstation.

Integrated iSeries debugger
The integrated iSeries debugger helps you debug code that is running on
the iSeries system or on your Windows system, using a graphical user
interface on your workstation.

If you want to learn more about WebSphere Development Studio Client for iSeries,

see the most current information available on the World Wide Web at
ibm.com/software/awdtools/iseries/.

Chapter 1. Overview of the RPG IV Programming Language 15

16 ILE RPG Programmer’s Guide

Chapter 2. RPG Programming in ILE

ILE RPG is an implementation of the RPG IV programming language in the
Integrated Language Environment. It is one of the family of ILE compilers
available on the iSeries system.

ILE is a recent approach to programming on the iSeries system. It is the result of
major enhancements to the iSeries machine architecture and the i5/0S operating

system. The ILE family of ¢
CL, and VisualAge for C++.

Table 18. Programming Languages Supported on the iSeries

ompilers includes: ILE RPG, ILE C, ILE COBOL, ILE

ble 18| lists the programming languages supported
by the i5/0S operating system. In addition to the support for the ILE languages,
support for the original program model (OPM) and extended program model

(EPM) languages has been retained.

Integrated Language Original Program Model Extended Program Model
Environment (ILE) (OPM) (EPM)

CH++ BASIC (PRPQ) FORTRAN

C CL PASCAL (PRPQ)

CL COBOL

COBOL PL/I (PRPQ)

RPG RPG

Compared to OPM, ILE provides RPG users with improvements or enhancements
in the following areas of application development:

* Program creation

* Program management

¢ Program call

* Source debugging

* Bindable application program interfaces (APIs)

Each of the above areas is explained briefly in the following paragraphs and
discussed further in the following chapters.

Program Creation

In ILE, program creation consists of:
1. Compiling source code into modules

2. Binding (combining) one or more modules into a program object

You can create a program object much like you do in the OPM framework, with a
one-step process using the Create Bound RPG Program (CRTBNDRPG) command.
This command creates a temporary module which is then bound into a program
object. It also allows you to bind other objects through the use of a binding
directory.

Alternatively, you may create a program using separate commands for compilation
and binding. This two-step process allows you to reuse a module or update one

© Copyright IBM Corp. 1994, 2006 17

RPG Programming in ILE

18

module without recompiling the other modules in a program. In addition, because
you can combine modules from any ILE language, you can create and maintain
mixed-language programs.

In the two-step process, you create a module object using the Create RPG Module
(CRTRPGMOD) command. This command compiles the source statements into a
module object. A module is a nonrunnable object; it must be bound into a program
object to be run. To bind one or more modules together, use the Create Program
(CRTPGM) command.

Service programs are a means of packaging the procedures in one or more
modules into a separately bound object. Other ILE programs can access the
procedures in the service program, although there is only one copy of the service
program on the system. The use of service programs facilitates modularity and
maintainability. You can use off-the-shelf service programs developed by third
parties or, conversely, package your own service programs for third-party use. A
service program is created using the Create Service Program (CRTSRVPGM)
command.

You can create a binding directory to contain the names of modules and service
programs that your program or service program may need. A list of binding
directories can be specified when you create a program on the CRTBNDRPG,
CRTSRVPGM, and CRTPGM commands. They can also be specified on the
CRTRPGMOD command; however, the search for a binding directory is done when
the module is bound at CRTPGM or CRTSRVPGM time. A binding directory can
reduce program size because modules or service programs listed in a binding
directory are used only if they are needed.

shows the two approaches to program creation.

RPG IV source specifications
Externally described files
Copy source text

ILE HLL Modules, RPG Module
Service Programs (CRTRPGMOD)

ILE Program
(CRTBNDRPG)

ILE Program
(CRTPGM)

One-Step Process Two-Step Process
Figure 5. Program Creation in ILE

Once a program is created you can update the program using the Update Program
(UPDPGM) or Update Service Program (UPDSRVPGM) commands. This is useful,
because it means you only need to have the new or changed module objects
available to update the program.

For more information on the one-step process, see [Chapter 6, “Creating a Program|
[with the CRTBNDRPG Command,” on page 59.| For more information on the
two-step process, see Chapter 7, “Creating a Program with the CRTRPGMOD and

ILE RPG Programmer’s Guide

RPG Programming in ILE

CRTPGM Commands,” on page 75) For more information on service programs, see
Chapter 8, “Creating a Service Program,” on page 91

Program Management

ILE provides a common basis for:

* Managing program flow

* Sharing resources

* Using application program interfaces (APIs)

* Handling exceptions during a program’s run time

It gives RPG users much better control over resources than was previously
possible.

ILE programs and service programs are activated into activation groups which are
specified at program-creation time. The process of getting a program or service
program ready to run is known as activation. Activation allocates resources within
a job so that one or more programs can run in that space. If the specified activation
group for a program does not exist when the program is called, then it is created
within the job to hold the program’s activation.

An activation group is the key element governing an ILE application’s resources
and behavior. For example, you can scope commitment-control operations to the
activation group level. You can also scope file overrides and shared open data
paths to the activation group of the running application. Finally, the behavior of a
program upon termination is also affected by the activation group in which the
program runs.

For more information on activation groups, see [“Managing Activation Groups” on|
|o: e 110.

You can dynamically allocate storage for a run-time array using the bindable APIs
provided for all ILE programming languages. These APIs allow single- and
mixed-language applications to access a central set of storage management
functions and offer a storage model to languages that do not now provide one.
RPG offers some storage management capabilities using operation codes. For more
information on storage management, see [‘Managing Dynamically-Allocated]
[Storage” on page 113

Program Call

In ILE, you can write applications in which ILE RPG programs and OPM RPG/400
programs continue to interrelate through the traditional use of dynamic program
calls. When using such calls, the calling program specifies the name of the called
program on a call statement. The called program’s name is resolved to an address
at run time, just before the calling program passes control to the called program.

You can also write ILE applications that can interrelate with faster static calls.
Static calls involve calls between procedures. A procedure is a self-contained set of
code that performs a task and then returns to the caller. An ILE RPG module
consists of an optional main procedure followed by zero or more subprocedures.
Because the procedure names are resolved at bind time (that is, when you create
the program), static calls are faster than dynamic calls.

Static calls also allow

Chapter 2. RPG Programming in ILE 19

RPG Programming in ILE

* Operational descriptors

* Omitted parameters

* The passing of parameters by value

* The use of return values

* A greater number of parameters to be passed

Operational descriptors and omitted parameters can be useful when calling
bindable APIs or procedures written in other ILE languages.

For information on running a program refer to|Chapter 9, “Running a Program,”’|
on page 103.| For information on program/procedure call, refer to |ChaEter 10,|

“Calling Programs and Procedures,” on page 129

Source Debugging

Use WebSphere Development Studio Client for iSeries. This is the recommended
method and documentation about debugging programs and appears in that
product’s online help. With the integrated iSeries debugger you can debug your
program running on the iSeries server from a graphical user interface on your
workstation. You can also set breakpoints directly in your source before running
the debugger. The integrated iSeries debugger client user interface also enables you
to control program execution. For example, you can run your program, set line,
watch, and service entry point breakpoints, step through program instructions,
examine variables, and examine the call stack. You can also debug multiple
applications, even if they are written in different languages, from a single debugger
window. Each session you debug is listed separately in the Debug view.

In ILE, you can perform source-level debugging on any single- or mixed-language
ILE application. The ILE source debugger also supports OPM programs. You can
control the flow of a program by using debug commands while the program is
running. You can set conditional and unconditional job or thread breakpoints prior
to running the program. After you call the program, you can then step through a
specified number of statements, and display or change variables. When a program
stops because of a breakpoint, a step command, or a run-time error, the pertinent
module is shown on the display at the point where the program stopped. At that
point, you can enter more debug commands.

For information on the debugger, refer to [Chapter 12, “Debugging Programs,” on|

Bindable APIs

ILE offers a number of bindable APIs that can be used to supplement the function
currently offered by ILE RPG. The bindable APIs provide program calling and
activation capability, condition and storage management, math functions, and
dynamic screen management.

Some APIs that you may wish to consider using in an ILE RPG application
include:

* CEETREC - Signal the Termination-Imminent Condition
e CEE4ABN - Abnormal End

¢ CEECRHP - Create your own heap

* CEEDSHP - Discard your own heap

* CEEFRST - Free Storage in your own heap

20 ILE RPG Programmer’s Guide

RPG Programming in ILE

* CEEGTST - Get Heap Storage in your own heap
* CEECZST - Reallocate Storage in your own heap
* CEEDOD - Decompose Operational Descriptor

Note: You cannot use these or any other ILE bindable APIs from within a program
created with DFTACTGRP(*YES). This is because bound calls are not
allowed in this type of program.

For more information on these ILE bindable APIs, see [Chapter 9, “Running a
[Program,” on page 103

Multithreaded Applications

The iSeries system now supports multithreading. ILE RPG does not directly
support initiating or managing program threads. However, ILE RPG procedures
can run as threads in multithreaded environments. If you want to call an ILE RPG
procedure in a multithreaded application, you must ensure that the ILE RPG
procedure is threadsafe. You must also ensure that any system functions that your
procedure accesses are also threadsafe.

The THREAD(*SERIALIZE) control specification keyword can be specified to help
you achieve thread safety for an ILE RPG module. Specifying
THREAD(*SERIALIZE) will protect most of your variables and all your internal
control structures from being accessed improperly by multiple threads. The thread
safe module will be locked when a procedure in the module is entered and
unlocked when when no procedure in the module is still running. This serialized
access, ensures that only one thread is active in any one module, within an
activation group, at any one time. However, it is still up to the programmer to
handle thread safety for storage that is shared across modules. This is done by
adding logic in the application to synchronize access to the storage.

For more information, see [“Multithreading Considerations” on page 158 |

Chapter 2. RPG Programming in ILE 21

22 ILE RPG Programmer’s Guide

Chapter 3. Program Creation Strategies

There are many approaches you can take in creating programs using an ILE
language. This section presents three common strategies for creating ILE programs
using ILE RPG or other ILE languages.

1. Create a program using CRTBNDRPG to maximize OPM compatibility.
2. Create an ILE program using CRTBNDRPG.
3. Create an ILE program using CRTRPGMOD and CRTPGM.

The first strategy is recommended as a temporary one. It is intended for users who
have OPM applications and who, perhaps due to lack of time, cannot move their
applications to ILE all at once. The second strategy can also be a temporary one. It
allows you time to learn more about ILE, but also allows you to immediately use
some of its features. The third strategy is more involved, but offers the most
flexibility.

Both the first and second strategy make use of the one-step program creation
process, namely, CRTBNDRPG. The third strategy uses the two-step program
creation process, namely, CRTRPGMOD followed by CRTPGM.

Strategy 1: OPM-Compatible Application

Strategy 1 results in an ILE program that interacts well with OPM programs. It
allows you to take advantage of RPG IV enhancements, but not all of the ILE
enhancements. You may want such a program temporarily while you complete
your migration to ILE.

Method

Use the following general approach to create such a program:
1. Convert your source to RPG IV using the CVTRPGSRC command.

Be sure to convert all /COPY members that are used by the source you are
converting.

2. Create a program object using the CRTBNDRPG command, specifying
DFTACTGRP(*YES).

Specifying DFTACTGRP(*YES) means that the program object will run only in the
default activation group. (The default activation group is the activation group
where all OPM programs are run.) As a result, the program object will interact

well with OPM programs in the areas of override scoping, open scoping, and
RCLRSC.

When you use this approach you cannot make use of ILE static binding. This
means that you cannot code a bound procedure call in your source, nor can you
use the BNDDIR or ACTGRP parameters on the CRTBNDRPG command when
creating this program.

Example of OPM-Compatible Program

[Figure 6 on page 24| shows the run-time view of a sample application where you
might want an OPM-compatible program. The OPM application consisted of a CL

© Copyright IBM Corp. 1994, 2006 23

OPM-Compatible Application

24

program and two RPG programs. In this example, one of the RPG programs has

been moved to

— Job

ILE; the remaining programs are unchanged.

~*PGM(X)

-- Default Activation Group -------- .

OPM CL

~*PGM(Y)

A

ILE RPG

~*PGM(2)

A

OPM RPG

Figure 6. OPM-Compatible Application

Effect of ILE
The following deals with the effects of ILE on the way your application handles:

Program call

Data

Files

Errors

OPM programs behave as before. The system automatically creates
the OPM default activation group when you start your job, and all
OPM applications run in it. One program can call another program
in the default activation group by using a dynamic call.

Storage for static data is created when the program is activated,
and it exists until the program is deactivated. When the program
ends (either normally or abnormally), the program’s storage is
deleted. To clean up storage for a program that returns without
ending, use the Reclaim Resource (RCLRSC) command.

File processing is the same as in previous releases. Files are closed
when the program ends normally or abnormally.

As in previous releases, the compiler handles errors within each
program separately. The errors you see that originated within your
program are the same as before. However, the errors are now
communicated between programs by the ILE condition manager, so
you may see different messages between programs. The messages
may have new message IDs, so if your CL program monitors for a
specific message ID, you may have to change that ID.

Related Information

Converting to RPG IV [“Converting Your Source” on page 432

One-step creation process Chapter 6, “Creating a Program with the]

CRTBNDRPG Command,” on page 59

ILE static binding Chapter 10, “Calling Programs and Procedures,” on|

ILE RPG Programmer’s Guide

page 129 also ILE Concepts

OPM-Compatible Application

Exception handling differences

“Differences between OPM and ILE RPG Exception|
Handling” on page 268|

Strategy 2: ILE Program Using CRTBNDRPG

Strategy 2 results in an ILE program that can take advantage of ILE static binding.
Your source can contain static procedure calls because you can bind the module to
other modules or service programs using a binding directory. You can also specify
the activation group in which the program will run.

Method

Use the following general approach to create such a program:

1. If starting with RPG III source, convert your source to RPG IV using the
CVTRPGSRC command.

If converting, be sure to convert all /COPY members and any programs that
are called by the source you are converting. Also, if you are using CL to call the
program, you should also make sure that you are using ILE CL instead of OPM
CL.

2. Determine the activation group the program will run in.
You may want to name it after the application name, as in this example.
3. Identify the names of the binding directories, if any, to be used.

It is assumed with this approach that if you are using a binding directory, it is
one that is already created for you. For example, there may be a third-party
service program that you may want to bind to your source. Consequently, all
you need to know is the name of the binding directory.

4. Create an ILE program using CRTBNDRPG, specifying DFTACTGRP(*NO), the
activation group on the ACTGRP parameter, and the binding directory, if any,
on the BNDDIR parameter.

Note that if ACTGRP(*CALLER) is specified and this program is called by a
program running in the default activation group, then this program will behave

according to ILE semantics in the areas of override scoping, open scoping, and
RCLRSC.

The main drawback of this strategy is that you do not have a permanent module
object that you can later reuse to bind with other modules to create an ILE
program. Furthermore, any procedure calls must be to modules or service
programs that are identified in a binding directory. If you want to bind two or
more modules without using a binding directory when you create the program,
you need to use the third strategy.

Example of ILE Program Using CRTBNDRPG

[Figure 7 on page 26| shows the run-time view of an application in which an ILE CL
program calls an ILE RPG program that is bound to a supplied service program.
The application runs in the named activation group XYZ.

Chapter 3. Program Creation Strategies 25

ILE Program Using CRTBNDRPG

26

— Job

~*PGM(X)

-~ XYZ Activation Group----------- -

ILE CL

~*PGM(Y)

A

ILE RPG

~*SRVPGM(2)¥
Supplied Service

Program

Figure 7. ILE Program Using CRTBNDRPG

Effect of ILE
The following deals with the effects of ILE on the way your program handles:

Program call

Data

Files

Errors

ILE RPG Programmer’s Guide

The system automatically creates the activation group if it does not
already exist, when the application starts.

The application can contain dynamic program calls or static
procedure calls. Procedures within bound programs call each other
by using static calls. Procedures call ILE and OPM programs by
using dynamic calls.

The lifetime of a program’s storage is the same as the lifetime of
the activation group. Storage remains active until the activation
group is deleted.

The ILE RPG run time manages data so that the semantics of
ending programs and reinitializing the data are the same as for
OPM RPG, although the actual storage is not deleted as it was
when an OPM RPG program ended. Data is reinitialized if the
previous call to the procedure ended with LR on, or ended
abnormally.

Program data that is identified as exported or imported (using the
keywords EXPORT and IMPORT respectively) is external to the
individual modules. It is known among the modules that are
bound into a program.

By default, file processing (including opening, sharing, overriding,
and commitment control) by the system is scoped to the activation
group level. You cannot share files at the data management level
with programs in different activation groups. If you want to share
a file across activation groups, you must open it at the job level by
specifying SHARE(*YES) on an override command or create the file
with SHARE(*YES).

When you call an ILE RPG program or procedure in the same

ILE Program Using CRTBNDRPG

activation group, if it gets an exception that would previously have
caused it to display an inquiry message, now your calling program
will see that exception first.

If your calling program has an error indicator or *PSSR, the
program or procedure that got the exception will end abnormally
without the inquiry message being displayed. Your calling program
will behave the same (the error indicator will be set on or the
*PSSR will be invoked).

When you call an OPM program or a program or main procedure
in a different activation group, the exception handling will be the
same as in OPM RPG, with each program handling its own
exceptions. The messages you see may have new message IDs, so
if you monitor for a specific message ID, you may have to change
that ID.

Each language processes its own errors and can process the errors
that occur in modules written in another ILE language. For
example, RPG will handle any C errors if an error indicator has
been coded. C can handle any RPG errors.

Related Information

Converting to RPG IV [‘Converting Your Source” on page 432|

One-step creation process Chapter 6, “Creating a Program with the]
CRTBNDRPG Command,” on page 59

Activation groups [“Managing Activation Groups” on page 110|
RCLRSC [‘Reclaim Resources Command” on page 112
ILE static binding Chapter 10, “Calling Programs and Procedures,” on|

page 129 also ILE Concepts

“Differences between OPM and ILE RPG Exception|
Handling” on page 268|

Exception handling differences

Override and open scope “Overriding and Redirecting File Input and|
Output” on page 319 and [“Sharing an Open Datal
Path” on page 323} also ILE Concepts

Strategy 3: ILE Application Using CRTRPGMOD

This strategy allows you to fully utilize the concepts offered by ILE. However,
while being the most flexible approach, it is also more involved. This section
presents three scenarios for creating:

* A single-language application
* A mixed-language application

* An advanced application

The effect of ILE is the same as described in [“Effect of ILE” on page 26

You may want to read about the basic ILE concepts in ILE Concepts before using
this approach.

Chapter 3. Program Creation Strategies 27

ILE Application Using CRTRPGMOD

28

Method

Because this approach is the most flexible, it includes a number of ways in which
you might create an ILE application. The following list describes the main steps
that you may need to perform:

1.

Create a module from each source member using the appropriate command, for
example, CRTRPGMOD for RPG source, CRTCLMOD for CL source, etc..

Determine the ILE characteristics for the application, for example:

* Determine which module will contain the procedure that will be the starting
point for the application. The module you choose as the entry module is the
first one that you want to get control. In an OPM application, this would be
the command processing program, or the program called because a menu
item was selected.

* Determine the activation group the application will run in. (Most likely you
will want to run in a named activation group, where the name is based on
the name of the application.)

* Determine the exports and imports to be used.

Determine if any of the modules will be bound together to create a service
program. If so, create the service programs using CRTSRVPGM.

Identify the names of the binding directories, if any, to be used.

It is assumed with this approach that if you are using a binding directory, it is
one that is already created for you. For example, there may be a third-party
service program that you may want to bind to your source. Consequently, all
you need to know is the name of the binding directory.

Bind the appropriate modules and service programs together using CRTPGM,
specifying values for the parameters based on the characteristics determined in
step

An application created using this approach can run fully protected, that is, within
its own activation group. Furthermore, it can be updated easily through use of the
UPDPGM or UPDSRVPGM commands. With these commands you can add or
replace one or more modules without having to re-create the program object.

Single-Language ILE Application Scenario

In this scenario you compile multiple source files into modules and bind them into
one program that is called by an ILE RPG program. [Figure 8 on page 29 shows the
run-time view of this application.

ILE RPG Programmer’s Guide

ILE Application Using CRTRPGMOD

— Job

-~ XY Activation Group ------------------- .

*PGM(X)

RPG

—~PGM(Y) —Y
RPG *MODULE(Y1) | —

RPG *MODULE(Y2)

v |

RPG *MODULE(Y3)

RPG *MODULE(Y4) |«

Figure 8. Single-Language Application Using CRTRPGMOD and CRTPGM

The call from program X to program Y is a dynamic call. The calls among the
modules in program Y are static calls.

See [“Effect of ILE” on page 26| for details on the effects of ILE on the way your
application handles calls, data, files and errors.

Mixed-Language ILE Application Scenario

In this scenario, you create integrated mixed-language applications. The main
module, written in one ILE language, calls procedures written in another ILE
language. The main module opens files that the other modules then share. Because
of the use of different languages, you may not expect consistent behavior.
However, ILE ensures that this occurs.

[Figure 9 on page 30| shows the run-time view of an application containing a
mixed-language ILE program where one module calls a non-bindable API,
QUSCRTUS (Create User Space).

Chapter 3. Program Creation Strategies 29

ILE Application Using CRTRPGMOD

— Job
-~ Y Activation Group --------------oooo- -
| ~*PGM(Y) |
CL *MODULE(Y1)

L

RPG *MODULE(Y2)

C *"MODULE(Y3) --- Default Activation Group ------- N
[.| ~*PGM(QUSCRTUS)——— !
RPG *MODULE(Y4) ‘

Figure 9. Mixed-Language Application

The call from program Y to the OPM API is a dynamic call. The calls among the
modules in program Y are static calls.

See |“Effect of ILE” on page 26| for details on the effects of ILE on the way your
application handles calls, data, files and errors.

Advanced Application Scenario

In this scenario, you take full advantage of ILE function, including service
programs. The use of bound calls, used for procedures within modules and service
programs, provide improved performance especially if the service program runs in
the same activation group as the caller.

[Figure 10 on page 31| shows an example in which an ILE program is bound to two
service programs.

30 ILE RPG Programmer’s Guide

— Job

ILE Application Using CRTRPGMOD

~*PGM(X)

-~ XYZ Activation Group -------

CL *MODULE(X1)

*SRVPGM(Y)

N

RPG *MODULE(X2)

v

RPG

*SRVPGM(Z) ¥
C *MODULE(Z1)

v

CL *MODULE(Z2)

Figure 10. Advanced Application

The calls from program X to service programs Y and Z are static calls.

See [“Effect of ILE” on page 26| for details on the effects of ILE on the way your
application handles calls, data, files and errors.

Related Information

Two-step creation process
Activation groups

ILE static binding
Exception Handling
Service programs

Updating a Program

Chapter 7, “Creating a Program with the]
CRTRPGMOD and CRTPGM Commands,” on page|

E|

[“Managing Activation Groups” on page 110|

Chapter 10, “Calling Programs and Procedures,” on|
page 129 also ILE Concepts

[Chapter 13, “Handling Exceptions,” on page 263
also ILE Concepts

Chapter 8, “Creating a Service Program,” on page]
91} also ILE Concepts

[“Using the UPDPGM Command” on page 88

A Strategy to Avoid

ILE provides many alternatives for creating programs and applications. However,
not all are equally good. In general, you should avoid a situation where an
application consisting of OPM and ILE programs is split across the OPM default
activation group and a named activation group. In other words, try to avoid the

scenario shown in [Figure 11 on page 32}

Chapter 3. Program Creation Strategies 31

A Strategy to Avoid

— Job
.~ Default Activation Group -------- -

*PGM(X)

CL

.~ QILE Activation Group ---------- .
 PGM(Y)_Y |
RPG

~*SRVPGM(2) ¥

RPG

Figure 11. Scenario to Avoid. An application has a CL program in the OPM default activation
group and ILE programs in a named activation group.

When an application is split across the default activation group and any named
activation group, you are mixing OPM behavior with ILE behavior. For example,
programs in the default activation group may be expecting the ILE programs to
free their resources when the program ends. However, this will not occur until the
activation group ends.

Similarly, the scope of overrides and shared ODPs will be more difficult to manage
when an application is split between the default activation group and a named
one. By default, the scope for the named group will be at the activation group
level, but for the default activation group, it can be either call level or job level, not
activation group level.

Note: Calling an ILE program from the command line, or from an OPM program
that simply makes a call, is not a problem. The problems, which can all be
solved, stem from OPM programs and ILE programs using shared resources
such as overrides and commitment control, and from OPM programs trying
to using OPM commands such as RCLRSC which have no effect on
programs running in a named activation group.

32 ILE RPG Programmer’s Guide

Chapter 4. Creating an Application Using Multiple Procedures

The ability to code more than one procedure in an ILE RPG module greatly
enhances your ability to code a modular application. This chapter discusses why
and how you might use such a module in your application. Specifically this
chapter presents:

* Overview of key concepts
* Example of module with more than one procedure
* Coding considerations

Refer to the end of this section to see where to look for more detailed information
on coding modules with multiple procedures.

A Multiple Procedures Module — Overview

An ILE program consists of one or more modules; a module is made up of one or
more procedures. A procedure is any piece of code that can be called with a bound
call. ILE RPG has two kinds of procedures: a main procedure and a subprocedure.
The way to call a subprocedure is with a prototyped call.

Note: In the RPG documentation, the term "procedure’ refers to both main and
subprocedures.

Main Procedures and Subprocedures

An ILE RPG module consists of a main procedure and zero or more
subprocedures. (If there are subprocedures, the main procedure is optional.) A
main procedure is a procedure that can be specified as the program entry
procedure (and so receive control when an ILE program is first called). The main
procedure is defined in the main source section, which is the set of H, F, D, I, C,
and O specifications that begin a module. In V3R1, all ILE RPG modules had a
main procedure and no other procedures.

A subprocedure is a procedure that is specified after the main source section. A
subprocedure differs from a main procedure primarily in that:

* Names that are defined within subprocedure are not accessible outside the
subprocedure.

* No cycle code is generated for the subprocedure.

* The call interface must be prototyped.

* Calls to subprocedures must be bound procedure calls.
* Only P, D, and C specifications can be used.

Subprocedures can provide independence from other procedures because the data
items are local. Local data items are normally stored in automatic storage, which
means that the value of a local variable is not preserved between calls to the
procedure.

Subprocedures offer another feature. You can pass parameters to a subprocedure
by value, and you can call a subprocedure in an expression to return a value.

© Copyright IBM Corp. 1994, 2006 33

Multiple Procedures Module

shows what a module might look like with multiple procedures.

*MODULE

—Main Procedure

Main
Source
Section

H specifications

F specifications

D specifications - Data items visible
throughout module

| specifications

C specifications

O specifications

— Subprocedure 1

P specification

D specifications - Data items visible only
to Subprocedure 1

C specifications - Can access local and
global data items

P specifications

A

— Subprocedure 2

P specification
D specifications - Data items visible
only to Subprocedure 2
C specifications - Can access local and
global data items
P specifications

Local
Scope

Local
Scope

A

Program Data - part of main source section

Figure 12. An ILE RPG module with Multiple Procedures

Gilobal
Scope

As the picture suggests, you can now code subprocedures to handle particular
tasks. These tasks may be needed by the main procedures or by other modules in

the application. Furthermore, you can declare temporary data items in

subprocedures and not have to worry if you have declared them elsewhere in the

module.

Prototyped Calls

To call a subprocedure, you must use a prototyped call. You can also call any

program or procedure that is written in any language in this way. A prototyped
call is one where the call interface is checked at compile time through the use of a
prototype. A prototype is a definition of the call interface. It includes the following
information:

* Whether the call is bound (procedure) or dynamic (program)
* How to find the program or procedure (the external name)

* The number and nature of the parameters

* Which parameters must be passed, and which are optionally passed

34 ILE RPG Programmer’s Guide

Multiple Procedures Module

* Whether operational descriptors are passed (for a procedure)
* The data type of the return value, if any (for a procedure)

and to ensure that the caller passes the correct parameters. |Figure 13| shows a
prototype for a procedure FmtCust, which formats various fields of a record into
readable form. It has two output parameters.

The prototype is used by the compiler to call the program or procedure correctly,

// Prototype for procedure FmtCust (Note the PR on definition
// specification.) It has two output parameters.

D FmtCust PR
D Name 100A
D Address 100A

Figure 13. Prototype for FmtCust Procedure

To format an address, the application calls a procedure FmtAddr. FmtAddr has
several input parameters, and returns a varying character field. shows
the prototype for FmtAddr.

S
// FmtAddr - procedure to produce an address in the form
A
D FmtAddr PR 100A VARYING

D streetNum 10I 0 CONST

D streetName 50A CONST

D city 20A CONST

D state 15A CONST

D zip 5P 0 CONST

Figure 14. Prototype for FmtAddr Procedure

If the program or procedure is prototyped, you call it with CALLP or within an
expression if you want to use the return value. You pass parameters in a list that
follows the name of the prototype, for example, name (parm1 : parm2 : ...).

shows a call to FmtCust. Note that the names of the output parameters,
shown above in do not match those in the call statement. The parameter
names in a prototype are for documentation purposes only. The prototype serves to
describe the attributes of the call interface. The actual definition of call parameters
takes place inside the procedure itself.

c CALLP FmtCust (RPTNAME : RPTADDR)

Figure 15. Calling the FmtCust Procedure

Using prototyped calls you can call (with the same syntax):
e Programs that are on the system at run time

» Exported procedures in other modules or service programs that are bound in the
same program or service program

* Subprocedures in the same module

Chapter 4. Creating an Application Using Multiple Procedures 35

Multiple Procedures Module

FmtCust calls FmtAddr to format the address. Because FmtCust wants to use the
return value, the call to FmtAddr is made in an expression. shows the
call.

Address = FmtAddress (STREETNUM : STREETNAME :
CITY : STATE : ZIP);

Figure 16. Calling the FmtAddr Procedure

The use of procedures to return values, as in the above figure, allows you to write
any user-defined function you require. In addition, the use of a prototyped call
interface enables a number of options for parameter passing.

* Prototyped parameters can be passed in several ways: by reference, by value (for
procedures only), or by read-only reference. The default method for RPG is to
pass by reference. However, passing by value or by read-only reference gives
you more options for passing parameters.

* If the prototype indicates that it is allowed for a given parameter, you may be
able to do one or more of the following:

— Pass *OMIT
— Leave out a parameter entirely

— Pass a shorter parameter than is specified (for character and graphic
parameters, and for array parameters)

Example of Module with Multiple Procedures

36

Now let us look at an example of a multiple procedures module. In this
‘mini-application” we are writing a program ARRSRPT to produce a report of all
customers whose accounts are in arrears. We will create the basic report as a
module, so that it can be bound to other modules, if necessary. There are two main
tasks that are required for this module:

1. Determine that a record of an account from a customer file is in arrears.
2. Format the data into a form that is suitable for the report.

We have decided to code each task as a subprocedure. Conceptually, the module
will look something like that shown in [Figure 17 on page 37

ILE RPG Programmer’s Guide

Example of Module with Multiple Procedures

— ARRSRPT MODULE
— Main Procedur:

Open file, read record, write
output records, close files

— InArrears

Subprocedure to determine if
customer record is in arrears

[FmtCust

Subprocedure to format
customer data into report form

Figure 17. Components of the ARRSRPT Module

Now consider the first subprocedure, InArrears, which is shown in
InArrears is called by the main procedure to determine if the current
record is in arrears.

TIP
When coding subprocedures that use global fields, you may want to establish
a naming convention that shows the item to be global. In this example, the
uppercase field names indicate DDS fields. Another option would be to prefix
‘g_’, or some other string to indicate global scope.

If the record is in arrears, the subprocedure returns ‘1’ to the main procedure.

Chapter 4. Creating an Application Using Multiple Procedures

37

Example of Module with Multiple Procedures

38

== mmmm
// InArrears
//
// Parameters: (none)
// Globals: DUEDATE, AMOUNT, CurDate
//
// Returns: '1' if the customer is in arrears
] == mmm
P InArrears B
D InArrears PI 1A 2
// Local declarations
D DayslLate S 10I 0
D DateDue S D 3
// Body of procedure
/free
DateDue = %date (DUEDATE: *ISO0);
DaysLate = %diff (CurDate: DateDue: *d);
// The data in the input file comes from another type
// of computer, and the AMOUNTC field is a character
// string containing the numeric value. This string
// must be converted to the numeric AMOUNT field
// for printing.
AMOUNT = %dec (AMOUNTC : 31 : 9);
if DaysLate > 60 AND AMOUNT > 100.00;
return '1l';
endif;
return '0'; A a
/end-free
P InArrears E 1]

Figure 18. Source for Subprocedure InArrears

shows the main elements that are common to all subprocedures.

All subprocedures begin and end with procedure specifications.

After the Begin-Procedure specification (B in position 24 of the procedure
specification), you code a procedure interface definition. The return value,
if any, is defined on the PI specification. Any parameters are listed after the
PI specification.

Any variables or prototypes that are used by the subprocedure are defined
after the procedure interface definition.

The return value, if specified, is returned to the caller with a RETURN
operation.

If the record is not in arrears, the subprocedure returns ‘0’ to the main
procedure.

For all subprocedures, and also for a main procedure with prototyped entry
parameters, you need to define a procedure interface. A procedure interface
definition is a repeat of the prototype information within the definition of a
procedure. It is used to define the entry parameters for the procedure. The

procedure interface definition is also used to ensure that the internal definition of
the procedure is consistent with the external definition (the prototype). In the case
of InArrears, there are no entry parameters.

Consider next the subprocedure FmtCust, which is shown in [Figure 19 on page 39
FmtCust is called by ARRSRPT to format the relevant fields of a record into an
output record for the final report. (The record represents an account that is in

ILE RPG Programmer’s Guide

Example of Module with Multiple Procedures

arrears.) FmtCust uses global data, and so does not have any input parameters. It
formats the data into two output fields: one for the name, and one for the address.

// FmtCust formats CUSTNAME, CUSTNUM, STREETNAME etc into
// readable forms

//
// Parameters: Name (output)
// Address (output)
// Globals: CUSTNAME, CUSTNUM, STREETNUM, STREETNAME, CITY
// STATE, ZIP
[== mmm mm e e e e
P FmtCust B
D FmtCust PI
D Name 100A
D Address 100A
/free
= mmm m mm e
// CUSTNAME and CUSTNUM are formatted to Took Tike this:
// A&P Electronics (Customer number 157)
o mm m e e e

Name = CUSTNAME + ' ' + '(Customer number '
+ %char(CUSTNUM) + ')';

Address = FmtAddress (STREETNUM : STREETNAME :
CITY : STATE : ZIP);

/end-free

P FmtCust E

Figure 19. Source for Subprocedure FmtCust

Finally, consider the last subprocedure of this application, FmtAddr. Notice that
FmtAddr does not appear in the ARRSRPT module, that is shown in
We decided to place FmtAddr inside another module called FMTPROCS.
FMTPROCS is a utility module that will contain any conversion procedures that
other modules might need to use.

[Figure 20 on page 40| shows the source of the module FMTPROCS. Since this is a
prototyped procedure, it needs the prototype to be available. So that the prototype
can be shared, we have placed the prototype into a /COPY file.

Chapter 4. Creating an Application Using Multiple Procedures 39

Example of Module with Multiple Procedures

40

[/==sssssssssssssssssssssss
// Source for module FMTPROCS. This module does not have a
// main procedure, as indicated by the keyword NOMAIN.
[[==sss=sssssssssssssssssss
H NOMAIN
J e e i
// The prototype must be available to EACH module containing
// a prototyped procedure. The /COPY pulls in the prototype
// for FmtAddr.
[== mmmm e o
D/COPY QRPGLESRC,FMTPROC_P
P FmtAddr B EXPORT
D FmtAddr PI 100A VARYING
D streetNum 10I 0 CONST
D streetName 50A CONST
D «city 20A CONST
D state 15A CONST
D zip 5P 0 CONST
/free
] == mmm m
// STREETNUM, STREETNAME, CITY, STATE, and ZIP are formatted to
// look like:
// 27 Garbanzo Avenue, Smallville IN 51423
F e
return %char(streetNum) + ' ' + %trimr(streetName)
+ ', "+ Strim(city) + ' ' + %trim(state)
+ ' '+ geditc(zip : 'X');
P FmtAddr E

Figure 20. Source for module FMTPROCS, containing subprocedure FmtAdar.

FMTPROCS is a NOMAIN module, meaning that it consists only of
subprocedures; there is no main procedure. A NOMAIN module compiles faster
and requires less storage because there is no cycle code that is created for the
module. You specify a NOMAIN module, by coding the NOMAIN keyword on the
control specification. For more information on NOMAIN modules, see
[Creation” on page 45|

The Entire ARRSRPT Program

The ARRSRPT program consists of two modules: ARRSRPT and FMTPROCS.
[Figure 21 on page 41|shows the different pieces of our mini-application.

ILE RPG Programmer’s Guide

Example of Module with Multiple Procedures

—ARRSRPT *PGM

— ARRSRPT *MODULE———— ICOPYmem ber
CHTRROCP

— Main Prul:ed.l:
_Imm“.:

— FriCust CUSTFILE
DDS

— CUTPROCS *MODULE
HOMAIN

CharToHumn CUSTRPT
Los

Figure 21. The ARRSRPT Application

shows the source for the entire ARRSRPT module.

// Source for module ARRSRPT. Contains a main procedure and
// two subprocedures: InArrears and FmtCust.

// Related Module: CVTPROCS (CharToNum called by InArrears)

// CUSTFILE - contains customer information
// CUSTRPT - printer file (using format ARREARS)

A SR ——
FCUSTFILE IP E DISK

FCUSTRPT O E PRINTER

K o o o o = = = = = = *
*PROTOTYPES

K o o = - - *
/COPY QRPGLE,FMTPROC_P

K o e = = *
* InArrears returns 'l' if the customer is in arrears

B L T T T L T L L T *
D InArrears PR 1A

e e e e e e e e e e e e e e e, e e e, e, e, —————————— *

* FmtCust formats CUSTNAME, CUSTNUM, STREETNAME etc into
* readable forms

K o = *
D FmtCust PR
D Name 100A
D Address 100A

Figure 22. ILE RPG Complete Source for ARRSRPT Module (Part 1 of 3)

Chapter 4. Creating an Application Using Multiple Procedures 41

Example of Module with Multiple Procedures

42

K o o o = = = = = = = = *
*«*GLOBAL DEFINITIONS
K o o = = = = = = = - *
D CurDate S D
ICUSTREC 01
K o = = = = = = = *
+«MAIN PROCEDURE
K o o = = = = = = = *
C IF InArrears() = '1'
C CALLP FmtCust (RPTNAME : RPTADDR)
C EVAL RPTNUM = CUSTNUM
C WRITE ARREARS
C ENDIF
C *INZSR BEGSR
C MOVEL UDATE CurDate
C ENDSR
K o o o o o o o *
* SUBPROCEDURES
K o o o = = = = *
J e ittt
// InArrears
//

// Parameters: (none)
// Globals: DUEDATE, AMOUNT, CurDate

//
// Returns: '1' if the customer is in arrears
= m e e e e e
P InArrears B
D InArrears PI 1A
// Local declarations
D DaysLate S 10I 0
D DateDue S D
// Body of procedure
/free
DateDue = %date (DUEDATE: *ISO0);
DaysLate = %diff (CurDate: DateDue: *d);
// The data in the input file comes from another type
// of computer, and the AMOUNTC field is a character
// string containing the numeric value. This string
// must be converted to the numeric AMOUNT field
// for printing.
AMOUNT = %dec (AMOUNTC : 31 : 9);
if DaysLate > 60 AND AMOUNT > 100.00;
return '1l’';
endif;
return '0’';
/end-free
P InArrears E

Figure 22. ILE RPG Complete Source for ARRSRPT Module (Part 2 of 3)

ILE RPG Programmer’s Guide

Example of Module with Multiple Procedures

// FmtCust formats CUSTNAME, CUSTNUM, STREETNAME etc into
// readable forms

//
// Parameters: Name (output)
// Address (output)
// Globals: CUSTNAME, CUSTNUM, STREETNUM, STREETNAME, CITY
// STATE, ZIP
[= mmm m m
P FmtCust B
D FmtCust PI
D Name 100A
D Address 100A
/free
[/ === m e e
// CUSTNAME and CUSTNUM are formatted to Took like this:
// A&P Electronics (Customer number 157)
== mmmm

Name = CUSTNAME + ' ' + '(Customer number '
+ %char(CUSTNUM) + ')';

Address = FmtAddress (STREETNUM : STREETNAME :
CITY : STATE : ZIP);

/end-free

P FmtCust E

Figure 22. ILE RPG Complete Source for ARRSRPT Module (Part 3 of 3)

Note the following about ARRSRPT:

The definition specifications begin with the prototypes for the prototyped calls.
A /COPY file is used to supply the prototype for the called procedure FmtAddr.

The prototypes do not have to be first, but you should establish an order for the
different types of definitions for consistency.

The date field CurDate is a global field, meaning that any procedure in the
module can access it.

The main procedure is simple to follow. It contains calculation specifications for
the two main tasks: the I/O, and an initialization routine.

Each subprocedure that follows the main procedure contains the details of one
of the tasks.

Sample output for the program ARRSRPT is shown in

Customer number: 00001

ABC Electronics (Customer number 1)

15 Arboreal Way, Treetop MN 12345

Amount outstanding: $1234.56 Due date: 1995-05-01
Customer number: 00152

A&P Electronics (Customer number 152)

27 Garbanzo Avenue, Smallville MN 51423

Amount outstanding: $26544.50 Due date: 1995-02-11

Figure 23. Output for ARRSRPT

Chapter 4. Creating an Application Using Multiple Procedures 43

Example of Module with Multiple Procedures

[Figure 24| and [Figure 25| show the DDS source for the files CUSTFILE and
CUSTRPT respectively.

A*==*
A+ FILE NAME : CUSTFILE

Ax RELATED PGMS : ARRSRPT

A« DESCRIPTIONS : THIS IS THE PHYSICAL FILE CUSTFILE. IT HAS

Ax ONE RECORD FORMAT CALLED CUSTREC.
A*======================SSSSS=SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSk
A% CUSTOMER MASTER FILE -- CUSTFILE

A R CUSTREC

A CUSTNUM 5 0 TEXT (' CUSTOMER NUMBER')

A CUSTNAME 20 TEXT('CUSTOMER NAME')

A STREETNUM 5 0 TEXT (' CUSTOMER ADDRESS')

A STREETNAME 20 TEXT (' CUSTOMER ADDRESS')

A CITY 20 TEXT (' CUSTOMER CITY')

A STATE 2 TEXT (' CUSTOMER STATE')

A ZIp 5 0 TEXT('CUSTOMER ZIP CODE')

A AMOUNTC 15 TEXT('AMOUNT OUTSTANDING')

A DUEDATE 10 TEXT('DATE DUE')

Figure 24. DDS for CUSTFILE

A*==*
Ax FILE NAME : CUSTRPT

Ax RELATED PGMS : ARRSRPT

Ax DESCRIPTIONS : THIS IS THE PRINTER FILE CUSTRPT. IT HAS

Ax ONE RECORD FORMAT CALLED ARREARS.
A*==*
A R ARREARS

A 2 6

A 'Customer number:'

A RPTNUM 5 0 223

A TEXT('CUSTOMER NUMBER')

A RPTNAME 100A 310

A TEXT('CUSTOMER NAME')

A RPTADDR 100A 410

A TEXT('CUSTOMER ADDRESS')
A 5 10'Amount outstanding:'

A AMOUNT 10 2 5 35EDTWRD(" $0. ')

A TEXT ('AMOUNT OUTSTANDING')
A 5 50'Due date:'

A DUEDATE 10 5 60

A TEXT('DATE DUE')

Figure 25. DDS for CUSTRPT

Coding Considerations

This section presents some considerations that you should be aware of before you
begin designing applications with multiple-procedure modules. The items are
grouped into the following categories:

* General
e Program Creation
* Main Procedures

* Subprocedures

44 ILE RPG Programmer’s Guide

Coding Considerations

General Considerations

When coding a module with multiple procedures, you will want to make use of
/COPY files, primarily to contain any prototypes that your application may
require. If you are creating a service program, you will need to provide both the
service program and the prototypes, if any.

