
IBM Systems - iSeries

Database

DB2 UDB SQL Call Level Interface (ODBC)

Version 5 Release 4

���

IBM Systems - iSeries

Database

DB2 UDB SQL Call Level Interface (ODBC)

Version 5 Release 4

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 261.

Eighth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722–SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1999, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

SQL call level interface 1

What’s new for V5R4 1

Printable PDF 2

Get started with DB2 UDB CLI 2

Differences between DB2 UDB CLI and embedded

SQL 3

Advantages of using DB2 UDB CLI instead of

embedded SQL 5

Decide between DB2 UDB CLI, dynamic SQL, and

static SQL 5

Write a DB2 UDB CLI application 5

Initialization and termination tasks in a DB2 UDB

CLI application 6

Transaction processing task in a DB2 UDB CLI

application 9

Diagnostics in a DB2 UDB CLI application . . . 14

Data types and data conversion in DB2 UDB CLI

functions 15

Work with string arguments in DB2 UDB CLI

functions 17

DB2 UDB CLI functions 18

Categories of DB2 UDB CLIs 19

SQLAllocConnect - Allocate connection handle 21

SQLAllocEnv - Allocate environment handle . . 24

SQLAllocHandle - Allocate handle 26

SQLAllocStmt - Allocate a statement handle . . 27

SQLBindCol - Bind a column to an application

variable 29

SQLBindFileToCol - Bind LOB file reference to

LOB column 33

SQLBindFileToParam - Bind LOB file reference to

LOB parameter 36

SQLBindParam - Bind a buffer to a parameter

marker 38

SQLBindParameter - Bind a parameter marker to

a buffer 42

SQLCancel - Cancel statement 50

SQLCloseCursor - Close cursor statement . . . 51

SQLColAttributes - Obtain column attributes . . 52

SQLColumnPrivileges - Get privileges associated

with the columns of a table 56

SQLColumns - Get column information for a

table 58

SQLConnect - Connect to a data source 62

SQLCopyDesc - Copy description statement . . 64

SQLDataSources - Get list of data sources . . . 65

SQLDescribeCol - Describe column attributes . . 68

SQLDescribeParam - Return description of a

parameter marker 70

SQLDisconnect - Disconnect from a data source 73

SQLDriverConnect - (Expanded) Connect to a

data source 74

SQLEndTran - Commit or roll back a transaction 77

SQLError - Retrieve error information 79

SQLExecDirect - Execute a statement directly . . 81

SQLExecute - Execute a statement 83

SQLExtendedFetch - Fetch array of rows . . . 85

SQLFetch - Fetch next row 87

SQLFetchScroll - Fetch from a scrollable cursor 92

SQLForeignKeys - Get the list of foreign key

columns 94

SQLFreeConnect - Free connection handle . . . 99

SQLFreeEnv - Free environment handle . . . 100

SQLFreeHandle - Free a handle 101

SQLFreeStmt - Free (or reset) a statement handle 102

SQLGetCol - Retrieve one column of a row of

the result set 103

SQLGetConnectAttr - Get the value of a

connection attribute 109

SQLGetConnectOption - Return current setting

of a connect Option 110

SQLGetCursorName - Get cursor name 111

SQLGetData - Get data from a column 114

SQLGetDescField - Get descriptor field 115

SQLGetDescRec - Get descriptor record 117

SQLGetDiagField - Return diagnostic

information (extensible) 119

SQLGetDiagRec - Return diagnostic information

(concise) 121

SQLGetEnvAttr - Return current setting of an

environment Attribute 123

SQLGetFunctions - Get functions 124

SQLGetInfo - Get general information 127

SQLGetLength - Retrieve length of a string

value 140

SQLGetPosition - Return starting position of

string 141

SQLGetStmtAttr - Get the value of a statement

attribute 143

SQLGetStmtOption - Return current setting of a

statement option 145

SQLGetSubString - Retrieve portion of a string

value 146

SQLGetTypeInfo - Get data type information 149

SQLLanguages - Get SQL dialect or

conformance information 153

SQLMoreResults - Determine whether there are

more result sets 155

SQLNativeSql - Get native SQL text 156

SQLNextResult - Process the next result set . . 158

SQLNumParams - Get number of parameters in

an SQL statement 159

SQLNumResultCols - Get number of result

columns 160

SQLParamData - Get next parameter for which

a data value is needed 162

SQLParamOptions - Specify an input array for a

parameter 163

SQLPrepare - Prepare a statement 164

SQLPrimaryKeys - Get primary key columns of

a table 168

© Copyright IBM Corp. 1999, 2006 iii

SQLProcedureColumns - Get input/output

parameter information for a procedure 170

SQLProcedures - Get list of procedure names 176

SQLPutData - Pass data value for a parameter 179

SQLReleaseEnv - Release all environment

resources 181

SQLRowCount - Get row count 182

SQLSetConnectAttr - Set a connection attribute 183

SQLSetConnectOption - Set connection option 190

SQLSetCursorName - Set cursor name 192

SQLSetDescField - Set a descriptor field . . . 193

SQLSetDescRec - Set a descriptor record . . . 195

SQLSetEnvAttr - Set environment attribute . . 196

SQLSetParam - Set parameter 200

SQLSetStmtAttr - Set a statement attribute . . . 201

SQLSetStmtOption - Set statement option . . . 205

SQLSpecialColumns - Get special (row

identifier) columns 206

SQLStatistics - Get index and statistics

information for a base table 209

SQLTablePrivileges – Get privileges associated

with a table 212

SQLTables - Get table information 215

SQLTransact - Commit or roll back transaction 217

DB2 UDB CLI include file 219

Run DB2 UDB CLI in server mode 246

Start DB2 UDB CLI in SQL server mode . . . 246

Restrictions for running DB2 UDB CLI in server

mode 247

Examples: DB2 UDB CLI applications 247

Example: Embedded SQL and the equivalent

DB2 UDB CLI function calls 247

Example: Use the CLI XA transaction connection

attributes 250

Example: Interactive SQL and the equivalent

DB2 UDB CLI function calls 253

Code license and disclaimer information 260

Appendix. Notices 261

Programming Interface Information 262

Trademarks 263

Terms and conditions 263

iv IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQL call level interface

DB2® UDB call level interface (CLI) is a callable Structured Query Language (SQL) programming

interface that is supported in all DB2 environments except for DB2 Universal Database for z/OS® and

DB2 Server for VSE and VM.

A callable SQL interface is a WinSock application programming interface (API) for database access that

uses function calls to start dynamic SQL statements.

DB2 UDB CLI is an alternative to embedded dynamic SQL. The important difference between embedded

dynamic SQL and DB2 UDB CLI is how the SQL statements are started. On the iSeries™ server, this

interface is available to any of the ILE languages.

DB2 UDB CLI also provides full Level 1 Microsoft® Open Database Connectivity (ODBC) support, plus

many Level 2 functions. For the most part, ODBC is a superset of the ANS and ISO SQL CLI standard.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

What’s new for V5R4

This topic highlights numerous changes to the SQL call level interface for V5R4.

The limit for the total number of concurrently allocated handles is expanded from 80 000 to 160 000.

New environment, connection and statement attributes are added, including:

v Cursor sensitivity statement attribute

v New cursor type statement attribute (SQL_CURSOR_STATIC)

v New query optimizer connection attribute(SQL_ATTR_QUERY_OPTIMIZE_GOAL)

New SQLGetInfo and SQLColAttributes options are added, including:

v User name for a connection from SQLGetInfo(): SQL_USER_NAME

v Database name for a connection from SQLGetInfo(): SQL_DATABASE_NAME

v Display the size needed to display a data type from SQLColAttributes(): SQL_DESC_DISPLAY_SIZE

New supports are added, including:

v XA support through the CLI connection attributes SQL_ATTR_TXN_EXTERNAL and

SQL_ATTR_TXN_INFO

v Support for array (block) fetching and column-wise binding in the SQLFetchScroll()

v 2-megabyte SQL statement support through the CLI interface

Note: This is not a complete list of the new supports.

The following APIs are changed in this release:

v “SQLConnect - Connect to a data source” on page 62

v “SQLFetchScroll - Fetch from a scrollable cursor” on page 92

v “SQLGetConnectOption - Return current setting of a connect Option” on page 110

v “SQLGetDescField - Get descriptor field” on page 115

v “SQLGetDescRec - Get descriptor record” on page 117

© Copyright IBM Corp. 1999, 2006 1

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

v “SQLGetInfo - Get general information” on page 127

v “SQLGetStmtOption - Return current setting of a statement option” on page 145

v “SQLGetTypeInfo - Get data type information” on page 149

v “SQLSetConnectAttr - Set a connection attribute” on page 183

v “SQLSetConnectOption - Set connection option” on page 190

v “SQLSetEnvAttr - Set environment attribute” on page 196

v “SQLSetStmtAttr - Set a statement attribute” on page 201

v “SQLSetStmtOption - Set statement option” on page 205

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to users.

Printable PDF

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select SQL call level interface (about 2650 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Get started with DB2 UDB CLI

Learn about the basics of the DB2 UDB CLI, how it compares to embedded SQL, and how to select the

best interface for your programming needs.

It is important to understand what DB2 UDB CLI, or any callable SQL interface, is based on, and

compare it with existing interfaces.

ISO standard 9075:1999 – Database Language SQL Part 3: Call-Level Interface provides the standard

definition of CLI. The goal of this interface is to increase the portability of applications by enabling them

to become independent of any one database server.

ODBC provides a Driver Manager for Windows®, which offers a central point of control for each ODBC

driver (a dynamic link library (DLL) that implements ODBC function calls and interacts with a specific

Database Management System (DBMS)).

2 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|

|

|

|

|

|

|

|

|

|

|

rzadp.pdf
http://www.adobe.com/products/acrobat/readstep.html

Where to find answers to additional DB2 UDB CLI questions

An FAQ, which elaborates on some items discussed in this topic collection, is available on the IBM DB2

Universal Database Web site.

Differences between DB2 UDB CLI and embedded SQL

An application that uses an embedded SQL interface requires a precompiler to convert the SQL

statements into code. Code is compiled, bound to the database, and processed. In contrast, a DB2 UDB

CLI application does not require precompilation or binding, but instead uses a standard set of functions

to run SQL statements and related services at run time.

This difference is important because, traditionally, precompilers have been specific to a database product,

which effectively ties your applications to that product. DB2 UDB CLI enables you to write portable

applications that are independent of any particular database product. This independence means that a

DB2 UDB CLI application does not need to be recompiled or rebound to access-different database

products. An application selects the appropriate database products at run time.

DB2 UDB CLI and embedded SQL also differ in the following ways:

v DB2 UDB CLI does not require the explicit declaration of cursors. DB2 UDB CLI generates them as

needed. The application can then use the generated cursor in the normal cursor fetch model for

multiple row SELECT statements and positioned UPDATE and DELETE statements.

v The OPEN statement is not necessary in DB2 UDB CLI. Instead, the processing of a SELECT automatically

causes a cursor to be opened.

v Unlike embedded SQL, DB2 UDB CLI allows the use of parameter markers on the equivalent of the

EXECUTE IMMEDIATE statement (the SQLExecDirect() function).

v A COMMIT or ROLLBACK in DB2 UDB CLI is issued through the SQLTransact() or SQLEndTran() function

call rather than by passing it as an SQL statement.

v DB2 UDB CLI manages statement-related information on behalf of the application, and provides a

statement handle to refer to it as an abstract object. This handle avoids the need for the application to

use product-specific data structures.

v Similar to the statement handle, the environment handle and connection handle provide a means to refer

to all global variables and connection specific information.

v DB2 UDB CLI uses the SQLSTATE values defined by the X/Open SQL CAE specification. Although the

format and many of the values are consistent with values that are used by the IBM® relational database

products, there are differences.

Despite these differences, there is an important common concept between embedded SQL and DB2 UDB

CLI:

v DB2 UDB CLI can process any SQL statement that can be prepared dynamically in embedded SQL.

This is guaranteed because DB2 UDB CLI does not actually process the SQL statement itself, but passes

it to the Database Management System (DBMS) for dynamic processing.

Table 1 lists each SQL statement, and whether it can be processed using DB2 UDB CLI.

 Table 1. SQL statements

SQL statement Dyn

1 CLI

3

ALTER TABLE X X

BEGIN DECLARE SECTION

2

CALL X X

CLOSE SQLFreeStmt()

COMMENT ON X X

SQL call level interface 3

http://www.ibm.com/servers/eserver/iseries/db2/clifaq.htm
http://www.ibm.com/servers/eserver/iseries/db2/clifaq.htm

Table 1. SQL statements (continued)

SQL statement Dyn

1 CLI

3

COMMIT X SQLTransact(), SQLEndTran()

CONNECT (Type 1) SQLConnect()

CONNECT (Type 2) SQLConnect()

CREATE INDEX X X

CREATE TABLE X X

CREATE VIEW X X

DECLARE CURSOR

b SQLAllocStmt()

DELETE X X

DESCRIBE SQLDescribeCol(), SQLColAttributes()

DISCONNECT SQLDisconnect()

DROP X X

END DECLARE SECTION

b

EXECUTE SQLExecute()

EXECUTE IMMEDIATE SQLExecDirect()

FETCH SQLFetch()

GRANT X X

INCLUDE

b

INSERT X X

LOCK TABLE X X

OPEN SQLExecute(), SQLExecDirect()

PREPARE SQLPrepare()

RELEASE SQLDisconnect()

REVOKE X X

ROLLBACK X SQLTransact(), SQLEndTran()

SELECT X X

SET CONNECTION

UPDATE X X

WHENEVER

2

Notes:

1 Dyn stands for dynamic. All statements in this list can be coded as static SQL, but only those marked with

X can be coded as dynamic SQL.

2 This is a nonprocessable statement.

3 An X indicates that this statement can be processed using either SQLExecDirect() or SQLPrepare() and

SQLExecute(). If there is an equivalent DB2 UDB CLI function, the function name is listed.

Each DBMS might have additional statements that can be dynamically prepared, in which case DB2 UDB

CLI passes them to the DBMS. There is one exception, COMMIT and ROLLBACK can be dynamically

prepared by some DBMSs but are not passed. Instead, the SQLTransact() or SQLEndTran() should be used

to specify either COMMIT or ROLLBACK.

4 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Advantages of using DB2 UDB CLI instead of embedded SQL

The DB2 UDB CLI interface has several key advantages over embedded SQL.

v It is ideally suited for a client-server environment, in which the target database is not known when the

application is built. It provides a consistent interface for executing SQL statements, regardless of which

database server to which the application is connected .

v It increases the portability of applications by removing the dependence on precompilers. Applications

are distributed not as compiled applications or runtime libraries but as source code which are

preprocessed for each database product.

v DB2 UDB CLI applications do not need to be bound to each database to which they connect.

v DB2 UDB CLI applications can connect to multiple databases simultaneously.

v DB2 UDB CLI applications are not responsible for controlling global data areas, such as SQL

Communication Area (SQLCA) and SQL Descriptor Area (SQLDA), as they are with embedded SQL

applications. Instead, DB2 UDB CLI allocates and controls the necessary data structures, and provides a

handle for the application to refer to them.

Decide between DB2 UDB CLI, dynamic SQL, and static SQL

Which interfaces you choose depend on your application.

DB2 UDB CLI is ideally suited for query-based applications requiring portability, and not requiring the

APIs or utilities offered by a particular Database Management System (DBMS) (for example, catalog

database, backup, restore). This does not mean that using DB2 UDB CLI calls DBMS specific APIs from

an application. It means that the application is no longer as portable.

Another important consideration is the performance comparison between dynamic and static SQL.

Dynamic SQL is prepared at run time, while static SQL is prepared at the precompile stage. Because

preparing statements requires additional processing time, static SQL might be more efficient. If you

choose static over dynamic SQL, then DB2 UDB CLI is not an option.

In most cases the choice between either interface is open to personal preference. Your previous experience

might make one alternative seem more intuitive than the other.

Write a DB2 UDB CLI application

Find out how you code your applications to use the DB2 CLI functions.

A DB2 UDB CLI application consists of a set of tasks, each comprised of a set of discrete steps. Other

tasks might occur throughout the application as it runs. The application calls one or more DB2 UDB CLI

functions to carry out each of these tasks.

Every DB2 UDB CLI application contains the three main tasks that are shown in the following figure. If

the functions are not called in the sequence that is shown in the figure, an error results.

SQL call level interface 5

The initialization task allocates and initializes resources in preparation for the main Transaction Processing

task.

The transaction processing task, the main task of the application, passes queries and modifications to the

SQL to DB2 UDB CLI.

The termination task frees allocated resources. The resources generally consist of data areas that are

identified by unique handles. After freeing the resources, other tasks can use these handles.

In addition to the three central tasks that control a DB2 UDB CLI application, there are numerous general

tasks, such as diagnostic message handlers, throughout an application.

See “Categories of DB2 UDB CLIs” on page 19 for an overview of how the CLI functions fit into these

key task areas.

This topic provides examples to illustrate how these functions are used in a DB2 UDB CLI application.

Initialization and termination tasks in a DB2 UDB CLI application

The initialization task allocates and initializes environment handles and connection handles.

The following figure shows the function call sequences for both the initialization and termination tasks.

The transaction processing task in the middle of the diagram is shown in “Transaction processing task in

a DB2 UDB CLI application” on page 9.

Figure 1. Conceptual view of a DB2 UDB CLI application

6 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

The termination task frees handles. A handle is a variable that refers to a data object that is controlled by

DB2 UDB CLI. Using handles frees the application from having to allocate and manage global variables

or data structures, such as the SQL descriptor area (SQLDA), or SQL communication area (SQLCA) used

in embedded SQL interfaces for IBM Database Management Systems (DBMSs). An application then

passes the appropriate handle when it calls other DB2 UDB CLI functions. Here are the types of handles:

Environment handle

The environment handle refers to the data object that contains global information regarding the

state of the application. This handle is allocated by calling SQLAllocEnv(), and freed by calling

SQLFreeEnv(). An environment handle must be allocated before a connection handle can be

allocated. Only one environment handle can be allocated per application.

Connection handle

A connection handle refers to a data object that contains information that is associated with a

connection that is managed by DB2 UDB CLI. This includes general status information,

transaction status, and diagnostic information. Each connection handle is allocated by calling

SQLAllocConnect() and freed by calling SQLFreeConnect(). An application must allocate a

connection handle for each connection to a database server.

Statement handle

Statement handles are discussed in Transaction processing task in a DB2 UDB CLI application.

Figure 2. Conceptual view of initialization and termination tasks

SQL call level interface 7

Example: Initialization and connection in a DB2 UDB CLI application

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/***

** file = basiccon.c

** - demonstrate basic connection to two datasources.

** - error handling ignored for simplicity

**

** Functions used:

**

** SQLAllocConnect SQLDisconnect

** SQLAllocEnv SQLFreeConnect

** SQLConnect SQLFreeEnv

**

**

**/

#include <stdio.h>

#include <stdlib.h>

#include "sqlcli.h"

int

connect(SQLHENV henv,

 SQLHDBC * hdbc);

#define MAX_DSN_LENGTH 18

#define MAX_UID_LENGTH 10

#define MAX_PWD_LENGTH 10

#define MAX_CONNECTIONS 5

int

main()

{

 SQLHENV henv;

 SQLHDBC hdbc[MAX_CONNECTIONS];

 /* allocate an environment handle */

 SQLAllocEnv(&henv);

 /* Connect to first data source */

 connect(henv, &hdbc[0];);

 /* Connect to second data source */

 connect(henv, &hdbc[1];);

 /********* Start Processing Step *************************/

 /* allocate statement handle, execute statement, and so forth */

 /********* End Processing Step ***************************/

 printf("\nDisconnecting \n");

 SQLDisconnect(hdbc[0]); /* disconnect first connection */

 SQLDisconnect(hdbc[1]); /* disconnect second connection */

 SQLFreeConnect(hdbc[0]); /* free first connection handle */

 SQLFreeConnect(hdbc[1]); /* free second connection handle */

 SQLFreeEnv(henv); /* free environment handle */

 return (SQL_SUCCESS);

}

/**

** connect - Prompt for connect options and connect **

**/

int

connect(SQLHENV henv,

8 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLHDBC * hdbc)

{

 SQLRETURN rc;

 SQLCHAR server[MAX_DSN_LENGTH + 1], uid[MAX_UID_LENGTH + 1],

pwd[MAX_PWD_LENGTH

+ 1];

 SQLCHAR buffer[255];

 SQLSMALLINT outlen;

 printf("Enter Server Name:\n");

 gets((char *) server);

 printf("Enter User Name:\n");

 gets((char *) uid);

 printf("Enter Password Name:\n");

 gets((char *) pwd);

 SQLAllocConnect(henv, hdbc);/* allocate a connection handle */

 rc = SQLConnect(*hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

 if (rc != SQL_SUCCESS) {

 printf("Error while connecting to database\n");

 return (SQL_ERROR);

 } else {

 printf("Successful Connect\n");

 return (SQL_SUCCESS);

 }

}

Transaction processing task in a DB2 UDB CLI application

This topic shows a typical order of function calls in a DB2 UDB CLI application.

The typical order of function calls in a DB2 UDB CLI application is shown in the following figure. The

figure does not show all functions or possible paths.

SQL call level interface 9

The figure shows the steps and the DB2 UDB CLI functions in the transaction processing task. This task

contains these steps:

1. “Allocate statement handle(s) in a DB2 UDB CLI application” on page 11

Figure 3. Transaction processing

10 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

2. “Preparation and processing tasks in a DB2 UDB CLI application”

3. “Processing results in a DB2 UDB CLI application” on page 12

4. “Free statement handles in a DB2 UDB CLI application” on page 14

5. “Commit or roll back in a DB2 UDB CLI application” on page 14

The function SQLAllocStmt is needed to obtain a statement handle that is used to process the SQL

statement. There are two methods of statement processing that can be used. By using SQLPrepare and

SQLExecute, the program can break the process into two steps. The function SQLBindParameter is used

to bind program addresses to host variables used in the prepared SQL statement. The second method is

the direct processing method in which SQLPrepare and SQLExecute are replaced by a single call to

SQLExecDirect.

As soon as the statement is processed, the remaining processing depends on the type of SQL statement.

For SELECT statements, the program uses functions like SQLNumResultCols, SQLDescribeCol,

SQLBindCol, SQLFetch, and SQLCloseCursor to process the result set. For statements that update data,

SQLRowCount can be used to determine the number of affected rows. For other types of SQL statements,

the processing is complete after the statement is processed. SQLFreeStmt is then used in all cases to

indicate that the handle is no longer needed.

Allocate statement handle(s) in a DB2 UDB CLI application

SQLAllocStmt() allocates a statement handle. A statement handle refers to the data object that contains

information about an SQL statement that is managed by DB2 UDB CLI. This includes information such as

dynamic arguments, cursor information, bindings for dynamic arguments and columns, result values, and

status information (these are discussed later). Each statement handle is associated with a connection

handle.

Allocate a statement handle in order to run a statement. You can concurrently allocate up to 160 000

handles. This applies to all types of handles, including descriptor handles that are implicitly allocated by

the implementation code.

Preparation and processing tasks in a DB2 UDB CLI application

As soon as a statement handle has been allocated, there are two methods of specifying and executing

SQL statements:

1. Prepare, and then execute:

a. Call SQLPrepare() with an SQL statement as an argument.

b. Call SQLSetParam(), if the SQL statement contains parameter markers.

c. Call SQLExecute()

2. Execute direct:

a. Call SQLSetParam(), if the SQL statement contains parameter markers.

b. Call SQLExecDirect() with an SQL statement as an argument.

The first method splits the preparation of the statement from the processing. This method is used when:

v The statement is processed repeatedly (typically with different parameter values). This avoids having

to prepare the same statement more than once.

v The application requires information about the columns in the result set, before statement processing.

The second method combines the preparation step and the processing step into one. This method is used

when:

v The statement is processed once. This avoids having to call two functions to process the statement.

v The application does not require information about the columns in the result set, before the statement

is processed.

Binding parameters in SQL statements in a DB2 UDB CLI application

SQL call level interface 11

|
|
|

Both processing methods allow the use of parameter markers in place of an expression (or host variable in

embedded SQL) in an SQL statement.

Parameter markers are represented by the ’?’ character and indicate the position in the SQL statement

where the contents of application variables are to be substituted when the statement is processed. The

markers are referenced sequentially, from left to right, starting at 1.

When an application variable is associated with a parameter marker, it is bound to the parameter marker.

Binding is carried out by calling the SQLSetParam() function with:

v The number of the parameter marker

v A pointer to the application variable

v The SQL type of the parameter

v The data type and length of the variable.

The application variable is called a deferred argument because only the pointer is passed when

SQLSetParam() is called. No data is read from the variable until the statement is processed. This applies to

both buffer arguments and arguments that indicate the length of the data in the buffer. Deferred

arguments allow the application to modify the contents of the bound parameter variables, and repeat the

processing of the statement with the new values.

When calling SQLSetParam(), it is possible to bind a variable of a different type from that required by the

SQL statement. In this case DB2 UDB CLI converts the contents of the bound variable to the correct type.

For example, the SQL statement might require an integer value, but your application has a string

representation of an integer. The string can be bound to the parameter, and DB2 UDB CLI converts the

string to an integer when you process the statement.

For more information and examples refer to:

v “Data types and data conversion in DB2 UDB CLI functions” on page 15

v “SQLPrepare - Prepare a statement” on page 164

v “SQLSetParam - Set parameter” on page 200

v “SQLExecute - Execute a statement” on page 83

v “SQLExecDirect - Execute a statement directly” on page 81

If the SQL statement uses parameter markers instead of expressions (or host variables in embedded SQL),

you must bind the application variable to the parameter marker.

Processing results in a DB2 UDB CLI application

The next step after the statement has been processed depends on the type of SQL statement.

Process SELECT statements in a DB2 UDB CLI application: If the statement is a SELECT, the following

steps are generally needed to retrieve each row of the result set:

1. Establish the structure of the result set, number of columns, column types and lengths.

2. Bind application variables to columns in order to receive the data.

3. Repeatedly fetch the next row of data, and receive it into the bound application variables.

Columns that were not previously bound can be retrieved by calling SQLGetData() after each

successful fetch.

Note: Each of the above steps requires some diagnostic checks.

The first step requires analyzing the processed or prepared statement. If the SQL statement is generated

by the application, this step is not necessary. This is because the application knows the structure of the

result set and the data types of each column. If the SQL statement is generated (for example, entered by a

user) at run time, the application needs to query:

12 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v The number of columns

v The type of each column

v The names of each column in the result set.

This information can be obtained by calling SQLNumResultCols() and SQLDescribeCol() (or

SQLColAttributes()) after preparing the statement or after executing the statement.

The second step allows the application to retrieve column data directly into an application variable on the

next call to SQLFetch(). For each column to be retrieved, the application calls SQLBindCol() to bind an

application variable to a column in the result set. Similar to variables bound to parameter markers using

SQLSetParam(), columns are bound using deferred arguments. This time the variables are output

arguments, and data is written to them when SQLFetch() is called. SQLGetData() can also be used to

retrieve data, so calling SQLBindCol() is optional.

The third step is to call SQLFetch() to fetch the first or next row of the result set. If any columns have

been bound, the application variable is updated. If any data conversion is indicated by the data types

specified on the call to SQLBindCol, the conversion occurs when SQLFetch() is called.

The last (optional) step, is to call SQLGetData() to retrieve any columns that were not previously bound.

All columns can be retrieved this way, provided they were not bound, or a combination of both methods

can be used. SQLGetData() is also useful for retrieving variable length columns in smaller pieces, which

cannot be done with bound columns. Data conversion can also be indicated here, as in SQLBindCol().

For more information and examples refer to:

v “Data types and data conversion in DB2 UDB CLI functions” on page 15

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLColAttributes - Obtain column attributes” on page 52

v “SQLDescribeCol - Describe column attributes” on page 68

v “SQLFetch - Fetch next row” on page 87

v “SQLGetData - Get data from a column” on page 114

v “SQLNumResultCols - Get number of result columns” on page 160

Process UPDATE, DELETE, and INSERT statements in a DB2 UDB CLI application: If the statement is

modifying data (UPDATE, DELETE or INSERT), no action is required other than the normal check for

diagnostic messages. In this case, SQLRowCount() can be used to obtain the number of rows affected by

the SQL statement.

If the SQL statement is a Positioned UPDATE or DELETE, it is necessary to use a cursor. A cursor is a

moveable pointer to a row in the result table of a SELECT statement. In embedded SQL, cursors are used

to retrieve, update or delete rows. When using DB2 UDB CLI, it is not necessary to define a cursor,

because one is generated automatically.

In the case of Positioned UPDATE or DELETE statements, you need to specify the name of the cursor

within the SQL statement. You can either define your own cursor name using SQLSetCursorName(), or

query the name of the generated cursor using SQLGetCursorName(). It is best to use the generated name,

because all error messages refer to this name, and not the one defined by SQLSetCursorName().

 Related reference

 “SQLNumResultCols - Get number of result columns” on page 160

Process other SQL statements in a DB2 UDB CLI application: If the statement neither queries nor

modifies the data, then there is no further action other than the normal check for diagnostic messages.

SQL call level interface 13

Free statement handles in a DB2 UDB CLI application

Call SQLFreeStmt() to end processing for a particular statement handle. This function can be used to do

one or more of the following tasks:

v Unbind all columns

v Unbind all parameters

v Close any cursors and discard the results

v Drop the statement handle, and release all associated resources

The statement handle can be reused provided it is not dropped.

Commit or roll back in a DB2 UDB CLI application

The last step is to either commit or roll back the transaction, using SQLTransact().

A transaction is a recoverable unit of work, or a group of SQL statements that can be treated as one

atomic operation. This means that all the operations within the group are to be completed (committed) or

undone (rolled back), as if they were a single operation.

When using DB2 UDB CLI, transactions are started implicitly with the first access to the database using

SQLPrepare(), SQLExecDirect() or SQLGetTypeInfo(). The transaction ends when you use SQLTransact()

to either roll back or commit the transaction. This means that any SQL statements processed between

these are treated as one unit of work.

When to call SQLTransact() in a DB2 UDB CLI application: Consider the following items when

deciding when to end a transaction:

v You can only commit or roll back the current transaction, so keep dependent statements within the

same transaction.

v Various locks are held while you have an outstanding transaction. Ending the transaction releases the

locks, and allows access to the data by other users. This is the case for all SQL statements, including

SELECT statements.

v As soon as a transaction has successfully been committed or rolled back, it is fully recoverable from the

system logs (this depends on the Database Management System (DBMS)). Open transactions are not

recoverable.

Effects of calling SQLTransact() in a DB2 UDB CLI application: When a transaction ends:

v All statements must be prepared before they can be used again.

v Cursor names, bound parameters, and column bindings are maintained from one transaction to the

next.

v All open cursors are closed.
 Related reference

 “SQLTransact - Commit or roll back transaction” on page 217

Diagnostics in a DB2 UDB CLI application

This topic deals with warning or error conditions generated within an application.

There are two levels of diagnostics when calling DB2 UDB CLI functions:

v Return codes from a DB2 UDB CLI application

v DB2 UDB CLI SQLSTATEs (diagnostic messages)
 Related reference

 “SQLError - Retrieve error information” on page 79

 “SQLGetDiagField - Return diagnostic information (extensible)” on page 119

14 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Return codes from a DB2 UDB CLI application

The following table lists all possible return codes for DB2 UDB CLI functions. Each function description

in “DB2 UDB CLI functions” on page 18 lists the possible codes returned for each function.

 Table 2. DB2 UDB CLI function return codes

Return code Value Explanation

SQL_SUCCESS 0 The function is completed successfully, no additional SQLSTATE information

available.

SQL_SUCCESS_WITH_INFO 1 The function is completed successfully, with a warning or other information. Call

SQLError() to receive the SQLSTATE and any other error information. The

SQLSTATE has a class of 01.

SQL_NO_DATA_FOUND 100 The function returned successfully, but no relevant data is found.

SQL_ERROR -1 The function fails. Call SQLError() to receive the SQLSTATE and any other error

information.

SQL_INVALID_HANDLE -2 The function fails because an input handle is not valid (environment, connection or

statement handle).

DB2 UDB CLI SQLSTATEs

Because different database servers often have different diagnostic message codes, DB2 UDB CLI provides

a standard set of SQLSTATEs that are defined by the X/Open SQL CAE specification. This allows

consistent message handling across different database servers.

SQLSTATEs are alphanumeric strings of 5 characters (bytes) with a format of ccsss, where cc indicates

class and sss indicates subclass. Any SQLSTATE that has a class of:

v 01, is a warning.

v HY, is generated by the CLI driver (either DB2 UDB CLI or ODBC).

The SQLError() function also returns an error code if the code is generated by the server. When

connected to an IBM database server, the error code is SQLCODE. If the code is generated by DB2 UDB

CLI instead of at the server, then the error code is set to -99999.

DB2 UDB CLI SQLSTATEs include both additional IBM defined SQLSTATEs that are returned by the

database server, and DB2 UDB CLI defined SQLSTATEs for conditions that are not defined in the

X/Open specification. This allows for the maximum amount of diagnostic information to be returned.

When running applications in Windows using ODBC, it is also possible to receive ODBC defined

SQLSTATEs.

Follow these guidelines for using SQLSTATEs within your application:

v Always check the function return code before calling SQLError() to determine if diagnostic information

is available.

v Use the SQLSTATEs rather than the error code.

v To increase your application’s portability, only build dependencies on the subset of DB2 UDB CLI

SQLSTATEs that are defined by the X/Open specification, and return the additional ones as

information only. (Dependencies refers to the application making logic flow decisions based on specific

SQLSTATEs.)

v For maximum diagnostic information, return the text message along with the SQLSTATE (if applicable,

the text message includes the IBM defined SQLSTATE). It is also useful for the application to print out

the name of the function that returned the error.

Data types and data conversion in DB2 UDB CLI functions

This topics shows all of the supported SQL types and their corresponding symbolic names.

SQL call level interface 15

Table 3 shows all of the supported SQL types and their corresponding symbolic names. The symbolic

names are used in SQLBindParam(), SQLBindParameter(), SQLSetParam(), SQLBindCol(), and

SQLGetData() to indicate the data types of the arguments.

Each column is described as follows:

SQL type

This column contains the SQL data type as it appears in an SQL statement. The SQL data types

are dependent on the Database Management System (DBMS).

SQL symbolic

This column contains an SQL symbolic name that is defined (in sqlcli.h) as an integer value.

This value is used by various functions to identify an SQL data type in the first column.

 Table 3. SQL data types and default C data types

SQL type SQL symbolic

BIGINT SQL_BIGINT

BINARY SQL_BINARY

BLOB SQL_BLOB

CHAR SQL_CHAR, SQL_WCHAR1

CLOB SQL_CLOB

DATE SQL_DATE

DBCLOB SQL_DBCLOB

DECIMAL SQL_DECIMAL

DOUBLE SQL_DOUBLE

FLOAT SQL_FLOAT

GRAPHIC SQL_GRAPHIC

INTEGER SQL_INTEGER

NUMERIC SQL_NUMERIC

REAL SQL_REAL

SMALLINT SQL_SMALLINT

TIME SQL_TIME

TIMESTAMP SQL_TIMESTAMP

VARBINARY SQL_VARBINARY

VARCHAR SQL_VARCHAR, SQL_WVARCHAR1

VARGRAPHIC SQL_VARGRAPHIC

1 SQL_WCHAR and SQL_WVARCHAR can be used to indicate Unicode data.

Other C data types in DB2 UDB CLI functions

As well as the data types that map to SQL data types, there are also C symbolic types used for other

function arguments, such as pointers and handles.

 Table 4. Generic data types and actual C data types

Symbolic type Actual C type Typical usage

SQLHDBC long int Handle referencing database connection information.

SQLHENV long int Handle referencing environment information.

SQLHSTMT long int Handle referencing statement information.

16 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 4. Generic data types and actual C data types (continued)

Symbolic type Actual C type Typical usage

SQLPOINTER void * Pointers to storage for data and parameters.

SQLRETURN long int Return code from DB2 UDB CLI functions.

Data conversion in DB2 UDB CLI functions

As mentioned previously, DB2 UDB CLI manages the transfer and any required conversion of data

between the application and the Database Management System (DBMS). Before the data transfer actually

takes place, the source, target or both data types are indicated when calling SQLBindParam(),

SQLBindParameter(), SQLSetParam(), SQLBindCol() or SQLGetData(). These functions use the symbolic

type names shown in Table 3 on page 16, to identify the data types involved. Refer to the “SQLFetch -

Fetch next row” on page 87, or “SQLGetCol - Retrieve one column of a row of the result set” on page 103

for examples of the functions that use the symbolic data types.

For a list of supported data type conversions in DB2 UDB CLI, see the data type compatibility table in

the Assignments and comparisons topic. Other conversions can be achieved by using SQL scalar

functions or the SQL CAST function in the SQL syntax of the statement being processed.

The functions mentioned in the previous paragraph can be used to convert data to other types. Not all

data conversions are supported or make sense.

Whenever truncation that is rounding or data type incompatibilities occur on a function call, either

SQL_ERROR or SQL_SUCCESS_WITH_INFO is returned. Further information is then indicated by the

SQLSTATE value and other information returned by SQLError().

Work with string arguments in DB2 UDB CLI functions

These topics discuss some conventions when dealing with the various aspects of working with string

arguments in DB2 UDB CLI functions.

Length of string arguments in DB2 UDB CLI functions

Input string arguments have an associated length argument. This argument indicates to DB2 UDB CLI,

either the length of the allocated buffer (not including the null byte terminator), or the special value

SQL_NTS. If SQL_NTS is passed, DB2 UDB CLI determines the length of the string by locating the null

terminating character.

Output string arguments have two associated length arguments, one to specify the length of the allocated

buffer and one to return the length of the string returned by DB2 UDB CLI. The returned length value is

the total length of the string available for return, whether it fits in the buffer or not.

For SQL column data, if the output is an empty string, SQL_NULL_DATA is returned in the length

argument.

If a function is called with a null pointer for an output length argument, DB2 UDB CLI does not return a

length. This might be useful when it is known that the buffers are large enough for all possible results. If

DB2 UDB CLI attempts to return the SQL_NULL_DATA value to indicate a column contains null data

and the output length argument is a null pointer, the function call fails.

Every character string that DB2 UDB CLI returns is terminated with a null terminating character

(hexadecimal 00), except for strings that are returned from graphic data types. This requires that all

buffers allocate enough space for the maximum number that are expected, plus one for the

null-terminating character.

SQL call level interface 17

String truncation in DB2 UDB CLI functions

If an output string does not fit into a buffer, DB2 UDB CLI truncates the string to a length that is one less

than the size of the buffer, and writes the null terminator. If truncation occurs, the function returns

SQL_SUCCESS_WITH_INFO and an SQLSTATE by indicating truncation. The application can then

compare the buffer length to the output length to determine which string is truncated.

For example, if SQLFetch() returns SQL_SUCCESS_WITH_INFO, and an SQLSTATE of 01004, at least one

of the buffers bound to a column is too small to hold the data. For each buffer that is bound to a column,

the application can compare the buffer length with the output length and determine which column is

truncated.

Interpretation of strings in DB2 UDB CLI functions

DB2 UDB CLI ignores case, and removes leading and trailing blanks for all string input arguments, such

as column names and cursor names, with the exception of:

v Any database data

v Delimited identifiers that are enclosed in double quotation marks)

v Password arguments.

DB2 UDB CLI functions

This topic provides a description of each CLI function.

See “Categories of DB2 UDB CLIs” on page 19 for a categorical listing of the functions.

Each of the DB2 UDB CLI function descriptions is presented in a consistent format.

How the CLI functions are described

The following table shows the type of information that is described in each section of the function

description.

 Type Description

Purpose This section gives a brief overview of what the function does. It also indicates if any

functions should be called before and after calling the function being described.

Syntax This section contains the C language prototype for the i5/OS™ environment.

Arguments This section lists each function argument, along with its data type, a description and

whether it is an input or output argument.

Each DB2 UDB CLI argument is either an input or output argument. With the exception

of SQLGetInfo(), DB2 UDB CLI only modifies arguments that are indicated as output.

Some functions contain input or output arguments which are known as deferred or bound

arguments. These arguments are pointers to buffers allocated by the application. These

arguments are associated with (or bound to) either a parameter in an SQL statement, or

a column in a result set. The data areas specified by the function are accessed by DB2

UDB CLI at a later time. It is important that these deferred data areas are still valid at

the time DB2 UDB CLI accesses them.

Usage This section provides information about how to use the function, and any special

considerations. Possible error conditions are not discussed here, but are listed in the

diagnostics section instead.

18 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Type Description

Return codes This section lists all the possible function return codes. When SQL_ERROR or

SQL_SUCCESS_WITH_INFO is returned, error information can be obtained by calling

SQLError().

Refer to “Diagnostics in a DB2 UDB CLI application” on page 14 for more information

about return codes.

Diagnostics This section contains a table that lists the SQLSTATEs explicitly returned by DB2 UDB

CLI (SQLSTATEs generated by the Database Management System (DBMS) might also be

returned) and indicates the cause of the error. These values are obtained by calling

SQLError() after the function returns SQL_ERROR or SQL_SUCCESS_WITH_INFO.

An * in the first column indicates that the SQLSTATE is returned only by DB2 UDB CLI,

and is not returned by other ODBC drivers.

Refer to “Diagnostics in a DB2 UDB CLI application” on page 14 for more information

about diagnostics.

Restrictions This section indicates any differences or limitations between DB2 UDB CLI and ODBC

that might affect an application.

Example This section is a code fragment demonstrating the use of the function. The complete

source used for all code fragments is listed in “Examples: DB2 UDB CLI applications”

on page 247.

References This section lists related DB2 UDB CLI functions.

Categories of DB2 UDB CLIs

The following call level interface APIs are available for database access on iSeries. Each of the DB2 UDB

CLI function descriptions is presented in a consistent format.

v Connect

– “SQLConnect - Connect to a data source” on page 62

– “SQLDataSources - Get list of data sources” on page 65

– “SQLDisconnect - Disconnect from a data source” on page 73

– “SQLDriverConnect - (Expanded) Connect to a data source” on page 74
v Diagnostics

– “SQLError - Retrieve error information” on page 79

– “SQLGetDiagField - Return diagnostic information (extensible)” on page 119

– “SQLGetDiagRec - Return diagnostic information (concise)” on page 121
v MetaData

– “SQLColumns - Get column information for a table” on page 58

– “SQLColumnPrivileges - Get privileges associated with the columns of a table” on page 56

– “SQLForeignKeys - Get the list of foreign key columns” on page 94

– “SQLGetInfo - Get general information” on page 127

– “SQLGetTypeInfo - Get data type information” on page 149

– “SQLLanguages - Get SQL dialect or conformance information” on page 153

– “SQLPrimaryKeys - Get primary key columns of a table” on page 168

– “SQLProcedureColumns - Get input/output parameter information for a procedure” on page 170

– “SQLProcedures - Get list of procedure names” on page 176

– “SQLSpecialColumns - Get special (row identifier) columns” on page 206

– “SQLStatistics - Get index and statistics information for a base table” on page 209

– “SQLTablePrivileges – Get privileges associated with a table” on page 212

SQL call level interface 19

– “SQLTables - Get table information” on page 215
v Process SQL statements

– “SQLBindCol - Bind a column to an application variable” on page 29

– “SQLBindFileToCol - Bind LOB file reference to LOB column” on page 33

– “SQLBindFileToParam - Bind LOB file reference to LOB parameter” on page 36

– “SQLBindParam - Bind a buffer to a parameter marker” on page 38

– “SQLBindParameter - Bind a parameter marker to a buffer” on page 42

– “SQLCancel - Cancel statement” on page 50

– “SQLCloseCursor - Close cursor statement” on page 51

– “SQLColAttributes - Obtain column attributes” on page 52

– “SQLDescribeCol - Describe column attributes” on page 68

– “SQLDescribeParam - Return description of a parameter marker” on page 70

– “SQLEndTran - Commit or roll back a transaction” on page 77

– “SQLExecDirect - Execute a statement directly” on page 81

– “SQLExecute - Execute a statement” on page 83

– “SQLExtendedFetch - Fetch array of rows” on page 85

– “SQLFetch - Fetch next row” on page 87

– “SQLFetchScroll - Fetch from a scrollable cursor” on page 92

– “SQLGetCursorName - Get cursor name” on page 111

– “SQLGetData - Get data from a column” on page 114

– “SQLGetDescField - Get descriptor field” on page 115

– “SQLGetDescRec - Get descriptor record” on page 117

– “SQLMoreResults - Determine whether there are more result sets” on page 155

– “SQLNativeSql - Get native SQL text” on page 156

– “SQLNextResult - Process the next result set” on page 158

– “SQLNumParams - Get number of parameters in an SQL statement” on page 159

– “SQLNumResultCols - Get number of result columns” on page 160

– “SQLParamData - Get next parameter for which a data value is needed” on page 162

– “SQLParamOptions - Specify an input array for a parameter” on page 163

– “SQLPrepare - Prepare a statement” on page 164

– “SQLPutData - Pass data value for a parameter” on page 179

– “SQLRowCount - Get row count” on page 182

– “SQLSetCursorName - Set cursor name” on page 192

– “SQLTransact - Commit or roll back transaction” on page 217
v Work with attributes

– “SQLGetCol - Retrieve one column of a row of the result set” on page 103

– “SQLGetConnectAttr - Get the value of a connection attribute” on page 109

– “SQLGetConnectOption - Return current setting of a connect Option” on page 110

– “SQLGetCursorName - Get cursor name” on page 111

– “SQLGetData - Get data from a column” on page 114

– “SQLGetDescField - Get descriptor field” on page 115

– “SQLGetDescRec - Get descriptor record” on page 117

– “SQLGetEnvAttr - Return current setting of an environment Attribute” on page 123

– “SQLGetFunctions - Get functions” on page 124

– “SQLGetInfo - Get general information” on page 127

20 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

– “SQLGetLength - Retrieve length of a string value” on page 140

– “SQLGetPosition - Return starting position of string” on page 141

– “SQLGetStmtAttr - Get the value of a statement attribute” on page 143

– “SQLGetStmtOption - Return current setting of a statement option” on page 145

– “SQLGetSubString - Retrieve portion of a string value” on page 146

– “SQLGetTypeInfo - Get data type information” on page 149

– “SQLSetConnectAttr - Set a connection attribute” on page 183

– “SQLSetConnectOption - Set connection option” on page 190

– “SQLSetCursorName - Set cursor name” on page 192

– “SQLSetDescField - Set a descriptor field” on page 193

– “SQLSetDescRec - Set a descriptor record” on page 195

– “SQLSetEnvAttr - Set environment attribute” on page 196

– “SQLSetParam - Set parameter” on page 200

– “SQLSetStmtAttr - Set a statement attribute” on page 201

– “SQLSetStmtOption - Set statement option” on page 205
v Work with handles

– “SQLAllocConnect - Allocate connection handle”

– “SQLAllocEnv - Allocate environment handle” on page 24

– “SQLAllocHandle - Allocate handle” on page 26

– “SQLAllocStmt - Allocate a statement handle” on page 27

– “SQLCopyDesc - Copy description statement” on page 64

– “SQLFreeConnect - Free connection handle” on page 99

– “SQLFreeEnv - Free environment handle” on page 100

– “SQLFreeHandle - Free a handle” on page 101

– “SQLFreeStmt - Free (or reset) a statement handle” on page 102

– “SQLReleaseEnv - Release all environment resources” on page 181

SQLAllocConnect - Allocate connection handle

Purpose

SQLAllocConnect() allocates a connection handle and associated resources within the environment

identified by the input environment handle. Call SQLGetInfo() with fInfoType set to

SQL_ACTIVE_CONNECTIONS, to query the number of connections that can be allocated at any one

time.

SQLAllocEnv() must be called before calling this function.

Syntax

SQLRETURN SQLAllocConnect (SQLHENV henv,

 SQLHDBC *phdbc);

Function arguments

 Table 5. SQLAllocConnect arguments

Data type Argument Use Description

SQLHDBC * phdbc Output Pointer to connection handle

SQLHENV henv Input Environment handle

SQL call level interface 21

Usage

The output connection handle is used by DB2 UDB CLI to reference all information related to the

connection, including general status information, transaction state, and error information.

If the pointer to the connection handle (phdbc) points to a valid connection handle allocated by

SQLAllocConnect(), the original value is overwritten as a result of this call. This is an application

programming error and is not detected by DB2 UDB CLI

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

If SQL_ERROR is returned, the phdbc argument is set to SQL_NULL_HDBC. The application should call

SQLError() with the environment handle (henv), with hdbc set to SQL_NULL_HDBC, and with hstmt set

to SQL_NULL_HSTMT.

Diagnostics

 Table 6. SQLAllocConnect SQLSTATEs

CLI SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

phdbc is a null pointer.

Example

The following example shows how to obtain diagnostic information for the connection and the

environment. For more examples of using SQLError(), refer to “Example: Interactive SQL and the

equivalent DB2 UDB CLI function calls” on page 253 for a complete listing of typical.c.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/***

** initialize

** - allocate environment handle

** - allocate connection handle

** - prompt for server, user id, & password

** - connect to server

***/

int initialize(SQLHENV *henv,

 SQLHDBC *hdbc)

{

SQLCHAR server[SQL_MAX_DSN_LENGTH],

 uid[30],

 pwd[30];

SQLRETURN rc;

 SQLAllocEnv (henv); /* allocate an environment handle */

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

22 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLAllocConnect (*henv, hdbc); /* allocate a connection handle */

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 printf("Enter Server Name:\n");

 gets(server);

 printf("Enter User Name:\n");

 gets(uid);

 printf("Enter Password Name:\n");

 gets(pwd);

 if (uid[0] == ’\0’)

 { rc = SQLConnect (*hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 }

 else

 { rc = SQLConnect (*hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 }

}/* end initialize */

/***/

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc)

{

SQLRETURN rc;

 print_error(henv, hdbc, hstmt);

 switch (frc){

 case SQL_SUCCESS : break;

 case SQL_ERROR :

 case SQL_INVALID_HANDLE:

 printf("\n ** FATAL ERROR, Attempting to rollback transaction **\n");

 rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);

 if (rc != SQL_SUCCESS)

 printf("Rollback Failed, Exiting application\n");

 else

 printf("Rollback Successful, Exiting application\n");

 terminate(henv, hdbc);

 exit(frc);

 break;

 case SQL_SUCCESS_WITH_INFO :

 printf("\n ** Warning Message, application continuing\n");

 break;

 case SQL_NO_DATA_FOUND :

 printf("\n ** No Data Found ** \n");

 break;

 default :

 printf("\n ** Invalid Return Code ** \n");

 printf(" ** Attempting to rollback transaction **\n");

 SQLTransact(henv, hdbc, SQL_ROLLBACK);

 terminate(henv, hdbc);

 exit(frc);

 break;

 }

 return(SQL_SUCCESS);

}

SQL call level interface 23

References

v “SQLAllocEnv - Allocate environment handle”

v “SQLConnect - Connect to a data source” on page 62

v “SQLDisconnect - Disconnect from a data source” on page 73

v “SQLFreeConnect - Free connection handle” on page 99

v “SQLGetConnectAttr - Get the value of a connection attribute” on page 109

v “SQLSetConnectOption - Set connection option” on page 190

SQLAllocEnv - Allocate environment handle

Purpose

SQLAllocEnv() allocates an environment handle and associated resources.

An application must call this function before SQLAllocConnect() or any other DB2 UDB CLI functions.

The henv value is passed in all later function calls that require an environment handle as input.

Syntax

SQLRETURN SQLAllocEnv (SQLHENV *phenv);

Function arguments

 Table 7. SQLAllocEnv arguments

Data type Argument Use Description

SQLHENV * phenv Output Pointer to environment handle

Usage

There can be only one active environment at any one time per application. Any later call to

SQLAllocEnv() returns the existing environment handle.

By default, the first successful call to SQLFreeEnv() releases the resources associated with the handle. This

occurs no matter how many times SQLAllocEnv() is successfully called. If the environment attribute

SQL_ATTR_ENVHNDL_COUNTER is set to SQL_TRUE, SQLFreeEnv() must be called once for each

successful SQLAllocEnv() call before the resources associated with the handle are released.

To ensure that all DB2 UDB CLI resources are kept active, the program that calls SQLAllocEnv() should

not stop or leave the stack. Otherwise, the application loses open cursors, statement handles, and other

resources it has allocated.

Return codes

v SQL_SUCCESS

v SQL_ERROR

If SQL_ERROR is returned and phenv is equal to SQL_NULL_HENV, then SQLError() cannot be called

because there is no handle with which to associate additional diagnostic information.

If the return code is SQL_ERROR and the pointer to the environment handle is not equal to

SQL_NULL_HENV, then the handle is a restricted handle. This means the handle can only be used in a call

to SQLError() to obtain more error information, or to SQLFreeEnv().

24 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Diagnostics

 Table 8. SQLAllocEnv SQLSTATEs

SQLSTATE Description Explanation

58004 System error Unrecoverable system error

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/***

** file = basiccon.c

** - demonstrate basic connection to two datasources.

** - error handling ignored for simplicity

**

** Functions used:

**

** SQLAllocConnect SQLDisconnect

** SQLAllocEnv SQLFreeConnect

** SQLConnect SQLFreeEnv

**

**

**/

#include <stdio.h>

#include <stdlib.h>

#include "sqlcli.h"

int

connect(SQLHENV henv,

 SQLHDBC * hdbc);

#define MAX_DSN_LENGTH 18

#define MAX_UID_LENGTH 10

#define MAX_PWD_LENGTH 10

#define MAX_CONNECTIONS 5

int

main()

{

 SQLHENV henv;

 SQLHDBC hdbc[MAX_CONNECTIONS];

 /* allocate an environment handle */

 SQLAllocEnv(&henv);

 /* Connect to first data source */

 connect(henv, &hdbc[0];);

 /* Connect to second data source */

 connect(henv, &hdbc[1];);

 /********* Start Processing Step *************************/

 /* allocate statement handle, execute statement, and so on */

 /********* End Processing Step ***************************/

 printf("\nDisconnecting \n");

 SQLFreeConnect(hdbc[0]); /* free first connection handle */

 SQLFreeConnect(hdbc[1]); /* free second connection handle */

 SQLFreeEnv(henv); /* free environment handle */

 return (SQL_SUCCESS);

}

SQL call level interface 25

/**

** connect - Prompt for connect options and connect **

**/

int

connect(SQLHENV henv,

 SQLHDBC * hdbc)

{

 SQLRETURN rc;

 SQLCHAR server[MAX_DSN_LENGTH + 1], uid[MAX_UID_LENGTH + 1],

pwd[MAX_PWD_LENGTH

+ 1];

 SQLCHAR buffer[255];

 SQLSMALLINT outlen;

 printf("Enter Server Name:\n");

 gets((char *) server);

 printf("Enter User Name:\n");

 gets((char *) uid);

 printf("Enter Password Name:\n");

 gets((char *) pwd);

 SQLAllocConnect(henv, hdbc);/* allocate a connection handle */

 rc = SQLConnect(*hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

 if (rc != SQL_SUCCESS) {

 printf("Error while connecting to database\n");

 return (SQL_ERROR);

 } else {

 printf("Successful Connect\n");

 return (SQL_SUCCESS);

 }

}

References

v “SQLAllocConnect - Allocate connection handle” on page 21

v “SQLFreeEnv - Free environment handle” on page 100

v “SQLAllocStmt - Allocate a statement handle” on page 27

SQLAllocHandle - Allocate handle

Purpose

SQLAllocHandle() allocates any type of handle.

Syntax

SQLRETURN SQLAllocHandle (SQLSMALLINT htype,

 SQLINTEGER ihandle,

 SQLINTEGER *handle);

Function arguments

 Table 9. SQLAllocHandle arguments

Data type Argument Use Description

SQLINTEGER * handle Output Pointer to the handle.

SQLINTEGER ihandle Input The handle that describes the context in

which the new handle is allocated; however,

if htype is SQL_HANDLE_ENV, this is

SQL_NULL_HANDLE.

26 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 9. SQLAllocHandle arguments (continued)

Data type Argument Use Description

SQLSMALLINT htype Input Type of handle to allocate. Must be either

SQL_HANDLE_ENV, SQL_HANDLE_DBC,

SQL_HANDLE_DESC, or

SQL_HANDLE_STMT.

Usage

This function combines the functions of SQLAllocEnv(), SQLAllocConnect(), and SQLAllocStmt().

If htype is SQL_HANDLE_ENV, ihandle must be SQL_NULL_HANDLE. If htype is SQL_HANDLE_DBC,

ihandle must be a valid environment handle. If htype is either SQL_HANDLE_DESC or

SQL_HANDLE_STMT, ihandle must be a valid connection handle.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

SQL_ERROR is returned if the argument handle is a null pointer.

 Table 10. SQLAllocHandle SQLSTATEs

SQLSTATE Description Explanation

58004 System error Unrecoverable system error.

HY014 Too many handles The maximum number of handles has been allocated.

References

v “SQLAllocConnect - Allocate connection handle” on page 21

v “SQLAllocEnv - Allocate environment handle” on page 24

v “SQLAllocStmt - Allocate a statement handle”

SQLAllocStmt - Allocate a statement handle

Purpose

SQLAllocStmt() allocates a new statement handle and associates it with the connection specified by the

connection handle. There is no defined limit on the number of statement handles that can be allocated at

any one time.

SQLConnect() must be called before calling this function.

This function must be called before SQLBindParam(), SQLPrepare(), SQLExecute(), SQLExecDirect(), or

any other function that has a statement handle as one of its input arguments.

Syntax

SQLRETURN SQLAllocStmt (SQLHDBC hdbc,

 SQLHSTMT *phstmt);

SQL call level interface 27

Function arguments

 Table 11. SQLAllocStmt arguments

Data type Argument Use Description

SQLHDBC hdbc Input Connection handle

SQLHSTMT * phstmt Output Pointer to statement handle

Usage

DB2 UDB CLI uses each statement handle to relate all the descriptors, result values, cursor information,

and status information to the SQL statement processed. Although each SQL statement must have a

statement handle, you can reuse the handles for different statements.

A call to this function requires that hdbc references an active database connection.

To process a positioned update or delete, the application must use different statement handles for the

SELECT statement and the UPDATE or DELETE statement.

If the input pointer to the statement handle (phstmt) points to a valid statement handle allocated by a

previous call to SQLAllocStmt(), then the original value is overwritten as a result of this call. This is an

application programming error and is not detected by DB2 UDB CLI.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

If SQL_ERROR is returned, the phstmt argument is set to SQL_NULL_HSTMT. The application should call

SQLError() with the same hdbc and with the hstmt argument set to SQL_NULL_HSTMT.

Diagnostics

 Table 12. SQLAllocStmt SQLSTATEs

SQLSTATE Description Explanation

08003 Connection not open The connection specified by the hdbc argument is not

open. The connection must be established successfully

(and the connection must be open) for the driver to

allocate an hstmt.

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

phstmt is a null pointer.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

Example

Refer to the example in “SQLFetch - Fetch next row” on page 87.

28 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

References

v “SQLConnect - Connect to a data source” on page 62

v “SQLFreeStmt - Free (or reset) a statement handle” on page 102

v “SQLGetStmtOption - Return current setting of a statement option” on page 145

v “SQLSetStmtOption - Set statement option” on page 205

SQLBindCol - Bind a column to an application variable

Purpose

SQLBindCol() associates (bind) columns in a result set to application variables (storage buffers), for all

data types. Data is transferred from the Database Management System (DBMS) to the application when

SQLFetch() is called.

This function is also used to specify any data conversion required. It is called once for each column in the

result set that the application needs to retrieve.

SQLPrepare() or SQLExecDirect() is typically called before this function. It might also be necessary to call

SQLDescribeCol() or SQLColAttributes().

SQLBindCol() must be called before SQLFetch(), to transfer data to the storage buffers specified by this

call.

Syntax

SQLRETURN SQLBindCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLSMALLINT fCType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER *pcbValue);

Function arguments

 Table 13. SQLBindCol arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLINTEGER * pcbValue Output (deferred) Pointer to value which indicates the number

of bytes DB2 UDB CLI has available to

return in the rgbValue buffer.

SQLFetch() returns SQL_NULL_DATA in this

argument if the data value of the column is

null. SQL_NTS is returned in this argument

if the data value of the column is returned as

a null-terminated string.

SQL call level interface 29

Table 13. SQLBindCol arguments (continued)

Data type Argument Use Description

SQLINTEGER cbValueMax Input Size of rgbValue buffer in bytes available to

store the column data.

If fCType is either SQL_CHAR or

SQL_DEFAULT, then cbValueMax must be >

0 otherwise an error is returned.

If fcType is either SQL_DECIMAL or

SQL_NUMERIC, cbValueMax must actually

be a precision and scale. The method to

specify both values is to use (precision * 256)

+ scale. This is also the value returned as the

LENGTH of these data types when using

SQLColAttributes().

If fcType specifies any form of double-byte

character data, then cbValueMax must be the

number of double-byte characters, not the

number of bytes.

SQLPOINTER rgbValue Output (deferred) Pointer to buffer where DB2 UDB CLI is to

store the column data when the fetch occurs.

If rgbValue is null, the column is unbound.

30 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 13. SQLBindCol arguments (continued)

Data type Argument Use Description

SQLSMALLINT fCType Input Application data type for column number

icol in the result set. The following types are

supported:

v SQL_BIGINT

v SQL_BINARY

v SQL_BLOB

v SQL_BLOB_LOCATOR

v SQL_CHAR

v SQL_CLOB

v SQL_CLOB_LOCATOR

v SQL_DATALINK

v SQL_DATETIME

v SQL_DBCLOB

v SQL_DBCLOB_LOCATOR

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_NUMERIC

v SQL_REAL

v SQL_SMALLINT

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

v SQL_WCHAR

v SQL_WVARCHAR

Specifying SQL_DEFAULT causes data to be

transferred to its default data type; refer to

Table 3 on page 16 for more information.

SQLSMALLINT icol Input Number identifying the column. Columns

are numbered sequentially, from left to right,

starting at 1.

