
IBM Systems - iSeries

iSeries Access for Windows: Programming

Version 5 Release 4

���

IBM Systems - iSeries

iSeries Access for Windows: Programming

Version 5 Release 4

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 553.

Seventh Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM eServer™ iSeries Access for Windows (product

number 5722-XE1) and to all subsequent releases and modifications until otherwise indicated in new editions. This

version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1999, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

iSeries Access for Windows:

Programming 1

What’s new 1

Printable PDFs 2

iSeries Access for Windows C/C++ APIs 2

iSeries Access for Windows C/C++ APIs overview 2

iSeries Access for Windows Administration APIs 30

iSeries Access for Windows Communications and

Security APIs 41

iSeries Access for Windows Data Queues APIs 117

iSeries Access for Windows Data Transformation

and National Language Support (NLS) APIs . . 163

iSeries Access for Windows Directory Update

APIs 207

iSeries Access for Windows PC5250 emulation

APIs 226

iSeries Objects APIs for iSeries Access for

Windows 227

iSeries Access for Windows Remote

Command/Distributed Program Call APIs . . 324

iSeries Access for Windows Serviceability APIs 342

iSeries Access for Windows System Object

Access (SOA) APIs 393

iSeries Access for Windows: Database

programming 446

iSeries Access for Windows .NET provider . . 446

iSeries Access for Windows OLE DB provider 448

iSeries Access for Windows ODBC 448

iSeries Access for Windows database APIs . . . 550

Java programming 550

ActiveX programming 551

Code license and disclaimer information 552

Appendix. Notices 553

Programming Interface Information 555

Trademarks 555

Terms and conditions 555

© Copyright IBM Corp. 1999, 2006 iii

iv IBM Systems - iSeries: iSeries Access for Windows: Programming

iSeries Access for Windows: Programming

As an iSeries™ application developer, explore this topic to reference and use iSeries Access for Windows®

technical programming information, tools, and techniques.

This information includes programming concepts, capabilities, and examples that are useful when writing

applications to access the resources of an iSeries server. Using this topic, client/server applications are

developed and tailored to the needs of your business. Various programming techniques are described so

you can connect, manage, and take advantage of the rich functions provided by the server. You can

access this information by selecting from the topics listed below.

If a basic working knowledge of iSeries Access for Windows and its components is needed see the

Welcome Wizard and the User’s Guide, which are shipped with iSeries Access for Windows. If you do

not see either of the components in your iSeries Access for Windows folder, it is not installed. Run

Selective Setup to install it. See Installation and setup for related information. Welcome Wizard is

installed as part of the base function while the User’s Guide is selectively installed.

Note: To launch components from a Windows PC, select Start → Programs → IBM iSeries Access for

Windows, and select the component.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

What’s new

This page highlights changes to iSeries Access for Windows programming topic for V5R4.

For V5R4, database programming now offers support for the following:

v 2MB SQL statements

v 128-byte column names

v The ability to pass an eWLM correlator to the iSeries database to enable Application Response

Measurement instrumentation

In addition to the above, the .NET Data Provider also includes the following enhancements:

v Support for LOB data types

v Support for Library List and System Naming

v IntelliSense to aid in code development

v Support for multiple active result sets per connection

v Support for handling Char for Bit Data, Date, Time, TimeStamp, Decimal, and Numeric values as

strings

v Sample programs

The OLE DB provider now includes support for Library List and System Naming.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

© Copyright IBM Corp. 1999, 2006 1

To find other information about what’s new or changed this release, see the Memo to Users.

Printable PDFs

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select iSeries Access for Windows Programming

(about 3,901 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

iSeries Access for Windows C/C++ APIs

iSeries Access for Windows provides C/C++ application programming interfaces (APIs) for accessing

iSeries resources.

These APIs are intended primarily for C/C++ programmers. However, they also may be called from

other languages that support calling C-style APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

iSeries Access for Windows C/C++ APIs overview

See the following topics for iSeries Access for Windows C/C++ APIs overview information.

API groups, header files, import libraries, and DLLs

Access interface definition files for all iSeries Access for Windows C/C++ API groups in the iSeries

Access for Windows Programmer’s Toolkit.

For each iSeries Access for Windows C/C++ API group, the table below provides:

v Links to the API documentation

v Required interface definition (header) files, where applicable

v Associated import library files, where applicable

v Associated Dynamic Link Library (DLL) files

How to access iSeries Access for Windows header files in the Toolkit:

1. Find the Programmer’s Toolkit icon in your iSeries Access for Windows program directory and

launch it. If it is not displayed in the program directory, install the Toolkit.

2. In the left navigation panel, select the appropriate API group.

2 IBM Systems - iSeries: iSeries Access for Windows: Programming

|

|

|

rzaik.pdf
http://www.adobe.com/products/acrobat/readstep.html

Note: Names of some API categories in the Programmer’s Toolkit differ from the names that are used

in iSeries Access for Windows programming:

 To find this iSeries Access for Windows programming API

group header file:

Select this Programmer’s Toolkit topic:

Administration Client Information

Data transformation Data Manipulation

National language support

LDAP Directory

Serviceability Error Handling

AS/400® Object AS/400 Operations

System Object Access

3. Select the C/C++ APIs subtopic in the left navigation panel.

4. In the right display panel, find the header (.h) file and select it.

Note: In addition to interface descriptions and definitions, the iSeries Access for Windows API group

topics in the Toolkit include links to other information resources.

About import libraries:

The import libraries that are shipped with the Programmer’sToolkit were built with the Microsoft® Visual

C++ compiler. As a result, they are in the Common Object File Format (COFF). Some compilers, such as

Borland’s C compiler, do not support COFF. To access the iSeries Access for Windows C/C++ APIs from

these compilers, you must create Object Model Format (OMF) import libraries by using the IMPLIB tool.

For example:

implib cwbdq.lib %windir%\system32\cwbdq.dll

Note: As of V5R1, the format for the cwbapi.lib import library has changed to make the file size smaller.

This library will not work with Microsoft Visual C++ 5.0 or earlier. If you need to call the APIs

from Microsoft Visual C++ 5.0 or earlier, you can can get the import library built using the old

format at import libraries .(www.ibm.com/eserver/iseries/access/toolkit/importlibraries.htm)

 Table 1. iSeries Access for Windows C/C++ API groups, header files, library files, and DLL files

API group Header file Import library DLL

Administration cwbad.h cwbapi.lib cwbad.dll

Communications and

Security

cwbcosys.h

cwbco.h

cwb.h

cwbapi.lib cwbco.dll

Data Queues cwbdq.h cwbapi.lib cwbdq.dll

Data transformation cwbdt.h cwbapi.lib cwbdt.dll

Directory Update cwbup.h cwbapi.lib cwbup.dll

Emulation (Standard

HLLAPI interface)

hapi_c.h pscal32.lib pcshll.dll

pcshll32.dll

Emulation (Enhanced

HLLAPI interface)

ehlapi32.h ehlapi32.lib ehlapi32.dll

Emulation (Windows

EHLLAPI interface)

whllapi.h whllapi.lib whllapi.dll

whlapi32.lib whllapi32.dll

Emulation (HACL

interface)

eclall.hpp pcseclva.lib pcseclva.dll

pcseclvc.lib pcseclvc.dll

Programming 3

http://www.ibm.com/eserver/iseries/access/toolkit/importlibraries.htm

Table 1. iSeries Access for Windows C/C++ API groups, header files, library files, and DLL files (continued)

API group Header file Import library DLL

Emulation (PCSAPI

interface)

pcsapi.h pcscal32.lib pcsapi.dll

pcsapi32.dll

National language support

(General NLS)

cwbnl.h cwbapi.lib cwbnl.dll

National language support

(Conversion NLS)

cwbnlcnv.h cwbapi.lib cwbnl1.dll

National language support

(Dialog-box NLS)

cwbnldlg.h cwbapi.lib cwbnldlg.dll

iSeries objects cwbobj.h cwbapi.lib cwbobj.dll

ODBC sql.h

sqlext.h

sqltypes.h

sqlucode.h

odbc32.lib odbc32.dll

Database APIs (Optimized

SQL)

Note: Choose this link for

important information

regarding these APIs.

cwbdb.h cwbapi.lib cwbdb.dll

OLE DB Provider ad400.h

da400.h

cwbzzodb.dll

See the OLE DB Section of the Microsoft

Universal Data Access Web Site

for

more information

Remote

Command/Distributed

Program Call

cwbrc.h cwbapi.lib cwbrc.dll

Serviceability cwbsv.h cwbapi.lib cwbsv.dll

System Object Access cwbsoapi.h cwbapi.lib cwbsoapi.dll

Programmer’s Toolkit

Find header files and complete information to develop applications using iSeries Access for Windows.

The iSeries Access for Windows Programmer’s Toolkit is an installable component of iSeries Access for

Windows and is the primary source of information needed to develop iSeries Access for Windows

applications. This includes programming with iSeries Access for Windows ActiveX Automation Objects,

ADO/OLE DB, .NET, and Java™. The Programmer’s Toolkit contains links to header files, sample

programs, and complete documentation.

Notes:

v No portion of the Toolkit or the iSeries Access for Windows product may be redistributed with

the resulting applications.

v By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552

.

The Programmer’s Toolkit consists of two parts:

4 IBM Systems - iSeries: iSeries Access for Windows: Programming

http://www.microsoft.com/data/oledb/default.htm
http://www.microsoft.com/data/oledb/default.htm

v Programmer’s Toolkit component of iSeries Access for Windows, which includes:

– Online help information for the Toolkit and other online help for the product.

– C/C++ header files

– C import libraries

– ActiveX automation type libraries

– iSeries ADO Wizards for Visual Basic for the iSeries Access for Windows OLE DB provider
v Programmer’s Toolkit Web site which includes sample applications and tools that are useful for

developing iSeries Access for Windows applications. The site is updated regularly. Check it periodically

for new information.
 Related information

 iSeries Access for Windows database APIs

Install the Programmer’s Toolkit:

To install the Programmer’s Toolkit, follow these instructions.

1. If you are installing iSeries Access for Windows for the first time, perform an iSeries Access for

Windows Custom Install. If iSeries Access for Windows already is installed, select Start → Programs →

IBM iSeries Access for Windows → Selective Setup.

2. Follow the prompts until the Component Selection dialog displays.

3. Select the Programmer’s Toolkit option, and follow the prompts to completion.

Launch the Programmer’s Toolkit:

To launch the Programmer’s Toolkit, follow these instructions.

 Select Start → Programs → IBM iSeries Access for Windows → Programmer’s Toolkit.

Note: The iSeries Access for Windows installation program does not create the Toolkit icon unless you

have installed the Programmer’s Toolkit on your personal computer.

iSeries system name formats for connection APIs

APIs that take an iSeries system name as a parameter accept names in the following formats.

v TCP/IP network name (system.network.com)

v System name without a network identifier (SYSTEM)

v IP address (1.2.3.4)
 Related reference

 “iSeries Access for Windows Administration APIs” on page 30
iSeries Access for Windows Administration APIs provide functions that access information about the

iSeries Access for Windows code that is installed on the PC.

 “iSeries Access for Windows Communications and Security APIs” on page 41
The iSeries Access for Windows Communications and Security topic shows you how to use iSeries

Access for Windows application programming interfaces (APIs)

 “iSeries Access for Windows Data Queues APIs” on page 117
Use iSeries Access for Windows Data Queues application programming interfaces (APIs) to provide

easy access to iSeries data queues. Data queues allow you to create client/server applications that do

not require the use of communications APIs.

 “iSeries Access for Windows data transformation APIs” on page 163
iSeries Access for Windowsdata transformation application programming interfaces (APIs) enable

your client/server applications to transform numeric data between iSeries server and PC formats.

Transformation may be required when you send and receive numeric data to and from the iSeries

server. Data transformation APIs support transformation of many numeric formats.

Programming 5

http://www.ibm.com/eserver/iseries/access/toolkit

“iSeries Access for Windows national language support (NLS) APIs” on page 180
iSeries Access for Windows national language support APIs enable your applications to get and save

(query and change) the iSeries Access for Windows settings that are relevant to national language

support.

 “iSeries Access for Windows Directory Update APIs” on page 207
The iSeries Access for Windows Directory Update function allows users to specify PC directories for

updating from a configured network server or from multiple networked servers. This permits users to

load non-iSeries Access for Windows software products on a server in the network, and to keep those

files updated on PCs. Directory Update is an optionally installable iSeries Access for Windows

component.

 “iSeries Objects APIs for iSeries Access for Windows” on page 227
iSeries Objects for iSeries Access for Windows application programming interfaces (APIs) allow you to

work with iSeries print-related objects. These APIs make it possible to work with iSeries spooled files,

writer jobs, output queues, printers, and more.

 “iSeries Access for Windows Remote Command/Distributed Program Call APIs” on page 324
The iSeries Access for Windows Remote Command/Distributed Program Call APIs allow the PC

application programmer to access functions on the iSeries system. User program and system

commands can be called without requiring an emulation session. A single iSeries program serves

commands and programs, so only one iSeries job is started for both.

 “iSeries Access for Windows System Object Access (SOA) APIs” on page 393
System Object Access enables you to view and manipulate iSeries objects through a graphical user

interface.

OEM, ANSI, and Unicode considerations

Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three forms:

OEM, ANSI, or Unicode.

