
IBM Systems - iSeries

Database

Distributed data management

Version 5 Release 4

���

IBM Systems - iSeries

Database

Distributed data management

Version 5 Release 4

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 213.

Seventh Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (5722-SS1) and to all subsequent releases

and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction

set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1999, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Distributed data management 1

What’s new for V5R4 1

Printable PDF 2

Introduction to i5/OS DDM 2

System compatibility 4

Overview of DDM functions 5

Basic DDM concepts 5

Parts of DDM 6

Parts of DDM: Source DDM 7

Parts of DDM: Target DDM 8

Parts of DDM: DDM file 8

Create a DDM file using SNA 9

Create a DDM file using TCP/IP 9

Create a DDM file using RDB directory

entry information 10

Example: Use the basic concepts of DDM in

an APPC network 10

Example: Use the basic concepts of DDM in

an APPN network 12

Additional DDM concepts 13

iSeries server as the source server for DDM . 13

Integrated Language Environment and

DDM 17

Source server actions dependent on type of

target server 17

iSeries server as the target server for DDM . . 18

DDM-related jobs and DDM conversations . . 20

Examples: Access multiple remote files with

DDM 22

Example: Access files on multiple servers with

DDM 23

Example: Process multiple requests for remote

files with DDM 23

Use language, utility, and application support for

DDM 24

Programming language considerations for DDM 25

DDM considerations for all languages . . . 25

HLL program input and output operations

with i5/OS DDM 25

Commitment control support for DDM . . . 27

Use DDM files with commitment control 27

ILE RPG considerations for DDM 29

ILE COBOL considerations for DDM 30

Direct file support with ILE COBOL . . . 31

BASIC considerations for DDM 31

PL/I considerations for DDM 32

CL command considerations for DDM . . . 32

ILE C considerations for DDM 33

Utility considerations for DDM 34

System/38-compatible database tools 34

System/38-compatible data file utility

(DFU/38) 34

System/38-compatible query utility

(Query/38) 34

Non-iSeries or non-System/38 Query/38

example 35

Query/38 output considerations for DDM 36

Query/38 command considerations for

DDM 36

Query/38 optimization for DDM 37

Existing Query/38 application

considerations for DDM 37

Data file utility for iSeries server 37

i5/OS database query 38

Multiple remote files 38

Sort utility 38

iSeries Access Family considerations for DDM . . 39

iSeries Access Family transfer function

considerations 40

iSeries Access Family copy command

considerations 40

Hierarchical file system API support for DDM . . 40

Prepare to use DDM 43

Communications requirements for DDM in an

APPC network 43

Configure a communications network in a

TCP/IP network 44

Security requirements for DDM 44

DDM file requirements 44

Program modification requirements for DDM . . 45

DDM architecture-related restrictions 45

iSeries source and target restrictions and

considerations for DDM 46

Non-iSeries target restrictions and

considerations for DDM 47

Security 48

Elements of distributed relational database

security 48

Elements of security in an APPC network . . 49

APPN configuration lists 50

Conversation level security 51

DRDA application server security in an

APPC network 52

Elements of security in a TCP/IP network . . 54

Application requester security in a TCP/IP

network 54

Application server security in a TCP/IP

network 57

Connection security protocols for DDM or

DRDA 58

Secure Sockets Layer for DDM and DRDA 58

Internet Protocol Security Protocol for

DDM/DRDA 59

Considerations for certain passwords being

passed as clear text 59

Ports and port restrictions for DDM/DRDA 59

DDM server access control exit program for

additional security 60

User exit program requirement 60

User exit program parameter list for DDM . . 60

User exit program example for DDM 63

Parameter list example for DDM 64

© Copyright IBM Corp. 1999, 2006 iii

DRDA server access control exit programs

with example 65

User exit program considerations for DDM . . 67

Use CL and DDS with DDM 67

DDM-specific CL commands 68

CHGDDMF (Change DDM File) command . . 68

Example: CHGDDMF command 68

CRTDDMF (Create DDM File) command . . 68

Examples: CRTDDMF command 69

DSPDDMF (Display DDM Files) command . . 69

RCLDDMCNV (Reclaim DDM Conversations)

command 69

SBMRMTCMD (Submit Remote Command)

command 70

iSeries and System/38 target systems on

the SBMRMTCMD command 71

Restrictions for the SBMRMTCMD

command 71

Examples: SBMRMTCMD command . . . 72

Additional considerations: SBMRMTCMD

command 73

WRKDDMF (Work with DDM Files)

command 75

DDM-related CL command considerations . . . 82

File management handling of DDM files . . . 83

ALCOBJ (Allocate Object) command 83

Member names and iSeries target servers

on the ALCOBJ command 84

Lock multiple DDM files with the ALCOBJ

command 84

ALCOBJ command completion time with

DDM 84

CHGJOB (Change Job) command 84

CHGLF (Change Logical File) command . . . 85

CHGPF (Change Physical File) command . . 85

CHGSRCPF (Change Source Physical File)

command 85

CLRPFM (Clear Physical File Member)

command 86

Copy commands with DDM 86

CRTDTAARA (Create Data Area) command 87

CRTDTAQ (Create Data Queue) command . . 89

CRTLF (Create Logical File) command . . . 90

CRTPF (Create Physical File) command . . . 91

CRTSRCPF (Create Source Physical File)

command 92

DLCOBJ (Deallocate Object) command . . . 93

Member names and iSeries target servers

on the DLCOBJ command 93

Unlock multiple DDM files on the DLCOBJ

command 93

DLTF (Delete File) command 93

DSPFD (Display File Description) command 94

DSPFFD (Display File Field Description)

command 94

OPNQRYF (Open Query File) command . . . 95

OVRDBF (Override with Database File)

command 95

RCLRSC (Reclaim Resources) command . . . 96

RNMOBJ (Rename Object) command 97

WRKJOB (Work with Job) command 97

WRKOBJLCK (Work with Object Lock)

command 98

DDM-related CL parameter considerations . . . 98

DDMACC parameter considerations 98

DDMCNV parameter considerations 98

OUTFILE parameter considerations for DDM 99

DDM-related CL command lists 100

Object-oriented commands with DDM . . . 101

Target iSeries-required file management

commands 102

Member-related commands with DDM . . . 103

Commands not supporting DDM 104

Source file commands 105

DDM-related CL command summary charts 106

Data description specifications considerations

for DDM 110

iSeries target considerations for DDM . . . 110

Non-iSeries target considerations for DDM 111

DDM-related DDS keywords and information 111

DDM user profile authority 112

Operating considerations for DDM 113

Access files with DDM 113

Types of files supported by i5/OS DDM . . 113

Existence of DDM file and remote file . . . 114

Rules for specifying target server file names

for DDM 114

Target iSeries file names for DDM . . . 115

Target non-iSeries file names for DDM . . 116

Use location-specific file names for

commonly named files for DDM 116

Examples: Access iSeries DDM remote files

(iSeries-to-iSeries) 116

Example: Access System/36 DDM remote

files (iSeries-to-System/36) 118

Access members with DDM 118

Example: Access DDM remote members

(iSeries server only) 118

Example: DDM file that opens a specific

member 119

Work with access methods for DDM 119

Access intents 120

Key field updates 120

Deleted records 120

Blocked record processing 121

Variable-length records 121

Other DDM-related functions involving remote

files 121

Perform file management functions on

remote servers 121

Lock files and members for DDM 122

Allocate Object (ALCOBJ) and Deallocate

Object (DLCOBJ) commands 122

Work with Job (WRKJOB) and Work with

Object Locks (WRKOBJLCK) commands . 122

Control DDM conversations 123

Display DDMCNV values (WRKJOB

command) 124

Change DDMCNV values (CHGJOB)

command 124

Reclaim DDM resources (RCLRSC and

RCLDDMCNV commands) 124

iv IBM Systems - iSeries: Database Distributed data management

Display DDM remote file information . . . 124

Display DDM remote file records 125

Coded character set identifier with DDM . . 125

Use of object distribution 125

Use of object distribution with DDM . . . 126

Manage the TCP/IP server 126

DDM terminology 127

TCP/IP communication support concepts for

DDM 127

Establish a DRDA or DDM connection

over TCP/IP 127

DDM listener program 128

Start TCP/IP Server (STRTCPSVR) CL

command 128

End TCP/IP Server (ENDTCPSVR) CL

command 128

Start DDM listener in iSeries Navigator 129

DDM server jobs 129

Subsystem descriptions and prestart job

entries with DDM 129

DDM prestart jobs 129

Configure the DDM server job subsystem 132

Identify server jobs 133

iSeries job names 133

Display server jobs 134

Display the history log 135

Cancel distributed data management work . . 135

End Job (ENDJOB) command 135

End Request (ENDRQS) command 135

Performance considerations for DDM 136

Batch file processing with DDM 139

Interactive file processing with DDM . . . 141

DDM conversation length considerations . . 141

DDM problem analysis on the remote server 141

Handle connection request failures for

TCP/IP 142

DDM server is not started or the port ID

is not valid 142

DDM connection authorization failure . . 142

DDM server not available 143

Not enough prestart jobs at server . . . 143

System/36 source and target considerations for

DDM 143

DDM-related differences between iSeries and

System/36 files 143

System/36 source to iSeries target

considerations for DDM 144

iSeries source to System/36 target

considerations for DDM 144

Override considerations to System/36 for

DDM 146

Personal computer source to iSeries target

considerations for DDM 147

Examples: Code DDM-related tasks 148

Communications setup for DDM examples and

tasks 148

DDM example 1: Simple inquiry application . . 149

DDM example 2: ORDERENT application . . . 151

DDM example 2: Central server ORDERENT

files 151

DDM example 2: Description of ORDERENT

program 152

DDM example 2: Remote server ORDERENT

files 153

DDM example 2: Transfer a program to a

target server 155

DDM example 2: Pass-through method 155

DDM example 2: SBMRMTCMD

command method 155

DDM example 2: Copy a file 156

DDM example 3: Access multiple iSeries files 156

DDM example 4: Access a file on System/36 157

DDM architecture code point attributes 158

DDM commands and parameters 167

Subsets of DDM architecture supported by

i5/OS DDM 167

Supported DDM file models 167

Alternate Index File (ALTINDF) 168

Direct file (DIRFIL) 168

Directory file (DIRECTORY) 169

Keyed file (KEYFIL) 169

Sequential file (SEQFIL) 169

Stream file (STRFIL) 169

Supported DDM access methods 169

DDM commands and objects 170

CHGCD (Change Current Directory) Level

2.0 170

CHGEOF (Change End of File) Level 2.0 and

Level 3.0 171

CHGFAT (Change File Attribute) Level 2.0 171

CLOSE (Close File) Level 1.0 and Level 2.0 171

CLRFIL (Clear File) Level 1.0 and Level 2.0 172

CLSDRC (Close Directory) Level 2.0 172

CPYFIL (Copy File) Level 2.0 172

CRTAIF (Create Alternate Index File) Level

1.0 and Level 2.0 172

CRTDIRF (Create Direct File) Level 1.0 and

Level 2.0 173

CRTDRC (Create Directory) Level 2.0 . . . 174

CRTKEYF (Create Keyed File) Level 1.0 and

Level 2.0 174

CRTSEQF (Create Sequential File) Level 1.0

and Level 2.0 175

CRTSTRF (Create Stream File) Level 2.0 . . 176

DCLFIL (Declare File) Level 1.0 and Level 2.0 176

DELDCL (Delete Declared Name) Level 1.0 177

DELDRC (Delete Directory) Level 2.0 . . . 177

DELFIL (Delete File) Level 1.0 and Level 2.0 177

DELREC (Delete Record) Level 1.0 177

EXCSAT (Exchange Server Attributes) Level

1.0 and Level 2.0 178

FILAL and FILATTRL (File Attribute List)

Level 1.0, Level 2.0, and Level 3.0 178

FRCBFF (Force Buffer) Level 2.0 179

GETDRCEN (Get Directory Entries) Level 2.0 179

GETREC (Get Record at Cursor) Level 1.0 179

GETSTR (Get Substream) Level 2.0 and Level

3.0 180

INSRECEF (Insert at EOF) Level 1.0 180

INSRECKY (Insert Record by Key Value)

Level 1.0 180

Contents v

INSRECNB (Insert Record at Number) Level

1.0 181

LCKFIL (Lock File) Level 1.0 and Level 2.0 181

LCKSTR (Lock Substream) Level 2.0 and

Level 3.0 181

LODRECF (Load Record File) Level 1.0 and

Level 2.0 182

LODSTRF (Load Stream File) Level 2.0 . . . 182

LSTFAT (List File Attributes) Level 1.0, Level

2.0, and Level 3.0 182

MODREC (Modify Record with Update

Intent) Level 1.0 183

OPEN (Open File) Level 1.0 and Level 2.0 183

OPNDRC (Open Directory) Level 2.0 . . . 183

PUTSTR (Put Substream) Level 2.0 and Level

3.0 183

QRYCD (Query Current Directory) Level 2.0 184

QRYSPC (Query Space) Level 2.0 184

RNMDRC (Rename Directory) Level 2.0 . . 184

RNMFIL (Rename File) Level 1.0 and Level

2.0 184

SBMSYSCMD (Submit server Command)

Level 4.0 185

SETBOF (Set Cursor to Beginning of File)

Level 1.0 185

SETEOF (Set Cursor to End of File) Level 1.0 185

SETFRS (Set Cursor to First Record) Level 1.0 185

SETKEY (Set Cursor by Key) Level 1.0 . . . 186

SETKEYFR (Set Cursor to First Record in Key

Sequence) Level 1.0 186

SETKEYLM (Set Key Limits) Level 1.0 . . . 187

SETKEYLS (Set Cursor to Last Record in Key

Sequence) Level 1.0 187

SETKEYNX (Set Cursor to Next Record in

Key Sequence) Level 1.0 187

SETKEYPR (Set Cursor to Previous Record in

Key Sequence) Level 1.0 188

SETLST (Set Cursor to Last Record) Level 1.0 189

SETMNS (Set Cursor Minus) Level 1.0 . . . 189

SETNBR (Set Cursor to Record Number)

Level 1.0 190

SETNXT (Set Cursor to Next Number) Level

1.0 190

SETNXTKE (Set Cursor to Next Record in

Key Sequence with a Key Equal to Value

Specified) Level 1.0 191

SETPLS (Set Cursor Plus) Level 1.0 192

SETPRV (Set Cursor to Previous Record)

Level 1.0 192

SETUPDKY (Set Update Intent by Key Value)

Level 1.0 193

SETUPDNB (Set Update Intent by Record

Number) Level 1.0 193

ULDRECF (Unload Record File) Level 1.0 194

ULDSTRF (Unload Stream File) Level 2.0 . . 194

UNLFIL (Unlock File) Level 1.0 and Level 2.0 195

UNLIMPLK (Unlock Implicit Record Lock)

Level 1.0 195

UNLSTR (Unlock Substreams) Level 2.0 and

Level 3.0 195

User profile authority 195

iSeries server-to-CICS considerations with DDM 196

iSeries languages, utilities, and licensed

programs 197

CRTDDMF (Create DDM File) considerations 197

iSeries CL considerations 198

ALCOBJ (Allocate Object) 198

CLRPFM (Clear Physical File Member) 198

CPYF (Copy File) 198

CPYTOTAP, CPYFRMTAP and CPYSPLF

commands 198

DLCOBJ (Deallocate Object) 199

DSPFD and DSPFFD commands 199

DSPPFM (Display Physical File Member) 199

OPNDBF (Open Database File) 200

OVRDBF (Override with Database File) 200

RCVNETF (Receive Network File) . . . 200

Language considerations for iSeries server and

CICS 200

PL/I considerations 200

PL/I open file requests 200

PL/I input/output requests 201

ILE COBOL considerations 202

ILE COBOL SELECT clause 202

ILE COBOL statements 203

ILE C considerations 204

ILE RPG considerations 205

File description specifications 205

ILE RPG input/output operations . . . 207

Use DDM on the iSeries server versus other IBM

systems 208

iSeries server and System/36 DDM differences 208

iSeries server and System/38 DDM differences 209

Related information for distributed data

management 210

Code license and disclaimer information 211

Appendix. Notices 213

Programming Interface Information 214

Trademarks 215

Terms and conditions 215

vi IBM Systems - iSeries: Database Distributed data management

Distributed data management

This topic contains i5/OS™ distributed data management (DDM) concepts, information about preparing

for DDM communications, and DDM-related programming information.

Although this topic collection does contain some information about systems other than iSeries™, it does

not contain all the information that the other system types might need to communicate with the iSeries

server using DDM. For complete information for a particular remote system type, refer to that system’s

documentation.

In this topic collection, the term DDM refers to the distributed data management architecture used by

distributed data management (DDM) to define the protocols used for communicating between systems.

DDM is also used to refer to the following items:

v Terms used to discuss DDM architecture (for example, DDM jobs, conversations, functions, requests,

and commands)

v Source and target implementations of the DDM architecture

v DDM files used by DDM to access remote files

v Non-iSeries DDM products that support DDM (for example, System/36™, System/38™, and

CICS/DDM)

This topic is intended for application programmers who are using i5/OS distributed data management

(DDM) to prepare a system to access data in remote files and to control access to local files by remote

systems.

Distributed Relational Database Architecture™ (DRDA®) also uses the DDM architecture.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 211.

 Related concepts

 Distributed database programming

What’s new for V5R4

This topic highlights the changes made to this topic collection for V5R4.

In V5R4, DDM support for the following functions:

v Distributed transaction processing (XA/JTA). (See Distributed transactions for more information.)

v Server support for profile tokens. (See Security-related APIs for more information.)

v Protected conversations for RDB DDM files over TCP/IP.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to users.

© Copyright IBM Corp. 1999, 2006 1

|

|

|

|

Printable PDF

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select Distributed data management

(about

2903 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Introduction to i5/OS DDM

This topic describes the purpose of distributed data management (DDM), the functions that DDM

supplies on the iSeries server, and the concepts of i5/OS DDM.

DDM is part of the i5/OS licensed program. i5/OS DDM as a source supports Level 2.0 and below of the

DDM architecture. i5/OS DDM as a target supports Level 2.0 and below for record file (a file on disk in

which the data is read and written in records) types and Level 3.0 and below of the DDM architecture for

stream files (documents) and directories (folders).

The DDM support on the iSeries server allows application programs or users to access data files that

reside on remote systems, and also allows remote systems to access data files on the local iSeries server,

as shown in Figure 1 on page 3. Any system that supports the DDM architecture as a source system can

access data (if authorized to do so) on any other system to which it is attached. The attached system

must support DDM as a target system (the system that receives a request from another system to use one

or more files located on the system). However, the source and target systems must support compatible

subsets and levels of the DDM architecture.

The folder management services (FMS) support allows personal computer users to access folders and

documents that reside on an iSeries target server. Remote systems that support Level 3.0 or Level 2.0 of

the DDM architecture for the stream access method can access folders and documents on the local iSeries

server.

DDM extends the file accessing capabilities of the iSeries server database management support. In this

topic collection, database management refers to the system function that controls local file processing;

that is, it controls access to data in files stored on the local iSeries server, and it controls the transfer of

that data to requesting programs on the same server.

Distributed data management controls remote file processing. DDM enables application programs

running on one iSeries server to access data files stored on another server supporting DDM. Similarly,

other systems that have DDM can access files in the database of the local iSeries server. DDM makes it

easier to distribute file processing between two or more servers.

2 IBM Systems - iSeries: Database Distributed data management

|

|

|

rbae5.pdf
http://www.adobe.com/products/acrobat/readstep.html

Systems that use DDM communicate with each other using the Advanced Program-to-Program

Communication (APPC) support, Advanced Peer-to-Peer Networking® (APPN) support, or TCP/IP. See

the Communications Management manual on the V5R1 Supplemental Manuals Web site

and the APPC,

APPN, and HPR topic for information needed to use APPC and APPN.

Folder management services (FMS) allows local access to documents or folders that are on the iSeries

server. Personal computers might access folder management functions on the server by using DDM.

Note: Distributed data management for the IBM® Personal Computer uses the iSeries portion of the

iSeries Access Family licensed program.

As shown in Figure 2 on page 4, the server on which a user application issues a request involving a

remote file is called a source system. The server that receives the request for one of its files is called the

target system. A system can be both a source and target system for separate requests received at the same

time.

Using DDM, an application program can get, add, change, and delete data records in a file that exists on

a target system. It can also perform file-related operations, such as creating, deleting, renaming, or

copying a file from the target system to the source system.

When DDM is in use, neither the application program nor the program user needs to know if the file that

is needed exists locally or on a remote system. DDM handles remote file processing in essentially the

same way as local file processing is handled on the local system, and the application program normally

does not receive any indication of where the requested file is located. (However, in error conditions,

messages are returned to the user that indicate, when necessary, that a remote system was accessed.)

Informational messages about the use of target system files are included in the source system’s job log.

When DDM is to be used, only application programmers need to know where the file is located and,

using control language (CL) commands outside of the high-level language (HLL) programs, they can

Figure 1. Source and target systems

Distributed data management 3

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

control which file is used. However, the programmers can also choose to use specific recovery functions

to handle certain communications failures; the HLL programs might need to be changed to include

handling any such failure.

Therefore, iSeries BASIC, ILE COBOL, ILE RPG, ILE C, and iSeries programs that are compiled to process

database files on the local server might not need to be changed or recompiled for DDM to process those

same files when they are moved to or exist on a remote server.

 Related concepts

 “Prepare to use DDM” on page 43

There are several requirements that must be met for DDM to be used properly.

 “Use language, utility, and application support for DDM” on page 24
This topic describes the language, utility, and application program support that is provided on the

iSeries server for DDM.

System compatibility

DDM can be used to communicate between systems that are architecturally different.

For example, although the architectures of the iSeries server and System/36 are different, these systems

can use DDM to access files in each other’s database. To successfully communicate with each other, each

system must have an implementation of DDM that is compatible with Level 2.0 or below of the IBM

DDM architecture. Also, each type of system might use all or only part of the IBM DDM architecture or

might have extensions to the architecture.

If you are communicating with any non-iSeries servers, you must consider the level of DDM support

provided by those servers for such things as unique security considerations.

For a list of the DDM architecture manuals that supply the details about Level 3.0 or below of the IBM

DDM architecture, see Related information for distributed data management.

 Related concepts

 “Security” on page 48
This topic describes how iSeries security relates to DDM, and how it can limit access to the data

resources of a target server by source server programs and users.

Figure 2. Move a program from a source to a target system

4 IBM Systems - iSeries: Database Distributed data management

Related reference

 “Related information for distributed data management” on page 210

Listed here are the product manuals, Web sites, and information center topics that relate to the

distributed data management topic. You can view or print any of the PDFs.

Overview of DDM functions

This topic gives an overview of the types of DDM functions that can be done on a target server.

The following file operations, normally specified in HLL programs, can be done on files at target servers:

v Allocating, opening, or closing one or more files.

v Reading, writing, changing, or deleting records in a file.

The following file and nonfile operations, normally specified in CL programs or by CL commands, can be

done on files at the target servers:

v Copying the contents of a file.

v Performing operations on physical or logical file members (such as adding, clearing, or removing

members), but only if the target is an iSeries server or System/38.

v Accessing remote files for nondata purposes, such as:

– Displaying information about one or more files, using commands such as Display File Description

(DSPFD) and Display File Field Description (DSPFFD). These commands can display the file

attributes of the DDM file on the source system or the file or field attributes of the remote file on the

target system.

– Controlling the locking of files on the target system, using the Allocate Object (ALCOBJ) and

Deallocate Object (DLCOBJ) commands.

– Deleting, renaming, creating, and changing files using the Delete File (DLTF), Rename Object

(RNMOBJ), Create Physical File (CRTPF), Create Source Physical File (CRTSRCPF), Create Logical

File (CRTLF), Change Physical File (CHGPF), Change Logical File (CHGLF), and Change Source

Physical File (CHGSRCPF) commands.
v Accessing remote systems for non-data purposes:

– Send a CL command to the target system (an iSeries server and a System/38 only) so it can be run

there, instead of on the source system (where it might not be useful to run it), using the Submit

Remote Command (SBMRMTCMD) command. The SBMRMTCMD command is the method you use

to move, save, or restore files on a target server. For example, a Move Object (MOVOBJ) command

might be sent to move a database file on the target server. (For typical uses of the SBMRMTCMD

command, refer to its description in Use CL and DDS with DDM or refer to the CL topic for a more

complete description.)

Various other nonfile-related operations can also be done on the target server.

 Related concepts

 Control language

 “Use CL and DDS with DDM” on page 67
This topic contains DDM-related information about specific iSeries control language (CL) commands,

data description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.

Basic DDM concepts

This topic collection gives the basic concepts of DDM.

Because remote file processing is much like local file processing, these topics should provide sufficient

conceptual information for most users of DDM. Another topic provides additional, more detailed

concepts, and the topic Additional DDM concepts is intended primarily for the experienced programmer

who wants or needs to know more about DDM.

Distributed data management 5

From an user’s viewpoint, accessing data on a remote system is much the same as accessing data on the

local system. The main difference is the additional time needed for the data link to pass the data between

the systems whenever the remote file is accessed. Otherwise, the user or application program does not

need to know whether the data being accessed came from a local or remote file. Refer to Performance

considerations for DDM for additional considerations.

For DDM iSeries-to-iSeries file processing, remote file processing is done much the same as local file

processing. The purpose of this topic collection is to describe the things that are different for DDM. Also,

because other systems can use DDM, those considerations and concepts are covered as needed to enable

the iSeries programmer to successfully prepare the server for using DDM.

The DDM concepts in these topics describe mainly iSeries-to-iSeries remote file processing. For purposes

of illustration, concepts that relate to System/36 and System/38 are shown in some examples. If you are

using DDM on both System/36s and iSeries servers, you should be aware that the concepts for both

types are similar, except in the way they point to the remote file: An iSeries server and a System/38 use a

separate DDM file to refer to each remote file to be accessed; System/36 uses a network resource

directory that contains one network resource directory entry for each remote file to be accessed.

Note: Although DDM supports other functions besides opening and accessing remote files, the concepts

described in this topic collection deal primarily with remote file accessing.

 Related concepts

 “Additional DDM concepts” on page 13

Most users of DDM will not need the information in the remainder of these topics; it is intended

primarily for experienced programmers who need to know more about DDM.

 “Performance considerations for DDM” on page 136

These topics provide information to help you improve performance when using DDM and also

provide some information about when to use something other than DDM to accomplish some

functions.

Parts of DDM

DDM consists of several parts to handle remote file processing among the systems using DDM.

v Source DDM (SDDM)

v Target DDM (TDDM)

v DDM file

6 IBM Systems - iSeries: Database Distributed data management

The preceding figure shows how the basic parts involved in DDM communications on both systems

relate to each other.

When a DDM file is accessed by a source system user or program, a DDM conversation is started

between SDDM and TDDM for the job in which the program or user is operating.

Parts of DDM: Source DDM

The support on the source (or local) iSeries server is started, as needed, within a source job to do DDM

functions.

The source DDM (SDDM) translates requests for remote file access from source server application

programs into DDM requests that are routed to the target server for processing. The SDDM support

establishes and manages a DDM conversation with the target server that has the desired remote file.

When an application program first attempts to access a remote file, a search for the requested DDM file is

done on the source server. As with local file processing, if the file name is not qualified with a library

name, the current library list for the job in which the program is running is searched for the specified file.

When the file is found, the server accesses the file, determines that it is a DDM file and starts the SDDM.

When the SDDM is started, it checks to see if a DDM conversation is already active between the source

job starting the SDDM and the target server identified by the remote location and mode values in the

DDM file. If a conversation that can be used exists, it is used. If not, a program start request is issued to

the appropriate target server to start a TDDM (a target job) on the target server to establish a DDM

conversation between the SDDM and TDDM. Parameters that are automatically created from information

in the DDM file about the remote file are passed when the remote server sends a program start request.

After the TDDM is started, the SDDM can forward each program request to the target job for processing.

If, for example, input/output (I/O) operations are to be done on a remote file, the program opens the file

and then issues the desired operation requests. The SDDM forwards the open request and the TDDM

opens the remote file. Then the SDDM forwards each file operation request to the TDDM, and both of

them handle the interchange of data between the application program and the remote file. When a DDM

function is being processed, the requesting program waits for the function to be completed and the

results to be received, just as it does for local file operations.

 Related concepts

Figure 3. Communicate with DDM

Distributed data management 7

“iSeries server as the source server for DDM” on page 13

When an application program or user in a source server job first refers to a DDM file, several actions

occur as part of processing the request on the source server.

Parts of DDM: Target DDM

A target server job is started on the target (or remote) server as a result of an incoming DDM request and

ends when the associated DDM conversation ends.

The target DDM (TDDM) translates DDM requests for remote file access into data management requests

on the target server and then handles the return of the information that is to be sent to the source server.

The TDDM is started when the remote server sends a program start request. The TDDM is started as a

batch job on the target server. After the TDDM is started and a DDM conversation is established, the

TDDM waits for a request (such as a file open or read operation, or a nonfile-related operation) to be sent

by the SDDM.

When the TDDM receives a request to access an object on the target server, it searches for the requested

object. If the object was not qualified with a library or path name, the current library list or current

directory for the target job is searched.

When the requested object is found, the TDDM passes the first operation requested to database or folder

management on the target server, which performs the operation on the object. When the operation is

completed, database or folder management services return the results of the operation to the TDDM,

which passes it to the SDDM. The SDDM passes the results and any accompanying data (such as records

requested on a read operation) to the application program. These actions are repeated for each

subsequent I/O operation request received, until the object is closed. If an operation does not complete

successfully, the SDDM returns an error message to the program, providing information about the error.

The TDDM and the target job remain active until the DDM conversation is ended by the source server

job that started it.

 Related concepts

 “iSeries server as the target server for DDM” on page 18
The iSeries target DDM (or TDDM) is actually a job that runs a DDM-related target server program. It

is started when the source server sends a program start request (an SDDM).

Parts of DDM: DDM file

A system object with type *FILE exists on the source server to identify a remote file. It combines the

characteristics of a device file and a database file. As a device file, the DDM file refers to a remote

location name, local location name, device name, mode, and a remote network ID to identify a remote

server as the target server. The DDM file appears to the application program as a database file and serves

as the access device between a source server program and a remote file.

A DDM file is a file on the source server that contains the information needed to access a data file on a

target server. It is not a data file that can be accessed by a program for database operations. Instead, when

a source server program specifies the name of a DDM file, the file information is used by DDM to locate

the remote file whose data is to be accessed.

DDM file information is based on locations. The remote location where the remote file is located is

specified using the remote location name (RMTLOCNAME) parameter on the Create DDM File

(CRTDDMF) or Change DDM File (CHGDDMF) commands.

The remote file name specified on the CRTDDMF or CHGDDMF commands must be in the format used

by the remote system.

Another use of the DDM file is to submit control language (CL) commands to the target system to run on

that system. In this case, the remote file normally associated with the DDM file is ignored.

8 IBM Systems - iSeries: Database Distributed data management

Related reference

 “SBMRMTCMD (Submit Remote Command) command” on page 70
The Submit Remote Command (SBMRMTCMD) command submits a command using DDM to run on

the target server.

Create a DDM file using SNA:

You can create a DDM file that uses SNA as the communication protocol for connecting with the remote

system.

 Each DDM file that uses SNA contains the following information.

DDM file value and description of values

DDM file name

The name of the DDM file on the source system that is used to identify a specific remote file.

Remote file name

The actual file name of the remote file; that is, the name by which it is known on the target

server. (For a target System/36, this is the file label of the remote file.)

Remote location name

The name of the remote location where the remote file exists. This remote location name provides

the data link to the target server (remote location) by using APPN/APPC, over which a DDM

conversation is established when this DDM file is accessed.

Device

The name of the device on the source server used to communicate with the remote location.

Local location name

The name of the local location. This is the name by which the target server knows your server.

Your server can consist of more than one local location.

Mode The name of the mode to be used to communicate between the local location and remote location.

Remote network ID

The remote network ID to be used with the remote location. This value further qualifies the

remote location name. Two locations with the same remote location name but different remote

network IDs are viewed as two distinctly separate locations.

Type The type of connection to be used to communicate with the remote location when the DDM

conversation is established with the remote server. To create a DDM file that uses an SNA

connection, specify *SNA. This is the default type.

Create a DDM file using TCP/IP:

You can create a DDM file that uses TCP/IP as the communication protocol for connecting with the

remote server.

 Each DDM file that uses TCP/IP contains the following information.

DDM file value and description of values

DDM file name

The name of the DDM file on the source server that is used to identify a specific remote file.

Remote file name

The actual file name of the remote file; that is, the name by which it is known on the target

server.

Distributed data management 9

Remote location name

The name of the remote location where the remote file exists. This remote location name provides

the data link to the target server (remote location) by using TCP/IP, over which a DDM

conversation is established when this DDM file is accessed.

Type The type of connection to be used to communicate with the remote location when the DDM

conversation is established with the remote server. To create a DDM file that uses TCP/IP, specify

*IP.
 Related concepts

 “Manage the TCP/IP server” on page 126
These topics describe how to manage the DRDA and DDM server jobs that communicate using

sockets over TCP. It describes the subsystem in which the server runs, the objects that affect the

server, and how to manage those resources.

Create a DDM file using RDB directory entry information:

You can create a DDM file that uses the remote location information from a relational database (RDB)

directory entry.

 Each DDM file that uses an RDB directory entry contains the following information.

DDM file value and description of values

DDM file name

The name of the DDM file on the source server that is used to identify a specific remote file.

Remote file name

The actual file name of the remote file; that is, the name by which it is known on the target

server.

Remote location name

Specify *RDB to indicate that the remote location information is taken from an RDB directory

entry.

Relational database

The name of the relational database entry used for the remote location information. The remote

location information in the RDB directory entry is used to establish the data link to the target

server (remote location), over which a DDM conversation is established when the DDM file is

accessed.

You need to specify an RDB directory entry associated with an auxiliary storage pool (ASP) group for the

DDM file’s remote location information to access that ASP group.

 Related concepts

 Disk management

 Distributed database programming

Effect of job description on ASP group selection:

When the target DDM server is configured to use ASP groups, and the DDM file specifies a relational

database name, the relational database entry specified in the DDM file on the client is used to establish

the ASP group for the target job.

 When using a DDM file that does not specify a relational database name, the target job’s ASP group is

established using the initial ASP group attribute in the job description for the user profile that the target

job is running under.

Example: Use the basic concepts of DDM in an APPC network:

10 IBM Systems - iSeries: Database Distributed data management

This topic presents a sample application that uses DDM to access a remote file.

 The application can be run by a company that has warehouses located in several cities. The following

figure illustrates the relationships among the primary items included in a DDM file.

On an iSeries server in Chicago, an Open Database File (OPNDBF) command requests that file CUST021

be opened for input. Because the file name was not qualified on the command, the library list for the

source job is used to find the file, which is stored in the NYCLIB library.

Because CUST021 is a DDM file, the SDDM on the CHICAGO server is started in the source job when

the file is opened. The SDDM uses the remote location and mode names (NEWYORK and MODENYC)

from the DDM file to establish a DDM conversation with and start a target job (TDDM) on the

appropriate target server (NEWYORK). The remote file to be accessed by the source server program is

CUSTMAST in library XYZ.

The TDDM receives the remote file name from the SDDM and then allocates and opens the file named

CUSTMAST, which corresponds to the DDM file named CUST021 on the source server.

The remote location name in the DDM file identifies the remote server where the file exists. The local

server uses the remote location name as well as other values specified in the DDM file to select a device

description. The device description can be either manually created or, if APPN is being used,

automatically created and activated by the server. The SDDM establishes a DDM conversation with the

target server using the values NEWYORK and MODENYC in the APPC remote location name. The

Figure 4. Relationships among DDM file parameters and the systems

Distributed data management 11

APPC-related support must have been started on the target server before the request is issued by the

SDDM. (No special support is required on the source server.)

Note: The APPN parameter on the Create Controller Description (APPC) (CRTCTLAPPC) and Create

Controller Description (SNA Host) (CRTCTLHOST) commands determines whether the APPN

support is used.

 Related concepts

 APPC, APPN, and HPR

Example: Use the basic concepts of DDM in an APPN network:

The Advanced Peer-to-Peer Networking (APPN) support of an iSeries server can be used to allow DDM

access to systems not directly connected to the local server.

Figure 1 in “Example: Use the basic concepts of DDM in an APPC network” on page 10 shows a program

on the Chicago server accessing a file on the New York server. Although the servers are shown as directly

connected, the same DDM concepts apply if the network is configured as shown in the preceding figure.

When the DDM file CUST021 in the figure is opened on the Chicago server, the APPN support finds the

remote location named NEWYORK, determines the optimal path through the network, and establishes a

DDM conversation with that location. Although there might be several other servers (network nodes)

Figure 5. Use DDM in an APPN network

12 IBM Systems - iSeries: Database Distributed data management

forwarding the data between CHICAGO and NEWYORK, the source DDM and target DDM function as if

there were a direct connection between these two servers.

If the file CUSTMAST were moved from NEWYORK to some other server in the network (for example,

DALLAS), then in this example, the DDM file at CHICAGO needs to be changed. The remote location

name would be changed from NEWYORK to DALLAS. If a large number of servers in the network refer

to the file CUSTMAST, then movement of the file results in a change to the DDM file at each of these

servers. By using the iSeries capability to have multiple local location names, maintenance of these files is

reduced.

In the preceding figure, the server NEWYORK can be given two local location names, NEWYORK and

FILELOC. The DDM file at CHICAGO uses FILELOC as the remote location name. When access to file

CUSTMAST is required, APPN finds the location FILELOC in the system named NEWYORK, and the

DDM conversation is established as before.

If the file CUSTMAST is now moved from NEWYORK to DALLAS, the user at NEWYORK deletes the

local location FILELOC from his server, and it is added to the server at DALLAS. This is done by using

the APPN local location list. When the program in CHICAGO now attempts to access the file

CUSTMAST, the APPN support finds the remote location FILELOC at the server in Dallas, and the DDM

conversation is established to that server. The movement of CUSTMAST did not result in a change to the

DDM file at CHICAGO.

This example shows the concept of multiple local locations and how reduced maintenance results when

files are moved from one server to another. The example is not intended to suggest that a unique location

name should be used for every file accessed through DDM. The decision of which files should be

associated with separate local locations should be based on such factors as the movement of these files

and the number of remote servers accessing these files.

Additional DDM concepts

Most users of DDM will not need the information in the remainder of these topics; it is intended

primarily for experienced programmers who need to know more about DDM.

Described are conceptual details and examples about:

v Program start requests, which start the TDDMs (target jobs)

v Open data paths (ODPs), used to access the files

v Remote location information

v DDM conversations, established for source and target communications

v Source and target jobs

v I/O operations within a job

 Related concepts

 “Operating considerations for DDM” on page 113

This topic provides task-oriented information and examples that describe various aspects of DDM

operation considerations.

iSeries server as the source server for DDM

When an application program or user in a source server job first refers to a DDM file, several actions

occur as part of processing the request on the source server.

All of these actions, as well as those required on the target server, must complete successfully before any

operations (file or nonfile) requested by the source program can be done. When the DDM file is referred

to:

v If the request is to open a file, its information is used simultaneously to create an open data path

(ODP) on the source server and to start the SDDM support, which runs within the same job as the

Distributed data management 13

source program. The SDDM also uses the information: to convert the source server request into a DDM

request, to communicate with the appropriate target server, and to establish a DDM conversation to be

used for the source job. (The ODP is partially created with the DDM file information; it is not usable

until the SDDM processes the remaining information after the DDM conversation is established.)

v The communications portion of DDM establishes a communications path with the target server. The

target server is identified by using the remote location information specified in the DDM file, and the

target file is identified by the remote file name. Other information about e remote location, not kept in

the DDM file, is stored by the SDDM. This includes the transaction program name, user ID, activation

group number, and scope of the conversation. Using the remote location information, the TDDM is

started on the target server and a DDM conversation is established when the remote server receives the

program start request. The conversation is established the first time the remote file is accessed, but only

if a conversation using the same remote location values for that target server does not already exist for

the source job.

v After the DDM conversation is established, the SDDM (which can be used by multiple programs and

multiple DDM files in the same source job) sends the DDM architecture command to the TDDM, for

file-related requests. This command describes the file operation to be done and contains the name of

the remote file (specified in the DDM file) to be accessed. For nonfile-related requests, such as when

the Submit Remote Command (SBMRMTCMD) command is used, the remote file name is not sent to

the TDDM; the remote file name is ignored.

The SDDM converts each program request for a file open or input/output operation (received by using

the DDM file and ODP) into an equivalent DDM command request and then sends it to the target server.

The following figure shows the basic parts on the source iSeries server that are involved in accessing

remote files.

14 IBM Systems - iSeries: Database Distributed data management

After each request is handled by the target job, the DDM response from the target server is returned,

converted by the SDDM into the appropriate form, and passed back to the user. The response might

include data (if data was requested) or an indication of status (for other types of file access). The source

program waits until the function completes and the results are received.

Figure 6. iSeries server as the DDM source server

Distributed data management 15

The following figure shows a simplified example of the interchange of data between the source and target

servers for a typical request to access a remote file.

 After the first DDM file that was opened in the job is closed, the DDM conversation that it used is

normally kept active. This allows the same program or another program in the job to use the same

conversation when opening another DDM file, or doing other DDM-related operations. (For example, in

Figure 9 on page 21, source job 3A has two DDM files using the same conversation.) This saves the time

and resources required to establish a new conversation every time a new DDM file that uses the same

remote location information is used in that job.

When a DDM file is closed, the DDM conversation remains active, but nothing happens in the

conversation until the SDDM processes the next DDM-related request from a program. While it is not

being used, however, the conversation can be dropped. This can occur if the DDMCNV job attribute’s

default value of *KEEP is changed to *DROP using the Change Job (CHGJOB) command, or if the

Reclaim DDM Conversations (RCLDDMCNV) command or Reclaim Resources (RCLRSC) command is

used while the job is active.

 Related concepts

 “Parts of DDM: Source DDM” on page 7
The support on the source (or local) iSeries server is started, as needed, within a source job to do

DDM functions.

 “Use CL and DDS with DDM” on page 67
This topic contains DDM-related information about specific iSeries control language (CL) commands,

data description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.
 Related reference

 “DDMCNV parameter considerations” on page 98
The DDMCNV parameter is a job-related parameter that controls whether Advanced

Program-to-Program Communication (APPC) or iSeries conversations in the job that is allocated for

DDM use (that is, DDM conversations) are to be automatically dropped or kept active for the source

job.

Figure 7. Typical handling of an I/O operation request

16 IBM Systems - iSeries: Database Distributed data management

“Control DDM conversations” on page 123

Normally, the DDM conversations associated with a source server job are kept active until one of the

conditions described in this topic is met.

Integrated Language Environment and DDM:

Integrated Language Environment® (ILE) introduces the concept of activation groups that run within jobs

on the iSeries server.

 An activation group is a substructure of a runtime job. It consists of server resources (storage for program

or procedure variables, commitment definitions, and open files) allocated to one or more programs. An

activation group is like a miniature job within a job. By default, all DDM conversations are scoped to the

activation group level. To scope is to specify the boundary within which server resources can be used.

Programs that run in different activation groups start separate DDM conversations when they use the

same DDM file or the same remote location information. Sharing of existing DDM conversations takes

place within the confines of the activation group. A DDM conversation can be scoped to the job level by

specifying OPNSCOPE(*JOB) on the OPNDBF command.

 Related information

 ILE Concepts PDF

Source server actions dependent on type of target server:

If the target server is not another iSeries server or System/38, only the DDM architecture commands

defined in Level 2.0 and earlier of the DDM architecture are used.

 If the target is an iSeries server or a System/38, then iSeries server and System/38 extensions to the

architecture are used to support some operations not defined by the Level 2.0 DDM architecture.

Examples of System/38 and iSeries extensions to the architecture are the Submit Remote Command

(SBMRMTCMD) and processing file members of remote files. For creating a file when the source is an

iSeries server and the target is also an iSeries server, an iSeries extension is used.

Target servers that are not iSeries servers or System/38s might not be capable of handling all of the

functions that an iSeries server or a System/38 can handle. For example, a System/36 does not support

relative record processing and keyed record processing with one open operation; therefore, programs that

mix accessing records in a file by key or relative record do not work if the file is on a System/36. In

addition, target servers that do not support Level 2.0 of the DDM architecture can only handle functions

defined in the level they support.

Neither the System/36 nor the System/38 support access to folder management objects.

Note: An iSeries server only allows access to folder management services (FMS) objects when the source

supports Level 2.0 of the DDM architecture for stream files (files on disks in which data is read

and written in consecutive fields without record boundaries) and directories, for example, the IBM

Personal Computer using DDM.

An iSeries server as a source server does not support access to stream files and directories.

 Related concepts

 “Use language, utility, and application support for DDM” on page 24
This topic describes the language, utility, and application program support that is provided on the

iSeries server for DDM.
 Related reference

 “SBMRMTCMD (Submit Remote Command) command” on page 70
The Submit Remote Command (SBMRMTCMD) command submits a command using DDM to run on

the target server.

Distributed data management 17

iSeries server as the target server for DDM

The iSeries target DDM (or TDDM) is actually a job that runs a DDM-related target server program. It is

started when the source server sends a program start request (an SDDM).

For source iSeries servers, the program start request is started on the source server using information

contained in the IBM-supplied intersystem communications function (ICF) file for DDM. The remote

location information in the DDM file being accessed is used to send the program start request to the

appropriate target server.

The attributes of the target job are determined by the values specified on the Add Communications Entry

(ADDCMNE) command, which is used on the target server to add a communications entry to the

subsystem description used for the job. This command identifies the device description, the job

description (including the library list for the target job), and the default user profile to be used by the

subsystem.

For an iSeries Access Family connection, the routing entry in the QIWS subsystem for DDM (CMPVAL

(’DDM’)), along with the device description the personal computer is connected to, is used to obtain the

attributes of the target job.

After it is started, the TDDM does the following things:

v For database files:

– Handles communications with the source system by using a DDM conversation established over an

APPC, over TCP/IP, or over an iSeries Access Family data link.

– Converts the access requests from the source server into the equivalent iSeries functions and runs

them on the target server. After the target object is located, the target server-created ODP and target

database management services are used to access the object for whatever operation is requested. The

TDDM can, for example, pass requests that open the object and then do requested I/O operations to

the objects.

– Includes iSeries or System/38 extensions to the DDM Level 2.0 architecture for requests received

from the source server (if the source is an iSeries server or a System/38), which allow most iSeries

functions that operate on local servers to also work on remote iSeries servers. For example, it might

receive a SBMRMTCMD command from the source server (an iSeries server or a System/38) to do a

nonfile-related operation, such as using the CL command Replace Library List (RPLLIBL) to replace

the library list within the current target job.

– Converts target iSeries responses to the equivalent DDM responses and sends them back to the

source server. When the source server is an iSeries server or System/38, the actual iSeries or

System/38 messages are sent back to the source server.
v For folder management services objects:

Converts the DDM stream and directory access requests into the equivalent iSeries folder management

services functions and then runs them on the target server. The following commands are supported:

– Change Current Directory (CHGCD)

– Change File Attributes (CHGFAT)

– Close Directory (CLSDRC)

– Close Document (CLOSE)

– Copy File (CPYFIL)

– Create Directory (CRTDRC)

– Create Stream File (CRTSTRF)

– Delete Directory (DELDRC)

– Delete File (DELFIL)

– Force Buffer (FRCBFF)

– Get Data Stream (GETSTR)

18 IBM Systems - iSeries: Database Distributed data management

– Get Directory Entry (GETDRCEN)

– List File Attributes (LSTFAT)

– Load Stream File (LODSTRF)

– Lock Data Stream (LCKSTR)

– Open Directory (OPNDRC)

– Open Document (OPEN)

– Put Data Stream (PUTSTR)

– Query Current Directory (QRYCD)

– Query Space Available (QRYSPC)

– Rename Directory (RNMDRC)

– Rename File (RNMFIL)

– Unload Stream File (ULDSTRF)

– Unlock Data Stream (UNLSTR)

The following figure shows the basic parts on the target iSeries server that are involved in processing the

requested destination file.

The TDDM runs as a separate batch job, just as any other user APPC, TCP/IP, or iSeries Access Family

target application. A new TDDM, using additional target server resources, is started for each distinct

source server program start request received by the target server. There is one target job for each DDM

conversation. Each TDDM can handle access requests for multiple files in the DDM conversation.

Figure 8. iSeries server as the DDM target system

Distributed data management 19

The subsystem, user profiles, and server resources to be used by the TDDM are defined the same as they

are for other types of jobs.

 Related concepts

 “Parts of DDM: Target DDM” on page 8

A target server job is started on the target (or remote) server as a result of an incoming DDM request

and ends when the associated DDM conversation ends.

DDM-related jobs and DDM conversations

This topic provides additional information about activation groups, source server jobs, target server jobs,

and the DDM conversations used by those jobs.

For remote file processing, at least two separate jobs are used, one running on each server: a source job

and a target job. (The source server job is the one in which the user application is running.) Multiple

application programs can be running in different activation groups within a single source job. Each

activation group within a source job has a separate DDM conversation and target job for the remote

location information specified in the DDM files. Multiple DDM files share a conversation when the

following items are true:

v The files are accessed in the same activation group within a source job.

v The files specify the same remote location combination.

For each DDM conversation, there is one target job, which includes the TDDM.

The SDDM runs within a source job or activation group on the source server. It can handle multiple

DDM conversations with one or more target servers at the same time. For the same source job or

activation group, one SDDM handles all the remote file access requests. This is true regardless of how

many target servers or remote files are involved. No separate job for the SDDM exists in the server.

If the source server DDM files involved all use the same remote location information to identify the

target server, one TDDM job is created for each source server job that requests access to one or more files

on the target server.

The following figure shows five programs accessing six DDM files. The numbers in the upper set of

boxes representing DDM files correspond to the same numbers in the lower set of boxes representing the

associated remote files. These DDM files are using four different remote location descriptions to access six

different remote files, all on the same target server. Seven DDM conversations are needed to handle the

processing. An explanation of the DDM conversations follows:

v PGM1 and PGM2 run in different source jobs and are using DDM files (2 and 3) that contain the same

remote location information. A separate conversation is needed for each source job.

v PGM3 in source job 3 uses the two DDM files (5 and 6) that both use the same remote location

information. They will share the same conversation and target job (5B).

v PGM4 and PGM5 run in different activation groups within source job 4. They are using two DDM files

(5 and 6) that both use the same remote location information. A separate conversation is needed for

each activation group.

In the following figure, jobs 1, 2, and 3 in System A each have a SDDM. Each activation group in job 4

has its own SDDM. Jobs 1B through 7B each have their own TDDM.

When the application program or the source job closes the DDM file on the source server, the DDM

conversation and its associated target job ends, unless the following items are true:

v The value of the DDMCNV attribute of the Change Job (CHGJOB) command for the source job is

*KEEP (the server default).

v Any locks established during the job by the Allocate Object (ALCOBJ) command still exist.

20 IBM Systems - iSeries: Database Distributed data management

The CHGJOB and ALCOBJ commands are described in topic Use CL and DDS with DDM. If

DDMCNV(*KEEP) is specified, the DDM conversation remains active and waits for another DDM request

to be started.

From a performance viewpoint, if the DDM conversation is likely to be used again, *KEEP is the value

that should be used. This saves the time and resources used on the target server to start each TDDM and

establish the conversation and job.

The following figure shows the relationship between the SDDM and two TDDMs on different target

servers and the figure in Example: Access files on multiple servers with DDM topic shows the

relationship between the SDDM and two TDDMs on one target server.

An iSeries server can be a source server and a target server at the same time, and two servers can be

accessing files located on each other. In addition, an iSeries job can be a source job and a target job. A

DDM file can refer to a remote file that is another DDM file.

Figure 9. Relationships of DDM source and target jobs

Distributed data management 21

Related concepts

 “Use CL and DDS with DDM” on page 67
This topic contains DDM-related information about specific iSeries control language (CL) commands,

data description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.
 Related reference

 “Example: Access files on multiple servers with DDM” on page 23

This topic contains a figure which shows the relationships among the source server, its DDM files, and

two target servers.

 “Additional considerations: SBMRMTCMD command” on page 73

This topic describes additional considerations for the SBMRMTCMD command.
 Related information

 ILE Concepts

Examples: Access multiple remote files with DDM

These examples show a single application program using DDM to access multiple remote files.

Figure 10. Example: Access multiple local and remote files. An iSeries server with communications links to a

System/38 and to a System/36.

22 IBM Systems - iSeries: Database Distributed data management

The first example shows the remote files on different target servers, and the second shows them on the

same target server.

Example: Access files on multiple servers with DDM

This topic contains a figure which shows the relationships among the source server, its DDM files, and

two target servers.

One target server is a System/38 and the other is a System/36. Each system has DDM installed.

The user program running on the source server is shown accessing three files: FILEA, FILEB, and FILEC.

FILEA, located on the source server, is accessed using only local data management. On different target

servers, DDM file FILEB corresponds to remote file FILEX and FILEC corresponds to remote file FILEY.

When the program opens FILEB and FILEC, DDM allows the program to access the corresponding

remote files as if they were on the source server. Only the person who defines the DDM files needs to

know where each file is located or what the file’s name is on the remote server.

Example: Process multiple requests for remote files with DDM

This example shows how multiple programs access multiple files on the same target server.

Figure 11. Example: Access multiple local and remote files. An iSeries server with communications links to a

System/38 and to a System/36.

Distributed data management 23

This example shows a System/36 target server. The SDDM is shown handling requests for two files from

two programs in different jobs, and two TDDMs are handling the requests on the target server (one

TDDM for each requesting program). Notice that, although program B is accessing two files on the target

server, only one TDDM is created if all the associated DDM files specify the same remote location

information to identify the target server.

Notice that both programs A and B are sharing FILEA. However, because these programs are shown to be

in separate jobs, they cannot share the same open data path (ODP) to FILEA. If they were in the same job,

programs A and B can share both the ODP on the source server and the remote file. When multiple

programs within the same job are accessing a remote file at the same time (by using one TDDM for each

program), the rules for file sharing are the same for remote files as for local files. These rules are based

on how the SHARE parameter is specified on the Create DDM File (CRTDDMF), the Override with

Database File (OVRDBF), and the Change DDM File (CHGDDMF) commands.

Use language, utility, and application support for DDM

This topic describes the language, utility, and application program support that is provided on the iSeries

server for DDM.

This topic indicates which languages, utilities, and application programs support DDM, and provides any

DDM-specific information needed to properly access remote files. Language-specific information

concerning access to Customer Information Control System for Virtual Storage (CICS®) files is in topic

iSeries server-to-CICS considerations with DDM.

 Related concepts

 “Source server actions dependent on type of target server” on page 17
If the target server is not another iSeries server or System/38, only the DDM architecture commands

defined in Level 2.0 and earlier of the DDM architecture are used.

 “iSeries server-to-CICS considerations with DDM” on page 196
This topic describes programming considerations for accessing CICS remote files with i5/OS DDM.

Figure 12. Example: Process multiple program and file requests

24 IBM Systems - iSeries: Database Distributed data management

Programming language considerations for DDM

DDM is supported by these iSeries languages.

v ILE RPG

v ILE COBOL

v iSeries BASIC (interpretive and compiled forms)

v iSeries PL/I

v Control Language (CL) (interactive and compiled forms)

v ILE C

Note: iSeries Pascal does not support DDM.

DDM considerations for all languages

DDM files can be used as data files or source files by high-level language (HLL) programs.

However, for CL, data description specifications (DDS), and BASIC, if a DDM file is to be used as a

source file, the target server must be an iSeries server or a System/38, and the file referred to by the

DDM file must be defined on the target iSeries server or System/38 as a source file. That is, the remote

file must have been created either by the Create Source Physical File (CRTSRCPF) command or as

FILETYPE(*SRC) by the Create Physical File (CRTPF) command. These restrictions are not enforced by

the ILE RPG, ILE COBOL, and ILE C compilers, which allow source files to be used from both iSeries

and non-iSeries target servers.

If a source file member name is specified when the target server is not an iSeries server or a System/38, all

the HLL compilers end compilation if the name of the source member specified on the SRCMBR

parameter is different from the name of the DDM file specified on the SRCFILE parameter.

If programs that accessed local files are to access remote files, certain restrictions might require that a

program be changed and recompiled. And, if the target server is not an iSeries server or a System/38,

externally described data must, in some cases, reside on the local (source) server. All of these restrictions

are described under the topic Program modification requirements for DDM.

If the target system is not an iSeries server or a System/38, the number of records returned in the open

feedback might not be valid.

If you do not specify a library name for the SRCFILE parameter, the first file found in the user’s library

list with the same name as the file you specified for the SRCFILE parameter is used as the source file.

 Related reference

 “Program modification requirements for DDM” on page 45
Remote files can be accessed by iSeries application programs written in the HLL and control language.

HLL program input and output operations with i5/OS DDM:

The high-level language operations are supported by DDM for keyed or nonkeyed operations.

 See the information in the following tables.

 Table 1. High-level language operations supported by DDM for keyed or nonkeyed operations

i5/OS database operation

High-level languages

ILE RPG programming

language

ILE COBOL programming

language BASIC PL/I

Open file OPEN OPEN OPEN OPEN

Query file

Distributed data management 25

Table 1. High-level language operations supported by DDM for keyed or nonkeyed operations (continued)

i5/OS database operation

High-level languages

ILE RPG programming

language

ILE COBOL programming

language BASIC PL/I

Read (keyed access) CHAIN (key) READ INVALID KEY READ KEY READ

EQUAL

Read first/last1 *LOVAL *HIVAL READ FIRST LAST READ FIRST

LAST

READ FIRST

LAST

Read next READ READE2 READ <NEXT> AT END READ READ NEXT

Read previous READP READ PRIOR AT END READ PRIOR READ PRV

Read next or previous3

Next equal Previous equal

Next unique Previous

unique

READ = =,

PRIOR

READ

NXTEQL

PRVEQL

NXTUNQ

PRVUNQ

Read (relative to start)4 CHAIN (rrn) READ RELATIVE KEY READ REC= READ KEY

Release record lock EXCPT or next I/O op (next I/O op) (next I/O op) (next I/O op)

Force end of data FEOD

Position file5 SETGT SETLL START KEY GREATER

KEY NOT LESS KEY

EQUAL

RESTORE

Update record UPDAT REWRITE6 REWRITE REWRITE

Write record WRITE/ EXCPT WRITE6 WRITE WRITE

Delete record DELET DELETE6 DELETE DELETE

Close file CLOSE CLOSE CLOSE CLOSE

1 For the ILE RPG language, if the keyed access path of a file specifies DESCENDING, then *LOVAL gets the

last record in the file and *HIVAL gets the first record in the file.

2 For duplicate keyed files, the ILE RPG language performs a READ NEXT operation and compares the key

of the returned record to determine if the record qualifies. If so, the record is returned to the program; if

not, an end-of-file indication is returned.

3 If the remote file is on a non-iSeries server, these operations cannot be performed using DDM.

4 An iSeries application program can open a keyed access open data path to a file and then access its records

using both keyed and relative record access methods. Although DDM supports the combined-access access

method, a target server (such as System/36) might not. In this case, the i5/OS can do relative record

accessing of a keyed file on a non-iSeries target server if the target server supports the

combined-by-record-number access method and if the DDM file specifies that method. The

combined-by-record-number access method is specified on an iSeries server as ACCMTH(*ARRIVAL

*BOTH) on the Create DDM File (CRTDDMF) command. If these values are not specified for the DDM file

and the target server does not support the combined-access access method, relative record operations to a

keyed file are rejected.