Note:

For this function, both rgbValue and pcbValue are deferred outputs, meaning that the storage locations

these pointers point to are not updated until SQLFetch() is called. The locations referred to by these

pointers must remain valid until SQLFetch() is called.

SQL call level interface 31

Usage

The application calls SQLBindCol() once for each column in the result set that it wants to retrieve. When

SQLFetch() is called, the data in each of these bound columns is placed in the assigned location (given by

the pointers rgbValue and pcbValue).

The application can query the attributes (such as data type and length) of the column by first calling

SQLDescribeCol() or SQLColAttributes(). This information can then be used to specify the correct data

type of the storage locations, or to indicate data conversion to other data types. Refer to “Data types and

data conversion in DB2 UDB CLI functions” on page 15 for more information.

In later fetches, the application can change the binding of these columns or bind unbound columns by

calling SQLBindCol(). The new binding does not apply to data fetched, it is used when the next

SQLFetch() is called. To unbind a single column, call SQLBindCol() with rgbValue set to NULL. To unbind

all the columns, the application should call SQLFreeStmt() with the fOption input set to SQL_UNBIND.

Columns are identified by a number, assigned sequentially from left to right, starting at 1. The number of

columns in the result set can be determined by calling SQLNumResultCols() or SQLColAttributes() with

the fdescType argument set to SQL_DESC_COUNT.

All character data is treated as the default job coded character set identifier (CCSID) if the

SQL_ATTR_UTF8 environment attribute is not set to SQL_TRUE.

An application can choose not to bind every column, or even not to bind any columns. The data in the

unbound columns (and only the unbound columns) can be retrieved using SQLGetData() after SQLFetch()

has been called. SQLBindCol() is more efficient than SQLGetData(), and should be used whenever

possible.

The application must ensure enough storage is allocated for the data to be retrieved. If the buffer is to

contain variable length data, the application must allocate as much storage as the maximum length of the

bound column requires; otherwise, the data might be truncated.

The default is null termination for output character strings. To change this you must set the

SQLSetEnvAttr() attribute SQL_ATTR_OUTPUT_NTS to SQL_FALSE. The output values for pcbValue after

a call to SQLFetch() behave in the following way for character data types:

v If the null termination attribute is set (the default) and no truncation occurs, then SQL_NTS is returned

in the pcbValue.

v If the null termination attribute is not set and no truncation occurs, then the value of cbValueMax is

returned in pcbValue.

v If the null termination attribute is set or not set and truncation occurs, then the value of cbValueMax is

returned in pcbValue.

If truncation occurs and the SQLSetEnvAttr() attribute SQL_ATTR_TRUNCATION_RTNC is set to

SQL_FALSE (which is the default), then SQL_SUCCESS is returned in the SQLFetch() return code. If

truncation occurs and the attribute is SQL_TRUE, then SQL_SUCCESS_WITH_INFO is returned.

SQL_SUCCESS is returned in both cases if no truncation occurs.

Truncation occurs when argument cbValueMax does not allocate space for the amount of fetched data. If

the environment is set to run with null terminated strings, make sure to allocate space for the additional

byte in cbValueMax. For additional truncation information, refer to “SQLFetch - Fetch next row” on page

87.

Return codes

v SQL_SUCCESS

v SQL_ERROR

32 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v SQL_INVALID_HANDLE

Diagnostics

 Table 14. SQLBindCol SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY002 Column number that is not

valid

The value specified for the argument icol is 0.

The value specified for the argument icol exceeded the

maximum number of columns supported by the data

source.

HY003 Program type out of range fCType is not a valid data type.

HY009 Argument value that is not

valid

rgbValue is a null pointer.

The value specified for the argument cbValueMax is less

than 1, and the argument fCType is either SQL_CHAR or

SQL_DEFAULT.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HY014 Too many handles The maximum number of handles has been allocated,

and use of this function requires an additional descriptor

handle.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

HYC00 Driver not capable The driver recognizes, but does not support the data

type specified in the argument fCType (see also HY003).

Example

Refer to the example in “SQLFetch - Fetch next row” on page 87.

References

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExecute - Execute a statement” on page 83

v “SQLFetch - Fetch next row” on page 87

v “SQLPrepare - Prepare a statement” on page 164

SQLBindFileToCol - Bind LOB file reference to LOB column

Purpose

SQLBindFileToCol() is used to associate (bind) an LOB column in a result set to a file reference or an

array of file references. This enables data in that column to be transferred directly into a file when each

row is fetched for the statement handle.

The LOB file reference arguments (file name, file name length, file reference options) refer to a file within

the application’s environment (on the client). Before fetching each row, the application must make sure

that these variables contain the name of a file, the length of the file name, and a file option (new /

SQL call level interface 33

overwrite / append). These values can be changed between each fetch.

Syntax

SQLRETURN SQLBindFileToCol (SQLHSTMT StatementHandle,

 SQLSMALLINT ColumnNumber,

 SQLCHAR *FileName,

 SQLSMALLINT *FileNameLength,

 SQLINTEGER *FileOptions,

 SQLSMALLINT MaxFileNameLength,

 SQLINTEGER *StringLength,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 15. SQLBindFileToCol arguments

Data type Argument Use Description

SQLCHAR * FileName Input

(deferred)

Pointer to the location that contains the file name or

an array of file names at the time of the next fetch

using the StatementHandle. This is either the complete

path name of the file(s) or a relative file name(s). If

relative file name(s) are provided, they are appended

to the current path of the running application. This

pointer cannot be NULL.

SQLHSTMT StatementHandle Input Statement handle.

SQLINTEGER * FileOptions Input

(deferred)

Pointer to the location that contains the file option to

be used when writing the file at the time of the next

fetch using the StatementHandle. The following

FileOptions are supported:

SQL_FILE_CREATE

Create a new file. If a file by this name

already exists, SQL_ERROR is returned.

SQL_FILE_OVERWRITE

If the file already exists, overwrite it.

Otherwise, create a new file.

SQL_FILE_APPEND

If the file already exists, append the data to

it. Otherwise, create a new file.

Only one option can be chosen per file, there is no

default.

SQLINTEGER * IndicatorValue Output

(deferred)

Pointer to the location that contains an indicator

value.

SQLINTEGER * StringLength Output

(deferred)

Pointer to the location that contains the length in

bytes of the LOB data that is returned. If this pointer

is NULL, nothing is returned.

SQLSMALLINT * FileNameLength Input

(deferred)

Pointer to the location that contains the length of the

file name (or an array of lengths) at the time the next

fetch using the StatementHandle. If this pointer is

NULL, then a length of SQL_NTS is assumed.

The maximum value of the file name length is 255.

SQLSMALLINT ColumnNumber Input Number identifying the column. Columns are

numbered sequentially, from left to right, starting at

1.

SQLSMALLINT MaxFileNameLength Input This specifies the length of the FileName buffer.

34 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Usage

The application calls SQLBindFileToCol() once for each column that should be transferred directly to a

file when a row is fetched. LOB data is written directly to the file without any data conversion, and

without appending null-terminators.

FileName, FileNameLength, and FileOptions must be set before each fetch. When SQLFetch() or

SQLFetchScroll() is called, the data for any column which has been bound to an LOB file reference is

written to the file or files pointed to by that file reference. Errors associated with the deferred input

argument values of SQLBindFileToCol() are reported at fetch time. The LOB file reference, and the

deferred StringLength and IndicatorValue output arguments are updated between fetch operations.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 16. SQLBindFileToCol SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure Unrecoverable system error.

HY002 Column number that is not

valid

The value specified for the argument icol is less than 1.

The value specified for the argument icol exceeded the

maximum number of columns supported by the data

source.

HY009 Argument value that is not

valid

FileName, StringLength, or FileOptions is a null pointer.

HY010 Function sequence error The function is called while in a data-at-processing

(SQLParamData(), SQLPutData()) operation.

The function is called while within a BEGIN

COMPOUND and END COMPOUND SQL operation.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

HY090 String or buffer length that

is not valid

The value specified for the argument MaxFileNameLength

is less than 0.

HYC00 Driver not capable The application is currently connected to a data source

that does not support large objects.

Restrictions

This function is not available when connected to DB2 servers that do not support Large Object data

types.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLFetch - Fetch next row” on page 87

v “SQLBindFileToParam - Bind LOB file reference to LOB parameter” on page 36

SQL call level interface 35

SQLBindFileToParam - Bind LOB file reference to LOB parameter

Purpose

SQLBindFileToParam() is used to associate (bind) a parameter marker in an SQL statement to a file

reference or an array of file references. This enables data from the file to be transferred directly into an

LOB column when that statement is subsequently processed.

The LOB file reference arguments (file name, file name length, file reference options) refer to a file within

the application’s environment (on the client). Before calling SQLExecute() or SQLExecDirect(), the

application must make sure that this information is available in the deferred input buffers. These values

can be changed between SQLExecute() calls.

Syntax

SQLRETURN SQLBindFileToParam (SQLHSTMT StatementHandle,

 SQLSMALLINT ParameterNumber,

 SQLSMALLINT DataType,

 SQLCHAR *FileName,

 SQLSMALLINT *FileNameLength,

 SQLINTEGER *FileOptions,

 SQLSMALLINT MaxFileNameLength,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 17. SQLBindFileToParam arguments

Data type Argument Use Description

SQLCHAR * FileName Input

(deferred)

Pointer to the location that contains the file name or

an array of file names when the statement

(StatementHandle) is processed. This is either the

complete path name of the file or a relative file

name. If a relative file name is provided, it is

appended to the current path of the client process.

This argument cannot be NULL.

SQLHSTMT StatementHandle Input Statement handle.

SQLINTEGER * FileOptions Input

(deferred)

Pointer to the location that contains the file option

(or an array of file options) to be used when reading

the file. The location is accessed when the statement

(StatementHandle) is processed. Only one option is

supported (and it must be specified):

SQL_FILE_READ

A regular file that can be opened, read and

closed. (The length is computed when the

file is opened)

This pointer cannot be NULL.

SQLINTEGER * IndicatorValue Input

(deferred),

output

(deferred)

Pointer to the location that contains an indicator

value (or array of values), which is set to

SQL_NULL_DATA if the data value of the parameter

is to be null. It must be set to 0 (or the pointer can

be set to null) when the data value is not null.

36 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 17. SQLBindFileToParam arguments (continued)

Data type Argument Use Description

SQLSMALLINT * FileNameLength Input

(deferred)

Pointer to the location that contains the length of the

file name (or an array of lengths) at the time the next

SQLExecute() or SQLExecDirect() function is run

using the StatementHandle.

If this pointer is NULL, then a length of SQL_NTS is

assumed.

The maximum value of the file name length is 255.

SQLSMALLINT DataType Input SQL data type of the column. The data type must be

one of:

v SQL_BLOB

v SQL_CLOB

v SQL_DBCLOB

SQLSMALLINT MaxFileNameLength Input This specifies the length of the FileName buffer. If the

application calls SQLParamOptions() to specify

multiple values for each parameter, this is the length

of each element in the FileName array.

SQLSMALLINT ParameterNumber Input Parameter marker number. Parameters are numbered

sequentially, from left to right, starting at 1.

Usage

The application calls SQLBindFileToParam() once for each parameter marker whose value should be

obtained directly from a file when a statement is processed. Before the statement is processed, FileName,

FileNameLength, and FileOptions values must be set. When the statement is processed, the data for any

parameter which has been bound using SQLBindFIleToParam() is read from the referenced file and passed

to the server.

A LOB parameter marker can be associated with (bound to) an input file using SQLBindFileToParam(), or

with a stored buffer using SQLBindParameter(). The most recent bind parameter function call determines

the type of binding that is in effect.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 18. SQLBindFileToParam SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure Unrecoverable system error.

HY004 SQL data type out of range The value specified for DataType is not a valid SQL type for this

function call.

HY009 Argument value that is not valid FileName, FileOptions FileNameLength, is a null pointer.

SQL call level interface 37

Table 18. SQLBindFileToParam SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error The function is called while in a data-at-processing

(SQLParamData()or SQLPutData()) operation.

The function is called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HY090 String or buffer length that is not

valid

The value specified for the input argument MaxFileNameLength is

less than 0.

HY093 Parameter number that is not

valid

The value specified for ParameterNumber is either less than 1 or

greater than the maximum number of parameters supported.

HYC00 Driver not capable The server does not support Large Object data types.

Restrictions

This function is not available when connected to DB2 servers that do not support Large Object data

types.

References

v “SQLBindParam - Bind a buffer to a parameter marker”

v “SQLExecute - Execute a statement” on page 83

v “SQLParamOptions - Specify an input array for a parameter” on page 163

SQLBindParam - Bind a buffer to a parameter marker

Purpose

SQLBindParam() has been deprecated and replaced by SQLBindParameter(). Although this version of DB2

UDB CLI continues to support SQLBindParam(), it is recommended that you begin using

SQLBindParameter() in your DB2 UDB CLI programs so that they conform to the latest standards.

SQLBindParam() binds an application variable to a parameter marker in an SQL statement. This function

can also be used to bind an application variable to a parameter of a stored procedure CALL statement

where the parameter can be input or output.

Syntax

SQLRETURN SQLBindParam (SQLHSTMT hstmt,

 SQLSMALLINT ipar,

 SQLSMALLINT fCType,

 SQLSMALLINT fSqlType,

 SQLINTEGER cbParamDef,

 SQLSMALLINT ibScale,

 SQLPOINTER rgbValue,

 SQLINTEGER *pcbValue);

Function arguments

 Table 19. SQLBindParam arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

38 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 19. SQLBindParam arguments (continued)

Data type Argument Use Description

SQLINTEGER * pcbValue Input (deferred), or

output (deferred), or

both

A variable whose value is interpreted when

the statement is processed:

v If a null value is used as the parameter,

pcbValue must contain the value

SQL_NULL_DATA.

v If the dynamic argument is supplied at

execute-time by calling ParamData() and

PutData(), pcbValue must contain the value

SQL_DATA_AT_EXEC.

v If fcType is SQL_CHAR and the data in

rgbValue contains a null-terminated string,

pcbValue must either contain the length of

the data in rgbValue or contain the value

SQL_NTS.

v If fcType is SQL_CHAR and the data in

rgbValue is not null-terminated, pcbValue

must contain the length of the data in

rgbValue.

v If fcType is an LOB type, pcbValue must

contain the length of the data in rgbValue.

This length value must be specified in

bytes, not the number of double byte

characters.

v Otherwise, pcbValue must be zero.

SQLINTEGER cbParamDef Input Precision of the corresponding parameter

marker.

v If fSqlType denotes a single-byte character

string (for example, SQL_CHAR), this is

the maximum length in bytes sent for this

parameter. This length includes the

null-termination character.

v If fSqlType denotes a double-byte character

string (for example, SQL_GRAPHIC), this

is the maximum length in double-byte

characters for this parameter.

v If fSqlType denotes SQL_DECIMAL or

SQL_NUMERIC, this is the maximum

decimal precision.

v Otherwise, this argument is unused.

SQLPOINTER rgbValue

 Input (deferred)

or

output (deferred)

At processing time, if pcbValue does not

contain SQL_NULL_DATA or

SQL_DATA_AT_EXEC, then rgbValue points

to a buffer that contains the actual data for

the parameter.

If pcbValue contains SQL_DATA_AT_EXEC,

then rgbValue is an application-defined 32-bit

value that is associated with this parameter.

This 32-bit value is returned to the

application through a later SQLParamData()

call.

SQL call level interface 39

Table 19. SQLBindParam arguments (continued)

Data type Argument Use Description

SQLSMALLINT fCType Input Application data type of the parameter. The

following types are supported:

v SQL_BIGINT

v SQL_BINARY

v SQL_BLOB

v SQL_BLOB_LOCATOR

v SQL_CHAR

v SQL_CLOB

v SQL_CLOB_LOCATOR

v SQL_DATETIME

v SQL_DBCLOB

v SQL_DBCLOB_LOCATOR

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_NUMERIC

v SQL_REAL

v SQL_SMALLINT

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

v SQL_WCHAR

v SQL_WVARCHAR

Specifying SQL_DEFAULT causes data to be

transferred from its default application data

type to the type indicated in fSqlType.

40 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 19. SQLBindParam arguments (continued)

Data type Argument Use Description

SQLSMALLINT fSqlType Input SQL data type of the parameter. The

supported types are:

v SQL_BIGINT

v SQL_BINARY

v SQL_BLOB

v SQL_BLOB_LOCATOR

v SQL_CHAR

v SQL_CLOB

v SQL_CLOB_LOCATOR

v SQL_DATETIME

v SQL_DBCLOB

v SQL_DBCLOB_LOCATOR

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_NUMERIC

v SQL_REAL

v SQL_SMALLINT

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

v SQL_WCHAR

v SQL_WVARCHAR

SQLSMALLINT ibScale Input Scale of the corresponding parameter if

fSqlType is SQL_DECIMAL or

SQL_NUMERIC. If fSqlType is

SQL_TIMESTAMP, this is the number of

digits to the right of the decimal point in the

character representation of a timestamp (for

example, the scale of yyyy-mm-dd

hh:mm:ss.fff is 3).

Other than for the fSqlType values mentioned

here, ibScale is unused.

SQLSMALLINT ipar Input Parameter marker number, ordered

sequentially left to right, starting at 1.

Usage

When SQLBindParam() is used to bind an application variable to an output parameter for a stored

procedure, DB2 UDB CLI provides some performance enhancement if the rgbValue buffer is placed

consecutively in memory after the pcbValue buffer.

SQL call level interface 41

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 20. SQLBindParam SQLSTATEs

SQLSTATE Description Explanation

07006 Restricted data type

attribute violation

Same as SQLSetParam().

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY003 Program type out of range Same as SQLSetParam().

HY004 SQL data type out of range Same as SQLSetParam().

HY009 Argument value that is not

valid

Both rgbValue and pcbValue are null pointers, or ipar is

less than one.

HY010 Function sequence error Function is called after SQLExecute() or SQLExecDirect()

has returned SQL_NEED_DATA, but data has not been

sent for all data-at-execution parameters.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HY014 Too many handles The maximum number of handles has been allocated.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

SQLBindParameter - Bind a parameter marker to a buffer

Purpose

SQLBindParameter() is used to associate (bind) parameter markers in an SQL statement to application

variables. Data is transferred from the application to the Database Management System (DBMS) when

SQLExecute() or SQLExecDirect() is called. Data conversion might occur as the data is transferred.

This function must also be used to bind an application storage to a parameter of a stored procedure

CALL statement where the parameter can be input, output or both. This function is essentially an

extension of SQLSetParam().

Syntax

SQLRETURN SQLBindParameter(SQLHSTMT StatementHandle,

 SQLSMALLINT ParameterNumber,

 SQLSMALLINT InputOutputType,

 SQLSMALLINT ValueType,

 SQLSMALLINT ParameterType,

 SQLINTEGER ColumnSize,

 SQLSMALLINT DecimalDigits,

 SQLPOINTER ParameterValuePtr,

 SQLINTEGER BufferLength,

 SQLINTEGER *StrLen_or_IndPtr);

42 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Function arguments

 Table 21. SQLBindParameter arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLINTEGER ColumnSize Input Precision of the corresponding parameter

marker.

v If ParameterType denotes a binary or

single-byte character string (for example,

SQL_CHAR), this is the maximum length in

bytes for this parameter marker.

v If ParameterType denotes a double-byte

character string (for example,

SQL_GRAPHIC), this is the maximum length

in double-byte characters for this parameter.

v If ParameterType denotes SQL_DECIMAL or

SQL_NUMERIC, this is the maximum

decimal precision.

v Otherwise, this argument is ignored.

SQL call level interface 43

Table 21. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLINTEGER * StrLen_or_IndPtr Input

(deferred),

output

(deferred)

If this is an input or input/output parameter,

this is the pointer to the location that contains

(when the statement is processed) the length of

the parameter marker value stored at

ParameterValuePtr.

To specify a null value for a parameter marker,

this storage location must contain

SQL_NULL_DATA.

If ValueType is SQL_C_CHAR, this storage

location must contain either the exact length of

the data stored at ParameterValuePtr, or

SQL_NTS if the content at ParameterValuePtr is

null-terminated.

If ValueType indicates LOB data, this storage

location must contain the length of the data

stored at ParameterValuePtr. This length value

must be specified in bytes, not the number of

double-byte characters.

If ValueType indicates character data (explicitly,

or implicitly using SQL_C_DEFAULT), and this

pointer is set to NULL, it is assumed that the

application always provides a null-terminated

string in ParameterValuePtr. This also implies

that this parameter marker never has a null

value.

If ValueType specifies any form of double-byte

character data, then StrLen_or_IndPtr must be

the number of double-byte characters, not the

number of bytes.

When SQLExecute() or SQLExecDirect() is

called, and StrLen_or_IndPtr points to a value of

SQL_DATA_AT_EXEC, the data for the

parameter is sent with SQLPutData(). This

parameter is referred to as a data-at-execution

parameter.

SQLINTEGER BufferLength Input Not used.

44 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 21. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLPOINTER ParameterValuePtr Input

(deferred),

or output

(deferred),

or both

v On input (InputOutputType set to

SQL_PARAM_INPUT, or

SQL_PARAM_INPUT_OUTPUT), the

following situations are true:

At processing time, if StrLen_or_IndPtr does

not contain SQL_NULL_DATA or

SQL_DATA_AT_EXEC, then ParameterValuePtr

points to a buffer that contains the actual

data for the parameter.

If StrLen_or_IndPtr contains

SQL_DATA_AT_EXEC, then ParameterValuePtr

is an application-defined 32-bit value that is

associated with this parameter. This 32-bit

value is returned to the application via a

subsequent SQLParamData() call.

If SQLParamOptions() is called to specify

multiple values for the parameter, then

ParameterValuePtr is a pointer to an input

buffer array of BufferLength bytes.

v On output (InputOutputType set to

SQL_PARAM_OUTPUT, or

SQL_PARAM_INPUT_OUTPUT), the

following situations are true:

ParameterValuePtr points to the buffer where

the output parameter value of the stored

procedure is stored.

If InputOutputType is set to

SQL_PARAM_OUTPUT, and both

ParameterValuePtr and StrLen_or_IndPtr are

NULL pointers, then the output parameter

value or the return value from the stored

procedure call is discarded.

SQLSMALLINT DecimalDigits Input Scale of the corresponding parameter if

ParameterType is SQL_DECIMAL or

SQL_NUMERIC. If ParameterType is

SQL_TYPE_TIMESTAMP, this is the number of

digits to the right of the decimal point in the

character representation of a timestamp (for

example, the scale of yyyy-mm-dd hh:mm:ss.fff

is 3).

Other than for the ParameterType values

mentioned here, DecimalDigits is ignored.

SQL call level interface 45

Table 21. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLSMALLINT InputOutputType Input The type of parameter. The value of the

SQL_DESC_PARAMETER_TYPE field of the

implementation parameter descriptor (IPD) is

also set to this argument. The supported types

are:

v SQL_PARAM_INPUT: The parameter marker

is associated with an SQL statement that is

not a stored procedure CALL; or, it marks an

input parameter of the CALLed stored

procedure.

When the statement is processed, the actual

data value for the parameter is sent to the

server: the ParameterValuePtr buffer must

contain valid input data values; the

StrLen_or_IndPtr buffer must contain the

corresponding length value or SQL_NTS,

SQL_NULL_DATA, or (if the value should be

sent via SQLParamData() and SQLPutData())

SQL_DATA_AT_EXEC.

v SQL_PARAM_INPUT_OUTPUT: The

parameter marker is associated with an

input/output parameter of the CALLed

stored procedure.

When the statement is processed, actual data

value for the parameter is sent to the server:

the ParameterValuePtr buffer must contain

valid input data values; the StrLen_or_IndPtr

buffer must contain the corresponding length

value or SQL_NTS, SQL_NULL_DATA, or (if

the value should be sent via SQLParamData()

and SQLPutData()) SQL_DATA_AT_EXEC.

v SQL_PARAM_OUTPUT: The parameter

marker is associated with an output

parameter of the CALLed stored procedure or

the return value of the stored procedure.

After the statement is processed, data for the

output parameter is returned to the

application buffer specified by

ParameterValuePtr and StrLen_or_IndPtr,

unless both are NULL pointers, in which case

the output data is discarded. If an output

parameter does not have a return value then

StrLen_or_IndPtr is set to SQL_NULL_DATA.

SQLSMALLINT ParameterNumber Input Parameter marker number, ordered sequentially

left to right, starting at 1.

SQLSMALLINT ParameterType Input SQL data type of the parameter.

46 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 21. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLSMALLINT ValueType Input C data type of the parameter. The following

types are supported:

v SQL_BIGINT

v SQL_BINARY

v SQL_BLOB

v SQL_BLOB_LOCATOR

v SQL_CHAR

v SQL_CLOB

v SQL_CLOB_LOCATOR

v SQL_DATETIME

v SQL_DBCLOB

v SQL_DBCLOB_LOCATOR

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_NUMERIC

v SQL_REAL

v SQL_SMALLINT

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

v SQL_WCHAR

v SQL_WCHAR

v SQL_WVARCHAR

v SQL_WVARCHAR

Specifying SQL_C_DEFAULT causes data to be

transferred from its default C data type to the

type indicated in ParameterType.

Usage

A parameter marker is represented by a ″?″ character in an SQL statement and is used to indicate a

position in the statement where an application supplied value is to be substituted when the statement is

processed. This value is obtained from an application variable.

The application must bind a variable to each parameter marker in the SQL statement before executing the

SQL statement. For this function, ParameterValuePtr and StrLen_or_IndPtr are deferred arguments; the

storage locations must be valid and contain input data values when the statement is processed. This

means either keeping the SQLExecDirect() or SQLExecute() call in the same procedure scope as the

SQLBindParameter() calls, or these storage locations must be dynamically allocated or declared statically

or globally.

SQL call level interface 47

Parameter markers are referred to by number (ParameterNumber) and are numbered sequentially from left

to right, starting at 1.

All parameters bound by this function remain in effect until SQLFreeStmt() is called with either the

SQL_DROP or SQL_RESET_PARAMS option, or until SQLBindParameter() is called again for the same

parameter ParameterNumber number.

After the SQL statement and the results have been processed, the application might want to reuse the

statement handle to process a different SQL statement. If the parameter marker specifications are different

(number of parameters, length or type), then SQLFreeStmt() should be called with SQL_RESET_PARAMS

to reset or clear the parameter bindings.

The C buffer data type that is given by ValueType must be compatible with the SQL data type that is

indicated by ParameterType, or an error occurs.

Because the data in the variables referenced by ParameterValuePtr and StrLen_or_IndPtr is not verified

until the statement is processed, data content or format errors are not detected or reported until

SQLExecute() or SQLExecDirect() is called.

SQLBindParameter() essentially extends the capability of the SQLSetParam() function by providing a

method of specifying whether a parameter is input, input and output, or output. This information is

necessary for the proper handling of parameters for stored procedures.

The InputOutputType argument specifies the type of the parameter. All parameters in the SQL statements

that do not call procedures are input parameters. Parameters in stored procedure calls can be input,

input/output, or output parameters. Even though the DB2 stored procedure argument convention

typically implies that all procedure arguments are input/output, the application programmer can still

choose to specify more exactly the input or output nature on the SQLBindParameter() to follow a more

rigorous coding style. Also, note that these types should be consistent with the parameter types specified

when the stored procedure is registered with the SQL CREATE PROCEDURE statement.

v If an application cannot determine the type of a parameter in a procedure call, set InputOutputType to

SQL_PARAM_INPUT; if the data source returns a value for the parameter, DB2 UDB CLI discards it.

v If an application has marked a parameter as SQL_PARAM_INPUT_OUTPUT or

SQL_PARAM_OUTPUT and the data source does not return a value, DB2 UDB CLI sets the

StrLen_or_IndPtr buffer to SQL_NULL_DATA.

v If an application marks a parameter as SQL_PARAM_OUTPUT, data for the parameter is returned to

the application after the CALL statement has been processed. If the ParameterValuePtr and

StrLen_or_IndPtr arguments are both null pointers, DB2 UDB CLI discards the output value. If the data

source does not return a value for an output parameter, DB2 UDB CLI sets the StrLen_or_IndPtr buffer

to SQL_NULL_DATA.

v For this function, both ParameterValuePtr and StrLen_or_IndPtr are deferred arguments. In the case

where InputOutputType is set to SQL_PARAM_INPUT or SQL_PARAM_INPUT_OUTPUT, the storage

locations must be valid and contain input data values when the statement is processed. This means

either keeping the SQLExecDirect() or SQLExecute() call in the same procedure scope as the

SQLBindParameter() calls, or, these storage locations must be dynamically allocated or statically /

globally declared.

Similarly, if InputOutputType is set to SQL_PARAM_OUTPUT or SQL_PARAM_INPUT_OUTPUT, the

ParameterValuePtr and StrLen_or_IndPtr buffer locations must remain valid until the CALL statement

has been processed.

When SQLBindParameter() is used to bind an application variable to an output parameter for a stored

procedure, DB2 UDB CLI can provide some performance enhancement if the ParameterValuePtr buffer is

placed consecutively in memory after the StrLen_or_IndPtr buffer. For example:

48 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

struct { SQLINTEGER StrLen_or_IndPtr;

 SQLCHAR ParameterValuePtr[MAX_BUFFER];

 } column;

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 22. SQLBindParameter SQLSTATEs

SQLSTATE Description Explanation

07006 Conversion not valid The conversion from the data value identified by the ValueType

argument to the data type identified by the ParameterType

argument is not a meaningful conversion. (For example,

conversion from SQL_C_DATE to SQL_DOUBLE.)

40003 08S01 Communication link failure The communication link between the application and data source

fails before the function is completed.

58004 Unexpected system failure Unrecoverable system error.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY003 Program type out of range The value specified by the argument ParameterNumber not a valid

data type or SQL_C_DEFAULT.

HY004 SQL data type out of range The value specified for the argument ParameterType is not a valid

SQL data type.

HY009 Argument value not valid The argument ParameterValuePtr is a null pointer and the

argument StrLen_or_IndPtr is a null pointer, and InputOutputType

is not SQL_PARAM_OUTPUT.

HY010 Function sequence error Function is called after SQLExecute() or SQLExecDirect() has

returned SQL_NEED_DATA, but data has not been sent for all

data-at-execution parameters.

HY013 Unexpected memory handling

error

DB2 UDB CLI is unable to access memory required to support the

processing or completion of the function.

HY014 Too many handles The maximum number of handles has been allocated.

HY021 Inconsistent descriptor

information

The descriptor information checked during a consistency check is

not consistent.

HY090 String or buffer length not valid The value specified for the argument BufferLength is less than 0.

HY093 Parameter number not valid The value specified for the argument ValueType is less than 1 or

greater than the maximum number of parameters supported by

the server.

HY094 Scale value not valid The value specified for ParameterType is either SQL_DECIMAL or

SQL_NUMERIC and the value specified for DecimalDigits is less

than 0 or greater than the value for the argument ParamDef

(precision).

The value specified for ParameterType is SQL_C_TIMESTAMP and

the value for ParameterType is either SQL_CHAR or

SQL_VARCHAR and the value for DecimalDigits is less than 0 or

greater than 6.

SQL call level interface 49

Table 22. SQLBindParameter SQLSTATEs (continued)

SQLSTATE Description Explanation

HY104 Precision value not valid The value specified for ParameterType is either SQL_DECIMAL or

SQL_NUMERIC and the value specified for ParamDef is less than

1.

HY105 Parameter type not valid InputOutputType is not one of SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

HYC00 Driver not capable DB2 UDB CLI or data source does not support the conversion

specified by the combination of the value specified for the

argument ValueType and the value specified for the argument

ParameterType.

The value specified for the argument ParameterType is not

supported by either DB2 UDB CLI or the data source.

References

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExecute - Execute a statement” on page 83

v “SQLParamData - Get next parameter for which a data value is needed” on page 162

v “SQLPutData - Pass data value for a parameter” on page 179

SQLCancel - Cancel statement

Purpose

SQLCancel() attempts to end the processing of an ongoing SQL statement operation that is executing

synchronously. To cancel the function, the application calls SQLCancel() with the same statement handle

that is used by the target function, but on a different thread. How the function is canceled depends on

the operating system.

Syntax

SQLRETURN SQLCancel (SQLHSTMT hstmt);

Function arguments

 Table 23. SQLCancel arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle

Usage

A successful return code indicates that the implementation has accepted the cancel request; it does not

ensure that the processing is cancelled.

Return codes

v SQL_SUCCESS

v SQL_INVALID_HANDLE

v SQL_ERROR

50 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Diagnostics

 Table 24. SQLCancel SQLSTATEs

SQLSTATE Description Explanation

HY009 * Argument value that is not

valid

hstmt is not a statement handle.

Restrictions

DB2 UDB CLI does not support asynchronous statement processing.

SQLCloseCursor - Close cursor statement

Purpose

SQLCloseCursor() closes the open cursor on a statement handle.

Syntax

SQLRETURN SQLCloseCursor (SQLHSTMT hstmt);

Function arguments

 Table 25. SQLCloseCursor arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle

Usage

Calling SQLCloseCursor() closes any cursor associated with the statement handle and discards any

pending results. If no open cursor is associated with the statement handle, the function has no effect.

If the statement handle references a stored procedure that has multiple result sets, the SQLCloseCursor()

closes only the current result set. Any additional result sets remain open and usable.

Return codes

v SQL_SUCCESS

v SQL_INVALID_HANDLE

v SQL_ERROR

Diagnostics

 Table 26. SQLCloseCursor SQLSTATEs

SQLSTATE Description Explanation

08003 * Connection not open The connection for hstmt is not established.

HY009 * Argument value that is not

valid

hstmt is not a statement handle.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

SQL call level interface 51

SQLColAttributes - Obtain column attributes

Purpose

SQLColAttributes() obtains an attribute for a column of the result set, and is also used to determine the

number of columns. SQLColAttributes() is a more extensible alternative to the SQLDescribeCol()

function.

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

This function (or SQLDescribeCol()) must be called before SQLBindCol(), if the application does not know

the various attributes (such as data type and length) of the column.

Syntax

SQLRETURN SQLColAttributes (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLSMALLINT fDescType,

 SQLCHAR *rgbDesc,

 SQLINTEGER cbDescMax,

 SQLINTEGER *pcbDesc,

 SQLINTEGER *pfDesc);

Function arguments

 Table 27. SQLColAttributes arguments

Data type Argument Use Description

SQLCHAR * rgbDesc Output Pointer to buffer for string column attributes.

SQLHSTMT hstmt Input Statement handle.

SQLINTEGER * pcbDesc Output Actual number of bytes in the descriptor to

return. If this argument contains a value

equal to or higher than the length rgbDesc

buffer, truncation has occurred. The

descriptor is then truncated to cbDescMax - 1

bytes.

SQLINTEGER * pfDesc Output Pointer to integer which holds information

regarding numeric column attributes.

SQLINTEGER cbDescMax Input Length of descriptor buffer (rgbDesc)

SQLSMALLINT fDescType Input Supported values are described in Table 28.

SQLSMALLINT icol Input Column number in result set (must be

between 1 and the number of columns in the

results set inclusive). This argument is

ignored when SQL_DESC_COUNT is

specified.

 Table 28. fDescType descriptor types

Descriptor Type Description

SQL_DESC_AUTO_INCREMENT INTEGER This is SQL_TRUE if the column can be incremented

automatically upon insertion of a new row to the

table. SQL_FALSE if the column cannot be

incremented automatically.

52 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 28. fDescType descriptor types (continued)

Descriptor Type Description

SQL_DESC_BASE_COLUMN CHAR(128) The name of the actual column in the underlying

table over which this column is built.

For this attribute to be retrieved, the attribute

SQL_ATTR_EXTENDED_COL_INFO must have

been set to SQL_TRUE for either the statement

handle or the connection handle.

SQL_DESC_BASE_SCHEMA CHAR(128) The schema name of the underlying table over

which this column is built.

For this attribute to be retrieved, the attribute

SQL_ATTR_EXTENDED_COL_INFO must have

been set to SQL_TRUE for either the statement

handle or the connection handle.

SQL_DESC_BASE_TABLE CHAR(128) The name of the underlying table over which this

column is built.

For this attribute to be retrieved, the attribute

SQL_ATTR_EXTENDED_COL_INFO must have

been set to SQL_TRUE for either the statement

handle or the connection handle.

SQL_DESC_COUNT SMALLINT The number of columns in the result set is returned

in pfDesc.

SQL_DESC_DISPLAY_SIZE SMALLINT The maximum number of bytes needed to display

the data in character form is returned in pfDesc.

SQL_DESC_LABEL CHAR(128) The label for this column, if one exists. Otherwise, a

zero-length string.

For this attribute to be retrieved, the attribute

SQL_ATTR_EXTENDED_COL_INFO must have

been set to SQL_TRUE for either the statement

handle or the connection handle.

SQL_DESC_LENGTH INTEGER The number of bytes of data associated with the

column is returned in pfDesc.

If the column identified in icol is character based, for

example, SQL_CHAR, SQL_VARCHAR, or

SQL_LONG_VARCHAR, the actual length or

maximum length is returned.

If the column type is SQL_DECIMAL or

SQL_NUMERIC, SQL_DESC_LENGTH is (precision *

256) + scale. This is returned so that the same value

can be passed as input on SQLBindCol(). The

precision and scale can also be obtained as separate

values for these data types by using

SQL_DESC_PRECISION and SQL_DESC_SCALE.

SQL_DESC_NAME CHAR(128) The name of the column icol is returned in rgbDesc.

If the column is an expression, then the result

returned is product specific.

SQL_DESC_NULLABLE SMALLINT If the column identified by icol can contain nulls,

then SQL_NULLABLE is returned in pfDesc.

If the column is constrained not to accept nulls, then

SQL_NO_NULLS is returned in pfDesc.

SQL call level interface 53

|||
|

Table 28. fDescType descriptor types (continued)

Descriptor Type Description

SQL_DESC_PRECISION SMALLINT The precision attribute of the column is returned.

SQL_DESC_SCALE SMALLINT The scale attribute of the column is returned.

SQL_DESC_SEARCHABLE INTEGER This is SQL_UNSEARCHABLE if the column cannot

be used in a WHERE clause.

This is SQL_LIKE_ONLY if the column can be used

in a WHERE clause only with the LIKE predicate.

This is SQL_ALL_EXCEPT_LIKE if the column can

be used in a WHERE clause with all comparison

operators except LIKE.

This is SQL_SEARCHABLE if the column can be

used in a WHERE clause with any comparison

operator.

For this attribute to be retrieved, the attribute

SQL_ATTR_EXTENDED_COL_INFO must have

been set to SQL_TRUE for either the statement

handle or the connection handle.

SQL_DESC_TYPE_NAME CHAR(128) The character representation of the SQL data type of

the column identified in icol. This is returned in

rgbDesc. The possible values for the SQL data type

are listed inTable 3 on page 16. In addition,

user-defined type (UDT) information is also

returned. The format for the UDT is <schema name

qualifier><job’s current separator><UDT name>.

SQL_DESC_TYPE SMALLINT The SQL data type of the column identified in icol is

returned in pfDesc. The possible values for pfSqlType

are listed in Table 3 on page 16.

SQL_DESC_UNNAMED SMALLINT This is SQL_NAMED if the NAME field is an actual

name, or SQL_UNNAMED if the NAME field is an

implementation-generated name.

SQL_DESC_UPDATABLE INTEGER Column is described by the values for the defined

constants:

 SQL_ATTR_READONLY

SQL_ATTR_WRITE

SQL_ATTR_READWRITE_UNKNOWN

SQL_COLUMN_UPDATABLE describes the

updatability of the column in the result set. Whether

a column can be updated can be based on the data

type, user privileges, and the definition of the result

set itself. If it is unclear whether a column can be

updated, SQL_ATTR_READWRITE_UNKNOWN

should be returned.

For this attribute to be retrieved, the attribute

SQL_ATTR_EXTENDED_COL_INFO must have

been set to SQL_TRUE for either the statement

handle or the connection handle.

54 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Usage

Instead of returning a specific set of arguments like SQLDescribeCol(), SQLColAttributes() can be used

to specify which attribute you want to receive for a specific column. If the required information is a

string, it is returned in rgbDesc. If the required information is a number, it is returned in pfDesc.

Although SQLColAttributes() allows for future extensions, it requires more calls to receive the same

information than SQLDescribeCol() for each column.

If a fDescType descriptor type does not apply to the database server, an empty string is returned in

rgbDesc or zero is returned in pfDesc, depending on the expected result of the descriptor.

Columns are identified by a number (numbered sequentially from left to right starting with 1) and can be

described in any order.

Calling SQLColAttributes() with fDescType set to SQL_DESC_COUNT is an alternative to calling

SQLNumResultCols() to determine whether any columns can be returned.

Call SQLNumResultCols() before calling SQLColAttributes() to determine whether a result set exists.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

Diagnostics

 Table 29. SQLColAttributes SQLSTATEs

SQLSTATE Description Explanation

07009 Column number that is not

valid

The value specified for the argument icol is less than 1.

HY009 Argument value that is not

valid

The value specified for the argument fDescType is not

equal to a value specified in Table 28 on page 52.

The argument rgbDesc, pcbDesc, or pfDesc is a null

pointer.

HY010 Function sequence error The function is called before calling SQLPrepare() or

SQLExecDirect() for the hstmt.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

HYC00 Driver not capable The SQL data type returned by the database server for

column icol is not recognized by DB2 UDB CLI.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLDescribeCol - Describe column attributes” on page 68

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExecute - Execute a statement” on page 83

v “SQLPrepare - Prepare a statement” on page 164

SQL call level interface 55

SQLColumnPrivileges - Get privileges associated with the columns of

a table

Purpose

SQLColumnPrivileges() returns a list of columns and associated privileges for the specified table. The

information is returned in an SQL result set, which can be retrieved using the same functions that are

used to process a result set generated from a query.

Syntax

SQLRETURN SQLColumnPrivileges (

 SQLHSTMT StatementHandle,

 SQLCHAR *CatalogName,

 SQLSMALLINT NameLength1,

 SQLCHAR *SchemaName,

 SQLSMALLINT NameLength2,

 SQLCHAR *TableName

 SQLSMALLINT NameLength3,

 SQLCHAR *ColumnName,

 SQLSMALLINT NameLength4);

Function arguments

 Table 30. SQLColumnPrivileges arguments

Data type Argument Use Description

SQLHSTMT Statement Handle Input Statement handle.

SQLCHAR * CatalogName Input Catalog qualifier of a 3 part table name. This

must be a NULL pointer or a zero length

string.

SQLSMALLINT NameLength1 Input Length of CatalogName. This must be set to 0.

SQLCHAR * SchemaName Input Schema qualifier of table name.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLCHAR * TableName Input Table Name.

SQLSMALLINT NameLength3 Input Length of TableName.

SQLCHAR * ColumnName Input Buffer that can contain a pattern-value to

qualify the result set by column name.

SQLSMALLINT NameLength4 Input Length of ColumnName.

Usage

The results are returned as a standard result set containing the columns listed in Table 31 on page 57. The

result set is ordered by TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, and

PRIVILEGE. If multiple privileges are associated with any given column, each privilege is returned as a

separate row. A typical application might want to call this function after a call to SQLColumns() to

determine column privilege information. The application should use the character strings returned in the

TABLE_SCHEM, TABLE_NAME, COLUMN_NAME columns of the SQLColumns() result set as input

arguments to this function

Because calls to SQLColumnPrivileges() in many cases map to a complex and thus expensive query

against the system catalog, they should be used sparingly, and the results saved rather than repeating the

calls.

56 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

The VARCHAR columns of the catalog-functions result set have been declared with a maximum length

attribute of 128 to be consistent with SQL92 limits. Because DB2 names are less than 128, the application

can choose to always set aside 128 characters (plus the null-terminator) for the output buffer, or

alternatively, call SQLGetInfo() with SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN. The SQL_MAX_CATALOG_NAME_LEN value determines the actual

length of the TABLE_CAT supported by the connected Database Management System (DBMS). The

SQL_MAX_SCHEMA_NAME_LEN value determines the actual length of the TABLE_SCHEM supported

by the connected DBMS. The SQL_MAX_TABLE_NAME_LEN value determines the actual length of the

TABLE_NAME supported by the connected DBMS. The SQL_MAX_COLUMN_NAME_LEN value

determines the actual length of the COLUMN_NAME supported by the connected DBMS.

Note that the ColumnName argument accepts a search pattern.

Although new columns can be added and the names of the existing columns changed in future releases,

the position of the current columns does not change.

 Table 31. Columns returned by SQLColumnPrivileges

Column number/name Data type Description

COLUMN_NAME VARCHAR(128) not NULL Name of the column of the specified table or view.

GRANTEE VARCHAR(128) Authorization ID of the user to whom the privilege is

granted.

GRANTOR VARCHAR(128) Authorization ID of the user who granted the

privilege.

IS_GRANTABLE VARCHAR(3)

Indicates whether the grantee is permitted to grant

the privilege to other users.

Either YES or NO.

PRIVILEGE VARCHAR(128) The column privilege. This can be:

v INSERT

v REFERENCES

v SELECT

v UPDATE

TABLE_CAT VARCHAR(128) This is always NULL.

TABLE_NAME VARCHAR(128) not NULL Name of the table or view.

TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column

types, contents and order are identical to those defined for the SQLColumnPrivileges() result set in

ODBC.

If there is more than one privilege associated with a column, then each privilege is returned as a separate

row in the result set.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

SQL call level interface 57

Diagnostics

 Table 32. SQLColumnPrivileges SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate

memory required to support the

processing or completion of the

function.

HY009 String or buffer length that is not

valid

The value of one of the name length

arguments is less than 0, but not

equal to SQL_NTS.

HY010 Function sequence error There is an open cursor for this

statement handle, or there is no

connection for this statement handle.

HY021 Internal descriptor that is not valid The internal descriptor cannot be

addressed or allocated, or it contains

a value that is not valid.

Restrictions

None

Example

/* From the CLI sample TBINFO.C */

/* ... */

 /* call SQLColumnPrivileges */

 printf("\n Call SQLColumnPrivileges for:\n");

 printf(" tbSchema = %s\n", tbSchema);

 printf(" tbName = %s\n", tbName);

 sqlrc = SQLColumnPrivileges(hstmt, NULL, 0,

 tbSchema, SQL_NTS,

 tbName, SQL_NTS,

 colNamePattern, SQL_NTS);

References

v “SQLColumns - Get column information for a table”

v “SQLTables - Get table information” on page 215

SQLColumns - Get column information for a table

Purpose

SQLColumns() returns a list of columns in the specified tables. The information is returned in an SQL

result set, which can be retrieved using the same functions that are used to fetch a result set generated by

a SELECT statement.

Syntax

SQLRETURN SQLColumns (SQLHSTMT hstmt,

 SQLCHAR *szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR *szSchemaName,

 SQLSMALLINT cbSchemaName,

58 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLCHAR *szTableName,

 SQLSMALLINT cbTableName,

 SQLCHAR *szColumnName,

 SQLSMALLINT cbColumnName);

Function arguments

 Table 33. SQLColumns arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLCHAR * szCatalogName Input Buffer that might contain a pattern-value to

qualify the result set. Catalog is the first part

of a three-part table name.

This must be a NULL pointer or a zero

length string.

SQLSMALLINT cbCatalogName Input Length of szCatalogName. This must be set to

0.

SQLCHAR * szSchemaName Input Buffer that might contain a pattern-value to

qualify the result set by schema name.

SQLSMALLINT cbSchemaName Input Length of szSchemaName

SQLCHAR * szTableName Input Buffer that might contain a pattern-value to

qualify the result set by table name.

SQLSMALLINT cbTableName Input Length of szTableName

SQLCHAR * szColumnName Input Buffer that might contain a pattern-value to

qualify the result set by column name.

SQLSMALLINT cbColumnName Input Length of szColumnName

Usage

This function retrieves information about the columns of a table or a list of tables.

SQLColumns() returns a standard result set. Table 34 lists the columns in the result set. Applications

should anticipate that additional columns beyond the REMARKS columns can be added in future

releases.

The szCatalogName, szSchemaName, szTableName, and szColumnName arguments accept search patterns. An

escape character can be specified in conjunction with a wildcard character to allow that actual character

to be used in the search pattern. The escape character is specified on the SQL_ATTR_ESCAPE_CHAR

environment attribute.

This function does not return information about the columns in a result set, which is retrieved by

SQLDescribeCol() or SQLColAttributes(). If an application wants to obtain column information for a

result set, it should always call SQLDescribeCol() or SQLColAttributes() for efficiency. SQLColumns()

maps to a complex query against the system catalogs, and can require a large amount of system

resources.

 Table 34. Columns returned by SQLColumns

Column name Data type Description

BUFFER_LENGTH INTEGER The maximum number of bytes to store data

from this column if SQL_DEFAULT were

specified on the SQLBindCol(), SQLGetData()

and SQLBindParam() calls.

SQL call level interface 59

Table 34. Columns returned by SQLColumns (continued)

Column name Data type Description

CHAR_OCTET_LENGTH INTEGER Contains the maximum length in octets for a

character data type column. For single byte

character sets, this is the same as

LENGTH_PRECISION. For all other data types,

it is NULL.

COLUMN_DEF VARCHAR(254) The column’s default value. If the default value

is a numeric literal, then this column contains the

character representation of the numeric literal

with no enclosing single quotation marks. If the

default value is a character string, then this

column is that string enclosed in single quotation

marks. If the default value a pseudo-literal, such

as for DATE, TIME, and TIMESTAMP columns,

then this column contains the keyword of the

pseudo-literal (for example, CURRENT DATE)

with no enclosing quotation marks.

If NULL is specified as the default value, then

this column returns the word NULL, not

enclosed in quotation marks. If the default value

cannot be represented without truncation, then

this column contains TRUNCATED with no

enclosing single quotation marks. If no default

value is specified, then this column is NULL.

COLUMN_NAME VARCHAR(128) Column identifier. The name of the column of

the specified view, table, or table’s column the

alias is built for.

DATA_TYPE SMALLINT not NULL DATA_TYPE identifies the SQL data type of the

column. For CHAR FOR BIT DATA and

VARCHAR FOR BIT DATA data types, the CLI

returns SQL_BINARY and SQL_VARBINARY to

indicate it is a FOR BIT DATA column.

DATETIME_CODE INTEGER The subtype code for date and time data types:

v SQL_DATE

v SQL_TIME

v SQL_TIMESTAMP

For all other data types, this column returns

NULL.

LENGTH_PRECISION INTEGER If DATA TYPE is an approximate numeric data

type, this column contains the number of bits of

mantissa precision of the column. For exact

numeric data types, this column contains the

total number of decimal digit allowed in the

column. For time and timestamp data types, this

column contains the number of digits of

precision of the fractional seconds component;

otherwise, this column is NULL.

Note: The ODBC definition of precision is

typically the number of digits to store the data

type.

60 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 34. Columns returned by SQLColumns (continued)

Column name Data type Description

NULLABLE SMALLINT not NULL SQL_NO_NULLS if the column does not accept

NULL values.

SQL_NULLABLE if the column accepts NULL

values.

NUM_PREC_RADIX SMALLINT The value is 10, 2, or NULL. If DATA_TYPE is

an approximate numeric data type, this column

contains the value 2; then the

LENGTH_PRECISION column contains the

number of bits allowed in the column.

If DATA_TYPE is an exact numeric data type,

this column contains the value 10 and the

LENGTH_PRECISION and NUM_SCALE

columns contain the number of decimal digits

allowed for the column.

For numeric data types, the Database

Management System (DBMS) can return a

NUM_PREC_RADIX of either 10 or 2.

NULL is returned for data types where radix is

not applicable.

NUM_SCALE SMALLINT The scale of the column. NULL is returned for

data types where scale is not applicable.

ORDINAL_POSITION INTEGER NOT NULL The ordinal position of the column in the table.

The first column in the table is number 1.

REMARKS VARCHAR(254) Might contain descriptive information about the

column.

TABLE_CAT VARCHAR(128) The current server.

TABLE_NAME VARCHAR(128) Name of the table, view or alias.

TABLE_SCHEM VARCHAR(128) The name of the schema containing

TABLE_NAME.

TYPE_NAME VARCHAR(128) not NULL TYPE_NAME is a character string representing

the name of the data type corresponding to

DATA_TYPE. If the data type is FOR BIT DATA,

then the corresponding string FOR BIT DATA is

appended to the data type, for example, CHAR

() FOR BIT DATA.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

SQL call level interface 61

Diagnostics

 Table 35. SQLColumns SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate

memory required to support the

processing or completion of the

function.

HY009 String or buffer length that is not

valid

The value of one of the name length

arguments is less than 0, but not

equal SQL_NTS.

HY010 Function sequence error There is an open cursor for this

statement handle, or there is no

connection for this statement handle.

HY021 Internal descriptor that is not valid The internal descriptor cannot be

addressed or allocated, or it contains

a value that is not valid.

SQLConnect - Connect to a data source

Purpose

SQLConnect() establishes a connection to the target database. The application must supply a target SQL

database, and optionally an authorization-name, and an authentication-string.

SQLAllocConnect() must be called before calling this function.

This function must be called before calling SQLAllocStmt().

Syntax

SQLRETURN SQLConnect (SQLHDBC hdbc,

 SQLCHAR *szDSN,

 SQLSMALLINT cbDSN,

 SQLCHAR *szUID,

 SQLSMALLINT cbUID,

 SQLCHAR *szAuthStr,

 SQLSMALLINT cbAuthStr);

Function arguments

 Table 36. SQLConnect arguments

Data type Argument Use Description

SQLCHAR * szAuthStr Input Authentication string (password).

SQLCHAR * szDSN Input Data source: name or alias name of the

database.

SQLCHAR * szUID Input Authorization name (user identifier).

SQLHDBC hdbc Input Connection handle.

SQLSMALLINT cbAuthStr Input Length of contents of szAuthStr argument.

SQLSMALLINT cbDSN Input Length of contents of szDSN argument.

SQLSMALLINT cbUID Input Length of contents of szUID argument.

62 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Usage

You can define various connection characteristics (options) in the application using

SQLSetConnectOption().

The input length arguments to SQLConnect() (cbDSN, cbUID, cbAuthStr) can be set to the actual length of

their associated data. This does not include any null-terminating character or to SQL_NTS to indicate that

the associated data is null-terminated.

Leading and trailing blanks in the szDSN and szUID argument values are stripped before processing

unless they are enclosed in quotation marks.

When running in server mode, both szUID and szAuthStr must be passed in order for the connection to

run on behalf of a user ID other than the current user. If either parameter is NULL or both are NULL, the

connection is started using the user ID that is in effect for the current job running the CLI program.

The data source must already be defined on the system for the connect function to work. On the IBM

platform, you can use the Work with Relational Database Directory Entries (WRKRDBDIRE)

command to determine which data sources have been defined already, and to optionally define additional

data sources.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 37. SQLConnect SQLSTATEs

SQLSTATE Description Explanation

08001 Unable to connect to data

source

The driver is unable to establish a connection with the

data source (server).

08002 Connection in use The specified hdbc has been used to establish a

connection with a data source and the connection is still

open.

08004 Data source rejected

establishment of connection

The data source (server) rejected the establishment of the

connection.

28000 Authorization specification

that is not valid

The value specified for the argument szUID or the value

specified for the argument szAuthStr violated restrictions

defined by the data source.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

SQL call level interface 63

Table 37. SQLConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

HY009 Argument value that is not

valid

The value specified for argument cbDSN is less than 0,

but not equal to SQL_NTS and the argument szDSN is

not a null pointer.

The value specified for argument cbUID is less than 0,

but not equal to SQL_NTS and the argument szUID is

not a null pointer.

The value specified for argument cbAuthStr is less than 0,

but not equal to SQL_NTS and the argument szAuthStr is

not a null pointer.

A nonmatching double quotation mark (″) is found in

either the szDSN, szUID, or szAuthStr argument.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HY501 * Data source name that is not

valid

A data source name that is not valid is specified in

argument szDSN.

Restrictions

The implicit connection (or default database) option for IBM DBMSs is not supported. SQLConnect() must

be called before any SQL statements can be processed. i5/OS does not support multiple simultaneous

connections to the same data source in a single job.

When you are using DB2 UDB CLI on a newer release, SQLConnect() can encounter an SQL0144 message.

This indicates that the data source (the server) has obsolete SQL packages that must be deleted. To delete

these packages, run the following command on the server system:

 DLTSQLPKG SQLPKG(QGPL/QSQCLI*)

The next SQLConnect() creates a new SQL package.

Example

Refer to the example in SQLAllocEnv().

References

v “SQLAllocConnect - Allocate connection handle” on page 21

v “SQLAllocStmt - Allocate a statement handle” on page 27

SQLCopyDesc - Copy description statement

Purpose

SQLCopyDesc() copies the fields of the data structure associated with the source handle to the data

structure associated with the target handle.

Any existing data in the data structure associated with the target handle is overwritten, except that the

ALLOC_TYPE field is not changed.

Syntax

SQLRETURN SQLCopyDesc (SQLHDESC sDesc)

 (SQLHDESC tDesc);

64 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Function arguments

 Table 38. SQLCancel arguments

Data type Argument Use Description

SQLHDESC sDesc Input Source descriptor handle

SQLHDESC tDesc Input Target descriptor handle

Usage

Handles for the automatically-generated row and parameter descriptors of a statement can be obtained

by calling GetStmtAttr().

Return codes

v SQL_SUCCESS

v SQL_INVALID_HANDLE

v SQL_ERROR

SQLDataSources - Get list of data sources

Purpose

SQLDataSources() returns a list of target databases available, one at a time. A database must be cataloged

to be available. For more information about cataloging, refer to the usage notes for SQLConnect() or see

the online help for the Work with Relational Database (RDB) Directory Entries (WRKRDBDIRE)

command.

SQLDataSources() is typically called before a connection is made, to determine the databases that are

available to connect to.

If you are running DB2 UDB CLI in SQL server mode, some restrictions apply when you use

SQLDataSources().

Syntax

SQLRETURN SQLDataSources (SQLHENV EnvironmentHandle,

 SQLSMALLINT Direction,

 SQLCHAR *ServerName,

 SQLSMALLINT BufferLength1,

 SQLSMALLINT *NameLength1Ptr,

 SQLCHAR *Description,

 SQLSMALLINT BufferLength2,

 SQLSMALLINT *NameLength2Ptr);

Function arguments

 Table 39. SQLDataSources arguments

Data type Argument Use Description

SQLCHAR * Description Output Pointer to buffer where the description of the data

source is returned. DB2 UDB CLI returns the

Comment field associated with the database

catalogued to the Database Management System

(DBMS).

SQLCHAR * ServerName Output Pointer to buffer to hold the data source name

retrieved.

SQLHENV EnvironmentHandle Input Environment handle.

SQL call level interface 65

Table 39. SQLDataSources arguments (continued)

Data type Argument Use Description

SQLSMALLINT Direction Input Used by application to request the first data source

name in the list or the next one in the list. Direction

can take on only the following values:

v SQL_FETCH_FIRST

v SQL_FETCH_NEXT

SQLSMALLINT * NameLength1Ptr Output Pointer to location where the maximum number of

bytes available to return in the ServerName is stored.

SQLSMALLINT * NameLength2Ptr Output Pointer to location where this function returns the

actual number of bytes available to return for the

description of the data source.

SQLSMALLINT BufferLength1 Input Maximum length of the buffer pointed to by

ServerName. This should be less than or equal to

SQL_MAX_DSN_LENGTH + 1.

SQLSMALLINT BufferLength2 Input Maximum length of the Description buffer.

Usage

The application can call this function any time by setting Direction to either SQL_FETCH_FIRST or

SQL_FETCH_NEXT.

If SQL_FETCH_FIRST is specified, the first database in the list is always returned.

If SQL_FETCH_NEXT is specified:

v Directly following the SQL_FETCH_FIRST call, the second database in the list is returned

v Before any other SQLDataSources() call, the first database in the list is returned

v When there are no more databases in the list, SQL_NO_DATA_FOUND is returned. If the function is

called again, the first database is returned.

v Any other time, the next database in the list is returned.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

66 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Error conditions

 Table 40. SQLDataSources SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated The data source name returned in the argument ServerName is

longer than the value specified in the argument BufferLength1. The

argument NameLength1Ptr contains the length of the full data

source name. (Function returns SQL_SUCCESS_WITH_INFO.)

The data source name returned in the argument Description is

longer than the value specified in the argument BufferLength2. The

argument NameLength2Ptr contains the length of the full data

source description. (Function returns

SQL_SUCCESS_WITH_INFO.)

58004 Unexpected system failure Unrecoverable system error.

HY000 General error An error occurred for which there is no specific SQLSTATE and

for which no specific SQLSTATE is defined. The error message

returned by SQLError() in the argument ErrorMsg describes the

error and its cause.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY009 Argument value that is not valid The argument ServerName, NameLength1Ptr, Description, or

NameLength2Ptr is a null pointer.

Value for the direction that is not valid.

HY013 Unexpected memory handling

error

DB2 UDB CLI is unable to access memory required to support the

processing or completion of the function.

HY103 Direction option out of range The value specified for the argument Direction is not equal to

SQL_FETCH_FIRST or SQL_FETCH_NEXT.

Authorization

None.

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/* From CLI sample datasour.c */

/* ... */

#include <stdio.h>

#include <stdlib.h>

#include <sqlcli1.h>

#include "samputil.h" /* Header file for CLI sample code */

/* ... */

/***

** main

** - initialize

** - terminate

***/

int main() {

 SQLHANDLE henv ;

 SQLRETURN rc ;

 SQLCHAR source[SQL_MAX_DSN_LENGTH + 1], description[255] ;

SQL call level interface 67

SQLSMALLINT buffl, desl ;

/* ... */

 /* allocate an environment handle */

 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

 if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

 /* list the available data sources (servers) */

 printf("The following data sources are available:\n") ;

 printf("ALIAS NAME Comment(Description)\n") ;

 printf("--\n") ;

 while ((rc = SQLDataSources(henv,

 SQL_FETCH_NEXT,

 source,

 SQL_MAX_DSN_LENGTH + 1,

 &buffl,

 description,

 255,

 &desl

)

) != SQL_NO_DATA_FOUND

) printf("%-30s %s\n", source, description) ;

 rc = SQLFreeHandle(SQL_HANDLE_ENV, henv) ;

 if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

 return(SQL_SUCCESS) ;

}

References

None.