Maintenance of the application means ensuring that each component is at the
most current level and that any changes do not affect the different pieces. You
may want to consider using a tool such as Application Development Manager to
maintain your applications.

For example, suppose that another programmer makes a change to the /COPY
file that contains the prototypes. When you request a rebuild of your
application, any module or program that makes use of the /COPY file will be
recompiled automatically. You will find out quickly if the changes to the /COPY
file affect the calls or procedure interfaces in your application. If there are
compilation errors, you can then decide whether to accept the change to
prototypes to avoid these errors, or whether to change the call interface.

Program Creation

If you specify that a module does not have a main procedure then you cannot
use the CRTBNDRPG command to create the program. (A module does not have
a main procedure if the NOMAIN keyword is specified on a control
specification.) This is because the CRTBNDRPG command requires that the
module contain a program entry procedure and only a main procedure can be a
program entry procedure.

Similarly, when using CRTPGM to create the program, keep in mind that a
NOMAIN module cannot be an entry module since it does not have a program
entry procedure.

A program that is created to run in the default OPM activation group (by
specifying DFTACTGRP(*YES) on the CRTBNDRPG command) cannot contain
bound procedure calls.

Main Procedure Considerations

Because the main procedure is the only procedure with a complete set of
specifications available (except the P specification), it should be used to set up
the environment of all procedures in the module.

A main procedure is always exported, which means that other procedures in the
program can call the main procedure by using bound calls.

The call interface of a main procedure can be defined in one of two ways:

1. Using a prototype and procedure interface

2. Using an *ENTRY PLIST without a prototype

The functionality of an *ENTRY PLIST is similar to a prototyped call interface.
However, a prototyped call interface is much more robust since it provides
parameter checking at compile time. If you prototype the main procedure, then
you specify how it is to be called by specifying either the EXTPROC or EXTPGM
keyword on the prototype definition. If EXTPGM is specified, then an external

program call is used; if EXTPROC is specified or if neither keyword is specified,
it will be called by using a procedure call.

You cannot define return values for a main procedure, nor can you specify that
its parameters be passed by value.

Chapter 4. Creating an Application Using Multiple Procedures 45

Coding Considerations

Subprocedure Considerations

* Any of the calculation operations may be coded in a subprocedure. However, all

files must be defined globally, so all input and output specifications must be
defined in the main source section. Similarly, all data areas must be defined in
the main procedure, although they can be used in a subprocedure.

The control specification can only be coded in the main source section since it
controls the entire module.

A subprocedure can be called recursively.Each recursive call causes a new
invocation of the procedure to be placed on the call stack. The new invocation
has new storage for all data items in automatic storage, and that storage is
unavailable to other invocations because it is local. (A data item that is defined
in a subprocedure uses automatic storage unless the STATIC keyword is
specified for the definition.)

The automatic storage that is associated with earlier invocations is unaffected by
later invocations. All invocations share the same static storage, so later
invocations can affect the value held by a variable in static storage.

Recursion can be a powerful programming technique when properly
understood.

The run-time behavior of a subprocedure differs somewhat from that of a main
procedure, because there is no cycle code for the subprocedure.

— When a subprocedure ends, it simply returns to the caller. None of the usual
termination activities, such as closing of files, occurs until the main procedure
that is associated with the subprocedure itself ends. You should code a
"cleanup” subprocedure that is called both by the program entry procedure at
application-end, and by a cancel handler enabled for the program entry
procedure.

An alternative is to code the NOMAIN module so that there is no implicit file
opening or data area locking, and that within any subprocedure, an open is
matched by a close, an IN by an OUT, a CRT<temp obj> by a DLT<temp
obj>, and so on. This alternative applies to modules that may have a
subprocedure active when the main procedure is not active.

— Exception handling within a subprocedure differs from a main procedure
primarily because there is no default exception handler for subprocedures. As
a result, situations where the default handler would be called for a main
procedure correspond to abnormal end of the subprocedure.

For Further Information

46

To find out more about the topics discussed here, consult the following list:

Main Procedures

Subprocedures

Topic See

Exception handling “Exception Handling within a Main Procedure” on|
page 266|

Main Procedure End [‘Returning from a Main Procedure” on page 153

Topic See

Defining Chapter on subprocedures, in the WebSphere

Development Studio: ILE RPG Reference

ILE RPG Programmer’s Guide

For Further Information

NOMAIN module [‘Creating a NOMAIN Module” on page 77

Exception handling “Exception Handling within Subprocedures” on|
page 262|

Procedure Specification Chapter on procedure specifications, in the

WebSphere Development Studio: ILE RPG Reference

Procedure Interface Chapter on defining data and prototypes in the
WebSphere Development Studio: ILE RPG Reference

Subprocedure End [‘Returning from a Subprocedure” on page 155|

Prototyped Call

Topic See

Free-form call [“Using a Prototyped Call” on page 134|

General Information WebSphere Development Studio: ILE RPG Reference,
Chapter 24

Passing parameters [“Passing Prototyped Parameters” on page 136|

Prototypes Chapter on defining data and prototypes in the

WebSphere Development Studio: ILE RPG Reference

Chapter 4. Creating an Application Using Multiple Procedures 47

For Further Information

48 ILE RPG Programmer’s Guide

Part 2. Creating and Running an ILE RPG Application

This section provides you with the information that is needed to create and run
ILE RPG programs. It describes how to:

Enter source statements
Create modules

Read compiler listings
Create programs

Create service programs
Run programs

Pass parameters
Manage the run time

Call other programs or procedures

Use WebSphere Development Studio Client for iSeries. This is the recommended
method and documentation about creating and running an ILE RPG application
appears in that product’s online help.

Many Integrated Language Environment terms and concepts are discussed briefly
in the following pages. These terms and concepts are more fully discussed in ILE
Concepts.

© Copyright IBM Corp. 1994, 2006 49

50 ILE RPG Programmer’s Guide

Chapter 5. Using Source Files

This chapter provides the information you need to enter RPG source statements. It
also briefly describes the tools necessary to complete this step.

To enter RPG source statements into the system, use one of the following methods:
* Interactively using SEU
* Interactively using Remote Systems LPEX Editor.

Use WebSphere Development Studio Client for iSeries. This is the recommended
method and documentation about editing source appears in that product’s online
help. Your program editing tasks are simplified with the Remote Systems LPEX
editor. The editor can access source files on your workstation or your iSeries server.
When a compilation results in errors, you can jump directly from the compiler
messages to an editor containing the source. The editor opens with the cursor
positioned at the offending source statements so that you can correct them.

Initially, you may want to enter your source statements into a file called
QRPGLESRC. New members of the file QRPGLESRC automatically receive a
default type of RPGLE. Furthermore, the default source file for the ILE RPG
commands that create modules and bind them into program objects is
QRPGLESRC. IBM® supplies a source file QRPGLESRC in library QGPL. It has a
record length of 112 characters.

Note: You can use mixed case when entering source. However, the ILE RPG
compiler will convert most of the source to uppercase when it compiles it. It

will not convert literals, array data or table data.

Your source can be in two different kinds of files:

1. [Source physical files|
2. [IFS (Integrated File System) files|

Using Source Physical Files

Creating a Library and Source Physical File

Source statements are entered into a member of a source physical file. Before you
can enter your program, you must have a library and a source physical file.

To create a library, use the CRTLIB command. To create a source physical, use the
Create Source Physical file (CRTSRCPF) command. The recommended record
length of the file is 112 characters. This record length takes into account the new
ILE RPG structure as shown in [Figure 26 on page 52

© Copyright IBM Corp. 1994, 2006 51

Using SEU

12 80 20

Seq#/Date Code Comments

|¢——— Minimum Record Length ———p}

(92 characters)

|¢&—————— Recommended Record Length

(112 characters)

v

Figure 26. ILE RPG Record Length Breakdown

Since the system default for a source physical file is 92 characters, you should
explicitly specify a minimum record length of 112. If you specify a length less than
92 characters, the program may not compile since you may be truncating source
code.

For more information about creating libraries and source physical files, refer to the
ADTS for AS/400: Source Entry Utility manual and the ADTS/400: Programming
Development Manager manual.

Using the Source Entry Utility (SEU)

You can use the Source Entry Utility (SEU) to enter your source statements. SEU
also provides prompting for the different specification templates as well as syntax
checking. To start SEU, use the STRSEU (Start Source Entry Utility) command. For
other ways to start and use SEU, refer to the ADTS for AS/400: Source Entry Utility
manual.

If you name your source file QRPGLESRC, SEU automatically sets the source type
to RPGLE when it starts the editing session for a new member. Otherwise, you
have to specify RPGLE when you create the member.

If you need prompting after you type STRSEU, press F4. The STRSEU display
appears, lists the parameters, and supplies the default values. If you supply
parameter values before you request prompting, the display appears with those
values filled in.

In the following example you enter source statements for a program which will
print employee information from a master file. This example shows you how to:

* Create a library
* Create a source physical file

Start an SEU editing session

Enter source statements.
1. To create a library called MYLIB, type:

CRTLIB LIB(MYLIB)

The CRTLIB command creates a library called MYLIB.
2. To create a source physical file called QRPGLESRC type:

CRTSRCPF FILE(MYLIB/QRPGLESRC) RCDLEN(112)
TEXT('Source physical file for ILE RPG programs')

The CRTSRCPF command creates a source physical file QRPGLESRC in library
MYLIB.

3. To start an editing session and create source member EMPRPT type:

52 ILE RPG Programmer’s Guide

STRSEU SRCFILE(MYLIB/QRPGLESRC)
SRCMBR (EMPRPT)
TYPE(RPGLE) OPTION(2)

Entering OPTION(2) indicates that you want to start a session for a new
member. The STRSEU command creates a new member EMPRPT in file

QRPGLESRC in library MYLIB and starts an edit session.

The SEU Edit display appears as shown in Note that the screen is
automatically shifted so that position 6 is (for specification type) at the left

edge.

Using SEU

Columns . . . : 6 76 Edit MYLIB/QRPGLESRC
SEU==> EMPRPT
FMT H HKeywords++++++++ttttttttttttttttttHHt bbb

*kkxkkkxkxkxkkx Beginning of data

*xkkxkkkkkxkkxkxx%**x End of data
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor
F16=Repeat find F17=Repeat change F24=More keys
\Member EMPRPT added to file MYLIB/QRPGLESRC. +

Figure 27. Edit Display for a New Member

4. Type the following source in your SEU Edit display, using the following SEU

prefix commands to provide prompting:

* IPF — for file description specifications

* IPD — for definition specifications

* IPI — for input specifications

* IPC — for calculation specifications

¢ IPCX — for calculation specifications with extended Factor 2
¢ IPO — for output specifications

 IPP — for output specifications continuation

¢ IPPR — for procedure specifications

Chapter 5. Using Source Files

53

Using SEU

A== ============ === === === =S=S=S=S=S=S=S=S=S=S=S=S=S=S=S=SSSSSSSSSSSSSSSS=S======%
* MODULE NAME: EMPRPT

% RELATED FILES: EMPMST (PHYSICAL FILE)

* QSYSPRT (PRINTER FILE)

* DESCRIPTION: This program prints employee information

* from the file EMPMST.

A - S S S S S S SS oSS oSS S S S S S S S S SIS S S S S oSS SS oSS oS SSSSSSSSSSSSSSSSSSS=S=S==S%
FQSYSPRT 0 F 80 PRINTER

FEMPMST IP E K DISK

D TYPE S 8A

D EMPTYPE PR 8A

D CODE 1A

IEMPREC 01

C EVAL TYPE = EMPTYPE(ETYPE)

OPRINT H 1P 2 6

0 50 'EMPLOYEE INFORMATION'
0 H 1P

0 12 'NAME'

0 34 'SERIAL #'

0 45 'DEPT'

0 56 'TYPE'

0 D 01

0 ENAME 20

0 ENUM 32

0 EDEPT 45

0 TYPE 60

* Procedure EMPTYPE returns a string representing the employee
* type indicated by the parameter CODE.

P EMPTYPE B

D EMPTYPE PI 8A

D CODE 1A

C SELECT

C WHEN CODE = 'M'
C RETURN 'Manager'
C WHEN CODE = 'R’
C RETURN 'Regular’
C OTHER

C RETURN 'Unknown'
C ENDSL

P EMPTYPE E

Figure 28. Source for EMPRPT member

5. Press F3 (Exit) to go to the Exit display. Type Y (Yes) to save EMPRPT.
The member EMPRPT is saved.

[Figure 29 on page 55|shows the DDS which is referenced by the EMPRPT source.

54 ILE RPG Programmer’s Guide

Using SEU

A***
Ax DESCRIPTION: This is the DDS for the physical file EMPMST. =*
Ax It contains one record format called EMPREC. *
Ax This file contains one record for each employee *
Ax of the company. *
A***
Ax*

A R EMPREC

A ENUM 5 0 TEXT('EMPLOYEE NUMBER')

A ENAME 20 TEXT('EMPLOYEE NAME')

A ETYPE 1 TEXT('EMPLOYEE TYPE')

A EDEPT 3 0 TEXT("EMPLOYEE DEPARTMENT')
A ENHRS 31 TEXT ('EMPLOYEE NORMAL WEEK HOURS')
A K ENUM

Figure 29. DDS for EMPRPT

To create a program from this source use the CRTBNDRPG command, specifying
DFTACTGRP(*NO).

Using SQL Statements

The DB2 UDB for iSeries® database can be accessed from an ILE RPG program by
embedding SQL statements into your program source. Use the following rules to
enter your SQL statements:

* Enter your SQL statements on the Calculation specification

e Start your SQL statements using the delimiter /EXEC SQL in positions 7-15
(with the / in position 7)

* You can start entering your SQL statements on the same line as the starting
delimiter

* Use the continuation line delimiter (a + in position 7) to continue your
statements on any subsequent lines

* Use the ending delimiter /END-EXEC in positions 7-15 (with the slash in
position 7) to signal the end of your SQL statements.

Note: SQL statements cannot go past position 80 in your program.

shows an example of embedded SQL statements.

C (ILE RPG calculation operations)

C/EXEC SQL (the starting delimiter)

C+

C+ (continuation lines containing SQL statements)
C+

C/END-EXEC (the ending delimiter)

C

C (ILE RPG calculation operations)
C

Figure 30. SQL Statements in an ILE RPG Program

You must enter a separate command to process the SQL statements. For more
information, refer to the DB2 Universal Database for AS/400 section of the Database

Chapter 5. Using Source Files 55

Using SQL Statements

and File Systems category in the iSeries Information Center at this Web site -
[http:/ /www.ibm.com/eserver/iseries /infocenter]

Refer to the ADTS for AS/400: Source Entry Utility manual for information about
how SEU handles SQL statement syntax checking.

Using IFS Source Files

The CRTBNDRPG and CRTRPGMOD commands include parameters to allow the
source files to be either in the QSYS file system of in the IFS sile system. These are:

SRCSTMF
SRCSTMEF is used instead of SRCFILE and SRCMBR to indicate a stream
file is the main source file.

INCDIR
INCDIR is used to list the directories that will contain copy files.

The stream file specified for the SRCSTMF can be an absolute path to the file
(beginning with a slash), or it can be a path relative to the current directory.

Include files

The /COPY and /INCLUDE directives allow the specification of files in either the
QSYS file system or the IFS file system. In cases where the compiler cannot tell
which file system the directive refers to, the search will begin in the file system of
the file containing the /COPY directive.

When the compiler encounters a /COPY statement, the statement could refer to a
file in the IFS or in the QSYS file system. If the name begins with a slash or is
specified in single quotes, the name can only refer to a file in the IFS. A name in
the IFS can be specified in double quotes as well. Where only part of the name is
in double quotes, for example:

/copy "SOME-LIB"/QRPGLESRC,MBR
the name can only be a QSYS file system name.

If the name could be either in the QSYS file system or the IFS, the file system of
the file containing the /COPY statement will be searched first. Note that
upper-casing occurs for the QSYS file system (except with extended names
specified with double quotes, such as "A/B") but not for the IFS. (The IFS is not
case sensitive.)

Table 19. /Copy File Name Intepretation for QSYS and IFS

/Copy statement QSYS interpretation IFS interpretation (see below for the
meaning of ".suffix”)
/COPY MYMBR FILE(*LIBL/QRPGLESRC) MYMBR or MYMBR.suffix in one of
MBR(MYMBR) the directories in the include path
/COPY mymbr FILE(*LIBL/QRPGLESRC) mymbr or mymbr.suffix in one of the
MBR(MYMBR) directories in the include path
/COPY myfile,mymbr FILE(*LIBL/MYFILE) myfile, mymbr or myfile,mymbr.suffix
MBR(MYMBR) (note that MYFILE MYMBR is a valid
name in the IFS file system)
/COPY mylib/myfile,mymbr FILE(MMYLIB/MYFILE) mylib/myfile, mymbr (directory mylib
MBR(MYMBR) and file myfile,mymbr)

56 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Table 19. /Copy File Name Intepretation for QSYS and IFS (continued)

Using IFS Source Files

/Copy statement

QSYS interpretation

IFS interpretation (see below for the
meaning of ".suffix")

/COPY "A/b",mymbr

FILE(*LIBL/"A/b")
MBR(MYMBR)

n/a (only part of name is in double
quotes

/COPY "A/B" FILE(*LIBL/QRPGLESRC) A/B
MBR("A/B")

/COPY a b FILE(*LIBL/QRPGLESRC) a or asuffix (everything
MBR(A) (everything after a after a blank is assumed
blank is assumed to be a to be a comment)
comment)

/COPY “a b’ N/A (name in single quotes) a b or a b.suffix

/COPY /home/mydir/myfile.rpg

N/A (name begins with slash)

/home/mydir/myfile.rpg

/COPY /QSYS.LIB/
L.LIB/EFILE/M.MBR

N/A (name begins with slash)

/QSYS.LIB/L.LIB/EFILE/

M.MBR (which is actually a
file in the QSYS file system,
but is considered to be an
IFS file by RPG)

Note: When searching for files in the IFS, if the file name does not contain a dot,
the RPG compiler will look for files with the following suffixes (in this
order):

1. no suffix (abc)
2. .rpgleinc (abc.rpgleinc)
3. .rpgle (abc.rpgle)

Search Path Within The IFS
You have two ways to indicate where /COPY and /INCLUDE files can be found
in the IFS:

1. The INCDIR parameter, which lists the directories in the order you want them
to be searched.

2. The RPGINCDIR environment variable, which has a colon-separated list of
directores in the order you want them to be searched. To set the environment
variable, use the ADDENVVAR or CHGENVVAR command.

For Example: ADDENVVAR ENVVAR(RPGINCDIR)
VALUE (' /home/mydir:/project/prototypes')ADDENVVAR

When searching for a relative file in the IFS (one whose path does not begin with
/), the file will be searched for in the following places, in this order

1. The current directory.

2. The path specified by the INCDIR comand parameter.

3. The directories in the RPGINCDIR environment variable.
4. The source directory (if the source is an IFS file).

For example, if:

* The current directory is /home/auser.

¢ The INCDIR parameter is /driver/v5r2/inc:/driver/v5rl/inc.
* The RPGINCDIR environment variable is /home/auser/temp.
* The source is in directory /home/auser/src.

Chapter 5. Using Source Files 57

Using IFS Source Files

The directory search path takes precedence over the default-suffix order. If a file
with no extension is searched for in several different directories, all suffixes will be
tried in each directory before the next directory is tried.

Table 20. Search Order for /Copy Files

/Copy statement Files searched for

Assume the source file containing the In IFS:

/COPY is /driver/src/main.rpg,

in the IFS /home/auser/file.rpg
/driver/v5r2/inc/file.rpg

/COPY filerpg /driver/v5rl/inc/file.rpg

/home/auser/temp/file.rpg
/home/auser/src/file.rpg

In QSYS:

FILE(*LIBL/QRPGLESRC) MBR(FILE.RPG)

Assume the source file containing the In QSYS:
/COPY is MYLIB/QRPGLESRC
MYMBR, in the QSYS file system FILE(*LIBL/QRPGLESRC) MBR(FILE)
/COPY file In IFS:
/home/auser/file

/home/auser/file.rpgleinc
/home/auser/file.rpgle

/driver/v5r2/inc/file
/driver/v5r2/inc/file.rpgleinc
/driver/v5r2/inc/file.rpgle

/driver/v5rl/inc/file
/driver/v5rl/inc/file.rpgleinc
/driver/v5rl/inc/file.rpgle

/home/auser/temp/file
/home/auser/temp/file.rpgleinc
/home/auser/temp/file.rpgle

/home/auser/src/file
/home/auser/src/file.rpgleinc
/home/auser/src/file.rpgle

58 ILE RPG Programmer’s Guide

Chapter 6. Creating a Program with the CRTBNDRPG
Command

This chapter shows you how to create an ILE program using RPG IV source with
the Create Bound RPG Program (CRTBNDRPG) command. With this command
you can create one of two types of ILE programs:

1. OPM-compatible programs with no static binding
2. Single-module ILE programs with static binding

Whether you obtain a program of the first type or the second type depends on
whether the DFTACTGRP parameter of CRTBNDRPG is set to *YES or *NO
respectively.

Creating a program of the first type produces a program that behaves like an OPM
program in the areas of open scoping, override scoping, and RCLRSC. This high
degree of compatibility is due in part to its running in the same activation group
as OPM programs, namely, in the default activation group.

However, with this high compatibility comes the inability to have static binding.
Static binding refers to the ability to call procedures (in other modules or service
programs) and to use procedure pointers. The inability to have static binding
means that you cannot:

* Use the CALLB operation in your source
 Call a prototyped procedure
* Bind to other modules during program creation

Creating a program of the second type produces a program with ILE characteristics
such as static binding. You can specify at program-creation time the activation
group the program is to run in, and any modules for static binding. In addition,
you can call procedures from your source.

Use WebSphere Development Studio Client for iSeries. This is the recommended
method and documentation about creating an ILE RPG program appears in that
product’s online help.

Using the CRTBNDRPG Command

The Create Bound RPG (CRTBNDRPG) command creates a program object from
RPG 1V source in one step. It also allows you to bind in other modules or service
programs using a binding directory.

The command starts the ILE RPG compiler and creates a temporary module object
in the library QTEMP. It then binds it into a program object of type *PGM. Once
the program object is created, the temporary module used to create the program is
deleted.

The CRTBNDRPG command is useful when you want to create a program object
from standalone source code (code that does not require modules to be bound
together), because it combines the steps of creating and binding. Furthermore, it
allows you to create an OPM-compatible program.

© Copyright IBM Corp. 1994, 2006 59

Using the CRTBNDRPG Command

Note: If you want to keep the module object in order to bind it with other
modules into a program object, you must create the module using the
CRTRPGMOD command. For more information see [Chapter 7, “Creating a|

[Program with the CRTRPGMOD and CRTPGM Commands,” on page 75|

You can use the CRTBNDRPG command interactively, in batch, or from a
Command Language (CL) program. If you are using the command interactively
and require prompting, type CRTBNDRPG and press F4 (Prompt). If you need
help, type CRTBNDRPG and press F1 (Help).

able 21) summarizes the parameters of the CRTBNDRPG command and shows

their default values.

Table 21. CRTBNDRPG Parameters and Their Default Values Grouped by Function

Program Identification

PGM(*CURLIB/*CTLSPEC)

Determines created program name and library

SRCFILE(*LIBL/QRPGLESRC)

If specified, identifies source file and library

SRCMBR(*PGM)

If specified, identifies file member containing source specifications

SRCSTMF(path)

If specified, indicates the path to the source file in the IFS

INCDIR("path to directory 1:path to directory
2’)

Identifies a list of directories to search for /copy and /include files

TEXT(*SRCMBRTXT)

Provides brief description of program

Program Creation

GENLVL(10)

Conditions program creation to error severity (0-20)

OPTION(*DEBUGIO)

*DEBUGIO/*NODEBUGIO, determines if breakpoints are generated
for input and output specifications

OPTION(*GEN)

*GEN/*NOGEN, determines if program is created

OPTION(*NOSRCSTMT)

Specifies how the compiler generates statement numbers for
debugging

DBGVIEW(*STMT)

Specifies type of debug view, if any, to be included in program

OPTIMIZE(*NONE)

Determines level of optimization, if any

REPLACE(*YES)

Determines if program should replace existing program

BNDDIR(*NONE)

Specifies the binding directory to be used for symbol resolution

USRPRF(*USER)

Specifies the user profile that will run program

AUT(*LIBCRTAUT)

Specifies type of authority for created program

TGTRLS(*CURRENT)

Specifies the release level the object is to be run on

ENBPFRCOL(*PEP)

Specifies whether performance collection is enabled

DEFINE(*NONE)

Specifies condition names that are defined before the compilation
begins

PRFDTA(*NOCOL)

Specifies the program profiling data attribute

Compiler Listing

OUTPUT(*PRINT)

Determines if there is a compiler listing

INDENT(*NONE)

Determines if indentation should show in listing, and identifies
character for marking it

OPTION(*XREF *NOSECLVL *SHOWCPY
*EXPDDS *EXT *NOSHOWSKP
*NOSRCSTMT)

Specifies the contents of compiler listing

Data Conversion Options

60 ILE RPG Programmer’s Guide

Using the CRTBNDRPG Command

Table 21. CRTBNDRPG Parameters and Their Default Values Grouped by Function (continued)

CVTOPT(*NONE)

Specifies how various data types from externally described files are
handled

ALWNULL(*NO)

Determines if the program will accept values from null-capable
fields

FIXNBR(*NONE)

Determines which decimal data that is not valid is to be fixed by the
compiler

Run-Time Considerations

DFTACTGRP(*YES)

Identifies whether this program always runs in the OPM default
activation group

OPTION(*DEBUGIO)

*DEBUGIO/*NODEBUGIO, determines if breakpoints are generated
for input and output specifications

ACTGRP(QILE)

Identifies the activation group in which the program should run

SRTSEQ(*HEX)

Specifies the sort sequence table to be used

LANGID(*JOBRUN)

Used with SRTSEQ to specify the language identifier for sort
sequence

TRUNCNBR(*YES)

Specifies the action to take when numeric overflow occurs for
packed-decimal, zoned-decimal, and binary fields in fixed-format
operations.

INFOSTMF(path)

Used with PGMINFO, specifies the stream file in the IFS to receive
the PCML

PGMINFO(*NONE)

*PCML indicates that PCML (Program Call Markup Language)
should be generated for the program

LICOPT (options)

Specifies Licensed Internal Code options.

See|Appendix C, “The Create Commands,” on page 455 for the syntax diagram and

parameter descriptions of CRTBNDRPG.

Creating a Program for Source Debugging
In this example you create the program EMPRPT so that you can debug it using
the source debugger. The DBGVIEW parameter on either CRTBNDRPG or
CRTRPGMOD determines what type of debug data is created during compilation.
The parameter provides six options which allow you to select which view(s) you

want:

e *STMT — allows you to display variables and set breakpoints at statement
locations using a compiler listing. No source is displayed with this view.

* *SOURCE — creates a view identical to your input source.

* *COPY — creates a source view and a view containing the source of any /COPY

members.

* *LIST — creates a view similar to the compiler listing.

e *ALL — creates all of the above views.
* *NONE — no debug data is created.

The source for EMPRPT is shown in [Figure 28 on page 541
1. To create the object type:
CRTBNDRPG PGM(MYLIB/EMPRPT) DBGVIEW(*SOURCE) DFTACTGRP(*NO)

Chapter 6. Creating a Program with the CRTBNDRPG Command 61

Using the CRTBNDRPG Command

The program will be created in the library MYLIB with the same name as the
source member on which it is based, namely, EMPRPT. Note that by default, it
will run in the default named activation group, QILE. This program object can
be debugged using a source view.

2. To debug the program type:
STRDBG EMPRPT

shows the screen which appears after entering the above command.

4 . N
Display Module Source
Program: EMPRPT Library: MYLIB Module: EMPRPT
1 A== =========================S===S==S==============================%
2 * MODULE NAME: EMPRPT
3 * RELATED FILES: EMPMST (PHYSICAL FILE)
4 * QSYSPRT (PRINTER FILE)
5 * DESCRIPTION: This program prints employee information
6 * from the file EMPMST.
7 KA S EESS =SS SSSS S SS S S S S CSSS S S S S S S S S SSSSSSSSSSSSSSSSS=SS=======%
8 FQSYSPRT 0 F 80 PRINTER
9 FEMPMST IP E K DISK
10
11 D TYPE S 8A
12 D EMPTYPE PR 8A
13 D CODE 1A
14
15 TEMPREC 01
More...
Debug . . .
F3=End program F6=Add/Clear breakpoint F10=Step F1l1l=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 31. Display Module Source display for EMPRPT

From this screen (the Display Module Source display) you can enter debug
commands to display or change field values and set breakpoints to control
program flow while debugging.

For more information on debugging see [Chapter 12, “Debugging Programs,” on|

Creating a Program with Static Binding

In this example you create a program COMPUTE using CRTBNDRPG to which
you bind a service program at program-creation time.

Assume that you want to bind the program COMPUTE to services which you have
purchased to perform advanced mathematical computations. The binding directory
to which you must bind your source is called MATH. This directory contains the
name of a service program that contains the various procedures that make up the
services.

To create the object, type:

CRTBNDRPG PGM(MYLIB/COMPUTE)
DFTACTGRP (*NO) ACTGRP(GRP1) BNDDIR(MATH)

The source will be bound to the service program specified in the binding directory

MATH at program-creation time. This means that calls to the procedures in the
service program will take less time than if they were dynamic calls.

62 ILE RPG Programmer’s Guide

Using the CRTBNDRPG Command

When the program is called, it will run in the named activation group GRP1. The
default value ACTGRP parameter on CRTBNDRPG is QILE. However, it is
recommended that you run your application as a unique group to ensure that the
associated resources are fully protected.

Note: DFTACTGRP must be set to *NO in order for you to enter a value for the
ACTGRP and BNDDIR parameters.

For more information on service programs, see [Chapter 8, “Creating a Service]
[Program,” on page 91

Creating an OPM-Compatible Program Object
In this example you use the CRTBNDRPG command to create an OPM-compatible
program object from the source for the payroll program, shown in
I' ge 04
1. To create the object, type:

CRTBNDRPG PGM(MYLIB/PAYROLL)
SRCFILE (MYLIB/QRPGLESRC)
TEXT('ILE RPG program') DFTACTGRP(*YES)

The CRTBNDRPG command creates the program PAYROLL in MYLIB, which
will run in the default activation group. By default, a compiler listing is
produced.

Note: The setting of DFTACTGRP(*YES) is what provides the OPM
compatibility. This setting also prevents you from entering a value for
the ACTGRP and BNDDIR parameters. Furthermore, if the source
contains any bound procedure calls, an error is issued and the
compilation ends.

2. Type one of the following CL commands to see the listing that is created:
* DSPJOB and then select option 4 (Display spooled files)
+ WRKJOB
* WRKOUTQ gueue-name
* WRKSPLF

Chapter 6. Creating a Program with the CRTBNDRPG Command 63

Using the CRTBNDRPG Command

64

* DESCRIPTION: This program creates a printed output of employee's pay =*
* for the week. *

K o *
H DATEDIT(*DMY/)

K *
* File Definitions *
K o *
FTRANSACT IP E K DISK

FEMPLOYEE IF E K DISK

FQSYSPRT 0 F 80 PRINTER

e e e *
* Variable Declarations *
e e e L T e e e e e *
D Pay S 8P 2

K o *
* Constant Declarations *
K o *
D Headingl C 'NUMBER NAME RATE H-
D OURS BONUS PAY !

D Heading2 C ! _-
D 1

K o *
* For each record in the transaction file (TRANSACT), if the employee *
* is found, compute the employees pay and print the details. *
K o *
c TRN_NUMBER CHAIN EMP_REC 99

c IF NOT *IN99

C EVAL (H) Pay = EMP_RATE * TRN_HOURS + TRN_BONUS

c ENDIF

K *
* Report Layout *
* -- print the heading Tines if 1P is on *
* -- if the record is found (indicator 99 is off) print the payroll *
* details otherwise print an exception record *
* -- print "END OF LISTING' when LR is on *
e *
0QSYSPRT H 1p 2 3

0 35 'PAYROLL REGISTER'

0 *DATE Y 60

0 H 1p 2

0 60 Headingl

0 H 1p 2

0 60 Heading2

0 D N1PN99 2

0 TRN_NUMBER 5

0 EMP_NAME 24

0 EMP_RATE L 33

0 TRN_HOURS L 40

0 TRN_BONUS L 49

0 Pay 60 '$ 0. '

0 D NIP 99 2

0 TRN_NUMBER 5

0 35 "% NOT ON EMPLOYEE FILE **'
0 T LR

0 33 'END OF LISTING'

Figure 32. A Sample Payroll Calculation Program

ILE RPG Programmer’s Guide

Using a Compiler Listing

Using a Compiler Listing

This section discusses how to obtain a listing and how to use it to help you:
* Fix compilation errors
* Fix run-time errors

¢ Provide documentation for maintenance purposes.

See [Appendix D, “Compiler Listings,” on page 477] for more information on the
different parts of the listing and for a complete sample listing.

Obtaining a Compiler Listing
To obtain a compiler listing specify OUTPUT(*PRINT) on either the CRTBNDRPG

command or the CRTRPGMOD command. (This is their default setting.) The
specification OUTPUT(*NONE) will suppress a listing.

Specifying OUTPUT(*PRINT) results in a compiler listing which consists minimally
of the following sections:

¢ Prologue (command option summary)
* Source Listing, which includes:
— In-Line diagnostic messages
— Match-field table (if using the RPG cycle with match fields)
* Additional diagnostic messages
¢ Field Positions in Output Buffer
* /COPY Member Table

* Compile Time Data which includes:

Alternate Collating Sequence records and table or NLSS information and table

File translation records
— Array records
Table records

* Message summary

* Final summary

¢ Code generation report (appears only if there are errors)

* Binding report (applies only to CRTBNDRPG; appears only if there are errors)

The following additional information is included in a compiler listing if the
appropriate value is specified on the OPTION parameter of either create command:

*EXPDDS
Specifications of externally-described files (appear in source section of
listing)

*SHOWCPY
Source records of /COPY members (appear in source section of listing)

*SHOWSKP
Source lines excluded by conditional compilation directives (appear in
source section of listing)

*EXPDDS
Key field information (separate section)

*XREF List of Cross references (separate section)

*EXT List of External references (separate section)

Chapter 6. Creating a Program with the CRTBNDRPG Command 65

Using a Compiler Listing

66

*SECLVL
Second-level message text (appear in message summary section)

Note: Except for *SECLVL and *SHOWSKD, all of the above values reflect the
default settings on the OPTION parameter for both create commands. You
do not need to change the OPTION parameter unless you do not want
certain listing sections or unless you want second level text to be included.

The information contained in a compiler listing is also dependent on whether
*SRCSTMT or *NOSRCSTMT is specified for the OPTION parameter. For details on
how this information changes, see [“”*NOSRCSTMT Source Heading”” on page 484
and [*"*SRCSTMT Source Heading"” on page 484

If any compile option keywords are specified on the control specification, the
compiler options in effect will appear in the source section of the listing.

Customizing a Compiler Listing

You can customize a compiler listing in any or all of the following ways:
* Customize the page heading
* Customize the spacing

* Indent structured operations

Customizing a Page Heading

The page heading information includes the product information line and the title
supplied by a /TITLE directive. The product information line includes the ILE
RPG compiler and library copyright notice, the member, and library of the source
program, the date and time when the module was created, and the page number
of the listing.

You can specify heading information on the compiler listing through the use of the
/TITLE compiler directive. This directive allows you to specify text which will
appear at the top of each page of the compiler listing. This information will
precede the usual page heading information. If the directive is the first record in
the source member, then this information will also appear in the prologue section.

You can also change the date separator, date format, and time separator used in
the page heading and other information boxes throughout the listing. Normally,
the compiler determines these by looking at the job attributes. To change any of
these, use the Change Job (CHGJOB) command. After entering this command you
can:

* Select one of the following date separators: *SYSVAL, *BLANK, slash (/),
hyphen (-) period (.) or comma (,)
* Select one of the following date formats: *SYSVAL, *YMD, *MDY, *DMY, or *JUL

* Select one of the following time separators: *SYSVAL, *BLANK, colon (:), comma
(,) or period (.)

Anywhere a date or time field appears in the listing, these values are used.

Customizing the Spacing

Each section of a listing usually starts on a new page; Each page of the listing
starts with product information, unless the source member contains a /TITLE
directive. If it does, the product information appears on the second line and the
title appears on the first line.

ILE RPG Programmer’s Guide

Using a Compiler Listing

You can control the spacing and pagination of the compiler listing through the use
of the /EJECT and /SPACE compiler directives. The /EJECT directive forces a
page break. The /SPACE directive controls line spacing within the listing. For more
information on these directives refer to the WebSphere Development Studio: ILE RPG
Reference.

Indenting Structured Operations

Note: Calculations can only be indented if they are written with traditional syntax.
The RPG compiler does not change the indentation of your free-form
calculations (between /FREE and /END-FREE) in the listing. You may
indent the free-form claculations directly in your source file.

If your source specifications contain structured operations (such as DO-END or
IF-ELSE-END), you may want to have these indented in the source listing. The
INDENT parameter lets you specify whether to show indentation, and specify the
character to mark the indentation. If you do not want indentation, specify
INDENT(*NONE); this is the default. If you do want indentation, then specify up
to two characters to mark the indentation.

For example, to specify that you want structured operations to be indented and
marked with a vertical bar (|) followed by a space, you specify INDENT('|).

If you request indentation, then some of the information which normally appears
in the source listing is removed, so as to allow for the indentation. The following
columns will not appear in the listing:

* Do Num
* Last Update
* PAGE/LINE

If you specify indentation and you also specify a listing debug view, the
indentation will not appear in the debug view.

[Figure 33 on page 68|shows part of source listing which was produced with
indentation. The indentation mark is 'l .

Chapter 6. Creating a Program with the CRTBNDRPG Command 67

Using a Compiler Listing

Line <e-mmmmmmmmmmmeen Source Specifications —----=mmmm oo o ><---- Comments ----> Src Seq
Number1....+. .. 2., . 4<—mmmmmes 26 - 35 -------- L SO P Y A O S ETTE - AL D DO 10 Id Number
33C 002000
34 Cx MAINLINE 002100
35¢C 002200
36 C WRITE FOOT1 002300
37 ¢C WRITE HEAD 002400
38 ¢C EXFMT PROMPT 002500
39 C+ 002600
40 C DOW NOT *INO3 002700
41 C CSTKEY SETLL CMLREC2 002800
42 C IF *IN20 002900
43 C | MOVE 1! *IN61 003000
44 C ELSE 003100
45 C | EXSR SFLPRC 003200
46 C END 003300
47 C IF NOT *INO3 003400
48 C IF *INO4 003500
49 C IF *IN61 003600
50 C WRITE FOOT1 003700
51 C WRITE HEAD 003800
52 C ENDIF 003900
53 C EXFMT PROMPT 004000
54 C ENDIF 004100
55 C ENDIF 004200
56 C ENDDO 004300
57 C+ 004500
58 C SETON 004600

Figure 33. Sample Source Part of the Listing with Indentation

Correcting Compilation Errors

68

The main sections of a compiler listing that are useful for fixing compilation errors
are:

e The source section
* The Additional Messages section
e The /COPY table section

* The various summary sections.

In-line diagnostic messages, which are found in the source section, point to errors
which the compiler can flag immediately. Other errors are flagged after additional
information is received during compilation. The messages which flag these errors
are in the source section and Additional Messages section.

To aid you in correcting any compilation errors, you may want to include the
second-level message text in the listing — especially if you are new to RPG. To do
this, specify OPTION(*SECLVL) on either create command. This will add
second-level text to the messages listed in the message summary.

Finally, keep in mind that a compiler listing is a record of your program. Therefore,
if you encounter any errors when testing your program, you can use the listing to
check that the source is coded the way you intended it to be. Parts of the listing,
besides the source statements, which you may want to check include:

e Match field table

If you are using the RPG cycle with match fields, then you can use this to check
that all your match fields are the correct lengths, and in the correct positions.

* Output-buffer positions

Lists the start and end positions along with the literal text or field names. Use
this to check for errors in your output specifications.

¢ Compile-time data

ILE RPG Programmer’s Guide

Using a Compiler Listing

ALTSEQ and FTRANS records and tables are listed. NLSS information and
tables are listed. Tables and arrays are explicitly identified. Use this to confirm
that you have specified the compile-time data in the correct order, and that you
have specified the correct values for the SRTSEQ and LANGID parameters to the
compiler.

Using In-Line Diagnostic Messages
There are two types of in-line diagnostic messages: finger and non-finger. Finger

messages point out exactly where the error occurred. [Figure 34| shows an example
of finger in-line diagnostic messages.

Line <e--mmmmmmmmemmeeeeeeo Source Specifications ------==--cmmmmmmmmomooo ><---- Comments ----> Do Page Change Src Seq
Number1....+.... AR 3ot Al oA LBl LBl h Ll Tk LBl 90 a0 10 Num Line Date Id Number

*RNF5051 20 a
*RNF5051 20 b
*RNF5053 30 ¢

003100
003100
003100

SETOFF 12 003100

cceecc
Resulting-Indicator entry is not valid; defaults to blanks.
Resulting-Indicator entry is not valid; defaults to blanks.
Resulting-Indicators entry is blank for specified

Figure 34. Sample Finger In-Line Diagnostic Messages

In this example, an indicator has been incorrectly placed in positions 72 - 73
instead of 71 - 72 or 73 - 74. The three fingers "aa’, 'bb’, and ’"ccccec” identify the
parts of the line where there are errors. The actual columns are highlighted with
variables which are further explained by the messages. In this case, message
RNF5051 indicates that the fields marked by “aa’” and 'bb” do not contain a valid
indicator. Since there is no valid indicator the compiler assumes that the fields are
blank. However, since the SETOFF operation requires an indicator, another error
arises, as pointed out by the field ‘ccccec” and message RNF5053.

Errors are listed in the order in which they are found. As a general rule, you
should focus on correcting the first few severity 30 and 40 errors, since these are
often the cause of other errors.

Non-finger in-line diagnostic messages also indicate errors. However, they are not
issued immediately following the line in error. shows an example of the
non-finger in-line diagnostic messages.

Line <----mmeommemeeeeeoo Source Specifications ------===mcmmmmmmmmmmmooo ><---- Comments ----> Do Page Change Src Seq

Number1....+.... 2ot 3l A b b7 8+l 90 o+ 10 Num Line Date Id Number
1D FLD1 +5 LIKE(FLD2) 000100
2 D FLD2 D 000200

*RNF3479 20

1 000100 A length adjustment is not allowed for a field of the

specified data type.

Figure 35. Sample Non-Finger In-Line Diagnostic Messages

In this example, FLD1 is defined like FLD2 with a length 5 bytes greater. Later,
FLD2 is defined as a date, which makes the length adjustment in the definition of
FLD1 invalid. Message RNF3479 is issued pointing at listing line 1. Note that the
SEU sequence number (000100) is also given, to aid you in finding the source line

in error more quickly. (The SEU sequence number can also be found at listing line
1).

Using Additional-Diagnostic Messages

The Additional Diagnostic Messages section identifies errors which arise when one
or more lines of code are viewed collectively. These messages are not placed within
the code where the problem is; in general, the compiler does not know at the time

of checking that portion of the source that a problem exists. However, when

Chapter 6. Creating a Program with the CRTBNDRPG Command 69

Using a Compiler Listing

70

possible, the message line includes either the listing Line Number and SEU
sequence number, or the Statement Number of a source line which is related to the
message.

Browsing a Compiler Listing Using SEU

The SEU Split/Browse session (F15) allows you to browse a compiler listing in the
output queue. You can review the results of a previous compilation while making
the required changes to your source code.

While browsing the compiler listing, you can scan for errors and correct those
source statements that have errors. To scan for errors, type F *ERR on the SEU
command line of the browse session. The line with the first (or next) error is
highlighted, and the first-level text of the same message appears at the bottom of
the screen. You can see the second-level text by placing your cursor on the message
at the bottom and then pressing F1 (Help).