5 Positioning operations (SETxx in the ILE RPG language, or START in the ILE COBOL language) do not

return the record data to the application program. These operations also cause the file to be opened for

random processing.

6 ILE COBOL operations that change indexed or relative files can lock the record before the operation to

make the record eligible.

 Table 2. High-level language operations supported by DDM for keyed or nonkeyed operations

i5/OS database operation

High-level languages

CL ILE C programming language

Open file OPNDBF FOPEN, FREOPEN

Query file OPNQRYF

26 IBM Systems - iSeries: Database Distributed data management

Table 2. High-level language operations supported by DDM for keyed or nonkeyed operations (continued)

i5/OS database operation

High-level languages

CL ILE C programming language

Read (keyed access)

Read first/last

Read next RCVF FREAD, FGETC

Read previous

Read next or previous: Next equal

Previous equal Next unique Previous

unique

Read (relative to start)

Release record lock (next I/O op)

Force end of data FFLUSH

Position file POSDBF FSEEK, FSETPOS

Update record FWRITE, FPUTC, FFLUSH

Write record FWRITE, FPUTC, FFLUSH

Delete record

Close file CLOF FCLOSE

Commitment control support for DDM

iSeries applications can commit or roll back transactions on remote iSeries servers.

However, DDM does not support the iSeries journaling commands (CRTJRN, CRTJRNRCV, and

STRJRNPF). Before running applications, a user must create a journal on the target iSeries servers for

recoverable resources to be used under commitment control, start journaling the physical files that are to

be opened under commitment control, and issue the Start Commitment Control (STRCMTCTL) command

on the source server. The STRCMTCTL command does not Support the Notify Object (NTFOBJ)

command for DDM files. Another way to setup journaling on the remote server is to use the

SBMRMTCMD DDM support to submit the journal commands to the target server to journal the remote

files.

For DDM conversations to use two-phase commitment control, the DDM conversations need to be

protected. For DDM conversations to be protected, the appropriate DDM file must have been created

with the protected conversation (PTCCNV) parameter set to *YES.

 Related concepts

 Commitment control
 Related reference

 “DDM architecture-related restrictions” on page 45

The items listed in this topic are DDM architecture-related restrictions. Therefore, application

programs that use these items might have to be changed and recompiled before they can access

remote files.

Use DDM files with commitment control:

DDM files can be opened under commitment control.

 However, the following restrictions should be considered when working with these DDM files:

v If more than one DDM file (with PTCCNV(*NO)) is opened under commitment control, the following

items must be the same for each file:

Distributed data management 27

– Remote location name

– Local location name

– Device

– Mode

– Remote network ID

– Transaction program name (TPN)

– User ID

– Activation group number

– Open scope

The exception to this rule is when all of the DDM files opened under commitment control are scoped

to the job level. In this case, the activation group numbers are ignored and do not need to match.

v If a DDM file and a remote SQL object (Distributed Relational Database Architecture, DRDA) are

running under commitment control (with PTCCNV(*NO)), the following items must be the same for

the file and object:

– Remote location name

– Local location name

– Device

– Mode

– Remote network ID

– TPN

– User ID

– Activation group number

– Open scope
v If the DDM file (with PTCCNV(*YES)) is being opened for output, update, or delete (not opened for

input only), then there cannot be any one-phase DDM or DRDA conversations active.

v If a DDM with PTCCNV of *YES is being used, it must point to a target iSeries server that supports

two-phase commitment control protocols.

v DDM files (with PTCCNV(*NO)) and local database files cannot be opened under commitment control

at the same time within the same activation group.

v DDM files (with PTCCNV(*NO)) and local database files cannot be opened under commitment control

at the same time within the same job if commitment control is scoped to the job level.

v To open a DDM file under commitment control and scope it to the job level, you must have specified

CMTSCOPE(*JOB) on the Start Commitment Control (STRCMTCTL) command.

v You cannot use the Submit Remote Command (SBMRMTCMD) command to call programs that expect

commitment control to be scoped to the job level. Because commitment control is always scoped to the

activation group level in DDM target jobs, the program fails.

v The SBMRMTCMD command should not be used to start or end commitment control.

v The target server specified from the iSeries server working under commitment control must be another

iSeries server.

Note: If the communications line fails during a COMMIT operation, the source and target servers will do

a ROLLBACK operation. However, the target server might successfully complete the COMMIT

operation before the line fails, but the source server will always do a ROLLBACK operation.

28 IBM Systems - iSeries: Database Distributed data management

Table 3. High-level language commit and rollback commands

Operation

ILE RPG

programming

language

ILE COBOL

programming

language PL/I CL

ILE C

programming

language

Commit changes

in transaction

COMMIT COMMIT PLICOMMIT COMMIT _Rcommit

Cancel entire

transaction

ROLBK ROLLBACK PLIROLLBACK ROLLBACK _Rrollback

ILE RPG considerations for DDM

ILE RPG programs and automatic report programs can both refer to DDM files. Generally, DDM file

names can be specified in ILE RPG programming language anywhere a database file name can be

specified, for both iSeries and non-iSeries target servers.

v DDM file names can be specified on the Create RPG Program (CRTRPGPGM) and Create Auto Report

Program (CRTRPTPGM) commands:

– To access remote files containing source statements, on an iSeries server or a non-iSeries server, a

DDM file name can be specified on the SRCFILE parameter, and a member name can be specified

on the SRCMBR parameter.

- For iSeries or System/38 target servers, a remote iSeries or System/38 source file (and, optionally,

member) can be accessed in the same manner as a local source file and member.

- For non-iSeries target servers, a remote source file can be accessed if both the PGM and SRCMBR

parameter defaults are used on either command. Or, if a member name is specified, it must be the

same as the DDM file name specified on the SRCFILE parameter. (The same is true for member

names specified either on the /COPY statement of the input specifications used to create an

automatic report program or as used by the compiler to include source specifications.)
– To place the compiler listing in a database file on a target server, a DDM file name can be specified

on the PRTFILE parameter of either command.
v A DDM file name and member name can be specified on the OUTFILE and OUTMBR parameters of

the CRTRPTPGM command, but before the output produced by the command can be stored in the

remote file referred to by the DDM file, the remote file must already exist. Also, as with local files, the

record format of the remote file must match the required OUTFILE parameter format. Generally, this

means that the target server must be an iSeries server or a System/38.

When an ILE RPG program opens a DDM file on the source server, the following types of I/O operations

can be performed on the remote file at the target server, for both iSeries and non-iSeries targets: CHAIN,

CLOSE, DELET, EXCPT, FEOD, OPEN, READ, READE, READP, SETGT, SETLL, UPDAT, and WRITE.

Other considerations are:

v If the DDM file is declared in the program to be externally described, the ILE RPG compiler copies the

external descriptions of the remote file referred to into the program at compile time. However, if the

remote file is not on an iSeries server or a System/38, the field declares for the record descriptions do

not have meaningful names. Instead, all of the field names are declared as Fnnnnn and the key fields

are declared as Knnnnn.

A recommended method for describing remote files, when the target is not an iSeries server or a

System/38, is to have the data description specifications (DDS) on the local server and enter a Create

Physical File (CRTPF) command or a Create Logical File (CRTLF) command on the local server.

Compile the program using the local file name. Ensure that the remote system’s file has the

corresponding field types and field lengths.

To access the remote file, use the Override with Database File (OVRDBF) command preceding the

program, for example:

OVRDBF FILE(PGMFIL) TOFILE(DDMFIL) LVLCHK(*NO)

Distributed data management 29

v A DDM file is also valid as the file specified in the ILE RPG program that will be used implicitly in the

ILE RPG logic cycle.

v A record format name, if used, must match the DDM file name when the target server is not an iSeries

server or a System/38.

v An ADDROUT file created on a System/36 cannot be used on an iSeries server. iSeries

System/36-Compatible RPG II uses 3-byte ADDROUT files, and ILE RPG programming language on

an iSeries server and System/38 uses 4-byte ADDROUT files.

ILE COBOL considerations for DDM

ILE COBOL programs can refer to DDM files. Generally, DDM file names can be specified in ILE COBOL

programming language anywhere a database file name can be specified, for both iSeries and non-iSeries

target servers.

v DDM file names can be specified on the Create COBOL Program (CRTCBLPGM) command:

– To access remote files containing source statements, on an iSeries server or a non-iSeries server, a

DDM file name can be specified on the SRCFILE parameter, and a member name can be specified

on the SRCMBR parameter.

- For iSeries or System/38 target servers, a remote iSeries or System/38 source file (and, optionally,

member) can be accessed in the same manner as a local source file and member.

- For non-iSeries target servers, a remote source file can be accessed if both the PGM and SRCMBR

parameter defaults are used on the CRTCBLPGM command. Or, if a member name is specified, it

must be the same as the DDM file name specified on the SRCFILE parameter.
– To place the compiler listing in a database file on a target server, a DDM file name can be specified

on the PRTFILE parameter of the CRTCBLPGM command.
v DDM file names can be specified as the input and output files for the ILE COBOL SORT and MERGE

operation. (The work file for this operation cannot be a DDM file.)

v A DDM file can be used in the ILE COBOL COPY statement when the DDS option on that statement is

used to copy one or all of the externally described record formats from the remote file referred to by

the DDM file into the program being compiled. If this is done when the remote file is not on an iSeries

server or a System/38, the field declares for the record descriptions will not have meaningful names.

Instead, all of the field names are declared as Fnnnnn and the key fields are declared as Knnnnn.

A recommended method for describing remote files, when the target is not an iSeries server or a

System/38, is to have the data description specifications (DDS) on the local server and enter a Create

Physical File (CRTPF) command or a Create Logical File (CRTLF) command on the local server.

Compile the program using the local file name. Ensure that the remote server’s file has the

corresponding field types and field lengths.

To access the remote file, use the Override with Database File (OVRDBF) command preceding the

program, for example:

OVRDBF FILE(PGMFIL) TOFILE(DDMFIL) LVLCHK(*NO)

v DDM file names can be specified on a COPY statement:

– If you do not specify the library name with the file name, the first file found with that file name in

the user’s library list is used as the include file.

– If the target server is not an iSeries server or a System/38, a DDM file name can be specified as the

include file on a COPY statement, but the member name must be the same as the DDM file name.
v If the target server is a System/36, ILE COBOL programming language cannot be used to open a DDM

file for output if the associated remote file has logical files built over it. For System/36 files with

logical files, the open operation (open output) will fail because ILE COBOL programming language

attempts to clear the file before using it.

When an ILE COBOL program opens a DDM file on the source server, the following statements can be

used to perform I/O operations on the remote file at the target server, for both iSeries and non-iSeries

targets: CLOSE, DELETE, OPEN, READ, REWRITE, START, and WRITE.

30 IBM Systems - iSeries: Database Distributed data management

Direct file support with ILE COBOL:

An iSeries server does not support direct files as one of its file types. However, an ILE COBOL program

on iSeries server can specify that a file be accessed as a direct file.

 An iSeries server normally creates direct files as sequential files. An ILE COBOL program on an iSeries

server defines a file as a direct file by specifying RELATIVE on the SELECT statement. If the program is

to open the file for output only (by specifying OUTPUT on the OPEN statement), the file must be created

with deleted records and contain no active records. This is also the file’s condition when a non-iSeries

source server (such as System/36) uses DDM to create or clear the direct file on an iSeries server,

assuming that the file is created as described in the following paragraphs.

An iSeries server and System/38 support sequential and keyed file types. DDM recognizes sequential,

keyed, and direct file types. For a non-iSeries server to create a direct file on an iSeries server using

DDM, the DDM architecture command Create Direct File (CRTDIRF) is used.

When the CRTDIRF architecture command is issued from a non-iSeries server to create the file, the file is

created as a physical file and is designated as a direct file so that, for subsequent direct file access by

non-iSeries source servers, it will be identifiable to the other server as a direct file. If the file is not created

in this way, an iSeries server cannot later determine whether the file is a direct file or a sequential file,

again, because an iSeries server does not have direct files as one of its file types.

Therefore, if an ILE COBOL program on a server other than an iSeries server or a System/38 needs to

access an iSeries or a System/38 file in a direct mode (that is, by relative record number) for output, the

file must have been created by the CRTDIRF architecture command.

To support direct files on an iSeries server for output only, the ILE COBOL OPEN statement clears and

prepares a member of a file being opened. Therefore, existing iSeries or System/38 files can be accessed

by using DDM files by ILE COBOL programs on other iSeries servers or System/38s. For non-iSeries

target servers, relative files opened for output must be defined as direct files or an error occurs.

In summary:

v If a file is created on the local iSeries server as a direct file by a program or user from a non-iSeries

server, the file can be accessed as a direct file by an ILE COBOL program from a remote non-iSeries

source server.

v If a file is created on the local iSeries server by a program or user on the same iSeries server, it cannot

be accessed as a direct file by a non-iSeries server because the iSeries target server cannot determine, in

this case, whether the file is a direct or sequential file.

v Any files created by a remote server can be used locally.

BASIC considerations for DDM

Compiled BASIC programs and interpretive BASIC statements can refer to DDM files. In addition, DDM

file names can be specified on the Create BASIC Program (CRTBASPGM), Start BASIC (STRBAS), and

Execute BASIC Procedure (EXCBASPRC) commands.

v A DDM file name can be specified on the SRCFILE parameter, and a member name can be specified on

the SRCMBR parameter of the CRTBASPGM, STRBAS, and EXCBASPRC commands, but only if the

remote source file (and member) is on an iSeries server or a System/38. If one of these commands

refers to remote files on non-iSeries or non-System/38 target servers, the operation fails.

v A DDM file can be used as the source file for the following BASIC commands in the BASIC session:

FREE, LOAD, MERGE, PROC, REPLACE, SAVE, SRCFILE, and SUBPROC. It can also be used in the

CHAIN BASIC statement.

v A DDM file name can be specified in the DECLARE FILE statement. The remote file that the DDM file

refers to is used to bring in the field definitions for an externally described file. If this is done and the

Distributed data management 31

remote file is not on an iSeries server or a System/38, the field declares for the record descriptions will

not have meaningful names. Instead, all of the field names are declared as Fnnnnn and the key fields

are declared as Knnnnn.

A recommended method for describing remote files, when the target is not an iSeries server or a

System/38, is to have the data description specifications (DDS) on the local server and enter a Create

Physical File (CRTPF) command or a Create Logical File (CRTLF) command on the local server.

Compile the program using the local file name. Ensure that the remote server’s file has the

corresponding field types and field lengths.

To access the remote file, use the Override with Database File (OVRDBF) command preceding the

program, for example:

OVRDBF FILE(PGMFIL) TOFILE(DDMFIL) LVLCHK(*NO)

v A DDM file can be specified as the file used in the LISTFMT and LISTFMTP BASIC commands. These

commands extract the file descriptions of the referred to remote file to list any fields used in the

program.

When BASIC is used to open a DDM file on the source server, the following statements can be used to

perform I/O operations on the remote file at the target server, for both iSeries and non-iSeries targets:

CLOSE, DELETE, INPUT, LINPUT, OPEN, READ, REREAD, RESTORE, REWRITE, and WRITE

statements for processing record files, and GET and PUT statements for processing remote stream files.

PL/I considerations for DDM

Compiled programs can refer to DDM files. In addition, DDM file names can be specified on the Create

PL/I Program (CRTPLIPGM) command.

v A DDM file name can be specified on the SRCFILE parameter, and a member name can be specified on

the SRCMBR parameter, but only if the remote source file is on an iSeries server or a System/38. The

same is true for specifying DDM file and member names on the %INCLUDE source directive

statement. If the remote file referred to by the DDM file is not on an iSeries server or a System/38, an

error occurs if a DDM file name is specified on the CRTPLIPGM command or %INCLUDE statement.

v When a DDM file is accessed as the source file for a program, the margins used in the compilation of

the source are the default values of 2 and 72. No other margin values can be specified.

v If a %INCLUDE DDS directive statement specifies the name of a DDM file, the record descriptions of

the remote file are included in the compiled program. However, if the remote file is not on an iSeries

server or a System/38, the field declares for the record descriptions do not have meaningful names.

Instead, all of the field names are declared as Fnnnnn and the key fields are declared as Knnnnn.

A DDM file can be used to refer to remote record files or remote stream files. When a program opens a

DDM file on the source server, the following types of statements can be used to perform I/O operations

on the remote file at the target server, for both iSeries and non-iSeries targets: OPEN, CLOSE, READ,

WRITE, REWRITE, and DELETE statements for processing record files, and GET and PUT statements for

processing stream files.

Another consideration is if the target server is not an iSeries server or a System/38, the POSITION

parameter on a keyed READ statement to read from a remote file does not work if a value of NXTEQL,

PRVEQL, NXTUNQ, or PRVUNQ is specified for the parameter. (The values of NEXT, PREVIOUS, FIRST,

and LAST do work.) All the values are valid if the target system is an iSeries server or a System/38.

CL command considerations for DDM

Both compiled control language (CL) programs and interactively entered CL commands can refer to DDM

files.

Generally, DDM file names can be specified in CL commands anywhere a database file name can be

specified for both iSeries and non-iSeries target servers. But there are some limitations.

Listed here are some examples of where DDM file names can be specified:

32 IBM Systems - iSeries: Database Distributed data management

v DDM file names can be specified on many of the database file-related commands, such as the copy,

display, and override file commands.

v DDM file names can be specified on the create file commands to access remote source files, but only if

the target server is an iSeries server or a System/38. A DDM file name can be specified on the

SRCFILE parameter, and a member name can be specified on the SRCMBR parameter. If the remote

source file referred to by the DDM file is not on an iSeries server or a System/38, an error occurs. The

considerations for remote iSeries or System/38 source members are the same as for local source

members.

v DDM file names can be specified on the FILE parameter of the Declare File (DCLF) command.

When a DDM file name is specified, some commands act on files on the source server, some act on target

files, and some parameter values allow you to specify either a source or target file.

 Related concepts

 “Use CL and DDS with DDM” on page 67
This topic contains DDM-related information about specific iSeries control language (CL) commands,

data description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.

 “Operating considerations for DDM” on page 113

This topic provides task-oriented information and examples that describe various aspects of DDM

operation considerations.
 Related reference

 “DDM-related CL command summary charts” on page 106

This topic shows summary charts containing most of the control language (CL) commands used with

DDM.

ILE C considerations for DDM

ILE C programs can refer to DDM files.

Generally, DDM file names can be specified in ILE C programming language anywhere a database file

name can be specified, for both iSeries and non-iSeries target servers.

Specify DDM file names on the Create C Program (CRTCPGM) command to do the following items:

v Access remote files on an iSeries or non-iSeries server that contains source statements. To do this,

specify a DDM file name on the SRCFILE parameter, and a member name on the SRCMBR parameter.

Notes:

1. For iSeries or System/38 target systems, you access a remote iSeries or System/38 source

file (or member) in the same manner as a local source file and member.

2. For non-iSeries target servers, access a remote source file by using the same file name for

the SRCMBR and the SRCFILE parameters.
v Place the compiler listing in a database file on a target server. To do this, specify a DDM file name on

the PRTFILE parameter of the CRTCPGM command.

When using ILE C programming language, consider the following items:

v If the target system is not an iSeries server or a System/38, you can specify a DDM file name as the

include file on the #INCLUDE source directive statement, but the member name must be the same as

the DDM file name.

v ILE C programming language only supports sequential I/O operations.

v Although ILE C programming language does not directly support keyed files, key exceptions might

occur if you are using a keyed file.

Distributed data management 33

Utility considerations for DDM

These iSeries utilities support DDM for accessing remote files.

Notes:

1. The following utilities do not support DDM: iSeries Query, source entry utility (SEU), screen

design aid (SDA), and advanced printer function utility.

2. Except when the System/38-compatible database tools or DFU/400 is being used, DDM does

not support displaying lists of members in remote files. However, if the target server is an

iSeries server or a System/38, display station pass-through can be used to perform this

function.

3. The SQL/400® licensed program and query management, part of the i5/OS licensed program,

do not support DDM. However, both support the Distributed Relational Database Architecture

(DRDA) in a distributed network.

System/38-compatible database tools

The topic collection describes the System/38-compatible data file utility (DFU/38) and the

System/38-compatible query utility (Query/38).

System/38-compatible data file utility (DFU/38):

DFU/38 data entry applications can be created and used with DDM to work with remote files in the

same manner as with local files.

 If a remote file is on an iSeries server or System/38, most DFU/38 functions are performed with the

remote file as though it is a local file. When creating or changing a DFU/38 application and the remote

file is a logical file, the following consideration applies: either DDM files referring to each remote

based-on file must exist on the source server, and the DDM file and library names must match those of

the remote based-on files; or, alternatively, physical files with the same file and library names and the

same record formats as the remote based-on files must exist on the source server. Because only the record

formats are needed from the physical files, they need not contain data. Using this alternative, if the

record formats of the remote based-on files are changed, the record formats on the source server must

also be changed so that the record formats match.

However, DFU/38 does not support non-iSeries or non-System/38 target systems. If you attempt to use

DFU/38 with non-iSeries or non-System/38 remote files, you might experience processing problems

when trying to change or delete records in such a file. Although an iSeries server does not prevent any

user from creating and using such an application, the default field descriptions created on the source

iSeries server for the non-iSeries or non-System/38 remote file would probably be too general to be

useful. (These files appear to be physical files with one member, whose member name is the same as the

file name. The file has one record format and within that format: one field for the entire record, if it is a

nonkeyed file; two fields for keyed files, one for the key and one for the remainder of the record; or more

than two fields for keyed files with separate key fields.)

All the DFU/38 commands can be used in applications that access local files or DDM files. And,

wherever a local database file name can be specified on any of the DFU command parameters, a DDM

file can also be specified, as long as any other limitations are met.

A DDM file name can be specified in the SRCFILE parameter of the Create DFU Application

(CRTDFUAPP) or Retrieve DFU Source (RTVDFUSRC) command, but only if the target server is an

iSeries server or a System/38 and if the target file is a source physical file.

System/38-compatible query utility (Query/38):

The System/38-compatible query utility (Query/38) can be used with DDM to create and use interactive

or batch query applications.

34 IBM Systems - iSeries: Database Distributed data management

If the target server is an iSeries server or a System/38, most of these functions can be performed as

though the remote file is a local file. When creating or changing a Query/38 application and the remote

file is a logical file, the following consideration applies: either DDM files referring to each remote

based-on file must exist on the source server, and the DDM file and library names must match those of

the remote based-on files; or, alternatively, physical files with the same file and library names and the

same record formats as the remote based-on files must exist on the source server. Because only the record

formats are needed from the physical files, they need not contain data. Using this alternative, if the

record formats of the remote based-on files are changed, the record formats on the source server must

also be changed so that the record formats match.

If the target system is not an iSeries server or a System/38, you should refer to a local file for the format

and fields that describe the data in the remote file, and then use the Override Database File (OVRDBF)

command to override the local file with a DDM file when the Query/38 application is run. The local file

used to create (or re-create) the query must have the same record format name as the source description

of the non-iSeries or non-System/38 target file. The default record format name is the name of the source

DDM file.

Although Query/38 can create an application that uses a file on a non-iSeries or non-System/38 system,

the default field descriptions created on the source iSeries server for the non-iSeries remote file probably

would be too general to be useful. (These files appear to be physical files with one member, whose

member name is the same as the file name. The file has one record format and within that format: one

field for the entire record, if it is a nonkeyed file; two fields for keyed files, one for the key and one for

the remainder of the record; or more than two fields for keyed files with separate key fields.)

 Related reference

 “i5/OS database query” on page 38
The database interactive query function, provided by the i5/OS licensed program, supports DDM

files.

 “Non-iSeries or non-System/38 Query/38 example”
This example shows how to create a local file and use it to define the data that is to be queried in a

non-iSeries or non-System/38 remote file.

 “OPNQRYF (Open Query File) command” on page 95
You can query remote files using the Open Query File (OPNQRYF) command, but only if the remote

files are on a target iSeries server or a target System/38.

Non-iSeries or non-System/38 Query/38 example:

This example shows how to create a local file and use it to define the data that is to be queried in a

non-iSeries or non-System/38 remote file.

 Assume that a DDM file named RMTS36FILE exists on your iSeries server and it refers to a remote

System/36 file that you want to query. You can perform the following steps to: determine the attributes

of the remote System/36 file; locally create a physical file that has the attributes of the remote file; and

define, create, and run the Query/38 against the remote file.

1. Use the Display File Field Description (DSPFFD) command and specify SYSTEM(*RMT) to display the

attributes of the remote file associated with the RMTS36FILE DDM file.

DSPFFD FILE(RMTS36FILE) SYSTEM(*RMT)

In this example, the displayed results would show that the remote file’s record length is 80 characters,

its record format name is RMTS36FILE, and it has two fields: K00001, with 12 characters (starting in

position 1), and F00001, with 68 characters (starting in position 13). The K in field K00001 indicates it

is the key field for this format.

2. Using the DDS and the preceding information before defining your Query/38 application, create a

local physical file and call it LCLS36FILE. The DDS might look something like this:

Distributed data management 35

A R RMTS36FILE

 A CUSNO 6A

 A BILLCODE 6A

 A ADDR1 15A

 A ADDR2 15A

 A ADDR3 15A

 A ZIP 5A

 A AMTOWE 7S 2

 A OUTBAL 7S 2

 A MISC 4A

 A K CUSNO

 A K BILLCODE

Three main rules must be followed when defining the local file:

v The record format name must be the same as the record format name displayed by the Display File

Field Description (DSPFFD) command.

v Key integrity must be maintained. In this case, the key must be 12 characters long, and must start

at the beginning of the file in position 1.

v The total record length must be the same as the record length displayed by the DSPFFD command.
3. Define your Query/38 application using the local file created in step 2. Because the remote file is a

non-iSeries file, OPTIMIZE(*NO) should be specified on the query command.

4. Before your Query/38 application is run, issue the following Override Database File (OVRDBF)

command:

OVRDBF FILE(LCLS36FILE) TOFILE(RMTS36FILE)

When the Query/38 application is run, this command overrides the local file you created with the

DDM file that is associated with the desired target file.

5. Run your Query/38 application using the Query Data (QRYDTA) command. The net effect is that a

query of the remote file is done using the local file description.
 Related reference

 “System/38-compatible query utility (Query/38)” on page 34
The System/38-compatible query utility (Query/38) can be used with DDM to create and use

interactive or batch query applications.

 “Query/38 optimization for DDM” on page 37
Query/38 has an optimization function, but because it causes i5/OS database query to be used, the

feature cannot be used when the query is performed against a remote file that is not on an iSeries

server or a System/38.

Query/38 output considerations for DDM:

Query/38 output to an existing non-iSeries or a non-System/38 target file is possible, but only under

specific circumstances.

 Query/38 allows output to any local or remote file only if the file is sequential and if its field attributes

match those attributes required by the Query/38 application. If both conditions are not met, Query/38

rejects the specified output file before the Query/38 application runs.

Because the source server description of a non-iSeries or a non-System/38 target file is very general, its

field attributes probably do not match the attributes required by the Query/38 application. Therefore, in

most cases, Query/38 rejects that file if it is specified for output. It works, however, if the Query/38

output consists of one alphanumeric field only, and if the record length of the target file is large enough

to hold this field.

Query/38 command considerations for DDM:

36 IBM Systems - iSeries: Database Distributed data management

All the Query/38 commands can be used in applications that access local files or DDM files. And,

wherever a local database file name can be specified on any of the Query/38 command parameters, a

DDM file can also be specified, as long as any other limitations are met.

 Note: If a Query/38 command uses a DDM file associated with a remote file on a non-iSeries or a

non-System/38 target server, either the DDM file should specify LVLCHK(*NO) or an OVRDBF

command should be used to override that parameter with *NO. This is recommended to avoid

level-checking problems with the target file.

A DDM file name can be specified in the SRCFILE parameter of the Create Query Application

(CRTQRYAPP) or Retrieve Query Source (RTVQRYSRC) command, but only if the target server is an

iSeries server or a System/38 and if the target file is a source physical file.

Query/38 optimization for DDM:

Query/38 has an optimization function, but because it causes i5/OS database query to be used, the

feature cannot be used when the query is performed against a remote file that is not on an iSeries server

or a System/38.

 Because i5/OS database query does not exist on non-iSeries servers or non-System/38s, the optimization

function cannot be used by the source iSeries server when performing a query against a non-iSeries or a

non-System/38 remote file.

Therefore, when a Query/38 application is being created or changed that accesses a remote file on a

non-iSeries server or a non-System/38, the OPTIMIZE parameter on the Create Query Application

(CRTQRYAPP), Create Query Definition (CRTQRYDEF), or Change Query Definition (CHGQRYDEF)

command must be changed to *NO. Specifying OPTIMIZE(*NO) forces Query/38 to read the file

sequentially, which can be done with non-iSeries target files. If the default of *YES is used, an error

occurs when the Query/38 application is run.

Similarly, if the Design Query Application (DSNQRYAPP) command is used to create and run queries

that are to be performed on a non-iSeries target file, the Optimize Query prompt on the Application

Creation display must be changed from Y to N.

 Related reference

 “Non-iSeries or non-System/38 Query/38 example” on page 35
This example shows how to create a local file and use it to define the data that is to be queried in a

non-iSeries or non-System/38 remote file.

 “i5/OS database query” on page 38
The database interactive query function, provided by the i5/OS licensed program, supports DDM

files.

Existing Query/38 application considerations for DDM:

You should keep these considerations in mind for existing Query/38 applications.

 Existing Query/38 applications, if they are to query remote files, must be re-created in all cases, even if

the target server is an iSeries server or a System/38. If the target server is an iSeries server or a

System/38, the re-created application that uses a DDM file is defined and run as if the remote file is a

local file. The optimization feature can be used to get the records from the target iSeries server or the

target System/38.

Data file utility for iSeries server

Data file utility (DFU) data entry applications can be created and started with DDM to work with remote

files in the same manner as with local files. Most DFU functions are performed with the remote file as

though it were a local file.

Distributed data management 37

When you create or change a DFU function of Application Development Tools and the remote file is an

iSeries or System/38 logical file, the following consideration applies: either DDM files referring to each

remote based-on file must exist on the source server, and the DDM file and library names must match

those of the remote based-on files; or, alternatively, physical files with the same file and library names

and the same record formats as the remote based-on files must exist on the source server. Because only

the record formats are needed from the physical files, they need not contain data. Using this alternative,

if the record formats of the remote based-on files are changed, the record formats on the source server

must also be changed so that the record formats match. Similar considerations apply when the remote file

is a System/36 logical file.

DFU supports iSeries server, System/38, and System/36 remote files. However, DFU does not prevent

you from using non-iSeries, non-System/38, or non-System/36 remote files and you might experience

problems when using such files.

Non-iSeries or System/36 files are program-described files. DFU allows you to use either a local or

remote file containing ILE RPG file and input specifications to define these data files.

i5/OS database query

The database interactive query function, provided by the i5/OS licensed program, supports DDM files.

This support is used by iSeries Access Family and System/38-compatible query utility if OPTIMIZE(*YES)

is specified. You can query remote files using the Open Query File (OPNQRYF) command, but only if the

remote files are on a target iSeries server or a target System/38.

The query utility on the System/38 can be used to query remote files that are not from an iSeries server.

 Related reference

 “System/38-compatible query utility (Query/38)” on page 34
The System/38-compatible query utility (Query/38) can be used with DDM to create and use

interactive or batch query applications.

 “Query/38 optimization for DDM” on page 37
Query/38 has an optimization function, but because it causes i5/OS database query to be used, the

feature cannot be used when the query is performed against a remote file that is not on an iSeries

server or a System/38.

 “OPNQRYF (Open Query File) command” on page 95
You can query remote files using the Open Query File (OPNQRYF) command, but only if the remote

files are on a target iSeries server or a target System/38.

Multiple remote files:

Database query allows accessing of either multiple local files or multiple remote files (by using DDM

files) at the same time, but not both.

 If all the files are remote, they must all reside on the same target server. Also, the DDM files that refer to

the remote files must all specify the same remote location information. If this restriction is not met, an

error message is displayed to the user of iSeries Access Family or to the user of the Open Query File

(OPNQRYF) command who requested the query.

Sort utility

The sort utility supports remote file processing with DDM anywhere that it supports local file processing

for both iSeries and non-iSeries target servers.

Generally, on the Format Data (FMTDTA) command, DDM file names can be specified anywhere a

database file name can be specified.

38 IBM Systems - iSeries: Database Distributed data management

v A DDM file name can be specified on the SRCFILE parameter, and a member name can be specified on

the SRCMBR parameter, for iSeries or System/38 target systems. If the remote file referred to by the

DDM file is not on an iSeries server or a System/38, a member name cannot be specified.

v DDM file names can also be specified on the INFILE parameter (to access a remote file as the input file

for conversion) or on the OUTFILE parameter (to access a remote file as the output file of the

conversion). Both parameters cannot specify DDM file names at the same time.

iSeries Access Family considerations for DDM

The iSeries Access Family supports DDM for accessing remote files, with limitations.

Note: iSeries Business Graphics Utility does not support DDM.

The transfer function in iSeries Access Family can be used with DDM to transfer data between a personal

computer attached to a local iSeries server and another remote server.

When the transfer function is being used, the remote system must be an iSeries system or a System/38.

The iSeries Access Family copy commands, Copy to PC Document (CPYTOPCD) and Copy from PC

Document (CPYFRMPCD), can be used to copy data on a host server or between host servers.

The figure here shows a personal computer attached to the local iSeries server. The iSeries Access Family

user can access data on remote servers through a DDM file defined on the local iSeries server. The iSeries

server with the personal computer attached can only be the source server.

v The iSeries Access Family transfer function can be used by a personal computer user to transfer data

from a remote file to the personal computer, or to transfer data from the personal computer to a remote

file. Only a personal computer user can start the requests, not an iSeries user.

v The iSeries Access Family copy commands can be used with DDM to copy data from a personal

computer document located on the local iSeries server to a database file on the remote iSeries server, or

to copy data to a personal computer document on the local iSeries server from a database file on the

remote iSeries server.

Note: For iSeries Access Family, database query allows accessing of multiple remote files (by using DDM

files) at the same time.

Figure 13. Use DDM with iSeries Access Family

Distributed data management 39

iSeries Access Family transfer function considerations

A personal computer user can use the transfer function in iSeries Access Family and the DDM support on

the local iSeries server to which the personal computer is attached either to transfer data from the

personal computer to a remote file, or to transfer data from a remote file to the personal computer.

The remote file must be on an iSeries server or a System/38.

When DDM is used to transfer files or data from a remote server to an attached personal computer, the

DDM files (that refer to remote files) on the local iSeries server cannot be joined with local files to

transfer data to the personal computer. (That is, data from files on both the remote and local servers

cannot be joined.) However, a DDM file can specify a remote file that is a logical join file built over

multiple physical files. DDM files that refer to the same target server and use the same remote location

information can be joined.

A transfer request that requires group processing does not work if the local server is a System/38 and the

remote server is an iSeries server, or if the local server is an iSeries server and the remote server is a

System/38.

When DDM is used to transfer a file or data from an attached personal computer to a remote server, a

remote file cannot be created on the target server. The remote file must already exist before the data from

the personal computer can be transferred. However, because the target must be an iSeries server or a

System/38, a new member can be added in the remote file before personal computer data is transferred

to that file member.

iSeries Access Family copy command considerations

The iSeries CL command Copy from Personal Computer Document (CPYFRMPCD) used in iSeries Access

Family can be used to copy data from a document located either on an iSeries server to a database file

member located on the same iSeries server or on a remote iSeries server using DDM.

The CL command Copy to Personal Computer Document (CPYTOPCD) can be used to copy data from a

database file member on a local iSeries server or a remote iSeries server (using DDM) to a document on

the local iSeries server. The remote file can be on a target iSeries server or a non-iSeries server. To use

these commands, specify the name of a DDM file on the:

v TOFILE parameter in the Copy from PC Document (CPYFRMPCD) command, to copy a personal

computer document to an iSeries physical file.

v FROMFILE parameter in the Copy to PC Document (CPYTOPCD) command, to copy a member from

an iSeries database file to a personal computer document in a folder.

The following restrictions apply to the CL copy commands for iSeries Access Family:

v For the CPYFRMPCD command, a remote file cannot be created on the target server (whether it is an

iSeries server or a non-iSeries server). The remote file must already exist before the personal computer

document data can be copied to it. However, if the target is an iSeries server or a System/38, a new

member can be created for the remote file before the personal computer document data is copied to

that file member.

v The CPYFRMPCD and CPYTOPCD commands are iSeries CL commands and cannot be entered at the

DOS prompt from the personal computer.

For more information on the CPYTOPCD and the CPYFRMPCD commands, see the online help

information.

Hierarchical file system API support for DDM

The hierarchical file system (HFS) APIs and the functions that they support are part of the i5/OS

operating system.

40 IBM Systems - iSeries: Database Distributed data management

The APIs provide applications with a single, consistent interface to all the hierarchical file systems

available on your iSeries server. They automatically support the document library services (DLS) file

system and can support user-written file systems also.

DDM can be registered under HFS as one of the user-written file systems. DDM, however, only supports

the copy stream file (QHFCPYSF) HFS API. To register DDM under HFS, you must run the following

command on your iSeries source system, CALL QTSREGFS. If no errors occur, DDM is successfully

registered with HFS.

Calling DDM using the HFS QHFCPYSF API causes one of two DDM-architected commands to be

generated, the LODSTRF (load stream file) or ULDSTRF (unload stream file) command. Both of these

DDM commands are part of the stream file DDM model (STRFIL). If the DDM target server you are

working with does not support the STRFIL DDM model, then errors will occur when trying to use this

support. DDM uses documents and folders (DLS) on the server to copy stream file data either to

(ULDSTRF case) or from (LODSTRF case).

To use the DDM HFS copy stream file support, note the following items:

v Both the source and destination file path names must begin with the string ’/QDDM/’ to indicate to

HFS that DDM is the file system that will handle the copy stream file function.

v The copy information HFS parameter is ignored by DDM, but you still must pass a valid HFS value.

v Either the source or destination file path name parameter must be the name of a DDM file, but not

both. The DDM file used must point to a target server that supports the STRFIL DDM file model and

the remote file name value must end with the string ’ FMS’ if the DDM file points to another iSeries

server.

v The other source or destination file path name parameter that is not a DDM file, must be the name of

an existing DLS object (document in a folder) and the name must be followed by the string ’ FMS’.

v The maximum source or target path name length supported by DDM is 63 characters. The 63

characters do not include the ’/QDDM/’ or the ’ FMS’ possible appendages.

v In the LODSTRF case (source file path name is a local DLS object and target file path name is a DDM

file), the local DLS document is read starting at offset zero through the end of the file. Whether the

destination file (pointed to by the DDM file) exists or not is dependent on the target server’s stream file

support.

v In the ULDSTRF case (source file path name is a DDM file and destination file path name is a local

DLS object), the local or target DLS document must exist on the iSeries and will have its contents

cleared and then written to starting at offset zero.

Here is a copy stream file example that will generate a LODSTRF DDM command to a remote server:

CRTDDMF FILE(DDMLIB/DDMFILE) +

RMTFILE(*NONSTD ’TARGET/SYSTEM/

SYNTAX/PATHNAME FMS’) RMTLOCNAME(RMTSYSNM)

In this example, the local DLS object is ’PATH1/PATH2/FOLDER1/DOC1’.

You would call QHFCPYSF with the following parameter list:

1 Source file path name = ’/QDDM/PATH1/PATH2/FOLDER1/DOC1 FMS’

2 Source file path name length = 34

3 Copy information = valid HFS value that is ignored by DDM

4 Target file path name = ’/QDDM/DDMLIB/DDMFILE’

5 Target file path name length = 20

Just reverse the source and destination file path names and lengths to generate an ULDSTRF DDM

command.

The example program in the following example calls DDM HFS API:

Distributed data management 41

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 211

Sample command source that can be used with the preceding program:

CMD

 PARM KWD(SRCFIL) TYPE(*CHAR) LEN(73) +

 PROMPT(’SOURCE FILE NAME’)

 PARM KWD(TRGFIL) TYPE(*CHAR) LEN(73) +

 PROMPT(’TARGET FILE NAME’)

 Related reference

/**/

/**/

/* FUNCTION: This program copies a stream file using the QHFCPYSF */

/* HFS API. */

/* */

/* LANGUAGE: PL/I */

/* */

/* APIs USED: QHFCPYSF */

/* */

/**/

/**/

TRANSFER: PROCEDURE(SRCFIL,TRGFIL) OPTIONS(MAIN);

/* parameter declarations */

DCL SRCFIL CHARACTER (73);

DCL TRGFIL CHARACTER (73);

/* API entry declarations */

/* */

/* The last parameter, the error code, is declared as FIXED BIN(31) */

/* for the API. This always has a value of zero, specifying that */

/* exceptions should be returned. */

DCL QHFCPYSF ENTRY(CHAR(73),FIXED BIN(31),CHAR(6),CHAR(73),

 FIXED BIN(31),FIXED BIN(31))

 OPTIONS(ASSEMBLER);

/**/

/* Parameters for QHFCPYSF */

/**/

DCL srclen FIXED BIN(31);

DCL trglen FIXED BIN(31);

DCL cpyinfo CHAR(6);

DCL error_code FIXED BIN(31);

/**/

/* Mainline routine */

/**/

srclen = INDEX(SRCFIL,’ ’) - 1;

trglen = INDEX(TRGFIL,’ ’) - 1;

cpyinfo = ’1 ’;

error_code = 0;

/* Copy the stream file */

Call QHFCPYSF(SRCFIL,srclen,cpyinfo,TRGFIL,trglen,

 error_code);

END TRANSFER;

Figure 14. Program example

42 IBM Systems - iSeries: Database Distributed data management

“LODSTRF (Load Stream File) Level 2.0” on page 182
This command sends a whole stream file from the source server to the target server. This command is

sent by a source iSeries server when using the copy stream file HPS API.

 “ULDSTRF (Unload Stream File) Level 2.0” on page 194
This command sends a document from the target to the source. This command is sent by a source

iSeries server when using the Copy Stream File (QHFCPYSF) HFS API.
 Related information

 Hierarchical File System APIs

 Application Programming Interfaces

Prepare to use DDM

There are several requirements that must be met for DDM to be used properly.

Notes:

v Before determining which files should be accessed using DDM, review Performance

considerations for DDM.

v Programming requirements and considerations for control language (CL) commands and data

description specifications (DDS) are covered in Using CL and DDS with DDM and Operating

considerations for DDM.
 Related concepts

 “Performance considerations for DDM” on page 136

These topics provide information to help you improve performance when using DDM and also

provide some information about when to use something other than DDM to accomplish some

functions.

 “Use CL and DDS with DDM” on page 67
This topic contains DDM-related information about specific iSeries control language (CL) commands,

data description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.

 “Operating considerations for DDM” on page 113

This topic provides task-oriented information and examples that describe various aspects of DDM

operation considerations.

Communications requirements for DDM in an APPC network

Each iSeries server in a DDM network that is not using OptiConnect must have these communications

requirements.

v The APPC/APPN support or the iSeries Access Family licensed program installed and configured on

the server.

v At least one Systems Network Architecture (SNA) communications line connection that uses

synchronous data link communications (SDLC), token-ring network, Ethernet, or X.25 protocol.

The number of sessions that can be used for DDM conversations is not limited by DDM. The maximum

is determined in the same manner as for any other APPC-related communications. For parallel sessions,

the session maximum is specified in the mode. For single session devices, the session maximum is always

one.

iSeries servers in a DDM network that use OptiConnect must have the OptiConnect software and

hardware installed. OptiConnect replaces the need for SNA communications line connections.

 Related concepts

 APPC, APPN, and HPR

 OptiConnect

 Connecting to iSeries: iSeries Access for Windows

Distributed data management 43

Related information

 Communications Configuration PDF

Configure a communications network in a TCP/IP network

This topic provides a high-level overview of the steps you take to set up a TCP/IP network.

1. Identify your iSeries server to the local network (the network that your iSeries server is directly

connected to).

a. Determine if a line description already exists.

b. If a line description does not already exist, create one.

c. Define a TCP/IP interface to give your iSeries server an IP address.
2. Define a TCP/IP route. This allows your iSeries server to communicate with servers on remote

TCP/IP networks (networks that your iSeries server is not directly connected to).

3. Identify the names of the servers in your network.

a. Build a local host table.

b. Identify a remote name server.
4. Start TCP/IP.

5. Verify that TCP/IP works.

Security requirements for DDM

You can prevent intentional and unintentional access to the data resources of a system by the DDM user.

Access to data in the DDM environment can be limited—or prevented altogether—by a server-level

network attribute, the DDMACC parameter on the Change Network Attributes (CHGNETA) command

on the server. This attribute allows the server (as a target server) to prevent all remote access; or it allows

the server to control file access by using standard authority to files and, further, by using an optional user

exit program to restrict the types of operations allowed on the files for particular users.

To provide adequate security, you might need to set up additional user profiles on the target server, one

for each source server user who can have access to one or more target server files. Or, a default user

profile should be provided for multiple source server users. The default user profile is determined by the

communications entry used in the subserver in which the target jobs are run.

For user profiles (or their equivalent) on non-iSeries target servers, refer to that server’s documentation.

 Related concepts

 “Security” on page 48
This topic describes how iSeries security relates to DDM, and how it can limit access to the data

resources of a target server by source server programs and users.

DDM file requirements

Before remote files can be accessed by an iSeries server, DDM files must be created on the source server.

At the time a DDM file is used, the device (remote location name) and mode (APPC session

characteristics) specified in the DDM file must also exist on the server if APPN is not used. If APPN is

used, then the device does not need to exist on the server. However, the server identified by the remote

location name must exist within the APPN network. The APPN parameter on the Create Controller

Description (APPC) (CRTCTLAPPC) and the Create Controller Description (SNA Host) (CRTCTLHOST)

commands controls whether APPN is used.

 Related concepts

 “Use CL and DDS with DDM” on page 67
This topic contains DDM-related information about specific iSeries control language (CL) commands,

data description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.

44 IBM Systems - iSeries: Database Distributed data management

http://publibfp.boulder.ibm.com/epubs/pdf/c4154010.pdf

Program modification requirements for DDM

Remote files can be accessed by iSeries application programs written in the HLL and control language.

In most cases, these applications can access both local or remote files without the programs being

changed. However, some considerations and restrictions might require the programs to be changed and

recompiled. These are grouped in three categories:

v iSeries functions that are not supported by the DDM architecture, but for which a System/38 extension

to the architecture might exist. These functions can be used only when the source and target servers

are System/38s or iSeries servers.

v Restrictions and considerations that apply when the source or target server is an iSeries server.

v Restrictions and considerations that apply to all target servers (iSeries servers and non-iSeries servers).

User programs accessing local files should program for abnormal conditions such as No record found,

End of file, and Record lock time-out on read for update. These conditions can also occur when a remote file

is being accessed using DDM. In addition, the use of DDM exposes the program to communication line

failures while sending disk I/O operations.

When a communications failure occurs, the server sends an appropriate message to the job, which is

returned to the application program as a generic file error. Each high-level language provides unique

user syntax capabilities for user-controlled handling or default processing of exceptional results of a

disk operation. Some languages might permit the user to retrieve the job message identification (ID)

that would specifically indicate a DDM communications failure. Refer to the appropriate language

manual for specific capabilities.

For secondary SDLC lines, it is recommended that the INACTTMR parameter of the Create Line

Description (SDLC) (CRTLINSDLC) command be set on the source and target servers to detect the

stopping of polling by the primary server. This prevents the possibility of a DDM read-for-update

record lock lasting indefinitely due to a communications failure on the primary server.

DDM architecture-related restrictions

The items listed in this topic are DDM architecture-related restrictions. Therefore, application programs

that use these items might have to be changed and recompiled before they can access remote files.

v The DDM architecture does not support iSeries multi-format logical files. However, because

multi-format logical files are supported as an System/38 extension to the DDM architecture, they can

be used with DDM, but only if the source and target servers are iSeries servers or System/38s.

v Externally described data (using data description specifications [DDS] on an iSeries server) is not

supported by the DDM architecture. However, DDS can still be used, especially if both systems are

iSeries servers or System/38s. If the target server is an iSeries server or a System/38, most of the DDS

support can be used as though the remote file is a local file.

v To access folder management services objects, the source server must support Level 2.0 or Level 3.0 of

the DDM architecture for stream files and the stream access method. The following restrictions for the

byte stream model apply:

– WAIT time is not supported by the folder management services on the Lock Data Stream (LCKSTR)

command. The user must handle the waiting function on the source server.

– The Copy File (CPYFIL) command used to copy a document on an iSeries server is supported with

the restrictions. Only the header information is copied; no data is copied.

– The DELDRCOP (DRCALL) parameter is not supported on the Delete Directory (DELDRC)

command.
v Personal computer generic names are not allowed when performing operations on data management

objects such as files, libraries, or members. However, generic names are allowed when performing

operations on folder management services objects such as documents and folders. Generic names are

supported where the personal computer supports the operation and in the manner that the personal

computer supports the operation. For example, generic names are not supported for folders using the

rename and delete commands because the personal computer does not support them.
 Related reference

Distributed data management 45

“Commitment control support for DDM” on page 27
iSeries applications can commit or roll back transactions on remote iSeries servers.

 “Data description specifications considerations for DDM” on page 110

Data description specifications (DDS), which is used to externally describe the fields and record

formats, can also be used with DDM to describe the file and record formats of a remote file.

 “DDM commands and parameters” on page 167

This topic classifies DDM commands and parameters.

iSeries source and target restrictions and considerations for DDM

When the source server is an iSeries server, iSeries database functions can be used on remote files. There

are some restrictions, however.

The restrictions are:

v A source iSeries server can create files on a System/38, but the DDM architecture file models are used.

As a result, no multiformat logical or join logical files can be created on a non-iSeries target server,

including a System/38.

v Save or restore operations do not save or restore the data on a target server; only the DDM file object

can be saved or restored locally.

v Operations that delay for a time period (that is, that wait for a file or record) are determined by the

time values specified on the target server. (These values are specified by the WAITFILE and WAITRCD

parameters on various CL commands.) This can result in increased delay times when DDM is used to

access files or records remotely.

v Query requests (OPNQRYF) to a System/38 cannot use group selection and join processing.

v When running System/36 applications to or from an iSeries server, these applications might result in

time-outs while waiting for a resource to become available. When running System/36 applications to

or from another System/36, the application waits indefinitely for the resource to become available.

For both source and target DDM jobs, due to the way DDM sends APPC operations, it is possible for

the DDM job on the secondary side of the APPC conversation to wait indefinitely after a line failure or

other failures at the remote server.

Consider the following suggestions to avoid indefinite waits:

– If the remote server supports record lock time-outs, ensure reasonable time values are specified. For

example, on a target iSeries server or System/38 database file, do not use maximum values for

CRTPF ... WAITRCD.

WAITRCD addresses read-for-update operations, but does not apply to other file operations, such as

read only, add, and so on.

– When using an SDLC secondary line, use a time value for the line inactivity timer (INACTTMR). Do

not use the *NOMAX value.

– Provide the person responsible for server operation with the associated line, controller, and device

names (or a list of DDM jobs that might run). If a DDM job then appears to be waiting indefinitely,

this person can display the job information to determine if the job is waiting indefinitely by

reviewing the job’s processing unit time use (by using the Display Job (DSPJOB) command to

display the active run attributes).

When the target server is an iSeries server, iSeries database functions can be used to access remote files,

with the following restrictions:

v The physical files that the logical files or join logical files are based on must exist on the same iSeries

server.

v A logical file on a source iSeries server cannot share the access path of a remote file (on any target

server).

v Query requests (OPNQRYF), which require group selection and join processing from a System/38, do

not work.
 Related concepts

46 IBM Systems - iSeries: Database Distributed data management

Communications Management PDF

Non-iSeries target restrictions and considerations for DDM

In addition to the restrictions that apply when the target server is an iSeries server, the restrictions in this

topic also might apply when the target server is not an iSeries server or a System/38.

Whether they apply depends on what the target server supports. You should refer to that server’s

documentation for more information.

v Only field data types that are common to the source and target servers can normally be processed by

HLL applications. Floating-point data is an example of a data type that might not be common. Records

can be transmitted that contain floating-point data, but the representation of floating-point data sent

between servers might differ.

The packed signs sent between systems might differ; for example, one server might use a C and

another server might use an F.

Note: It is possible for you to write your application program so that it interprets the byte string for a

record processed through a DDM file in any way that you want. However, whenever you do

this, it is your responsibility to ensure that the data is handled correctly.

v Any operations that request a delay period before returning, such as for record lock wait times, might

be rejected or changed to a zero wait time by the target server.

v Lock requests can be changed by the target server to a more restrictive lock. This might prevent some

operations from occurring at the same time that can otherwise be performed on the local iSeries server.

See “ALCOBJ (Allocate Object) command” on page 83 for more information.

v Some iSeries parameters are ignored or cause errors if they are used during remote file processing on

non-iSeries target servers. Examples are the FRCRATIO and FMTSLR parameters on some of the file

commands. For more information, see OVRDBF (Override with Database File) command and see Copy

commands with DDM.

v Member names are not supported in the DDM architecture. When the target server is not an iSeries

server or a System/38, CL commands that have a MBR parameter, such as the Clear Physical File

Member (CLRPFM) command, must be changed if the parameter specifies a member name that is

different than the file name. If the member name is different, an error occurs if the command is used

for a non-iSeries remote file. For some commands, MBR(*FIRST) or MBR(*LAST) is also valid. See

Member-related commands with DDM for a list of all the CL commands related to file members, and

for those that are not valid for accessing files on non-iSeries target servers.

Note: MBR(*LAST) is not supported by System/38.

v If a parameter on a CL command requires the name of a source file, then the names of the DDM files

that refer to non-iSeries target files cannot be specified. An iSeries server cannot determine whether a

remote file on a non-iSeries target is in fact a source file. (See Source file commands for a list of all the

CL commands related to source files.)

v Certain iSeries commands that are valid for iSeries or System/38 target servers are not valid for other

targets. See DDM-related CL command lists for the lists of commands that are not supported when the

target is not an iSeries server or a System/38.
 Related reference

 “OVRDBF (Override with Database File) command” on page 95
The Override with Database File (OVRDBF) command can be used with DDM to override (replace) a

local database file named in the program with a DDM file; the DDM file causes the associated remote

file to be used by the program instead of the local database file.

 “Copy commands with DDM” on page 86

This topic describes the DDM implications of these CL commands.

 “Member-related commands with DDM” on page 103

Database file operations that apply to a member can be used by DDM.

Distributed data management 47

“Source file commands” on page 105
If the target server is an iSeries server or a System/38, these CL commands can support a DDM file as

a source file (on the SRCFILE parameter).

Security

This topic describes how iSeries security relates to DDM, and how it can limit access to the data

resources of a target server by source server programs and users.

The access to target iSeries data can be limited by using standard authority to files, standard authority to

commands, and an optional user exit program in the DDM environment at the target server.

Security authentication is first performed when a remote user accesses the target iSeries. If the target

iSeries is not able to authenticate the remote user, the conversation is rejected. Security authorization is

performed when a remote user accesses an iSeries file. The remote user must be authorized to perform

the operation (open, close, read, or write, for example), or the DDM request is rejected. Application

programs on the iSeries server can be isolated from each other by object authorities. .

 Related concepts

 APPC, APPN, and HPR

 “Performance considerations for DDM” on page 136

These topics provide information to help you improve performance when using DDM and also

provide some information about when to use something other than DDM to accomplish some

functions.
 Related reference

 “Security requirements for DDM” on page 44

You can prevent intentional and unintentional access to the data resources of a system by the DDM

user.

Elements of distributed relational database security

A distributed relational database administrator needs to protect the resources of the application servers in

the network without unnecessarily restricting access to data by application requesters (ARs) in the

network.

An AR secures its objects and relational database to ensure only authorized users have access to

distributed relational database programs. This is done using normal iSeries server object authorization to

identify users and specify what each user (or group of users) is allowed to do with an object.

Alternatively, authority to tables, views, and SQL packages can be granted or revoked using the SQL

GRANT and REVOKE statements. Providing levels of authority to SQL objects on the AR helps ensure

that only authorized users have access to an SQL application that accesses data on another system.

The level of system security in effect on the application server (AS) determines whether a request from an

AR is accepted and whether the remote user is authorized to objects on the AS.

Some aspects of security planning for iSeries server in a distributed relational database network include:

v Object-related security to control user access to particular resources such as confidential tables,

programs, and packages

v Location security that verifies the identity of other systems in the network

v User-related security to verify the identity and rights of users on the local system and remote systems

v Physical security such as locked doors or secured buildings that surround the systems, modems,

communication lines and terminals that can be configured in the line description and used in the route

selection process

48 IBM Systems - iSeries: Database Distributed data management

Location, user-related, and object-related security are only possible if the system security level is set at

level 20 or above.

For Advanced Program-to-Program Communication (APPC) conversations, when the system is using

level 10 security, an iSeries server connects to the network as a nonsecure system. The server does not

validate the identity of a remote system during session establishment and does not require conversation

security on incoming program start requests. For level 10, security information configured for the APPC

remote location is ignored and is not used during session or conversation establishment. If a user profile

does not exist on the server, one is created.

When the system is using security level 20 or above, an iSeries server connects to the network as a secure

system. The iSeries system can then provide conversation-level security functions and, in the case of

APPC, session level security as well.

Having system security set at the same level across the systems in your network makes the task of

security administration easier. An AS controls whether the session and conversation can be established by

specifying what is expected from the AR to establish a session. For example, if the security level on the

AR is set at 10 and the security level on the AS is above 10, the appropriate information might not be

sent and the session might not be established without changing security elements on one of the systems.

Passwords for DRDA access

The most common method of authorizing a remote user for database access is by flowing a user ID and

password at connection-time. One method an application programmer can use to do this is to code the

USER/USING clause on an embedded SQL CONNECT statement. For example:

EXEC SQL CONNECT TO :locn USER :userid USING :pw

For Distributed Relational Database Architecture (DRDA) access to remote relational databases, once a

conversation is established, you do not need to enter a password again. If you end a connection with

either a RELEASE, DISCONNECT, or CONNECT statements when running with the remote unit of work

(RUW) connection management method, your conversation with the first application server (AS) might or

might not be dropped, depending on the kind of AS you are connected to and your application requester

(AR) job attributes (for the specific rules, see Control DDM conversations). If the conversation to the first

AS is not dropped, it remains unused while you are connected to the second AS. If you connect again to

the first AS and the conversation is unused, the conversation becomes active again without you needing

to enter your user ID and password. On this second use of the conversation, your password is also not

validated again.

Elements of security in an APPC network

When Distributed Relational Database Architecture (DRDA) is used, the data resources of each server in

the DRDA environment should be protected.