 Related concepts

 “Restrictions for running DB2 UDB CLI in server mode” on page 247

SQLDescribeCol - Describe column attributes

Purpose

SQLDescribeCol() returns the result descriptor information (column name, type, precision) for the

indicated column in the result set generated by a SELECT statement.

If the application only needs one attribute of the descriptor information, the SQLColAttributes() function

can be used in place of SQLDescribeCol().

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

This function (or SQLColAttributes()) is typically called before SQLBindCol().

Syntax

SQLRETURN SQLDescribeCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLCHAR *szColName,

 SQLSMALLINT cbColNameMax,

 SQLSMALLINT *pcbColName,

 SQLSMALLINT *pfSqlType,

68 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLINTEGER *pcbColDef,

 SQLSMALLINT *pibScale,

 SQLSMALLINT *pfNullable);

Function arguments

 Table 41. SQLDescribeCol arguments

Data type Argument Use Description

SQLCHAR * szColName Output Pointer to column name buffer.

SQLHSTMT hstmt Input Statement handle.

SQLINTEGER * pcbColDef Output Precision of column as defined in the

database.

If fSqlType denotes a graphic SQL data type,

then this variable indicates the maximum

number of double-byte characters the column

can hold.

SQLSMALLINT * pcbColName Output Bytes available to return for szColName

argument. Truncation of column name

(szColName) to cbColNameMax - 1 bytes

occurs if pcbColName is greater than or equal

to cbColNameMax.

SQLSMALLINT * pfNullable Output Indicates whether NULLS are allowed for

this column

v SQL_NO_NULLS.

v SQL_NULLABLE.

SQLSMALLINT * pfSqlType Output SQL data type of column.

SQLSMALLINT * pibScale Output Scale of column as defined in the database

(only applies to SQL_DECIMAL,

SQL_NUMERIC, SQL_TIMESTAMP).

SQLSMALLINT cbColNameMax Input Size of szColName buffer.

SQLSMALLINT icol Input Column number to be described.

Usage

Columns are identified by a number and are numbered sequentially from left to right starting with 1, and

can be described in any order.

A valid pointer and buffer space must be made available for the szColName argument. If a null pointer is

specified for any of the remaining pointer arguments, DB2 UDB CLI assumes that the information is not

needed by the application and nothing is returned.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

If SQLDescribeCol() returns either SQL_ERROR, or SQL_SUCCESS_WITH_INFO, one of the following

SQLSTATEs can be obtained by calling the SQLError() function.

SQL call level interface 69

Table 42. SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated The column name returned in the argument szColName is

longer than the value specified in the argument

cbColNameMax. The argument pcbColName contains the

length of the full column name. (Function returns

SQL_SUCCESS_WITH_INFO.)

07005 * Not a SELECT statement The statement associated with the hstmt did not return a

result set. There were no columns to describe. (Call

SQLNumResultCols() first to determine if there are any

rows in the result set.)

07009 Column number that is not

valid

The value specified for the argument icol is less than 1.

The value specified for the argument icol is greater than

the number of columns in the result set.

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

The length specified in argument cbColNameMax is less

than 1.

The argument szColName or pcbColName is a null pointer.

HY010 Function sequence error The function is called before calling SQLPrepare() or

SQLExecDirect() for the hstmt.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HYC00 Driver not capable The SQL data type of column icol is not recognized by

DB2 UDB CLI.

Example

References

v “SQLColAttributes - Obtain column attributes” on page 52

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLNumResultCols - Get number of result columns” on page 160

v “SQLPrepare - Prepare a statement” on page 164
 Related reference

 “SQLColAttributes - Obtain column attributes” on page 52

SQLDescribeParam - Return description of a parameter marker

Purpose

SQLDescribeParam() returns the description of a parameter marker associated with a prepared SQL

statement. This information is also available in the fields of the implementation parameter descriptor

(IPD).

70 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Syntax

SQLRETURN SQLDescribeParam (SQLHSTMT StatementHandle,

 SQLSMALLINT ParameterNumber,

 SQLSMALLINT *DataTypePtr,

 SQLINTEGER *ParameterSizePtr,

 SQLSMALLINT *DecimalDigitsPtr,

 SQLSMALLINT *NullablePtr);

Function arguments

 Table 43. SQLDescribeParam arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLINTEGER * ParameterSizePtr Output Pointer to a buffer in which to return the size of the

column or expression of the corresponding

parameter marker as defined by the data source.

SQLSMALLINT * DataTypePtr Output Pointer to a buffer in which to return the SQL data

type of the parameter.

SQLSMALLINT * DecimalDigitsPtr Output Pointer to a buffer in which to return the number of

decimal digits of the column or expression of the

corresponding parameter as defined by the data

source.

SQLSMALLINT * NullablePtr Output Pointer to a buffer in which to return a value that

indicates whether the parameter allows NULL

values. This value is read from the

SQL_DESC_NULLABLE field of the IPD.

v SQL_NO_NULLS – The parameter does not allow

NULL values (this is the default value).

v SQL_NULLABLE – The parameter allows NULL

values.

v SQL_NULLABLE_UNKNOWN – Cannot

determine if the parameter allows NULL values.

SQLSMALLINT ParameterNumber Input Parameter marker number ordered sequentially in

increasing parameter order, starting at 1.

Usage

Parameter markers are numbered in increasing parameter order, starting with 1, in the order they appear

in the SQL statement.

SQLDescribeParam() does not return the type (input, output, or both input and output) of a parameter in

an SQL statement. Except in calls to procedures, all parameters in SQL statements are input parameters.

To determine the type of each parameter in a call to a procedure, an application calls

SQLProcedureColumns().

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

SQL call level interface 71

Error conditions

 Table 44. SQLDescribeParam SQLSTATEs

SQLSTATE Description Explanation

01000 Warning Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

07009 Descriptor index that is not valid The value specified for the argument

ParameterNumber less than 1.

The value specified for the argument

ParameterNumber is greater than the number of

parameters in the associated SQL statement.

The parameter marker is part of a non-DML

statement.

The parameter marker is part of a SELECT

list.

08S01 Communication link failure The communication link between DB2 UDB

CLI and the data source to which it is

connected fails before the function completes

processing.

21S01 Insert value list does not match

column list

The number of parameters in the INSERT

statement does not match the number of

columns in the table named in the statement.

HY000 General error

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory

required to support the processing or

completion of the function.

HY008 Operation cancelled.

HY009 Argument value that is not valid The argument DataTypePtr, ParameterSizePtr,

DecimalDigitsPtr, or NullablePtr is a null

pointer.

HY010 Function sequence error The function is called before calling

SQLPrepare() or SQLExecDirect() for the

StatementHandle.

HY013 Unexpected memory handling

error

The function call cannot be processed because

the underlying memory objects can not be

accessed, possibly because of low memory

conditions.

Restrictions

None.

References

v “SQLBindParam - Bind a buffer to a parameter marker” on page 38

v “SQLCancel - Cancel statement” on page 50

v “SQLExecute - Execute a statement” on page 83

v “SQLPrepare - Prepare a statement” on page 164

72 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLDisconnect - Disconnect from a data source

Purpose

SQLDisconnect() closes the connection associated with the database connection handle.

After calling this function, either call SQLConnect() to connect to another database, or call

SQLFreeConnect().

Syntax

SQLRETURN SQLDisconnect (SQLHDBC hdbc);

Function arguments

 Table 45. SQLDisconnect arguments

Data type Argument Use Description

SQLHDBC hdbc Input Connection handle

Usage

If an application calls SQLDisconnect before it has freed all the statement handles associated with the

connection, DB2 UDB CLI frees them after it successfully disconnects from the database.

If SQL_SUCCESS_WITH_INFO is returned, it implies that even though the disconnect from the database

is successful, additional error or implementation specific information is available. For example:

v A problem is encountered on the clean up after the disconnect, or,

v If there is no current connection because of an event that occurred independently of the application

(such as communication failure).

After a successful SQLDisconnect() call, the application can re-use hdbc to make another SQLConnect()

request.

If the hdbc is participating in a DUOW two-phase commit connection, the disconnect might not occur

immediately. The actual disconnect occurs at the next commit issued for the distributed transaction.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 46. SQLDisconnect SQLSTATEs

SQLSTATE Description Explanation

01002 Disconnect error An error occurred during the disconnect. However, the

disconnect succeeded. (Function returns

SQL_SUCCESS_WITH_INFO.)

08003 Connection not open The connection specified in the argument hdbc is not

open.

SQL call level interface 73

Table 46. SQLDisconnect SQLSTATEs (continued)

SQLSTATE Description Explanation

25000 Transaction state that is not

valid

There is a transaction in process on the connection

specified by the argument hdbc. The transaction remains

active, and the connection cannot be disconnected.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

Example

Refer to the example in “SQLAllocEnv - Allocate environment handle” on page 24.

References

v “SQLAllocConnect - Allocate connection handle” on page 21

v “SQLConnect - Connect to a data source” on page 62

v “SQLTransact - Commit or roll back transaction” on page 217

SQLDriverConnect - (Expanded) Connect to a data source

Purpose

SQLDriverConnect() is an alternative to SQLConnect(). Both functions establish a connection to the target

database, but SQLDriverConnect() uses a connection string to determine the data source name, user ID

and password. The functions are the same; both are supported for compatibility purposes.

Syntax

SQLRETURN SQLDriverConnect (SQLHDBC ConnectionHandle,

 SQLHWND WindowHandle,

 SQLCHAR *InConnectionString,

 SQLSMALLINT StringLength1,

 SQLCHAR *OutConnectionString,

 SQLSMALLINT BufferLength,

 SQLSMALLINT *StringLength2Ptr,

 SQLSMALLINT DriverCompletion);

Function arguments

 Table 47. SQLDriverConnect arguments

Data type Argument Use Description

SQLCHAR * InConnectionString Input A full, partial, or empty (null pointer) connection

string.

SQLCHAR * OutConnectionString Output Pointer to buffer for the completed connection string.

If the connection is established successfully, this

buffer contains the completed connection string.

SQLHDBC ConnectionHandle Input Connection handle.

SQLHWND hwindow Input For DB2 Universal Database™ for Linux®, UNIX®,

and Windows, this is the parent handle. On i5/OS, it

is ignored.

74 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 47. SQLDriverConnect arguments (continued)

Data type Argument Use Description

SQLSMALLINT * StringLength2Ptr Output Pointer to the number of bytes available to return in

the OutConnectionString buffer.

If the value of StringLength2Ptr is greater than or

equal to BufferLength, the completed connection

string in OutConnectionString is truncated to

BufferLength - 1 bytes.

SQLSMALLINT DriverCompletion Input Indicates when DB2 UDB CLI should prompt the

user for more information.

Possible values:

v SQL_DRIVER_COMPLETE

v SQL_DRIVER_COMPLETE_REQUIRED

v SQL_DRIVER_NOPROMPT

SQLSMALLINT BufferLength Input Maximum size of the buffer pointed to by

OutConnectionString.

SQLSMALLINT StringLength1 Input Length of InConnectionString.

Usage

The connection string is used to pass one or more values that are needed to complete a connection. The

contents of the connection string and the value of DriverCompletion determine how the connection should

be established.

��

�

 ,

Connection string syntax

=

attribute

��

Connection string syntax

 DSN

UID

PWD

DB2 UDB CLI-defined-keyword

Each keyword above has an attribute that is equal to:

DSN Data source name. The name or alias-name of the database. The data source name is required if

DriverCompletion is equal to SQL_DRIVER_NOPROMPT.

UID Authorization-name (user identifier).

PWD The password that corresponds to the authorization name. If there is no password for the user

ID, empty is specified (PWD=;).

iSeries currently has no DB2 UDB CLI-defined keywords.

The value of DriverCompletion is verified to be valid, but all result in the same behavior. A connection is

attempted with the information that is contained in the connection string. If there is not enough

information, SQL_ERROR is returned.

SQL call level interface 75

As soon as a connection is established, the complete connection string is returned. Applications that need

to set up multiple connections to the same database for a given user ID should store this output

connection string. This string can then be used as the input connection string value on future

SQLDriverConnect() calls.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NO_DATA_FOUND

v SQL_INVALID_HANDLE

v SQL_ERROR

Error conditions

All of the diagnostics that are generated by SQLConnect() can be returned here as well. The following

table shows the additional diagnostics that can be returned.

 Table 48. SQLDriverConnect SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated The buffer szConnstrOut is not large enough to hold the entire

connection string. The argument StringLength2Ptr contains the

actual length of the connection string available for return.

(Function returns SQL_SUCCESS_WITH_INFO)

01S00 Connection string attribute that

is not valid

A keyword or attribute value that is not valid is specified in the

input connection string, but the connection to the data source is

successful anyway because one of the following situations occurs:

v The unrecognized keyword is ignored.

v The attribute value that is not valid is ignored, the default

value is used instead.

(Function returns SQL_SUCCESS_WITH_INFO)

HY009 Argument value that is not valid The argument InConnectionString, OutConnectionString, or

StringLength2PTR is a null pointer.

The argument DriverCompletion is not equal to 1.

HY090 String or buffer length that is not

valid

The value specified for StringLength1 is less than 0, but not equal

to SQL_NTS.

The value specified for BufferLength is less than 0.

HY110 Driver completion that is not

valid

The value specified for the argument fCompletion is not equal to

one of the valid values.

Restrictions

None.

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.
/* From CLI sample drivrcon.c */

/* ... */

/**

** drv_connect - Prompt for connect options and connect **

76 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

**/

int

drv_connect(SQLHENV henv,

 SQLHDBC * hdbc,

 SQLCHAR con_type)

{

 SQLRETURN rc;

 SQLCHAR server[SQL_MAX_DSN_LENGTH + 1];

 SQLCHAR uid[MAX_UID_LENGTH + 1];

 SQLCHAR pwd[MAX_PWD_LENGTH + 1];

 SQLCHAR con_str[255];

 SQLCHAR buffer[255];

 SQLSMALLINT outlen;

 printf("Enter Server Name:\n");

 gets((char *) server);

 printf("Enter User Name:\n");

 gets((char *) uid);

 printf("Enter Password Name:\n");

 gets((char *) pwd);

 /* Allocate a connection handle */

 SQLAllocHandle(SQL_HANDLE_DBC,

 henv,

 hdbc

);

 CHECK_HANDLE(SQL_HANDLE_DBC, *hdbc, rc);

 sprintf((char *)con_str, "DSN=%s;UID=%s;PWD=%s;",

 server, uid, pwd);

 rc = SQLDriverConnect(*hdbc,

 (SQLHWND) NULL,

 con_str,

 SQL_NTS,

 buffer, 255, &outlen,

 SQL_DRIVER_NOPROMPT);

 if (rc != SQL_SUCCESS) {

 printf("Error while connecting to database, RC= %ld\n", rc);

 CHECK_HANDLE(SQL_NULL_HENV, *hdbc, rc);

 return (SQL_ERROR);

 } else {

 printf("Successful Connect\n");

 return (SQL_SUCCESS);

 }

}

 Related reference

 “SQLConnect - Connect to a data source” on page 62

SQLEndTran - Commit or roll back a transaction

Purpose

SQLEndTran() commits or rolls back the current transaction in the connection.

All changes to the database performed on the connection since connect time or the previous call to

SQLEndTran() (whichever is the most recent) are committed or rolled back.

If a transaction is active on a connection, the application must call SQLEndTran() before it can disconnect

from the database.

SQL call level interface 77

Syntax

SQLRETURN SQLEndTran (SQLSMALLINT hType,

 SQLINTEGER handle,

 SQLSMALLINT fType);

Function arguments

 Table 49. SQLEndTran arguments

Data type Argument Use Description

SQLINTEGER handle Input Handle to use when performing the COMMIT or

ROLLBACK.

SQLSMALLINT fType Input Wanted action for the transaction. The value for this

argument must be one of:

v SQL_COMMIT

v SQL_ROLLBACK

v SQL_COMMIT_HOLD

v SQL_ROLLBACK_HOLD

v SQL_SAVEPOINT_NAME_ROLLBACK

v SQL_SAVEPOINT_NAME_RELEASE

SQLSMALLINT hType Input Type of handle It must contain

SQL_HANDLE_ENV or SQL_HANDLE_DBC.

Usage

Completing a transaction with SQL_COMMIT or SQL_ROLLBACK has the following effects:

v Statement handles are still valid after a call to SQLEndTran().

v Cursor names, bound parameters, and column bindings survive transactions.

v Open cursors are closed, and any result sets that are pending retrieval are discarded.

Completing the transaction with SQL_COMMIT_HOLD or SQL_ROLLBACK_HOLD still commits or rolls

back the database changes, but does not cause cursors to be closed.

If no transaction is currently active on the connection, calling SQLEndTran() has no effect on the database

server and returns SQL_SUCCESS.

SQLEndTran() might fail while executing the COMMIT or ROLLBACK due to a loss of connection. In this

case the application might be unable to determine whether the COMMIT or ROLLBACK has been

processed, and a database administrator’s help might be required. Refer to the Database Management

System (DBMS) product information for more information about transaction logs and other transaction

management tasks.

When using either SQL_SAVEPOINT_NAME_ROLLBACK or SQL_SAVEPOINT_NAME_RELEASE, you

must already have set the savepoint name using SQLSetConnectAttr.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

78 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Diagnostics

 Table 50. SQLEndTran SQLSTATEs

SQLSTATE Description Explanation

08003 Connection not open The hdbc is not in a connected state.

08007 Connection failure during

transaction

The connection associated with the hdbc fails during the

processing of the function during the processing of the

function and it cannot be determined whether the requested

COMMIT or ROLLBACK occurs before the failure.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to support

the processing or completion of the function.

HY010 Function sequence error SQL_SAVEPOINT_NAME_ROLLBACK or

SQL_SAVEPOINT_NAME_RELEASE is used, but the

savepoint name is not established by calling

SQLSetConnectAttr() for attribute

SQL_ATTR_SAVEPOINT_NAME.

HY012 Transaction operation state

that is not valid

The value specified for the argument fType is neither

SQL_COMMIT nor SQL_ROLLBACK.

HY013 * Memory management

problem

The driver is unable to access memory required to support

the processing or completion of the function.

SQLError - Retrieve error information

Purpose

SQLError() returns the diagnostic information associated with the most recently called DB2 UDB CLI

function for a particular statement, connection or environment handle.

The information consists of a standardized SQLSTATE, an error code, and a text message. Refer to

“Diagnostics in a DB2 UDB CLI application” on page 14 for more information.

Call SQLError() after receiving a return code of SQL_ERROR or SQL_SUCCESS_WITH_INFO from

another function call.

Syntax

SQLRETURN SQLError (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLCHAR *szSqlState,

 SQLINTEGER *pfNativeError,

 SQLCHAR *szErrorMsg,

 SQLSMALLINT cbErrorMsgMax,

 SQLSMALLINT *pcbErrorMsg);

SQL call level interface 79

Function arguments

 Table 51. SQLError arguments

Data type Argument Use Description

SQLCHAR * szErrorMsg Output Pointer to buffer to contain the

implementation defined message text. In DB2

UDB CLI, only the DBMS generated

messages is returned; DB2 UDB CLI itself

does not return any message text describing

the problem.

SQLCHAR * szSqlState Output SQLSTATE as a string of 5 characters

terminated by a null character. The first 2

characters indicate error class; the next 3

indicate subclass. The values correspond

directly to SQLSTATE values defined in the

X/Open SQL CAE specification and the

ODBC specification, augmented with IBM

specific and product specific SQLSTATE

values.

SQLHDBC hdbc Input Database connection handle. To obtain

diagnostic information associated with a

connection, pass a valid database connection

handle, and set hstmt to SQL_NULL_HSTMT.

The henv argument is ignored.

SQLHENV henv Input Environment handle. To obtain diagnostic

information associated with an environment,

pass a valid environment handle. Set hdbc to

SQL_NULL_HDBC. Set hstmt to

SQL_NULL_HSTMT.

SQLHSTMT hstmt Input Statement handle. To obtain diagnostic

information associated with a statement, pass

a valid statement handle. The henv and hdbc

arguments are ignored.

SQLINTEGER * pfNativeError Output Native error code. In DB2 UDB CLI, the

pfNativeError argument contains the

SQLCODE value returned by the Database

Management System (DBMS). If the error is

generated by DB2 UDB CLI and not the

DBMS, this field is set to -99999.

SQLSMALLINT * pcbErrorMsg Output Pointer to total number of bytes available to

return to the szErrorMsg buffer.

SQLSMALLINT cbErrorMsgMax Input Maximum (that is, the allocated) length of

the buffer szErrorMsg. The recommended

length to allocate is

SQL_MAX_MESSAGE_LENGTH + 1.

Usage

The SQLSTATEs are those defined by the X/OPEN SQL CAE and the X/Open SQL CLI snapshot,

augmented with IBM specific and product specific SQLSTATE values.

:

v To obtain diagnostic information associated with an environment, pass a valid environment handle. Set

hdbc to SQL_NULL_HDBC. Set hstmt to SQL_NULL_HSTMT.

80 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v To obtain diagnostic information associated with a connection, pass a valid database connection handle,

and set hstmt to SQL_NULL_HSTMT. The henv argument is ignored.

v To obtain diagnostic information associated with a statement, pass a valid statement handle. The henv

and hdbc arguments are ignored.

If diagnostic information generated by one DB2 UDB CLI function is not retrieved before a function other

than SQLError() is called with the same handle, the information for the previous function call is lost. This

is true whether diagnostic information is generated for the second DB2 UDB CLI function call.

To avoid truncation of the error message, declare a buffer length of SQL_MAX_MESSAGE_LENGTH + 1.

The message text is never longer than this.

Return codes

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

v SQL_SUCCESS

Diagnostics

SQLSTATEs are not defined because SQLError() does not generate diagnostic information for itself.

SQL_ERROR is returned if argument szSqlState, pfNativeError, szErrorMsg, or pcbErrorMsg is a null

pointer.

Example

 Related concepts

 “Diagnostics in a DB2 UDB CLI application” on page 14

This topic deals with warning or error conditions generated within an application.

SQLExecDirect - Execute a statement directly

Purpose

SQLExecDirect() directly executes the specified SQL statement. The statement can only be processed once.

Also, the connected database server must be able to prepare the statement.

Syntax

SQLRETURN SQLExecDirect (SQLHSTMT hstmt,

 SQLCHAR *szSqlStr,

 SQLINTEGER cbSqlStr);

Function arguments

 Table 52. SQLExecDirect arguments

Data type Argument Use Description

SQLCHAR * szSqlStr Input SQL statement string. The connected

database server must be able to prepare the

statement.

SQLHSTMT hstmt Input Statement handle. There must not be an

open cursor associated with hstmt. See

“SQLFreeStmt - Free (or reset) a statement

handle” on page 102 for more information.

SQL call level interface 81

Table 52. SQLExecDirect arguments (continued)

Data type Argument Use Description

SQLINTEGER cbSqlStr Input Length of contents of szSqlStr argument. The

length must be set to either the exact length

of the statement, or if the statement is

null-terminated, set to SQL_NTS.

Usage

The SQL statement cannot be a COMMIT or ROLLBACK. Instead, SQLTransact() must be called to issue

COMMIT or ROLLBACK. For more information about supported SQL statements refer to Table 1 on page

3.

The SQL statement string might contain parameter markers. A parameter marker is represented by a ″?″

character, and indicates a position in the statement where the value of an application variable is to be

substituted, when SQLExecDirect() is called. SQLBindParam() binds (or associates) an application variable

to each parameter marker, to indicate if any data conversion should be performed at the time the data is

transferred. All parameters must be bound before calling SQLExecDirect().

If the SQL statement is a SELECT, SQLExecDirect() generates a cursor name, and open the cursor. If the

application has used SQLSetCursorName() to associate a cursor name with the statement handle, DB2 UDB

CLI associates the application generated cursor name with the internally generated one.

To retrieve a row from the result set generated by a SELECT statement, call SQLFetch() after

SQLExecDirect() returns successfully.

If the SQL statement is a Positioned DELETE or a Positioned UPDATE, the cursor referenced by the

statement must be positioned on a row. Additionally the SQL statement must be defined on a separate

statement handle under the same connection handle.

There must not be an open cursor on the statement handle.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if the SQL statement is a Searched UPDATE or Searched DELETE

and no rows satisfy the search condition.

Diagnostics

 Table 53. SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value The argument szSqlStr is a null pointer.

The argument cbSqlStr is less than 1, but not equal to

SQL_NTS.

82 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 53. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error Either no connection or there is an open cursor for this

statement handle.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HY021 Internal descriptor The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

Note: There are many other SQLSTATE values that can be generated by the Database Management System (DBMS),

on processing of the statement.

Example

Refer to the SQLFetch() “” on page 88.

References

v “SQLExecute - Execute a statement”

v “SQLFetch - Fetch next row” on page 87

v “SQLSetParam - Set parameter” on page 200

SQLExecute - Execute a statement

Purpose

SQLExecute() executes a statement, that is successfully prepared using SQLPrepare(), once or multiple

times. The statement is processed using the current values of any application variables that were bound

to parameter markers by SQLBindParam().

Syntax

SQLRETURN SQLExecute (SQLHSTMT hstmt);

Function arguments

 Table 54. SQLExecute arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle. There must not be an

open cursor associated with hstmt, see

“SQLFreeStmt - Free (or reset) a statement

handle” on page 102 for more information.

Usage

The SQL statement string might contain parameter markers. A parameter marker is represented by a ″?″

character, and indicates a position in the statement where the value of an application variable is to be

substituted, when SQLExecute() is called. SQLBindParam() is used to bind (or associate) an application

variable to each parameter marker, and to indicate if any data conversion should be performed at the

time the data is transferred. All parameters must be bound before calling SQLExecute().

As soon as the application has processed the results from the SQLExecute() call, it can process the

statement again with new (or the same) values in the application variables.

SQL call level interface 83

A statement processed by SQLExecDirect() cannot be reprocessed by calling SQLExecute(); SQLPrepare()

must be called first.

If the prepared SQL statement is a SELECT, SQLExecute() generates a cursor name, and opens the cursor.

If the application has used SQLSetCursorName() to associate a cursor name with the statement handle,

DB2 UDB CLI associates the application generated cursor name with the internally generated cursor

name.

To process a SELECT statement more than once, the application must close the cursor by calling call

SQLFreeStmt() with the SQL_CLOSE option. There must not be an open cursor on the statement handle

when calling SQLExecute().

To retrieve a row from the result set generated by a SELECT statement, call SQLFetch() after

SQLExecute() returns successfully.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor referenced by the

statement must be positioned on a row at the time SQLExecute() is called, and must be defined on a

separate statement handle under the same connection handle.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if the SQL statement is a Searched UPDATE or Searched DELETE

and no rows satisfy the search condition.

Diagnostics

The SQLSTATEs for SQLExecute() include all those for SQLExecDirect() (see Table 53 on page 82) except

for HY009, and with the addition of the SQLSTATEs in the following table.

 Table 55. SQLExecute SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error The specified hstmt is not in prepared state. SQLExecute()

is called without first calling SQLPrepare.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

Note: There are many other SQLSTATE values that can be generated by the Database Management System (DBMS),

on processing of the statement.

Example

Refer to the SQLPrepare() “” on page 166

References

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLPrepare - Prepare a statement” on page 164

v “SQLFetch - Fetch next row” on page 87

84 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v “SQLSetParam - Set parameter” on page 200

SQLExtendedFetch - Fetch array of rows

Purpose

SQLExtendedFetch() extends the function of SQLFetch() by returning a block of data containing multiple

rows (called a rowset), in the form of an array, for each bound column. The size of the rowset is

determined by the SQL_ROWSET_SIZE attribute on an SQLSetStmtAttr() call.

To fetch one row of data at a time, an application should call SQLFetch().

Syntax

SQLRETURN SQLExtendedFetch (SQLHSTMT StatementHandle,

 SQLSMALLINT FetchOrientation,

 SQLINTEGER FetchOffset,

 SQLINTEGER *RowCountPtr,

 SQLSMALLINT *RowStatusArray);

Function arguments

 Table 56. SQLExtendedFetch arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLINTEGER * RowCountPtr Output Number of the rows actually fetched. If an error

occurs during processing, RowCountPtr points to the

ordinal position of the row (in the rowset) that

precedes the row where the error occurred. If an

error occurs retrieving the first row RowCountPtr

points to the value 0.

SQLINTEGER FetchOffset Input Row offset for relative positioning.

SQLSMALLINT * RowStatusArray Output An array of status values. The number of elements

must equal the number of rows in the rowset (as

defined by the SQL_ROWSET_SIZE attribute). A

status value for each row fetched is returned:

v SQL_ROW_SUCCESS

If the number of rows fetched is less than the

number of elements in the status array (that is, less

than the rowset size), the remaining status elements

are set to SQL_ROW_NOROW.

DB2 UDB CLI cannot detect whether a row has been

updated or deleted since the start of the fetch.

Therefore, the following ODBC defined status values

are not reported:

v SQL_ROW_DELETED

v SQL_ROW_UPDATED

SQLSMALLINT FetchOrientation Input Fetch orientation. See Table 61 on page 93 for

possible values.

Usage

SQLExtendedFetch() is used to perform an array fetch of a set of rows. An application specifies the size of

the array by calling SQLSetStmtAttr() with the SQL_ROWSET_SIZE attribute.

SQL call level interface 85

Before SQLExtendedFetch() is called the first time, the cursor is positioned before the first row. After

SQLExtendedFetch() is called, the cursor is positioned on the row in the result set corresponding to the

last row element in the rowset just retrieved.

For any columns in the result set that have been bound by the SQLBindCol() function, DB2 UDB CLI

converts the data for the bound columns as necessary and stores it in the locations bound to these

columns. The result set must be bound in a row-wise fashion. This means that the values for all the

columns of the first row are contiguous, followed by the values of the second row, and so on. Also, if

indicator variables are used, they are all returned in one contiguous storage location.

When using this procedure to retrieve multiple rows, all columns must be bound, and the storage must

be contiguous. When using this function to retrieve rows from an SQL procedure result set, only the

SQL_FETCH_NEXT orientation is supported. The user is responsible for allocating enough storage for the

number of rows that are specified in SQL_ROWSET_SIZE.

The cursor must be a scrollable cursor for SQLExtendedFetch() to use any orientation other than

SQL_FETCH_NEXT. See “SQLSetStmtAttr - Set a statement attribute” on page 201 for information about

setting the SQL_ATTR_CURSOR_SCROLLABLE attribute.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

Error conditions

 Table 57. SQLExtendedFetch SQLSTATEs

SQLSTATE Description Explanation

HY009 Argument value that is not valid

The argument value RowCountPtr or RowStatusArray is a null

pointer.

The value specified for the argument FetchOrientation is not

recognized.

HY010 Function sequence error SQLExtendedFetch() is called for an StatementHandle after

SQLFetch() is called and before SQLFreeStmt() has been called

with the SQL_CLOSE option.

The function is called before calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

The function is called while in a data-at-processing

(SQLParamData(), SQLPutData()) operation.

Restrictions

None.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLExecute - Execute a statement” on page 83

v “SQLExecDirect - Execute a statement directly” on page 81

86 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v “SQLFetch - Fetch next row”

SQLFetch - Fetch next row

Purpose

SQLFetch() advances the cursor to the next row of the result set, and retrieves any bound columns.

SQLFetch() can be used to receive the data directly into variables you specify with SQLBindCol(), or the

columns can be received individually after the fetch, by calling SQLGetData(). Data conversion is also

performed when SQLFetch() is called, if conversion is indicated when the column is bound.

Syntax

SQLRETURN SQLFetch (SQLHSTMT hstmt);

Function arguments

 Table 58. SQLFetch arguments

Data type argument Use Description

SQLHSTMT hstmt Input Statement handle

Usage

SQLFetch() can only be called if the most recently processed statement on hstmt is a SELECT.

The number of application variables bound with SQLBindCol() must not exceed the number of columns

in the result set; otherwise SQLFetch() fails.

If SQLBindCol() has not been called to bind any columns, then SQLFetch() does not return data to the

application, but just advances the cursor. In this case SQLGetData() can then be called to obtain all of the

columns individually. Data in unbound columns is discarded when SQLFetch() advances the cursor to the

next row.

If any bound variables are not large enough to hold the data returned by SQLFetch(), the data is

truncated. If character data is truncated, and the SQLSetEnvAttr() attribute

SQL_ATTR_TRUNCATION_RTNC is set to SQL_TRUE, then the CLI return code

SQL_SUCCESS_WITH_INFO is returned, along with an SQLSTATE that indicates truncation. Note that

the default is SQL_FALSE for SQL_ATTR_TRUNCATION_RTNC. Also, in the case of character data

truncation, the SQLBindCol() deferred output argument pcbValue contains the actual length of the column

data retrieved from the server. The application should compare the output length to the input length

(pcbValue and cbValueMax arguments from SQLBindCol()) to determine which character columns have

been truncated.

Truncation of numeric data types is not reported if the truncation involves digits to the right of the

decimal point. If truncation occurs to the left of the decimal point, an error is returned (refer to the

diagnostics section).

Truncation of graphic data types is treated the same as character data types. Except the rgbValue buffer is

filled to the nearest multiple of two bytes that is still less than or equal to the cbValueMax specified in

SQLBindCol(). Graphic data transferred between DB2 UDB CLI and the application is never

null-terminated.

SQL call level interface 87

When all the rows have been retrieved from the result set, or the remaining rows are not needed,

SQLFreeStmt() should be called to close the cursor and discard the remaining data and associated

resources.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if there are no rows in the result set, or previous SQLFetch() calls

have fetched all the rows from the result set.

Diagnostics

 Table 59. SQLFetch SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated The data returned for one or more columns is truncated.

String values are right truncated.

(SQL_SUCCESS_WITH_INFO is returned if no error

occurred.)

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY010 Function sequence error The specified hstmt is not in an processed state. The

function is called without first calling SQLExecute or

SQLExecDirect.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.
/***

** file = fetch.c

**

** Example of executing an SQL statement.

** SQLBindCol & SQLFetch is used to retrieve data from the result set

** directly into application storage.

**

** Functions used:

**

** SQLAllocConnect SQLFreeConnect

** SQLAllocEnv SQLFreeEnv

** SQLAllocStmt SQLFreeStmt

** SQLConnect SQLDisconnect

**

** SQLBindCol SQLFetch

** SQLTransact SQLExecDirect

** SQLError

**

**/

#include <stdio.h>

#include <string.h>

#include "sqlcli.h"

88 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

#define MAX_STMT_LEN 255

int initialize(SQLHENV *henv,

 SQLHDBC *hdbc);

int terminate(SQLHENV henv,

 SQLHDBC hdbc);

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt);

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc);

/***

** main

** - initialize

** - terminate

***/

int main()

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLCHAR sqlstmt[MAX_STMT_LEN + 1]="";

 SQLRETURN rc;

 rc = initialize(&henv, &hdbc);

 if (rc == SQL_ERROR) return(terminate(henv, hdbc));

 {SQLHSTMT hstmt;

 SQLCHAR sqlstmt[]="SELECT deptname, location from org where division = ’Eastern’";

 SQLCHAR deptname[15],

 location[14];

 SQLINTEGER rlength;

 rc = SQLAllocStmt(hdbc, &hstmt);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 rc = SQLBindCol(hstmt, 1, SQL_CHAR, (SQLPOINTER) deptname, 15,

 &rlength);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 rc = SQLBindCol(hstmt, 2, SQL_CHAR, (SQLPOINTER) location, 14,

 &rlength);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 printf("Departments in Eastern division:\n");

 printf("DEPTNAME Location\n");

 printf("-------------- -------------\n");

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

 {

 printf("%-14.14s %-13.13s \n", deptname, location);

 }

 if (rc != SQL_NO_DATA_FOUND)

 check_error (henv, hdbc, hstmt, rc);

SQL call level interface 89

rc = SQLFreeStmt(hstmt, SQL_DROP);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 }

 rc = SQLTransact(henv, hdbc, SQL_COMMIT);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 terminate(henv, hdbc);

 return (0);

}/* end main */

/***

** initialize

** - allocate environment handle

** - allocate connection handle

** - prompt for server, user id, & password

** - connect to server

***/

int initialize(SQLHENV *henv,

 SQLHDBC *hdbc)

{

SQLCHAR server[SQL_MAX_DSN_LENGTH],

 uid[30],

 pwd[30];

SQLRETURN rc;

 rc = SQLAllocEnv (henv); /* allocate an environment handle */

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 rc = SQLAllocConnect (*henv, hdbc); /* allocate a connection handle */

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 printf("Enter Server Name:\n");

 gets(server);

 printf("Enter User Name:\n");

 gets(uid);

 printf("Enter Password Name:\n");

 gets(pwd);

 if (uid[0] == ’\0’)

 { rc = SQLConnect (*hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 }

 else

 { rc = SQLConnect (*hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 }

 return(SQL_SUCCESS);

}/* end initialize */

/***

** terminate

** - disconnect

** - free connection handle

** - free environment handle

***/

int terminate(SQLHENV henv,

90 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLHDBC hdbc)

{

SQLRETURN rc;

 rc = SQLDisconnect (hdbc); /* disconnect from database */

 if (rc != SQL_SUCCESS)

 print_error (henv, hdbc, SQL_NULL_HSTMT);

 rc = SQLFreeConnect (hdbc); /* free connection handle */

 if (rc != SQL_SUCCESS)

 print_error (henv, hdbc, SQL_NULL_HSTMT);

 rc = SQLFreeEnv (henv); /* free environment handle */

 if (rc != SQL_SUCCESS)

 print_error (henv, hdbc, SQL_NULL_HSTMT);

 return(rc);

}/* end terminate */

/***

** - print_error - call SQLError(), display SQLSTATE and message

***/

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt)

{

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];

SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];

SQLINTEGER sqlcode;

SQLSMALLINT length;

 while (SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,

 SQL_MAX_MESSAGE_LENGTH + 1, &length) == SQL_SUCCESS)

 {

 printf("\n **** ERROR *****\n");

 printf(" SQLSTATE: %s\n", sqlstate);

 printf("Native Error Code: %ld\n", sqlcode);

 printf("%s \n", buffer);

 };

 return (SQL_ERROR);

} /* end print_error */

/***

** - check_error - call print_error(), checks severity of return code

***/

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc)

{

SQLRETURN rc;

 print_error(henv, hdbc, hstmt);

 switch (frc){

 case SQL_SUCCESS : break;

 case SQL_ERROR :

 case SQL_INVALID_HANDLE:

 printf("\n ** FATAL ERROR, Attempting to rollback transaction **\n");

 rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);

 if (rc != SQL_SUCCESS)

 printf("Rollback Failed, Exiting application\n");

 else

 printf("Rollback Successful, Exiting application\n");

 terminate(henv, hdbc);

 exit(frc);

SQL call level interface 91

break;

 case SQL_SUCCESS_WITH_INFO :

 printf("\n ** Warning Message, application continuing\n");

 break;

 case SQL_NO_DATA_FOUND :

 printf("\n ** No Data Found ** \n");

 break;

 default :

 printf("\n ** Invalid Return Code ** \n");

 printf(" ** Attempting to rollback transaction **\n");

 SQLTransact(henv, hdbc, SQL_ROLLBACK);

 terminate(henv, hdbc);

 exit(frc);

 break;

 }

 return(SQL_SUCCESS);

} /* end check_error */

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLExecute - Execute a statement” on page 83

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLGetCol - Retrieve one column of a row of the result set” on page 103

v “SQLFetchScroll - Fetch from a scrollable cursor”

SQLFetchScroll - Fetch from a scrollable cursor

Purpose

SQLFetchScroll() positions the cursor based on the requested orientation, then retrieves any bound

columns.

SQLFetchScroll() can be used to receive the data directly into variables you specify with SQLBindCol(),

or the columns can be received individually after the fetch, by calling SQLGetData(). Data conversion is

also performed when SQLFetchScroll() is called, if conversion is indicated when the column is bound.

Syntax

SQLRETURN SQLFetchScroll (SQLHSTMT hstmt,

 SQLSMALLINT fOrient,

 SQLINTEGER fOffset);

Function arguments

 Table 60. SQLFetchScroll arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLSMALLINT fOrient Input Fetch orientation. See Table 61 on page 93 for

possible values.

SQLINTEGER fOffset Input Row offset for relative positioning.

Usage

SQLFetchScroll() can only be called if the most recently processed statement on hstmt is a SELECT.

92 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLFetchScroll() acts like SQLFetch(), except the fOrient parameter positions the cursor before any data

is retrieved. The cursor must be a scrollable cursor for SQLFetchScroll() to use any orientation other

than SQL_FETCH_NEXT. See “SQLSetStmtAttr - Set a statement attribute” on page 201 for information

about setting the SQL_ATTR_CURSOR_SCROLLABLE attribute.

When using this function to retrieve rows from an SQL procedure result set, only the SQL_FETCH_NEXT

orientation is supported.

SQLFetchScroll() supports array fetch, an alternative to the array fetch support provided by

SQLExtendedFetch(). See the SQLExtendedFetch() topic for details on array fetch.

The information returned in the RowCountPtr and RowStatusArray parameters of SQLExtendedFetch() are

handled by SQLFetchScroll() as follows:

v RowCountPtr: SQLFetchScroll() returns the number of rows fetched in the buffer pointed to by the

SQL_ATTR_ROWS_FETCHED_PTR statement attribute.

v RowStatusArray: SQLFetchScroll() returns the array of statuses for each row in the buffer pointed to by

the SQL_ATTR_ROW_STATUS_PTR statement attribute.

 Table 61. Statement attributes

fOrient Description

SQL_FETCH_FIRST Move to the first row of the result set.

SQL_FETCH_LAST Move to the last row of the result set.

SQL_FETCH_NEXT Move to the row following the current cursor position.

SQL_FETCH_PRIOR Move to the row preceding the current cursor position.

SQL_FETCH_RELATIVE If fOffset is:

v Positive, advance the cursor that number of rows.

v Negative, back up the cursor that number of rows.

v Zero, do not move the cursor.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

Diagnostics

 Table 62. SQLFetchScroll SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated The data returned for one or more columns is truncated.

String values are right truncated.

(SQL_SUCCESS_WITH_INFO is returned if no error

occurred.)

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

Orientation that is not valid.

SQL call level interface 93

|
|

Table 62. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error The specified hstmt is not in an processed state. The

function is called without first calling SQLExecute or

SQLExecDirect.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLExecute - Execute a statement” on page 83

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExtendedFetch - Fetch array of rows” on page 85

v “SQLGetCol - Retrieve one column of a row of the result set” on page 103

v “SQLFetch - Fetch next row” on page 87

v “SQLSetStmtAttr - Set a statement attribute” on page 201
 Related reference

 “SQLSetStmtAttr - Set a statement attribute” on page 201

SQLForeignKeys - Get the list of foreign key columns

Purpose

SQLForeignKeys() returns information about foreign keys for the specified table. The information is

returned in an SQL result set which can be processed using the same functions that are used to retrieve a

result that is generated by a query.

Syntax

SQLRETURN SQLForeignKeys (SQLHSTMT StatementHandle,

 SQLCHAR *PKCatalogName,

 SQLSMALLINT NameLength1,

 SQLCHAR *PKSchemaName,

 SQLSMALLINT NameLength2,

 SQLCHAR *PKTableName,

 SQLSMALLINT NameLength3,

 SQLCHAR *FKCatalogName,

 SQLSMALLINT NameLength4,

 SQLCHAR *FKSchemaName,

 SQLSMALLINT NameLength5,

 SQLCHAR *FKTableName,

 SQLSMALLINT NameLength6);

Function arguments

 Table 63. SQLForeignKeys arguments

Data type Argument Use Description

SQLCHAR * FKCatalogName Input Catalog qualifier of the table containing the foreign

key. This must be a NULL pointer or a zero length

string.

SQLCHAR * FKSchemaName Input Schema qualifier of the table containing the foreign

key.

SQLCHAR * FKTableName Input Name of the table containing the foreign key.

94 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 63. SQLForeignKeys arguments (continued)

Data type Argument Use Description

SQLCHAR * PKCatalogName Input Catalog qualifier of the primary key table. This must

be a NULL pointer or a zero length string.

SQLCHAR * PKSchemaName Input Schema qualifier of the primary key table.

SQLCHAR * PKTableName Input Name of the table name containing the primary key.

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT NameLength2 Input Length of PKSchemaName.

SQLSMALLINT NameLength3 Input Length of PKTableName.

SQLSMALLINT NameLength6 Input Length of FKTableName.

SQLSMALLINT NameLength1 Input Length of PKCatalogName. This must be set to 0.

SQLSMALLINT NameLength4 Input Length of FKCatalogName. This must be set to 0.

SQLSMALLINT NameLength5 Input Length of FKSchemaName.

Usage

If PKTableName contains a table name, and FKTableName is an empty string, SQLForeignKeys() returns a

result set that contains the primary key of the specified table and all of the foreign keys (in other tables)

that refer to it.

If FKTableName contains a table name, and PKTableName is an empty string, SQLForeignKeys() returns a

result set that contains all of the foreign keys in the specified table and the primary keys (in other tables)

to which they refer.

If both PKTableName and FKTableName contain table names, SQLForeignKeys() returns the foreign keys in

the table specified in FKTableName that refer to the primary key of the table specified in PKTableName.

This should be one key at the most.

If the schema qualifier argument that is associated with a table name is not specified, then for the schema

name the default is the one currently in effect for the current connection.

Table 64 lists the columns of the result set generated by the SQLForeignKeys() call. If the foreign keys that

are associated with a primary key are requested, the result set is ordered by FKTABLE_CAT,

FKTABLE_SCHEM, FKTABLE_NAME, and ORDINAL_POSITION. If the primary keys that are associated

with a foreign key are requested, the result set is ordered by PKTABLE_CAT, PKTABLE_SCHEM,

PKTABLE_NAME, and ORDINAL_POSITION.

Although new columns might be added and the names of the existing columns might be changed in

future releases, the position of the current columns does not change.

 Table 64. Columns returned by SQLForeignKeys

Column number/name Data type Description

1 PKTABLE_CAT VARCHAR(128) The current server.

2 PKTABLE_SCHEM VARCHAR(128) The name of the schema containing PKTABLE_NAME.

3 PKTABLE_NAME VARCHAR(128)

not NULL

Name of the table containing the primary key.

4 PKCOLUMN_NAME VARCHAR(128)

not NULL

Primary key column name.

5 FKTABLE_CAT VARCHAR(128) The current server.

SQL call level interface 95

Table 64. Columns returned by SQLForeignKeys (continued)

Column number/name Data type Description

6 FKTABLE_SCHEM VARCHAR(128) The name of the schema containing FKTABLE_NAME.

7 FKTABLE_NAME VARCHAR(128)

not NULL

The name of the table containing the Foreign key.

8 FKCOLUMN_NAME VARCHAR(128)

not NULL

Foreign key column name.

9 ORDINAL_POSITION SMALLINT not

NULL

The ordinal position of the column in the key, starting at 1.

10 UPDATE_RULE SMALLINT Action to be applied to the foreign key when the SQL operation

is UPDATE:

v SQL_RESTRICT

v SQL_NO_ACTION

The update rule for IBM DB2 DBMSs is always either RESTRICT

or SQL_NO_ACTION. However, ODBC applications might

encounter the following UPDATE_RULE values when connected

to non-IBM RDBMSs:

v SQL_CASCADE

v SQL_SET_NULL

11 DELETE_RULE SMALLINT Action to be applied to the foreign key when the SQL operation

is DELETE:

v SQL_CASCADE

v SQL_NO_ACTION

v SQL_RESTRICT

v SQL_SET_DEFAULT

v SQL_SET_NULL

12 FK_NAME VARCHAR(128) Foreign key identifier. NULL if not applicable to the data source.

13 PK_NAME VARCHAR(128) Primary key identifier. NULL if not applicable to the data source.

Note: The column names used by DB2 UDB CLI follow the X/Open CLI CAE specification style. The column

types, contents and order are identical to those defined for the SQLForeignKeys() result set in ODBC.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 65. SQLForeignKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid A cursor is already opened on the statement handle.

40003 08S01 Communication link failure The communication link between the application and data source

fails before the function is completed.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

96 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 65. SQLForeignKeys SQLSTATEs (continued)

SQLSTATE Description Explanation

HY009 Argument value that is not valid The arguments PKTableName and FKTableName were both NULL

pointers.

HY010 Function sequence error

HY014 No more handles DB2 UDB CLI is unable to allocate a handle due to internal

resources.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HY090 String or buffer length that is not

valid

The value of one of the name length arguments is less than 0, but

not equal to SQL_NTS.

The length of the table or owner name is greater than the

maximum length supported by the server. Refer to “SQLGetInfo -

Get general information” on page 127.

HYC00 Driver not capable DB2 UDB CLI does not support catalog as a qualifier for table

name.

HYT00 Timeout expired

Restrictions

None.

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/* From CLI sample browser.c */

/* ... */

SQLRETURN list_foreign_keys(SQLHANDLE hstmt,

 SQLCHAR * schema,

 SQLCHAR * tablename

) {

/* ... */

 rc = SQLForeignKeys(hstmt, NULL, 0,

 schema, SQL_NTS, tablename, SQL_NTS,

 NULL, 0,

 NULL, SQL_NTS, NULL, SQL_NTS);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) pktable_schem.s, 129,

 &pktable_schem.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) pktable_name.s, 129,

 &pktable_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) pkcolumn_name.s, 129,

 &pkcolumn_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) fktable_schem.s, 129,

 &fktable_schem.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) fktable_name.s, 129,

SQL call level interface 97

&fktable_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 8, SQL_C_CHAR, (SQLPOINTER) fkcolumn_name.s, 129,

 &fkcolumn_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 10, SQL_C_SHORT, (SQLPOINTER) &update_rule,

 0, &update_ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 11, SQL_C_SHORT, (SQLPOINTER) &delete_rule,

 0, &delete_ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 12, SQL_C_CHAR, (SQLPOINTER) fkey_name.s, 129,

 &fkey_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 13, SQL_C_CHAR, (SQLPOINTER) pkey_name.s, 129,

 &pkey_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 printf("Primary Key and Foreign Keys for %s.%s\n", schema, tablename);

 /* Fetch each row, and display */

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

 printf(" %s %s.%s.%s\n Update Rule ",

 pkcolumn_name.s, fktable_schem.s, fktable_name.s, fkcolumn_name.s);

 if (update_rule == SQL_RESTRICT) {

 printf("RESTRICT "); /* always for IBM DBMSs */

 } else {

 if (update_rule == SQL_CASCADE) {

 printf("CASCADE "); /* non-IBM only */

 } else {

 printf("SET NULL ");

 }

 }

 printf(", Delete Rule: ");

 if (delete_rule== SQL_RESTRICT) {

 printf("RESTRICT "); /* always for IBM DBMSs */

 } else {

 if (delete_rule == SQL_CASCADE) {

 printf("CASCADE "); /* non-IBM only */

 } else {

 if (delete_rule == SQL_NO_ACTION) {

 printf("NO ACTION "); /* non-IBM only */

 } else {

 printf("SET NULL ");

 }

 }

 }

 printf("\n");

 if (pkey_name.ind > 0) {

 printf(" Primary Key Name: %s\n", pkey_name.s);

 }

 if (fkey_name.ind > 0) {

 printf(" Foreign Key Name: %s\n", fkey_name.s);

 }

 }

References

v “SQLPrimaryKeys - Get primary key columns of a table” on page 168

v “SQLStatistics - Get index and statistics information for a base table” on page 209

98 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLFreeConnect - Free connection handle

Purpose

SQLFreeConnect() invalidates and frees the connection handle. All DB2 UDB CLI resources associated

with the connection handle are freed.

SQLDisconnect() must be called before calling this function.

Either SQLFreeEnv() is called next to continue terminating the application, or SQLAllocHandle(), to

allocate a new connection handle.

Syntax

SQLRETURN SQLFreeConnect (SQLHDBC hdbc);

Function arguments

 Table 66. SQLFreeConnect arguments

Data type Argument Use Description

SQLHDBC hdbc Input Connection handle

Usage

If this function is called when a connection still exists, SQL_ERROR is returned, and the connection

handle remains valid.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 67. SQLFreeConnect SQLSTATEs

SQLSTATE Description Explanation

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY010 Function sequence error The function is called before SQLDisconnect() for the

hdbc.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

Example

Refer to the example in SQLAllocEnv().

References

v “SQLDisconnect - Disconnect from a data source” on page 73

v “SQLFreeEnv - Free environment handle” on page 100

SQL call level interface 99

SQLFreeEnv - Free environment handle

Purpose

SQLFreeEnv() invalidates and frees the environment handle. All DB2 UDB CLI resources associated with

the environment handle are freed.

SQLFreeConnect() must be called before calling this function.

This function is the last DB2 UDB CLI step an application needs before terminating.

Syntax

SQLRETURN SQLFreeEnv (SQLHENV henv);

Function arguments

 Table 68. SQLFreeEnv arguments

Data type Argument Use Description

SQLHENV henv Input Environment handle

Usage

If this function is called when there is still a valid connection handle, SQL_ERROR is returned, and the

environment handle remains valid.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 69. SQLFreeEnv SQLSTATEs

SQLSTATE Description Explanation

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY010 Function sequence error There is an hdbc which is in allocated or connected state.

Call SQLDisconnect and SQLFreeConnect for the hdbc

before calling SQLFreeEnv.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

Example

Refer to the example in SQLAllocEnv().

References

“SQLFreeConnect - Free connection handle” on page 99

100 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLFreeHandle - Free a handle

Purpose

SQLFreeHandle() invalidates and frees a handle.

Syntax

SQLRETURN SQLFreeHandle (SQLSMALLINT htype,

 SQLINTEGER handle);

Function arguments

 Table 70. SQLFreeHandle arguments

Data type Argument Use Description

SQLINTEGER handle Input The handle to be freed.

SQLSMALLINT hType Input Handle type that must be

SQL_HANDLE_ENV, SQL_HANDLE_DBC,

SQL_HANDLE_STMT, or

SQL_HANDLE_DESC.

Usage

SQLFreeHandle() combines the function of SQLFreeEnv(), SQLFreeConnect(), and SQLFreeStmt().

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 71. SQLFreeHandle SQLSTATEs

SQLSTATE Description Explanation

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY010 Function sequence error There is an hdbc which is in allocated or connected state.

Call SQLDisconnect and SQLFreeConnect for the hdbc

before calling SQLFreeHandle.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

References

v “SQLFreeConnect - Free connection handle” on page 99

v “SQLFreeEnv - Free environment handle” on page 100

v “SQLFreeStmt - Free (or reset) a statement handle” on page 102

SQL call level interface 101

SQLFreeStmt - Free (or reset) a statement handle

Purpose

SQLFreeStmt() ends processing on the statement referenced by the statement handle. Use this function to:

v Close a cursor

v Reset parameters

v Unbind columns from variables

v Drop the statement handle and free the DB2 UDB CLI resources associated with the statement handle.

SQLFreeStmt() is called after executing an SQL statement and processing the results.

Syntax

SQLRETURN SQLFreeStmt (SQLHSTMT hstmt,

 SQLSMALLINT fOption);

Function arguments

 Table 72. SQLFreeStmt arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle

SQLSMALLINT fOption Input Option specifying the manner of freeing the

statement handle. The option must have one

of the following values:

v SQL_CLOSE

v SQL_DROP

v SQL_UNBIND

v SQL_RESET_PARAMS

Usage

SQLFreeStmt() can be called with the following options:

v SQL_CLOSE

The cursor (if any) associated with the statement handle (hstmt) is closed and all pending results are

discarded. The application can reopen the cursor by calling SQLExecute() with the same or different

values in the application variables (if any) that are bound to hstmt. The cursor name is retained until

the statement handle is dropped or the next successful SQLSetCursorName() call. If no cursor has been

associated with the statement handle, this option has no effect (no warning or error is generated).

v SQL_DROP

DB2 UDB CLI resources associated with the input statement handle are freed, and the handle is

invalidated. The open cursor, if any, is closed and all pending results are discarded.

v SQL_UNBIND

All the columns bound by previous SQLBindCol() calls on this statement handle are released (the

association between application variables or file references and result set columns is broken).

v SQL_RESET_PARAMS

All the parameters set by previous SQLBindParam() calls on this statement handle are released. The

association between application variables or file references and parameter markers in the SQL

statement of the statement handle is broken.

To reuse a statement handle to run a different statement and if the previous statement:

102 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v Was a SELECT, you must close the cursor.

v Used a different number or type of parameters, the parameters must be reset.

v Used a different number or type of column bindings, the columns must be unbound.

Alternatively you can drop the statement handle and allocate a new one.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_IN_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if fOption is set to SQL_DROP, because there is no statement

handle to use when SQLError() is called.

Diagnostics

 Table 73. SQLFreeStmt SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

The value specified for the argument fOption is not

SQL_CLOSE, SQL_DROP, SQL_UNBIND, or

SQL_RESET_PARAMS.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

Example

Refer to the SQLFetch() “” on page 88.

References

v “SQLAllocStmt - Allocate a statement handle” on page 27

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLFetch - Fetch next row” on page 87

v “SQLFreeConnect - Free connection handle” on page 99

v “SQLSetParam - Set parameter” on page 200

SQLGetCol - Retrieve one column of a row of the result set

Purpose

SQLGetCol() retrieves data for a single column in the current row of the result set. This is an alternative

to SQLBindCol(), which transfers data directly into application variables on a call to SQLFetch().

SQLGetCol() is also used to retrieve large character based data in pieces.

SQLFetch() must be called before SQLGetCol().

SQL call level interface 103

After calling SQLGetCol() for each column, SQLFetch() is called to retrieve the next row.

Syntax

SQLRETURN SQLGetCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLSMALLINT fCType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER *pcbValue);

Function arguments

 Table 74. SQLGetCol arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLINTEGER * pcbValue Output Pointer to the value that indicates the

number of bytes DB2 UDB CLI has available

to return in the rgbValue buffer. If the data is

being retrieved in pieces, this contains the

number of bytes still remaining, excluding

any bytes of the column’s data that has been

obtained from previous calls to SQLGetCol().

The value is SQL_NULL_DATA if the data

value of the column is null. If this pointer is

NULL and SQLFetch() has obtained a

column containing null data, then this

function fails because it has no means of

reporting this.

If SQLFetch() has fetched a column

containing graphic data, then the pointer to

pcbValue must not be NULL or this function

fails because it has no means of informing

the application about the length of the data

retrieved in the rgbValue buffer.

SQLINTEGER cbValueMax Input Maximum size of the buffer pointed to by

rgbValue. If fcType is either SQL_DECIMAL or

SQL_NUMERIC, cbValueMax must be a

precision and scale. The method to specify

both values is to use (precision * 256) +

scale. This is also the value returned as the

LENGTH of these data types when using

SQLColAttributes().

SQLPOINTER rgbValue Output Pointer to buffer where the retrieved column

data is to be stored.

104 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 74. SQLGetCol arguments (continued)

Data type Argument Use Description

SQLSMALLINT fCType Input Application data type of the column

identified by icol. The following types are

supported:

v SQL_BIGINT

v SQL_BINARY

v SQL_BLOB

v SQL_CHAR

v SQL_CLOB

v SQL_DATETIME

v SQL_DBCLOB

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_NUMERIC

v SQL_REAL

v SQL_SMALLINT

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

SQLSMALLINT icol Input Column number for which the data retrieval

is requested.

Usage

SQLGetCol() can be used with SQLBindCol() for the same row, as long as the value of icol does not specify

a column that has been bound. The general steps are:

1. SQLFetch() - advances cursor to first row, retrieves first row, transfers data for bound columns.

2. SQLGetCol() - transfers data for specified (unbound) column.

3. Repeat step 2 for each column needed.

4. SQLFetch() - advances cursor to next row, retrieves next row, transfers data for bound columns.

5. Repeat steps 2, 3 and 4 for each row in the result set, or until the result set is no longer needed.

SQLGetCol() retrieves long columns if the C data type (fCType) is SQL_CHAR or if fCType is

SQL_DEFAULT and the column type is CHAR or VARCHAR.

On each SQLGetCol() call, if the data available for return is greater than or equal to cbValueMax,

truncation occurs. A function return code of SQL_SUCCESS_WITH_INFO that is coupled with an

SQLSTATE that denotes data truncation indicates truncation. The application can call SQLGetCol() again,

with the same icol value, to obtain later data from the same unbound column starting at the point of

truncation. To obtain the entire column, the application repeats such calls until the function returns

SQL_SUCCESS. The next call to SQLGetCol() returns SQL_NO_DATA_FOUND.

SQL call level interface 105

To discard the column data part way through the retrieval, the application can call SQLGetCol() with icol

set to the next column position of interest. To discard unretrieved data for the entire row, the application

should call SQLFetch() to advance the cursor to the next row; or, if it is not interested in any more data

from the result set, call SQLFreeStmt() to close the cursor.

The fCType input argument determines the type of data conversion (if any) needed before the column

data is placed into the storage area pointed to by rgbValue.

The contents returned in rgbValue is always null-terminated unless SQLSetEnvAttr() is used to change

the SQL_ATTR_OUTPUT_NTS attribute or if the application is retrieving the data in multiple chunks. If

the application is retrieving the data in multiple chunks, the null-terminating byte is only added to the

last portion of data.

Truncation of numeric data types is not reported if the truncation involves digits to the right of the

decimal point. If truncation occurs to the left of the decimal point, an error is returned (refer to the

diagnostics section).

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned when the preceding SQLGetCol() call has retrieved all of the data

for this column.

SQL_SUCCESS is returned if a zero-length string is retrieved by SQLGetCol(). If this is the case, pcbValue

contains 0, and rgbValue contains a null terminator.

If the preceding call to SQLFetch() fails, SQLGetCol() should not be called because the result is undefined.