The generic version of the iSeries Access for Windows C/C++ APIs follows the same form as the default

OEM version. Only a single name for each function appears in this information, but there are three

different system entry points. For example:

cwbNL_GetLang();

 compiles to:

cwbNL_GetLang(); //CWB_OEM or undefined

 or:

cwbNL_GetLangA(); //CWB_ANSI defined

 or:

cwbNL_GetLangW(); //CWB_UNICODE defined

 Table 2. API types, name formats, and pre-processor definitions

API type API name format (if it exists) Pre-processor definition

OEM cwbXX_xxx None (may specify CWB_OEM

explicitly)

ANSI cwbXX_xxxA CWB_ANSI

UNICODE cwbXX_xxxW CWB_UNICODE

Note:

v Data transformation APIs (cwbDT_xxx) do not follow the ″A″ and ″W″ suffix conventions. The

generic version of the APIs uses ″String″ as part of the function name. The ANSI/OEM version

uses ″ASCII″ as part of the function name. The Unicode version uses ″Wide″ as part of the

6 IBM Systems - iSeries: iSeries Access for Windows: Programming

function name. There is no difference between OEM and ANSI character sets in cwbDT_xxx

APIs, which handle numeric strings. Therefore, ANSI and OEM versions of the relevant APIs are

the same. For example:

cwbDT_HexToString();

 compiles to:

cwbDT_HexToASCII(); //CWB_UNICODE not defined

 or:

cwbDT_HexToWide(); //CWB_UNICODE defined

See the data transformation cwbdt.h header file for more details.

v For Unicode APIs that take a buffer and a length for passing strings (for example,

cwbCO_GetUserIDExW), the length is treated as the number of bytes. It is not treated as the

number of characters.
 Related reference

 “iSeries Access for Windows Administration APIs” on page 30
iSeries Access for Windows Administration APIs provide functions that access information about the

iSeries Access for Windows code that is installed on the PC.

 “iSeries Access for Windows Communications and Security APIs” on page 41
The iSeries Access for Windows Communications and Security topic shows you how to use iSeries

Access for Windows application programming interfaces (APIs)

 “iSeries Access for Windows Data Queues APIs” on page 117
Use iSeries Access for Windows Data Queues application programming interfaces (APIs) to provide

easy access to iSeries data queues. Data queues allow you to create client/server applications that do

not require the use of communications APIs.

 “iSeries Access for Windows data transformation APIs” on page 163
iSeries Access for Windowsdata transformation application programming interfaces (APIs) enable

your client/server applications to transform numeric data between iSeries server and PC formats.

Transformation may be required when you send and receive numeric data to and from the iSeries

server. Data transformation APIs support transformation of many numeric formats.

 “iSeries Access for Windows national language support (NLS) APIs” on page 180
iSeries Access for Windows national language support APIs enable your applications to get and save

(query and change) the iSeries Access for Windows settings that are relevant to national language

support.

 “iSeries Access for Windows Directory Update APIs” on page 207
The iSeries Access for Windows Directory Update function allows users to specify PC directories for

updating from a configured network server or from multiple networked servers. This permits users to

load non-iSeries Access for Windows software products on a server in the network, and to keep those

files updated on PCs. Directory Update is an optionally installable iSeries Access for Windows

component.

 “iSeries Objects APIs for iSeries Access for Windows” on page 227
iSeries Objects for iSeries Access for Windows application programming interfaces (APIs) allow you to

work with iSeries print-related objects. These APIs make it possible to work with iSeries spooled files,

writer jobs, output queues, printers, and more.

 “iSeries Access for Windows Remote Command/Distributed Program Call APIs” on page 324
The iSeries Access for Windows Remote Command/Distributed Program Call APIs allow the PC

application programmer to access functions on the iSeries system. User program and system

commands can be called without requiring an emulation session. A single iSeries program serves

commands and programs, so only one iSeries job is started for both.

Use a single iSeries Access for Windows API type:

Programming 7

To restrict your application to a particular type of iSeries Access for Windows API, you must define one,

and only one preprocessor definitions.

 The preprocessor definitions are as follows:

v CWB_OEM_ONLY

v CWB_ANSI_ONLY

v CWB_UNICODE_ONLY

For example, when writing a pure ANSI application, you specify both CWB_ANSI_ONLY and

CWB_ANSI. Refer to the individual Programmer’s Toolkit header files for details of these preprocessor

definitions and API names. See API groups, header files, import libraries, and DLLs for more information.

Use mixed iSeries Access for Windows API types:

You can mix ANSI, OEM, and Unicode APIs by using explicit API names.

 For example, you can write an ANSI iSeries Access for Windows application by specifying the

CWB_ANSI preprocessor definition, but still call a Unicode version of an API by using the ″W″ suffix.

Write a generic iSeries Access for Windows application:

Generic applications allow maximum portability because the same source code can be compiled for OEM,

ANSI, and Unicode.

 Generic applications are built by specifying different preprocessor definitions, and by using the generic

version of the iSeries access for Windows APIs (the ones without the ″A″ or ″W″ suffixes). Following is a

short list of guidelines for writing a generic application:

v Instead of including the usual <string.h> for manipulating strings, include <TCHAR.H>.

v Use generic data types for characters and strings. Use ’TCHAR’ for ’char’ in your source code.

v Use the _TEXT macro for literal characters and strings. For example, TCHAR A[]=_TEXT("A Generic

String").

v Use generic string manipulation functions. For example, use _tcscpy instead of strcpy.

v Be especially careful when using the ’sizeof’ operator - always remember that a Unicode character

occupies two bytes. When determining the number of characters in a generic TCHAR array A, instead

of the simple sizeof(A), use sizeof(A)/sizeof(TCHAR).

v Use proper preprocessor definitions for compilation. When compiling your source for Unicode in

Visual C++, you should also use the preprocessor definitions UNICODE and _UNICODE. Instead of defining

_UNICODE in the MAK file, you may want to define it at the beginning of your source code as:

#ifdef UNICODE

 #define _UNICODE

#endif

For a complete description of these guidelines, see the following resources:

1. Richter, J. Advanced Windows: The Developer’s Guide to the Win32 API for Windows NT® 3.5 and Windows

95, Microsoft Press, Redmond, WA, 1995.

2. Kano, Nadine Developing International Software for Windows 95 and Windows NT: a handbook for software

design, Microsoft Press, Redmond, WA, 1995.

3. Microsoft Knowledge Base

articles

4. MSDN Library

8 IBM Systems - iSeries: iSeries Access for Windows: Programming

http://support.microsoft.com/support/
http://msdn.microsoft.com/library/default.asp

Obsolete iSeries Access for Windows APIs

Some of the APIs that were provided by Client Access have been replaced with new APIs. While these

older, obsolete APIs are still supported, it is recommended that you use the newer iSeries Access for

Windows APIs.

Following is a list, by function, of obsolete Client Access APIs and iSeries Access for Windows APIs. For

each Client Access obsolete API, a link to the newer iSeries Access for Windows replacement API is

provided, when available.

Note: All of the APIs for the following functions are obsolete and are no longer supported for iSeries

Access for Windows:

v APPC

v License Management

v Ultimedia System Facilities (USF)

v Messaging Application Programming Interface (MAPI)

Obsolete iSeries Access APIs list:

Obsolete Communications APIs:

cwbCO_IsSystemConfigured

 iSeries Access for Windows does not require pre-configuration of an iSeries server connection to

connect to and use that system. For this reason, programs that need to connect to an iSeries

server (either explicitly, by calling cwbCO_Connect, or implicitly, as the result of a call to a

different API such as cwbRC_RunCmd) do not need to check to see if the connection has been

pre-configured. Therefore, the above API no longer should be necessary.

cwbCO_IsSystemConnected

Use “cwbCO_IsConnected” on page 52.

 Most iSeries Access for Windows APIs work with iSeries System Objects, rather than with iSeries

server names. There can be multiple iSeries System Objects created and connected to the same

iSeries server within the same process. The cwbCO_IsSystemConnected API will return an

indication of whether at least one System Object is connected to the iSeries server, within the

current process. The cwbCO_IsConnected API is used to determine if a specific iSeries System

Object is connected.

cwbCO_GetUserID

Use “cwbCO_GetUserIDEx” on page 64.

 Most iSeries Access for Windows APIs work with iSeries System Objects, rather than with iSeries

server names. There can be multiple iSeries System Objects created and connected to the same

iSeries server, within the same process, but using different user IDs. The cwbCO_GetUserID API

will return the user ID of the first iSeries System Object, in the current process, for the specified

iSeries server. The cwbCO_GetUserIDEx API will return the user ID for a specific iSeries System

Object.

cwbCO_GetHostVersion

Use “cwbCO_GetHostVersionEx” on page 81.

 The behavior of these APIs is the same. However, use of the cwbCO_GetHostVersionEx API is

more efficient.

Obsolete Data Queues APIs:

cwbDQ_Create

Use “cwbDQ_CreateEx” on page 120

Programming 9

cwbDQ_Delete

Use “cwbDQ_DeleteEx” on page 122

cwbDQ_Open

Use “cwbDQ_OpenEx” on page 123

cwbDQ_StartSystem

Use “cwbCO_Connect” on page 48

Note: To achieve the same effect as cwbDQ_StartSystem when you use cwbCO_Connect, you

must connect to the data queue’s service. See “cwbCO_Connect” on page 48 for details.

cwbDQ_StopSystem

Use “cwbCO_Disconnect” on page 50

Note: To achieve the same effect as cwbDQ_StopSystem when you use cwbCO_Disconnect, you

must disconnect from the data queue’s service. See “cwbCO_Disconnect” on page 50 for

details.

Obsolete Remote Command/Distributed Program Call APIs:

cwbRC_StartSys

Use “cwbRC_StartSysEx” on page 327

cwbRC_GetSysName

Use “cwbCO_GetSystemName” on page 84

Obsolete Security APIs:

cwbSY_CreateSecurityObj

Use “cwbCO_CreateSystem” on page 46

cwbSY_DeleteSecurityObj

Use “cwbCO_DeleteSystem” on page 48

cwbSY_SetSys

Use “cwbCO_CreateSystem” on page 46 and pass a system name on the call

cwbSY_VerifyUserIDPwd

Use “cwbCO_VerifyUserIDPassword” on page 74

cwbSY_ChangePwd

Use “cwbCO_ChangePassword” on page 56

cwbSY_GetUserID

Use “cwbCO_GetUserIDEx” on page 64

cwbSY_Logon

Use “cwbCO_Signon” on page 72

cwbSY_LogonUser

Use “cwbCO_SetUserIDEx” on page 70, “cwbCO_SetPassword” on page 68, or “cwbCO_Signon”

on page 72

cwbSY_GetDateTimeCurrentSignon

Use “cwbCO_GetSignonDate” on page 62

cwbSY_GetDateTimeLastSignon

Use “cwbCO_GetPrevSignonDate” on page 61

cwbSY_GetDateTimePwdExpires

Use “cwbCO_GetPasswordExpireDate” on page 60

cwbSY_GetFailedAttempts

Use “cwbCO_GetFailedSignons” on page 59

10 IBM Systems - iSeries: iSeries Access for Windows: Programming

Obsolete Serviceability APIs:

The following Serviceability APIs for reading problem log service records are obsolete:

cwbSV_GetCreatedBy

Not available

cwbSV_GetCurrentFix

Not available

cwbSV_GetFailMethod

Not available

cwbSV_GetFailModule

Not available

cwbSV_GetFailPathName

Not available

cwbSV_GetFailProductID

Not available

cwbSV_GetFailVersion

Not available

cwbSV_GetOriginSystemID

Not available

cwbSV_GetOriginSystemIPAddr

Not available

cwbSV_GetPreviousFix

Not available

cwbSV_GetProblemID

Not available

cwbSV_GetProblemStatus

Not available

cwbSV_GetProblemText

Not available

cwbSV_GetProblemType

Not available

cwbSV_GetSeverity

Not available

cwbSV_GetSymptomString

Not available

Obsolete System Object Access (SOA) API:

CWBSO_CreateListHandle

Use “CWBSO_CreateListHandleEx” on page 408

Obsolete National Language Support APIs:

cwbNL_CreateConverter

Use “cwbNL_CreateConverterEx” on page 194

cwbNL_ConvertCodePages

Use “cwbNL_ConvertCodePagesEx” on page 190

Obsolete Database APIs:

Programming 11

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

Return codes and error messages

The iSeries Access for Windows C/C++ application programming interfaces (APIs) support the return of

an integer return code on most functions. The return codes indicate how the function completed.

iSeries Access for Windows logs error messages in the History Log, and on the iSeries System.

Error messages in the History Log:

Starting the History Log:

By default, the History Log is not active. To ensure that error messages are written to this file,

History logging must be started. See the iSeries Access for Windows User’s Guide, which is

shipped with iSeries Access for Windows, for information on starting the History Log

Viewing logged messages:

To view messages that have been logged in the History Log, select Start → Programs → iSeries

Access for Windows → Service → History Log.

The entries in the History Log consist of messages with and without message IDs. Messages with

message IDs have online help available. Messages without message IDs do not have online help

available. To display the cause and recovery information associated with a message that has a message

ID, double-click on it. You also can view any message that has a message ID by selecting the Message

topic in the online iSeries Access for Windows User’s Guide.

Error messages on the iSeries system:

iSeries Access for Windows also has associated messages that are logged on the iSeries server. These

messages begin with PWS or IWS. To display a specific PWSxxxx or IWSxxxx message, type the

appropriate command at the iSeries command line prompt, where xxxx is the number of the message:

DSPMSGD RANGE(IWSxxxx) MSGF(QIWS/QIWSMSG)

DSPMSGD RANGE(PWSxxxx) MSGF(QIWS/QIWSMSG)

iSeries Access for Windows return codes that correspond to operating system errors:

0 CWB_OK

 Successful completion.

1 CWB_INVALID_FUNCTION

 Function not supported.

2 CWB_FILE_NOT_FOUND

 File not found.

3 CWB_PATH_NOT_FOUND

 Path not found.

4 CWB_TOO_MANY_OPEN_FILES

 The system cannot open the file.

5 CWB_ACCESS_DENIED

 Access is denied.

6 CWB_INVALID_HANDLE

 The list handle is not valid.

8 CWB_NOT_ENOUGH_MEMORY

 Insufficient memory, may have failed to allocate a temporary buffer.

15 CWB_INVALID_DRIVE

 The system cannot find the drive specified.

18 CWB_NO_MORE_FILES

 No more files are found.

21 CWB_DRIVE_NOT_READY

 The device is not ready.

31 CWB_GENERAL_FAILURE

 General error occurred.

32 CWB_SHARING_VIOLATION

12 IBM Systems - iSeries: iSeries Access for Windows: Programming

The process cannot access the file because it is being used by

 another process.

33 CWB_LOCK_VIOLATION

 The process cannot access the file because another process has

 locked a portion of the file.