To protect data resources of each server in the DRDA environment, you can use three groups of security

elements that are controlled by the following parameters:

v For system-related security or session, the LOCPWD parameter is used on each iSeries server to indicate

the system validation password to be exchanged between the source and target systems when an

Advanced Program-to-Program Communication (APPC) session is first established between them. Both

systems must exchange the same password before the session is started. (On System/36, this password

is called the location password.) In an APPC network, the LOCPWD parameter on the Create Device

Description (APPC) (CRTDEVAPPC) command specifies this password. Devices are created

automatically using APPN, and the location password on the remote location list specifies a password

that is used by the two locations to verify identities. Use the Create Configuration List (CRTCFGL)

command to create a remote location list of type (*APPNRMT).

v For user-related or location security, the SECURELOC parameter is used on each iSeries server to

indicate whether it (as a target server) accepts incoming access requests that have their security already

Distributed data management 49

verified by the source server or whether it requires a user ID and encrypted password. In an APPC

network, the SECURELOC parameter on the Create Device Description (APPC) (CRTDEVAPPC)

command specifies whether the local server allows the remote server to verify security. Devices are

created automatically using APPN, and the secure-location on an APPN remote Configuration List is

used to determine if the local server allows the remote server to verify user security information. The

SECURELOC value can be specified differently for each remote location.

The SECURELOC parameter is used with the following security elements:

– The user ID sent by the source server, if allowed by this parameter

– The user ID and encrypted password, if allowed by this parameter

– The target server user profiles, including default user profiles

For more information, see the DDM source system security in an APPC network topic.

v For object-related security, the DDMACC parameter is used on the Change Network Attributes

(CHGNETA) command to indicate whether the files on the iSeries server can be accessed at all by

another server and, if so, at which level of security the incoming requests are to be checked. More

information about this object-related parameter is provided in the topic DDM Network Attribute

(DDMACC Parameter).

– If *REJECT is specified on the DDMACC parameter, all DRDA requests received by the target iSeries

server are rejected.

– If *OBJAUT is specified on the DDMACC parameter, normal object-level security is used on the

target server.

– If the name of an optional, user-supplied user exit program (or access control program) is specified

on the DDMACC parameter, an additional level of security is used. The user exit program can be

used to control whether a given user of a specific source server can use a specific command to

access (in some manner) a specific file on the target server. (See the topic DDM server access control

exit program for additional security for details.)

– When a file is created on the target server using DRDA, the library name specified contains the file.

If no library name is specified on the DRDA request, the current library (*CURLIB) is used. The file

authority defaults to allow only the user who created the file or the target server’s security officer to

access the file.

Most of the security controls for limiting remote file access are handled by the target server. Except for

the user ID provided by the source server, all of these elements are specified and used on the target

server. The source server, however, also limits access to target server files by controlling access to the

DRDA file on the source server and by sending the user ID, when needed, to the target server.

 Related concepts

 “DRDA application server security in an APPC network” on page 52
When the target server is an iSeries server, several elements are used together to determine whether a

request to access a remote file is allowed or not.
 Related reference

 “DDM server access control exit program for additional security” on page 60
Customers who use menu-level security, which is accomplished by restricting the user’s access to

functions on the server, are likely to have a large number of public files. Public files are those files to

which the public has some or all authority. A user exit program allows you to restrict each DDM

user’s access to public files and to private files.

APPN configuration lists:

In an APPC network, location passwords are specified for those pairs of locations that are going to have

end-to-end sessions between them.

 Location passwords need not be specified for those locations that are intermediate nodes.

50 IBM Systems - iSeries: Database Distributed data management

The remote location list is created with the Create Configuration List (CRTCFGL) command, and it

contains a list of all remote locations, their location password, and whether the remote location is secure.

There is one system-wide remote location configuration list on an iSeries server. A central site iSeries

server can create location lists for remote iSeries servers by sending them a control language (CL)

program.

Changes can be made to a remote configuration list using the Change Configuration List (CHGCFGL)

command, however, they do not take effect until all devices for that location are all in a varied off state.

When the Display Configuration List (DSPCFGL) command is used, there is no indication that a

password exists. The Change Configuration List (CHGCFGL) command indicates a password exists by

placing *PASSWORD in the field if a password has been entered. There is no way to display the

password. If you have problems setting up location security you might have to enter the password again

on both systems to be sure the passwords match.

 Related concepts

 APPC, APPN, and HPR

Conversation level security:

Systems Network Architecture (SNA) logical unit (LU) 6.2 architecture identifies three conversation

security designations that various types of systems in an SNA network can use to provide consistent

conversation security across a network of unlike systems.

 The SNA security levels are:

SECURITY(NONE)

No user ID or password is sent to establish communications.

SECURITY(SAME)

Sign the user on to the remote server with the same user ID as the local server.

SECURITY(PGM)

Both a user ID and a password are sent for communications.

SECURITY(PROGRAM_STRONG)

Both a user ID and a password are sent for communications only if the password will not be sent

unencrypted, otherwise an error is reported. This is not supported by DRDA on i5/OS.

 While the iSeries server supports all four SNA levels of conversation security, DRDA uses only the first

three. The target controls the SNA conversation levels used for the conversation.

For the SECURITY(NONE) level, the target does not expect a user ID or password. The conversation is

allowed using a default user profile on the target. Whether a default user profile can be used for the

conversation depends on the value specified on the DFTUSR parameter of the Add Communications

Entry (ADDCMNE) command or the Change Communications Entry (CHGCMNE) command for a given

subsystem. A value of *NONE for the DFTUSR parameter means the application server (AS) does not

allow a conversation using a default user profile on the target. SECURITY (NONE) is sent when no

password or user ID is supplied and the target has SECURELOC(*NO) specified.

For the SECURITY(SAME) level, the remote server’s SECURELOC value controls what security

information is sent, assuming the remote server is an iSeries. If the SECURELOC value is *NONE, no

user ID or password is sent, as if SECURITY(NONE) had been requested; see the previous paragraph for

how SECURITY(NONE) is handled. If the SECURELOC value is *YES, the name of the user profile is

extracted and sent along with an indication that the password has already been verified by the local

server. If the SECURELOC value is *VFYENCPWD, the user profile and its associated password are sent

to the remote server after the password has been encrypted to keep its value secret, so the user must

have the same user profile name and password on both servers to use DRDA.

Distributed data management 51

Note: SECURELOC(*VFYENCPWD) is the most secure of these three options because the most

information is verified by the remote server; however, it requires that users maintain the same

passwords on multiple servers, which can be a problem if users change one server but do not

update their other servers at the same time.

For the SECURITY(PGM) level, the target expects both a user ID and password from the source for the

conversation. The password is validated when the conversation is established and is ignored for any

following uses of that conversation.

DRDA application server security in an APPC network:

When the target server is an iSeries server, several elements are used together to determine whether a

request to access a remote file is allowed or not.

 User-related security elements

The user-related security elements include the SECURELOC parameter on the target server, the user ID

sent by the source server (if allowed), the password for the user ID sent by the source server, and a user

profile or default user profile on the target server.

Object-related security elements

The object-related security elements include the DDMACC parameter and, optionally, a user exit program

supplied by the user to supplement normal object authority controls.

User-related elements of target security

A valid user profile must exist on the application server (AS) to process distributed relational database

work. You can specify a default user profile for a subsystem that handles communications jobs on an

iSeries server.

The name of the default user profile is specified on the DFTUSR parameter of the Add Communications

Entry (ADDCMNE) command on the AS. The ADDCMNE command adds a communications entry to a

subsystem description used for communications jobs.

If a default user profile is specified in a communications subsystem, whether the AS is a secure location

or not determines if the default user profile is used for this request. The SECURELOC parameter on the

Create Device Description (APPC) (CRTDEVAPPC) command, or the secure location designation on an

APPN remote location list, specifies whether the AS is a secure location.

v If *YES is specified for SECURELOC or secure location on the AS, the AS considers the application

requester (AR) a secure location. A user ID and an Already Verified indicator is expected from the AR

with its request. If a user profile exists on the AS that matches the user ID sent by the requester, the

request is allowed. If not, the request is rejected.

v If *NO is specified for the SECURELOC parameter on the AS, the AS does not consider the AR a

secure location. Although the AR still sends a user ID, the AS does not use this for the request. Instead,

a default user profile on the AS is used for the request, if one is available. If no default user profile

exists on the AS, the request is rejected.

v If *VFYENCPWD is specified for SECURELOC on the AS, the AS considers the AR a secure location,

but requires that the user ID and its password be sent (in encrypted form) to verify the identity of the

current user. If the user profile exists on the AS that matches the user ID sent by the requester, and that

requester has the same password on both systems, the request is allowed. Otherwise, the request is

rejected.

The following table shows all of the possible combinations of the elements that control SNA

SECURITY(PGM) on the iSeries server. A ″Y″ in any of the columns indicates that the element is present

52 IBM Systems - iSeries: Database Distributed data management

or the condition is met. An ″M″ in the PWD column indicates that the security manager retrieves the

user’s password and sends a protected (encrypted) password if password protection is active. If a

protected password is not sent, no password is sent. A protected password is a character string that APPC

substitutes for a user password when it starts a conversation. Protected passwords can be used only

when the systems of both partners support password protection and when the password is created on a

system that runs i5/OS or OS/400® Version 2 Release 2 or later.

 Table 4. Remote access to a distributed relational database

Row UID PWD1 AVI SEC(Y) DFT Valid Access

1 Y Y Y Y Y Use UID

2 Y Y Y Y Reject

3 Y Y Y Y Use UID

4 Y Y Y Reject

5 Y Y Y Y Use UID

6 Y Y Y Reject

7 Y Y Y Use UID

8 Y Y Reject

9 Y Y Y Y Y Use UID

10 Y Y Y Y Reject

11 Y Y Y Y Use UID

12 Y Y Y Reject

13 Y M3 Y Y Use DFT or UID2

14 Y M3 Y Use DFT or UID2

15 Y M3 Y Reject or UID2

16 Y M3 Reject or UID2

17 Y Y Used DFT

18 Y Reject

19 Y Use DFT

20 Reject

Distributed data management 53

Table 4. Remote access to a distributed relational database (continued)

Row UID PWD1 AVI SEC(Y) DFT Valid Access

Key:

UID User ID sent

PWD Password sent

AVI Already Verified Indicator set

SEC(Y) SECURELOC(YES) specified

DFT Default user ID specified in communication subsystem

Valid User ID and password are valid

Use UID

Connection made with supplied user ID

Use DFT

Connection made with default user ID

Reject Connection not made
Notes:

1. If password protection is active, a protected password is sent.

2. Use UID when password protection is active.

3. If password protection is active, the password for the user is retrieved by the security manager, and a protected

password is sent; otherwise, no password is sent.

To avoid having to use default user profiles, create a user profile on the AS for every AR user that needs

access to the distributed relational database objects. If you decide to use a default user profile, however,

make sure that users are not allowed on the system without proper authorization. For example, the

following command specifies the default user parameter as DFTUSER(QUSER); this allows the system to

accept job start requests without a user ID or password from a communications request. The

communications job is signed on using the QUSER user profile.

ADDCMNE SBSD(SAMPLE) DEV(*ALL) DFTUSER(QUSER)

 Related concepts

 “Elements of security in an APPC network” on page 49
When Distributed Relational Database Architecture (DRDA) is used, the data resources of each server

in the DRDA environment should be protected.

Elements of security in a TCP/IP network

DDM and DRDA over native TCP/IP does not use i5/OS communications security services and concepts

such as communications devices, modes, secure location attributes, and conversation security levels

which are associated with Advanced Program-to-Program Communication (APPC). Therefore, security

setup for TCP/IP is quite different.

Application requester security in a TCP/IP network:

Different connectivity scenarios call for using different levels of authentication. Therefore, an

administrator can set the lowest security authentication method required by the application requester

(AR) when connecting to an application server (AS) by setting the preferred authentication method field

in each RDB directory entry.

 The administrator might also allow the decision about authentication method to be negotiated with the

server, by choosing to allow a lower security authentication method. In this case, the preferred

authentication method is still attempted, but if the AS cannot accept the preferred method, a lower

method can be used, depending on the server security setting and other factors such as the availability of

54 IBM Systems - iSeries: Database Distributed data management

cryptographic support. For example, if two systems are in a physically unprotected environment, the

administrator might choose to require Kerberos authentication without allowing lower security

authentication methods.

On the application requester (client) side, you can use one of the two methods to send a password along

with the user ID on DRDA TCP/IP connect requests. If you do not use either of these methods, the

CONNECT command can send only a user ID.

The first way to send a password is to use the USER/USING form of the SQL CONNECT statement, as

in the following example from the interactive SQL environment:

CONNECT TO rdbname USER userid USING ’password’

In a program using embedded SQL, the values of the user ID and of the password can be contained in

host variables in the USER/USING database.

In a program using CLI, the following example shows how the user ID and password are presented in

host variables to the DRDA application requester (AR):

SQLConnect(hdbc,sysname,SQL_NTS, /*do the connect to the application server */

 uid,SQL_NTS,pwd,SQL_NTS);

The second way to provide a password is to send a connect request over TCP/IP using a server

authorization entry. A server authorization list is associated with every user profile on the system. By

default, the list is empty; however, you can add entries by using the Add Server Authentication Entry

(ADDSVRAUTE) command. When you attempt a DRDA connection over TCP/IP, the DB2® UDB for

iSeries client (AR) checks the server authorization list for the user profile under which the client job is

running. If it finds a match between the RDB name on the CONNECT statement and the SERVER name

in an authorization entry (which must be in uppercase), the associated USRID parameter in the entry is

used for the connection user ID. If a PASSWORD parameter is stored in the entry, that password is also

sent on the connect request.

A server authorization entry can also be used to send a password over TCP/IP for a DDM file I/O

operation. When you attempt a DDM connection over TCP/IP, DB2 UDB for iSeries checks the server

authorization list for the user profile under which the client job is running. If it finds a match between

either the RDB name (if RDB directory entries are used) or ’QDDMSERVER’ and the SERVER name in an

authorization entry, the associated USRID parameter in the entry is used for the connection user ID. If a

PASSWORD parameter is stored in the entry, that password is also sent on the connect request.

To store a password using the Add Server Authentication Entry (ADDSVRAUTE) command, you must set

the QRETSVRSEC system value to ’1’. By default, the value is ’0’. Type the following command to change

this value:

CHGSYSVAL QRETSVRSEC VALUE(’1’)

The following example shows the syntax of the Add Server Authentication Entry (ADDSVRAUTE)

command when using an RDB directory entry:

ADDSVRAUTE USRPRF(user-profile) SERVER(rdbname) USRID(userid) PASSWORD(password)

The USRPRF parameter specifies the user profile under which the application requester job runs. What

you put into the SERVER parameter is normally the name of the RDB to which you want to connect. The

exception is if you are using DDM files which were not created to use the RDB directory. In that case,

you should specify QDDMSERVER in the SERVER parameter. When you specify an RDB name, it must

be in uppercase. The USRID parameter specifies the user profile under which the server job will run. The

PASSWORD parameter specifies the password for the user profile.

Distributed data management 55

If you omit the USRPRF parameter, it will default to the user profile under which the Add Server

Authentication Entry (ADDSVRAUTE) command runs. If you omit the USRID parameter, it will default

to the value of the USRPRF parameter. If you omit the PASSWORD parameter, or if you have the

QRETSVRSEC value set to 0, no password will be stored in the entry and when a connect attempt is

made using the entry, the security mechanism attempted will be user ID only.

You can use the Display Server Authentication Entries (DSPSVRAUTE) command to determine what

authentication entries have been added to the server authentication list. The Retrieve Server

Authentication Entries (QsyRetrieveServerEntries) (QSYRTVSE) API in a user-written program can also be

used.

You can remove a server authorization entry by using the Remove Server Authentication Entry

(RMVSVRAUTE) command. You can change a server authorization entry by using the Change Server

Authentication Entry (CHGSVRAUTE) command

If a server authorization entry exists for a relational database (RDB), and the USER/USING form of the

CONNECT statement is also used, the latter takes precedence.

Kerberos source configuration

Distributed Relational Database Architecture (DRDA) and distributed data management (DDM) can take

advantage of Kerberos authentication if both systems are configured for Kerberos.

If a job’s user profile has a valid ticket-granting ticket (TGT), the DRDA application requester (AR) uses

this TGT to generate a service ticket and authenticate the user to the remote server. Having a valid TGT

makes the need for a server authentication entry unnecessary, because no password is directly needed in

that case. However, if the job’s user profile does not have a valid TGT, the user ID and password can be

retrieved from the server authentication entry to generate the necessary TGT and service ticket.

When using Kerberos, the remote location (RMTLOCNAME) in the RDB directory entry must be entered

as the remote host name. IP addresses will not work for Kerberos authentication.

In cases where the Kerberos realm name differs from the DNS suffix name, it must be mapped to the

correct realm. To do that, there must be an entry in the Kerberos configuration file (krb5.conf) to map

each remote host name to its correct realm name. This host name entered must exactly match the remote

location name (RMTLOCNAME). The remote location parameter displayed by the DSPRDBDIRE or

DSPDDMF command must match the domain name in the krb5.conf file. The following figure shows an

example of the DSPRDBDIRE display:

 Display Relational Database Detail

Relational database : RCHASXXX

Remote location:

 Remote location : rchasxxx.rchland.ibm.com

 Type : *IP

 Port number or service name . . . : *DRDA

 Remote authentication method . . :

 Preferred method : *KERBEROS

 Allow lower authentication . . . : *NOALWLOWER

Text :

Relational database type : *REMOTE

 Press Enter to continue.

 F3=Exit F12=Cancel

56 IBM Systems - iSeries: Database Distributed data management

Here is a portion of the corresponding krb5.conf file contents showing the domain name matching the

remote location name (Note: The Display File (DSPF) command is used to display the configuration file

contents):

DSPF STMF(’/QIBM/UserData/OS400/NetworkAuthentication/krb5.conf’)

[domain_realm]

; Convert host names to realm names. Individual host names may be

; specified. Domain suffixes may be specified with a leading period

; and will apply to all host names ending in that suffix.

 rchasxxx.rchland.ibm.com = REALM.RCHLAND.IBM.COM

Jobs using Kerberos must be restarted when configuration changes occur to the krb5.conf file.

 Related concepts

 Control language

 Distributed database programming

Application server security in a TCP/IP network:

The TCP/IP server has a default security of user ID with clear-text password. This means that, as the

server is installed, inbound TCP/IP connection requests must have at least a clear-text password

accompanying the user ID under which the server job is to run.

 The security can either be changed with the Change DDM TCP/IP Attributes (CHGDDMTCPA)

command or under the Network → Servers → TCP/IP → DDM server properties

in iSeries Navigator. You must have *IOSYSCFG special authority to change this setting.

There are two settings that can be used for lower server security:

v PWDRQD (*NO)

Password is not required.

v PWDRQD(*VLDONLY)

Password is not required, but must be valid if sent.

The difference between *NO and *VLDONLY is that if a password is sent from a client system, it is

ignored in the *NO option. In the *VLDONLY option, however, if a password is sent, the password is

validated for the accompanying user ID, and access is denied if incorrect.

Encrypted password required or PWDRQD(*ENCRYPTED) and Kerberos or PWDRQD(*KERBEROS) can

be used for higher security levels. If Kerberos is used, user profiles must be mapped to Kerberos

principles using Enterprise Identity Mapping (EIM).

The following example shows the use of the Change DDM TCP/IP Attributes (CHGDDMTCPA)

command to specify that an encrypted password must accompany the user ID. To set this option, enter:

CHGDDMTCPA PWDRQD(*ENCRYPTED)

Note: The DDM/DRDA TCP/IP server was enhanced in V4R4 to support a form of password encryption

called password substitution. In V4R5, a more widely-used password encryption technique,

referred to as the Diffie-Hellman public key algorithm was implemented. This is the DRDA

standard algorithm and is used by the most recently released IBM DRDA application requestors.

The older password substitute algorithm is used primarily for DDM file access from PC clients. In

V5R1 a ’strong’ password substitute algorithm was also supported. The client and server negotiate

the security mechanism that will be used, and any of the three encryption methods will satisfy the

requirement of PWDRQD(*ENCRYPTED), as does the use of Secure Sockets Layer (SSL)

datastreams.

Distributed data management 57

Related concepts

 Enterprise Identity Mapping (EIM)

Connection security protocols for DDM or DRDA:

Several connection security protocols are supported by the current DB2 UDB for iSeries implementation

of distributed data management (DDM) or Distributed Relational Database Architecture (DRDA) over

TCP/IP.

v User ID only

v User ID with clear-text password

v User ID with encrypted password

v Kerberos

With encrypted datastream support, the traditional communications trace support has little value. The

Trace TCP/IP Application (TRCTCPAPP) command records outbound datastreams at a point before

encryption, and inbound datastreams after decryption.

Secure Sockets Layer for DDM and DRDA:

DB2 Universal Database™ for iSeries Distributed Relational Database Architecture (DRDA) clients do not

support Secure Sockets Layer (SSL).

 However, similar function is available with Internet Protocol Security Protocol (IPSec).

The DDM TCP/IP server supports the SSL data encryption protocol. You can use this protocol to

interoperate with clients such as iSeries Toolbox for Java™ and iSeries Access Family OLE DB Provider

that support SSL for record-level access, and with any DDM file I/O clients provided by independent

software vendors that might support SSL.

To use SSL with the iSeries DDM TCP/IP server, you must configure the client to connect to the

well-known SSL port 448 on the server.

If you specify PWDRQD(*ENCRYPTED) on the Change DDM TCP/IP Attributes (CHGDDMTCPA)

command on the server, you can use any valid password along with SSL. This is possible because the

server recognizes that the whole datastream, including the password, is encrypted.

 Related concepts

 “Internet Protocol Security Protocol for DDM/DRDA” on page 59

Internet Protocol Security Protocol (IPSec) is a security protocol in the network layer that provides

cryptographic security services. These services support confidential delivery of data over the Internet

or intranets.

 Secure Sockets Layer (SSL)

 Connecting to iSeries: iSeries Access for Windows

Required programs:

You will need to set up and install SSL support.

iSeries server requirements:

For an iSeries server to communicate over SSL, it must be running V4R4 or later of the operating system,

and have the following applications installed:

v TCP/IP Connectivity Utilities for i5, 5722-TC1 (Base TCP/IP support)

v IBM HTTP Server for i5/OS, 5722-DG1 (for access to Digital Certificate Manager)

58 IBM Systems - iSeries: Database Distributed data management

v Digital Certificate Manager, 5722-SS1 - Boss Option 34

Internet Protocol Security Protocol for DDM/DRDA:

Internet Protocol Security Protocol (IPSec) is a security protocol in the network layer that provides

cryptographic security services. These services support confidential delivery of data over the Internet or

intranets.

 On iSeries, IPSec, a component of the Virtual Private Networking (VPN) support, allows all data between

two IP addresses or port combinations to be encrypted, regardless of application (such as DRDA or

DDM). You can configure the addresses and ports that are used for IPSec. IBM suggests using port 447

for IPSec for either DRDA access or DDM access.

Use of any valid password along with IPSec will not in general satisfy the requirement imposed by

specifying PWDRQD(*ENCRYPTED) on the Change DDM TCP/IP Attributes (CHGDDMTCPA)

command at the server, because the application (DRDA or DDM) will not be able to determine if IPSec is

being used. Therefore, you should avoid using PWDRQD(*ENCRYPTED) with IPSec.

 Related concepts

 “Secure Sockets Layer for DDM and DRDA” on page 58
DB2 Universal Database for iSeries Distributed Relational Database Architecture (DRDA) clients do

not support Secure Sockets Layer (SSL).

 Virtual Private Networking (VPN)

Considerations for certain passwords being passed as clear text:

Although iSeries supports the encryption of connection passwords, one of the connection security options

you can specify in setting up an RDB directory entry is *USRIDPWD.

 See the Add RDB Directory Entry command and the Change Relational Database Directory Entry

command in Working with the relational database directory for more information.

If the server to which the connection is made allows the *USRIDPWD security option, the connection

password can flow unencrypted. In V5R3, the SQL SET ENCRYPTION PASSWORD statement and the

ENCRYPT function can also cause passwords to flow over the network unencrypted. Currently, there are

two possible solutions for encrypting datastreams. One is to use IPSec. As the other possibility, if you are

using an AR that supports SSL, you can use that protocol to encrypt data transmitted to and from an

iSeries AS.

Ports and port restrictions for DDM/DRDA:

With the advent of new choices for security of distributed data management (DDM) communications, the

iSeries server administrator can restrict certain communications modes by blocking the ports they use.

This topic discusses some of these considerations.

 The DDM or DRDA TCP/IP server listens on port 447 (the well-known DDM port) and 446 (the

well-known DRDA port) as well as 448 (the well-known SSL port). The DB2 Universal Database for

iSeries implementation of DDM does not distinguish between the two ports 446 and 447, however, so

both DDM and DRDA access can be done on either port.

Using the convention recommended for IPSec, the port usage for the DDM TCP/IP server follows:

v 446 for clear text datastreams

v 447 for IPSec encrypted datastreams (suggested)

v 448 for SSL encrypted datastreams (required)

Distributed data management 59

You can block usage of one or more ports at the server by using the Configure TCP/IP (CFGTCP)

command. To do this, choose the ’Work with TCP/IP port restrictions’ option of that command. You can

add a restriction so that only a specific user profile other than the one that QRWTLSTN runs under

(normally QUSER) can use a certain port, such as 446. That effectively blocks 446. If 447 were configured

for use only with IPSec, then blocking 446 would allow only encrypted datastreams to be used for DDM

and DRDA access over native TCP/IP. You could block both 447 and 448 to restrict usage only to SSL. It

might be impractical to follow these examples for performance or other reasons (such as current limited

availability of SSL-capable clients), but they are given to show the possible configurations.

DDM server access control exit program for additional security

Customers who use menu-level security, which is accomplished by restricting the user’s access to

functions on the server, are likely to have a large number of public files. Public files are those files to

which the public has some or all authority. A user exit program allows you to restrict each DDM user’s

access to public files and to private files.

The name of the program must be specified on the DDMACC parameter of the Change Network

Attributes (CHGNETA) command.

User exit programs also let you block or filter DDM connection requests. All connection requests made by

a DDM source system can be denied, or access to selected users can be granted. The user exit program

must exist on the target server. The target DDM support calls this program:

v For each user’s initial reference to a file to verify whether the user can have access to the file. When a

file is referred to for I/O operations, this verification occurs only once, when the file is opened. The

user exit program indicates to the TDDM whether the access request is accepted or rejected.

v For each DDM connection request.

v For each of the other functions listed in the Subapplication field of the table in Table 5 on page 61.

When a user exit program is specified, the TDDM first checks for errors in the access request that is

received from the source server. If no errors are detected, the TDDM builds the parameter list, calls the

user exit program, and passes the parameter list to it.

 Related concepts

 “Elements of security in an APPC network” on page 49
When Distributed Relational Database Architecture (DRDA) is used, the data resources of each server

in the DRDA environment should be protected.

User exit program requirement

The purpose of the exit program created by the user is to determine whether a user’s access request is to

be accepted or rejected. It does so using the values that are passed to it in the parameter list.

The program can be written to verify all the values in the parameter list, or to verify part of them. The

program must return a return code of 1 to indicate that the request is accepted, and it should return a 0 to

indicate that the request is rejected.

The user exit program processes on the target DDM or DRDA server and must be located in a library in

the system database (SYSBAS) if the target server is using independent auxiliary storage pools

(independent ASPs).

User exit program parameter list for DDM

The user exit program on the target server passes two parameter values: a character return code field and

a character data structure containing various parameter values.

The user exit program on the target server uses the character data structure parameter values, that are

passed by the TDDM, to evaluate whether to allow the request from the source server. The parameter list

is created each time a file access request or command request is sent to the TDDM; when any one of the

60 IBM Systems - iSeries: Database Distributed data management

functions shown for the Subapplication field is requested, the parameter list is created. When file I/O

operations are performed, this parameter list is created only for the file open request, not for any of the

I/O operation requests that follow.

The program uses the parameter list to determine whether a source server user’s file access or command

request should be accepted or rejected. The list contains the following parameters and values:

v The name of the user profile or default user profile under which the source server user’s request is run.

v The name of the application program on the source server being used. For DDM use, the name is

*DDM. For DRDA use, the name is *DRDA.

v The name of the command or function (subapplication) being requested for use on the target server or

one of its files.

Most of the functions listed in the following table directly affect a file, including the EXTRACT

function, which extracts information from the file when commands such as Display File Description

(DSPFD) or Display File Field Description (DSPFFD) are specified by the source server user. Some

functions are member-related functions, such as the CHGMBR function, which allows characteristics of

a member to be changed. The COMMAND function indicates that a command string is submitted by

the Submit Remote Command (SBMRMTCMD) command to run on the target server. The SQLCNN

function specifies a DRDA connect attempt.

v The name of the file (object) to be accessed in the way specified on the previous parameter. This field

does not apply if a command string (COMMAND) or stream and directory access commands are being

submitted or if it is a DRDA command.

v If the stream and directory access commands are specified, then the object and directory fields have a

value of *SPC. The user must go to the Other field to get the alternative object name and alternative

path name.

v The name of the library containing the file, if a file is being accessed.

v The name of the file member, if a file member is being accessed. Stream and access commands have a

value of *N.

v The format field does not apply for DDM or DRDA.

v Depending on how the next field is used, the length varies.

v The Other field is used for as many as three of the following six values; the first two are always

specified (*N might be used for the second value if the system name cannot be determined), and either

of the last four might be specified, depending on the type of function specified in the Subapplication

field.

– The location name of the source server. This matches the RMTLOCNAME parameter value specified

in the target server’s device description for the source server if APPC communications is being used.

– The system name of the source server.

– If a file was specified and it is to be opened, (OPEN) for I/O operations, this field indicates which

type of operation is being requested. For example, if a file is being opened for read operations only,

the input request value is set to a 1 and the remaining values are set to a 0.

– The alternative object name.

– The alternative directory name.

– The name of the iSeries command, if a command string is being submitted, followed by all of its

submitted parameters and values.

 Table 5. Parameter list for user exit program on target server

Field Type Length Description

User Character 10 User profile name of target DDM job.

Application Character 10 Application name:

v ’*DDM ’ for Distributed Data Management.

Distributed data management 61

Table 5. Parameter list for user exit program on target server (continued)

Field Type Length Description

Subapplication Character 10 Requested function:

v ’ADDMBR ’ ’DELETE ’ ’RGZMBR ’

v ’CHANGE ’ ’EXTRACT ’ ’RMVMBR ’

v ’Change Data Area (CHGDTAARA) ’ ’INITIALIZE’ ’RNMMBR ’

v ’CHGMBR ’ ’LOAD ’ ’Retrieve Data Area (RTVDTAARA)’

v ’CLEAR ’ ’LOCK ’ ’SNDDTAQ ’

v ’CLRDTAQ ’ ’Move (MOVE) ’

v ’COMMAND ’ ’OPEN ’

v ’Copy (COPY) ’ ’RCVDTAQ ’

v ’CREATE ’ ’RENAME ’

v ’SQLCNN ’

Object Character 10 Specified file name. *N is used when the subapplication

field is ’COMMAND ’. *SPC is used when the file is a

document or folder.

Character 10 Specified library name. *N is used when the subapplication

field is ’COMMAND ’. *SPC is used when the library is a

folder.

Member Character 10 Specified member name. *N is used when the member

name is not applicable.

Format Character 10 Not applicable for DDM.

Length Decimal 5,0 Length of the next field.

Source Remote

Location

Character 10 Remote location unit name of source system (if SNA).

Source System

Name

Character 10 System name of remote server. If this value is not available,

this field contains ’*N ’.

62 IBM Systems - iSeries: Database Distributed data management

Table 5. Parameter list for user exit program on target server (continued)

Field Type Length Description

Other Character 2000 The use of this 2000 byte area depends on the request

function. If it is SQLCNN, then the DRDA mapping should

be used. For other functions, use the DDM mapping.

To use DDM:

 The following varies, depending on the

function. If OPEN is specified to open a file:

1 Input request Char(1) 1=yes 0=no

1 Output request Char(1) 1=yes 0=no

1 Update request Char(1) 1=yes 0=no

1 Delete request Char(1) 1=yes 0=no

12 Alternative object name.

63 Alternative directory name.

1921 The command string if COMMAND is

specified to submit a command.

To use DRDA:

9 Type definition name of DRDA application

requester. Product ID of DRDA application

requester.

3 Product code.

2 Version ID.

2 Release ID.

1 Modification level.

1983 Reserved

Note:

*N = Null value indicates a parameter position for which no value is being specified, allowing other parameters

to follow it in positional form.

User exit program example for DDM

This user exit program represents the source code for a program that is created by a security officer on a

remote system in Chicago.

To define this user exit program to the server, the security officer specifies the following statement:

CHGNETA DDMACC(DJWLIB/$UEPGM)

where DJWLIB/$UEPGM is the qualified name of the user exit program.

Because the security officer wants to specifically prevent user KAREN from opening file RMTFILEX, the

user exit program returns a 0 in the return code field when she attempts to open file RMTFILEX; the user

exit program returns a 1 in the return code field in all other cases indicating that requests by other users

are permitted.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 211.

Distributed data management 63

$UEPGM: PROCEDURE (RTNCODE,CHARFLD);

DECLARE

 RTNCODE CHAR(1);

DECLARE

 1 CHARFLD,

 2 USER CHAR(10),

 2 APP CHAR(10),

 2 FUNC CHAR(10),

 2 OBJECT CHAR(10),

 2 DIRECT CHAR(10),

 2 MEMBER CHAR(10),

 2 RESERVED CHAR(10),

 2 LNGTH PIC ’99999’,

 2 LUNAME CHAR(10),

 2 SRVNAME CHAR(10),

 2 OTHER,

 3 INRQS CHAR(1),

 3 OUTRQS CHAR(1),

 3 UPDRQS CHAR(1),

 3 DELRQS CHAR(1),

 3 ALTOBJ CHAR(12),

 3 ALTDIR CHAR(63),

 3 REMAING CHAR(1921);

DECLARE

 OPEN CHAR(10) STATIC INIT(’OPEN’),

 KAREN CHAR(10) STATIC INIT(’KAREN’),

 RMTFILEX CHAR(10) STATIC INIT(’RMTFILEX’);

DECLARE

 ZERO CHAR(1) STATIC INIT(’0’),

 ONE CHAR(1) STATIC INIT(’1’);

IF (FUNC = OPEN) &

 (USER = KAREN) &

 (OBJECT = RMTFILEX)

THEN

 RTNCODE = ZERO;

ELSE

 RTNCODE = ONE;

END $UEPGM;

Parameter list example for DDM

The commands in this topic are in a CL program that a user named KAREN on the source server

(NEWYORK) is using. The remote location configuration of the target server (CHICAGO) specifies

SECURELOC(*YES) for the NEWYORK source server. This action indicates that user IDs are to be sent

and that a user profile for KAREN exists on the target server.

The program used by KAREN accesses a DDM file named LOCFILEX that opens a remote file named

RMTFILEX on the target server in Chicago. Both servers are iSeries servers. The file is being opened for

input.

CRTDDMF FILE(LOCFILEX) RMTFILE(LIBX/RMTFILEX)

 RMTLOCNAME(CHICAGO)

Open Database File (OPNDBF) FILE(LOCFILEX) OPTION(*INP)

Monitor Message (MONMSG) MSGID(CPF0000) EXEC(GOTO EXIT)

CLOF OPNID(LOCFILEX)

EXIT: End Program (ENDPGM)

When the Open Database File (OPNDBF) command is run on the NEWYORK source server, the DDM file

named LOCFILEX is opened. DDM sends a request to the target server to open RMTFILEX in LIBX for

input operations. From this information, the target server builds the following parameter list to be used

by the user exit program for verification:

KAREN *DDM OPEN RMTFILEX LIBX *N 0 24 CHICAGO NEWYORK 1000

64 IBM Systems - iSeries: Database Distributed data management

This parameter list shows only the significant characters that would be sent in each field; all the padded

blanks and zeros are not shown. For example, the field containing KAREN is padded with five blanks

because it is a 10-character field. This parameter list is sent only for the open operation, although several

input operations might be performed on RMTFILEX.

This parameter list is sent to the user exit program specified on the DDMACC parameter of the Change

Network Attributes (CHGNETA) command. The user exit program determines if user KAREN is

authorized to open RMTFILEX. If she is authorized, the program returns a 1 in the return code field, and

she can open the file and perform read operations. If the program returns a 0 in the return code field,

user KAREN receives a message in the job log indicating that she is not authorized to use the file.

When all the input operations are completed, the Close File (CLOF) command runs on the source server,

and DDM sends the request to close the file.

DRDA server access control exit programs with example

A security feature of the DRDA server, for both APPC and TCP/IP use, extends the use of the DDMACC

parameter of the CHGNETA command to DRDA.

The parameter previously applied only to DDM file I/O access. The DRDA usage of the function is

limited to connection requests, however, and not to requests for data after the connection is made.

If you do not choose to take advantage of this security function, you normally do not need to do

anything. The only exception is if you are currently using a DDM exit program that is coded to reject

operations if an unknown function code is received, and you are also using DRDA to access data on that

server. In this case, you must modify your exit program so that a ’1’ is returned to allow DRDA access if

the function code is ’SQLCNN ’.

To use the exit program for blocking or filtering DRDA connections, you need to create a new DDM exit

program, or modify an existing one.

This security enhancement includes a DRDA function code on the list of request functions that can be

input to the program in the input parameter structure. The function code, named ’SQLCNN ’ (SQL

connect request), indicates that a DRDA connection request is being processed (see the FUNC parameter

in the following example). The APP (application) input parameter is set to ’*DRDA ’ instead of ’*DDM ’

for DRDA connection request calls.

In addition to this enhancement, the following parameters are useful for DRDA:

v The USER parameter, allows the program to allow or deny DRDA access based on the user profile ID.

v The SRVNAME parameter in the following example might also be of use. If this parameter is set, it

indicates the name of the client server. If it is not set, it has the value *N. It should always be set for an

iSeries DRDA Application Requester.

v The TYPDEFN gives additional information about the type of client attempting to connect.

v The PRDID (product ID) parameter identifies the product that is attempting to connect, along with the

product’s release level. A partial list of these codes follows. (You should verify the non-IBM codes

before you use them in an exit program.)

QSQ IBM DB2 Universal Database for iSeries

DSN IBM DB2 Universal Database for z/OS®

SQL IBM DB2 Universal Database for Linux®, UNIX® and Windows® (formerly called DDCS)

ARI IBM DB2 Universal Database for VSE and VM

GTW Oracle Corporation products

GVW Grandview DB/DC Systems products

XDB XDB Systems products

Distributed data management 65

IFX Informix® Software products

RUM Wall Data Rumba for Database Access

SIG StarQuest products

STH FileTek products

The rest of the field is structured as vvrrm, where vv is version, rr is release, and m is modification

level.

The DDM Architecture Reference manual and the DRDA Reference (both available from The Open Group)

give more information about these fields.

If the exit program returns a RTNCODE value of ’0’, and the Application Requester system type is

iSeries, then the message indicating the connection failure to the user will be SQ30060, ’User is not

authorized to relational database ’. In general, the response to a denial of access by the exit program is

the DDM RDBATHRM reply message, which indicates that the user is not authorized to the relational

database.

Restrictions

If a function check occurs in the user exit program, the same reply message will be returned, and the

connection attempt will fail. The exit program must not do any committable updates to DB2 UDB for

iSeries, or unpredictable results might occur. A further restriction results from the fact that when the

prestart jobs used with the TCP/IP server are recycled for subsequent use, some cleanup is done to the

jobs for security reasons. Part of this processing involves the use of the RCLACTGRP

ACTGRP(*ELIGIBLE) function. As a result, attempts to use any residual linkages in the prestart server job

to activation groups destroyed by the RCLACTGRP can result in MCH3402 exceptions (where the

program tried to refer to all or part of an object that no longer exists). Furthermore, an exit program

should not attempt to access a file that was opened in a prior invocation of the prestart server job.

Example

This example demonstrates a PL/I user exit program that allows all DDM operations, and all DRDA

connections except for when the user ID is ’ALIEN’.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 211.

/***/

/* */

/* PROGRAM NAME: UEPALIEN */

/* */

/* FUNCTION: USER EXIT PROGRAM THAT IS DESIGNED TO */

/* RETURN AN UNSUCCESSFUL RETURN CODE WHEN */

/* USERID ’ALIEN’ ATTEMPTS A DRDA CONNECTION. */

/* IT ALLOWS ALL TYPES OF DDM OPERATIONS. */

/* */

/* EXECUTION: CALLED WHEN ESTABLISHED AS THE USER EXIT */

/* PROGRAM. */

/* */

/* ALL PARAMETER VARIABLES ARE PASSED IN EXCEPT: */

/* */

/* RTNCODE - USER EXIT RETURN CODE ON WHETHER FUNCTION IS */

/* ALLOWED: ’1’ INDICATES SUCCESS; ’0’ FAILURE. */

/* */

/***/

UEPALIEN: PROCEDURE (RTNCODE,CHARFLD);

DECLARE RTNCODE CHAR(1); /* DECLARATION OF THE EXIT */

66 IBM Systems - iSeries: Database Distributed data management

/* PROGRAM RETURN CODE. IT */

 /* INFORMS REQUEST HANDLER */

 /* WHETHER REQUEST IS ALLOWED. */

DECLARE /* DECLARATION OF THE CHAR */

 1 CHARFLD, /* FIELD PASSED IN ON THE CALL. */

 2 USER CHAR(10), /* USER PROFILE OF DDM/DRDA USER*/

 2 APP CHAR(10), /* APPLICATION NAME */

 2 FUNC CHAR(10), /* REQUESTED FUNCTION */

 2 OBJECT CHAR(10), /* FILE NAME */

 2 DIRECT CHAR(10), /* LIBRARY NAME */

 2 MEMBER CHAR(10), /* MEMBER NAME */

 2 RESERVED CHAR(10), /* RESERVED FIELD */

 2 LNGTH PIC ’99999’, /* LENGTH OF USED SPACE IN REST */

 2 REST, /* REST OF SPACE = CHAR(2000) */

 3 LUNAME CHAR(10), /* REMOTE LU NAME (IF SNA) */

 3 SRVNAME CHAR(10), /* REMOTE SERVER NAME */

 3 TYPDEFN CHAR(9), /* TYPE DEF NAME OF DRDA AR */

 3 PRDID, /* PRODUCT ID OF DRDA AR */

 5 PRODUCT CHAR(3), /* PRODUCT CODE */

 5 VERSION CHAR(2), /* VERSION ID */

 5 RELEASE CHAR(2), /* RELEASE ID */

 5 MOD CHAR(1), /* MODIFICATION LEVEL */

 3 REMAING CHAR(1983); /* REMAINING VARIABLE SPACE. */

START:

IF (USER = ’ALIEN’ & /* IF USER IS ’ALIEN’ AND */

 FUNC = ’SQLCNN’) THEN /* FUNCTION IS DRDA CONNECT */

 RTNCODE = ’0’; /* SET RETURN CODE TO UNSUCCESSFUL*/

ELSE /* IF ANY OTHER USER, OR DDM */

 RTNCODE = ’1’; /* SET RETURN CODE TO SUCCESSFUL */

END UEPALIEN;

User exit program considerations for DDM

There are some considerations that you should understand before using user exit programs for DDM.

If the user exit program is a CL program that creates an i5/OS exception, an inquiry message is sent to

the server operator on the target server if, for the target job, the job attribute INQMSGRPY is *RQD (the

default) or *SYSRPYL with no value in the reply list for this message. The user exit program waits for a

response to the message on the target server, which causes the source job to wait also.

There are other potential situations in which waiting could occur. For example, if lengthy wait values are

specified on the WAIT parameter of the Allocate Object (ALCOBJ) or Receive Message (RCVMSG)

command, both the source and target jobs wait up to the maximum time specified for an object lock to be

obtained or a message to be received by the target job.

 Related concepts

 “Performance considerations for DDM” on page 136

These topics provide information to help you improve performance when using DDM and also

provide some information about when to use something other than DDM to accomplish some

functions.

Use CL and DDS with DDM

This topic contains DDM-related information about specific iSeries control language (CL) commands, data

description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.

 Related concepts

 “iSeries server as the source server for DDM” on page 13

When an application program or user in a source server job first refers to a DDM file, several actions

occur as part of processing the request on the source server.

 Control language

Distributed data management 67

Related reference

 “CL command considerations for DDM” on page 32

Both compiled control language (CL) programs and interactively entered CL commands can refer to

DDM files.

 “DDM file requirements” on page 44
Before remote files can be accessed by an iSeries server, DDM files must be created on the source

server.

 “Reclaim DDM resources (RCLRSC and RCLDDMCNV commands)” on page 124
When an iSeries user wants to ensure that the resources for all APPC conversations (including DDM

conversations) that are no longer active are returned to the server, the Reclaim Resources (RCLRSC)

command can be used.

DDM-specific CL commands

This topic covers DDM-specific CL commands.

CHGDDMF (Change DDM File) command

The Change DDM File (CHGDDMF) command changes one or more of the attributes of a DDM file on

the local (source) server.

The DDM file is used as a reference file by programs on the iSeries source server to access files located

on any target server in the i5/OS DDM network.

To use this command, you can enter the command as shown in the following example or select option 2

(Change DDM File) from the Work with DDM Files display.

 Related reference

 “WRKDDMF (Work with DDM Files) command” on page 75
The Work with DDM Files (WRKDDMF) command allows you to work with existing DDM files from

a list display. From the list display, you can change, delete, display, or create DDM files.

 Change DDM File (CHGDDMF) command

Example: CHGDDMF command:

This command changes the communications mode for the DDM file named SALES stored in the SOURCE

library on the source server; the mode is changed to MODEX.

 CHGDDMF FILE(SOURCE/SALES) MODE(MODEX)

CRTDDMF (Create DDM File) command

The Create DDM File (CRTDDMF) command creates a DDM file on the local (source) server.

The DDM file is used as a reference file by programs on an iSeries server to access files located on any

remote (target) server in the iSeries DDM network. Programs on the local iSeries server know a remote

file only by the DDM file’s name, not the remote file’s actual name. (The DDM file name, however, can

be the same as the remote file name.)

The DDM file is also used when a CL command is submitted to the remote server. (The Submit Remote

Command (SBMRMTCMD) command is used to submit the CL command, and the remote server must be

an iSeries server or a System/38.) When the SBMRMTCMD command is being used, the remote file

normally associated with the DDM file is ignored.

The DDM file contains the name of the remote file being accessed and the remote location information

that identifies a remote (target) server where the remote file is located. It can also specify other attributes

that are used to access records in the remote file.

68 IBM Systems - iSeries: Database Distributed data management

To use this command, you can enter the command as shown in the following examples or select F6

(Create DDM file) from the Work with DDM Files display.

 Related concepts

 APPC, APPN, and HPR
 Related reference

 “WRKDDMF (Work with DDM Files) command” on page 75
The Work with DDM Files (WRKDDMF) command allows you to work with existing DDM files from

a list display. From the list display, you can change, delete, display, or create DDM files.

 Create DDM File (CRTDDMF) command

Examples: CRTDDMF command:

These examples display different uses for the CRTDDMF command.

 Example: Create a DDM file to access a file on a System/38

CRTDDMF FILE(SOURCE/SALES) RMTFILE(*NONSTD ’SALES.REMOTE’)

 RMTLOCNAME(NEWYORK)

This command creates a DDM file named SALES and stores it in the SOURCE library on the source

server. This DDM file uses the remote location NEWYORK to access a remote file named SALES stored in

the REMOTE library on a System/38 in New York.

Example: Create a DDM file to access a file member on an iSeries server

CRTDDMF FILE(SOURCE/SALES) RMTLOCNAME(NEWYORK)

 RMTFILE(*NONSTD ’REMOTE/SALES(APRIL)’)

This command creates a DDM file similar to the one in the previous example, except that now it accesses

the member named APRIL in the remote SALES file stored in the REMOTE library on an iSeries server.

Example: Create a DDM file to access a file on a System/36

CRTDDMF FILE(OTHER/SALES) RMTFILE(*NONSTD ’PAYROLL’)

 RMTLOCNAME(DENVER) LVLCHK(*NO)

This command creates a DDM file named SALES, and stores it in the library OTHER on the source

server. The remote location DENVER is used by the DDM file to access a remote file named PAYROLL on

a System/36 in Denver. No level checking is performed between the PAYROLL file and the application

programs that access it. Because the ACCMTH parameter was not specified, the access method for the

target server is selected by the source iSeries server when the DDM file is opened to access the remote

file.

DSPDDMF (Display DDM Files) command

The Display DDM Files (DSPDDMF) command displays the details of a DDM file.

To use this command, you can type the command or select option 5 (Display details) from the Work with

DDM Files display.

 Related reference

 “WRKDDMF (Work with DDM Files) command” on page 75
The Work with DDM Files (WRKDDMF) command allows you to work with existing DDM files from

a list display. From the list display, you can change, delete, display, or create DDM files.

 Display DDM File (DSPDDMF) command

RCLDDMCNV (Reclaim DDM Conversations) command

The Reclaim DDM Conversations (RCLDDMCNV) command is used to reclaim all DDM source server

conversations that are not currently being used by a source job.

Distributed data management 69

The conversations are reclaimed even if the value of the job’s DDMCNV attribute is *KEEP, or if the

command is entered within an activation group. The command allows the user to reclaim unused DDM

conversations without closing all open files or doing any of the other functions performed by the Reclaim

Resources (RCLRSC) command.

The RCLDDMCNV command applies only to the DDM conversations for the job on the source server in

which the command is entered. For each DDM conversation used by the source job, there is an associated

job on the target server; the target job ends automatically when the associated DDM conversation ends.

Although this command applies to all DDM conversations used by a job, using it does not mean that all

of them will be reclaimed. A conversation is reclaimed only if it is not being actively used.

 Related reference

 “Control DDM conversations” on page 123

Normally, the DDM conversations associated with a source server job are kept active until one of the

conditions described in this topic is met.

 Reclaim DDM Conversations (RCLDDMCNV) command

SBMRMTCMD (Submit Remote Command) command

The Submit Remote Command (SBMRMTCMD) command submits a command using DDM to run on the

target server.

The remote location information in the DDM file is used to determine the communications line to be

used, and thus, indirectly identifies the target server that is to receive the submitted command.

You can use the SBMRMTCMD command to send commands to any of the following target servers:

v iSeries

v System/38

v Any server that supports the Submit System Command (SBMSYSCMD) DDM command

The SBMRMTCMD command can be used to send CL commands (and only CL) to an iSeries server or a

System/38. It can also be used to send commands to target servers other than iSeries or System/38

servers if the target server supports the DDM architecture Submit System command. The command must

be in the syntax of the target server. The SBMRMTCMD command cannot be used to send operation

control language (OCL) commands to a System/36 target because the System/36 server does not support

the function.

The primary purpose of this command is to allow a user or program using the source server to perform

file management operations and file authorization activities on files located on a target server. The user

must have the proper authority for the target server objects that the command is to operate on. The

following actions are examples of what can be performed on remote files using the SBMRMTCMD

command:

v Create or delete device files

v Grant or revoke object authority to remote files

v Verify files or other objects

v Save or restore files or other objects

Although the command can be used to do many things with files or objects, some are not as useful as

others. For example, you can use this command to display the file descriptions or field attributes of

remote files, or to dump files or other objects, but the output remains at the target server. Another way to

display remote file descriptions and field attributes at the source system is to use the Display File

Description (DSPFD) and Display File Field Description (DSPFFD) commands. Specify the

SYSTEM(*RMT) parameter and the names of the DDM files associated with the remote files. This returns

the information you want directly to the local server.

70 IBM Systems - iSeries: Database Distributed data management

A secondary purpose of this command is to allow a user to perform nonfile operations (such as creating a

message queue) or to submit user-written commands to run on the target server. The CMD parameter

allows you to specify a character string of up to 2000 characters that represents a command to be run on

the target server.

 Related concepts

 “Parts of DDM: DDM file” on page 8

A system object with type *FILE exists on the source server to identify a remote file. It combines the

characteristics of a device file and a database file. As a device file, the DDM file refers to a remote

location name, local location name, device name, mode, and a remote network ID to identify a remote

server as the target server. The DDM file appears to the application program as a database file and

serves as the access device between a source server program and a remote file.

 “Source server actions dependent on type of target server” on page 17
If the target server is not another iSeries server or System/38, only the DDM architecture commands

defined in Level 2.0 and earlier of the DDM architecture are used.
 Related reference

 “Perform file management functions on remote servers” on page 121
i5/OS DDM supports creating, deleting, or renaming of files on a remote server.

 Reclaim DDM Conversations (RCLDDMCNV) command

iSeries and System/38 target systems on the SBMRMTCMD command:

The SBMRMTCMD command can submit any CL command that can run in both the batch environment

and using the QCAEXEC server program.

 That is, a command can be submitted using the SBMRMTCMD command if it has both of the following

values for the ALLOW attribute:

*BPGM

The command can be processed in a compiled CL program that is called from batch entry.

*EXEC

The command can be used as a parameter on the CALL command and get passed as a character

string to the server program for processing.

You can look for these possible values using the Display Command (DSPCMD) command. (The

SBMRMTCMD command uses the QCAEXEC or QCMDEXEC system program to run the submitted

commands on the target server.) However, because some of these allowable commands require

intervention on the target server and might not produce the results expected, you should consider the

items listed in the topic Restrictions for the SBMRMTCMD first.

The user must have the proper authority for both the CL command being submitted and for the target

server objects that the command is to operate on.

 Related reference

 “Restrictions for the SBMRMTCMD command”
This topic describes restrictions for the SBMRMTCMD command.

 “DDM-related CL command summary charts” on page 106

This topic shows summary charts containing most of the control language (CL) commands used with

DDM.

Restrictions for the SBMRMTCMD command:

This topic describes restrictions for the SBMRMTCMD command.

 v Although remote file processing is synchronous within the user’s job, which includes two separate jobs

(one running on each server), file processing on the target server operates independently of the source

server. Commands such as Override with Database File (OVRDBF), Override with Message File

Distributed data management 71

(OVRMSGF), and Delete Override (DLTOVR) that are dependent on the specific position of a program

in a program stack (recursion level) or request level might not function as expected.

For example, when multiple recursion levels that involve overrides at each level occur on the source

server, and one or more overrides at a given level are submitted to the target server on the

SBMRMTCMD command, the target server job has no way of knowing the level of the source server

job. That is, a target server override can still be in effect after the source server override for a particular

recursion level has ended.

v Output (such as spooled files) created by a submitted command exists only on the target server. The

output is not sent back to the source server.

v Some types of CL commands should not be submitted to a target iSeries server. The following items are

examples of types that are not the intended purpose of the SBMRMTCMD command and that might

produce undesirable results:

– All of the OVRxxxF commands that refer to database files, message files, and device files (including

communications and save files).

– All of the DSPxxxx commands, because the output results remain at the target server.

– Job-related commands like Reroute Job (RRTJOB) that are used to control a target server’s job. The

Change Job (CHGJOB) command, however, can be used.

– Commands that are used to service programs, like Service Job (SRVJOB), Trace Job (TRCJOB), Trace

Internal (TRCINT), or Dump Job (DMPJOB).

– Commands that might cause inquiry messages to be sent to the system operator, like Start Printer

Writer (STRPRTWTR). (Pass-through can be used instead.)

– Commands that attempt to change the Independent Auxiliary Storage Pool (ASP) of the target job

(for example, SETASPGRP) should not be issued using Submit Remote Command.
v Translation is not performed for any immediate messages created by the target server, because they are

not stored on the server; the text for an immediate message is sent directly to the source server to be

displayed. (For all other message types, the target server sends back a message identifier; the message

text that exists on the source server for that message identifier is the text that is displayed. This

message text is whatever the source server text has been translated to.)

v A maximum of 10 messages, created during the running of a submitted command, can be sent by the

target server to the source server. If more than 10 messages are created, an additional informational

message is sent that indicates where the messages exist (such as in a job log) on the target server. If

one of those messages is an escape message, the first nine messages of other types are sent, followed by

the informational message and the escape message.

v The only types of messages that are sent by the target server are completion, informational, diagnostic,

and escape messages.
 Related reference

 “iSeries and System/38 target systems on the SBMRMTCMD command” on page 71
The SBMRMTCMD command can submit any CL command that can run in both the batch

environment and using the QCAEXEC server program.

 Reclaim DDM Conversations (RCLDDMCNV) command

Examples: SBMRMTCMD command:

The examples display different uses for the SBMRMTCMD command.

 Example: Submit a command to create another DDM file on the remote server

SBMRMTCMD CMD(’CRTDDMF FILE(SALES/MONTHLY)

 RMTFILE(*NONSTD ’’SALES/CAR(JULY)’’)

 RMTLOCNAME(DALLAS)’) DDMFILE(CHICAGO)

This submitted command creates, on the target server identified by the information in the DDM file

named CHICAGO, another DDM file named MONTHLY; the new DDM file is stored in a library named

72 IBM Systems - iSeries: Database Distributed data management

SALES on the server defined by DDMFILE CHICAGO. The new DDM file on the CHICAGO server is

used to access a file and member on a different server named DALLAS. The accessed file is named CAR

in the library SALES and the member name in the file is JULY.

Notice that this CRTDDMF command string contains three sets of single quotation marks: one set to

enclose the entire command being submitted (required by the CMD parameter on the SBMRMTCMD

command), and a double set to enclose the file and member named in the RMTFILE parameter. Because

the use of *NONSTD requires that nonstandard file names be enclosed in a set of single quotation marks,

this second set of single quotation marks must be doubled because it is within the first set of single

quotation marks.

Example: Submit a command to change text in a display file

SBMRMTCMD CMD(’CHGDSPF FILE(LIBX/STANLEY)

 TEXT(’’Don’’’’t forget to pair apostrophes.’’)’)

 DDMFILE(SMITH)

This command changes the text in the description of the display device file named STANLEY stored in

library LIBX. Because the submitted command requires an outside set of single quotation marks (for the

CMD parameter), each single quotation mark (’) or quotation marks (’’) normally required in the TEXT

parameter for local server processing must be doubled again for remote server processing. The preceding

coding produces a single quotation mark in the text when it is displayed or printed on the remote server.

Example: Submit a command to replace a library list on the remote server

SBMRMTCMD CMD(’CHGLIBL LIBL(QGPL QTEMP SALES EVANS)’)

 DDMFILE(EVANS)

This command changes the user’s portion of the library list being used by the target job associated with

the DDM file named EVANS, which is being used by the source job in which this SBMRMTCMD

command is being submitted. In that source job, if there are other open DDM files that specify the remote

location information, this library list is used for them also.

Additional considerations: SBMRMTCMD command:

This topic describes additional considerations for the SBMRMTCMD command.

 Override use example

The DDMFILE parameter on the SBMRMTCMD command is used to determine which target server the

command (CMD parameter) should be sent to. Overrides that apply to the DDM file (not the remote file)

are taken into account for this function. For example, if a file override was in effect for a DDM file

because of the following commands, which override FILEA with FILEX, then the target server that the

Delete File (DLTF) command is sent to is the one associated with the remote location information

specified in DDM FILEX (the values point to the DENVER system, in this case).

CRTDDMF FILE(SRCLIB/FILEA) RMTFILE(SALES/CAR)

 RMTLOCNAME(CHICAGO)

CRTDDMF FILE(SRCLIB/FILEX) RMTFILE(SALES/CAR)

 RMTLOCNAME(DENVER)

OVRDBF FILE(FILEA) TOFILE(SRCLIB/FILEX)

SBMRMTCMD CMD(’DLTF RMTLIB/FRED’) DDMFILE(SRCLIB/FILEA)

This SBMRMTCMD command deletes the file named FRED from the DENVER server.

DDM conversations

When a SBMRMTCMD command is run on the target server, it has a target server job associated with it.