Diagnostics

 Table 75. SQLGetCol SQLSTATEs

SQLSTATE Description Explanation

07006 Restricted data type

attribute violation

The data value cannot be converted to the C data type

specified by the argument fCType.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

The value of the argument cbValueMax is less than 1 and

the argument fCType is SQL_CHAR.

The specified column number is not valid.

The argument rgbValue or pcbValue is a null pointer.

HY010 Function sequence error The specified hstmt is not in a cursor positioned state.

The function is called without first calling SQLFetch().

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

106 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 75. SQLGetCol SQLSTATEs (continued)

SQLSTATE Description Explanation

HYC00 Driver not capable The SQL data type for the specified data type is

recognized but not supported by the driver.

The requested conversion from the SQL data type to the

application data fCType cannot be performed by the

driver or the data source.

Restrictions

ODBC requires that icol not specify a column of a lower number than the column last retrieved by

SQLGetCol() for the same row on the same statement handle. ODBC also does not permit the use of

SQLGetCol() to retrieve data for a column that resides before the last bound column, (if any columns in

the row have been bound).

DB2 UDB CLI has relaxed both of these rules by allowing the value of icol to be specified in any order

and before a bound column, provided that icol does not specify a bound column.

Example

Refer to the example in the “SQLFetch - Fetch next row” on page 87 for a comparison between using

bound columns and using SQLGetCol().

Refer to “Example: Interactive SQL and the equivalent DB2 UDB CLI function calls” on page 253 for a

listing of the check_error, initialize, and terminate functions used in the following example.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/***

** file = getcol.c

**

** Example of directly executing an SQL statement.

** Getcol is used to retrieve information from the result set.

** Compare to fetch.c

**

** Functions used:

**

** SQLAllocConnect SQLFreeConnect

** SQLAllocEnv SQLFreeEnv

** SQLAllocStmt SQLFreeStmt

** SQLConnect SQLDisconnect

**

** SQLBindCol SQLFetch

** SQLTransact SQLError

** SQLExecDirect SQLGetCursor

**/

#include <stdio.h>

#include <string.h>

#include "sqlcli.h"

#define MAX_STMT_LEN 255

int initialize(SQLHENV *henv,

 SQLHDBC *hdbc);

int terminate(SQLHENV henv,

 SQLHDBC hdbc);

SQL call level interface 107

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt);

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc);

/***

** main

** - initialize

** - terminate

***/

int main()

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLCHAR sqlstmt[MAX_STMT_LEN + 1]="";

 SQLRETURN rc;

 rc = initialize(&henv, &hdbc);

 if (rc != SQL_SUCCESS) return(terminate(henv, hdbc));

 {SQLHSTMT hstmt;

 SQLCHAR sqlstmt[]="SELECT deptname, location from org where division = ’Eastern’";

 SQLCHAR deptname[15],

 location[14];

 SQLINTEGER rlength;

 rc = SQLAllocStmt(hdbc, &hstmt);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 printf("Departments in Eastern division:\n");

 printf("DEPTNAME Location\n");

 printf("-------------- -------------\n");

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

 {

 rc = SQLGetCol(hstmt, 1, SQL_CHAR, (SQLPOINTER) deptname, 15, &rlength);

 rc = SQLGetCol(hstmt, 2, SQL_CHAR, (SQLPOINTER) location, 14, &rlength);

 printf("%-14.14s %-13.13s \n", deptname, location);

 }

 if (rc != SQL_NO_DATA_FOUND)

 check_error (henv, hdbc, hstmt, rc);

 }

 rc = SQLTransact(henv, hdbc, SQL_COMMIT);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 terminate(henv, hdbc);

 return (SQL_SUCCESS);

}/* end main */

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLFetch - Fetch next row” on page 87

108 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLGetConnectAttr - Get the value of a connection attribute

Purpose

SQLGetConnectAttr() returns the current settings for the specified connection option.

These options are set using the SQLSetConnectAttr() function.

Syntax

SQLRETURN SQLGetConnectAttr(SQLHDBC hdbc,

 SQLINTEGER fAttr,

 SQLPOINTER pvParam),;

 SQLINTEGER bLen,

 SQLINTEGER *sLen);

Function arguments

 Table 76. SQLGetConnectAttr arguments

Data type Argument Use Description

SQLHDBC hdbc Input Connection handle.

SQLINTEGER * sLen Output Length of the output data, if the attribute is

a character string; otherwise, unused.

SQLINTEGER bLen Input Maximum number of bytes to store in

pvParm, if the value is a character string;

otherwise, unused.

SQLINTEGER fAttr Input Attribute to retrieve. See

“SQLSetConnectAttr - Set a connection

attribute” on page 183 for a description of

the connect options.

SQLPOINTER pvParam Output Value associated with fAttr Depending on

the value of fAttr. This can be a 32-bit

integer value, or a pointer to a null

terminated character string.

Usage

If SQLGetConnectAttr() is called, and the specified fAttr has not been set through SQLSetConnectAttr and

does not have a default, then SQLGetConnectAttr() returns SQL_NO_DATA_FOUND.

Statement options settings cannot be retrieved through SQLGetConnectAttr().

Diagnostics

 Table 77. SQLGetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

08003 Connection not open An fAttr value that requires an open connection is

specified .

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Attribute type out of range An fAttr value that is not valid is specified.

The argument pvParam is a null pointer.

HYC00 Driver not capable The fAttr argument is recognized, but is not supported.

SQL call level interface 109

SQLGetConnectOption - Return current setting of a connect Option

Purpose

SQLGetConnectOption() has been deprecated and replaced with SQLGetConnectAttr(). Although this

version of DB2 UDB CLI continues to support SQLGetConnectOption(), it is recommended that you begin

using SQLGetConnectAttr() in your DB2 UDB CLI programs so that they conform to the latest standards.

SQLGetConnectOption() returns the current settings for the specified connection option.

These options are set using the SQLSetConnectOption() function.

Syntax

SQLRETURN SQLGetConnectOption(HDBC hdbc,

 SQLSMALLINT fOption,

 SQLPOINTER pvParam);

Function arguments

 Table 78. SQLGetConnectOption arguments

Data type argument Use Description

HDBC hdbc Input Connection handle.

SQLPOINTER pvParam Output Value associated with fOption Depending on the value of

fOption, this can be a 32-bit integer value, or a pointer to

a null terminated character string. The maximum length

of any character string returned is

SQL_MAX_OPTION_STRING_LENGTH bytes (excluding

the null-terminating byte).

SQLSMALLINT fOption Input Option to retrieve. Refer to Table 146 on page 184 for

more information.

Usage

SQLGetConnectOption() provides the same function as SQLGetConnectAttr(), both functions are supported

for compatibility reasons.

If SQLGetConnectOption() is called, and the specified fOption has not been set through

SQLSetConnectOption and does not have a default, then SQLGetConnectOption() returns

SQL_NO_DATA_FOUND.

Statement options settings cannot be retrieved through SQLGetConnectOption().

Diagnostics

 Table 79. SQLGetConnectOption SQLSTATEs

SQLSTATE Description Explanation

08003 Connection not open An fOption value that requires an open connection is

specified .

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

110 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|
|
|

Table 79. SQLGetConnectOption SQLSTATEs (continued)

SQLSTATE Description Explanation

HY009 Option type out of range An fOption value that is not valid is specified.

The argument pvParam is a null pointer.

HYC00 Driver not capable The fOption argument is recognized, but is not

supported.

SQLGetCursorName - Get cursor name

Purpose

SQLGetCursorName() returns the cursor name associated with the input statement handle. If a cursor name

is explicitly set by calling SQLSetCursorName(), this name is returned; otherwise, an implicitly generated

name is returned.

Syntax

SQLRETURN SQLGetCursorName (SQLHSTMT hstmt,

 SQLCHAR *szCursor,

 SQLSMALLINT cbCursorMax,

 SQLSMALLINT *pcbCursor);

Function arguments

 Table 80. SQLGetCursorName arguments

Data type Argument Use Description

SQLCHAR * szCursor Output Cursor name

SQLHSTMT hstmt Input Statement handle

SQLSMALLINT * pcbCursor Output Amount of bytes available to return for

szCursor

SQLSMALLINT cbCursorMax Input Length of buffer szCursor

Usage

SQLGetCursorName() returns a cursor name if a name is set using SQLSetCursorName() or if a SELECT

statement is processed on the statement handle. If neither of these is true, then calling SQLGetCusorName()

results in an error.

If a name is set explicitly using SQLSetCursorName(), this name is returned until the statement is dropped,

or until another explicit name is set.

If an explicit name is not set, an implicit name is generated when a SELECT statement is processed, and

this name is returned. Implicit cursor names always begin with SQLCUR.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

SQL call level interface 111

Diagnostics

 Table 81. SQLGetCursorName SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated The cursor name returned in szCursor is longer than the

value in cbCursorMax, and is truncated to cbCursorMax -

1 bytes. The argument pcbCursor contains the length of

the full cursor name available for return. The function

returns SQL_SUCCESS_WITH_INFO.

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

The argument szCursor or pcbCursor is a null pointer.

The value specified for the argument cbCursorMax is less

than 1.

HY010 Function sequence error The statement hstmt is not in execute state. Call

SQLExecute(), SQLExecDirect() or SQLSetCursorName()

before calling SQLGetCursorName().

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HY015 No cursor name available. There is no open cursor on the hstmt and no cursor name

has been set with SQLSetCursorName(). The statement

associated with hstmt does not support the use of a

cursor.

Restrictions

ODBC’s generated cursor names start with SQL_CUR and X/Open CLI generated cursor names begin

with SQLCUR. DB2 UDB CLI uses SQLCUR.

Example

Refer to “Example: Interactive SQL and the equivalent DB2 UDB CLI function calls” on page 253 for a

listing of the check_error, initialize, and terminate functions used in the following example.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/***

** file = getcurs.c

**

** Example of directly executing a SELECT and positioned UPDATE SQL statement.

** Two statement handles are used, and SQLGetCursor is used to retrieve the

** generated cursor name.

**

** Functions used:

**

** SQLAllocConnect SQLFreeConnect

** SQLAllocEnv SQLFreeEnv

** SQLAllocStmt SQLFreeStmt

** SQLConnect SQLDisconnect

**

** SQLBindCol SQLFetch

** SQLTransact SQLError

112 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

** SQLExecDirect SQLGetCursorName

**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "sqlcli.h"

#define MAX_STMT_LEN 255

int initialize(SQLHENV *henv,

 SQLHDBC *hdbc);

int terminate(SQLHENV henv,

 SQLHDBC hdbc);

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt);

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc);

/***

** main

** - initialize

** - terminate

***/

int main()

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLRETURN rc,

 rc2;

 rc = initialize(&henv, &hdbc);

 if (rc != SQL_SUCCESS) return(terminate(henv, hdbc));

 {SQLHSTMT hstmt1,

 hstmt2;

 SQLCHAR sqlstmt[]="SELECT name, job from staff for update of job";

 SQLCHAR updstmt[MAX_STMT_LEN + 1];

 SQLCHAR name[10],

 job[6],

 newjob[6],

 cursor[19];

 SQLINTEGER rlength, attr;

 SQLSMALLINT clength;

 rc = SQLAllocStmt(hdbc, &hstmt1);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 /* make sure the statement is update-capable */

 attr = SQL_FALSE;

 rc = SQLSetStmtAttr(hstmt1,SQL_ATTR_FOR_FETCH_ONLY, &attr, 0);

 /* allocate second statement handle for update statement */

 rc2 = SQLAllocStmt(hdbc, &hstmt2);

 if (rc2 != SQL_SUCCESS)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 rc = SQLExecDirect(hstmt1, sqlstmt, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt1, rc);

SQL call level interface 113

/* Get Cursor of the SELECT statement’s handle */

 rc = SQLGetCursorName(hstmt1, cursor, 19, &clength);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt1, rc);

 /* bind name to first column in the result set */

 rc = SQLBindCol(hstmt1, 1, SQL_CHAR, (SQLPOINTER) name, 10,

 &rlength);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt1, rc);

 /* bind job to second column in the result set */

 rc = SQLBindCol(hstmt1, 2, SQL_CHAR, (SQLPOINTER) job, 6,

 &rlength);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt1, rc);

 printf("Job Change for all clerks\n");

 while ((rc = SQLFetch(hstmt1)) == SQL_SUCCESS)

 {

 printf("Name: %-9.9s Job: %-5.5s \n", name, job);

 printf("Enter new job or return to continue\n");

 gets(newjob);

 if (newjob[0] != ’\0’)

 {

 sprintf(updstmt,

 "UPDATE staff set job = ’%s’ where current of %s",

 newjob, cursor);

 rc2 = SQLExecDirect(hstmt2, updstmt, SQL_NTS);

 if (rc2 != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt2, rc);

 }

 }

 if (rc != SQL_NO_DATA_FOUND)

 check_error (henv, hdbc, hstmt1, rc);

 SQLFreeStmt(hstmt1, SQL_CLOSE);

 }

 printf("Commiting Transaction\n");

 rc = SQLTransact(henv, hdbc, SQL_COMMIT);

 if (rc != SQL_NO_DATA_FOUND)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 terminate(henv, hdbc);

 return (0);

}/* end main */

References

v “SQLExecute - Execute a statement” on page 83

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLSetCursorName - Set cursor name” on page 192

SQLGetData - Get data from a column

Purpose

SQLGetData() retrieves data for a single column in the current row of the result set. This is an alternative

to SQLBindCol(), which transfers data directly into application variables on a call to SQLFetch().

SQLGetData() can also be used to retrieve large character based data in pieces.

114 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLFetch() must be called before SQLGetData().

After calling SQLGetData() for each column, SQLFetch() is called to retrieve the next row.

SQLGetData() is identical to SQLGetCol(), both functions are supported for compatibility reasons.

Syntax

SQLRETURN SQLGetData (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLSMALLINT fCType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER *pcbValue);

Note: Refer to “SQLGetCol - Retrieve one column of a row of the result set” on page 103 for a

description of the applicable sections.

SQLGetDescField - Get descriptor field

Purpose

SQLGetDescField() obtains a value from a descriptor. SQLGetDescField() is a more extensible alternative

to the SQLGetDescRec() function.

This function is similar to that of SQLDescribeCol() but SQLGetDescField() can retrieve data from

parameter descriptors as well as row descriptors.

Syntax

SQLRETURN SQLGetDescField (SQLHDESC hdesc,

 SQLSMALLINT irec,

 SQLSMALLINT fDescType,

 SQLPOINTER rgbDesc,

 SQLINTEGER bLen,

 SQLINTEGER *sLen);

Function arguments

 Table 82. SQLGetDescField arguments

Data type Argument Use Description

SQLHDESC hdesc Input Descriptor handle.

SQLSMALLINT irec Input The number of records in the descriptor

matches the number of columns in the result

set for a row descriptor, or the number of

parameters in a parameter descriptor.

SQLSMALLINT fDescType Input See Table 83 on page 116.

SQLPOINTER rgbDesc Output Pointer to buffer.

SQLINTEGER bLen Input Length of descriptor buffer (rgbDesc).

SQLINTEGER * sLen Output Actual number of bytes in the descriptor to

return. If this argument contains a value

equal to or higher than the length rgbDesc

buffer, truncation occurs.

SQL call level interface 115

Table 83. fDescType descriptor types

Descriptor Type Description

SQL_DESC_ALLOC_TYPE SMALLINT Either SQL_DESC_ALLOC_USER if

the application explicitly allocated

the descriptor, or

SQL_DESC_ALLOC_AUTO if the

implementation automatically

allocated the descriptor.

SQL_DESC_COUNT SMALLINT The number of records in the

descriptor is returned in rgbDesc.

SQL_DESC_DATA_PTR SQLPOINTER Retrieve the data pointer field for

irec.

SQL_DESC_DATETIME_INTERVAL_CODE SMALLINT Retrieve the interval code for records

with a type of SQL_DATETIME. The

interval code further defines the

SQL_DATETIME data type. The code

values are SQL_CODE_DATE,

SQL_CODE_TIME, and

SQL_CODE_TIMESTAMP.

SQL_DESC_INDICATOR_PTR SQLPOINTER Retrieve the indicator pointer field

for irec.

SQL_DESC_LENGTH_PTR SQLPOINTER Retrieve the length pointer field for

irec.

SQL_DESC_LENGTH INTEGER Retrieve the LENGTH field of irec.

SQL_DESC_NAME CHAR(128) Retrieve the NAME field of irec.

SQL_DESC_NULLABLE SMALLINT If irec can contain nulls, then

SQL_NULLABLE is returned in

rgbDesc. Otherwise,

SQL_NO_NULLS is returned in

rgbDesc.

SQL_DESC_PRECISION SMALLINT Retrieve the PRECISION field of irec.

SQL_DESC_SCALE SMALLINT Retrieve the SCALE field of irec.

SQL_DESC_TYPE SMALLINT Retrieve the TYPE field of irec.

SQL_DESC_UNNAMED SMALLINT This is SQL_NAMED if the NAME

field is an actual name, or

SQL_UNNAMED if the NAME field

is an implementation-generated

name.

Usage

The number of records in the descriptor corresponds to the number of columns in the result set, if the

descriptor is row descriptor, or the number of parameters, for a parameter descriptor.

Calling SQLGetDescField() with fDescType set to SQL_DESC_COUNT is an alternative to calling

SQLNumResultCols() to determine whether any columns can be returned.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

116 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

Diagnostics

 Table 84. SQLGetDescField SQLSTATEs

SQLSTATE Description Explanation

HY009 Argument value that is not

valid

The value specified for the argument fDescType or irec is

not valid.

The argument rgbDesc or sLen is a null pointer.

HY013 * Memory management

problem

The driver is unable to access the memory required to

support the processing or completion of the function.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLDescribeCol - Describe column attributes” on page 68

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExecute - Execute a statement” on page 83

v “SQLPrepare - Prepare a statement” on page 164

SQLGetDescRec - Get descriptor record

Purpose

SQLGetDescRec() obtains an entire record from a descriptor. SQLGetDescRec() is a more concise alternative

to the SQLGetDescField() function.

Syntax

SQLRETURN SQLGetDescRec (SQLHDESC hdesc,

 SQLSMALLINT irec,

 SQLCHAR *rgbDesc,

 SQLSMALLINT cbDescMax,

 SQLSMALLINT *pcbDesc,

 SQLSMALLINT *type,

 SQLSMALLINT *subtype,

 SQLINTEGER *length,

 SQLSMALLINT *prec,

 SQLSMALLINT *scale,

 SQLSMALLINT *nullable);

Function arguments

 Table 85. SQLGetDescRec arguments

Data type Argument Use Description

SQLCHAR * rgbDesc Output NAME field for the record.

SQLHDESC hdesc Input Descriptor handle.

SQLINTEGER * length Output LENGTH field for the record.

SQLSMALLINT * nullable Output NULLABLE field for the record.

SQL call level interface 117

|
|
|
|

Table 85. SQLGetDescRec arguments (continued)

Data type Argument Use Description

SQLSMALLINT * pcbDesc Output Total length of the output data.

SQLSMALLINT * prec Output PRECISION field for the record.

SQLSMALLINT * scale Output SCALE field for the record.

SQLSMALLINT * subtype Output DATETIME_INTERVAL_CODE, for records

whose TYPE is SQL_DATETIME.

SQLSMALLINT * type Output TYPE field for the record.

SQLSMALLINT cbDescMax Input Maximum number of bytes to store in

rgbDesc.

SQLSMALLINT irec Input The number of records in the descriptor

matches the number of columns in the result

set for a row descriptor, or the number of

parameters in a parameter descriptor.

Usage

Calling SQLGetDescRec() retrieves all the data from a descriptor record in one call. It might still be

necessary to call SQLGetDescField() with SQL_DESC_COUNT to determine the number of records in the

descriptor.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

Diagnostics

 Table 86. SQLGetDescRec SQLSTATEs

SQLSTATE Description Explanation

HY009 Argument value that is not

valid

The value specified for the argument irec is not valid.

The argument rgbDesc, pcbDesc, type, subtype, length, prec,

scale or nullable is a null pointer.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLDescribeCol - Describe column attributes” on page 68

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExecute - Execute a statement” on page 83

v “SQLPrepare - Prepare a statement” on page 164

118 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

||
|
|
|

SQLGetDiagField - Return diagnostic information (extensible)

Purpose

SQLGetDiagField() returns the diagnostic information associated with the most recently called DB2 UDB

CLI function for a particular statement, connection or environment handle.

The information consists of a standardized SQLSTATE, an error code, and a text message.

Call SQLGetDiagField() after receiving a return code of SQL_ERROR or SQL_SUCCESS_WITH_INFO

from another function call.

Note: Some database servers might provide product-specific diagnostic information after returning

SQL_NO_DATA_FOUND from the processing of a statement.

Syntax

SQLRETURN SQLGetDiagField (SQLSMALLINT htype,

 SQLINTEGER handle,

 SQLSMALLINT recNum,

 SQLSMALLINT diagId,

 SQLPOINTER diagInfo,

 SQLSMALLINT bLen,

 SQLSMALLINT *sLen);

Function arguments

 Table 87. SQLDiagField arguments

Data type Argument Use Description

SQLSMALLINT hType Input Handle type.

SQLINTEGER handle Input Handle for which the diagnostic information

is wanted.

SQLSMALLINT recNum Input If there are multiple errors, this indicates

which one should be retrieved. If header

information is requested, this must be 0. The

first error record is number 1.

SQLSMALLINT diagId Input See Table 88.

SQLPOINTER diagInfo Output Buffer for diagnostic information.

SQLSMALLINT bLen Input Length of diagInfo, if requested data is a

character string; otherwise, unused.

SQLSMALLINT * sLen Output Length of complete diagnostic information, If

the requested data is a character string;

otherwise, unused.

 Table 88. DiagId types

Descriptor Type Description

SQL_DIAG_MESSAGE_TEXT CHAR(254) The implementation-defined message

text relating to the diagnostic record.

SQL_DIAG_NATIVE INTEGER The implementation-defined error code

relating to the diagnostic record.

Portable applications should not base

their behavior on this value.

SQL_DIAG_NUMBER INTEGER The number of diagnostic records

available for the specified handle.

SQL call level interface 119

Table 88. DiagId types (continued)

Descriptor Type Description

SQL_DIAG_RETURNCODE SMALLINT Return code of the underlying function.

Can be SQL_SUCCESS,

SQL_SUCCESS_WITH_INFO,

SQL_NO_DATA_FOUND, or

SQL_ERROR.

SQL_DIAG_ROW_COUNT INTEGER The number of rows for the specified

handle, if the handle is a statement

handle.

SQL_DIAG_SERVER_NAME CHAR(128) The server name that the diagnostic

record relates to, as it is supplied on

the SQLConnect() statement that

establishes the connection.

SQL_DIAG_SQLSTATE CHAR(5) The 5-character SQLSTATE code

relating to the diagnostic record. The

SQLSTATE code provides a portable

diagnostic indication.

Usage

The SQLSTATEs are those defined by the X/OPEN SQL CAE and the X/Open SQL CLI snapshot,

augmented with SQLSTATE values.

If diagnostic information generated by one DB2 UDB CLI function is not retrieved before a function other

than SQLGetDiagField() is called with the same handle, the information for the previous function call is

lost. This is true whether diagnostic information is generated for the second DB2 UDB CLI function call.

Multiple diagnostic messages might be available after a given DB2 UDB CLI function call. These

messages can be retrieved one at a time by repeatedly calling SQLGetDiagField(). For each message

retrieved, SQLGetDiagField() returns SQL_SUCCESS and removes it from the list of messages available.

When there are no more messages to retrieve, SQL_NO_DATA_FOUND is returned.

Diagnostic information stored under a given handle is cleared when a call is made to SQLGetDiagField()

with that handle, or when another DB2 UDB CLI function call is made with that handle. However,

information associated with a given handle type is not cleared by a call to SQLGetDiagField() with an

associated but different handle type. For example, a call to SQLGetDiagField() with a connection handle

input does not clear errors associated with any statement handles under that connection.

SQL_SUCCESS is returned even if the buffer for the error message (szDiagFieldMsg) is too short. This is

because the application is not able to retrieve the same error message by calling SQLGetDiagField() again.

The actual length of the message text is returned in the pcbDiagFieldMsg.

To avoid truncation of the error message, declare a buffer length of SQL_MAX_MESSAGE_LENGTH + 1.

The message text is never longer than this.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

120 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQL_NO_DATA_FOUND is returned if no diagnostic information is available for the input handle, or if

all of the messages have been retrieved through calls to SQLGetDiagField().

SQL_ERROR is returned if the argument diagInfo or sLen is a null pointer.

Diagnostics

SQLSTATEs are not defined, because SQLGetDiagField() does not generate diagnostic information for

itself.

Restrictions

Although ODBC also returns X/Open SQL CAE SQLSTATEs, only DB2 UDB CLI returns the additional

IBM defined SQLSTATEs. The ODBC Driver Manager also returns SQLSTATE values in addition to the

standard ones. For more information about ODBC specific SQLSTATEs refer to Microsoft ODBC

Programmer’s Reference.

Because of this, you should only build dependencies on the standard SQLSTATEs. This means any

branching logic in the application should only rely on the standard SQLSTATEs. The augmented

SQLSTATEs are most useful for debugging purposes.

 Related concepts

 “Diagnostics in a DB2 UDB CLI application” on page 14

This topic deals with warning or error conditions generated within an application.

SQLGetDiagRec - Return diagnostic information (concise)

Purpose

SQLGetDiagRec() returns the diagnostic information associated with the most recently called DB2 UDB

CLI function for a particular statement, connection, or environment handle.

The information consists of a standardized SQLSTATE, the error code, and a text message. Refer to

“Diagnostics in a DB2 UDB CLI application” on page 14 for more information.

Call SQLGetDiagRec() after receiving a return code of SQL_ERROR or SQL_SUCCESS_WITH_INFO from

another function call.

Note: Some database servers might provide product-specific diagnostic information after returning

SQL_NO_DATA_FOUND from the processing of a statement.

Syntax

SQLRETURN SQLGetDiagRec (SQLSMALLINT hType,

 SQLINTEGER handle,

 SQLSMALLINT recNum,

 SQLCHAR *szSqlState,

 SQLINTEGER *pfNativeError,

 SQLCHAR *szErrorMsg,

 SQLSMALLINT cbErrorMsgMax,

 SQLSMALLINT *pcbErrorMsg);

SQL call level interface 121

Function arguments

 Table 89. SQLGetDiagRec arguments

Data type Argument Use Description

SQLCHAR * szErrorMsg Output Pointer to buffer to contain the

implementation defined message text. In DB2

UDB CLI, only the DBMS generated

messages are returned; DB2 UDB CLI itself

does not return any message text describing

the problem.

SQLCHAR * szSqlState Output SQLSTATE as a string of 5 characters

terminated by a null character. The first 2

characters indicate error class; the next 3

indicate subclass. The values correspond

directly to SQLSTATE values defined in the

X/Open SQL CAE specification and the

ODBC specification, augmented with IBM

specific and product specific SQLSTATE

values.

SQLINTEGER * pfNativeError Output Error code. In DB2 UDB CLI, the

pfNativeError argument contains the

SQLCODE value returned by the Database

Management System (DBMS). If the error is

generated by DB2 UDB CLI and not the

DBMS, then this field is set to -99999.

SQLINTEGER handle Input Handle for which the diagnostic information

is wanted.

SQLSMALLINT * pcbErrorMsg Output Pointer to total number of bytes available to

return to the szErrorMsg buffer. This does not

include the null termination character.

SQLSMALLINT cbErrorMsgMax Input Maximum (that is, the allocated) length of

the buffer szErrorMsg. The recommended

length to allocate is

SQL_MAX_MESSAGE_LENGTH + 1.

SQLSMALLINT hType Input Handle type.

SQLSMALLINT recNum Input If there are multiple errors, this indicates

which one should be retrieved. If header

information is requested, this must be 0. The

first error record is number 1.

Usage

The SQLSTATEs are those defined by the X/OPEN SQL CAE and the X/Open SQL CLI snapshot,

augmented with IBM specific and product specific SQLSTATE values.

If diagnostic information generated by one DB2 UDB CLI function is not retrieved before a function other

than SQLGetDiagRec() is called with the same handle, the information for the previous function call is

lost. This is true whether diagnostic information is generated for the second DB2 UDB CLI function call.

Multiple diagnostic messages might be available after a given DB2 UDB CLI function call. These

messages can be retrieved one at a time by repeatedly calling SQLGetDiagRec(). For each message

retrieved, SQLGetDiagRec() returns SQL_SUCCESS and removes it from the list of messages available.

When there are no more messages to retrieve, SQL_NO_DATA_FOUND is returned, the SQLSTATE is set

to ″00000″, pfNativeError is set to 0, and pcbErrorMsg and szErrorMsg are undefined.

122 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Diagnostic information stored under a given handle is cleared when a call is made to SQLGetDiagRec()

with that handle, or when another DB2 UDB CLI function call is made with that handle. However,

information associated with a given handle type is not cleared by a call to SQLGetDiagRec() with an

associated but different handle type. For example, a call to SQLGetDiagRec() with a connection handle

input does not clear errors associated with any statement handles under that connection.

SQL_SUCCESS is returned even if the buffer for the error message (szErrorMsg) is too short, because the

application is not able to retrieve the same error message by calling SQLGetDiagRec() again. The actual

length of the message text is returned in the pcbErrorMsg.

To avoid truncation of the error message, declare a buffer length of SQL_MAX_MESSAGE_LENGTH + 1.

The message text is never be longer than this.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if no diagnostic information is available for the input handle, or if

all of the messages have been retrieved through calls to SQLGetDiagRec().

SQL_ERROR is returned if the argument szSqlState, pfNativeError, szErrorMsg , or pcbErrorMsg is a

null pointer.

Diagnostics

SQLSTATEs are not defined because SQLGetDiagRec() does not generate diagnostic information for itself.

Restrictions

Although ODBC also returns X/Open SQL CAE SQLSTATEs, only DB2 UDB CLI returns the additional

IBM defined SQLSTATEs. The ODBC Driver Manager also returns SQLSTATE values in addition to the

standard ones. For more information about ODBC specific SQLSTATEs refer to Microsoft ODBC

Programmer’s Reference.

Because of this, you should only build dependencies on the standard SQLSTATEs. This means any

branching logic in the application should only rely on the standard SQLSTATEs. The augmented

SQLSTATEs are most useful for debugging purposes.

References

v “SQLGetDiagField - Return diagnostic information (extensible)” on page 119

SQLGetEnvAttr - Return current setting of an environment Attribute

Purpose

SQLGetEnvAttr() returns the current settings for the specified environment attribute.

These options are set using the SQLSetEnvAttr() function.

SQL call level interface 123

Syntax

SQLRETURN SQLGetEnvAttr (SQLHENV henv,

 SQLINTEGER Attribute,

 SQLPOINTER Value,

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLength);

Function arguments

 Table 90. SQLGetEnvAttr arguments

Data type Argument Use Description

SQLHENV henv Input Environment handle.

SQLINTEGER * StringLength Output Length in bytes of the output data if the

attribute value is a character string;

otherwise, unused.

SQLINTEGER Attribute Input Attribute to retrieve. Refer to Table 158 on

page 197 for more information.

SQLINTEGER BufferLength Input Maximum size of buffer pointed to by Value,

if the attribute value is a character string;

otherwise, unused.

SQLPOINTER Value Output Current value associated with Attribute. The

type of the value returned depends on

Attribute.

If Attribute does not denote a string, then DB2 UDB CLI ignores BufferLength and does not set

StringLength.

Usage

SQLGetEnvAttr() can be called at any time between the allocation and freeing of the environment handle.

It obtains the current value of the environment attribute.

Diagnostics

 Table 91. SQLGetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Attribute out of range An Attribute value that is not valid is specified.

The argument Value or StringLength is a null pointer.

SQLGetFunctions - Get functions

Purpose

SQLGetFunctions() queries whether a specific function is supported. This allows applications to adapt to

varying levels of support when using different drivers.

SQLConnect() must be called, and a connection to the data source (database server) must exist before

calling this function.

124 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Syntax

SQLRETURN SQLGetFunctions (SQLHDBC hdbc,

 SQLSMALLINT fFunction,

 SQLSMALLINT *pfSupported);

Function arguments

 Table 92. SQLGetFunctions arguments

Data type Argument Use Description

SQLHDBC hdbc Input Database connection handle.

SQLSMALLINT * pfSupported Output Pointer to location where this function

returns SQL_TRUE or SQL_FALSE

depending on whether the function being

queried is supported.

SQLSMALLINT fFunction Input Function being queried.

Usage

The following list shows the valid for the fFunction argument and whether the corresponding function is

supported. Note that the values marked with an asterisk are not supported when connected to a remote

server.

SQL_API_ALLOCCONNECT = TRUE

SQL_API_ALLOCENV = TRUE

SQL_API_ALLOCHANDLE = TRUE

SQL_API_ALLOCSTMT = TRUE

SQL_API_BINDCOL = TRUE

SQL_API_BINDFILETOCOL = TRUE

SQL_API_BINDFILETOPARAM = TRUE

SQL_API_BINDPARAM = TRUE

SQL_API_BINDPARAMETER = TRUE

SQL_API_CANCEL = TRUE

SQL_API_CLOSECURSOR = TRUE

SQL_API_COLATTRIBUTES = TRUE

SQL_API_COLUMNS = TRUE

SQL_API_CONNECT = TRUE

SQL_API_COPYDESC = TRUE

SQL_API_DATASOURCES = TRUE

SQL_API_DESCRIBECOL = TRUE

SQL_API_DESCRIBEPARAM = TRUE

SQL_API_DISCONNECT = TRUE

SQL_API_DRIVERCONNECT = TRUE

SQL_API_ENDTRAN = TRUE

SQL_API_ERROR = TRUE

SQL_API_EXECDIRECT = TRUE

SQL_API_EXECUTE = TRUE

SQL_API_EXTENDEDFETCH = TRUE

SQL_API_FETCH = TRUE

SQL_API_FOREIGNKEYS = TRUE

SQL_API_FREECONNECT = TRUE

SQL_API_FREEENV = TRUE

SQL_API_FREEHANDLE = TRUE

SQL_API_FREESTMT = TRUE

SQL_API_GETCOL = TRUE

SQL_API_GETCONNECTATTR = TRUE

SQL_API_GETCONNECTOPTION = TRUE

SQL_API_GETCURSORNAME = TRUE

SQL_API_GETDATA = TRUE

SQL_API_GETDESCFIELD = TRUE

SQL_API_GETDESCREC = TRUE

SQL_API_GETDIAGFIELD = TRUE

SQL_API_GETDIAGREC = TRUE

SQL call level interface 125

SQL_API_GETENVATTR = TRUE

SQL_API_GETFUNCTIONS = TRUE

SQL_API_GETINFO = TRUE

SQL_API_GETLENGTH = TRUE

SQL_API_GETPOSITION = TRUE

SQL_API_GETSTMTATTR = TRUE

SQL_API_GETSTMTOPTION = TRUE

SQL_API_GETSUBSTRING = TRUE

SQL_API_GETTYPEINFO = TRUE

SQL_API_LANGUAGES = TRUE

SQL_API_MORERESULTS = TRUE

SQL_API_NATIVESQL = TRUE

SQL_API_NUMPARAMS = TRUE

SQL_API_NUMRESULTCOLS = TRUE

SQL_API_PARAMDATA = TRUE

SQL_API_PARAMOPTIONS = TRUE

SQL_API_PREPARE = TRUE

SQL_API_PRIMARYKEYS = TRUE

SQL_API_PROCEDURECOLUMNS = TRUE

SQL_API_PROCEDURES = TRUE

SQL_API_PUTDATA = TRUE

SQL_API_RELEASEENV = TRUE

SQL_API_ROWCOUNT = TRUE

SQL_API_SETCONNECTATTR = TRUE

SQL_API_COLATTRIBUTES = TRUE

SQL_API_COLUMNS = TRUE

SQL_API_CONNECT = TRUE

SQL_API_COPYDESC = TRUE

SQL_API_DATASOURCES = TRUE

SQL_API_DESCRIBECOL = TRUE

SQL_API_DESCRIBEPARAM = TRUE

SQL_API_DISCONNECT = TRUE

SQL_API_DRIVERCONNECT = TRUE

SQL_API_ENDTRAN = TRUE

SQL_API_ERROR = TRUE

SQL_API_EXECDIRECT = TRUE

SQL_API_EXECUTE = TRUE

SQL_API_EXTENDEDFETCH = TRUE

SQL_API_FETCH = TRUE

SQL_API_FOREIGNKEYS = TRUE

SQL_API_FREECONNECT = TRUE

SQL_API_FREEENV = TRUE

SQL_API_FREEHANDLE = TRUE

SQL_API_FREESTMT = TRUE

SQL_API_GETCOL = TRUE

SQL_API_GETCONNECTATTR = TRUE

SQL_API_GETCONNECTOPTION = TRUE

SQL_API_GETCURSORNAME = TRUE

SQL_API_GETDATA = TRUE

SQL_API_GETDESCFIELD = TRUE

SQL_API_GETDESCREC = TRUE

SQL_API_GETDIAGFIELD = TRUE

SQL_API_GETDIAGREC = TRUE

SQL_API_GETENVATTR = TRUE

SQL_API_GETFUNCTIONS = TRUE

SQL_API_GETINFO = TRUE

SQL_API_GETLENGTH = TRUE

SQL_API_GETPOSITION = TRUE

SQL_API_GETSTMTATTR = TRUE

SQL_API_GETSTMTOPTION = TRUE

SQL_API_GETSUBSTRING = TRUE

SQL_API_GETTYPEINFO = TRUE

SQL_API_LANGUAGES = TRUE

SQL_API_MORERESULTS = TRUE

SQL_API_NATIVESQL = TRUE

SQL_API_NUMPARAMS = TRUE

SQL_API_NUMRESULTCOLS = TRUE

126 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQL_API_PARAMDATA = TRUE

SQL_API_PARAMOPTIONS = TRUE

SQL_API_PREPARE = TRUE

SQL_API_PRIMARYKEYS = TRUE

SQL_API_PROCEDURECOLUMNS = TRUE

SQL_API_PROCEDURES = TRUE

SQL_API_PUTDATA = TRUE

SQL_API_RELEASEENV = TRUE

SQL_API_ROWCOUNT = TRUE

SQL_API_SETCONNECTATTR = TRUE

SQL_API_SETCONNECTOPTION = TRUE

SQL_API_SETCURSORNAME = TRUE

SQL_API_SETDESCFIELD = TRUE

SQL_API_SETDESCREC = TRUE

SQL_API_SETENVATTR = TRUE

SQL_API_SETPARAM = TRUE

SQL_API_SETSTMTATTR = TRUE

SQL_API_SETSTMTOPTION = TRUE

SQL_API_SPECIALCOLUMNS = TRUE *

SQL_API_STATISTICS = TRUE *

SQL_API_TABLES = TRUE

SQL_API_TRANSACT = TRUE

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 93. SQLGetFunctions SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid.

The argument pfSupported is a null pointer.

HY010 Function sequence error.

Connection handles must

not be allocated yet.

SQLGetFunctions is called before SQLConnect.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

SQLGetInfo - Get general information

Purpose

SQLGetInfo() returns general information (including supported data conversions) about the Database

Management System (DBMS) that the application is currently connected to.

SQL call level interface 127

Syntax

SQLRETURN SQLGetInfo (SQLHDBC hdbc,

 SQLSMALLINT fInfoType,

 SQLPOINTER rgbInfoValue,

 SQLSMALLINT cbInfoValueMax,

 SQLSMALLINT *pcbInfoValue);

Function arguments

 Table 94. SQLGetInfo arguments

Data type Argument Use Description

SQLHDBC hdbc Input Database connection handle.

SQLSMALLINT fInfoType Input Type of the required information.

SQLPOINTER rgbInfoValue Output (also

input)

Pointer to buffer where this function stores

the required information. Depending on the

type of information being retrieved, four

types of information can be returned:

v 16-bit integer value

v 32-bit integer value

v 32-bit binary value

v Null-terminated character string

SQLSMALLINT cbInfoValueMax Input The maximum length of the buffer pointed

by rgbInfoValue pointer.

SQLSMALLINT * pcbInfoValue Output Pointer to location where this function

returns the total number of bytes available to

return the required information.

If the value in the location pointed to by

pcbInfoValue is greater than the size of the

rgbInfoValue buffer as specified in

cbInfoValueMax, then the string output

information is truncated to cbInfoValueMax - 1

bytes and the function returns with

SQL_SUCCESS_WITH_INFO.

Usage

Table 95 lists the possible values of fInfoType and a description of the information that SQLGetInfo()

returns for that value.

 Table 95. Information returned by SQLGetInfo

fInfoType Format Description and notes

SQL_ACTIVE_CONNECTIONS Short int The maximum number of active connections

supported per application.

Zero is returned, indicating that the limit is

dependent on system resources.

SQL_ACTIVE_STATEMENTS Short int The maximum number of active statements per

connection.

Zero is returned, indicating that the limit is

dependent on system resources.

128 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_AGGREGATE_FUNCTIONS 32-bit mask A bit mask enumerating support for aggregation

functions:

v SQL_AF_ALL

v SQL_AF_AVG

v SQL_AF_COUNT

v SQL_AF_DISTINCT

v SQL_AF_MAX

v SQL_AF_MIN

v SQL_AF_SUM

SQL_CATALOG_NAME String A character string of Y indicates that the server

supports catalog names. N indicates that catalog

names are not supported.

SQL_COLUMN_ALIAS String Whether the connection supports column aliases.

The value Y is returned if the connection supports

the concept of a column alias.

SQL_CONNECTION_JOB_NAME String When in server mode, this is a character string

that contains the complete job name associated

with the connection. When not in server mode, a

function sequence error is returned.

SQL call level interface 129

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_CONVERT_BIGINT

SQL_CONVERT_BINARY

SQL_CONVERT_BLOB

SQL_CONVERT_CHAR

SQL_CONVERT_CLOB

SQL_CONVERT_DATE

SQL_CONVERT_DBCLOB

SQL_CONVERT_DECIMAL

SQL_CONVERT_DOUBLE

SQL_CONVERT_FLOAT

SQL_CONVERT_INTEGER

SQL_CONVERT_LONGVARBINARY

SQL_CONVERT_LONGVARCHAR

SQL_CONVERT_NUMERIC

SQL_CONVERT_REAL

SQL_CONVERT_SMALLINT

SQL_CONVERT_TIME

SQL_CONVERT_TIMESTAMP

SQL_CONVERT_VARBINARY

SQL_CONVERT_VARCHAR

SQL_CONVERT_WCHAR

SQL_CONVERT_WLONGVARCHAR

SQL_CONVERT_WVARCHAR

32-bit mask Indicates the conversions supported by the data

source with the CONVERT scalar function for

data of the type named in the infoType. If the bit

mask equals zero, the data source does not

support any conversions for the data of the

named type, including conversions to the same

data type.

For example, to find out if a data source supports

the conversion of SQL_INTEGER data to the

SQL_DECIMAL data type, an application calls

SQLGetInfo() with finfoType of

SQL_CONVERT_INTEGER. The application then

ANDs the returned bit mask with

SQL_CVT_DECIMAL. If the resulting value is

nonzero, then the conversion is supported. The

following bit masks are used to determine which

conversions are supported:

v SQL_CONVERT_BLOB

v SQL_CONVERT_CLOB

v SQL_CONVERT_DBCLOB

v SQL_CONVERT_SMALLINT

v SQL_CONVERT_TIME

v SQL_CONVERT_TIMESTAMP

v SQL_CONVERT_VARBINARY

v SQL_CONVERT_VARCHAR

v SQL_CONVERT_WCHAR

v SQL_CONVERT_WLONGVARCHAR

v SQL_CONVERT_WVARCHAR

v SQL_CVT_BIGINT

v SQL_CVT_BINARY

v SQL_CVT_CHAR

v SQL_CVT_DATE

v SQL_CVT_DECIMAL

v SQL_CVT_DOUBLE

v SQL_CVT_FLOAT

v SQL_CVT_INTEGER

v SQL_CVT_LONGVARBINARY

v SQL_CVT_LONGVARCHAR

v SQL_CVT_NUMERIC

v SQL_CVT_REAL

SQL_CONVERT_FUNCTIONS 32 bit mask Indicates the scalar conversion functions

supported by the driver and associated data

source:

v SQL_FN_CVT_CONVERT is used to determine

which conversion functions are supported.

v SQL_FN_CVT_CAST is used to determine

which cast functions are supported.

130 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_CORRELATION_NAME Short int Indicates the degree of correlation name support

by the server:

v SQL_CN_ANY – Correlation name is supported

and can be any valid user-defined name.

v SQL_CN_NONE – Correlation name is not

supported.

v SQL_CN_DIFFERENT – Correlation name is

supported but it must be different from the

name of the table that it represents.

SQL_CURSOR_COMMIT_BEHAVIOR 16-bit integer Indicates how a COMMIT operation affects

cursors:

v SQL_CB_DELETE destroys cursors and drops

access plans for dynamic SQL statements.

v SQL_CB_CLOSE destroys cursors, but retains

access plans for dynamic SQL statements

(including nonquery statements).

v SQL_CB_PRESERVE retains cursors and access

plans for dynamic statements (including

nonquery statements). Applications can

continue to fetch data, or close the cursor and

reprocess the query without preparing the

statement again.

Note: After the COMMIT operation, a FETCH

must be issued to reposition the cursor before

actions such as positioned updates or deletes can

be taken.

SQL_CURSOR_ROLLBACK_BEHAVIOR 16-bit integer Indicates how a ROLLBACK operation affects

cursors:

v SQL_CB_DELETE destroys cursors and drops

access plans for dynamic SQL statements.

v SQL_CB_CLOSE destroys cursors, but retains

access plans for dynamic SQL statements

(including nonquery statements)

v SQL_CB_PRESERVE retains cursors and access

plans for dynamic statements (including

nonquery statements). Applications can

continue to fetch data, or close the cursor and

run the query again without preparing the

statement again.

Note: DB2 servers do not have the

SQL_CB_PRESERVE property.

SQL_DATA_SOURCE_NAME String Name of the connected data source for the

connection handle.

SQL_DATA_SOURCE_READ_ONLY String A character string of Y indicates that the database

is set to READ ONLY mode; an N indicates that it

is not set to READ ONLY mode.

SQL_DATABASE_NAME String Name of the current database in use. This string is

the same as that returned by the SELECT

CURRENT SERVER SQL statement.

SQL call level interface 131

|||
|
|

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_DBMS_NAME String Name of the Database Management System

(DBMS) product being accessed.

For example:

v QSQ for DB2 Universal Database for iSeries

v SQL for DB2 Universal Database for Linux,

UNIX, and Windows

v DSN for DB2 Universal Database for z/OS

SQL_DBMS_VER String Version of the DBMS product accessed.

SQL_DEFAULT_TXN_ISOLATION 32-bit mask The default transaction-isolation level supported.

One of the following masks are returned:

v SQL_TXN_READ_UNCOMMITTED – Changes

are immediately perceived by all transactions

(dirty read, non-repeatable read, and phantoms

are possible).

This is equivalent to UR level.

v SQL_TXN_READ_COMMITTED – Row read by

transaction 1 can be altered and committed by

transaction 2 (non-repeatable read and

phantoms are possible).

This is equivalent to CS level.

v SQL_TXN_REPEATABLE_READ – A

transaction can add or remove rows matching

the search condition or a pending transaction

(repeatable read, but phantoms are possible).

This is equivalent to RS level.

v SQL_TXN_SERIALIZABLE – Data affected by

pending transaction is not available to other

transactions (repeatable read, phantoms are not

possible).

This is equivalent to RR level.

v SQL_TXN_VERSIONING – Not applicable to

IBM DBMSs.

v SQL_TXN_NOCOMMIT – Any changes are

effectively committed at the end of a successful

operation; no explicit commit or rollback

operation is allowed.

This is a DB2 isolation level.

In IBM terminology,

v SQL_TXN_READ_UNCOMMITTED is

uncommitted read.

v SQL_TXN_READ_COMMITTED is cursor

stability.

v SQL_TXN_REPEATABLE_READ is read

stability.

v SQL_TXN_SERIALIZABLE is repeatable read.

SQL_DESCRIBE_PARAMETER String Y if parameters can be described; N if not.

SQL_DRIVER_NAME String File name of the driver used to access the data

source.

132 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_DRIVER_ODBC_VER String The version number of ODBC that the driver

supports. DB2 ODBC returns 2.1.

SQL_GROUP_BY 16-bit integer Indicates the degree of support for the GROUP

BY clause by the server:

v SQL_GB_NO_RELATION – There is no

relationship between the columns in the

GROUP BY and in the SELECT list.

v SQL_GB_NOT_SUPPORTED – GROUP BY not

supported.

v SQL_GB_GROUP_BY_EQUALS_SELECT –

GROUP BY must include all nonaggregated

columns in the select list.

v SQL_GB_GROUP_BY_CONTAINS_SELECT –

GROUP BY clause must contain all

nonaggregated columns in the SELECT list.

SQL_IDENTIFIER_CASE 16-bit integer Indicates case sensitivity of object names (such as

table-name).

v SQL_IC_UPPER – Identifier names are stored in

uppercase in the system catalog.

v SQL_IC_LOWER – Identifier names are stored

in lowercase in the system catalog.

v SQL_IC_SENSITIVE – Identifier names are case

sensitive, and are stored in mixed case in the

system catalog.

v SQL_IC_MIXED – Identifier names are not case

sensitive, and are stored in mixed case in the

system catalog.

Note: Identifier names in IBM DBMSs are not

case sensitive.

SQL_IDENTIFIER_QUOTE_CHAR String Character used as the delimiter of a quoted string.

SQL_KEYWORDS String A character string containing a comma-separated

list of all data source-specific keywords. This is a

list of all reserved keywords. Interoperable

applications should not use these keywords in

object names. This list does not contain keywords

specific to ODBC or keywords used by both the

data source and ODBC.

SQL_LIKE_ESCAPE_CLAUSE String A character string that indicates whether an

escape character is supported for the

metacharacters percent and underscore in a LIKE

predicate.

SQL_MAX_CATALOG_NAME_LEN 16-bit integer The maximum length of a catalog qualifier name;

first part of a three-part table name (in bytes).

SQL_MAX_COLUMN_NAME_LEN Short int The maximum length of a column name.

SQL_MAX_COLUMNS_IN_GROUP_BY Short int The maximum number of columns in a GROUP

BY clause.

SQL_MAX_COLUMNS_IN_INDEX Short int The maximum number of columns in an SQL

index.

SQL_MAX_COLUMNS_IN_ORDER_BY Short int Maximum number of columns in an ORDER BY

clause.

SQL call level interface 133

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_MAX_COLUMNS_IN_SELECT Short int The maximum number of columns in a SELECT

statement.

SQL_MAX_COLUMNS_IN_TABLE Short int The maximum number of columns in an SQL

table.

SQL_MAX_CURSOR_NAME_LEN Short int The maximum length of a cursor name.

SQL_MAX_OWNER_NAME_LEN Short int The maximum length of an owner name.

SQL_MAX_ROW_SIZE 32–bit unsigned

integer

The maximum length in bytes that the server

supports in single row of a base table. It is zero if

there is no limit.

SQL_MAX_SCHEMA_NAME_LEN Int The maximum length of a schema name.

SQL_MAX_STATEMENT_LEN 32–bit unsigned

integer

Indicates the maximum length of an SQL

statement string in bytes, including the number of

white spaces in the statement.

SQL_MAX_TABLE_NAME Short int The maximum length of a table name.

SQL_MAX_TABLES_IN_SELECT Short int The maximum number of tables in a SELECT

statement.

SQL_MULTIPLE_ACTIVE_TXN String The character string Y indicates that active

transactions on multiple connections are allowed.

N indicates that only one connection at a time can

have an active transaction.

SQL_NON_NULLABLE_COLUMNS 16-bit integer Indicates whether non-nullable columns are

supported:

v SQL_NNC_NON_NULL – columns can be

defined as NOT NULL.

v SQL_NNC_NULL – columns cannot be defined

as NOT NULL.

134 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_NUMERIC_FUNCTIONS 32-bit mask The scalar numeric functions supported.

The following bit masks are used to determine

which numeric functions are supported:

v SQL_FN_NUM_ABS

v SQL_FN_NUM_ACOS

v SQL_FN_NUM_ASIN

v SQL_FN_NUM_ATAN

v SQL_FN_NUM_ATAN2

v SQL_FN_NUM_CEILING

v SQL_FN_NUM_COS

v SQL_FN_NUM_COT

v SQL_FN_NUM_DEGREES

v SQL_FN_NUM_EXP

v SQL_FN_NUM_FLOOR

v SQL_FN_NUM_LOG

v SQL_FN_NUM_LOG10

v SQL_FN_NUM_MOD

v SQL_FN_NUM_PI

v SQL_FN_NUM_POWER

v SQL_FN_NUM_RADIANS

v SQL_FN_NUM_RAND

v SQL_FN_NUM_ROUND

v SQL_FN_NUM_SIGN

v SQL_FN_NUM_SIN

v SQL_FN_NUM_SQRT

v SQL_FN_NUM_TAN

v SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE 16-bit integer The level of ODBC conformance:

v SQL_OAC_NONE

v SQL_OAC_LEVEL1

v SQL_OAC_LEVEL2

SQL_ODBC_SQL_CONFORMANCE 16-bit integer A value of:

v SQL_OSC_MINIMUM means minimum ODBC

SQL grammar supported

v SQL_OSC_CORE means core ODBC SQL

grammar supported

v SQL_OSC_EXTENDED means extended ODBC

SQL grammar supported

For the definition of the previous types of ODBC

SQL grammar, see Microsoft ODBC 3.0 Software

Development Kit and Programmer’s Reference.

SQL_ORDER_BY_COLUMNS_IN_SELECT String Set to Y if columns in the ORDER BY clauses

must be in the select list; otherwise set to N.

SQL_OUTER_JOINS String The character string:

v Y indicates that outer joins are supported, and

DB2 ODBC supports the ODBC outer join

request syntax.

v N indicates that it is not supported.

SQL_OWNER_TERM or

SQL_SCHEMA_TERM

String The database vendor terminology for a schema

(owner).

SQL call level interface 135

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_OWNER_USAGE or

SQL_SCHEMA_USAGE

32-bit mask Indicates the type of SQL statements that have

schema (owners) associated with them when these

statements are processed. Schema qualifiers

(owners) are as follows:

v SQL_OU_DML_STATEMENTS is supported in

all DML statements.

v SQL_OU_PROCEDURE_INVOCATION is

supported in the procedure invocation

statement.

v SQL_OU_TABLE_DEFINITION is supported in

all table definition statements.

v SQL_OU_INDEX_DEFINITION is supported in

all index definition statements.

v SQL_OU_PRIVILEGE_DEFINITION is

supported in all privilege definition statements

(that is, grant and revoke statements).

SQL_POSITIONED_STATEMENTS 32-bit mask Indicates the degree of support for positioned

UPDATE and positioned DELETE statements:

v SQL_PS_POSITIONED_DELETE

v SQL_PS_POSITIONED_UPDATE

v SQL_PS_SELECT_FOR_UPDATE, indicates

whether the server requires the FOR UPDATE

clause to be specified on a <query expression>

in order for a column to be updated with the

cursor.

SQL_PROCEDURE_TERM String Data source name for a procedure.

SQL_PROCEDURES String Whether the current server supports SQL

procedures. The value Y is returned if the

connection supports SQL procedures.

SQL_QUALIFIER_LOCATION or

SQL_CATALOG_LOCATION

16-bit integer A 16-bit integer value indicated the position of the

qualifier in a qualified table name. Zero indicates

that qualified names are not supported.

SQL_QUALIFIER_NAME_SEPARATOR or

SQL_CATALOG_NAME_SEPARATOR

String The characters used as a separator between a

catalog name and the qualified name element that

follows it.

SQL_QUALIFIER_TERM or

SQL_CATALOG_TERM

String The database vendor terminology for a qualifier.

This is the name that the vendor uses for the

high-order part of a 3-part name.

Because DB2 ODBC does not support 3-part

names, a zero-length string is returned.

For non-ODBC applications, the

SQL_CATALOG_TERM symbolic name should be

used instead of SQL_QUALIFIER_NAME.

SQL_QUALIFIER_USAGE or

SQL_CATALOG_USAGE

32-bit mask This is similar to SQL_OWNER_USAGE except

that this is used for catalog.

136 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_QUOTED_IDENTIFIER_CASE 16-bit integer v SQL_IC_UPPER – Quoted identifiers in SQL are

case insensitive and stored in uppercase in the

system catalog.

v SQL_IC_LOWER – Quoted identifiers in SQL

are case insensitive and are stored in lowercase

in the system catalog.

v SQL_IC_SENSITIVE – Quoted identifiers

(delimited identifiers) in SQL are case sensitive

and are stored in mixed case in the system

catalog.

v SQL_IC_MIXED – Quoted identifiers in SQL are

case insensitive and are stored in mixed case in

the system catalog.

This should be contrasted with the

SQL_IDENTIFIER_CASE fInfoType, which is used

to determine how (unquoted) identifiers are

stored in the system catalog.

SQL_SEARCH_PATTERN_ESCAPE String Used to specify what the driver supports as an

escape character for catalog functions, such as

SQLTables() and SQLColumns().

SQL_SQL92_PREDICATES 32-bit mask Indicates the predicates supported in a SELECT

statement that SQL-92 defines.

v SQL_SP_BETWEEN

v SQL_SP_COMPARISON

v SQL_SP_EXISTS

v SQL_SP_IN

v SQL_SP_ISNOTNULL

v SQL_SP_ISNULL

v SQL_SP_LIKE

v SQL_SP_MATCH_FULL

v SQL_SP_MATCH_PARTIAL

v SQL_SP_MATCH_UNIQUE_FULL

v SQL_SP_MATCH_UNIQUE_PARTIAL

v SQL_SP_OVERLAPS

v SQL_SP_QUANTIFIED_COMPARISON

v SQL_SP_UNIQUE

SQL_SQL92_VALUE_EXPRESSIONS 32-bit mask Indicates the value expressions supported that

SQL-92 defines.

v SQL_SVE_CASE

v SQL_SVE_CAST

v SQL_SVE_COALESCE

v SQL_SVE_NULLIF

SQL call level interface 137

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_STRING_FUNCTIONS 32-bit bit mask Indicates which string functions are supported.

The following bit masks are used to determine

which string functions are supported:

v SQL_FN_STR_ASCII

v SQL_FN_STR_CHAR

v SQL_FN_STR_CONCAT

v SQL_FN_STR_DIFFERENCE

v SQL_FN_STR_INSERT

v SQL_FN_STR_LCASE

v SQL_FN_STR_LEFT

v SQL_FN_STR_LENGTH

v SQL_FN_STR_LOCATE

v SQL_FN_STR_LOCATE_2

v SQL_FN_STR_LTRIM

v SQL_FN_STR_REPEAT

v SQL_FN_STR_REPLACE

v SQL_FN_STR_RIGHT

v SQL_FN_STR_RTRIM

v SQL_FN_STR_SOUNDEX

v SQL_FN_STR_SPACE

v SQL_FN_STR_SUBSTRING

v SQL_FN_STR_UCASE

If an application can call the LOCATE scalar

function with the string1, string2, and start

arguments, the SQL_FN_STR_LOCATE bit mask

is returned. If an application can only call the

LOCATE scalar function with the string1 and

string2, the SQL_FN_STR_LOCATE_2 bit mask is

returned. If the LOCATE scalar function is fully

supported, both bit masks are returned.

SQL_TIMEDATE_FUNCTIONS 32-bit mask Indicates which time and date functions are

supported.

The following bit masks are used to determine

which date functions are supported:

v SQL_FN_TD_CURDATE

v SQL_FN_TD_CURTIME

v SQL_FN_TD_DAYNAME

v SQL_FN_TD_DAYOFMONTH

v SQL_FN_TD_DAYOFWEEK

v SQL_FN_TD_DAYOFYEAR

v SQL_FN_TD_HOUR

v SQL_FN_TD_JULIAN_DAY

v SQL_FN_TD_MINUTE

v SQL_FN_TD_MONTH

v SQL_FN_TD_MONTHNAME

v SQL_FN_TD_NOW

v SQL_FN_TD_QUARTER

v SQL_FN_TD_SECOND

v SQL_FN_TD_SECONDS_SINCE_MIDNIGHT

v SQL_FN_TD_TIMESTAMPADD

v SQL_FN_TD_TIMESTAMPDIFF

v SQL_FN_TD_WEEK

v SQL_FN_TD_YEAR

138 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 95. Information returned by SQLGetInfo (continued)

fInfoType Format Description and notes

SQL_TXN_CAPABLE Short int Indicates whether transactions can contain DDL or

DML or both:

v SQL_TC_NONE – Transactions are not

supported.

v SQL_TC_DML – Transactions can only contain

DML statements (SELECT, INSERT, UPDATE,

DELETE, and so on). DDL statements (CREATE

TABLE, DROP INDEX, and so on) encountered

in a transaction cause an error.

v SQL_TC_DDL_COMMIT – Transactions can

only contain DML statements. DDL statements

encountered in a transaction cause the

transaction to be committed.

v SQL_TC_DDL_IGNORE – Transactions can only

contain DML statements. DDL statements

encountered in a transaction are ignored.

v SQL_TC_ALL – Transactions can contain DDL

and DML statements in any order.

SQL_USER_NAME String User name used in a particular database.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 96. SQLGetInfo SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated The requested information is returned as a

null-terminated string and its length exceeded the length

of the application buffer as specified in cbInfoValueMax.

The argument pcbInfoValue contains the actual (not

truncated) length of the requested information.

08003 Connection not open The type of information requested in fInfoType requires

an open connection. Only SQL_ODBC_VER does not

require an open connection.

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

The argument rgbInfoValue is a null pointer

An fInfoType that is not valid is specified.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

SQL call level interface 139

|
|
|
|
|

|||

SQLGetLength - Retrieve length of a string value

Purpose

SQLGetLength() is used to retrieve the length of a large object value, referenced by a large object locator

that has been returned from the server (as a result of a fetch, or an SQLGetSubString() call) during the

current transaction.