When possible, the error messages in the listing identify the SEU sequence number
of the line in error. The sequence number is found just before the message text.

For complete information on browsing a compiler listing, see ADTS for AS/400:
Source Entry Utility.

Correcting Run-time Errors

The source section of the listing is also useful for correcting run-time errors. Many
run-time error messages identify a statement number where the error in question
occurred.

If OPTION(*NOSRCSTMT) is specified, the Line Number on the left side of the
compiler listing corresponds to the statement number in the run-time error
message. The source ID number and the SEU sequence number on the right side of
the compiler listing identify the source member and record. You can use the two
together, especially if you are editing the source using SEU, to determine which
line needs to be examined.

If OPTION(*SRCSTMT) is specified, the Statement Number on the right side of the
compiler listing corresponds to the statement number in the run-time error
message. If the statement is from the main source member, this is the same as the
statement on the left side of the compiler listing, and is also the same as the SEU
sequence number.

If you have a /COPY member, you can find the source ID number of the actual file
in the /COPY Member table at the end of the listing. For an example of a /COPY
Member table, see |”/COPY Member Table” on page 486

Coordinating Listing Options with Debug View Options
Correcting run-time errors often involves debugging a program. The following
considerations may help you when you go to debug your program:

 If you use the source debugger to debug your program you have a choice of
debug views: *STMT, *SOURCE, *LIST, *COPY, *ALL.

 If you plan to use a compiler listing as an aid while debugging, then you can
obtain one by specifying OUTPUT(*PRINT). A listing is important if you intend
to debug using a statement (*STMT) view since the statement numbers for
setting breakpoints are those identified in the source listing. The statement
numbers are listed in the column labeled as the Line Number when

ILE RPG Programmer’s Guide

Using

Using a Compiler Listing

OPTION(*NOSRCSTMT) is specified, and in the column labeled as the Statement
Number when OPTION(*SRCSTMT) is specified.

¢ If you know that you will have considerable debugging to do, you may want to
compile the source with DBGVIEW(*ALL), OUTPUT(*PRINT) and
OPTION(*SHOWCPY). This will allow you to use either a source or listing view,
and it will include /COPY members.

* If you specify DBGVIEW(*LIST), the information available to you while
debugging depends on what you specified for the OPTION parameter. The view
will include /COPY members and externally described files only if you specify
OPTION(*SHOWCPY *EXPDDS) — these are the defaults.

a Compiler Listing for Maintenance

A compiler listing of an error-free program can be used as documentation when:
¢ Teaching the program to a new programmer.

* Updating the program at a later date.

In either case it is advisable to have a full listing, namely, one produced with
OUTPUT(*PRINT) and with OPTION(*XREF *SHOWCPY *EXPDDS *EXT
*SHOWSKRP).

Note: Except for *SHOWSKRDP, this is the default setting for each of these
parameters on both create commands.

Of particular value for program maintenance is the Prologue section of the listing.
This section tells you:

* Who compiled the module/program

* What source was used to produce the module/program

* What options were used when compiling the module/program

You may need to know about the command options (for example, the debug view
selected, or the binding directory used) when you make later changes to the
program.

The following specifications for the OPTION parameter provide additional

information as indicated:

* *SHOWCPY and *EXPDDS provide a complete description of the program,
including all specifications from /COPY members, and generated specifications
from externally described files.

* *SHOWSKP allows you to see the statements that are ignored by the compiler as
a result of /IF, /JELSEIF, /ELSE, OR /EOF directives.

* *XREF allows you to check the use of files, fields, and indicators within the
module/program.

» *EXT allows you to see which procedures and fields are imported or exported
by the module/program. It also identifies the actual files which were used for
generating the descriptions for externally described files and data structures.

Accessing the

RETURNCODE Data Area

Both the CRTBNDRPG and CRTRPGMOD (see [“Using the CRTRPGMOD)]
[Command” on page 76) commands create and update a data area with the status
of the last compilation. This data area is named RETURNCODE, is 400 characters
long, and is placed into library QTEMP.

Chapter 6. Creating a Program with the CRTBNDRPG Command 71

Accessing the RETURNCODE Data Area

72

To access the RETURNCODE data area, specify RETURNCODE in factor 2 of a
*DTAARA DEFINE statement.

The data area RETURNCODE has the following format:

Byte
1

6-10

11-12
13-14
15-20

21-26
27-32
33-100
101-110
111-120

121-130
131-140
141-150
151-160
161-170
171-180
181-329
330-334

335
336-340

341-345

ILE RPG Programmer’s Guide

Content and Meaning

For CRTRPGMOD, character '1' means that a module was created
in the specified library. For CRTBNDRPG, character '1' means a
module with the same name as the program name was created in
QTEMP.

Character '1' means that the compilation failed because of compiler
errors.

Character '1' means that the compilation failed because of source
eITOorS.

Not set. Always 0.

Character '1' means the translator was not called because either
OPTION(*NOGEN) was specified on the CRTRPGMOD or
CRTBNDRPG command; or the compilation failed before the
translator was called.

Number of source statements
Severity level from command
Highest severity of diagnostic messages

Number of errors that are found in the module (CRTRPGMOD) or
program (CRTBNDRPG).

Compile date

Compile time

Not set. Always blank

Module (CRTRPGMOD) name or program (CRTBNDRPG) name.

Module (CRTRPGMOD) library name or program (CRTBNDRPG)
library name.

Source file name

Source file library name
Source file member name
Compiler listing file name
Compiler listing library name
Compiler listing member name
Not set. Always blank

Total elapsed compile time to the nearest 10th of a second (or -1 if
an error occurs while this time is being calculated)

Not set. Always blank

Elapsed compile time to the nearest 10th of a second (or -1 if an
error occurs while this time is being calculated)

Elapsed translator time to the nearest 10th of a second (or -1 if an
error occurs while this time is being calculated)

Accessing the RETURNCODE Data Area

346-379 Not set. Always blank

380-384 Total compile CPU time to the nearest 10th of a second

385 Not set. Always blank

386-390 CPU time that is used by compiler to the nearest 10th of a second

391-395 CPU time that is used by the translator to the nearest 10th of a
second

396-400 Not set. Always blank

Chapter 6. Creating a Program with the CRTBNDRPG Command 73

Accessing the RETURNCODE Data Area

74 ILE RPG Programmer’s Guide

Chapter 7. Creating a Program with the CRTRPGMOD and
CRTPGM Commands

The two-step process of program creation consists of compiling source into
modules using CRTRPGMOD and then binding one or more module objects into a
program using CRTPGM. With this process you can create permanent modules.
This in turn allows you to modularize an application without recompiling the
whole application. It also allows you to reuse the same module in different
applications.

This chapter shows how to:

¢ Create a module object from RPG IV source

* Bind modules into a program using CRTPGM
* Read a binder listing

¢ Change a module or program

Use WebSphere Development Studio Client for iSeries. This is the recommended
method and documentation about creating an ILE RPG program appears in that
product’s online help.

Creating a Module Object

A module is a nonrunnable object (type *MODULE) that is the output of an ILE
compiler. It is the basic building block of an ILE program.

An ILE RPG module consists of one or more procedures, and the file control blocks
and static storage used by all the procedures in the module. The procedures that
can make up an ILE RPG module are:

* an optional main procedure which consists of the set of H, F, D, I, C, and O
specifications that begin the source. The main procedure has its own LR
semantics and logic cycle; neither of which is affected by those of other ILE RPG
modules in the program.

* zero or more subprocedures, which are coded on P, D, and C specifications.
Subprocedures do not use the RPG cycle. A subprocedure may have local
storage that is available for use only by the subprocedure itself.

The main procedure (if coded) can always be called by other modules in the
program. Subprocedures may be local to the module or exported. If they are local,
they can only be called by other procedures in the module; if they are exported
from the module, they can be called by any procedure in the program.

Module creation consists of compiling a source member, and, if that is successful,
creating a *MODULE object. The *MODULE object includes a list of imports and
exports referenced within the module. It also includes debug data if you request

this at compile time.

A module cannot be run by itself. You must bind one or more modules together to
create a program object (type *PGM) which can then be run. You can also bind one
or more modules together to create a service program object (type *SRVPGM). You
then access the procedures within the bound modules through static procedure
calls.

© Copyright IBM Corp. 1994, 2006 75

Creating a Module Object

This ability to combine modules allows you to:

* Reuse pieces of code. This generally results in smaller programs. Smaller
programs give you better performance and easier debugging capabilities.

* Maintain shared code with little chance of introducing errors to other parts of
the overall program.

* Manage large programs more effectively. Modules allow you to divide your old
program into parts that can be managed separately. If the program needs to be
enhanced, you only need to recompile those modules which have been changed.

* Create mixed-language programs where you bind together modules written in
the best language for the task required.

For more information about the concept of modules, refer to ILE Concepts.

Using the CRTRPGMOD Command

You create a module using the Create RPG Module (CRTRPGMOD) command. You
can use the command interactively, as part of a batch input stream, or from a
Command Language (CL) program.

If you are using the command interactively and need prompting, type
CRTRPGMOD and press F4 (Prompt). If you need help, type CRTRPGMOD and
press F1 (Help).

lists the parameters of the CRTRPGMOD command and their
system-supplied defaults. The syntax diagram of the command and a description
of the parameters are found in [Appendix C, “The Create Commands,” on page 455

Table 22. CRTRPGMOD Parameters and Their Default Values Grouped by Function
Module Identification
MODULE(*CURLIB/*CTLSPEC) | Determines created module name and library
SRCFILE(*LIBL/QRPGLESRC) | If specified, identifies source file and library

SRCMBR(*MODULE) | If specified, identifies file member containing source specifications
SRCSTME(path) | If specified, indicates the path to the source file in the IFS

INCDIR("path to directory 1:path to directory |Identifies a list of modules to search for /copy and /include files
2')
TEXT(*SRCMBRTXT) | Provides brief description of module

Module Creation

GENLVL(10) | Conditions module creation to error severity (0-20)

OPTION(*DEBUGIO) | *DEBUGIO/*NODEBUGIO, determines if breakpoints are generated
for input and output specifications

OPTION(*GEN) | *GEN/*NOGEN, determines if module is created

OPTION(*NOSRCSTMT) | Specifies how the compiler generates statement numbers for
debugging

DBGVIEW(*STMT) | Specifies type of debug view, if any, to be included in module
OPTIMIZE(*NONE) | Determines level of optimization, if any
REPLACE(*YES) | Determines if module should replace existing module
AUT(*LIBCRTAUT) | Specifies type of authority for created module
TGTRLS(*CURRENT) | Specifies the release level the object is to be run on
BNDDIR(*NONE) | Specifies the binding directory to be used for symbol resolution

76 ILE RPG Programmer’s Guide

Creating a Module Object

Table 22. CRTRPGMOD Parameters and Their Default Values Grouped by Function (continued)

ENBPFRCOL(*PEP)

Specifies whether performance collection is enabled

DEFINE(*NONE)

Specifies condition names that are defined before the compilation
begins

PRFDTA(*NOCOL)

Specifies the program profiling data attribute

Compiler Listing

OUTPUT(*PRINT)

Determines if there is a compiler listing

INDENT(*NONE)

Determines if indentation should show in listing, and identify
character for marking it

OPTION(*XREF *NOSECLVL *SHOWCPY
*EXPDDS *EXT *NOSHOWSKP
*NOSRCSTMT)

Specifies the contents of compiler listing

Data Conversion Options

CVTOPT(*NONE)

Specifies how various data types from externally described files are
handled

ALWNULL(*NO)

Determines if the module will accept values from null-capable fields

FIXNBR(*NONE)

Determines which decimal data that is not valid is to be fixed by the
compiler

Run-Time Considerations

SRTSEQ(*HEX)

Specifies the sort sequence table to be used

OPTION(*DEBUGIO)

*DEBUGIO/*NODEBUGIO, determines if breakpoints are generated
for input and output specifications

LANGID(*JOBRUN)

Used with SRTSEQ to specify the language identifier for sort
sequence

INFOSTMF(path)

Used with PGMINFO, specifies the stream file in the IFS to receive
the PCML

PGMINFO(*NONE)

*PCML indicates that PCML (Program Call Markup Language)
should be generated for the module

TRUNCNBR(*YES)

Specifies action to take when numeric overflow occurs for
packed-decimal, zoned-decimal, and binary fields in fixed format
operations.

LICOPT(options)

Specifies Licensed Internal Code options.

When requested, the CRTRPGMOD command creates a compiler listing which is
for the most part identical to the listing that is produced by the CRTBNDRPG
command. (The listing created by CRTRPGMOD will never have a binding

section.)

For information on using the compiler listing, see [“Using a Compiler Listing” on|

page 65.|A sample compiler listing is provided in|Appendix D, “Compiler|

Listings,” on page 477 |

Creating a NOMAIN Module
In this example you create an NOMAIN module object TRANSSVC using the

CRTRPGMOD command and its default settings. TRANSSVC contains prototyped
procedures that perform transaction services for procedures in other modules. The
source for TRANSSVC is shown in [Figure 36 on page 79} The prototypes for the

procedures in TRANSSVC are stored in a /COPY member, as shown in

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 77

Creating a Module Object

1. To create a module object, type:
CRTRPGMOD MODULE (MYLIB/TRANSSVC) SRCFILE(MYLIB/QRPGLESRC)

The module will be created in the library MYLIB with the name specified in the
command, TRANSSVC. The source for the module is the source member
TRANSSVC in file QRPGLESRC in the library MYLIB.

You bind a module containing NOMAIN to another module using one of the
following commands:

a. CRTPGM command
b. CRTSRVPGM command
c. CRTBNDRPG command where the NOMAIN module is included in a
binding directory.
2. Once it is bound, this module object can be debugged using a statement view.
A compiler listing for the module is also produced.
3. Type one of the following CL commands to see the compiler listing.
* DSPJOB and then select option 4 (Display spooled files)
* WRKJOB
* WRKOUTQ queue-name
* WRKSPLF

78 ILE RPG Programmer’s Guide

Creating a Module Object

MODULE NAME: TRANSSVC (Transaction Services)

RELATED FILES: N/A

RELATED SOURCE: TRANSRPT

EXPORTED PROCEDURES: Trans_Inc -- calculates the income
for the transaction using the data in the fields in the
parameter list. It returns to the caller after all
the calculations are done.

Prod_Name -- retrieves the product name based on the
input parameter with the product number.

* Ok X X X ok 3k X X X

* %
]
]
1}
1}
]
I}
1}
]
]
1}
1}
]
]
1}
]
]
I}
1}
]
1}
1}
]
I}
1}
]
I}
1}
1}
I}
]
1}
]
I}
1}
1}
]
I}
1}
]
]
1}
1}
]
1}
1}
]
I}
I}
]
]
1}
1}
]
]
1}
]
]
1}
1}
]
]
1}
1]
]
I}
*

This module contains only subprocedures; it is a NOMAIN module.
H NOMAIN

P Trans_Inc B EXPORT
D Trans_Inc PI 11P 2
D ProdNum 10P 0 VALUE
D Quantity 5P 0 VALUE
D Discount 2P 2 VALUE
D Factor S 5P 0
*
C SELECT
C WHEN ProdNum = 1
C EVAL Factor = 1500
C WHEN ProdNum = 2
C EVAL Factor = 3500
C WHEN ProdNum = 5
C EVAL Factor = 20000
C WHEN ProdNum = 8
C EVAL Factor = 32000
C WHEN ProdNum = 12
C EVAL Factor = 64000
C OTHER
C EVAL Factor = 0
C ENDSL
C RETURN Factor * Quantity * (1 - Discount)
P Trans_Inc E

Figure 36. Source for TRANSSVC member (Part 1 of 2)

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 79

Creating a Module Object

80

K o o o = = = = = = = = =
* Subprocedure Prod_Name
K o = = = = = = = = -
P Prod_Name B EXPORT
D Prod_Name PI 40A
D ProdNum 10P 0 VALUE
*
C SELECT
c WHEN ProdNum = 1
C RETURN 'Large’
c WHEN ProdNum = 2
C RETURN 'Super'
C WHEN ProdNum = 5
C RETURN 'Super Large'
C WHEN ProdNum = 8
C RETURN 'Super Jumbo'
C WHEN ProdNum = 12
C RETURN 'Incredibly Large Super Jumbo'
C OTHER
c RETURN '*#xxUnknown*xx"
C ENDSL
P Prod_Name E

Figure 36. Source for TRANSSVC member (Part 2 of 2)

* Prototype for Trans_Inc

D Trans_Inc PR 11P 2

D Prod 10P 0 VALUE
D Quantity 5P 0 VALUE
D Discount 2P 2 VALUE
* Prototype for Prod_Name

D Prod_Name PR 40A

D Prod 10P 0 VALUE

Figure 37. Source for TRANSP /COPY member

Creating a Module for Source Debugging

In this example, you create an ILE RPG module object that you can debug using
the source debugger. The module TRANSRPT contains a main procedure which
drives the report processing. It calls the procedures in TRANSSVC to perform

certain required tasks. The source for this module is shown in [Figure 38 on page]

To create a module object, type:

CRTRPGMOD MODULE (MYLIB/TRANSRPT) SRCFILE(MYLIB/QRPGLESRC)
DBGVIEW (*SOURCE)

The module is created in the library MYLIB with the same name as the source file
on which it is based, namely, TRANSRPT. This module object can be debugged
using a source view. For information on the other views available, see

[Program for Debugging” on page 210,

A compiler listing for the TRANSRPT module will be produced.

ILE RPG Programmer’s Guide

Creating a Module Object

* MODULE NAME: TRANSRPT

* RELATED FILES: TRNSDTA (PF)

* RELATED SOURCE: TRANSSVC (Transaction services)
* EXPORTED PROCEDURE: TRANSRPT

* The procedure TRANSRPT reads every tranasction record

* stored in the physical file TRNSDTA. It calls the

* subprocedure Trans_Inc which performs calculations and

* returns a value back. Then it calls Prod Name to

* to determine the product name. TRANSRPT then prints

* the transaction record out.

A S-S S S S S S S S S S S S oSS S S S S S S S S S S S S S oSS oSS SSSSSSSSSSSSSSSSSSSSSSS=====%
FTRNSDTA IP E DISK

FQSYSPRT 0 F 80 PRINTER OFLIND (*INOF)

/COPY QRPGLE,TRANSP
* Define the readable version of the product name like the
* return value of the procedure 'Prod_Name'

D ProdName S 30A
D Income S 10P 2
D Total S +5 LIKE (Income)
*
ITRNSREC 01
* Calculate the income using subprocedure Trans_Inc
C EVAL Income = Trans_Inc(PROD : QTY : DISC)
C EVAL Total = Total + Income
* Find the name of the product
C EVAL ProdName = Prod_Name (PROD)
0QSYSPRT H 1P 1
0 OR OF
0 12 'Product name'
0 40 'Quantity'
0 54 'Income'
0QSYSPRT H 1P 1
0 OR OF
0 30 '----mmm--- +
o cecaaeaaa- +
0 __________ 1
0 40 '-------- !
0 60 '-------mmm-- !
0QSYSPRT D 01 1
0 ProdName 30
0 QTY 1 40
0 Income 1 60
O0QSYSPRT T LR 1
0 'Total: '
0 Total 1

Figure 38. Source for TRANSRPT module

The DDS for the file TRNSDTA is shown in [Figure 39 on page 82| The /COPY
member is shown in [Figure 37 on page 80

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 81

Creating a Module Object

A***

Ax RELATED FILES: TRNSRPT *
Ax DESCRIPTION: This is the physical file TRNSDTA. It has *
Ax one record format called TRNSREC. *

d R T s

A PARTS TRANSACTION FILE -- TRNSDTA

A R TRNSREC

A PROD 10S 0 TEXT('Product')
A QTY 55 0 TEXT('Quantity')
A DISCOUNT 2S 2 TEXT('Discount')

Figure 39. DDS for TRNSDTA

Additional Examples

For additional examples of creating modules, see:

* [“Sample Service Program” on page 93 for an example of creating a module for a
service program.

* ["Binding to a Program” on page 98/ for an example of creating a module to be
used with a service program.

* [“Managing Your Own Heap Using ILE Bindable APIs” on page 121 for an
example of creating a module for dynamically allocating storage for a run-time
array

* |“Sample Source for Debug Examples” on page 256 for example of creating an
RPG and C module for use in a sample debug program.

Behavior of Bound ILE RPG Modules

In ILE RPG, the main procedure is the boundary for the scope of LR semantics and
the RPG cycle. The module is the boundary for the scope of open files.

In any ILE program, there may be several RPG cycles active; there is one RPG
cycle for each RPG module that has a main procedure. The cycles are independent:
setting on LR in one main procedure has no effect on the cycle in another.

Related CL Commands

The following CL commands can be used with modules:
* Display Module (DSPMOD)

* Change Module (CHGMOD)

* Delete Module (DLTMOD)

* Work with Modules (WRKMOD)

For further information on these commands see the CL and APIs section of the
Programming category in the iSeries Information Center at this Web site -
[http:/ /www.ibm.com/eserver/iseries /infocenter]

Binding Modules into a Program

82

Binding is the process of creating a runnable ILE program by combining one or
more modules and optional service programs, and resolving symbols passed
between them. The system code that does this combining and resolving is called a
binder on the iSeries system.

ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Binding Modules into a Program

As part of the binding process, a procedure must be identified as the startup
procedure, or program entry procedure. When a program is called, the program
entry procedure receives the parameters from the command line and is given
initial control for the program. The user’s code associated with the program entry
procedure is the user entry procedure.

If an ILE RPG module contains a main procedure, it implicitly also contains a
program entry procedure. Therefore, any ILE RPG module may be specified as the
entry module as long as it is not a NOMAIN module.

gives an idea of the internal structure of a program object. It shows the
program object TRPT, which was created by binding the two modules TRANSRPT
and TRANSSVC. TRANSRPT is the entry module.

—*PGM (TRPT)

— TRANSRPT Module

Program Entry
Procedure

Main Procedure

[

— TRANSSVC Module

Main Source Section

Trans_Inc

Prod_Name

L

Figure 40. Structure of Program TRPT

Within a bound object, procedures can interrelate using static procedure calls.
These bound calls are faster than external calls. Therefore, an application consisting
of a single bound program with many bound calls should perform faster than a
similar application consisting of separate programs with many external
interapplication calls.

In addition to binding modules together, you can also bind them to service
programs (type *SRVPGM). Service programs allow you to code and maintain
modules separately from the program modules. Common routines can be created
as service programs and if the routine changes, the change can be incorporated by
binding the service program again. The programs that use these common routines
do not have to be recreated. For information on creating service programs see
[Chapter 8, “Creating a Service Program,” on page 91

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 83

Binding Modules into a Program

For information on the binding process and the binder, refer to the ILE Concepts.

Using the CRTPGM Command

The Create Program (CRTPGM) command creates a program object from one or
more previously created modules and, if required, one or more service programs.
You can bind modules created by any of the ILE Create Module commands,
CRTRPGMOD, CRTCMOD, CRTCBLMOD, or CRTCLMOD.

Note: The modules and/or service programs required must have been created
prior to using the CRTPGM command.

Before you create a program object using the CRTPGM command, you should:
1. Establish a program name.

2. Identify the module or modules, and if required, service programs you want to
bind into a program object.

3. Identify the entry module.

You indicate which module contains the program entry procedure through the
ENTMOD parameter of CRTPGM. The default is ENTMOD(*FIRST), meaning
that the module containing the first program entry procedure found in the list
for the MODULE parameter is the entry module.

Assuming you have only one module with a main procedure, that is, all
modules but one have NOMAIN specified, you can accept the default (*FIRST).
Alternatively, you can specify (*ONLY); this will provide a check that in fact
only one module has a main procedure. For example, in both of the following
situations you could specify ENTMOD(*ONLY).

* You bind an RPG module to a C module without a main() function.

* You bind two RPG modules, where one has NOMAIN on the control
specification.

Note: If you are binding more than one ILE RPG module with a main
procedure, then you should specify the name of the module that you
want to receive control when the program is called. You can also specify
*FIRST if the module with a main procedure precedes any other modules
with main procedures on the list specified for the MODULE parameter.

4. Identify the activation group that the program is to use.

Specify the named activation group QILE if your program has no special
requirements or if you are not sure which group to use. In general, it is a good
idea to run an application in its own activation group. Therefore, you may
want to name the activation group after the application.

Note that the default activation group for CRTPGM is *NEW. This means that
your program will run in its own activation group, and the activation group
will terminate when the program does. Whether or not you set on LR, your
program will have a fresh copy of its data the next time you call it. For more

information on activation groups see [“Specifying an Activation Group” on page|
-110.

To create a program object using the CRTPGM command, perform the following
steps:
1. Enter the CRTPGM command.

2. Enter the appropriate values for the command parameter.

84 ILE RPG Programmer’s Guide

Binding Modules into a Program

lists the CRTPGM command parameters and their default values. For a
full description of the CRTPGM command and its parameters, refer to the CL and
APIs section of the Programming category in the iSeries Information Center at this
Web site - |http:/ /www.ibm.com/eserver /iseries /infocenter]

Table 23. Parameters for CRTPGM Command and their Default Values

Parameter Group

Parameter(Default Value)

Identification

PGM(library name/program name)
MODULE(*PGM)

Program access

ENTMOD(*FIRST)

Binding

BNDSRVPGM(*NONE)
BNDDIR(*NONE)

Run time

ACTGRP(*NEW)

Miscellaneous

OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE)

ALWUPD(*YES)

ALWRINZ(*NO)

REPLACE(*YES)

AUT(*LIBCRTAUT)

TEXT(*ENTMODTXT)

TGTRLS(*CURRENT)

USRPRF(*USER)

Once you have entered the CRTPGM command, the system performs the following

actions:

1. Copies listed modules into what will become the program object, and links any
service programs to the program object.

2. Identifies the module containing the program entry procedure, and locates the
first import in this module.

3. Checks the modules in the order in which they are listed, and matches the first
import with a module export.

Returns to the first module, and locates the next import.

4

5. Resolves all imports in the first module.

6. Continues to the next module, and resolves all imports.
7

Resolves all imports in each subsequent module until all of the imports have
been resolved.

8. If any imports cannot be resolved with an export, the binding process
terminates without creating a program object.

9. Once all the imports have been resolved, the binding process completes and the
program object is created.

Note: If you have specified that a variable or procedure is to be exported (using
the EXPORT keyword), it is possible that the variable or procedure name
will be identical to a variable or procedure in another procedure within the
bound program object. In this case, the results may not be as expected. See
ILE Concepts for information on how to handle this situation.

Binding Multiple Modules
This example shows you how to use the CRTPGM command to bind two ILE RPG
modules into a program TRPT. In this program, the following occurs:

¢ The module TRANSRPT reads each transaction record from a file TRNSDTA.

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 85

http://www.ibm.com/eserver/iseries/infocenter

Binding Modules into a Program

* It then calls procedure Trans_Inc and Proc_Name in module TRANSSVC using
bound calls within expressions.

* Trans_Inc calculates the income pertaining to each transaction and returns the
value to the caller

* Proc_Name determines the product name and returns it
* TRANSRPT then prints the transaction record.

Source for TRANSRPT, TRANSSVC, and TRNSDTA is shown in [Figure 38 on page]
[Figure 36 on page 79| and [Figure 39 on page 82| respectively.
1. First create the module TRANSRPT. Type:

CRTRPGMOD MODULE (MYLIB/TRANSRPT)
2. Then create module TRANSSVC by typing:

CRTRPGMOD MODULE (MYLIB/TRANSSVC)
3. To create the program object, type:

CRTPGM PGM(MYLIB/TRPT) MODULE(TRANSRPT TRANSSVC)
ENTMOD (*FIRST) ACTGRP(TRPT)

The CRTPGM command creates a program object TRPT in the library MYLIB.

Note that TRANSRPT is listed first in the MODULE parameter. ENTMOD(*FIRST)
will find the first module with a program entry procedure. Since only one of the
two modules has a program entry procedure, they can be entered in either order.

The program TRPT will run in the named activation group TRPT. The program
runs in a named group to ensure that no other programs can affect its resources.

shows an output file created when TRPT is run.

Product name Quantity Income

Large 245 330,750.00
Super 15 52,500.00
Super Large 0 .00
Super Jumbo 123 2,952,000.00
Incredibly Large Super Jumbo 15 912,000.00
*xxUnknown*** 12 .00
Total: 4,247,250.00

Figure 41. File QSYSPRT for TRPT

Additional Examples

For additional examples of creating programs, see:

* ["Binding to a Program” on page 98| for an example of binding a module and a
service program.

* ['Sample Source for Debug Examples” on page 256, for an example of creating a
program consisting of an RPG and C module.

Related CL Commands

The following CL commands can be used with programs:
* Change Program (CHGPGM)

* Delete Program (DLTPGM)

* Display Program (DSPPGM)

ILE RPG Programmer’s Guide

Binding Modules into a Program

* Display Program References (DSPPGMREF)
* Update Program (UPDPGM)
¢ Work with Program (WRKPGM)

For further information on these commands, see the CL and APIs section of the
Programming category in the iSeries Information Center at this Web site -
[http:/ /www.ibm.com/eserver /iseries /infocenter]

Using a Binder Listing

The binding process can produce a listing that describes the resources used,
symbols and objects encountered, and problems that were resolved or not resolved
in the binding process. The listing is produced as a spooled file for the job you use
to enter the CRTPGM command. The command default is to not produce this
information, but you can choose a DETAIL parameter value to generate it at three
levels of detail:

* *BASIC
* *EXTENDED
* *FULL

The binder listing includes the following sections depending on the value specified
for DETAIL:

Table 24. Sections of the Binder Listing based on DETAIL Parameter
Section Name *BASIC *EXTENDED *FULL

Command Option Summary X X X

Brief Summary Table X

X
Extended Summary Table X
X

Binder Information Listing

Cross-Reference Listing

XX XXX

Binding Statistics

The information in this listing can help you diagnose problems if the binding was
not successful, or give feedback about what the binder encountered in the process.
You may want to store the listing for an ILE program in the file where you store
the modules or the module source for a program. To copy this listing to a database
file, you can use the Copy Spool File (CPYSPLF) command.

Note: The CRTBNDRPG command will not create a binder listing. However, if any
binding errors occur during the binding phase, the errors will be noted in
your job log, and the compiler listing will include a message to this effect.

For an example of a basic binder listing, see [‘Sample Binder Listing” on page 100/

For more information on binder listings see ILE Concepts.

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 87

http://www.ibm.com/eserver/iseries/infocenter

Changing a Module or Program

Changing a Module or Program

88

An ILE object may need to be changed for enhancements or for maintenance
reasons. You can isolate what needs to be changed by using debugging information
or the binder listing from the CRTPGM command. From this information you can
determine what module needs to change, and often, what procedure or field needs
to change.

In addition, you may want to change the optimization level or observability of a
module or program. This often happens when you want to debug an program or
module, or when you are ready to put a program into production. Such changes

can be performed more quickly and use fewer system resources than re-creating

the object in question.

Finally, you may want to reduce the program size once you have completed an
application. ILE programs have additional data added to them which may make
them larger than a similar OPM program.

Each of the above requires different data to make the change. The resources you
need may not be available to you for an ILE program.

The following sections tell you how to
* Update a program

* Change the optimization level

* Change observability

* Reduce the object size

Note: In the remainder of this section the term ’object” will be used to refer to
either an ILE module or ILE program.

Using the UPDPGM Command

In general, you can update a program by replacing modules as needed. For
example, if you add a new procedure to a module, you recompile the module
object, and then update the program. You do not have to re-create the program.
This is helpful if you are supplying an application to other sites. You need only
send the revised modules, and the receiving site can update the application using
the UPDPGM or UPDSRVPGM command.

The UPDPGM command works with both program and module objects. The
parameters on the command are very similar to those on the CRTPGM command.
For example, to replace a module in a program, you would enter the module name
for MODULE parameter and the library name. The UPDPGM command requires
that the modules to be replaced be in the same libraries as when the program was
created. You can specify that all modules are to be replaced, or some subset.

The UPDPGM command requires that the module object be present. Thus, it is
easier to use the command when you have created the program using separate
compile and bind steps. Since the module object already exists, you simply specify
its name and library when issuing the command.

To update a program created by CRTBNDRPG command, you must ensure that the
revised module is in the library QTEMP. This is because the temporary module

ILE RPG Programmer’s Guide

Changing a Module or Program

used when the CRTBNDRPG command was issued, was created in QTEMP. Once
the module is in QTEMP, you can issue the UPDPGM command to replace the
module.

For more information, see ILE Concepts.

Changing the Optimization Level

Optimizing an object means looking at the compiled code, determining what can
be done to make the run-time performance as fast as possible, and making the
necessary changes. In general, the higher the optimizing request, the longer it takes
to create an object. At run time the highly optimized program or service program
should run faster than the corresponding nonoptimized program or service
program.

However, at higher levels of optimization, the values of fields may not be accurate
when displayed in a debug session, or after recovery from exception. In addition,
optimized code may have altered breakpoints and step locations used by the
source debugger, since the optimization changes may rearrange or eliminate some
statements.

To ensure that the contents of a field reflect their most current value, especially
after exception recovery, you can use the NOOPT keyword on the corresponding
Definition si ecification. For more information, see [“Optimization Considerations”|

To circumvent this problem while debugging, you can lower the optimization level
of a module to display fields accurately as you debug a program, and then raise
the level again afterwards to improve the program efficiency as you get the
program ready for production.

To determine the current optimization level of a program object, use the DSPPGM
command. Display 3 of this command indicates the current level. To change the
optimization level of a program, use the CHGPGM command. On the Optimize
program parameter you can specify one the following values: *FULL, *BASIC,
*NONE. These are the same values which can be specified on the OPTIMIZE
parameters of either create command. The program is automatically re-created
when the command runs.

Similarly, to determine the current optimization level of a module, use the
DSPMOD command. Display 1, page 2 of this command indicates the current level.
To change the optimization level, use the CHGMOD command. You then need to
re-create the program either using UPDPGM or CRTPGM.

Removing Observability

Observability involves the kinds of data that can be stored with an object, and that
allow the object to be changed without recompiling the source. The addition of this
data increases the size of the object. Consequently, you may want to remove the
data in order to reduce object size. But once the data is removed, observability is
also removed. You must recompile the source and recreate the program to replace
the data. The types of data are:

Create Data Represented by the *CRTDTA value. This data is necessary to
translate the code to machine instructions. The object must have
this data before you can change the optimization level.

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 89

Changing a Module or Program

Debug Data Represented by the *DBGDTA value. This data is necessary to
allow an object to be debugged.

Profiling Data Represented by the *BLKORD and *PRCORD values. This data is
necessary to allow the system to re-apply block order and
procedure order profiling data.

Use the CHGPGM command or the CHGMOD command to remove some or all
the data from a program or module respectively. Removing all observability
reduces an object to its minimum size (without compression). It is not possible to
change the object in any way unless you re-create it. Therefore, ensure that you
have all source required to create the program or have a comparable program
object with CRTDATA. To re-create it, you must have authorization to access the
source code.

Reducing an Object’s Size

The create data (*CRTDTA) associated with an ILE program or module may make
up more than half of the object’s size. By removing or compressing this data, you
will reduce the secondary storage requirements for your programs significantly.

If you remove the data, ensure that you have all source required to create the
program or have a comparable program object with CRTDATA. Otherwise you will
not be able to change the object.

An alternative is to compress the object, using the Compress Object (CPROB])
command. A compressed object takes up less system storage than an
uncompressed one. If the compressed program is called, the part of the object
containing the runnable code is automatically decompressed. You can also
decompress a compressed object by using the Decompress Object (DCPOB]J)
command.

For more information on these CL commands, see the CL and APIs section of the
Programming category in the iSeries Information Center at this Web site -
[http:/ /www.ibm.com/eserver/iseries /infocenter]

90 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Chapter 8. Creating a Service Program

This chapter provides:

* An overview of the service program concept

* Strategies for creating service programs

* A brief description of the CRTSRVPGM command

¢ An example of a service program

Use WebSphere Development Studio Client for iSeries. This is the recommended
method and documentation about creating a service program appears in that
product’s online help.

Service Program Overview

A service program is a bound program (type *SRVPGM) consisting of a set of
procedures that can be called by procedures in other bound programs.

Service programs are typically used for common functions that are frequently
called within an application and across applications. For example, the ILE
compilers use service programs to provide run-time services such as math
functions and input/output routines. Service programs enable reuse, simplify
maintenance, and reduce storage requirements.

A service program differs from a program in two ways:

* It does not contain a program entry procedure. This means that you cannot call
a service program using the CALL operation.

* A service program is bound into a program or other service programs using
binding by reference.

When you bind a service program to a program, the contents of the service
program are not copied into the bound program. Instead, linkage information of
the service program is bound into the program. This is called ‘binding by
reference’ in contrast to the static binding process used to bind modules into
programs.

Because a service program is bound by reference to a program, you can call the
service program’s exported procedures using bound procedure calls. The initial call
has a certain amount of overhead because the binding is not completed until the
service program is called. However, subsequent calls to any of its procedures are
faster than program calls.

The set of exports contained in a service program are the interface to the services
provided by it. You can use the Display Service Program (DSPSRVPGM) command
or the service program listing to see what variable and procedure names are
available for use by the calling procedures. To see the exports associated with
service program PAYROLL, you would enter:

DSPSRVPGM PAYROLL DETAIL(*PROCEXP *DATAEXP)

© Copyright IBM Corp. 1994, 2006 91

Strategies for Creating Service Programs

Strategies for Creating Service Programs

When creating a service program, you should keep in mind:
1. Whether you intend to update the program at a later date

2. Whether any updates will involve changes to the interface (namely, the imports
and exports used).

If the interface to a service program changes, then you may have to re-bind any
programs bound to the original service program. However, if the changes required
are upward-compatible, you may be able to reduce the amount of re-binding if you
created the service program using binder language. In this case, after updating the
binder language source to identify the new exports you need to re-bind only those
programs that use them.

— TIP
If you are planning a module with only subprocedures (that is, with a
module with keyword NOMAIN specified on the control specification) you
may want to create it as a service program. Only one copy of a service
program is needed on a system, and so you will need less storage for the
module.

Also, you can copyright your service programs using the COPYRIGHT
keyword on the control specification.

Binder language gives you control over the exports of a service program. This
control can be very useful if you want to:

* Mask certain service program procedures from service-program users
* Fix problems

* Enhance function

* Reduce the impact of changes to the users of an application.

See [’Sample Service Program” on page 93| for an example of using binder
language to create a service program.

For information on binder language, masking exports, and other service program
concepts, see ILE Concepts.

Creating a Service Program Using CRTSRVPGM

You create a service program using the Create Service Program (CRTSRVPGM)
command. Any ILE module can be bound into a service program. The module(s)
must exist before you can create a service program with it.

lists the CRTSRVPGM parameters and their defaults. For a full description
of the CRTSRVPGM command and its parameters, refer to the CL and APIs section
of the Programming category in the iSeries Information Center at this Web site -
[http:/ /www.ibm.com/eserver/iseries /infocenter|

Table 25. Parameters for CRTSRVPGM Command and their Default Values

Parameter Group

Parameter(Default Value)

Identification

SRVPGM(library name/service program name)
MODULE(*SRVPGM)

92 ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Creating a Service Program Using CRTSRVPGM

Table 25. Parameters for CRTSRVPGM Command and their Default Values (continued)

Parameter Group

Parameter(Default Value)

Program access

EXPORT(*SRCFILE)
SRCFILE(*LIBL/QSRVSRC)
SRCMBR(*SRVPGM)

Binding

BNDSRVPGM(*NONE)
BNDDIR(*NONE)

Run time

ACTGRP(*CALLER)

Miscellaneous

OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE)

ALWUPD(*YES)

ALWRINZ(*NO)

REPLACE(*YES)

AUT(*LIBCRTAUT)

TEXT(*ENTMODTXT)

TGTRLS(*CURRENT)

USRPRF(*USER)

See ['Creating the Service Program” on page 97| for an example of using the
CRTSRVPGM command.

Changing A Service Program

You can update or change a service program in the same ways available to a
program object. In other words, you can:

Update the service program (using UPDSRVPGM)
Change the optimization level (using CHGSRVPGM)
Remove observability (using CHGSRVPGM)

Reduce the size (using CPROB])

For more information on any of the above points, see [“Changing a Module or]

[Program” on page 88|

Related CL commands

The following CL commands are also used with service programs:

Change Service Program (CHGSRVPGM)
Display Service Program (DSPSRVPGM)
Delete Service Program (DLTSRVPGM)
Update Service Program (UPDSRVPGM)
Work with Service Program (WRKSRVPGM)

Sample Service

Program

The following example shows how to create a service program CVITTOHEX which
converts character strings to their hexadecimal equivalent. Two parameters are
passed to the service program:

1.

a character field (InString) to be converted

2. a character field (HexString) which will contain the 2-byte hexadecimal

equivalent

Chapter 8. Creating a Service Program 93

Sample Service Program

94

The field HexString is used to contain the result of the conversion and also to
indicate the length of the string to be converted. For example, if a character string
of 30 characters is passed, but you are only interested in converting the first ten,
you would pass a second parameter of 20 bytes (2 times 10). Based on the length
of the passed fields, the service program determines the length to handle.

Figure 42 on page 95|shows the source for the service program. [Figure 43 on page]

97| shows the /COPY member containing the prototype for CvtToHex.

The basic logic of the procedure contained within the service program is listed
below:

1. Operational descriptors are used to determine the length of the passed
parameters.

2. The length to be converted is determined: it is the lesser of the length of the
character string, or one-half the length of the hex string field.

3. Each character in the string is converted to a two-byte hexadecimal equivalent
using the subroutine GetHex.

Note that GetHex is coded as a subroutine rather than a subprocedure, in order
to improve run-time performance. An EXSR operation runs much faster than a
bound call, and in this example, GetHex is called many times.

4. The procedure returns to its caller.

The service program makes use of operational descriptors, which is an ILE
construct used when the precise nature of a passed parameter is not known ahead
of time, in this case the length. The operational descriptors are created on a call to
a procedure when you specify the operation extender (D) on the CALLB operation,
or when OPDESC is specified on the prototype.

To use the operational descriptors, the service program must call the ILE bindable
API, CEEDOD (Retrieve Operational Descriptor). This API requires certain
parameters which must be defined for the CALLB operation. However, it is the last
parameter which provides the information needed, namely, the length. For more
information on operational descriptors, see [“Using Operational Descriptors” on|

ILE RPG Programmer’s Guide

Sample Service Program

k=== =S=S=S=S=S=S==S=S=S=SS=SS=S=SSS=S=SS=S=S=SS=S=S=S=S========%
* CvtToHex - convert input string to hex output string
k=== =SS=S=SSS=SSS=SSS========%

H COPYRIGHT('(C) Copyright MyCompany 1995')
D/COPY RPGGUIDE/QRPGLE,CVTHEXPR

K o o *
* Main entry parameters
* 1. Input: string character(n)
% 2. Output: hex string character(2 = n)
K o o *
D CvtToHex PI OPDESC
D InString 16383 CONST OPTIONS (*VARSIZE)
D HexString 32766 OPTIONS (*VARSIZE)
K o *
* Prototype for CEEDOD (Retrieve operational descriptor)
K o o o *
D CEEDOD PR
D ParmNum 10I 0 CONST
D 10I 0
D 10I 0
D 10I 0
D 10I 0
D 10I 0
D 12A OPTIONS(*OMIT)
* Parameters passed to CEEDOD
D DescType S 10I 0
D DataType S 10I 0
D DescInfol S 10I 0
D DescInfo2 S 10I 0
D InLen S 10I 0
D HexLen S 10I 0
L e e T e L e T e TP *
* Other fields used by the program *
K o e o *
D HexDigits c CONST('0123456789ABCDEF ')
D IntDs DS
D IntNum 51 0 INZ(0)
D IntChar 1 OVERLAY (IntNum:2)
D HexDs DS
D HexCl 1
D HexC2 1
D InChar S 1
D Pos S 5P 0
D HexPos S 5P 0

Figure 42. Source for Service Program CvtToHex (Part 1 of 2)

Chapter 8. Creating a Service Program 95

Sample Service Program

96

OOOOOO

OO0

OOOOOOO

OO0

OO0

* Use the operational descriptors to determine the lengths of

the parameters that were passed.