Successive SBMRMTCMD commands submitted using the same DDM file and DDM conversation might

run in the same or different target server jobs, depending on the value of the DDMCNV job attribute. The

Distributed data management 73

value of the DDMCNV job attribute determines whether the DDM conversation is dropped or remains

active when the submitted function has completed. If the conversation is dropped, the next

SBMRMTCMD command runs using a different target job. If several commands are submitted, either

DDMCNV(*KEEP) should be in effect, or display station pass-through should be used instead of DDM.

Command syntax verifying

The syntax of the command character string being submitted by the CMD parameter is not verified by

the source server. In the case of a user-defined command, for example, the command definition object

might or might not exist on the source server.

Command running results

Because the submitted command runs as part of the target server’s job, the attributes of that job (such as

the library search list, user profile, wait times, and running priority) might cause a different result than if

the command were run locally. If you find that you are having difficulty submitting a command and, for

example, the reason is the target server uses a different library list, you can use the SBMRMTCMD

command to edit the library list.

Error message handling

For errors detected by the target server when processing the submitted command, the source server

attempts to send the same error information that was created on the target server to the user. However, if

the source server does not have an equivalent message for the one created on the target server, the

message sent to the source server user has the message identifier and is of the message type and severity

that was created on the target server; the message text sent for the error is default message text.

If the target server is a system other than an iSeries server or System/36, messages sent to the source

server have no message identifiers or message types. The only information received from such a target

server is the message text and a severity code. When a high severity code is returned from the target

server, the source server user receives a message that the SBMRMTCMD command ended abnormally.

Other messages sent by the target server are received as informational with no message identifiers.

For example, you might see the following statements in your job log when both the source and target are

iSeries servers:

INFO CPI9155 ’Following messages created on target server.’

DIAG CPD0028 ’Library ZZZZ not found.’

ESCP CPF0006 ’Errors occurred in command.’

When a target server other than an iSeries server returns the same message to an iSeries source server,

the job log looks like this:

INFO CPI9155 ’Following messages created on target server.’

INFO nomsgid ’Library ZZZZ not found.’

INFO nomsgid ’Errors occurred in command.’

ESCP CPF9172 ’SBMRMTCMD command ended abnormally.’

The target server messages can be viewed on the source server by using pass-through and either the

Work with Job (WRKJOB) or Work with Job Log (WRKJOBLOG) command. If the target job ends, the

messages are in the target server’s output queue, where they can be displayed by the Work with Output

Queue (WRKOUTQ) command.

If the SBMRMTCMD command is used to call a CL program on the target server, any escape message

that is not monitored and is created by the program is changed into an inquiry message and is sent to the

system operator. If you don’t want the target system operator to have to respond to this inquiry message

before the job can continue, you can refer to the CL topic in the iSeries Information Center and do either

of the following items on the target server:

74 IBM Systems - iSeries: Database Distributed data management

v If you want to specify a default reply for a specific job, you can use the INQMSGRPY parameter on

either the Create Job Description (CRTJOBD) or Change Job Description (CHGJOBD) command to

specify either *DFT or *SYSRPYL in the job description for the target job. You can also do the same

thing if you use the SBMRMTCMD command to submit the Change Job (CHGJOB) command to the

target server.

v If you want to specify a default reply message for a specific inquiry message in the job, you can use the

Add Reply List Entry (ADDRPYLE) command (on the target server) to add an entry for that message

to the system-wide automatic message reply list (SYSRPYL). Then, if INQMSGRPY(*SYSRPYL) is

specified in the job description, this default reply can be sent whenever that inquiry message occurs in

the job.

Independent auxiliary storage pools (ASPs)

If the target system has online independent ASPs, the independent ASP group of the target job is

established when the conversation is started and might not be changed. User-defined or CL commands

that attempt to change the independent ASP group of the target job (for example, SETASPGRP or

DLTUSRPRF) might fail if submitted to a target system that has online independent ASPs.

 Related concepts

 “DDM-related jobs and DDM conversations” on page 20

This topic provides additional information about activation groups, source server jobs, target server

jobs, and the DDM conversations used by those jobs.
 Related reference

 “DDMCNV parameter considerations” on page 98
The DDMCNV parameter is a job-related parameter that controls whether Advanced

Program-to-Program Communication (APPC) or iSeries conversations in the job that is allocated for

DDM use (that is, DDM conversations) are to be automatically dropped or kept active for the source

job.

 “OVRDBF (Override with Database File) command” on page 95
The Override with Database File (OVRDBF) command can be used with DDM to override (replace) a

local database file named in the program with a DDM file; the DDM file causes the associated remote

file to be used by the program instead of the local database file.

WRKDDMF (Work with DDM Files) command

The Work with DDM Files (WRKDDMF) command allows you to work with existing DDM files from a

list display. From the list display, you can change, delete, display, or create DDM files.

For the following displays, it is assumed that you have created DDM files using theCreate DDM File

(CRTDDMF) command. If you enter the WRKDDMF command and specify library WILSON and file A, the

following display is shown:

Distributed data management 75

Work with DDM Files

 Position to _____________________

 Type options, press Enter.

 1=Create DDM file 2=Change DDM file 4=Delete 5=Display details

 6=Print details

 Remote

 Option Local File Remote File Location

 _ _____________________

 _ WILSON/A A S36

 Bottom

 F3=Exit F5=Refresh F9=Print list F12=Cancel

To create a DDM file using this display, type a 1 in the option column and type the names of the library

and file you want to create, then press the Enter key. For example, type a 1 (Create DDM file) in the

option field and WILSON/TEST in the local file column of the top list entry (as shown in the following

display), and then press the Enter key. The Create DDM File display is shown.

 Work with DDM Files

 Position to _____________________

 Type options, press Enter.

 1=Create DDM file 2=Change DDM file 4=Delete 5=Display details

 6=Print details

 Remote

 Option Local File Remote File Location

 1 WILSON/TEST__________

 _ WILSON/A A S36

 Bottom

 F3=Exit F5=Refresh F9=Print list F12=Cancel

76 IBM Systems - iSeries: Database Distributed data management

Create DDM File (CRTDDMF)

 Type choices, press Enter.

 DDM file TEST Name

 Library WILSON Name, *CURLIB

 Remote file:

 File Name, *NONSTD

 Library Name, *LIBL, *CURLIB

 Nonstandard file ’name’ . . .

 Remote location:

 Name or address

 Type *SNA *SNA, *IP

 More...

 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

On the Create DDM File display, type the required values, and change or use the default values given. By

pressing F10 (Additional parameters), you can page through the command parameters as they are shown

on two displays. By pressing the Page Down key, you are shown these additional parameters:

 Create DDM File (CRTDDMF)

 Type choices, press Enter.

 Text ’description’ *BLANK

 Additional Parameters

 Device:

 APPC device description . . . *LOC Name, *LOC

 Local location *LOC Name, *LOC, *NETATR

 Mode *NETATR Name, *NETATR

 Remote network identifier . . . *LOC Name, *LOC, *NETATR, *NONE

 Port number *DRDA *DRDA, 1-65535

 Access method:

 Remote file attribute *RMTFILE *RMTFILE, *COMBINED...

 Local access method *BOTH, *RANDOM, *SEQUENTIAL

 Share open data path *NO *NO, *YES

 Protected conversation *NO *NO, *YES

 More...

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Distributed data management 77

Create DDM File (CRTDDMF)

 Type choices, press Enter.

 Record format level check . . . *RMTFILE *RMTFILE, *NO

 Authority *LIBCRTAUT Name, *LIBCRTAUT, *ALL...

 Replace file *YES *YES, *NO

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

After you have typed in the values, press the Enter key to process the command and return to the Work

with DDM Files display.

If you want to change a DDM file, type a 2 (Change DDM file) on the Work with DDM Files display next

to the file that you want to change, or type the option number in the top list entry of the Options column

and specify the local file that you want changed. For example, type a 2 (Change DDM file) in the Option

column of the local file named WILSON/TEST.

 Work with DDM Files

 Position to _____________________

 Type options, press Enter.

 1=Create DDM file 2=Change DDM file 4=Delete 5=Display details

 6=Print details

 Remote

 Option Local File Remote File Location

 _ _____________________

 _ WILSON/A A S36

 2 WILSON/TEST TESTFILE.TESTLIB S38

 Bottom

 F3=Exit F5=Refresh F9=Print list F12=Cancel

Press the Enter key and the Change DDM File display is shown.

For example, if you only want to add a text description, type in the description and press the Enter key.

But, if you want to make additional changes, press F10 (Additional parameters), and you can page

through the command parameters as they are shown on two displays.

78 IBM Systems - iSeries: Database Distributed data management

Change DDM File (CHGDDMF)

Type choices, press Enter.

DDM file TEST Name

 Library WILSON Name, *LIBL, *CURLIB

Remote file:

 File *SAME Name, *SAME, *NONSTD

 Library Name, *LIBL, *CURLIB

 Nonstandard file ’name’ . . .

Remote location:

 Name or address *SAME

 Type *SAME *SAME, *SNA, *IP

Record format level check . . . *SAME *SAME, *RMTFILE, *NO

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

If you want to change the mode parameter, type in that value, and then press the Enter key.

 Change DDM File (CHGDDMF)

 Type choices, press Enter.

 Text ’description’ *SAME

 Additional Parameters

 Device:

 APPC device description . . . *SAME Name, *SAME, *LOC

 Local location *SAME Name, *SAME, *LOC, *NETATR

 Mode *SAME Name, *SAME, *NETATR

 Remote network identifier . . . *SAME Name, *SAME, *LOC, *NETATR...

 Port number *SAME *SAME, *DRDA, 1-65535

 Access method:

 Remote file attribute *SAME *SAME, *RMTFILE, *COMBINED...

 Local access method *BOTH, *RANDOM, *SEQUENTIAL

 Share open data path *SAME *SAME, *NO, *YES

 Protected conversation *SAME *SAME, *NO, *YES

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

After you press the Enter key, you return to the Work with DDM Files display.

If you want to display the details of a DDM file, type a 5 (Display details) on the Work with DDM Files

display next to the file that you want to display, or type the option number in the top list entry of the

Options column and specify the local file you want to display. For example, type a 5 (Display details) in

the Option column and type WILSON/TEST in the Local File column of the top list entry.

You can also display the details of a file by using the Display DDM Files (DSPDDMF) command.

Distributed data management 79

Work with DDM Files

 Position to _____________________

 Type options, press Enter.

 1=Create DDM file 2=Change DDM file 4=Delete 5=Display details

 6=Print details

 Remote

 Option Local File Remote File Location

 5 WILSON/TEST__________

 _ WILSON/A A S36

 _ WILSON/TEST TESTFILE.TESTLIB S38

 Bottom

 F3=Exit F5=Refresh F9=Print list F12=Cancel

Press the Enter key and the Display Details of DDM File display is shown.

 Display Details of DDM File SYSTEM: AS400B

Local file:

 File . : TEST

 Library : WILSON

Remote file : TESTFILE.TESTLIB

Remote location:

 Remote location : S38

 Device description : *LOC

 Local location : *LOC

 Remote location network ID : *LOC

 Mode . : S38MODE1

 Press Enter to continue.

 More...

 F3=Exit F12=Cancel

Page down to see the second display.

80 IBM Systems - iSeries: Database Distributed data management

Display Details of DDM File

 SYSTEM: AS400B

Access method

 Remote file attribute : *RMTFILE

 Local access method :

Share open data path : *NO

Check record format level ID . . : *RMTFILE

Text : TEST VERSION FOR DDM

 Press Enter to continue.

 Bottom

 F3=Exit F12=Cancel

Press the Enter key to return to the Work with DDM Files display.

In addition to displaying the details of the DDM file, you can print the detail information by typing a 6

(Print details) in the Option column.

You can also print a list of the DDM files by pressing F9 (Print list).

To delete a file or files, type a 4 (Delete) in the Option column next to the files you want to delete or in the

top list entry and specify the file you want to delete.

 Work with DDM Files

 Position to _____________________

 Type options, press Enter.

 1=Create DDM file 2=Change DDM file 4=Delete 5=Display details

 6=Print details

 Remote

 Option Local File Remote File Location

 _ _____________________

 _ WILSON/A A S36

 4 WILSON/TEST TESTFILE.TESTLIB S38

 Bottom

 F3=Exit F5=Refresh F9=Print list F12=Cancel

Press the Enter key. You are shown the Confirm Delete of Files display.

Distributed data management 81

Confirm Delete of Files

Press Enter to confirm your choices for 4=Delete.

Press F12 to return to change your choices.

 Remote

Option Local File Remote File Location

 4 WILSON/TEST TESTFILE.TESTLIB S38

 Bottom

F12=Cancel

Choose one of the actions on the display and then press the Enter key. You return to the Work with DDM

Files display.

 Related reference

 “CHGDDMF (Change DDM File) command” on page 68
The Change DDM File (CHGDDMF) command changes one or more of the attributes of a DDM file

on the local (source) server.

 “CRTDDMF (Create DDM File) command” on page 68
The Create DDM File (CRTDDMF) command creates a DDM file on the local (source) server.

 “DSPDDMF (Display DDM Files) command” on page 69

The Display DDM Files (DSPDDMF) command displays the details of a DDM file.

DDM-related CL command considerations

This topic collection describes DDM-related specifics about iSeries CL commands when they are used

with DDM files. These topics discuss running the commands on the source server and do not discuss

them being submitted to run on the target server by the Submit Remote Command (SBMRMTCMD)

command.

Note: You see message CPF9810 if the following items are true about a DDM file:

v The file is created into library QTEMP.

v The file is used by a CL command (such as CPYF).

v A remote file and library was specified in the CL command and the library does not exist on the

remote server.

Message CPF9810 indicates that the QTEMP library was not found. However, the library that was not

found is the remote library that was specified in the DDM file.

 Related concepts

 Control language
 Related reference

 “DDM-related CL command lists” on page 100

The control language (CL) commands that have a specific relationship with DDM are grouped in

charts in these topics to show the command functions that are available with DDM, those having

common limitations when used with DDM, and those that cannot be used with DDM.

82 IBM Systems - iSeries: Database Distributed data management

File management handling of DDM files

Because of the way data management handles DDM files, you must be careful when specifying a member

name on commands. If a member name is specified, data management first searches for a local database

file containing the member specified before looking for a DDM file.

For example, assume the following items:

v DDM file CUST021 is in library NYCLIB.

v Database file CUST021 is in library CUBSLIB.

NYCLIB is listed before CUBSLIB in the user’s library list. CUBSLIB/CUST021 contains member NO1.

The remote file pointed to by the DDM file contains member NO1. If the following override is used on

an Override with Database File (OVRDBF) command:

OVRDBF FILE(CUST021) MBR(NO1)

Data management finds the database file CUBSLIB/CUST021 instead of the DDM file NYCLIB/CUST021.

To avoid this, you can do one of the following things:

v Qualify the TOFILE on the override:

OVRDBF FILE(CUST021) TOFILE(NYCLIB/CUST021) MBR(NO1)

v Remove the library containing the database file from the library list:

RMVLIBLE LIB(CUBSLIB)

v Remove the override and change the remote file name in the DDM file to contain the member name:

CHGDDMF FILE(NYCLIB/CUST021)

 RMTFILE(*NONSTD ’XYZ/CUSTMAST(NO1)’)

ALCOBJ (Allocate Object) command

When the name of a DDM file is specified on the Allocate Object (ALCOBJ) command on the source

server, the command allocates the DDM file on the source server and its associated file or file member on

a target server.

The command places locks on both the DDM file and the remote file in each pair. (These files are locked

on both servers to ensure that they are not changed or deleted while the files or members are locked.)

One or more pairs of files (DDM files on the source server and remote files on one or more target

servers) can be allocated at the same time.

Each DDM file is always locked with a shared-read (*SHRRD) lock. Shared-read is used for the DDM

files regardless of the lock types that might have been specified on the command to lock other local files

at the same time.

The lock placed on the remote file depends on the type of target server:

v When the target is an iSeries server or a System/38, the resulting locks on the remote file are the same

as if the file is a local database file. That is, the iSeries or the System/38 remote file is also locked with

a shared-read lock, and the member (the one specified, or the first one) is locked with the lock type

specified on the command.

v When the target is not an iSeries server or a System/38, the remote file is locked with the specified lock

type, except that some non-iSeries target servers might use a stronger lock than was specified on the

command. If an ALCOBJ command specifies multiple DDM files, and one or more are on non-iSeries

target servers, those remote files are locked with the lock type specified on the command. If a member

name is specified for a remote server that does not support members, the lock request is rejected with

an error message, unless the member name is the same as the DDM file name.
 Related reference

Distributed data management 83

“Allocate Object (ALCOBJ) and Deallocate Object (DLCOBJ) commands” on page 122
The ALCOBJ command locks DDM files on the source server and the associated remote files on the

target servers.

Member names and iSeries target servers on the ALCOBJ command:

If a member name is specified with the DDM file name on an ALCOBJ command, the member (in the

remote file) is locked with the lock type specified on the command.

 If a member name is also specified in the DDM file itself, the member names on both commands

(ALCOBJ and CRTDDMF) must be the same. If they are different, the lock request is rejected and an error

message is sent to the user of the program. The remote file containing the member is locked with a

shared-read lock regardless of the lock type specified for the member.

If no member name is specified when a DDM file name is specified on an ALCOBJ command for a

remote file on an iSeries server or a System/38, *FIRST is the default, and the target server attempts to

locate and lock the first member in the remote file, the same as if it had been specified by name. If a

remote file has no members, the lock request is rejected with an error message.

Lock multiple DDM files with the ALCOBJ command:

One ALCOBJ command can be used to specify multiple DDM files that are associated with remote files

located on multiple target servers. If it is not possible to lock all the files on all the servers, none are

locked.

ALCOBJ command completion time with DDM:

When DDM-related files are being allocated, a longer time will be required for the command to complete

because of the additional time required for communications to occur between the source and target

servers.

 You should not, however, increase the wait time specified in the WAIT parameter on the Allocate Object

(ALCOBJ) command; communications time and the WAIT parameter value have no relationship with

each other.

Note: If the DLTF command is used to delete the remote file without first releasing (using the DLCOBJ

command) the locks obtained by the ALCOBJ command, the DDM conversation is not reclaimed

until the source job has ended.

CHGJOB (Change Job) command

The Change Job (CHGJOB) command can be used to change the DDMCNV parameter, which controls

whether Advanced Program-to-Program Communication (APPC) or iSeries Access Family conversations

allocated for DDM use are to be kept active or automatically dropped when they are not in use by a job.

The new value goes into effect immediately for the specified job.

To display the current value of the DDMCNV job attribute, use the Work with Job (WRKJOB) command.

 Related reference

 “DDMCNV parameter considerations” on page 98
The DDMCNV parameter is a job-related parameter that controls whether Advanced

Program-to-Program Communication (APPC) or iSeries conversations in the job that is allocated for

DDM use (that is, DDM conversations) are to be automatically dropped or kept active for the source

job.

 “WRKJOB (Work with Job) command” on page 97
The Work with Job (WRKJOB) command can be used to display two DDM-related items.

84 IBM Systems - iSeries: Database Distributed data management

CHGLF (Change Logical File) command

The Change Logical File (CHGLF) command can be used to change files on the source and target servers

through the SYSTEM parameter.

Consider the following items when using the SYSTEM parameter values:

v When you specify *LCL, the logical file is changed on the local server.

v When you specify *RMT, the logical file is changed on the remote server. You must specify a DDM file

on the FILE parameter.

v When you specify *FILETYPE, a remote file is changed if a DDM file has been specified on the FILE

parameter. If a DDM file has not been specified, a local logical file is changed.

Consider the following items when using this command with DDM:

v The FILE parameter is the name of the DDM file that represents the remote logical file being changed.

The remote file specified on the DDM file is the logical file that is changed on the remote server (which

is also specified in the DDM file).

v For a target server other than an iSeries server:

– All parameters except TEXT are ignored.

– It is not verified that the remote file is a logical file.

CHGPF (Change Physical File) command

The Change Physical File (CHGPF) command can be used to change files on the source and target

systems through the SYSTEM parameter.

Consider the following items when using the SYSTEM parameter values:

v When you specify *LCL, the physical file is changed on the local system.

v When you specify *RMT, the physical file is changed on the remote system. You must specify a DDM

file on the FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is

changed. If a DDM file has not been specified, a local physical file is changed.

Consider the following items when using this command with DDM:

v The FILE parameter is the name of the DDM file that represents the remote physical file being

changed. The remote file specified in the DDM file is the physical file that is changed on the remote

system (which is also specified in the DDM file).

v For a target server other than an iSeries server:

– All parameters except EXPDATE, SIZE, and TEXT are ignored.

– It is not verified that the remote file is a physical file.

CHGSRCPF (Change Source Physical File) command

The Change Source Physical File (CHGSRCPF) command can be used to change files on the source and

target servers through the SYSTEM parameter.

Consider the following items when using the SYSTEM parameter values:

v When you specify *LCL, the source physical file is changed on the local server.

v When you specify *RMT, the source physical file is changed on the remote server. You must specify a

DDM file on the FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is

changed. If a DDM file has not been specified, a local source physical file is changed.

Consider the following items when using this command with DDM:

Distributed data management 85

v The FILE parameter is the name of the DDM file that represents the remote source physical file being

changed. The remote file specified in the DDM file is the source physical file that is changed on the

remote server (which is also specified in the DDM file).

v The CCSID parameter is ignored on a target System/38 server.

v For a target server other than an iSeries server, the CHGSRCPF command cannot be used to change

files.

CLRPFM (Clear Physical File Member) command

The Clear Physical File Member (CLRPFM) command can be used with DDM to clear all the records

either from a physical file member on a target iSeries server or from a file on a non-iSeries target server.

The command works the same way as it does for local files (clearing all data records and deleted

records).

Copy commands with DDM

This topic describes the DDM implications of these CL commands.

v Copy File (CPYF)

v Copy from Query File (CPYFRMQRYF)

v Copy from Tape (CPYFRMTAP)

v Copy Source File (CPYSRCF)

v Copy to Tape (CPYTOTAP)

These commands can be used to copy data or source between files on local and remote servers. You

specify with these commands which file to copy from and which file to copy to. The following table

shows you what database and device files can be copied between local and remote servers.

 Table 6. Copy database and device files

From file To file

Local or remote database files Local or remote database files

Local or remote database files Local device files

Local device files Local or remote database files

A DDM file is considered a device file that refers to a remote database file. Consider the following items

when using these copy commands with DDM:

v DDM conversations are not reclaimed for a job when a copy command produces an error.

Note: In releases before Version 3 Release 2, copy errors caused the Reclaim Resources (RCLRSC)

command to be run, which also ran the Reclaim Distributed Data Management Conversations

(RCLDDMCNV) command. The RCLRSC command is still run, but it no longer runs the

RCLDDMCNV command when a copy error occurs. The DDM conversations will remain unless

an explicit RCLDDMCNV is specified following the copy command with the error.

v If you specify a DDM file and a local file on the CPYF or CPYSRCF command, the server does not

verify that the remote and local files are not the same file on the source server. If one DDM file is

specified, a user can potentially copy to and from the same file.

v A DDM file can be specified on the FROMFILE and the TOFILE parameters for the CPYF and

CPYSRCF commands.

Note: For the Copy from Query File (CPYFRMQRYF), and Copy from Tape (CPYFRMTAP) commands,

a DDM file name can be specified only on the TOFILE parameter; for the Copy to Tape

(CPYTOTAP) command, a DDM file name can be specified only on the FROMFILE parameter.

v If the target server is not an iSeries server or a System/38:

86 IBM Systems - iSeries: Database Distributed data management

– When a file on the local iSeries server is copied to a remote file (or vice versa), FMTOPT(*NOCHK)

is usually required.

– When a source file on the local iSeries server is copied to a remote file (or vice versa),

FMTOPT(*CVTSRC) must be specified.
v If data is copied to a target System/36 file that has alternative indexes built over it,

MBROPT(*REPLACE) cannot be specified. In this case, the copy command attempts to clear the remote

file, but it fails because of the alternative indexes.

v When an iSeries file that can contain deleted records is copied to one that cannot contain deleted

records, you must specify COMPRESS(*YES), or an error message is sent and the job ends.

v If the remote file name on a DDM file specifies a member name, the member name specified for that

file on the copy command must be the same as the member name on the remote file name on the

DDM file. In addition, the Override Database File (OVRDBF) command cannot specify a member name

that is different from the member name on the remote file name on the DDM file.

v If a DDM file does not specify a member name and if the OVRDBF command specifies a member

name for the file, the copy command uses the member name specified on the OVRDBF command.

If the TOFILE parameter is a DDM file that refers to a file that does not exist, CPYF creates the file if

CRTFILE(*YES) is specified. Listed here are special considerations for remote files created with the CPYF

or CPYFRMQRYF commands:

v If the target system is an iSeries server or a System/38, the user profile for the target DDM job must be

authorized to the CRTPF command on the target server.

v If the target server is a server other than an iSeries server, the file specified by the FROMFILE

parameter cannot have any file or field CCSIDs other than *HEX or the CCSID of the source job.

v For the CPYF command, if the target server is a system other than an iSeries server, the FROMFILE

parameter cannot be a source file.

v If the target server is a System/38, the TOMBR parameter must be the same as the remote file’s name

or *FIRST for the copy to be successful. The copy creates a member with the same name as the remote

file’s name.

v If the target server is other than a System/38 or iSeries server, for the copy to be successful, the

TOMBR parameter must be *FIRST or specify the DDM file name. For DDM access to the remote file,

the file appears to have a member with the same name as the DDM file.

v For an iSeries target server, the TOFILE parameter has all the attributes of the FROMFILE parameter.

v For target systems that are other than iSeries servers, those attributes on the CRTPF command that are

ignored are also ignored when the copy command creates the file.

v If the target server is a System/38 and the FROMFILE parameter is a direct file that does not allow

deleted records, an attempt is made to copy the records after the last record for the file at its maximum

size. The system operator on the System/38 tells the server to either add the records or cancel the copy.

v The CPYF or CPYFRMQRYF command with CRTFILE(*YES) creates a file on the target server with a

size description that is only as large as the target server allows.

v For all copies, if the number of records being copied exceeds the maximum allowed by the to-file, the

copy function ends when the maximum is reached.

v For copy commands executed on Version 2 Release 3 or earlier systems that reference a Version 3

Release 1 remote file having a constraint relationship, the ERRLVL parameter will not work for

constraint relationship violations. The copy ends regardless of the ERRLVL specified.

v The copy commands allow copying from and to DDM files that reference remote distributed files.

CRTDTAARA (Create Data Area) command

The Create Data Area (CRTDTAARA) command creates a data area and stores it in a specified library. It

also specifies the attributes of the data. The data area can be optionally initialized to a specific value.

You can create a DDM data area by specifying *DDM on the TYPE parameter. The DDM data area is

used as a reference data area by programs to access data areas located on a remote (target) server in the

Distributed data management 87

DDM network. Programs on the local (source) server reference a remote data area by the DDM data

area’s name, not by the remote data area’s name. (The DDM data area name can be the same as the

remote data area name.)

The DDM data area (on the source server) contains the name of the remote data area and the name of the

remote (target) server on which the remote data area is located.

The DDM data area can be used with the Retrieve Data Area (RTVDTAARA) command and the Change

Data Area (CHGDTAARA) command to retrieve and update data areas on remote servers. A DDM data

area can also be used with the Retrieve Data Area (QWCRDTAA) API.

Consider the following items when using this command with DDM:

v The RMTDTAARA parameter is the name of the remote data area on the target server. The data area

does not need to exist when the DDM data area is created.

v The RMTLOCNAME parameter is the name of the remote location that is used with this object.

Multiple DDM data areas can use the same remote location for the target system. RMTLOCNAME

must point to a target server that is an iSeries running at a release of i5/OS that supports remote data

areas. The possible values for RMTLOCNAME include:

– remote-location-name: Specifies the name of the remote location that is associated with the target

system. The remote location, which is used in accessing the target system, does not need to exist

when the DDM data area is created, but it must exist when the DDM data area is accessed.

– *RDB: The remote location information for the relational database entry specified in the relational

database (RDB) parameter is used to determine the remote system.
v The DEV parameter is the name of the APPC device description on the source server that is used with

this DDM data area. The device description does not need to exist when the DDM data area is created.

v The LCLLOCNAME parameter is the local location name.

v The MODE parameter is the mode name that is used with the remote location name to communicate

with the target server.

v The RMTNETID parameter is the remote network ID in which the remote location resides that is used

to communicate with the target server.

Consider the following restrictions when using this command with DDM:

v You cannot create a DDM data area using the names *LDA, *GDA, or *PDA.

v You cannot create a data area remotely. This function can be done remotely by using the Submit

Remote Command (SBMRMTCMD) command.

v You can remotely display data areas by using the SBMRMTCMD command.

v You can display the contents of remote data areas by using the Display Data Area (DSPDTAARA)

command; specify *RMT on the SYSTEM parameter. The data in the data area is displayed in the same

format as that used for local data areas, with the exception of the TEXT field, which is the text

description provided when the DDM data area was created. If you specify *LCL on the SYSTEM

parameter for a DDM data area, the output looks similar to the following display:
 Data area : DDMDTAARA

 Library : DDMLIB

 Type : *DDM

 Length : 62

 Text : ’This is a DDM data area’

 Value

 Offset *...+....1....+....2....+....3....+....4....+....5

 0 ’*LOC *NETATR SYSTEMA *LOC *LOC LCLDTAAR’

 50 ’A LCLLIB ’

Use the following chart to interpret the values:

88 IBM Systems - iSeries: Database Distributed data management

Table 7. Offset values

Offset DDMDTAARA fields

1-10 DEV

11-18 MODE

19-26 RMTLOCNAME

27-34 LCLLOCNAME

35-42 RMTNETID

43-52 RMTDTAARA (name)

53-62 RMTDTAARA (library)

 Related concepts

 Control language

CRTDTAQ (Create Data Queue) command

The Create Data Queue (CRTDTAQ) command creates a data queue and stores it in a specified library.

Data queues are used to communicate and store data used by several programs either within a job or

between jobs. Multiple jobs can send or receive data from a single queue.

The CRTDTAQ command can optionally create a distributed data management (DDM) data queue. This

is done by specifying *DDM on the TYPE parameter. The DDM data queue is used as a reference data

queue by programs to access data queues located on a remote (target) server in the DDM network.

Programs on the local (source) server reference a remote data queue by the DDM data queue’s name, not

by the remote data queue’s name. (The DDM data queue name, however, can be the same as the remote

data queue name.)

The DDM data queue (on the source server) contains the name of the remote data queue and the name of

the remote (target) server on which the remote data queue is located.

Consider the following items when using this command with DDM:

v The TYPE parameter specifies the type of data queue to be created. A standard data queue or a DDM

data queue can be created.

v The RMTDTAQ parameter is the name of the remote data queue on the target system. The data queue

does not need to exist when the DDM data queue is created.

v The RMTLOCNAME parameter is the name of the remote location that is used with this object.

Multiple DDM data areas can use the same remote location for the target system. RMTLOCNAME

must point to a target server that is an iSeries running at a release of i5/OS that supports remote data

areas. The possible values for RMTLOCNAME include:

– remote-location-name: Specifies the name of the remote location that is associated with the target

system. The remote location, which is used in accessing the target system, does not need to exist

when the DDM data area is created, but it must exist when the DDM data area is accessed.

– *RDB: The remote location information for the relational database entry specified in the relational

database (RDB) parameter is used to determine the remote system.
v The DEV parameter is the name of the APPC device description on the source system that is used with

this DDM data queue. The device description does not need to exist when the DDM data queue is

created.

v The LCLLOCNAME parameter is the local location name.

v The MODE parameter is the mode name that is used with the remote location name to communicate

with the target system.

v The RMTNETID parameter is the remote network ID in which the remote location resides that is used

to communicate with the target system.

Consider the following restrictions when using this command with DDM:

Distributed data management 89

v Only the API interface for data queues is supported when using DDM data queues. The following APIs

are supported:

– Send to Data Queue (QSNDDTAQ)

– Receive from Data Queue (QRCVDTAQ)

– Clear Data Queue (QCLRDTAQ)

The Retrieve Data Queue Description (QMHQRDQD) and Retrieve Data Queue Messages

(QMHRDQM) APIs are not supported for DDM data queues.

When using the *ASYNC parameter on the Send Data Queue API, messages resulting from errors

encountered when accessing the remote data queue are placed in the target server’s job log, and a

DDM protocol error (CPF9173 - Error detected in DDM data stream by target server) is posted in

the source system’s job log. Look in the target server’s job log for the cause of the error and correct the

problem before using the remote data queue. Attempts to access the remote data queue after you

receive this error message without first correcting the problem will produce unpredictable results.

v You cannot create a data queue remotely. This function can be done remotely by using the Submit

Remote Command (SBMRMTCMD) command.
 Related concepts

 Control language
 Related information

 Application Programming Interfaces

CRTLF (Create Logical File) command

The Create Logical File (CRTLF) command can be used to create files on the source and target servers

through the SYSTEM parameter.

Consider the following items when using the SYSTEM parameter values:

v When you specify *LCL, the file is created on the local server.

v When you specify *RMT, the file is created on the remote server. You must specify a DDM file on the

FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is

created. If a DDM file has not been specified, a local file is created.

Consider the following items when using this command with DDM:

v The parameter FILE is the name of the DDM file that represents the remote logical file being created.

The remote file specified in the DDM file is the logical file that is created on the remote server (which

is also specified in the DDM file).

v The OPTION and GENLVL parameters have no effect on the remote command sent.

v The files specified on the PFILE or JFILE keywords in the DDS for the logical file must be at the same

server location as the logical file being created.

v If *JOB is specified as the value of a parameter or is in the data description specification (DDS) for that

file, the attribute of that source job is used for file and field attributes. The attribute of the source job is

also used when the default for a file or field attribute is the job attribute.

v For a target server other than an iSeries server:

– The format name is ignored.

– Only the value of *ALL is supported for the DTAMBRS parameter.

– These parameters are ignored:

- AUT

- FRCRATIO

- FRCACCPTH

- LVLCHK

90 IBM Systems - iSeries: Database Distributed data management

- MAINT

- MBR

- RECOVER

- SHARE

- UNIT

- WAITFILE

- WAITRCD

Note: For System/38 targets, the SBMRMTCMD command can be used to change these attributes.

– Only the value of *NONE is supported for the FMTSLR parameter.

– FILETYPE must be *DATA.

– If a member name is specified, it must match the DDM file name.
v For an iSeries target server:

– All parameters of the CRTLF command are supported with one restriction: authorization lists are

not allowed for the AUT (public authority) parameter. DDM cannot guarantee the existence of the

authorization list on the target server or that the same user IDs are in the list if it does exist. The

public authority is changed to *EXCLUDE when you use an authorization list as a value for the

AUT parameter of the CRTLF command.

– The file names specified in the DTAMBRS parameter must be the names of the DDM files that

represent the remote based-on physical files. If a member name was specified as part of the remote

file name of the DDM file, then only that member name can be specified. The member names must

be the actual remote file member names.

CRTPF (Create Physical File) command

The Create Physical File (CRTPF) command can be used to create files on the source and target servers

through the SYSTEM parameter.

Consider the following items when using the SYSTEM parameter values:

v When you specify *LCL, the file is created on the local server.

v When you specify *RMT, the file is created on the remote server. You must specify a DDM file on the

FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is

created. If a DDM file has not been specified, a local file is created.

Consider the following items when using this command with DDM:

v The FILE parameter is the name of the DDM file that represents the remote file being created. The

remote file specified in the DDM file is the file that is created on the remote server (which is also

specified in the DDM file).

v The OPTION and GENLVL parameters create the same results as for local processing. These

parameters have no effect on the remote command sent.

v If *JOB is specified as the value of a parameter or is in the data description specification (DDS) for that

file, the attribute of that source job is used for file and field attributes. The attribute of the source job is

also used when the default for a file or field attribute is the job attribute.

v For a target server other than an iSeries server:

– The format name is ignored.

– These parameters are ignored:

- AUT

- CONTIG

- DLTPCT

- FRCRATIO

Distributed data management 91

- FRCACCPTH

- LVLCHK

- MAINT

- MAXMBRS2

- MBR

- RECOVER

- REUSEDLT

- SHARE

- UNIT

- WAITFILE

- WAITRCD

Note: For System/38 targets, the SBMRMTCMD command can be used to change these attributes.

– FILETYPE must be *DATA.

– All other parameters are supported.

– If a member name is specified, it must match the DDM file name.

– The only CCSID values that are supported are:

- *HEX

- 65535

- *JOB

- Process CCSID of the source job

The file is not created if any other CCSID value is specified.

– When the DDS keyword VARLEN is used, DDM tries to create a variable-length record file on the

target server. There are some specific rules for this keyword.
v On an iSeries target server, all parameters of the CRTPF command are supported with one restriction:

authorization lists are not allowed for the AUT (public authority) parameter. DDM cannot guarantee

the existence of the authorization list on the target server or that the same user IDs are in the list if it

does exist. The public authority is changed to *EXCLUDE when you use an authorization list as a

value for the AUT parameter of the CRTPF command.
 Related reference

 “DDM-related DDS keywords and information” on page 111

The information about DDS keywords that relates specifically to DDM is provided in this topic.

CRTSRCPF (Create Source Physical File) command

The Create Source Physical File (CRTSRCPF) command can be used to create files on the iSeries source

and target servers through the SYSTEM parameter.

Consider the following items when using the SYSTEM parameter values:

v When you specify *LCL, the file is created on the local server.

v When you specify *RMT, the file is created on the remote server. You must specify a DDM file on the

FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is

created. If a DDM file has not been specified, a local file is created.

Consider the following items when using this command with DDM:

v The FILE parameter is the name of the DDM file that represents the remote file being created. The

remote file specified in the DDM file is the file that is created on the remote server (which is also

specified in the DDM file).

92 IBM Systems - iSeries: Database Distributed data management

v The OPTION and GENLVL parameters create the same results as for local processing. These

parameters have no effect on the remote command sent.

v If *JOB is specified as the value of a parameter or is in the data description specification (DDS) for that

file, the attribute of that source job is used for file and field attributes. The attribute of the source job is

also used when the default for a file or field attribute is the job attribute.

All parameters of the CRTSRCPF command are supported with one restriction: authorization lists are not

allowed for the AUT (public authority) parameter. DDM cannot guarantee the existence of the

authorization list on the target server or that the same user IDs are in the list if it does exist. The public

authority is changed to *EXCLUDE when you use an authorization list as a value for the AUT parameter

of the CRTSRCPF command.

DLCOBJ (Deallocate Object) command

When the name of a DDM file is specified on the Deallocate Object (DLCOBJ) command on the source

server, the command deallocates the DDM file on the source server and its associated file or file member

on a target server.

The command releases the locks that were placed on the paired files on both the source and target

servers by the Allocate Object (ALCOBJ) command. One or more pairs of files (DDM files on the source

server and remote files on one or more target servers) can be deallocated at the same time.

 Related reference

 “Allocate Object (ALCOBJ) and Deallocate Object (DLCOBJ) commands” on page 122
The ALCOBJ command locks DDM files on the source server and the associated remote files on the

target servers.

Member names and iSeries target servers on the DLCOBJ command:

All of the information previously discussed in the ALCOBJ command description regarding member

names applies to the DLCOBJ command as well.

 Refer to the ALCOBJ command description for the details.

Unlock multiple DDM files on the DLCOBJ command:

One DLCOBJ command can be used to specify multiple DDM files that are associated with remote files

that might be located on multiple target servers. In most cases, the command attempts to release as many

of the specified locks as possible.

 For example:

v If one of the DDM files specified on the DLCOBJ command refers to a remote file that is not a database

file, that lock is not released; but the specified locks on the remote files associated with the other DDM

files specified are released if, of course, they are valid.

v If a user tries to release a lock that he did not place on a file by a previous ALCOBJ command, that

part of the request is rejected and an informational message is returned to the user.

DLTF (Delete File) command

The Delete File (DLTF) command can be used to delete files on the source and target servers.

The following items should be considered when using the SYSTEM parameter values:

v When you specify *LCL, only local files are deleted. This might include DDM files.

v When you specify *RMT, the file is deleted on the remote server. You must specify a DDM file on the

FILE parameter. If a generic name is specified, the remote files corresponding to any DDM files

matching the generic name are deleted. (The local DDM files are not deleted.)

Distributed data management 93

v When you specify *FILETYPE, if a DDM file has been specified, the remote file is deleted. If a DDM

file has not been specified, the local file is deleted. When you specify generic names, local non-DDM

files are deleted first. Remote files for any DDM files matching the generic name are then deleted.

Local DDM files are not deleted.

Notes:

1. Structured Query Language/400 (SQL/400) DROP TABLE and DROP VIEW statements work

only on local files.

2. If the DLTF command is used to delete the remote file without first releasing (using the

DLCOBJ command) the locks obtained by the ALCOBJ command, the DDM conversation is

not reclaimed until the source job has ended.

DSPFD (Display File Description) command

The Display File Description (DSPFD) command can be used to display (on the source server) the

attributes of the DDM file on the source server, the remote file on the target server, or both the DDM file

and the remote file. As with local files, the attributes of multiple DDM files, multiple remote files, or both

can be displayed by the same command.

Note: Although this discussion mentions only one target server, the files for multiple target servers can

be displayed at the same time.

The SYSTEM parameter determines which group of attributes is displayed.

v To display the attributes of DDM files, which are local files, the SYSTEM parameter must specify *LCL

(the default). If SYSTEM(*LCL) is specified:

– The FILEATR parameter must either specify *DDM (to display DDM file attributes only) or default

to *ALL (to display all file types, including DDM files). The same kind of information is displayed

for DDM files (which are on the local system) as for any other types of files on the local server.

– If FILEATR(*DDM) is specified and the OUTFILE parameter specifies a file name, only local DDM

file information is given.
v To display the attributes of remote files, the SYSTEM parameter must specify *RMT. If SYSTEM(*RMT)

is specified:

– The FILEATR parameter must specify *ALL, *PHY, or *LGL.

– The type of information displayed for remote files depends on what type of target server the files

are on. If the target is an iSeries server or a System/38, the same type of information displayed for

local files on an iSeries server or a System/38 can be displayed. If the target is not an iSeries server

or a System/38, all the information that can be obtained through that server’s implementation of the

DDM architecture that is compatible with the iSeries server’s implementation is displayed.
v To display the attributes of both DDM and remote files, the SYSTEM parameter must specify *ALL.

 Related reference

 “Display DDM remote file information” on page 124
The CL commands Display File Description (DSPFD) and Display File Field Description (DSPFFD) can

be used by an iSeries source server user to display the attributes of one or more DDM files on the

source server, or to display the attributes of one or more remote files on a target server.

DSPFFD (Display File Field Description) command

The Display File Field Description (DSPFFD) command can be used to display the file, record format, and

field attributes of a remote file. To display the remote file attributes, however, you must enter the name of

the DDM file associated with the remote file, not the name of the remote file.

Note: Because the DDM file has no field attributes, the DSPFFD command cannot specify SYSTEM(*LCL)

to display local DDM file information.

94 IBM Systems - iSeries: Database Distributed data management

If *ALL or a generic file name is specified on the FILE parameter, the DSPFFD command can also display

information about a group of both local files and remote files, or just a group of local files. In this case,

the SYSTEM parameter determines which are displayed.

v To display the attributes of local non-DDM files only, the SYSTEM parameter need not be specified

because *LCL is the default.

v To display the attributes of remote files, the SYSTEM parameter must specify *RMT. If SYSTEM(*RMT)

is specified, the field and record format information displayed for remote files depends on what type

of target server the files are on.

– If the target is an iSeries server or a System/38, the same information displayed for local files on an

iSeries server is displayed.

– If the target is other than a System/38 or iSeries server:

- Fields are Fnnnnn or Knnnnn (where nnnnn is some number), based on whether the file is a keyed

file or not.

- The record format name is the DDM file name.

If the remote file has a record length class of record varying or initially varying, fixed-length field

descriptions are displayed.
v To display the attributes of both local non-DDM files and remote files, the SYSTEM parameter must

specify *ALL. Only remote physical and logical files can be displayed.
 Related reference

 “Display DDM remote file information” on page 124
The CL commands Display File Description (DSPFD) and Display File Field Description (DSPFFD) can

be used by an iSeries source server user to display the attributes of one or more DDM files on the

source server, or to display the attributes of one or more remote files on a target server.

OPNQRYF (Open Query File) command

You can query remote files using the Open Query File (OPNQRYF) command, but only if the remote files

are on a target iSeries server or a target System/38.

If multiple remote files are specified on one OPNQRYF command, they must all exist on the same target

server and use the same remote location information.

If the target server is an iSeries server or a System/38, a query request is created and sent to the target

server using the DDM file that the query refers to. If the target server is other than an iSeries server or a

System/38, the query request cannot be processed and an error message is created. However, the query

utility on the System/38 can be used to query remote files that are other than iSeries files.

If the target server is a System/38 and the source is an iSeries server, or if the target server is an iSeries

server and the source is a System/38, OPNQRYF cannot use group-by and join functions. An error

results.

 Related reference

 “i5/OS database query” on page 38
The database interactive query function, provided by the i5/OS licensed program, supports DDM

files.

 “System/38-compatible query utility (Query/38)” on page 34
The System/38-compatible query utility (Query/38) can be used with DDM to create and use

interactive or batch query applications.

OVRDBF (Override with Database File) command

The Override with Database File (OVRDBF) command can be used with DDM to override (replace) a

local database file named in the program with a DDM file; the DDM file causes the associated remote file

to be used by the program instead of the local database file.

Distributed data management 95

If a DDM file is specified on the TOFILE parameter and if other parameters are specified that change a

file’s attributes, the result is that the remote file actually used by the program is used with its attributes

changed by the parameter values specified on the OVRDBF command.

If the target server is an iSeries server or a System/38, existing programs that use the OVRDBF command

to access remote files work the same as when they access local files. All the OVRDBF parameters are

processed the same on source and target iSeries servers.

If end-of-file delay (EOFDLY) is used, it is recommended to end a job with an end-of-file record because

if the source job gets canceled, the target job does not get notified. The user must also end the target job.

If the target server is neither an iSeries server nor a System/38:

v The following parameters are still valid: TOFILE, POSITION, RCDFMTLCK, WAITFILE, WAITRCD,

LVLCHK, EXPCHK, INHWRT, SECURE, SHARE, and SEQONLY.

– The TOFILE parameter is always processed on the source server. When a DDM file name is

specified on this parameter, the program uses the associated remote file instead of the local database

file specified in the program.

– The RCDFMTLCK parameter, if specified, is valid only if both of the following are true of the

remote file used: only one type of lock condition can be requested for the remote file, and the record

format name in the remote file must be the same as the name of the DDM file.

– The WAITFILE and WAITRCD parameters have no effect on remote file processing.
v The MBR parameter causes an error if it is specified with a member name that is different than the

name of the file containing the member.

v The FRCRATIO and NBRRCDS parameters, if specified, are ignored.

v The FMTSLR parameter, if specified, causes an error when the file being opened is a DDM file.

v The SEQONLY parameter causes records to be blocked on the source side. Records might be lost if the

source job is canceled before a block is full.
 Related reference

 “Additional considerations: SBMRMTCMD command” on page 73

This topic describes additional considerations for the SBMRMTCMD command.

 “Example: Access DDM remote members (iSeries server only)” on page 118
These examples show how access to a DDM file becomes an indirect reference (by using DDM) to a

member of a file on a remote iSeries server. These examples are iSeries server-to-iSeries server

examples.

RCLRSC (Reclaim Resources) command

The Reclaim Resources (RCLRSC) command, like the Reclaim DDM Conversations (RCLDDMCNV)

command, can be used to reclaim all DDM conversations that currently have no users in the job.

This can be done even if the DDMCNV job attribute is *KEEP. The RCLRSC command, however, first

attempts to close any unused files for the appropriate recursion levels, as it would for local files. This

action might result in some conversations allocated to DDM being unavailable for the job. For example, if

a DDM file is opened using the Open Database File (OPNDBF) command, the RCLRSC command closes

the file and reclaims the conversation.

After the files are closed, any unused DDM conversations are dropped. Whether a conversation can be

reclaimed is not affected by the recursion level or activation group in which the RCLRSC command is

issued.

 Related reference

 “Control DDM conversations” on page 123

Normally, the DDM conversations associated with a source server job are kept active until one of the

conditions described in this topic is met.

96 IBM Systems - iSeries: Database Distributed data management

RNMOBJ (Rename Object) command

The Rename Object (RNMOBJ) command can be used to rename a remote file.

The following items should be considered when using the SYSTEM parameter values:

v When you specify *LCL, local objects are renamed. This might include DDM files.

v When you specify *RMT, this value applies only to OBJTYPE(*FILE). The DDM file containing the

remote file to be renamed is specified on the OBJ parameter.

The DDM file containing the new name for the remote file is specified on the NEWOBJ parameter.

Both DDM files must already exist in the same library (on the source server). The two DDM files must

refer to the same target servers and contain the same remote location information. Neither the two

local DDM files nor the RMTFILE names in the two DDM files are changed. Specify *LCL to rename

the DDM file or use the Change DDM File (CHGDDMF) command to change the RMTFILE name in a

DDM file.

v When you specify *FILETYPE, this value applies only to OBJTYPE(*FILE). If the file specified in the

OBJ parameter is a DDM file, the rules when specifying *RMT apply. If the file is not a DDM file, the

rules when specifying *LCL apply.

When renaming remote files for iSeries and System/38 targets, if library names have been specified in the

RMTFILE parameter for the two DDM files, the library names must be the same but the file names must

be different.

WRKJOB (Work with Job) command

The Work with Job (WRKJOB) command can be used to display two DDM-related items.

These items include:

v The DDMCNV job attribute for the source job.

v The object lock requests (held locks and pending locks) for DDM files that are being used in the source

server job. These are shown by choosing option 12 (Work with locks, if active) from the Work with Job

menu.

The Job Locks display shows only the locks held for the local DDM files; locks for remote files are not

shown. Also, because DDM files do not have members, none are indicated on this display nor on the

Member Lock display.

An iSeries server does not display any locks for remote files; locks for the remote file, its members, or its

records cannot be displayed by the source server. However, these remote locks can be displayed using

pass-through.

The lock condition shown for DDM files is always shared read (*SHRRD) regardless of the lock

conditions used for their associated remote files or members.

 Related reference

 “DDMCNV parameter considerations” on page 98
The DDMCNV parameter is a job-related parameter that controls whether Advanced

Program-to-Program Communication (APPC) or iSeries conversations in the job that is allocated for

DDM use (that is, DDM conversations) are to be automatically dropped or kept active for the source

job.

 “Work with Job (WRKJOB) and Work with Object Locks (WRKOBJLCK) commands” on page 122
For both the WRKOBJLCK command and menu option 12 (Work with locks, if active) of the WRKJOB

command, only the locks held for the local DDM files are shown, not locks held for the remote files

(or for their members).

Distributed data management 97

WRKOBJLCK (Work with Object Lock) command

The Work with Object Lock (WRKOBJLCK) command can be used to display the object lock requests

(held locks and pending locks) for DDM files. This command displays only the locks held for the local

DDM files, not locks held for the associated remote files.

An iSeries server does not display any locks for remote files; locks for the remote file, its members, or its

records cannot be displayed by the source server.

The lock condition shown for DDM files is always shared read (*SHRRD) regardless of the lock

conditions used for their associated remote files or members.

 Related reference

 “Work with Job (WRKJOB) and Work with Object Locks (WRKOBJLCK) commands” on page 122
For both the WRKOBJLCK command and menu option 12 (Work with locks, if active) of the WRKJOB

command, only the locks held for the local DDM files are shown, not locks held for the remote files

(or for their members).

DDM-related CL parameter considerations

This topic covers parameter considerations that apply to DDM-related CL commands.

Note: The Create DDM File (CRTDDMF) command can be used to create a DDM file. The other create

file commands such as CRTPF or CRTxxxF cannot be used to create a DDM file.

 Related reference

 “Commands not supporting DDM” on page 104
These CL commands are not supported for DDM files. However, useful results for some of them

might be produced on a target iSeries server or a System/38 using DDM if they are submitted on the

Submit Remote Command (SBMRMTCMD) command to run on the target server.

DDMACC parameter considerations

The DDMACC parameter controls how an iSeries server, as a target server, handles DDM requests from

other servers.

The DDMACC parameter is used on the Change Network Attributes (CHGNETA), Display Network

Attributes (DSPNETA), and Retrieve Network Attributes (RTVNETA) commands. The value of this

server-level parameter determines whether this iSeries server can accept DDM requests from other

servers.

DDMCNV parameter considerations

The DDMCNV parameter is a job-related parameter that controls whether Advanced Program-to-Program

Communication (APPC) or iSeries conversations in the job that is allocated for DDM use (that is, DDM

conversations) are to be automatically dropped or kept active for the source job.

The default is to keep the conversation active.

This parameter can drop a conversation when it has no active users. The conversation is unused when:

1. All the DDM files and remote files used in the conversation are closed and unlocked (deallocated).

2. No other DDM-related functions (like the Submit Remote Command (SBMRMTCMD) command or

the Display File Description (DSPFD) command to access the target server) are being done.

3. No DDM-related function has been interrupted (by a break program, for example) while running.

The DDMCNV parameter values are:

*KEEP

Specifies that once each DDM conversation is started for the source job it is kept active at the

98 IBM Systems - iSeries: Database Distributed data management

completion of a source program request, and it waits for another request to be received from the

same or another program running in the job. This is the default value.

*DROP

Specifies that each DDM conversation started in the source job is to be automatically dropped

when both of the following items are true: no request from the source server program(s) running

in the job is being processed in the conversation, and all the DDM files are closed and all objects

that were allocated are now deallocated.

The DDMCNV parameter is changed by the Change Job (CHGJOB) command and is displayed by the

Work with Job (WRKJOB) command. Also, if the Retrieve Job Attributes (RTVJOBA) command is used,

you can get the value of this parameter and use it within a CL program.

 Related concepts

 “iSeries server as the source server for DDM” on page 13

When an application program or user in a source server job first refers to a DDM file, several actions

occur as part of processing the request on the source server.
 Related reference

 “Additional considerations: SBMRMTCMD command” on page 73

This topic describes additional considerations for the SBMRMTCMD command.

 “CHGJOB (Change Job) command” on page 84
The Change Job (CHGJOB) command can be used to change the DDMCNV parameter, which controls

whether Advanced Program-to-Program Communication (APPC) or iSeries Access Family

conversations allocated for DDM use are to be kept active or automatically dropped when they are

not in use by a job. The new value goes into effect immediately for the specified job.

 “WRKJOB (Work with Job) command” on page 97
The Work with Job (WRKJOB) command can be used to display two DDM-related items.

 “Control DDM conversations” on page 123

Normally, the DDM conversations associated with a source server job are kept active until one of the

conditions described in this topic is met.

OUTFILE parameter considerations for DDM

The OUTFILE parameter is used on such commands as the Display File Description (DSPFD), the Display

File Field Description (DSPFFD), the Display Object Description (DSPOBJD), and the Create Auto Report

Program (CRTRPTPGM). The parameter identifies a database file into which output data created by the

command is stored.

When the name of a DDM file is specified on the OUTFILE parameter of these commands, two

restrictions apply:

v The remote server must be an iSeries server or a System/38. This is necessary to ensure that the

associated remote file has the proper format for the output data.

v The remote file associated with the DDM file must already exist. If the remote file does not exist, a

message is returned to the user indicating that the remote file must exist before the function can be

performed.

If the remote file named on the OUTFILE parameter does exist and is on an iSeries server or a

System/38, the file will be checked for three conditions before it can be used as an output database file to

store displayed output:

v The remote file must be a physical file.

v The remote file must not be a model output file. That is, it cannot be one of the model output files

provided with the i5/OS operating system which has the required format, but no data.

v The record format name in the remote file must match the model output file record format name. (This

condition requires that the remote system be an iSeries server or a System/38.)

Distributed data management 99

If all of these conditions are met, the remote file member is cleared. (Output file members must be cleared

before they can be used again.) If the remote file member does not exist, it is created and the output is

stored in it.

DDM-related CL command lists

The control language (CL) commands that have a specific relationship with DDM are grouped in charts

in these topics to show the command functions that are available with DDM, those having common

limitations when used with DDM, and those that cannot be used with DDM.

Notes:

1. Not all of the CL commands on an iSeries server are shown in these topics. Only those that are

intended (or recommended) by IBM for use with DDM or those specifically not intended for

DDM use are shown. The intended use can be either for commands that are run on the source

server to affect a remote file on the target server, or for commands that are submitted to the

target server by using the Submit Remote Command (SBMRMTCMD) command to run there.

2. Some of these commands appear in more than one of the following charts.

The charts in these topics show:

v Commands affecting only the DDM file:

Object-oriented commands that can be used with DDM files, but do not affect the associated remote

files. The Create DDM File (CRTDDMF), Change DDM File (CHGDDMF), and Reclaim DDM

Conversations (RCLDDMCNV) commands are included in this group.

v Commands affecting both the DDM file and the remote file:

– File management commands that require that the target server be another iSeries server or a

System/38. The SBMRMTCMD command is included in this group.

– Member-related commands that can be used in some way on remote files.

– Source file commands that can operate on source files while DDM is being used.
These commands, normally used for processing local files, can (transparently to the programs) process

remote files when one of their parameters specifies the name of a DDM file.

v Commands that cannot be used with DDM.

Many of these commands, when limited as shown in the charts, can still be submitted by the

SBMRMTCMD command to a target server (an iSeries server or a System/38 only) to run, but it might

not be useful to do so.

 Related concepts

 “DDM-related CL command considerations” on page 82
This topic collection describes DDM-related specifics about iSeries CL commands when they are used

with DDM files. These topics discuss running the commands on the source server and do not discuss

them being submitted to run on the target server by the Submit Remote Command (SBMRMTCMD)

command.
 Related reference

 “DDM-related CL command summary charts” on page 106

This topic shows summary charts containing most of the control language (CL) commands used with

DDM.

 “Object-oriented commands with DDM” on page 101
The DDM file object on the source iSeries server can be accessed by these object-oriented CL

commands. These commands work with DDM files as they normally do with any other files on the

local server.

 “Target iSeries-required file management commands” on page 102
These CL commands can be used only when the target server is another iSeries server or System/38.

100 IBM Systems - iSeries: Database Distributed data management

“Member-related commands with DDM” on page 103

Database file operations that apply to a member can be used by DDM.

 “Source file commands” on page 105
If the target server is an iSeries server or a System/38, these CL commands can support a DDM file as

a source file (on the SRCFILE parameter).

 “Commands not supporting DDM” on page 104
These CL commands are not supported for DDM files. However, useful results for some of them

might be produced on a target iSeries server or a System/38 using DDM if they are submitted on the

Submit Remote Command (SBMRMTCMD) command to run on the target server.

Object-oriented commands with DDM

The DDM file object on the source iSeries server can be accessed by these object-oriented CL commands.

These commands work with DDM files as they normally do with any other files on the local server.

Some of these commands can operate on more than one object, and one or more of them might be DDM

files if, for example, a generic file name is specified.

Except as noted in the chart, these commands have no effect on the remote file associated with the DDM

file; that is, no reference is made over a communications line to the target server when one of these

commands specifies a DDM file.