Syntax

SQLRETURN SQLGetLength (SQLHSTMT StatementHandle,

 SQLSMALLINT LocatorCType,

 SQLINTEGER Locator,

 SQLINTEGER *StringLength,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 97. SQLGetLength arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle. This can be any statement handle

which has been allocated but which does not

currently have a prepared statement assigned to it.

SQLINTEGER * IndicatorValue Output Always set to zero.

SQLINTEGER * StringLength Output The length of the specified locator.1

If the pointer is set to NULL then the SQLSTATE

HY009 is returned.

SQLINTEGER Locator Input Must be set to the LOB locator value.

SQLSMALLINT LocatorCType Input The C type of the source LOB locator.

v SQL_C_BLOB_LOCATOR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

1. This is in bytes even for DBCLOB data.

Usage

SQLGetLength() can be used to determine the length of the data value represented by an LOB locator. It is

used by applications to determine the overall length of the referenced LOB value so that the appropriate

strategy to obtain some or all of the LOB value can be chosen.

The Locator argument can contain any valid LOB locator which has not been explicitly freed using a

FREE LOCATOR statement nor implicitly freed because the transaction during which it is created has

terminated.

The statement handle must not have been associated with any prepared statements or catalog function

calls.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

140 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 98. SQLGetLength SQLSTATEs

SQLSTATE Description Explanation

07006 Conversion that is not valid The combination of the argumentLocatorCType and Locator is not

valid.

0F001 LOB variable that is not valid The value specified for the argument Locator has not been

associated with an LOB locator.

58004 Unexpected system failure Unrecoverable system error.

HY003 Program type out of range The argument LocatorCType is not one of

SQL_C_CLOB_LOCATOR, SQL_C_BLOB_LOCATOR, or

SQL_C_DBCLOB_LOCATOR.

HY009 Argument value that is not valid The argument StringLength or IndicatorValue is a null pointer.

HY010 Function sequence error The specified argument StatementHandle is not in an allocated state.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HYC00 Driver not capable The application is currently connected to a data source that does

not support large objects.

Restrictions

This function is not available when connected to a DB2 server that does not support Large Objects.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLFetch - Fetch next row” on page 87

v “SQLGetPosition - Return starting position of string”

v “SQLGetSubString - Retrieve portion of a string value” on page 146

SQLGetPosition - Return starting position of string

Purpose

SQLGetPosition() is used to return the starting position of one string within an LOB value (the source).

The source value must be an LOB locator, the search string can be an LOB locator or a literal string.

The source and search LOB locators can be any that have been returned from the database from a fetch

or a SQLGetSubString() call during the current transaction.

Syntax

SQLRETURN SQLGetPosition (SQLHSTMT StatementHandle,

 SQLSMALLINT LocatorCType,

 SQLINTEGER SourceLocator,

 SQLINTEGER SearchLocator,

 SQLCHAR *SearchLiteral,

 SQLINTEGER SearchLiteralLength,

 SQLINTEGER FromPosition,

 SQLINTEGER *LocatedAt,

 SQLINTEGER *IndicatorValue);

SQL call level interface 141

Function arguments

 Table 99. SQLGetPosition arguments

Data type Argument Use Description

SQLCHAR * SearchLiteral Input This argument points to the area of storage that

contains the search string literal.

If SearchLiteralLength is 0, this pointer must be

NULL.

SQLHSTMT StatementHandle Input Statement handle. This can be any statement

handle which has been allocated but which does

not currently have a prepared statement assigned

to it.

SQLINTEGER * IndicatorValue Output Always set to zero.

SQLINTEGER * LocatedAt Output For BLOBs and CLOBs, this is the byte position at

which the string is located or, if not located, the

value zero. For DBCLOBs, this is the character

position.

If the length of the source string is zero, the value

1 is returned.

SQLINTEGER FromPosition Input For BLOBs and CLOBs, this is the position of the

first byte within the source string at which the

search is to start. to be returned by the function.

For DBCLOBs, this is the first character. The start

byte or character is numbered 1.

SQLINTEGER SearchLiteralLength Input The length of the string in SearchLiteral(in bytes).1

If this argument value is 0, then the argument

SearchLocator is meaningful.

SQLINTEGER SearchLocator Input If the SearchLiteral pointer is NULL and if

SearchLiteralLength is set to 0, then SearchLocator

must be set to the LOB locator associated with the

search string; otherwise, this argument is ignored.

SQLINTEGER SourceLocator Input SourceLocator must be set to the source LOB

locator.

SQLSMALLINT LocatorCType Input The C type of the source LOB locator. This can be:

v SQL_C_BLOB_LOCATOR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

1. This is in bytes even for DBCLOB data.

Usage

SQLGetPosition() is used in conjunction with SQLGetSubString() in order to obtain any portion of a

string in a random manner. In order to use SQLGetSubString(), the location of the substring within the

overall string must be known in advance. In situations where the start of that substring can be found by

a search string, SQLGetPosition() can be used to obtain the starting position of that substring.

The Locator and SearchLocator (if used) arguments can contain any valid LOB locator which has not been

explicitly freed using a FREE LOCATOR statement or implicitly freed because the transaction during

which it is created has terminated.

The Locator and SearchLocator must have the same LOB locator type.

142 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

The statement handle must not have been associated with any prepared statements or catalog function

calls.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 100. SQLGetPosition SQLSTATEs

SQLSTATE Description Explanation

07006 Conversion that is not valid The combination of the LocatorCType argument and either of the

LOB locator values is not valid.

0F001 LOB variable that is not valid The value specified for argument Locator or SearchLocator is not

currently an LOB locator.

42818 Length that is not valid The length of the pattern is too long.

58004 Unexpected system failure Unrecoverable system error.

HY009 Argument value that is not valid The argument LocatedAt or IndicatorValue is a null pointer.

The argument value for FromPosition is not greater than 0.

LocatorCType is not one of SQL_C_CLOB_LOCATOR,

SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY010 Function sequence error The specified StatementHandle argument is not in an allocated state.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HY090 String or buffer length that is not

valid

The value of SearchLiteralLength is less than 1, and not SQL_NTS.

HYC00 Driver not capable The application is currently connected to a data source that does

not support large objects.

Restrictions

This function is not available when connected to a DB2 server that does not support Large Objects.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLExtendedFetch - Fetch array of rows” on page 85

v “SQLFetch - Fetch next row” on page 87

v “SQLGetLength - Retrieve length of a string value” on page 140

v “SQLGetSubString - Retrieve portion of a string value” on page 146

SQLGetStmtAttr - Get the value of a statement attribute

Purpose

SQLGetStmtAttr() returns the current settings of the specified statement attribute.

SQL call level interface 143

These options are set using the SQLSetStmtAttr() function. This function is similar to

SQLGetStmtOption(), both functions are supported for compatibility reasons.

Syntax

SQLRETURN SQLGetStmtAttr(SQLHSTMT hstmt,

 SQLINTEGER fAttr,

 SQLPOINTER pvParam,

 SQLINTEGER bLen,

 SQLINTEGER *sLen);

Function arguments

 Table 101. SQLGetStmtAttr arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLINTEGER fAttr Input Attribute to retrieve. Refer to Table 102 for more

information.

SQLPOINTER pvParam Output Pointer to buffer for requested attribute.

SQLINTEGER bLen Input Maximum number of bytes to store in pvParam, if

the attribute is a character string; otherwise,

unused.

SQLINTEGER * sLen Output Length of output data if the attribute is a

character string; otherwise, unused.

Usage

 Table 102. Statement attributes

fAttr Data type Contents

SQL_ATTR_APP_PARAM_DESC Integer The descriptor handle used by the application to provide parameter values for this statement

handle.

SQL_ATTR_APP_ROW_DESC Integer The descriptor handle for the application to retrieve row data using the statement handle.

SQL_ATTR_CURSOR_SCROLLABLE Integer A 32-bit integer value that specifies if cursors opened for this statement handle should be

scrollable.

v SQL_FALSE – Cursors are not scrollable, and SQLFetchScroll() cannot be used against them.

This is the default.

v SQL_TRUE – Cursors are scrollable. SQLFetchScroll() can be used to retrieve data from

these cursors.

SQL_ATTR_CURSOR_TYPE Integer A 32-bit integer value that specifies the behavior of cursors opened for this statement handle.

v SQL_CURSOR_FORWARD_ONLY – Cursors are not scrollable, and SQLFetchScroll() cannot

be used against them. This is the default.

v SQL_DYNAMIC – Cursors are scrollable. SQLFetchScroll() can be used to retrieve data from

these cursors.

SQL_ATTR_FOR_FETCH_ONLY Integer Indicates if cursors opened for this statement handle should be read-only.

v SQL_FALSE - Cursors can be used for positioned updates and deletes. This is the default.

v SQL_TRUE - Cursors are read-only and cannot be used for positioned updates or deletes.

SQL_ATTR_IMP_PARAM_DESC Integer The descriptor handle used by the CLI implementation to provide parameter values for this

statement handle.

SQL_ATTR_IMP_ROW_DESC Integer The descriptor handle used by the CLI implementation to retrieve row data using this statement

handle.

SQL_ATTR_ROWSET_SIZE Integer A 32–bit integer value that specifies the number of rows in the rowset. This is the number of

rows returned by each call to SQLExtendedFetch(). The default value is 1.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

144 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v SQL_INVALID_HANDLE

Diagnostics

 Table 103. SQLGetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

The argument pvParam is a null pointer.

An fAttr that is not valid value is specified.

HYC00 Driver not capable DB2 UDB CLI recognizes the option but does not

support it.

SQLGetStmtOption - Return current setting of a statement option

Purpose

SQLGetStmtOption() has been deprecated and replaced with SQLGetStmtAttr(). Although this version of

DB2 UDB CLI continues to support SQLGetStmtOption(), it is recommended that you begin using

SQLGetStmtAttr() in your DB2 UDB CLI programs so that they conform to the latest standards.

SQLGetStmtOption() returns the current settings of the specified statement option.

These options are set using the SQLSetStmtOption() function.

Syntax

SQLRETURN SQLGetStmtOption(SQLHSTMT hstmt,

 SQLSMALLINT fOption,

 SQLPOINTER pvParam);

Function arguments

 Table 104. SQLStmtOption arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Connection handle.

SQLPOINTER pvParam Output Value of the option. Depending on the value of fOption

this can be a 32-bit integer value, or a pointer to a null

terminated character string.

SQLSMALLINT fOption Input Option to retrieve. See Table 102 on page 144 for more

information.

Usage

SQLGetStmtOption() provides the same function as SQLGetStmtAttr(), both functions are supported for

compatibility reasons.

See Table 102 on page 144 for a list of statement options.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

SQL call level interface 145

|
|
|

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 105. SQLStmtOption SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

The argument pvParam is a null pointer.

A fOption that is not valid value is specified.

HYC00 Driver not capable DB2 UDB CLI recognizes the option but does not

support it.

SQLGetSubString - Retrieve portion of a string value

Purpose

SQLGetSubString() is used to retrieve a portion of a large object value, referenced by a large object locator

that has been returned from the server (returned by a fetch or a previous SQLGetSubString() call) during

the current transaction.

Syntax

SQLRETURN SQLGetSubString (

 SQLHSTMT StatementHandle,

 SQLSMALLINT LocatorCType,

 SQLINTEGER SourceLocator,

 SQLINTEGER FromPosition,

 SQLINTEGER ForLength,

 SQLSMALLINT TargetCType,

 SQLPOINTER DataPtr,

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLength,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 106. SQLGetSubString arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement

handle which has been allocated but which

does not currently have a prepared statement

assigned to it.

SQLINTEGER * IndicatorValue output Always set to zero.

SQLINTEGER * StringLength output The length of the returned information in

DataPtr in bytesa if the target C buffer type is

intended for a binary or character string

variable and not a locator value.

If the pointer is set to NULL, nothing is

returned.

SQLINTEGER BufferLength input Maximum size of the buffer pointed to by

DataPtr in bytes.

146 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 106. SQLGetSubString arguments (continued)

Data type Argument Use Description

SQLINTEGER ForLength input This is the length of the string to be returned

by the function. For BLOBs and CLOBs, this is

the length in bytes. For DBCLOBs, this is the

length in characters.

If FromPosition is less than the length of the

source string but FromPosition + ForLength - 1

extends beyond the end of the source string,

the result is padded on the right with the

necessary number of characters (X’00’ for

BLOBs, single byte blank character for CLOBs,

and double byte blank character for

DBCLOBs).

SQLINTEGER FromPosition input For BLOBs and CLOBs, this is the position of

the first byte to be returned by the function.

For DBCLOBs, this is the first character. The

start byte or character is numbered 1.

SQLINTEGER SourceLocator input SourceLocator must be set to the source LOB

locator value.

SQLPOINTER DataPtr output Pointer to the buffer where the retrieved string

value or an LOB locator is to be stored.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This can

be:

v SQL_C_BLOB_LOCATOR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

SQLSMALLINT TargetCType input The C data type of the DataPtr. The target

must be a C string variable (SQL_C_CHAR,

SQL_C_WCHAR, SQL_C_BINARY, or

SQL_C_DBCHAR).

Note: 1. This is in bytes even for DBCLOB data.

Usage

SQLGetSubString() is used to obtain any portion of the string that is represented by the LOB locator.

There are two choices for the target:

v The target can be an appropriate C string variable.

v A new LOB value can be created on the server and the LOB locator for that value can be assigned to a

target application variable on the client.

SQLGetSubString() can be used as an alternative to SQLGetData() for getting data in pieces. In this case a

column is first bound to an LOB locator, which is then used to fetch the LOB as a whole or in pieces.

The Locator argument can contain any valid LOB locator which has not been explicitly freed using a

FREE LOCATOR statement nor implicitly freed because the transaction during which it is created has

terminated.

The statement handle must not have been associated with any prepared statements or catalog function

calls.

SQL call level interface 147

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 107. SQLGetSubString SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated The amount of data to be returned is longer than BufferLength.

Actual length available for return is stored in StringLength.

07006 Conversion that is not valid The value specified for TargetCType is not SQL_C_CHAR,

SQL_C_BINARY, SQL_C_DBCHAR, or an LOB locator.

The value specified for TargetCType is inappropriate for the source

(for example SQL_C_DBCHAR for a BLOB column).

22011 Substring error occurred FromPosition is greater than the length of the source string.

58004 Unexpected system failure Unrecoverable system error.

HY003 Program type out of range LocatorCType is not one of SQL_C_CLOB_LOCATOR,

SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY009 Argument value that is not valid The value specified for FromPosition or ForLength is not a positive

integer.

The argument DataPtr, StringLength, or IndicatorValue is a null

pointer

HY010 Function sequence error The specified StatementHandle is not in an allocated state.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HY090 String or buffer length that is not

valid

The value of BufferLength is less than 0.

HYC00 Driver not capable The application is currently connected to a data source that does

not support large objects.

0F001 No locator currently assigned The value specified for Locator is not currently an LOB locator.

Restrictions

This function is not available when connected to a DB2 server that does not support Large Objects.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLFetch - Fetch next row” on page 87

v “SQLGetData - Get data from a column” on page 114

v “SQLGetLength - Retrieve length of a string value” on page 140

v “SQLGetPosition - Return starting position of string” on page 141

148 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLGetTypeInfo - Get data type information

Purpose

SQLGetTypeInfo() returns information about the data types that are supported by the Database

Management Systems (DBMSs) associated with DB2 UDB CLI. The information is returned in an SQL

result set. The columns can be received using the same functions that are used to process a query.

Syntax

SQLRETURN SQLGetTypeInfo (SQLHSTMT StatementHandle,

 SQLSMALLINT DataType);

Function arguments

 Table 108. SQLGetTypeInfo arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle

SQLSMALLINT DataType Input The SQL data type being queried. The supported

types are:

v SQL_ALL_TYPES

v SQL_BIGINT

v SQL_BINARY

v SQL_BLOB

v SQL_CHAR

v SQL_CLOB

v SQL_DATE

v SQL_DBCLOB

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_NUMERIC

v SQL_REAL

v SQL_SMALLINT

v SQL_TIME

v SQL_TIMESTAMP

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

If SQL_ALL_TYPES is specified, information about

all supported data types is returned in ascending

order by TYPE_NAME. All unsupported data types

are absent from the result set.

Usage

Because SQLGetTypeInfo() generates a result set and is equivalent to executing a query, it generates a

cursor and begins a transaction. To prepare and process another statement on this statement handle, the

cursor must be closed.

SQL call level interface 149

||

||||

||||

||||
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

If SQLGetTypeInfo() is called with a DataType that is not valid, an empty result set is returned.

The columns of the result set that is generated by this function are described below.

Although new columns might be added and the names of the existing columns might be changed in

future releases, the position of the current columns does not change. The data types that are returned are

those that can be used in a CREATE TABLE, ALTER TABLE, DDL statement. Nonpersistent data types

are not part of the returned result set. User-defined data types are not returned either.

 Table 109. Columns returned by SQLGetTypeInfo

Column number/name Data type Description

1 TYPE_NAME VARCHAR(128) NOT NULL Character representation of the SQL data type name

(for example, VARCHAR, DATE, INTEGER)

2 DATA_TYPE SMALLINT NOT NULL SQL data type define values (for example,

SQL_VARCHAR, SQL_DATE, SQL_INTEGER)

3 COLUMN_SIZE INTEGER If the data type is a character or binary string, then

this column contains the maximum length in bytes; if

it is a graphic (DBCS) string, this is the number of

double byte characters for the column.

For date, time, timestamp data types, this is the total

number of characters required to display the value

when converted to character.

For numeric data types, this is the total number of

digits.

4 LITERAL_PREFIX VARCHAR(128) Character that DB2 recognizes as a prefix for a literal

of this data type. This column is null for data types

where a literal prefix is not applicable.

5 LITERAL_SUFFIX VARCHAR(128) Character that DB2 recognizes as a suffix for a literal of

this data type. This column is null for data types

where a literal prefix is not applicable.

6 CREATE_PARAMS VARCHAR(128) The text of this column contains a list of keywords,

separated by commas, corresponding to each

parameter the application might specify in parenthesis

when using the name in the TYPE_NAME column as a

data type in SQL. The keywords in the list can be:

LENGTH, PRECISION, SCALE. They appear in the

order that the SQL syntax requires that they be used.

A NULL indicator is returned if there are no

parameters for the data type definition, (such as

INTEGER).

Note: The intent of CREATE_PARAMS is to enable an

application to customize the interface for a DDL

builder. An application should expect, using this, only

to be able to determine the number of arguments

required to define the data type and to have localized

text that can be used to label an edit control.

7 NULLABLE SMALLINT NOT NULL Indicates whether the data type accepts a NULL value

v Set to SQL_NO_NULLS if NULL values are

disallowed.

v Set to SQL_NULLABLE if NULL values are allowed.

v Set to SQL_NULLABLE_UNKNOWN if it is not

known whether NULL values are allowed or not.

150 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 109. Columns returned by SQLGetTypeInfo (continued)

Column number/name Data type Description

8 CASE_SENSITIVE SMALLINT NOT NULL Indicates whether the data type can be treated as case

sensitive for collation purposes; valid values are

SQL_TRUE and SQL_FALSE.

9 SEARCHABLE SMALLINT NOT NULL Indicates how the data type is used in a WHERE

clause. Valid values are:

v SQL_UNSEARCHABLE – if the data type cannot be

used in a WHERE clause.

v SQL_LIKE_ONLY – if the data type can be used in a

WHERE clause only with the LIKE predicate.

v SQL_ALL_EXCEPT_LIKE – if the data type can be

used in a WHERE clause with all comparison

operators except LIKE.

v SQL_SEARCHABLE – if the data type can be used

in a WHERE clause with any comparison operator.

10 UNSIGNED_ATTRIBUTE SMALLINT Indicates where the data type is unsigned. The valid

values are: SQL_TRUE, SQL_FALSE or NULL. A

NULL indicator is returned if this attribute is not

applicable to the data type.

11 FIXED_PREC_SCALE SMALLINT NOT NULL Contains the value SQL_TRUE if the data type is exact

numeric and always has the same precision and scale;

otherwise, it contains SQL_FALSE.

12 AUTO_INCREMENT SMALLINT Contains SQL_TRUE if a column of this data type is

automatically set to a unique value when a row is

inserted; otherwise, contains SQL_FALSE.

13 LOCAL_TYPE_NAME VARCHAR(128) This column contains any localized name for the data

type that is different from the regular name of the data

type. If there is no localized name, this column is

NULL.

This column is intended for display only. The character

set of the string is locale-dependent and is typically the

default character set of the database.

14 MINIMUM_SCALE INTEGER The minimum scale of the SQL data type. If a data

type has a fixed scale, the MINIMUM_SCALE and

MAXIMUM_SCALE columns both contain the same

value. NULL is returned where scale is not applicable.

15 MAXIMUM_SCALE INTEGER The maximum scale of the SQL data type. NULL is

returned where scale is not applicable. If the maximum

scale is not defined separately in the DBMS, but is

defined instead to be the same as the maximum length

of the column, then this column contains the same

value as the COLUMN_SIZE column.

16 SQL_DATA_TYPE SMALLINT NOT NULL The value of the SQL data type as it appears in the

SQL_DESC_TYPE field of the descriptor. This column

is the same as the DATA_TYPE column (except for

interval and datetime data types which DB2 CLI does

not support).

17 SQL_DATETIME_SUB SMALLINT This field is always NULL (DB2 CLI does not support

interval and datetime data types).

SQL call level interface 151

Table 109. Columns returned by SQLGetTypeInfo (continued)

Column number/name Data type Description

18 NUM_PREC_RADIX INTEGER If the data type is an approximate numeric type, this

column contains the value 2 to indicate that

COLUMN_SIZE specifies a number of bits. For exact

numeric types, this column contains the value 10 to

indicate that COLUMN_SIZE specifies a number of

decimal digits. Otherwise, this column is NULL.

19 INTERVAL_PRECISION SMALLINT This field is always NULL (DB2 CLI does not support

interval data types).

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 110. SQLGetTypeInfo SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid A cursor is already opened on the statement handle.

StatementHandle has not been closed.

40003 08S01 Communication link failure The communication link between the application and data source

fails before the function is completed.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY004 SQL data type out of range A DataType that is not valid is specified.

HY010 Function sequence error The function is called while in a data-at-processing

(SQLParamData(), SQLPutData()) operation.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HYT00 Timeout expired

Restrictions

The following ODBC specified SQL data types (and their corresponding DataType define values) are not

supported by any IBM RDBMS:

 Data type DataType

TINY INT SQL_TINYINT

BIT SQL_BIT

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/* From CLI sample typeinfo.c */

/* ... */

 rc = SQLGetTypeInfo(hstmt, SQL_ALL_TYPES);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

152 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

||
|
|
|

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) typename.s, 128, &typename.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 2, SQL_C_DEFAULT, (SQLPOINTER) & datatype,

 sizeof(datatype), &datatype_ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 3, SQL_C_DEFAULT, (SQLPOINTER) & precision,

 sizeof(precision), &precision_ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 7, SQL_C_DEFAULT, (SQLPOINTER) & nullable,

 sizeof(nullable), &nullable_ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 8, SQL_C_DEFAULT, (SQLPOINTER) & casesens,

 sizeof(casesens), &casesens_ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 printf("Datatype Datatype Precision Nullable Case\n");

 printf("Typename (int) Sensitive\n");

 printf("------------------------- -------- ---------- -------- ---------\n");

 /* LONG VARCHAR FOR BIT DATA 99 2147483647 FALSE FALSE */

 /* Fetch each row, and display */

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

 printf("%-25s ", typename.s);

 printf("%8d ", datatype);

 printf("%10ld ", precision);

 printf("%-8s ", truefalse[nullable]);

 printf("%-9s\n", truefalse[casesens]);

 } /* endwhile */

 if (rc != SQL_NO_DATA_FOUND)

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLGetInfo - Get general information” on page 127

SQLLanguages - Get SQL dialect or conformance information

Purpose

SQLLanguages() returns SQL dialect or conformance information. The information is returned in an SQL

result set, which can be retrieved using the same functions that are used to fetch a result set generated by

a SELECT statement.

Syntax

SQLRETURN SQLLanguages (SQLHSTMT hstmt);

Function arguments

 Table 111. SQLLanguages arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle

SQL call level interface 153

Usage

The function returns dialect and conformance information, in the form of a result set on StatementHandle.

This contains a row for every conformance claim the SQL product makes (including subsets defined for

ISO and vendor-specific versions). For a product that claims to comply with this specification, the result

set thus contains at least one row.

Rows defining ISO standard and vendor-specific languages can exist in the same table. Each row has at

least these columns and, if it makes an X/Open SQL conformance claim, the columns contains these

values.

 Table 112. Columns returned by SQLLanguages

Column name Data type Description

BINDING_SYTLE VARCHAR(254) Either ’EMBEDDED’, ’DIRECT’, OR ’CLI’.

CONFORMANCE VARCHAR(254) The conformance level to the relevant document that the

implementation claims.

IMPLEMENTATION VARCHAR(254) A character string, defined by the vendor, that uniquely

identifies the vendor’s SQL product.

INTEGRITY VARCHAR(254) An indication of whether the implementation supports

the Integrity Enhancement Feature (IEF).

PROGRAMMING_LANG VARCHAR(254) The host language for which the binding style is

supported.

SOURCE_YEAR VARCHAR(254) The year the relevant source document is approved.

SOURCE VARCHAR(254), NOT

NULL

The organization that defined this SQL version.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 113. SQLLanguages SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid Cursor related information is requested, but no cursor is

open.

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 String or buffer length that

is not valid

The value of one of the name length arguments is less

than 0, but not equal SQL_NTS.

HYC00 Driver not capable DB2 UDB CLI does not support catalog as a qualifier for

table name.

154 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLMoreResults - Determine whether there are more result sets

Purpose

SQLMoreResults() determines whether there is more information available on the statement handle which

has been associated with a stored procedure that is returning result sets.

Syntax

SQLRETURN SQLMoreResults (SQLHSTMT StatementHandle);

Function arguments

 Table 114. SQLMoreResults arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

Usage

This function is used to return multiple results that are set in a sequential manner upon the processing of

a stored procedure that contains SQL queries. The cursors have been left open so that the result sets

remain accessible when the stored procedure has finished processing.

After completely processing the first result set, the application can call SQLMoreResults() to determine if

another result set is available. If the current result set has unfetched rows, SQLMoreResults() discards

them by closing the cursor and, if another result set is available, returns SQL_SUCCESS.

If all the result sets have been processed, SQLMoreResults() returns SQL_NO_DATA_FOUND.

If SQLFreeStmt() is called with the SQL_CLOSE or SQL_DROP option, all pending result sets on this

statement handle are discarded.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

Error conditions

 Table 115. SQLMoreResults SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure The communication link between the application and data source

fails before the function is completed.

58004 Unexpected system failure Unrecoverable system error.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY010 Function sequence error The function is called while in a data-at-processing

(SQLParamData(), SQLPutData()) operation.

SQL call level interface 155

Table 115. SQLMoreResults SQLSTATEs (continued)

SQLSTATE Description Explanation

HY013 Unexpected memory handling

error

DB2 UDB CLI is unable to access memory required to support the

processing or completion of the function.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HYT00 Timeout expired

In addition SQLMoreResults() can return the SQLSTATEs associated with SQLExecute().

Restrictions

The ODBC specification of SQLMoreResults() also allow counts associated with the processing of

parameterized INSERT, UPDATE, and DELETE statements with arrays of input parameter values to be

returned. However, DB2 UDB CLI does not support the return of such count information.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLBindParameter - Bind a parameter marker to a buffer” on page 42

SQLNativeSql - Get native SQL text

Purpose

SQLNativeSql() is used to show how DB2 UDB CLI interprets vendor escape clauses. If the original SQL

string passed in by the application contains vendor escape clause sequences, then DB2 UDB CLI returns

the transformed SQL string that is seen by the data source (with vendor escape clauses either converted

or discarded, as appropriate).

Syntax

SQLRETURN SQLNativeSql (SQLHDBC ConnectionHandle,

 SQLCHAR *InStatementText,

 SQLINTEGER TextLength1,

 SQLCHAR *OutStatementText,

 SQLINTEGER BufferLength,

 SQLINTEGER *TextLength2Ptr);

Function arguments

 Table 116. SQLNativeSql arguments

Data type Argument Use Description

SQLCHAR * InStatementText Input Input SQL string.

SQLCHAR * OutStatementText Output Pointer to buffer for the transformed output

string.

SQLHDBC ConnectionHandle Input Connection handle.

SQLINTEGER * TextLength2Ptr Output The total number of bytes available to return

in OutStatementText. If the number of bytes

available to return is greater than or equal to

BufferLength, the output SQL string in

OutStatementText is truncated to BufferLength -

1 bytes. The value SQL_NULL_DATA is

returned if no output string is generated.

SQLINTEGER BufferLength Input Size of buffer pointed by OutStatementText.

156 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 116. SQLNativeSql arguments (continued)

Data type Argument Use Description

SQLINTEGER TextLength1 Input Length of InStatementText.

Usage

This function is called when the application wants to examine or display the transformed SQL string that

is passed to the data source by DB2 UDB CLI. Translation (mapping) only occurs if the input SQL

statement string contains vendor escape clause sequences.

There are no vendor escape sequences on iSeries; this procedure is provided for compatibility purposes.

Also, note that this procedure can be used to evaluate an SQL string for syntax errors.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 117. SQLNativeSql SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated The buffer OutStatementText is not large enough to contain the

entire SQL string, so truncation occurred. The argument

TextLength2Ptr contains the total length of the untruncated SQL

string. (Function returns with SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed The ConnectionHandle does not reference an open database

connection.

37000 SQL syntax that is not valid The input SQL string in InStatementText contained a syntax error.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY009 Argument value that is not valid The argument InStatementText, OutStatementText, or TextLength2Ptr

is a null pointer.

HY090 String or buffer length that is not

valid

The argument TextLength1 is less than 0, but not equal to

SQL_NTS.

The argument BufferLength is less than 0.

Restrictions

None.

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/* From CLI sample native.c */

/* ... */

 SQLCHAR in_stmt[1024], out_stmt[1024] ;

 SQLSMALLINT pcPar ;

 SQLINTEGER indicator ;

SQL call level interface 157

/* ... */

 /* Prompt for a statement to prepare */

 printf("Enter an SQL statement: \n");

 gets((char *)in_stmt);

 /* prepare the statement */

 rc = SQLPrepare(hstmt, in_stmt, SQL_NTS);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 SQLNumParams(hstmt, &pcPar);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 SQLNativeSql(hstmt, in_stmt, SQL_NTS, out_stmt, 1024, &indicator);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 if (indicator == SQL_NULL_DATA) printf("Invalid statement\n") ;

 else {

 printf("Input Statement: \n %s \n", in_stmt) ;

 printf("Output Statement: \n %s \n", in_stmt) ;

 printf("Number of Parameter Markers = %d\n", pcPar) ;

 }

 rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt) ;

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

References

None.

SQLNextResult - Process the next result set

Purpose

SQLNextResult() determines whether there is more information available on the statement handle that

has been associated with a stored procedure that is returning result sets.

Syntax

SQLRETURN SQLNextResult (SQLHSTMT StatementHandle,

 SQLHSTMT NextResultHandle);

Function arguments

 Table 118. SQLNextResult arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLHSTMT NextResultHandle Input Statement handle for next result set.

Usage

This function is used to associate the next result set from StatementHandle with NextResultHandle. This

differs from SQLMoreResults() because it allows both statement handles to process their result sets

simultaneously.

If all the result sets have been processed, SQLNextResult() returns SQL_NO_DATA_FOUND.

If SQLFreeStmt() is called with the SQL_CLOSE or SQL_DROP option, all pending result sets on this

statement handle are discarded.

158 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

Error conditions

 Table 119. SQLNextResult SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure The communication link between the application and data source

fails before the function is completed.

58004 Unexpected system failure Unrecoverable system error.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY010 Function sequence error The function is called while in a data-at-processing

(SQLParamData(), SQLPutData()) operation.

HY013 Unexpected memory handling

error

DB2 UDB CLI is unable to access memory required to support the

processing or completion of the function.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HYT00 Timeout expired

References

v “SQLMoreResults - Determine whether there are more result sets” on page 155

SQLNumParams - Get number of parameters in an SQL statement

Purpose

SQLNumParams() returns the number of parameter markers in an SQL statement.

Syntax

SQLRETURN SQLNumParams (SQLHSTMT StatementHandle,

 SQLSMALLINT *ParameterCountPtr);

Function arguments

 Table 120. SQLNumParams arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT * ParameterCountPtr Output Number of parameters in the statement.

Usage

This function can only be called after the statement that is associated with StatementHandle has been

prepared. If the statement does not contain any parameter markers, ParameterCountPtr is set to 0.

An application can call this function to determine how many SQLBindParameter() calls are necessary for

the SQL statement associated with the statement handle.

SQL call level interface 159

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 121. SQLNumParams SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure The communication link between the application and data source

fails before the function is completed.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY008 Operation canceled

HY009 Argument value that is not valid ParameterCountPtr is null.

HY010 Function sequence error This function is called before SQLPrepare() is called for the

specified StatementHandle

The function is called while in a data-at-processing

(SQLParamData(), SQLPutData()) operation.

HY013 Unexpected memory handling

error

DB2 UDB CLI is unable to access memory required to support the

processing or completion of the function.

HYT00 Timeout expired

Restrictions

None.

Example

Refer to the SQLNativeSql() “” on page 157.

References

v “SQLBindParam - Bind a buffer to a parameter marker” on page 38

v “SQLPrepare - Prepare a statement” on page 164

SQLNumResultCols - Get number of result columns

Purpose

SQLNumResultCols() returns the number of columns in the result set associated with the input statement

handle.

SQLPrepare() or SQLExecDirect() must be called before calling this function.

After calling this function, you can call SQLDescribeCol(), SQLColAttributes(), SQLBindCol() or

SQLGetData().

160 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Syntax

SQLRETURN SQLNumResultCols (SQLHSTMT hstmt,

 SQLSMALLINT *pccol);

Function arguments

 Table 122. SQLNumResultCols arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLSMALLINT * pccol Output Number of columns in the result set.

Usage

The function sets the output argument to zero if the last statement processed on the input statement

handle is not a SELECT.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 123. SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

pcbCol is a null pointer.

HY010 Function sequence error The function is called before calling SQLPrepare or

SQLExecDirect for the hstmt.

S1013 * Memory management

problem.

The driver is unable to access memory required to

support the processing or completion of the function.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLColAttributes - Obtain column attributes” on page 52

v “SQLDescribeCol - Describe column attributes” on page 68

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLGetCol - Retrieve one column of a row of the result set” on page 103

v “SQLPrepare - Prepare a statement” on page 164
 Related concepts

 “Process UPDATE, DELETE, and INSERT statements in a DB2 UDB CLI application” on page 13

SQL call level interface 161

SQLParamData - Get next parameter for which a data value is needed

Purpose

SQLParamData() is used with SQLPutData() to send long data in pieces. It can also be used to send fixed

length data.

Syntax

SQLRETURN SQLParamData (SQLHSTMT hstmt,

 SQLPOINTER *prgbValue);

Function arguments

 Table 124. SQLParamData arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLPOINTER * prgbValue Output Pointer to the value of the rgbValue

argument specified on the SQLSetParam

call.

Usage

SQLParamData() returns SQL_NEED_DATA if there is at least one SQL_DATA_AT_EXEC parameter for

which data still has not been assigned. This function returns an application defined value in prgbValue

supplied by the application during the previous SQLBindParam() call. SQLPutData() is called one or more

times to send the parameter data. SQLParamData() is called to signal that all the data has been sent for the

current parameter and to advance to the next SQL_DATA_AT_EXEC parameter. SQL_SUCCESS is

returned when all the parameters have been assigned data values and the associated statement has been

processed successfully. If any errors occur during or before actual statement processing, SQL_ERROR is

returned.

If SQLParamData() returns SQL_NEED_DATA, then only SQLPutData() or SQLCancel() calls can be made.

All other function calls using this statement handle fail. In addition, all function calls referencing the

parent hdbc of hstmt fail if they involve changing any attribute or state of that connection. Those

following function calls on the parent hdbc are also not permitted:

v SQLAllocConnect()

v SQLAllocHandle()

v SQLAllocStmt()

v SQLSetConnectOption()

Should they be called during an SQL_NEED_DATA sequence, these functions return SQL_ERROR with

SQLSTATE of HY010 and the processing of the SQL_DATA_AT_EXEC parameters is not affected.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NEED_DATA

162 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Diagnostics

SQLParamData() can return any SQLSTATE returned by the SQLExecDirect() and SQLExecute() functions.

In addition, the following diagnostics can also be generated:

 Table 125. SQLParamData SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

The argument prgbValue is a null pointer.

HY010 Function sequence error SQLParamData() is called out of sequence. This call is

only valid after an SQLExecDirect() or an SQLExecute(),

or after an SQLPutData() call.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

HYDE0 No data at processing

values pending

Even though this function is called after an

SQLExecDirect() or an SQLExecute() call, there are no

SQL_DATA_AT_EXEC parameters (remaining) to

process.

SQLParamOptions - Specify an input array for a parameter

Purpose

SQLParamOptions() provides the ability to set multiple values for each parameter set by

SQLBindParameter(). This allows the application to insert multiple rows into a table on a single call to

SQLExecute() or SQLExecDirect().

Syntax

SQLRETURN SQLParamOptions (SQLHSTMT StatementHandle,

 SQLINTEGER Crow,

 SQLINTEGER *FetchOffsetPtr);

Function arguments

 Table 126. SQLParamOptions arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLINTEGER Crow Input Number of values for each parameter. If this is

greater than 1, then the rgbValue argument in

SQLBindParameter() points to an array of

parameter values, and pcbValue points to an

array of lengths.

SQLINTEGER * FetchOffsetPtr Output

(deferred)

Not currently used.

Usage

This function can be used with SQLBindParameter() to set up a multiple-row INSERT statement. In order

to accomplish this, the application must allocate storage for all of the data being inserted. This data must

be organized in a row-wise fashion. This means that all of the data for the first row is contiguous,

followed by all the data for the next row, and so on. The SQLBindParameter() function should be used to

SQL call level interface 163

bind all of the input parameter types and lengths. In the case of a multiple-row INSERT statement, the

addresses provided on SQLBindParameter() are used to reference the first row of data. All subsequent

rows of data are referenced by incrementing those addresses by the length of the entire row.

For instance, the application intends to insert 100 rows of data into a table, and each row contains a

4-byte integer value, followed by a 10-byte character value. To do this, the application allocates 1400 bytes

of storage, and fills each 14-byte piece of storage with the appropriate data for the row.

Also, the indicator pointer passed on the SQLBindParameter() must reference an 800-byte piece of storage.

This is used to pass in any null indicator values. This storage is also row-wise, so the first 8 bytes are the

2 indicators for the first row, followed by the 2 indicators for the next row, and so on. The

SQLParamOptions() function is used by the application to specify how many rows are inserted on the next

processing of an INSERT statement using the statement handle. The INSERT statement must be of the

multiple-row form. For example:

 INSERT INTO CORPDATA.NAMES ? ROWS VALUES(?, ?)

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 127. SQLParamOptions SQLSTATEs

SQLSTATE Description Explanation

HY009 Argument value that is not valid The value in the argument Crow is less than 1.

HY010 Function sequence error The function is called while in a data-at-processing

(SQLParamData(), SQLPutData()) operation.

Restrictions

None.

References

v “SQLBindParam - Bind a buffer to a parameter marker” on page 38

v “SQLMoreResults - Determine whether there are more result sets” on page 155

SQLPrepare - Prepare a statement

Purpose

SQLPrepare() associates an SQL statement with the input statement handle and sends the statement to

the DBMS to be prepared. The application can reference this prepared statement by passing the statement

handle to other functions.

If the statement handle has been used with a SELECT statement, SQLFreeStmt() must be called to close

the cursor, before calling SQLPrepare().

Syntax

SQLRETURN SQLPrepare (SQLHSTMT hstmt,

 SQLCHAR *szSqlStr,

 SQLINTEGER cbSqlStr);

164 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Function arguments

 Table 128. SQLPrepare arguments

Data type Argument Use Description

SQLCHAR * szSqlStr Input SQL statement string.

SQLHSTMT hstmt Input Statement handle. There must not be an

open cursor associated with hstmt.

SQLINTEGER cbSqlStr Input Length of contents of szSqlStr argument.

This must be set to either the exact length of

the SQL statement in szSqlstr, or to SQL_NTS

if the statement text is null-terminated.

Usage

As soon as a statement has been prepared using SQLPrepare(), the application can request information

about the format of the result set (if it is a SELECT statement) by calling:

v SQLNumResultCols()

v SQLDescribeCol()

v SQLColAttributes()

A prepared statement can be processed once, or multiple times by calling SQLExecute(). The SQL

statement remains associated with the statement handle until the handle is used with another

SQLPrepare(), SQLExecDirect(), SQLColumns(), SQLSpecialColumns(), SQLStatistics(), or SQLTables().

The SQL statement string might contain parameter markers. A parameter marker is represented by a ″?″

character, and indicates a position in the statement where the value of an application variable is to be

substituted, when SQLExecute() is called. SQLBindParam() is used to bind (or associate) an application

variable to each parameter marker, and to indicate if any data conversion should be performed at the

time the data is transferred.

The SQL statement cannot be a COMMIT or ROLLBACK. SQLTransact() must be called to issue

COMMIT or ROLLBACK.

If the SQL statement is a positioned DELETE or a Positioned UPDATE, the cursor referenced by the

statement must be defined on a separate statement handle under the same connection handle.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 129. SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid There is an open cursor on the specified hstmt.

SQL call level interface 165

Table 129. SQLPrepare SQLSTATEs (continued)

SQLSTATE Description Explanation

37xxx Syntax error or access

violation

szSqlStr contained one or more of the following

statements:

v A COMMIT

v A ROLLBACK

v An SQL statement that the connected database server

cannot prepare

v A statement containing a syntax error

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

szSqlStr is a null pointer.

The argument cbSqlStr is less than 1, but not equal to

SQL_NTS.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

Note: Not all Database Management Systems (DBMSs) report all of the above diagnostic messages at

prepare time. Therefore an application must also be able to handle these conditions when calling

SQLExecute().

Example

Refer to “Example: Interactive SQL and the equivalent DB2 UDB CLI function calls” on page 253 for a

listing of the check_error, initialize, and terminate functions used in the following example.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/***

** file = prepare.c

**

** Example of preparing then repeatedly executing an SQL statement.

**

** Functions used:

**

** SQLAllocConnect SQLFreeConnect

** SQLAllocEnv SQLFreeEnv

** SQLAllocStmt SQLFreeStmt

** SQLConnect SQLDisconnect

**

** SQLBindCol SQLFetch

** SQLTransact SQLError

** SQLPrepare SQLSetParam

** SQLExecute

**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "sqlcli.h"

#define MAX_STMT_LEN 255

int initialize(SQLHENV *henv,

166 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLHDBC *hdbc);

int terminate(SQLHENV henv,

 SQLHDBC hdbc);

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt);

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN rc);

/***

** main

** - initialize

** - terminate

***/

int main()

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLCHAR sqlstmt[MAX_STMT_LEN + 1]="";

 SQLRETURN rc;

 rc = initialize(&henv, &hdbc);

 if (rc == SQL_ERROR) return(terminate(henv, hdbc));

 {SQLHSTMT hstmt;

 SQLCHAR sqlstmt[]="SELECT deptname, location from org where division = ?";

 SQLCHAR deptname[15],

 location[14],

 division[11];

 SQLINTEGER rlength,

 plength;

 rc = SQLAllocStmt(hdbc, &hstmt);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 /* prepare statement for multiple use */

 rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 /* bind division to parameter marker in sqlstmt */

 rc = SQLSetParam(hstmt, 1, SQL_CHAR, SQL_CHAR, 10, 10, division,

 &plength);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 /* bind deptname to first column in the result set */

 rc = SQLBindCol(hstmt, 1, SQL_CHAR, (SQLPOINTER) deptname, 15,

 &rlength);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 rc = SQLBindCol(hstmt, 2, SQL_CHAR, (SQLPOINTER) location, 14,

 &rlength);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 printf("\nEnter Division Name or ’q’ to quit:\n");

 printf("(Eastern, Western, Midwest, Corporate)\n");

 gets(division);

 plength = SQL_NTS;

SQL call level interface 167

while(division[0] != ’q’)

 {

 rc = SQLExecute(hstmt);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 printf("Departments in %s Division:\n", division);

 printf("DEPTNAME Location\n");

 printf("-------------- -------------\n");

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

 {

 printf("%-14.14s %-13.13s \n", deptname, location);

 }

 if (rc != SQL_NO_DATA_FOUND)

 check_error (henv, hdbc, hstmt, rc);

 SQLFreeStmt(hstmt, SQL_CLOSE);

 printf("\nEnter Division Name or ’q’ to quit:\n");

 printf("(Eastern, Western, Midwest, Corporate)\n");

 gets(division);

 }

 }

 rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 terminate(henv, hdbc);

 return (0);

}/* end main */

References

v “SQLColAttributes - Obtain column attributes” on page 52

v “SQLDescribeCol - Describe column attributes” on page 68

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExecute - Execute a statement” on page 83

v “SQLNumResultCols - Get number of result columns” on page 160

SQLPrimaryKeys - Get primary key columns of a table

Purpose

SQLPrimaryKeys() returns a list of column names that comprise the primary key for a table. The

information is returned in an SQL result set, which can be retrieved using the same functions that are

used to process a result set that is generated by a query.

Syntax

SQLRETURN SQLPrimaryKeys (SQLHSTMT StatementHandle,

 SQLCHAR *CatalogName,

 SQLSMALLINT NameLength1,

 SQLCHAR *SchemaName,

 SQLSMALLINT NameLength2,

 SQLCHAR *TableName,

 SQLSMALLINT NameLength3);

168 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Function arguments

 Table 130. SQLPrimaryKeys arguments

Data type Argument Use Description

SQLCHAR * CatalogName Input Catalog qualifier of a 3 part table name.

This must be a NULL pointer or a zero length

string.

SQLCHAR * SchemaName Input Schema qualifier of table name.

SQLCHAR * TableName Input Table name.

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLSMALLINT NameLength3 Input Length of TableName.

SQLSMALLINT NameLength1 Input Length of CatalogName.

Usage

SQLPrimaryKeys() returns the primary key columns from a single table. Search patterns cannot be used to

specify the schema qualifier or the table name.

The result set contains the columns that are listed in Table 131, ordered by TABLE_CAT, TABLE_SCHEM,

TABLE_NAME, and ORDINAL_POSITION.

Because calls to SQLPrimaryKeys() in many cases map to a complex and, thus, expensive query against

the system catalog, they should be used sparingly, and the results saved rather than repeating calls.

Although new columns might be added and the names of the existing columns might be changed in

future releases, the position of the current columns does not change.

 Table 131. Columns returned by SQLPrimaryKeys

Column number/name Data type Description

1 TABLE_CAT VARCHAR (128) The current server.

2 TABLE_SCHEM VARCHAR (128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR (128) not

NULL

Name of the specified table.

4 COLUMN_NAME VARCHAR (128) not

NULL

Primary Key column name.

5 ORDINAL_POSITION SMALLINT not NULL Column sequence number in the primary key, starting with 1.

6 PK_NAME VARCHAR(128) Primary key identifier. NULL if not applicable to the data source.

Note: The column names used by DB2 UDB CLI follow the X/Open CLI CAE specification style. The column types,

contents and order are identical to those defined for the SQLPrimaryKeys() result set in ODBC.

If the specified table does not contain a primary key, an empty result set is returned.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

SQL call level interface 169

v SQL_INVALID_HANDLE

Error conditions

 Table 132. SQLPrimaryKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid A cursor is already opened on the statement handle.

40003 08S01 Communication link failure The communication link between the application and data source

fails before the function is completed.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY008 Operation canceled

HY010 Function sequence error The function is called while in a data-at-processing

(SQLParamData(), SQLPutData()) operation.

HY014 No more handles DB2 UDB CLI is unable to allocate a handle due to internal

resources.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid .

HY090 String or buffer length that is not

valid

The value of one of the name length arguments is less than 0, but

not equal to SQL_NTS.

HYC00 Driver not capable DB2 UDB CLI does not support catalog as a qualifier for table

name.

HYT00 Timeout expired

Restrictions

None.

References

v “SQLForeignKeys - Get the list of foreign key columns” on page 94

v “SQLStatistics - Get index and statistics information for a base table” on page 209

SQLProcedureColumns - Get input/output parameter information for a

procedure

Purpose

SQLProcedureColumns() returns a list of input and output parameters associated with a procedure. The

information is returned in an SQL result set, which can be retrieved using the same functions that are

used to process a result set that is generated by a query.

Syntax

SQLRETURN SQLProcedureColumns(SQLHSTMT StatementHandle,

 SQLCHAR *CatalogName,

 SQLSMALLINT NameLength1,

 SQLCHAR *SchemaName,

 SQLSMALLINT NameLength2,

 SQLCHAR *ProcName,

 SQLSMALLINT NameLength3,

 SQLCHAR *ColumnName,

 SQLSMALLINT NameLength4);

170 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Function arguments

 Table 133. SQLProcedureColumns arguments

Data type Argument Use Description

SQLCHAR * CatalogName Input Catalog qualifier of a 3 part procedure name.

This must be a NULL pointer or a zero length

string.

SQLCHAR * ColumnName Input Buffer that might contain a pattern-value to

qualify the result set by parameter name. This

argument is to be used to further qualify the

result set already restricted by specifying a

non-empty value for ProcName or

SchemaName.

SQLCHAR * ProcName Input Buffer that might contain a pattern-value to

qualify the result set by procedure name.

SQLCHAR * SchemaName Input Buffer that might contain a pattern-value to

qualify the result set by schema name.

For DB2 Universal Database for z/OS and

OS/390® V 4.1, all the stored procedures are in

one schema; the only acceptable value for the

SchemaName argument is a null pointer. For DB2

Universal Database, SchemaName can contain a

valid pattern value.

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT NameLength1 Input Length of CatalogName. This must be set to 0.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLSMALLINT NameLength3 Input Length of ProcName.

SQLSMALLINT NameLength4 Input Length of ColumnName.

Usage

DB2 UDB CLI returns information about the input, input and output, and output parameters associated

with the stored procedure, but cannot return information about the descriptor for any result sets

returned.

SQLProcedureColumns() returns the information in a result set, ordered by PROCEDURE_CAT,

PROCEDURE_SCHEM, PROCEDURE_NAME, and COLUMN_TYPE. Table 134 lists the columns in the

result set. Applications should be aware that columns beyond the last column might be defined in future

releases.

Because calls to SQLProcedureColumns() in many cases map to a complex and thus expensive query

against the system catalog, they should be used sparingly, and the results saved rather than repeating

calls.

 Table 134. Columns returned by SQLProcedureColumns

Column number/name Data type Description

1 PROCEDURE_CAT VARCHAR(128) The current server.

2 PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing

PROCEDURE_NAME.

3 PROCEDURE_NAME VARCHAR(128) Name of the procedure.

SQL call level interface 171

Table 134. Columns returned by SQLProcedureColumns (continued)

Column number/name Data type Description

4 COLUMN_NAME VARCHAR(128) Name of the parameter.

5 COLUMN_TYPE SMALLINT not NULL Identifies the type information associated with this

row. The values can be:

v SQL_PARAM_TYPE_UNKNOWN – the parameter

type is unknown.

Note: This is not returned.

v SQL_PARAM_INPUT – this parameter is an input

parameter.

v SQL_PARAM_INPUT_OUTPUT – this parameter is

an input / output parameter.

v SQL_PARAM_OUTPUT – this parameter is an

output parameter.

v SQL_RETURN_VALUE – the procedure column is

the return value of the procedure.

Note: This is not returned.

v SQL_RESULT_COL – this parameter is actually a

column in the result set.

Note: This is not returned.

6 DATA_TYPE SMALLINT not NULL SQL data type.

7 TYPE_NAME VARCHAR(128) not NULL Character string representing the name of the data

type corresponding to DATA_TYPE.

8 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a character

or binary string, then this column contains the

maximum length in bytes; if it is a graphic (DBCS)

string, this is the number of double byte characters

for the parameter.

For date, time, timestamp data types, this is the total

number of bytes required to display the value when

converted to character.

For numeric data types, this is either the total number

of digits, or the total number of bits allowed in the

column, depending on the value in the

NUM_PREC_RADIX column in the result set.

9 BUFFER_LENGTH INTEGER The maximum number of bytes for the associated C

buffer to store data from this parameter if

SQL_C_DEFAULT were specified on the

SQLBindCol(), SQLGetData() and SQLBindParameter()

calls. This length excludes any null-terminator. For

exact numeric data types, the length accounts for the

decimal and the sign.

10 DECIMAL_DIGITS SMALLINT The scale of the parameter. NULL is returned for data

types where scale is not applicable.

172 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 134. Columns returned by SQLProcedureColumns (continued)

Column number/name Data type Description

11 NUM_PREC_RADIX SMALLINT Either 10 or 2 or NULL. If DATA_TYPE is an

approximate numeric data type, this column contains

the value 2, then the COLUMN_SIZE column

contains the number of bits allowed in the parameter.

If DATA_TYPE is an exact numeric data type, this

column contains the value 10 and the

COLUMN_SIZE and DECIMAL_DIGITS columns

contain the number of decimal digits allowed for the

parameter.

For numeric data types, the Database Management

System (DBMS) can return a NUM_PREC_RADIX of

either 10 or 2.

NULL is returned for data types where radix is not

applicable.

12 NULLABLE VARCHAR(3) ’NO’ if the parameter does not accept NULL values.

’YES’ if the parameter accepts NULL values.

13 REMARKS VARCHAR(254) Might contain descriptive information about the

parameter.

14 COLUMN_DEF VARCHAR The default value of the column.

If NULL is specified as the default value, then this

column is the word NULL, not enclosed in quotation

marks. If the default value cannot be represented

without truncation, then this column contains

TRUNCATED, with no enclosing single quotation

marks. If no default value is specified, then this

column is NULL.

The value of COLUMN_DEF can be used in

generating a new column definition, except when it

contains the value TRUNCATED.

15 SQL_DATA_TYPE SMALLINT not NULL The value of the SQL data type as it appears in the

SQL_DESC_TYPE field of the descriptor. This column

is the same as the DATA_TYPE column except for

datetime data types (DB2 UDB CLI does not support

interval data types).

For datetime data types, the SQL_DATA_TYPE field

in the result set is SQL_DATETIME, and the

SQL_DATETIME_SUB field returns the subcode for

the specific datetime data type (SQL_CODE_DATE,

SQL_CODE_TIME or SQL_CODE_TIMESTAMP).

16 SQL_DATETIME_SUB SMALLINT The subtype code for datetime data types. For all

other data types this column returns a NULL

(including interval data types which DB2 UDB CLI

does not support).

17 CHAR_OCTET_LENGTH INTEGER The maximum length in bytes of a character data

type column. For all other data types, this column

returns a NULL.

SQL call level interface 173

Table 134. Columns returned by SQLProcedureColumns (continued)

Column number/name Data type Description

18 ORDINAL_POSITION INTEGER NOT NULL Contains the ordinal position of the parameter given

by COLUMN_NAME in this result set. This is the

ordinal position of the argument to be provided on

the CALL statement. The leftmost argument has an

ordinal position of 1.

19 IS_NULLABLE VARCHAR v “NO” if the column does not include NULLs.

v “YES” if the column can include NULLs.

v zero-length string if nullability is unknown.

ISO rules are followed to determine nullability.

An ISO SQL-compliant DBMS cannot return an

empty string.

The value returned for this column is different than

the value returned for the NULLABLE column. (See

the description of the NULLABLE column.)

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 135. SQLProcedureColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid A cursor is already opened on the statement handle.

40003 08S01 Communication link failure The communication link between the application and data source

fails before the function is completed.

42601 PARMLIST syntax error The PARMLIST value in the stored procedures catalog table

contains a syntax error.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY008 Operation canceled

HY010 Function sequence error

HY014 No more handles DB2 UDB CLI is unable to allocate a handle due to internal

resources.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HY090 String or buffer length that is not

valid

The value of one of the name length arguments is less than 0, but

not equal SQL_NTS.

HYC00 Driver not capable DB2 UDB CLI does not support catalog as a qualifier for

procedure name.

The connected server does not support schema as a qualifier for

procedure name.

174 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 135. SQLProcedureColumns SQLSTATEs (continued)

SQLSTATE Description Explanation

HYT00 Timeout expired

Restrictions

SQLProcedureColumns() does not return information about the attributes of result sets that can be

returned from stored procedures.

If an application is connected to a DB2 server that does not provide support for a stored procedure

catalog, or does not provide support for stored procedures, SQLProcedureColumns() returns an empty

result set.

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/* From CLI sample proccols.c */

/* ... */

 printf("Enter Procedure Schema Name Search Pattern:\n");

 gets((char *)proc_schem.s);

 printf("Enter Procedure Name Search Pattern:\n");

 gets((char *)proc_name.s);

 rc = SQLProcedureColumns(hstmt, NULL, 0, proc_schem.s, SQL_NTS,

 proc_name.s, SQL_NTS, (SQLCHAR *)"%", SQL_NTS);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) proc_schem.s, 129,

 &proc_schem.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) proc_name.s, 129,

 &proc_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,

 &column_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 5, SQL_C_SHORT, (SQLPOINTER) &arg_type,

 0, &arg_type_ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,

 &type_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 8, SQL_C_LONG, (SQLPOINTER) & length,

 0, &length_ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 10, SQL_C_SHORT, (SQLPOINTER) &scale,

 0, &scale_ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 13, SQL_C_CHAR, (SQLPOINTER) remarks.s, 255,

 &remarks.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

SQL call level interface 175

/* Fetch each row, and display */

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

 sprintf((char *)cur_name, "%s.%s", proc_schem.s, proc_name.s);

 if (strcmp((char *)cur_name, (char *)pre_name) != 0) {

 printf("\n%s\n", cur_name);

 }

 strcpy((char *)pre_name, (char *)cur_name);

 printf(" %s", column_name.s);

 switch (arg_type)

 { case SQL_PARAM_INPUT : printf(", Input"); break;

 case SQL_PARAM_OUTPUT : printf(", Output"); break;

 case SQL_PARAM_INPUT_OUTPUT : printf(", Input_Output"); break;

 }

 printf(", %s", type_name.s);

 printf(" (%ld", length);

 if (scale_ind != SQL_NULL_DATA) {

 printf(", %d)\n", scale);

 } else {

 printf(")\n");

 }

 if (remarks.ind > 0) {

 printf("(remarks), %s)\n", remarks.s);

 }

 } /* endwhile */

References

v “SQLProcedures - Get list of procedure names”

SQLProcedures - Get list of procedure names

Purpose

SQLProcedures() returns a list of procedure names that have been registered at the server, and which

match the specified search pattern.

The information is returned in an SQL result set, which can be retrieved using the same functions that are

used to process a result set that is generated by a query.

Syntax

SQLRETURN SQLProcedures (SQLHSTMT StatementHandle,

 SQLCHAR *CatalogName,

 SQLSMALLINT NameLength1,

 SQLCHAR *SchemaName,

 SQLSMALLINT NameLength2,

 SQLCHAR *ProcName,

 SQLSMALLINT NameLength3);

Function arguments

 Table 136. SQLProcedures arguments

Data type Argument Use Description

SQLCHAR * CatalogName Input Catalog qualifier of a 3 part procedure name.

This must be a NULL pointer or a zero length string.

SQLCHAR * ProcName Input Buffer that might contain a pattern-value to qualify

the result set by procedure name.

176 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 136. SQLProcedures arguments (continued)

Data type Argument Use Description

SQLCHAR * SchemaName Input Buffer that might contain a pattern-value to qualify

the result set by schema name.

For DB2 Universal Database for z/OS and OS/390 V

4.1, all the stored procedures are in one schema; the

only acceptable value for the SchemaName argument

is a null pointer. For DB2 Universal Database,

SchemaName can contain a valid pattern value.

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLSMALLINT NameLength3 Input Length of ProcName.

SQLSMALLINT NameLength1 Input Length of CatalogName. This must be set to 0.

Usage

The result set returned by SQLProcedures() contains the columns listed in Table 137 in the order given.

The rows are ordered by PROCEDURE_CAT, PROCEDURE_SCHEMA, and PROCEDURE_NAME.

Because calls to SQLProcedures() in many cases map to a complex and thus expensive query against the

system catalog, use them sparingly, and save the results rather than repeating calls.

Although new columns might be added and the names of the existing columns might be changed in

future releases, the position of the current columns does not change.

 Table 137. Columns returned by SQLProcedures

Column number/name Data type Description

PROCEDURE_CAT VARCHAR(128) The current server.

PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing PROCEDURE_NAME.

PROCEDURE_NAME VARCHAR(128)

NOT NULL

The name of the procedure.

NUM_INPUT_PARAMS INTEGER not

NULL

Number of input parameters.

This column should not be used, it is reserved for future use

by ODBC.

It is used in versions of DB2 UDB CLI before version 5. For

backward compatibility it can be used with the old

DB2CLI.PROCEDURES pseudo catalog table (by setting the

PATCH1 CLI/ODBC Configuration keyword).

NUM_OUTPUT_PARAMS INTEGER not

NULL

Number of output parameters.

This column should not be used, it is reserved for future use

by ODBC.

It was used in versions of DB2 UDB CLI before version 5.

For backward compatibility it can be used with the old

DB2CLI.PROCEDURES pseudo catalog table (by setting the

PATCH1 CLI/ODBC Configuration keyword).

SQL call level interface 177

Table 137. Columns returned by SQLProcedures (continued)

Column number/name Data type Description

NUM_RESULT_SETS INTEGER not

NULL

Number of result sets returned by the procedure.

This column should not be used, it is reserved for future use

by ODBC.

It was used in versions of DB2 UDB CLI before version 5.