CALLP CEEDOD(1 : DescType : DataTyp
DescInfol : DescInfo2: Inlen
*OMIT)

CALLP CEEDOD(2 : DescType : DataTyp
DescInfol : DescInfo2: HexLen
*OMIT)

* Determine the length to handle (minimum of the input length
% and half of the hex length)

IF InLen > HexLen / 2
EVAL InLen = HexLen / 2
ENDIF

* For each character in the input string, convert to a 2-byte

* hexadecimal representation (for example, '5' --> 'F5')
EVAL HexPos = 1
DO InLen Pos
EVAL InChar = %SUBST(InString : Pos :1)
EXSR GetHex
EVAL %SUBST (HexString : HexPos : 2) = HexD
EVAL HexPos = HexPos + 2
ENDDO

GetHex - subroutine to convert 'InChar' to 'HexDs'
Use division by 16 to separate the two hexadecimal digits.
The quotient is the first digit, the remainder is the second.
GetHex BEGSR
EVAL IntChar = InChar
IntNum DIV 16 X1 50
MVR X2 50

* Use the hexadecimal digit (plus 1) to substring the list of
* hexadecimal characters '012...CDEF'.
EVAL HexCl = %SUBST(HexDigits:X1+1:1)
EVAL HexC2 = %SUBST(HexDigits:X2+1:1)
ENDSR

e :

e :

* o

* %

* %k ok %

*

* %

Figure 42. Source for Service Program CvtToHex (Part 2 of 2)

ILE RPG Programmer’s Guide

Sample Service Program

k=== =S=S=S=S=S=S==S=S=S=SS=SS=S=SSS=S=SS=S=S=SS=S=S=S=S========%
* CvtToHex - convert input string to hex output string

*

* Parameters

x 1. Input: string character(n)

* 2. Output: hex string character(2 * n)

A - SS S S S SSS oSS oSS S S S S S S CSS S S S S S S S S S S S oS SSS oSS SIS SSSSSSSSSSSSS=SS=S=====%
D CvtToHex PR OPDESC

D InString 16383 CONST OPTIONS (*VARSIZE)

D HexString 32766 OPTIONS (*VARSIZE)

Figure 43. Source for /COPY Member with Prototype for CvtToHex

When designing this service program, it was decided to make use of binder
language to determine the interface, so that the program could be more easily
updated at a later date. shows the binder language needed to define the
exports of the service program CVTTOHEX. This source is used in the EXPORT,
SRCFILE and SRCMBR parameters of the CRTSRVPGM command.

STRPGMEXP SIGNATURE('CVTHEX')
EXPORT SYMBOL('CVTTOHEX')
ENDPGMEXP

Figure 44. Source for Binder Language for CvtToHex

The parameter SSIGNATURE on STRPGMEXP identifies the interface that the
service program will provide. In this case, the export identified in the binder
language is the interface. Any program bound to CVTTOHEX will make use of this
signature.

The binder language EXPORT statements identify the exports of the service
program. You need one for each procedure whose exports you want to make
available to the caller. In this case, the service program contains one module which
contains one procedure. Hence, only one EXPORT statement is required.

For more information on binder language and signatures, see ILE Concepts.

Creating the Service Program
To create the service program CVTTOHEX, follow these steps:
1. Create the module CVTTOHEX from the source in [Figure 42 on page 95, by
entering:
CRTRPGMOD MODULE(MYLIB/CVTTOHEX) SRCFILE(MYLIB/QRPGLESRC)
2. Create the service program using the module CVITOHEX and the binder
language shown in

CRTSRVPGM SRVPGM(MYLIB/CVTTOHEX) MODULE (*SRVPGM)
EXPORT (*SRCFILE) SRCFILE(MYLIB/QSRVSRC)
SRCMBR (*SRVPGM)
The last three parameters in the above command identify the exports which the
service program will make available. In this case, it is based on the source
found in the member CVTTOHEX in the file QSRVSRC in the library MYLIB.

Note that a binding directory is not required here because all modules needed
to create the service program have been specified with the MODULE
parameter.

Chapter 8. Creating a Service Program 97

Sample Service Program

98

The service program CVITOHEX will be created in the library MYLIB. It can be
debugged using a statement view; this is determined by the default DBGVIEW
parameter on the CRTRPGMOD command. No binder listing is produced.

Binding to a Program

To complete the example, we will create an “application” consisting of a program
CVTHEXPGM which is bound to the service program. It uses a seven-character
string which it passes to CVTTOHEX twice, once where the value of the hex string
is 10 (that is, convert 5 characters) and again where the value is 14, that is, the
actual length.

Note that the program CVITHEXPGM serves to show the use of the service
program CVTTOHEX. In a real application the caller of CVTTOHEX would have
another primary purpose other than testing CVTTOHEX. Furthermore, a service
program would normally be used by many other programs, or many times by a
few programs; otherwise the overhead of initial call does not justify making it into
a service program.

To create the application follow these steps:

1. Create the module from the source in [Figure 45 on page 99| by entering:
CRTRPGMOD MODULE(MYLIB/CVTHEXPGM) SRCFILE(MYLIB/QRPGLESRC)
2. Create the program by typing

CRTPGM PGM(MYLIB/CVTHEXPGM)
BNDSRVPGM(MYLIB/CVTTOHEX)
DETAIL (*BASIC)

When CVTHEXPGM is created, it will include information regarding the
interface it uses to interact with the service program. This is the same as
reflected in the binder language for CVTTOHEX.

3. Call the program, by typing:
CALL CVTHEXPGM

During the process of making CVTHEXPGM ready to run, the system verifies
that:

* The service program CVTTOHEX in library MYLIB can be found

* The public interface used by CVTHEXPGM when it was created is still valid
at run time.

If either of the above is not true, then an error message is issued.

The output of CVTHEXPGM is shown below. (The input string is "ABC123*".)

Resultl4++++++

Resultlo++

C1C2C3F1F2 10 character output
C1C2C3F1F2F35C 14 character output

ILE RPG Programmer’s Guide

Sample Service Program

K o *
* Program to test Service Program CVTTOHEX *
* *
* 1. Use a 7-character input string *
x 2. Convert to a 10-character hex string (only the first five =
* input characters will be used because the result is too *
* small for the entire input string) *
* 3. Convert to a 14-character hex string (all seven input *
* characters will be used because the result is long enough) =
K o *
FQSYSPRT 0 F 80 PRINTER

* Prototype for CvtToHex
D/COPY RPGGUIDE/QRPGLE,CVTHEXPR
D ResultDS DS
D Resultld 1 14
D Resultlo 1 10
D InString S 7
D Comment S 25
C EVAL InString = 'ABC123*'

L e T e e T e e e T *
* Pass character string and the 10-character result field

* using a prototyped call. Operational descriptors are

* passed, as required by the called procedure CvtToHex. *
K o *
C EVAL Comment = '10 character output'

C CLEAR ResultDS

C CALLP CvtToHex (Instring : Resultl0)

C EXCEPT

K o o *
* Pass character string and the l4-character result field *
* using a CALLB(D). The operation extender (D) will create *
* operational descriptors for the passed parameters. CALLB *
* is used here for comparison with the above CALLP. *
K o *
C EVAL Comment = '14 character output'

C CLEAR Resu1tDS

c CALLB(D) 'CVTTOHEX'

C PARM InString

C PARM Resultl4d

c EXCEPT

C EVAL *INLR = *ON
0QSYSPRT H 1p
0 'Resultl4++++++'
0QSYSPRT H 1p
0 'Resultl0++"
0QSYSPRT E
0 ResultDS
0 Comment +5

Figure 45. Source for Test Program CVTHEXPGM

Updating the Service Program

Because of the binder language, the service program could be updated and the
program CVTHEXPGM would not have to be re-compiled. For example, there are
two ways to add a new procedure to CVTTOHEX, depending on whether the new
procedure goes into the existing module or into a new one.

To add a new procedure to an existing module, you would:

Chapter 8. Creating a Service Program 99

Sample Service Program

1. Add the new procedure to the existing module.
2. Recompile the changed module.

3. Modify the binder language source to handle the interface associated with the
new procedure. This would involve adding any new export statements following
the existing ones.

4. Recreate the service program using CRTSRVPGM.

To add a new procedure using a new module, you would:
1. Create a module object for the new procedure.

2. Modify the binder language source to handle the interface associated with the
new procedure, as mentioned above.

3. Bind the new module to service program CVITOHEX by re-creating the service
program.

With either method, new programs can access the new function. Since the old
exports are in the same order they can still be used by the existing programs. Until
it is necessary to also update the existing programs, they do not have to be
re-compiled.

For more information on updating service programs, see ILE Concepts.

Sample Binder Listing

[Figure 46 on page 101|shows a sample binder listing for the CVTHEXPGM. The
listing is an example of a basic listing. For more information on binder listings, see
[“Using a Binder Listing” on page 87|and also ILE Concepts.

100 ILE RPG Programmer’s Guide

Sample Service Program

Create Program

* ok Kk Kk K

*CPC5D07 - Program CVTHEXPGM created in Tibrary MYLIB.

* ok Kk Kk K

5769WDS V5R2MO 020719 MYLIB/CVTHEXPGM
23:24:00
Program oo e e e e CVTHEXPGM
Library o e e e e e e e e e e e MYLIB
Program entry procedure module : *FIRST
Library o o e e e e e e e e
Activation group Lo oL L *NEW
Creation options *GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF
Listing detail *BASIC
Allow Update *YES
User profile =*USER
Replace existing program *YES
Authority *LIBCRTAUT
Target release v . ..o eu e e et *CURRENT
Allow reinitialization: *NO
Text © v v v o e e e *ENTMODTXT
Module Library Module Library Module Library Module Library
CVTHEXPGM MYLIB
Service Service Service Service
Program Library Program Library Program Library Program Library
CVTTOHEX MYLIB
Binding Binding Binding Binding
Directory Library Directory Library Directory Library Directory Library
*NONE
Create Program Page 2
5769WDS V5R2MO 020719 MYLIB/CVTHEXPGM ISERIES1 08/15/02
23:24:00
Brief Summary Table
Program entry procedures ¢ 1
Symbol Type Library Object Identifier
*MODULE ~ MYLIB CVTHEXPGM ~ _QRNP_PEP_CVTHEXPGM
Multiple strong definitions: 0
Unresolved references: 0
* %% xx END F BRIEF SUMMARY TABLE *** %%
Create Program Page 3
5769WDS V5R2MO 020719 MYLIB/CVTHEXPGM ISERIES1 08/15/02
23:24:00
Binding Statistics
Symbol collection CPU time016
Symbol resolution CPU time004
Binding directory resolution CPU time : .175
Binder language compilation CPU time : .000
Listing creation CPU time068
Program/service program creation CPU time : .234
Total CPU time« o o v v v v v v v oo e e e e e .995
Total elapsed time0 e ... 3.531

END OF BINDING STATISTICS

END OF CREATE PROGRAM LISTING

Page 1
ISERIES1 08/15/02

* k Kk Kk ok

* ok Kk Kk ok

Figure 46. Basic Binder listing for CVTHEXPGM

Chapter 8. Creating a Service Program 101

Sample Service Program

102 ILE RPG Programmer’s Guide

Chapter 9. Running a Program

This chapter shows you how to:

* Run a program and pass parameters using the CL CALL command
* Run a program from a menu-driven application

* Run a program using a user-created command

* Manage activation groups

* Manage run-time storage.

In addition, you can run a program using:

e The Programmer Menu. The CL Programming, SC41-5721-06 manual contains
information on this menu.

¢ The Start Programming Development Manager (STRPDM) command. The
ADTS/400: Programming Development Manager manual contains information on
this command.

¢ The QCMDEXC program. The CL Programming manual contains information on
this program.

* A high-level language. [Chapter 10, “Calling Programs and Procedures,” on page]
provides information on running programs from another HLL or calling
service programs and procedures.,

Note: Use IBM WebSphere Development Studio Client for iSeries. This is the
recommended method and documentation about running a program
appears in that product’s online help.

Running a Program Using the CL CALL Command

You can use the CL CALL command to run a program (type *PGM). You can use
the command interactively, as part of a batch job, or include it in a CL program. If
you need prompting, type CALL and press F4 (Prompt). If you need help, type
CALL and press F1 (Help).

For example, to call the program EMPRPT from the command line, type:
CALL EMPRPT

The program object specified must exist in a library and this library must be
contained in the library list *LIBL. You can also explicitly specify the library in the
CL CALL command as follows:

CALL MYLIB/EMPRPT

For further information about using the CL CALL command, see the CL and APIs
section of the Programming category in the iSeries Information Center at this Web
site - fhttp:/ /www.ibm.com/eserver /iseries/infocenter]

Once you call your program, the i5/0S system performs the instructions found in
the program.

Passing Parameters using the CL CALL Command

You use the PARM option of the CL CALL command to pass parameters to the ILE
program when you run it.

© Copyright IBM Corp. 1994, 2006 103

http://www.ibm.com/eserver/iseries/infocenter

Running a Program Using the CL CALL Command

104

CALL PGM(program-name)
PARM(parameter-1 parameter-2 ... parameter-n)

You can also type the parameters without specifying any keywords:
CALL library/program-name (parameter-1 parameter-2 ... parameter-n)

Each parameter value can be specified as a CL program variable or as one of the
following:

* A character string constant
* A numeric constant

* A logical constant

If you are passing parameters to a program where an ILE RPG procedure is the
program entry procedure, then that program must have one and only one *ENTRY
PLIST specified. The parameters that follow (in the PARM statements) should
correspond on a one-to-one basis to those passed through the CALL command.

Refer to the CALL Command in the section on "Passing Parameters between
Programs” in the CL Programming manual for a full description of how parameters
are handled.

For example, the program EMPRPT?2 requires the correct password to be passed to
it when it first started; otherwise it will not run. shows the source.

1. To create the program, type:
CRTBNDRPG PGM(MYLIB/EMPRPT2)

2. To run the program, type:
CALL MYLIB/EMPRPT2 (HELLO)
When the CALL command is issued, the contents of the parameter passed by
the command is stored and the program parameter PSWORD points to its
location. The program then checks to see if the contents of PSWORD matches

the value stored in the program, (HELLQO'). In this case, the two values are the
same, and so the program continues to run.

A CS S S S SSS oSS oSS oSS S S S S S S S S S S S oS SSSSSSSSSSSSSSSSSSSSSSSSSS==S%
* PROGRAM NAME: EMPRPT2 *
* RELATED FILES: EMPMST (PHYSICAL FILE) *
* PRINT (PRINTER FILE) *
* DESCRIPTION: This program prints employee information *
* stored in the file EMPMST if the password *
* entered is correct. *
* Run the program by typing "CALL library name/ *
* EMPRPT2 (PSWORD)" on the command line, where =*
* PSWORD is the password for this program. *
* The password for this program is 'HELLO'. *
XSS S S SSCS S oSS S S SCS S S S S S S S S S S oSS SSSSSSSSSSSSSSSSSSSSSSSSS=SS=S===%
FPRINT 0 F 80 PRINTER

FEMPMST IP E K DISK

IEMPREC 01

Figure 47. ILE RPG Program that Requires Parameters at Run Time (Part 1 of 2)

ILE RPG Programmer’s Guide

Running a Program Using the CL CALL Command

K o o *
* The entry parameter list is specified in this program. *
* There is one parameter, called PSWORD, and it is a *
* character field 5 characters long. *
K o *
C *ENTRY PLIST

C PARM PSWORD 5

K o o *
* The password for this program is 'HELLO'. The field PSWORD *
* is checked to see whether or not it contains 'HELLO'. *
= If it does not, the last record indicator (LR) and *IN99 *
* are set on. *IN99 controls the printing of messages. *
K o *
C PSWORD IFNE 'HELLO'

C SETON LR99
C ENDIF

OPRINT H 1P 2 6

0 50 'EMPLOYEE INFORMATION'
0 H 1P

0 12 'NAME'

0 34 'SERIAL #'

0 45 'DEPT'

0 56 'TYPE'

0 D 01N99

0 ENAME 20

0 ENUM 32

0 EDEPT 45

0 ETYPE 55

0 D 99

0 16 "xxx'

0 40 'Invalid Password Entered'
0 43 "xxx!

Figure 47. ILE RPG Program that Requires Parameters at Run Time (Part 2 of 2)

shows the DDS that is referenced by the EMPRPT2 source.

I\ 5 e e e o o ok ok ok ok ok ke ok e ke ke ok o ok ok ok o ok ok ke ke ke ook ook ook ok ok ok ke ke ke ook ook ok ok ok ok ok ok ok ek

Ax DESCRIPTION: This is the DDS for the physical file EMPMST. *

Ax It contains one record format called EMPREC. *
Ax This file contains one record for each employee *
Ax of the company. *

A***

Ax

A R EMPREC

A ENUM 5 0 TEXT('EMPLOYEE NUMBER')

A ENAME 20 TEXT('EMPLOYEE NAME')

A ETYPE 1 TEXT('EMPLOYEE TYPE')

A EDEPT 3 0 TEXT ('EMPLOYEE DEPARTMENT')

A ENHRS 31 TEXT('EMPLOYEE NORMAL WEEK HOURS')
A K ENUM

Figure 48. DDS for EMPRPT2

Running a Program From a Menu-Driven Application

Another way to run an ILE program is from a menu-driven application. The
workstation user selects an option from a menu, which in turn calls a particular
program. [Figure 49 on page 106 illustrates an example of an application menu.

Chapter 9. Running a Program 105

Running a Program From a Menu-Driven Application

106

Ve
PAYROLL DEPARTMENT MENU

Select one of the following:
1. Inquire into employee master
2. Change employee master
3. Add new employee

Selection or command
==

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
F13=Information Assistant F16=AS/400 main menu

-

Figure 49. Example of an Application Menu

The menu shown in is displayed by a menu program in which each
option calls a separate ILE program. You can create the menu by using STRSDA
and selecting option 2 ("Design menus’).

[Figure 50 on page 107|shows the DDS for the display file of the above PAYROLL
DEPARTMENT MENU. The source member is called PAYROL and has a source
type of MNUDDS. The file was created using SDA.

ILE RPG Programmer’s Guide

Running a Program From a Menu-Driven Application

A* Free Form Menu: PAYROL
A*
DSPSIZ(24 80 *DS3 -
27 132 *DS4)
CHGINPDFT
INDARA
PRINT (*LIBL/QSYSPRT)
R PAYROL
DSPMOD (*DS3)
LOCK
SLNO(01)
CLRL(*ALL)
ALWROL
CFo3
HELP
HOME
HLPRTN
1 34'PAYROLL DEPARTMENT MENU'
DSPATR(HI)
3 2'Select one of the following:'
COLOR(BLU)
5 7'1.'
6 7'2.'
7 7'3.'
* CMDPROMPT Do not delete this DDS spec.
019 2'Selection or command -
11'Inquire’
19'into’
24'employee’
33'master'
11'Change’
18'employee’
27 'master'
11'Add’
15'new'
19'employee’

>>>rrrrrr>>rrrrr>>>>rrrIrII>>>I>r>>>>>

NN~Noooyor o1t o1 ol

Figure 50. Data Description Specification of an Application Menu

Figure 51| shows the source of the application menu illustrated in [Figure 49 on page|
106} The source member is called PAYROLQQ and has a source type of MNUCMD.
It was also created using SDA.

PAYROLQQ, 1

0001 call RPGINQ
0002 call RPGCHG
0003 call RPGADD

Figure 51. Source for Menu Program

You run the menu by entering:
GO library name/PAYROL

If the user enters 1, 2, or 3 from the application menu, the source in calls
the programs RPGINQ, RPGCHG, or RPGADD respectively.

Chapter 9. Running a Program 107

H H H H o H H H*

H H H H*

Running a Program Using a User-Created Command

Running a Program Using a User-Created Command

You can create a command to run a program by using a command definition. A
command definition is an object (type *CMD) that contains the definition of a
command (including the command name, parameter descriptions, and
validity-checking information), and identifies the program that performs the
function requested by the command.

For example, you can create a command, PAY, that calls a program, PAYROLL,
where PAYROLL is the name of an RPG program that you want to run. You can
enter the command interactively, or in a batch job. See the CL Programming manual
for further information about using command definitions.

Replying to Run-Time Inquiry Messages

108

When you run a program with ILE RPG procedures, run-time inquiry messages
may be generated. They occur when the default error handler is invoked for a
function check in a main procedure. See [“Exception Handling within a Main|
[Procedure” on page 266.| The inquiry messages require a response before the
program continues running.

Note: Inquiry messages are never issued for subprocedures, since the default error
handling for a function check in a subprocedure causes the subprocedure to
be cancelled, causing the exception to percolate to the caller of the
subprocedure. See [Exception Handling within Subprocedures}

If the caller of the subprocedure is an RPG procedure, the call will fail with status
00202, independent of the status code associated with the actual exception. If the
failed call causes an RPG main procedure to invoke its default handler, inquiry
message RNQ0202 will be issued.

You can add the inquiry messages to a system reply list to provide automatic
replies to the messages. The replies for these messages may be specified
individually or generally. This method of replying to inquiry messages is especially
suitable for batch programs, which would otherwise require an operator to issue
replies.

You can add the following ILE RPG inquiry messages to the system reply list:
Table 26. ILE RPG Inquiry Messages

RNQO100 RNQO0231 RNQO0421 RNQ1023 RNQI235
RNQ0101 RNQ0232 RNQO425 RNQ1024 RNQ1241
RNQ0102 RNQ0299 RNQO426 RNQ1031 RNQI1251
RNQO0103 RNQO0301 RNQO0431 RNQ1041 RNQI255
RNQ0104 RNQ0302 RNQ0432 RNQ1042 RNQ1261
RNQO112 RNQ0303 RNQ0450 RNQ1051 RNQI1271
RNQO113 RNQO304 RNQO501 RNQ1071 RNQ1281
RNQO114 RNQO305 RNQ0502 RNQI1201 RNQI1282
RNQO115 RNQO0306 RNQ0802 RNQI211 RNQ1284
RNQO0120 RNQO0333 RNQO0803 RNQI1215 RNQI1285
RNQO121 RNQ0401 RNQO804 RNQI216 RNQI286
RNQO122 RNQ0402 RNQO0805 RNQI1217 RNQ1287
RNQO0123 RNQO411 RNQ0907 RNQI1218 RNQ1299
RNQ0202 RNQO412 RNQI1011 RNQI221 RNQ1331
RNQO211 RNQO413 RNQ1021 RNQI1222 RNQ9998
RNQ0221 RNQO414 RNQ1022 RNQ1231 RNQ9999
RNQ0222 RNQO0415

ILE RPG Programmer’s Guide

Replying to Run-Time Inquiry Messages

Note: ILE RPG inquiry messages have a message id prefix of RNQ.

To add inquiry messages to a system reply list using the Add Reply List Entry
command enter:

ADDRPYLE sequence-no message-id

where sequence-no is a number from 1-9999, which reflects where in the list the
entry is being added, and message-id is the message number you want to add.
Repeat this command for each message you want to add.

Use the Change Job (CHGJOB) command (or other CL job command) to indicate
that your job uses the reply list for inquiry messages. To do this, you should
specify *SYSRPYL for the Inquiry Message Reply (INQMSGRPY) attribute.

The reply list is only used when an inquiry message is sent by a job that has the
Inquiry Message Reply (INQMSGRPY) attribute specified as
INOMSGRPY(*SYSRPYL). The INQMSGRPY parameter occurs on the following CL
commands:

¢ Change Job (CHGJOB)

* Change Job Description (CHGJOBD)

* Create Job Description (CRTJOBD)

* Submit Job (SBMJOB).

You can also use the Work with Reply List Entry (WRKRPYLE) command to
change or remove entries in the system reply list. For details of the ADDRPYLE
and WRKRPYLE commands, see the CL and APIs section of the Programming
category in the iSeries Information Center at this Web site -

[http:/ /www.ibm.com/eserver/iseries /infocenter]

Ending an ILE

Program

When an ILE program ends normally, the system returns control to the caller. The
caller could be a workstation user or another program (such as the menu-handling
program).

If an ILE program ends abnormally and the program was running in a different
activation group than its caller, then the escape message CEE9901

Error message-id caused program to end.
is issued and control is returned to the caller.

A CL program can monitor for this exception by using the Monitor Message
(MONMSG) command. You can also monitor for exceptions in other ILE
languages.

If the ILE program is running in the same activation group as its caller and it ends
abnormally, then the message issued will depend on why the program ends. If it
ends with a function check, then CPF9999 will be issued. If the exception is issued
by an RPG procedure, then it will have a message prefix of RNX.

For more information on exception messages, see [“Exception Handling Overview”]

Chapter 9. Running a Program 109

http://www.ibm.com/eserver/iseries/infocenter

Managing Activation Groups

Managing Activation Groups

110

An activation group is a substructure of a job and consists of system resources (for
example, storage, commitment definitions, and open files) that are allocated to run
one or more ILE or OPM programs. Activation groups make it possible for ILE
programs running in the same job to run independently without intruding on each
other (for example, commitment control and overrides). The basic idea is that all
programs activated within one activation group are developed as one cooperative
application.

You identify the activation group that your ILE program will run in at the time of
program creation. The activation group is determined by the value specified on the
ACTGRP parameter when the program object was created. (OPM programs always
run in the default activation group; you cannot change their activation group
specification.) Once an ILE program (object type *PGM) is activated, it remains
activated until the activation group is deleted.

The remainder of this section tells you how to specify an activation group and how
to delete one. For more information on activation groups, refer to ILE Concepts.

Specifying an Activation Group

You control that activation group your ILE program will run in by specifying a
value for the ACTGRP parameter when you create your program (using CRTPGM
or CRTBNDRPG) or service program (using CRTSRVPGM).

Note: If you are using the CRTBNDRPG command, you can only specify a value
for ACTGRP if the value of DFTACTGRP is *NO.

You can choose one of the following values:
* anamed activation group

A named activation group allows you to manage a collection of ILE programs
and service programs as one application. The activation group is created when
the first program that specified the activation group name on creation is called.
It is then used by all programs and service programs that specify the same
activation group name.

A named activation group ends when it is deleted using the CL command
RCLACTGRP. This command can only be used when the activation group is no
longer in use. When it is ended, all resources associated with the programs and
service programs of the named activation group are returned to the system.

The named activation group QILE is the default value of the ACTGRP parameter
on the CRTBNDRPG command. However, because activation groups are
intended to correspond to applications, it is recommended that you specify a
different value for this parameter. For example, you may want to name the
activation group after the application name.

* *NEW

When *NEW is specified, a new activation group is created whenever the
program is called. The system creates a name for the activation group. The name
is unique within your job.

An activation group created with *NEW always ends when the program(s)
associated with it end. For this reason, if you plan on returning from your
program with LR OFF in order to keep your program active, then you should
not specify *NEW for the ACTGRP parameter.

ILE RPG Programmer’s Guide

Managing Activation Groups

Note: This value is not valid for service programs. A service program can only
run in a named activation group or the activation group of its caller.

*NEW is the default value for the ACTGRP parameter on the CRTPGM
command.

If you create an ILE RPG program with ACTGRP(*NEW), you can then call the
program as many times as you want without returning from earlier calls. With
each call, there is a new copy of the program. Each new copy will have its own
data, open its files, etc.. However, you must ensure that there is some way to
end the calls to “itself’; otherwise you will just keep creating new activation
groups and the programs will never return.

*CALLER

The program or service program will be activated into the activation group of
the calling program. If an ILE program created with ACTGRP(*CALLER) is
called by an OPM program, then it will be activated into the OPM default
activation group (*DFTACTGRP).

Running in the OPM Default Activation Group

When an i5/0S job is started, the system creates an activation group to be used by
OPM programs. The symbol used to represent this activation group is
*DFTACTGRP. You cannot delete the OPM default activation group. It is deleted by
the system when your job ends.

OPM programs automatically run in the OPM default activation group. An ILE
program will also run in the OPM default activation group when one of the
following occurs:

The program was created with DFTACTGRP(*YES) on the CRTBNDRPG
command.

The program was created with ACTGRP(*CALLER) at the time of program
creation and the caller of the program runs in the default activation group. Note
that you can only specify ACTGRP(*CALLER) on the CRTBNDRPG command if
DFTACTGRP(*NO) is also specified.

Note: The resources associated with a program running in the OPM default

activation group via *CALLER will not be deleted until the job ends.

Maintaining OPM RPG/400 and ILE RPG Program
Compatibility
If you have an OPM application that consists of several RPG programs, you can

ensure that the migrated application will behave like an OPM one if you create the
ILE application as follows:

1.

Convert each OPM source member using the CVTRPGSRC command, making
sure to convert the /COPY members.

See |[“Converting Your Source” on page 432| for more information.

Using the CRTBNDRPG command, compile and bind each converted source
member separately into a program object, specifying DFTACTGRP(*YES).

For more information on OPM-compatible programs. refer to|“Strategy 1:

[OPM-Compatible Application” on page 23/

Chapter 9. Running a Program 111

Managing Activation Groups

112

Deleting an Activation Group

When an activation group is deleted, its resources are reclaimed. The resources
include static storage and open files. A *NEW activation group is deleted when the
program it is associated with returns to its caller.

Named activation groups (such as QILE) are persistent activation groups in that
they are not deleted unless explicitly deleted or unless the job ends. The storage
associated with programs running in named activation groups is not released until
these activation groups are deleted.

An ILE RPG program created DFTACTGRP(*YES) will have its storage released
when it ends with LR on or abnormally.

Note: The storage associated with ILE programs running in the default activation
group via *CALLER is not released until you sign off (for an interactive job)
or until the job ends (for a batch job).

If many ILE RPG programs are activated (that is called at least once) system

storage may be exhausted. Therefore, you should avoid having ILE programs that

use large amounts of static storage run in the OPM default activation group, since
the storage will not be reclaimed until the job ends.

The storage associated with a service program is reclaimed only when the
activation group it is associated with ends. If the service program is called into the
default activation group, its resources are reclaimed when the job ends.

You can delete a named activation group using the RCLACTGRP command. Use
this command to delete a nondefault activation group that is not in use. The
command provides options to either delete all eligible activation groups or to
delete an activation group by name.

For more information on the RCLACTGRP command, refer to the see the CL and
APIs section of the Programming category in the iSeries Information Center at this
Web site - [http:/ /www.ibm.com/eserver /iseries /infocenter] For more information
on the RCLACTGRP and activation groups, refer to ILE Concepts.

Reclaim Resources Command

The Reclaim Resources (RCLRSC) command is designed to free the resources for
programs that are no longer active. The command works differently depending on
how the program was created. If the program is an OPM program or was created
with DFTACTGRP(*YES), then the RCLRSC command will close open files and free
static storage.

For ILE programs or service programs that were activated into the OPM default
activation group because they were created with *CALLER, files will be closed
when the RCLRSC command is issued. For programs, the storage will be
re-initialized; however, the storage will not be released. For service programs, the
storage will neither be re-initialized nor released.

Note: This means that if you have a service program that ran in the default
activation group and left files open (returning with LR off), and a RCLRSC
is issued, when you call the service program again, the files will still appear
to be open, so so any I/O operations will result in an error.

ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Managing Activation Groups

For ILE programs associated with a named activation group, the RCLRSC
command has no effect. You must use the RCLACTGRP command to free resources
in a named activation group.

For more information on the RCLRSC command, refer to the CL and APIs section
of the Programming category in the iSeries Information Center at this Web site -
[http:/ /www.ibm.com/eserver /iseries /infocenter] For more information on the
RCLRSC and activation groups, refer to ILE Concepts.

Managing Dynamically-Allocated Storage

ILE allows you to directly manage run-time storage from your program by
managing heaps. A heap is an area of storage used for allocations of dynamic
storage. The amount of dynamic storage required by an application depends on the
data being processed by the programs and procedures that use the heap.

To manage heaps, you can use:

e The ALLOC, REALLOC, and DEALLOC operation codes
e The %ALLOC and %REALLOC built-in functions

* The ILE bindable APIs

You are not required to explicitly manage run-time storage. However, you may
want to do so if you want to make use of dynamically allocated run-time storage.
For example, you may want to do this if you do not know exactly how large an
array or multiple-occurrence data structure should be. You could define the array
or data structure as BASED, and acquire the actual storage for the array or data
structure once your program determines how large it should be.

Chapter 9. Running a Program 113

http://www.ibm.com/eserver/iseries/infocenter

Managing Dynamically-Allocated Storage

* Two counters are kept:
* 1. The current number of array elements
* 2. The number of array elements that are allocated for the array

D arrInfo DS QUALIFIED

D pArr * INZ (*NULL)

D numElems 10I 0 INZ(0)

D numAlloc 10I 0 INZ(0)

D arr S 20A VARYING DIM(32767)
D BASED (arrInfo.pArr)
D i S 10I 0

/free

// Allocate storage for a few array elements

// (The number of elements that the array is considered to
// actually have remains zero.)

arrInfo.numAlloc = 2;

arrInfo.pArr = %alloc(arrInfo.numAlloc * %size(arr));

// Add two elements to the array
if arrInfo.numAlloc < arrInfo.numElems + 2;
// There is no room for the new elements.
// Allocate a few more elements.
arrInfo.numAlloc += 10;
arrInfo.pArr = %realloc (arrInfo.pArr
: arrInfo.numAlloc * %size(arr));
endif;
arrInfo.numElems += 1;
arr(arrInfo.numElems) = 'XYZ Electronics';
arrInfo.numElems += 1;
arr(arrInfo.numElems) = 'ABC Tools';

// Search the array
i = %lookup ('XYZ Electronics' : arr : 1 : arrInfo.numElems);

/li=1

// Sort the array
sorta %subarr(arr : 1 : arrInfo.numElems);

// Search the array again
i = %lookup ('XYZ Electronics' : arr : 1 : arrInfo.numElems);
// Now, i = 2, since the array is now sorted

// Remove the last element from the array
arrInfo.numElems -= 1;

// Clear the array

// This can be done simply by setting the current number of
// elements to zero. It is not necessary to actually clear
// the data in the previously used elements.
arrInfo.numElems = 0;

// Free the storage for the array
dealloc arrInfo.pArr;
reset arrlnfo;

return;

Figure 52. Allocating, sorting and searching dynamically-allocated arrays

There are two types of heaps available on the system: a default heap and a
user-created heap. The RPG storage management operations use the default heap.
The following sections show how to use RPG storage management operations with
the default heap, and also how to create and use your own heap using the storage
management APIs. For more information on user-created heaps and other ILE
storage management concepts refer to ILE Concepts.

114 ILE RPG Programmer’s Guide

Managing Dynamically-Allocated Storage

Managing the Default Heap Using RPG Operations

The first request for dynamic storage within an activation group results in the
creation of a default heap from which the storage allocation takes place.
Additional requests for dynamic storage are met by further allocations from the
default heap. If there is insufficient storage in the heap to satisfy the current
request for dynamic storage, the heap is extended and the additional storage is
allocated.

Allocated dynamic storage remains allocated until it is explicitly freed or until the
heap is discarded. The default heap is discarded only when the owning activation
group ends.

Programs in the same activation group all use the same default heap. If one
program accesses storage beyond what has be allocated, it can cause problems for
another program. For example, assume that two programs, PGM A and PGM B are
running in the same activation group. 10 bytes are allocated for PGM A, but 11
bytes are changed by PGM A. If the extra byte was in fact allocated for PGM B,
problems may arise for PGM B.

You can use the following RPG operations on the default heap:

¢ The ALLOC operation code and the %ALLOC built-in function allocate storage
within the default heap.

* The DEALLOC operation code frees one previous allocation of heap storage
from any heap.

* The REALLOC operation code and the %REALLOC built-in function change the
size of previously allocated storage from any heap.

Note: Although ALLOC and %ALLOC work only with the default heap,
DEALLOC, REALLOC, and %REALLOC work with both the default heap
and user-created heaps.

[Figure 53 on page 116/ shows an example of how the memory management
operation codes can be used to build a linked list of names.

Chapter 9. Running a Program 115

Managing Dynamically-Allocated Storage

116

K o o = = = = =
* Prototypes for subprocedures in this module
K o = = = = = -
D AddName PR
D name_parm 40A
D Display PR
D Free PR
K o o = =

* Each element in the list contains a pointer to the
* name and a pointer to the next element

e e S S S e S ——
D elem DS BASED (e1em@)
D name@ *
D next@ *
D name_len 50 0
D nameVal S 40A BASED (name@)
D elemSize C %SIZE (elem)
e e S S e S ——

* The first element in the 1ist is in static storage.
* The name field of this element is not set to a value.

K o o o - - -
D first DS
D * INZ(*NULL)
D * INZ(*NULL)
D 50 0 INZ(0)
K o -

* This is the pointer to the current element.
* When elem@ is set to the address of <first>, the list is

* empty.
K o o o o - e S e e e S e e e e e e e e e .
D elem@ S * INZ(%ADDR(first))
e e S e e S ——
* Put 5 elements in the list
K o - ——————————————————————————
C DO 5
C 'Name?"' DSPLY name 40
C CALLP AddName (name)
C ENDDO
K o o -
* Display the 1ist and then free it.
K o o - - - -
C CALLP Display
C CALLP Free
C EVAL *INLR = '1'

Figure 53. Memory Management - Build a Linked List of Names (Part 1 of 5)

ILE RPG Programmer’s Guide

Managing Dynamically-Allocated Storage

K o o *
* SUBPROCEDURES *
K o o o *
K o o o *
* AddName - add a name to the end of the Tist *
K o o *

P AddName B

D AddName pi

D name 40A
K o o *
* Allocate a new element for the array, pointed at by the *
* 'next' pointer of the current end of the list. *
* *
* Before: *
* *
X mmmmmmmm————— *
* | *
* name *--->ahc *
* | name_len 3 | *
* | next —— [] *
* | *
* L, 1 *
* *
K o o *

C ALLOC elemSize next@
L e e e T e e e] *
* *
* After: Note that the old element is still the current one *
* because elem@ is still pointing to the old element *
* *
* L mmmmmmmm—————— e mmm————————— *
* | —————— > *
* name *--->abc *
* | name_len 3 | *
* next Kmmmmmmmm o ! *
* | *
* L, 1 L 1 %
* *
* Now set elem@ to point to the new element *
L e e e e e T e e e *

c EVAL elem@ = next@

Figure 53. Memory Management - Build a Linked List of Names (Part 2 of 5)

Chapter 9. Running a Program 117

Managing Dynamically-Allocated Storage

118

b T R R

*

After: Now the names name@, name_len and next@ refer
to storage in the new element
|
*--->abc name *
3] name_len
Kemmmmmmmmee ! next *

Now set the values of the new element.
The next pointer is set to *NULL to indicate that it is the
end of the list.

* Storage is allocated for the name and then set to the value of

* the name.
K o -

(8 ALLOC name_len name@

C EVAL %SUBST (nameVal:1&gml.name_len) = name
K o o o -
*

* After

*

¥ eeececcccccsess—-— e G ee.e.e.e.—-—--———

* | T > |

* *--->ahc name *--->newname
* 3 name_len nn

* Hmmmmmmmmm ! next *_-->| | |

* |

* L 1 L 1

K o o -
P AddName E

E o R S R N

* %k X X X ok X X X X

Figure 53. Memory Management - Build a Linked List of Names (Part 3 of 5)

ILE RPG Programmer’s Guide

Managing Dynamically-Allocated Storage

K o o *
* Display - display the Tist *
K o o o *
P Display B

D saveElem@ S *

D dspName S 40A
L e e e T e e e] *
* Save the current elem pointer so the Tist can be restored after *
* being displayed and set the Tist pointer to the beginning of *
* the 1ist. *
K o o o *

C EVAL saveElem@ = elem@

C EVAL elem@ = %ADDR(first)
L e e T N e *
* Loop through the elements of the 1ist until the next pointer is =*
* *NULL *
K o o o *

C DOW next@ <> *NULL

C EVAL elem@ = next@

(o EVAL dspName = %SUBST(nameVal:1:name_len)

C 'Name: ' dsply dspName

c ENDDO
K o o e *
* Restore the list pointer to its former place
K o o *

C EVAL elem@ = saveElem@

P Display E

Figure 53. Memory Management - Build a Linked List of Names (Part 4 of 5)

Chapter 9. Running a Program 119

Managing Dynamically-Allocated Storage

K o o *
* Free - release the storage used by the list *
K o o *
P Free B
D prv@ S *
K o *
* Loop through the elements of the 1ist until the next pointer is =*
* *NULL, starting from the first real element in the Tist *
e e T T T e T e e e T LT *
C EVAL elem@ = %ADDR(first)
C EVAL elem@ = next@
C DOW elem@ <> *NULL
K o o *
* Free the storage for name *
K o o *
C DEALLOC name@
K o o *
* Save the pointer to current elem@
L e e T e e e *
C EVAL prve = elem@
I e e e L e L e e e T T *
* Advance elem@ to the next element
e e T L e T e T T *
C EVAL elem@ = next@
K *
* Free the storage for the current element
I e e e e e e e T *
C DEALLOC prve
C ENDDO
K o *
* Ready for a new Tist:
K o o *
C EVAL elem@ = %ADDR(first)
P Free E

Figure 53. Memory Management - Build a Linked List of Names (Part 5 of 5)

Heap Storage Problems

[Figure 54 on page 121|shows possible problems associated with the misuse of heap
storage.

120 ILE RPG Programmer’s Guide

Managing Dynamically-Allocated Storage

R e e e L e L T e L e T T e *
* Heap Storage Misuse *
K o *
D Fldl S 25A BASED (Ptrl)

D Ptrl S *

/FREE

Ptrl = %ALLOC(25);
DEALLOC Ptrl;

// After this point, F1dl should not be accessed since the
// basing pointer Ptrl no longer points to allocated storage.

SomePgm() ;

// During the previous call to 'SomePgm', several storage allocations
// may have been done. In any case, it is extremely dangerous to

// make the following assignment, since 25 bytes of storage will

// be filled with 'a'. It is impossible to know what that storage
// is currently being used for.

F1dl = *ALL'a';
/END-FREE

Figure 54. Heap Storage Misuse

Similarly, errors can occur in the following cases:

* A similar error can be made if a pointer is copied before being reallocated or
deallocated. Great care must be taken when copying pointers to allocated
storage, to ensure that they are not used after the storage is deallocated or
reallocated.

* If a pointer to heap storage is copied, the copy can be used to deallocate or
reallocate the storage. In this case, the original pointer should not be used until
it is set to a new value.

* If a pointer to heap storage is passed as a parameter, the callee could deallocate
or reallocate the storage. After the call returns, attempts to access the pointer
could cause problems.

* If a pointer to heap storage is set in the *INZSR, a later RESET of the pointer
could cause the pointer to get set to storage that is no longer allocated.

* Another type of problem can be caused if a pointer to heap storage is lost (by
being cleared, or set to a new pointer by an ALLOC operation, for example).
Once the pointer is lost, the storage it pointed to cannot be freed. This storage is
unavailable to be allocated since the system does not know that the storage is no
longer addressable.

The storage will not be freed until the activation group ends.

Managing Your Own Heap Using ILE Bindable APIs

You can isolate the dynamic storage used by some programs and procedures
within an activation group by creating one or more user-created heaps. For
information on creating a user-created heap refer to ILE Concepts.

The following example shows you how to manage dynamic storage for a run-time
array with a user-created heap from an ILE RPG procedure. In this example, the
procedures in the module DYNARRAY dynamically allocate storage for a
practically unbounded packed array. The procedures in the module perform the
following actions on the array:

Chapter 9. Running a Program 121

Managing Dynamically-Allocated Storage

122

* Initialize the array

Add an element to the array
e Return the value of an element

* Release the storage for the array.

DYNARRAY performs these actions using the three ILE bindable storage APIs,
CEECRHP (Create Heap), CEEGTST (Get Storage), and CEEDSHP (Discard Heap),
as well as the REALLOC operation code. For specific information about the storage
management bindable APIs, refer to the CL and APIs section of the Programming
category in the iSeries Information Center at this Web site -

Ihttp: //www.ibm.com/eserver/iseries/ infocented

shows the /COPY file DYNARRI containing the prototypes for the
procedures in DYNARRAY. This /COPY file is used by the DYNARRAY module as
well as any other modules that call the procedures in DYNARRAY.