However, if you do want one of these commands to operate on a remote file (instead of the DDM file),

you can use the Submit Remote Command (SBMRMTCMD) command to submit the command to run on

the target server, if it is an iSeries server or a System/38. The results of running the submitted command,

in this case, are not sent back to the source server, except for some indication to the source server user

(normally a message) about whether the function was performed successfully.

 Command name Descriptive name

CHGDDMF Change DDM File

CHGLF1,2,3,4 Change Logical File

CHGOBJOWN Change Object Owner

CHGPF1,2,3,4 Change Physical File

CHGSRCPF1,2,3,4 Change Source Physical File

CHKOBJ Check Object

CRTDDMF Create DDM File

CRTDUPOBJ Create Duplicate Object

CRTLF1,2,3 Create Logical File

CRTPF1,2,3 Create Physical File

CRTSRCPF1,2,3 Create Source Physical File

CRTS36CBL6 Create S/36 COBOL Program

CRTS36DSPF7 Create S/36 Display File

CRTS36MNU7 Create S/36 Menu

CRTS36MSGF7 Create S/36 Message File

CRTS36RPG6 Create S/36 RPG II Program

CRTS36RPGR7 Create Console Display File

CRTS36RPT6 Create S/36 RPG II Auto Report

DLTF1,2,3 Delete File

DMPOBJ Dump Object

DMPSYSOBJ Dump System Object

DSPFD1,2,3 Display File Description

DSPFFD1,2,3 Display File Field Description

DSPOBJAUT Display Object Authority

DSPOBJD Display Object Description

GRTOBJAUT Grant Object Authority

MOVOBJ Move Object

Distributed data management 101

Command name Descriptive name

RCLDDMCNV Reclaim DDM Conversations

RNMOBJ1,2,3 Rename Object

RSTLIB Restore Library

RSTOBJ Restore Object

RVKOBJAUT Revoke Object Authority

SAVCHGOBJ Save Changed Object

SAVLIB Save Library

SAVOBJ Save Object

WRKJOB5 Work with Job

WRKOBJLCK5 Work with Object Lock

1 When run on the source system, this command does not refer to the remote file when SYSTEM(*LCL) is

used.

2 The remote operation is performed if SYSTEM(*RMT) is specified, or if SYSTEM(*FILETYPE) is specified and

the file is a DDM file.

3 Because DDM file names can be specified on these commands, the SBMRMTCMD command is not needed

to perform these functions on a target iSeries server or a target System/38.

4 The target must be an iSeries server at release 3.0 and above or support Level 2.0 of DDM architecture.

5 When run on the source server, this command displays any locks on the DDM file, not on the remote file.

6 This System/36 environment command is supported by DDM.

7 This System/36 environment command is not supported by DDM.

 Related concepts

 Control language
 Related reference

 “DDM-related CL command lists” on page 100

The control language (CL) commands that have a specific relationship with DDM are grouped in

charts in these topics to show the command functions that are available with DDM, those having

common limitations when used with DDM, and those that cannot be used with DDM.

 “Perform file management functions on remote servers” on page 121
i5/OS DDM supports creating, deleting, or renaming of files on a remote server.

Target iSeries-required file management commands

These CL commands can be used only when the target server is another iSeries server or System/38.

 Command name Descriptive name

ADDLFM1 Add Logical File Member

ADDPFM Add Physical File Member

CHGLFM Change Logical File Member

CHGPFM Change Physical File Member

CPYSRCF Copy Source File

INZPFM Initialize Physical File Member

OPNQRYF Open Query File

RGZPFM Reorganize Physical File Member

RMVM Remove Member

RNMM Rename Member

1 The target server must be an iSeries server.

102 IBM Systems - iSeries: Database Distributed data management

Because DDM file names can be specified on these commands, the Submit Remote Command

(SBMRMTCMD) command is not needed to perform these functions on a target iSeries server or a target

System/38.

 Related reference

 “DDM-related CL command lists” on page 100

The control language (CL) commands that have a specific relationship with DDM are grouped in

charts in these topics to show the command functions that are available with DDM, those having

common limitations when used with DDM, and those that cannot be used with DDM.

 “DDM-related CL command summary charts” on page 106

This topic shows summary charts containing most of the control language (CL) commands used with

DDM.

Member-related commands with DDM

Database file operations that apply to a member can be used by DDM.

When the name of a DDM file is specified on any of the following CL commands, i5/OS DDM accesses

the remote file (and member) referred to by the DDM file. However, as indicated in the chart, some of

these commands are valid only when the remote file is on an iSeries server or a System/38.

 Command name Descriptive name

ADDPFM1 Add Physical File Member

ADDLFM6 Add Logical File Member

ALCOBJ Allocate Object

CHGLFM1 Change Logical File Member

CHGPFM1 Change Physical File Member

CLOF Close File

CLRPFM Clear Physical File Member

CPYF2 Copy File

CPYFRMTAP Copy From Tape

CPYSPLF Copy Spooled File

CPYSRCF1 Copy Source File

CPYTOTAP Copy To Tape

DCLF Declare File

DLCOBJ Deallocate Object

DSPFD3 Display File Description

DSPFFD3 Display File Field Description

DSPPFM Display Physical File Member

INZPFM1 Initialize Physical File Member

OPNDBF4 Open Database File

OPNQRYF1 Open Query File

OVRDBF5 Override Database File

POSDBF Position Database File

RCVF Receive File

RCVNETF Receive Network File

RGZPFM1 Reorganize Physical File Member

RMVM1 Remove Member

Distributed data management 103

Command name Descriptive name

RNMM1 Rename Member

SNDNETF Send Network File

1 The target system must be an iSeries server or a System/38.

2 For other DDM-related considerations about this command, see Copy commands with DDM.

3 These commands display remote file information if the SYSTEM parameter specifies *RMT or *ALL.

4 For information about commitment control, see Commitment control support for DDM.

5 This command does not access the remote file.

6 The target server must be an iSeries server.

The Submit Remote Command (SBMRMTCMD) command can also be used to submit some of the

commands to a target server.

The Send Network File (SNDNETF) and Receive Network File (RCVNETF) commands, whenever

possible, should run on the server on which the data exists, rather than using a DDM file to access the

remote file.

 Related reference

 “DDM-related CL command lists” on page 100

The control language (CL) commands that have a specific relationship with DDM are grouped in

charts in these topics to show the command functions that are available with DDM, those having

common limitations when used with DDM, and those that cannot be used with DDM.

 “DDM-related CL command summary charts” on page 106

This topic shows summary charts containing most of the control language (CL) commands used with

DDM.

 “Copy commands with DDM” on page 86

This topic describes the DDM implications of these CL commands.

 “Use of object distribution” on page 125
Although DDM file names can be specified on the Send Network File (SNDNETF) and Receive

Network File (RCVNETF) commands, these commands should be run, whenever possible, on the

server where the data actually exists. Therefore, if both servers are iSeries servers and both are part of

a SNADS network, object distribution can be used instead of DDM to transfer the data between them.

 “Commitment control support for DDM” on page 27
iSeries applications can commit or roll back transactions on remote iSeries servers.

Commands not supporting DDM

These CL commands are not supported for DDM files. However, useful results for some of them might

be produced on a target iSeries server or a System/38 using DDM if they are submitted on the Submit

Remote Command (SBMRMTCMD) command to run on the target server.

 Command name Descriptive name

DSNFMT Design Format

DSPCHT Display Chart

DSPDBR Display Database Relations

DSPRCDLCK Display Record Locks

MNGDEVTBL Manage Device Table

MNGPGMTBL Manage Program Table

MNGUSRTBL Manage User Table

104 IBM Systems - iSeries: Database Distributed data management

Command name Descriptive name

RTVQRYSRC Retrieve Query Source

SBMFNCJOB Submit Finance Job

 Related concepts

 “DDM-related CL parameter considerations” on page 98

This topic covers parameter considerations that apply to DDM-related CL commands.
 Related reference

 “DDM-related CL command lists” on page 100

The control language (CL) commands that have a specific relationship with DDM are grouped in

charts in these topics to show the command functions that are available with DDM, those having

common limitations when used with DDM, and those that cannot be used with DDM.

Source file commands

If the target server is an iSeries server or a System/38, these CL commands can support a DDM file as a

source file (on the SRCFILE parameter).

If the target server is not an iSeries server or a System/38, a DDM file name should not be specified on

the SRCFILE parameter, because the remote file is neither an iSeries server nor a System/38 source file.

These commands can also be affected by file overrides (by using the Override with Database File

[OVRDBF] command).

Note: These commands cannot run on the source server to create a file on any target server; they can,

however, be submitted to run on the target server using the Submit Remote Command

(SBMRMTCMD) command.

 Command name Descriptive name

CRTBASPGM Create BASIC Program

CRTBSCF1 Create BSC File

CRTCBLPGM Create COBOL Program

CRTCLPGM Create CL Program

CRTCMD Create Command

CRTCMNF1 Create Communications File

CRTCPGM Create C Program

CRTDSPF Create Display File

CRTICFF Create Intersystem Communications Function File1

CRTMXDF2 Create Mixed File

CRTPLIPGM Create PL/I Program

CRTPRTF Create Printer File

CRTPRTIMG2 Create Print Image

CRTRPGPGM Create RPG Program

CRTRPTPGM Create Auto Report Program

CRTTBL Create Table

FMTDTA Format Data

STRBAS Start BASIC

STRBASPRC Start BASIC Procedure

Distributed data management 105

Command name Descriptive name

1 CRTICFF is valid on an iSeries server. CRTCMNF, CRTBSCF, and CRTMXDF commands are valid either on

System/38 or System/38 environment on an iSeries server.

2 If used with the SBMRMTCMD command, the target must be a System/38.

 Related reference

 “DDM-related CL command lists” on page 100

The control language (CL) commands that have a specific relationship with DDM are grouped in

charts in these topics to show the command functions that are available with DDM, those having

common limitations when used with DDM, and those that cannot be used with DDM.

 “Types of files supported by i5/OS DDM” on page 113
i5/OS DDM supports all iSeries file types when the target server is another iSeries server.

DDM-related CL command summary charts

This topic shows summary charts containing most of the control language (CL) commands used with

DDM.

Use these commands to determine the DDM job environment to perform remote file processing (by

specifying a DDM file name on a file-related parameter of a CL command), or to perform other actions

on a remote server by submitting a CL command to the target server on the Submit Remote Command

(SBMRMTCMD) command.

The charts show which commands:

v Are file-related (that operate on file objects)

v Are object-related (that operate on objects other than files, in addition to file objects)

v Can be performed on the source side or on the target side

v Can be affected by file overrides by using the Override with Database File (OVRDBF) command

v Are allowed, and have a useful purpose, to be submitted to a target iSeries server to run (by using the

SBMRMTCMD command), rather than running on the source server

Notes are included in the charts that can be helpful to the DDM user.

The following items describe the kinds of information provided in these charts:

v The first column lists all the CL commands that can be used by DDM: (a) to operate on a remote file

identified in a DDM file, or (b) to be submitted on a SBMRMTCMD command using a DDM file.

v In the second column, an F means the command is file related, an O means it is related to i5/OS

objects other than files, and a blank means neither of these.

v In the third column, an S means the command operates on objects on the source side, and a T means it

operates on objects on the target side. For example, with the create commands that create a file or

program using a DDM file as a source file, the T indicates that a source file on the target server is used

for the creation; the command runs on the source server and creates a file or program on the source

server, but uses a source file on the target server to do it.

If neither S nor T is shown, the name of a DDM file should not be specified on the command; the

command should not run on the source server as a DDM function. However, the command might be

useful when submitted on the SBMRMTCMD command to run on the target server (see the last

column).

v In the last two columns, an X indicates that the command is valid and useful when used with the

command indicated at the top (OVRDBF or SBMRMTCMD) of the column. A blank indicates that the

command is not valid.

106 IBM Systems - iSeries: Database Distributed data management

Generally, when the target server is an iSeries server or a System/38, any CL command that can be used

in either a batch job or batch program can be specified on the SBMRMTCMD command. If a command

has a value of *BPGM and *EXEC specified for the ALLOW attribute, which you can display by using the

Display Command (DSPCMD) command, that command can be submitted by the SBMRMTCMD

command. (The SBMRMTCMD command uses the QCAEXEC server program to run the submitted

commands on the target server.)

Notes:

1. The SBMRMTCMD command can be used to send commands to an iSeries, System/38, or any

other target server that supports the submit remote command function. The command

submitted must be in the syntax of the target server.

2. Although most of the commands listed in this chart can be submitted to a remote server with

the SBMRMTCMD command, several can just as easily be run on the source server specifying

a DDM file name.

3. IBM grants you a nonexclusive copyright license to use all programming code examples from

which you can generate similar function tailored to your own specific needs.

4. All sample code is provided by IBM for illustrative purposes only. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply

reliability, serviceability, or function of these programs.

5. All programs contained herein are provided to you ″AS IS″ without any warranties of any

kind. The implied warranties of non-infringement, merchantability and fitness for a particular

purpose are expressly disclaimed.

 Table 8. DDM-related CL commands

Command name

Related to file, object

or both

Affects objects on

source, target or both OVRDBF command

SBMRMTCMD

command1

ADDLFM

ADDPFM

ALCOBJ

CHGDFUDEF

CHGDTA

 F

F

F O

 T2

T3

S T

T

T

 X

X

X

X

CHGJOB

CHGLF

CHGLFM

CHGNETA

CHGOBJOWN

 F

F

F O

 S T

T3

S

 X

X

X

X

X

CHGPF

CHGPFM

CHGQRYDEF

CHGSRCPF

CHKOBJ

 F

F

F

F O

 S T

T3

T

S T

S

 X

X

X

X

CLOF

CLRPFM

COMMIT

CPYF

CPYFRMDKT

CPYFRMQRYF

CPYFRMTAP

 F

F

F

F

F

F

F

 T

T

S T

S T

S T

S T

S T

 X

X

X

X

X

 X

X

X11

X

X4

X

X4

Distributed data management 107

Table 8. DDM-related CL commands (continued)

Command name

Related to file, object

or both

Affects objects on

source, target or both OVRDBF command

SBMRMTCMD

command1

CPYSPLF

CPYSRCF

CPYTODKT

CPYTOTAP

CRTBASPGM

 F

F

F

F

 T

S T

S T

S T

T

 X

X

X

 X

X

X4

X4

X

CRTCBLPGM

CRTCLPGM

CRTCMD

 T

T

T

 X

X

X

CRTDFUAPP

CRTDFUDEF

CRTDSPF

CRTDUPOBJ

CRTICFF

F

O

F

 T

T

T

S

T

X

 X

X

X

X

CRTLF

CRTPF

CRTPLIPGM

CRTPRTF

CRTPRTIMG

 F

F

F

 S T

S T

T

T

T

X

 X

X

X

X

X

CRTQRYAPP

CRTQRYDEF

CRTRPGPGM

CRTRPTPGM

CRTSRCPF

F

 T

T

T

T

S T

X

 X

X

X

X

CRTTBL

DCLF

DLCOBJ

DLTDFUAPP

DLTF

F

F O

F

 T

T

S T

S T

 X

X

X

X

DLTQRYAPP

DMPOBJ

DMPSYSOBJ

DSNDFUAPP

DSNQRYAPP

F O

O

S

S

T

T

 X

X5

X5

DSPDTA

DSPFD

DSPFFD

DSPNETA

DSPOBJAUT

F

F

F O

 T

S T

S T

S

X5

X5

X

X5

DSPOBJD

DSPPFM

ENDCMTCTL

FMTDTA

GRTOBJAUT

INZPFM

 F O

F

F

F O

F

 S

T

S T

T

S

T2

 X5

X11

X

X

X

108 IBM Systems - iSeries: Database Distributed data management

Table 8. DDM-related CL commands (continued)

Command name

Related to file, object

or both

Affects objects on

source, target or both OVRDBF command

SBMRMTCMD

command1

MOVOBJ

OPNDBF6

OPNQRYF

OVRDBF

POSDBF

 O

F

F

F

F

 S

T

T

S

T

X

 X

 X

X

7

X

QRYDTA

RCVF

RCVNETF

RGZPFM

RMVM

F

F

F

F

 T

T

T

T

 X

X

X

X

RNMM

RNMOBJ

ROLLBACK

RSTLIB

RSTOBJ

RTVDFUSRC

 F

F O

F

F O

 T

S T8

S T

S

S

T

 X

X

X11

X9

X9

X

RTVQRYSRC

RVKOBJAUT

SAVCHGOBJ

SAVLIB

SAVOBJ

F O

O

F O

 T

S

S

S

S

 X

X

X9

X9

X9

SBMDBJOB

SNDNETF

STRBAS

STRBASPRC

STRCMTCTL

STRDBRDR

WRKJOB

WRKOBJLCK10

F

O

F

O

F O

 T

T

T

T

S T

T

S

 X

X

X

X

X11

X

X5

X5

Notes:

1 The use of the SBMRMTCMD command is not valid with any of the commands in these charts

unless the target server is an iSeries server or a System/38.

2 This member-related command can be used only if the target server is an iSeries server.

3 This member-related command can be used only if the target server is an iSeries server or a

System/38.

4 These commands require intervention on the target server to load a tape and they might not

produce the results expected.

5 When submitted to the target server, these commands produce output on the target server only;

the output is not sent to the source server.

6 OPNDBF command: For more information about commitment control restrictions, see

Commitment control support for DDM.

7 OVRDBF command: Although this command works when submitted on the SBMRMTCMD

command to a target iSeries server or a System/38, it is not recommended.

Distributed data management 109

8 RNMOBJ command: OBJTYPE*FILE must be specified.

9 When submitted to the target server, these commands require target server resources when tapes

are used to produce the output.

10 WRKOBJLCK command: This command displays any locks on the DDM file, not the remote file.

11 This command will work, but its use is not recommended.
 Related reference

 “CL command considerations for DDM” on page 32

Both compiled control language (CL) programs and interactively entered CL commands can refer to

DDM files.

 “iSeries and System/38 target systems on the SBMRMTCMD command” on page 71
The SBMRMTCMD command can submit any CL command that can run in both the batch

environment and using the QCAEXEC server program.

 “DDM-related CL command lists” on page 100

The control language (CL) commands that have a specific relationship with DDM are grouped in

charts in these topics to show the command functions that are available with DDM, those having

common limitations when used with DDM, and those that cannot be used with DDM.

 “Target iSeries-required file management commands” on page 102
These CL commands can be used only when the target server is another iSeries server or System/38.

 “Member-related commands with DDM” on page 103

Database file operations that apply to a member can be used by DDM.

 “Commitment control support for DDM” on page 27
iSeries applications can commit or roll back transactions on remote iSeries servers.

 “Perform file management functions on remote servers” on page 121
i5/OS DDM supports creating, deleting, or renaming of files on a remote server.

Data description specifications considerations for DDM

Data description specifications (DDS), which is used to externally describe the fields and record formats,

can also be used with DDM to describe the file and record formats of a remote file.

 Related reference

 “DDM architecture-related restrictions” on page 45

The items listed in this topic are DDM architecture-related restrictions. Therefore, application

programs that use these items might have to be changed and recompiled before they can access

remote files.

 “DDM example 4: Access a file on System/36” on page 157
This topic shows how the pseudocode program for the previous task can be changed so a MASTER

file on the System/36 in Dallas can be accessed in the same way as the MASTER files on the iSeries

servers and System/38 in Example 3.

iSeries target considerations for DDM

This topic covers target considerations for DDM.

As with any database file, DDS might or might not be used to externally describe the attributes of the

remote file when it is created on the remote iSeries server. If DDS is used, then the source server program

uses those attributes when it accesses the remote file (by using the DDM file). If DDS is not used, then

the file’s attributes must be described in the program.

When a source server program that accesses a file on a target iSeries server is compiled (or recompiled),

the existing DDM file is used to establish communications with the target server, and the remote file is

actually accessed during compilation to extract its file and record attributes. Whether DDS is used to

110 IBM Systems - iSeries: Database Distributed data management

describe the file or not, level check identifiers are created during compilation and are included in the

compiled program. These values are then used when the program is run and LVLCHK(*RMTFILE) is in

effect for the DDM file.

Whether DDS is used to describe a remote iSeries file or not, a source server program can have its own

field and record format definitions provided in the program, or the program can substitute the definitions

of another source server file that is created using DDS. Either can be done if LVLCHK(*NO) is in effect in

the DDM file or specified in an Override with Database File (OVRDBF) command used at program run

time. LVLCHK(*NO) need only be used when the record format used on the source server is different

than that of the remote iSeries file.

Non-iSeries target considerations for DDM

DDS can be used with a non-iSeries file only if the local iSeries program is compiled using a local iSeries

file that has the same record format name as the DDM file being used.

After the program is compiled, the local file can be overridden by a DDM file that accesses the remote

file. LVLCHK(*NO) must be specified in the DDM file or in an OVRDBF command.

If no DDS exists on the local server to describe the remote file, the program must describe the fields. The

Display File Field Description (DSPFFD) command can be used to display the field attributes of the

remote file. LVLCHK(*NO) should be specified in the DDM file or in an OVRDBF command.

If LVLCHK(*RMTFILE) is specified or assumed, the program must be compiled (or recompiled) using a

DDM file that accesses the remote file. The iSeries server then creates a record format and fields for the

remote file. The names of the fields that are created are of the type Knnnnn for keyed fields and Fnnnnn

for nonkeyed fields.

DDM-related DDS keywords and information

The information about DDS keywords that relates specifically to DDM is provided in this topic.

v Considerations for creating local files:

– The following DDS keywords cannot specify the name of a DDM file: REFACCPTH, and FORMAT.

– The DDS keywords REF and REFFLD can specify the names of DDM files to refer to remote files;

however, the remote files must be on an iSeries server or a System/38. When a DDM file name is

specified as the database file name in either keyword, it refers to the DDM file on the source server,

and the referred to field name and record format name refer to a field and record format used in the

remote file on the target server.
v Considerations for creating logical files when the remote server is not an iSeries server:

– At least one key field must be specified in the record format for the logical file.

– Only one file can be specified on the PFILE keyword.

– SELECT and OMIT functions are not supported.

– Logical join files are not supported.

– Field names of remote physical files have the naming convention of F00001, F00002, F00003, and so

forth (Fnnnnn) for nonkeyed fields and K00001, K00002, K00003, and so forth (Knnnnn) for keyed

fields.

The exception to this naming convention is when the target server is a System/38 and the physical

file was created locally. In this case, the field names are the same as the field names specified when

the physical file was created.

– All the fields defined for the logical file must be specified in the same order as defined in the

physical file. This can be done by default.

– The SST keyword can be used to access partial fields of the physical file. The use of two or more

substring fields is required to define the entire physical field. In addition, the partial fields must be

in the same order as defined in the substring field of the physical file.

Distributed data management 111

– The CONCAT keyword can be used to group physical file fields into one logical field. The

concatenation order of the fields must be in the same order as defined in the physical file.

– The fields of the physical file must be specified in the same order as defined in the physical file.
v Considerations for using the VARLEN DDS keyword when creating files on a non-iSeries target server:

– Target server must support variable-length record files.

– Only one variable-length field is allowed in the file format and it must be the last field.

– The field with the VARLEN keyword must not be a key field.
v PFILE and JFILE considerations for creating remote files:

– The record format name specified for the physical file in the DDM file on the JFILE or PFILE

keyword must be the same name as the DDM file that represents the remote physical file.

– When creating a logical file, the file specified on PFILE or JFILE must be a DDM file, and the

location for each physical file in the DDM file on the JFILE or PFILE keyword must be the same as

the location of the DDM file for the logical file. In other words, the physical files and logical file

must be on the same remote server.

If the remote server is a release 1.0 or 1.2 iSeries server, attempting to create a file using the FCFO

keyword will fail.

v When the server is not an iSeries server, these keywords are either ignored or not supported for logical

files:

 ABSVAL

ACCPTH

ALIAS

ALL

ALTSEQ

CHECK

CMP

COLHDG

COMP

DIGIT

DYNSLT

 EDTCDE

EDTWRD

FCFO

FLTPCN

FORMAT

JDFTVAL

JDUPSEQ

JFILE

JFLD

JOIN

JREF

 LIFO

NOALTSEQ

RANGE

REFSHIFT

RENAME

SIGNED

TEXT

TRNTBL

VALUES

ZONE

v When the server is not an iSeries server, these keywords are either ignored or not supported for

physical files:

 ABSVAL

ALTSEQ

CHECK

CMP

COLHDG

COMP

DIGIT

 EDTCDE

EDTWRD

FCFO

FLTPCN

FORMAT

LIFO

NOALTSEQ

 RANGE

REFSHIFT

SIGNED

TEXT

VALUES

ZONE

 Related reference

 “CRTPF (Create Physical File) command” on page 91
The Create Physical File (CRTPF) command can be used to create files on the source and target

servers through the SYSTEM parameter.

DDM user profile authority

iSeries server users are not allowed to perform functions equivalent to CL commands on remote iSeries

servers using DDM without the proper command authorization.

112 IBM Systems - iSeries: Database Distributed data management

The user profiles associated with the target jobs must have *OBJOPR authority to the following CL

commands to start the equivalent operation on the remote iSeries server:

 Command name Descriptive name

ADDLFM Add Logical File Member

ADDPFM Add Physical File Member

ALCOBJ Allocate Object

CHGLF Change Logical File

CHGLFM Change Logical File Member

CHGPF Change Physical File

CHGPFM Change Physical File Member

CRTLF Create Logical File

CRTPF Create Physical File

DLTF Delete File

INZPFM Initialize Physical File Member

RGZPFM Reorganize Physical File Member

RMVM Remove Member

RNMM Rename Member

RNMOBJ Rename Object

Operating considerations for DDM

This topic provides task-oriented information and examples that describe various aspects of DDM

operation considerations.

This topic tells how the iSeries server functions, both as a source or target server, when it communicates

with another iSeries server to perform remote file processing. It also describes the significant differences

when an iSeries server is communicating with another server that is not an iSeries server.

Note: Although this topic contains information about servers other than the iSeries server, it does not

contain all the information that the other server types using DDM might need to communicate

with an iSeries server. For complete information about how DDM is used with a particular remote

server, refer to that server’s documentation.

 Related concepts

 “Additional DDM concepts” on page 13

Most users of DDM will not need the information in the remainder of these topics; it is intended

primarily for experienced programmers who need to know more about DDM.
 Related reference

 “CL command considerations for DDM” on page 32

Both compiled control language (CL) programs and interactively entered CL commands can refer to

DDM files.

Access files with DDM

These topics describe the types of files supported by an iSeries server, when the DDM file and remote file

must exist, and how to specify the names of remote files. Also included are examples and considerations

for iSeries-to-iSeries and iSeries-to-System/36 file accessing.

Types of files supported by i5/OS DDM

i5/OS DDM supports all iSeries file types when the target server is another iSeries server.

Distributed data management 113

If the target server is not an iSeries server, the corresponding file types might be known by different

names on that server. The following table shows the iSeries equivalents of non-iSeries files and DDM

architecture files:

 iSeries types Non-iSeries and DDM architecture types

Non-keyed physical file Sequential (or direct) access file

Keyed physical file Keyed access file

Logical file Logical file

The following list describes the considerations that apply to the types of files supported by an iSeries

server.

v iSeries multiple-format logical files are not supported by DDM when the source or target server is

neither an iSeries server nor a System/38.

v For target physical (sequential or direct) files, if a record number is specified that is past the end of the

file, the file is not extended and an error occurs.

v For target nondirect sequential files, the Clear Physical File Member (CLRPFM) command does not

prepare a file member with deleted records.

v DDM files can be used as data files or source files by high-level language (HLL) programs. However,

when a DDM file is used as a source file, the target server must be an iSeries server or a System/38

and the remote file associated with the DDM file must be defined on the target server as a source file.

That is, the remote file must have been created on the target iSeries server or the target System/38 as

FILETYPE(*SRC) by the Create Physical File (CRTPF) command or with FMTOPT(*CVTSRC) specified

on the Copy File (CPYF) command.
 Related reference

 “Source file commands” on page 105
If the target server is an iSeries server or a System/38, these CL commands can support a DDM file as

a source file (on the SRCFILE parameter).

Existence of DDM file and remote file

A file on a target server cannot be accessed for any type of operation (such as open, read, write, or

display) unless a DDM file associated with the remote file already exists on the source server.

However, the remote file does not need to exist at the time that the DDM file is created or changed using

the Create DDM File (CRTDDMF) command or the Change DDM File (CHGDDMF) command, because

the remote file is not referred to until the DDM file is actually opened for access.

Rules for specifying target server file names for DDM

The rules for specifying the name of a DDM file (on the local iSeries server) are the same as for any other

file type on an iSeries server. The rules, however, for specifying the name of a remote file depend on the

type of target server.

A remote file name can be specified only on the RMTFILE parameter of the Create DDM File

(CRTDDMF) and Change DDM File (CHGDDMF) commands. The following list is the maximum number

of characters that can be used on the RMTFILE parameter to specify a remote file name:

v For the iSeries server (database management): 33 characters. This maximum can occur when a full

name is specified that includes a library qualifier and a member name. For example:

LIBRARY123/FILE123456(MEMBER1234)

The value DM can be added to the name to specify that this is a data management file. There can be

one or more blanks between the name and DM. This is the default.

v For the iSeries server (folder management services): 76 characters. This maximum can occur when a

fully qualified path name (consisting of 76 characters) is specified. For example:

114 IBM Systems - iSeries: Database Distributed data management

/Path123/Path223/Path323/Path423/

 Path523/Path623/Path723/Path823/Path923/DOC1 FMS

The value FMS specifies that this is a folder management object. There can be one or more blanks

between the name and FMS.

v For System/38: 33 characters. This maximum can occur when a full name is specified that includes a

library qualifier and a member name. For example:

FILE123456.LIBRARY123(MEMBER1234)

v For System/36 and CICS: 8 characters. For example:

FILE1234

v For other systems: 255 characters is the maximum length allowed by the DDM architecture. The actual

maximum length and syntax are determined by the target server.
 Related reference

 “iSeries server and System/36 DDM differences” on page 208
This topic consists of a list of differences between the iSeries server and System/36.

 “iSeries server and System/38 DDM differences” on page 209
This topic consists of a list of differences between the iSeries server and System/38.

Target iSeries file names for DDM:

As with local files, every iSeries remote file, library name, or member must begin with an alphabetic

character (A through Z, $, #, or @) and can be followed by no more than 9 alphanumeric characters: A

through Z, 0 through 9, $, #, @, _, or period (.). No name can exceed 10 characters. Blanks are not allowed

in iSeries names.

 The use of an extended name allows additional graphic characters to be included in quotation marks (”).

The extended name also cannot exceed 10 characters, but quotation marks are included with the name,

thereby limiting the number of graphic characters to 8. Lowercase letters remain lowercase letters.

Examples of extended names are as follows:

”Test.Job”

”()/+=”

When an iSeries server is the target server, the file name can be specified in various forms, as shown in

the following examples.

library-name

Specifies the name of the library that contains the remote file. *LIBL causes the library list of the

job on the target server to be searched for the specified file name. *CURLIB specifies the current

library on the remote server.

remote-file-name

Specifies the name of a database file (physical, logical, or source file) on the target iSeries server.

*NONSTD

Specifies, for an iSeries target, that a member name is being included with the name of the

remote file. The value *NONSTD must precede the full name, and the full name must be enclosed

in single quotation marks and be in all uppercase.

Note: If you press F4 (Prompt) when on the Create DDM File or Change DDM File displays, and

specify the *NONSTD value with the remote file name abcde, the server converts abcde to

’ABCDE’ (all uppercase) and the request is processed. However, if there is a slash or

parenthesis in the remote file name, the system puts single quotation marks around the

name but does not convert it to uppercase.

Distributed data management 115

Therefore, if you are using the *NONSTD value for the remote file name and the target server

requires uppercase file names, type the remote file name in uppercase characters even when

using F4 (Prompt).

member-name

Specifies the name of the member in the remote file. The member name must be enclosed in

parentheses and immediately follow the file name (with no space). If no member name is

specified, then *FIRST is assumed and the first (or only) member in the file is accessed. This is

the oldest (or only) member in the file.

*LAST is supported only on the Override with Database File (OVRDBF), Clear Physical File Member

(CLRPFM), Initialize Physical File Member (INZPFM), Reorganize Physical File Member (RGZPFM),

Open Database File (OPNDBF), and Open Query File (OPNQRYF) commands. *LAST is the newest (or

only) member in the file.

The examples here show valid iSeries remote file names:

 CUSTMAST

 PRODLIB/CUSTMAST

 *NONSTD ’CUSTMAST(MBR1)’

 *NONSTD ’*LIBL/CUSTMAST(MBR2)’

 *NONSTD ’PRODLIB/CUSTMAST(MBR3) DM’

 *NONSTD ’PRODLIB/CUSTMAST(*FIRST)’

Target non-iSeries file names for DDM:

For non-iSeries remote file names, the name must be in the form required by the target server.

 If special characters are used in the remote file name, *NONSTD and single quotation marks must be

used to specify the name, as shown in how to specify an iSeries member name. If the name string

contains no more than 10 characters and no special characters, it can be entered without the *NONSTD

value and the single quotation marks.

Use location-specific file names for commonly named files for DDM:

When multiple servers are involved in a network, naming DDM files with location-specific file names can

reduce confusion about which target server is being accessed for a file that has a commonly used name.

 For example, for an inventory file that may be named INVEN on multiple servers, using location-specific

names such as NYCINVEN, STLINVEN, and DALINVEN for the DDM files on the local server to access

files in New York City, St. Louis, and Dallas helps you to access the correct file.

Using an abbreviation or code that identifies the destination target server as part of the DDM file names

makes it easier to remember where the desired remote file is located.

For non-iSeries remote files that have record formats, using the same name for the DDM file as for the

record format can also be useful.

Examples: Access iSeries DDM remote files (iSeries-to-iSeries)

The examples show how access to a DDM file becomes an indirect reference (by using DDM) to the

actual file on some other server. These examples are iSeries-to-iSeries examples.

Note: All of these examples assume that the DDM file on the local iSeries server is named

DDMLIB/RMTCAR and that it is associated with a remote file named SALES/CAR on an iSeries

server in Chicago.

116 IBM Systems - iSeries: Database Distributed data management

Create a DDM file to access a remote file

CRTDDMF FILE(DDMLIB/RMTCAR) RMTFILE(SALES/CAR)

 RMTLOCNAME(CHICAGO) TEXT(’Chicago file SALES/CAR’)

This command creates a DDM file named RMTCAR and stores it in the DDMLIB library on the local

server. The remote file to be accessed is the CAR database file in the SALES library on the Chicago server.

(The remote file is not accessed at the time the Create DDM File (CRTDDMF) command is used to create

the DDM file. The existence of the file SALES/CAR is not checked when the DDM file is created.) Later,

when the DDM file is accessed by a local program, the remote location CHICAGO is used by DDM to

access the SALES/CAR file on the Chicago server.

Copy a local file to a remote file

CPYF FROMFILE(QGPL/AUTO) TOFILE(DDMLIB/RMTCAR)

This command copies the data from the AUTO file in the QGPL library on the local server into a remote

file named SALES/CAR on the Chicago server, by using the DDM file DDMLIB/RMTCAR.

Allocate a remote file and member for use

ALCOBJ OBJ((DDMLIB/RMTCAR *FILE *EXCL))

The Allocate Object (ALCOBJ) command is used to allocate (lock) both the DDM file (RMTCAR) on the

source server and the first member of the remote file (as well as the file itself) on the target server. In

effect, the command

ALCOBJ OBJ((SALES/CAR *FILE *EXCL *FIRST))

is run on the target server.

Override a local file with a DDM file

OVRDBF FILE(FILEA) TOFILE(DDMLIB/RMTCAR)

 POSITION(*RRN 3000)

This command overrides the database file FILEA with the DDM file RMTCAR, stored in the DDMLIB

library. Both files are on the source server. Whatever remote file is identified in the DDM file (in this case,

SALES/CAR on the Chicago system) is the file actually used by the source server program. When the

remote file is opened, the first record to be accessed is record 3000.

Display records in a remote file

DSPPFM FILE(DDMLIB/RMTCAR)

This command displays the records in the first member of the remote file SALES/CAR, which is

associated with the DDM file DDMLIB/RMTCAR.

Display the object description of a DDM file

DSPOBJD OBJ(DDMLIB/RMTCAR) OBJTYPE(*FILE)

This command displays, on the local server, the object description of the RMTCAR DDM file. No

reference is made by this command to the associated remote file on the Chicago server.

Display the file description of a DDM file

DSPFD FILE(DDMLIB/RMTCAR) TYPE(*ATR) FILEATR(*DDM)

 SYSTEM(*LCL)

This command displays, on the source server, the file description of the DDM file named RMTCAR in the

DDMLIB library. As indicated by the TYPE parameter, the attributes of the DDM file are displayed. Only

the DDM file’s attributes are displayed because FILEATR(*DDM) is specified.

Distributed data management 117

Because SYSTEM(*LCL) is specified, the attributes of the DDM file are displayed and the remote server is

not accessed. If SYSTEM(*RMT) is specified, the attributes of the associated remote file are displayed. If

*RMT or *ALL is specified, the remote server is accessed to get the attributes of the remote file.

Delete a DDM file

DLTF FILE(DDMLIB/RMTCAR) SYSTEM(*LCL)

This command deletes the DDM file on the local server. Again, no reference is made to the associated

SALES/CAR file on the Chicago server. If SYSTEM(*RMT) or SYSTEM(*FILETYPE) is specified,

SALES/CAR on the Chicago server would be deleted.

Example: Access System/36 DDM remote files (iSeries-to-System/36)

Of the command examples given in the previous topic (showing iSeries-to-iSeries examples), all except

the first example can be coded the same way for accessing a file on a System/36.

That is, if the remote file name SALES/CAR is changed to CAR to meet the System/36 naming

conventions, all the commands (except the first) can be used without change to access a remote

System/36 file instead of an iSeries file.

The first example from the topic Examples: Access iSeries DDM remote files (iSeries to iSeries) is recorded

here to access a remote System/36 file. Besides changing the remote file name, another parameter that

should be coded is LVLCHK(*NO).

CRTDDMF FILE(DDMLIB/RMTCAR) RMTFILE(*NONSTD ’CAR’)

 RMTLOCNAME(CHICAGO) TEXT(’Chicago file CAR on S/36’)

 LVLCHK(*NO)

This command creates a DDM reference file named RMTCAR and stores it in the DDMLIB library on the

local iSeries server. The remote file to be accessed is the CAR file on the System/36 named CHICAGO.

LVLCHK(*NO) is specified to prevent level checking because the level identifiers created for the

System/36 file do not match those in the program when it accesses the file.

Access members with DDM

Members are supported for database I/O operations only if the target server is an iSeries server or a

System/38. Members are not supported if the target server is neither an iSeries server nor a System/38.

Members can be locked before use, using the Allocate Object (ALCOBJ) command if the target server is

an iSeries server or a System/38.

The DDM file itself does not have members like a database file. However, if a member is identified on

the source server (for example, using the Override with Database File (OVRDBF) command) and the

target server is an iSeries server or a System/38, that member name is used to identify a member in the

target server’s file. When the target server is neither an iSeries server nor a System/38, and if the member

name is specified as *FIRST, or in some cases *LAST, or the file name is the same as the member name,

then the RMTFILE parameter values in the DDM file are sent without change. This allows file access on

servers that do not support members.

If the member name is other than *FIRST or in some cases *LAST, or the file name is different from the

member name (for example, when the file is opened) and the target server does not support members, an

error message is sent to the requesting program and the function is not performed.

Example: Access DDM remote members (iSeries server only)

These examples show how access to a DDM file becomes an indirect reference (by using DDM) to a

member of a file on a remote iSeries server. These examples are iSeries server-to-iSeries server examples.

118 IBM Systems - iSeries: Database Distributed data management

CRTDDMF FILE(DDMLIB/RMTCAR) RMTFILE(SALES/CAR)

 RMTLOCNAME(CHICAGO)

OVRDBF FILE(FILE1) TOFILE(DDMLIB/RMTCAR) MBR(TEST1)

OVRDBF FILE(FILE2) TOFILE(DDMLIB/RMTCAR)

This example shows the creation of the same DDM file as in the previous examples. Then, OVRDBF

commands are used to override two local files named FILE1 and FILE2 with the local DDM file

RMTCAR. When an application program attempts to open the files, the DDM file DDMLIB/RMTCAR is

opened twice instead. (FILE1 and FILE2 are not opened.)

After communications are established with the correct target server, the target server’s TDDM opens the

remote file SALES/CAR twice (two recursions) and opens two different (in this case) members in that

file: member TEST1 and member *FIRST (the first member). This example requires only one DDM

conversation and one target job because both open operations use the same DDM file and, therefore, the

same location.

CLRPFM FILE(DDMLIB/RMTCAR) MBR(FRED)

This command clears, by using the DDM file named DDMLIB/RMTCAR, member FRED of the file

SALES/CAR on the target server.

 Related reference

 “OVRDBF (Override with Database File) command” on page 95
The Override with Database File (OVRDBF) command can be used with DDM to override (replace) a

local database file named in the program with a DDM file; the DDM file causes the associated remote

file to be used by the program instead of the local database file.

Example: DDM file that opens a specific member

A specific file member can be specified in the RMTFILE parameter, which is used only on the Create

DDM File (CRTDDMF) and Change DDM File (CHGDDMF) commands, by using the *NONSTD value

followed by the file, library, and member name.

This allows an application program to process a member other than the first member (*FIRST) without

using file overrides. However, if the program requires redirection to more than one member, overrides

should be used. Also, programs that already use overrides to specify members of local files should

continue to do so, even if overrides to remote files are also used; otherwise, programs that worked locally

would no longer do so. If the RMTFILE parameter contains a member name and an override with a

different member name is in effect, the file open requests fails.

Note: If you press F4 (Prompt) on the Create DDM File or Change DDM File display, and specify the

*NONSTD value with the remote file name abcde, the server converts abcde to ’ABCDE’ (all

uppercase) and the request is processed. However, if there is a slash or parenthesis in the remote

file name, the server puts single quotation marks around the name but does not convert it to

uppercase. Therefore, if you are using the *NONSTD value for the remote file name and the target

server requires uppercase file names, type the remote file name in uppercase characters even when

using F4 (Prompt).

CRTDDMF FILE(DDMLIB/RMTCAR) RMTFILE(*NONSTD

 ’SALES/CAR(JULY)’) RMTLOCNAME(CHICAGO)

When a program opens the DDM file named RMTCAR on the source server DDMLIB library, the target

iSeries server opens the member JULY in the file SALES/CAR.

Work with access methods for DDM

Access methods control what subsets of functions can be performed after a particular remote file is

opened. This might mean that an iSeries program, or a group of programs sharing a non-iSeries file,

cannot do all the same operations that are possible using a file that is on the local iSeries server.

Distributed data management 119

For example, assume that an iSeries application program opens a keyed file with SHARE(*YES) and

performs keyed I/O operations. It then calls another program that does relative record number

operations using the same open data path (ODP) (because SHARE was specified). Relative record

numbers specify the relationship between the location of a record and the beginning of a database file,

member, or subfile. If the first program is redirected by an Override with Database File (OVRDBF)

command to use a remote keyed file on a System/36, this scheme no longer works. If a keyed access

method is selected, record number operations fail. If a record number access method is selected, keyed

operations fail.

Notice that when both source and target servers are iSeries servers, access methods are not used. A

potential problem exists when the target server is neither an iSeries server nor a System/38. Notice also

that the combined-access access method (*COMBINED) is not supported by System/36, and probably not

by any target other than an iSeries server or System/38.

Access intents

When a program opens a file, it must specify how it intends to work with the records in the file: read,

add, update, delete, or a combination of these.

Of course, to successfully perform these operations, the job, user or both running the program must have

the corresponding data authorities. The iSeries server does not check to make sure all data authorities

exist when the file is opened, but it does check for each required data authority when the corresponding

I/O operation is done using the file. The System/36 does check these data authorities at open time;

therefore, a program may no longer work using a remote file on a System/36, even though the

requester’s data authorities to the remote file are the same as for a local file (which will work).

For example, assume that a program is used by two groups of users on an iSeries server to access the

same local iSeries file. Group A has only *READ authority, while group B has *READ, *ADD, and

*UPDATE. The program always opens the file for *READ, *ADD, and *UPDATE. But it has a read only

logic path that is used when a member of group A calls the program. In this way, no authority exceptions

are encountered, even though exceptions would be created if members of group A attempted to add or

update records. Now, if this program is redirected to a remote System/36 file to which members of both

user groups have the same data authorities as they had to the local iSeries file, the program might not

work for members of group A. This is because the System/36 may reject requests to open the file when

the requester does not have data authorities matching those specified in the access intent list

accompanying the open request.

Key field updates

An iSeries program is allowed to change any part of a data record including key fields.

The exception to this is an ILE COBOL program because the ILE COBOL language does not allow key

field changes. A System/36 program cannot change primary key fields in a record, regardless of the

access method specified when the file is opened. Logical file key fields can be changed under some

circumstances, but primary key fields can never be changed.

This means that an ILE RPG program, for example, that routinely changes key fields in a local keyed file

might fail when it is redirected to a remote keyed file on a System/36 (or other system with similar

restrictions). Several different errors might be returned by the DDM target, depending on the access

method or access path being used when the key field change is attempted.

Deleted records

On the iSeries server, a record is marked as deleted by the server.

This is done either when an active record is deleted by an application or when a file is created with

deleted records (for example, with the Initialize Physical File Member (INZPFM) command). A record

that is added to a file or changed in a file is never marked as deleted, unless a subsequent delete

120 IBM Systems - iSeries: Database Distributed data management

operation is performed. On some other servers, like the System/36, a special data value in the record

might be used to indicate deleted status. For example, if a record contains all hex FFs, it might be

considered deleted.

This means that an iSeries application normally used to add or change records in a local file might

encounter errors when attempting these operations with a remote file on a server that is neither an iSeries

server nor a System/38. If the application happens to supply a record that is considered deleted by the

target DDM server, the target might reject the add-or-change request.

Blocked record processing

If SEQONLY is used to block records sent to a remote server, the records are not sent until the block is

full. If a source job is canceled before a block is sent, the records in the block are lost. If blocking is used,

the user should make sure a force end of data or close of the file is done before canceling the source job.

Variable-length records

If your iSeries source server is running OS/400 Version 2 Release 1 Modification 1, DDM supports

variable-length record files as defined in the DDM architecture.

You can use DDM on your iSeries server to open variable-length record files on target systems that are

not iSeries or S/38 servers. (Initially you can open variable-length record files if you are not opening the

file for updating.) For subsequent read operations, variable-length records are padded with blanks to the

maximum record length of the file. Trailing blanks are removed on write operations.

If your iSeries source server is running OS/400 Version 2 Release 2 in addition to the Version 2 Release 1

Modification 1 support mentioned earlier, iSeries variable-length record access is supported using DDM.

Variable-length records can be used when opening a variable-length record file on target servers that are

not iSeries or System/38 servers. For subsequent read operations against files opened with

variable-length records, variable-length records are padded with blanks to the maximum record length of

the file. Also, the actual record length (maximum record length of file minus the number of padded

blanks) is appended to the end of each record. For write operations, the actual record length is used to

determine the length of the variable-length record to send to the target server. No counting of trailing

blanks is necessary to determine the actual length of record data.

The target DDM iSeries servers running at Version 2 Release 2 also support variable-length record files. A

variable-length record file can be created on the iSeries target server as a result of a create file request.

 Related reference

 “DDM commands and parameters” on page 167

This topic classifies DDM commands and parameters.

Other DDM-related functions involving remote files

Besides accessing remote files for data record I/O operations, other operations related to remote files can

be performed. These are briefly described in these topics.

Perform file management functions on remote servers

i5/OS DDM supports creating, deleting, or renaming of files on a remote server.

The Submit Remote Command (SBMRMTCMD) command can be used to submit these types of file

management commands, or other CL commands, to the target server so they can run on that server. The

Submit Network Job (SBMNETJOB) command or display station pass-through can also be used, without

the need for DDM.

Note: The CL commands in “Target iSeries-required file management commands” on page 102,

“Member-related commands with DDM” on page 103, and “Source file commands” on page 105

do not need to be used with the SBMRMTCMD command; they can run directly on the target

server by specifying a DDM file name on the CL command itself.

Distributed data management 121

Related reference

 “SBMRMTCMD (Submit Remote Command) command” on page 70
The Submit Remote Command (SBMRMTCMD) command submits a command using DDM to run on

the target server.

 “Examples: Code DDM-related tasks” on page 148
The examples in this topic collection are based on representative application programs that might be

used for processing data both on the local iSeries server and on one or more remote servers.

 “Object-oriented commands with DDM” on page 101
The DDM file object on the source iSeries server can be accessed by these object-oriented CL

commands. These commands work with DDM files as they normally do with any other files on the

local server.

 “DDM-related CL command summary charts” on page 106

This topic shows summary charts containing most of the control language (CL) commands used with

DDM.

Lock files and members for DDM

Putting object locks on DDM files and their associated remote files requires special consideration.

Allocate Object (ALCOBJ) and Deallocate Object (DLCOBJ) commands:

The ALCOBJ command locks DDM files on the source server and the associated remote files on the target

servers.

 When the target is an iSeries server or a System/38, resulting locks on the remote files are the same as if

the files were local files. When the target is neither an iSeries server nor a System/38, equivalent locks

are obtained, although the target server may promote the lock to a stronger lock condition than was

specified on the ALCOBJ command.

Note: On servers that are neither iSeries nor System/38 target servers, remote files are locked with the

specified lock condition, and on iSeries and System/38 target servers only, remote members are

locked with a minimum specified lock condition. (iSeries or System/38 remote files are locked with

shared-read locks.)

 Related reference

 “ALCOBJ (Allocate Object) command” on page 83
When the name of a DDM file is specified on the Allocate Object (ALCOBJ) command on the source

server, the command allocates the DDM file on the source server and its associated file or file member

on a target server.

 “DLCOBJ (Deallocate Object) command” on page 93
When the name of a DDM file is specified on the Deallocate Object (DLCOBJ) command on the source

server, the command deallocates the DDM file on the source server and its associated file or file

member on a target server.

Work with Job (WRKJOB) and Work with Object Locks (WRKOBJLCK) commands:

For both the WRKOBJLCK command and menu option 12 (Work with locks, if active) of the WRKJOB

command, only the locks held for the local DDM files are shown, not locks held for the remote files (or

for their members).

 If locked, DDM files are always locked as shared read (*SHRRD), regardless of the lock conditions used

for their associated remote files or members.

 Related reference

 “WRKJOB (Work with Job) command” on page 97
The Work with Job (WRKJOB) command can be used to display two DDM-related items.

122 IBM Systems - iSeries: Database Distributed data management

“WRKOBJLCK (Work with Object Lock) command” on page 98
The Work with Object Lock (WRKOBJLCK) command can be used to display the object lock requests

(held locks and pending locks) for DDM files. This command displays only the locks held for the local

DDM files, not locks held for the associated remote files.

Control DDM conversations

Normally, the DDM conversations associated with a source server job are kept active until one of the

conditions described in this topic is met.

1. All the DDM files and remote files used in the conversation are closed and unlocked (deallocated).

2. No other DDM-related functions like the use of the Submit Remote Command (SBMRMTCMD)

command or the Display File Description (DSPFD) command (to display remote file information) are

being performed.

3. No DDM-related function has been interrupted (by a break program, for example) while running.

4. The ENDCMTCTL command was issued (if commitment control was used with a DDM file).

5. No distributed relational database architecture-related functions are being performed.

6. The activation group, in which the DDM conversation was started, ends. A DDM conversation is not

dropped when the activation group ends under the following conditions:

v The DDM conversation is scoped to the job level.

v The commitment control of the activation group is scoped to the job level, and a unit of work is

outstanding. The conversation remains until the next job level commit or rollback, or until the job

ends.
7. The job or routing step ends.

If 1, 2, and 3 are true and the source job or activation group has not ended, the conversation is

considered to be unused, that is, the conversation is kept active but no requests are being processed.

DDM conversations can be active and unused because the default value of the DDMCNV job attribute is

*KEEP. This is desirable for the usual situation of a source server program accessing a remote file for

multiple I/O operations; these operations are handled one at a time, as shown in Figure 7 on page 16 and

explained in the text following it.

If multiple DDM requests are to be made in a job and the DDM files are being continually opened and

closed in the job, *KEEP should be used to keep an unused DDM conversation active. (However, as long

as one DDM file remains open or locked, *KEEP has no effect.)

For source jobs that access remote files but do not access data records in them, it might be desirable,

depending on the frequency of the file accesses, to automatically drop each DDM conversation at the

completion of each file-related source job request. Whether the conversation in the source job is kept

active or automatically dropped during the time a conversation is unused is determined by the

DDMCNV job attribute value (*KEEP or *DROP).

Regardless of the value of the DDMCNV job attribute, conversations are dropped when one of the

following things occurs:

v The job ends.

v The activation group ends. A DDM conversation is not dropped when the activation group ends under

the following conditions:

– The DDM conversation is scoped to the job level.

– The commitment control of the activation group is scoped to the job level, and a unit of work is

outstanding. The conversation remains until the next job level commit or rollback, or until the job

ends.
v The job initiates a Reroute Job (RRTJOB) command.

Distributed data management 123

Unused conversations within an active job can also be dropped by the Reclaim DDM Conversations

(RCLDDMCNV) or Reclaim Resources (RCLRSC) command. Errors, such as communications line failures,

can also cause conversations to drop.

 Related concepts

 “iSeries server as the source server for DDM” on page 13

When an application program or user in a source server job first refers to a DDM file, several actions

occur as part of processing the request on the source server.
 Related reference

 “RCLDDMCNV (Reclaim DDM Conversations) command” on page 69
The Reclaim DDM Conversations (RCLDDMCNV) command is used to reclaim all DDM source server

conversations that are not currently being used by a source job.

 “RCLRSC (Reclaim Resources) command” on page 96
The Reclaim Resources (RCLRSC) command, like the Reclaim DDM Conversations (RCLDDMCNV)

command, can be used to reclaim all DDM conversations that currently have no users in the job.

 “DDMCNV parameter considerations” on page 98
The DDMCNV parameter is a job-related parameter that controls whether Advanced

Program-to-Program Communication (APPC) or iSeries conversations in the job that is allocated for

DDM use (that is, DDM conversations) are to be automatically dropped or kept active for the source

job.

Display DDMCNV values (WRKJOB command):

To display the current value (*KEEP or *DROP) of the DDMCNV job attribute for your source job, you

can use menu option 2 (Work with definition attributes) on the Work with Job (WRKJOB) Command

display. You can also find out the value within a CL program by using the Retrieve Job Attributes

(RTVJOBA) command.

Change DDMCNV values (CHGJOB) command:

To control whether the server is to automatically reclaim (or drop) DDM conversations in a source job

whenever they become unused, the server default *KEEP can be changed to *DROP by using a Change

Job (CHGJOB) command. If the value is left as *KEEP, the Reclaim DDM Conversations (RCLDDMCNV)

or Reclaim Resources (RCLRSC) command can be used at any time to drop all DDM conversations

(within that job only) that currently do not have any active users.

Reclaim DDM resources (RCLRSC and RCLDDMCNV commands):

When an iSeries user wants to ensure that the resources for all APPC conversations (including DDM

conversations) that are no longer active are returned to the server, the Reclaim Resources (RCLRSC)

command can be used.

 To reclaim currently unused DDM conversations in a job, use the Reclaim DDM Conversations

(RCLDDMCNV) command.

 Related concepts

 “Use CL and DDS with DDM” on page 67
This topic contains DDM-related information about specific iSeries control language (CL) commands,

data description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.

 Control language

Display DDM remote file information

The CL commands Display File Description (DSPFD) and Display File Field Description (DSPFFD) can be

used by an iSeries source server user to display the attributes of one or more DDM files on the source

server, or to display the attributes of one or more remote files on a target server.

 Related reference

124 IBM Systems - iSeries: Database Distributed data management

“DSPFD (Display File Description) command” on page 94
The Display File Description (DSPFD) command can be used to display (on the source server) the

attributes of the DDM file on the source server, the remote file on the target server, or both the DDM

file and the remote file. As with local files, the attributes of multiple DDM files, multiple remote files,

or both can be displayed by the same command.

 “DSPFFD (Display File Field Description) command” on page 94
The Display File Field Description (DSPFFD) command can be used to display the file, record format,

and field attributes of a remote file. To display the remote file attributes, however, you must enter the

name of the DDM file associated with the remote file, not the name of the remote file.

Display DDM remote file records

The Display Physical File Member (DSPPFM) command can be used to display a remote file on a target

server.

For performance reasons, however, whenever possible, you should use display station pass-through to

sign on the remote server, and display the file directly. When display station pass-through is used, only

the display images are transmitted over the communications line. When DDM is used to access the

remote file, each record is transmitted separately over the line, which requires many more transmissions.

If pass-through cannot be used (for example, if the remote file is not on an iSeries server, a System/38, or

a System/36, or if pass-through is not configured on your server), direct record positioning rather than

relative positioning should be used whenever possible. For example, if record number 100 is being

displayed and you want to see record number 200 next, that record is accessed faster if you enter 200 in

the control field instead of +100. The results are the same, unless the file contains deleted records.

 Related concepts

 “Performance considerations for DDM” on page 136

These topics provide information to help you improve performance when using DDM and also

provide some information about when to use something other than DDM to accomplish some

functions.

Coded character set identifier with DDM

Support for the national language of any country requires the proper handling of a set of characters.

A cross-system support for the management of character information is provided with the Character Data

Representation Architecture (CDRA). CDRA defines the coded character set identifier (CCSID) values to

identify the code points used to represent characters, and to convert these codes (character data), as

needed to preserve their meanings.

Keep these considerations in mind when you are using CCSIDs with DDM:

v Data is converted to the process CCSID of the source job if both the source and target servers support

CCSIDs.

v Data is not converted if one server is an iSeries server that supports CCSIDs and the other server is

any other server that does not support CCSIDs.

v A file created on an iSeries target server by any source server that does not support CCSIDs is always

created with CCSID 65535.

v The SBMRMTCMD (Submit Remote Command) command can be used to change the file CCSID on an

iSeries target server by specifying the CHGPF (Change Physical File) command and the CCSID

parameter.

Use of object distribution

Although DDM file names can be specified on the Send Network File (SNDNETF) and Receive Network

File (RCVNETF) commands, these commands should be run, whenever possible, on the server where the

data actually exists. Therefore, if both servers are iSeries servers and both are part of a SNADS network,

object distribution can be used instead of DDM to transfer the data between them.

Distributed data management 125

v The SNDNETF command should run directly on the server that contains the data being sent. If

necessary, the Submit Remote Command (SBMRMTCMD) or Submit Network Job (SBMNETJOB)

command can be used to submit the SNDNETF command to the server where the data exists.

Note: Another way to use the SNDNETF command without using DDM is to run it on the target

server using display station pass-through.

v The RCVNETF command must be run on the server where the data has been sent. If necessary, a DDM

file can be referred to on the RCVNETF command to place the data on another server. However, if

possible, you should arrange to have the data sent to the server where the data is to be used, to avoid

using a DDM file.

For both sending and receiving operations, the file types of the data files must match and can only be a

save file or a physical database file. If DDM is being used, however, the file being transferred cannot be a

save file.

 Related reference

 “Batch file processing with DDM” on page 139

Consider these items when using batch file processing with DDM.

Use of object distribution with DDM

You can also use both SNADS (on iSeries servers) and DDM (on iSeries servers and non-iSeries servers) to

transfer files between iSeries servers and servers that are not part of a SNADS network but have DDM

installed.