38 CWB_END_OF_FILE

 End of file has been reached.

50 CWB_NOT_SUPPORTED

 The network request is not supported.

53 CWB_BAD_NETWORK_PATH

 The network path was not found.

54 CWB_NETWORK_BUSY

 The network is busy.

55 CWB_DEVICE_NOT_EXIST

 The specified network resource or device is no longer available.

59 CWB_UNEXPECTED_NETWORK_ERROR

 An unexpected network error occurred.

65 CWB_NETWORK_ACCESS_DENIED

 Network access is denied.

80 CWB_FILE_EXISTS

 The file exists.

85 CWB_ALREADY_ASSIGNED

 The local device name is already in use.

87 CWB_INVALID_PARAMETER

 A parameter is invalid.

88 CWB_NETWORK_WRITE_FAULT

 A write fault occurred on the network.

110 CWB_OPEN_FAILED

 The system cannot open the device or file specified.

111 CWB_BUFFER_OVERFLOW

 Not enough room in the output buffer. Use *bufferSize to determine

 the correct size.

112 CWB_DISK_FULL

 There is not enough space on the disk.

115 CWB_PROTECTION_VIOLATION

 Access is denied.

124 CWB_INVALID_LEVEL

 The system call level is not correct.

142 CWB_BUSY_DRIVE

 The system cannot perform a JOIN or SUBST at this time.

252 CWB_INVALID_FSD_NAME

 The device name is incorrect.

253 CWB_INVALID_PATH

 The network path specified is incorrect.

iSeries Access return codes:

Global iSeries Access return codes:

4000 CWB_USER_CANCELLED_COMMAND

 Command cancelled by user.

4001 CWB_CONFIG_ERROR

 A configuration error has occurred.

4002 CWB_LICENSE_ERROR

 A license error has occurred.

4003 CWB_PROD_OR_COMP_NOT_SET

 Internal error due to failure to properly register and use a

 product or component.

4004 CWB_SECURITY_ERROR

 A security error has occurred.

4005 CWB_GLOBAL_CFG_FAILED

 The global configuration attempt failed.

4006 CWB_PROD_RETRIEVE_FAILED

 The product retrieve failed.

4007 CWB_COMP_RETRIEVE_FAILED

 The computer retrieve failed.

4008 CWB_COMP_CFG_FAILED

Programming 13

The computer configuration failed.

4009 CWB_COMP_FIX_LEVEL_UPDATE_FAILED

 The computer fix level update failed.

4010 CWB_INVALID_API_HANDLE

 Invalid request handle.

4011 CWB_INVALID_API_PARAMETER

 Invalid parameter specified.

4012 CWB_HOST_NOT_FOUND

 The server is inactive or does not exist.

4013 CWB_NOT_COMPATIBLE

 Client Access program or function not at correct level.

4014 CWB_INVALID_POINTER

 A pointer is NULL.

4015 CWB_SERVER_PROGRAM_NOT_FOUND

 The server application not found.

4016 CWB_API_ERROR

 General API failure.

4017 CWB_CA_NOT_STARTED

 Client Access has not been started.

4018 CWB_FILE_IO_ERROR

 Record could not be read.

4019 CWB_COMMUNICATIONS_ERROR

 A communications error occurred.

4020 CWB_RUNTIME_CONSTRUCTOR_FAILED

 The C Run-time contstructor failed.

4021 CWB_DIAGNOSTIC

 Unexpected error. Record the message number and data in the

 message and contact IBM Support.

4022 CWB_COMM_VERSION_ERROR

 Data queues will not run with this version of communications.

4023 CWB_NO_VIEWER

 The viewer support for Client Access/400 was not installed.

4024 CWB_MODULE_NOT_LOADABLE

 A filter DLL was not loadable.

4025 CWB_ALREADY_SETUP

 Object has already been set up.

4026 CWB_CANNOT_START_PROCESS

 Attempt to start process failed. See other error code(s).

4027 CWB_NON_REPRESENTABLE_UNICODE_CHAR

 One or more input UNICODE characters have no representation in the

 code page that is being used.

8998 CWB_UNSUPPORTED_FUNCTION

 The function is unsupported.

8999 CWB_INTERNAL_ERROR

 An internal error occurred.

 Related reference

 “iSeries Access for Windows Communications and Security APIs” on page 41
The iSeries Access for Windows Communications and Security topic shows you how to use iSeries

Access for Windows application programming interfaces (APIs)

iSeries Access for Windows -specific return codes:

Security return codes:

8001 CWB_UNKNOWN_USERID

8002 CWB_WRONG_PASSWORD

8003 CWB_PASSWORD_EXPIRED

8004 CWB_INVALID_PASSWORD

8006 CWB_INCORRECT_DATA_FORMAT

8007 CWB_GENERAL_SECURITY_ERROR

8011 CWB_USER_PROFILE_DISABLED

8013 CWB_USER_CANCELLED

8014 CWB_INVALID_SYSNAME

8015 CWB_INVALID_USERID

8016 CWB_LIMITED_CAPABILITIES_USERID

8019 CWB_INVALID_TP_ON_HOST

14 IBM Systems - iSeries: iSeries Access for Windows: Programming

8022 CWB_NOT_LOGGED_ON

8026 CWB_EXIT_PGM_ERROR

8027 CWB_EXIT_PGM_DENIED_REQUEST

8050 CWB_TIMESTAMPS_NOT_SET

8051 CWB_KERB_CLIENT_CREDENTIALS_NOT_FOUND

8052 CWB_KERB_SERVICE_TICKET_NOT_FOUND

8053 CWB_KERB_SERVER_CANNOT_BE_CONTACTED

8054 CWB_KERB_UNSUPPORTED_BY_HOST

8055 CWB_KERB_NOT_AVAILABLE

8056 CWB_KERB_SERVER_NOT_CONFIGURED

8057 CWB_KERB_CREDENTIALS_NOT_VALID

8058 CWB_KERB_MAPPED_USERID_FAILURE

8059 CWB_KERB_MAPPED_USERID_SUCCESS

8070 CWB_PROFILE_TOKEN_INVALID

8071 CWB_PROFILE_TOKEN_MAXIMUM

8072 CWB_PROFILE_TOKEN_NOT_REGENERABLE

8257 CWB_PW_TOO_LONG

8258 CWB_PW_TOO_SHORT

8259 CWB_PW_REPEAT_CHARACTER

8260 CWB_PW_ADJACENT_DIGITS

8261 CWB_PW_CONSECUTIVE_CHARS

8262 CWB_PW_PREVIOUSLY_USED

8263 CWB_PW_DISALLOWED_CHAR

8264 CWB_PW_NEED_NUMERIC

8266 CWB_PW_MATCHES_OLD

8267 CWB_PW_NOT_ALLOWED

8268 CWB_PW_CONTAINS_USERID

8270 CWB_PW_LAST_INVALID_PWD

8271 CWB_PW_STAR_NONE

8272 CWB_PW_QPWDVLDPGM

Communications return codes:

8400 CWB_INV_AFTER_SIGNON

8401 CWB_INV_WHEN_CONNECTED

8402 CWB_INV_BEFORE_VALIDATE

8403 CWB_SECURE_SOCKETS_NOTAVAIL

8404 CWB_RESERVED1

8405 CWB_RECEIVE_ERROR

8406 CWB_SERVICE_NAME_ERROR

8407 CWB_GETPORT_ERROR

8408 CWB_SUCCESS_WARNING

8409 CWB_NOT_CONNECTED

8410 CWB_DEFAULT_HOST_CCSID_USED

8411 CWB_USER_TIMEOUT

8412 CWB_SSL_JAVA_ERROR

8413 CWB_USER_TIMEOUT_SENDRCV

8414 CWB_FIPS_UNAVAILABLE

Configuration return codes:

8500 CWB_RESTRICTED_BY_POLICY

8501 CWB_POLICY_MODIFY_MANDATED_ENV

8502 CWB_POLICY_MODIFY_CURRENT_ENV

8503 CWB_POLICY_MODIFY_ENV_LIST

8504 CWB_SYSTEM_NOT_FOUND

8505 CWB_ENVIRONMENT_NOT_FOUND

8506 CWB_ENVIRONMENT_EXISTS

8507 CWB_SYSTEM_EXISTS

8508 CWB_NO_SYSTEMS_CONFIGURED

8580 CWB_CONFIGERR_RESERVED_START

8599 CWB_CONFIGERR_RESERVED_END

Automation Object return codes:

8600 CWB_INVALID_METHOD_PARM

8601 CWB_INVALID_PROPERTY_PARM

8602 CWB_INVALID_PROPERTY_VALUE

Programming 15

8603 CWB_OBJECT_NOT_INITIALIZED

8604 CWB_OBJECT_ALREADY_INITIALIZED

8605 CWB_INVALID_DQ_ORDER

8606 CWB_DATA_TRANSFER_REQUIRED

8607 CWB_UNSUPPORTED_XFER_REQUEST

8608 CWB_ASYNC_REQUEST_ACTIVE

8609 CWB_REQUEST_TIMED_OUT

8610 CWB_CANNOT_SET_PROP_NOW

8611 CWB_OBJ_STATE_NO_LONGER_VALID

WINSOCK return codes:

10024 CWB_TOO_MANY_OPEN_SOCKETS

10035 CWB_RESOURCE_TEMPORARILY_UNAVAILABLE

10038 CWB_SOCKET_OPERATION_ON_NON_SOCKET

10047 CWB_PROTOCOL_NOT_INSTALLED

10050 CWB_NETWORK_IS_DOWN

10051 CWB_NETWORK_IS_UNREACHABLE

10052 CWB_NETWORK_DROPPED_CONNECTION_ON_RESET

10053 CWB_SOFTWARE_CAUSED_CONNECTION_ABORT

10054 CWB_CONNECTION_RESET_BY_PEER

10055 CWB_NO_BUFFER_SPACE_AVAILABLE

10057 CWB_SOCKET_IS_NOT_CONNECTED

10058 CWB_CANNOT_SEND_AFTER_SOCKET_SHUTDOWN

10060 CWB_CONNECTION_TIMED_OUT

10061 CWB_CONNECTION_REFUSED

10064 CWB_HOST_IS_DOWN

10065 CWB_NO_ROUTE_TO_HOST

10091 CWB_NETWORK_SUBSYSTEM_IS_UNAVAILABLE

10092 CWB_WINSOCK_VERSION_NOT_SUPPORTED

11001 CWB_HOST_DEFINITELY_NOT_FOUND

 The iSeries system name was not found during TCP/IP

 address lookup.

11002 CWB_HOST_NOT_FOUND_BUT_WE_ARE_NOT_SURE

 The iSeries system name was not found during TCP/IP

 address lookup.

11004 CWB_VALID_NAME_BUT_NO_DATA_RECORD

 The iSeries service name was not found in the local

 SERVICES file.

SSL return codes:

Key Database error codes

20001 - An unknown error occurred.

20002 - An asn.1 encoding/decoding error occurred.

20003 - An error occurred while initializing asn.1 encoder/decoder.

20004 - An asn.1 encoding/decoding error occurred because of an out-of-range

 index or nonexistent optional field.

20005 - A database error occurred.

20006 - An error occurred while opening the database file.

20007 - An error occurred while re-opening the database file.

20008 - Database creation failed.

20009 - The database already exists.

20010 - An error occurred while deleting the database file.

20011 - Database has not been opened.

20012 - An error occurred while reading the database file.

20013 - An error occurred while writing data to the database file.

20014 - A database validation error occurred.

20015 - An invalid database version was encountered.

20016 - An invalid database password was encountered.

20017 - An invalid database file type was encountered.

20018 - The database has been corrupted.

20019 - An invalid password was encountered or the database is not valid.

20020 - A database key entry integrity error occurred.

20021 - A duplicate key already exists in the database.

20022 - A duplicate key already exists in the database (Record ID).

20023 - A duplicate key already exists in the database (Label).

16 IBM Systems - iSeries: iSeries Access for Windows: Programming

20024 - A duplicate key already exists in the database (Signature).

20025 - A duplicate key already exists in the database (Unsigned Certificate).

20026 - A duplicate key already exists in the database (Issuer and Serial Number).

20027 - A duplicate key already exists in the database (Subject Public Key Info).

20028 - A duplicate key already exists in the database (Unsigned CRL).

20029 - The label has been used in the database.

20030 - A password encryption error occurred.

20031 - An LDAP related error occurred.

20032 - A cryptographic error occurred.

20033 - An encryption/decryption error occurred.

20034 - An invalid cryptographic algorithm was found.

20035 - An error occurred while signing data.

20036 - An error occurred while verifying data.

20037 - An error occurred while computing digest of data.

20038 - An invalid cryptographic parameter was found.

20039 - An unsupported cryptographic algorithm was encountered.

20040 - The specified input size is greater than the supported modulus size.

20041 - An unsupported modulus size was found

20042 - A database validation error occurred.

20043 - Key entry validation failed.

20044 - A duplicate extension field exists.

20045 - The version of the key is wrong

20046 - A required extension field does not exist.

20047 - The validity period does not include today or does not fall within its

 issuer’s validity period.

20048 - The validity period does not include today or does not fall within its

 issuer’s validity period.

20049 - An error occurred while validating validity private key usage extension.

20050 - The issuer of the key was not found.

20051 - A required certificate extension is missing.

20052 - The key signature validation failed.

20053 - The key signature validation failed.

20054 - The root key of the key is not trusted.

20055 - The key has been revoked.

20056 - An error occurred while validating authority key identifier extension.

20057 - An error occurred while validating private key usage extension.

20058 - An error occurred while validating subject alternative name extension.

20059 - An error occurred while validating issuer alternative name extension.

20060 - An error occurred while validating key usage extension.

20061 - An unknown critical extension was found.

20062 - An error occurred while validating key pair entries.

20063 - An error occurred while validating CRL.

20064 - A mutex error occurred.

20065 - An invalid parameter was found.

20066 - A null parameter or memory allocation error was encountered.

20067 - Number or size is too large or too small.

20068 - The old password is invalid.

20069 - The new password is invalid.

20070 - The password has expired.

20071 - A thread related error occurred.

20072 - An error occurred while creating threads.