DYNARRAY has been defined for use with a (15,0) packed decimal array. It could
easily be converted to handle a character array simply by changing the definition
of DYNA_TYPE to a character field.

koS-SS S-S CSCSCS oSS CS oSS CS oSS CS oSS S S CSCSCSCSSCSS oSS SSSSSSSSSSSS=S=S=S=S=====
* DYNARRAY : Handle a (practically) unbounded run-time

* Packed(15,0) array. The DYNARRAY module contains
* procedures to allocate the array, return or set

* an array value and deallocate the array.

oS-SS CSCSCSCSCSCSCSCS S CSCS oSS CS oSS S S S S S S CS oSS SS oS S-S SSSSSSSSSS=S=S=S=S=====
D DYNA_TYPE S 15P 0

D DYNA_INIT PR

D DYNA_TERM PR

D DYNA_SET PR

D Element VALUE LIKE(DYNA_TYPE)

D Index 5I 0 VALUE

D DYNA_GET PR LIKE(DYNA_TYPE)

D Index 51 0 VALUE

Figure 55. /COPY file DYNARRI containing prototypes for DYNARRAY module

[Figure 56 on page 123|shows the beginning of module DYNARRAY containing the
Control specification, and Definition specifications.

ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Managing Dynamically-Allocated Storage

* Interface to
* 1) Heapld =
x 2) Size =
%* 3) RetAddr=
* 4) *OMIT =
*
*
*
*

Handle a (practically) unbounded run-time
Packed(15,0) array. This module contains
procedures to allocate the array, return or set
an array value and deallocate the array.

the CEEGTST API (Get Heap Storage).

Id of the heap.

Number of bytes to allocate

Return address of the allocated storage

The feedback parameter. Specifying *OMIT here
means that we will receive an exception from
the API if it cannot satisfy our request.
Since we do not monitor for it, the calling
procedure will receive the exception.

D CEEGTST PR

D Heapld 10I 0 CONST

D Size 10I 0 CONST

D RetAddr *

D Feedback 12A OPTIONS (*OMIT)
T S S
x Interface to the CEECRHP API (Create Heap).

* 1) Heapld = Id of the heap.

x 2) InitSize = Initial size of the heap.

x 3) Incr = Number of bytes to increment if heap must be

* enlarged.

* 4) AllocStrat = Allocation strategy for this heap. We will

* specify a value of O which allows the system

* to choose the optimal strategy.

* 5) *OMIT = The feedback parameter. Specifying *OMIT here
* means that we will receive an exception from

* the API if it cannot satisfy our request.

* Since we do not monitor for it, the calling

* procedure will receive the exception.
T S

D CEECRHP PR

D Heapld 10I 0

D InitSize 10I 0 CONST

D Incr 10I 0 CONST

D AllocStrat 10I 0 CONST

D Feedback 12A OPTIONS (*OMIT)

Figure 56. Global variables and local prototypes for DYNARRAY (Part 1 of 2)

Chapter 9. Running a Program

123

Managing Dynamically-Allocated Storage

124

* Interface to the CEEDSHP API (Discard Heap).

* 1) Heapld = Id of the heap.

x 2) *OMIT = The feedback parameter. Specifying *OMIT here
* means that we will receive an exception from

* the API if it cannot satisfy our request.

* Since we do not monitor for it, the calling

* procedure will receive the exception.

K o o = - - - -
D CEEDSHP PR

D Heapld 10I 0

D Feedback 12A OPTIONS (*OMIT)

D HeapVars DS
D HeapId 10I 0
D DynArre *

* Define the dynamic array. We code the number of elements
* as the maximum allowed, noting that no storage will actually
* be declared for this definition (because it is BASED).

D DynArr S DIM(32767) BASED(DynArre@)
D LIKE(DYNA_TYPE)

* Global to keep track of the current number of elements
* in the dynamic array.

* Initial number of elements that will be allocated for the
* array, and minimum number of elements that will be added
* to the array on subsequent allocations.

D INITALLOC c 100
D SUBSALLOC c 100

Figure 56. Global variables and local prototypes for DYNARRAY (Part 2 of 2)

[Figure 57 on page 125|shows the subprocedures in DYNARRAY.

ILE RPG Programmer’s Guide

Managing Dynamically-Allocated Storage

DYNA_INIT: Initialize the array.

Function: Create the heap and allocate an initial amount of
storage for the run time array.

EE I .

* Start with a pre-determined number of elements.

C* Z-ADD INITALLOC NumE1ems

* Determine the number of bytes needed for the array.

C EVAL Size = NumElems * %SIZE(DynArr)

* Create the heap

c CALLP CEECRHP (HeapId : Size : 0 : 0 : *OMIT)
Allocate the storage and set the array basing pointer

to the pointer returned from the API.

Note that the ALLOC operation code uses the default heap so
we must use the CEEGTST API to specify a different heap.

* %k ok 3k X X X

C CALLP CEEGTST (HeapId : Size : DynArr@ : *OMIT)

* Initialize the storage for the array.

C 1 DO NumE1ems I 50
C CLEAR DynArr(I)

C ENDDO

P DYNA_INIT E

* DYNA_TERM: Terminate array handling.

*
* Function: Delete the heap.

P DYNA_TERM B EXPORT

C CALLP CEEDSHP (HeapId : *OMIT)
C RESET HeapVars
P DYNA_TERM E

Figure 57. DYNARRAY Subprocedures (Part 1 of 4)

Chapter 9. Running a Program 125

Managing Dynamically-Allocated Storage

126

k=== =S=S=S=SSS=S=SSS=SSSSSSS=SSS=S=S=S=S=S=S=S=S=S=S=S=S=S==S=S==S=S=S==S=S=S==S=S=S=S=S============
* DYNA_SET: Set an array element.

*

* Function: Ensure the array is big enough for this element,

* and set the element to the provided value.

k=== ===—===========-===-==-===S===-===-=S===S===S=====S===S==================

P DYNA_SET B EXPORT
K o o = =
* Input parameters for this procedure.

K o = = = = = -

D DYNA_SET PI

D Element VALUE LIKE(DYNA_TYPE)

D Index 51 0 VALUE
S
* Local variables.

K o o - - - - -

D Size S 10I 0
g g g g g g g g g g g g g g g g g SR R —

* If the user selects to add to the array, then first check
= if the array is large enough, if not then increase its
* size. Add the element.

K o = = = = = = = - —_—————
C Index IFGT NumE1ems
C EXSR REALLOC
C ENDIF
C EVAL DynArr(Index) = Element
k=== =S=S=S=SS=SSSS=SSSSSSSS=SSS=S=S=S=S=S=S=S=S=S=S=S=S==S=S==S==S==S=S===S=S===S============
* REALLOC: Reallocate storage subroutine
*
* Function: Increase the size of the dynamic array
* and initialize the new elements.
k=== ==============-===-==S===-===-===-=S===S===-=====S===S==================
C REALLOC BEGSR
*

* Remember the old number of elements
*

C Z-ADD NumE1lems 01dElems 50

Figure 57. DYNARRAY Subprocedures (Part 2 of 4)

ILE RPG Programmer’s Guide

Managing Dynamically-Allocated Storage

*
* Calculate the new number of elements. If the index is
* greater than the current number of elements in the array
* plus the new allocation, then allocate up to the index,
* otherwise, add a new allocation amount onto the array.
*

C IF Index > NumElems + SUBSALLOC

C Z-ADD Index NumE1ems

C ELSE

C ADD SUBSALLOC NumE1lems

C ENDIF

*

* Calculate the new size of the array
*

C EVAL Size = NumElems * %SIZE(DynArr)
*
* Reallocate the storage. The new storage has the same value
* as the old storage.
*

C REALLOC Size DynArr@

*

* Initialize the new elements for the array.
*

C 1 ADD 01dElems I

C I DO NumE1ems I 50
C CLEAR DynArr(I)

C ENDDO

C ENDSR

P DYNA_SET E

Figure 57. DYNARRAY Subprocedures (Part 3 of 4)

* DYNA_GET: Return an array element.

*

* Function: Return the current value of the array element if
* the element is within the size of the array, or
* the default value otherwise.

D DYNA_GET PI LIKE (DYNA_TYPE)
D Index 5I 0 VALUE

* If the element requested is within the current size of the
* array then return the element's current value. Otherwise
x the default (initialization) value can be used.

C Index IFLE NumE1lems

C EVAL Element = DynArr(Index)
C ENDIF

C RETURN Element

P DYNA_GET E

Figure 57. DYNARRAY Subprocedures (Part 4 of 4)

The logic of the subprocedures is as follows:

Chapter 9. Running a Program 127

Managing Dynamically-Allocated Storage

128

1. DYNA_INIT creates the heap using the ILE bindable API CEECRHP (Create
Heap), storing the heap Id in a global variable Heapld. It allocates heap storage
based on initial value of the array (in this case 100) by calling the ILE bindable
API CEEGTST (Get Heap Storage).

2. DYNA_TERM destroys the heap using the ILE bindable API CEEDSHP
(Discard Heap).

3. DYNA_SET sets the value of an element in the array.

Before adding an element to the array, the procedure checks to see if there is
sufficient heap storage. If not, it uses operation code REALLOC to acquire
additional storage.

4. DYNA_GET returns the value of a specified element. The procedure returns to
the caller either the element requested, or zeros. The latter occurs if the
requested element has not actually been stored in the array.

To create the module DYNARRAY, type:
CRTRPGMOD MODULE(MYLIB/DYNARRAY) SRCFILE(MYLIB/QRPGLESRC)

The procedure can then be bound with other modules using CRTPGM or
CRTSRVPGM.

shows another module that tests the procedures in DYNARRAY.

/COPY EXAMPLES,DYNARRI

D X S LIKE (DYNA_TYPE)
* Initialize the array

C CALLP DYNA_INIT

* Set a few elements

C CALLP DYNA_SET (25 : 3)

C CALLP DYNA_SET (467252232 : 1)
C CALLP DYNA_SET (-2311 : 750)

* Retrieve a few elements

C EVAL X = DYNA_GET (750)
C '750' DSPLY X
C EVAL X = DYNA_GET (8001)
c '8001' DSPLY X
c EVAL X = DYNA_GET (2)
C ‘2! DSPLY X
* Clean up
C CALLP DYNA_TERM
C SETON LR

Figure 58. Sample module using procedures in DYNARRAY

ILE RPG Programmer’s Guide

Chapter 10. Calling Programs and Procedures

In ILE, it is possible to call either a program or procedure. Furthermore, ILE RPG
provides the ability to call prototyped or non-prototyped programs and
procedures. (A prototype is an external definition of the call interface that allows
the compiler to check the interface at compile time.)

The recommended way to call a program or procedure is to use a prototyped call.
The syntax for calling and passing parameters to prototyped procedures or
programs uses the same free-form syntax that is used with built-in functions or
within expressions. For this reason, a prototyped call is sometimes referred to as a
"free-form” call.

Use the CALL or CALLB operations to call a program or procedure when:

* You have an extremely simple call interface

* You require the power of the PARM operation with factor 1 and factor 2.

* You want more flexibility than is allowed by prototyped parameter checking.

This chapter describes how to:

 Call a program or procedure

* Use a prototyped call

* DPass prototyped parameters

* Use a fixed-form call

¢ Return from a program or procedure
* Use ILE bindable APIs

* Call a Graphics routine

* Call special routines

Program/Procedure Call Overview

Program processing within ILE occurs at the procedure level. ILE programs consist
of one or more modules which in turn consist of one or more procedures. An ILE
RPG module contains an optional main procedure and zero or more
subprocedures. In this chapter, the term "procedure’ applies to both main
procedures and subprocedures.

An ILE "program call’ is a special form of procedure call; that is, it is a call to the
program entry procedure. A program entry procedure is the procedure that is
designated at program creation time to receive control when a program is called. If
the entry module of the program is an ILE RPG module, then the main procedure
of that module is called by the program entry procedure immediately after the
program is called.

This section contains general information on:
¢ Program call compared to procedure call

» Call stack (or how a series of calls interact)
* Recursion

¢ Parameter passing considerations

© Copyright IBM Corp. 1994, 2006 129

Program/Procedure Call Overview

130

Calling Programs

You can call OPM or ILE programs by using program calls. A program call is a call
that is made to a program object (*PGM). The called program’s name is resolved to
an address at run time, just before the calling program passes control to the called
program for the first time. For this reason, program calls are often referred to as
dynamic calls.

Calls to an ILE program, an EPM program, or an OPM program are all examples
of program calls. A call to a non-bindable API is also an example of a program call.

You use the CALLP operation or both the CALL and PARM operations to make a
program call. If you use the CALL and PARM operations, then the compiler cannot
perform type checking on the parameters, which may result in run-time errors.

When an ILE program is called, the program entry procedure receives the program
parameters and is given initial control for the program. In addition, all procedures
within the program become available for procedure calls.

Calling Procedures

Unlike OPM programs, ILE programs are not limited to using program calls. ILE
programs can also use static procedure calls or procedure pointer calls to call other
procedures. Procedure calls are also referred to as bound calls.

A static procedure call is a call to an ILE procedure where the name of the
procedure is resolved to an address during binding — hence, the term static. As a
result, run-time performance using static procedure calls is faster than run-time
performance using program calls. Static calls allow operational descriptors, omitted
parameters, and they extend the limit (to 399) on the number of parameters that
are passed.

Procedure pointer calls provide a way to call a procedure dynamically. For
example, you can pass a procedure pointer as a parameter to another procedure
which would then run the procedure that is specified in the passed parameter. You
can also manipulate arrays of procedure names or addresses to dynamically route
a procedure call to different procedures. If the called procedure is in the same
activation group, the cost of a procedure pointer call is almost identical to the cost
of a static procedure call.

Using either type of procedure call, you can call:

* A procedure in a separate module within the same ILE program or service
program.

* A procedure in a separate ILE service program.

Any procedure that can be called by using a static procedure call can also be called
through a procedure pointer.

For a list of examples using static procedure calls, see [“Examples of Free-Form|
[Call” on page 136/ and [“Examples of CALL and CALLB” on page 151 |For
examples of using procedure pointers, see the section on the procedure pointer
data type in WebSphere Development Studio: ILE RPG Reference.

You use the CALLP or both the CALLB and PARM operations to make a
procedure call. You can also call a prototyped procedure with an expression if the

ILE RPG Programmer’s Guide

Program/Procedure Call Overview

procedure returns a value. If you use the CALLB and PARM operations, then the
compiler cannot perform type checking on the parameters, which may result in
run-time errors.

The Call Stack

The call stack is a list of call stack entries, in a last-in-first-out (LIFO) order. A call
stack entry is a call to a program or procedure. There is one call stack per job.

When an ILE program is called, the program entry procedure is first added to the
call stack. The system then automatically performs a procedure call, and the
associated user’s procedure (the main procedure) is added. When a procedure is
called, only the user’s procedure (a main procedure or subprocedure) is added;
there is no overhead of a program entry procedure.

shows a call stack for an application consisting of an OPM program
which calls an ILE program. The RPG main procedure of the ILE program calls an
RPG subprocedure, which in turn calls a C procedure. Note that in the diagrams in
this book, the most recent entry is at the bottom of the stack.

CALL STACK
OPM

OPM

Program A

Program Call

Program

Entry Proc. Procedure Call (by system)

Main
Procedure
Procedure Call

Sub-
Procedure

— C Modul
Procedure I

Figure 59. Program and Procedure Calls on the Call Stack

Procedure Call

Procedure

Note: In a program call, the calls to the program entry procedure and the user
entry procedure (UEP) occur together, since the call to the UEP is automatic.
Therefore, from now on, the two steps of a program call will be combined in
later diagrams involving the call stack in this and remaining chapters.

Recursive Calls

Recursive calls are only allowed for subprocedures. A recursive call is one where
procedure A calls itself or calls procedure B which then calls procedure A again.
Each recursive call causes a new invocation of the procedure to be placed on the
call stack. The new invocation has new storage for all data items in automatic
storage, and that storage is unavailable to other invocations because it is local. (A
data item that is defined in a subprocedure uses automatic storage unless the

Chapter 10. Calling Programs and Procedures 131

Program/Procedure Call Overview

132

STATIC keyword is specified for the definition.) Note also that the automatic
storage that is associated with earlier invocations is unaffected by later invocations.

A main procedure that is on the call stack cannot be called until it returns to its
caller. Therefore, be careful not to call a procedure that might call an already active
main procedure.

Try to avoid situations that might inadvertently lead to recursive calls. For
example, suppose there are three modules, as shown in

— MODULE X— — MODULE Y—— — MODULE Z—

) . NOMAIN
main proc. X main proc. Y
PRC_C
CALLP prc_A
PRC_A PRC_B
CALLP prc_B I CALLP prc_C I PRC_D

Figure 60. Three Modules, each with subprocedures

You are running a program where procedure A in module X calls procedure B in
module Y. You are not aware of what procedure B does except that it processes
some fields. Procedure B in turn calls procedure C, which in turn calls procedure

A. Once procedure C calls procedure A, a recursive call has been made. The call
stack sequence is shown in Note that the most recent call stack entry is

at the bottom.

Recursive Call

Call Stack (bottom entry is most recent)
Figure 61. Recursive Call Stack To Be Avoided

So while subprocedures can be called recursively, if you are not aware that
recursion is occurring, you may exhaust system resources.

ILE RPG Programmer’s Guide

— Attention!

Program/Procedure Call Overview

Unconditional recursive calls can lead to infinite recursion which leads to
excessive use of system resources. Infinite recursion can be avoided with
proper programming. In general, a proper recursive procedure begins with a
test to determine if the desired result has been obtained. If it has been
obtained, then the recursive procedure returns to the most recent caller.

Parameter-Passing Considerations

When designing a call interface, you must make a number of decisions in terms of
how parameters will be passed. On the other hand, if you are the caller then most
of the decisions have already been made for you. The following lists some of the
parameter-passing considerations to keep in mind when you are designing a call
interface.

Compile-time parameter checking

The call interface of a prototyped call is checked at compile time. This checking
ensures that:

— the data types are correctly used

— all required parameters are passed

— *OMIT is only passed where it is allowed.

Parameter passing method

Each HLL provides one or more ways of passing parameters. These may

include: passing a pointer to the parameter value, passing a copy of the value,
or passing the value itself.

Passing operational descriptors

Sometimes you may not be sure of the exact format of the data that is being
passed to you. In this case you may request that operational descriptor be
passed to provide additional information regarding the format of the passed
parameters.

Number of parameters

In general, you should pass the same number of parameters as expected by the
called program or procedure. If you pass fewer parameters than are expected,
and the callee references a parameter for which no data was passed, then the
callee will get an error.

Passing less data

If you pass a parameter and you pass too little data, your application may not
work correctly. If changing the parameter, you may overwrite storage. If using
the parameter, you may misinterpret the parameter. By prototyping the
parameter, the compiler will check to see that the length is appropriate for the
parameter.

If the callee has indicated (through documentation or through that prototype)
that a parameter can be shorter than the maximum length, you can safely pass
shorter parameters. (Note, however, that the called procedure must be written in
a way to handle less data than required.)

Order of evaluation

There is no guaranteed order for evaluation of parameters on a prototyped call.
This fact may be important, if a parameter occurs more than once in the
parameter list, and there is the possibility of side effects.

Interlanguage call considerations

Chapter 10. Calling Programs and Procedures 133

Program/Procedure Call Overview

Different HLLs support different ways of representing data as well as different
ways of sending and receiving data between programs and procedures. In
general, you should only pass data which has a data type common to the calling
and called program or procedure, using a method supported by both.

associates the above considerations with the two types parameters:
prototyped or non-prototyped.

Table 27. Parameter Passing Options

Parameter Option Prototyped Not See Page
Prototyped
Compile-time parameter checking | Yes 136
Pass by reference Yes Yes
Pass by value Yes (b)
Pass by read-only reference Yes
Pass operational descriptors Yes (b) Yes (b) 139
Pass *OMIT Yes Yes (b) 140
Control parameter omission Yes Yes 141
Get number of passed parameters | Yes Yes
Disallow incorrect parameter Yes
length
Note: (b) — applies to bound procedures only.

Using a Prototyped Call

134

A prototyped call is one for which there is a prototype that is available to do
parameter checking. It has a much simpler call interface and offers more function.
For example, using a prototyped call you can call (with the same syntax):

* Programs that are on the system at run time

* Exported procedures in other modules or service programs that are bound in the
same program Or service program

* Subprocedures in the same module

In RPG, prototyped calls are also known as free-form calls. Free-form call refers to
the call syntax where the arguments for the call are specified using free-form
syntax, much like the arguments for built-in functions. It contrasts with fixed-form
call, where the arguments are placed in separate specifications. There are two ways
to make a free-form call, depending on whether there is a return value that is to be
used. If there is no return value, use the CALLP operation. If there is one, and you
want to use the value that is returned, then place the prototyped procedure within
an expression, for example, with EVAL. If you use CALLP to a procedure that
returns a value, the return value is ignored.

Note: Only prototyped procedures can return values; prototyped programs cannot.
You can optionally code parentheses on procedure calls that do not have any

parameters. This makes it easier to distinguish procedure calls from scalar variable
names.

For information on passing prototyped parameters, see [“Passing Prototyped|
[Parameters” on page 136

ILE RPG Programmer’s Guide

Using a Prototyped Call

Using the CALLP Operation

You use the CALLP (Call a Prototyped procedure) operation to call a prototyped
program or procedure written in any language. The CALLP operation uses the
following extended-factor 2 syntax:

C CALLP NAME{ (PARM1 {:PARM2 ...}) }

In free-form calculations, you can omit CALLP if there are no operation extenders.
The free-form operation can use either of the following forms:

/free
callp name { (parml { :parm2 ...}) };
name({parml {:parm2 ... }});
/end-free

To call a prototyped program or procedure follow these general steps:

1. Include the prototype of the program or procedure to be called in the definition
specifications.

2. Enter the prototype name of the program or procedure in the extended Factor-2
field, followed by the parameters if any, within parentheses. Separate the
parameters with a colon (:). Factor 1 must be blank.

The following example shows a call to a procedure Switch, which changes the state
of the indicator that is passed to it, in this case *IN10..

C CALLP Switch(*inl0)

A maximum of 255 parameters are allowed on a program call, and a maximum of
399 for a procedure call.

You can use CALLP from anywhere within the module. If the keyword EXTPGM is
specified on the prototype, the call will be a dynamic external call; otherwise it will
be a bound procedure call.

Note that if CALLP is used to call a procedure which returns a value, that value
will not be available to the caller. If the value is required, call the prototyped
procedure within an expression.

Calling within an Expression

If a prototyped procedure is defined to return a value then you must call the
procedure within an expression if you want to make use of the return value. Use
the procedure name in a manner that is consistent with the data type of the
specified return value. For example, if a procedure is defined to return a numeric,
then the call to the procedure within an expression must be where a numeric
would be expected.

[Figure 62 on page 136 shows the prototype for a procedure CVTCHR that takes a
numeric input parameter and returns a character string. [Figure 63 on page 136|
shows how the procedure might be used in an expression.

Chapter 10. Calling Programs and Procedures 135

Using a Prototyped Call

* Prototype for CVTCHR

* - returns a character representation of the numeric parameter
* Examples: CVTCHR(5) returns '5 !

* CVTCHR(15-124) returns '-109 '
D CVTCHR PR 31A

D NUM 30P 0 VALUE

Figure 62. Prototype for CVTCHR

C EVAL STRING = 'Address: ' +

C %TRIM(CVTCHR(StreetNum))

C + ' ' + StreetName
* [f STREETNUM = 427 and STREETNAME = 'Mockingbird Lane', after the
* EVAL operation STRING = 'ADDRESS: 427 Mockingbird Lane'

Figure 63. Calling a Prototyped Procedure within an Expression

Examples of Free-Form Call

For examples of using the CALLP operation, see:

+ [Figure 22 on page 41|

+ [Figure 43 on page 97
« [Figure 125 on page 257|
» [Figure 71 on page 146|

+ [Figure 138 on page 28|

For examples of calling by using an expression, see:

+ [Figure 4 on page 10|

+ [Figure 19 on page 39|

« [Figure 38 on page 81|
« [Figure 125 on page 257|

Passing Prototyped Parameters

136

When you pass prototyped parameters:

* The compiler verifies, when compiling both the caller and the callee, that the
parameter definitions match, provided as both are compiled using the prototype.

* Fewer specifications are needed, since you do not need the PARM operations.

This section discusses the various options that are available when defining
prototyped parameters, and the impact of these options on the call interface.

Parameter Passing Styles

Program calls, including system API calls, require that parameters be passed by
reference. However, there is no such requirement for procedure calls. ILE RPG
allows three methods for passing and receiving prototyped parameters:

* By reference
* By value
* By read-only reference

Parameters that are not prototyped may only be passed by reference.

ILE RPG Programmer’s Guide

=

Passing Prototyped Parameters

Passing by Reference

The default parameter passing style for ILE RPG is to pass by reference.
Consequently, you do not have to code any keywords on the parameter definition
to pass the parameter by reference. You should pass parameters by reference to a
procedure when you expect the callee to modify the field passed. You may also
want to pass by reference to improve run-time performance, for example, when
passing large character fields. Note also that parameters that are passed on external
program calls can only be passed by reference.

Passing by Value

With a prototyped procedure, you can pass a parameter by value instead of by
reference. When a parameter is passed by value, the compiler passes the actual
value to the called procedure.

When a parameter is passed by value, the called program or procedure can change
the value of the parameter, but the caller will never see the changed value.

To pass a parameter by value, specify the keyword VALUE on the parameter
definition in the prototype, as shown in the figures below.

Note: i5/0S program calls require that parameters be passed by reference.
Consequently, you cannot pass a parameter by value to a program.

Passing by Read-Only Reference

An alternative means of passing a parameter to a prototyped procedure or
program is to pass it by read-only reference. Passing by read-only reference is
useful if you must pass the parameter by reference and you know that the value of
the parameter will not be changed during the call. For example, many system APIs
have read-only parameters specifying formats, or lengths.

Passing a parameter by read-only reference has the same advantages as passing by
value. In particular, this method allows you to pass literals and expressions. It is
important, however, that you know that the parameter would not be changed
during the call.

When a parameter is passed by read-only reference, the compiler may copy the
parameter to a temporary field and pass the address of the temporary. Some
conditions that would cause this are: the passed parameter is an expression or the
passed parameter has a different format.

Note: If the called program or procedure is compiled using a prototype in a
language that enforces the read-only reference method (either ILE RPG
using prototypes, or C), then the parameter will not be changed. If the called
program or procedure does not use a prototype, then the compiler cannot
ensure that the parameter is not changed. In this case, the person defining
the prototype must be careful when specifying this parameter-passing
method.

To pass a parameter by read-only reference, specify the keyword CONST on the
definition specification of the parameter definition in the prototype.

shows an example of a prototype definition for the ILE CEE API

CEETSTA (Test for omitted argument).

Advantages of passing by value or read-only reference
Passing by value or read-only reference allows you to:

* Pass literals and expressions as parameters.

Chapter 10. Calling Programs and Procedures 137

HH

HoH O H H OH H H H H oH FH OH H H O H H H H*

HOH O H H H O FH H O H H H H H

R 3 o 3

Passing Prototyped Parameters

138

* Pass parameters that do not match exactly the type and length that are expected.
* DPass a variable that, from the caller’s perspective, will not be modified.

One primary use for passing by value or read-only reference is that you can allow
less stringent matching of the attributes of the passed parameter. For example, if
the definition is for a numeric field of type packed-decimal and length 5 with 2
decimal positions, you must pass a numeric value, but it can be:

¢ A packed, zoned or binary constant or variable, with any number of digits and
number of decimal positions
* A built-in function returning a numeric value
* A procedure returning a numeric value
* A complex numeric expression such as
2 = (Min(Length(First) + Length(Last) + 1): %size(Name))

If the prototype requires an array of 4 elements, the passed parameter can be:

* An array with fewer than 4 elements. In this case, the remaining elements in the
received parameter will contain the default value for the type.

e An array with 4 elements. In this case, each element of the received parameter
will correspond to an element of the passed parameter.

* An array with more than 4 elements. In this case, some of the elements of the
passed array will not be passed to the received parameter.

* A non-array. In this case, each element of the received parameter will contain the
passed parameter value.

Choosing between parameter passing styles

If you are calling an existing program or procedure, you must pass the parameters
in the way the procedure expects them, either by reference or by value. If the
parameter must be passed by reference, and it will not be modified by the called
procedure program or procedure, pass it by read-only reference (using the CONST
keyword). When you are free to choose between passing by value or by read-only
reference, pass by read-only reference for large parameters. Use the following
general guideline:

* If the parameter is numeric or pointer, and it is not an array, pass it by
read-only reference or by value. Passing these data types by value may have a
very slight performance benefit.

* Otherwise, pass it by read-only reference.

* The procedure returns a value of a 10-digit integer value.
* The 3 parameters are all 5-digit integers passed by value.

D MyFunc PR 10I 0 EXTPROC('DO_CALC')
D 5I 0 VALUE
D 5I 0 VALUE
D 5I 0 VALUE

Figure 64. Prototype for Procedure DO_CALC with VALUE Parameters

ILE RPG Programmer’s Guide

H HHFHHHHFHHFHFFHFHFHFFFHFHFF

FH o FF HEEE 3 S 3 S o o

Passing Prototyped Parameters

P DO_CALC B EXPORT

* This procedure performs a function on the 3 numeric values
* passed to it as value parameters. It also returns a value.

D DO_CALC PI 10I 0

D Terml 5I 0 VALUE

D Term2 5I 0 VALUE

D Term3 5I 0 VALUE

D Result S 10I 0

C EVAL Result = Terml ** 2 * 17
C + Term2 * 7
C + Term3

C RETURN Result * 45 + 23

P E

Figure 65. Procedure Interface Definition for DO_CALC Procedure

gy g g g g i g g
*x CEETSTA (Test for omitted argument) -- ILE CEE API

* 1. Presence flag Output Binary(4)

* 2. Argument number Input Binary(4)
e e e e e R —
D CEETSTA PR EXTPROC('CEETSTA')

D Present 10I 0

D ArgNum 10I 6 CONST

D Feedback 12A OPTIONS (*OMIT)

D HaveParm S 10I 0

C CALLP CEETSTA(HaveParm : 3 : *OMIT)

C IF HaveParm = 1

* do something with third parameter

C ENDIF

Figure 66. Prototype for ILE CEE APl CEETSTA with CONST Parameter

The second parameter passed to CEETSTA can be any numeric field, a literal, a
built-in function, or expression.

Using Operational Descriptors

Sometimes it is necessary to pass a parameter to a procedure even though the data
type is not precisely known to the called procedure, (for example, different types
of strings). In these instances you can use operational descriptors to provide
descriptive information to the called procedure regarding the form of the
parameter. The additional information allows the procedure to properly interpret
the string. You should only use operational descriptors when they are expected by
the called procedure.

Many ILE bindable APIs expect operational descriptors. If any parameter is
defined as by descriptor’, then you should pass operational descriptors to the API.
An example of this is the ILE CEE API CEEDATM (Convert Seconds to Character
Timestamp). The second and third parameters require an operational descriptor.

Note: Currently, the ILE RPG compiler only supports operational descriptors for

character and graphic types. Operational descriptors are not available for
arrays or tables, or for data of type numeric, date, timestamp, basing pointer

Chapter 10. Calling Programs and Procedures 139

Passing Prototyped Parameters

140

or procedure pointer. In addition, operational descriptors are not available
for data structures for non-protototyped calls made using CALLB. However,
for prototyped calls, data structures are considered to be character data, and
operational descriptors are available.

Operational descriptors have no effect on the parameters being passed or in the
way that they are passed. When a procedure is passed operational descriptors
which it does not expect, the operational descriptors are simply ignored.

You can request operational descriptors for both prototyped and non-prototyped
parameters. For prototyped parameters, you specify the keyword OPDESC on the
prototype definition. For non-prototyped parameters, you specify (D) as the
operation code extender of the CALLB operation. In either case, operational
descriptors are then built by the calling procedure and passed as hidden
parameters to the called procedure. Operational descriptors will not be built for
omitted parameters.

You can retrieve information from an operational descriptor using the ILE bindable
APIs Retrieve Operational Descriptor Information (CEEDOD) and Get Descriptive
Information About a String Argument (CEESGI).

Note that operational descriptors are only allowed for bound calls. Furthermore,

for non-prototyped calls, an error message will be issued by the compiler if the "D’
operation code extender is specified on a CALL operation.

shows an example of the keyword OPDESC.

Len returns a 10-digit integer value. The parameter
is a character string passed by read-only reference.
Operational descriptors are required so that Len knows
the Tength of the parameter.

OPTIONS(*VARSIZE) is required so that the parameter can

be less than 32767 bytes.

D Len PR 10I 0 OPDESC
D 32767A OPTIONS(*VARSIZE) CONST

Figure 67. Requesting Operational Descriptors for a Prototyped Procedure

For an example of how to use operational descriptors see [“Sample Service]
[Program” on page 93| The example consists of a service program which converts
character strings which are passed to it to their hexadecimal equivalent. The
service program uses operational descriptors to determine the length of the
character string and the length to be converted.

Omitting Parameters

When calling a program or procedure, you may sometimes want to leave out a
parameter. It may be that it is not relevant to the called procedure. For example,
this situation might arise when you are calling the ILE bindable APIs. Another
reason might be that you are calling an older procedure that does not handle this
particular parameter. If you need to omit a parameter on a call, you have two
choices:

* Specify OPTIONS(*OMIT) and pass *OMIT
* Specify OPTIONS(*NOPASS) and do not pass the parameter.

ILE RPG Programmer’s Guide

Passing Prototyped Parameters

The primary difference between the two methods has to do with how you check to
see if a parameter has been omitted. In either case, an omitted parameter cannot be
referenced by the called procedure; if it is, unpredictable results will occur. So if
the called procedure is designed to handle different numbers of parameters, you
will have to check for the number of parameters passed. If *OMIT is passed, it will
‘count” as a parameter.

Passing *OMIT

You can pass *OMIT for a prototyped parameter if the called procedure is aware
that *OMIT might be passed. In other words, you can pass *OMIT if the keyword
OPTIONS(*OMIT) is specified on the corresponding parameter definition in the
prototype. When *OMIT is specified, the compiler will generate the necessary code
to indicate to the called procedure that the parameter has been omitted.

Note: *OMIT can only be specified for parameters passed by reference.

To determine if *OMIT has been passed to an ILE RPG procedure, use the %ADDR
built-in function to check the address of the parameter in question. If the address is
*NULL, then *OMIT has been passed. You can also use the CEETSTA (Check for
Omitted Argument) bindable API. (See [Figure 66 on page 139| for a brief example.)

The following is a simple example of how *OMIT can be used. In this example, a
procedure calls the ILE bindable API CEEDOD in order to decompose an
operational descriptor. The CEEDOD API expects to receive seven parameters; yet
only six have been defined in the calling procedure. The last parameter of
CEEDOD (and of most bindable APIs) is the feedback code which can be used to
determine how the API ended. However, the calling procedure has been designed
to receive any error messages via an exception rather than this feedback code.
Consequently, on the call to CEEDOD, the procedure must indicate that the
parameter for the feedback code has been omitted.

See|“Sample Service Program” on page 93| for an example of using *OMIT.

Leaving Out Parameters

The other way to omit a parameter is to simply leave it out on the call. This must
be expected by the called procedure, which means that it must be indicated on the
prototype. To indicate that a prototyped parameter does not have to be passed on
a call, specify the keyword OPTIONS(*NOPASS) on the corresponding parameter
definition. Note that all parameters following the first *NOPASS one must also be
specified with OPTIONS(*NOPASS).

You can specify both *NOPASS and *OMIT for the same parameter, in either order,
that is, OPTIONS(*NOPASS:*OMIT) or OPTIONS(*OMIT:*NOPASS).

As an example of OPTIONS(*NOPASS), consider the system API QCMDEXC
(Execute Command) which has an optional third parameter. To allow for this

parameter, the prototype for QCMDEXC could be written as shown in

Chapter 10. Calling Programs and Procedures 141

Passing Prototyped Parameters

142

K o o = = = = -
* This prototype for QCMDEXC defines three parameters:

* 1- a character field that may be shorter in length

* than expected

* 2- any numeric field

* 3- an optional character field
T g S
D gcmdexc PR EXTPGM('QCMDEXC')

D cmd 3000A OPTIONS(*VARSIZE) CONST
D cmdlen 15P 5 CONST

D 3A CONST OPTIONS(*NOPASS)

Figure 68. Prototype for System APl QCMDEXC with Optional Parameter

Checking for the Number of Passed Parameters

At times it may be necessary to check for the number of parameters that are
passed on a call. Depending on how the procedure has been written, this number
may allow you to avoid references to parameters that are not passed. For example,
suppose that you want to write a procedure which will sometimes be passed three
parameters and sometimes four parameters. This might arise when a new
parameter is required. You can write the called procedure to process either number
depending on the value that is returned by the built-in function %PARMS. New
calls may pass the parameter. Old calls can remain unchanged.

%PARMS does not take any parameters. The value returned by %PARMS also
includes any parameters for which *OMIT has been passed. For the main
procedure, %PARMS returns the same value as contained in the *PARMS field in a
PSDS, although to use the *PARMS field, you must also code the PSDS.

For both *PARMS and %PARMS, if the number of passed parameters is not known,
the value -1 is returned. (In order to determine the number of parameters passed, a
minimal operational descriptor must be passed. ILE RPG always passes one on a
call; however other ILE languages may not.) If the main procedure is not active,
*PARMS is unreliable. It is not recommended to reference *PARMS from a
subprocedure.

Using %PARMS

In this example, a procedure FMTADDR has been changed several times to allow
for a change in the address information for the employees of a company.
FMTADDR is called by three different procedures. The procedures differ only in
the number of parameters they use to process the employee information. That is,
new requirements for the FMTADDR have arisen, and to support them, new
parameters have been added. However, old procedures calling FMTADDR are still
supported and do not have to be changed or recompiled.

The changes to the employee address can be summarized as follows:

¢ Initially only the street name and number were required because all employees
lived in the same city. Thus, the city and province could be supplied by default.

* At a later point, the company expanded, and so the city information became
variable for some company-wide applications.

* Further expansion resulted in variable province information.

The procedure processes the information based on the number of parameters
passed. The number may vary from 3 to 5. The number tells the program whether

ILE RPG Programmer’s Guide

Passing Prototyped Parameters

to provide default city or province values or both. [Figure 69 on page 144 shows the
source for this procedure. [Figure 70 on page 145 shows the source for /COPY
member containing the prototype.

The main logic of FMTADDR is as follows:

1. Check to see how many parameters were passed by using %PARMS. This
built-in function returns the number of passed parameters.

¢ If the number is greater than 4, then the default province is replaced with the
actual province supplied by the fifth parameter P_Province.

* If the number is greater than 3, then the default city is replaced with the
actual city supplied by the fourth parameter P_City.

2. Correct the street number for printing using the subroutine GetStreet#.

w

Concatenate the complete address.
4. Return.

Chapter 10. Calling Programs and Procedures 143

Passing Prototyped Parameters

A S-S CSCSCS S-S S-S S-S S S S CSCS S S S CS S S-S SSSSSSSSSSSSSSSSS=S=S=S=S=====
* FMTADDR - format an address

*

* Interface parameters

% 1. Address character(70)

% 2. Street number packed(5,0)

% 3. Street name character(20)

* 4, City character(15) (some callers do not pass)

* 5. Province character(15) (some callers do not pass)

*

* Pull in the prototype from the /COPY member
/COPY FMTADDRP

DFmtAddr PI

D Address 70

D Street# 5 0 CONST

D Street 20 CONST

D P_City 15 OPTIONS (*NOPASS) CONST

D P_Province 15 OPTIONS (*NOPASS) CONST
g g S S S S
* Default values for parameters that might not be passed.
S S
D City S 15 INZ('Toronto')

D Province S 15 INZ('Ontario')

K o = -

* Check whether the province parameter was passed. If it was,
* replace the default with the parameter value.

P - - - - - - - - - - - - - - - - S S S S S S S S e e e -
c IF %PARMS > 4
C EVAL Province = P_Province
c ENDIF

K o o o

* Check whether the city parameter was passed. If it was,
* replace the default with the parameter value.

K o - ——————————————————————————
C IF %PARMS > 3
C EVAL City = P_City
C ENDIF
g g g g g g g S g
* Set 'CStreet#' to be character form of 'Street#'
K o o -
C EXSR GetStreet#
K o o - - - -
* Format the address as Number Street, City, Province
K o o o - - - - = . S S e S e e S e e S e G e e e e e e e .
C EVAL ADDRESS = %TRIMR(CSTREET#) + ' ' +
C %TRIMR(CITY) + ' ,' +
C %TRIMR(PROVINCE)
C RETURN

Figure 69. Source for procedure FMTADDR (Part 1 of 2)

144 ILE RPG Programmer’s Guide

Passing Prototyped Parameters

k=== =S=S=S=S=S=S==S=S=S=SS=SS=S=SSS=S=SS=S=S=SS=S=S=S=S========%
* SUBROUTINE: GetStreet#
* Get the character form of the street number, left-adjusted *
* and padded on the right with blanks. *
K-S ——=—=-=—=-=-=—=-=-=—=--—=--=-=-----=---=---=---=--—=---=--—=-=-—=-=-=-=-=-—==-=—=—=—=—==—==========¢%
C GetStreet# BEGSR
C MOVEL Street# CStreet# 10
K o o *
* Find the first non-zero. *
K o o *
C '0! CHECK CStreet# Non0@ 50
K o *
* If there was a non-zero, substring the number starting at
* non-zero. *
K o *
C IF Non® > 0
C SUBST(P) CStreet#:Non® CStreet#
K o *
* If there was no non-zero, just use '0O' as the street number. *
K o o *
C ELSE
C MOVEL(P) 'O’ CStreet#
C ENDIF
C ENDSR

Figure 69. Source for procedure FMTADDR (Part 2 of 2)

e Y 4 e T
* Prototype for FMTADDR - format an address

=== === === =SS =SS =SS S S =SS =SS =SS =SS SSS=SSS=S=S=S=========%
DFmtAddr PR

D addr 70

D strno 5 0 CONST

D st 20 CONST

D cty 15 OPTIONS (*NOPASS) CONST

D prov 15 OPTIONS (*NOPASS) CONST

Figure 70. Source for /COPY member with Prototype for Procedure FMTADDR

[Figure 71 on page 146| shows the source for the procedure PRTADDR. This
procedure serves to illustrate the use of FMTADDR. For convenience, the three
procedures which would each call FMTADDR are combined into this single
procedure. Also, for the purposes of the example, the data is program-described.

Since PRTADDR is 'three procedures-in-one', it must define three different address
data structures. Similarly, there are three parts in the calculation specifications, each
one corresponding to programs at each stage. After printing the address, the
procedure PRTADDR ends.

Chapter 10. Calling Programs and Procedures 145

Passing Prototyped Parameters

146

k=== ==—=—======S===S=S==S==S=S=S=S=S============%
* PRTADDR - Print an address

* Calls FmtAddr to format the address

kS =CSCSCS=CSCSCS =S =SS S S S CS S SCSSSSSSS =SS =SS SS =SS SSSSSS=S===========%
FQSYSPRT 0 F 80 PRINTER

K o = = = *
* Prototype for FmtAddr

K o o = = *
DFmtAddr PR

D addr 70

D strno 5 0

D st 20

D cty 15 OPTIONS (*NOPASS)

D prov 15 OPTIONS (*NOPASS)

DAddress S 70

e e e e e e e e e e e e e e e e e e e, e e e e e e e —————————— *

* Stagel: Original address data structure.
* Only street and number are variable information.

K o e *
D Stagel DS
D Street#l 5P 0 DIM(2) CTDATA
D StreetNaml 20 DIM(2) ALT(Street#1)

K e e o e - *

* Stage2: Revised address data structure as city information
* now variable.

K *
D Stage2 DS
D Street#2 5P 0 DIM(2) CTDATA
D Addr2 35 DIM(2) ALT(Street#2)
D StreetNam2 20 OVERLAY (Addr2:1)
D City2 15 OVERLAY(Addr2:21)
K o *

* Stage3: Revised address data structure as provincial
* information now variable.