Although a System/36 might have SNADS, it cannot be used for iSeries object distribution.

For example, if an i5/OS DDM file refers to a file on a System/36, the iSeries server can use the

SNDNETF command to send the file to another iSeries server using object distribution. Similarly, if a file

has been sent to an iSeries server, the RCVNETF command can be used to receive the file onto a

System/36 using DDM.

See the SNA Distribution Services manual on the V5R1 Supplemental Manuals

Web site.

Manage the TCP/IP server

These topics describe how to manage the DRDA and DDM server jobs that communicate using sockets

over TCP. It describes the subsystem in which the server runs, the objects that affect the server, and how

to manage those resources.

The DRDA and DDM TCP/IP server that is shipped with the i5/OS program does not typically require

any changes to your existing system configuration in order to work correctly. It is set up and configured

when you install i5/OS. At some time, you might want to change the way the system manages the server

jobs to better meet your needs, solve a problem, improve the system’s performance, or look at the jobs on

the system. To make such changes and meet your processing requirements, you need to know which

objects affect which pieces of the system and how to change those objects.

These topics describe, at a high level, some of the work management concepts that need to be understood

in order to work with the server jobs and how the concepts and objects relate to the server.

 Related concepts

 Manage work
 Related reference

 “Create a DDM file using TCP/IP” on page 9

You can create a DDM file that uses TCP/IP as the communication protocol for connecting with the

remote server.

126 IBM Systems - iSeries: Database Distributed data management

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

DDM terminology

The same server is used for both DDM and DRDA TCP/IP access to DB2 Universal Database for iSeries.

For brevity, the term DDM server will be used rather than DRDA/DDM server in the following discussion.

Sometimes, however, it may be referred to as the TCP/IP server, the DRDA server, or the server when the

context makes the use of a qualifier unnecessary.

The DDM server consists of two or more jobs, one of which is what is called the DDM listener (or

daemon), because it listens for connection requests and dispatches work to the other jobs. The other job

or jobs, as initially configured, are prestart jobs which service requests from the DRDA or DDM client

after the initial connection is made. The set of all associated jobs, the listener and the server jobs, are

collectively referred to as the DDM server.

The term client is used interchangeably with DRDA Application Requester (or AR) in the DRDA application

environment. The term client will be used interchangeably with DDM source system in the DDM

(distributed file management) application environment.

The term server is used interchangeably with DRDA Application Server (or AS) in the DRDA application

environment. The term server will be used interchangeably with DDM target system in the DDM

(distributed file management) application environment.

TCP/IP communication support concepts for DDM

Several concepts pertain specifically to the TCP/IP communications support used by DRDA and DDM.

Establish a DRDA or DDM connection over TCP/IP:

To initiate a DDM server job that uses TCP/IP communications support, the DRDA application requester

or DDM source system will connect to the well-known port number 446 or 447.

The DDM server also listens on port 448, but only for use with Secure Sockets Layer (SSL) connections,

which are not supported by DB2 Universal Database for iSeries application requesters or DDM clients. 1.

The DDM listener program must have been started (by using the STRTCPSVR SERVER(*DDM)

command, for example) to listen for and accept the client’s connection request. The DDM listener, on

accepting this connection request, will issue an internal request to attach the client’s connection to a DDM

Figure 15. DRDA/DDM TCP/IP server

Distributed data management 127

server job 2. This server job might be a prestarted job or, if the user has removed the QRWTSRVR prestart

job entry from the QUSRSYS or user-defined subsystem (in which case prestart jobs are not used), a batch

job that is submitted when the client connection request is processed. The server job will handle any

further communications with the client.

The initial data exchange that occurs includes a request that identifies the user profile under which the

server job is to run 3. After the user profile and password (if it is sent with the user profile ID) have been

validated, the server job will swap to this user profile as well as change the job to use the attributes, such

as CCSID, defined for the user profile 4.

The functions of connecting to the listener program, attaching the client connection to a server job and

exchanging data and validating the user profile and password are comparable to those performed when

an APPC program start request is processed.

DDM listener program:

The DDM listener allows client applications to establish TCP/IP connections with an associated server job

by handling and routing inbound connection requests. After the client has established communications

with the server job, there is no further association between the client and the listener for the duration of

that connection.

 The DDM listener program runs in a batch job. There is a one-to-many relationship between it and the

actual server jobs; there is one listener and potentially many DDM server jobs. The server jobs are

normally prestart jobs. The listener job runs in the QSYSWRK subsystem.

The DDM listener must be active in order for DRDA application requesters and DDM source systems to

establish connections with the DDM TCP/IP server. You can request that the DRDA listener be started

automatically by either using the CHGDDMTCPA AUTOSTART(*YES) CL command or through iSeries

Navigator. In iSeries Navigator, navigate to the DDM settings: Network → Servers → TCP/IP. This will

cause the listener to be started when TCP/IP is started. When starting the DRDA listener, both the

QSYSWRK subsystem and TCP/IP must be active.

Start TCP/IP Server (STRTCPSVR) CL command:

The Start TCP/IP Server (STRTCPSVR) command, with a SERVER parameter value of *DDM or *ALL, is

used to start the listener.

End TCP/IP Server (ENDTCPSVR) CL command:

The End TCP/IP Server (ENDTCPSVR) command ends the DDM server.

 If the DDM listener is ended, and there are associated server jobs that have active connections to client

applications, the server jobs will remain active until communication with the client application is ended.

Subsequent connection requests from the client application will fail, however, until the listener is started

again.

End TCP/IP Server command restrictions

If the End TCP/IP Server command is used to end the DDM listener when it is not active, a diagnostic

message will be issued. This same diagnostic message will not be sent if the listener is not active when

an ENDTCPSVR SERVER(*ALL) command is issued.

128 IBM Systems - iSeries: Database Distributed data management

Examples: End TCP/IP Server (ENDTCPSVR) command

These examples demonstrate using the End TCP/IP server (ENDTCPSVR) CL command.

This command ends all TCP/IP servers.

ENDTCPSVR *ALL

This command ends the DDM server.

ENDTCPSVR SERVER(*DDM)

Start DDM listener in iSeries Navigator:

The DDM listener can also be administered using iSeries Navigator, which is part of iSeries Access

Family.

 This can be done by following this path: Network → Servers → TCP/IP directory.

DDM server jobs

This topic collection provides information for working with server jobs.

Subsystem descriptions and prestart job entries with DDM:

A subsystem description defines how, where, and how much work enters a subsystem, and which

resources the subsystem uses to perform the work.

 The following paragraphs describe how the prestart job entries in the QUSRWRK subsystem description

affect the DDM server.

A prestart job is a batch job that starts running before a program on a remote server initiates

communications with the server. Prestart jobs use prestart job entries in the subsystem description to

determine which program, class, and storage pool to use when the jobs are started. Within a prestart job

entry, you must specify attributes that the subsystem uses to create and manage a pool of prestart jobs.

Prestart jobs provide increased performance when initiating a connection to a server. Prestart job entries

are defined within a subsystem. Prestart jobs become active when that subsystem is started, or they can

be controlled with the Start Prestart Job (STRPJ) and End Prestart Job (ENDPJ) commands.

DDM prestart jobs:

System information that pertains to prestart jobs (such as DSPACTPJ) will use the term program start

request exclusively to indicate requests made to start prestart jobs, even though the information might

pertain to a prestart job that was started as a result of a TCP/IP connection request.

 The following list contains the prestart job entry attributes with the initially configured value for the

DDM TCP/IP server. They can be changed with the Change Prestart Job Entry (CHGPJE) command.

v Subsystem description. The subsystem that contains the prestart job entries is QUSRWRK.

v Program library and name. The program that is called when the prestart job is started is

QSYS/QRWTSRVR.

v User profile. The user profile that the job runs under is QUSER. This is what the job shows as the user

profile. When a request to connect to the server is received from a client, the prestart job function

swaps to the user profile that is received in that request.

v Job name. The name of the job when it is started is QRWTSRVR.

Distributed data management 129

v Job description. The job description used for the prestart job is *USRPRF. Note that the user profile is

QUSER so this will be whatever QUSER’s job description is. However, the attributes of the job are

changed to correspond to the requesting user’s job description after the user ID and password (if

present) are verified.

v Start jobs. This indicates whether prestart jobs are to automatically start when the subsystem is started.

These prestart job entries are shipped with a start jobs value of *YES. You can change these to *NO if

the DDM TCP/IP communications support is to be used.

Note: If the DDM server jobs are not running and the DDM listener job is batch, immediate DDM

server jobs will still be run under the QSYSWRK subsystem.

v Initial number of jobs. As initially configured, the number of jobs that are started when the subsystem

is started is 1. This value can be adjusted to suit your particular environment and needs.

v Threshold. The minimum number of available prestart jobs for a prestart job entry is set to 1. When

this threshold is reached, additional prestart jobs are automatically started. This is used to maintain a

certain number of jobs in the pool.

v Additional number of jobs. The number of additional prestart jobs that are started when the threshold

is reached is initially configured at 2.

v Maximum number of jobs. The maximum number of prestart jobs that can be active for this entry is

*NOMAX.

v Maximum number of uses. The maximum number of uses of the job is set to 200. This value indicates

that the prestart job will end after 200 requests to start the server have been processed. In certain

situations, you might need to set the MAXUSE parameter to 1 in order for the TCP/IP server to

function properly. When the server runs certain ILE stored procedures, pointers to destroyed objects

might remain in the prestart job environment; subsequent uses of the prestart job would cause

MCH3402 exceptions.

v Wait for job. The *YES setting causes a client connection request to wait for an available server job if

the maximum number of jobs is reached.

v Pool identifier. The subsystem pool identifier in which this prestart job runs is set to 1.

v Class. The name and library of the class the prestart jobs will run under is set to QSYS/QSYSCLS20.

When the start jobs value for the prestart job entry has been set to *YES, and the remaining values are as

provided with their initial settings, the following things happen for each prestart job entry:

v When the subsystem is started, one prestart job is started.

v When the first client connection request is processed for the TCP/IP server, the initial job is used and

the threshold is exceeded.

v Additional jobs are started for the server based on the number defined in the prestart job entry.

v The number of available jobs will not reach below 1.

v The subsystem periodically checks the number of prestart jobs in a pool that are unused and ends

excess jobs. It always leaves at least the number of prestart jobs specified in the initial jobs parameter.
 Related tasks

 “Configure the DDM server job subsystem” on page 132
By default, the DDM TCP/IP server jobs run in the QUSRWRK subsystem. Using iSeries Navigator,

you can configure DDM server jobs to run all or certain server jobs in alternate subsystems based on

the client’s IP address.

Monitor prestart jobs:

Prestart jobs can be monitored by using the Display Active Prestart Jobs (DSPACTPJ) command.

 The DSPACTPJ command provides the following information:

v Current number of prestart jobs

v Average number of prestart jobs

130 IBM Systems - iSeries: Database Distributed data management

v Peak number of prestart jobs

v Current number of prestart jobs in use

v Average number of prestart jobs in use

v Peak number of prestart jobs in use

v Current number of waiting connect requests

v Average number of waiting connect requests

v Peak number of waiting connect requests

v Average wait time

v Number of connect requests accepted

v Number of connect requests rejected

Manage prestart jobs:

The key is to ensure that there is an available prestart job for every sent request that starts a server job.

 The information presented for an active prestart job can be refreshed by pressing the F5 key on the

Display Active Prestart Jobs display. Of particular interest is the information about program start

requests. This information can indicate to you whether you need to change the available number of

prestart jobs. If you have information indicating that program start requests are waiting for an available

prestart job, you can change prestart jobs using the Change Prestart Job Entry (CHGPJE) command.

If the program start requests were not being acted on fast enough, you can do any combination of the

following things:

v Increase the threshold.

v Increase the Initial number of jobs (INLJOBS) parameter value.

v Increase the Additional number of jobs (ADLJOBS) parameter value.

Remove prestart job entries:

If you decide that you do not want the servers to use the prestart job function, you must follow these

steps.

 1. End the prestarted jobs using the End Prestart Job (ENDPJ) command.

Prestarted jobs ended with the ENDPJ command will be started the next time the subsystem is started

if start jobs *YES is specified in the prestart job entry or when the STRHOSTSVR command is issued

for the specified server type. If you only end the prestart job and do not perform the next step, any

requests to start the particular server will fail.

2. Remove the prestart job entries in the subsystem description using the Remove Prestart Job Entry

(RMVPJE) command.

The prestart job entries removed with the RMVPJE command are permanently removed from the

subsystem description. After the entry is removed, new requests for the server will be successful, but

will incur the performance overhead of job initiation.

Routing entries:

An i5/OS job is routed to a subsystem by using the routing entries in the subsystem description.

 The routing entry for the listener job in the QSYSWRK subsystem is present after i5/OS is installed. This

job is started under the QUSER user profile, and the QSYSNOMAX job queue is used.

Distributed data management 131

The server jobs run in the QUSRWRK subsystem also. The characteristics of the server jobs are taken

from their prestart job entry which also comes automatically configured with i5/OS. If this entry is

removed so that prestart jobs are not used for the servers, then the server jobs are started using the

characteristics of their corresponding listener job.

The following list provides the initial configuration in the QSYSWRK subsystem for the listener job.

Subsystem

QSYSWRK

Job Queue

QSYSNOMAX

User QUSER

Routing Data

QRWTLSTN

Job Name

QRWTLSTN

Class QSYSCLS20

Configure the DDM server job subsystem

By default, the DDM TCP/IP server jobs run in the QUSRWRK subsystem. Using iSeries Navigator, you

can configure DDM server jobs to run all or certain server jobs in alternate subsystems based on the

client’s IP address.

To set up the configuration, follow these steps:

1. Create a prestart job entry for each desired subsystem with the ADDPJE CL command.

2. Start the prestart job entry you created with the STRPJ CL command.

3. In iSeries Navigator, expand Network.

4. Expand Servers.

5. Click TCP/IP.

6. Right-click DDM in the list of servers that are displayed in the right panel and select Properties.

7. On the Subsystems tab, add the specific client and the name of the subsystems.

In the following example, the administrator can connect and run in the QADMIN subsystem, while

another server in the network can connect and run in QUSRWRK. All other clients would be rejected.

132 IBM Systems - iSeries: Database Distributed data management

Related reference

 “DDM prestart jobs” on page 129
System information that pertains to prestart jobs (such as DSPACTPJ) will use the term program start

request exclusively to indicate requests made to start prestart jobs, even though the information might

pertain to a prestart job that was started as a result of a TCP/IP connection request.

Identify server jobs

If you look at the server jobs started on the system, you might find it difficult to relate a server job to a

certain application requester job or to a particular PC client. Being able to identify a particular job is a

prerequisite to investigating problems and gathering performance data. iSeries Navigator provides

support for these tasks that make the job much easier.

iSeries job names:

The job name used on the iSeries consists of three parts: the simple job name, user ID, and job number

(ascending order).

Distributed data management 133

The DDM server jobs follow the following conventions:

v Job name is QRWTSRVR.

v User ID

– Will always be QUSER, whether prestart jobs are used or not.

– The job log will show which user is currently using the job.
v The job number is created by work management.

Display server jobs:

There are several methods that can be used to aid in identifying server jobs. One method is to use the

WRKACTJOB command. Another method is to use the WRKUSRJOB command. A third method is to

display the history log to determine which job is being used by which client user.

 Display active jobs using the WRKACTJOB command

The WRKACTJOB command shows all active jobs. All server jobs are displayed, as well as the listener

job.

The following figures show a sample status using the WRKACTJOB command. Only jobs related to the

server are shown in these figures. You must press F14 to see the available prestart jobs.

The following types of jobs are shown in the figures.

v 1 - Listener job

v 2 - Prestarted server jobs

 Work with Active Jobs AS400597

 04/25/97 10:25:40

CPU %: 3.1 Elapsed time: 21:38:40 Active jobs: 77

Type options, press Enter.

 2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message

 8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status

 .

___ QUSRWRK QSYS SBS .0 DEQW

 .

___ 1

 QRWTLSTN QUSER BCH .0 SELW

 .

 .

___ 2

 QRWTSRVR QUSER PJ .0 TIMW

___ QRWTSRVR QUSER PJ .0 TIMW

___ QRWTSRVR QUSER PJ .0 TIMW

___ QRWTSRVR QUSER PJ .0 TIMW

___ QRWTSRVR QUSER PJ .0 TIMW

 . More...

The following types of jobs are shown:

PJ The prestarted server jobs.

SBS The subsystem monitor jobs.

BCH The listener job.

134 IBM Systems - iSeries: Database Distributed data management

Display active user jobs using the WRKUSRJOB command

The command WRKUSRJOB USER(QUSER) STATUS(*ACTIVE) will display all active server jobs running

under QUSER. This includes the DDM listener and all DDM server jobs. This command might be

preferable, in that it will list fewer jobs for you to look through to find the DDM-related ones.

Display the history log:

Each time a client user establishes a successful connection with a server job, that job is swapped to run

under the profile of that client user. To determine which job is associated with a particular client user,

you can display the history log using the DSPLOG command.

 An example of the information provided is shown in the following figure.

 Display History Log Contents

 .

 .

 DDM job 036995/QUSER/QRWTSRVR servicing user MEL on 08/18/97 at 15:26:43.

 .

 DDM job 036995/QUSER/QRWTSRVR servicing user REBECCA on 08/18/97 at 15:45:08.

 .

 DDM job 036995/QUSER/QRWTSRVR servicing user NANCY on 08/18/97 at 15:56:21.

 .

 DDM job 036995/QUSER/QRWTSRVR servicing user ROD on 08/18/97 at 16:02:59.

 .

 DDM job 036995/QUSER/QRWTSRVR servicing user SMITH on 08/18/97 at 16:48:13.

 .

 DDM job 036995/QUSER/QRWTSRVR servicing user DAVID on 08/18/97 at 17:10:27.

 .

 .

 .

 Press Enter to continue.

 F3=Exit F10=Display all F12=Cancel

Cancel distributed data management work

Whether you are testing an application, handling a user problem, or monitoring a particular device, there

are times when you may want to end work that is being done on a server.

When you are using an interactive job, you normally end the job by signing off the server. There are

other ways that you can cancel or discontinue jobs on the server. They depend on what kind of a job it is

and what server it is on.

End Job (ENDJOB) command

The End Job (ENDJOB) command ends any job.

The job can be active, on a job queue, or already ended. You can end a job immediately or by specifying

a time interval so that end of job processing can occur.

Ending a source job ends the job on both the source and the target. If the application is under

commitment control, all uncommitted changes are rolled back.

End Request (ENDRQS) command

The End Request (ENDRQS) command cancels a local or source operation (request) that is currently

stopped at a breakpoint.

This means the command cancels an application requester operation or request. You can cancel a request

by entering ENDRQS on a command line or you can select option 2 from the System Request menu.

Distributed data management 135

If it cannot be processed immediately because a server function that cannot be interrupted is currently

running, the command waits until interruption is allowed.

When a request is ended, an escape message is sent to the request processing program that is currently

called at the request level being canceled. Request processing programs can monitor for the escape

message so that cleanup processing can be done when a request is canceled. The static storage and open

files are reclaimed for any program that was called by the request processing program. None of the

programs called by the request processing program are notified of the cancellation, so they have no

opportunity to stop processing.

Attention: Using the ENDRQS command on a source job may produce unpredictable results and can

cause the loss of the connection to the target.

Performance considerations for DDM

These topics provide information to help you improve performance when using DDM and also provide

some information about when to use something other than DDM to accomplish some functions.

v When a DDM file is specified on the CPYF command, optimal performance is obtained if the following

items are all true:

– The from-file is a logical or physical file and the to-file is a physical file.

– FMTOPT is *NONE, *NOCHK, or not specified.

– INCHAR, INCREL, ERRLVL, RCDDMT (*ALL), PRINT(*COPIED), PRINT(*EXCLD), SRCSEQ,

TOKEY, SRCOPT, or FROMKEY parameter is not specified.

– The from-file is not overridden with the POS keyword, other than *NONE or *START.

– The to-file is not overridden with INHWRT(*YES).
v The Open Query File (OPNQRYF) command uses System/38 extensions to the DDM architecture. The

System/38 DDM architecture extensions minimize DDM system processing time. These extensions are

not used when:

– The source server is neither a System/38 nor an iSeries server

– The target server is neither a System/38 nor an iSeries server
v You can greatly reduce the amount of data transferred between servers if you use query functions such

as the iSeries command OPNQRYF OPTIMIZE(*YES). However, for user-written applications, the

amount of data exchanged between the servers is larger than that used to communicate using DDM

with non-iSeries servers. The additional data provides iSeries extended DDM functions and also

reduces source server DDM processing overhead. Using normal read, write, update, add, and delete

operations as examples, consider the following items:

– Standard DDM architecture DDM overhead data includes such information as a file identification,

operation code, and simple result information. A user program read-by-key operation uses

approximately 40 characters of DDM information in addition to the length of the key data. Data

returned from the remote server uses approximately 32 characters of DDM information plus the

length of the data file record.

– System/38 DDM architecture extensions cause additional data overhead such as record format

identification and a major portion of the I/O feedback area information. A user program

read-by-key operation uses approximately 60 characters of DDM information in addition to the

length of the key data. Data returned from the remote server uses approximately 80 characters of

DDM information plus the length of the data file record. Normally, the additional length in data

streams is not noticeable. However, as line activity increases, line utilization might peak sooner

when using these extended data streams as opposed to standard DDM data streams.
v The target DDM job priority is controlled by the job class specified by the associated subsystem

description routing entry. The following routing entry is normally the one used for all target (program

start request) jobs:

ADDRTGE ... PGM(*RTGDTA) ... CMPVAL(PGMEVOKE 29)

The subsystems QBASE and QCMN, which are shipped with the iSeries server, have this routing entry.

136 IBM Systems - iSeries: Database Distributed data management

To have target DDM jobs in a subsystem run at a different priority than other APPC target jobs in the

same subsystem, insert the following routing entry with the appropriate sequence number:

ADDRTGE SBSD(xxx) SEQNBR(nnn) CMPVAL(QCNTEDDM 37)

 PGM(*RTGDTA) CLS(uuu)

The class uuu is used to determine target job priority.

v To display records in a remote file, display station pass-through should be used whenever possible.

Otherwise, direct record positioning should be used with the Display Physical File Member (DSPPFM)

command.

v If a DDM user exit security program is a CL program and it creates an i5/OS exception and an inquiry

message that requires the target system operator to respond, both the user exit program and the source

server job must wait for the response. Consider using the default system reply list by specifying

INQMSGRPY(*SYSRPYL) for the TDDM job’s description specified on the Add Communications Entry

(ADDCMNE) command for that APPC remote location information.

v The WAIT and WAITFILE parameters, used on commands like Allocate Object (ALCOBJ) or Receive

Message (RCVMSG), have no effect on the source server program. These parameters function the same

as they do when local files are accessed. The wait time values specified on commands run on the

source server do not take effect on the source system; they affect only the target server and only if it is

an iSeries server or a System/38.

Notes:

1. The WAITFILE parameter of the create or change i5/OS-Intersystems Communications

Function (ICF) file command determines how long the APPC support will wait for session

resources to become available when doing an acquire operation or a start function. The

WAITFILE value is not used for sessions where the connection to the adjacent server is over

a switched connection. An example is an SDLC switched line, an X.25 SVC line, an Ethernet

line, or a token-ring connection. Using a switched connection, acquire operations and start

functions do not time out.

2. Because APPN sessions might cross multiple servers and lines to reach the remote server,

the WAITFILE timer should be adjusted to allow more time in these cases. You should not

specify *IMMED for the WAITFILE parameter if your application is running in a network

configured to use APPN functions. The value you specify for this parameter is dependent

on the size and type of the network.
v As for any LU session type 6.2 data exchange, certain SNA parameters can affect performance. These

parameters include the path information unit size (MAXFRAME), the request/response unit size

(MAXLENRU), SNA pacing (INPACING, OUTPACING), and for X.25, packet size and window size. In

general, the larger the value used, the better the realized performance.

v SNA path information unit size

The path information unit (PIU) is the size of the actual data transmission block between two servers.

The MAXFRAME parameter on the Create Controller Description (APPC) (CRTCTLAPPC) or Create

Controller Description (SNA Host) (CRTCTLHOST) command specifies the path information unit size

the local server attempts to use. During session establishment, both servers determine which size is

used, and it is always the smaller value. Other remote servers might have different PIU size

considerations.

v SNA response/request unit size

The response/request unit (RU) size (CRTMODD MAXLENRU) controls the amount of server buffering

before fitting that data into the path information unit that is actually transmitted. In APPC, the

transmit and receive RU lengths are negotiated during session establishment. Again, the negotiation

results in the smallest value being used. Other remote servers have different RU size considerations.

v SNA pacing values

The pacing value determines how many request/response units (RUs) can be received or sent before a

response is required indicating buffer storage is available for more transmissions. During session

establishment, both servers determine which size is used, and it is always the smaller value.

Distributed data management 137

In cases where both batch and interactive processing occur at the same time on the same

communications line, iSeries job priority might be used to favor interactive processing over batch

processing. In addition, reducing the value of pacing for a batch application and raising it for an

interactive application might be necessary to provide a level of line activity priority for the interactive

application.

On an iSeries server, different pacing values can be specified through the creation of different MODES

(Create Mode Description [CRTMODD] command) to the different applications. Other remote systems

have different SNA pacing value considerations.

v X.25 packet

An X.25 packet smaller than the MAXFRAME value adds data transmission time over a non-X.25 data

link. In general, for X.25, the longer the MAXFRAME and the actual amount of data being transmitted,

the greater this difference is. In the case of DDM, which adds DDM control information to the normal

file record data, the packet size has an additional effect on the difference between local and remote file

processing and between non-X.25 and X.25 data links.

In cases of many deblocked DDM operations, the number of packets required to transmit data might

become so high that packet processing overhead within the X.25 adapter affects performance

significantly. Use the largest X.25 packet window size supported by the network and communicating

products to maximize performance.

When X.25 must be used to access remote files, successive transmission of many small deblocked

records, such as less than 80 character records, might cause the X.25 adapter to expend a

disproportionate amount of time processing X.25 packet characters as opposed to transmission of user

data.

In general, the overhead in processing X.25 packets results in less throughput than the use of a

conventional line when identical line speeds are used and data transfer is in only one direction. When

data is transferred at the same time in both directions, the advantages of X.25 duplex support is

realized. On the System/38, the overall processing effect is minimal, because the overhead in

processing the packets is done within the Integrated X.25 Adapter.

In general, the processing of remote files by using DDM is transparent to an application program or

utility function, such as that provided by the Copy File (CPYF) command. However, additional time is

required when accessing remote files by using a communications line. The performance difference

between local file and remote file processing is proportional to the number of accesses to remote files, the

data record length, and the line speed during a unit of performance measurement.

An additional difference between local and remote file processing is that the input or output operation to

a local file might not result in an immediate physical disk operation because the server transfers blocks of

data from the disk and writes blocks of data to the disk. There are times, then, that the user program

accesses data within main storage and the physical I/O occurs at a different time. Therefore, to minimize

the difference between local file and remote file performance, it is essential that knowledge of an

application design and the amount and type of accesses to files be considered when determining which

files are to be accessed remotely using DDM.

The additional time for each remote access is comprised of:

v Additional system processing to convert local server file interfaces to the DDM architecture interfaces

v Amount of data transmitted over the communications line

v Amount of remote system processing of the file operations

v Speed of the communications line

The communications line time accounts for most of the additional time, though the actual time is

dependent on line speed and the amount of line activity during the DDM function.

As is true in non-DDM cases, local and remote server job priorities have the most significant effect on

performance. On an iSeries server, the PRIORITY and TIME SLICE values of the class being used control

138 IBM Systems - iSeries: Database Distributed data management

job priority. The SDDM runs under the source job, and the TDDM runs under the class assigned to the

APPC routing entry of the target server’s subsystem. In applications that access multiple files, the best

results are achieved when the most heavily accessed files are on the same server as the program that is

running and the less heavily accessed files are on a remote server. Key considerations regarding the

placement of files and application programs follow:

v The system having primary responsibility for file maintenance needs to be identified. In all cases of

multiple servers applications, the best performance results if only one server is responsible for file

maintenance. If an application program maintains the file through exclusive (nonshared) processing,

best performance can be realized when the application program resides on the system with the file.

In some cases, transmitting the file back to the local server might require:

– An APPC program.

– A program using remote DDM files.

– The Copy File (CPYF) command by using DDM.

– Object distribution SNDNETF and RCVNETF operations. In interactive applications, display station

pass-through should be considered when the amount of display data transferred is significantly less

than the amount of database file data that would be sent by using DDM.
v In cases where file placement requires movement of application processing to a remote server for best

performance results, use of the Submit Remote Command (SBMRMTCMD) command should be

considered. This works best in a batch processing input stream where each program waits for the

preceding program to complete. The use of the SBMRMTCMD command is valid only when the source

and target servers are iSeries servers or Systems/38s. For example, assume that program A accesses

local files. Program A would run on a local server. Program B accesses remote files. You can use the

SBMRMTCMD command to run program B on the remote server.

v In cases where file maintenance is shared across servers, the best performance can be obtained if the

file is placed on the server with the largest percentage of file update, add, and delete operations.

In certain cases, a pair of source and target APPC programs can provide performance improvements

over DDM. For example, assume 10 records are to be retrieved from the remote server. When DDM is

used and record blocking cannot be used (for example, user program random input operation,

sequential input for change, or use of the OVRDBF SEQONLY[*NO] command), assume 10 data

transmissions are sent and 10 are received, for a total of 20 transmissions. User-written APPC programs

can build additional intelligence into the data stream such that request for the data and receipt of the

data can be done in two data transmissions instead of 20, one request for all records of customer 00010

and one response containing 10 records for customer 00010.

Consider two sample application processing techniques, batch file processing and interactive file

processing.

 Related concepts

 “Security” on page 48
This topic describes how iSeries security relates to DDM, and how it can limit access to the data

resources of a target server by source server programs and users.

 Communications Management PDF

 APPC, APPN, and HPR

 LAN, Frame-Relay, and ATM Support PDF
 Related reference

 “Display DDM remote file records” on page 125
The Display Physical File Member (DSPPFM) command can be used to display a remote file on a

target server.

 “User exit program considerations for DDM” on page 67

There are some considerations that you should understand before using user exit programs for DDM.

Batch file processing with DDM

Consider these items when using batch file processing with DDM.

Distributed data management 139

v When an application opens a local file for sequential input only or output add, the server uses blocking

techniques to achieve maximum throughput. To ensure blocking is used for a remote file accessed by

using DDM, do not use random record processing operations in the program but specify OVRDBF

SEQONLY(*YES) against the DDM files opened by the program.

v Use of read and read-next operations in the high-level language (HLL) program to access the file

maximizes the effect of the SEQONLY(*YES) specification.

v The use of random processing operations, such as chain operations of ILE RPG or start operations of

ILE COBOL programming language, causes DDM to send deblocked operations across the

communications line even if the application processes the file data sequentially. This results in

significant differences between local and remote file processing.

v When simple physical file transfer is desired (all records transferred and no application processing of

the data), use of DDM by using the Copy File (CPYF) command, or a user-written program using

DDM with the Override Database File (OVRDBF) command SEQONLY(*YES number-of-records)

specified, transfers the data more quickly than a user-written APPC program. The Copy File command

and the DDM SEQONLY(*YES) support require less calls and returns between the program and APPC

data management modules than does a standard ILE RPG or ILE COBOL APPC program.

v For ILE RPG or ILE COBOL sequential input-only applications, SEQONLY(*YES) should be specified

with no number of records to achieve best throughput. For ILE RPG or ILE COBOL sequential

output-only applications to keyed files, a large number-of-records value should be used.

v The Send Network File (SNDNETF) command can be considered as an alternative to DDM or

user-written APPC programs when transferring all records within a file to a remote iSeries server. The

SNDNETF command requires SNADS to be configured on the source and target iSeries server. If one or

more intermediate servers are between the source and target iSeries servers, SNADS provides

intermediate node routing of the data when correctly configured.

v Use of the SNDNETF command by using SNADS offers the advantages of transmitting one copy of the

data to multiple users on one or more target servers through a multiple node network, and the time

scheduled transmission of that data by using the SNADS distribution queue parameter.

However, in addition to requiring SNADS to use the SNDNETF command, the target server user must

also run the Receive Network File (RCVNETF) command to make the file usable on the target server.

Use of DDM would not require this additional target server processing.

In general, the file transmission times by using SNADS (user program DDM sequential file processing,

the DDM Copy File command, and a user-written APPC program between two iSeries servers) are

within 10% of each other. However, the use of the SNDNETF and RCVNETF commands to make a

copy of the data usable on the target server does add total processing time over the other methods of

file transfer.

v Because the SNDNETF command can transmit objects within a save file, the amount of data that is

actually sent by using this technique might be less than that sent using the other techniques. If the

database file data sent contains a significant number of duplicate character strings, use of the Save

Object (SAVOBJ) command parameter DTACPR(*YES) (data compression) can significantly reduce the

amount of data that is actually sent by using a SNADS distribution. However, if there are few

duplicate character strings, there is little change in the amount of data sent.

v The iSeries file transfer subroutines might also be used to transfer an entire file between iSeries servers

and an iSeries server and a System/36. These subroutines might be called from high-level language

programs, and in some cases throughput is achieved similar to that by using DDM.

See the SNA Distribution Services manual on the V5R1 Supplemental Manuals

Web site.

 Related concepts

 Communications Management PDF
 Related reference

 “Use of object distribution” on page 125
Although DDM file names can be specified on the Send Network File (SNDNETF) and Receive

Network File (RCVNETF) commands, these commands should be run, whenever possible, on the

140 IBM Systems - iSeries: Database Distributed data management

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

server where the data actually exists. Therefore, if both servers are iSeries servers and both are part of

a SNADS network, object distribution can be used instead of DDM to transfer the data between them.
 Related information

 ICF Programming PDF

Interactive file processing with DDM

Consider these items when using interactive file processing with DDM.

v The greater the number of random file operations per unit of performance measurement, the greater

the difference between local and remote file processing because each operation has to be sent

separately across the communications line. DDM cannot anticipate the next operation.

Using a simple inquiry application that produces display output, by using workstation subfile support

(as an example), consider an application that does two random record retrievals per Enter key versus

one that does 15 random record retrievals. The operator might barely notice a delay in response time

when two records are retrieved. However, there would be a noticeable difference between local and

remote response time when 15 records are retrieved randomly from the remote server.

v Use of display station pass-through should be considered when the amount of data transferred back to

the local (source) server per unit of performance measurement significantly exceeds the amount of data

presented on the display. Test results have shown that the total elapsed time between a single

deblocked DDM get record operation and an equivalent user-written APPC operation is very close,

with APPC being slightly quicker. The DDM operation does require more processing seconds than the

direct APPC interface.

Also, because each DDM operation always requires an operation result response from the remote

server to ensure data integrity, user-designed partner APPC programs can offer an advantage for

update, add, and delete operations by not validating the result of the operation until a later time.

v Be aware that additional time is needed when accessing files on other servers, particularly the time

required for communications over the line. This should be considered when determining whether the

file should be a local or remote file, especially if it is to be used often.

DDM conversation length considerations

Consider these items regarding the length of conversations when using DDM.

v Within a source job, if it is likely that a DDM conversation will be used by more than one program or

DDM file, *KEEP is the value that should be specified for the DDMCNV job attribute. This saves the

time and resources needed to start a target job (TDDM) each time a DDM file is accessed for the same

location and mode combination within the source job.

v There is significant server and communications line overhead when a target DDM manager is started.

The processing includes the APPC program start request, server type identification, and file open

processing. However, if it is not necessary to keep the conversation active, *DROP should be specified

for DDMCNV. When the local DDM file is closed, the session being used is released for use by other

jobs using DDM or other APPC functions, such as SNADS and display station pass-through, to the

same remote server.

v When the source and target servers are iSeries servers or System/38, the file input and output requests

made by an application program use a form of DDM support that minimizes the amount of time

needed to code and decode each request. This is accomplished by System/38 extensions to the DDM

architecture.

When the source and target servers are neither an iSeries server nor a System/38, then System/38

extensions to the DDM architecture are not used.

DDM problem analysis on the remote server

Some functions that involve a target server may take a relatively long period of time to complete. In these

situations, the target server may not appear to be functioning when it is actually waiting for a reply.

Any messages created on the target server (such as file full) are sent to the system operator’s message

queue on the target server. (All DDM-related messages are logged in the target server’s job log.) In most

Distributed data management 141

cases, a message similar to the one sent to the target system operator is also sent to the source server

(with a different message number), but only after the target system operator has replied to the message.

If no job log is found on the target server, the Submit Remote Command (SBMRMTCMD) command can

be used to send a Change Job Description (CHGJOBD) command to the target server to change the

message logging level.

Another consideration is when end-of-file delay is being used between two iSeries servers, canceling the

job on the source server does not cancel the job on the target server. Or, if the source system job is

canceled while the target job is performing some function, the target job is not canceled.

In some situations, it may be necessary for a user on either the source or target server to call the other

location or use pass-through to determine the status of the job on that end and to reply to any messages

waiting for a response.

Handle connection request failures for TCP/IP

The main causes for failed connection requests at a server configured for TCP/IP use is that the DDM

TCP/IP server is not started, an authorization error occurred, or the machine is not running.

DDM server is not started or the port ID is not valid:

The error message given if the DDM TCP/IP server is not started is CPE3425.

 The message text is:

A remote host refused an attempted connect operation.

You can also get this message if you specify the wrong port on the Create DDM file (CRTDDMF) or

Change DDM File (CHGDDMF) command. For a DB2 UDB for iSeries server, not using the secure sockets

protocol, the port should always be 446 or 447. It is recommended that the 446 always be used for clear

text transmissions, and 447 be used for Internet Protocol Security Architecture (IPSec). To start the DDM

server on the remote server, run the STRTCPSVR *DDM command. You can request that it be started

whenever TCP/IP is started by running the CHGDDMTCPA AUTOSTART(*YES) command.

DDM connection authorization failure:

The error messages given for an authorization failure is CPF9190.

 The message text is:

Authorization failure on DDM TCP/IP connection attempt.

The cause section of the message gives a reason code and a list of meanings for the possible reason codes.

Reason code 17 means that there was an unsupported security mechanism (SECMEC).

Prior to V4R5, there were two SECMECs implemented by DB2 UDB for iSeries that an iSeries application

requester could use: user ID only and user ID with password. In V4R5, support was added for the

encrypted password security mechanism. However, the encrypted password will be sent only if a

password is available at the time the connection is initiated.

The default required SECMEC for an iSeries server is user ID with password. If the source server sends

only a user ID to a server with the default SECMEC, the above error message with reason code 17 is

given.

Solutions for the unsupported SECMEC failure are:

1. To allow the user ID only SECMEC at the server by running the CHGDDMTCPA PWDRQD (*NO)

command

142 IBM Systems - iSeries: Database Distributed data management

2. To send at least a clear-text password on the connect request if PWDRQD (*YES) is in effect at the

server

3. To send an encrypted password if PWDRQD (*ENCRYPTED) is in effect at the server

A password can be sent by using the ADDSVRAUTE command to add the remote user ID and password

in a server authorization entry for the user profile under which the connection attempt is to be made.

An attempt will automatically be made to send the password encrypted in V4R5 and later systems. Note

that pre-V4R5 iSeries servers cannot send encrypted passwords, nor can they decrypt encrypted

passwords of the type sent by V4R5 iSeries servers.

Note that you have to have system value QRETSVRSEC (Retain Server Security Data) set to ’1’ to be able

to store the remote password in the server authorization entry.

Attention: For non-RDB DDM files, you must enter the RDB name of QDDMSERVER on the

ADDSVRAUTE command in uppercase for use with DDM or the name will not be recognized during

connect processing, and the information in the authorization entry will not be used.

DDM server not available:

If a remote server is not up and running, or if you specify an incorrect IP address or remote location

name in the DDM file, you will get message CPE3447.

 The message text is as follows:

A remote host did not respond within the timeout period.

There is normally a several minute delay before this message occurs. It might appear that something is

hung up or looping during that time.

Not enough prestart jobs at server:

If the number of prestart jobs associated with the TCP/IP server is limited by the QRWTSRVR prestart

job entry of the QUSRWRK or user-defined subsystem, and all prestart jobs are being used for a

connection, an attempt at a new connection will fail with these messages.

 CPE3426

A connection with a remote socket was reset by that socket.

CPD3E34

DDM TCP/IP communications error occurred on recv() — MSG_PEEK.

You can avoid this problem at the server by setting the MAXJOBS parameter of the CHGPJE command

for the QRWTSRVR entry to a higher number or to *NOMAX, and by setting the ADLJOBS parameter to

something other than 0.

System/36 source and target considerations for DDM

Before an iSeries server can access files on a System/36, Level 1.0 of the DDM architecture must be

installed on the System/36. These topics contain information that applies when an iSeries server is the

source or target server communicating with a System/36.

DDM-related differences between iSeries and System/36 files

Because of differences between the types of files supported by an iSeries server and a System/36, several

items need to be considered when DDM is used between these two servers.

Distributed data management 143

|
|
|

Generally, when a System/36 file is created locally (by the BLDFILE utility, for example), the System/36

user specifies such things as the type of file (S = sequential, D = direct, or I = indexed), whether records

or blocks are to be allocated, how many of them are to be allocated, and how many additional times this

amount can be added to the file to extend it.

Also, you can specify whether the file is to be delete-capable (DFILE) or not (NDFILE). In files specified as

not delete-capable, records can be added or changed in the file, but not deleted.

Once these attributes have been specified, System/36 then creates the file and fills it with the appropriate

hexadecimal characters. If a System/36 user specifies the file as:

v A sequential file, the entire file space is filled with hex 00 characters and the end-of-file (EOF) pointer is

set to the beginning of the initial extent. If you attempt to read an empty sequential file, an EOF

condition is received.

v A direct file that is delete-capable, the entire file space is filled with hex FF characters (deleted records)

and the EOF pointer is set to the end of the initial extent. If you attempt to read an empty direct file

that is delete-capable, a record-not-found condition is received.

v A direct file that is not delete-capable, the entire file space is filled with hex 40 characters (blank or null

records) and the EOF pointer is set to the end of the initial extent. If you attempt to read an empty

direct file that is not delete-capable, a blank record is returned for every record in the file until the end

of the file is reached.

v An indexed file, it is prepared in the same manner as sequential files.

Typically, once a delete-capable file has been in use, it contains a relatively continuous set of active

records with only a few deleted records, possibly an end of data marker, and then a continuous set of

deleted records to the end of the file (EOF) space. This means that, unless the file is reorganized, a user

can undelete (recover) a deleted record.

Of the three types of System/36 files, System/36 indexed files differ little from iSeries-supported logical

files. If an iSeries source program is to use DDM to access the other types of files on a System/36, the

iSeries application programmer should first consider the items remaining in this topic selection that relate

to System/36.

System/36 source to iSeries target considerations for DDM

When System/36 is using DDM to communicate as a source server to access files on an iSeries target

server, the information in this topic applies and should be considered.

v When System/36 creates a direct file on an iSeries server, the iSeries server creates a nonkeyed physical

file with the maximum number of records, and prepares them as deleted records. The DDM

architecture command Clear File (CLRFIL), when issued from a non-iSeries source server, clears and

prepares the file; the CL command Clear Physical File Member (CLRPFM), when issued by a local or

remote iSeries server, does not prepare the file.

v System/36 supports a maximum of three key definitions for logical files and one key definition for

keyed physical files.

v Nondelete-capable direct files cannot be created using DDM on an iSeries server. In addition, the

iSeries server does not support nondelete-capable files for all file organizations.

iSeries source to System/36 target considerations for DDM

When an iSeries server is using DDM to communicate as a source server to access files on a System/36

target server, the information in this topic applies and should be considered.

v Some file operations that are not rejected by a target iSeries server might be rejected by a target

System/36. Examples are:

– A delete record operation is rejected if the System/36 file is not a delete-capable file. To the iSeries

source user, the rejection might appear to occur for unknown reasons.

– Change operation that attempts to change the key in the primary index of a System/36 file is always

rejected.

144 IBM Systems - iSeries: Database Distributed data management

v In the System/36 environment, when System/36 users try to copy a delete-capable file to a file that is

not delete-capable with the NOREORG parameter, a warning message is issued stating that deleted

records might be copied. The user can choose option 0 (Continue) to continue the process. By selecting

this option, the file is copied and any deleted records in the input file become active records in the

output file. An iSeries server rejects the copy request if the user specifies COMPRESS(*NO).

v If data is copied to a target System/36 file that is a direct file and is not delete-capable, default values

for all Copy File (CPYF) command parameters except FROMMBR, TOMBR, and MBROPT must be

specified.

v An iSeries server does not support the overwriting of data on the Delete File (DLTF) command. If an

iSeries user accessing a System/36 wants to overwrite the data, an application program must be

written on the iSeries server, or the user must access the target System/36 and perform the overwrite

operation.

v Depending on how a System/36 file is originally created, the maximum number of records it can

contain is approximately eight million. This number can be significantly smaller if the file is not

extendable or if sufficient storage space is not available to extend the file to add more records.

v System/36 supports a maximum of three key definitions for logical files and one key definition for

keyed physical files.

v System/36 file support does not allow a file with active logical files to be cleared. When some iSeries

programs (like ILE COBOL programs) open a file for output only, a command to clear the file is issued.

A target System/36 rejects any such command to clear the file if a logical file exists over the file to be

cleared.

v System/36 file support automatically skips deleted records. If an iSeries source user wishes to change

the records in a System/36 base file over which at least one logical file has been built, the file must be

opened in I/O mode, specifying direct organization and random access by record number. Then each

record can be read by record number and changed. If a deleted record is found, a record-not-found

indication is returned, and the record might be written rather than rewritten for that position (write

operation rather than a change operation).

v System/36 file support also handles file extensions differently, depending on the file type and the

language being used. However, an iSeries user cannot extend any type of System/36 file unless the

access method used to access the file is similar to the method used when the file was created.

If an iSeries user is accessing a System/36 file with an access method similar to the one used to create

the file, the file can be extended during its use in the following manner:

– If the file was created as a sequential file, the iSeries user should, if the iSeries language is:

- ILE COBOL programming language: open the file using the EXTEND option.

- PL/I: open the file using the UPDATE option. Perform a read operation using the POSITION

option of LAST, and then perform the write operations.

(BASIC and ILE RPG programming language both handle any needed file extensions automatically.)

v If the file was created as a direct file, the iSeries user should, if the iSeries language is:

– ILE COBOL programming language: open the file using the I-O option, position the end of file

pointer to the end of the file (using, for example, READ LAST), and perform a write operation.

– PL/I: open the file using the UPDATE option, position the end of file (EOF) pointer to the end of

the file (using, for example, READ LAST), and perform a write operation.

(BASIC and ILE RPG programming language both handle any needed file extensions automatically.)

– If the file was created as an indexed file, the file is extended each time a write operation is performed

for a record having a key that does not already exist in the file.
v The iSeries user can access sequential System/36 files using either sequential or direct (by relative

record number) methods, but significant differences occur when EOF or end of data occurs. If a

System/36 sequential file is being processed using relative record number access and is opened for

either input/output or output only, then, on reaching the end of active records (EOF), you cannot add

Distributed data management 145

new records in the available free space beyond the end of data. You will have to close and reopen the

file to extend it. To extend the file, you can either reopen it as a sequential file or open a logical file

that uses this file as the base file.

v Because the normal access method used for a System/36 file can be changed by iSeries parameters to

values other than *RMTFILE, it is possible that DDM might attempt to access the System/36 file in

ways that the System/36 might not support. Normally, the default value (*RMTFILE) on the ACCMTH

parameter gives the user the needed method of access. The use of access methods not normally

expected (such as direct or sequential access to indexed files, or sequential access to direct files)

requires the use of an ACCMTH parameter explicitly for the access.

The normal access method used for a System/36 file can be changed on the iSeries server: by the

ACCMTH parameter of the DDM file commands Create DDM File (CRTDDMF) and Change DDM File

(CHGDDMF), by the SEQONLY parameter of the Override with Database File (OVRDBF) command, or

by using the OVRDBF command to override one DDM file with another DDM file having a different

ACCMTH value in effect.

v The iSeries user can access a System/36 file using a member name if the member name is *FIRST, or in

some cases *LAST, or if the file name is the same as the member name.

v Target System/36 DDM cannot support creating logical files with duplicate (nonunique) keys, because

the System/36 local data management key sort sends messages to the target server console with

options 1 or 3 when duplicate keys are detected. This forces the target system operator either to change

the file attributes to allow duplicate keys or to cancel the target data manager.

Note: Never cancel the target data manager using a SYSLOG HALT.

Override considerations to System/36 for DDM

When a file override is issued on the iSeries server to get records in a logical file on a System/36, the

results might be different than expected because of the difference in how each system deals with keyed

files.

An iSeries server uses access paths and logical files, which produce a single view of a file. A System/36

logical file can be considered a list of keys and relative record numbers.

When an iSeries server accesses a System/36 logical file:

v If you specify a relative record number, you receive the record from the underlying System/36 base file

that corresponds to that record number. Then if you request to read the next record, you receive the

next sequential record from the base file.

v If you specify a key, you receive the record that corresponds to the first occurrence of that key in the

index file. If you request to read the next record, you receive the record that matches the next entry in

the index file.

The following example shows the various results for records being retrieved from a System/36 logical file

by an iSeries program. The example assumes that:

v File S36FILEA is the base file and S36FILEB is the logical file that is built over the base file.

v Both files have DDM files named S36FILEA and S36FILEB that point to corresponding remote files on

the target System/36.

v The key field is numeric and it always contains the record number.

v The records in the base file (S36FILEA) are in ascending sequence by key, and the records in the logical

file (S36FILEB) are in descending sequence with the same key.

v To create the results shown in the following table, the POSITION parameter value is shown to vary,

and no NBRRCDS parameter is specified on either command (which means the total records read is

dependent only on the POSITION parameter value).

OVRDBF FILE(S36FILEA) TOFILE(S36FILEB)

 POSITION(*RRN ... or *KEY ...)

CPYF FROMFILE(S36FILEA) TOFILE(ISERIESFILEB)

CRTFILE(*YES) FMTOPT(*NOCHK)

146 IBM Systems - iSeries: Database Distributed data management

Depending on the values specified on the Override with Database File (OVRDBF) command for the

POSITION parameter, the following are the resulting records that are copied into the file ISERIESFILEB

when it is created on the source iSeries server:

 POSITION parameter (See note) Resulting records retrieved

*RRN 1 299 records, 1 through 299

*KEY 1 1 record, first record only

*RRN 299 1 record, last record only

*KEY 299 299 records, 299 through 1

*RRN 150 150 records, 150 through 299

*KEY 150 150 records, 150 through 1

Note: This column assumes only one key field for *KEY values and uses the remote file name as the default value

for the record format name.

Personal computer source to iSeries target considerations for DDM

iSeries Access Family uses DDM to allow a personal computer to communicate as a source server to

access objects on an iSeries target. iSeries Access Family uses Level 3.0 of the DDM architecture stream

file access support to access folder management services (FMS) folders and documents.

The following considerations apply to iSeries Access Family use of the i5/OS DDM target support for the

DDM architecture, Level 3.0. Other source servers that send Level 2.0 or Level 3.0 DDM architecture

requests for stream files and directories may be able to use this information to help in connecting to an

iSeries server by using DDM.

v A FMS must follow the file or directory name to access folder management services (FMS) folders and

documents. There can be one or more blanks between the end of the name and the FMS.

v A leading slash (/) signifies the name is fully qualified. If there is no leading slash, any current

directory in use is added to the front of the name given.

v The total length of a fully qualified document name is 76 characters. This includes any current

directory that may be in use. This does not include the trailing FMS, which is used for typing

purposes.

v A / FMS signifies the root folder for a directory name.

v To reduce the number of messages logged to the job log, some errors occurring on the iSeries target

during open, get, put, and close document operations are not logged to the job log. See Table 9 for an

illustration of these return codes.

 Table 9. iSeries return codes

Description DDM reply Function

Folder not found DRCNFNRM OPEN

Folder in use DRCIUSRM OPEN

Document in use FILIUSRM OPEN

Document not found FILNFNRM OPEN

Document not found EXSCNDRM DELFIL

Document is read only ACCINTRM OPEN

End of data SUBSTRRM GET

Data stream (DS) in use STRIUSRM GET

Data stream (DS) in use STRIUSRM PUT

Substring not valid SUBSTRRM UNLOCK

Distributed data management 147

Table 9. iSeries return codes (continued)

Description DDM reply Function

Unlocking a region that is not locked EXSCNDRM UNLOCK

File already open for the declare

name

OPNCNFRM OPEN

File not open FILNOPRM GET, PUT, LOCK, UNLOCK

Delete document SHDONL(TRUE)

specified, but shadow does not exist

EXSCNDRM DELFIL

v To provide better performance, the iSeries target handles the closing document in a manner such that

when the document is closing, a command completion reply message (CMDCMPRM) is returned to the

source server before the document is actually closed. If the document is damaged during the closing

time, the user never receives this reply message unless he views the job log. When the user opens the

file again, the updated data may not be there.

v An iSeries server does not support wait on the locking data stream function. The user on the source

system must handle the wait function.

Examples: Code DDM-related tasks

The examples in this topic collection are based on representative application programs that might be used

for processing data both on the local iSeries server and on one or more remote servers.

The first example is a simple inquiry application, and the second example is an order entry application.

The third example accesses multiple files on multiple iSeries servers. The fourth example accesses

multiple iSeries servers and a System/36.

The coding for each of these examples and tasks has one or two parts:

v Coding, shown in pseudocode form, not related to DDM but used to build the programming

environment. The examples show you the task steps needed, independent of the language you use for

your applications. You can write or adapt your programs in your language with the necessary coding

to perform these or similar tasks.

v Coding, mostly done in CL, related to communicating with the other servers using DDM in the

network.

References are made to other parts of this topic collection and to other topics for additional information

that is helpful in understanding or using these examples.

 Related reference

 “Perform file management functions on remote servers” on page 121
i5/OS DDM supports creating, deleting, or renaming of files on a remote server.

Communications setup for DDM examples and tasks

These topics describe the network in which DDM is used for these task examples.

The network contains a central server in Philadelphia (an iSeries server), two remote iSeries servers in

Toronto and New York City, a System/38 in Chicago, and a System/36 in Dallas. The Advanced

Program-to-Program Communication (APPC) network for these servers was configured with the values

shown in the following figure.

In this set of task examples, the System/36 has Release 5 of DDM installed and DDM with the

compatible PTF installed. The System/38 has Release 8 of CPF installed with the DDM licensed program

and the compatible program temporary fix (PTF) change applied to the server.

148 IBM Systems - iSeries: Database Distributed data management

DDM example 1: Simple inquiry application

This first example shows how multiple locations in a customer’s business might be processing the same

inquiry application on their own servers, using their own primary files. Without DDM, the two locations

shown here (Chicago and Toronto) have their own primary file (CUSTMAST), both with different and

duplicate levels of information.

The following program (in pseudocode form) is run at each location to access its own primary file named

CUSTMAST.

Figure 16. DDM network used in ORDERENT application tasks

Figure 17. Two non-DDM servers doing local inquiries

Distributed data management 149

Open CUSTMAST

LOOP: Prompt for CUSTNO

 If function 1, go to END

 Get customer record

 Display

 Go to LOOP

END: Close CUSTMAST

 RETURN

Using DDM, the CUSTMAST files are consolidated into one file at a centralized location (Philadelphia, in

these examples), and then the local files in Chicago and Toronto can be deleted. The inquiry program

used at each remote location and at the central location to access that file is identical to the program used

previously.

To perform remote inquiries without changing the program, each of the remote locations need only create

a DDM file and use an override command:

CRTDDMF FILE(INQ) RMTFILE(CUSTMAST) RMTLOCNAME(PHILLY)

OVRDBF FILE(CUSTMAST) TOFILE(INQ)

The DDM file points to the Philadelphia server as the target server and to the CUSTMAST file as the

remote file. The same values for this command can be used at each remote location if they also have a

remote location named PHILLY.

Because CUSTMAST is the file name used in the program, the Override with Database File (OVRDBF)

command must be used to override the nonexistent CUSTMAST file with the DDM file INQ. (If the

CUSTMAST file still exists on the local server, the override is needed to access the central server’s

primary file; without it, the local file is accessed.)

The figure below shows the same two servers accessing the centralized CUSTMAST file by using their

DDM files, each named INQ.

An alternative to this approach is to leave the CUSTMAST files on the Chicago and Toronto servers and

use them for nonessential inquiries, such as name and address, and use the central CUSTMAST file in

Philadelphia for any changes. The CUSTMAST files on the Chicago and Toronto servers can be changed

periodically to the current level of the primary file on the Philadelphia server.

This alternative method will be used in the next example.

150 IBM Systems - iSeries: Database Distributed data management

Related concepts

 Control language

DDM example 2: ORDERENT application

This second example shows how multiple locations in a customer’s business can process the same order

entry application using DDM.

The first task in this example shows how to use DDM to put copies of the same application program on

remote servers with one primary file at a central location. The second task in this example shows how to

use DDM to copy a file to a remote server.

DDM example 2: Central server ORDERENT files

At the central site of Philadelphia, the four files shown in the figure are being used by the ORDERENT

application program.

Figure 18. Two DDM servers doing remote inquiries

Distributed data management 151

At the central server, the CUSTMAST file is a physical file that is the primary file of customer data for all

locations. The CUSTMST2 file is a logical file that is based on the CUSTMAST physical file. Using a

logical file at the central server provides at least two advantages:

v The same program, ORDERENT, can be used without change by the central server and by each of the

remote servers.

v The data can be accessed through a separate file and cannot keep a customer’s primary record locked

for the duration of the order.

The four files at the central site are used as follows:

v The CUSTMAST file contains all the data about all its customers. After a customer order is completed,

the CUSTMAST file is changed with all the new information provided by that order.

v The CUSTMST2 file, which is a logical file at the central server, is used at the beginning of a customer

order. When an operator enters a customer number, the program reads the customer data from the

CUSTMST2 logical file, but the data actually comes from the primary file, CUSTMAST.

v The INVEN file contains the current quantities of all items available for sale to customers. When the

operator enters an item number and quantity ordered, the corresponding primary item in the INVEN

file is changed.

v The DETAIL file is a list of all the individual items ordered; it contains a record for each item and

quantity ordered by customers.

DDM example 2: Description of ORDERENT program

Initially, the ORDERENT program exists only in library PGMLIB on the central server (in Philadelphia).

This program does the following items:

v When an order entry operator enters a customer number, ORDERENT reads the customer number,

then reads the first member of file CUSTMST2 in the PGMLIB library to find the customer name,

address, and other information. The retrieved information is displayed to the operator, and the

program asks for an item number and quantity desired.

Figure 19. Files used by central server ORDERENT program

152 IBM Systems - iSeries: Database Distributed data management

v When the operator enters an item number and quantity desired and presses the Enter key, the program

changes the corresponding primary item in the first member of the INVEN file, and it adds a record to

the DETAIL file for each item and quantity entered. The program continues asking for another item

number and quantity until the operator ends the program.

v When the operator ends the program, the file CUSTMAST is changed with the information for the

entire order. (See the pseudocode of ORDERENT for details.)