For backward compatibility it can be used with the old

DB2CLI.PROCEDURES pseudo catalog table (by setting the

PATCH1 CLI/ODBC Configuration keyword).

REMARKS VARCHAR(254) Contains the descriptive information about the procedure.

Note: The column names used by DB2 UDB CLI follow the X/Open CLI CAE specification style. The column types,

contents and order are identical to those defined for the SQLProcedures() result set in ODBC.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Error conditions

 Table 138. SQLProcedures SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid A cursor is already opened on the statement handle.

40003 08S01 Communication link failure The communication link between the application and data source

fails before the function is completed.

HY001 Memory allocation failure DB2 UDB CLI is unable to allocate memory required to support

the processing or completion of the function.

HY008 Operation canceled

HY010 Function sequence error

HY014 No more handles DB2 UDB CLI is unable to allocate a handle due to internal

resources.

HY021 Internal descriptor that is not

valid

The internal descriptor cannot be addressed or allocated, or it

contains a value that is not valid.

HY090 String or buffer length that is not

valid

The value of one of the name length arguments is less than 0, but

not equal to SQL_NTS.

HYC00 Driver not capable DB2 UDB CLI does not support catalog as a qualifier for

procedure name.

The connected server does not support schema as a qualifier for

procedure name.

HYT00 Timeout expired

178 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Restrictions

If an application is connected to a DB2 server that does not provide support for a stored procedure

catalog, or does not provide support for stored procedures, SQLProcedureColumns() returns an empty

result set.

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/* From CLI sample procs.c */

/* ... */

 printf("Enter Procedure Schema Name Search Pattern:\n");

 gets((char *)proc_schem.s);

 rc = SQLProcedures(hstmt, NULL, 0, proc_schem.s, SQL_NTS, (SQLCHAR *)"%", SQL_NTS);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) proc_schem.s, 129,

 &proc_schem.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) proc_name.s, 129,

 &proc_name.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) remarks.s, 255,

 &remarks.ind);

 CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 printf("PROCEDURE SCHEMA PROCEDURE NAME \n");

 printf("------------------------- ------------------------- \n");

 /* Fetch each row, and display */

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

 printf("%-25s %-25s\n", proc_schem.s, proc_name.s);

 if (remarks.ind != SQL_NULL_DATA) {

 printf(" (Remarks) %s\n", remarks.s);

 }

 } /* endwhile */

References

v “SQLProcedureColumns - Get input/output parameter information for a procedure” on page 170

SQLPutData - Pass data value for a parameter

Purpose

SQLPutData() is called following an SQLParamData() call returning SQL_NEED_DATA to supply

parameter data values. This function can be used to send large parameter values in pieces.

Syntax

SQLRETURN SQLPutData (SQLHSTMT hstmt,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValue);

SQL call level interface 179

Function arguments

 Table 139. SQLPutData arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLINTEGER cbValue Input Length of rgbValue. Specifies the amount of

data sent in a call to SQLPutData().

The amount of data can vary with each call

for a given parameter. The application can

also specify SQL_NTS or SQL_NULL_DATA

for cbValue.

cbValue is ignored for all date, time,

timestamp data types, and all numeric data

types except SQL_NUMERIC and

SQL_DECIMAL.

For cases where the C buffer type is

SQL_CHAR or SQL_BINARY, or if

SQL_DEFAULT is specified as the C buffer

type and the C buffer type default is

SQL_CHAR or SQL_BINARY, this is the

number of bytes of data in the rgbValue

buffer.

SQLPOINTER rgbValue Input Pointer to the actual data, or portion of data,

for a parameter. The data must be in the

form specified in the SQLBindParam() call

that the application used when specifying

the parameter.

Usage

The application calls SQLPutData() after calling SQLParamData() on a statement in the SQL_NEED_DATA

state to supply the data values for an SQL_DATA_AT_EXEC parameter. Long data can be sent in pieces

through repeated calls to SQLPutData(). After all the pieces of data for the parameter have been sent, the

application again calls SQLParamData(). SQLParamData(). proceeds to the next SQL_DATA_AT_EXEC

parameter, or, if all parameters have data values, executes the statement.

SQLPutData() cannot be called more than once for a fixed length parameter.

After an SQLPutData() call, the only legal function calls are SQLParamData(), SQLCancel(), or another

SQLPutData() if the input data is character or binary data. As with SQLParamData(), all other function calls

using this statement handle fail. In addition, all function calls referencing the parent hdbc of hstmt fail if

they involve changing any attribute or state of that connection. For a list of these functions, see the Usage

section for “SQLParamData - Get next parameter for which a data value is needed” on page 162.

If one or more calls to SQLPutData() for a single parameter result in SQL_SUCCESS, attempting to call

SQLPutData() with cbValue set to SQL_NULL_DATA for the same parameter results in an error with

SQLSTATE of HY011. This error does not result in a change of state; the statement handle is still in a Need

Data state and the application can continue sending parameter data.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

180 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

v SQL_INVALID_HANDLE

Diagnostics

Some of the following diagnostics conditions might be reported on the final SQLParamData() call rather

than at the time the SQLPutData() is called.

 Table 140. SQLPutData SQLSTATEs

SQLSTATE Description Explanation

22001 Too much data The size of the data supplied to the current parameter by

SQLPutData() exceeds the size of the parameter. The data

supplied by the last call to SQLPutData() is ignored.

01004 Data truncated The data sent for a numeric parameter is truncated

without the loss of significant digits.

Timestamp data sent for a date or time column is

truncated.

Function returns with SQL_SUCCESS_WITH_INFO.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

The argument rgbValue is a null pointer.

The argument rgbValue is not a NULL pointer and the

argument cbValue is less than 0, but not equal to

SQL_NTS or SQL_NULL_DATA.

HY010 Function sequence error The statement handle hstmt must be in a need data state

and must have been positioned on an

SQL_DATA_AT_EXEC parameter through a previous

SQLParamData() call.

SQLReleaseEnv - Release all environment resources

Purpose

SQLReleaseEnv() invalidates and frees the environment handle. All DB2 UDB CLI resources associated

with the environment handle are freed.

SQLFreeConnect() must be called before calling this function.

This function is the last DB2 UDB CLI step an application needs to do before terminating.

Syntax

SQLRETURN SQLReleaseEnv (SQLHENV henv);

Function arguments

 Table 141. SQLReleaseEnv arguments

Data type Argument Use Description

SQLHENV henv Input Environment handle.

SQL call level interface 181

Usage

If this function is called when there is still a valid connection handle, SQL_ERROR is returned, and the

environment handle remains valid.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 142. SQLReleaseEnv SQLSTATEs

SQLSTATE Description Explanation

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY010 Function sequence error There is an hdbc which is in allocated or connected state.

Call SQLDisconnect and SQLFreeConnect for the hdbc

before calling SQLReleaseEnv.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

Example

Refer to the example in the “SQLAllocEnv - Allocate environment handle” on page 24.

References

v “SQLFreeConnect - Free connection handle” on page 99

SQLRowCount - Get row count

Purpose

SQLRowCount() returns the number of rows in a table affected by an UPDATE, INSERT, or DELETE

statement processed against the table, or a view based on the table.

SQLExecute() or SQLExecDirect() must be called before calling this function.

Syntax

SQLRETURN SQLRowCount (SQLHSTMT hstmt,

 SQLINTEGER *pcrow);

Function arguments

 Table 143. SQLRowCount arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLINTEGER * pcrow Output Pointer to location where the number of

rows affected is stored.

182 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Usage

If the last processed statement referenced by the input statement handle is not an UPDATE, INSERT, or

DELETE statement, or if it is not processed successfully, then the function sets the contents of pcrow to 0.

Any rows in other tables that might have been affected by the statement (for example, cascading deletes)

are not included in the count.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 144. SQLRowCount SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

pcrow is a null pointer.

HY010 Function sequence error The function is called before calling SQLExecute or

SQLExecDirect for the hstmt.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

References

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExecute - Execute a statement” on page 83

v “SQLNumResultCols - Get number of result columns” on page 160

SQLSetConnectAttr - Set a connection attribute

Purpose

SQLSetConnectAttr() sets connection attributes for a particular connection.

Syntax

SQLRETURN SQLSetConnectAttr (SQLHDBC hdbc,

 SQLINTEGER fAttr,

 SQLPOINTER vParam,

 SQLINTEGER sLen);

SQL call level interface 183

Function arguments

 Table 145. SQLSetConnectAttr arguments

Data type Argument Use Description

SQLHDBC hdbc Input Connection handle.

SQLINTEGER fAttr Input Connect attribute to set, refer to Table 146 for

more information.

SQLPOINTER vParam Input Value associated with fAttr. Depending on

the option, this can be a pointer to a 32-bit

integer value, or a character string.

SQLINTEGER sLen Input Length of input value, if it is a character

string; otherwise, unused.

Usage

All connection and statement options set through the SQLSetConnectAttr() persist until SQLFreeConnect()

is called or the next SQLSetConnectAttr() call.

The format of information set through vParam depends on the specified fAttr. The option information can

be either a 32-bit integer or a pointer to a null-terminated character string.

 Table 146. Connect options

fAttr Contents

SQL_2ND_LEVEL_TEXT A 32-bit integer value:

v SQL_TRUE – Error text obtained by calling SQLError()

contains the complete text description of the error.

v SQL_FALSE – Error text obtained by calling SQLError()

contains the first-level description of the error only.

This is the default.

SQL_ATTR_AUTOCOMMIT A 32-bit value that sets the commit behavior for the

connection. The following are possible values:

v SQL_TRUE – Each SQL statement is automatically

committed as it is processed.

v SQL_FALSE – The SQL statements are not

automatically committed. If running with commitment

control, changes must be explicitly committed or rolled

back using either SQLEndTran() or SQLTransact(). This

is the default.

184 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

||

||

||

|
|

|
|
|

||
|

|
|

|
|
|
|
|

Table 146. Connect options (continued)

fAttr Contents

SQL_ATTR_COMMIT

or

SQL_TXN_ISOLATION

A 32-bit value that sets the transaction-isolation level for

the current connection referenced by hdbc. The following

values are accepted by DB2 UDB CLI, but each server

might only support some of these isolation levels:

v SQL_TXN_NO_COMMIT – Commitment control is not

used.

v SQL_TXN_READ_UNCOMMITTED – Dirty reads,

nonrepeatable reads, and phantoms are possible.

v SQL_TXN_READ_COMMITTED – Dirty reads are not

possible. Non-repeatable reads and phantoms are

possible.

v SQL_TXN_REPEATABLE_READ – Dirty reads and

nonrepeatable reads are not possible. Phantoms are

possible.

v SQL_TXN_SERIALIZABLE – Transactions are

serializable. Dirty reads, non-repeatable reads, and

phantoms are not possible.

In IBM terminology,

v SQL_TXN_READ_UNCOMMITTED is uncommitted

read

v SQL_TXN_READ_COMMITTED is cursor stability

v SQL_TXN_REPEATABLE_READ is read stability

v SQL_TXN_SERIALIZABLE is repeatable read

For a detailed explanation of isolation levels, refer to the

IBM DB2 SQL Reference.

The SQL_ATTR_COMMIT attribute should be set before

the SQLConnect(). If the value is changed after the

connection has been established, and the connection is to

a remote data source, the change does not take effect

until the next successful SQLConnect() for the connection

handle.

SQL_ATTR_DATE_FMT A 32-bit integer value:

v SQL_FMT_ISO – The International Organization for

Standardization (ISO) date format yyyy-mm-dd is used.

This is the default.

v SQL_FMT_USA – The United States date format

mm/dd/yyyy is used.

v SQL_FMT_EUR – The European date format

dd.mm.yyyy is used.

v SQL_FMT_JIS – The Japanese Industrial Standard date

format yyyy-mm-dd is used.

v SQL_FMT_MDY – The date format mm/dd/yy is used.

v SQL_FMT_DMY – The date format dd/mm/yy is used.

v SQL_FMT_YMD – The date format yy/mm/dd is used.

v SQL_FMT_JUL – The Julian date format yy/ddd is

used.

v SQL_FMT_JOB – The job default is used.

SQL call level interface 185

|

||

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|

|
|

|

|

|

|
|

|
|
|
|
|
|

||

|
|
|

|
|

|
|

|
|

|

|

|

|
|

|

Table 146. Connect options (continued)

fAttr Contents

SQL_ATTR_DATE_SEP A 32-bit integer value:

v SQL_SEP_SLASH – A slash (/) is used as the date

separator. This is the default.

v SQL_SEP_DASH – A dash (-) is used as the date

separator.

v SQL_SEP_PERIOD – A period (.) is used as the date

separator.

v SQL_SEP_COMMA – A comma (,) is used as the date

separator.

v SQL_SEP_BLANK – A blank is used as the date

separator.

v SQL_SEP_JOB – The job default is used.

SQL_ATTR_DBC_DEFAULT_LIB A character value that indicates the default library that is

used for resolving unqualified file references. This is not

valid if the connection is using system naming mode.

SQL_ATTR_DBC_SYS_NAMING A 32-bit integer value:

v SQL_TRUE – DB2 UDB CLI uses the iSeries system

naming mode. Files are qualified using the slash (/)

delimiter. Unqualified files are resolved using the

library list for the job.

v SQL_FALSE – DB2 UDB CLI uses the default naming

mode, which is SQL naming. Files are qualified using

the period (.) delimiter. Unqualified files are resolved

using either the default library or the current user ID.

SQL_ATTR_DECIMAL_SEP A 32-bit integer value:

v SQL_SEP_PERIOD – A period (.) is used as the

decimal separator. This is the default.

v SQL_SEP_COMMA – A comma (,) is used as the

decimal separator.

v SQL_SEP_JOB – The job default is used.

SQL_ATTR_EXTENDED_COL_INFO A 32-bit integer value:

v SQL_TRUE – Statement handles allocated against this

connection handle can be used on SQLColAttributes()

to retrieve extended column information, such as base

table, base schema, base column, and label.

v SQL_FALSE – Statement handles allocated against this

connection handle cannot be used on the

SQLColAttributes() function to retrieve extended

column information. This is the default.

SQL_ATTR_HEX_LITERALS A 32-bit integer value:

v SQL_HEX_IS_CHAR – Hexadecimal constants are

treated as character data. This is the default.

v SQL_HEX_IS_BINARY – Hexadecimal constants are

treated as binary data.

SQL_ATTR_MAX_PRECISION An integer constant that is the maximum precision

(length) that should be returned for the result data types.

The value can be 31 or 63.

186 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|

||

||

|
|

|
|

|
|

|
|

|
|

|

||
|
|

||

|
|
|
|

|
|
|
|

||

|
|

|
|

|

||

|
|
|
|

|
|
|
|

||

|
|

|
|

||
|
|

Table 146. Connect options (continued)

fAttr Contents

SQL_ATTR_MAX_SCALE An integer constant that is the maximum scale (number

of decimal positions to the right of the decimal point) that

should be returned for the result data types. The value

can range from 0 to the maximum precision.

SQL_ATTR_MIN_DIVIDE_SCALE Specify the minimum divide scale (number of decimal

positions to the right of the decimal point) that should be

returned for the result data types resulting from a divide

operation. The value can range from 0 to 9, not to exceed

the maximum scale. If 0 is specified, minimum divide

scale is not used.

SQL_ATTR_QUERY_OPTIMIZE_GOAL A 32-bit integer value that tells the optimizer to behave in

a specified way when processing a query:

v SQL_FIRST_IO – All queries are optimized with the

goal of returning the first page of output as fast as

possible. This goal works well when the output is

controlled by a user who is most likely to cancel the

query after viewing the first page of output data.

Queries coded with an OPTIMIZE FOR nnn ROWS

clause honor the goal specified by the clause.

v SQL_ALL_IO – All queries are optimized with the goal

of running the entire query to completion in the

shortest amount of elapsed time. This is a good option

when the output of a query is being written to a file or

report, or the interface is queuing the output data.

Queries coded with an OPTIMIZE FOR nnn ROWS

clause honor the goal specified by the clause. This is

the default.

SQL_ATTR_TIME_FMT A 32-bit integer value:

v SQL_FMT_ISO – The International Organization for

Standardization (ISO) time format hh.mm.ss is used.

This is the default.

v SQL_FMT_USA – The United States time format

hh:mmxx is used, where xx is AM or PM.

v SQL_FMT_EUR – The European time format hh.mm.ss

is used.

v SQL_FMT_JIS – The Japanese Industrial Standard time

format hh:mm:ss is used.

v SQL_FMT_HMS – The hh:mm:ss format is used.

SQL_ATTR_TIME_SEP A 32-bit integer value:

v SQL_SEP_COLON – A colon (:) is used as the time

separator. This is the default.

v SQL_SEP_PERIOD – A period (.) is used as the time

separator.

v SQL_SEP_COMMA – A comma (,) is used as the time

separator.

v SQL_SEP_BLANK – A blank is used as the time

separator.

v SQL_SEP_JOB – The job default is used.

SQL call level interface 187

|

||

||
|
|
|

||
|
|
|
|
|

||
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||

|
|
|

|
|

|
|

|
|

|

||

|
|

|
|

|
|

|
|

|

Table 146. Connect options (continued)

fAttr Contents

SQL_ATTR_TXN_EXTERNAL A 32-bit integer value that must be SQL_TRUE to enable

the use of XA transaction setting in the CLI connection.

SQL_ATTR_TXN_EXTERNAL must be set to SQL_TRUE

to use the XA transaction options by the

SQL_ATTR_TXN_INFO connection attribute.

The default is SQL_FALSE, which is not to enable XA

transaction support. However, as soon as transaction

support is enabled for the connection, it cannot be

disabled. (Attempting to set

SQL_ATTR_TXN_EXTERNAL to SQL_FALSE results in a

CLI error.)

Further information as well as an example of use of the

SQL_ATTR_TXN_EXTERNAL connection attribute can be

found in “Example: Use the CLI XA transaction

connection attributes” on page 250.

188 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|

||

||
|
|
|
|

|
|
|
|
|
|

|
|
|
|

Table 146. Connect options (continued)

fAttr Contents

SQL_ATTR_TXN_INFO A 32-bit integer value:

v SQL_TXN_CREATE – Create and start a transaction.

This parallels the xa_start(TMNOFLAGS) XA option.

v SQL_TXN_END – End the specified transaction. The

user is responsible to commit or roll back the work.

This parallels the xa_end(TMSUCCESS) XA option.

v SQL_TXN_END_FAIL – End the specified transaction

and mark the transaction as rollback required. This

parallels the xa_end(TMFAIL) XA option.

v SQL_TXN_CLEAR – Suspend the transaction to work

on a different transaction. This parallels the

xa_end(TMSUSPEND) XA option.

v SQL_TXN_FIND – Find, retrieve, and use the

nonsuspended transaction specified in vParam for the

current connection. This allows work to continue on

the open cursors for the previously nonsuspended

transaction. This parallels the xa_start(TMJOIN) XA

option.

v SQL_TXN_RESUME – Find, retrieve, and use the

suspended transaction specified in vParam for the

current connection. This allows work to continue on

the open cursors for the previously suspended

transaction. This parallels the xa_start(TMRESUME) XA

option.

Use of this connection attribute requires the user to be

running in server mode. Keep in mind, a user cannot

toggle between a non-server mode and server mode

environment.

The input argument vParam must point to a

TXN_STRUCT object. This structure can be found in the

header file QSYSINC/h.SQLCLI.

The xa_info argument for the xa_open XA API must

include the THDCTL=C keyword and value when using

CLI with XA transactions.

See XA transaction support for commitment control in the

Commitment control topic for more information about

XA transactions.

See XA API for more information.

See “Example: Use the CLI XA transaction connection

attributes” on page 250 for more information and an

example that shows how you can use the

SQL_ATTR_TXN_INFO connection attribute.

When running XA calls through CLI, the return codes

from CLI reflect the XA return code specifications. These

values can be found in the XA specification

documentation, as well as in the XA.h include file. Note

that the return code values that are listed in the XA

include file take precedence over the CLI return code

values when calling XA through this connection attribute.

SQL call level interface 189

|

||

||

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

Table 146. Connect options (continued)

fAttr Contents

SQL_ATTR_UCS2 A 32-bit integer value:

v SQL_TRUE – When using statement handles allocated

against this connection handle for SQLPrepare() and

SQLExecDirect(), the statement text is passed in the

UCS-2 (Unicode) coded character set identifier

(CCSID).

v SQL_FALSE – When using statement handles allocated

against this connection handle for SQLPrepare() and

SQLExecDirect(), the statement text is passed in the

job’s CCSID. This is the default.

SQL_SAVEPOINT_NAME A character value that indicates the savepoint name to be

used by SQLEndTran() on the functions

SQL_SAVEPOINT_NAME_ROLLBACK or

SQL_SAVEPOINT_NAME_RELEASE.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 147. SQLSetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

Given the fAttr value, a value that is not valid is

specified for the argument vParam.

An fAttr that is not valid value is specified.

 Related reference

 “SQLSetStmtOption - Set statement option” on page 205

 “SQLSetConnectOption - Set connection option”

SQLSetConnectOption - Set connection option

Purpose

SQLSetConnectOption() has been deprecated and replaced with SQLSetConnectAttr(). Although this

version of DB2 UDB CLI continues to support SQLSetConnectOption(), it is recommended that you begin

using SQLSetConnectAttr() in your DB2 UDB CLI programs so that they conform to the latest standards.

SQLSetConnectOption() sets connection attributes for a particular connection.

Syntax

SQLRETURN SQLSetConnectOption (SQLHDBC hdbc,

 SQLSMALLINT fOption,

 SQLPOINTER vParam);

190 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|

||

||

|
|
|
|
|

|
|
|
|

||
|
|
|
|

|
|
|

Function arguments

 Table 148. SQLSetConnectOption arguments

Data type Argument Use Description

SQLHDBC hdbc Input Connection handle.

SQLPOINTER vParam Input Value associated with fOption. Depending on

the option, this can be a pointer to a 32-bit

integer value, or a character string.

SQLSMALLINT fOption Input Connect option to set, refer to Table 146 on

page 184 for more information.

Usage

The SQLSetConnectOption() provides many of the same attribute functions as SQLSetConnectAttr() prior

to V5R3. However, SQLSetConnectOption() has since been deprecated, and support for all new attribute

functions has gone into SQLSetConnectAttr(). Users should migrate to the nondeprecated interface.

All connection and statement options set through the SQLSetConnectOption() persist until

SQLFreeConnect() is called or the next SQLSetConnectOption() call.

The format of information set through vParam depends on the specified fOption. The option information

can be either a 32-bit integer or a pointer to a null-terminated character string.

Refer to Table 146 on page 184 for the appropriate connect options.

Note: Because SQLSetConnectOption() has been deprecated, not all the options listed in the table are

supported.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 149. SQLSetConnectOption SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

Given the fOption value, a value that is not valid is

specified for the argument vParam.

A fOption value that is not valid is specified.

HYC00 Driver not capable The specified fOption is not supported by DB2 UDB CLI

or the server.

Given specified fOptionvalue, the value specified for the

argument vParam is not supported.

 Related reference

 “SQLSetConnectAttr - Set a connection attribute” on page 183

SQL call level interface 191

|
|
|

|
|

SQLSetCursorName - Set cursor name

Purpose

SQLSetCursorName() associates a cursor name with the statement handle. This function is optional because

DB2 UDB CLI implicitly generates a cursor name when needed.

Syntax

SQLRETURN SQLSetCursorName (SQLHSTMT hstmt,

 SQLCHAR *szCursor,

 SQLSMALLINT cbCursor);

Function arguments

 Table 150. SQLSetCursorName arguments

Data type Argument Use Description

SQLCHAR * szCursor Input Cursor name.

SQLHSTMT hstmt Input Statement handle.

SQLSMALLINT cbCursor Input Length of contents of szCursor argument.

Usage

DB2 UDB CLI always generates and uses an internally generated cursor name when a SELECT statement

is prepared or processed directly. SQLSetCursorName() allows an application-defined cursor name to be

used in an SQL statement (a Positioned UPDATE or DELETE). DB2 UDB CLI maps this name to an

internal name. SQLSetCursorName() must be called before an internal name is generated. The name

remains associated with the statement handle, until the handle is dropped. The name also remains after

the transaction has ended, but at this point SQLSetCursorName() can be called to set a different name for

this statement handle.

Cursor names must follow the following rules:

v All cursor names within the connection must be unique.

v Each cursor name must be less than or equal to 18 bytes in length. Any attempt to set a cursor name

longer than 18 bytes results in truncation of that cursor name to 18 bytes. (No warning is generated.)

v Because a cursor name is considered an identifier in SQL, it must begin with an English letter (a-z,

A-Z) followed by any combination of digits (0-9), English letters or the underscore character (_).

v Unless the input cursor name is enclosed in double quotation marks, all leading and trailing blanks

from the input cursor name string is removed.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

192 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Diagnostics

 Table 151. SQLSetCursorName SQLSTATEs

SQLSTATE Description Explanation

34000 Cursor name that is not

valid

The cursor name specified by the argument szCursor is

not valid. The cursor name either begins with ″SQLCUR″

or ″SQL_CUR″ or violates either the driver or the data

source cursor naming rules (Must begin with a-z or A-Z

followed by any combination of English letters, digits, or

the ’_’ character.

The cursor name specified by the argument szCursor

exists.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument value that is not

valid

szCursor is a null pointer.

The argument cbCursor is less than 1, but not equal to

SQL_NTS.

HY010 Function sequence error The statement handle is not in allocated state.

SQLPrepare() or SQLExecDirect() is called before

SQLSetCursorName().

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

References

v “SQLGetCursorName - Get cursor name” on page 111

SQLSetDescField - Set a descriptor field

Purpose

SQLSetDescField() sets a field in a descriptor. SQLSetDescField() is a more extensible alternative to the

SQLSetDescRec() function.

Syntax

SQLRETURN SQLSetDescField (SQLHDESC hdesc,

 SQLSMALLINT irec,

 SQLSMALLINT fDescType,

 SQLPOINTER rgbDesc,

 SQLINTEGER bLen);

Function arguments

 Table 152. SQLSetDescField arguments

Data type Argument Use Description

SQLHDESC hdesc Input Descriptor handle.

SQLSMALLINT irec Input Record number from which the specified

field is to be retrieved.

SQLSMALLINT fDescType Input See Table 153 on page 194.

SQLPOINTER rgbDesc Input Pointer to buffer.

SQL call level interface 193

Table 152. SQLSetDescField arguments (continued)

Data type Argument Use Description

SQLINTEGER bLen Input Length of descriptor buffer (rgbDesc).

 Table 153. fDescType descriptor types

Descriptor Type Description

SQL_DESC_COUNT SMALLINT Set the number of records in

the descriptor. irec is ignored.

SQL_DESC_DATA_PTR SQLPOINTER Set the data pointer field for

irec.

SQL_DESC_DATETIME_INTERVAL_CODE SMALLINT Set the interval code for records

with a type of SQL_DATETIME

SQL_DESC_INDICATOR_PTR SQLPOINTER Set the indicator pointer field

for irec.

SQL_DESC_LENGTH_PTR SQLPOINTER Set the length pointer field for

irec.

SQL_DESC_LENGTH INTEGER Set the length field of irec.

SQL_DESC_PRECISION SMALLINT Set the precision field of irec.

SQL_DESC_SCALE SMALLINT Set the scale field of irec.

SQL_DESC_TYPE SMALLINT Set the type field of irec.

Usage

Instead of requiring an entire set of arguments like SQLSetDescRec(), SQLSetDescField() specifies which

attribute you want to set for a specific descriptor record.

Although SQLSetDescField() allows for future extensions, it requires more calls to set the same

information than SQLSetDescRec() for each descriptor record.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 154. SQLGetDescField SQLSTATEs

SQLSTATE Description Explanation

HY009 Argument value that is not

valid

The value specified for the argument fDescType or irec is

not valid.

The argument rgbValue is a null pointer.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

194 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLDescribeCol - Describe column attributes” on page 68

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExecute - Execute a statement” on page 83

v “SQLPrepare - Prepare a statement” on page 164

SQLSetDescRec - Set a descriptor record

Purpose

SQLSetDescRec() sets all the attributes for a descriptor record. SQLSetDescRec() is a more concise

alternative to the SQLDescField() function.

Syntax

SQLRETURN SQLSetDescRec (SQLHDESC hdesc,

 SQLSMALLINT irec,

 SQLSMALLINT type,

 SQLSMALLINT subtype,

 SQLINTEGER length,

 SQLSMALLINT prec,

 SQLSMALLINT scale,

 SQLPOINTER data,

 SQLINTEGER *sLen,

 SQLINTEGER *indic);

Function arguments

 Table 155. SQLSetDescRec arguments

Data type Argument Use Description

SQLDESC hdesc Input Descriptor handle.

SQLINTEGER * indic Input (deferred) INDICATOR_PTR field for the record.

SQLINTEGER * sLen Input (deferred) LENGTH_PTR field for the record.

SQLINTEGER length Input LENGTH field for the record.

SQLPOINTER data Input (deferred) DATA_PTR field for the record.

SQLSMALLINT irec Input Record number within the descriptor.

SQLSMALLINT prec Input PRECISION field for the record.

SQLSMALLINT scale Input SCALE field for the record.

SQLSMALLINT subtype Input DATETIME_INTERVAL_CODE field for

records whose TYPE is SQL_DATETIME.

SQLSMALLINT type Input TYPE field for the record.

Usage

Calling SQLSetDescRec() sets all the fields in a descriptor record in one call.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

SQL call level interface 195

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 156. SQLSetDescRec SQLSTATEs

SQLSTATE Description Explanation

HY009 Argument value that is not

valid

The value specified for the argument irec is less than 1.

A value that is not valid for another argument is

specified.

HY016 Descriptor that is not valid The descriptor handle referred to an implementation row

descriptor.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

References

v “SQLBindCol - Bind a column to an application variable” on page 29

v “SQLDescribeCol - Describe column attributes” on page 68

v “SQLExecDirect - Execute a statement directly” on page 81

v “SQLExecute - Execute a statement” on page 83

v “SQLPrepare - Prepare a statement” on page 164

SQLSetEnvAttr - Set environment attribute

Purpose

SQLSetEnvAttr() sets an environment attribute for the current environment. An environment attribute

cannot be set if a connection handle has been allocated. In order for the attribute to apply to the entire

CLI environment, the environment attributes must be in place before this initial connection is made. An

HY010 error code is returned otherwise.

Syntax

SQLRETURN SQLSetEnvAttr (SQLHENV henv,

 SQLINTEGER Attribute,

 SQLPOINTER Value,

 SQLINTEGER StringLength);

Function arguments

 Table 157. SQLSetEnvAttr arguments

Data type Argument Use Description

SQLHENV henv Input Environment handle.

SQLINTEGER Attribute Input Environment attribute to set. Refer to

Table 158 on page 197 for more information.

SQLINTEGER StringLength Input Length of Value in bytes if the attribute value

is a character string; if Attribute does not

denote a string, then DB2 UDB CLI ignores

StringLength.

SQLPOINTER pValue Input Appropriate value for Attribute.

196 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|
|
|
|

||

||||

||||

||||
|

||||
|
|
|

||||

Usage

 Table 158. Environment attributes

Attribute Contents

SQL_ATTR_DATE_FMT A 32-bit integer value:

v SQL_FMT_ISO – The International Organization for

Standardization (ISO) date format yyyy-mm-dd is used.

This is the default.

v SQL_FMT_USA – The United States date format

mm/dd/yyyy is used.

v SQL_FMT_EUR – The European date format

dd.mm.yyyy is used.

v SQL_FMT_JIS – The Japanese Industrial Standard date

format yyyy-mm-dd is used.

v SQL_FMT_MDY – The date format mm/dd/yy is used.

v SQL_FMT_DMY – The date format dd/mm/yy is used.

v SQL_FMT_YMD – The date format yy/mm/dd is used.

v SQL_FMT_JUL – The Julian date format yy/ddd is

used.

v SQL_FMT_JOB – The job default is used.

SQL_ATTR_DATE_SEP A 32-bit integer value:

v SQL_SEP_SLASH – A slash (/) is used as the date

separator. This is the default.

v SQL_SEP_DASH – A dash (-) is used as the date

separator.

v SQL_SEP_PERIOD – A period (.) is used as the date

separator.

v SQL_SEP_COMMA – A comma (,) is used as the date

separator.

v SQL_SEP_BLANK – A blank is used as the date

separator.

v SQL_SEP_JOB – The job default is used.

SQL_ATTR_DECIMAL_SEP A 32-bit integer value:

v SQL_SEP_PERIOD – A period (.) is used as the

decimal separator. This is the default.

v SQL_SEP_COMMA – A comma (,) is used as the

decimal separator.

v SQL_SEP_JOB – The job default is used.

SQL_ATTR_DEFAULT_LIB A character value that indicates the default library that is

used for resolving unqualified file references. This is not

valid if the environment is using system naming mode.

SQL call level interface 197

|

||

||

||

|
|
|

|
|

|
|

|
|

|

|

|

|
|

|

||

|
|

|
|

|
|

|
|

|
|

|

||

|
|

|
|

|

||
|
|

Table 158. Environment attributes (continued)

Attribute Contents

SQL_ATTR_ENVHNDL_COUNTER A 32-bit integer value:

v SQL_FALSE – DB2 CLI does not count the number of

times the environment handle is allocated. Therefore,

the first call to free the environment handle and all

associated resources.

v SQL_TRUE – DB2 CLI keeps a counter of the number

of times the environment handle is allocated. Each time

the environment handle is freed, the counter is

decremented. Only when the counter reaches zero does

the DB2 CLI actually free the handle and all associated

resources. This allows nested calls to programs using

the CLI that allocate and free the CLI environment

handle.

SQL_ATTR_ESCAPE_CHAR A character value that indicates the escape character to be

used when specifying a search pattern in either

SQLColumns() or SQLTables().

SQL_ATTR_FOR_FETCH_ONLY A 32-bit integer value:

v SQL_TRUE – Cursors are read-only and cannot be used

for positioned update or delete operations. This is the

default.

v SQL_FALSE – Cursors can be used for positioned

updates or delete operations.

The attribute SQL_ATTR_FOR_FETCH_ONLY can also be

set for individual statements using SQLSetStmtAttr().

SQL_ATTR_JOB_SORT_SEQUENCE A 32-bit integer value:

v SQL_TRUE – DB2 UDB CLI uses the sort sequence that

has been set for the job.

v SQL_FALSE – DB2 UDB CLI uses the default sort

sequence, which is *HEX.

SQL_ATTR_OUTPUT_NTS A 32-bit integer value:

v SQL_TRUE – DB2 UDB CLI uses null termination to

indicate the length of output character strings. This is

the default.

v SQL_FALSE – DB2 UDB CLI does not use null

termination.

The CLI functions affected by this attribute are all

functions called for the environment (and for any

connections allocated under the environment) that have

character string parameters.

SQL_ATTR_REQUIRE_PROFILE A 32-bit integer value:

v SQL_TRUE – If in server mode, then a profile and

password are required when running SQLConnect()

and SQLDriverConnect() functions.

v SQL_FALSE – If profile is omitted on the SQLConnect()

or SQLDriverConnect() function, then connection is

made using current user profile. This is the default.

198 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|

||

||

|
|
|
|

|
|
|
|
|
|
|
|

||
|
|

||

|
|
|

|
|

|
|

||

|
|

|
|

||

|
|
|

|
|

|
|
|
|

||

|
|
|

|
|
|

Table 158. Environment attributes (continued)

Attribute Contents

SQL_ATTR_SERVER_MODE A 32-bit integer value:

v SQL_FALSE – DB2 CLI processes the SQL statements of

all connections within the same job. All changes

compose a single transaction. This is the default mode

of processing.

v SQL_TRUE – DB2 CLI processes the SQL statements of

each connection in a separate job. This allows multiple

connections to the same data source, possibly with

different user IDs for each connection. It also separates

the changes made under each connection handle into

its own transaction. This allows each connection handle

to be committed or rolled back, without impacting

pending changes made under other connection

handles. See “Run DB2 UDB CLI in server mode” on

page 246 for more information.

SQL_ATTR_SYS_NAMING A 32-bit integer value:

v SQL_TRUE – DB2 UDB CLI uses the iSeries system

naming mode. Files are qualified using the slash (/)

delimiter. Unqualified files are resolved using the

library list for the job.

v SQL_FALSE – DB2 UDB CLI uses the default naming

mode, which is SQL naming. Files are qualified using

the period (.) delimiter. Unqualified files are resolved

using either the default library or the current user ID.

SQL_ATTR_TIME_FMT A 32-bit integer value:

v SQL_FMT_ISO – The International Organization for

Standardization (ISO) time format hh.mm.ss is used.

This is the default.

v SQL_FMT_USA – The United States time format

hh:mmxx is used, where xx is a.m. or p.m.

v SQL_FMT_EUR – The European time format hh.mm.ss

is used.

v SQL_FMT_JIS – The Japanese Industrial Standard time

format hh:mm:ss is used.

v SQL_FMT_HMS – The hh:mm:ss format is used.

SQL_ATTR_TIME_SEP A 32-bit integer value:

v SQL_SEP_COLON – A colon (:) is used as the time

separator. This is the default.

v SQL_SEP_PERIOD – A period (.) is used as the time

separator.

v SQL_SEP_COMMA – A comma (,) is used as the time

separator.

v SQL_SEP_BLANK – A blank is used as the time

separator.

v SQL_SEP_JOB – The job default is used.

SQL call level interface 199

|

||

||

|
|
|
|

|
|
|
|
|
|
|
|
|
|

||

|
|
|
|

|
|
|
|

||

|
|
|

|
|

|
|

|
|

|

||

|
|

|
|

|
|

|
|

|

Table 158. Environment attributes (continued)

Attribute Contents

SQL_ATTR_TRUNCATION_RTNC A 32-bit integer value:

v SQL_TRUE – CLI returns SQL_SUCCESS_WITH_INFO

in the SQLFetch() and SQLFetchScroll() return codes if

truncation occurs.

v SQL_FALSE – CLI does not return

SQL_SUCCESS_WITH_INFO in the SQLFetch() and

SQLFetchScroll() return codes if truncation occurs. This

is the default.

SQL_ATTR_UTF8 A 32-bit integer value:

v SQL_FALSE – Character data is treated as being in the

default job coded character set identifier (CCSID). This

is the default.

v SQL_TRUE – Character data is treated as being in the

UTF–8 CCSID (1208).

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 159. SQLSetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

HY009 Parameter value that is not

valid

The specified Attribute is not supported by DB2 UDB

CLI.

Given specified Attributevalue, the value specified for the

argument Value is not supported.

The argument pValue is a null pointer.

HY010 Function sequence error Connection handles are already allocated.

SQLSetParam - Set parameter

Purpose

SQLSetParam() has been deprecated and replaced by SQLBindParameter(). Although this version of DB2

UDB CLI continues to support SQLSetParam(), it is recommended that you begin using

SQLBindParameter() in your DB2UDB CLI programs so that they conform to the latest standards.

SQLSetParam() associates (binds) an application variable to a parameter marker in an SQL statement.

When the statement is processed, the contents of the bound variables are sent to the database server. This

function is also used to specify any required data conversion.

Syntax

SQLRETURN SQLSetParam (SQLHSTMT hstmt,

 SQLSMALLINT ipar,

 SQLSMALLINT fCType,

200 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|

||

||

|
|
|

|
|
|
|

||

|
|
|

|
|
|

SQLSMALLINT fSqlType,

 SQLINTEGER cbParamDef,

 SQLSMALLINT ibScale,

 SQLPOINTER rgbValue,

 SQLINTEGER *pcbValue);

SQLSetStmtAttr - Set a statement attribute

Purpose

SQLSetStmtAttr() sets an attribute of a specific statement handle. To set an option for all statement

handles associated with a connection handle, the application can call SQLSetConnectOption().

Syntax

SQLRETURN SQLSetStmtAttr (SQLHSTMT hstmt,

 SQLINTEGER fAttr,

 SQLPOINTER vParam,

 SQLINTEGER sLen);

Function arguments

 Table 160. SQLSetStmtAttr arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLINTEGER fAttr Input Attribute to set. Refer to Table 161 for the list

of settable statement attributes.

SQLPOINTER vParam Input Value associated with fAttr. vParam can be a

32-bit integer value or a character string.

SQLINTEGER sLen Input Length of data if data is a character string;

otherwise, unused.

Usage

Statement options for an hstmt remain in effect until they are changed by another call to

SQLSetStmtAttr() or the hstmt is dropped by calling SQLFreeStmt() with the SQL_DROP option. Calling

SQLFreeStmt() with the SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS options does not reset the

statement options.

The format of information set through vParam depends on the specified fOption. The format of each is

noted in Table 161.

 Table 161. Statement attributes

fAttr Contents

SQL_ATTR_APP_PARAM_DESC VParam must be a descriptor handle. The specified

descriptor serves as the application parameter descriptor

for later calls to SQLExecute() and SQLExecDirect() on

the statement handle.

SQL_ATTR_APP_ROW_DESC VParam must be a descriptor handle. The specified

descriptor serves as the application row descriptor for

later calls to SQLFetch() on the statement handle.

SQL call level interface 201

||

||

||
|
|
|

||
|
|

Table 161. Statement attributes (continued)

fAttr Contents

SQL_ATTR_BIND_TYPE Specifies whether row-wise or column-wise binding is

used.

v SQL_BIND_BY_ROW – Binding is row-wise. This is the

default.

When using row-wise binding for a multiple row fetch,

all of the data for a row is returned in contiguous

storage, followed by the data for the next row, and so

on.

v SQL_BIND_BY_COLUMN – Binding is column-wise.

When using column-wise binding for a multiple row

fetch, all of the data for each column is returned in

contiguous storage. The storage for each column need

not be contiguous. A different address is provided by

the user for each column in the result set, and it is the

responsibility of the user to ensure that each address

has space for all the data to be retrieved.

SQL_ATTR_CURSOR_HOLD A 32-bit integer value that specifies if cursors opened for

this statement handle should be held.

v SQL_FALSE – An open cursor for this statement handle

is closed on a commit or rollback operation. This is the

default.

v SQL_TRUE – An open cursor for this statement handle

is not closed on a commit or rollback operation.

SQL_ATTR_CURSOR_SCROLLABLE A 32-bit integer value that specifies if cursors opened for

this statement handle should be scrollable.

v SQL_FALSE – Cursors are not scrollable, and

SQLFetchScroll() cannot be used against them. This is

the default.

v SQL_TRUE – Cursors are scrollable. SQLFetchScroll()

can be used to retrieve data from these cursors.

SQL_ATTR_CURSOR_SENSITIVITY A 32-bit integer value that specifies whether cursors

opened for this statement handle make visible the

changes made to the result set by another cursor. See

DECLARE CURSOR for a more precise definition of the

following options:

v SQL_UNSPECIFIED – Cursors on the statement handle

might make visible none, some, or all such changes

depending on the cursor type. This is the default.

v SQL_INSENSITIVE – All valid cursors on the statement

handle show the result set without reflecting any

changes made to it by any other cursor.

v SQL_SENSITIVE – All valid cursors on the statement

handle make visible all changes made to a result by

another cursor.

202 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|

||

||
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

||
|

|
|
|

|
|

||
|

|
|
|

|
|

||
|
|
|
|

|
|
|

|
|
|

|
|
|

Table 161. Statement attributes (continued)

fAttr Contents

SQL_ATTR_CURSOR_TYPE A 32-bit integer value that specifies the behavior of

cursors opened for this statement handle.

v SQL_CURSOR_FORWARD_ONLY – Cursors are not

scrollable, and the SQLFetchScroll() function cannot be

used against them. This is the default.

v SQL_CURSOR_DYNAMIC – Cursors are scrollable

except for insensitive cursor sensitivity. The

SQLFetchScroll() function can be used to retrieve data

from these cursors.

v SQL_CURSOR_STATIC – Cursors are scrollable except

for sensitive cursor sensitivity. The SQLFetchScroll()

function can be used to retrieve data from these

cursors.

SQL_ATTR_EXTENDED_COL_INFO A 32-bit integer value that specifies if cursors opened for

this statement handle should provide extended column

information.

v SQL_FALSE – This statement handle cannot be used on

the SQLColAttributes() function to retrieve extended

column information. This is the default. Setting this

attribute at the statement level overrides the connection

level setting of the attribute.

v SQL_TRUE – This statement handle can be used on the

SQLColAttributes() function to retrieve extended

column information, such as base table, base schema,

base column, and label.

SQL_ATTR_FOR_FETCH_ONLY A 32-bit integer value that specifies whether cursors

opened for this statement handle should be read only:

v SQL_TRUE – Cursors are read-only and cannot be used

for positioned update or delete operations. This is the

default unless SQL_ATTR_FOR_FETCH_ONLY

environment has been set to SQL_FALSE.

v SQL_FALSE – Cursors can be used for positioned

update or delete operations.

SQL_ATTR_FULL_OPEN A 32-bit integer value that specifies if cursors opened for

this statement handle should be full open operations.

v SQL_FALSE – Opening a cursor for this statement

handle might use a cached cursor for performance

reasons. This is the default.

v SQL_TRUE – Opening a cursor for this statement

handle always forces a full open operation of a new

cursor.

SQL call level interface 203

|

||

||
|

|
|
|

|
|
|
|

|
|
|
|

||
|
|

|
|
|
|
|

|
|
|
|

||
|

|
|
|
|

|
|

||
|

|
|
|

|
|
|

Table 161. Statement attributes (continued)

fAttr Contents

SQL_ATTR_ROW_STATUS_PTR An output smallint pointer to specify an array of status

values at SQLFetchScroll(). The number of elements must

equal the number of rows in the row set (as defined by

the SQL_ROWSET_SIZE attribute). A status value

SQL_ROW_SUCCESS for each row fetched is returned.

If the number of rows fetched is less than the number of

elements in the status array (that is, less than the row set

size), the remaining status elements are set to

SQL_ROW_NOROW. The number of rows fetched is

returned in the output pointer. This can be set by the

SQLSetStmtAttr attribute

SQL_ATTR_ROWS_FETCHED_PTR.

DB2 UDB CLI cannot detect whether a row has been

updated or deleted since the start of the fetch. Therefore,

the following ODBC defined status values are not

reported:

v SQL_ROW_DELETED.

v SQL_ROW_UPDATED.

SQL_ATTR_ROWS_FETCHED_PTR An output integer pointer that contains the number of

rows actually fetched by SQLFetchScroll(). If an error

occurs during processing, the pointer points to the

ordinal position of the row (in the row set) that precedes

the row where the error occurred. If an error occurs

retrieving the first row, the pointer points to the value 0.

SQL_ATTR_ROWSET_SIZE A 32-bit integer value that specifies the number of rows

in the row set. This is the number of rows returned by

each call to SQLExtendedFetch(). The default value is 1.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 162. SQLStmtAttr SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

HY000 General error An error occurred for which there is no specific

SQLSTATE and for which no implementation defined

SQLSTATE is defined. The error message returned by

SQLError in the argument szErrorMsg describes the error

and its cause.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

204 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|

||

||
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|

||
|
|
|
|
|

||
|
|
|

Table 162. SQLStmtAttr SQLSTATEs (continued)

SQLSTATE Description Explanation

HY009 Argument value that is not

valid

Given the specified fAttr value, a value that is not valid

is specified for the argument vParam.

An fAttr value that is not valid is specified.

The argument vParam is a null pointer.

HY010 Function sequence error The function is called out of sequence.

HYC00 Driver not capable The driver or the data sources does not support the

specified option.

 Related reference

 “SQLSetStmtOption - Set statement option”

 “SQLFetchScroll - Fetch from a scrollable cursor” on page 92

SQLSetStmtOption - Set statement option

Purpose

SQLSetStmtOption() has been deprecated and replaced with SQLSetStmtAttr(). Although this version of

DB2 UDB CLI continues to support SQLSetStmtOption(), it is recommended that you begin using

SQLSetStmtAttr() in your DB2 UDB CLI programs so that they conform to the latest standards.

SQLSetStmtOption() sets an attribute of a specific statement handle. To set an option for all statement

handles associated with a connection handle, the application can call SQLSetConnectAttr() (See

“SQLSetConnectAttr - Set a connection attribute” on page 183 for additional details).

Syntax

SQLRETURN SQLSetStmtOption (SQLHSTMT hstmt,

 SQLSMALLINT fOption,

 SQLPOINTER vParam);

Function arguments

 Table 163. SQLSetStmtOption arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLPOINTER vParam Input Value associated with fOption. vParam can be a pointer

to a 32-bit integer value or a character string.

SQLSMALLINT fOption Input Option to set. Refer to Table 161 on page 201 for the list

of settable statement options.

Usage

The SQLSetStmtOption() provides many of the same attribute functions as SQLSetStmtAttr() prior to

V5R3. However, it has since been deprecated, and support for all new attribute functions has gone into

SQLSetStmtAttr(). Users should migrate to the nondeprecated interface.

Statement options for an hstmt remain in effect until they are changed by another call to

SQLSetStmtOption() or the hstmt is dropped by calling SQLFreeStmt() with the SQL_DROP option.

Calling SQLFreeStmt() with the SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS options does not

reset statement options.

SQL call level interface 205

|
|
|

|
|
|

The format of information set through vParam depends on the specified fOption. The format of each is

noted in Table 161 on page 201.

Refer to Table 161 on page 201 for the proper statement options.

Note: Because the SQLSetStmtOption() function has been deprecated, not all the options listed in the

table are supported.″

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 164. SQLStmtOption SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement

completion

unknown

The communication link between the CLI and the data source fails before the function

completes processing.

HY000 General error An error occurred for which there is no specific SQLSTATE and for which no

implementation defined SQLSTATE is defined. The error message returned by SQLError

in the argument szErrorMsg describes the error and its cause.

HY001 Memory allocation

failure

The driver is unable to allocate memory required to support the processing or

completion of the function.

HY009 Argument value

that is not valid

Given the specified fOption value, a value that is not valid is specified for the argument

vParam.

A fOption that is not valid value is specified.

The argument szSchemaName or szTableName is a null pointer.

HY010 Function sequence

error

The function is called out of sequence.

HYC00 Driver not capable The driver or the data sources does not support the specified option.

 Related reference

 “SQLSetStmtAttr - Set a statement attribute” on page 201

 “SQLSetConnectAttr - Set a connection attribute” on page 183

SQLSpecialColumns - Get special (row identifier) columns

Purpose

SQLSpecialColumns() returns unique row identifier information (primary key or unique index) for a table.

For example, unique index or primary key information. The information is returned in an SQL result set,

which can be retrieved using the same functions that are used to fetch a result set generated by a

SELECT-statement.

Syntax

SQLRETURN SQLSpecialColumns (SQLHSTMT hstmt,

 SQLSMALLINT fColType,

 SQLCHAR *szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR *szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR *szTableName,

206 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|
|

SQLSMALLINT cbTableName,

 SQLSMALLINT fScope,

 SQLSMALLINT fNullable);

Function arguments

 Table 165. SQLSpecialColumns arguments

Data type Argument Use Description

SQLCHAR * szCatalogName Input Catalog qualifier of a three-part table name.

This must be a null pointer or a zero length

string.

SQLCHAR * szSchemaName Input Schema qualifier of the specified table.

SQLCHAR * szTableName Input Table name.

SQLHSTMT hstmt Input Statement handle.

SQLSMALLINT cbCatalogName Input Length of szCatalogName. This must be a set

to 0.

SQLSMALLINT cbSchemaName Input Length of szSchemaName.

SQLSMALLINT cbTableName Input Length of cbTableName.

SQLSMALLINT fColType Input Reserved for future use to support additional

types of special columns.

This data type is currently ignored.

SQLSMALLINT fNullable Input Determines whether to return special

columns that can have a NULL value.

Must be one of the following values:

v SQL_NO_NULLS

The row identifier column set returned

cannot have any NULL values.

v SQL_NULLABLE

The row identifier column set returned

can include columns where NULL values

are permitted.

SQLSMALLINT fScope Input Minimum required duration for which the

unique row identifier is valid.

fScope must be one of the following values:

v SQL_SCOPE_CURROW - The row

identifier is guaranteed to be valid only

while positioned on that row. A later

reselect using the same row identifier

values might not return a row if the row is

updated or deleted by another transaction.

v SQL_SCOPE_TRANSACTION - The row

identifier is guaranteed to be valid for the

duration of the current transaction.

v SQL_SCOPE_SESSION - The row

identifier is guaranteed to be valid for the

duration of the connection.

The duration over which a row identifier

value is guaranteed to be valid depends on

the current transaction isolation level. For

information and scenarios involving isolation

levels, refer to the IBM DB2 SQL Reference.

SQL call level interface 207

Usage

If multiple ways exist to uniquely identify any row in a table (for example, if there are multiple unique

indexes on the specified table), then DB2 UDB CLI returns the best set of row identifier columns based on

its internal criterion.

If there is no column set that allows any row in the table to be uniquely identified, an empty result set is

returned.

The unique row identifier information is returned in the form of a result set where each column of the

row identifier is represented by one row in the result set. The result set returned by SQLSpecialColumns()

has the following columns in the following order:

 Table 166. Columns returned by SQLSpecialColumns

Column name Data type Description

SCOPE SMALLINT not NULL Actual scope of the rowid. Contains

one of the following values:

v SQL_SCOPE_CURROW

v SQL_SCOPE_TRANSACTION

v SQL_SCOPE_SESSION

Refer to fScope in Table 165 on page

207 for a description of each value.

COLUMN_NAME VARCHAR(128) not NULL Name of the row identifier column.

DATA_TYPE SMALLINT not NULL SQL data type of the column.

TYPE_NAME VARCHAR(128) not NULL Database Management System

(DBMS) character string represented

of the name associated with

DATA_TYPE column value.

LENGTH_PRECISION INTEGER The precision of the column. NULL is

returned for data types where

precision is not applicable.

BUFFER_LENGTH INTEGER The length, in bytes, of the data

returned in the default C type. For

CHAR data types, this is the same as

the value in the

LENGTH_PRECISION column.

SCALE SMALLINT The scale of the column. NULL is

returned for data types where scale is

not applicable.

PSEUDO_COLUMN SMALLINT Indicates whether the column is a

pseudo-column; DB2 UDB CLI only

returns:

v SQL_PC_NOT_PSEUDO

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

208 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Diagnostics

 Table 167. SQLSpecialColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid Cursor related information is requested, but no cursor is

open.

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument length that is not

valid

The value of one of the length arguments is less than 0,

but not equal to SQL_NTS.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

HYC00 Driver not capable The data source does not support the catalog portion

(first part) of a three-part table name.

SQLStatistics - Get index and statistics information for a base table

Purpose

SQLStatistics() retrieves index information for a given table. It also returns the cardinality and the

number of pages associated with the table and the indexes on the table. The information is returned in a

result set, which can be retrieved using the same functions that are used to fetch a result set generated by

a SELECT-statement.

Syntax

SQLRETURN SQLStatistics (SQLHSTMT hstmt,

 SQLCHAR *szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR *szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR *szTableName,

 SQLSMALLINT cbTableName,

 SQLSMALLINT fUnique,

 SQLSMALLINT fAccuracy);

Function arguments

 Table 168. SQLStatistics arguments

Data type Argument Use Description

SQLCHAR * szCatalogName Input Catalog qualifier of a three-part table name. This

must be a null pointer or a zero length string.

SQLCHAR * szSchemaName Input Schema qualifier of the specified table.

SQLCHAR * szTableName Input Table name.

SQLHSTMT hstmt Input Statement handle.

SQLSMALLINT cbCatalogName Input Length of cbCatalogName. This must be set to 0.

SQLSMALLINT cbSchemaName Input Length of szSchemaName.

SQLSMALLINT cbTableName Input Length of cbTableName.

SQLSMALLINT fAccuracy Input Not currently used, must be set to 0.

SQL call level interface 209

Table 168. SQLStatistics arguments (continued)

Data type Argument Use Description

SQLSMALLINT fUnique Input Type of index information to return:

v SQL_INDEX_UNIQUE

Only unique indexes are returned.

v SQL_INDEX_ALL

All indexes are returned.

Usage

SQLStatistics() returns the following types of information:

v Statistics information for the table (if available):

– When the TYPE column in the following table is set to SQL_TABLE_STAT, the number of rows in

the table and the number of pages used to store the table.

– When the TYPE column indicates an index, the number of unique values in the index, and the

number of pages used to store the indexes.

– Information about each index, where each index column is represented by one row of the result set.

The result set columns are given in the following table in the order shown; the rows in the result set

are ordered by NON_UNIQUE, TYPE, INDEX_QUALIFIER, INDEX_QUALIFIER, INDEX_NAME

and ORDINAL_POSITION.

 Table 169. Columns returned by SQLStatistics

Column name Data type Description

TABLE_CAT VARCHAR(128) The name of the catalog containing

TABLE_SCHEM. This is set to NULL.

TABLE_SCHEM VARCHAR(128) The name of the schema containing

TABLE_NAME.

TABLE_NAME VARCHAR(128) not NULL Name of the table.

NON_UNIQUE SMALLINT Indicates whether the index prohibits

duplicate values:

v TRUE if the index allows duplicate

values.

v FALSE if the index values must be

unique.

v NULL is returned if the TYPE

column indicates that this row is

SQL_TABLE_STAT (statistics

information about the table itself).

INDEX_QUALIFIER VARCHAR(128) The identifier used to qualify the

index name. This is NULL if the

TYPE column indicates

SQL_TABLE_STAT.

INDEX_NAME VARCHAR(128) The name of the index. If the TYPE

column has the value

SQL_TABLE_STAT, this column has

the value NULL.

210 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 169. Columns returned by SQLStatistics (continued)

Column name Data type Description

TYPE SMALLINT not NULL Indicates the type of information

contained in this row of the result set:

v SQL_TABLE_STAT

Indicates this row contains statistics

information on the table itself.

v SQL_INDEX_CLUSTERED

Indicates this row contains

information about an index, and

the index type is a clustered index.

v SQL_INDEX_HASHED

Indicates this row contains

information about an index, and

the index type is a hashed index.

v SQL_INDEX_OTHER

Indicates this row contains

information about an index, and

the index type is other than

clustered or hashed.

Note: Currently,

SQL_INDEX_OTHER is the only

possible type.

ORDINAL_POSITION SMALLINT Ordinal position of the column within

the index whose name is given in the

INDEX_NAME column. A NULL

value is returned for this column if

the TYPE column has the value of

SQL_TABLE_STAT.

COLUMN_NAME VARCHAR(128) Name of the column in the index.

COLLATION CHAR(1) Sort sequence for the column; ″A″ for

ascending, ″D″ for descending. NULL

value is returned if the value in the

TYPE column is SQL_TABLE_STAT.

CARDINALITY INTEGER v If the TYPE column contains the

value SQL_TABLE_STAT, this

column contains the number of

rows in the table.

v If the TYPE column value is not

SQL_TABLE_STAT, this column

contains the number of unique

values in the index.

v A NULL value is returned if

information is not available from

the Database Management System

(DBMS).

SQL call level interface 211

Table 169. Columns returned by SQLStatistics (continued)

Column name Data type Description

PAGES INTEGER v If the TYPE column contains the

value SQL_TABLE_STAT, this

column contains the number of

pages used to store the table.

v If the TYPE column value is not

SQL_TABLE_STAT, this column

contains the number of pages used

to store the indexes.

v A NULL value is returned if

information is not available from

the DBMS.

For the row in the result set that contains table statistics (TYPE is set to SQL_TABLE_STAT), the columns

values of NON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME, ORDINAL_POSITION,

COLUMN_NAME, and COLLATION are set to NULL. If the CARDINALITY or PAGES information

cannot be determined, then NULL is returned for those columns.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 170. SQLStatistics SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid Cursor related information is requested, but no cursor is

open.

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument or buffer length

that is not valid

The value of one of the name length arguments is less

than 0, but not equal to SQL_NTS.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

HYC00 Driver not capable The catalog part (the first part) of a three-part table name

is not supported by the data source.

SQLTablePrivileges – Get privileges associated with a table

Purpose

SQLTablePrivileges() returns a list of tables and associated privileges for each table. The information is

returned in an SQL result set, which can be retrieved using the same functions that are used to process a

result set generated by a query.

212 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Syntax

SQLRETURN SQLTablePrivileges (SQLHSTMT StatementHandle,

 SQLCHAR *CatalogName,

 SQLSMALLINT NameLength1,

 SQLCHAR *SchemaName,

 SQLSMALLINT NameLength2,

 SQLCHAR *TableName,

 SQLSMALLINT NameLength3);

Function arguments

 Table 171. SQLTablePrivileges arguments

Data type Argument Use Description

SQLCHAR * SchemaName Input Buffer that might contain a pattern-value to

qualify the result set by schema name.

SQLCHAR * szTableQualifier Input Catalog qualifier of a 3 part table name. This

must be a null pointer or a zero length

string.

SQLCHAR * TableName Input Buffer that might contain a pattern-value to

qualify the result set by table name.

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT cbTableQualifier Input Length of CatalogName. This must be set to 0.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLSMALLINT NameLength3 Input Length of TableName.

Usage

The results are returned as a standard result set containing the columns listed in the following table. The

result set is ordered by TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and PRIVILEGE. If multiple

privileges are associated with any given table, each privilege is returned as a separate row.

The granularity of each privilege reported here might or might not apply at the column level; for

example, for some data sources, if a table can be updated, every column in that table can also be

updated. For other data sources, the application must call SQLColumnPrivileges() to discover if the

individual columns have the same table privileges.

Because calls to SQLColumnPrivileges() in many cases map to a complex and thus expensive query

against the system catalog, they should be used sparingly, and the results saved rather than repeating

calls.

The VARCHAR columns of the catalog functions result set have been declared with a maximum length

attribute of 128 to be consistent with SQL92 limits. Because DB2 names are less than 128, the application

can choose to always set aside 128 characters (plus the null-terminator) for the output buffer, or

alternatively, call SQLGetInfo() with SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN. The SQL_MAX_CATALOG_NAME_LEN value determines the actual

length of the TABLE_CAT supported by the connected DBMS. The SQL_MAX_SCHEMA_NAME_LEN

value determines the actual length of the TABLE_SCHEM supported by the connected Database

Management System (DBMS). The SQL_MAX_TABLE_NAME_LEN value determines the actual length of

the TABLE_NAME supported by the connected DBMS. The SQL_MAX_COLUMN_NAME_LEN value

determines the actual length of the COLUMN_NAME supported by the connected DBMS.