B L L T T T L T L L L L T T *
D Stage3 DS
D Street#3 5P 0 DIM(2) CTDATA
D Addr3 50 DIM(2) ALT(Street#3)
D StreetNam3 20 OVERLAY (Addr3:1)
D City3 15 OVERLAY (Addr3:21)
D Province3 15 OVERLAY (Addr3:36)
R L L T T T T T T L L L L T T T *
* 'Program 1'- Use of FMTADDR before city parameter was added.
e e, e e —— e e — e —— e e — e, ————————— *
C DO 2 X 50
C CALLP FMTADDR (Address:Street#1(X):StreetNaml(X))
C EXCEPT
C ENDDO

Figure 71. Source for procedure PRTADDR (Part 1 of 2)

ILE RPG Programmer’s Guide

Passing Prototyped Parameters

K o o *
* 'Program 2'- Use of FMTADDR before province parameter was added.*
K o o o *
C DO 2 X 50
c CALLP FMTADDR (Address:Street#2(X):
C StreetNam2 (X) :City2 (X))
C EXCEPT
C ENDDO
K o e o e *
* 'Program 3' - Use of FMTADDR after province parameter was added.=*
K o o o *
C DO 2 X 50
C CALLP FMTADDR (Address:Street#3(X):
C StreetNam3(X) :City3(X) :Province3 (X))
C EXCEPT
C ENDDO
C SETON LR
K o *
* Print the address. *
K o o *
0QSYSPRT E
0 Address
%
00123Bumble Bee Drive
01243Hummingbird Lane
*%
00003Cows1ip Street Toronto
01150Eglinton Avenue North York
*%
00012Jasper Avenue Edmonton Alberta
00027Avenue Road Sudbury Ontario

Figure 71. Source for procedure PRTADDR (Part 2 of 2)

To create these programs, follow these steps:

1. To create FMTADDR, using the source in [Figure 69 on page 144} type:
CRTRPGMOD MODULE (MYLIB/FMTADDR)

2. To create PRTADDR, using the source in [Figure 71 on page 146} type:
CRTRPGMOD MODULE (MYLIB/PRTADDR)

3. To create the program, PRTADDR, type:
CRTPGM PGM(MYLIB/PRTADDR) MODULE (PRTADDR FMTADDR)

4. Call PRTADDR. The output is shown below:

123 Bumble Bee Drive, Toronto, Ontario
1243 Hummingbird Lane, Toronto, Ontario

3 Cowslip Street, Toronto, Ontario

1150 Eglinton Avenue, North York, Ontario
12 Jasper Avenue, Edmonton, Alberta

27 Avenue Road, Sudbury, Ontario

Passing Less Data Than Required

When a parameter is prototyped, the compiler will check to see that the length is
appropriate for the parameter. If the callee has indicated (through documentation
or through that prototype) that a parameter can be shorter than the maximum
length, you can safely pass shorter parameters.

igure 72 on page 148 shows the prototype for QCMDEXC, where the first
1% yp

parameter is defined with OPTIONS(*VARSIZE) meaning that you can pass

parameters of different lengths for the first parameter. Note that OPTIONS

Chapter 10. Calling Programs and Procedures 147

Passing Prototyped Parameters

*VARSIZE can only be specified for a character field, a UCS-2 field, a graphic field,
or an array.

* This prototype for QCMDEXC defines three parameters. The
* first parameter can be passed character fields of
* different lengths, since it is defined with *VARSIZE.

D gcmdexc PR EXTPGM('QCMDEXC')

D cmd 3000A OPTIONS(*VARSIZE) CONST
D cmdlen 15P 5 CONST

D 3A CONST OPTIONS (*NOPASS)

Figure 72. Prototype for System APl QCMDEXC with *VARSIZE Parameter

Order of Evaluation

There is no guaranteed order for evaluation of parameters on a prototyped call.
This fact may be important when using parameters that cause side effects, as the
results may not be what you would expect.

A side effect occurs if the processing of the parameter changes:
* The value of a reference parameter
* The value of a global variable

* An external object, such as a file or data area

If a side effect occurs, then, if the parameter is used elsewhere in the parameter
list, then the value used for the parameter in one part of the list may not be the
same as the value used in another part. For example, consider this call statement.

CALLP procA (fld : procB(f1d) : f1d)

Assume that procA has all value parameters, and procB has a reference parameter.
Assume also that fId starts off with the value 3, and that procB modifies fId to be 5,
and returns 10. Depending on the order in which the parameters are evaluated,
procA will receive either 3, 10, and 5 or possibly, 3, 10, and 3. Or possibly, 5, 10,
and 3; or even 5, 10, and 5.

In short, it is important to be aware of the possibility of side effects occurring. In
particular, if you are providing an application for third-party use, where the end
user may not know the details of some of the procedures, it is important ensure

that the values of the passed parameters are the expected ones.

Interlanguage Calls

When passing or receiving data from a program or procedure written in another
language, it is important to know whether the other language supports the same
parameter passing methods and the same data types as ILE RPG. shows
the different parameter passing methods allowed by ILE RPG and, where
applicable, how they would be coded in the other the ILE languages. The table
also includes the OPM RPG/400® compiler for comparison.

Table 28. RPG Parameter Passing Methods

Passing By Reference

ILE RPG - prototype D proc PR
D parm 1A
C CALLP proc(fld)

148 ILE RPG Programmer’s Guide

Passing Prototyped Parameters

Table 28. RPG Parameter Passing Methods (continued)

ILE C void proc(char *parm);
proc(&f1d);
ILE COBOL CALL PROCEDURE "PROC" USING BY REFERENCE PARM
RPG - non-prototyped C CALL ~ 'PROC'
C PARM FLD
ILE CL CALL PROC (&FLD)
Passing By Value
ILE RPG - prototype D proc PR
D parm 1A VALUE
C CALLP proc('a')
ILE C void proc(char parm);
proc('a');
ILE COBOL CALL PROCEDURE "PROC" USING BY VALUE PARM
RPG - non-prototyped N/A
ILE CL N/A
Passing By Read-Only Reference
ILE RPG - prototype D proc PR
D parm 1A CONST
C CALLP proc(fld)
ILE C void proc(const char *parm);
proc(&fld);
ILE COBOL N/A'
RPG - non-prototyped N/A
ILE CL N/A
Notes:

1. Do not confuse passing by read-only reference with COBOL’s passing BY CONTENT.
In RPG terms, to pass Fld1 by content, you would code:
C PARM F1d1 TEMP

F1d1 is protected from being changed, but TEMP is not. There is no expectation that the
parameter will not be changed.

For information on the data types supported by different HLLs, consult the
appropriate language manual.

Interlanguage Calling Considerations

1. To ensure that your RPG procedure will communicate correctly with an ILE CL
procedure, code EXTPROC(*CL: 'procedurename') on the prototype for the ILE
CL procedure or on the prototype for the RPG procedure that is called by the
ILE CL procedure.

2. To ensure that your RPG procedure will communicate correctly with an ILE C
procedure, code EXTPROC (*CWIDEN: 'procedurename') or
EXTPROC (*CNOWIDEN: 'procedurename') on the prototype for the ILE C procedure
or on the prototype for the RPG procedure that is called by the ILE C
procedure. Use *CNOWIDEN if the ILE C source contains #pragma
argument (procedure-name,nowiden) for the procedure; otherwise, use
*CWIDEN.

Chapter 10. Calling Programs and Procedures 149

Passing Prototyped Parameters

3. If you want your RPG procecure to be used successfully by every ILE
language, do not specify any special value on the EXTPROC keyword. Instead,
avoid the following types for parameters that are passed by value or return
values:

* Character of length 1 (1A or 1N)

* UCS-2 of length 1 (1C)

* Graphic of length 1 (1G)

¢ 4-byte float (4F)

* 1-byte or 2-byte integer or unsigned (31, 3U, 51, or 5U)

4. Using ILE C and other languages, you can declare pointers to teraspace
memory. ILE C requires a special compile-time option to address this type of
storage, but ILE RPG can always address this storage if compiled with a target
release of V4AR4MO or later. For more information on pointers in teraspace, see
the ILE Concepts, SC41-5606-07 publication.

Using the Fixed-Form Call Operations

You use the CALL (Call a Program) operation to make a program call and the
CALLB (Call a Bound Procedure) operation to make a procedure call to programs
or procedures that are not prototyped. The two call operations are very similar in
their syntax and their use. To call a program or procedure, follow these general
steps:

1. Identify the object to be called in the Factor 2 entry.

2. Optionally code an error indicator (positions 73 and 74) or an LR indicator
(positions 75 and 76) or both.

When a called object ends in error the error indicator, if specified, is set on.
Similarly, if the called object returns with LR on, the LR indicator, if specified,
is set on.

3. To pass parameters to the called object, either specify a PLIST in the Result
field of the call operation or follow the call operation immediately by PARM
operations.

Either operation transfers control from the calling to the called object. After the
called object is run, control returns to the first operation that can be processed after
the call operation in the calling program or procedure.

The following considerations apply to either call operation:

¢ The Factor 2 entry can be a variable, literal, or named constant. Note that the
entry is case-sensitive.

For CALL only: The Factor 2 entry can be library name/program name, for
example, MYLIB/PGML. If no library name is specified, then the library list is
used to find the program. The name of the called program can be provided at
run time by specifying a character variable in the Factor 2 entry.

For CALLB only: To make a procedure pointer call you specify the name of the
procedure pointer which contains the address of the procedure to be called.

* A procedure can contain multiple calls to the same object with the same or
different PLISTs specified.

* When an ILE RPG procedure (including a program entry procedure) is first
called, the fields are initialized and the procedure is given control. On
subsequent calls to the same procedure, if it did not end on the previous call,
then all fields, indicators, and files in the called procedure are the same as they
were when it returned on the preceding call.

150 ILE RPG Programmer’s Guide

Using the Fixed-Form Call Operations

* The system records the names of all programs called within an RPG procedure.
When an RPG procedure is bound into a program (*PGM) you can query these
names using DSPPGMREF, although you cannot tell which procedure or module
is doing the call.

If you call a program using a variable, you will see an entry with the name
*VARIABLE (and no library name).

For a module, you can query the names of procedures called using DSPMOD
DETAIL(*IMPORT). Some procedures on this list will be system procedures; the
names of these will usually begin with underscores or contain blanks and you
do not have to be concerned with these.

* For CALLB only: The compiler creates an operational descriptor indicating the
number of parameters passed on the CALLB operation and places this value in
the *PARMS field of the called procedure’s program status data structure. This
number includes any parameters which are designated as omitted (*OMIT on
the PARM operation).

If the (D) operation extender is used with the CALLB operation the compiler
also creates an operational descriptor for each character and graphic field and
subfield.

For more information on operational descriptors, see [“Using Operational|
[Descriptors” on page 139,

* There are further restrictions that apply when using the CALL or CALLB
operation codes. For a detailed description of these restrictions, see the
WebSphere Development Studio: ILE RPG Reference.

Examples of CALL and CALLB

For examples of using the CALL operation, see:

* |“Sample Source for Debug Examples” on page 256/ for example of calling an
RPG program.

For examples of using the CALLB operation, see:

+ [Figure 45 on page 99} for an example of calling a procedure in a service
program.

+ [Figure 57 on page 125, for an example of calling bindable APIs.

* ["CUSMAIN: RPG Source” on page 390 for an example of a main inquiry
program calling various RPG procedures.

Passing Parameters Using PARM and PLIST

When you pass parameters using fixed-form call, you must pass parameters using
the PARM and PLIST operations. All parameters are passed by reference. You can
specify that an operational descriptor is to be passed and can also indicate that a
parameter is omitted.

Using the PARM operation

The PARM operation is used to identify the parameters which are passed from or
received by a procedure. Each parameter is defined in a separate PARM operation.
You specify the name of the parameter in the Result field; the name need not be
the same as in the calling/called procedure.

The Factor 1 and factor 2 entries are optional and indicate variables or literals
whose value is transferred to or received from the Result Field entry depending on
whether these entries are in the calling program/procedure or the called
program/procedure. [Table 29 on page 152|shows how factor 1 and factor 2 are
used.

Chapter 10. Calling Programs and Procedures 151

Using the Fixed-Form Call Operations

152

Table 29. Meaning of Factor 1 and Factor 2 Entries in PARM Operation

Status Factor 1 Factor 2

In calling Value transferred from Result Field | Value placed in Result Field entry
procedure entry upon return. when call occurs.

In called Value transferred from Result Field | Value placed in Result Field entry
procedure entry when call occurs. upon return.

Note: The moves to either the factor 1 entry or the result-field entry occur only

when the called procedure returns normally to its caller. If an error occurs
while attempting to move data to either entry, then the move is not
completed.

If insufficient parameters are specified when calling a procedure, an error occurs
when an unresolved parameter is used by the called procedure. To avoid the error,
you can either:

Check %PARMS to determine the number of parameters passed. For an example
using %PARMS, see [“Checking for the Number of Passed Parameters” on page|

Specify *OMIT in the result field of the PARM operations of the unpassed
parameters. The called procedure can then check to see if the parameter has
been omitted by checking to see if the parameter has value of *NULL, using
%ADDR(parameter) = *NULL. For more information, refer to
[Parameters” on page 140

Keep in mind the following when specifying a PARM operation:

One or more PARM operations must immediately follow a PLIST operation.

One or more PARM operations can immediately follow a CALL or CALLB

operation.

When a multiple occurrence data structure is specified in the Result field of a

PARM operation, all occurrences of the data structure are passed as a single

field.

Factor 1 and the Result field of a PARM operation cannot contain a literal, a

look-ahead field, a named constant, or a user-date reserved word.

The following rules apply to *OMIT for non-prototyped parameters:

— *OMIT is only allowed in PARM operations that immediately follows a
CALLB operation or in a PLIST used with a CALLB.

— Factor 1 and Factor 2 of a PARM operation must be blank, if *OMIT is
specified.

— *OMIT is not allowed in a PARM operation that is part of a *ENTRY PLIST.

There are other restrictions that apply when using the PARM operation code. For

a detailed description of these restrictions, see the WebSphere Development Studio:

ILE RPG Reference.

For examples of the PARM operation see:

[Figure 47 on page 104|

[Figure 42 on page 95|

[Figure 137 on page 285|

Using the PLIST Operation
The PLIST operation:

ILE RPG Programmer’s Guide

Using the Fixed-Form Call Operations

* Defines a name by which a list of parameters can be referenced. The list of
parameters is specified by PARM operations immediately following the PLIST
operation.

* Defines the entry parameter list *ENTRY PLIST).

Factor 1 of the PLIST operation must contain the PLIST name. This name can be
specified in the Result field of one or more call operations. If the parameter list is
the entry parameter list of a called procedure, then Factor 1 must contain *ENTRY.

Multiple PLISTs can appear in a procedure. However, only one *ENTRY PLIST can
be specified, and only in the main procedure.

For examples of the PLIST operation see [Figure 47 on page 104| and [Figure 137 on|

Returning from a Called Program or Procedure

When a program or procedure returns, its call stack entry is removed from the call
stack. (If it is a program, the program entry procedure is removed as well.) A
procedure ends abnormally when something outside the procedure ends its
invocation. For example, this would occur if an ILE RPG procedure X calls another
procedure (such as a CL procedure) that issues an escape message directly to the
procedure calling X. This would also occur if the procedure gets an exception that
is handled by an exception handler (a *PSSR or error indicator) of a procedure
further up the call stack.

Because of the cycle code associated with main procedures, their return is also
associated with certain termination routines. This section discusses the different
ways that main procedures and subprocedures can return, and the actions that
occur with each.

Returning from a Main Procedure
A return from a main procedure causes the following to occur:
e If LR is on, files are closed and other resources are freed.
* The procedure’s call stack entry is removed from the call stack.

* If the procedure was called by the program entry procedure, then that program
entry procedure is also removed from the call stack.

A main procedure returns control to the calling procedure in one of the following
ways:

¢ With a normal end

* With an abnormal end

* Without an end.

A description of the ways to return from a called main procedure follows.

For a detailed description of where the LR, H1 through H9, and RT indicators are
tested in the RPG program cycle, see the section on the RPG program cycle in the
WebSphere Development Studio: ILE RPG Reference.

Normal End

A main procedure ends normally and control returns to the calling procedure
when the LR indicator is on and the H1 through H9 indicators are not on. The LR
indicator can be set on:

Chapter 10. Calling Programs and Procedures 153

Returning from a Called Program or Procedure

154

* implicitly, as when the last record is processed from a primary or secondary file
during the RPG program cycle

* explicitly, as when you set LR on.

A main procedure also ends normally if:
* The RETURN operation (with a blank factor 2) is processed, the H1 through H9
indicators are not on, and the LR indicator is on.

e The RT indicator is on, the H1 through H9 indicators are not on, and the LR
indicator is on.

When a main procedure ends normally, the following occurs:

* The Factor-2-to-Result-field move of a *ENTRY PARM operation is performed.

» All arrays and tables with a "To file name’ specified on the Definition
specifications, and all locked data area data structures are written out.

* Any data areas locked by the procedure are unlocked.

* All files that are open are closed.

* A return code is set to indicate to the caller that the procedure has ended
normally, and control then returns to the caller.

On the next call to the main procedure, with the exception of exported variables, a
fresh copy is available for processing. (Exported variables are initialized only once,
when the program is first activated in an activation group. They retain their last
assigned value on a new call, even if LR was on for the previous call. If you want
to re-initialize them, you have to reset them manually.)

— TIP
If you are accustomed to ending with LR on to cause storage to be released,
and you are running in a named (persistent) activation group, you may want
to consider returning without an end. The reasons are:

* The storage is not freed until the activation group ends so there is no
storage advantage to ending with LR on.

¢ Call performance is improved if the program is not re-initialized for each
call.

You would only want to do this if you did not need your program
re-initialized each time.

Abnormal End

A main procedure ends abnormally and control returns to the calling procedure
when one of the following occurs:

* The cancel option is taken when an ILE RPG inquiry message is issued.

* An ENDSR *CANCL operation in a *PSSR or INFSR error subroutine is
processed. (For further information on the *CANCL return point for the *PSSR
and INFSR error subroutines, see |[“Specifying a Return Point in the ENDSR|
[Operation” on page 283).

* An HI1 through H9 indicator is on when a RETURN operation (with a blank
factor 2) is processed.

e An H1 through H9 indicator is on when last record (LR) processing occurs in the
RPG cycle.

When a main procedure ends abnormally, the following occurs:

ILE RPG Programmer’s Guide

Returning from a Called Program or Procedure

 All files that are open are closed.
* Any data areas locked by the procedure are unlocked.

e If the main procedure ended because of a cancel reply to an inquiry message,
then it was a function check that caused the abnormal end. In this case, the
function check is percolated to the caller. If it ended because of an error
subroutine ending with *CANCL’, then escape message RNX9001 is issued
directly to the caller. Otherwise the caller will see whatever exception caused the
abnormal end.

On the next call to the procedure, a fresh copy is available for processing. (For
more information on exception handlers, see [‘Using RPG-Specific Handlers” on|

page 272)

Returning without Ending

A main procedure can return control to the calling procedure without ending when

none of the LR or H1 through H9 indicators are on and one of the following

occurs:

* The RETURN operation (with a blank factor 2) is processed.

¢ The RT indicator is on and control reaches the *GETIN part of the RPG cycle, in
which case control returns immediately to the calling procedure. (For further
information on the RT indicator, see the WebSphere Development Studio: ILE RPG
Reference)

If you call a main procedure and it returns without ending, when you call the
procedure again, all fields, indicators, and files in the procedure will hold the same
values they did when you left the procedure. However, there are three exceptions:

* This is not true if the program is running in a *NEW activation group, since the
activation group is deleted when the program returns. In that case, the next time
you call your program will be the same as if you had ended with LR on.

* If you are sharing files, the state of the file may be different from the state it
held when you left the procedure.

* If another procedure in the same module was called in between, then the results
are unpredictable.

You can use either the RETURN operation (with a blank factor 2) or the RT
indicator in conjunction with the LR indicator and the H1 through H9 indicators.
Be aware of the testing sequence in the RPG program cycle for the RETURN
operation, the RT indicator, and the H1 through H9 indicators. A return will cause
an end if the LR indicator or any of the halt indicators is on and either of the
following conditions is true:

* A RETURN operation is done
e The RT would cause a return without an end

Returning from a Subprocedure

A subprocedure returns normally when a RETURN operation is performed
successfully or when the last statement in the procedure (not a RETURN
operation) is processed. However, other than the removal of the subprocedure from
the call stack no termination actions are performed until the main procedure of the
program ends. In other words, all the actions listed for the normal end of a main
procedure take place only for the main procedure.

Chapter 10. Calling Programs and Procedures 155

Returning from a Called Program or Procedure

A subprocedure ends abnormally and control returns to the calling procedure
when an unhandled exception occurs. Again, no further actions occur until the
main procedure ends.

If the main procedure is never called (and therefore cannot end) then any files,
data areas, etcetera, will not be closed. If you think this might arise for a
subprocedure, you should code a termination procedure that gets called when the
subprocedure ends. This is especially true if the subprocedure is in a module with
NOMAIN specified on the control specification.

Returning using ILE Bindable APIs

You can end a procedure normally by using the ILE bindable API CEETREC.
However, the API will end all call stack entries that are in the same activation
group up to the control boundary. When a procedure is ended using CEETREC it
follows normal termination processing as described above for main procedures and
subprocedures. On the next call to the procedure, a fresh copy is available for
processing.

Similarly, you can end a procedure abnormally using the ILE bindable API
CEE4ABN. The procedure will then follow abnormal termination as described
above.

Note: You cannot use either of these APIs in a program created with
DFTACTGRP(*YES), since procedure calls are not allowed in these
procedures.

Note that if the main procedure is not active, or if there is no main, then nothing
will get closed or freed. In this case, you should enable an ILE cancel handler,
using CEERTX. If the cancel handler is in the same module, it can close the files,
unlock the data areas, and perform the other termination actions.

For more information on CEETREC and CEE4ABN, refer to the CL and APIs
section of the Programming category in the iSeries Information Center at this Web
site - [http:/ /www.ibm.com/eserver/iseries /infocenter|

Using Bindable APIs

156

Bindable application programming interfaces (APIs) are available to all ILE
languages. In some cases they provide additional function beyond that provided
by a specific ILE language. They are also useful for mixed-language applications
because they are HLL independent.

The bindable APIs provide a wide range of functions including:
* Activation group and control flow management

* Storage management

* Condition management

* Message services

* Source Debugger

* Math functions

* Call management

* Operational descriptor access

ILE RPG Programmer’s Guide

http://www.ibm.com/eserver/iseries/infocenter

Using Bindable APIs

You access ILE bindable APIs using the same call mechanisms used by ILE RPG to
call procedures, that is, the CALLP operation or the CALLB operation. If the API
returns a value and you want to use it, call the API in an expression. For the
information required to define a prototype for an API, see the description of the
API in the CL and APIs section of the Programming category in the iSeries
Information Center at this Web site -

[http: / /www.ibm.com /eserver /iseries /infocenter| [Figure 73| shows a sample “call’
to a bindable APL

D CEExxxx PR EXTPROC('CEExxxx")

D parml

D

c CALLP CEExxxx(parml : parm2 : ... :
parmn : feedback)

or

C CALLB 'CEExxxx'

C PARM parml

C PARM parm2

C PARM parmn

C PARM feedback

Figure 73. Sample Call Syntax for ILE Bindable APIs

where

¢ CEExxxx is the name of the bindable API

* parml, parm?2, ... parmn are omissible or required parameters passed to or
returned from the called APL

* feedback is an omissible feedback code that indicates the result of the bindable
API.

Note: Bindable APIs cannot be used if DFTACTGRP(*YES) is specified on the
CRTBNDRPG command.

For more information on bindable APIs, refer to the CL and APIs section of the
Programming category in the iSeries Information Center at this Web site -
[http:/ /www.ibm.com/eserver/iseries /infocenter]

Examples of Using Bindable APIs

For examples of using bindable APIs, see:

* [‘Sample Service Program” on page 93 for an example of using CEEDOD

* [“Managing Your Own Heap Using ILE Bindable APIs” on page 121 for an
example of using CEEGTST, CEEFRST, and CEECZST.

+ [“Using a Condition Handler” on page 284, for an example of using CEEHDLR
and CEEHDLU.

* ["Using Cancel Handlers” on page 290, for an example of using CEERTX and
CEEUTX.

Chapter 10. Calling Programs and Procedures 157

http://www.ibm.com/eserver/iseries/infocenter
http://www.ibm.com/eserver/iseries/infocenter

Calling a Graphics Routine

Calling a Graphics Routine

ILE RPG supports the use of the CALL or CALLP operation to call i5/0S
Graphics, which includes the Graphical Data Display Manager (GDDM®, a set of
graphics primitives for drawing pictures), and Presentation Graphics Routines (a
set of business charting routines). Factor 2 must contain the literal or named
constant ‘GDDM’ (not a variable). Use the PLIST and PARM operations to pass the
following parameters:

* The name of the graphics routine you want to run.

* The appropriate parameters for the specified graphics routine. These parameters
must be of the data type required by the graphics routine and cannot have a
float format.

The procedure that processes the CALL does not implicitly start or end i5/0S
graphics routines.

For more information on i5/0S Graphics, graphics routines and parameters, see
the GDDM Programming Guide manual and the GDDM Reference.

Note: You can call i5/0S Graphics using the CALL operation. You can also use
CALLP if you define a prototype for the routine and specify the EXTPGM
keyword on the prototype. You cannot use the CALLB operation. You
cannot pass Date, Time, Timestamp, or Graphic fields to GDDM®, nor can
you pass pointers to it.

Calling Special Routines

ILE RPG supports the use of the following special routines using the CALL and
PARM operations or the CALLP operation:

* Message-retrieving routine (SUBR23R3)
* Moving Bracketed Double-byte Data and Deleting Control Characters
(SUBR40R3)

* Moving Bracketed Double-byte Data and Adding Control Characters
(SUBR41R3).

Note: You cannot use the CALLB operation to call these special subroutines. You
can use CALLP if you define a prototype for the subroutines.

While the message retrieval routine is still supported, it is recommended that you
use the QMHRTVM message API, which is more powerful.

Similarly, the routines SUBR40R3 and SUBR41R3 are being continued for
compatibility reasons only. They will not be updated to reflect the level of graphic
support provided by RPG IV via the new graphic data type.

Multithreading Considerations

158

Normally, running an application in multiple threads can improve the performance
of the application. In the case of ILE RPG, this is not true in general. In fact, the
performance of a multithreaded application could be worse than that of a
single-thread version when the thread-safety is achieved by serialization of the
procedures at the module level.

ILE RPG Programmer’s Guide

Multithreading Considerations

Running ILE RPG procedures in a multithreaded environment is only
recommended when required by other aspects of the application (for example,
when writing a Domino exit program or when calling a short-running RPG
procedure from Java). For long-running RPG programs called from Java, we
recommend using a separate process for the RPG program.

The THREAD(*SERIALIZE) control specification keyword can be specified to help
you achieve thread safety for an ILE RPG module. Specifying
THREAD(*SERIALIZE) will protect most of your variables and all your internal
control structures from being accessed improperly by multiple threads. The thread
safe module will be locked when a procedure in the module is entered and
unlocked when no procedure in the module is still running. This serialized access,
ensures that only one thread is active in any one module, within an activation
group, at any one time. However, it is still up to the programmer to handle thread
safety for storage that is shared across modules. This is done by adding logic in
the application to synchronize access to the storage. For example, shared files,
exported and imported storage, and storage accessed by the address of a
parameter may be shared across modules from multiple threads. To synchronize
access to this type of storage, you can do one or both of the following:

* Structure the application such that the shared resources are not accessed
simultaneously from multiple threads.

 If you are going to access resources simultaneously from separate threads,
synchronize access using facilities such as semaphores or mutexes. For more
information, refer to the Multithreaded Applications document under the
Programming topic at the following URL:

http://www.ibm.com/eserver/iseries/infocenter

How to Share Data Across More Than One Module

Serializing access to modules using the THREAD(*SERIALIZE) control specification
keyword ensures sequential access to global data within each module, but it does
not ensure sequential access to shared data across modules. It is up to the
programmer to ensure that only one thread can access shared data at one time.

Two or more modules can access the same data if:
¢ EXPORT/IMPORT keywords are used on the definition specifications
 Files are shared across modules

* Data is based on a pointer where the pointer is available to more than one
module

For example, procedure A in module A passes a pointer to procedure B in module
B, and procedure B saves the pointer in a static variable. Now both modules have
access to the based storage at the same time as the thread running in module A is
accessing the storage. Once procedure B returns, another thread could call a
procedure in module B and access the based storage. Serialization of access to
static storage within modules A and B would not prevent simultaneous access of
the same storage in each module. The following is an example of two modules that
can access the same data.

Chapter 10. Calling Programs and Procedures 159

Multithreading Considerations

160

*

* | some storage [<---------------- pointer to shared storage
* (called MyPtr in module A)
* e e ' (saved as a static variable in module B)
* Module A

* Global variables in Module A
D MyPtr S *
D SomeStorage S 10A based (MyPtr)
C eval SomeStorage = 'Init value'
C callp ProcB(MyPtr)
C eval SomeStorage = *BLANKS

K o - -
* Module B

* Global variables in Module B
D SavedPtr S *
D SomeStorage S 10A based(SavedPtr)

* ProcB in module B

P ProcB B export

D ProcB PI

D PtrParm *

C eval SavedPtr = PtrParm

C return 7

P E

* ProcB2 in module B

P ProcB2 B export

D ProcB2 PI

D PtrParm *

C if SomeStorage = 'Init value' B

C

C return

p E

Figure 74. Example of Sharing Data in a Multithreaded Environment

When ProcA calls ProcB (line), no other thread can access the storage pointed
to by MyPtr, since both module A and and module B are being used by one
thread. ProcB saves the pointer in module B’s static storage (line) and returns
(line EA)- Now, no thread is active in module B, so another thread is free to call
module B. If another thread calls ProcB2, it is possible that the first thread could
process line before, at the same time, or after the second thread processes line
Bl . The order of these events is not defined; the code used to test if SomeStorage
= 'Init value’ could succeed one time and fail the next time.

You can synchronize access to the shared data, by using logic in the program or by
using synchronization techniques provided by C or by platform functions. For
more details, refer to the Multithreaded Applications document under the
Programming topic at the following URL:

http://www.ibm.com/eserver/iseries/infocenter

How to Avoid Deadlock Between Modules

In some situations, it may be necessary for you to control the synchronization of
modules using facilities other than the THREAD(*SERIALIZE) control specification
keyword. For example, consider the situation where two procedures are being
called at the same time: PROC1 and PROC3. Even though there is no actual
recursive calling; if PROC1 calls PROC4, it will wait for MOD2 to unlock; and if
PROCS3 calls PROC2, it will wait for MOD1 to unlock. The procedures will not be
able to complete their calls, since each module will be locked by the thread in the

ILE RPG Programmer’s Guide

Multithreading Considerations

other module. This type of problem can occur even with serialization of calls to a
module and is referred to as deadlock.

thread-1 thread-2
MOD1 | MOD2
{ PROCI ——————————— { PROC3
CALLP PROC4 ~~ | - CALLPPROC2
—PROC2 —————————« [|~ *—PROC4

Figure 75. Deadlock Example

This example shows that you cannot access more than one procedure in the same
module at the same time using ILE RPG synchronization techniques.

To avoid the problem in the above example and ensure thread safe applications,
you can control the synchronization of modules using techniques provided by C or
by platform functions. Any callers of PROC1 or PROCS3 for each thread should do
the following:

1. Restrict access to the modules for all threads except the current thread, always
in the same order (MOD1 then MOD?2)

2. In the current thread, call the procedures in the modules (PROC1 and PROC3)

3. Relinquish access to the modules for all threads in the reverse order of step 1
(MOD2 then MOD1).

One thread would be successful in restricting access to MOD1. Since all users of
MOD1 and MOD2 use the protocol of restricting access to MOD1 and MOD?2 in
that order, no other thread can call procedures in MOD1 or MOD2 while the first
thread has restricted access to the modules. In this situation you have access to
more than one procedure in the same module at the same time, but since it is only
available to the current thread, it is thread safe.

This method should also be used to synchronize access to shared storage.

Chapter 10. Calling Programs and Procedures 161

Multithreading Considerations

162 ILE RPG Programmer’s Guide

Chapter 11. RPG and the eBusiness World

This chapter describes how you can use ILE RPG as part of an eBusiness solution.
It includes:

+ ['RPG and XML

+ ['RPG and MQSeries” on page 169|

* I"'RPG and Java” on page 169

RPG and XML

The Extensible Markup Language (XML) is a subset of SGML that is developed by
the World Wide Web Consortium (W3C). Its goal is to enable generic SGML to be
served, received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for interoperability
with both SGML and HTML.

For more information about XML, see http://www.w3.0rg/XML

You can use the XML-INTO and XML-SAX operation codes to process your XML
documents. For more information, see [“Processing XML Documents.”|

XML Toolkit for iSeries (5733XT1) allows your ILE RPG programs to create new
XML documents and parse existing ones. You can use XML as both a datastore and
I/O mechanism.

Processing XML Documents

You can process XML documents from your RPG program by using the
XML-INTO or XML-SAX statements. These statements are the RPG language
interface to the high-speed XML parser. The parser currently being used by RPG is
a non-validating parser, although it checks XML documents for many
well-formedness errors. See the "XML Conformance” section in the "XML Reference
Material” appendix of the ILE COBOL Programmer’s Guide for more information on
the XML parser.

The XML documents can be in a character or UCS-2 RPG variable, or they can be
in an Integrated File System file.

The parser is a SAX parser. A SAX parser operates by reading the XML document
character by character. Whenever it has located a fragment of the XML document,
such as an element name, or an attribute value, it calls back to a handling
procedure provided by the caller of the parser, passing it information about the
fragment of XML that it has found. For example, when the parser has found an
XML element name, it calls the handling procedure indicating that the "event” is a
"start element” event and passing it the name of the element.

The handling procedure processes the information and returns to the parser which
continues to read the XML document until it has enough information to call the
handling procedure with another event. This process repeats until the entire XML
document has been parsed, or until the handling procedure indicates that parsing
should end.

For example, consider the following XML document:

© Copyright IBM Corp. 1994, 2006 163

164

<email type="text">

<sendto>JohnDoe@there</sendto>

</email>

The following are the fragments of text that the parser would read, the events that
it would generate, and the data associated with each event. Note: The term

"whitespace” refers to end-of-line characters, tab characters and blanks.

Parsed text Event Event data
start document
<email start element "email”
type= attribute name "type”
"text” attribute value "text”
>whitespace element content the whitespace
<sendto> start element "sendto”
JohnDoe@there element content "JohnDoe@there”
</sendto> end element "sendto”
whitespace element content the whitespace
</email> end element "email”
end document

The XML-SAX and XML-INTO operation codes allow you to use the XML parser.

1. The XML-SAX operation allows you to specify an event handling procedure to
handle every event that the parser generates. This is useful if you do not know
in advance what an XML document may contain.

For example, if you know that an XML document will contain an XML attribute
with the name type, and you want to know the value of this attribute, your
handling procedure can wait for the "attribute name” event to have a value of
"type”. Then the next time the handler is called, it should be an "attribute
value” event, with the required data ("text” in the example above).

2. The XML-INTO operation allows you to read the contents of an XML document
directly into an RPG variable. This is useful if you know the format of the XML
document and you know that the names of the XML elements in the document
will be the same as the names you have given to your RPG variables.

For example, if you know that the XML document will always have the form of
the document above, you can define an RPG data structure with the name
"email”, and with subfields "type” and "sendto”. Then you can use the
XML-INTO operation to read the XML document directly into the data
structure. When the operation is complete, the "type” subfield would have the
value "text” and the "sendto” subfield would have the value "JohnDoe@there”.

3. The XML-INTO operation also allows you to obtain the values of an unknown
number of repeated XML elements. You provide a handling procedure that
receives the values of a fixed number of elements each time the handling
procedure is called. This is useful if you know that the XML document will
contain a series of identical XML elements, but you don’t know in advance
how many there will be.

The XML data is always returned by the parser in text form. If the data is known
to represent other data types such as numeric data, or date data, the XML-SAX
handling procedure must use conversion functions such as %INT or %DATE to
convert the data.

ILE RPG Programmer’s Guide

The XML-INTO operation will automatically convert the character data to the type
of the field or subfield specified as the receiver.

Both the XML-SAX and XML-INTO operations allow you to specify a series of
options that control the operation. The options are specified in a single character
expression in the form

'optl=vall opt2=val2'

Each operation has its own set of valid options. The options that are common to
both operation codes are

doc
The "doc” option specifies whether the XML document that you provide to the
operation is the name of an Integrated File System file containing the
document, or the document itself. The default is "doc=string” indicating that
you have provided an actual XML document. You use the option "doc=file” to
indicate that you have provided the name of a file containing the actual XML
document.

cesid
The "ccsid” option specifies the CCSID in which the XML parser will return
data. For the XML-SAX operation, you can specify any CCSID that the parser
supports. For the XML-INTO operation, you can only control whether the
parsing will be done in single-byte character or UCS-2. See the information in
the ILE RPG Reference for more information on the "ccsid” option for each of
these operation.

XML Parser Error Codes

If the XML parser detects an error in the XML document during parsing, message
RNX0351 will be issued. From the message, you can get the specific error code
associated with the error, as well as the offset in the document where the error was
discovered.

The following table shows the meaning of each parser error code:

XML
Parser
Error Code | Description

1 The parser found an invalid character while scanning white space outside
element content.

2 The parser found an invalid start of a processing instruction, element,
comment, or document type declaration outside element content.

The parser found a duplicate attribute name.

The parser found the markup character ‘<’ in an attribute value.

The start and end tag names of an element did not match.

The parser found an invalid character in element content.

N | O | O | W

The parser found an invalid start of an element, comment, processing
instruction, or CDATA section in element content.

8 The parser found in element content the CDATA closing character sequence
’11>” without the matching opening character sequence "<!/[CDATA[".

9 The parser found an invalid character in a comment.

10 The parser found in a comment the character sequence "--" (two hyphens) not
followed by ">’.

Chapter 11. RPG and the eBusiness World 165

166

XML
Parser
Error Code

Description

11

The parser found an invalid character in a processing instruction data
segment.

12

A processing instruction target name was 'xml” in lowercase, uppercase or
mixed case.

13

The parser found an invalid digit in a hexadecimal character reference (of the
form �, for example ël).

14

The parser found an invalid digit in a decimal character reference (of the form
&#dddd;).

15

A character reference did not refer to a legal XML character.

16

The parser found an invalid character in an entity reference name.

17

The parser found an invalid character in an attribute value.

18

The parser found a possible invalid start of a document type declaration.

19

The parser found a second document type declaration.

20

An element name was not specified correctly. The first character was not a
letter, ”_’, or "/, or the parser found an invalid character either in or following
the element name.

21

An attribute was not specified correctly. The first character of the attribute
name was not a letter, ’_’, or '/, or a character other than '=" was found
following the attribute name, or one of the delimiters of the value was not

correct, or an invalid character was found in or following the name.

22

An empty element tag was not terminated by a >’ following the "/’

23

The element end tag was not specified correctly. The first character was not a
letter, ”_’, or ", or the tag was not terminated by ">’.

24

The parser found an invalid start of a comment or CDATA section in element
content.

25

A processing instruction target name was not specified correctly. The first
character of the processing instruction target name was not a letter, ’_’, or "/,
or the parser found an invalid character in or following the processing
instruction target name.

26

A processing instruction was not terminated by the closing character sequence
>

27

The parser found an invalid character following ‘&” in a character reference or
entity reference.

28

The version information was not present in the XML declaration.

29

The “version’ in the XML declaration was not specified correctly. ‘version” was
not followed by ’'=’, or the value was missing or improperly delimited, or the
value specified a bad character, or the start and end delimiters did not match,
or the parser found an invalid character following the version information
value closing delimiter in the XML declaration.

30

The parser found an invalid attribute instead of the optional encoding
declaration in the XML declaration.

31

The encoding declaration value in the XML declaration was missing or
incorrect. The value did not begin with lowercase or uppercase A through Z,
or ‘encoding’ was not followed by '=’, or the value was missing or improperly
delimited or it specified a bad character, or the start and end delimiters did
not match, or the parser found an invalid character following the closing
delimiter.

ILE RPG Programmer’s Guide

XML

Parser

Error Code | Description

32 The parser found an invalid attribute instead of the optional standalone
declaration in the XML declaration.

33 The “standalone” attribute in the XML declaration was not specified correctly.
‘standalone” was not followed by a '=’, or the value was either missing or
improperly delimited, or the value was neither "yes’ nor 'no’, or the value
specified a bad character, or the start and end delimiters did not match, or the
parser found an invalid character following the closing delimiter.

34 The XML declaration was not terminated by the proper character sequence
’?>’, or contained an invalid attribute.

35 The parser found the start of a document type declaration after the end of the
root element.

36 The parser found the start of an element after the end of the root element.

300 The parser reached the end of the document before the document was
complete.

301 The %HANDLER procedure for XML-INTO or XML-SAX returned a non-zero
value, causing the XML parsing to end.

302 The parser does not support the requested CCSID value or the first character
of the XML document was not '<’.

303 The document was too large for the parser to handle. The parser attempted to
parse the incomplete document, but the data at the end of the document was
necessary for the parsing to complete.

500-999 Internal error in the external parser. Please report the error to your service
representative.

10001- Internal error in the parser. Please report the error to your service

19999 representative.

Limitations of the XML Parser

* An RPG character variable can only be 65535 bytes long. If your program has a
pointer to XML data that is longer than that, for example from an MQSeries®

call, you will have to write the XML data to a temporary file in the
File System, and parse the XML data from your temporary file. See

Integrated

for a sample procedure that does this.

* If the parsing is done in a single-byte character CCSID, the maximum number of
characters that the parser can handle is 2147483408.

* If the parsing is done in UCS-2, the maximum number of UCS-2 characters that
the parser can handle is 1073741704.

* The parser does not support every CCSID. If your job CCSID is one of the
CCSIDs that the parser does not handle, you must parse your document in

UCs-2.

— The following EBCDIC CCSIDs are supported: 1047, 37, 1140, 273, 1141, 277,
1142, 278, 1143, 280, 1144, 284, 1145, 285, 1146, 297, 1147, 500, 1148, 871, and

1149.

— The following ASCII CCSIDs are supported: 819, 813, 920.
— The following Unicode CCSIDs are supported: 1200, 13488, 17584.

* The parser does not support entity references. When it encounters an entity
reference, it generates either an "unknown reference” or "unknown attribute
reference” event. The value of the event is the reference in the form "&name;”.

Chapter 11. RPG and the eBusiness World 167

168

The parser does not parse the DOCTYPE declaration. The text of the DOCTYPE
declaration is passed as the data value for the "DOCTYPE declaration” event.

The parser does not support name spaces. It ignores the colons in XML element
and attribute names.

The parser does not generate "start prefix mapping” and "end prefix mapping”
events. It ignores the colons in XML element and attribute names.