For the following examples, it is assumed that all users on the remote servers who need to access

CUSTMAST in Philadelphia already have authority to do so, and that those who do not need authority

do not have it. In these examples, the iSeries server in Chicago does not have a compiler.

If we want this program to be used at all the remote locations that also stock a physical inventory, the

program needs to be sent to each of the remote servers. We can assume that each of the remote servers

has its own inventory and primary files INVEN, DETAIL, and CUSTMST2 (which is a copy of

CUSTMAST). How the program can be sent to a remote server is described in “DDM example 2: Transfer

a program to a target server” on page 155.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 211.

 Pseudocode for ORDERENT Program

 •

 •

 •

DECLARE CUSTMAST CHANGE

 * Declare file CUSTMAST and allow changing.

DECLARE CUSTMST2 READ

 * Declare file CUSTMST2 as read only.

DECLARE INVEN CHANGE

 * Declare inventory file INVEN and allow changing.

DECLARE DETAIL OUTPUT

 * Declare file DETAIL as output only.

 •

 •

 •

Open CUSTMAST, CUSTMST2, INVEN, and DETAIL files

 * Begin program.

 Show order entry display asking for CUSTNO.

 * Order entry operator enters CUSTNO.

 If function key, go to End.

 Read CUSTNO from display.

 For CUSTNO, return NAME, ADDR, and other

 information from CUSTMST2 file.

 Show NAME, ADDR, and other information on display.

 LOOP: Display ’Item Number ___ Quantity Desired ____’.

 * Order entry operator enters item number and quantity.

 Read ITEMNO and Quantity Desired from display.

 If ITEMNO = 0 then go to LOOPEND.

 Change INVEN with ITEMNO and Quantity Desired.

 Write an item record to the DETAIL file.

 Go to LOOP.

 LOOPEND: For CUSTNO, change CUSTMAST using

 information in file INVEN.

 End

 * Program has ended.

Close CUSTMAST, CUSTMST2, INVEN, and DETAIL files.

RETURN

DDM example 2: Remote server ORDERENT files

The ORDERENT program remains the same at all locations, but the CUSTMST2 file is now a copy of the

central server’s customer primary file CUSTMAST.

Distributed data management 153

By using CUSTMST2 whenever possible for data that does not change often, the amount of

communications time needed to process each order entry request can be minimized. The remote

ORDERENT program reads the local CUSTMST2 file at the beginning of each order, and then, using

DDM, updates the CUSTMAST file on the central server only when an order has been completed.

The other two files, INVEN and DETAIL, have the same functions on each remote server as on the

central server.

The CUSTMAST file is changed by all locations and contains the most current information for each

customer (for constantly changing data such as the customer’s account balance). The CUSTMST2 file,

which is used for reading data that changes only occasionally (such as name and address), should be

changed periodically (once a week, for example), by recopying the CUSTMAST file into it. Task 2 of this

example explains one way to do this.

Figure 20. Files used by remote ORDERENT programs

154 IBM Systems - iSeries: Database Distributed data management

DDM example 2: Transfer a program to a target server

In this task, the central server in the DDM network, located in Philadelphia, sends a program named

ORDERENT to a remote System/38 in Chicago.

The program ORDERENT is transferred from the Philadelphia server to the user in Chicago whose user

ID is ANDERSON CHICAGO, and then the program is set up so that ORDERENT in Chicago changes

the CUSTMAST file in library PGMLIB on the central server in Philadelphia. The read-only function is

performed against the local file (in Chicago) and the change is done in the remote file (in Philadelphia).

For this task, two methods are shown for transferring the ORDERENT program in Philadelphia to the

remote server in Chicago. Basically, the same sets of commands are used in both methods, except that the

second group of commands used in the pass-through method are embedded in Submit Remote

Command (SBMRMTCMD) commands used in the SBMRMTCMD command method.

v The first method uses pass-through and object distribution, allowing the operator on the source server

to set up both servers without involving the target system operator or using the SBMRMTCMD

command. This method can be used only for iSeries servers or System/38s.

v The second method uses the SBMRMTCMD command because, in this task, the target server is a

System/38. (The SBMRMTCMD command can be used when the target server is an iSeries server or a

System/38.)

DDM example 2: Pass-through method:

One set of commands is entered on the source server, a pass-through session is started with the target

server, and a second set of commands is entered on the source server and run on the target server.

 The following commands are issued on the source server in Philadelphia:

CRTSAVF FILE(TRANSFER)

SAVOBJ OBJ(ORDERENT) LIB(PGMLIB) SAVF(TRANSFER)

 UPDHIST(*NO) DTACPR(*YES)

SNDNETF FILE(TRANSFER) TOUSRID(ANDERSON CHICAGO)

Next, a pass-through session is started between the Philadelphia and Chicago servers with the Begin

Pass-Through (BGNPASTHR) command. The session is used at the source server to enter the following

commands, which are run on the target server:

CRTSAVF FILE(RECEIVE)

RCVNETF FROMFILE(TRANSFER) TOFILE(RECEIVE)

CRTLIB LIB(PGMLIB)

RSTOBJ OBJ(ORDERENT) SAVLIB(PGMLIB) SAVF(RECEIVE)

CRTDDMF FILE(CUSTMAST.PGMLIB) RMTFILE(*NONSTD ’PGMLIB/CUSTMAST’)

 DEVD(PHILLY)

These commands create a save file named RECEIVE, into which the TRANSFER file is copied after it is

received as a network file from the source server in Philadelphia. A library is created on the Chicago

server and the RECEIVE file is restored as the ORDERENT program in the newly created library named

PGMLIB. Lastly, a DDM file is created on the Chicago server which allows the Chicago server to access

the CUSTMAST file on the Philadelphia server (remote location named PHILLY).

 Related concepts

 Remote Work Station Support PDF

DDM example 2: SBMRMTCMD command method:

Commands needed to accomplish the task are entered at the source server. The source server sends

commands that are needed on the target iSeries server by using the Submit Remote Command

(SBMRMTCMD) command between the servers.

Distributed data management 155

The following commands are issued on the source server in Philadelphia to send the ORDERENT

program to the target server in Chicago:

CRTSAVF FILE(TRANSFER)

SAVOBJ OBJ(ORDERENT) LIB(PGMLIB) SAVF(TRANSFER)

 UPDHIST(*NO)

SNDNETF FILE(TRANSFER) TOUSRID(ANDERSON CHICAGO)

CRTDDMF FILE(CHICAGO) RMTFILE(xxxxx) RMTLOCNAME(CHIC)

SBMRMTCMD CMD(’CRTSAVF FILE(RECEIVE)’) DDMFILE(CHICAGO)

SBMRMTCMD CMD(’RCVNETF FROMFILE(TRANSFER)

 TOFILE(RECEIVE)’) DDMFILE(CHICAGO)

SBMRMTCMD CMD(’CRTLIB LIB(PGMLIB)’) DDMFILE(CHICAGO)

SBMRMTCMD CMD(’RSTOBJ OBJ(ORDERENT) SAVLIB(PGMLIB)

 SAVF(RECEIVE)’) DDMFILE(CHICAGO)

SBMRMTCMD CMD(’CRTDDMF FILE(CUSTMAST.PGMLIB)

 RMTFILE(*NONSTD ”PGMLIB/CUSTMAST”) DEVD(PHILLY)’)

 DDMFILE(CHICAGO)

These commands create a save file named TRANSFER, which saves the ORDERENT program and then

sends it as a network file to the target server in Chicago. There, the commands embedded in the

SBMRMTCMD command are used to create a save file (named RECEIVE) on the target server, receive the

TRANSFER file, and restore it as ORDERENT into the newly created PGMLIB library. Lastly, a DDM file

is created on the Chicago server which allows the Chicago server wants to access the CUSTMAST file on

the Philadelphia server. The Create DDM File (CRTDDMF) command is in System/38 syntax.

After either of these two methods is used to send the ORDERENT program to, and to create the DDM

file on, the Chicago server, the ORDERENT program on that server can be used to access the CUSTMAST

file on the Philadelphia server.

DDM example 2: Copy a file

After performing the first task in Example 2, you decide you want to copy the current level of the

CUSTMAST file (in Philadelphia) to the server in Chicago so you can bring the CUSTMST2 file up to

date.

This example assumes that the CUSTMST2 file already exists in Chicago.

The following commands can be used to copy the CUSTMAST file from the Philadelphia server to the

CUSTMST2 file on the Chicago server. (These commands are issued on the server in Philadelphia.)

CRTDDMF FILE(PHILLY/COPYMAST) RMTFILE(*NONSTD ’CUSTMST2.CHICAGO’)

 RMTLOCNAME(CHIC)

CPYF FROMFILE(PGMLIB/CUSTMAST) TOFILE(PHILLY/COPYMAST)

 MBROPT(*REPLACE)

Note: One might assume that, as an alternative method, you can create a DDM file on the source server,

use the SBMRMTCMD command to submit a Create DDM File (CRTDDMF) command to the

target server, and then attempt to use the newly created target DDM file with another

SBMRMTCMD command to perform the copy function back to the original server. However, that

method will not work, because an iSeries server cannot be both a source and target server within the same

job.

DDM example 3: Access multiple iSeries files

Using the same communications environment as in the previous examples, this example is used to ask

inventory questions of identically named files on the two remote iSeries servers and the remote

System/38.

To do so, a program must be written (shown here in pseudocode) on the central server that can access

the files named LIB/MASTER on the servers in Chicago, in Toronto, and in New York. (In this example,

the MASTER files are keyed files, and the first member of each of these files is the one used. Also, data

description specifications (DDS) for the MASTER files exist on the central server in Philadelphia.)

156 IBM Systems - iSeries: Database Distributed data management

The program asks the local order entry operator for an item number (ITEMNO), and returns the

quantity-on-hand (QOH) information from the files in Chicago, Toronto, and New York.

The following commands are issued on the server in Philadelphia:

CRTDDMF PGMLIB/CHIFILE RMTFILE(*NONSTD ’MASTER.LIB’)

 RMTLOCNAME(CHIC)

CRTDDMF PGMLIB/TORFILE RMTFILE(LIB/MASTER) RMTLOCNAME(TOR)

CRTDDMF PGMLIB/NYCFILE RMTFILE(LIB/MASTER) RMTLOCNAME(NYC)

Here is a sample of the pseudocode to accomplish the task:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 211.

DECLARE CHIFILE, TORFILE, NYCFILE INPUT

Open CHIFILE, TORFILE and NYCFILE

LOOP: Show a display asking for ITEMNO

 Read ITEMNO from the display

 Read record from CHIFILE with the key ITEMNO

 Read record from TORFILE with the key ITEMNO

 Read record from NYCFILE with the key ITEMNO

 Write all QOH values to the display

 If not function key, go to LOOP

Close CHIFILE, TORFILE and NYCFILE

END

Before the program is compiled, Override with Database File (OVRDBF) commands can be used to

override the three files used in the program with local files that contain the external description formats,

identical to the remote files being accessed. Doing so significantly reduces the time required for the

compile, since the files on the remote server do not have to be accessed then.

After the program has been compiled correctly, the overrides should be deleted so that the program is

able to access the remote files.

An alternative to the use of overrides is to keep the file definitions in a different library. The program can

be compiled using the file definitions in that library and then run using the real library.

DDM example 4: Access a file on System/36

This topic shows how the pseudocode program for the previous task can be changed so a MASTER file

on the System/36 in Dallas can be accessed in the same way as the MASTER files on the iSeries servers

and System/38 in Example 3.

Assume that either you have pass-through to the System/36, or that an operator at the System/36 can

make changes, if necessary, on the System/36 for you.

The following command is issued on the server in Philadelphia:

CRTDDMF FILE(PGMLIB/DALFILE) RMTFILE(MASTER)

 RMTLOCNAME(DAL) ACCMTH(*KEYED)

Because the remote file referred to by the DDM file named DALFILE is on a System/36, either of two

things must be done:

v The record format of the remote file must be described in the program; that is, it must be a

program-described file.

v The program must be compiled with the program referring to a local iSeries file instead of the

System/36 file. This local file must have the same record format name as the DDM file name. Note that

the local file need not contain any data records.

Here is a sample of the pseudocode to accomplish the task:

Distributed data management 157

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 211.

DECLARE CHIFILE, TORFILE, NYCFILE, DALFILE INPUT

Open CHIFILE, TORFILE, NYCFILE and DALFILE

LOOP: Show a display asking for ITEMNO

Read ITEMNO from the display

 Read record from CHIFILE with the key ITEMNO

 Read record from TORFILE with the key ITEMNO

 Read record from NYCFILE with the key ITEMNO

 Read record from DALFILE with the key ITEMNO

 Write all QOH values to the display

 If not function key, go to LOOP

Close CHIFILE, TORFILE, NYCFILE and DALFILE

END

 Related reference

 “Data description specifications considerations for DDM” on page 110

Data description specifications (DDS), which is used to externally describe the fields and record

formats, can also be used with DDM to describe the file and record formats of a remote file.

DDM architecture code point attributes

All DDM architecture words are grouped into classes.

Each word in DDM specifies the class to which it belongs with a two-byte hexadecimal code point. The

code point is used to reduce the number of bytes needed to identify the class of a word in main storage

and in data streams. The code point specifies the location of the class of the word in the DDM

Architecture: Reference, SC21-9526.

When a system message is displayed, a reference is made to a hexadecimal code point. This appendix

provides a list of those code points arranged by hexadecimal value.

 Table 10. DDM architecture code points attributes

Code point (Hexadecimal) Term Message text

0001 ASSOCIATION Name with value association

0002 MINLVL Minimum level

0003 BIN Binary integer number

0004 BITDR A single bit data representation

0005 BITSTRDR Bit string data representation

0006 BOOLEAN Truth state

0007 QLFATT Qualified attribute

0008 CHRDR A graphic character data representation

0009 CHRSTRDR Character string data representation

000A CLASS Object descriptor

000B CNSVAL Constant value

000C CODPNT Code point attribute

000D COLLECTION Collection object

000E COMMAND Command

000F DATE Date and time

0011 DFTVAL Default value attribute

0012 DGTSTRDR Digit string data representation

0013 DGTDR Numeric character data representation

0014 NOTE Note attribute

0015 ENULEN Enumerated length attribute

0016 ENUVAL Enumerated value attribute

0017 ERROR Error severity code

0018 FALSE False state

158 IBM Systems - iSeries: Database Distributed data management

Table 10. DDM architecture code points attributes (continued)

Code point (Hexadecimal) Term Message text

0019 HELP Help text

001A HEXDR Hexadecimal number data representation

001B HEXSTRDR Hexadecimal string data representation

001C IGNORABLE Ignorable value attribute

001D INDEX File index

001E INFO Information only severity code

001F LENGTH Length of value attribute

0020 LETTER Alphabetic character

0021 MAXLEN Maximum length attribute

0022 MAXVAL Maximum value attribute

0023 MENU Menu

0024 MAGNITUDE Linearly comparable scalar

0025 MINLEN Minimum length attribute

0026 MINVAL Minimum value attribute

0027 NAME Name

002A NIL Nil object

002B NUMBER Number

002C OBJECT Architected data entity

002D OPTIONAL Optional value attribute

002E PRMDMG Permanent damage severity code

0031 REPEATABLE Repeatable variable attribute

0032 REQUIRED Required value attribute

0033 RESERVED Reserved value attribute

0034 SCALAR Scalar object

0036 SPCVAL Special value attribute

0037 SPRCLS Superclass

0038 STRING String

003A SEVERE Severe error severity code

003B TRUE True state

003C DATA Encoded information

003D WARNING Warning severity code

003E ACCDMG Access damage severity code

003F SESDMG Session damage severity code

0040 ENUCLS Enumerated class attribute

0041 CMDTRG Command target

0042 BINDR Binary data representation

0043 BYTDR An 8-bit value data representation

0044 BYTSTRDR Byte string data representation

0045 TITLE A brief description

0046 ATTLST Attribute list

0047 DEFLST Definition list

0048 DEFINITION Definition

0049 INHERITED Inherited definitions attribute

004A STSLST Term status array

004B ARRAY Object array

004C ORDCOL Ordered collection

004D ELMCLS Element of enumerated class attribute

0050 CONSTANT Constant value

005D INSTANCE_OF Instance of

0064 CODPNTDR Code point data representation

0065 DATDR Date and time data

0066 NAMDR Name date

0067 MTLEXC Mutually exclusive attribute

Distributed data management 159

Table 10. DDM architecture code points attributes (continued)

Code point (Hexadecimal) Term Message text

1001 CLRFIL Clear file

1002 CLOSE Close file

1003 CRTAIF Create alternative index file

1004 CLSDRC Close directory

1005 FRCBFF Force buffers

1006 DELFIL Delete file

1007 GETREC Get record

1008 INSRECNB Insert by record number

1009 LSTFAT List file attributes

100A GETDRCEN Get directory entry

100B LCKFIL Lock file

100C SETUPDNB Set update intent by record number

100D OPEN Open file

100E DELREC Delete record

100F MODREC Modify record

1010 OPNDRC Open directory

1011 RNMDRC Rename directory

1013 SETNBR Set cursor to record number

1014 SETBOF Set cursor to beginning of file

1015 SETEOF Set cursor to end of file

1016 SETFRS Set cursor to first record

1017 SETKEY Set cursor by key

101B SETUPDKY Set update intent by key value

101C SETLST Set cursor to last record

101D SETMNS Set cursor minus

101E SETNXT Set cursor to next record

101F SETPLS Set cursor plus

1020 SETPRV Set cursor to previous record

1023 UNLFIL Unlock file

1024 INSRECEF Insert record at end of file

1025 SETKEYLM Set key limits

1028 CRTDIRF Create direct file

1029 CRTKEYF Create keyed file

102A CRTSEQF Create sequential file

102C DCLFIL Declare file

102D DELDCL Delete declared name

102E LODRECF Load records into file

1032 INSRECKY Insert by key value

1036 RNMFIL Rename file

1037 SETKEYFR Set cursor to first record in key sequence

1039 SETKEYLS Set cursor to last record in key sequence

103B SETKEYNX Set cursor to next record in key sequence

103C SETKEYPR Set cursor to previous record in key

sequence

103D UNLIMPLK Unlock implicit record lock

1040 ULDRECF Unload records from file

1041 EXCSAT Exchange server attributes

1042 SETNXTKE Set cursor to next record with equal key

1043 CHGFAT Change file attributes

1044 CRTDRC Create directory

1045 CRTSTRF Create stream file

1047 GETSTR Get stream

1048 LCKSTR Lock stream

160 IBM Systems - iSeries: Database Distributed data management

Table 10. DDM architecture code points attributes (continued)

Code point (Hexadecimal) Term Message text

1049 PUTSTR Put stream

104B UNLSTR Unlock stream

104C LODSTRF Load stream file

104D ULDSTRF Unload stream file

104E CPYFIL Copy file

104F CHGCD Change current directory

1050 CHGEOF Change end-of-file

1051 DELDRC Delete directory

1052 QRYSPC Query space available

1053 SBMSYSCMD Submit System Command command

1059 QRYCD Query current directory

1101 BGNNAM Beginning search name

1102 FILATTRL File attribute request list

1103 BASFILNM Base file name

1104 BYPINA Bypass inactive record

1105 DELDRCOP Delete directory option

1108 FILCRTDT File creation date

1109 CSRDSP Cursor displacement

110A RELOPR Relational operator

110B EOFNBR End of file record number

110C FILEXNSZ File extent size

110D FILEXPDT File expiration date

110E FILNAM File name

110F FILSIZ File size

1110 FILCLS File class

1111 DFTRECOP Default record option

1113 LSTACCDT Last access date

1114 KEYDEF Key definition

1115 KEYVAL Key value

1116 MAXGETCN Maximum get count

1117 FILMAXEX File maximum number of extents

1118 PRPSHD Prepare shadow

1119 OVRDTA Overwrite data

111A RECCNT Record count

111B DELCP Deletion capability

111C RECLEN Record length

111D RECNBR Record number

111E RECNBRFB Record number feedback

1122 SHDEXS Shadow exists

1123 SHDONL Shadow only

1124 UPDCSR Update cursor

1125 SHDPRC Shadow processing

1126 ERRFILNM Error file name

1128 RTNREC Return record

1129 STRORD Stream order

112A FILPRT File protected

112B EOFOFF End of file offset

112F KEYHLM Key high limit

1130 KEYLLM Key low limit

1132 FILHDD Hidden file

1133 FILSYS System file

1134 ACCINTLS Access intent list

1136 DCLNAM Declared name

Distributed data management 161

Table 10. DDM architecture code points attributes (continued)

Code point (Hexadecimal) Term Message text

1137 DUPFILOP Duplicate file option

1139 FILBYTCN File byte count

113A FILCHGDT File change date

113B FILEXNCN File extent count

113C FILINISZ Initial file size

113D KEYDUPCP Duplicate keys capability

113F PRCCNVCD Conversational protocol error code

1142 RECLENCL Record length class

1143 RLSFILLK Release file lock

1145 RQSFILLK Requested file lock

1146 UPDINT Update intent

1147 SRVCLSNM Server class name

1148 RTNCLS File retention class

1149 SVRCOD Severity code

114A SYNERRCD Syntax error code

114B TEXT Text character string

114C WAIT Wait for lock

114D FILSHR File sharing

114E ACCMTHCL Access method class

114F NEWFILNM New file name

1150 BYPDMG Bypass damaged records

1151 LCKMGRNM Lock manager name

1152 AGNNAM Agent name

1153 SRVDGN Server diagnostic information

1154 ALCINIEX Allocate initial extent

1155 RTNINA Return inactive record

1156 ALWINA Allow cursor to be set to inactive record

1157 MAXOPN Maximum number of files opened

1159 MAXARNB Maximum active record number

115A SRVRLSLV Server product release level

115B CSRPOSST Cursor position status

115C DTALCKST Data lock status

115D SPVNAM Supervisor name

115E EXTNAM External name

115F HLDCSR Hold cursor position

1160 KEYVALFB Key value feedback

1161 ALWMODKY Allow modified keys

1162 ACCORD Access order

1163 RLSUPD Release update intent

1164 KEYDEFCD Key definition error code

1165 DRCNAM Directory name

1166 MODCP File modify capability

1169 STRLEN Stream length

116A STRPOS Position of a stream in a stream file

116B STRSIZ Stream file size

116D SRVNAM Server name

1174 SPCUNT Space units

1175 SPCTTL Total space

117E SPCAVL Available space

1183 STROFF Stream offset

118A LSTARCDT Last archived date

118B RQSSTRLK Request stream lock

118C STRLOC Substream location

162 IBM Systems - iSeries: Database Distributed data management

Table 10. DDM architecture code points attributes (continued)

Code point (Hexadecimal) Term Message text

118D CPYNEW Copy to new file option

118E CPYOLD Copy to existing file option

118F NEWDRCNM New directory name

1191 GETCP File get capability

1192 INSCP File insert capability

1194 FILCHGFL File change flag

11B8 SYSCMD System command

11BC SYSCMDMSG System command message

11D8 SYCMMGNM System command manager name

1201 KEYUDIRM Key update not allowed by different

index reply message

1203 SYSCMDRM System command reply message

1204 DFTRECRM Default record error

1205 CSRNSARM Cursor not selecting a record position

reply message

1206 DTARECRM Data record reply message not valid

1207 DUPFILRM Duplicate file name reply message

1208 DUPKDIRM Duplicate key different index reply

message

1209 DUPKSIRM Duplicate key same index reply message

120A DUPRNBRM Duplicate record number reply message

120B ENDFILRM End of file reply message

120C FILFULRM File is full reply message

120D FILIUSRM File in use reply message

120E FILNFNRM File not found reply message

120F FILSNARM File space not available reply message

1210 MGRLVLRM Manager level conflict reply message

1211 FILNOPRM File not opened reply message

1212 FILNAMRM File name reply message not valid

1214 SHDEXSRM Shadow exists reply message

1215 RECLENRM Record length mismatch reply message

1218 MGRDEPRM Manager dependency error reply message

121C CMDATHRM Not authorized to command reply

message

121E FILTNARM File temporarily not available reply

message

1220 DCLCNFRM Declare conflict reply message

1221 DRCTNARM Directory temporarily not available reply

message

1224 RECNBRRM Record number out of bounds reply

message

1225 RECNFNRM Record not found reply message

122D KEYLENRM Key length reply message not valid

1230 ACCATHRM Not authorized to access method reply

message

1231 ACCMTHRM Access method reply message not valid

1232 AGNPRMRM Permanent agent error reply message

1233 RSCLMTRM Resource limits reached reply message

1234 BASNAMRM Base file name reply message not valid

1237 DRCATHRM Not authorized to directory reply

message

123A EXSCNDRM Existing condition reply message

123B FILATHRM Not authorized to file reply message

123C INVRQSRM Invalid request reply message

Distributed data management 163

Table 10. DDM architecture code points attributes (continued)

Code point (Hexadecimal) Term Message text

123D KEYDEFRM Key definition reply message not valid

123F KEYUSIRM Key update not allowed by same index

reply message

1240 KEYVALRM Key value reply message not valid

1242 OPNCNFRM Open conflict error reply message

1243 OPNEXCRM Open exclusive by same user reply

message

1244 OPNMAXRM Opens at the same time exceed maximum

reply message

1245 PRCCNVRM Conversational protocol error reply

message

1249 RECDMGRM Record damaged reply message

124A RECIUSRM Record in use reply message

124B CMDCMPRM Command processing completed reply

message

124C SYNTAXRM Data stream syntax error reply message

124D UPDCSRRM Update cursor error reply message

124E UPDINTRM No update intent on record reply

message

124F NEWNAMRM New file name reply message not valid

1250 CMDNSPRM Command not supported reply message

1251 PRMNSPRM Parameter not supported reply message

1252 VALNSPRM Parameter value not supported reply

message

1253 OBJNSPRM Object not supported reply message

1254 CMDCHKRM Command check reply message

1255 DUPDCLRM Duplicate declared name reply message

1256 DCLNAMRM Declared name reply message not valid

1257 DCLNFNRM Declared name not found reply message

1258 DRCFULRM Directory full reply message

1259 RECINARM Record inactive reply message

125A FILDMGRM File damaged reply message

125B LODRECRM Load records count mismatch reply

message

125C INTATHRM Not authorized to open intent for named

file reply message

125E CLSDMGRM File closed with damage reply message

125F TRGNSPRM Target not supported reply message

1260 KEYMODRM Key value modified after cursor was last

set reply message

1261 CHGFATRM Change file attributes rejected reply

message

1262 DRCNAMRM Directory name not valid

1263 DRCNFNRM Directory not found reply message

1264 STRIUSRM Stream in use error

1265 SUBSTRRM Substream reply message not valid

1266 ACCINTRM Access intent not valid for access method

1267 DRCIUSRM Directory in use reply message

1268 STRDMGRM Stream damaged reply message

1269 DRCENTRM Directory entry reply message not valid

126A DUPDRCRM Duplicate directory name

126B DRCSNARM Directory space not available

126C DTAMAPRM Data mapping error reply message

164 IBM Systems - iSeries: Database Distributed data management

Table 10. DDM architecture code points attributes (continued)

Code point (Hexadecimal) Term Message text

126E LODSTRRM Load stream count mismatch reply

message

126F RECNAVRM Record not available reply message

1270 DRCNEMRM Directory not empty reply message

127E DRCDMGRM Directory damaged reply message

1282 DRCSUBRM Directory contains subdirectory reply

message

1283 NEWDRNRM New directory name reply message not

valid

1401 ACCMTH Access method

1402 ACCMTHLS Access method list

1403 AGENT Agent

1404 MGRLVLLS Manager level list

1405 CMBACCAM Combined access method

1406 CMBKEYAM Combined keyed access method

1407 CMBRNBAM Combined record number access method

1408 CMNMGR Communications manager

140A RECCSR Record cursor

140B DELAI Delete access intent

140C DIRFIL Direct file

140D DSSFMT Data stream structure format

140F KEYFLDDF Key field definition

1410 EXTENT File extent

1411 RECFIL Record file manager

1413 GETGETLK Get intent willing to share with get

intents at the same time

1414 GETMODLK Get intent willing to share with modify

intents at the same time

1415 GETNONLK Get intent not willing to share with any

users at the same time

1416 GETAI Get access intent

1417 INSAI Insert access intent

1418 DCAL3P Document content architecture level three

1419 DRCAM Directory access method

141A DRCCSR Directory cursor

141B DRCEMP Directory empty option

141C DRPSHD Drop shadow

141E KEYFIL Keyed file

1420 SEQASC Ascending key sequence

1421 SEQDSC Descending key sequence

1422 LCKMGR Lock manager

1423 ALTINDF Alternative index file

1424 FILAL File attribute list

1425 MODGETLK Modify intent willing to share with get

intents at the same time

1426 MODMODLK Modify intent willing to share with

modify intents at the same time

1427 MODNONLK Modify intent not willing to share with

any users at the same time

1428 MODAI Modify access intent

1429 OBJDSS Object data stream structure

142A PRMFIL Permanent file

142B DFTREC Default record

142C PCEXE PC EXE formatted stream file

Distributed data management 165

Table 10. DDM architecture code points attributes (continued)

Code point (Hexadecimal) Term Message text

142D RECINA Inactive record

142E RECFIX Fixed length record

142F RECIVL Initially varying length record

1430 RECAL Record attribute list

1431 RECVAR Varying length record

1432 RELKEYAM Relative by key access method

1433 RELRNBAM Relative by record number access method

1434 RNDKEYAM Random by key access method

1435 RNDRNBAM Random by record number access

method

1436 RPYDSS DDM reply data stream structure

1437 RPYMSG Reply message

1438 RQSCRR Request correlation identifier

1439 RQSDSS Request data stream structure

143A BOF Beginning of file

143B SEQFIL Sequential file

143C SUPERVISOR Supervisor

143D SHRRECLK Share record lock

143E TMPFIL Temporary file

143F EXCRECLK Exclusive record lock

1440 SECMGR Security manager

1441 EOF End of file

1442 MGRLVL Manager level

1443 EXCSATRD Server attributes reply data

1444 CMNAPPC APPC conversational communications

manager

1445 KEYAE Key after or equal to relational operator

1446 KEYAF Key after operator

1447 KEYEQ Key equal relational operator

1448 SERVER Server

1449 DFTSRCIN Default source initialization

144A RECORD Record

144B KEYBE Key before or equal to relational operator

144C KEYBF Key before operator

144D FILIND File index

144E ALTINDLS Alternative index list

144F FILINDEN File index entry

1450 DCTIND Dictionary index

1451 DCTINDEN Dictionary index entry

1452 MGRNAM Manager name

1453 MGRADR Manager address

1454 DRCIND Directory index

1455 DRCINDEN Directory index entry

1456 MANAGER Resource manager

1457 DIRECTORY Directory file

1458 DICTIONARY Dictionary

1459 DUPFILDO Duplicate file reply message duplicate

option

145A EXSCNDDO Existing condition reply message

duplicate option

145C CLRFILDO Clear file duplicate option

145D KEYORD Key order processing

145E RNBORD Record number order processing

166 IBM Systems - iSeries: Database Distributed data management

Table 10. DDM architecture code points attributes (continued)

Code point (Hexadecimal) Term Message text

145F DFTTRGIN Default target initialization

1460 DFTINAIN Default inactive record initialization

1461 DCAFFT Document content architecture final form

text

1462 CPYNCR Copy with no create option

1463 STRAM Stream access method

1464 STREAM Stream

1465 STRFIL Stream file

1466 CPYDTA Copy with data option

1467 CPYNDT Copy with no data option

1468 CURSOR Access method cursor

1469 STRCSR Stream cursor

146A FILE File manager

1471 DCARFT Document content architecture revisable

form text

1473 MGRLVLN Manager level number attribute

1479 QRYSPCRD Query space reply data

147F SYSCMDMGR System command manager

1482 CPYAPP Copy append option

1483 CPYERR Copy duplicate file error option

1484 CPYRPL Copy replace option

1485 EXCSTRLK Exclusive stream lock

1486 SHRSTRLK Share stream lock

1487 MODSTRLK Modify stream lock

1488 DRCALL Delete all files in directory option

1489 DRCANY Delete any accessible files in directory

DDM commands and parameters

This topic classifies DDM commands and parameters.

For additional information about DDM subsets, see the DDM Architecture: Implementation Planner’s Guide

or the DDM Architecture: Reference.

Note: The abbreviation KB appears throughout the tables in these topics. It represents a quantity of

storage equal to 1024 bytes.

 Related reference

 “DDM architecture-related restrictions” on page 45

The items listed in this topic are DDM architecture-related restrictions. Therefore, application

programs that use these items might have to be changed and recompiled before they can access

remote files.

 “Variable-length records” on page 121
If your iSeries source server is running OS/400 Version 2 Release 1 Modification 1, DDM supports

variable-length record files as defined in the DDM architecture.

Subsets of DDM architecture supported by i5/OS DDM

The iSeries server supports these subsets of the DDM architecture.

Supported DDM file models

iSeries DDM supports these DDM file models.

v Alternate index file (ALTINDF)

Distributed data management 167

v Direct file (DIRFIL)

v Directory file (DIRECTORY)

v Keyed file (KEYFIL)

v Sequential file (SEQFIL)

v Stream file (STRFIL)

By using the above file models, the iSeries server supports access to the iSeries physical and logical files.

The following table shows how DDM file models and iSeries data files correspond.

 Table 11. iSeries data files

DDM file model Corresponding iSeries data file

Alternate index file (ALTINDF) Logical file with one format

Direct file (DIRFIL) Nonkeyed physical file

Directory file (DIRECTORY) Folder management services (FMS) folders or data

management libraries

Keyed file (KEYFIL) Keyed physical file

Sequential file (SEQFIL) Nonkeyed physical file

Stream file (STRFIL) Folder management services (FMS) document

Alternate Index File (ALTINDF):

i5/OS DDM supports access to a logical file by using the DDM alternate index file model.

 A logical file allows access to the data records stored in a physical file by using an alternate index

defined over the physical file. Only single format logical files can be accessed through i5/OS DDM.

Logical files with select/omit logic can be accessed, but records that are inserted might not be retrievable

if they are omitted by the select/omit logic.

Supported record classes

An iSeries alternate index file can have fixed-length record (RECFIX) or variable-length record (RECVAR)

for storage.

Once a non-iSeries source server opens a file on the iSeries target using variable-length record access, the

iSeries target continues to send and receive variable-length records on all subsequent I/O operations.

Note: i5/OS DDM supports the DDM file transfer commands Load Record File (LODRECFIL) and

Unload Record File (ULDRECFIL) for all of the file models except alternate index file.

Direct file (DIRFIL):

i5/OS DDM supports access to nonkeyed physical files via the DDM direct file model.

 The support has the following characteristics:

v Delete Capabilities: An iSeries direct file is delete capable or nondelete capable. A nondelete capable

file must have an active default record.

v Supported Record Classes: An iSeries direct file can have a fixed-length record (RECFIX) or

variable-length record (RECVAR) for storage. Once a non-iSeries source server opens a file on the

iSeries target using variable-length record access, the iSeries target continues to send and receive

variable-length records on all subsequent I/O operations.

168 IBM Systems - iSeries: Database Distributed data management

Note: The iSeries server does not support the concept of a direct file. i5/OS DDM creates a direct file

by creating a nonkeyed physical file and initializing it, with deleted or active default records, to

the maximum size requested. No extensions to the file are allowed.

Directory file (DIRECTORY):

i5/OS DDM supports access to a folder management services folder or a data management library via the

DDM directory file model. Folders can be created, opened, renamed, closed, or deleted. Libraries can be

created, renamed, or deleted.

Keyed file (KEYFIL):

i5/OS DDM supports access to keyed physical files via the DDM keyed file model.

 An iSeries keyed file can have fixed-length record (RECFIX) or variable-length record (RECVAR) for

storage. Once a non-iSeries source server opens a file on the iSeries target using variable-length record

access, the iSeries target continues to send and receive variable-length records on all subsequent I/O

operations.

Sequential file (SEQFIL):

The iSeries server supports access to nonkeyed physical files via the DDM sequential file model.

 The support has the following characteristics:

v The sequential file can be delete or nondelete capable on an iSeries server.

v The sequential file on an iSeries server can have a fixed-length record (RECFIX) or variable-length

record (RECVAR) for storage. Once a non-iSeries source server opens a file on the iSeries target using

variable-length record access, the iSeries target continues to send and receive variable-length records on

all subsequent I/O operations.

Stream file (STRFIL):

i5/OS DDM supports access to a folder management services document by means of the DDM stream

file model.

Supported DDM access methods

i5/OS DDM supports these DDM access methods. DDM abbreviations for the access methods are given

in parentheses.

v Combined access method (CMBACCAM)

v Combined keyed access method (CMBKEYAM)

v Combined record number access method (CMBRNBAM)

v Directory access method (DRCAM)

v Random by key access method (RNDKEYAM)

v Random by record number access method (RNDRNBAM)

v Relative by key access method (RELKEYAM)

v Relative by record number access method (RELRNBAM)

v Stream access method (STRAM)

See the following table for a summary of the access methods that i5/OS DDM supports for each DDM

file model. For a description of these access methods, refer to the DDM Architecture: Implementation

Planner’s Guide, GC21-9528.

Distributed data management 169

Table 12. Supported access methods for each DDM file model

Term Access method

DDM file models

Sequential

file Direct file Keyed file

Alternate

index file Stream file

Directory

file

CMBACCAM Combined access N T T N

CMBKEYAM Combined keyed T T

CMBRNBAM Combined record

number

T T T N

DRCAM Directory T

RELKEYAM Relative by key T T

RELRNBAM Relative by record

number

T T T N

RNDKEYAM Random by key T T

RNDRNBAM Random by record

number

T T T N

STRAM Stream T

Note:

N = Not supported

T = Target DDM supported

Blank = Not applicable

DDM commands and objects

These topics describe the DDM command parameters that an iSeries server supports for each DDM

architecture command.

For more detailed information about these parameters, see the DDM Architecture: Reference, SC21-9526.

The description of the commands might include:

v Limitations for the use of each command

v Objects that the source server might send to the target server

v Objects that the target server might return to the source server

v DDM parameters that the iSeries server supports for the command and how the iSeries server

responds to each parameter

The commands listed here are supported. Level 1.0, Level 2.0 and Level 3.0 indicate which level of the

DDM architecture is supported by the commands.

CHGCD (Change Current Directory) Level 2.0

This command changes the current path. The path is a string of folders. The current path is added to the

front of a file or directory name if it does not start with a slash.

This command is not sent by a source iSeries server.

 Parameter name Source Target

AGNNAM N/A Ignored

DRCNAM1 N/A iSeries name

170 IBM Systems - iSeries: Database Distributed data management

Parameter name Source Target

1 Name formats are server defined. The architecture specifies that a directory name length of zero indicates the root

directory for the Change Current Directory command. For other commands, a directory name length of zero indicates

the current directory, which might or might not be the root directory at the time the command is issued.

CHGEOF (Change End of File) Level 2.0 and Level 3.0

This command changes the end-of-file mark of a document. The end may be truncated or expanded.

A source iSeries server does not send this command.

 Parameter name Source Target

DCLNAM N/A Program defined

EOFNBR N/A Supported

EOFOFF N/A Supported

CHGFAT (Change File Attribute) Level 2.0

This command changes the attributes of a file, document, or folder.

Parameter name Stream file Directory

Sequential, direct,

and keyed files Alternate index file

DTAFMT T

FILCHGDT T T N N

FILCHGFL T N N

FILINISZ N S, T

FILEXNSZ N S, T

FILEXPDT S, T

FILHDD T T N N

FILMAXEX N S, T

FILPRT T N

FILSYS T T N N

DELCP N N

GETCP T N

INSCP N

MODCP T N

TITLE T T S, T S, T

N = Not supported

T = Target DDM supported

S = Source DDM supported

Blank = Not applicable

CLOSE (Close File) Level 1.0 and Level 2.0

This command ends the logical connection between the source server and the data set accessed on the

target server. Once the target DDM begins running this command, it must close the data set regardless of

the reply message returned.

Distributed data management 171

Parameter name Source Target

DCLNAM Program defined Program defined

SHDPRC Not sent Supported

Note: Names are implementation defined.

CLRFIL (Clear File) Level 1.0 and Level 2.0

This command clears an existing file and re-initializes it as if it had just been created.

 Parameter name Source Target

FILNAM Target defined iSeries server

OVRDTA Not sent False only

Name formats are server defined.

CLSDRC (Close Directory) Level 2.0

This command closes a folder. This command is not sent by a source iSeries server.

 Parameter name Source Target

DCLNAM N/A Program defined

Names are implementation defined.

CPYFIL (Copy File) Level 2.0

This command copies one document to another document. If the new document does not exist, it might

be created. This command is not sent by a source iSeries server.

 Parameter name Source Target

ACCORD N/A Ignored

BYPDMG N/A Ignored

BYPINA N/A Ignored

CPYNEW1 N/A Supported

CPYOLD2 N/A Supported

DCLNAM3 N/A Program defined

FILNAM4 N/A iSeries name

NEWFILNM4 N/A iSeries name

1. CPYNDT only supported parameter value. All others are rejected with VALNSPRM.

2. CPYERR only supported parameter value. All others are rejected with VALNSPRM.

3. Names are implementation defined.

4. Name formats are server defined.

CRTAIF (Create Alternate Index File) Level 1.0 and Level 2.0

This command creates an alternate index file on the target server.

 Parameter name Source Target

BASFILNM1 Program defined iSeries name

DUPFILOP Not sent Supported

FILCLS2 Not sent Ignored

FILHDD Not sent Ignored

FILNAM3 Program defined iSeries name

FILSYS Not sent Ignored

KEYDEF4 Sent Supported

KEYDUPCP Sent Supported

172 IBM Systems - iSeries: Database Distributed data management

Parameter name Source Target

RTNCLS5 Not sent Supported

TITLE Sent Supported

1 Name formats are server defined.

2 Only ALTINDF is valid for CRTAIF command.

3 Name formats are server defined.

4 iSeries maximum key length is 2000.

5 Library QTEMP is used for temporaries.

CRTDIRF (Create Direct File) Level 1.0 and Level 2.0

This command creates a direct file on the target server.

 Parameter name Source Target

ALCINIEX Sent Ignored

DCLNAM1 Not sent Supported

DELCP2 Sent Supported

DFTREC Sent Supported

DFTRECOP Sent Supported

DUPFILOP Not sent Supported

FILCLS3 Not sent Ignored

FILEXNSZ4 Sent Supported

FILEXPDT5 Sent Supported

FILHDD Not sent Ignored

FILINISZ4 Sent Supported

FILMAXEX6 Sent Supported

FILNAM7 Program defined iSeries name

FILSYS Not sent Ignored

GETCP Sent Supported

INSCP8 Sent Supported

MODCP Sent Supported

RECLEN9 Sent Supported

RECLENCL Sent Supported

:row. RTNCLS10 Not sent

Supported

TITLE Sent Supported

1 Names are implementation defined.

2 Value must be TRUE unless DFTRECOP (DFTSRCIN) is specified.

3 Only DIRFIL is valid for CRTDIRF command.

4 iSeries default is 1,000 records.

5 iSeries default is *NONE.

6 iSeries default is 3.

7 Name formats are server defined.

8 Only TRUE is valid.

9 iSeries maximum record length = 2**15-2. (2 to the power of 15 minus 2)

10 Library QTEMP is used for temporaries.

Distributed data management 173

CRTDRC (Create Directory) Level 2.0

This command creates folders or libraries on the target server, based on the name received. This

command is not sent by a source iSeries server.

 Parameter name Source Target

DCLNAM1 N/A Program defined

DRCNAM2 N/A iSeries name

FILCLS3 N/A Ignored

FILPRT4 N/A Supported

RTNCLS N/A PRMFIL only

TITLE N/A Supported

1 Names are implementation defined.

2 Name formats are server defined.

3 Only DIRECTORY is valid for CRTDRC command.

4 FALSE only for libraries.

CRTKEYF (Create Keyed File) Level 1.0 and Level 2.0

This command creates a keyed file on the target server.

 Parameter name Source Target

ALCINIEX Sent Ignored

DCLNAM1 Not used Supported

DELCP Sent Supported

DFTREC Not sent Supported

DFTRECOP Not sent Supported

DUPFILOP Not sent Supported

FILCLS2 Not sent Ignored

FILEXNSZ3 Sent Supported

FILEXPDT4 Sent Supported

FILHDD Not sent Ignored

FILINISZ3 Sent Supported

FILMAXEX5 Sent Supported

FILNAM6 Program defined iSeries name

FILSYS Not sent Ignored

GETCP Sent Supported

INSCP Sent Supported

KEYDEF7 Sent Supported

KEYDUPCP Sent Supported

MODCP Sent Supported

RECLEN8 Sent Supported

RECLENCL Sent Supported

RTNCLS9 Not sent Supported

TITLE Sent Supported

174 IBM Systems - iSeries: Database Distributed data management

Parameter name Source Target

1 Names are implementation defined.

2 Only KEYFIL is valid for CRTKEYF command.

3 iSeries default is 1,000 records.

4 iSeries default is *NONE.

5 iSeries default is 3.

6 Name formats are server defined.

7 iSeries maximum key length is 2000.

8 iSeries maximum record length = 2**15-2. (2 to the power of 15 minus 2)

9 Library QTEMP is used for temporaries.

Note: When a CRTKEYF request is received by an iSeries target server, the new keyed file reuses deleted

records when it is created. If duplicate keys are allowed (KEYDUPCP=TRUE sent), the order of the

duplicate keys is not guaranteed.

CRTSEQF (Create Sequential File) Level 1.0 and Level 2.0

This command creates a sequential file on the target server.

 Parameter name Source Target

ALCINIEX Sent Ignored

DCLNAM1 Not sent Supported

DELCP Sent Supported

DFTREC Not sent Supported

DFTRECOP Not sent Supported

DUPFILOP Not sent Supported

FILCLS2 Not sent Ignored

FILEXNSZ3 Sent Supported

FILEXPDT4 Sent Supported

FILHDD Not sent Ignored

FILINISZ3 Sent Supported

FILMAXEX5 Sent Supported

FILNAM6 Program defined iSeries name

FILSYS Not sent Ignored

GETCP Sent Supported

INSCP Sent Supported

MODCP Sent Supported

RECLEN7 Sent Supported

RECLENCL Sent Supported

RTNCLS8 Not sent Supported

TITLE Sent Supported

Distributed data management 175

Parameter name Source Target

1 Names are implementation defined.

2 Only SEQFIL is valid for CRTSEQF command.

3 iSeries default is 1,000 records.

4 iSeries default is *NONE.

5 iSeries default is 3.

6 Name formats are server defined.

7 iSeries maximum record length = 2**15-2. (2 to the power of 15 minus 2.)

8 Library QTEMP is used for temporaries.

CRTSTRF (Create Stream File) Level 2.0

This command creates a stream file on the target server. This command is not sent by a source iSeries

server.

 Parameter name Source Target

ALCINIEX N/A Ignored

DCLNAM1 N/A Program defined

DTAFMT N/A Supported

DUPFILOP N/A Supported

FILCLS2 N/A Ignored

FILEXNSZ N/A Ignored

FILEXPDT N/A Ignored

FILHDD N/A Supported

FILINISZ N/A Ignored

FILMAXEX N/A Ignored

FILNAM3 N/A iSeries name

FILPRT N/A Supported

FILSYS N/A Supported

GETCP N/A Supported

MODCP N/A Supported

RTNCLS N/A Supported

TITLE N/A Supported

1 Names are implementation defined.

2 Only STRFIL is valid for CRTSTRF command.

3 Name formats are server defined.

DCLFIL (Declare File) Level 1.0 and Level 2.0

This command associates a declared name (DCLNAM) with a collection of object-oriented parameters in

the target agent. This collection is stored by the receiving agent for later use. At the time it is received,

the command does not affect objects currently opened by the agent. The primary access to the DCLFIL

collection is the DCLNAM parameter.

 Parameter name Source Target

AGNNAM1 Not sent Ignored

DCLNAM2 Program defined Program defined

DRCNAM3 Not sent iSeries name

FILEXNSZ4 Not sent Ignored

FILMAXEX4 Not sent Ignored

176 IBM Systems - iSeries: Database Distributed data management

Parameter name Source Target

FILNAM3 Program defined iSeries name

1 Only one agent on an iSeries server.

2 Names are implementation defined.

3 Name formats are server defined.

4 Create value is used.

DELDCL (Delete Declared Name) Level 1.0

This command deletes a declared agent name.

 Parameter name Source Target

AGNNAM Not sent Ignored

DCLNAM1 Program defined Program defined

1Names are implementation defined.

DELDRC (Delete Directory) Level 2.0

This command deletes a folder or a library. This command is not sent by a source iSeries server.

 Parameter name Source Target

DELDRCOP1 N/A DRCEMP or DRCANY

DRCNAM2 N/A iSeries name

OVRDTA N/A FALSE only

1 DRCALL not supported.

2 Name formats are server defined. Generic names are not supported.

DELFIL (Delete File) Level 1.0 and Level 2.0

This command deletes a file or document.

 Parameter name Source Target

FILNAM1 Target defined generics allowed iSeries name

OVRDTA2 Not sent FALSE only

SHDONL3 Not sent Supported

1 Name formats are server defined. Generic names are only allowed for documents.

2 The iSeries server does not support overwriting.

3 FALSE only for files.

DELREC (Delete Record) Level 1.0

This command deletes the record that currently has an update intent placed on it. It does this without

affecting the current cursor position.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

1Names are implementation defined.

Distributed data management 177

EXCSAT (Exchange Server Attributes) Level 1.0 and Level 2.0

This command exchanges information between servers, such as the server’s class name, architectural level

of each class of managers it supports, server’s product release level, server’s external name, and server’s

name.

 Parameter name Source Target

EXTNAM Sent Supported

MGRLVLS Sent Supported

SPVNAM Not sent Ignored

SRVCLSNM Sent Supported

SRVNAM Sent Supported

SRVRLSLV Sent Supported

The following reply object is returned:

EXCSATRD

Server attributes reply data

FILAL and FILATTRL (File Attribute List) Level 1.0, Level 2.0, and Level 3.0

This is a list of file attributes that DDM might request on an LSTFAT, OPEN, or GETDRCEN. Some

parameters are only valid for specific file types.

 Table 13. File attribute list

Parameter name Source Target

ACCMTHLS Requested Supported

BASFILNM1 Requested iSeries name

DELCP Requested Supported

DFTREC Requested Supported

DTAFMT Not requested Supported

EOFNBR Requested Supported

EOFOFF Not requested Supported

FILBYTCN Not requested Supported

FILCHGDT Requested Supported

FILCHGFL Not requested Supported

FILCLS Requested Supported

FILCRTDT Requested Supported

FILEXNCN Requested Supported

FILEXNSZ Requested Supported

FILEXPDT Requested Supported

FILHDD Not requested Supported

FILINISZ Requested Supported

FILMAXEX Requested Supported

FILNAM Requested Supported

FILPRT Not requested Supported

FILSIZ Requested Supported

FILSYS Not requested Supported

GETCP Requested Supported

INSCP Requested Supported

KEYDEF Requested Supported

KEYDUPCP Requested Supported

LSTACCDT Not requested Not supported

LSTARCDT Requested Supported

MAXARNB Requested Not supported

MODCP Requested Supported

RECLEN Requested Supported

178 IBM Systems - iSeries: Database Distributed data management

Table 13. File attribute list (continued)

Parameter name Source Target

RECLENCL Requested Supported

RTNCLS2 Not requested PRMFIL

SHDEXS Not requested Supported

STRSIZ Not requested Supported

TITLE3 Requested Supported

1 Name formats are server defined. Qualified name if FILCLS is ALTINDF.

2 Unless the library is QTEMP.

3 Maximum length of text is 50 characters for data file, 44 for document or folder.

FRCBFF (Force Buffer) Level 2.0

This command forces the data of the referred object to nonvolatile storage.

 Parameter name Source Target

DCLNAM1 Requested Program defined

1Names are implementation defined.

GETDRCEN (Get Directory Entries) Level 2.0

This command gets a list of folders, documents or both. This command is not sent by a source iSeries

server.

 Parameter name Source Target

BGNNAM1 N/A iSeries name

DCLNAM2 N/A Program defined

FILATTRL N/A Supported

FILCLS N/A DIRECTORY or STRFIL only

FILHDD N/A Supported

FILSYS N/A Supported

MAXGETCN N/A Supported

NAME1 N/A iSeries name

1 Name formats are server defined.

2 Names are implementation defined.

The following reply object is possible:

FILAL File attribute list

GETREC (Get Record at Cursor) Level 1.0

This command gets and returns the record indicated by the current cursor position.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

KEYVALFB Requested Supported

RECNBRFB Requested Supported

RTNINA2 As required Supported

UPDINT Not sent Supported

1 Names are implementation defined.

2 Application dependent.

Distributed data management 179

The following reply objects are possible:

RECAL

Record attribute list

RECINA

Inactive record (-1 not supported, maximum =2**15-2) (2 to the power of 15 minus 2.)

RECORD

Fixed length record (maximum length 2**15-2)

GETSTR (Get Substream) Level 2.0 and Level 3.0

This command gets stream data from a document. This command is not sent by a source iSeries server.

 Parameter name Source Target

DCLNAM1 N/A Program defined

STRLEN N/A Supported

STROFF N/A Supported

STRPOS N/A Supported

1Names are implementation defined.

INSRECEF (Insert at EOF) Level 1.0

This command inserts a record at the end of the file.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

KEYVALFB Requested Supported

RECCNT2 As required Supported

RECNBRFB Requested Supported

RLSUPD Always FALSE Supported

UPDCSR Not sent Supported

1 Names are implementation defined.

2 Application dependent.

The following command objects are possible:

RECINA

Inactive record (-1 not supported, maximum = 2**15-2) (2 to the power of 15 minus 2)

RECORD

Fixed length record (maximum length 2**15-2)

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECNBR

Record number

INSRECKY (Insert Record by Key Value) Level 1.0

This command inserts one or more records according to their key values wherever there is space

available in the file.

180 IBM Systems - iSeries: Database Distributed data management

Parameter name Source Target

DCLNAM1 Program defined Program defined

RECCNT As required Supported

RECNBRFB Requested Supported

RLSUPD Always FALSE Supported

UPDCSR Not sent Supported

1Names are implementation defined.

The following command object is possible:

RECORD

Fixed length record (maximum length 2**15-2) (2 to the power of 15 minus 2)

Because the iSeries server does not support variable length records, only the following reply object is

possible:

RECNBR

Record number

INSRECNB (Insert Record at Number) Level 1.0

This command inserts one or more records at the position specified by the record number parameter.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

KEYVALFB Requested Supported

RECCNT As required Supported

RECNBR Sent Supported

UPDCSR Not sent Supported

1Names are implementation defined.

The following command objects are possible:

RECINA

Inactive record (-1 not supported, maximum = 2**15-2) (2 to the power of 15 minus 2)

RECORD

Fixed length record (maximum length 2**15-2)

The following reply object is possible:

KEYVAL

Key value

LCKFIL (Lock File) Level 1.0 and Level 2.0

This command locks the file for subsequent use by the requester.

 Parameter name Source Target

FILNAM1 Target name iSeries name

LCKMGRNM Not used Ignored

RQSFILLK Sent Supported

WAIT Sent Supported

1Name formats are server defined.

LCKSTR (Lock Substream) Level 2.0 and Level 3.0

This command locks a stream file substream. This command is not sent by a source iSeries server.

Distributed data management 181

Parameter name Source Target

DCLNAM1 N/A Program defined

RQSSTRLK N/A EXCSTRLK and SHRSTRLK only

STRLOC N/A Supported

STROFF N/A Supported

WAIT2 N/A Supported

1 Names are implementation defined.

2 The WAIT parameter is neither rejected nor performed.

LODRECF (Load Record File) Level 1.0 and Level 2.0

This command puts a whole record file on the target server.

 Parameter name Source Target

FILNAM1 Sent iSeries name

1Name formats are server defined.

The following command objects are possible:

RECAL

Record attribute list

RECCNT

Record count

RECINA

Inactive record (-1 not supported, maximum = 2**15-2) (2 to the power of 15 minus 2)

RECORD

Fixed length record (maximum length 2**15-2)

LODSTRF (Load Stream File) Level 2.0

This command sends a whole stream file from the source server to the target server. This command is

sent by a source iSeries server when using the copy stream file HPS API.

 Parameter name Source Target

FILNAM1 Sent iSeries name

1Name formats are server defined.

The following command objects are possible:

STREAM

Stream

STRSIZ

Stream size
 Related reference

 “Hierarchical file system API support for DDM” on page 40
The hierarchical file system (HFS) APIs and the functions that they support are part of the i5/OS

operating system.

LSTFAT (List File Attributes) Level 1.0, Level 2.0, and Level 3.0

This command retrieves selected attributes of a file, document, or folder.

182 IBM Systems - iSeries: Database Distributed data management

Parameter name Source Target

FILATTRL Sent Supported

FILNAM1 Target name iSeries name

DCLNAM2 Not sent Supported

1 Name formats are server defined.

2 Names are implementation defined.

The following reply object is possible:

FILAL List file attributes reply data

MODREC (Modify Record with Update Intent) Level 1.0

This command changes the record that currently has update intent placed on it without affecting the

current cursor position.

 Parameter name Source Target

ALWMODKY Sent Supported

DCLNAM1 Sent Program defined

1Names are implementation defined.

The following command object is possible:

RECORD

Fixed length record (maximum length 2**15-2) (2 to the power of 15 minus 2)

OPEN (Open File) Level 1.0 and Level 2.0

This command establishes a logical connection between the using program on the source server and the

object on the target server.

 Parameter name Source Target

ACCINTLS Sent Supported

ACCMTHCL Sent Supported

DCLNAM1 Program defined Program defined

FILATTRL Not sent Supported

FILSHR Sent Supported

PRPSHD Not sent Supported for stream files only

1Names are implementation defined.

OPNDRC (Open Directory) Level 2.0

This command opens a folder on the target server. This command is not sent by a source iSeries server.

 Parameter name Source Target

ACCMTHCL N/A DRCAM only

DCLNAM1 N/A Program defined

1Names are implementation defined.

PUTSTR (Put Substream) Level 2.0 and Level 3.0

This command puts stream data into a document. This command is not sent by a source iSeries server.

 Parameter name Source Target

DCLNAM1 N/A Program defined

Distributed data management 183

Parameter name Source Target

STROFF N/A Supported

STRPOS N/A Supported

1Names are implementation defined.

The following command object is possible:

STREAM

Stream

QRYCD (Query Current Directory) Level 2.0

This command returns the current directory. This command is not sent by a source iSeries server.

 Parameter name Source Target

AGNNAM N/A Ignored

The following reply object is possible:

DRCNAM

Directory name

Note: A directory name length of zero indicates that the root directory is the current directory.

QRYSPC (Query Space) Level 2.0

This command returns the amount of space available to a user. This command is not sent by a source

iSeries server.

 Parameter name Source Target

AGNNAM N/A Ignored

The following reply object is possible:

QRYSPCRD

Query space reply data

RNMDRC (Rename Directory) Level 2.0

This command renames a folder or database library. The command does not support moving folders, and

is not sent by a source iSeries server.

 Parameter name Source Target

DRCNAM N/A iSeries name

NEWDRCNM N/A iSeries name

Note: Name formats are server defined. Generic names are not allowed.

RNMFIL (Rename File) Level 1.0 and Level 2.0

This command changes the name of an existing database file or document and can also be used for

moving documents.