20073 - An error occurred while a thread was waiting to exit.

20074 - An I/O error occurred.

20075 - An error occurred while loading CMS.

20076 - A cryptography hardware related error occurred.

20077 - The library initialization routine was not successfully called.

20078 - The internal database handle table is corrupted.

20079 - A memory allocation error occurred.

20080 - An unrecognized option was found.

20081 - An error occurred while getting time information.

20082 - Mutex creation error occurred.

20083 - An error occurred while opening message catalog.

20084 - An error occurred while opening error message catalog.

20085 - An null file name was found.

20086 - An error occurred while opening files, check for file existence and permissions.

20087 - An error occurred while opening files to read.

20088 - An error occurred while opening files to write.

Programming 17

20089 - There is no such file.

20090 - The file cannot be opened because of its permission setting.

20091 - An error occurred while writing data to files.

20092 - An error occurred while deleting files.

20093 - Invalid Base64-encoded data was found.

20094 - An invalid Base64 message type was found.

20095 - An error occurred while encoding data with Base64 encoding rule.

20096 - An error occurred while decoding Base64-encoded data.

20097 - An error occurred while getting a distinguished name tag.

20098 - The required common name field is empty.

20099 - The required country name field is empty.

20100 - An invalid database handle was found.

20101 - The key database does not exist.

20102 - The request key pair database does not exist.

20103 - The password file does not exist.

20104 - The new password is identical to the old one.

20105 - No key was found in the key database.

20106 - No request key was found.

20107 - No trusted CA was found

20108 - No request key was found for the certificate.

20109 - There is no private key in the key database

20110 - There is no default key in the key database.

20111 - There is no private key in the key record.

20112 - There is no certificate in the key record.

20113 - There is no CRL entry.

20114 - An invalid key database file name was found.

20115 - An unrecognized private key type was found.

20116 - An invalid distinguished name input was found.

20117 - No key entry was found that has the specified key label.

20118 - The key label list has been corrupted.

20119 - The input data is not valid PKCS12 data.

20120 - The password is invalid or the PKCS12 data has been corrupted or been

 created with later version of PKCS12.

20121 - An unrecognized key export type was found.

20122 - An unsupported password-based encryption algorithm was found.

20123 - An error occurred while converting the keyring file to a CMS key database.

20124 - An error occurred while converting the CMS key database to a keyring file.

20125 - An error occurred while creating a certificate for the certificate request.

20126 - A complete issuer chain cannot be built.

20127 - Invalid WEBDB data was found.

20128 - There is no data to be written to the keyring file.

20129 - The number of days that you entered extends beyond the permitted validity period.

20130 - The password is too short; it must consist of at least characters.

20131 - A password must contain at least one numeric digit.

20132 - All characters in the password are either alphabetic or numeric characters.

20133 - An unrecognized or unsupported signature algorithm was specified.

20134 - An invalid key database type was specified.

20135 - The secondary key database is currently a secondary key database to another

 primary key database.

20136 - The key database does not have a secondary key database associated with it.

20137 - A cryptographic token with label cannot be found.

20138 - A cryptographic token password was not specified but is required.

20139 - A cryptographic token password was specified but is not required.

20140 - The cryptographic module cannot be loaded. Cryptographic token support will

 not be available.

20141 - The function is not supported for cryptographic tokens.

20142 - The cryptographic token function failed.

SSL error codes

25001 - The handle is not valid.

25002 - The dynamic link library is not available.

25003 - An internal error occurred.

25004 - Main memory is insufficient to perform the operation.

25005 - The handle is not in a valid state for operation.

25006 - The key label is not found.

18 IBM Systems - iSeries: iSeries Access for Windows: Programming

25007 - The certificate is not available.

25008 - Certificate validation error.

25009 - Error processing cryptography.

25010 - Error validating ASN fields in certificate.

25011 - Error connecting to LDAP server.

25012 - Internal unknown error. Report problem to service.

25101 - An error occurred processing the cipher.

25102 - I/O error reading key file.

25103 - Key file has an invalid internal format. Re-create key file.

25104 - Key file has two entries with the same key. Use iKeyman to remove the duplicate key.

25105 - Key file has two entries with the same label. Use iKeyman to remove the duplicate label.

25106 - The key file password is used as an integrity check. Either the key file has

 become corrupted or the password ID is incorrect.

25107 - The default key in the key file has an expired certificate. Use iKeyman to remove

 certificates that are expired.

25108 - There was an error loading one of the dynamic link libraries.

25109 - A connection is trying to be made after environment has been closed.

25201 - The key file could not be initialized.

25202 - Unable to open the key file. Either the path was specified incorrectly or the file

 permissions did not allow the file to be opened.

25203 - Unable to generate a temporary key pair.

25204 - A User Name object was specified that is not found.

25205 - A Password used for an LDAP query is not correct.

25206 - An index into the Fail Over list of LDAP servers was not correct.

25301 - An error occurred on close.

25401 - The system date was set to an invalid value.

25402 - Neither SSLV2 nor SSLV3 is enabled.

25403 - The required certificate was not received from partner.

25404 - The received certificate was formatted incorrectly.

25405 - The received certificate type was not supported.

25406 - An IO error occurred on a data read or write.

25407 - The specified label in the key file could not be found.

25408 - The specified key-file password is incorrect. The key file could not be

 used. The key file may also be corrupt.

25409 - In a restricted cryptography environment, the key size is too long to be supported.

25410 - An incorrectly formatted SSL message was received from the partner.

25411 - The message authentication code (MAC) was not successfully verified.

25412 - The operation is unsupported.

25413 - The received certificate contained an incorrect signature.

25414 - The server certificate is not trusted. This usually occurs when you have

 not downloaded the certificate authority for the server certificate. Use the

 iSeries Digital Certificate Manager to obtain the certificate authority and

 use the PC IBM Key Management utility to place the certificate authority in

 your local key database. See CWBCO1050 for additional information

25415 - The remote system information is not valid.

25416 - Access denied.

25417 - The self-signed certificate is not valid.

25418 - The read failed.

25419 - The write failed.

25420 - The partner closed the socket before the protocol completed. This could mean the

 partner is configured for SSL Client Authentication and no client certificate was

 sent to the partner.

25421 - The specified V2 cipher is not valid.

25422 - The specified V3 cipher is not valid.

25425 - The handle could not be created.

25426 - Initialization failed.

25427 - When validating a certificate, unable to access the specified LDAP directory.

25428 - The specified key did not contain a private key.

25429 - A failed attempt was made to load the specified PKCS11 shared library.

25430 - The PKCS #11 driver failed to find the token specified by the caller.

25431 - The PKCS #11 token is not present in the slot.

25432 - The password/pin to access the PKCS #11 token is invalid.

25433 - The SSL header received was not a properly SSLV2 formatted header.

25434 - Unable to access the hardware-based cryptographic service provider (CSP).

25435 - Attribute setting conflict

25436 - The requested function is not supported on the platform that the application is running

25437 - An IPv6 connection is detected

Programming 19

25438 - Incorrect value is returned from the reset session type callback function

25501 - The buffer size is negative or 0.

25502 - Used with non-blocking I/O.

25601 - SSLV3 is required for reset_cipher, and the connection uses SSLV2.

25602 - An invalid ID was specified for the function call.

25701 - The function call has an invalid ID.

25702 - The attribute has a negative length, which is invalid.

25703 - The enumeration value is invalid for the specified enumeration type.

25704 - Invalid parameter list for replacing the SID cache routines.

25705 - When setting a numeric attribute, the specified value is invalid for the

 specific attribute being set.

25706 - Conflicting parameters have been set for additional certificate validation.

25707 - The cipher spec included an AES cipher spec that is not supported on the

 system of execution.

25708 - The length of the peer ID is incorrect. It must be less than or equal to 16 bytes

iSeries Access for Windows component-specific return codes:

Administration APIs return code:

6001 CWBAD_INVALID_COMPONENT_ID

 The component ID is invalid.

 Related reference

 “iSeries Access for Windows Administration APIs” on page 30
iSeries Access for Windows Administration APIs provide functions that access information about the

iSeries Access for Windows code that is installed on the PC.

Communications APIs return codes:

6001 CWBCO_END_OF_LIST

 The end of system list has been reached. No system name was returned.

6002 CWBCO_DEFAULT_SYSTEM_NOT_DEFINED

 The setting for the default system has not been defined.

6003 CWBCO_DEFAULT_SYSTEM_NOT_CONFIGURED

 The default system is defined, but no connection to it is

 configured.

6004 CWBCO_SYSTEM_NOT_CONNECTED

 The specified system is not currently connected in the current process.

6005 CWBCO_SYSTEM_NOT_CONFIGURED

 The specified system is not currently configured.

6007 CWBCO_INTERNAL_ERROR

 Internal error.

6008 CWBCO_NO_SUCH_ENVIRONMENT

 The specified environment does not exist.

 Related reference

 “iSeries Access for Windows Communications and Security APIs” on page 41
The iSeries Access for Windows Communications and Security topic shows you how to use iSeries

Access for Windows application programming interfaces (APIs)

Database APIs return codes:

Note: See the iSeries Access for Windows database APIs topic for important information regarding

database APIs.
6001 CWBDB_CANNOT_CONTACT_SERVER

 An error was encountered which prevented the Data Access server from

 being started.

6002 CWBDB_ATTRIBUTES_FAILURE

 An error was encountered during attempt to set the Data Access

 server attributes.

6003 CWBDB_SERVER_ALREADY_STARTED

 An attempt to start the Data Access server was made while a valid

 server was running. Stop the server before restarting it.

6004 CWBDB_INVALID_DRDA_PKG_SIZE

20 IBM Systems - iSeries: iSeries Access for Windows: Programming

The valid submitted for the DRDA package size was invalid.

6005 CWBDB_REQUEST_MEMORY_ALLOCATION_FAILURE

 A memory allocation attempt by a request handle failed.

6006 CWBDB_REQUEST_INVALID_CONVERSION

 A Request handle failed in an attempt to convert data.

6007 CWBDB_SERVER_NOT_ACTIVE

 The Data Access server is not started. It must be started before

 continuing.

6008 CWBDB_PARAMETER_ERROR

 Attempt to set a parameter failed. Re-try. If error persists, there

 may be a lack of available memory.

6009 CWBDB_CLONE_CREATION_ERROR

 Could not create a clone request.

6010 CWBDB_INVALID_DATA_FORMAT_FOR_CONNECTION

 The data format object was not valid for this connection.

6011 CWBDB_DATA_FORMAT_IN_USE

 The data format object is already being used by another request.

6012 CWBDB_INVALID_DATA_FORMAT_FOR_DATA

 The data format object does not match the format of the data.

6013 CWBDB_STRING_ARG_TOO_LONG

 The string provided was too long for the parameter.

6014 CWBDB_INVALID_INTERNAL_ARG

 Invalid internally generated argument (not user supplied).

6015 CWBDB_INVALID_NUMERIC_ARG

 Value of numeric argument is invalid.

6016 CWBDB_INVALID_ARG

 Value of argument is invalid.

6017 CWBDB_STMT_NOT_SELECT

 The statement provided was not a SELECT statement. This call requires

 a SELECT statement.

6018 CWBDB_STREAM_FETCH_NOT_COMPLETE

 The connection is in stream fetch mode. Cannot perform desired

 operation until stream fetch has ended.

6019 CWBDB_STREAM_FETCH_NOT_ACTIVE

 The connection is not in stream fetch mode and must be in order to

 perform the desired operation.

6020 CWBDB_MISSING_DATA_PROCESSOR

 Pointer to data processor in request object is null.

6021 CWBDB_ILLEGAL_CLONE_REQUEST_TYPE

 Cannot create a clone of an attributes request.

6022 CWBDB_UNSOLICITED_DATA

 Data were received from the server, but none were requested.

6023 CWBDB_MISSING_DATA

 Data were requested from the server, but not all were received.

6024 CWBDB_PARM_INVALID_BITSTREAM

 Bitstream within a parameter is invalid.

6025 CWBDB_CONSISTENCY_TOKEN_ERROR

 The data format used to interpret the data from the iSeries does not

 match the data returned.

6026 CWBDB_INVALID_FUNCTION

 The function is invalid for this type of request.

6027 CWBDB_FORMAT_INVALID_ARG

 A parameter value passed to the API was not valid.

6028 CWBDB_INVALID_COLUMN_POSITION

 The column position passed to the API was not valid.

6029 CWBDB_INVALID_COLUMN_TYPE

 The column type passed to the API was not valid.

6030 CWBDB_ROW_VECTOR_NOT_EMPTY

 Invalid or corrupted format handle.

6031 CWBDB_ROW_VECTOR_EMPTY

 Invalid or corrupted format handle.

6032 CWBDB_MEMORY_ALLOCATION_FAILURE

 An error occurred while attempting to allocate memory.

6033 CWBDB_INVALID_CONVERSION

 An invalid type conversion was attempted.

6034 CWBDB_DATASTREAM_TOO_SHORT

 The data stream received from the host was too short.

Programming 21

6035 CWBDB_SQL_WARNING

 The database server received a warning from an SQL operation.

6036 CWBDB_SQL_ERROR

 The database server received an error from an SQL operation.

6037 CWBDB_SQL_PARAMETER_WARNING

 The database server received a warning about a parameter used in an

 SQL operation.

6038 CWBDB_SQL_PARAMETER_ERROR

 The database server received an error about a parameter used in an

 SQL operation.

6039 CWBDB_LIST_SERVER_WARNING

 The database server returned a warning from a catalog operation.

6040 CWBDB_LIST_SERVER_ERROR

 The database server returned an error from a catalog operation.

6041 CWBDB_LIST_PARAMETER_WARNING

 The database server returned a warning about a parameter used in a

 catalog operation.

6042 CWBDB_LIST_PARAMETER_ERROR

 The database server returned an error about a parameter used in a

 catalog operation.

6043 CWBDB_NDB_FILE_SERVER_WARNING

 The database server returned a warning from a file processing

 operation.

6044 CWBDB_NDB_FILE_SERVER_ERROR

 The database server returned an error from a file processing operation.