Although new columns can be added and the names of the existing columns changed in future releases,

the position of the current columns does not change.

SQL call level interface 213

Table 172. Columns returned by SQLTablePrivileges

Column name Data type Description

GRANTEE VARCHAR(128) Authorization ID of the user to whom the privilege is

granted.

GRANTOR VARCHAR(128) Authorization ID of the user who granted the privilege.

IS_GRANTABLE VARCHAR(3)

Indicates whether the grantee is permitted to grant the

privilege to other users.

This can be ″YES″, ″NO″ or ″NULL″.

PRIVILEGE VARCHAR(128) The table privilege. This can be one of the following

strings:

v ALTER

v CONTROL

v INDEX

v DELETE

v INSERT

v REFERENCES

v SELECT

v UPDATE

TABLE_CAT VARCHAR(128) This is always null.

TABLE_NAME VARCHAR(128) not NULL The name of the table.

TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column

types, contents and order are identical to those defined for the SQLProcedures() result set in ODBC.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 173. SQLTablePrivileges SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 String or buffer length that

is not valid

The value of one of the name length arguments is less

than 0, but not equal SQL_NTS.

HY010 Function sequence error There is an open cursor for this statement handle, or

there is no connection for this statement handle.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

214 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Restrictions

None.

Example

/* From the CLI sample TBINFO.C */

/* ... */

 /* call SQLTablePrivileges */

 printf("\n Call SQLTablePrivileges for:\n");

 printf(" tbSchemaPattern = %s\n", tbSchemaPattern);

 printf(" tbNamePattern = %s\n", tbNamePattern);

 sqlrc = SQLTablePrivileges(hstmt, NULL, 0,

 tbSchemaPattern, SQL_NTS,

 tbNamePattern, SQL_NTS);

 STMT_HANDLE_CHECK(hstmt, sqlrc);

References

SQLTables - Get table information

Purpose

SQLTables() returns a list of table names and associated information stored in the system catalogs of the

connected data source. The list of table names is returned as a result set, which can be retrieved using the

same functions that are used to retrieve a result set generated by a SELECT statement.

Syntax

SQLRETURN SQLTables (SQLHSTMT hstmt,

 SQLCHAR *szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR *szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR *szTableName,

 SQLSMALLINT cbTableName,

 SQLCHAR *szTableType,

 SQLSMALLINT cbTableType);

Function arguments

 Table 174. SQLTables arguments

Data type Argument Use Description

SQLCHAR * szCatalogName Input Buffer that might contain a pattern-value to

qualify the result set. Catalog is the first part

of a three-part table name.

This must be a NULL pointer or a zero

length string.

SQLCHAR * szSchemaName Input Buffer that might contain a pattern-value to

qualify the result set by schema name.

SQLCHAR * szTableName Input Buffer that might contain a pattern-value to

qualify the result set by table name.

SQL call level interface 215

Table 174. SQLTables arguments (continued)

Data type Argument Use Description

SQLCHAR * szTableType Input Buffer that might contain a value list to

qualify the result set by table type.

The value list is a list of values separated by

commas for the types of interest. Valid table

type identifiers might include: ALL, ALIAS,

BASE TABLE, MATERIALIZED QUERY

TABLE, SYSTEM TABLE, TABLE, VIEW. If

szTableType argument is a NULL pointer or a

zero length string, then this is equivalent to

specifying all of the possibilities for the table

type identifier.

If SYSTEM TABLE is specified, then both

system tables and system views (if there are

any) are returned.

The table types can be specified with or

without quotation marks.

SQLHSTMT hstmt Input Statement handle.

SQLSMALLINT cbCatalogName Input Length of szCatalogName. This must be set to

0.

SQLSMALLINT cbSchemaName Input Length of szSchemaName.

SQLSMALLINT cbTableName Input Length of szTableName.

SQLSMALLINT cbTableType Input Size of szTableType

Note: The szCatalogName, szSchemaName, and szTableName arguments accept search patterns.

An escape character can be specified in conjunction with a wildcard character to allow that actual

character to be used in the search pattern. The escape character is specified on the

SQL_ATTR_ESCAPE_CHAR environment attribute.

Usage

Table information is returned in a result set where each table is represented by one row of the result set.

To support obtaining just a list of schemas, the following special semantics for the szSchemaName

argument can be applied: if szSchemaName is a string containing a single percent (%) character, and

cbCatalogName, szTableName, and szTableType are empty strings, then the result set contains a list of

non-duplicate schemas in the data source.

The result set returned by SQLTables() contains the columns listed in the following table in the order

given.

 Table 175. Columns returned by SQLTables

Column name Data type Description

TABLE_CAT VARCHAR(128) The current server.

TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

TABLE_NAME VARCHAR(128) The name of the table, view, alias, or synonym.

216 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 175. Columns returned by SQLTables (continued)

Column name Data type Description

TABLE_TYPE VARCHAR(128) Identifies the type given by the name in the

TABLE_NAME column. It can have the string values

ALIAS, BASE TABLE, MATERIALIZED QUERY TABLE,

SYSTEM TABLE, TABLE, or VIEW.

REMARKS VARCHAR(254) Contains the descriptive information about the table.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 176. SQLTables SQLSTATEs

SQLSTATE Description Explanation

24000 Cursor state that is not valid Cursor-related information is requested, but no cursor is

open.

40003 * Statement completion

unknown

The communication link between the CLI and the data

source fails before the function completes processing.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY009 Argument or buffer length

that is not valid

The value of one of the name length arguments is less

than 0, but not equal to SQL_NTS.

HY021 Internal descriptor that is

not valid

The internal descriptor cannot be addressed or allocated,

or it contains a value that is not valid.

HYC00 Driver not capable The catalog part (the first part) of a three-part table name

is not supported by the data source.

SQLTransact - Commit or roll back transaction

Purpose

SQLTransact() commits or rolls back the current transaction in the connection.

All changes to the database performed on the connection since connect time or the previous call to

SQLTransact() (whichever is the most recent) are committed or rolled back.

If a transaction is active on a connection, the application must call SQLTransact() before it can disconnect

from the database.

Syntax

SQLRETURN SQLTransact (SQLHENV henv,

 SQLHDBC hdbc,

 SQLSMALLINT fType);

SQL call level interface 217

Function arguments

 Table 177. SQLTransact arguments

Data type Argument Use Description

SQLHDBC hdbc Input Database connection handle.

If hdbc is set to SQL_NULL_HDBC, then henv

must contain the environment handle that

the connection is associated with.

SQLHENV henv Input Environment handle.

If hdbc is a valid connection handle, henv is

ignored.

SQLSMALLINT fType Input The wanted action for the transaction. The

value for this argument must be one of:

v SQL_COMMIT

v SQL_ROLLBACK

v SQL_COMMIT_HOLD

v SQL_ROLLBACK_HOLD

Usage

Completing a transaction with SQL_COMMIT or SQL_ROLLBACK has the following effects:

v Statement handles are still valid after a call to SQLTransact().

v Cursor names, bound parameters, and column bindings survive transactions.

v Open cursors are closed, and any result sets that are pending retrieval are discarded.

Completing the transaction with SQL_COMMIT_HOLD or SQL_ROLLBACK_HOLD still commits or rolls

back the database changes, but does not cause cursors to be closed.

If no transaction is currently active on the connection, calling SQLTransact() has no effect on the database

server and returns SQL_SUCCESS.

SQLTransact() might fail while executing the COMMIT or ROLLBACK due to a loss of connection. In

this case the application might be unable to determine whether the COMMIT or ROLLBACK has been

processed, and a database administrator’s help might be required. Refer to the DBMS product

information for more information about transaction logs and other transaction management tasks.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 178. SQLTransact SQLSTATEs

SQLSTATE Description Explanation

08003 Connection not open The hdbc is not in a connected state.

218 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Table 178. SQLTransact SQLSTATEs (continued)

SQLSTATE Description Explanation

08007 Connection failure during

transaction

The connection associated with the hdbc fails during the

processing of the function during the processing of the

function and it cannot be determined whether the

requested COMMIT or ROLLBACK occurs before the

failure.

58004 System error Unrecoverable system error.

HY001 Memory allocation failure The driver is unable to allocate memory required to

support the processing or completion of the function.

HY012 Transaction operation state

that is not valid

The value specified for the argument fType is neither

SQL_COMMIT nor SQL_ROLLBACK.

HY013 * Memory management

problem

The driver is unable to access memory required to

support the processing or completion of the function.

Example

Refer to the example in “SQLFetch - Fetch next row” on page 87

 Related concepts

 “Effects of calling SQLTransact() in a DB2 UDB CLI application” on page 14

DB2 UDB CLI include file

The only include file used in DB2 UDB CLI is sqlcli.h.

 /*** START HEADER FILE SPECIFICATIONS *****************************/

 /* */

 /* Header File Name: SQLCLI */

 /* */

 /* Product(s): */

 /* 5716-SS1 */

 /* 5722-SS1 */

 /* */

 /* (C)Copyright IBM Corp. 1995, 2003 */

 /* */

 /* All rights reserved. */

 /* US Government Users Restricted Rights - */

 /* Use, duplication or disclosure restricted */

 /* by GSA ADP Schedule Contract with IBM Corp. */

 /* */

 /* Licensed Materials-Property of IBM */

 /* Descriptive Name: Structured Query Language (SQL) Call Level */

 /* Interface. */

 /* */

 /* Description: The SQL Call Level Interface provides access to */

 /* most SQL functions, without the need for a */

 /* precompiler. */

 /* */

 /* Header Files Included: SQLCLI */

 /* */

 /* Function Prototype List: SQLAllocConnect */

 /* SQLAllocEnv */

 /* SQLAllocHandle */

 /* SQLAllocStmt */

 /* SQLBindCol */

 /* SQLBindFileToCol */

 /* SQLBindFileToParam */

 /* SQLBindParam */

 /* SQLBindParameter */

SQL call level interface 219

/* SQLCancel */

 /* SQLCloseCursor */

 /* SQLColAttributes */

 /* SQLColumnPrivileges */

 /* SQLColumns */

 /* SQLConnect */

 /* SQLCopyDesc */

 /* SQLDataSources */

 /* SQLDescribeCol */

 /* SQLDescribeParam */

 /* SQLDisconnect */

 /* SQLDriverConnect */

 /* SQLEndTran */

 /* SQLError */

 /* SQLExecDirect */

 /* SQLExecute */

 /* SQLExtendedFetch */

 /* SQLFetch */

 /* SQLFetchScroll */

 /* SQLForeignKeys */

 /* SQLFreeConnect */

 /* SQLFreeEnv */

 /* SQLFreeHandle */

 /* SQLFreeStmt */

 /* SQLGetCol */

 /* SQLGetConnectOption */

 /* SQLGetCursorName */

 /* SQLGetConnectAttr */

 /* SQLGetData */

 /* SQLGetDescField */

 /* SQLGetDescRec */

 /* SQLGetDiagField */

 /* SQLGetDiagRec */

 /* SQLGetEnvAttr */

 /* SQLGetFunctions */

 /* SQLGetInfo */

 /* SQLGetLength */

 /* SQLGetPosition */

 /* SQLGetStmtAttr */

 /* SQLGetStmtOption */

 /* SQLGetSubString */

 /* SQLGetTypeInfo */

 /* SQLLanguages */

 /* SQLMoreResults */

 /* SQLNativeSql */

 /* SQLNextResult */

 /* SQLNumParams */

 /* SQLNumResultCols */

 /* SQLParamData */

 /* SQLParamOptions */

 /* SQLPrepare */

 /* SQLPrimaryKeys */

 /* SQLProcedureColumns */

 /* SQLProcedures */

 /* SQLPutData */

 /* SQLReleaseEnv */

 /* SQLRowCount */

 /* SQLSetConnectAttr */

 /* SQLSetConnectOption */

 /* SQLSetCursorName */

 /* SQLSetDescField */

 /* SQLSetDescRec */

 /* SQLSetEnvAttr */

 /* SQLSetParam */

 /* SQLSetStmtAttr */

 /* SQLSetStmtOption */

 /* SQLSpecialColumns */

220 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

/* SQLStartTran */

 /* SQLStatistics */

 /* SQLTablePrivileges */

 /* SQLTables */

 /* SQLTransact */

 /* */

 /* Change Activity: */

 /* */

 /* CFD List: */

 /* */

 /* FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION */

 /* ---- ------------ ----- ------ --------- ----------------------*/

 /* $A0= D91823 3D60 941206 MEGERIAN New Include */

 /* $A1= D94881 4D20 960816 MEGERIAN V4R2M0 enhancements */

 /* $A2= D95600 4D30 970910 MEGERIAN V4R3M0 enhancements */

 /* $A3= P3682850 4D40 981030 MEGERIAN V4R4M0 enhancements */

 /* $A4= D97596 4D50 990326 LJAMESON V4R5M0 enhancements */

 /* $A5= P9924900 5D10 000512 MEGERIAN V5R1M0 enhancements */

 /* $C1= D98562 5D20 010107 MBAILEY V5R2M0 enhancements */

 /* $C2= D9856201 5D20 010506 MBAILEY More enhancements */

 /* */

 /* End CFD List. */

 /* */

 /* Additional notes about the Change Activity */

 /* End Change Activity. */

 /*** END HEADER FILE SPECIFICATIONS *******************************/

#ifndef SQL_H_SQLCLI

 #define SQL_H_SQLCLI /* Permit duplicate Includes */

 #if (__OS400_TGTVRM__>=510) /* @B1A*/

 #pragma datamodel(P128) /* @B1A*/

 #endif /* @B1A*/

 #ifdef __ILEC400__

 #pragma checkout(suspend)

 #pragma nomargins nosequence

 #else

 #pragma info(none)

 #endif

 #ifndef __SQL_EXTERN

 #ifdef __ILEC400__

 #define SQL_EXTERN extern

 #else

 #ifdef __cplusplus

 #ifdef __TOS_OS400__

 #define SQL_EXTERN extern "C nowiden"

 #else

 #define SQL_EXTERN extern "C"

 #endif

 #else

 #define SQL_EXTERN extern

 #endif /* __cplusplus */

 #endif /* __ILEC_400__ */

 #define __SQL_EXTERN

 #endif

 #ifdef __ILEC400__

 #pragma argument (SQLAllocConnect , nowiden)

 #pragma argument (SQLAllocEnv , nowiden)

 #pragma argument (SQLAllocHandle , nowiden)

 #pragma argument (SQLAllocStmt , nowiden)

 #pragma argument (SQLBindCol , nowiden)

 #pragma argument (SQLBindFileToCol , nowiden)

 #pragma argument (SQLBindFileToParam , nowiden)

 #pragma argument (SQLBindParam , nowiden)

SQL call level interface 221

#pragma argument (SQLBindParameter , nowiden)

 #pragma argument (SQLCancel , nowiden)

 #pragma argument (SQLCloseCursor , nowiden)

 #pragma argument (SQLColAttributes , nowiden)

 #pragma argument (SQLColumnPrivileges , nowiden)

 #pragma argument (SQLColumns , nowiden)

 #pragma argument (SQLConnect , nowiden)

 #pragma argument (SQLCopyDesc , nowiden)

 #pragma argument (SQLDataSources , nowiden)

 #pragma argument (SQLDescribeCol , nowiden)

 #pragma argument (SQLDescribeParam , nowiden)

 #pragma argument (SQLDisconnect , nowiden)

 #pragma argument (SQLDriverConnect , nowiden)

 #pragma argument (SQLEndTran , nowiden)

 #pragma argument (SQLError , nowiden)

 #pragma argument (SQLExecDirect , nowiden)

 #pragma argument (SQLExecute , nowiden)

 #pragma argument (SQLExtendedFetch , nowiden)

 #pragma argument (SQLFetch , nowiden)

 #pragma argument (SQLFetchScroll , nowiden)

 #pragma argument (SQLForeignKeys , nowiden)

 #pragma argument (SQLFreeConnect , nowiden)

 #pragma argument (SQLFreeEnv , nowiden)

 #pragma argument (SQLFreeHandle , nowiden)

 #pragma argument (SQLFreeStmt , nowiden)

 #pragma argument (SQLGetCol , nowiden)

 #pragma argument (SQLGetConnectOption , nowiden)

 #pragma argument (SQLGetCursorName , nowiden)

 #pragma argument (SQLGetConnectAttr , nowiden)

 #pragma argument (SQLGetData , nowiden)

 #pragma argument (SQLGetDescField , nowiden)

 #pragma argument (SQLGetDescRec , nowiden)

 #pragma argument (SQLGetDiagField , nowiden)

 #pragma argument (SQLGetDiagRec , nowiden)

 #pragma argument (SQLGetEnvAttr , nowiden)

 #pragma argument (SQLGetFunctions , nowiden)

 #pragma argument (SQLGetInfo , nowiden)

 #pragma argument (SQLGetLength , nowiden)

 #pragma argument (SQLGetPosition , nowiden)

 #pragma argument (SQLGetStmtAttr , nowiden)

 #pragma argument (SQLGetStmtOption , nowiden)

 #pragma argument (SQLGetSubString , nowiden)

 #pragma argument (SQLGetTypeInfo , nowiden)

 #pragma argument (SQLLanguages , nowiden)

 #pragma argument (SQLMoreResults , nowiden)

 #pragma argument (SQLNativeSql , nowiden)

 #pragma argument (SQLNextResult , nowiden)

 #pragma argument (SQLNumParams , nowiden)

 #pragma argument (SQLNumResultCols , nowiden)

 #pragma argument (SQLParamData , nowiden)

 #pragma argument (SQLParamOptions , nowiden)

 #pragma argument (SQLPrepare , nowiden)

 #pragma argument (SQLPrimaryKeys , nowiden)

 #pragma argument (SQLProcedureColumns , nowiden)

 #pragma argument (SQLProcedures , nowiden)

 #pragma argument (SQLPutData , nowiden)

 #pragma argument (SQLReleaseEnv , nowiden)

 #pragma argument (SQLRowCount , nowiden)

 #pragma argument (SQLSetConnectAttr , nowiden)

 #pragma argument (SQLSetConnectOption , nowiden)

 #pragma argument (SQLSetCursorName , nowiden)

 #pragma argument (SQLSetDescField , nowiden)

 #pragma argument (SQLSetDescRec , nowiden)

 #pragma argument (SQLSetEnvAttr , nowiden)

 #pragma argument (SQLSetParam , nowiden)

 #pragma argument (SQLSetStmtAttr , nowiden)

 #pragma argument (SQLSetStmtOption , nowiden)

222 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

#pragma argument (SQLSpecialColumns , nowiden)

 #pragma argument (SQLStartTran , nowiden)

 #pragma argument (SQLStatistics , nowiden)

 #pragma argument (SQLTablePrivileges , nowiden)

 #pragma argument (SQLTables , nowiden)

 #pragma argument (SQLTransact , nowiden)

 #endif

/* generally useful constants */

#define SQL_FALSE 0

#define SQL_TRUE 1

#define SQL_NTS -3 /* NTS = Null Terminated String */

#define SQL_SQLSTATE_SIZE 5 /* size of SQLSTATE, not including

 null terminating byte */

#define SQL_MAX_MESSAGE_LENGTH 512

#define SQL_MAX_OPTION_STRING_LENGTH 128

/* RETCODE values */

#define SQL_SUCCESS 0

#define SQL_SUCCESS_WITH_INFO 1

#define SQL_NO_DATA_FOUND 100

#define SQL_NEED_DATA 99

#define SQL_NO_DATA SQL_NO_DATA_FOUND

#define SQL_ERROR -1

#define SQL_INVALID_HANDLE -2

#define SQL_STILL_EXECUTING 2

/* SQLFreeStmt option values */

#define SQL_CLOSE 0

#define SQL_DROP 1

#define SQL_UNBIND 2

#define SQL_RESET_PARAMS 3

/* SQLSetParam defines */

#define SQL_C_DEFAULT 99

/* SQLEndTran option values */

#define SQL_COMMIT 0

#define SQL_ROLLBACK 1

#define SQL_COMMIT_HOLD 2

#define SQL_ROLLBACK_HOLD 3

#define SQL_SAVEPOINT_NAME_RELEASE 4

#define SQL_SAVEPOINT_NAME_ROLLBACK 5

/* SQLDriverConnect option values */

#define SQL_DRIVER_COMPLETE 1

#define SQL_DRIVER_COMPLETE_REQUIRED 1

#define SQL_DRIVER_NOPROMPT 1

#define SQL_DRIVER_PROMPT 0

/* Valid option codes for GetInfo procedure */

#define SQL_ACTIVE_CONNECTIONS 0

#define SQL_MAX_DRIVER_CONNECTIONS 0

#define SQL_MAX_CONCURRENT_ACTIVITIES 1

#define SQL_ACTIVE_STATEMENTS 1

#define SQL_PROCEDURES 2

#define SQL_DRIVER_NAME 6 /* @C1A*/

#define SQL_ODBC_API_CONFORMANCE 9 /* @C1A*/

#define SQL_ODBC_SQL_CONFORMANCE 10 /* @C1A*/

#define SQL_DBMS_NAME 17

#define SQL_DBMS_VER 18

#define SQL_DRIVER_VER 18

#define SQL_IDENTIFIER_CASE 28 /* @C1A*/

#define SQL_IDENTIFIER_QUOTE_CHAR 29 /* @C1A*/

#define SQL_MAX_COLUMN_NAME_LEN 30

#define SQL_MAX_CURSOR_NAME_LEN 31

#define SQL_MAX_OWNER_NAME_LEN 32

SQL call level interface 223

#define SQL_MAX_SCHEMA_NAME_LEN 33

#define SQL_MAX_TABLE_NAME_LEN 35

#define SQL_MAX_COLUMNS_IN_GROUP_BY 36

#define SQL_MAX_COLUMNS_IN_ORDER_BY 37

#define SQL_MAX_COLUMNS_IN_SELECT 38

#define SQL_MAX_COLUMNS_IN_TABLE 39

#define SQL_MAX_TABLES_IN_SELECT 40

#define SQL_COLUMN_ALIAS 41

#define SQL_DATA_SOURCE_NAME 42

#define SQL_DATASOURCE_NAME 42

#define SQL_DATABASE_NAME 42

#define SQL_MAX_COLUMNS_IN_INDEX 43

#define SQL_PROCEDURE_TERM 44 /* @C1A*/

#define SQL_QUALIFIER_TERM 45 /* @C1A*/

#define SQL_TXN_CAPABLE 46 /* @C1A*/

#define SQL_OWNER_TERM 47 /* @C1A*/

#define SQL_DATA_SOURCE_READ_ONLY 48 /* @C2A*/

#define SQL_DEFAULT_TXN_ISOLATION 49 /* @C2A*/

#define SQL_MULTIPLE_ACTIVE_TXN 55 /* @C2A*/

#define SQL_QUALIFIER_NAME_SEPARATOR 65 /* @C2A*/

#define SQL_CORRELATION_NAME 74 /* @C1A*/

#define SQL_NON_NULLABLE_COLUMNS 75 /* @C1A*/

#define SQL_DRIVER_ODBC_VER 77 /* @C1A*/

#define SQL_GROUP_BY 88 /* @C1A*/

#define SQL_ORDER_BY_COLUMNS_IN_SELECT 90 /* @C1A*/

#define SQL_OWNER_USAGE 91 /* @C1A*/

#define SQL_QUALIFIER_USAGE 92 /* @C1A*/

#define SQL_QUOTED_IDENTIFIER_CASE 93 /* @C1A*/

#define SQL_MAX_ROW_SIZE 104 /* @C1A*/

#define SQL_QUALIFIER_LOCATION 114 /* @C1A*/

#define SQL_MAX_CATALOG_NAME_LEN 115

#define SQL_MAX_STATEMENT_LEN 116

#define SQL_SEARCH_PATTERN_ESCAPE 117

#define SQL_OUTER_JOINS 118

#define SQL_LIKE_ESCAPE_CLAUSE 119

#define SQL_CATALOG_NAME 120

#define SQL_DESCRIBE_PARAMETER 121

#define SQL_STRING_FUNCTIONS 50

#define SQL_NUMERIC_FUNCTIONS 51

#define SQL_CONVERT_FUNCTIONS 52

#define SQL_TIMEDATE_FUNCTIONS 53

#define SQL_SQL92_PREDICATES 160

#define SQL_SQL92_VALUE_EXPRESSIONS 165

#define SQL_AGGREGATE_FUNCTIONS 169

#define SQL_SQL_CONFORMANCE 170

#define SQL_CONVERT_CHAR 171

#define SQL_CONVERT_NUMERIC 172

#define SQL_CONVERT_DECIMAL 173

#define SQL_CONVERT_INTEGER 174

#define SQL_CONVERT_SMALLINT 175

#define SQL_CONVERT_FLOAT 176

#define SQL_CONVERT_REAL 177

#define SQL_CONVERT_DOUBLE 178

#define SQL_CONVERT_VARCHAR 179

#define SQL_CONVERT_LONGVARCHAR 180

#define SQL_CONVERT_BINARY 181

#define SQL_CONVERT_VARBINARY 182

#define SQL_CONVERT_BIT 183

#define SQL_CONVERT_TINYINT 184

#define SQL_CONVERT_BIGINT 185

#define SQL_CONVERT_DATE 186

#define SQL_CONVERT_TIME 187

#define SQL_CONVERT_TIMESTAMP 188

#define SQL_CONVERT_LONGVARBINARY 189

#define SQL_CONVERT_INTERVAL_YEAR_MONTH 190

#define SQL_CONVERT_INTERVAL_DAY_TIME 191

#define SQL_CONVERT_WCHAR 192

224 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

#define SQL_CONVERT_WLONGVARCHAR 193

#define SQL_CONVERT_WVARCHAR 194

#define SQL_CONVERT_BLOB 195

#define SQL_CONVERT_CLOB 196

#define SQL_CONVERT_DBCLOB 197

#define SQL_CURSOR_COMMIT_BEHAVIOR 198

#define SQL_CURSOR_ROLLBACK_BEHAVIOR 199

#define SQL_POSITIONED_STATEMENTS 200

#define SQL_KEYWORDS 201

#define SQL_CONNECTION_JOB_NAME 202

/* Unsupported codes for SQLGetInfo */

#define SQL_LOCK_TYPES -1

#define SQL_POS_OPERATIONS -1

#define SQL_USER_NAME -1

/* Output values for cursor behavior */

#define SQL_CB_DELETE 1

#define SQL_CB_CLOSE 2

#define SQL_CB_PRESERVE 3

/* Aliased option codes (ODBC 3.0) @C1A*/

#define SQL_SCHEMA_TERM SQL_OWNER_TERM /* @C1A*/

#define SQL_SCHEMA_USAGE SQL_OWNER_USAGE /* @C1A*/

#define SQL_CATALOG_LOCATION SQL_QUALIFIER_LOCATION /*@C1A*/

#define SQL_CATALOG_TERM SQL_QUALIFIER_TERM /* @C1A*/

#define SQL_CATALOG_USAGE SQL_QUALIFIER_USAGE /* @C1A*/

#define SQL_CATALOG_NAME_SEPARATOR SQL_QUALIFIER_NAME_SEPARATOR

 /* @C2A*/

/*

 * Output values for SQL_ODBC_API_CONFORMANCE

 * info type in SQLGetInfo

 */

#define SQL_OAC_NONE 0 /* @C1A*/

#define SQL_OAC_LEVEL1 1 /* @C1A*/

#define SQL_OAC_LEVEL2 2 /* @C1A*/

/*

 * Output values for SQL_ODBC_SQL_CONFORMANCE

 * info type in SQLGetInfo

 */

#define SQL_OSC_MINIMUM 0 /* @C1A*/

#define SQL_OSC_CORE 1 /* @C1A*/

#define SQL_OSC_EXTENDED 2 /* @C1A*/

/*

 * Output values for SQL_QUALIFIER_USAGE

 * info type in SQLGetInfo

 */

#define SQL_QU_NOT_SUPPORTED 0x00000000 /* @C1A*/

#define SQL_QU_DML_STATEMENTS 0x00000001 /* @C1A*/

#define SQL_QU_PROCEDURE_INVOCATION 0x00000002 /* @C1A*/

#define SQL_QU_TABLE_DEFINITION 0x00000004 /* @C1A*/

#define SQL_QU_INDEX_DEFINITION 0x00000008 /* @C1A*/

#define SQL_QU_PRIVILEGE_DEFINITION 0x00000010 /* @C1A*/

/*

 * Output values for SQL_QUALIFIER_LOCATION

 * info type in SQLGetInfo

 */

#define SQL_QL_START 1 /* @C1A*/

#define SQL_QL_END 2 /* @C1A*/

SQL call level interface 225

/*

 * Output values for SQL_OWNER_USAGE

 * info type in SQLGetInfo

 */

#define SQL_OU_DML_STATEMENTS 0x00000001 /* @C1A*/

#define SQL_OU_PROCEDURE_INVOCATION 0x00000002 /* @C1A*/

#define SQL_OU_TABLE_DEFINITION 0x00000004 /* @C1A*/

#define SQL_OU_INDEX_DEFINITION 0x00000008 /* @C1A*/

#define SQL_OU_PRIVILEGE_DEFINITION 0x00000010 /* @C1A*/

/*

 * Output values for SQL_TXN_CAPABLE

 * info type in SQLGetInfo

 */

#define SQL_TC_NONE 0 /* @C1A*/

#define SQL_TC_DML 1 /* @C1A*/

#define SQL_TC_ALL 2 /* @C1A*/

#define SQL_TC_DDL_COMMIT 3 /* @C1A*/

#define SQL_TC_DDL_IGNORE 4 /* @C1A*/

/*

 * Output values for SQL_DEFAULT_TXN_ISOLATION

 * info type in SQLGetInfo

 */

#define SQL_TXN_READ_UNCOMMITTED_MASK 0x00000001 /* @C2A*/

#define SQL_TXN_READ_COMMITTED_MASK 0x00000002 /* @C2A*/

#define SQL_TXN_REPEATABLE_READ_MASK 0x00000004 /* @C2A*/

#define SQL_TXN_SERIALIZABLE_MASK 0x00000008 /* @C2A*/

/*

 * Output values for SQL_STRING_FUNCTIONS

 * info type in SQLGetInfo

 */

#define SQL_FN_STR_CONCAT 0x00000001

#define SQL_FN_STR_UCASE 0x00000002

#define SQL_FN_STR_LCASE 0x00000004

#define SQL_FN_STR_SUBSTRING 0x00000008

#define SQL_FN_STR_LENGTH 0x00000010

#define SQL_FN_STR_POSITION 0x00000020

#define SQL_FN_STR_LTRIM 0x00000040

#define SQL_FN_STR_RTRIM 0x00000080

/*

 * Output values for SQL_POS_OPERATIONS

 * info type in SQLGetInfo (not currently supported)

 */

#define SQL_POS_POSITION 0x00000001

#define SQL_POS_REFRESH 0x00000002

#define SQL_POS_UPDATE 0x00000004

#define SQL_POS_DELETE 0x00000008

#define SQL_POS_ADD 0x00000010

/*

 * Output values for SQL_NUMERIC_FUNCTIONS

 * info type in SQLGetInfo

 */

#define SQL_FN_NUM_ABS 0x00000001

#define SQL_FN_NUM_ACOS 0x00000002

#define SQL_FN_NUM_ASIN 0x00000004

#define SQL_FN_NUM_ATAN 0x00000008

#define SQL_FN_NUM_ATAN2 0x00000010

#define SQL_FN_NUM_CEILING 0x00000020

#define SQL_FN_NUM_COS 0x00000040

#define SQL_FN_NUM_COT 0x00000080

#define SQL_FN_NUM_EXP 0x00000100

226 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

#define SQL_FN_NUM_FLOOR 0x00000200

#define SQL_FN_NUM_LOG 0x00000400

#define SQL_FN_NUM_MOD 0x00000800

#define SQL_FN_NUM_SIGN 0x00001000

#define SQL_FN_NUM_SIN 0x00002000

#define SQL_FN_NUM_SQRT 0x00004000

#define SQL_FN_NUM_TAN 0x00008000

#define SQL_FN_NUM_PI 0x00010000

#define SQL_FN_NUM_RAND 0x00020000

#define SQL_FN_NUM_DEGREES 0x00040000

#define SQL_FN_NUM_LOG10 0x00080000

#define SQL_FN_NUM_POWER 0x00100000

#define SQL_FN_NUM_RADIANS 0x00200000

#define SQL_FN_NUM_ROUND 0x00400000

#define SQL_FN_NUM_TRUNCATE 0x00800000

/* SQL_SQL92_VALUE_EXPRESSIONS bit masks */

#define SQL_SVE_CASE 0x00000001

#define SQL_SVE_CAST 0x00000002

#define SQL_SVE_COALESCE 0x00000004

#define SQL_SVE_NULLIF 0x00000008

/* SQL_SQL92_PREDICATES bit masks */

#define SQL_SP_EXISTS 0x00000001

#define SQL_SP_ISNOTNULL 0x00000002

#define SQL_SP_ISNULL 0x00000004

#define SQL_SP_MATCH_FULL 0x00000008

#define SQL_SP_MATCH_PARTIAL 0x00000010

#define SQL_SP_MATCH_UNIQUE_FULL 0x00000020

#define SQL_SP_MATCH_UNIQUE_PARTIAL 0x00000040

#define SQL_SP_OVERLAPS 0x00000080

#define SQL_SP_UNIQUE 0x00000100

#define SQL_SP_LIKE 0x00000200

#define SQL_SP_IN 0x00000400

#define SQL_SP_BETWEEN 0x00000800

#define SQL_SP_COMPARISON 0x00001000

#define SQL_SP_QUANTIFIED_COMPARISON 0x00002000

/* SQL_AGGREGATE_FUNCTIONS bit masks */

#define SQL_AF_AVG 0x00000001

#define SQL_AF_COUNT 0x00000002

#define SQL_AF_MAX 0x00000004

#define SQL_AF_MIN 0x00000008

#define SQL_AF_SUM 0x00000010

#define SQL_AF_DISTINCT 0x00000020

#define SQL_AF_ALL 0x00000040

/* SQL_SQL_CONFORMANCE bit masks */

#define SQL_SC_SQL92_ENTRY 0x00000001

#define SQL_SC_FIPS127_2_TRANSITIONAL 0x00000002

#define SQL_SC_SQL92_INTERMEDIATE 0x00000004

#define SQL_SC_SQL92_FULL 0x00000008

/* SQL_CONVERT_FUNCTIONS functions */

#define SQL_FN_CVT_CONVERT 0x00000001

#define SQL_FN_CVT_CAST 0x00000002

/* SQL_POSITIONED_STATEMENTS bit masks */

#define SQL_PS_POSITIONED_DELETE 0x00000001

#define SQL_PS_POSITIONED_UPDATE 0x00000002

#define SQL_PS_SELECT_FOR_UPDATE 0x00000004

/* SQL supported conversion bit masks */

#define SQL_CVT_CHAR 0x00000001

#define SQL_CVT_NUMERIC 0x00000002

#define SQL_CVT_DECIMAL 0x00000004

#define SQL_CVT_INTEGER 0x00000008

SQL call level interface 227

#define SQL_CVT_SMALLINT 0x00000010

#define SQL_CVT_FLOAT 0x00000020

#define SQL_CVT_REAL 0x00000040

#define SQL_CVT_DOUBLE 0x00000080

#define SQL_CVT_VARCHAR 0x00000100

#define SQL_CVT_LONGVARCHAR 0x00000200

#define SQL_CVT_BINARY 0x00000400

#define SQL_CVT_VARBINARY 0x00000800

#define SQL_CVT_BIT 0x00001000

#define SQL_CVT_TINYINT 0x00002000

#define SQL_CVT_BIGINT 0x00004000

#define SQL_CVT_DATE 0x00008000

#define SQL_CVT_TIME 0x00010000

#define SQL_CVT_TIMESTAMP 0x00020000

#define SQL_CVT_LONGVARBINARY 0x00040000

#define SQL_CVT_INTERVAL_YEAR_MONTH 0x00080000

#define SQL_CVT_INTERVAL_DAY_TIME 0x00100000

#define SQL_CVT_WCHAR 0x00200000

#define SQL_CVT_WLONGVARCHAR 0x00400000

#define SQL_CVT_WVARCHAR 0x00800000

#define SQL_CVT_BLOB 0x01000000

#define SQL_CVT_CLOB 0x02000000

#define SQL_CVT_DBCLOB 0x04000000

/* SQL_TIMEDATE_FUNCTIONS bit masks */

#define SQL_FN_TD_NOW 0x00000001

#define SQL_FN_TD_CURDATE 0x00000002

#define SQL_FN_TD_DAYOFMONTH 0x00000004

#define SQL_FN_TD_DAYOFWEEK 0x00000008

#define SQL_FN_TD_DAYOFYEAR 0x00000010

#define SQL_FN_TD_MONTH 0x00000020

#define SQL_FN_TD_QUARTER 0x00000040

#define SQL_FN_TD_WEEK 0x00000080

#define SQL_FN_TD_YEAR 0x00000100

#define SQL_FN_TD_CURTIME 0x00000200

#define SQL_FN_TD_HOUR 0x00000400

#define SQL_FN_TD_MINUTE 0x00000800

#define SQL_FN_TD_SECOND 0x00001000

#define SQL_FN_TD_TIMESTAMPADD 0x00002000

#define SQL_FN_TD_TIMESTAMPDIFF 0x00004000

#define SQL_FN_TD_DAYNAME 0x00008000

#define SQL_FN_TD_MONTHNAME 0x00010000

#define SQL_FN_TD_CURRENT_DATE 0x00020000

#define SQL_FN_TD_CURRENT_TIME 0x00040000

#define SQL_FN_TD_CURRENT_TIMESTAMP 0x00080000

#define SQL_FN_TD_EXTRACT 0x00100000

/*

 * Output values for SQL_CORRELATION_NAME

 * info type in SQLGetInfo

 */

#define SQL_CN_NONE 0 /* @C1A*/

#define SQL_CN_DIFFERENT 1 /* @C1A*/

#define SQL_CN_ANY 2 /* @C1A*/

/*

 * Output values for SQL_IDENTIFIER_CASE

 * info type in SQLGetInfo

 */

#define SQL_IC_UPPER 1 /* @C1A*/

#define SQL_IC_LOWER 2 /* @C1A*/

#define SQL_IC_SENSITIVE 3 /* @C1A*/

#define SQL_IC_MIXED 4 /* @C1A*/

/*

 * Output values for SQL_NON_NULLABLE_COLUMNS

 * info type in SQLGetInfo

228 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

*/

#define SQL_NNC_NULL 0 /* @C1A*/

#define SQL_NNC_NON_NULL 1 /* @C1A*/

/*

 * Output values for SQL_GROUP_BY

 * info type in SQLGetInfo

 */

#define SQL_GB_NO_RELATION 0 /* @C1A*/

#define SQL_GB_NOT_SUPPORTED 1 /* @C1A*/

#define SQL_GB_GROUP_BY_EQUALS_SELECT 2 /* @C1A*/

#define SQL_GB_GROUP_BY_CONTAINS_SELECT 3 /* @C1A*/

/* Standard SQL data types */

#define SQL_CHAR 1

#define SQL_NUMERIC 2

#define SQL_DECIMAL 3

#define SQL_INTEGER 4

#define SQL_SMALLINT 5

#define SQL_FLOAT 6

#define SQL_REAL 7

#define SQL_DOUBLE 8

#define SQL_DATETIME 9

#define SQL_VARCHAR 12

#define SQL_BLOB 13

#define SQL_CLOB 14

#define SQL_DBCLOB 15

#define SQL_DATALINK 16

#define SQL_WCHAR 17

#define SQL_WVARCHAR 18

#define SQL_BIGINT 19

#define SQL_BLOB_LOCATOR 20

#define SQL_CLOB_LOCATOR 21

#define SQL_DBCLOB_LOCATOR 22

#define SQL_WLONGVARCHAR SQL_WVARCHAR

#define SQL_LONGVARCHAR SQL_VARCHAR

#define SQL_GRAPHIC 95

#define SQL_VARGRAPHIC 96

#define SQL_LONGVARGRAPHIC SQL_VARGRAPHIC

#define SQL_BINARY 97

#define SQL_VARBINARY 98

#define SQL_LONGVARBINARY SQL_VARBINARY

#define SQL_DATE 91

#define SQL_TYPE_DATE 91

#define SQL_TIME 92

#define SQL_TYPE_TIME 92

#define SQL_TIMESTAMP 93

#define SQL_TYPE_TIMESTAMP 93

#define SQL_CODE_DATE 1

#define SQL_CODE_TIME 2

#define SQL_CODE_TIMESTAMP 3

#define SQL_ALL_TYPES 0

/* Handle types */

#define SQL_UNUSED 0

#define SQL_HANDLE_ENV 1

#define SQL_HANDLE_DBC 2

#define SQL_HANDLE_STMT 3

#define SQL_HANDLE_DESC 4

#define SQL_NULL_HANDLE 0

#define SQL_HANDLE_DBC_UNICODE 100

/*

 * NULL status defines; these are used in SQLColAttributes, SQLDescribeCol,

 * to describe the nullability of a column in a table.

 */

SQL call level interface 229

#define SQL_NO_NULLS 0

#define SQL_NULLABLE 1

#define SQL_NULLABLE_UNKNOWN 2

/* Special length values */

#define SQL_NO_TOTAL 0

#define SQL_NULL_DATA -1

#define SQL_DATA_AT_EXEC -2

#define SQL_BIGINT_PREC 19

#define SQL_INTEGER_PREC 10

#define SQL_SMALLINT_PREC 5

/* SQLColAttributes defines */

#define SQL_ATTR_READONLY 0

#define SQL_ATTR_WRITE 1

#define SQL_ATTR_READWRITE_UNKNOWN 2

/* Valid concurrency values */

#define SQL_CONCUR_LOCK 0

#define SQL_CONCUR_READ_ONLY 1

#define SQL_CONCUR_ROWVER 3

#define SQL_CONCUR_VALUES 4

/* Valid environment attributes */

#define SQL_ATTR_OUTPUT_NTS 10001

#define SQL_ATTR_SYS_NAMING 10002

#define SQL_ATTR_DEFAULT_LIB 10003

#define SQL_ATTR_SERVER_MODE 10004

#define SQL_ATTR_JOB_SORT_SEQUENCE 10005

#define SQL_ATTR_ENVHNDL_COUNTER 10009

#define SQL_ATTR_ESCAPE_CHAR 10010

#define SQL_ATTR_INCLUDE_NULL_IN_LEN 10031

#define SQL_ATTR_UTF8 10032

#define SQL_ATTR_SYSCAP 10033

#define SQL_ATTR_REQUIRE_PROFILE 10034

#define SQL_ATTR_UCS2 10035

/* Valid environment/connection attributes */

#define SQL_ATTR_EXTENDED_COL_INFO 10019

#define SQL_ATTR_DATE_FMT 10020

#define SQL_ATTR_DATE_SEP 10021

#define SQL_ATTR_TIME_FMT 10022

#define SQL_ATTR_TIME_SEP 10023

#define SQL_ATTR_DECIMAL_SEP 10024

#define SQL_ATTR_TXN_INFO 10025

#define SQL_ATTR_TXN_EXTERNAL 10026

#define SQL_ATTR_2ND_LEVEL_TEXT 10027

#define SQL_ATTR_SAVEPOINT_NAME 10028

#define SQL_ATTR_TRACE 10029

#define SQL_ATTR_MAX_PRECISION 10040

#define SQL_ATTR_MAX_SCALE 10041

#define SQL_ATTR_MIN_DIVIDE_SCALE 10042

#define SQL_ATTR_HEX_LITERALS 10043

/* Valid transaction info operations */

#define SQL_TXN_FIND 1

#define SQL_TXN_CREATE 2

#define SQL_TXN_CLEAR 3

#define SQL_TXN_END 4

/* Valid environment/connection values */

#define SQL_FMT_ISO 1

#define SQL_FMT_USA 2

#define SQL_FMT_EUR 3

#define SQL_FMT_JIS 4

#define SQL_FMT_MDY 5

230 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

#define SQL_FMT_DMY 6

#define SQL_FMT_YMD 7

#define SQL_FMT_JUL 8

#define SQL_FMT_HMS 9

#define SQL_FMT_JOB 10

#define SQL_SEP_SLASH 1

#define SQL_SEP_DASH 2

#define SQL_SEP_PERIOD 3

#define SQL_SEP_COMMA 4

#define SQL_SEP_BLANK 5

#define SQL_SEP_COLON 6

#define SQL_SEP_JOB 7

#define SQL_HEX_IS_CHAR 1

#define SQL_HEX_IS_BINARY 2

/* Valid values for type in GetCol */

#define SQL_DEFAULT 99

#define SQL_ARD_TYPE -99

/* Valid values for UPDATE_RULE and DELETE_RULE in SQLForeignKeys */

#define SQL_CASCADE 1

#define SQL_RESTRICT 2

#define SQL_NO_ACTION 3

#define SQL_SET_NULL 4

#define SQL_SET_DEFAULT 5

/* Valid values for COLUMN_TYPE in SQLProcedureColumns */

#define SQL_PARAM_INPUT 1

#define SQL_PARAM_OUTPUT 2

#define SQL_PARAM_INPUT_OUTPUT 3

 /* statement attributes */

#define SQL_ATTR_APP_ROW_DESC 10010

#define SQL_ATTR_APP_PARAM_DESC 10011

#define SQL_ATTR_IMP_ROW_DESC 10012

#define SQL_ATTR_IMP_PARAM_DESC 10013

#define SQL_ATTR_FOR_FETCH_ONLY 10014

#define SQL_ATTR_CONCURRENCY 10014

#define SQL_CONCURRENCY 10014

#define SQL_ATTR_CURSOR_SCROLLABLE 10015

#define SQL_ATTR_ROWSET_SIZE 10016

#define SQL_ROWSET_SIZE 10016

#define SQL_ATTR_ROW_ARRAY_SIZE 10016

#define SQL_ATTR_CURSOR_HOLD 10017

#define SQL_ATTR_FULL_OPEN 10018

#define SQL_ATTR_BIND_TYPE 10049

#define SQL_BIND_TYPE 10049

#define SQL_ATTR_CURSOR_TYPE 10050

#define SQL_CURSOR_TYPE 10050

 /* values for setting statement attributes */

#define SQL_BIND_BY_ROW 0

#define SQL_BIND_BY_COLUMN 1

#define SQL_CURSOR_FORWARD_ONLY 0

#define SQL_CURSOR_STATIC 1

#define SQL_CURSOR_DYNAMIC 2

#define SQL_CURSOR_KEYSET_DRIVEN 3

 /* Codes used in FetchScroll */

#define SQL_FETCH_NEXT 1

#define SQL_FETCH_FIRST 2

#define SQL_FETCH_LAST 3

#define SQL_FETCH_PRIOR 4

#define SQL_FETCH_ABSOLUTE 5

#define SQL_FETCH_RELATIVE 6

/* SQLColAttributes defines */

SQL call level interface 231

#define SQL_DESC_COUNT 1

#define SQL_DESC_TYPE 2

#define SQL_DESC_LENGTH 3

#define SQL_DESC_LENGTH_PTR 4

#define SQL_DESC_PRECISION 5

#define SQL_DESC_SCALE 6

#define SQL_DESC_DATETIME_INTERVAL_CODE 7

#define SQL_DESC_NULLABLE 8

#define SQL_DESC_INDICATOR_PTR 9

#define SQL_DESC_DATA_PTR 10

#define SQL_DESC_NAME 11

#define SQL_DESC_UNNAMED 12

#define SQL_DESC_DISPLAY_SIZE 13

#define SQL_DESC_AUTO_INCREMENT 14

#define SQL_DESC_SEARCHABLE 15

#define SQL_DESC_UPDATABLE 16

#define SQL_DESC_BASE_COLUMN 17

#define SQL_DESC_BASE_TABLE 18

#define SQL_DESC_BASE_SCHEMA 19

#define SQL_DESC_LABEL 20

#define SQL_DESC_MONEY 21

#define SQL_DESC_ALLOC_TYPE 99

#define SQL_DESC_ALLOC_AUTO 1

#define SQL_DESC_ALLOC_USER 2

#define SQL_COLUMN_COUNT 1

#define SQL_COLUMN_TYPE 2

#define SQL_COLUMN_LENGTH 3

#define SQL_COLUMN_LENGTH_PTR 4

#define SQL_COLUMN_PRECISION 5

#define SQL_COLUMN_SCALE 6

#define SQL_COLUMN_DATETIME_INTERVAL_CODE 7

#define SQL_COLUMN_NULLABLE 8

#define SQL_COLUMN_INDICATOR_PTR 9

#define SQL_COLUMN_DATA_PTR 10

#define SQL_COLUMN_NAME 11

#define SQL_COLUMN_UNNAMED 12

#define SQL_COLUMN_DISPLAY_SIZE 13

#define SQL_COLUMN_AUTO_INCREMENT 14

#define SQL_COLUMN_SEARCHABLE 15

#define SQL_COLUMN_UPDATABLE 16

#define SQL_COLUMN_BASE_COLUMN 17

#define SQL_COLUMN_BASE_TABLE 18

#define SQL_COLUMN_BASE_SCHEMA 19

#define SQL_COLUMN_LABEL 20

#define SQL_COLUMN_MONEY 21

#define SQL_COLUMN_ALLOC_TYPE 99

#define SQL_COLUMN_ALLOC_AUTO 1

#define SQL_COLUMN_ALLOC_USER 2

/* Valid codes for SpecialColumns procedure */

#define SQL_SCOPE_CURROW 0

#define SQL_SCOPE_TRANSACTION 1

#define SQL_SCOPE_SESSION 2

#define SQL_PC_UNKNOWN 0

#define SQL_PC_NOT_PSEUDO 1

#define SQL_PC_PSEUDO 2

/* Valid values for connect attribute */

#define SQL_ATTR_AUTO_IPD 10001

#define SQL_ATTR_ACCESS_MODE 10002

#define SQL_ACCESS_MODE 10002

#define SQL_ATTR_AUTOCOMMIT 10003

#define SQL_AUTOCOMMIT 10003

#define SQL_ATTR_DBC_SYS_NAMING 10004

#define SQL_ATTR_DBC_DEFAULT_LIB 10005

#define SQL_ATTR_ADOPT_OWNER_AUTH 10006

232 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

#define SQL_ATTR_SYSBAS_CMT 10007

#define SQL_ATTR_COMMIT 0

#define SQL_MODE_READ_ONLY 0

#define SQL_MODE_READ_WRITE 1

#define SQL_MODE_DEFAULT 1

#define SQL_AUTOCOMMIT_OFF 0

#define SQL_AUTOCOMMIT_ON 1

#define SQL_TXN_ISOLATION 0

#define SQL_ATTR_TXN_ISOLATION 0

#define SQL_COMMIT_NONE 1

#define SQL_TXN_NO_COMMIT 1

#define SQL_TXN_NOCOMMIT 1

#define SQL_COMMIT_CHG 2

#define SQL_COMMIT_UR 2

#define SQL_TXN_READ_UNCOMMITTED 2

#define SQL_COMMIT_CS 3

#define SQL_TXN_READ_COMMITTED 3

#define SQL_COMMIT_ALL 4

#define SQL_COMMIT_RS 4

#define SQL_TXN_REPEATABLE_READ 4

#define SQL_COMMIT_RR 5

#define SQL_TXN_SERIALIZABLE 5

/* Valid index flags */

#define SQL_INDEX_UNIQUE 0

#define SQL_INDEX_ALL 1

#define SQL_INDEX_OTHER 3

#define SQL_TABLE_STAT 0

#define SQL_ENSURE 1

#define SQL_QUICK 0

/* Valid trace values */

#define SQL_ATTR_TRACE_CLI 1

#define SQL_ATTR_TRACE_DBMON 2

#define SQL_ATTR_TRACE_DEBUG 4

#define SQL_ATTR_TRACE_JOBLOG 8

#define SQL_ATTR_TRACE_STRTRC 16

/* Valid File Options */

#define SQL_FILE_READ 2

#define SQL_FILE_CREATE 8

#define SQL_FILE_OVERWRITE 16

#define SQL_FILE_APPEND 32

/* Valid types for GetDiagField */

#define SQL_DIAG_RETURNCODE 1

#define SQL_DIAG_NUMBER 2

#define SQL_DIAG_ROW_COUNT 3

#define SQL_DIAG_SQLSTATE 4

#define SQL_DIAG_NATIVE 5

#define SQL_DIAG_MESSAGE_TEXT 6

#define SQL_DIAG_DYNAMIC_FUNCTION 7

#define SQL_DIAG_CLASS_ORIGIN 8

#define SQL_DIAG_SUBCLASS_ORIGIN 9

#define SQL_DIAG_CONNECTION_NAME 10

#define SQL_DIAG_SERVER_NAME 11

#define SQL_DIAG_MESSAGE_TOKENS 12

#define SQL_DIAG_AUTOGEN_KEY 14

/*

 * SQLColAttributes defines

 * These are also used by SQLGetInfo

 */

#define SQL_UNSEARCHABLE 0

#define SQL_LIKE_ONLY 1

#define SQL_ALL_EXCEPT_LIKE 2

#define SQL_SEARCHABLE 3

SQL call level interface 233

/* GetFunctions() values to identify CLI functions */

#define SQL_API_SQLALLOCCONNECT 1

#define SQL_API_SQLALLOCENV 2

#define SQL_API_SQLALLOCHANDLE 1001

#define SQL_API_SQLALLOCSTMT 3

#define SQL_API_SQLBINDCOL 4

#define SQL_API_SQLBINDFILETOCOL 2002

#define SQL_API_SQLBINDFILETOPARAM 2003

#define SQL_API_SQLBINDPARAM 1002

#define SQL_API_SQLBINDPARAMETER 1023

#define SQL_API_SQLCANCEL 5

#define SQL_API_SQLCLOSECURSOR 1003

#define SQL_API_SQLCOLATTRIBUTES 6

#define SQL_API_SQLCOLUMNPRIVILEGES 2010

#define SQL_API_SQLCOLUMNS 40

#define SQL_API_SQLCONNECT 7

#define SQL_API_SQLCOPYDESC 1004

#define SQL_API_SQLDATASOURCES 57

#define SQL_API_SQLDESCRIBECOL 8

#define SQL_API_SQLDESCRIBEPARAM 58

#define SQL_API_SQLDISCONNECT 9

#define SQL_API_SQLDRIVERCONNECT 68

#define SQL_API_SQLENDTRAN 1005

#define SQL_API_SQLERROR 10

#define SQL_API_SQLEXECDIRECT 11

#define SQL_API_SQLEXECUTE 12

#define SQL_API_SQLEXTENDEDFETCH 1022

#define SQL_API_SQLFETCH 13

#define SQL_API_SQLFETCHSCROLL 1021

#define SQL_API_SQLFOREIGNKEYS 60

#define SQL_API_SQLFREECONNECT 14

#define SQL_API_SQLFREEENV 15

#define SQL_API_SQLFREEHANDLE 1006

#define SQL_API_SQLFREESTMT 16

#define SQL_API_SQLGETCOL 43

#define SQL_API_SQLGETCONNECTATTR 1007

#define SQL_API_SQLGETCONNECTOPTION 42

#define SQL_API_SQLGETCURSORNAME 17

#define SQL_API_SQLGETDATA 43

#define SQL_API_SQLGETDESCFIELD 1008

#define SQL_API_SQLGETDESCREC 1009

#define SQL_API_SQLGETDIAGFIELD 1010

#define SQL_API_SQLGETDIAGREC 1011

#define SQL_API_SQLGETENVATTR 1012

#define SQL_API_SQLGETFUNCTIONS 44

#define SQL_API_SQLGETINFO 45

#define SQL_API_SQLGETLENGTH 2004

#define SQL_API_SQLGETPOSITION 2005

#define SQL_API_SQLGETSTMTATTR 1014

#define SQL_API_SQLGETSTMTOPTION 46

#define SQL_API_SQLGETSUBSTRING 2006

#define SQL_API_SQLGETTYPEINFO 47

#define SQL_API_SQLLANGUAGES 2001

#define SQL_API_SQLMORERESULTS 61

#define SQL_API_SQLNATIVESQL 62

#define SQL_API_SQLNEXTRESULT 2009

#define SQL_API_SQLNUMPARAMS 63

#define SQL_API_SQLNUMRESULTCOLS 18

#define SQL_API_SQLPARAMDATA 48

#define SQL_API_SQLPARAMOPTIONS 2007

#define SQL_API_SQLPREPARE 19

#define SQL_API_SQLPRIMARYKEYS 65

#define SQL_API_SQLPROCEDURECOLUMNS 66

#define SQL_API_SQLPROCEDURES 67

#define SQL_API_SQLPUTDATA 49

#define SQL_API_SQLRELEASEENV 1015

234 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

#define SQL_API_SQLROWCOUNT 20

#define SQL_API_SQLSETCONNECTATTR 1016

#define SQL_API_SQLSETCONNECTOPTION 50

#define SQL_API_SQLSETCURSORNAME 21

#define SQL_API_SQLSETDESCFIELD 1017

#define SQL_API_SQLSETDESCREC 1018

#define SQL_API_SQLSETENVATTR 1019

#define SQL_API_SQLSETPARAM 22

#define SQL_API_SQLSETSTMTATTR 1020

#define SQL_API_SQLSETSTMTOPTION 51

#define SQL_API_SQLSPECIALCOLUMNS 52

#define SQL_API_SQLSTARTTRAN 2008

#define SQL_API_SQLSTATISTICS 53

#define SQL_API_SQLTABLEPRIVILEGES 2011

#define SQL_API_SQLTABLES 54

#define SQL_API_SQLTRANSACT 23

/* unsupported APIs */

#define SQL_API_SQLSETPOS -1

/* NULL handle defines */

#ifdef __64BIT__

#define SQL_NULL_HENV 0

#define SQL_NULL_HDBC 0

#define SQL_NULL_HSTMT 0

#else

#define SQL_NULL_HENV 0L

#define SQL_NULL_HDBC 0L

#define SQL_NULL_HSTMT 0L

#endif

#ifdef __64BIT__

#if !defined(SDWORD)

typedef int SDWORD;

#endif

#if !defined(UDWORD)

typedef unsigned int UDWORD;

#endif

#else

#if !defined(SDWORD)

typedef long int SDWORD;

#endif

#if !defined(UDWORD)

typedef unsigned long int UDWORD;

#endif

#endif

#if !defined(UWORD)

typedef unsigned short int UWORD;

#endif

#if !defined(SWORD)

typedef signed short int SWORD;

#endif

typedef char SQLCHAR;

typedef short int SQLSMALLINT;

typedef UWORD SQLUSMALLINT;

typedef UDWORD SQLUINTEGER;

typedef double SQLDOUBLE;

typedef float SQLREAL;

typedef void * PTR;

typedef PTR SQLPOINTER;

#ifdef __64BIT__

typedef int SQLINTEGER;

typedef int HENV;

typedef int HDBC;

SQL call level interface 235

typedef int HSTMT;

typedef int HDESC;

typedef int SQLHANDLE;

#else

typedef long int SQLINTEGER;

typedef long HENV;

typedef long HDBC;

typedef long HSTMT;

typedef long HDESC;

typedef long SQLHANDLE;

#endif

typedef HENV SQLHENV;

typedef HDBC SQLHDBC;

typedef HSTMT SQLHSTMT;

typedef HDESC SQLHDESC;

typedef SQLINTEGER RETCODE;

typedef RETCODE SQLRETURN;

typedef float SFLOAT;

typedef SQLPOINTER SQLHWND;

/*

 * DATE, TIME, and TIMESTAMP structures. These are for compatibility

 * purposes only. When actually specifying or retrieving DATE, TIME,

 * and TIMESTAMP values, character strings must be used.