 Parameter name Source Target

FILNAM1 Sent iSeries name

NEWFILNM2 Sent iSeries name

184 IBM Systems - iSeries: Database Distributed data management

Parameter name Source Target

1 Name formats are server defined. Generic names are allowed for documents only.

2 Name formats are server defined.

SBMSYSCMD (Submit server Command) Level 4.0

This command submits a server command, in the target control language syntax, to the target server.

 Parameter name Source Target

SYSCMD1 Sent Supported

1Command string to be run.

SETBOF (Set Cursor to Beginning of File) Level 1.0

This command sets the cursor to the beginning-of-file position of the file.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

1Names are implementation defined.

SETEOF (Set Cursor to End of File) Level 1.0

This command sets the cursor to the end-of-file position of the file.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

1Names are implementation defined.

SETFRS (Set Cursor to First Record) Level 1.0

This command sets the cursor to the first record of the file.

 Parameter name Source Target

BYPINA1 As required Supported

DCLNAM2 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECNBRFB Requested Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Application dependent.

2 Names are implementation defined.

3 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECINA

Inactive record (-1 not supported, maximum = 2**15-2) (2 to the power of 15 minus 2)

Distributed data management 185

RECNBR

Record number

RECORD

Record

SETKEY (Set Cursor by Key) Level 1.0

This command positions the cursor based on the key value supplied and the relational operator specified

for RELOPR.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

HLDCSR Requested Supported

KEYVAL2 Max = 2000 Max = 2000

KEYVALFB Requested Supported

RECNBRFB Requested Supported

RELOPR Sent Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Names are implementation defined.

2 Maximum key size allowed by an iSeries server.

3 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECNBR

Record number

RECORD

Record

SETKEYFR (Set Cursor to First Record in Key Sequence) Level 1.0

This command sets the cursor to the first record in the key sequence.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECNBRFB Requested Supported

RTNREC2 Sent Supported

UPDINT2 Sent Supported

1 Names are implementation defined.

2 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

186 IBM Systems - iSeries: Database Distributed data management

RECAL

Record attribute list

RECNBR

Record number

RECORD

Record

SETKEYLM (Set Key Limits) Level 1.0

This command sets the limits of the key values for subsequent SETKEYNX and SETNXTKE commands.

This command is not sent by a source iSeries server.

 Parameter name Source Target

DCLNAM1 N/A Program defined

KEYHLM2 N/A Supported

KEYLLM2 N/A Supported

1 Names are implementation defined.

2 Application dependent.

SETKEYLS (Set Cursor to Last Record in Key Sequence) Level 1.0

This command sets the cursor to the last record of the file in key sequence order.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECNBRFB Requested Supported

RTNREC2 Sent Supported

UPDINT2 Sent Supported

1 Names are implementation defined.

2 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECNBR

Record number

RECORD

Record

SETKEYNX (Set Cursor to Next Record in Key Sequence) Level 1.0

This command sets the cursor to the next record of the file in the key sequence order following the record

currently indicated by the cursor.

 Parameter name Source Target

BYPDMG1 Not sent Supported

DCLNAM2 Program defined Program defined

HLDCSR Requested Supported

Distributed data management 187

Parameter name Source Target

KEYVALFB Requested Supported

RECCNT1 As required Supported

RECNBRFB Requested Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Application dependent.

2 Names are implementation defined.

3 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECNBR

Record number

RECORD

Record

SETKEYPR (Set Cursor to Previous Record in Key Sequence) Level 1.0

This command sets the cursor to the previous record of the file in the key sequence order preceding the

record currently indicated by the cursor.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECCNT2 As required Supported

RECNBRFB Requested Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Names are implementation defined.

2 Application dependent.

3 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECNBR

Record number

RECORD

Record

188 IBM Systems - iSeries: Database Distributed data management

SETLST (Set Cursor to Last Record) Level 1.0

This command sets the cursor to the last record of the file.

 Parameter name Source Target

BYPINA1 As required Supported

DCLNAM2 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECNBRFB Requested Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Application dependent.

2 Names are implementation defined.

3 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECINA

Inactive record (-1 not supported, maximum = 2**15-2)

RECNBR

Record number

RECORD

Record

SETMNS (Set Cursor Minus) Level 1.0

This command sets the cursor to the record number of the file indicated by the cursor minus the number

of record positions specified by CSRDSP.

 Parameter name Source Target

ALWINA1 As required Supported

CSRDSP1 Sent Supported

DCLNAM2 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECNBRFB Requested Supported

RTNINA1 As required Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Application dependent.

2 Names are implementation defined.

3 iSeries server preferred implementation.

The following reply objects are possible:

Distributed data management 189

KEYVAL

Key value

RECAL

Record attribute list

RECINA

Inactive record (-1 not supported, maximum = 2**15-2) (2 to the power of 15 minus 2)

RECNBR

Record number

RECORD

Record

SETNBR (Set Cursor to Record Number) Level 1.0

This command sets the cursor to the record of the file indicated by the record number specified by

RECNBR.

 Parameter name Source Target

ALWINA1 As required Supported

DCLNAM2 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECNBR Sent Supported

RTNINA1 As required Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Application dependent.

2 Names are implementation defined.

3 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECINA

Inactive record (-1 not supported, maximum = 2**15-2) (2 to the power of 15 minus 2)

RECORD

Record

SETNXT (Set Cursor to Next Number) Level 1.0

This command sets the cursor to the next record of the file with a record number one greater than the

current cursor position.

 Parameter name Source Target

BYPDMG1 Not sent Supported

BYPINA1 As required Supported

DCLNAM2 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECCNT1 As required Supported

190 IBM Systems - iSeries: Database Distributed data management

Parameter name Source Target

RECNBRFB1 As required Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Application dependent.

2 Names are implementation defined.

3 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECINA

Inactive record (-1 not supported, maximum = 2**15-2) (2 to the power of 15 minus 2)

RECNBR

Record number

RECORD

Record

SETNXTKE (Set Cursor to Next Record in Key Sequence with a Key Equal to Value

Specified) Level 1.0

This command positions the cursor to the next record in the key sequence if the key field of that record

has a value equal to the value specified in the KEYVAL parameter. This command is not sent by a source

iSeries server.

 Parameter name Source Target

DCLNAM1 N/A Program defined

HLDCSR N/A Supported

KEYVAL2 N/A Max = 2000

KEYVALFB N/A Supported

RECNBRFB N/A Supported

RTNREC3 N/A Supported

UPDINT3 N/A Supported

1 Names are implementation defined.

2 Maximum key size allowed by an iSeries server.

3 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECNBR

Record number

Distributed data management 191

RECORD

Record

SETPLS (Set Cursor Plus) Level 1.0

This command sets the cursor to the record number of the file indicated by the cursor plus the integer

number of records specified by CSRDSP.

 Parameter name Source Target

ALWINA1 As required Supported

CSRDSP1 Sent Supported

DCLNAM2 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECNBRFB Requested Supported

RTNINA1 As required Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Application dependent.

2 Names are implementation defined.

3 iSeries server preferred implementation.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECINA

Inactive record (-1 not supported, maximum = 2**15-2) (2 to the power of 15 minus 2)

RECNBR

Record number

RECORD

Record

SETPRV (Set Cursor to Previous Record) Level 1.0

This command sets the cursor to the record of the file with a record number one less than the current

cursor position.

 Parameter name Source Target

BYPINA1 As required Supported

DCLNAM2 Program defined Program defined

HLDCSR Requested Supported

KEYVALFB Requested Supported

RECCNT1 As required Supported

RECNBRFB Requested Supported

RTNREC3 Sent Supported

UPDINT3 Sent Supported

1 Application dependent.

2 Names are implementation defined.

3 iSeries server preferred implementation.

192 IBM Systems - iSeries: Database Distributed data management

The following reply objects are possible:

RECAL

Record attribute list

RECINA

Inactive record (-1 not supported, maximum = 2 **15-2)

RECNBR

Record number

RECORD

Record

SETUPDKY (Set Update Intent by Key Value) Level 1.0

This command places an update intent on the record that has a key value equal to the key value specified

by KEYVAL.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

KEYVAL2 Max = 2000 Max = 2000

KEYVALFB Requested Supported

RECNBRFB Requested Supported

RTNREC3 Sent Supported

1 Names are implementation defined.

2 Maximum key size allowed by an iSeries server.

3 Only RTNREC(FALSE) is supported.

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECNBR

Record number

RECORD

Record

SETUPDNB (Set Update Intent by Record Number) Level 1.0

This command places an update intent on the record of the file indicated by the record number specified

by RECNBR.

 Parameter name Source Target

ALWINA1 As required Supported

DCLNAM2 Program defined Program defined

KEYVALFB Requested Supported

RECNBR Sent Supported

RTNINA1 As required Supported

RTNREC3 Sent Supported

1 Application dependent.

2 Names are implementation defined.

3 Only RTNREC(FALSE) is supported.

Distributed data management 193

The following reply objects are possible:

KEYVAL

Key value

RECAL

Record attribute list

RECINA

Inactive record (-1 not supported, maximum = 2**15-2) (2 to the power of 15 minus 2)

RECORD

Record

ULDRECF (Unload Record File) Level 1.0

This command sends records from a target record file to the source.

 Parameter name Source Target

ACCDORD1 Sent Supported

BYPDMG1 Sent Supported

FILNAM2 Sent iSeries name

RTNINA1 Sent Supported

1 Application dependent.

2 Name formats are server defined.

The following reply objects are possible:

RECAL

Record attribute list

RECCNT

Record count

RECINA

Inactive record (-1 not supported, maximum = 2 **15-2) (2 to the power of 15 minus 2)

RECORD

Record

ULDSTRF (Unload Stream File) Level 2.0

This command sends a document from the target to the source. This command is sent by a source iSeries

server when using the Copy Stream File (QHFCPYSF) HFS API.

 Parameter name Source Target

BYPDMG Not sent FALSE only

FILNAM1 Sent iSeries name

STRORD Not sent Supported

1Name formats are server defined.

The following reply objects are possible:

STREAM

Stream

STRPOS

Stream position

194 IBM Systems - iSeries: Database Distributed data management

STRSIZ

Stream size
 Related reference

 “Hierarchical file system API support for DDM” on page 40
The hierarchical file system (HFS) APIs and the functions that they support are part of the i5/OS

operating system.

UNLFIL (Unlock File) Level 1.0 and Level 2.0

This command releases explicit file locks held by the requester on the file.

 Parameter name Source Target

FILNAM1 Target name iSeries name

LCKMGRNM Not sent Ignored

RLSFILLK Sent Supported

1Name formats are server defined.

UNLIMPLK (Unlock Implicit Record Lock) Level 1.0

This command releases all implicit record locks currently held by the cursor.

 Parameter name Source Target

DCLNAM1 Program defined Program defined

1Names are implementation defined.

UNLSTR (Unlock Substreams) Level 2.0 and Level 3.0

This command unlocks a stream file substream. This command is not sent by a source iSeries server.

 Parameter name Source Target

DCLNAM1 N/A Program defined

STRLOC N/A Supported

1Names are implementation defined.

User profile authority

The user profile associated with target iSeries server jobs must be authorized to the equivalent CL

commands before the DDM command can be processed. The target job’s user profile must be authorized

to use the CL commands listed here before DDM requests can be processed.

 Table 14. User profile authority CL commands

DDM command

received

DDM command description Object type Authorized CL

command

CHGDRC Change Current Directory FLR NONE

CHGFAT Change File Attributes PFILE LF DOC/FLR CHGPF CHGLF

NONE

CLOSE Close File FILE DOC NONE

1 NONE

CLRFIL Clear File FILE DOC NONE NONE

CLSDRC Close Directory FLR NONE

CPYFIL Copy File DOC NONE

CRTAIF Create Alternate Index File LF CRTLF

CRTDIRF Create Direct File PF CRTPF

CRTKEYF Create Key File PF CRTPF

CRTSEQF Create Sequential File PF CRTPF

CRTSTRF Create Stream File DOC NONE

CRTDRC Create Directory LIB FLR CRTLIB CRTFLR

Distributed data management 195

Table 14. User profile authority CL commands (continued)

DDM command

received

DDM command description Object type Authorized CL

command

DELFIL Delete File FILE DOC DLTF NONE

DELDRC Delete Directory LIB FLR DLTLIB NONE

GETDRCEN Get Directory Entry DOC/FLR NONE

LCKFIL Lock File FILE ALCOBJ

LODRECF Load (Put) Records to File FILE NONE

2

LSTFAT List File Attributes FILE DOC/FLR NONE

3 NONE

OPEN Open File FILE DOC NONE

1 NONE

OPENDRC Open Directory FLR NONE

QRYSPC Query Space Available to User USRPRF NONE

4

RNMDRC Rename Directory FLR LIB NONE RNMOBJ

RNMFIL Rename File FILE DOC MBR RNMOBJ NONE

RNMM

UNLFIL Unlock File FILE NONE

5

ULDRECF Unload Records From File FILE NONE

2

1 Authorization to a command is not verified because there are means other than using a command interface

by which iSeries users can open and close files.

2 Command authorization is not verified because there is not a direct, one-to-one mapping between a CL

command and the DDM LODRECF/ULDRECF command.

3 Authorization to the DSPFD and DSPFFD commands is not verified because it cannot be determined which

command should be verified. In addition, the conditions under which the DDM command was issued by

the source server are not known.

4 The space available to a user can be obtained by issuing the DSPUSRPRF command, but this is only a

small piece of the data available through the use of this command.

5 Authorization to the CL DLCOBJ command is not checked because if the remote user was able to allocate

files, DDM must be able to deallocate them.

The following table is an explanation of the object type codes used in the preceding table.

 Table 15. Object type codes definition

Object type Object type definition

DOC Document

FLR Folder

PF Physical file

LF Logical file

LIB Library

MBR Member

SRCF Source physical file

USRPRF User profile

iSeries server-to-CICS considerations with DDM

This topic describes programming considerations for accessing CICS remote files with i5/OS DDM.

Note: A System/370™ host must have installed CICS/OS/VS Version 1.7 or later and CICS/DDM

Version 1.1.

196 IBM Systems - iSeries: Database Distributed data management

iSeries languages, utilities, and licensed programs

The iSeries languages, utilities, and licensed programs in this topic can access remote CICS files.

v Programs written in the following languages on an iSeries server can access remote CICS files:

ILE C programming language

See “ILE C considerations” on page 204.

CL See “iSeries CL considerations” on page 198.

ILE COBOL programming language

See “ILE COBOL considerations” on page 202.

 See “PL/I considerations” on page 200.

ILE RPG programming language

See “ILE RPG considerations” on page 205.
v Programs written in BASIC might cause results that cannot be predicted when accessing remote CICS

files.

v iSeries Query can access the remote entry sequence data set (ESDS), relative record data set (RRDS),

and key sequence data set (KSDS). However, iSeries Query cannot access virtual storage access method

(VSAM) files through DDM.

v The licensed program iSeries Access Family might cause results that cannot be predicted when

accessing remote CICS files.

Note: Some of the high-level languages provide access to the server database I/O feedback area. When

accessing a remote VSAM RRDS, this area will contain the relative record number. However, when

accessing other types of VSAM data sets, the relative record number is not known and a value of

-1 is returned as the relative record number.

Additional considerations might apply when accessing CICS files which are to be read or written by a

System/370 host due to the way a System/370 host stores data. For example, the System/370 host

representation of a floating point number is different from the iSeries server representation of a floating

point number.

CRTDDMF (Create DDM File) considerations

For applications running on an iSeries server to access remote files, the programmer must use the

CRTDDMF command to create an object called a DDM file.

The ACCMTH parameter of this command shows which DDM access method should be used when

opening the remote file. If *RMTFILE is used, i5/OS DDM selects an access method that is compatible

with:

v The type of VSAM data set being accessed

v The access methods supported by CICS/DDM for the VSAM data set

The table below shows how the possible values for the ACCMTH parameter correspond to VSAM data

sets.

 Table 16. ACCMTH parameter of iSeries CRTDDMF command

ACCMTH parameter

values

VSAM data set organization

ESDS RRDS KSDS VSAM Path

*ARRIVAL R R E E

*KEYED E E R R

*BOTH E O O O

*RANDOM E O O O

Distributed data management 197

Table 16. ACCMTH parameter of iSeries CRTDDMF command (continued)

ACCMTH parameter

values

VSAM data set organization

ESDS RRDS KSDS VSAM Path

*SEQUENTIAL R O O O

*COMBINED E O E E

Where:

R Shows the parameter is required for accessing the VSAM data set.

O Shows the parameter is optional for accessing the VSAM data set.

E Shows the parameter causes an i5/OS message.

To improve performance, the iSeries user might want to supply values other than *RMTFILE for the

ACCMTH parameter. To avoid server messages, use the values specified in Table 16 on page 197 when

accessing remote VSAM data sets.

The value specified for the RMTFILE file parameter must be the same as the value specified for the

DATASET parameter of the CICS DFHFCT macro when the VSAM data set is defined to the CICS

system.

iSeries CL considerations

Besides the information in this topic collection, consider these topics when using iSeries CL commands to

access VSAM data sets on a remote CICS system.

Note: Commands that do not appear in the following topics have no considerations besides those stated

in this topic collection.

ALCOBJ (Allocate Object):

Unless the CICS system programmer replaces the CICS/DDM-supplied exclusive file lock program with a

special version of the program, a lock condition value of *SHRRD or *SHRUPD must be used when using

the Allocate Object (ALCOBJ) command to allocate a remote VSAM data set. All other lock condition

values result in a server message on the iSeries server.

CLRPFM (Clear Physical File Member):

The Clear Physical File Member (CLRPFM) command cannot clear a VSAM data set on a remote CICS

system.

CPYF (Copy File):

The Copy File (CPYF) command can access remote VSAM data sets defined to a CICS system.

 However, listed here is what you need to pay attention to:

v When the TOFILE parameter is a remote VSAM data set:

– The CRTFILE parameter must have a value of *NO.

– The MBROPT parameter must have a value of *ADD.

– The FMTOPT parameter must have a value of *NOCHK.
v When the TOFILE parameter is a remote VSAM ESDS or KSDS, the COMPRESS parameter must have

a value of *YES.

CPYTOTAP, CPYFRMTAP and CPYSPLF commands:

198 IBM Systems - iSeries: Database Distributed data management

The Copy to Tape (CPYTOTAP), and the Copy from Tape (CPYFRMTAP) commands access remote

VSAM data sets defined to a CICS system.

 However, *ADD must be used for the MBROPT parameter. The Copy Spool File (CPYSPLF) command

cannot access remote VSAM data sets.

DLCOBJ (Deallocate Object):

The Deallocate Object (DLCOBJ) command can release any lock successfully acquired for a remote VSAM

data set.

DSPFD and DSPFFD commands:

The Display File Description (DSPFD) and Display File Field Description (DSPFFD) commands can

display information about a remote VSAM data set.

 However, the information for many of the fields is not available to CICS/DDM and is not returned to

i5/OS DDM. Refer to the following table for the fields that CICS/DDM does not return:

 Table 17. CICS/DDM file and file field descriptions

Field Value

Creation date Zeros

Current number of records Zeros

Data space in bytes Zeros

File level identifier Zeros

File text description Zeros

Format level identifier Blanks

Last change date and time Zeros

Member creation date Zeros

Member expiration date *NONE

Member level identifier Zeros

Member size *NOMAX

Number of deleted records Zeros

Text description Blanks

Total deleted records Zeros

Total member size Zeros

Total records Zeros

Note: The values displayed do not represent actual data about the file. They act as default values for the information

that CICS/DDM does not return.

When the type of file is logical, the information displayed shows that unique keys are not required. In

fact, CICS/DDM does not know whether unique keys are required or not.

Sometimes, the iSeries user needs to know the type of VSAM data set being accessed. By using the

following information, which is displayed by the DSPFD command, it is possible for the iSeries user to

make this decision:

v If the type of file is logical, the VSAM data set is a VSAM path.

v If the type of file is physical and the access path is keyed, the VSAM data set is KSDS.

v In all other cases, the VSAM data set is either an RRDS or an ESDS. If the iSeries user must know

whether it is an RRDS or an ESDS, the CICS system programmer should be contacted.

DSPPFM (Display Physical File Member):

Distributed data management 199

The Display Physical File Member (DSPPFM) command can be used to access remote relative record data

set (RRDS). It does not work for other types of VSAM data sets.

OPNDBF (Open Database File):

The Open Database File (OPNDBF) command can open a remote VSAM data set.

 However, a server message is created on the iSeries server if *ARRIVAL is used for the ACCPTH

parameter and the remote data set is a VSAM KSDS or a VSAM path.

OVRDBF (Override with Database File):

The Override with Database File (OVRDBF) command can override a local database file with a remote

VSAM data set.

 However, the following items must be considered:

v A POSITION value of *RRN works when the remote VSAM data set is an RRDS. For all other types of

VSAM data sets, *RRN causes a server message on the iSeries server.

v A POSITION value of *KEYB or *KEYBE causes a server message on the iSeries server when the

remote file is a VSAM path.

v Unless the CICS system programmer replaces the CICS/DDM-supplied exclusive file lock program, the

RCDFMTLCK parameter must have a lock condition value of *SHRRD or *SHRUPD. All other lock

condition values result in a server message on the iSeries server.

v CICS/DDM does not return the actual expiration date of the file to i5/OS DDM. Instead, it returns a

special value that indicates the expiration date is not known. This is true even if the EXPCHK

parameter has a value of *YES.

RCVNETF (Receive Network File):

The Receive Network File (RCVNETF) command can access a VSAM data set defined to a remote CICS

system. However, the MBROPT parameter must have a value of *ADD.

Language considerations for iSeries server and CICS

iSeries application programmers using ILE COBOL, ILE C, iSeries System/36-Compatible RPG II, or ILE

RPG languages should be aware of the information in these topics.

PL/I considerations

These topics summarize the limitations that exist when using PL/I to access remote VSAM data sets from

an iSeries server. These limitations should be considered in addition to those already stated in this topic

collection.

PL/I open file requests:

The i5/OS DDM user can access remote CICS files with PL/I programs.

 When opening the file with the RECORD file attribute, the program must use the file attributes specified

in the table below. By noting the values that appear in this table, you can determine the difference

between accessing an iSeries database file and a remote VSAM data set.

Note: Remote files can also be opened with the PL/I STREAM file attribute. However, if the STREAM

file attribute is used to open a VSAM KSDS, a server message occurs. This happens because

records in a VSAM KSDS cannot be processed in arrival sequence.

200 IBM Systems - iSeries: Database Distributed data management

Unless the CICS system has replaced the CICS/DDM exclusive file locking program, you cannot use the

EXCL and EXCLRD file locking options for the ENVIRONMENT parameter when opening a remote

VSAM data set.

 Table 18. PL/I file attributes

PL/I file attributes

VSAM data set organization

ESDS RRDS KSDS VSAM Path

SEQUENTIAL R O O O

DIRECT E O O O

SEQL KEYED E O O O

INPUT O O O O

OUTPUT O O O E

UPDATE O O E E

CONSECUTIVE R R E E

INDEXED – – R R

Where:

R Shows the attribute is required for accessing the VSAM data set.

O Shows the attribute is optional for accessing the VSAM data set.

E Shows the attribute is allowed by PL/I but the open fails when accessing the VSAM data set.

– Shows the option is valid for keyed files only.

 Related reference

 “PL/I input/output requests”

This topic discusses the types of PL/I input/output requests and their restrictions.

PL/I input/output requests:

This topic discusses the types of PL/I input/output requests and their restrictions.

 Read requests

v A KEYSEARCH parameter value of BEFORE or EQLBFR is not supported by CICS/DDM when

accessing a VSAM path. However, these parameter values are supported when accessing a VSAM

KSDS.

v A POSITION parameter value of PREVIOUS and LAST is not supported when accessing a VSAM path.

However, these parameter values are supported when accessing a VSAM KSDS.

v Because the DIRECT or SEQUENTIAL KEYED attributes cannot be used to open a VSAM ESDS, it is

not possible to access records by relative record number or to have the relative record number returned

by using the KEY and KEYTO parameters.

v Because VSAM KSDS and VSAM alternate indexes are always defined as a single key field, the

NBRKEYFLDS parameter should not be used.

Write requests

v The KEYFROM parameter does not work when writing a record to a VSAM RRDS.

v The WRITE request does not work when writing a record to VSAM KSDS that already contains a

record with the same key value.

v Because the OUTPUT or UPDATE file attribute cannot be used to open a VSAM path, it is not possible

to write records to a VSAM path. Instead, the application program must write the record by using the

base data set of the VSAM path.

Distributed data management 201

Rewrite requests

v The REWRITE does not work if rewriting a record of a VSAM KSDS when the key value of the record

is changed.

v Because the UPDATE file attribute cannot be used to open a VSAM path, it is not possible to rewrite

records in a VSAM path. Instead, the application program must rewrite the record by using the base

data set of the VSAM path.

Delete requests

v The DELETE does not work when deleting the record of a VSAM ESDS.

v Because the UPDATE file attribute cannot be used to open a VSAM path, it is not possible to delete

records in a VSAM path. Instead, the application program must delete the records by using the base

data set of the VSAM path. However, if the base data set of the VSAM path is a VSAM ESDS, the

DELETE does not work.
 Related reference

 “PL/I open file requests” on page 200
The i5/OS DDM user can access remote CICS files with PL/I programs.

ILE COBOL considerations

These topics summarize the limitations that exist when using the ILE COBOL programming language to

access remote VSAM data sets from an iSeries server.

Unless otherwise stated, these limitations apply to both the System/36 and the iSeries server. These

limitations are in addition to those already stated in this topic collection.

ILE COBOL SELECT clause:

iSeries users can access remote CICS files with the ILE COBOL programming language.

 However, the ILE COBOL SELECT clause must use the file organizations and access methods specified in

the following table.

 Table 19. ILE COBOL file organizations and access methods

ILE COBOL

programming

language VSAM data set organization

Program-given

access methods ESDS RRDS KSDS VSAM Path

Program-given

organization

Sequential Sequential X X E E

Relative

 Sequential

Random

Dynamic

 E

E

E

 X

X

X

 E

E

E

 E

E

E

Indexed

 Sequential

Random

Dynamic

 –

–

–

 –

–

–

 X

X

X

 X

X

X

202 IBM Systems - iSeries: Database Distributed data management

Table 19. ILE COBOL file organizations and access methods (continued)

ILE COBOL

programming

language VSAM data set organization

Program-given

access methods ESDS RRDS KSDS VSAM Path

Program-given

organization

Where:

X Shows the access method is allowed.

E Shows that ILE COBOL programming language allows the access method but that the open fails when

accessing the VSAM data set. An iSeries message is created.

– Shows the option is never valid for nonkeyed files. An iSeries message occurs whenever indexed file

organization is selected for any nonkeyed file. This is true even when the file is a local file.
Notes:

1. When accessing a VSAM path, the WITH DUPLICATE phrase should be used.

2. When accessing a VSAM KSDS, the WITH DUPLICATE phrase should not be used.

ILE COBOL statements:

These topics describe considerations you should be aware of when using ILE COBOL statements to access

remote VSAM data sets.

 ILE COBOL OPEN statement

When accessing remote CICS files, the ILE COBOL OPEN statement must use the open modes that are

specified in the following table.

 Table 20. Use ILE COBOL programming language to open a CICS file

ILE COBOL open

mode

VSAM data set organization

ESDS RRDS KSDS VSAM Path

Input X X X X

Output E E E E

Input/Output X X X E

Extend X – – –

Where:

X Shows the open mode is allowed.

E Shows the open mode is allowed by ILE COBOL programming language but that the open fails when

accessing the VSAM data set. A message occurs on an iSeries server.

– Shows the open mode is not applicable.

ILE COBOL READ statement

v The PRIOR phrase and the LAST phrase are not supported by CICS/DDM when accessing a VSAM

path. It is supported when accessing a VSAM KSDS.

v Because the RELATIVE file organization can only be used to open a VSAM RRDS, it is not possible to

access records by relative record number or to have the relative record number returned from the

remote file unless the remote file is a VSAM RRDS.

Distributed data management 203

ILE COBOL WRITE statement

v The WRITE statement does not work when the ILE COBOL program is running on an iSeries server

and the file was opened with a RELATIVE file organization.

v The WRITE statement does not work when writing a record to a VSAM KSDS and the data set already

contains a record with the same key value.

v Because the input/output and output open modes cannot be used to open a VSAM path, it is not

possible to write records to a VSAM path. Instead, the application program must write the record by

using the base data set of the VSAM path.

ILE COBOL REWRITE statement

v The REWRITE statement does not work when rewriting the record of a VSAM KSDS and the key value

of the record is changed.

v Because the input/output open mode cannot be used to open a VSAM path, it is not possible to

rewrite records in a VSAM path. Instead, the application program must rewrite the record by using the

base data set of the VSAM path.

ILE COBOL START statement

v The START statement does work if the open mode is INPUT.

ILE COBOL DELETE statement

v Because the sequential file organization must be used to open a VSAM ESDS, it is not possible to

delete records in a VSAM ESDS.

v Because the input/output open mode cannot be used to open a VSAM path, it is not possible to delete

records in a VSAM path. Instead, the application program must delete the record by using the base

data set of the VSAM path. However, if the base data set of the VSAM path is a VSAM ESDS, the

DELETE does not work.

ILE C considerations

These topics summarize considerations for using the ILE C programming language to access remote

VSAM data sets from an iSeries server.

ILE C open considerations

Because ILE C programming language supports only sequential I/O, open operations will fail if KSDS or

VSAM paths are opened.

Open mode considerations

This topic shows the open mode considerations when using ILE C programming language.

 Table 21. Use ILE C programming language to open a CICS file

ILE C open mode

VSAM data set organization

 ESDS RRDS KSDS VSAM Path

r, rb X X X X

w, wb E E E E

w+, wb+, w+b, a+, ab+, a+b, r+, rb+, r+b, a, ab X X X E

a, ab X — — —

204 IBM Systems - iSeries: Database Distributed data management

Table 21. Use ILE C programming language to open a CICS file (continued)

ILE C open mode

VSAM data set organization

 ESDS RRDS KSDS VSAM Path

Where:

X Open mode is allowed.

E Open mode is allowed by ILE C programming language, but the open fails when accessing the VSAM data

set.

— Open mode is not applicable.

ILE RPG considerations

These topics summarize the limitations that exist when using the iSeries System/36-Compatible RPG II or

the ILE RPG programming language on an iSeries server to access remote VSAM data sets.

These limitations are in addition to those already stated in this topic collection.

File description specifications:

iSeries users can access remote VSAM data sets with iSeries System/36-Compatible RPG II or ILE RPG

programming language.

 However, not all ILE RPG processing methods selected by the file description specifications can access

remote VSAM data sets. Refer to the following tables to determine which file description specifications to

use. If a file description specification other than what appears in these tables is used, CICS/DDM rejects

the request for opening the file.

 Table 22. ILE RPG processing methods for remote VSAM ESDS

Type of processing

Column number

15 16 19 28 31 32 66

Consecutive

 I

I

I

I

U

U

U

 P

S

T

D

P

S

D

 F

F

F

F

F

F

F

Add Records Only O A

 Table 23. ILE RPG processing methods for remote VSAM RRDS

Type of processing

Column number

15 16 19 28 31 32 66

Consecutive

 I

I

I

U

U

U

 P

S

D

P

S

D

 F

F

F

F

F

F

Distributed data management 205

Table 23. ILE RPG processing methods for remote VSAM RRDS (continued)

Type of processing

Column number

15 16 19 28 31 32 66

 Random by Chain

See note.

See note.

 I

I

U

U

 C

C

C

C

 F

F

F

F

 R

R

R

R

 A

A

Random by Addrout

 I

I

I

U

U

U

 P

S

F

P

S

F

 F

F

F

F

F

F

 R

R

R

R

 I

I

I

I

 Consecutive, Random or both

See note.

See note.

 I

I

U

U

 F

F

F

F

 F

F

F

F

 A

A

Note: A K must be used in column 53 and RECNO must be in columns 54 through 59 to indicate relative record

number processing.

 Table 24. ILE RPG processing methods for VSAM KSDS

Type of processing

Column number

15 16 19 28 31 32 66

 Sequential

By key, no add

By key, no add

By key, no add

By key, with add

By key, with add

By key, with add

By key, no add

By key, no add

By key, no add

By key, with add

By key, with add

By key, with add

By limits

By limits

By limits

By limits

By limits

By limits

By limits

By limits, adds

By limits, adds

 I

I

I

I

I

I

U

U

U

U

U

U

I

I

I

U

U

U

U

I

I

 P

S

D

P

S

D

P

S

D

P

S

D

P

S

F

D

P

D

F

F

F

 F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

 L

L

L

L

L

L

L

L

L

 I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

 A

A

A

A

A

A

A

A

206 IBM Systems - iSeries: Database Distributed data management

Table 24. ILE RPG processing methods for VSAM KSDS (continued)

Type of processing

Column number

15 16 19 28 31 32 66

 Random by Chain

No adds

With adds

No adds

With adds

 I

I

U

U

 C

C

C

C

 F

F

F

F

 R

R

R

R

 I

I

I

I

 A

A

Random by Addrout

 I

I

U

U

 P

S

P

S

 F

F

F

F

 R

R

R

R

 I

I

I

I

 I

I

I

I

 Sequential, Random or both

By key, no add

By key, with add

By key, no add

By key, no add

 I

I

U

U

 F

F

F

F

 F

F

F

F

 I

I

I

I

 A

A

Add Records Only O I A

 Table 25. Processing methods for remote VSAM paths

Type of processing

Column number

15 16 19 28 31 32 66

 Sequential

By key, no add

By key, no add

By key, no add

By limits

By limits

By limits

By limits

 I

I

I

I

I

I

I

 P

S

D

P

S

F

D

 F

F

F

F

F

F

F

 L

L

L

L

 I

I

I

I

I

I

I

 Random by Chain

No adds

I C F R I

Random by Addrout

 I

I

 P

S

 F

F

 R

R

 I

I

 I

I

 Sequential, Random or both

By key, no add

I F F I

ILE RPG input/output operations:

Be aware of these restrictions when accessing remote VSAM data sets.

 v Records can be read or added by relative record number only when the remote VSAM data set is an

RRDS. Random processing by relative record number can be used only when processing a VSAM

RRDS.

v A request to delete a record in an ESDS does not work because ESDS is never delete-capable.

Distributed data management 207

v The processing method cannot use the update or output specification in column 15 when the remote

VSAM data set is a VSAM path. Instead, all add, update, or delete record requests must be made by

using the base data set of the VSAM path. However, if the base data set of the VSAM path is a VSAM

ESDS, the DELETE does not work.

v The READP operation code cannot be used to read the previous record in a VSAM path.

v Because VSAM KSDS does not allow duplicate keys, a request to add a record that duplicates the key

of an existing record in a KSDS does not work.

v When accessing a KSDS, an update request that changes the key value of the record does not work.

v For ILE RPG programming language, *HIVAL can be used to obtain the last record of a remote KSDS.

However, *HIVAL does not work when accessing a VSAM path.

Use DDM on the iSeries server versus other IBM systems

This topic describes the DDM differences between iSeries server and System/36, and iSeries server and

System/38.

 Related concepts

 System/38 Environment Programming PDF

iSeries server and System/36 DDM differences

This topic consists of a list of differences between the iSeries server and System/36.

v The network resource directory (NRD) procedures are not supported on the iSeries server.

– The System/36 NRD used one or more libraries containing DDM files on the iSeries server. One

System/36 NRD entry is equivalent to one DDM file on the iSeries server.

- Use the Work with DDM Files (WRKDDMF) command in place of the EDITNRD and DELNRD

procedures.

- Use the Display DDM Files (DSPDDMF) command in place of the LISTNRD procedure.

- Use the Restore Object (RSTOBJ) command in place of the RESTNRD procedure.

- Use the Save Object (SAVOBJ) command in place of the SAVNRD procedure.
– If an NRD entry on the System/36 refers to a remote file, and a SAVE or RESTORE procedure is

requested, the System/36 saves or restores the data of the remote file. The iSeries Save Object

(SAVOBJ) or Restore Object (RSTOBJ) command saves or restores only the definition of the DDM

file, not the remote data.

– When using date-differentiated files on the System/36, the most current file is selected. When

running from a System/36 to an iSeries server, the NRD entry must specify a member name of

*LAST to access the last member of the database file, which is the file with the most recent date. If

no member name is specified, *FIRST is used.
v The remote label in the NRD on a System/36 source must be in the syntax required by the target

server.

v The number of records allocated for a file differs between the System/36 and the iSeries server. File

space allocation on the System/36 is in block units (2560 bytes) while on the iSeries server, file space

allocation is by number of records. For example, if a user asks for a sequential file capable of storing

ten 100-byte records, the System/36 allocates 1 block of file space (2560 bytes), and uses as much of the

file space as possible (2500 bytes), giving the user twenty-five 100-byte records.

The iSeries server allocates exactly 10 records. If the user took advantage of this allocation method on

the System/36, the file (nonextendable) created using DDM on the iSeries server might be too small.

v The DDM Change End-of-File (CHGEOF) command used on the System/36 is not supported on the

iSeries server.

v The iSeries server does not support writing over data on the Delete File (DLTF) command. If an iSeries

user accessing a System/36 wants to overwrite the data, an application program must be written on

the iSeries server, or the user must access the target System/36 and perform the delete operation with

the erase operation.

208 IBM Systems - iSeries: Database Distributed data management

v A System/36 source server cannot create direct files on an iSeries target server that are

nondelete-capable. The iSeries server does not support files that are nondelete-capable for all file

organizations.

v The System/36 does not allow a record with hex FF in the first byte to be inserted into a delete-capable

file. The iSeries server allows this.

v When running System/36 applications to another System/36, the application waits indefinitely for the

resource to become available. When running System/36 applications to or from an iSeries server, these

applications might result in time-outs while waiting for a resource to become available.

v Direct files are extendable on the System/36 but not on the iSeries server. If a direct file is created on

the iSeries server as extendable, the file is allocated with three extents, but is never extended beyond

the initial size plus three extents.

v The System/36 relay function is not supported whenever one of the servers in the network along the

path from the source server to the target server is not a System/36. The iSeries server never supports

the relay function; Advanced Peer-to-Peer Networking (APPN) must be used.

v Key fields on the System/36 are considered to be strictly character fields. The System/36 does not

recognize a key field as being packed or zoned. Unexpected results might occur if source iSeries

application programs refer to packed fields within a System/36 file. Because of the way packed

numbers are stored and the fact that the System/36 does not recognize key fields as packed on relative

keyed operations, records might be returned in a different order than expected or no record might be

found when one is expected.

As an example, the ILE RPG SETLL statement might fail unexpectedly with record not found or might

select a record other than the record expected when using packed fields to a System/36 file. Only

character and unsigned numeric fields should be used as key fields.
 Related concepts

 Migration
 Related reference

 “Rules for specifying target server file names for DDM” on page 114
The rules for specifying the name of a DDM file (on the local iSeries server) are the same as for any

other file type on an iSeries server. The rules, however, for specifying the name of a remote file

depend on the type of target server.

iSeries server and System/38 DDM differences

This topic consists of a list of differences between the iSeries server and System/38.

v Three parameters are added to the Create DDM File (CRTDDMF) and Change DDM File (CHGDDMF)

commands. These parameters are the remote location name (RMTLOCNAME), local location name

(LCLLOCNAME), and the remote network ID (RMTNETID). DDM files can be created either in the

System/38 environment or on the iSeries server.

v The Submit Remote Command (SBMRMTCMD) command must be in the syntax of the target server,

even in the System/38 environment. For example, when a System/38 submits commands to an iSeries

server, the syntax of the iSeries server must be used.

v The remote file name must be in the syntax of the target server.

v The default value for the DDMACC parameter on the Change Network Attributes (CHGNETA)

command on the System/38 is *REJECT. The default value for the DDMACC parameter on the iSeries

server is *OBJAUT.

v On the System/38, files are created as FIFO (first in, first out) or LIFO (last in, first out). The default

for creating a file is FIFO on the System/38.

When running System/38 applications that are dependent on duplicate keys being FIFO or LIFO to an

iSeries server, you should specify either FIFO or LIFO when creating your iSeries files because there is

no default for iSeries files. This means the iSeries server looks for an available index path to share,

which can be either FIFO or LIFO.

Distributed data management 209

v Keyed files containing fields other than character (zoned or packed) created by using DDM on a

remote System/38 might result in the fields defined as character fields. This might produce unexpected

results when such a file is processed using relative keyed operations. Because the file is created with

fields that are not packed, records might be returned in a different order than expected or no record

can be found when one is expected.

As an example, the ILE RPG SETLL statement might fail unexpectedly with record not found or might

select a record other than the record expected when using packed fields to a System/38 file. Only

character and unsigned numeric fields should be used as key fields for files that are created by using

DDM on the remote System/38.

v To support adding a record by the relative record number operation, an ILE RPG program is required

for DDM to do a READ CHAIN(RRN) operation followed by a WRITE operation. The file must be

opened for read and update authorities, and the user must have read and update data authorities to

the file.

Format selector programs on adding a record by the relative record number operation are only

supported on the iSeries server. Incompatibilities might arise for those users who have a format

selector program for a logical file if they do direct file processing.
 Related reference

 “Rules for specifying target server file names for DDM” on page 114
The rules for specifying the name of a DDM file (on the local iSeries server) are the same as for any

other file type on an iSeries server. The rules, however, for specifying the name of a remote file

depend on the type of target server.

Related information for distributed data management

Listed here are the product manuals, Web sites, and information center topics that relate to the

distributed data management topic. You can view or print any of the PDFs.

Not all of these manuals are referred to in this topic collection. You may need to use one or more of the

following IBM iSeries manuals and topics while using this topic collection.

Communications:

v The APPC, APPN, and HPR topic provides the application programmer with information about the

Advanced Peer-to-Peer Networking (APPN) support provided by the iSeries server. This topic provides

information for configuring an APPN network and presents considerations to apply when using APPN.

This is also a guide for programming and defining the communications environment for APPC

communications.

v SNA Distribution Services

provides the system operator or administrator with information about

configuring a network for Systems Network Architecture distribution services (SNADS) and the Virtual

Machine/Multiple Virtual Storage (VM/MVS) bridge.

v ICF Programming

provides the application programmer with information needed to write

application programs that use iSeries communications and the i5/OS intersystem communications

function (i5/OS-ICF).

v Communications Management

provides the system operator with communications work

management information, error handling information, communications status information, and

communications performance information.

v Communications Configuration

provides the application programmer with information about

configuring line, controller, and device descriptions to communicate within a network. Additional

configuration considerations are discussed.

210 IBM Systems - iSeries: Database Distributed data management

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c4154101.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/c4154010.pdf

v Remote Work Station Support

provides the system administrator or user with concepts, examples,

and information about preparation and configuration for using the display station pass-through

function. This guide also contains information about using 3270 remote attachment, the Distributed

Host Command Facility (DHCF) network, and the X.21 short hold mode (SHM) network.

v OptiConnect provides information about installing, using, and managing communications using

OptiConnect.

Languages:

v See the RPG/400® User’s Guide manual on the V5R1 Supplemental Manuals

Web site.

v See the System/36-Compatible COBOL User’s Guide and Reference manual on the V5R1 Supplemental

Manuals

Web site.

v See the System/38-Compatible COBOL User’s Guide and Reference manual on the V5R1 Supplemental

Manuals

Web site.

Programming:

v ILE Concepts

describes, for the application programmer, the concepts and terminology of the

Integrated Language Environment of the i5/OS operating system. It includes an overview of the ILE

model; concepts of program creation, run time, and debugging; discussion of storage and condition

management, and descriptions of calls and APIs.

v The Control language topic provides the application programmer with a description of the iSeries

server control language (CL) and its commands.

v The Application programming interfaces topic provides information about how to create, use, and

delete objects that help manage system performance, use spooling efficiently, and maintain database

files efficiently. This topic also includes information about creating and maintaining the programs for

system objects and retrieving i5/OS information by working with objects, database files, jobs, and

spooling.

Distributed Data Management (DDM) Architecture:

v Distributed Data Management Architecture: General Information, GC21-9527

v Distributed Data Management Architecture: Implementation Planner’s Guide, GC21-9528

v Distributed Data Management Architecture: Implementation Programmer’s Guide, SC21-9529

v Distributed Data Management Architecture: Reference, SC21-9526

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

Distributed data management 211

|
|
|
|
|

|
|

|

|
|

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

212 IBM Systems - iSeries: Database Distributed data management

|

|
|
|

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1999, 2006 213

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Distributed data management publication documents intended Programming Interfaces that allow

the customer to write programs to obtain the services of IBM i5/OS.

214 IBM Systems - iSeries: Database Distributed data management

|
|
|

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 Advanced Peer-to-Peer Networking

 CICS

 DB2 Universal Database

 Distributed Relational Database Architecture

 DRDA

 e(logo)server

 i5/OS

 IBM

 IBM (logo)

 Informix

 Integrated Language Environment

 iSeries

 OS/400

 RPG/400

 SQL/400

 System/36

 System/370

 System/38

 z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

Appendix. Notices 215

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

216 IBM Systems - iSeries: Database Distributed data management

����

Printed in USA

	Contents
	Distributed data management
	What's new for V5R4
	Printable PDF
	Introduction to i5/OS DDM
	System compatibility
	Overview of DDM functions
	Basic DDM concepts
	Parts of DDM
	Parts of DDM: Source DDM
	Parts of DDM: Target DDM
	Parts of DDM: DDM file
	Create a DDM file using SNA
	Create a DDM file using TCP/IP
	Create a DDM file using RDB directory entry information
	Effect of job description on ASP group selection

	Example: Use the basic concepts of DDM in an APPC network
	Example: Use the basic concepts of DDM in an APPN network

	Additional DDM concepts
	iSeries server as the source server for DDM
	Integrated Language Environment and DDM
	Source server actions dependent on type of target server

	iSeries server as the target server for DDM
	DDM-related jobs and DDM conversations

	Examples: Access multiple remote files with DDM
	Example: Access files on multiple servers with DDM
	Example: Process multiple requests for remote files with DDM

	Use language, utility, and application support for DDM
	Programming language considerations for DDM
	DDM considerations for all languages
	HLL program input and output operations with i5/OS DDM

	Commitment control support for DDM
	Use DDM files with commitment control

	ILE RPG considerations for DDM
	ILE COBOL considerations for DDM
	Direct file support with ILE COBOL

	BASIC considerations for DDM
	PL/I considerations for DDM
	CL command considerations for DDM
	ILE C considerations for DDM

	Utility considerations for DDM
	System/38-compatible database tools
	System/38-compatible data file utility (DFU/38)
	System/38-compatible query utility (Query/38)
	Non-iSeries or non-System/38 Query/38 example
	Query/38 output considerations for DDM
	Query/38 command considerations for DDM
	Query/38 optimization for DDM
	Existing Query/38 application considerations for DDM

	Data file utility for iSeries server
	i5/OS database query
	Multiple remote files

	Sort utility

	iSeries Access Family considerations for DDM
	iSeries Access Family transfer function considerations
	iSeries Access Family copy command considerations

	Hierarchical file system API support for DDM

	Prepare to use DDM
	Communications requirements for DDM in an APPC network
	Configure a communications network in a TCP/IP network
	Security requirements for DDM
	DDM file requirements
	Program modification requirements for DDM
	DDM architecture-related restrictions
	iSeries source and target restrictions and considerations for DDM
	Non-iSeries target restrictions and considerations for DDM

	Security
	Elements of distributed relational database security
	Elements of security in an APPC network
	APPN configuration lists
	Conversation level security
	DRDA application server security in an APPC network

	Elements of security in a TCP/IP network
	Application requester security in a TCP/IP network
	Application server security in a TCP/IP network
	Connection security protocols for DDM or DRDA
	Secure Sockets Layer for DDM and DRDA
	Required programs
	iSeries server requirements

	Internet Protocol Security Protocol for DDM/DRDA
	Considerations for certain passwords being passed as clear text
	Ports and port restrictions for DDM/DRDA

	DDM server access control exit program for additional security
	User exit program requirement
	User exit program parameter list for DDM
	User exit program example for DDM
	Parameter list example for DDM
	DRDA server access control exit programs with example
	User exit program considerations for DDM

	Use CL and DDS with DDM
	DDM-specific CL commands
	CHGDDMF (Change DDM File) command
	Example: CHGDDMF command

	CRTDDMF (Create DDM File) command
	Examples: CRTDDMF command

	DSPDDMF (Display DDM Files) command
	RCLDDMCNV (Reclaim DDM Conversations) command
	SBMRMTCMD (Submit Remote Command) command
	iSeries and System/38 target systems on the SBMRMTCMD command
	Restrictions for the SBMRMTCMD command
	Examples: SBMRMTCMD command
	Additional considerations: SBMRMTCMD command

	WRKDDMF (Work with DDM Files) command

	DDM-related CL command considerations
	File management handling of DDM files
	ALCOBJ (Allocate Object) command
	Member names and iSeries target servers on the ALCOBJ command
	Lock multiple DDM files with the ALCOBJ command
	ALCOBJ command completion time with DDM

	CHGJOB (Change Job) command
	CHGLF (Change Logical File) command
	CHGPF (Change Physical File) command
	CHGSRCPF (Change Source Physical File) command
	CLRPFM (Clear Physical File Member) command
	Copy commands with DDM
	CRTDTAARA (Create Data Area) command
	CRTDTAQ (Create Data Queue) command
	CRTLF (Create Logical File) command
	CRTPF (Create Physical File) command
	CRTSRCPF (Create Source Physical File) command
	DLCOBJ (Deallocate Object) command
	Member names and iSeries target servers on the DLCOBJ command
	Unlock multiple DDM files on the DLCOBJ command

	DLTF (Delete File) command
	DSPFD (Display File Description) command
	DSPFFD (Display File Field Description) command
	OPNQRYF (Open Query File) command
	OVRDBF (Override with Database File) command
	RCLRSC (Reclaim Resources) command
	RNMOBJ (Rename Object) command
	WRKJOB (Work with Job) command
	WRKOBJLCK (Work with Object Lock) command

	DDM-related CL parameter considerations
	DDMACC parameter considerations
	DDMCNV parameter considerations
	OUTFILE parameter considerations for DDM

	DDM-related CL command lists
	Object-oriented commands with DDM
	Target iSeries-required file management commands
	Member-related commands with DDM
	Commands not supporting DDM
	Source file commands
	DDM-related CL command summary charts

	Data description specifications considerations for DDM
	iSeries target considerations for DDM
	Non-iSeries target considerations for DDM
	DDM-related DDS keywords and information

	DDM user profile authority

	Operating considerations for DDM
	Access files with DDM
	Types of files supported by i5/OS DDM
	Existence of DDM file and remote file
	Rules for specifying target server file names for DDM
	Target iSeries file names for DDM
	Target non-iSeries file names for DDM
	Use location-specific file names for commonly named files for DDM

	Examples: Access iSeries DDM remote files (iSeries-to-iSeries)
	Example: Access System/36 DDM remote files (iSeries-to-System/36)

	Access members with DDM
	Example: Access DDM remote members (iSeries server only)
	Example: DDM file that opens a specific member

	Work with access methods for DDM
	Access intents
	Key field updates
	Deleted records
	Blocked record processing
	Variable-length records

	Other DDM-related functions involving remote files
	Perform file management functions on remote servers
	Lock files and members for DDM
	Allocate Object (ALCOBJ) and Deallocate Object (DLCOBJ) commands
	Work with Job (WRKJOB) and Work with Object Locks (WRKOBJLCK) commands

	Control DDM conversations
	Display DDMCNV values (WRKJOB command)
	Change DDMCNV values (CHGJOB) command
	Reclaim DDM resources (RCLRSC and RCLDDMCNV commands)

	Display DDM remote file information
	Display DDM remote file records
	Coded character set identifier with DDM
	Use of object distribution
	Use of object distribution with DDM

	Manage the TCP/IP server
	DDM terminology
	TCP/IP communication support concepts for DDM
	Establish a DRDA or DDM connection over TCP/IP
	DDM listener program
	Start TCP/IP Server (STRTCPSVR) CL command
	End TCP/IP Server (ENDTCPSVR) CL command
	Start DDM listener in iSeries Navigator

	DDM server jobs
	Subsystem descriptions and prestart job entries with DDM
	DDM prestart jobs
	Monitor prestart jobs
	Manage prestart jobs
	Remove prestart job entries
	Routing entries

	Configure the DDM server job subsystem
	Identify server jobs
	iSeries job names
	Display server jobs
	Display the history log

	Cancel distributed data management work
	End Job (ENDJOB) command
	End Request (ENDRQS) command

	Performance considerations for DDM
	Batch file processing with DDM
	Interactive file processing with DDM
	DDM conversation length considerations

	DDM problem analysis on the remote server
	Handle connection request failures for TCP/IP
	DDM server is not started or the port ID is not valid
	DDM connection authorization failure
	DDM server not available
	Not enough prestart jobs at server

	System/36 source and target considerations for DDM
	DDM-related differences between iSeries and System/36 files
	System/36 source to iSeries target considerations for DDM
	iSeries source to System/36 target considerations for DDM
	Override considerations to System/36 for DDM

	Personal computer source to iSeries target considerations for DDM

	Examples: Code DDM-related tasks
	Communications setup for DDM examples and tasks
	DDM example 1: Simple inquiry application
	DDM example 2: ORDERENT application
	DDM example 2: Central server ORDERENT files
	DDM example 2: Description of ORDERENT program
	DDM example 2: Remote server ORDERENT files
	DDM example 2: Transfer a program to a target server
	DDM example 2: Pass-through method
	DDM example 2: SBMRMTCMD command method

	DDM example 2: Copy a file

	DDM example 3: Access multiple iSeries files
	DDM example 4: Access a file on System/36

	DDM architecture code point attributes
	DDM commands and parameters
	Subsets of DDM architecture supported by i5/OS DDM
	Supported DDM file models
	Alternate Index File (ALTINDF)
	Direct file (DIRFIL)
	Directory file (DIRECTORY)
	Keyed file (KEYFIL)
	Sequential file (SEQFIL)
	Stream file (STRFIL)

	Supported DDM access methods

	DDM commands and objects
	CHGCD (Change Current Directory) Level 2.0
	CHGEOF (Change End of File) Level 2.0 and Level 3.0
	CHGFAT (Change File Attribute) Level 2.0
	CLOSE (Close File) Level 1.0 and Level 2.0
	CLRFIL (Clear File) Level 1.0 and Level 2.0
	CLSDRC (Close Directory) Level 2.0
	CPYFIL (Copy File) Level 2.0
	CRTAIF (Create Alternate Index File) Level 1.0 and Level 2.0
	CRTDIRF (Create Direct File) Level 1.0 and Level 2.0
	CRTDRC (Create Directory) Level 2.0
	CRTKEYF (Create Keyed File) Level 1.0 and Level 2.0
	CRTSEQF (Create Sequential File) Level 1.0 and Level 2.0
	CRTSTRF (Create Stream File) Level 2.0
	DCLFIL (Declare File) Level 1.0 and Level 2.0
	DELDCL (Delete Declared Name) Level 1.0
	DELDRC (Delete Directory) Level 2.0
	DELFIL (Delete File) Level 1.0 and Level 2.0
	DELREC (Delete Record) Level 1.0
	EXCSAT (Exchange Server Attributes) Level 1.0 and Level 2.0
	FILAL and FILATTRL (File Attribute List) Level 1.0, Level 2.0, and Level 3.0
	FRCBFF (Force Buffer) Level 2.0
	GETDRCEN (Get Directory Entries) Level 2.0
	GETREC (Get Record at Cursor) Level 1.0
	GETSTR (Get Substream) Level 2.0 and Level 3.0
	INSRECEF (Insert at EOF) Level 1.0
	INSRECKY (Insert Record by Key Value) Level 1.0
	INSRECNB (Insert Record at Number) Level 1.0
	LCKFIL (Lock File) Level 1.0 and Level 2.0
	LCKSTR (Lock Substream) Level 2.0 and Level 3.0
	LODRECF (Load Record File) Level 1.0 and Level 2.0
	LODSTRF (Load Stream File) Level 2.0
	LSTFAT (List File Attributes) Level 1.0, Level 2.0, and Level 3.0
	MODREC (Modify Record with Update Intent) Level 1.0
	OPEN (Open File) Level 1.0 and Level 2.0
	OPNDRC (Open Directory) Level 2.0
	PUTSTR (Put Substream) Level 2.0 and Level 3.0
	QRYCD (Query Current Directory) Level 2.0
	QRYSPC (Query Space) Level 2.0
	RNMDRC (Rename Directory) Level 2.0
	RNMFIL (Rename File) Level 1.0 and Level 2.0
	SBMSYSCMD (Submit server Command) Level 4.0
	SETBOF (Set Cursor to Beginning of File) Level 1.0
	SETEOF (Set Cursor to End of File) Level 1.0
	SETFRS (Set Cursor to First Record) Level 1.0
	SETKEY (Set Cursor by Key) Level 1.0
	SETKEYFR (Set Cursor to First Record in Key Sequence) Level 1.0
	SETKEYLM (Set Key Limits) Level 1.0
	SETKEYLS (Set Cursor to Last Record in Key Sequence) Level 1.0
	SETKEYNX (Set Cursor to Next Record in Key Sequence) Level 1.0
	SETKEYPR (Set Cursor to Previous Record in Key Sequence) Level 1.0
	SETLST (Set Cursor to Last Record) Level 1.0
	SETMNS (Set Cursor Minus) Level 1.0
	SETNBR (Set Cursor to Record Number) Level 1.0
	SETNXT (Set Cursor to Next Number) Level 1.0
	SETNXTKE (Set Cursor to Next Record in Key Sequence with a Key Equal to Value Specified) Level 1.0
	SETPLS (Set Cursor Plus) Level 1.0
	SETPRV (Set Cursor to Previous Record) Level 1.0
	SETUPDKY (Set Update Intent by Key Value) Level 1.0
	SETUPDNB (Set Update Intent by Record Number) Level 1.0
	ULDRECF (Unload Record File) Level 1.0
	ULDSTRF (Unload Stream File) Level 2.0
	UNLFIL (Unlock File) Level 1.0 and Level 2.0
	UNLIMPLK (Unlock Implicit Record Lock) Level 1.0
	UNLSTR (Unlock Substreams) Level 2.0 and Level 3.0

	User profile authority

	iSeries server-to-CICS considerations with DDM
	iSeries languages, utilities, and licensed programs
	CRTDDMF (Create DDM File) considerations
	iSeries CL considerations
	ALCOBJ (Allocate Object)
	CLRPFM (Clear Physical File Member)
	CPYF (Copy File)
	CPYTOTAP, CPYFRMTAP and CPYSPLF commands
	DLCOBJ (Deallocate Object)
	DSPFD and DSPFFD commands
	DSPPFM (Display Physical File Member)
	OPNDBF (Open Database File)
	OVRDBF (Override with Database File)
	RCVNETF (Receive Network File)

	Language considerations for iSeries server and CICS
	PL/I considerations
	PL/I open file requests
	PL/I input/output requests

	ILE COBOL considerations
	ILE COBOL SELECT clause
	ILE COBOL statements

	ILE C considerations
	ILE RPG considerations
	File description specifications
	ILE RPG input/output operations

	Use DDM on the iSeries server versus other IBM systems
	iSeries server and System/36 DDM differences
	iSeries server and System/38 DDM differences

	Related information for distributed data management
	Code license and disclaimer information

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