6045 CWBDB_FILE_PARAMETER_WARNING

 The database server returned a warning about a parameter used in a

 file processing operation.

6046 CWBDB_FILE_PARAMETER_ERROR

 The database server returned an error about a parameter used in a

 file processing operation.

6047 CWBDB_GENERAL_SERVER_WARNING

 The database server returned a general warning.

6048 CWBDB_GENERAL_SERVER_ERROR

 The database server returned a general error.

6049 CWBDB_EXIT_PROGRAM_WARNING

 The database server returned a warning from an exit program.

6050 CWBDB_EXIT_PROGRAM_ERROR

 The database server returned an error from an exit program.

6051 CWBDB_DATA_BUFFER_TOO_SMALL

 Target data buffer is smaller than source buffer.

6052 CWBDB_NL_CONVERSION_ERROR

 Received error back from PiNlConverter.

6053 CWBDB_COMMUNICATIONS_ERROR

 Received a communications error during processing.

6054 CWBDB_INVALID_ARG_API

 Value of argument is invalid - API level.

6055 CWBDB_MISSING_DATA_HANDLER

 Data handler not found in data handler list.

6056 CWBDB_REQUEST_DATASTREAM_NOT_VALID

 Invalid datastream in catalog request.

6057 CWBDB_SERVER_UNABLE

 Server incapable of performing desired function.

The following return codes are returned by the

cwbDB_StartServerDetailed API:

6058 CWBDB_WORK_QUEUE_START_ERROR

 Unable to start server because of client work queue problem.

6059 CWBDB_WORK_QUEUE_CREATE_ERROR

 Unable to start server because of client work queue problem.

6060 CWBDB_INITIALIZATION_ERROR

 Unable to start server because of client initialization problem.

6061 CWBDB_SERVER_ATTRIBS_ERROR

 Unable to start server because of server attribute problem.

6062 CWBDB_CLIENT_LEVEL_ERROR

 Unable to start server because of set client level problem.

22 IBM Systems - iSeries: iSeries Access for Windows: Programming

6063 CWBDB_CLIENT_LFC_ERROR

 Unable to start server because of set client language feature

 code problem.

6064 CWBDB_CLIENT_CCSID_ERROR

 Unable to start server because of set client CCSID problem.

6065 CWBDB_TRANSLATION_INDICATOR_ERROR

 Unable to start server because of set translation indicator error.

6066 CWBDB_RETURN_SERVER_ATTRIBS_ERROR

 Unable to start server because of return server attribute problem.

6067 CWBDB_SERVER_ATTRIBS_REQUEST

 Unable to start server because of missing server attributes request

 object.

6068 CWBDB_RETURN_ATTRIBS_ERROR

 Unable to start server because of return attribute problem.

6069 CWBDB_SERVER_ATTRIBS_MISSING

 Unable to start server because returned server attributes too short

 (missing data).

6070 CWBDB_SERVER_LFC_CONVERSION_ERROR

 Unable to start server because of data conversion error on server

 language feature code field of server attributes.

6071 CWBDB_SERVER_LEVEL_CONVERSION_ERROR

 Unable to start server because of data conversion error on server

 functional level field of server attributes.

6072 CWBDB_SERVER_LANGUAGE_TABLE_ERROR

 Unable to start server because of data conversion error on server

 language table ID field of server attributes.

6073 CWBDB_SERVER_LANGUAGE_LIBRARY_ERROR

 Unable to start server because of data conversion error on server

 language library ID field of server attributes.

6074 CWBDB_SERVER_LANGUAGE_ID_ERROR

 Unable to start server because of data conversion error on server

 language ID field of server attributes.

6075 CWBDB_COMM_DEQUEUE_ERROR

 Unable to start server because of communications error.

6076 CWBDB_COMM_ENQUEUE_ERROR

 Unable to start server because of communications error.

6077 CWBDB_UNSUPPORTED_COLUMN_TYPE

 An unsupported column type was found in the data.

6078 CWBDB_SERVER_IN_USE

 A connection to the database server for the given connection

 handle is already being used by another connection handle which

 was created with the same system object handle.

6079 CWBDB_SERVER_REL_DB_CONVERSION_ERROR

 Unable to start server because of data conversion error on

 server relational DB field of server attributes. There is no

 message or help text for this return code.

6080 CWBDB_SERVER_FUNCTION_NOT_AVAILABLE

 This function is not available on this version of the host server.

6081 CWBDB_FUNCTION_NOT_VALID_AFTER_CONNECT

 This function is not valid after connecting to the host server.

6082 CWBDB_INVALID_INITIAL_REL_DB_NAME

 The initial relational DB name (IASP) was invalid.

6099 CWBDB_LAST_STREAM_CHUNK

 Stream fetch complete.

 NOTE: Informational, not an error. There is not a message or help text

 for this return code.

 Related reference

 “iSeries Access for Windows database APIs” on page 550
The iSeries Access for Windows proprietary C/C++ Database APIs provide support for iSeries

database and catalog functions, in addition to SQL access to iSeries database files. Choose this link for

important information regarding these APIs.

Data Queues APIs return codes:

Programming 23

6000 CWBDQ_INVALID_ATTRIBUTE_HANDLE

 Invalid attributes handle.

6001 CWBDQ_INVALID_DATA_HANDLE

 Invalid data handle.

6002 CWBDQ_INVALID_QUEUE_HANDLE

 Invalid queue handle.

6003 CWBDQ_INVALID_READ_HANDLE

 Invalid data queue read handle.

6004 CWBDQ_INVALID_QUEUE_LENGTH

 Invalid maximum record length for a data queue.

6005 CWBDQ_INVALID_KEY_LENGTH

 Invalid key length.

6006 CWBDQ_INVALID_ORDER

 Invalid queue order.

6007 CWBDQ_INVALID_AUTHORITY

 Invalid queue authority.

6008 CWBDQ_INVALID_QUEUE_TITLE

 Queue title (description) is too long or cannot be converted.

6009 CWBDQ_BAD_QUEUE_NAME

 Queue name is too long or cannot be converted.

6010 CWBDQ_BAD_LIBRARY_NAME

 Library name is too long or cannot be converted.

6011 CWBDQ_BAD_SYSTEM_NAME

 System name is too long or cannot be converted.

6012 CWBDQ_BAD_KEY_LENGTH

 Length of key is not correct for this data queue or key length is

 greater than 0 for a LIFO or FIFO data queue.

6013 CWBDQ_BAD_DATA_LENGTH

 Length of data is not correct for this data queue. Either the data

 length is zero or it is greater than the maximum allowed of

 31744 bytes (64512 bytes for V4R5 and later versions of i5/OS).

 Note: The maximum allowed data lengh when

 connected to i5/OS V4R5MO and later systems has been increased

 to 64512 bytes. When connected to earlier releases of i5/OS,

 64512 bytes of data may be written to a data queue, but the

 maximum length of data that may be read from a data queue

 is 31744 bytes.

6014 CWBDQ_INVALID_TIME

 Wait time is not correct.

6015 CWBDQ_INVALID_SEARCH

 Search order is not correct.

6016 CWBDQ_DATA_TRUNCATED

 Returned data was truncated.

6017 CWBDQ_TIMED_OUT

 Wait time has expired and no data has been returned.

6018 CWBDQ_REJECTED_USER_EXIT

 Command rejected by user exit program.

6019 CWBDQ_USER_EXIT_ERROR

 Error in user exit program or invalid number of exit programs.

6020 CWBDQ_LIBRARY_NOT_FOUND

 Library not found on system.

6021 CWBDQ_QUEUE_NOT_FOUND

 Queue not found on system.

6022 CWBDQ_NO_AUTHORITY

 No authority to library or data queue.

6023 CWBDQ_DAMAGED_QUEUE

 Data queue is in an unusable state.

6024 CWBDQ_QUEUE_EXISTS

 Data queue already exists.

6025 CWBDQ_INVALID_MESSAGE_LENGTH

 Invalid message length - exceeds queue maximum record length.

6026 CWBDQ_QUEUE_DESTROYED

 Queue destroyed while waiting to read or peek a record.

6027 CWBDQ_NO_DATA

 No data was received.

6028 CWBDQ_CANNOT_CONVERT

 Data cannot be converted for this data queue. The data queue

24 IBM Systems - iSeries: iSeries Access for Windows: Programming

can be used but data cannot be converted between ASCII and EBCDIC.

 The convert flag on the data object will be ignored.

6029 CWBDQ_QUEUE_SYNTAX

 Syntax of the data queue name is incorrect. Queue name must follow

 iSeries object syntax. First character must be alphabetic and all

 following characters alphanumeric.

6030 CWBDQ_LIBRARY_SYNTAX

 Syntax of the library name is incorrect. Library name must follow

 iSeries object syntax. First character must be alphabetic and all

 following characters alphanumeric.

6031 CWBDQ_ADDRESS_NOT_SET

 Address not set. The data object was not set with cwbDQ_SetDataAddr(),

 so the address cannot be retrieved. Use cwbDQ_GetData() instead of

 cwbDQ_GetDataAddr().

6032 CWBDQ_HOST_ERROR

 Host error occurred for which no return code is defined. See the

 error handle for the message text.

6033 CWBDQ_INVALID_SYSTEM_HANDLE

 System handle is invalid.

6099 CWBDQ_UNEXPECTED_ERROR

 Unexpected error.

 Related reference

 “iSeries Access for Windows Data Queues APIs” on page 117
Use iSeries Access for Windows Data Queues application programming interfaces (APIs) to provide

easy access to iSeries data queues. Data queues allow you to create client/server applications that do

not require the use of communications APIs.

Directory Update APIs return codes:

6000 CWBUP_ENTRY_NOT_FOUND

 No update entry matched search value.

6001 CWBUP_SEARCH_POSITION_ERROR

 Search starting position is not valid.

6002 CWBUP_PACKAGE_NOT_FOUND

 The package file was not found.

6003 CWBUP_POSITION_INVALID

 Position that is given is not in range.

6004 CWBUP_TOO_MANY_ENTRIES

 The maximum number of update entries already exist. No more can be

 created.

6005 CWBUP_TOO_MANY_PACKAGES

 Maximum number of package files already exists for this entry.

6006 CWBUP_STRING_TOO_LONG

 The text string parameter passed in is longer than CWBUP_MAX_LENGTH.

6007 CWBUP_ENTRY_IS_LOCKED

 Another application is currently changing the update entry list. No

 changes are allowed at this time.

6008 CWBUP_UNLOCK_WARNING

 Application did not have the update entries locked.

 Related reference

 “iSeries Access for Windows Directory Update APIs” on page 207
The iSeries Access for Windows Directory Update function allows users to specify PC directories for

updating from a configured network server or from multiple networked servers. This permits users to

load non-iSeries Access for Windows software products on a server in the network, and to keep those

files updated on PCs. Directory Update is an optionally installable iSeries Access for Windows

component.

National language support APIs return codes:

6101 CWBNL_ERR_CNV_UNSUPPORTED

 An attempt was made to convert character data from a code page to

 another code page but this conversion is not supported.

6102 CWBNL_ERR_CNV_TBL_INVALID

 A conversion table is in a format that is not recognized.

Programming 25

6103 CWBNL_ERR_CNV_TBL_MISSING

 An attempt was made to use a conversion table, but the table was not

 found.

6104 CWBNL_ERR_CNV_ERR_GET

 A code page conversion table was being retrieved from the server

 when an error occurred.

6105 CWBNL_ERR_CNV_ERR_COMM

 A code page conversion table was being retrieved from the server

 when a communications error occurred.

6106 CWBNL_ERR_CNV_ERR_SERVER

 A code page conversion table was being retrieved from the server

 when a server error occurred.

6107 CWBNL_ERR_CNV_ERR_STATUS

 While converting character data from one code page to another, some

 untranslatable characters were encountered.

6108 CWBNL_ERROR_CONVERSION_INCOMPLETE_MULTIBYTE_INPUT_CHARACTER

 While converting character data an incomplete multibyte character

 was found.

6109 CWBNL_ERR_CNV_INVALID_SISO_STATUS

 The SISO parameter is incorrect.

6110 CWBNL_ERR_CNV_INVALID_PAD_LENGTH

 The pad length parameter is incorrect.

The following return codes are for language APIs:

6201 CWBNL_ERR_STR_TBL_INVALID

 Message file not in a recognized format. It has been corrupted.

6202 CWBNL_ERR_STR_TBL_MISSING

 Message file could not be found.

6203 CWBNL_ERR_STR_NOT_FOUND

 The message file is missing a message.

6204 CWBNL_ERR_NLV_NO_CONFIG

 The language configuration is missing.

6205 CWBNL_ERR_NLV_NO_SUBDIR

 The language subdirectory is missing.

6206 CWBNL_DEFAULT_HOST_CCSID_USED

 A default server CCSID (500) is used.

The following return codes are for locale APIs:

6301 CWBNL_ERR_LOC_TBL_INVALID

6302 CWBNL_ERR_LOC_TBL_MISSING

6303 CWBNL_ERR_LOC_NO_CONFIG

6304 CWBNL_ERR_LOC_NO_LOCPATH

iSeries Object APIs return codes:

6000 CWBOBJ_RC_HOST_ERROR

 Host error occurred. Text may be in errorHandle.

6001 CWBOBJ_RC_INVALID_TYPE

 Incorrect object type.

6002 CWBOBJ_RC_INVALID_KEY

 Incorrect key.

6003 CWBOBJ_RC_INVALID_INDEX

 Bad index to list.

6004 CWBOBJ_RC_LIST_OPEN

 The list is already opened.

6005 CWBOBJ_RC_LIST_NOT_OPEN

 The list has not been opened.

6006 CWBOBJ_RC_SEEKOUTOFRANGE

 Seek offset is out of range.

6007 CWBOBJ_RC_SPLFNOTOPEN

 Spooled file has not been opened.

6007 CWBOBJ_RC_RSCNOTOPEN

 Resource has not been opened.

6008 CWBOBJ_RC_SPLFENDOFFILE

 End of file was reached.

26 IBM Systems - iSeries: iSeries Access for Windows: Programming

6008 CWBOBJ_RC_ENDOFFILE

 End of file was reached.