 */

typedef struct DATE_STRUCT

 {

 SQLSMALLINT year;

 SQLSMALLINT month;

 SQLSMALLINT day;

 } DATE_STRUCT;

typedef struct TIME_STRUCT

 {

 SQLSMALLINT hour;

 SQLSMALLINT minute;

 SQLSMALLINT second;

 } TIME_STRUCT;

typedef struct TIMESTAMP_STRUCT

 {

 SQLSMALLINT year;

 SQLSMALLINT month;

 SQLSMALLINT day;

 SQLSMALLINT hour;

 SQLSMALLINT minute;

 SQLSMALLINT second;

 SQLINTEGER fraction; /* fraction of a second */

 } TIMESTAMP_STRUCT;

/* Transaction info structure */

typedef struct TXN_STRUCT {

 SQLINTEGER operation;

 SQLCHAR tminfo[10];

 SQLCHAR reserved1[2];

 void *XID;

 SQLINTEGER timeoutval;

 SQLINTEGER locktimeout;

236 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLCHAR reserved2[8];

} TXN_STRUCT;

SQL_EXTERN SQLRETURN SQLAllocConnect (SQLHENV henv,

 SQLHDBC *phdbc);

SQL_EXTERN SQLRETURN SQLAllocEnv (SQLHENV *phenv);

SQL_EXTERN SQLRETURN SQLAllocHandle (SQLSMALLINT htype,

 SQLINTEGER ihnd,

 SQLINTEGER *ohnd);

SQL_EXTERN SQLRETURN SQLAllocStmt (SQLHDBC hdbc,

 SQLHSTMT *phstmt);

SQL_EXTERN SQLRETURN SQLBindCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLSMALLINT iType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER *pcbValue);

SQL_EXTERN SQLRETURN SQLBindFileToCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLCHAR *fName,

 SQLSMALLINT *fNameLen,

 SQLINTEGER *fOptions,

 SQLSMALLINT fValueMax,

 SQLINTEGER *sLen,

 SQLINTEGER *pcbValue);

SQL_EXTERN SQLRETURN SQLBindFileToParam (SQLHSTMT hstmt,

 SQLSMALLINT ipar,

 SQLSMALLINT iType,

 SQLCHAR *fName,

 SQLSMALLINT *fNameLen,

 SQLINTEGER *fOptions,

 SQLSMALLINT fValueMax,

 SQLINTEGER *pcbValue);

SQL_EXTERN SQLRETURN SQLBindParam (SQLHSTMT hstmt,

 SQLSMALLINT iparm,

 SQLSMALLINT iType,

 SQLSMALLINT pType,

 SQLINTEGER pLen,

 SQLSMALLINT pScale,

 SQLPOINTER pData,

 SQLINTEGER *pcbValue);

SQL_EXTERN SQLRETURN SQLBindParameter (SQLHSTMT hstmt,

 SQLSMALLINT ipar,

 SQLSMALLINT fParamType,

 SQLSMALLINT fCType,

 SQLSMALLINT fSQLType,

 SQLINTEGER pLen,

 SQLSMALLINT pScale,

 SQLPOINTER pData,

 SQLINTEGER cbValueMax,

 SQLINTEGER *pcbValue);

SQL_EXTERN SQLRETURN SQLCancel (SQLHSTMT hstmt);

SQL call level interface 237

SQL_EXTERN SQLRETURN SQLCloseCursor (SQLHSTMT hstmt);

SQL_EXTERN SQLRETURN SQLColAttributes (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLSMALLINT fDescType,

 SQLCHAR *rgbDesc,

 SQLINTEGER cbDescMax,

 SQLINTEGER *pcbDesc,

 SQLINTEGER *pfDesc);

SQL_EXTERN SQLRETURN SQLColumnPrivileges (SQLHSTMT hstmt,

 SQLCHAR *szTableQualifier,

 SQLSMALLINT cbTableQualifier,

 SQLCHAR *szTableOwner,

 SQLSMALLINT cbTableOwner,

 SQLCHAR *szTableName,

 SQLSMALLINT cbTableName,

 SQLCHAR *szColumnName,

 SQLSMALLINT cbColumnName);

SQL_EXTERN SQLRETURN SQLColumns (SQLHSTMT hstmt,

 SQLCHAR *szTableQualifier,

 SQLSMALLINT cbTableQualifier,

 SQLCHAR *szTableOwner,

 SQLSMALLINT cbTableOwner,

 SQLCHAR *szTableName,

 SQLSMALLINT cbTableName,

 SQLCHAR *szColumnName,

 SQLSMALLINT cbColumnName);

SQL_EXTERN SQLRETURN SQLConnect (SQLHDBC hdbc,

 SQLCHAR *szDSN,

 SQLSMALLINT cbDSN,

 SQLCHAR *szUID,

 SQLSMALLINT cbUID,

 SQLCHAR *szAuthStr,

 SQLSMALLINT cbAuthStr);

SQL_EXTERN SQLRETURN SQLCopyDesc (SQLHDESC sDesc,

 SQLHDESC tDesc);

SQL_EXTERN SQLRETURN SQLDataSources (SQLHENV henv,

 SQLSMALLINT fDirection,

 SQLCHAR *szDSN,

 SQLSMALLINT cbDSNMax,

 SQLSMALLINT *pcbDSN,

 SQLCHAR *szDescription,

 SQLSMALLINT cbDescriptionMax,

 SQLSMALLINT *pcbDescription);

SQL_EXTERN SQLRETURN SQLDescribeCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLCHAR *szColName,

 SQLSMALLINT cbColNameMax,

 SQLSMALLINT *pcbColName,

 SQLSMALLINT *pfSqlType,

 SQLINTEGER *pcbColDef,

 SQLSMALLINT *pibScale,

 SQLSMALLINT *pfNullable);

SQL_EXTERN SQLRETURN SQLDescribeParam (SQLHSTMT hstmt,

 SQLSMALLINT ipar,

 SQLSMALLINT *pfSqlType,

 SQLINTEGER *pcbColDef,

 SQLSMALLINT *pibScale,

 SQLSMALLINT *pfNullable);

238 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQL_EXTERN SQLRETURN SQLDisconnect (SQLHDBC hdbc);

SQL_EXTERN SQLRETURN SQLDriverConnect (SQLHDBC hdbc,

 SQLPOINTER hwnd,

 SQLCHAR *szConnStrIn,

 SQLSMALLINT cbConnStrin,

 SQLCHAR *szConnStrOut,

 SQLSMALLINT cbConnStrOutMax,

 SQLSMALLINT *pcbConnStrOut,

 SQLSMALLINT fDriverCompletion);

SQL_EXTERN SQLRETURN SQLEndTran (SQLSMALLINT htype,

 SQLHENV henv,

 SQLSMALLINT ctype);

SQL_EXTERN SQLRETURN SQLError (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLCHAR *szSqlState,

 SQLINTEGER *pfNativeError,

 SQLCHAR *szErrorMsg,

 SQLSMALLINT cbErrorMsgMax,

 SQLSMALLINT *pcbErrorMsg);

SQL_EXTERN SQLRETURN SQLExecDirect (SQLHSTMT hstmt,

 SQLCHAR *szSqlStr,

 SQLINTEGER cbSqlStr);

SQL_EXTERN SQLRETURN SQLExecute (SQLHSTMT hstmt);

SQL_EXTERN SQLRETURN SQLExtendedFetch (SQLHSTMT hstmt,

 SQLSMALLINT fOrient,

 SQLINTEGER fOffset,

 SQLINTEGER *pcrow,

 SQLSMALLINT *rgfRowStatus);

SQL_EXTERN SQLRETURN SQLFetch (SQLHSTMT hstmt);

SQL_EXTERN SQLRETURN SQLFetchScroll (SQLHSTMT hstmt,

 SQLSMALLINT fOrient,

 SQLINTEGER fOffset);

SQL_EXTERN SQLRETURN SQLForeignKeys (SQLHSTMT hstmt,

 SQLCHAR *szPkTableQualifier,

 SQLSMALLINT cbPkTableQualifier,

 SQLCHAR *szPkTableOwner,

 SQLSMALLINT cbPkTableOwner,

 SQLCHAR *szPkTableName,

 SQLSMALLINT cbPkTableName,

 SQLCHAR *szFkTableQualifier,

 SQLSMALLINT cbFkTableQualifier,

 SQLCHAR *szFkTableOwner,

 SQLSMALLINT cbFkTableOwner,

 SQLCHAR *szFkTableName,

 SQLSMALLINT cbFkTableName);

SQL_EXTERN SQLRETURN SQLFreeConnect (SQLHDBC hdbc);

SQL_EXTERN SQLRETURN SQLFreeEnv (SQLHENV henv);

SQL_EXTERN SQLRETURN SQLFreeStmt (SQLHSTMT hstmt,

 SQLSMALLINT fOption);

SQL_EXTERN SQLRETURN SQLFreeHandle (SQLSMALLINT htype,

 SQLINTEGER hndl);

SQL_EXTERN SQLRETURN SQLGetCol (SQLHSTMT hstmt,

SQL call level interface 239

SQLSMALLINT icol,

 SQLSMALLINT itype,

 SQLPOINTER tval,

 SQLINTEGER blen,

 SQLINTEGER *olen);

SQL_EXTERN SQLRETURN SQLGetConnectAttr (SQLHDBC hdbc,

 SQLINTEGER attr,

 SQLPOINTER oval,

 SQLINTEGER ilen,

 SQLINTEGER *olen);

SQL_EXTERN SQLRETURN SQLGetConnectOption (SQLHDBC hdbc,

 SQLSMALLINT iopt,

 SQLPOINTER oval);

SQL_EXTERN SQLRETURN SQLGetCursorName (SQLHSTMT hstmt,

 SQLCHAR *szCursor,

 SQLSMALLINT cbCursorMax,

 SQLSMALLINT *pcbCursor);

SQL_EXTERN SQLRETURN SQLGetData (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLSMALLINT fCType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER *pcbValue);

SQL_EXTERN SQLRETURN SQLGetDescField (SQLHDESC hdesc,

 SQLSMALLINT rcdNum,

 SQLSMALLINT fieldID,

 SQLPOINTER fValue,

 SQLINTEGER fLength,

 SQLINTEGER *stLength);

SQL_EXTERN SQLRETURN SQLGetDescRec (SQLHDESC hdesc,

 SQLSMALLINT rcdNum,

 SQLCHAR *fname,

 SQLSMALLINT bufLen,

 SQLSMALLINT *sLength,

 SQLSMALLINT *sType,

 SQLSMALLINT *sbType,

 SQLINTEGER *fLength,

 SQLSMALLINT *fprec,

 SQLSMALLINT *fscale,

 SQLSMALLINT *fnull);

SQL_EXTERN SQLRETURN SQLGetDiagField (SQLSMALLINT hType,

 SQLINTEGER hndl,

 SQLSMALLINT rcdNum,

 SQLSMALLINT diagID,

 SQLPOINTER dValue,

 SQLSMALLINT bLength,

 SQLSMALLINT *sLength);

SQL_EXTERN SQLRETURN SQLGetDiagRec (SQLSMALLINT hType,

 SQLINTEGER hndl,

 SQLSMALLINT rcdNum,

 SQLCHAR *SQLstate,

 SQLINTEGER *SQLcode,

 SQLCHAR *msgText,

 SQLSMALLINT bLength,

 SQLSMALLINT *SLength);

SQL_EXTERN SQLRETURN SQLGetEnvAttr (SQLHENV hEnv,

 SQLINTEGER fAttribute,

 SQLPOINTER pParam,

240 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLINTEGER cbParamMax,

 SQLINTEGER * pcbParam);

SQL_EXTERN SQLRETURN SQLGetFunctions (SQLHDBC hdbc,

 SQLSMALLINT fFunction,

 SQLSMALLINT *pfExists);

SQL_EXTERN SQLRETURN SQLGetInfo (SQLHDBC hdbc,

 SQLSMALLINT fInfoType,

 SQLPOINTER rgbInfoValue,

 SQLSMALLINT cbInfoValueMax,

 SQLSMALLINT *pcbInfoValue);

SQL_EXTERN SQLRETURN SQLGetLength (SQLHSTMT hstmt,

 SQLSMALLINT locType,

 SQLINTEGER locator,

 SQLINTEGER *sLength,

 SQLINTEGER *ind);

SQL_EXTERN SQLRETURN SQLGetPosition (SQLHSTMT hstmt,

 SQLSMALLINT locType,

 SQLINTEGER srceLocator,

 SQLINTEGER srchLocator,

 SQLCHAR *srchLiteral,

 SQLINTEGER srchLiteralLen,

 SQLINTEGER fPosition,

 SQLINTEGER *located,

 SQLINTEGER *ind);

SQL_EXTERN SQLRETURN SQLGetStmtAttr (SQLHSTMT hstmt,

 SQLINTEGER fAttr,

 SQLPOINTER pvParam,

 SQLINTEGER bLength,

 SQLINTEGER *SLength);

SQL_EXTERN SQLRETURN SQLGetStmtOption (SQLHSTMT hstmt,

 SQLSMALLINT fOption,

 SQLPOINTER pvParam);

SQL_EXTERN SQLRETURN SQLGetSubString (SQLHSTMT hstmt,

 SQLSMALLINT locType,

 SQLINTEGER srceLocator,

 SQLINTEGER fPosition,

 SQLINTEGER length,

 SQLSMALLINT tType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER *StringLength,

 SQLINTEGER *ind);

SQL_EXTERN SQLRETURN SQLGetTypeInfo (SQLHSTMT hstmt,

 SQLSMALLINT fSqlType);

SQL_EXTERN SQLRETURN SQLLanguages (SQLHSTMT hstmt);

SQL_EXTERN SQLRETURN SQLMoreResults (SQLHSTMT hstmt);

SQL_EXTERN SQLRETURN SQLNativeSql (SQLHDBC hdbc,

 SQLCHAR *szSqlStrIn,

 SQLINTEGER cbSqlStrIn,

 SQLCHAR *szSqlStr,

 SQLINTEGER cbSqlStrMax,

 SQLINTEGER *pcbSqlStr);

SQL_EXTERN SQLRETURN SQLNextResult (SQLHSTMT hstmt,

 SQLHSTMT hstmt2);

SQL call level interface 241

SQL_EXTERN SQLRETURN SQLNumParams (SQLHSTMT hstmt,

 SQLSMALLINT *pcpar);

SQL_EXTERN SQLRETURN SQLNumResultCols (SQLHSTMT hstmt,

 SQLSMALLINT *pccol);

SQL_EXTERN SQLRETURN SQLParamData (SQLHSTMT hstmt,

 SQLPOINTER *Value);

SQL_EXTERN SQLRETURN SQLParamOptions (SQLHSTMT hstmt,

 SQLINTEGER crow,

 SQLINTEGER *pirow);

SQL_EXTERN SQLRETURN SQLPrepare (SQLHSTMT hstmt,

 SQLCHAR *szSqlStr,

 SQLSMALLINT cbSqlStr);

SQL_EXTERN SQLRETURN SQLPrimaryKeys (SQLHSTMT hstmt,

 SQLCHAR *szTableQualifier,

 SQLSMALLINT cbTableQualifier,

 SQLCHAR *szTableOwner,

 SQLSMALLINT cbTableOwner,

 SQLCHAR *szTableName,

 SQLSMALLINT cbTableName);

SQL_EXTERN SQLRETURN SQLProcedureColumns (SQLHSTMT hstmt,

 SQLCHAR *szProcQualifier,

 SQLSMALLINT cbProcQualifier,

 SQLCHAR *szProcOwner,

 SQLSMALLINT cbProcOwner,

 SQLCHAR *szProcName,

 SQLSMALLINT cbProcName,

 SQLCHAR *szColumnName,

 SQLSMALLINT cbColumnName);

SQL_EXTERN SQLRETURN SQLProcedures (SQLHSTMT hstmt,

 SQLCHAR *szProcQualifier,

 SQLSMALLINT cbProcQualifier,

 SQLCHAR *szProcOwner,

 SQLSMALLINT cbProcOwner,

 SQLCHAR *szProcName,

 SQLSMALLINT cbProcName);

SQL_EXTERN SQLRETURN SQLPutData (SQLHSTMT hstmt,

 SQLPOINTER Data,

 SQLINTEGER SLen);

SQL_EXTERN SQLRETURN SQLReleaseEnv (SQLHENV henv);

SQL_EXTERN SQLRETURN SQLRowCount (SQLHSTMT hstmt,

 SQLINTEGER *pcrow);

SQL_EXTERN SQLRETURN SQLSetConnectAttr (SQLHDBC hdbc,

 SQLINTEGER attrib,

 SQLPOINTER vParam,

 SQLINTEGER inlen);

SQL_EXTERN SQLRETURN SQLSetConnectOption (SQLHDBC hdbc,

 SQLSMALLINT fOption,

 SQLPOINTER vParam);

SQL_EXTERN SQLRETURN SQLSetCursorName (SQLHSTMT hstmt,

 SQLCHAR *szCursor,

 SQLSMALLINT cbCursor);

SQL_EXTERN SQLRETURN SQLSetDescField (SQLHDESC hdesc,

 SQLSMALLINT rcdNum,

242 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLSMALLINT fID,

 SQLPOINTER Value,

 SQLINTEGER buffLen);

SQL_EXTERN SQLRETURN SQLSetDescRec (SQLHDESC hdesc,

 SQLSMALLINT rcdNum,

 SQLSMALLINT Type,

 SQLSMALLINT subType,

 SQLINTEGER fLength,

 SQLSMALLINT fPrec,

 SQLSMALLINT fScale,

 SQLPOINTER Value,

 SQLINTEGER *sLength,

 SQLINTEGER *indic);

SQL_EXTERN SQLRETURN SQLSetEnvAttr(SQLHENV hEnv,

 SQLINTEGER fAttribute,

 SQLPOINTER pParam,

 SQLINTEGER cbParam);

SQL_EXTERN SQLRETURN SQLSetParam (SQLHSTMT hstmt,

 SQLSMALLINT ipar,

 SQLSMALLINT fCType,

 SQLSMALLINT fSqlType,

 SQLINTEGER cbColDef,

 SQLSMALLINT ibScale,

 SQLPOINTER rgbValue,

 SQLINTEGER *pcbValue);

SQL_EXTERN SQLRETURN SQLSetStmtAttr (SQLHSTMT hstmt,

 SQLINTEGER fAttr,

 SQLPOINTER pParam,

 SQLINTEGER vParam);

SQL_EXTERN SQLRETURN SQLSetStmtOption (SQLHSTMT hstmt,

 SQLSMALLINT fOption,

 SQLPOINTER vParam);

SQL_EXTERN SQLRETURN SQLSpecialColumns (SQLHSTMT hstmt,

 SQLSMALLINT fColType,

 SQLCHAR *szTableQual,

 SQLSMALLINT cbTableQual,

 SQLCHAR *szTableOwner,

 SQLSMALLINT cbTableOwner,

 SQLCHAR *szTableName,

 SQLSMALLINT cbTableName,

 SQLSMALLINT fScope,

 SQLSMALLINT fNullable);

SQL_EXTERN SQLRETURN SQLStartTran (SQLSMALLINT htype,

 SQLHENV henv,

 SQLINTEGER mode,

 SQLINTEGER clevel);

SQL_EXTERN SQLRETURN SQLStatistics (SQLHSTMT hstmt,

 SQLCHAR *szTableQualifier,

 SQLSMALLINT cbTableQualifier,

 SQLCHAR *szTableOwner,

 SQLSMALLINT cbTableOwner,

 SQLCHAR *szTableName,

 SQLSMALLINT cbTableName,

 SQLSMALLINT fUnique,

 SQLSMALLINT fres);

SQL_EXTERN SQLRETURN SQLTablePrivileges (SQLHSTMT hstmt,

 SQLCHAR *szTableQualifier,

 SQLSMALLINT cbTableQualifier,

SQL call level interface 243

SQLCHAR *szTableOwner,

 SQLSMALLINT cbTableOwner,

 SQLCHAR *szTableName,

 SQLSMALLINT cbTableName);

SQL_EXTERN SQLRETURN SQLTables (SQLHSTMT hstmt,

 SQLCHAR *szTableQualifier,

 SQLSMALLINT cbTableQualifier,

 SQLCHAR *szTableOwner,

 SQLSMALLINT cbTableOwner,

 SQLCHAR *szTableName,

 SQLSMALLINT cbTableName,

 SQLCHAR *szTableType,

 SQLSMALLINT cbTableType);

SQL_EXTERN SQLRETURN SQLTransact (SQLHENV henv,

 SQLHDBC hdbc,

 SQLSMALLINT fType);

#define FAR

#define SQL_SQLSTATE_SIZE 5 /* size of SQLSTATE, not including

 null terminating byte */

#define SQL_MAX_DSN_LENGTH 18 /* maximum data source name size */

#define SQL_MAX_ID_LENGTH 18 /* maximum identifier name size,

 for example, cursor names */

#define SQL_MAX_STMT_SIZ 65480 /* Maximum statement size */

#define SQL_MAXRECL 32766 /* Maximum record length */

#define SQL_SMALL_LENGTH 2 /* Size of a SMALLINT */

#define SQL_MAXSMALLVAL 32767 /* Maximum value of a SMALLINT */

#define SQL_MINSMALLVAL (-(SQL_MAXSMALLVAL)-1) /* Minimum value of a SMALLINT */

#define SQL_INT_LENGTH 4 /* Size of an INTEGER */

#define SQL_MAXINTVAL 2147483647 /* Maximum value of an INTEGER */

#define SQL_MININTVAL (-(SQL_MAXINTVAL)-1)/* Minimum value of an INTEGER */

#define SQL_FLOAT_LENGTH 8 /* Size of a FLOAT */

#define SQL_DEFDEC_PRECISION 5 /* Default precision for DECIMAL */

#define SQL_DEFDEC_SCALE 0 /* Default scale for DECIMAL */

#define SQL_MAXDECIMAL 31 /* Maximum scale/prec. for DECIMAL */

#define SQL_DEFCHAR 1 /* Default length for a CHAR */

#define SQL_DEFWCHAR 1 /* Default length for a wchar_t */

#define SQL_MAXCHAR 32766 /* Maximum length of a CHAR */

#define SQL_MAXLSTR 255 /* Maximum length of an LSTRING */

#define SQL_MAXVCHAR 32740 /* Maximum length of a */

 /* VARCHAR */

#define SQL_MAXVGRAPH 16370 /* Maximum length of a VARGRAPHIC */

#define SQL_MAXBLOB 2147483647 /* Max. length of a BLOB host var */

#define SQL_MAXCLOB 2147483647 /* Max. length of a CLOB host var */

#define SQL_MAXDBCLOB 1073741823 /* Max. length of an DBCLOB host */

 /* var */

#define SQL_LONGMAX 32740 /* Maximum length of a LONG VARCHAR */

#define SQL_LONGGRMAX 16370 /* Max. length of a LONG VARGRAPHIC */

#define SQL_LVCHAROH 26 /* Overhead for LONG VARCHAR in */

 /* record */

#define SQL_LOBCHAROH 312 /* Overhead for LOB in record */

#define SQL_BLOB_MAXLEN 2147483647 /* BLOB maximum length, in bytes */

#define SQL_CLOB_MAXLEN 2147483647 /* CLOB maximum length, in chars */

#define SQL_DBCLOB_MAXLEN 1073741823 /* maxlen for dbcs lobs */

#define SQL_TIME_LENGTH 3 /* Size of a TIME field */

#define SQL_TIME_STRLEN 8 /* Size of a TIME field output */

#define SQL_TIME_MINSTRLEN 5 /* Size of a non-USA TIME field */

 /* output without seconds */

#define SQL_DATE_LENGTH 4 /* Size of a DATE field */

#define SQL_DATE_STRLEN 10 /* Size of a DATE field output */

#define SQL_STAMP_LENGTH 10 /* Size of a TIMESTAMP field */

244 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

#define SQL_STAMP_STRLEN 26 /* Size of a TIMESTAMP field output */

#define SQL_STAMP_MINSTRLEN 19 /* Size of a TIMESTAMP field output */

 /* without microseconds */

#define SQL_BOOLEAN_LENGTH 1 /* Size of a BOOLEAN field */

#define SQL_IND_LENGTH 2 /* Size of an indicator value */

#define SQL_MAX_PNAME_LENGTH 254 /* Max size of Stored Proc Name */

#define SQL_LG_IDENT 18 /* Maximum length of Long Identifier */

#define SQL_SH_IDENT 8 /* Maximum length of Short Identifier */

#define SQL_MN_IDENT 1 /* Minimum length of Identifiers */

#define SQL_MAX_VAR_NAME 30 /* Max size of Host Variable Name */

#define SQL_KILO_VALUE 1024 /* # of bytes in a kilobyte */

#define SQL_MEGA_VALUE 1048576 /* # of bytes in a megabyte */

#define SQL_GIGA_VALUE 1073741824 /* # of bytes in a gigabyte */

/* SQL extended data types (negative means unsupported) */

#define SQL_TINYINT -6

#define SQL_BIT -7

/* C data type to SQL data type mapping */

#define SQL_C_CHAR SQL_CHAR /* CHAR, VARCHAR, DECIMAL, NUMERIC */

#define SQL_C_LONG SQL_INTEGER /* INTEGER */

#define SQL_C_SLONG SQL_INTEGER /* INTEGER */

#define SQL_C_SHORT SQL_SMALLINT /* SMALLINT */

#define SQL_C_FLOAT SQL_REAL /* REAL */

#define SQL_C_DOUBLE SQL_DOUBLE /* FLOAT, DOUBLE */

#define SQL_C_DATE SQL_DATE /* DATE */

#define SQL_C_TIME SQL_TIME /* TIME */

#define SQL_C_TIMESTAMP SQL_TIMESTAMP /* TIMESTAMP */

#define SQL_C_BINARY SQL_BINARY /* BINARY, VARBINARY */

#define SQL_C_BIT SQL_BIT

#define SQL_C_TINYINT SQL_TINYINT

#define SQL_C_BIGINT SQL_BIGINT

#define SQL_C_DBCHAR SQL_DBCLOB

#define SQL_C_WCHAR SQL_WCHAR /* UNICODE */

#define SQL_C_DATETIME SQL_DATETIME /* DATETIME */

#define SQL_C_BLOB SQL_BLOB

#define SQL_C_CLOB SQL_CLOB

#define SQL_C_DBCLOB SQL_DBCLOB

#define SQL_C_BLOB_LOCATOR SQL_BLOB_LOCATOR

#define SQL_C_CLOB_LOCATOR SQL_CLOB_LOCATOR

#define SQL_C_DBCLOB_LOCATOR SQL_DBCLOB_LOCATOR

/* miscellaneous constants and unsupported functions */

#define SQL_ADD -1

#define SQL_ATTR_PARAMSET_SIZE -1

#define SQL_ATTR_PARAMS_PROCESSED_PTR -1

#define SQL_ATTR_PARAM_BIND_TYPE -1

#define SQL_ATTR_PARAM_STATUS_PTR -1

#define SQL_DELETE -1

#define SQL_KEYSET_SIZE -1

#define SQL_LCK_NO_CHANGE -1

#define SQL_LOCK_NO_CHANGE -1

#define SQL_LOCK_EXCLUSIVE -1

#define SQL_LOCK_UNLOCK -1

#define SQL_METH_D -1

#define SQL_POSITION -1

#define SQL_QUERY_TIMEOUT -1

#define SQL_ROW_ADDED -1

#define SQL_ROW_NOROW -1

#define SQL_ROW_ERROR -1

#define SQL_ROW_SUCCESS 0

#define SQL_ROW_SUCCESS_WITH_INFO -1

#define SQL_SC_TRY_UNIQUE -1

#define SQL_SIMULATE_CURSOR -1

#define SQL_UNKNOWN_TYPE -1

#define SQL_UPDATE -1

SQL call level interface 245

#define SQL_WARN_VAL_TRUNC "01004"

#if (__OS400_TGTVRM__>=510) /* @B1A*/

#pragma datamodel(pop) /* @B1A*/

#endif /* @B1A*/

#ifndef __ILEC400__

#pragma info(restore)

#endif

#endif /* SQL_H_SQLCLI */

Run DB2 UDB CLI in server mode

This topic is about why and how you should run your DB2 UDB CLI applications in server mode.

The reason for running in SQL server mode is that many applications have the need to act as database

servers. This means that a single job performs SQL requests on behalf of multiple users. Without using

SQL server mode, applications might encounter one or more of the following three limitations:

1. A single job can only have one commit transaction per activation group.

2. A single job can only connect to an RDB once.

3. All SQL statements run under the job’s user profile, regardless of the user ID passed in on the

connect.

SQL server mode circumvents these limitations by routing all SQL statements to separate jobs. Each

connection runs in its own job. The system uses prestart jobs in the QSYSWRK subsystem to minimize

the startup time for each connection. Because each call to SQLConnect can accept a different user profile,

each job also has its own commit transaction. As soon as the SQLDisconnect has been performed, the job

is reset and put back in the pool of available jobs.

Start DB2 UDB CLI in SQL server mode

There are two ways to place a job into SQL server mode:

1. The most likely case is using the CLI function, SQLSetEnvAttr. The SQL server mode is best suited to

CLI applications because they already use the concept of multiple connections handles. Set this mode

immediately after allocating the CLI environment. Furthermore, the job must not have run any SQL,

or started commitment control, before setting this mode. If either one of those cases is true, the mode

does not become changed to server mode, and SQL continues to run ″inline″.

EXAMPLE.

.

SQLAllocEnv(&henv);

long attr;

attr = SQL_TRUE

SQLSetEnvAttr(henv,SQL_ATTR_SERVER_MODE,&attr,0);

SQLAllocConnect(henv,&hdbc);

.

.

2. The second way to set server mode is using the Change Job (QWTCHGJB) API. Refer to the APIs

topic in the information center for a complete description of the QWTCHGJB API.

As soon as SQL server mode has been set, all SQL connections and SQL statements run in server mode.

There is no switching back and forth. The job, once in server mode, cannot start commitment control, and

cannot use Interactive SQL.

246 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

Restrictions for running DB2 UDB CLI in server mode

v A job must set server mode at the very beginning of processing, before doing anything else. For jobs

that are strictly CLI users, they must use the SQLSetEnvAttr call to turn on server mode. Remember to

do this right after SQLAllocEnv but before any other calls. As soon as the server mode is on, it cannot

be turned off.

v All the SQL functions run in the prestart jobs and commitment control. DO NOT start commitment

control in the originating job, either before or after entering server mode.

v Because the SQL is processed in the prestart job, there is no sensitivity to certain changes in the

originating job. This includes changes to library list, job priority, message logging, and so forth. The

prestart is sensitive to a change of the coded character set identifier (CCSID) value in the originating

job, because this can affect the way data is mapped back to the program of the user.

v When running server mode, the application MUST use SQL commits and rollbacks, either embedded

or by the SQL CLI. They cannot use the CL commands, because there is no commitment control that is

running in the originating job. The job MUST issue a COMMIT before disconnecting; otherwise an

implicit ROLLBACK occurs.

v It is not possible to use interactive SQL from a job in server mode. Use of STRSQL when in server

mode results in an SQL6141 message.

v It is also not possible to perform SQL compiles while in server mode. Server mode can be used when

running compiled SQL programs, but must not be on for the compiles. The compiles fail, if the job is in

server mode.

v SQLDataSources is unique in that it does not require a connection handle to run. When in server mode,

the program must already have done a connect to the local database, before using SQLDataSources.

Since DataSources is used to find the name of the RDB for connection, IBM supports passing a NULL

pointer for the RDB name on SQLConnect. This obtains a local connection. This makes it possible to

write a generic program, when there is no prior knowledge of the system names.

v When doing commits and rollbacks through the CLI, the calls to SQLEndTran and SQLTransact must

include a connection handle. When not running in server mode, one can omit the connection handle to

commit everything. However, this is not supported in server mode, because each connection (or

thread) has its own transaction scoping.

v It is not recommended to share connection handles across threads, when running in SQL server mode.

This is because one thread can overwrite return data or error information that another thread has yet

to process.

v If any other SQL work has been done in the job before setting server mode in CLI, then it is impossible

to change CLI’s environment to run in server mode. An example of this is the use of embedded SQL

before the call to do any CLI work that attempted to set the server mode attribute.

Examples: DB2 UDB CLI applications

This topic provides complete examples of DB2 UDB CLI applications.

The examples used through this topic have been drawn from the applications provided in the SQL call

level interface topic collection. Detailed error checking has not been implemented in the examples.

Example: Embedded SQL and the equivalent DB2 UDB CLI function

calls

This example shows embedded statements in comments, and the equivalent DB2 UDB CLI function calls.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

/***

** file = embedded.c

**

SQL call level interface 247

** Example of executing an SQL statement using CLI.

** The equivalent embedded SQL statements are shown in comments.

**

** Functions used:

**

** SQLAllocConnect SQLFreeConnect

** SQLAllocEnv SQLFreeEnv

** SQLAllocStmt SQLFreeStmt

** SQLConnect SQLDisconnect

**

** SQLBindCol SQLFetch

** SQLSetParam SQLTransact

** SQLError SQLExecDirect

**

**/

#include <stdio.h>

#include <string.h>

#include "sqlcli.h"

#ifndef NULL

#define NULL 0

#endif

int print_err (SQLHDBC hdbc,

 SQLHSTMT hstmt);

int main ()

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLHSTMT hstmt;

 SQLCHAR server[] = "sample";

 SQLCHAR uid[30];

 SQLCHAR pwd[30];

 SQLINTEGER id;

 SQLCHAR name[51];

 SQLINTEGER namelen, intlen;

 SQLSMALLINT scale;

 scale = 0;

 /* EXEC SQL CONNECT TO :server USER :uid USING :authentication_string; */

 SQLAllocEnv (&henv); /* allocate an environment handle */

 SQLAllocConnect (henv, &hdbc); /* allocate a connection handle */

 /* Connect to database indicated by "server" variable with */

 /* authorization-name given in "uid", authentication-string given */

 /* in "pwd". Note server, uid, and pwd contain null-terminated */

 /* strings, as indicated by the 3 input lengths set to SQL_NTS */

 if (SQLConnect (hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS)

 != SQL_SUCCESS)

 return (print_err (hdbc, SQL_NULL_HSTMT));

 SQLAllocStmt (hdbc, &hstmt); /* allocate a statement handle */

 /* EXEC SQL CREATE TABLE NAMEID (ID integer, NAME varchar(50)); */

 {

 SQLCHAR create[] = "CREATE TABLE NAMEID (ID integer, NAME varchar(50))";

 /* execute the sql statement */

 if (SQLExecDirect (hstmt, create, SQL_NTS) != SQL_SUCCESS)

248 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

return (print_err (hdbc, hstmt));

 }

 /* EXEC SQL COMMIT WORK; */

 SQLTransact (henv, hdbc, SQL_COMMIT); /* commit create table */

 /* EXEC SQL INSERT INTO NAMEID VALUES (:id, :name */

 {

 SQLCHAR insert[] = "INSERT INTO NAMEID VALUES (?, ?)";

 /* show the use of SQLPrepare/SQLExecute method */

 /* prepare the insert */

 if (SQLPrepare (hstmt, insert, SQL_NTS) != SQL_SUCCESS)

 return (print_err (hdbc, hstmt));

 /* Set up the first input parameter "id" */

 intlen = sizeof (SQLINTEGER);

 SQLSetParam (hstmt, 1,

 SQL_C_LONG, SQL_INTEGER,

 (SQLINTEGER) sizeof (SQLINTEGER),

 scale, (SQLPOINTER) &id,

 (SQLINTEGER *) &intlen);

 namelen = SQL_NTS;

 /* Set up the second input parameter "name" */

 SQLSetParam (hstmt, 2,

 SQL_C_CHAR, SQL_VARCHAR,

 50,

 scale, (SQLPOINTER) name,

 (SQLINTEGER *) &namelen);

 /* now assign parameter values and execute the insert */

 id=500;

 strcpy (name, "Babbage");

 if (SQLExecute (hstmt) != SQL_SUCCESS)

 return (print_err (hdbc, hstmt));

 }

 /* EXEC SQL COMMIT WORK; */

 SQLTransact (henv, hdbc, SQL_COMMIT); /* commit inserts */

 /* EXEC SQL DECLARE c1 CURSOR FOR SELECT ID, NAME FROM NAMEID; */

 /* EXEC SQL OPEN c1; */

 /* The application doesn’t specify "declare c1 cursor for" */

 {

 SQLCHAR select[] = "select ID, NAME from NAMEID";

 if (SQLExecDirect (hstmt, select, SQL_NTS) != SQL_SUCCESS)

 return (print_err (hdbc, hstmt));

 }

 /* EXEC SQL FETCH c1 INTO :id, :name; */

 /* Binding first column to output variable "id" */

 SQLBindCol (hstmt, 1,

 SQL_C_LONG, (SQLPOINTER) &id,

 (SQLINTEGER) sizeof (SQLINTEGER),

 (SQLINTEGER *) &intlen);

 /* Binding second column to output variable "name" */

 SQLBindCol (hstmt, 2,

SQL call level interface 249

SQL_C_CHAR, (SQLPOINTER) name,

 (SQLINTEGER) sizeof (name),

 &namelen);

 SQLFetch (hstmt); /* now execute the fetch */

 printf("Result of Select: id = %ld name = %s\n", id, name);

 /* finally, we should commit, discard hstmt, disconnect */

 /* EXEC SQL COMMIT WORK; */

 SQLTransact (henv, hdbc, SQL_COMMIT); /* commit the transaction */

 /* EXEC SQL CLOSE c1; */

 SQLFreeStmt (hstmt, SQL_DROP); /* free the statement handle */

 /* EXEC SQL DISCONNECT; */

 SQLDisconnect (hdbc); /* disconnect from the database */

 SQLFreeConnect (hdbc); /* free the connection handle */

 SQLFreeEnv (henv); /* free the environment handle */

 return (0);

}

int print_err (SQLHDBC hdbc,

 SQLHSTMT hstmt)

{

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];

SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];

SQLINTEGER sqlcode;

SQLSMALLINT length;

 while (SQLError(SQL_NULL_HENV, hdbc, hstmt,

 sqlstate,

 &sqlcode,

 buffer,

 SQL_MAX_MESSAGE_LENGTH + 1,

 &length) == SQL_SUCCESS)

 {

 printf("SQLSTATE: %s Native Error Code: %ld\n",

 sqlstate, sqlcode);

 printf("%s \n", buffer);

 printf("----------------------------- \n");

 };

 return(SQL_ERROR);

}

Example: Use the CLI XA transaction connection attributes

This example shows how to use the CLI XA transaction connection attributes.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.
/***

** file = CLIXAEXMP1.c

**

** Example of a typical flow of work in an XA transaction using the CLI.

**

** XA Functions used:

**

** xa_open() -- Open an XA resource for use in a transaction

** xa_prepare() -- Prepare for commitment of work in the transaction

** xa_commit() -- Commit work done in the transaction

250 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

**

** CLI Functions used:

**

** SQLAllocHanle SQLBindParameter SQLDisconnect

** SQLError SQLExecute SQLFreeHandle

** SQLPrepare SQLSetConnectAttr SQLSetEnvAttr

**

** This example will:

** - Open the XA transaction manager

** - Open a CLI connection and start a transaction for it using SQL_TXN_CREATE

** - Do some commitable CLI work under this transaction

** - End the transaction on the first connection using SQL_TXN_END

** - Close the first CLI connection and open a second connection

** - Use the SQL_TXN_FIND option to find the previous transaction

** - Do more commitable work on this transaction and end the transaction

** - Use the XA APIs to prepare and commit the work

**/

#define _XA_PROTOTYPES

#define _MULTI_THREADED

#include <xa.h>

#include <stdio.h>

#include <string.h>

#include <sqlcli.h>

#include <time.h>

#include <stdlib.h>

void genXid(XID *xid) {

 time_t t;

 memset(xid, 0, sizeof(xid));

 xid->formatID = 69;

 xid->gtrid_length = 4;

 xid->bqual_length = 4;

 /* xid->data must be a globally unique naming identifier

 when taking gtrid and bqual together - the example below

 is most likely not unique */

 /* gtrid contents */

 xid->data[0] = 0xFA;

 xid->data[1] = 0xED;

 xid->data[2] = 0xFA;

 xid->data[3] = 0xED;

 time(&t);

 /* bqual contents */

 xid->data[4] = (((int)t) >> 24) & 0xFF;

 xid->data[5] = (((int)t) >> 16) & 0xFF;

 xid->data[6] = (((int)t) >> 8) & 0xFF;

 xid->data[7] = (((int)t) >> 0) & 0xFF;

}

int main(int argc, char **argv)

{

/***/

/* Declarations Section */

/***/

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLHSTMT hstmt;

 SQLRETURN rtnc;

 SQLINTEGER attr;

 SQLINTEGER int_buffer;

 SQLINTEGER rlength;

 SQLINTEGER buffint;

 SQLINTEGER ilen;

 SQLCHAR s[80];

 SQLCHAR state[10];

 SQLCHAR buffer[600];

 SQLCHAR sqlstr[600];

 SQLINTEGER natErr;

SQL call level interface 251

SQLSMALLINT len;

 /* Declare local XA variables */

 struct TXN_STRUCT new;

 XID xid;

 char xaOpenFormat[128];

 int mainRmid = 1;

 int xaRc;

 /* Initialize the XA structure variable’s (defined in sqlcli.h) */

 strcpy(new.tminfo,"MYPRODUCT");

 strcpy(new.reserved1,"");

 new.timeoutval = 0;

 new.locktimeout = 0;

 strcpy(new.reserved2,"");

 genXid(&xid);

 new.XID = &xid;

 /* Use the XA APIs to start the transaction manager */

 /* The xa_info argument for xa_open MUST include the THDCTL=C keyword

 and value when using using CLI with XA transactions */

 sprintf(xaOpenFormat, "RDBNAME=*LOCAL THDCTL=C");

 xaRc = xa_open(xaOpenFormat, mainRmid, TMNOFLAGS);

 printf("xa_open(%s, %d, TMNOFLAGS) = %d\n",

 xaOpenFormat, mainRmid, xaRc);

 /* Setup the CLI resources */

 attr=SQL_TRUE;

 rtnc=SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&henv);

 rtnc=SQLSetEnvAttr(henv,SQL_ATTR_SERVER_MODE,&attr,0); /* set server mode */

 rtnc=SQLAllocHandle(SQL_HANDLE_DBC,henv,&hdbc);

 /* Mark the connection as an external transaction and connect */

 rtnc=SQLSetConnectAttr(hdbc,SQL_ATTR_TXN_EXTERNAL,&attr,0);

 rtnc=SQLConnect(hdbc,NULL,0,NULL,0,NULL,0);

 /* Start the transaction */

 new.operation = SQL_TXN_CREATE;

 rtnc=SQLSetConnectAttr(hdbc,SQL_ATTR_TXN_INFO,&new,0);

 /* Do some CLI work */

 rtnc=SQLAllocHandle(SQL_HANDLE_STMT,hdbc,&hstmt);

 strcpy(sqlstr,"insert into tab values(?)");

 rtnc=SQLPrepare(hstmt,sqlstr,SQL_NTS);

 rtnc=

 SQLBindParameter(hstmt,1,1,SQL_INTEGER,SQL_INTEGER,10,2,&buffint,0,&ilen);

 buffint=10; /* set the integer value to insert */

 rtnc=SQLExecute(hstmt);

 if (rtnc!=SQL_SUCCESS)

 {

 printf("SQLExecute failed with return code: %i \n", rtnc);

 rtnc=SQLError(0, 0,hstmt, state, &natErr, buffer, 600, &len);

 printf("%i is the SQLCODE\n",natErr);

 printf("%i is the length of error text\n",len);

 printf("%s is the state\n",state);

 printf("%s \n",buffer);

 }

 else

 printf("SQLExecute succeeded, value %i inserted \n", buffint);

 /* End the transaction */

 new.operation = SQL_TXN_END;

 rtnc=SQLSetConnectAttr(hdbc,SQL_ATTR_TXN_INFO,&new,0);

 /* Cleanup and disconnect from the first connection */

 rtnc=SQLFreeHandle(SQL_HANDLE_STMT,hstmt);

 rtnc=SQLDisconnect(hdbc);

252 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

/* Mark the second connection as an external transaction and connect */

 attr=SQL_TRUE;

 rtnc=SQLSetConnectAttr(hdbc,SQL_ATTR_TXN_EXTERNAL,&attr,0);

 rtnc=SQLConnect(hdbc,NULL,0,NULL,0,NULL,0);

 /* Find the open transaction from the first connection */

 new.operation = SQL_TXN_FIND;

 rtnc=SQLSetConnectAttr(hdbc,SQL_ATTR_TXN_INFO,&new,0);

 /* Do some CLI work on the second connection */

 rtnc=SQLAllocHandle(SQL_HANDLE_STMT,hdbc,&hstmt);

 strcpy(sqlstr,"insert into tab values(?)");

 rtnc=SQLPrepare(hstmt,sqlstr,SQL_NTS);

 rtnc=

 SQLBindParameter(hstmt,1,1,SQL_INTEGER,SQL_INTEGER,10,2,&buffint,0,&ilen);

 buffint=15; /* set the integer value to insert */

 rtnc=SQLExecute(hstmt);

 if (rtnc!=SQL_SUCCESS)

 {

 printf("SQLExecute failed with return code: %i \n", rtnc);

 rtnc=SQLError(0, 0,hstmt, state, &natErr, buffer, 600, &len);

 printf("%i is the SQLCODE\n",natErr);

 printf("%i is the length of error text\n",len);

 printf("%s is the state\n",state);

 printf("%s \n",buffer);

 }

 else

 printf("Second SQLExecute succeeded, value %i inserted \n", buffint);

 /* End the transaction */

 new.operation = SQL_TXN_END;

 rtnc=SQLSetConnectAttr(hdbc,SQL_ATTR_TXN_INFO,&new,0);

 /* Now, use XA to prepare/commit transaction */

 /* Prepare to commit */

 xaRc = xa_prepare(&xid, mainRmid, TMNOFLAGS);

 printf("xa_prepare(xid, %d, TMNOFLAGS) = %d\n",mainRmid, xaRc);

 /* Commit */

 if (xaRc != XA_RDONLY) {

 xaRc = xa_commit(&xid, mainRmid, TMNOFLAGS);

 printf("xa_commit(xid, %d, TMNOFLAGS) = %d\n", mainRmid, xaRc);

 }

 else {

 printf("xa_commit() skipped for read only TX\n");

 }

 /* Cleanup the CLI resources */

 rtnc=SQLFreeHandle(SQL_HANDLE_STMT,hstmt);

 rtnc=SQLDisconnect(hdbc);

 rtnc=SQLFreeHandle(SQL_HANDLE_DBC,hdbc);

 rtnc=SQLFreeHandle(SQL_HANDLE_ENV,henv);

 return 0;

}

Example: Interactive SQL and the equivalent DB2 UDB CLI function

calls

This example shows the processing of interactive SQL statements, and follows the flow described in

“Write a DB2 UDB CLI application” on page 5.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 260.

SQL call level interface 253

/***

** file = typical.c

**

** Example of executing interactive SQL statements, displaying result sets

** and simple transaction management.

**

** Functions used:

**

** SQLAllocConnect SQLFreeConnect

** SQLAllocEnv SQLFreeEnv

** SQLAllocStmt SQLFreeStmt

** SQLConnect SQLDisconnect

**

** SQLBindCol SQLFetch

** SQLDescribeCol SQLNumResultCols

** SQLError SQLRowCount

** SQLExecDirect SQLTransact

**

**/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "sqlcli.h"

#define MAX_STMT_LEN 255

#define MAXCOLS 100

#define max(a,b) (a > b ? a : b)

int initialize(SQLHENV *henv,

 SQLHDBC *hdbc);

int process_stmt(SQLHENV henv,

 SQLHDBC hdbc,

 SQLCHAR *sqlstr);

int terminate(SQLHENV henv,

 SQLHDBC hdbc);

int print_error(SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt);

int check_error(SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc);

void display_results(SQLHSTMT hstmt,

 SQLSMALLINT nresultcols);

/***

** main

** - initialize

** - start a transaction

** - get statement

** - another statement?

** - COMMIT or ROLLBACK

** - another transaction?

** - terminate

***/

int main()

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLCHAR sqlstmt[MAX_STMT_LEN + 1]="";

254 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

SQLCHAR sqltrans[sizeof("ROLLBACK")];

 SQLRETURN rc;

 rc = initialize(&henv, &hdbc);

 if (rc == SQL_ERROR) return(terminate(henv, hdbc));

 printf("Enter an SQL statement to start a transaction(or ’q’ to Quit):\n");

 gets(sqlstmt);

 while (sqlstmt[0] !=’q’)

 {

 while (sqlstmt[0] != ’q’)

 { rc = process_stmt(henv, hdbc, sqlstmt);

 if (rc == SQL_ERROR) return(SQL_ERROR);

 printf("Enter an SQL statement(or ’q’ to Quit):\n");

 gets(sqlstmt);

 }

 printf("Enter ’c’ to COMMIT or ’r’ to ROLLBACK the transaction\n");

 fgets(sqltrans, sizeof("ROLLBACK"), stdin);

 if (sqltrans[0] == ’c’)

 {

 rc = SQLTransact (henv, hdbc, SQL_COMMIT);

 if (rc == SQL_SUCCESS)

 printf ("Transaction commit was successful\n");

 else

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 }

 if (sqltrans[0] == ’r’)

 {

 rc = SQLTransact (henv, hdbc, SQL_ROLLBACK);

 if (rc == SQL_SUCCESS)

 printf ("Transaction roll back was successful\n");

 else

 check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 }

 printf("Enter an SQL statement to start a transaction or ’q’ to quit\n");

 gets(sqlstmt);

 }

 terminate(henv, hdbc);

 return (SQL_SUCCESS);

}/* end main */

/***

** process_stmt

** - allocates a statement handle

** - executes the statement

** - determines the type of statement

** - if there are no result columns, therefore non-select statement

** - if rowcount > 0, assume statement was UPDATE, INSERT, DELETE

** else

** - assume a DDL, or Grant/Revoke statement

** else

** - must be a select statement.

** - display results

** - frees the statement handle

***/

int process_stmt (SQLHENV henv,

 SQLHDBC hdbc,

 SQLCHAR *sqlstr)

{

SQL call level interface 255

SQLHSTMT hstmt;

SQLSMALLINT nresultcols;

SQLINTEGER rowcount;

SQLRETURN rc;

 SQLAllocStmt (hdbc, &hstmt); /* allocate a statement handle */

 /* execute the SQL statement in "sqlstr" */

 rc = SQLExecDirect (hstmt, sqlstr, SQL_NTS);

 if (rc != SQL_SUCCESS)

 if (rc == SQL_NO_DATA_FOUND) {

 printf("\nStatement executed without error, however,\n");

 printf("no data was found or modified\n");

 return (SQL_SUCCESS);

 }

 else

 check_error (henv, hdbc, hstmt, rc);

 SQLRowCount (hstmt, &rowcount);

 rc = SQLNumResultCols (hstmt, &nresultcols);

 if (rc != SQL_SUCCESS)

 check_error (henv, hdbc, hstmt, rc);

 /* determine statement type */

 if (nresultcols == 0) /* statement is not a select statement */

 {

 if (rowcount > 0) /* assume statement is UPDATE, INSERT, DELETE */

 {

 printf ("Statement executed, %ld rows affected\n", rowcount);

 }

 else /* assume statement is GRANT, REVOKE or a DLL statement */

 {

 printf ("Statement completed successful\n");

 }

 }

 else /* display the result set */

 {

 display_results(hstmt, nresultcols);

 } /* end determine statement type */

 SQLFreeStmt (hstmt, SQL_DROP); /* free statement handle */

 return (0);

}/* end process_stmt */

/***

** initialize

** - allocate environment handle

** - allocate connection handle

** - prompt for server, user id, & password

** - connect to server

***/

int initialize(SQLHENV *henv,

 SQLHDBC *hdbc)

{

SQLCHAR server[18],

 uid[10],

 pwd[10];

SQLRETURN rc;

 rc = SQLAllocEnv (henv); /* allocate an environment handle */

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

256 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

rc = SQLAllocConnect (*henv, hdbc); /* allocate a connection handle */

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 printf("Enter Server Name:\n");

 gets(server);

 printf("Enter User Name:\n");

 gets(uid);

 printf("Enter Password Name:\n");

 gets(pwd);

 if (uid[0] == ’\0’)

 { rc = SQLConnect (*hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 }

 else

 { rc = SQLConnect (*hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

 if (rc != SQL_SUCCESS)

 check_error (*henv, *hdbc, SQL_NULL_HSTMT, rc);

 }

}/* end initialize */

/***

** terminate

** - disconnect

** - free connection handle

** - free environment handle

***/

int terminate(SQLHENV henv,

 SQLHDBC hdbc)

{

SQLRETURN rc;

 rc = SQLDisconnect (hdbc); /* disconnect from database */

 if (rc != SQL_SUCCESS)

 print_error (henv, hdbc, SQL_NULL_HSTMT);

 rc = SQLFreeConnect (hdbc); /* free connection handle */

 if (rc != SQL_SUCCESS)

 print_error (henv, hdbc, SQL_NULL_HSTMT);

 rc = SQLFreeEnv (henv); /* free environment handle */

 if (rc != SQL_SUCCESS)

 print_error (henv, SQL_NULL_HDBC, SQL_NULL_HSTMT);

}/* end terminate */

/***

** display_results - displays the selected character fields

**

** - for each column

** - get column name

** - bind column

** - display column headings

** - fetch each row

** - if value truncated, build error message

** - if column null, set value to "NULL"

** - display row

** - print truncation message

** - free local storage

**

***/

void display_results(SQLHSTMT hstmt,

 SQLSMALLINT nresultcols)

{

SQLCHAR colname[32];

SQLSMALLINT coltype[MAXCOLS];

SQLSMALLINT colnamelen;

SQL call level interface 257

SQLSMALLINT nullable;

SQLINTEGER collen[MAXCOLS];

SQLSMALLINT scale;

SQLINTEGER outlen[MAXCOLS];

SQLCHAR * data[MAXCOLS];

SQLCHAR errmsg[256];

SQLRETURN rc;

SQLINTEGER i;

SQLINTEGER displaysize;

 for (i = 0; i < nresultcols; i++)

 {

 SQLDescribeCol (hstmt, i+1, colname, sizeof (colname),

 &colnamelen, &coltype[i], &collen[i], &scale, &nullable);

 /* get display length for column */

 SQLColAttributes (hstmt, i+1, SQL_DESC_PRECISION, NULL, 0 ,

 NULL, &displaysize);

 /* set column length to max of display length, and column name

 length. Plus one byte for null terminator */

 collen[i] = max(displaysize, collen[i]);

 collen[i] = max(collen[i], strlen((char *) colname)) + 1;

 printf ("%-*.*s", collen[i], collen[i], colname);

 /* allocate memory to bind column */

 data[i] = (SQLCHAR *) malloc (collen[i]);

 /* bind columns to program vars, converting all types to CHAR */

 SQLBindCol (hstmt, i+1, SQL_C_CHAR, data[i], collen[i], &outlen[i]);

 }

 printf("\n");

 /* display result rows */

 while ((rc = SQLFetch (hstmt)) != SQL_NO_DATA_FOUND)

 {

 errmsg[0] = ’\0’;

 for (i = 0; i < nresultcols; i++)

 {

 /* Build a truncation message for any columns truncated */

 if (outlen[i] >= collen[i])

 { sprintf ((char *) errmsg + strlen ((char *) errmsg),

 "%d chars truncated, col %d\n",

 outlen[i]-collen[i]+1, i+1);

 }

 if (outlen[i] == SQL_NULL_DATA)

 printf ("%-*.*s", collen[i], collen[i], "NULL");

 else

 printf ("%-*.*s", collen[i], collen[i], data[i]);

 } /* for all columns in this row */

 printf ("\n%s", errmsg); /* print any truncation messages */

 } /* while rows to fetch */

 /* free data buffers */

 for (i = 0; i < nresultcols; i++)

 {

 free (data[i]);

 }

}/* end display_results

/***

** SUPPORT FUNCTIONS

** - print_error - call SQLError(), display SQLSTATE and message

** - check_error - call print_error

258 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

** - check severity of Return Code

** - rollback & exit if error, continue if warning

***/

/***/

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt)

{

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];

SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];

SQLINTEGER sqlcode;

SQLSMALLINT length;

 while (SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,

 SQL_MAX_MESSAGE_LENGTH + 1, &length) == SQL_SUCCESS)

 {

 printf("\n **** ERROR *****\n");

 printf(" SQLSTATE: %s\n", sqlstate);

 printf("Native Error Code: %ld\n", sqlcode);

 printf("%s \n", buffer);

 };

 return;

}

/***/

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc)

{

SQLRETURN rc;

 print_error(henv, hdbc, hstmt);

 switch (frc){

 case SQL_SUCCESS : break;

 case SQL_ERROR :

 case SQL_INVALID_HANDLE:

 printf("\n ** FATAL ERROR, Attempting to rollback transaction **\n");

 rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);

 if (rc != SQL_SUCCESS)

 printf("Rollback Failed, Exiting application\n");

 else

 printf("Rollback Successful, Exiting application\n");

 terminate(henv, hdbc);

 exit(frc);

 break;

 case SQL_SUCCESS_WITH_INFO :

 printf("\n ** Warning Message, application continuing\n");

 break;

 case SQL_NO_DATA_FOUND :

 printf("\n ** No Data Found ** \n");

 break;

 default :

 printf("\n ** Invalid Return Code ** \n");

 printf(" ** Attempting to rollback transaction **\n");

 SQLTransact(henv, hdbc, SQL_ROLLBACK);

 terminate(henv, hdbc);

 exit(frc);

 break;

 }

 return(SQL_SUCCESS);

}

SQL call level interface 259

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

260 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|
|
|
|
|

|
|

|

|
|

|

|
|
|

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1999, 2006 261

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This SQL CLI documents intended Programming Interfaces that allow the customer to write programs to

obtain the services of IBM i5/OS.

262 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

|
|
|

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 DB2

 DB2 Universal Database

 eServer

 e(logo) server

 i5/OS

 IBM

 IBM(logo)

 iSeries

 OS/390

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or

both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 263

|
|
|
|
|
|
|
|
|

|

264 IBM Systems - iSeries: Database DB2 UDB SQL Call Level Interface (ODBC)

����

Printed in USA

	Contents
	SQL call level interface
	What's new for V5R4
	Printable PDF
	Get started with DB2 UDB CLI
	Differences between DB2 UDB CLI and embedded SQL
	Advantages of using DB2 UDB CLI instead of embedded SQL
	Decide between DB2 UDB CLI, dynamic SQL, and static SQL

	Write a DB2 UDB CLI application
	Initialization and termination tasks in a DB2 UDB CLI application
	Example: Initialization and connection in a DB2 UDB CLI application

	Transaction processing task in a DB2 UDB CLI application
	Allocate statement handle(s) in a DB2 UDB CLI application
	Preparation and processing tasks in a DB2 UDB CLI application
	Processing results in a DB2 UDB CLI application
	Free statement handles in a DB2 UDB CLI application
	Commit or roll back in a DB2 UDB CLI application

	Diagnostics in a DB2 UDB CLI application
	Return codes from a DB2 UDB CLI application
	DB2 UDB CLI SQLSTATEs

	Data types and data conversion in DB2 UDB CLI functions
	Other C data types in DB2 UDB CLI functions
	Data conversion in DB2 UDB CLI functions

	Work with string arguments in DB2 UDB CLI functions
	Length of string arguments in DB2 UDB CLI functions
	String truncation in DB2 UDB CLI functions
	Interpretation of strings in DB2 UDB CLI functions

	DB2 UDB CLI functions
	Categories of DB2 UDB CLIs
	SQLAllocConnect - Allocate connection handle
	SQLAllocEnv - Allocate environment handle
	SQLAllocHandle - Allocate handle
	SQLAllocStmt - Allocate a statement handle
	SQLBindCol - Bind a column to an application variable
	SQLBindFileToCol - Bind LOB file reference to LOB column
	SQLBindFileToParam - Bind LOB file reference to LOB parameter
	SQLBindParam - Bind a buffer to a parameter marker
	SQLBindParameter - Bind a parameter marker to a buffer
	SQLCancel - Cancel statement
	SQLCloseCursor - Close cursor statement
	SQLColAttributes - Obtain column attributes
	SQLColumnPrivileges - Get privileges associated with the columns of a table
	SQLColumns - Get column information for a table
	SQLConnect - Connect to a data source
	SQLCopyDesc - Copy description statement
	SQLDataSources - Get list of data sources
	SQLDescribeCol - Describe column attributes
	SQLDescribeParam - Return description of a parameter marker
	SQLDisconnect - Disconnect from a data source
	SQLDriverConnect - (Expanded) Connect to a data source
	SQLEndTran - Commit or roll back a transaction
	SQLError - Retrieve error information
	SQLExecDirect - Execute a statement directly
	SQLExecute - Execute a statement
	SQLExtendedFetch - Fetch array of rows
	SQLFetch - Fetch next row
	SQLFetchScroll - Fetch from a scrollable cursor
	SQLForeignKeys - Get the list of foreign key columns
	SQLFreeConnect - Free connection handle
	SQLFreeEnv - Free environment handle
	SQLFreeHandle - Free a handle
	SQLFreeStmt - Free (or reset) a statement handle
	SQLGetCol - Retrieve one column of a row of the result set
	SQLGetConnectAttr - Get the value of a connection attribute
	SQLGetConnectOption - Return current setting of a connect Option
	SQLGetCursorName - Get cursor name
	SQLGetData - Get data from a column
	SQLGetDescField - Get descriptor field
	SQLGetDescRec - Get descriptor record
	SQLGetDiagField - Return diagnostic information (extensible)
	SQLGetDiagRec - Return diagnostic information (concise)
	SQLGetEnvAttr - Return current setting of an environment Attribute
	SQLGetFunctions - Get functions
	SQLGetInfo - Get general information
	SQLGetLength - Retrieve length of a string value
	SQLGetPosition - Return starting position of string
	SQLGetStmtAttr - Get the value of a statement attribute
	SQLGetStmtOption - Return current setting of a statement option
	SQLGetSubString - Retrieve portion of a string value
	SQLGetTypeInfo - Get data type information
	SQLLanguages - Get SQL dialect or conformance information
	SQLMoreResults - Determine whether there are more result sets
	SQLNativeSql - Get native SQL text
	SQLNextResult - Process the next result set
	SQLNumParams - Get number of parameters in an SQL statement
	SQLNumResultCols - Get number of result columns
	SQLParamData - Get next parameter for which a data value is needed
	SQLParamOptions - Specify an input array for a parameter
	SQLPrepare - Prepare a statement
	SQLPrimaryKeys - Get primary key columns of a table
	SQLProcedureColumns - Get input/output parameter information for a procedure
	SQLProcedures - Get list of procedure names
	SQLPutData - Pass data value for a parameter
	SQLReleaseEnv - Release all environment resources
	SQLRowCount - Get row count
	SQLSetConnectAttr - Set a connection attribute
	SQLSetConnectOption - Set connection option
	SQLSetCursorName - Set cursor name
	SQLSetDescField - Set a descriptor field
	SQLSetDescRec - Set a descriptor record
	SQLSetEnvAttr - Set environment attribute
	SQLSetParam - Set parameter
	SQLSetStmtAttr - Set a statement attribute
	SQLSetStmtOption - Set statement option
	SQLSpecialColumns - Get special (row identifier) columns
	SQLStatistics - Get index and statistics information for a base table
	SQLTablePrivileges – Get privileges associated with a table
	SQLTables - Get table information
	SQLTransact - Commit or roll back transaction

	DB2 UDB CLI include file
	Run DB2 UDB CLI in server mode
	Start DB2 UDB CLI in SQL server mode
	Restrictions for running DB2 UDB CLI in server mode

	Examples: DB2 UDB CLI applications
	Example: Embedded SQL and the equivalent DB2 UDB CLI function calls
	Example: Use the CLI XA transaction connection attributes
	Example: Interactive SQL and the equivalent DB2 UDB CLI function calls

	Code license and disclaimer information

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