(=B — N — A — A — I — i — i —) (= — B — i — I — i —]

(=B — i — B = —]

Parameters:
1. path : a pointer to a null-terminated string containing
the path to the file to be written

2. dataPtr : a pointer to the data to be written

3. datalen : the length of the data in bytes

4. dataCcsid : the CCSID of the data

5. fileCcsid : the desired CCSID of the file

Sample RPG coding:
ifsWrite ('/home/mydir/temp.xml' : xmlPtr : xmllLen : 37 : 37);
xml-into ds %xml('/home/mydir/temp.xml' : 'doc=file');

To delete the file, use the system command
rmvink '/home/mydir/temp.xml'

* Note: This module requires BNDDIR(QC2LE)

L I I N R N N

P ifsWrite B EXPORT
ifsWrite PI
path % VALUE OPTIONS (*STRING)
dataPtr * VALUE
datalen 10I 0 VALUE
dataCcsid 10I 0 VALUE
fileCcsid 10I 0 VALUE
0_CREAT C x'00000008"
0_TRUNC C x'00000040"
0_WRONLY C x'00000002"
0_RDWR C x'00000004"'
0_CCSID C x'00000020"
0_TEXT_CREAT C x'02000000"
0_TEXTDATA C x'01000000'
0_SHARE_NONE C x'00080000"
S_IRUSR C x'0100'
S_IROTH C x'0004'
S_IRGRP C x'0020'
S_IWUSR C x'0080'
S_IWOTH C x'0002'

Figure 76. Writing data to an Integrated File System file (Part 1 of 2)

ILE RPG Programmer’s Guide

D ssize_t S 10I 0

D size_t S 10U 0

D open PR 10I 0 EXTPROC('open')

D path % VALUE OPTIONS (*STRING)
D flag 101 0 VALUE

D mode 10I 0 VALUE

D fileCcsid 10I 0 VALUE options(*nopass)
D dataCcsid 10I 0 VALUE options(*nopass)
D writeFile PR LIKE(ssize_t)

D EXTPROC('write')

D handle 10I 0 VALUE

D data * VALUE

D Ten VALUE LIKE(size_t)

D closeFile PR 10I 0 EXTPROC('close')

D handle 10I 0 VALUE

D oflag S 10I 0

D omode S 10I 0

D handle S 10I 0

D rc S 10I 0

D sysErrno PR * EXTPROC('__errno')

D errno S 10I 0 BASED(pErrno)

/FREE

pErrno = sysErrno();

oflag = 0 + O_WRONLY + O_CREAT + O_TEXT_CREAT + 0_TRUNC
+ 0_CCSID + 0_TEXTDATA + 0_SHARE_NONE;
omode = O + S_IRUSR + S_IWUSR + S_IRGRP + S_IROTH;

handle = open(path : oflag : omode : fileCcsid : dataCcsid);
// insert error handling if handle is less than zero

rc = writeFile (handle : dataPtr : datalen);
// insert error handling if rc is not zero

rc = closeFile (handle);
// insert error handling if rc is not zero

/END-FREE
P ifswrite E

Figure 76. Writing data to an Integrated File System file (Part 2 of 2)

RPG and MQSeries

With MQSeries®, a program can communicate with other programs on the same
platform or a different platform using the same messaging product. MQSeries
manages network interfaces, assures delivery, deals with communications
protocols, and handles recovery after system problems. MQSeries is available on
over 35 platforms.

RPG and Java

Introduction to Java and RPG

The Java programming language is a high-level object-oriented language
developed by Sun Microsystems. Java programs can be developed using the
VisualAge® for Java component of WebSphere Development Studio for iSeries.

Chapter 11. RPG and the eBusiness World 169

In object-oriented programming, a "method” is a programmed procedure that is
defined as part of a "class”, which is a collection of methods and variables. Java
methods can be called from your RPG program. While most Java methods are
written in Java, a method can also be written in another high-level language, such
as RPG. This is known as a "native method". This section includes information on
calling Java methods from RPG and on writing RPG native methods.

The Object Data Type and CLASS Keyword

Fields that can store objects are declared using the O data type. To declare a field
of type O, code O in column 40 of the D-specification and use the CLASS keyword
to provide the class of the object. The CLASS keyword accepts two parameters:

CLASS(*JAVA:class_name)

*JAVA identifies the object as a Java object. Class_name specifies the class of the
object. It must be a character literal or named constant, and the class name must be
fully qualified. The class name is case sensitive.

For example, to declare a field that will hold an object of type BigDecimal:
D bdnum S 0 CLASS(*JAVA:'java.math.BigDecimal')

To declare a field that will hold an object of type String:
D string S 0 CLASS(*JAVA:'java.lang.String')

Note that both class names are fully qualified and that their case exactly matches
that of the Java class.

Fields of type O cannot be defined as subfields of data structures. It is possible to
have arrays of type O fields, but pre-runtime and compile-time tables and arrays
of type O are not allowed.

Prototyping Java Methods

Like subprocedures, Java methods must be prototyped in order to call them
correctly. The ILE RPG compiler must know the name of the method, the class it
belongs to, the data types of the parameters and the data type of the returned
value (if any), and whether or not the method is a static method.

The extended EXTPROC keyword can be used to specify the name of the method
and the class it belongs to. When prototyping a Java method, the expected format
of the EXTPROC keyword is:

EXTPROC (*JAVA:class_name:method_name)

Both the class name and the method name must be character constants. The class
name must be a fully qualified Java class name and is case sensitive. The method
name must be the name of the method to be called, and is case sensitive.

Use *JAVA when creating a prototype for either a method written in Java or a
native method written in RPG. Use the STATIC keyword to indicate that a method
is static.

Java and RPG Definitions and Data Types: The data types of the parameters and
the returned value of the method are specified in the same way as they are when
prototyping a subprocedure, but the data types actually map to Java data types.
The following table shows the mappings of ILE RPG data types to and from Java
data types.

170 ILE RPG Programmer’s Guide

Table 30.

Java Data Type ILE RPG Data Type RPG Definitions
boolean indicator N
byte ! integer 310
character 1A
byte[] character length > 1 (See) nA
array of character length=1 (See El) 1A DIM(x)
date D
time T
timestamp Z
short 2-byte integer 510
char UCS-2 length=1 1C
char(] UCS-2 length>1 (See El) nC
array of UCS-2 length=1 (See @) 1C DIM(x)
int 4-byte integer 1010
long 8-byte integer 2010
float 4-byte float 4F
double 8-byte float 8F
any object object O CLASS(x)
any array array of equivalent type (See @) DIM(x)
Notes:

1. When a Java byte type is converted to or from a character (1A) data type,
ASCII conversion occurs. When a Java byte type is converted to or from an

integer (31) data type, ASCII conversion does not occur.

2. For arrays of any type in Java, you can declare an array of the equivalent type
in RPG. However, note that you cannot use an array of character length greater
than 1 or UCS-2 length greater than 1 data types.

3. For UCS-2 length greater than 1 and character length greater than 1 data types,
the VARYING keyword is allowed. In general, it's recommended to use the
VARYING keyword, since Java byte[] and char[] cannot be declared with a
fixed length.

4. For RPG array data types, OPTIONS(*VARSIZE) should normally be coded for
array parameters, since Java arrays cannot be declared with a fixed length.

Zoned, Packed, Binary, and Unsigned data types are not available in Java. If you
pass a Zoned, Packed, Binary, or Unsigned field as a parameter, the compiler will
do the appropriate conversion, but this may result in truncation and/or loss of
precision.

When calling a method, the compiler will accept arrays as parameters only if the
parameter is prototyped using the DIM keyword.

If the return value or a parameter of a method is an object, you must provide the
class of the object by coding the CLASS keyword on the prototype. The class name
specified will be that of the object being returned or the parameter being passed.
(Use the EXTPROC keyword to specify the class of the method being called.)

Chapter 11. RPG and the eBusiness World 171

172

If the method being called is a static method, then you must specify the STATIC
keyword on the prototype. If the method is a constructor, you must specify
*CONSTRUCTOR as the name of the method.

In Java, the following data types can only be passed by value:
boolean

byte

int

short

Tong

float

doubTe

Parameters of these types must have the VALUE keyword specified for them on
the prototype.

Note that objects can only be passed by reference. The VALUE keyword cannot be
specified with type O. Since arrays are seen by Java as objects, parameters
mapping to arrays must also be passed by reference. This includes character and
byte arrays. The CONST keyword can be used.

Examples of Prototyping Java Methods: This section presents some examples of
prototyping Java methods.

Example 1: The Java Integer class contains a static method called toString, which
accepts an int parameter, and returns a String object. It is declared in Java as
follows:

static String Integer.toString(int)

This method would be prototyped as follows:

D tostring PR 0 EXTPROC(*JAVA:

D 'java.lang.Integer':

D 'toString')

D CLASS (*JAVA: 'java.lang.String"')
D STATIC

D num 10I 0 VALUE

The EXTPROC keyword identifies the method as a Java method. It also indicates
that the method name is "toString’, and that it is found in class java.lang.Integer’.

The O in column 40 and the CLASS keyword tell the compiler that the method
returns an object, and the class of that object is java.lang.String’.

The STATIC keyword indicates that the method is a static method, meaning that an
Integer object is not required to call the method.

The data type of the parameter is specified as 10I, which maps to the Java int data
type. Because the parameter is an int, it must be passed by value, and the VALUE
keyword is required.

Example 2: The Java Integer class contains a static method called getInteger, which
accepts String and Integer objects as parameters, and returns an Integer object. It is
declared in Java as follows:

static Integer Integer.getInteger(String, Integer)

This method would be prototyped as follows:

ILE RPG Programmer’s Guide

D getint PR 0 EXTPROC (*JAVA:

D 'java.lang.Integer':

D 'getInteger')

D CLASS (*JAVA:'java.lang.Integer')

D STATIC

D string 0 CLASS(*JAVA:'java.lang.String') CONST
D num 0 CLASS(*JAVA:'java.lang.Integer') CONST

This method accepts two objects as parameters. O is coded in column 40 of the
D-specification and the CLASS keyword specifies the class of each object
parameter. Because both parameters are input-only, the CONST keyword is
specified.

Example 3: The Java Integer class contains a method called shortValue, which
returns the short representation of the Integer object used to invoke the method. It
is declared in Java as follows:

short shortValue()

This method would be prototyped as follows:

D shortval PR 51 O EXTPROC(*JAVA:
D 'java.lang.Integer':
D 'shortValue'

The STATIC keyword is not specified because the method is not a static method.
The method takes no parameters, so none are coded. When you call this method,
you will specify the Integer instance as the first parameter. The returned value is
specified as 51, which maps to the Java short data type.

Example 4: The Java Integer class contains a method called equals, which accepts
an Object as parameter and returns a boolean. It is declared in Java as follows:

boolean equals(Object)

This method would be prototyped as follows:

D equals PR N EXTPROC(*JAVA:

D 'java.lang.Integer':

D 'equals')

D obj 0 CLASS(*JAVA:'java.lang.Object')

The returned value is specified as N, which maps to the Java boolean data type.
Because this is not a static method, a call to this method will have two parameters
with the instance parameter coded first.

Calling Java Methods from ILE RPG

This section describes how to call Java methods from ILE RPG programs.

If the method is not a static method, then it is called an "instance method” and an
object instance must be coded as an extra first parameter in order to call the
method. For example, if an instance method is prototyped with one parameter, you
must call it with two parameters, the first being the instance parameter.

The following steps describe the call from ILE RPG to a Java method:

1. Java methods can be called using existing operation codes CALLP (when no
return value is expected) and EVAL (when a return value is expected). When
your RPG procedure attempts to make call to a Java method, RPG will check to
see if the Java Virtual Machine (JVM) has been started. If not, RPG will start
the JVM for you. It is also possible to start JVM yourself using the JNI function
described in [“Creating the Java Virtual Machine (JVM)” on page 189

Chapter 11. RPG and the eBusiness World 173

174

2. If you are using your own classes (or any classes outside the normal java.xxx
classes), be sure to have your CLASSPATH environment variable setup before
you call any Java methods. When RPG starts up the JVM for you, it will add
the classes in your CLASSPATH environment variable to the standard
classpath, so when you use your own classes, Java will be able to find them.
Set the CLASSPATH environment variable interactively like this:

===>ADDENVVAR ENVVAR(CLASSPATH)
VALUE('/myclasses/:/xyzJava/classes/")

The directories must be separated by colons.

3. Normally, Java does its own garbage collection, detecting when an object is no
longer needed. When you create objects by calling Java constructors from your
non-native RPG procedure, Java has no way of knowing that the object can be
destroyed, so it never destroys them. You can enable garbage collection for
several objects at once by calling the JNI functions described in
free several objects at once” on page 186]If you know you are not going to
need an object any more, you should tell this to Java by calling the JNI function
dﬁscribed in [“Telling Java you are finished with a temporary object” on page]
187.

CAUTION:

Since Java uses threads, the THREAD(*SERIALIZE) keyword must be coded in
all modules that interact with Java. RPG relies heavily on static storage even in
subprocedures that apparently only use automatic storage.
THREAD(*SERIALIZE) is necessary to ensure the correct handling of this static
storage. This applies not only to modules that contain calls to Java methods, but
also to any modules that might be called during interactions with Java.

See [“Additional RPG Coding for Using Java” on page 186 for more information
about the various JNI functions.

Example 1

In this example, the goal is to add two BigDecimal values together. In order to do
this, two BigDecimal objects must be instantiated by calling the constructor for the
BigDecimal class, fields must be declared to store the BigDecimal objects, and the
add() method in the BigDecimal class must be called.

ILE RPG Programmer’s Guide

* Prototype the BigDecimal constructor that accepts a String

* parameter. It returns a new BigDecimal object.

* Since the string parameter is not changed by the constructor, we will
* code the CONST keyword. This will make it more convenient

* to call the constructor.

*

D bdcreatel PR 0 EXTPROC(*JAVA:

D 'java.math.BigDecimal':

D *CONSTRUCTOR)

D str 0 CLASS(*JAVA:'java.lang.String')
D CONST

*

* Prototype the BigDecimal constructor that accepts a double

* parameter. 8F maps to the Java double data type and so must

* be passed by VALUE. It returns a BigDecimal object.

*

D bdcreate2 PR 0 EXTPROC(*JAVA:

D 'java.math.BigDecimal':

D *CONSTRUCTOR)

D double 8F VALUE

Figure 77. RPG Code Example Calling BigDecimal Java Class (Part 1 of 2)

Chapter 11. RPG and the eBusiness World 175

176

* Define fields to store the BigDecimal objects.

*

D bdnuml S 0 CLASS(*JAVA:'java.math.BigDecimal')
D bdnum2 S 0 CLASS(*JAVA:'java.math.BigDecimal')
*

* Since one of the constructors we are using requires a String object,
* we will also need to construct one of those. Prototype the String

* constructor that accepts a byte array as a parameter. It returns

* a String object.

*

D makestring PR 0 EXTPROC (*JAVA:

D 'java.lang.String"':

D *CONSTRUCTOR)

D bytes 30A CONST VARYING

*

* Define a field to store the String object.

*

D string S 0 CLASS (*JAVA: 'java.lang.String')

*

* Prototype the BigDecimal add method. It accepts a BigDecimal object
* as a parameter, and returns a BigDecimal object (the sum of the parameter
= and of the BigDecimal object used to make the call).

*

D add PR 0 EXTPROC (*JAVA:

D 'java.math.BigDecimal':

D ‘add')

D CLASS (*JAVA: 'java.math.BigDecimal')
D bdl 0 CLASS (*JAVA:'java.math.BigDecimal')
D CONST

*

* Define a field to store the sum. =

D sum S 0 CLASS (*JAVA: 'java.math.BigDecimal')
D

D double S 8F INZ(1.1)

D f1dl S 10A

* Define a prototype to retrieve the String version of the BigDecimal

D getBdString PR 0 CLASS (*JAVA: 'java.lang.String")

D EXTPROC (*JAVA:

D 'java.lang.BigDecimal':

D "toString')

* Define a prototype to retrieve the value of a String

D getBytes PR 65535A VARYING

D EXTPROC (*JAVA:

D 'java.lang.String':

D 'getBytes')

* Define a variable to hold the value of a BigDecimal object

D bdVval S 63P 5

Figure 77. RPG Code Example Calling BigDecimal Java Class (Part 2 of 2)

Here is the code that does the call.

ILE RPG Programmer’s Guide

Call the constructor for the String class, to create a String
object from fl1dl. Since we are calling the constructor, we
do not need to pass a String object as the first parameter.

* X X X

C EVAL string = makestring('123456789012345678901234567890")

Call the BigDecimal constructor that accepts a String
parameter, using the String object we just instantiated.

* * * *

C EVAL bdnuml = bdcreatel(string)

Call the BigDecimal constructor that accepts a double
as a parameter.

* X X X

C EVAL bdnum2 = bdcreate2(double)

Add the two BigDecimal objects together by calling the
add method. The prototype indicates that add accepts
one parameter, but since add is not a static method, we
must also pass a BigDecimal object in order to make the
call, and it must be passed as the first parameter.
bdnuml is the object we are using to make the

call, and bdnum2 is the parameter.

* X X X X X X X X

C EVAL sum = add(bdnuml:bdnum2)
sum now contains a BigDecimal object with the value

* bdnuml + bdnum2.
C EVAL bdval = %DECH(getBdString(sum) : 63 : 5)
* val now contains a value of the sum.

* If the value of the sum is larger than the variable "val" can

* hold, an overflow exception would occur.

*

Figure 78.

Example 2
This example shows how to perform a TRIM in Java by using the trim() method as

an alternative to the ILE RPG %TRIM built-in function. The trim() method in the
String class is not a static method, so a String object is needed in order to call it.

Chapter 11. RPG and the eBusiness World 177

* Define a field to store the String object we wish to trim
*

D str S 0 CLASS(*JAVA:'java.lang.String')
*

* Prototype the constructor for the String class. The

* constructor expects a byte array.

*

D makestring PR 0 EXTPROC(*JAVA:

D 'java.lang.String':

D *CONSTRUCTOR)

D CLASS (*JAVA: 'java.lang.String')
D parm 10A

*

* Prototype the String method getBytes which converts a String to a byte
* array. We can then store this byte array in an alpha field.
*

D getBytes PR 10A EXTPROC(*JAVA:
D 'java.lang.String':
D 'getBytes') VARYING

*

* Prototype the String method trim. It doesn't take any parameters,
* but since it is not a static method, must be called using a String
* object.

*

D trimstring PR 0 EXTPROC(*JAVA:

D 'java.lang.String':

D "trim')

D fid S 10A INZ(* hello ') VARYING

Figure 79. RPG Code Example Using trim() Java Method

The call is coded as follows:

* Call the String constructor

*
C EVAL str = makestring(fld)

*

% Trim the string by calling the String trim() method.
* We will reuse the str field to store the result.

*

c EVAL str = trimstring(str)

*

* Convert the string back to a byte array and store it
*in f1d.

*

C EVAL fld = getBytes(str)

Figure 80. RPG Call to the String constructor

Static methods are called in the same way, except that an object is not required to
make a call. If the getBytes() method above was static, the call would look like the
example below.

(0 EVAL fld = getBytes()
If the method does not return a value, use the CALLP operation code.

Creating Objects

In order to call a non-static method, an object is required. The class of the object
must be the same as the class containing the method. You may already have an
object available, but you may sometimes need to instantiate a new object. You do
this by calling a class constructor. A class constructor is neither a static method nor
an instance method, and therefore it does not need an instance parameter. The
special method name *CONSTRUCTOR is used when prototyping a constructor.

178 ILE RPG Programmer’s Guide

H H H HHEHHFHHFHFHFFFHFHF O HHFF H o H H H H*

H o H H H*

For example, class BigDecimal has a constructor that accepts a float parameter.

This constructor would be prototyped as follows:

D bdcreate PR 0 EXTPROC(*JAVA:

D 'java.math.BigDecimal':
D *CONSTRUCTOR)

D dnum 4F VALUE

Note that the parameter must be passed by value because it maps to the Java float
data type.

You would call this constructor like this:

D bd S 0 CLASS(*JAVA:
D 'java.math.BigDecimal')
/free
bd = bdcreate(5.2E9);
/end-free

The class of the returned object is the same as the class of the constructor itself, so
the CLASS keyword is redundant for a constructor, but it may be coded.

Calling methods in your own classes

When you use your own Java classes, the class that you specify in the EXTPROC
and CLASS keywords is simply the name of the class. If the class is part of a
package, you include the package information in the keywords. For example,
consider the following two classes:

class Simple

{

static void method (void)

{
System.out.printin ("Simple method");

}
}

package MyPkg;

class PkgClass
{

static void method (void)
{
System.out.printin ("PkgClass method");
1
1

Figure 81.

If the Simple class file is /home/myclasses/Simple.class, you would specify the
directory /home/myclasses in your CLASSPATH environment variable, and you
would specify 'Simple” as the class name in your RPG keywords.

If the PkgClass class file is /home/mypackages/MyPkg/PkgClass.class, you
would specify the directory /home/mypackages (the directory containing the
package) in your CLASSPATH environment variable, and you would specify
"MyPkg.PkgClass” (the package-qualified Java class) as the class name in your RPG
keywords.

Chapter 11. RPG and the eBusiness World 179

H H H

H 3

H+

HH

HH O H H HFHF OH HH T FHHF OHH T H H H H R

FH oM H H H HFH FH

The class name for your RPG keywords is the same name as you would specify in
your import statements in your Java classes. You use the CLASSPATH environment
variable to specify the location of the class files, or the location of the directory
containing the package.

Note: Note: If you have classes in a jar file, you specify the jar file itself in your
classpath.

===> ADDENVVAR CLASSPATH '/home/myclasses:/home/mypackages:/home/myjarfiles/jl.jar"

180

D simpleMethod PR EXTPROC (*JAVA

D : 'Simple!

D : 'method')

D STATIC

D pkgMethod PR EXTPROC (*JAVA

D : 'Pkg.PkgClass'
D : 'method')

D STATIC

Figure 82. Creating an RPG prototype for a Java method in a package

Controlling how the Java Virtual Machine is set up

When RPG starts the Java Virtual Machine (JVM), there are several options that
control how the JVM is started. See the Java System Properties section in the iSeries
Information Center.

* You can place these options in the SystemDefault.properties file.

* You can use the CLASSPATH environment variable to specify the classpath (see
above).

* You can place these options in an environment variable called
QIBM_RPG_JAVA_PROPERTIES. Any options placed in this environment
variable will override the options in the SystemDefault.properties file. If you
specify the java.class.path option in this environment variable, and you also
specified the CLASSPATH environment variable, it is undefined which value
will take precedence for the classpath.

To specify options in the QIBM_RPG_JAVA_PROPERTIES environment variable,
you code the options in a string, one after the other, separated by any character
that does not appear in any of the options. Then you end the string with the
separator character. For example, if you want to specify the options

java.version=1.4
0s400.stderr=file:stderr.txt

then you would add the environment variable using the following command:

ADDENVVAR ENVVAR(QIBM_RPG_JAVA PROPERTIES)
VALUE('-Djava.version=1.4;-Dos400.stderr=file:stderr.txt;")

If the options string is not valid, Java may reject one of the options. Message
JVAB55A will appear in the joblog indicating which option was not valid. If this
happens, RPG will try to start the JVM again without any of the options, but still
including the java.class.path option if it came from the CLASSPATH environment
variable.

ILE RPG Programmer’s Guide

RPG Native Methods

To define an RPG native method, you code the prototype the same way as you
would code the prototype for an ordinary Java method. Then, you write the RPG
subprocedure normally. You must code the EXPORT keyword on the
Procedure-Begin Specification for the native method.

You must have your native methods in a service program in your library list. In
your Java class that is calling your native methods, you must have a static
statement like this:

static

{
}

System.loadLibrary ("MYSRVPGM");

This will enable Java to find your native methods. Aside from adding *JAVA and
the class to the EXTPROC keyword for the prototype of a native method, you
write your native method like any subprocedure. is an example of a Java
class that calls a native method.

CAUTION:

If you are using environment variables to control how the JVM is started, you
must be sure that the environment variables exist in the job before any RPG
programs call Java methods. If you use ADDENVVAR LEVEL(*SYS), the
environment variable will be added at the system level, and by default, every
job will start with that environment variable set. If you do this, be sure that the
classpath includes all the directories containing the Java classes that may be
needed by any application on the system.

class MyClass

{

static
{

System.loadLibrary ("MYSRVPGM");
1

native boolean checkCust (byte custName[]);

void anotherMethod ()
{
boolean found;
// call the native method
found = checkCust (str.getBytes());
}
1

Figure 83. Java Class Calling a Native Method

[Figure 84 on page 182]is a prototype of an RPG native method.

Chapter 11. RPG and the eBusiness World 181

182

D checkCust PR N EXTPROC(*JAVA

D : 'MyClass'

D : 'checkCust"')
D custName 100A VARYING CONST

Figure 84. RPG Native Method Prototype

The native method itself is coded just like any subprocedure. is an
example of a native method coded in RPG.

P checkCust B EXPORT
D checkCust PI N
D custName 100A VARYING CONST

/free chain custName rec;
return %found;

/end-free

P checkCust E

Figure 85. Native Method Coded in RPG

Java calls your service program from the default activation group. If your service
program is created with activation group *CALLER, it will run in the default
activation group. This can sometimes cause problems:

 If you are debugging your native methods, and you want to make a change to
the code, you will have to sign off and sign back on again before Java will see
the new version.

 If you are calling other procedures in the service program from other RPG code
that is not running in the default activation group, then you will not be able to
share any global variables between the "ordinary procedures” and the native
methods. This scenario can arise if a procedure in your RPG service program
sets up some global variables, and then calls a Java class which then calls a
native method in that service program. Those native methods will not see the
same data that the first procedure set up.

If you create any Java objects in your native methods, by default they will be
destroyed by Java when the native method returns. If you want the object to be
available after the native method returns (for example, if you want to use it from
another native method later), then you must tell Java that you want to make a
global reference, by calling the JNI wrapper procedure getNewGlobalRef . When
you are finished with the global reference, you will call NI wrapper procedure
freeGlobalRef, so Java can reclaim the object. See [“Telling Java you want an object|

to be permanent” on page 188 and [“Telling Java you are finished with a permanent|

object” on page 189| for more information about these wrapper procedures.

If your RPG native method ends abnormally with an unhandled exception, the
RPG compiler will throw an exception to Java. The exception is of class
java.lang.Exception, and has the form RPG nnnnn, where nnnnn is the RPG status
code.

try

{
nativeMethod ();

catch (Exception exc)

ILE RPG Programmer’s Guide

Getting the Instance Parameter in Non-Static Native Methods
When a non-static native method is called, one of the parameters that Java passes
to the native method is the object that the method applies to. This is called the
"instance parameter”, referred to as "this” in a Java method. Within the native
method itself, you can use the built-in function %THIS to get the instance
parameter. You do not code this parameter in your Procedure Interface.

Passing Character Parameters from Java to Native Methods

You have two choices when dealing with character parameters:

* If you want your Java code to be a simple as possible, define the parameter as a
String in your Java native method declaration. Your RPG code would have to
retrieve the value of the string itself (see [“Using String Objects in RPG”).

* If you want the character data to be immediately available to your RPG
program, code the parameter in the Java native method declaration as a byte
array or a char array, and code it in your RPG prototype as a character field,
UCS-2 field, or a Date, Time or Timestamp. That way, RPG will handle the
conversion for you.

Using String Objects in RPG: If you have a String object in your RPG code, you
can retrieve its length and contents using the code in

D stringBytes PR 100A VARYING

D EXTPROC (*JAVA

D : 'java.lang.String'
D : 'getBytes')

D stringlLength PR Tike(jint)

D EXTPROC (*JAVA

D : 'java.lang.String'
D : 'length')

D string S Tike(jstring)

D len S Tike(jint)

D data S 100A VARYING

/free len = stringlLength (string);

data = stringBytes (string);
if (len > %len(data));
error ('Actual string was too long');
endif;
/end-free

Figure 86. Retrieving String object length and contents from Java

You can define the returned value from the getBytes method as character data of
any length, either varying or non-varying, choosing the length based on your own
knowledge of the length of data in the Java String. You can also define the return
value as a Date, Time or Timestamp, if you are sure that the String object will have
the correct format.

Alternately, you can retrieve the string value as a UCS-2 value, by calling the
getChars method instead of getBytes.

Chapter 11. RPG and the eBusiness World 183

184

Coding Errors when calling Java from RPG

Incorrectly specifying the method parameters in the RPG
prototype

When coding the prototype for a Java method, if you do not specify the types of
the return value and parameters correctly, the RPG compiler will build the method
signature incorrectly. When the program is run, either the wrong method will be
called, or the call will fail with a NoSuchMethodError Java exception.

If the call fails with a NoSuchMethodError Java exception, the RPG error message
will indicate the signature that was used for the method call. The following table
shows the mappings between Java types and method signature values. Refer to
[Table 30 on page 171]to see the mapping between Java types and RPG types.

Java type Signature
boolean Z
byte B

char C
short S

int 1

long]

float F
double D

any object Lclass;
any array [type

To see the list of valid signatures for the methods in the Java class, use the QSH
command

javap -s classname

where classname is specified with the package, for example java.lang.String. If the
class is not in the standard classpath, you can specify a classpath option for javap:

javap -s classname -classpath classlocation

By comparing the valid signatures for the method with the signature being used
by RPG for your method call, and working from the mapping tables, you should
be able to determine the error in your prototype.

Failure to free Java resources

When you create a Java object by calling a constructor, or by calling a method that

returns an object, that object will remain in existence until it is freed. It is freed

when:

1. The RPG program calls a JNI function to free the object (see [“Additional RPG|
[Coding for Using Java” on page 186).

2. When the native method returns, if the object was created during a call from
Java to a native method.

3. When the JVM ends.

If the RPG procedure calling the Java method is not itself an RPG native method,
and the RPG procedure does not take care to free objects it has created, then the
job may eventually be unable to create any more objects.

ILE RPG Programmer’s Guide

Consider the following code fragment:
strObject = newString ('abcde');
strObject = trim (strObject);
data = getBytes (strObject);
freeLocalRef (strObject);

It appears that this code is taking care to free the object, but in fact this code
creates two objects. The first object is created by the called to newString(), and the
second is created by the call to trim(). Here are two ways to correct this code
fragment:

1. By freeing several objects at once:

beginObjGroup();
strObject = newString ('abcde');
strObject = trim (strObject);
data = getBytes (strObject);
endObjGroup();
2. By keeping track of all objects used, and freeing them individually:

strObject = newString ('abcde');
trimmedStrObject = trim (strObject);
data = getBytes (trimmedStrObject);
freeLocalRef (strObject);
freeLocalRef (trimmedStrObject);

Another problem can be created by calling Java methods as parameters to other
Java methods. In the following example, the program is creating a BigDecimal
object from the constructor that takes a String parameter:

bigDec = newBigDecimal (newString ('12.345"));

freeLocalRef (bigDec);

The problem with this code is that a String object has been created for the
parameter, but it can never be freed by the RPG procedure. This problem can be
corrected by calling beginObjGroup() before the RPG code that calls Java and
calling endObjGroup() after, or by coding as follows:

tempObj = newString ('12.2345');

bigDec = newBigDecimal (tempObj);

freeLocalRef (tempObj);

freeLocalRef (bigDec);

Using objects that no longer exist

If you have static Object variables in your native method (STATIC keyword on the
definition), or your native method uses static global Object variables (variables
declared in the main source section), then the Object variables will retain their
values between calls to the native method. However, by default, Java will free any
objects created during a call to a native method. (See [“Additional RPG Coding for|
[Using Java” on page 186/ to see how to prevent Java from freeing objects.)

An RPG "Object” is really a numeric object reference. When a Java object is freed,
the numeric object reference can be reused. If the RPG native method refers to a
static Object variable that has not been explicitly protected from being freed, one of
two things can happen:

1. The object reference may be invalid, if the numeric object reference has not
been reused.

2. The object reference may have been reused, but since it refers to a different
object, any attempt to use it in the RPG native method will probably be
incorrect.

Chapter 11. RPG and the eBusiness World 185

HHHFHHFHHFHFFHFHFHFFFFHFFHHF F HF HF H H H H

To prevent problems with attempting to reuse objects illegally, the RPG
programmer may do one or more of the following;:

* Avoid declaring any Object variables in static storage. Instead, declare all Object
variables in local storage of subprocedures, without using the STATIC keyword.

* Before returning from a native method, explicitly set all static object references to
*NULL.

* Upon entering a native method, explicitly set all static object references to some
initial values.

Additional RPG Coding for Using Java

When you are using ILE RPG with Java, there are some functions normally
handled by Java that must be handled by your RPG code. The RPG compiler takes
care of some of these for you, but you must handle some of them yourself. This
section shows you some sample RPG wrappers to do this work, explains how and
when to call them, and suggests how to handle JNI exceptions.

The module that you create to hold these JNI wrapper functions should begin with
the following statements:

H thread(*serialize)

H nomain

/define 05400 JVM 12

/copy gsysinc/qrpglesrc,jni

The following RPG wrappers for NI functions are described. See
I];age 195 |below for a complete working example.

+ [“Telling Java to free several objects at once”]

+ [“Telling Java you are finished with a temporary object” on page 187
+ [“Telling Java you want an object to be permanent” on page 188|

+ ["Telling Java you are finished with a permanent object” on page 189
s [‘Creating the Java Virtual Machine (JVM)” on page 189

+ |“Obtaining the JNI environment pointer” on page 189

Telling Java to free several objects at once

You can free many local references at once by calling the JNI function
PushLocalFrame before a section of RPG code that uses Java and then calling
PopLocalFrame at the end of the section of RPG code. When you call
PopLocalFrame, any local references created since the call to PushLocalFrame will
be freed. For more information about the parameters to these JNI functions, see the
JNI documentation at http://java.sun.com.

D JNI_GROUP_ADDED...

D c 0

D JNI_GROUP_NOT_ADDED...

D c -1

D JNI_GROUP_ENDED...

D c 0
e g g
* beginObjGroup - start a new group of objects that can all
* be deleted together Tater
K o = = = = = = -

P beginObjGroup b export

D beginObjGroup pi 107 0

D env * const

D capacityParm 107 0 value options(*nopass)

D rc s 107 0

D capacity s 10i 0 inz(100)

/free

JNIENV_p = env;
if (%parms >= 2);

186 ILE RPG Programmer’s Guide

B R R I R o o o o o S S R R R

FH* I

capacity = capacityParm;
endif;
rc = PushLocalFrame (JNIENV_p : capacity);
if (rc <> 0);
return JNI_GROUP_NOT_ADDED;
endif;
return JNI_GROUP_ADDED;
/end-free
P beginObjGroup e

* endObjGroup - end the group of objects that was started

* most recently

K o o -
P endObjGroup b export

D endObjGroup pi 107 0

D env * const

D refObject

P o class(*java:'java.lang.Object')

D const

D options(*nopass)

D newObject

P o class(*java:'java.lang.Object')

D options(*nopass)

D retVal s o class(*java:'java.lang.Object')
D refObject s like(refObjectP) inz(*null)
D newObject s like(newObjectP)

/free
JNIENV_p = env;
if %parms() >= 2;
refObject = refObjectP;
endif;
newObject = PopLocalFrame (JNIENV_p : refObject);
if %parms() >= 3;
newObjectP = newObject;
endif;
return JNI_GROUP_ENDED;
/end-free
P endObjGroup e

Note: You need the JNI environment pointer (described in [’Obtaining the JNI|
lenvironment pointer” on page 189 below) to call this wrapper.

Telling Java you are finished with a temporary object

If you have created an object using a Java constructor, or if you have called a Java
method that returned an object to you, this object will only be available to be
destroyed by Java’s garbage collection when it knows you do not need the object
any more. This will happen for a native method (called by java) when the native
method returns, but otherwise it will never happen unless you explicitly inform
Java that you no longer need the object. You do this by calling the RPG wrapper
procedure freeLocalRef.

CALLP freelLocalRef (JINIEnv_P : string);

[Figure 87 on page 188| contains the sample source code for freeLocalRef.

Chapter 11. RPG and the eBusiness World 187

/% freelLocalRef */
/2y */

P freelLocalRef...

P B EXPORT

D freeLocalRef...

D PI

D env * VALUE

D TocalRef 0 CLASS (*JAVA

D : 'java.lang.Object')
D VALUE

/free
JjniEnv_P = env;
DeleteLocalRef (env : TocalRef);

/end-free

P freeLocalRef...
P E

Figure 87. Source Code for freeLocalRef

Note: You need the JNI environment pointer (described in [‘Obtaining the JNI|
lenvironment pointer” on page 189 below) to call this wrapper.

Telling Java you want an object to be permanent

If you have a reference to a Java object that was either passed to you as a
parameter or was created by calling a Java method or constructor, and you want to
use that object after your native method returns, you must tell Java that you want
the object to be permanent, or "global”. Do this by calling the RPG wrapper
procedure getNewGlobalRef and saving the result in a global variable.

EVAL globalString = getNewGlobalRef (JNIENV_P : string);

contains the sample source code for getNewGlobalRef.

/gy */
/* getNewGlobalRef */
/gy */
P getNewGlobalRef...
P B EXPORT
D getNewGlobalRef...
D PI 0 CLASS (*JAVA
D : 'java.lang.0Object')
D env * VALUE
D TocalRef 0 CLASS (*JAVA
D : 'java.lang.Object')
D VALUE
/free
jniEnv_P = env;
return NewGlobalRef (env : localRef);
/end-free
P getNewGlobalRef...
P E

Figure 88. Source Code for getNewGlobalRef

Note: You need the JNI environment pointer (described in [“Obtaining the JNI|
lenvironment pointer” on page 189|below) to call this wrapper.

188 ILE RPG Programmer’s Guide

Telling Java you are finished with a permanent object

If you have created a global reference, and you know that you no longer need this
object, then you should tell Java that as far as you are concerned, the object can be
destroyed when Java next performs its garbage collection. (The object will only be
destroyed if there are no other global references to it, and if there are no other
references within Java itself.) To tell Java that you no longer need the reference to
the object, call the RPG wrapper procedure freeGlobalRef .

CALLP freeGlobalRef (JINIEnv_P : globalString);

contains sample source code for freeGlobalRef.

/2y */
/* freeGlobalRef */
2 */
P freeGlobalRef...
P B EXPORT
D freeGlobalRef...
D PI
D env * VALUE
D globalRef 0 CLASS (*JAVA
D : 'java.lang.0Object')
D VALUE
/free
jniEnv_P = env;
DeleteGlobalRef (env : globalRef);
/end-free
P freeGlobalRef...
P E

Figure 89. Source Code for freeGlobalRef

Note: You need the JNI environment pointer (described in [“Obtaining the JNI|
lenvironment pointer”| below) to call this wrapper.

Creating the Java Virtual Machine (JVM)

If the JVM has not already been created when your RPG code is ready to call a
Java method, RPG will create the JVM for you, using the default classpath plus the
classpath in your CLASSPATH environment variable. However, if you want to
create the JVM yourself, you can see an example of this coding in the last part of
[Figure 90 on page 190}

Obtaining the JNI environment pointer

If you need to call any JNI functions, use the /COPY file JNI from
QSYSINC/QRPGLESRC. Most of the JNI functions are called through a procedure
pointer. The procedure pointers are part of a data structure that it itself based on a
pointer called the "JNI environment pointer”. This pointer is called JNIEnv_P in the
JNI /COPY file. To obtain this pointer, call the JNI wrapper procedure getJniEnv.

EVAL JNIEnv_P = getJniEnv();

[Figure 90 on page 190| contains sample source code for getJniEnv.

Chapter 11. RPG and the eBusiness World 189

getdniEnv - attach-to or start the JVM

*
*

*
* Parameters:
* 1. inputOpts - string of options separated by whatever the
* last character in the string is.
* For example
* -Djava.pool.size=800;-Dcompile=none;
* - ignored if the JVM is already started
* - classpath is taken from the CLASSPATH environment
* variable, but it could be passed to this procedure
* using the -Djava.class.path option.
* Sample calls:
* env = getJniEnv() // take the defaults
* env = getJniEnv('-Djava.poolsize=800;"
* + '-Dcompile=none;") // specify 2 options
* env = getJniknv('-Djava.poolsize=800!"
* + '-Dcompile=none!") // use ! as separator
*
e S ——
P getdniEnv b export
D getdniEnv pi *
D inputOpts 65535a varying const options(*nopass)
D env S
* inz(*null)
/free
env = attachdvm();
if (env = *null);
if %parms() = 0
or %len(inputOpts) = 0;
env = startdvm();
else;
env = startJvm(inputOpts);
endif;
endif;
return env;
/end-free
P getJniEnv e

Figure 90. Source Code for getJniEnv (Part 1 of 6)

190 ILE RPG Programmer’s Guide

* startdvm - try to start the JVM

*

* Parameters:

* 1. inputOpts - string of options separated by whatever the
* first character in the string is

* - ignored if the JVM is already started

*

P startdvm b export
D startdvm pi *
D inputOptsP 65535a varying const options(*nopass)
D initArgs ds likeds (JavaVMInitArgs)
D options ds Tikeds (JavaVMOption) occurs(10)
D jvm s 1ike(JavaVM_p)
D env s Tike (JNIENV_p) inz(*null)
D rc s 10i 0
D len s 107 0
D prefix s 100a varying
D pOptions s * inz(%addr (options))
D i s 10i 0
D classpath S 65535a varying

* For handling the input options
D splitChar s la
D pos s 10i 0
D nextPos s 10i 0
D inputOpts s 65535a varying
D inputOptsPtr s *
D freeThisOccur s n dim(%elem(options)) inz(*off)
/free

monitor;

initArgs = *allx'00';
JINI_GetDefaultJavaVMInitArgs (%addr(initArgs));
initArgs.version = JNI_VERSION_1_2;
// add the classpath option, if necessary
classpath = getClasspath();
if (%1en(classpath) > 0);
initArgs.nOptions = initArgs.nOptions + 1;
%occur (options) = initArgs.nOptions;
freeThisOccur(initArgs.nOptions) = *on;
options = *allx'00"';

prefix = '-Djava.class.path=:';
len = %len(prefix) + %len(classpath) + 1;
options.optionString = %alloc (len);
%str(options.optionString : len) =
cvtToAscii(prefix)
+ cvtToAscii(classpath);
endif;

Figure 90. Source Code for getJniEnv (Part 2 of 6)

Chapter 11. RPG and the eBusiness World 191

192

// add any other options that were passed in
if %parms > 0
and %len(inputOptsP) > 0;
inputOpts = cvtToAscii(inputOptsP);
inputOptsPtr = %addr(inputOpts) + 2;
splitChar = %subst(inputOpts : %len(inputOpts) : 1);
pos = 1;
dow pos <= %len(inputOpts);
nextPos = %scan(splitChar : inputOpts : pos);
len = nextPos - pos;
%subst (inputOpts : nextPos : 1) = x'00';
initArgs.nOptions = initArgs.nOptions + 1;
%occur (options) = initArgs.nOptions;
options = *all1x'00';
options.optionString = inputOptsPtr + pos - 1;

pos = nextPos + 1;
enddo;
endif;

if initArgs.nOptions > 0;
initArgs.options = pOptions;
endif;

rc = JNI_CreateJavaVM (jvm : env : %addr(initArgs));
if (rc <> 0);

env = *null;

endif;

rc = JNI_CreateJavaVM (jvm : env : %addr(initArgs));
if (rc <> 0);
env = *null;
endif;

on-error;
env = *null;
endmon;

// free any storage allocated for the options

for i = 1 to initArgs.nOptions;
if (freeThisOccur(i));
%occur (options) = 1i;
dealloc(n) options.optionString;
endif;
endfor;

return env;

/end-free
P startdvm e

Figure 90. Source Code for getJniEnv (Part 3 of 6)

ILE RPG Programmer’s Guide

P attachdvm b export

D attachdvm pi *

D attachArgs ds Tikeds (JavaVMAttachArgs)
D jvm s 1ike(JavaVM_p) dim(1)

D nVms s like(jsize)

D env s * inz(*null)

D rc s 101 0

/free

monitor;

rc = JNI_GetCreatedJavaVMs(jvm : 1 : nVms);
if (rc <> 0);

return *null;
endif;

if (nVms = 0);

return *null;
endif;
JavaVM_P = jvm(1);
attachArgs = *allx'00';
attachArgs.version = JNI_VERSION_1_2;

rc = AttachCurrentThread (jvm(1) : env : %addr(attachArgs));
if (rc <> 0);

env = *null;
endif;

on-error;
env = *null;
endmon;;

return env;

/end-free
P attachdvm e

Figure 90. Source Code for getJniEnv (Part 4 of 6)

P getClasspath B export

D getClasspath PI 65535A varying

D QpOzGetEnvNoInit...

D PR * extproc('QpOzGetEnvNoInit')
D name * value options(*string)

D envVarP S *

/free

envvarP = QpOzGetEnvNoInit('CLASSPATH');
if (envvarP = *NULL);
return '';

else;
return %str(envvarP : 65535);

endif;

/end-free

P getClasspath E

Figure 90. Source Code for getJniEnv (Part 5 of 6)

Chapter 11. RPG and the eBusiness World

193

*
(@]
<
+
—
o
>
w
@)
=
.