6009 CWBOBJ_RC_SPLFNOMESSAGE

 The spooled file is not waiting on a message.

6010 CWBOBJ_RC_KEY_NOT_FOUND

 The parameter list does not contain the specified key.

6011 CWBOBJ_RC_NO_EXIT_PGM

 No exit program registered.

6012 CWBOBJ_RC_NOHOSTSUPPORT

 Host does not support function.

 Related reference

 “iSeries Objects APIs for iSeries Access for Windows” on page 227
iSeries Objects for iSeries Access for Windows application programming interfaces (APIs) allow you to

work with iSeries print-related objects. These APIs make it possible to work with iSeries spooled files,

writer jobs, output queues, printers, and more.

Remote Command/Distributed Program Call APIs return codes:

6000 CWBRC_INVALID_SYSTEM_HANDLE

 Invalid system handle.

6001 CWBRC_INVALID_PROGRAM

 Invalid program handle.

6002 CWBRC_SYSTEM_NAME

 System name is too long or cannot be converted.

6003 CWBRC_COMMAND_STRING

 Command string is too long or cannot be converted.

6004 CWBRC_PROGRAM_NAME

 Program name is too long or cannot be converted.

6005 CWBRC_LIBRARY_NAME

 Library name is too long or cannot be converted.

6006 CWBRC_INVALID_TYPE

 Invalid parameter type specified.

6007 CWBRC_INVALID_PARM_LENGTH

 Invalid parameter length.

6008 CWBRC_INVALID_PARM

 Invalid parameter specified.

6009 CWBRC_TOO_MANY_PARMS

 Attempt to add too many parameters to a program.

6010 CWBRC_INDEX_RANGE_ERROR

 Index is out of range for this program.

6011 CWBRC_REJECTED_USER_EXIT

 Command rejected by user exit program.

6012 CWBRC_USER_EXIT_ERROR

 Error in user exit program.

6013 CWBRC_COMMAND_FAILED

 Command failed.

6014 CWBRC_PROGRAM_NOT_FOUND

 Program not found or could not be accessed.

6015 CWBRC_PROGRAM_ERROR

 Error occurred when calling the program.

6016 CWBRC_COMMAND_TOO_LONG

 Command string is too long.

6099 CWBRC_UNEXPECTED_ERROR

 Unexpected error.

 Related reference

 “iSeries Access for Windows Remote Command/Distributed Program Call APIs” on page 324
The iSeries Access for Windows Remote Command/Distributed Program Call APIs allow the PC

application programmer to access functions on the iSeries system. User program and system

commands can be called without requiring an emulation session. A single iSeries program serves

commands and programs, so only one iSeries job is started for both.

Security APIs return codes:

Programming 27

6000 CWBSY_UNKNOWN_USERID

 User ID does not exist.

6002 CWBSY_WRONG_PASSWORD

 Password is not correct for specified user ID.

6003 CWBSY_PASSWORD_EXPIRED

 Password has expired.

6004 CWBSY_INVALID_PASSWORD

 One or more characters in the password are not valid or the password

 is too long.

6007 CWBSY_GENERAL_SECURITY_ERROR

 A general security error occurred. The user profile does not have a

 password or the password validation program found an error in the

 password.

6009 CWBSY_INVALID_PROFILE

 The server user profile is not valid.

6011 CWBSY_USER_PROFILE_DISABLED

 The iSeries user profile (user ID) has been set to disabled.

6013 CWBSY_USER_CANCELLED

 The user cancelled from the user ID/password prompt.

6015 CWBSY_INVALID_USERID

 One or more characters in the user ID is not valid or the user ID is

 too long.

6016 CWBSY_UNKNOWN_SYSTEM

 The system specified is unknown.

6019 CWBSY_TP_NOT_VALID

 The PC could not validate the iSeries security server. This could

 indicate tampering with the IBM supplied security server program on

 the iSeries.

6022 CWBSY_NOT_LOGGED_ON

 There is no user currently logged on for the specified system.

6025 CWBSY_SYSTEM_NOT_CONFIGURED

 The system specified in the security object has not been configured.

6026 CWBSY_NOT_VERIFIED

 The user ID and password defined in the object has not yet been

 verified. You must verify using cwbSY_VerifyUserIDPwd API.

6255 CWBSY_INTERNAL_ERROR

 Internal error. Contact IBM Service.

The following return codes are for change password APIs:

6257 CWBSY_PWD_TOO_LONG

 The new password contains too many characters. The maximum number of

 characters allowed is defined by the iSeries system value, QPWDMAXLEN.

6258 CWBSY_PWD_TOO_SHORT

 The new password does not contain enough characters. The minimum

 number of characters allowed is defined by the iSeries system value,

 QPWDMINLEN.

6259 CWBSY_PWD_REPEAT_CHARACTER

 The new password contains a character used more than once. The iSeries

 configuration (system value QPWDLMTREP) does not allow passwords to

 contain a repeat character.

6260 CWBSY_PWD_ADJACENT_DIGITS

 The new password contains two numbers next to each other. The iSeries

 configuration (system value QPWDLMTAJC) does not allow passwords to

 contain consecutive digits.

6261 CWBSY_PWD_CONSECUTIVE_CHARS

 The new password contains a character repeated consecutively. The

 iSeries configuration (system value QPWDLMTREP) does not allow a

 password to contain a character repeated consecutively.

6262 CWBSY_PWD_PREVIOUSLY_USED

 The new password matches a previously used password. The iSeries

 configuration (system value QPWDRQDDIF) requires new passwords to be

 different than any previous password.

6263 CWBSY_PWD_DISALLOWED_CHAR

 The new password uses an installation disallowed character. iSeries

 configuration (system value QPWDLMTCHR) restricts certain characters

 from being used in new passwords.

28 IBM Systems - iSeries: iSeries Access for Windows: Programming

6264 CWBSY_PWD_NEED_NUMERIC

 The new password must contain a number. The iSeries configuration

 (system value QPWDRQDDGT) requires new passwords contain one or more

 numeric digits.

6266 CWBSY_PWD_MATCHES_OLD

 The new password matches an old password in one or more character

 positions. The server configuration (system value QPWDPOSDIF) does

 not allow the same character to be in the same position as a

 previous password.

6267 CWBSY_PWD_NOT_ALLOWED

 The password was rejected.

6268 CWBSY_PWD_MATCHES_USERID

 The password matches the user ID.

6269 CWBSY_PWD_PRE_V3

 The old password was created on a pre-V3 system which used a

 different encryption technique. Password must be changed manually on

 the server.

6270 CWBSY_LAST_INVALID_PASSWORD

 The next invalid will disable the user profile.

 Related reference

 “iSeries Access for Windows Communications and Security APIs” on page 41
The iSeries Access for Windows Communications and Security topic shows you how to use iSeries

Access for Windows application programming interfaces (APIs)

Serviceability APIs return codes:

6000 CWBSV_INVALID_FILE_TYPE

 Unusable file type passed-in.

6001 CWBSV_INVALID_RECORD_TYPE

 Unusable record type passed-in.

6002 CWBSV_INVALID_EVENT_TYPE

 Unusable event type detected.

6003 CWBSV_NO_ERROR_MESSAGES

 No error messages associated with error handle.

6004 CWBSV_ATTRIBUTE_NOT_SET

 Attribute not set in current message.

6005 CWBSV_INVALID_MSG_CLASS

 Unusable message class passed-in.

6006 CWBSV_LOG_NOT_STARTED

 The requested log could not be started.

 Related reference

 “iSeries Access for Windows Serviceability APIs” on page 342
The iSeries Access for Windows Serviceability application programming interfaces (APIs) allow you to

log service file messages and events within your program.

System Object Access APIs return codes:

0 CWBSO_NO_ERROR

 No error occurred.

1 CWBSO_ERROR_OCCURRED

 An error occurred. Use error handle for more information.

2 CWBSO_LOW_MEMORY

 Not enough memory is available for the request.

3 CWBSO_BAD_LISTTYPE

 The value specified for type of list is not valid.

4 CWBSO_BAD_HANDLE

 The handle specified is not valid.

5 CWBSO_BAD_LIST_HANDLE

 The list handle specified is not valid.

6 CWBSO_BAD_OBJ_HANDLE

 The object handle specified is not valid.

7 CWBSO_BAD_PARMOBJ_HANDLE

 The parameter object handle specified is not valid.

8 CWBSO_BAD_ERR_HANDLE

Programming 29

The error handle specified is not valid.

9 CWBSO_BAD_LIST_POSITION

 The position in list specified does not exist.

10 CWBSO_BAD_ACTION_ID

 An action ID specified is not valid for the type of list.

11 CWBSO_NOT_ALLOWED_NOW

 The action requested is not allowed at this time.

12 CWBSO_BAD_INCLUDE_ID

 The filter ID specified is not valid for this list.

13 CWBSO_DISP_MSG_FAILED

 The request to display the message failed.

14 CWBSO_GET_MSG_FAILED

 The error message text could not be retrieved.

15 CWBSO_BAD_SORT_ID

 A sort ID specified is not valid for the type of list.

16 CWBSO_INTERNAL_ERROR

 An internal processing error occurred.

17 CWBSO_NO_ERROR_MESSAGE

 The error handle specified contains no error message.

18 CWBSO_BAD_ATTRIBUTE_ID

 The attribute key is not valid for this object.

19 CWBSO_BAD_TITLE

 The title specified is not valid.

20 CWBSO_BAD_FILTER_VALUE

 The filter value specified is not valid.

21 CWBSO_BAD_PROFILE_NAME

 The profile name specified is not valid.

22 CWBSO_DISPLAY_FAILED

 The window could not be created.

23 CWBSO_SORT_NOT_ALLOWED

 Sorting is not allowed for this type of list.

24 CWBSO_CANNOT_CHANGE_ATTR

 Attribute is not changeable at this time.

25 CWBSO_CANNOT_READ_PROFILE

 Cannot read from the specified profile file.

26 CWBSO_CANNOT_WRITE_PROFILE

 Cannot write to the specified profile file.

27 CWBSO_BAD_SYSTEM_NAME

 The system name specified is not a valid iSeries system name.

28 CWBSO_SYSTEM_NAME_DEFAULTED

 No system name was specified on the "CWBSO_CreateListHandle" call

 for the list.

29 CWBSO_BAD_FILTER_ID

 The filter ID specified is not valid for the type of list.

 Related reference

 “iSeries Access for Windows System Object Access (SOA) APIs” on page 393
System Object Access enables you to view and manipulate iSeries objects through a graphical user

interface.

 “About System Object Access errors” on page 402

All System Object Access APIs use return codes to report error conditions.

iSeries Access for Windows Administration APIs

iSeries Access for Windows Administration APIs provide functions that access information about the

iSeries Access for Windows code that is installed on the PC.

Administration APIs allow you to determine:

v The version and service level of iSeries Access for Windows

v The install status of individual components

v The install status of iSeries Navigator plug-ins

30 IBM Systems - iSeries: iSeries Access for Windows: Programming

iSeries Access for Windows Administration APIs required files:

 Header file Import library Dynamic Link Library

cwbad.h cwbapi.lib cwbad.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides Administration APIs documentation, access to the cwbad.h header

file, and links to sample programs. To access this information, open the Programmer’s Toolkit and select

Client Information → C/C++ APIs.

iSeries Access for Windows Administration APIs topics:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

 Related reference

 “Administration APIs return code” on page 20

 “iSeries system name formats for connection APIs” on page 5
APIs that take an iSeries system name as a parameter accept names in the following formats.

 “OEM, ANSI, and Unicode considerations” on page 6
Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three

forms: OEM, ANSI, or Unicode.

Administration APIs list

The following APIs are used in Administration.

cwbAD_GetClientVersion:

Purpose

Get the version of the iSeries Access for Windows product that currently is installed on a PC.

Syntax

unsigned int CWB_ENTRY cwbAD_GetClientVersion(

 unsigned long *version

 unsigned long *release

 unsigned long *modificationLevel);

Parameters

unsigned long *version - output

Pointer to a buffer where the version level of the iSeries Access for Windows product is returned.

unsigned long *release - output

Pointer to a buffer where the release level of the iSeries Access for Windows product is returned.

unsigned long *modificationLevel - output

Pointer to a buffer where the modification level of the iSeries Access for Windows product is

returned.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

Programming 31

CWB_INVALID_POINTER

One or more pointer parameters are null.

Usage

If the return code is not CWB_OK, the values in version, release, and modificationLevel are meaningless.

cwbAD_GetProductFixLevel:

Purpose

Returns the current fix level of iSeries Access for Windows.

Syntax

unsigned int CWB_ENTRY cwbAD_GetProductFixLevel(

 char *szBuffer

 unsigned long *ulBufLen);

Parameters

char *szBuffer - output

Buffer into which the product fix level string will be written.

unsigned long * ulBufLen - input/output

Size of szBuffer, including space for the NULL terminator. On output, will contain the length of the

fix level string, including the terminating NULL.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Buffer overflow. The required length is returned in ulBufLen.

CWB_INVALID_POINTER

Invalid pointer.

Usage

Returns the fix level of the iSeries Access for Windows product. Returns an empty string if fixes have not

been applied.

cwbAD_IsComponentInstalled:

Purpose

Indicates whether a specific iSeries Access for Windows component is installed.

Syntax

unsigned long CWB_ENTRY cwbAD_IsComponentInstalled(

 unsigned long ulComponentID,

 cwb_Boolean *bIndicator);

Parameters

unsigned long ulComponentID - input

Must be set to one of the following component IDs:

32 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBAD_COMP_SSL

Secure Sockets Layer

CWBAD_COMP_SSL_128_BIT

Secure Sockets Layer 128 bit

Note: This constant is defined to be the same as CWBAD_COMP_SSL.

CWBAD_COMP_SSL_56_BIT

Secure Sockets Layer 56 bit

Note: This constant is defined to be the same as CWBAD_COMP_SSL.

CWBAD_COMP_SSL_40_BIT

Secure Sockets Layer 40 bit

Note: This constant is defined to be the same as CWBAD_COMP_SSL.

CWB_COMP_BASESUPPORT

iSeries Access for Windows required programs

CWBAD_COMP_OPTIONAL_COMPS

iSeries Access for Windows Optional Components

CWBAD_COMP_DIRECTORYUPDATE

Directory Update

CWBAD_COMP_IRC

Incoming Remote Command

CWBAD_COMP_OUG

User’s Guide

CWBAD_COMP_OPNAV

iSeries Navigator

CWBAD_COMP_DATA_ACCESS

Data Access

CWBAD_COMP_DATA_TRANSFER

Data Transfer

CWBAD_COMP_DT_BASESUPPORT

Data Transfer Base Support

CWBAD_COMP_DT_EXCEL_ADDIN

Data Transfer Excel Add-in

CWBAD_COMP_DT_WK4SUPPORT

Data Transfer WK4 file support

CWBAD_COMP_ODBC

ODBC

CWBAD_COMP_OLEDB

OLE DB Provider

CWBAD_COMP_MP

.NET Data Provider

CWBAD_COMP_AFP_VIEWER

AFP™ Workbench Viewer

CWBAD_COMP_JAVA_TOOLBOX

Java Toolbox

Programming 33

CWBAD_COMP_PC5250

PC5250 Display and Printer Emulator

 PC5250 Display and Printer Emulator subcomponents:

v CWBAD_COMP_PC5250_BASE_KOREAN

v CWBAD_COMP_PC5250_PDFPDT_KOREAN

v CWBAD_COMP_PC5250_BASE_SIMPCHIN

v CWBAD_COMP_PC5250_PDFPDT_SIMPCHIN

v CWBAD_COMP_PC5250_BASE_TRADCHIN

v CWBAD_COMP_PC5250_PDFPDT_TRADCHIN

v CWBAD_COMP_PC5250_BASE_STANDARD

v CWBAD_COMP_PC5250_PDFPDT_STANDARD

v CWBAD_COMP_PC5250_FONT_ARABIC

v CWBAD_COMP_PC5250_FONT_BALTIC

v CWBAD_COMP_PC5250_FONT_LATIN2

v CWBAD_COMP_PC5250_FONT_CYRILLIC

v CWBAD_COMP_PC5250_FONT_GREEK

v CWBAD_COMP_PC5250_FONT_HEBREW

v CWBAD_COMP_PC5250_FONT_LAO

v CWBAD_COMP_PC5250_FONT_THAI

v CWBAD_COMP_PC5250_FONT_TURKISH

v CWBAD_COMP_PC5250_FONT_VIET

v CWBAD_COMP_PC5250_FONT_HINDI

CWBAD_COMP_PRINTERDRIVERS

Printer Drivers

CWBAD_COMP_AFP_DRIVER

AFP printer driver

CWBAD_COMP_SCS_DRIVER

SCS printer driver

CWBAD_COMP_OP_CONSOLE

Operations Console

CWBAD_COMP_TOOLKIT

Programmer’s Toolkit

CWBAD_COMP_TOOLKIT_BASE

Headers, Libraries, and Documentation

CWBAD_COMP_TOOLKIT_VBW

Visual Basic Wizard

CWBAD_COMP_EZSETUP

EZ Setup

CWBAD_COMP_TOOLKIT_JAVA_TOOLS

Programmer’s Toolkit Tools for Java

CWBAD_COMP_SCREEN_CUSTOMIZER_ENABLER

Screen Customizer Enabler

CWBAD_COMP_OPNAV_BASESUPPORT

iSeries Navigator Base Support

34 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBAD_COMP_OPNAV_BASE_OPS

iSeries Navigator Basic Operations

CWBAD_COMP_OPNAV_JOB_MGMT

iSeries Navigator Job Management

CWBAD_COMP_OPNAV_SYS_CFG

iSeries Navigator System Configuration

CWBAD_COMP_OPNAV_NETWORK

iSeries Navigator Networks

CWBAD_COMP_OPNAV_SECURITY

iSeries Navigator Security

CWBAD_COMP_OPNAV_USERS_GROUPS

iSeries Navigator Users and Groups

CWBAD_COMP_OPNAV_DATABASE

iSeries Navigator Database

CWBAD_COMP_OPNAV_BACKUP

iSeries Navigator Backup

CWBAD_COMP_OPNAV_APP_DEV

iSeries Navigator Application Development

CWBAD_COMP_OPNAV_APP_ADMIN

iSeries Navigator Application Administration

CWBAD_COMP_OPNAV_FILE_SYSTEMS

iSeries Navigator File Systems

CWBAD_COMP_OPNAV_MGMT_CENTRAL

iSeries Navigator Management Central

CWBAD_COMP_OPNAV_MGMT_COMMANDS

iSeries Navigator Management Central - Commands

CWBAD_COMP_OPNAV_MGMT_PACK_PROD

iSeries Navigator Management Central - Packages and Products

CWBAD_COMP_OPNAV_MGMT_MONITORS

iSeries Navigator Management Central - Monitors

CWBAD_COMP_OPNAV_LOGICAL_SYS

iSeries Navigator Logical Systems

CWBAD_COMP_OPNAV_ADV_FUNC_PRES

iSeries Navigator Advanced Function Presentation™

cwb_Boolean *bIndicator - output

Will contain CWB_TRUE if the component is installed. Will return CWB_FALSE if the component is

not installed. Will not be set if an error occurs.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Invalid pointer.

Programming 35

CWB_INVALID_COMPONENT_ID

The component ID is invalid for this release.

cwbAD_IsOpNavPluginInstalled:

Purpose

Indicates whether a specific iSeries Navigator plug-in is installed.

Syntax

unsigned long CWB_ENTRY cwbAD_IsOpNavPluginInstalled(

 const char *szPluginName,

 cwb_Boolean *bIndicator);

Parameters

const char* szPluginName - input

Pointer to a null-terminated string that contains the name of the plug-in.

cwb_Boolean *bIndicator - output

Will contain CWB_TRUE if the plug-in is installed. Will return CWB_FALSE if the component is not

installed. Will not be set if an error occurs.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

One of the pointer parameters is NULL.

Usage

If the return value is not CWB_OK, the value in bIndicator is meaningless.

Example: Administration APIs

This example demonstrates how an application might use iSeries Access for Windows Administration

APIs.

In this example, the APIs are used to get and display:

v The current iSeries Access for Windows Version/Release/Modification level

v The current service pack (fix) level

v The components that currently are installed on the PC

The user then is allowed to enter iSeries Navigator plug-in names, and is informed whether the plug-in is

installed.

Usage notes:

Include cwbad.h *

Link with cwbapi.lib

36 IBM Systems - iSeries: iSeries Access for Windows: Programming

Example

#include <windows.h>

#include <stdio.h>

#include "cwbad.h"

/*

 * This is the highest numbered component ID known (it is

 * the ID of the last component defined in cwbad.h).

 */

#define LAST_COMPID_WE_KNOW_ABOUT (CWBAD_COMP_SSL_40_BIT)

/*

 * Array of component names, taken from comments for component IDs

 * in cwbad.h, so human-readable component descriptions are displayed .

 * In the compDescr array, the component ID for a component must match

 * the index in the array of that component’s description.

 *

 * For a blank or unknown component name, a string is provided to display

 * an indication that the component ID is unknown, and what that ID is.

 */

static char* compDescr[LAST_COMPID_WE_KNOW_ABOUT + 1] = {

 "", // #0 is not used

 "Required programs",

 "Optional Components",

 "Directory Update",

 "Incoming Remote Command",

 "", // not used,

 "Online User’s Guide",

 "iSeries Navigator",

 "Data Access",

 "Data Transfer",

 "Data Transfer Base Support",

 "Data Transfer Excel Add-in",

 "Data Transfer WK4 file support",

 "ODBC",

 "OLE DB Provider",

 "AFP Workbench Viewer",

 "iSeries Java Toolbox",

 "5250 Display and Printer Emulator",

 "Printer Drivers",

 "AFP printer driver",

 "SCS printer driver",

 "iSeries Operations Console",

 "iSeries Access Programmer’s Toolkit",

 "Headers, Libraries, and Documentation",

 "Visual Basic Wizards",

 "EZ Setup",

 "Java Toolkit",

 "Screen customizer",

 ".NET Data Provider",

 "", //-------------#29

 "", "", "", "", "", // #30-34

 "", "", "", "", "", // #35-39

 "", "", "", "", "", // #40-44

 "", "", "", "", "", // #45-49

 "", "", "", "", "", // not #50-54

 "", "", "", "", "", // #55-59

 "", "", "", "", "", // #60-64

 "", "", "", "", "", // #65-69

 "", "", "", "", "", // used #70-74

 "", "", "", "", "", // #75-79

 "", "", "", "", "", // #80-84

 "", "", "", "", "", // #85-89

 "", "", "", "", "", // #90-94

Programming 37

"", "", "", "", "", //------------ #95-99

 "iSeries Navigator Base Support",

 "iSeries Navigator Basic Operations",

 "iSeries Navigator Job Management",

 "iSeries Navigator System Configuration",

 "iSeries Navigator Networks",

 "iSeries Navigator Security",

 "iSeries Navigator Users and Groups",

 "iSeries Navigator Database",

 "", // not used #108

 "iSeries Navigator Backup",

 "iSeries Navigator Application Development",

 "iSeries Navigator Application Administrat",

 "iSeries Navigator File Systems",

 "iSeries Navigator Management Central",

 "iSeries Navigator Management Central - Commands",

 "iSeries Navigator Management Central - Packages and Products",

 "iSeries Navigator Logical Systems",

 "iSeries Navigator Advanced Function Presentation",

 "","" //-------------#118-119

 "", "", "", "", "", // not #120-124

 "", "", "", "", "", // #125-129

 "", "", "", "", "", // #130-134

 "", "", "", "", "", // used #135-139

 "", "", "", "", "", // #140-144

 "", "", "", "", "", //------------ #145-149

 "PC5250: BASE_KOREAN",

 "PC5250: PDFPDT_KOREAN",

 "PC5250: BASE_SIMPCHIN",

 "PC5250: PDFPDT_SIMPCHIN",

 "PC5250: BASE_TRADCHIN",

 "PC5250: PDFPDT_TRADCHIN",

 "PC5250: BASE_STANDARD",

 "PC5250: PDFPDT_STANDARD",

 "PC5250: FONT_ARABIC",

 "PC5250: FONT_BALTIC",

 "PC5250: FONT_LATIN2",

 "PC5250: FONT_CYRILLIC",

 "PC5250: FONT_GREEK",

 "PC5250: FONT_HEBREW",

 "PC5250: FONT_LAO",

 "PC5250: FONT_THAI",

 "PC5250: FONT_TURKISH",

 "PC5250: FONT_VIET",

 "PC5250: FONT_HINDI",

 "", //------------ #169

 "", "", "", "", "", // #170-174

 "", "", "", "", "", // not #175-179

 "", "", "", "", "", // #180-184

 "", "", "", "", "", // used #185-189

 "", "", "", "", "", // #190-194

 "", "", "", "", "", //------------ #195-199

 "Secure Sockets Layer (SSL)" } ; // last one defined

static char unknownComp[] = "unknown, ID= ";

static char* pInsertID = &(unknownComp[12]); // insert ID here!

/**

 * Show the iSeries Access for Windows Version/Release/Modification level

 **/

void showCA_VRM()

{

 ULONG caVer, caRel, caMod;

 UINT rc;

 char fixlevelBuf[MAX_PATH];

38 IBM Systems - iSeries: iSeries Access for Windows: Programming

ULONG fixlevelBufLen = sizeof(fixlevelBuf);

 printf("iSeries Access level installed:\n\n");

 rc = cwbAD_GetClientVersion(&caVer;, &caRel;, &caMod;);

 if (rc != CWB_OK)

 {

 printf(" Error %u occurred when calling cwbAD_GetClientVersion()\n\n",

 rc);

 }

 else

 {

 printf(" Version %lu, Release %lu, Modification %lu\n\n",

 caVer, caRel, caMod);

 printf("iSeries Access service pack level installed:\n\n");

 rc = cwbAD_GetProductFixLevel(fixlevelBuf, &fixlevelBufLen;);

 if (rc != CWB_OK)

 {

 printf(" Error %u occurred when calling "

 "cwbAD_GetProduceFixLevel()\n\n", rc);

 }

 else if (fixlevelBuf[0] == ’\0’) // empty, no service packs applied

 {

 printf(" None\n\n");

 }

 else

 {

 printf(" %s\n\n", fixlevelBuf);

 }

 }

}

/**

 * Call iSeries Access for Windows API to determine if the component is installed,

 * and pass back:

 * NULL if the component is not installed or an error occurs,

 * OR

 * A string indicating the component name is unknown if the

 * component ID is higher than we know about OR the component

 * description is blank,

 * OR

 * The human-readable component description if known.

 **/

char* isCompInstalled(ULONG compID)

{

 cwb_Boolean bIsInstalled;

 char* pCompName;

 UINT rc = cwbAD_IsComponentInstalled(compID, &bIsInstalled;);

 /*

 * Case 1: Error OR component not installed, return NULL to

 * indicate not installed.

 */

 if ((rc != CWB_OK) || (bIsInstalled == CWB_FALSE))

 {

 pCompName = NULL;

 }

 /*

 * Case 2: Component IS installed, but its name is not known,

 * return component name unknown string.

 */

 else if ((compID > LAST_COMPID_WE_KNOW_ABOUT) ||

Programming 39

(compDescr[compID][0] == ’\0’))

 {

 pCompName = unknownComp;

 sprintf(pInsertID, "%lu", compID);

 }

 /*

 * Case 3: Component IS installed, and a name is known, return it

 */

 else

 {

 pCompName = compDescr[compID];

 }

 return pCompName;

}

/**

 * List the iSeries Access for Windows components that currently are installed.

 **/

void showCA_CompInstalled()

{

 ULONG compID;

 char* compName;

 printf("iSeries Access components installed:\n\n");

 /*

 * Try all known components, plus a bunch more in case some

 * have been added (via service pack).