1
(@]
o
>
<
)
=
+
-
3
o
3
"
@
(e}
=
-t
(ep]
+
o
>
w
(ep]
—
—

*

P cvtToAscii B export

D cvtToAscii PI 65535A varying

D input 65535A const varying

D QDCXLATE PR extpgm (' QDCXLATE")
D len 5P 0 const

D cnvData 65535A options(*varsize)
D cnvThl 10A const

D cnvLib 160A const

D retval S like(input)

D retvalRef S 1A based(retvalPtr)
/free

retval = input;

retvalPtr = %addr(retval) + 2; // set ptr after the Tength part
QDCXLATE (%1en(retval): retvalRef : 'QASCII': 'QSYS');

return retval;

/end-free

P cvtToAscii E

Figure 90. Source Code for getJniEnv (Part 6 of 6)

194 ILE RPG Programmer’s Guide

Java class

class TestClass{
String name = "name not set";

TestClass (byte name[]) {

this.name = new String(name);
}

void setName (byte name[]) {
this.name = new String(name);
}

String getName () {
return this.name;
}

}

RPG program

H THREAD (*SERIALIZE)
H BNDDIR('JAVAUTIL')

// (JAVAUTIL is assumed to the binding directory that Tists
// the service program containing the procedures described

// below)
/copy JAVAUTIL

// (JAVAUTIL is assumed to be the source member containing the
// prototypes for the procedures described below)

D TestClass C

D StringClass C

D newTest PR 0
D

D name 25A
D getName PR 0
D

D

D setName PR

D

D newName 25A
D newString PR 0
D

D value 65535A
D nameValue PR 25A
D

D

D myTestObj S

D myString S

D env S

/free

'TestClass'
'java.lang.String'
EXTPROC (*JAVA : TestClass

: *CONSTRUCTOR)
VARYING CONST

CLASS (*JAVA : StringClass)

extproc(*JAVA : TestClass
: 'getName')

extproc(*JAVA : TestClass
: 'setName')
VARYING CONST

EXTPROC(*JAVA : StringClass
: *CONSTRUCTOR)
VARYING CONST

VARYING
extproc(*JAVA : StringClass
: 'getBytes')

LIKE (newTest)
LIKE (newString)
LIKE (getJniEnv)

// Let the RPG runtime start the JVM, by calling a
// Java method before calling any JNI functions

myString = newString ('');

// Get the JNI environment pointer so that JNI functions

// can be called. The "myString" object should be freed now

Figure 91. Using the wrappers for the JNI functions (Part 1 of 2)

Chapter 11. RPG and the eBusiness World

195

env = getJniEnv();
freeLocalRef (env : myString);

// Set the beginning marker for an "object group"
// so that any objects created between now and the
// "end object group" can be freed all at once.
beginObjGroup (env);

// Create a Test object to work with

// We do not want this object to be freed with the
// other objects in the object group, so we make it
// a permanent object

myTestObj = newTest ('RPG Dept');

myTestObj = getNewGlobalRef (env : myTestObj);

// Get the current "name" from the Test object

// This creates a local reference to the Name object
myString = getName (myTestObj);

dsply (nameValue(myString));

// Change the name
setName (myTestObj : 'RPG Department');

// Get the current "name" again. This will cause

// access to the previous local reference to the old name
// to be lost, making it impossible for this RPG

// program to explicitly free the object. If the object

// is never freed by this RPG program, Java could never

// do garbage-collection on it, even though the old String
// object is not needed any more. However, endObjGroup

// will free the old reference, allowing garbage collection
myString = getName (myTestObj);

dsply (nameValue(myString));

// End the object group. This will free all Tocal

// references created since the previous beginObjGroup call.
// This includes the two references created by the calls

// to getName.

endObjGroup (env);

// Since the original Test object was made global, it can
// still be used.
setName (myTestObj : 'RPG Compiler Dept');

// The original Test object must be freed explicitly
// Note: An alternative way to handle this situation

// would be to use nested object groups, removing
// the need to create a global reference
// beginObjGroup ------=------ .
// create myTestObj
// beginObjGroup --------- .
// e
// endObjGroup ---------
// use myTestObj again
// endObjGroup ------------ '
freeGlobalRef (env : myTestObj);
return;
/end-free

Figure 91. Using the wrappers for the JNI functions (Part 2 of 2)

196 ILE RPG Programmer’s Guide

Handling JNI Exceptions

In ILE RPG, an exception causes an exception message to be signaled. Programs do
not need to check explicitly for exceptions; instead, you can code exception
handlers to get control when an exception occurs. You only have to handle JNI
exceptions yourself when you are making your own JNI calls. When a call to a JNI
function results in an unhandled Java exception, there is no accompanying
exception message. Instead, the JNI programmer must check whether an exception
occurred after each call to a JNI function. This is done by calling the
ExceptionOccurred JNI function, which returns a Java Exception object (or the Java
null object which has a value of 0 in the JNI). Once you have determined that an
exception has occurred, the only JNI calls you can make are ExceptionClear and
ExceptionDescribe. After you have called ExceptionClear, you are free to make JNI
calls again. If you make a non-exception JNI call before calling ExceptionClear, the
exception will disappear, and you will not be able to get any further details. RPG
always converts a JNI exception into an RPG exception (it signals one of the
RNX030x messages, depending on the RPG function that was being done at the
time).

Tip!
You may want to include this type of exception-handling code in your
versions of the JNI wrapper procedures above.

Additional Considerations

Common Runtime Errors

The compiler will not attempt to resolve classes at compile time. If a class cannot
be located at run time, a runtime error will occur. It will indicate that an
UnresolvedLinkException object was received from the Java environment.

The compiler does no type checking of parameters at compile time. If there is a
conflict between the prototype and the method being called, an error will be
received at run time.

Debugging Hints

A Java object is viewed as an object reference in RPG. This object reference is an
integer value, which behaves like a pointer. Normal object references are positive
values, assigned in increasing order from 1. Global references, which can be
created using JNI function NewGlobalRef , are negative values. These values are
assigned in increasing order from the smallest negative number (-2147483647).

Normally, these values are not visible within the RPG code. However, this
information may be useful when debugging RPG code.

Creating String objects in RPG

If you need a String object to pass to a Java method, you can create it like this:

D newString PR 0 EXTPROC(*JAVA
D : 'java.lang.String'
D : *CONSTRUCTOR)
D value 65535A CONST VARYING
D string S Tike(jstring)
/free

string = newString ('abcde');

/end-free

Chapter 11. RPG and the eBusiness World 197

H o H H H H*

H# H*

H o H H*

H# H*

H o FH H H

198

If you want to create a string with UCS-2 data or graphic data, use this code:

D newStringC PR 0 EXTPROC(*JAVA
D : 'java.lang.String'
D : *CONSTRUCTOR)
D value 16383C CONST VARYING
D string S Tike(jstring)
D graphicData S 15G
D ucs2Data S 100C
/free

string = newStringC (%UCS2(graphicData));

string = newStringC (ucs2Data);
/end-free

Getting information about exceptions thrown by called Java
methods

When RPG calls a Java method that ends with an exception, RPG handles the Java
exception and signals escape message RNX0301. This message has the string value
of the Exception, but it does not have the trace information that is normally
available when Java calls a method that ends with an exception.

If you want to see the Java exception trace information, do the following:
1. ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE('Y’)

Note: This step must be done before the JVM is started.

2. Ensure that the 0s400.stderr option in your SystemProperties.default file is set
to file:myfilename, for example 0s400.stderr=file:/home/mydir/stderr.txt. See
[“Controlling how the Java Virtual Machine is set up” on page 180

Note: This step must be done before the JVM is started.
3. ADDENVVAR ENVVAR(QIBM_RPG_JAVA_EXCP_TRACE) VALUE('Y’)

Note: This step can be done at any time. To stop the exception trace being
done by RPG, you can remove the environment variable, or set it to a
value other than "Y".

4. After the exception has occurred, the trace information will be in the file that
you specified in the 0s400.stderr option.

Advanced JNI Coding

The RPG IV compiler support for calling Java methods and for writing RPG native
methods hides almost all the JNI coding from the RPG programmer. However,

RPG’s support is not necessarily the most efficient. For example, it always converts
arrays between RPG and Java on calls and on entry and exit from native methods,
but you may want to handle your own array conversions to improve performance.

The RPG support only gives you access to Java methods. If you want to access the
fields in a class, you would have to add "get” and "set” methods to the Java class,
or do JNI coding (see [Accessing Fields in Java Classes” on page 199).

[Figure 92 on page 199|is an example of a JNI call in RPG.

ILE RPG Programmer’s Guide

/COPY JNI
D objectId S like(jobject)
D methodId s Tike(jmethodID)
D string S Tike(jstring)
D parms s Tike(jvalue) dim(2)
/free
jvalue_P = %addr(parms(1));
jvalue.i = 10;
jvalue P = %addr(parms(2));
jvalue.l = string;
CallVoidMethodA (JNIEnv_P : objectId : methodId : parms);
/end-free

Figure 92. NI Call in RPG
Note that the pointers JNIEnv_P and jvalue_P are defined in the JNI /COPY file.

Converting Java Character Data

In Java, character data is ASCII rather than EBCDIC, so you will have to ensure
that class names, method names, and field names are in ASCII for calls to JNI
functions like FindClass. Character data that comes from Java is ASCII. To use it in
your RPG program, you will probably want to convert it to EBCDIC. The RPG
compiler handles these conversions for you, but if you are making the JNI calls
yourself, you will have to do the conversions between ASCII and EBSDIC.

Accessing Fields in Java Classes

RPG only supports calling Java methods; it does not support accessing Java fields.
Normally, fields can be accessed through "get” and "set” methods, but it is also
possible to access fields using JNI calls. Here is an example showing JNI calls
necessary to access the fields of a Java class or object.

Note: This example is intended to be an example of using the JNI. It is not
intended to be a recommendation to access fields directly rather than using
"get” and "set” methods.

This example shows how to use JNI to access the fields of a
class or an object.

This program creates a Rectangle object and accesses the
width and height variables directly, using JNI calls.

In this particular case, the getWidth(), getHeight,
setWidth() and setHeight() methods could have been used
to access these fields, avoiding the use of JNI calls.

* ok ok X Xk 3k ok X

H THREAD (*SERIALIZE)

/DEFINE JNI_COPY_FIELD_FUNCTIONS
/COPY JNI

/COPY JNIRPG_PR

Figure 93. Using JNI to Access Fields of Java Classes and Objects (Part 1 of 3)

Chapter 11. RPG and the eBusiness World 199

200

D Rectangle C 'java.awt.Rectangle’
D NewRectangle PR 0 EXTPROC(*JAVA

D : Rectangle

D : *CONSTRUCTOR)

D X 10I 0 VALUE

D y 10I 0 VALUE

D width 10I 0 VALUE

D height 10I 0 VALUE

K o o - - - - - - S e S e e e e s e e e e .
* Constants with ASCII representations of Java names

g g g e S S g S e S S ——
* One way to determine these values is to use %UCS2 to convert

* a character value to UCS-2, and display the result in hex

* in the debugger.

*

* The ASCII value is in every second byte of the UCS-2 characters.
*

* For example, %UCS2('abc') = X'006100620063"

* - - -

* The ASCII representation of 'abc' is X'616263"

K o o - -
D ASCII_I C x'49"

D ASCII x C x'78'

D ASCII_y C x'79'

D ASCII_width C X'7769647468"'

D ASCII_height C X'686569676874"

* Note that this is 'java/awt/Rectangle', not 'java.awt.Rectangle'
* because the JNI uses slash as a separator.
D ASCII_Rectangle...

D C X'6A6176612F6177742F52656-

D 374616E676C65"

g g g e S S g S e S S ——
* Cancel handling

K - ———————————————————————————_————————————
D EnableCanHdlr PR EXTPROC('CEERTX")

D Handler * CONST PROCPTR

D CommArea * CONST OPTIONS (*OMIT)

D Feedback 12A OPTIONS(*OMIT)

D CanHd1r PR

D CommArea * CONST

K o o = = = = = = = = = = = ———————
* Variables and procedures

K o o o
D rect s 0 CLASS(*JAVA : Rectangle)

D x S 10I 0

Dy S 101 0

D rectClass S LIKE(jclass)

D fieldId S LIKE(jfieldID)

D msg S 52A

D Cleanup PR

g g g e gy e S e S S S S S ——

c CALLP EnableCanHd1r (%PADDR(CanHd1r)
c : *OMIT : *OMIT)

* Create a new rectangle with x,y co-ordinates (5, 15),
* width 100 and height 200.

Figure 93. Using JNI to Access Fields of Java Classes and Objects (Part 2 of 3)

ILE RPG Programmer’s Guide

c EVAL JNIEnv_P = getdniEnv ()
c EVAL rectClass = FindClass (JNIEnv_P
c : ASCII_Rectangle)

c eval fieldId = GetFieldID (JINIEnv_P

C : rectClass

C : ASCII_width
c : ASCII_I)

C eval width = GetIntField (INIEnv_P

C : rect

C : fieldld)

c eval fieldId = GetFieldID (JINIEnv_P

C : rectClass

C : ASCII_height
c : ASCII_I)

C eval height = GetIntField (JNIEnv_P

(s : rect

(W : fieldld)

c eval msg = 'The rectangle has dimensions ('
(0 + Strim(%editc(width : '1'))

c + l’]

C + %trim(%editc(height : '1'))
c + I)I

C msg dsply

C callp Cleanup()
(8 eval *INLR = '1'

P Cleanup B

C if rect <> *NULL and

c JINIEnv_P <> *NULL

C callp DeleteLocalRef(JNIEnv_P : rect)
(s endif

C eval rect = *NULL

c eval JNIEnv_P = *NULL

P Cleanup E

P CanHdlr B

D CanHdl1r PI

D CommArea * CONST
C callp Cleanup()

P CanHdlr E

Figure 93. Using JNI to Access Fields of Java Classes and Objects (Part 3 of 3)

Calling Java Methods Using the JNI Rather than RPG *JAVA
Prototypes

The first three parameters are always the same:

1. the JNI environment pointer

2. the object (for instance methods) or the class (for static methods)
3. the method

Chapter 11. RPG and the eBusiness World

201

202

The method-specific parameters are coded after these three parameters, in one of
three different ways. For example, if the method does not return a value (the
return type is "void”),

CallVoidMethod:
Choose this way if you are going to call the same method many times,
since it makes the method very easy to call. This expects the parameters to
be passed normally. To call this JNI function, an RPG programmer would
copy the CallVoidMethod prototype from the JNI /COPY file, and code
additional parameters. These functions require at least one parameter to be
coded with OPTIONS(*NOPASS). If you don’t want to make the method
parameters optional, add an extra “dummy” parameter with
OPTIONS(*NOPASS). For example, for the method

void mymethod (int Ten, String str);

you could code the following prototype for CallVoidMethod:

D CallMyMethod PR EXTPROC (*CWIDEN

D : JNINativelnterface.
D CallVoidMethod_P)

D env LIKE(JINIEnv_P) VALUE
D obj LIKE(jobject) VALUE
D methodID LIKE (jmethodID) VALUE
D len LIKE(jint) VALUE

D str LIKE(jstring) CONST
D dummy la OPTIONS (*NOPASS)

CallMyMethod (JINIEnv_P : objectId : methodId : 10 : string);
Figure 94. Sample RPG Code for Calling CallVoidMethod

CallVoidMethodA:
Choose this way if you do not want to create a separate prototype for
calling a method. This expects an array of jvalue structures, with each
element of the array holding one parameter. [Figure 92 on page 199 above is
an example of this.

CallVoidMethodV:
Do not use this in RPG code. It expects a C construct that is extremely
awkward to code in RPG.

The actual function to call depends on the type of the return value. For example, if
the method returns an integer, you would use CallintMethodA. To get the class
and methodID parameters for these functions, use the FindClass and GetMethodID
or GetStaticMethodID.

Note: When calling the JNI directly, the class names must be specified with a slash
(/) rather than a period (.) as the separator. For example, use
‘java/lang/String” rather than ‘java.lang.String’.

Calling RPG programs from Java using PCML

An RPG program or procedure can be called from Java using a Program Call
Markup Language (PCML) source file that describes the parameters for the RPG
program or procedure. The Java application can use PCML by constructing a
ProgramCallDocument object with a reference to the PCML source file.

ILE RPG Programmer’s Guide

The ILE RPG compiler will generate PCML source for your ILE RPG program or
module when you specify the PGMINFO(*PCML) compiler parameter along with
the INFOSTMF compiler parameter to specify the name of an IFS output file to
receive the generated PCML. For CRTBNDRPG, PCML is generated based on the
contents of the *ENTRY PLIST or the Procedure Interface of the main procedure.
For CRTRPGMOD, PCML is also generated based on the Procedure Interfaces of
any exported subprocedures (except Java native methods).

When you use CRTRPGMOD, and create a service program, you specify the
service program in your Java code using the setPath(String) method of the
ProgramCallDocument class. For example:

AS400 as400;

ProgramCallDocument pcd;

String path = "/QSYS.LIB/MYLIB.LIB/MYSRVPGM.SRVPGM";

as400 = new AS400 ();

pcd = new ProgramCallDocument (as400, "myModule");

pcd.setPath ("MYFUNCTION", path);

pcd.setValue ("MYFUNCTION.PARM1", "abc");

rc = pcd.callProgram("MYFUNCTION");

PCML Restrictions

The following are restrictions imposed by PCML regarding parameter and return
value types.

* The following data types are not supported by PCML:
- Date
— Time
- Timestamp
— Pointer
— Procedure Pointer
— 1-Byte Integer
- 8-byte Unsigned Integer
* Return values and parameters passed by value can only be 4 byte integers (10i
0).
¢ Varying-length arrays, and data structures containing varying-length subfields
are not supported.

* When a data structure is used as a parameter for a *ENTRY PLIST, or a
prototyped parameter is defined with LIKEDS, some PCML restrictions apply:

— The data structure may not have any overlapping subfields.

— The subfields must be coded in order; that is, the start position of each
subfield must follow the end position of the previous subfield.

— If there are gaps between the subfields, the generated PCML for the structure
will have subfields named "_unnamed_1", "_unnamed_2" etc, of type "char”.

* RPG does not have the concept of output-only parameters. Any parameters that
do not have CONST or VALUE coded have a usage of "inputoutput”. For
inputoutput parameters, the ProgramCallDocument class requires the input
values for the parameter to be set before the program can be called. If the
parameter is truly an output parameter, you should edit the PCML to change
"inputoutput” to "output”.

The compile will fail if you generate PCML for a program or module that violates
one of the restrictions. The PCML will be generated, but it will contain error
messages as comments. For example, if you use a Date field as a parameter, the
PCML for that parameter might look like this:

Chapter 11. RPG and the eBusiness World 203

<data name="DATE" type=" " length="10" usage="input" />
<!-- Error: unsupported data type -->

204 ILE RPG Programmer’s Guide

Part 3. Debugging and Exception Handling

This section describes how to:

* Debug an Integrated Language Environment application by using the Integrated
Language Environment source debugger

* Write programs that handle exceptions
¢ Obtain a dump

© Copyright IBM Corp. 1994, 2006 205

206 ILE RPG Programmer’s Guide

Chapter 12. Debugging Programs

Debugging allows you to detect, diagnose, and eliminate run-time errors in a
program. You can debug ILE and OPM programs using the ILE source debugger.

Use WebSphere Development Studio Client for iSeries. This is the recommended
method and documentation about debugging programs appears in that product’s
online help. With the integrated iSeries debugger you can debug your program
running on the iSeries server from a graphical user interface on your workstation.
You can also set breakpoints directly in your source before running the debugger.
The integrated iSeries debugger client user interface also enables you to control
program execution. For example, you can run your program, set line, watch, and
service entry point breakpoints, step through program instructions, examine
variables, and examine the call stack. You can also debug multiple applications,
even if they are written in different languages, from a single debugger window.
Each session you debug is listed separately in the Debug view.

This chapter describes how to use the ILE source debugger to:
* Prepare your ILE RPG program for debugging

 Start a debug session

* Add and remove programs from a debug session

* View the program source from a debug session

¢ Set and remove breakpoints and watch conditions

* Step through a program

* Display and change the value of fields

 Display the attributes of fields

* Equate a shorthand name to a field, expression, or debug command

While debugging and testing your programs, ensure that your library list is
changed to direct the programs to a test library containing test data so that any
existing real data is not affected.

You can prevent database files in production libraries from being modified
unintentionally by using one of the following commands:

¢ Use the Start Debug (STRDBG) command and retain the default *NO for the
UPDPROD parameter

¢ Use the Change Debug (CHGDBG) command and specify the *NO value of the
UPDPROD parameter

* Use the SET debug command in the Display Module Source display and specify
UPDPROD NO

See the chapter on debugging in ILE Concepts for more information on the ILE
source debugger (including authority required to debug a program or service
program and the effects of optimization levels).

If you are unfamiliar with using the debugger, follow these steps to create and
debug a program. The source for the program PROOF is available in QGPL on all
systems.

1. ===> CRTBNDRPG QTEMP/PROOF DBGVIEW(*ALL)

© Copyright IBM Corp. 1994, 2006 207

The ILE Source Debugger

2. ===> STRDBG QTEMP/PROOF

3. Set a breakpoint on one of the calculation lines by putting your cursor on the
line and pressing F6

4. Exit the DSPMODSRC screen with F12

5. ===> CALL QTEMP/PROOF
You will see the source again, with your breakpoint line highlighted .

6. Move your cursor over one of the variables in the program source (Definition,
Input, Calculation or Output Specifications) and press F11. The value of the
variable will appear at the bottom of the screen

7. Step through the rest of the program by pressing F10, or run to the end with
F12

8.

After setting breakpoints, you do not have to call the program directly. You can
start an application that will eventually call the program.

If you step through the whole program, it will step through the Input and Output
specifications. If you prefer to skip over Input and Output specifications, you can
specify OPTION(*NODEBUGIO) in your Header specification or when you
compile your program.

More details on these steps will be given in the rest of this chapter.

The ILE Source Debugger

208

The ILE source debugger is used to detect errors in and eliminate errors from
program objects and service programs. Using debug commands with any ILE
program that contains debug data you can:

* View the program source or change the debug view

* Set and remove breakpoints and watch conditions

* Step through a specified number of statements

* Display or change the value of fields, structures, and arrays

* Equate a shorthand name with a field, expression, or debug command

Before you can use the source debugger, you must select a debug view when you
create a module object or program object using CRTRPGMOD or CRTBNDRPG.
After starting the debugger you can set breakpoints and then call the program.

When a program stops because of a breakpoint or a step command, the pertinent
module object’s view is shown on the display at the point where the program
stopped. At this point you can perform other actions such as displaying or
changing field values.

Note: If your program has been optimized, you can still display fields, but their

values may not be reliable. To ensure that the content of fields or data

structures contain their correct (current) values, specify the NOOPT keyword
on the appropriate Definition specification. To change the optimization level,
see [‘Changing the Optimization Level” on page 89.

Debug Commands

Many debug commands are available for use with the ILE source debugger. The
debug commands and their parameters are entered on the debug command line

ILE RPG Programmer’s Guide

The ILE Source Debugger

displayed on the bottom of the Display Module Source and Evaluate Expression
displays. These commands can be entered in uppercase, lowercase, or mixed case.

Note: The debug commands entered on the debug command line are not CL
commands.

The debug commands are listed below.

Command

ATTR

BREAK

CLEAR

DISPLAY

EQUATE

EVAL

QUAL

SET

STEP

TBREAK

THREAD

WATCH

FIND

ur

DOWN

Description

Permits you to display the attributes of a variable. The attributes
are the size and type of the variable as recorded in the debug
symbol table.

Permits you to enter either an unconditional or conditional job
breakpoint at a position in the program being tested. Use BREAK
line-number WHEN expression to enter a conditional job breakpoint.

Permits you to remove conditional and unconditional breakpoints,
or to remove one or all active watch conditions.

Allows you to display the names and definitions assigned by using
the EQUATE command. It also allows you to display a different
source module than the one currently shown on the Display
Module Source display. The module object must exist in the current
program object.

Allows you to assign an expression, variable, or debug command
to a name for shorthand use.

Allows you to display or change the value of a variable or to
display the value of expressions, records, structures, or arrays.

Allows you to define the scope of variables that appear in
subsequent EVAL or WATCH commands. Currently, it does not
apply to ILE RPG.

Allows you to change debug options, such as the ability to update
production files, specify if find operations are to be case sensitive,
or to enable OPM source debug support.

Allows you to run one or more statements of the procedure being
debugged.

Permits you to enter either an unconditional or conditional
breakpoint in the current thread at a position in the program being
tested.

Allows you to display the Work with Debugged Threads display or
change the current thread.

Allows you to request a breakpoint when the contents of a
specified storage location is changed from its current value.

Searches forwards or backwards in the module currently displayed
for a specified line number or string or text.

Moves the displayed window of source towards the beginning of
the view by the amount entered.

Moves the displayed window of source towards the end of the
view by the amount entered.

Chapter 12. Debugging Programs 209

The ILE Source Debugger

LEFT Moves the displayed window of source to the left by the number
of columns entered.

RIGHT Moves the displayed window of source to the right by the number
of columns entered.

TOP Positions the view to show the first line.

BOTTOM Positions the view to show the last line.

NEXT Positions the view to the next breakpoint in the source currently
displayed.

PREVIOUS Positions the view to the previous breakpoint in the source
currently displayed.

HELP Shows the online help information for the available source
debugger commands.

The online help for the ILE source debugger describes the debug commands,
explains their allowed abbreviations, and provides syntax diagrams for each
command. It also provides examples in each of the ILE languages of displaying
and changing variables using the source debugger.

Follow these steps to access the online help information for ILE RPG:

1. Enter STRDBG 1ibrary-name/program-name where program-name is any ILE
program with debug data in library library-name.

2. Enter DSPMODSRC to show the source view if this screen does not appear
following step 1.

3. Enter PF1 (Help)

4. Put your cursor on EVAL and press enter to bring up the EVAL command help.

5. Put your cursor on Expressions and press enter to bring up help for
expressions.

6. Put your cursor on RPG Tanguage and press enter to bring up RPG language
examples.

7. From the help panel which appears, you can select a number of topics
pertaining to RPG, such as displaying variables, displaying table, and
displaying multiple-occurrence data structures.

Preparing a Program for Debugging

210

A program or module must have debug data available if you are to debug it. Since
debug data is created during compilation, you specify whether a module is to
contain debug data when you create it using CRTBNDRPG or CRTRPGMOD. You
use the DBGVIEW parameter on either of these commands to indicate what type of
data (if any) is to be created during compilation.

The type of debug data that can be associated with a module is referred to as a
debug view. You can create one of the following views for each module that you
want to debug. They are:

* Root source view
* COPY source view
¢ Listing view

e Statement view

ILE RPG Programmer’s Guide

Preparing a Program for Debugging

The default value for both CRTBNDRPG and CRTRPGMOD is to create a
statement view. This view provides the closest level of debug support to previous
releases.

If you do not want debug data to be included with the module or if you want
faster compilation time, specify DBGVIEW(*NONE) when the module is created.
However, a formatted dump will not list the values of program variables when no
debug data is available.

Note also that the storage requirements for a module or program will vary
somewhat depending on the type of debug data included with it. The following
values for the DBGVIEW parameter are listed in increasing order based on their
effect on secondary storage requirements:

1. *NONE
2. *STMT
3. *SOURCE
4. *COPY
5. *LIST
6. *ALL

Once you have created a module with debug data and bound it into a program
object (*PGM), you can start to debug your program.

Note: An OPM program must be compiled with OPTION(*SRCDBG) or
OPTION(*LSTDBG) in order to debug it using the ILE source debugger. For
more information, see [“Starting the ILE Source Debugger” on page 214

The debug views are summarized in the following table:

Table 31. Debug Views

Debug View Debug Data DBGVIEW Parameter
Value

None No debug data *NONE

Statement view No source displayed (use statement numbers |*STMT

(default) in source section of compiler listing)

Root source view Root source member information *SOURCE

COPY source view |Root source member and /COPY members *COPY
information

Listing view Compiler listing (dependent on OPTION *LIST
parameter)

All Data from root source, COPY source, and *ALL
listing views

Creating a Root Source View

A root source view contains text from the root source member. This view does not
contain any /COPY members. Furthermore, it is not available if the root source
member is a DDM file.

You create a root source view to debug a module by using the *SOURCE, *COPY

or *ALL options on the DBGVIEW parameter for either the CRTRPGMOD or
CRTBNDRPG commands when you create the module.

Chapter 12. Debugging Programs 211

Preparing a Program for Debugging

212

The compiler creates the root source view while the module object *MODULE) is
being compiled. The root source view is created using references to locations of
text in the root source member rather than copying the text of the member into the
module object. For this reason, you should not modify, rename, or move root
source members between the module creation of these members and the
debugging of the module created from these members. If you do, the views for
these source members may not be usable.

For example, to create a root source view for a program DEBUGEX when using
CRTBNDRPG, type:
CRTBNDRPG PGM(MYLIB/DEBUGEX) SRCFILE(MYLIB/QRPGLESRC)

TEXT('ILE RPG/400 program DEBUGEX')
DBGVIEW (*SOURCE)

To create a root source view for a module DBGEX when using CRTRPGMOD,
type:
CRTRPGMOD MODULE (MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC)

TEXT('Entry module for program DEBUGEX')
DBGVIEW(*SOURCE)

Specifying DBGVIEW(*SOURCE) with either create command creates a root source
view for debugging module DBGEX. By default, a compiler listing with /COPY
members and expanded DDS, as well as other additional information is produced.

Creating a COPY Source View

A COPY source view contains text from the root source member, as well as the
text of all /COPY members expanded into the text of the source. When you use
the COPY view, you can debug the root source member of the program using the
root source view and the /COPY members of the program using the COPY source
view.

The view of the root source member generated by DBGVIEW (*COPY) is the same
view generated by DBGVIEW(*SOURCE). As with the root source view, a COPY
source view is not available if the source file is a DDM file.

You create a COPY source view to debug a module by using the *COPY or *ALL
option on the DBGVIEW parameter.

The compiler creates the COPY view while the module object *MODULE) is being
compiled. The COPY view is created using references to locations of text in the
source members (both root source member and /COPY members) rather than
copying the text of the members into the view. For this reason, you should not
modify, rename, or move source members between the time the module object is
created and the debugging of the module created from these members. If you do,
the views for these source members may not be usable.

For example, to create a source view of a program TEST1 that contains /COPY
members type:
CRTBNDRPG PGM(MYLIB/TEST1) SRCFILE(MYLIB/QRPGLESRC)

TEXT('ILE RPG/400 program TESTL')
DBGVIEW (*COPY)

Specifying DBGVIEW(*COPY) with either create command creates a root source
view with /COPY members for debugging module TEST1. By default, a compiler
listing is produced. The compiler listing will include /COPY members as well,
since OPTION(*SHOWCTPY) is a default value.

ILE RPG Programmer’s Guide

Preparing a Program for Debugging

Creating a Listing View
A listing view contains text similar to the text in the compiler listing that is
produced by the ILE RPG compiler. The information contained in the listing view
is dependent on whether OPTION(*SHOWCPY), OPTION(*EXPDDS), and
OPTION(*SRCSTMT) are specified for either create command.
OPTION(*SHOWCPY) includes /COPY members in the listing;
OPTION(*EXPDDS) includes externally described files. OPTION(*SRCSTMT)
allows the program object to be debugged using the Statement Numbers instead of
the Line Numbers of the compiler listing.

Note: Some information that is available in the compiler listing will not appear on
the listing view. For example, if you specify indentation in the compiler
listing (via the INDENT parameter), the indentation will not appear in the
listing view. If you specify OPTION(*SHOWSKP) in the compiler listing, the
skipped statements will not appear in the listing view.

You create a listing view to debug a module by using the *LIST or *ALL options
on the DBGVIEW parameter for either the CRTRPGMOD or CRTBNDRPG
commands when you create a module.

The compiler creates the listing view while the module object *MODULE) is being
generated. The listing view is created by copying the text of the appropriate source
members into the module object. There is no dependency on the source members
upon which it is based, once the listing view is created.

For example, to create a listing view for a program TEST1 that contains expanded
DDS type:
CRTBNDRPG PGM(MYLIB/TEST1) SRCFILE(MYLIB/QRPGLESRC)

SRCMBR(TEST1) OUTPUT (*PRINT)

TEXT('ILE RPG/400 program TEST1')

OPTION(*EXPDDS) DBGVIEW(*LIST)

Specifying DBGVIEW (*LIST) for the DBGVIEW parameter and *EXPDDS for the
OPTION parameter on either create command creates a listing view with expanded
DDS for debugging the source for TEST1. Note that OUTPUT(*PRINT) and
OPTION(*EXPDDS) are both default values.

Creating a Statement View

A statement view allows the module object to be debugged using statement
numbers and the debug commands. Since the source will not be displayed, you
must make use of statement numbers which are shown in the source section of the
compiler listing. In other words, to effectively use this view, you will need a
compiler listing. In addition, the statement numbers generated for debugging are
dependent on whether *SRCSTMT or *NOSRCSTMT is specified for the OPTION
parameter. “NOSRCSTMT means that statement numbers are assigned sequentially
and are displayed as Line Numbers on the left-most column of the source section
of the compiler listing. *SRCSTMT allows you to request that the compiler use SEU
sequence numbers and source IDs when generating statement numbers for
debugging. The Statement Numbers are shown on the right-most column of the
source section of the compiler listing.

You create a statement view to debug a module by using the *STMT option on the

DBGVIEW parameter for either the CRTRPGMOD or CRTBNDRPG commands
when you create a module.

Chapter 12. Debugging Programs 213

Preparing a Program for Debugging

Use this view when:

* You have storage constraints, but do not want to recompile the module or
program if you need to debug it.

* You are sending compiled objects to other users and want to be able to diagnose
problems in your code using the debugger, but you do not want these users to
see your actual code.

For example, to create a statement view for the program DEBUGEX using
CRTBNDRPG, type:

CRTBNDRPG PGM(MYLIB/DEBUGEX) SRCFILE(MYLIB/QRPGLESRC)
TEXT('ILE RPG/400 program DEBUGEX')

To create a statement view for a module using CRTRPGMOD, type:

CRTRPGMOD MODULE(MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC)
TEXT('Entry module for program DEBUGEX')

By default a compiler listing and a statement view are produced. Using a compiler
listing to obtain the statement numbers, you debug the program using the debug
commands.

If the default values for either create command have been changed, you must
explicitly specify DBGVIEW(*STMT) and OUTPUT(*PRINT).

Starting the ILE Source Debugger

Once you have created the debug view (statement, source, COPY, or listing), you
can begin debugging your application. To start the ILE source debugger, use the
Start Debug (STRDBG) command. Once the debugger is started, it remains active
until you enter the End Debug (ENDDBG) command.

Initially you can add as many as 20 program objects to a debug session by using
the Program (PGM) parameter on the STRDBG command. They can be any
combination of OPM or ILE programs. (Depending on how the OPM programs
were compiled and also on the debug environment settings, you may be able to
debug them by using the ILE source debugger.) In addition, you can initially add
as many as 20 service program objects to a debug session by using the Service
Programs (SRVPGM) parameter on the STRDBG command. The rules for
debugging a service program are the same as those for debugging a program:

* The program or service program must have debug data.

* You must have *CHANGE authority to a program or service program object to
include it in a debug session.

Note: If debugging a program using the COPY or root source view, the source
code must be on the same system as the program object being debugged. In
addition, the source code must be in a library/file(member) with the same
name as when it was compiled.

For an ILE program, the entry module is shown if it has debug data; otherwise, the
first module bound to the ILE program with debug data is shown.

For an OPM program, the first program specified on the STRDBG command is
shown if it has debug data, and the OPMSRC parameter is *YES. That is, if an
OPM program is in a debug session, then you can debug it using the ILE source
debugger if the following conditions are met:

214 ILE RPG Programmer’s Guide

Starting the ILE Source Debugger

1. The OPM program was compiled with OPTION(*LSTDBG) or
OPTION(*SRCDBG). (Three OPM languages are supported: RPG, COBOL, and
CL. RPG and COBOL programs can be compiled with *LSTDBG or *SRCDBG,
but CL programs must be compiled with *SRCDBG.

2. The ILE debug environment is set to accept OPM programs. You can do this by
specifying OPMSRC(*YES) on the STRDBG command. (The system default is
OPMSRC(*NO).)

If these two conditions are not met, then you must debug the OPM program with
the OPM system debugger.

If an OPM program compiled without *LSTDBG or *SRCDBG is specified and a
service program is specified, the service program is shown if it has debug data. If
there is no debug data, then the DSPMODSRC screen will be empty. If an ILE
program and a service program are specified, then the ILE program will be shown.

STRDBG Example

To start a debug session for the sample debug program DEBUGEX and a called
OPM program RPGPGM, type:

STRDBG PGM(MYLIB/DEBUGEX MYLIB/RPGPGM) OPMSRC(*YES)

The Display Module Source display appears as shown in DEBUGEX
consists of two modules, an RPG module DBGEX and a C module cproc. See
[‘Sample Source for Debug Examples” on page 256| for the source for DBGEX,
cproc, and RPGPGM.

If the entry module has a root source, COPY, or listing view, then the display will
show the source of the entry module of the first program. In this case, the program
was created using DBGVIEW(*ALL) and so the source for the main module,
DBGEX, is shown.

/ . N\
Display Module Source
Program: DEBUGEX Library: MYLIB Module: DBGEX

1 = = == S == S = SIS S s S S S S S S S SSES S = = = = === ===

2 * DEBUGEX - Program designed to illustrate use of ILE source

3 * debugger with ILE RPG source. Provides a

4 * sample of different data types and data structures.

5 *

6 * Can also be used to produce sample formatted dumps.

7 k==============z===

8

9 o o o o o e e e e = = =

10 * The DEBUG keyword enables the formatted dump facility.

11 N e

12 H DEBUG

13

14 e

15 * Define standalone fields for different ILE RPG data types.
More...

Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
\\F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 95. Display Module Source display for program DEBUGEX

Note: Up to 20 service programs can initially be added to the debug session by
using the Service Program (SRVPGM) parameter on the STRDBG command.
You can also add ILE service programs to a debug session by using option 1

Chapter 12. Debugging Programs 215

Starting the ILE Source Debugger

(Add) on the Work with Module List display (F14) or by letting the source
debugger add it as part of a STEP INTO debug command.

Setting Debug Options

After you start a debug session, you can set or change the following debug

options:

* Whether database files can be updated while debugging your program. (This
option corresponds to the UPDPROD parameter of the STRDBG command.)

* Whether text searches using FIND are case-sensitive.

* Whether OPM programs are to be debugged using the ILE source debugger.
(This option corresponds to the OPMSRC parameter.)

Changing the debug options using the SET debug command affects the value for
the corresponding parameter, if any, specified on the STRDBG command. You can
also use the Change Debug (CHGDBG) command to set debug options. However,
the OPMSRC option can not be changed by the CHGDBG command. OPMSRC can
only be changed by the debug SET command.

Suppose you are in a debug session working with an ILE program and you decide
you should also debug an OPM program that has debug data available. To enable
the ILE source debugger to accept OPM programs, follow these steps:
1. After entering STRDBG, if the current display is not the Display Module Source
display, type:
DSPMODSRC
The Display Module Source display appears.
2. Type
SET
3. The Set Debug Options display appears. On this display type Y (Yes) for the

OPM source debug support field, and press Enter to return to the Display Module
Source display.

You can now add the OPM program, either by using the Work with Module
display, or by processing a call statement to that program.

Adding/Removing Programs from a Debug Session

216

You can add more programs to, and remove programs from a debug session, after
starting a debug session. You must have *CHANGE authority to a program to add
it to or remove it from a debug session.

For ILE programs, you use option 1 (Add program) on the Work with Module List
display of the DSPMODSRC command. To remove an ILE program or service
program, use option 4 (Remove program) on the same display. When an ILE
program or service program is removed, all breakpoints for that program are
removed. There is no limit to the number of ILE programs or service programs
that can be in or removed from a debug session at one time.

For OPM programs, you have two choices depending on the value specified for
OPMSRC. If you specified OPMSRC(*YES), by using either STRDBG, the SET
debug command, or CHGDBG, then you add or remove an OPM program using
the Work With Module Display. (Note that there will not be a module name listed

ILE RPG Programmer’s Guide

Adding/Removing Programs from a Debug Session

for an OPM program.) There is no limit to the number of OPM programs that can
be included in a debug session when OPMSRC(*YES) is specified.

If you specified OPMSRC(*NO), then you must use the Add Program (ADDPGM)
command or the Remove Program (RMVPGM) command. Only 20 OPM programs
can be in a debug session at one time when OPMSRC(*NO) is specified.

Note: You cannot debug an OPM program with debug data from both an ILE and
an OPM debug session. If OPM program is already in an OPM debug
session, you must first remove it from that session before adding it to the
ILE debug session or stepping into it from a call statement. Similarly, if you
want to debug it from an OPM debug session, you must first remove it from
an ILE debug session.

Example of Adding a Service Program to a Debug Session

In this example you add the service program CVITOHEX to the debug session
which already previously started. (See [“Sample Service Program” on page 93 for a
discussion of the service program).

1. If the current display is not the Display Module Source display, type:
DSPMODSRC
The Display Module Source display appears.
2. Press F14 (Work with module list) to show the Work with Module List display

as shown in |[Figure 96

3. To add service program CVTTOHEX, on the first line of the display, type: 1
(Add program), CVTTOHEX for the Program/module field, MYLIB for the Library
field. Change the default program type from *PGM to *SRVPGM and press
Enter.

4. Press F12 (Cancel) to return to the Display Module Source display.

4 X i N\
Work with Module List
System: AS400S1

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
1 cvttohex mylib *SRVPGM
RPGPGM MYLIB *PGM
DEBUGEX MYLIB *PGM
DBGEX *MODULE Selected
CPROC *MODULE
Bottom
Command

===>

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 96. Adding an ILE Service Program to a Debug Session

Example of Removing ILE Programs from a Debug Session

In this example you remove the ILE program CVTHEXPGM and the service
program CVTTOHEX from a debug session.

1. If the current display is not the Display Module Source display, type:
DSPMODSRC

The Display Module Source display appears.

2. Press F14 (Work with module list) to show the Work with Module List display
as shown in [Figure 97 on page 218|

Chapter 12. Debugging Programs 217

Adding/Removing Programs from a Debug Session

3. On this display type 4 (Remove program) on the line next to CVTHEXPGM
and CVITOHEX, and press Enter.

4. Press F12 (Cancel) to return to the Display Module Source display.

- . . N
Work with Module List
System: AS400S1
Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints
Opt Program/module Library Type
*LIBL *PGM
4 CVTHEXPGM MYLIB *PGM
CVTHEXPG *MODULE
4 CVTTOHEX MYLIB *SRVPGM
CVTTOHEX *MODULE
RPGPGM MYLIB *PGM
DEBUGEX MYLIB *PGM
DBGEX *MODULE Selected
CPROC *MODULE
Bottom
Command
S==51
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 97. Removing an ILE Program from a Debug Session

Viewing the Program Source

218

The Display Module Source display shows the source of an ILE program object one
module object at a time. The source of an ILE module object can be shown if the
module object was compiled using one of the following debug view options:

* DBGVIEW(*SOURCE)

* DBGVIEW(*COPY)

¢ DBGVIEW(*LIST)

» DBGVIEW(*ALL)

The source of an OPM program can be shown if the following conditions are met:

1. The OPM program was compiled with OPTION(*LSTDBG) or
OPTION(*SRCDBG). (Only RPG and COBOL programs can be compiled with
*LSTDBG.)

2. The ILE debug environment is set to accept OPM programs; that is the value of
OPMSRC is *YES. (The system default is OPMSRC(*NO).)

There are two methods to change what is shown on the Display Module Source
display:

* Change to a different module

* Change the view of a module

When you change a view, the ILE source debugger maps to equivalent positions in
the view you are changing to. When you change the module, the runnable
statement on the displayed view is stored in memory and is viewed when the