 */

 for (compID = 0;

 compID < (LAST_COMPID_WE_KNOW_ABOUT + 50);

 compID++)

 {

 compName = isCompInstalled(compID);

 if (compName != NULL)

 {

 printf(" %s\n", compName);

 }

 }

 printf("\n");

}

/**

 * MAIN PROGRAM BODY

 **/

void main(void)

{

 UINT rc;

 char pluginName[MAX_PATH];

 cwb_Boolean bPluginInstalled;

 printf("=======================================\n");

 printf("iSeries Access What’s Installed Reporter\n");

 printf("=======================================\n\n");

 showCA_VRM();

 showCA_CompInstalled();

 /*

 * Allow user to ask by name what plug-ins are installed.

40 IBM Systems - iSeries: iSeries Access for Windows: Programming

*/

 while (TRUE) /* REMINDER: requires a break to exit the loop! */

 {

 printf("Enter plug-in to check for, or DONE to quit:\n");

 gets(pluginName);

 if (stricmp(pluginName, "DONE") == 0)

 {

 break; /* exit from the while loop, DONE at user’s request */

 }

 rc = cwbAD_IsOpNavPluginInstalled(pluginName, &bPluginInstalled;);

 if (rc == CWB_OK)

 {

 if (bPluginInstalled == CWB_TRUE)

 {

 printf("The plug-in ’%s’ is installed.\n\n", pluginName);

 }

 else

 {

 printf("The plug-in ’%s’ is NOT installed.\n\n", pluginName);

 }

 }

 else

 {

 printf(

 "Error %u occurred when calling cwbAD_IsOpNavPluginInstalled.\n\n",

 rc);

 }

 } // end while (TRUE)

 printf("\nEnd of program.\n\n");

}

iSeries Access for Windows Communications and Security APIs

The iSeries Access for Windows Communications and Security topic shows you how to use iSeries Access

for Windows application programming interfaces (APIs)

You can use these APIs to:

v Get, use, and delete an iSeries system object. Various iSeries Access for Windows APIs require a

system object. It holds information about connecting to, and validating security (user ID, password,

and signon date and time) on, an iSeries system.

v Obtain information about environments and connections that are configured in the system list when

you use iSeries Access for Windows. The system list is a list of all currently configured environments,

and of systems within those environments. The system list is stored and managed ″per user,″ and is

not available to other users.

Note: It is not necessary for you to explicitly configure new systems to add them to the system list.

They are added automatically when you connect to a new system.

iSeries Access for Windows Communications and Security APIs required files:

Header file Import library

Dynamic Link

Library

System object APIs System list APIs cwbapi.lib cwbco.dll

cwbcosys.h cwbco.h

Programming 41

Programmer’s Toolkit:

The Programmer’s Toolkit provides Communications and Security documentation, access to the cwbco.h

and cwbcosys.h header files, and links to sample programs. To access this information, open the

Programmer’s Toolkit and select Communications and Security → C/C++ APIs.

iSeries Access for Windows Communications and Security topics:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

 Related reference

 “Communications APIs return codes” on page 20

 “Security APIs return codes” on page 27

 “Global iSeries Access return codes” on page 13

 “iSeries system name formats for connection APIs” on page 5
APIs that take an iSeries system name as a parameter accept names in the following formats.

 “OEM, ANSI, and Unicode considerations” on page 6
Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three

forms: OEM, ANSI, or Unicode.

System object attributes

System object attributes affect the behavior of signing on and communicating with the iSeries system

that the system object represents.

Most attributes can be changed until a successful signon has occurred (either as the result of a successful

call to “cwbCO_Signon” on page 72 or to “cwbCO_Connect” on page 48). After the signon has taken

place successfully, calling the API that tries to change the value of such an attribute will fail with return

code CWB_INV_AFTER_SIGNON. The only two attributes that can be changed after a successful signon

are the Window Handle and Connect Timeout.

Some values and the ability to change them may be controlled via policies. Policies are controls that a

systems administrator can set up to mandate default attribute values, and to prohibit changes to

attributes. The default values that are specified in the System object attributes list topic (link below) are

used under the following conditions:

v If policies do not specify or suggest different values

v If a value for such an attribute has not been configured explicitly for the iSeries system in the system

list

If an attribute’s default value may be set by policy, this also is noted. If changing an attribute’s value can

be prohibited by policy, then:

v An API is provided to check for the attribute’s modifiability.

v A specific return code is provided by the attribute’s set method if the set fails because of such a policy.

System object attributes list:

Following is a list of system object attributes. It includes descriptions, requirements, and considerations.

 Also listed with each attribute are:

v The APIs that you can use to get and to set it

v What its default value is when the system object is created

42 IBM Systems - iSeries: iSeries Access for Windows: Programming

Note: The attributes’ settings apply ONLY to the system object for which they are set, NOT to any other

system objects, even if other system objects have the same iSeries system name.

iSeries system name:

The iSeries system with which to communicate and use by way of this instance of a system

object. This can be set only at the time cwbCO_CreateSystem or cwbCO_CreateSystemLike is

called. Note that the system name is used as the unique identifier when validating security

information for a specific user ID: If two different system objects contain different system names

that represent the same physical iSeries system, the user ID and password require separate

validation for the two system objects. For example, this applies if the system names ″SYS1″ and

″SYS1.ACME.COM″ represent the same iSeries system. This may result in double prompting, and

the use of different default user IDs when connecting.

 Get by using cwbCO_GetSystemName

Default:

There is no default, since this is explicitly set when the system object is created.

Description

Description of the configured connection to the iSeries system.

 Set using iSeries Navigator.

 Retrieve using cwbCO_GetDescription

 The description is stored with each system object, and never changed for that system object. If the

description is changed using iSeries Navigator, system objects for that system that existed before

the change was made are not changed. Only new system objects will contain the new description.

Default:

Blank. This may be overridden by policies.

User ID:

The user ID used to logon to the iSeries system.

 Get by using cwbCO_GetUserIDEx

 Set by using cwbCO_SetUserIDEx

Default:

The first time that you connect to the iSeries system which is named in the system object,

you may be prompted:

v To specify a default user ID

v To specify that the default user ID should be the same as your Windows user ID

v That no default will be used

On subsequent connection attempts, the default user ID that is used will depend on

which option you chose when prompted during the first connection attempt.

Password:

The password used to signon to the iSeries system.

 Set by using cwbCO_SetPassword

Default:

Blank (no password set) if the user ID that is set in the system object never has signed on

to the iSeries system that is named in the system object. If a previous successful signon or

connection has been made to the iSeries system that is named in the system object, that

password may be used for the next signon or connection attempt. The system will no

longer cache a password in the iSeries Access for Windows volatile password cache if the

password comes in through the cwbCO_SetPassword() API. Previously, this would have

gone into the volatile (i.e. session) password cache.

Programming 43

Default user mode:

Controls behavior that is associated with the default user ID, including where to obtain it and

whether to use it. If it is not set (if the value is CWBCO_DEFAULT_USER_MODE_NOT_SET), the

user may be prompted to choose which behavior is desired at the time a signon is attempted.

 Get by using cwbCO_GetDefaultUserMode

 Set by using cwbCO_SetDefaultUserMode

 Check for modify restriction by using cwbCO_CanModifyDefaultUserMode

Default:

CWBCO_DEFAULT_USER_MODE_NOT_SET

Note: The default may be overridden by policies.

Prompt mode:

Controls when iSeries Access for Windows will prompt the user for user ID and password. See

the declaration comments for cwbCO_SetPromptMode for possible values and for associated

behaviors.

 Get by using cwbCO_GetPromptMode

 Set by using cwbCO_SetPromptMode

Default:

CWBCO_PROMPT_IF_NECESSARY

Window handle:

The window handle of the calling application. If this is set, any prompting that iSeries Access for

Windows does related to iSeries signon will use the window handle, and will be modal to the

associated window. This means that the prompt never will be hidden UNDER the main

application window if its handle is associated with the system object. If no window handle is set,

the prompt might be hidden behind the main application window, if one exists.

 Get by using cwbCO_GetWindowHandle

 Set by using cwbCO_SetWindowHandle

Default:

NULL (not set)

Validate mode:

Specifies, when validating user ID and password, whether communication with the iSeries system

to perform this validation actually occurs. See the declaration comments for

cwbCO_SetValidateMode and cwbCO_GetValidateMode for possible values and for associated

behaviors.

 Get by using cwbCO_GetValidateMode

 Set by using cwbCO_SetValidateMode

Default:

CWBCO_VALIDATE_IF_NECESSARY

Use Secure Sockets:

Specifies whether iSeries Access for Windows will use secure sockets to authenticate the server

(iSeries system) and to encrypt data that is sent and received. There are some cases where secure

sockets cannot be used (for example, when the software support for Secure Sockets has not been

installed on the PC). Accordingly, an application or user request for secure sockets use may fail,

either at the time the cwbCO_UseSecureSockets API is called, or at connect time. If no such

failure occurs, then secure sockets is being used, and cwbCO_IsSecureSockets will return

CWB_TRUE.

 Get by using cwbCO_IsSecureSockets

44 IBM Systems - iSeries: iSeries Access for Windows: Programming

Set by using cwbCO_UseSecureSockets

 Check for modify restriction by using cwbCO_CanModifyUseSecureSockets

Default:

Whatever has been configured for this iSeries system in the System List will be used. If

no configuration for this iSeries system exists, or if the configuration specifies to use the

iSeries Access default, then secure sockets will not be used (CWB_FALSE).

Note: The default may be overridden by policies.

Port lookup mode:

Specifies how to retrieve the remote port for an iSeries host service. It specifies whether to look it

up locally (on the PC), on the iSeries system, or to simply use the default (″standard″) port for

the specified service. If local lookup is selected, the standard TCP/IP method of lookup in the

SERVICES file on the PC is used. If server lookup is specified, a connection to the iSeries system

server mapper is made to retrieve the port number by lookup from the iSeries system service

table. If either the local or server lookup method fails, then connecting to the service will fail. For

more information and for possible values, see the API declaration for

cwbCO_SetPortLookupMode.

 Get by using cwbCO_GetPortLookupMode

 Set by using cwbCO_SetPortLookupMode

 Check for modify restriction by using cwbCO_CanModifyPortLookupMode

Default:

Whatever has been configured for this iSeries system in the System List will be used. If

no configuration for this iSeries system exists, the default is

CWBCO_PORT_LOOKUP_SERVER.

Note: The default may be overridden by policies.

Persistence mode:

Specifies whether the iSeries system named in this system object may be added to the System List

(if not already in the list) once a successful call to cwbCO_Connect has completed. See

cwbCO_SetPersistenceMode for more information and for possible values.

 Get by using cwbCO_GetPersistenceMode

 Set by using cwbCO_SetPersistenceMode

 Check for modify restriction by using cwbCO_CanModifyPersistenceMode

Default:

CWBCO_MAY_MAKE_PERSISTENT

Note: The default may be overridden by policies.

Connect timeout

Specifies how long iSeries Access for Windows will wait for a connection attempt to complete.

This setting does not affect how long the TCP/IP communications stack will wait before giving

up. The TCP/IP communications stack might timeout before the iSeries Access connection

timeout has expired. See cwbCO_SetConnectTimeout for more information and possible values.

This value may be changed for a system object at any time.

 get using cwbCO_GetConnectTimeout

 set using cwbCO_SetConnectTimeout

Default:

CWBCO_CONNECT_TIMEOUT_DEFAULT

Programming 45

Note: The default may be overridden by policies.

Communications and security: Create and delete APIs

These APIs are used for creating and deleting a system object

cwbCO_CreateSystem:

Purpose

Create a new system object and return a handle to it that can be used with subsequent calls. The system

object has many attributes that can be set or retrieved. See“System object attributes” on page 42 for more

information.

Syntax

UINT CWB_ENTRY cwbCO_CreateSystem(

 LPCSTR systemName,

 cwbCO_SysHandle *system);

Parameters

LPCSTR systemName - input

Pointer to a buffer that contains the NULL-terminated name of the iSeries system. This can be its host

name, or the iSeries system’s dotted-decimal IP address itself. It must not be zero length and must

not contain blanks. If the name specified is not a valid iSeries system host name or IP address string

(in the form ″nnn.nnn.nnn.nnn″), any connection attempt or security validation attempt will fail.

cwbCO_SysHandle *system - output

The system object handle is returned in this parameter.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_POINTER

One of the pointer parameters is NULL.

CWB_INVALID_SYSNAME

The system name is not valid.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from creating a system object for a system not already

defined in the System List.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage that is being used.

Usage

When you are done using the system object, you must call cwbCO_DeleteSystem to free resources the

system object is using. If you want to create a system object that is like one you already have, use

cwbCO_CreateSystemLike.

cwbCO_CreateSystemLike:

46 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

Create a new system object that is similar to a given system object. You may either provide a specific

system name for the new system object, or specify NULL to use the given system object’s name. All

attributes of the given system object are copied into the new one, with the following exceptions:

v User ID

v Password

v System name, if a different one is specified

v IP address, when the system names are different.

See “System object attributes list” on page 42 for a list of system object attributes.

Syntax

UINT CWB_ENTRY cwbCO_CreateSystemLike(

 cwbCO_SysHandle systemToCopy,

 LPCSTR systemName

 cwbCO_SysHandle *system);

Parameters

cwbCO_SysHandle systemToCopy - input

Handle that was returned by a previous call to either cwbCO_CreateSystem or

cwbCO_CreateSystemLike. It identifies the iSeries system. This is the object that will be ″copied.″

LPCSTR systemName - input

Pointer to a buffer that contains the NULL-terminated name of the iSeries system to use in the new

system object. If NULL or the empty string is passed, the name from the given system object is

copied into the new system object. If a system name is specified, it can be the host name, or the

iSeries system’s dotted-decimal IP address. If the name that is specified is not a valid iSeries system

host name or IP address string (in the form ″nnn.nnn.nnn.nnn″), any connection attempt or security

validation attempt will fail.

cwbCO_SysHandle *newSystem - output

The system object handle of the new system object is returned in this parameter.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

A pointer that is supplied to the API is not valid.

CWB_INVALID_SYSNAME

The system name is not valid.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from creating a system object for a system not already

defined in the System List.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage that is being used.

Usage

When you are done using the new system object, you must call cwbCO_DeleteSystem to free resources

that the system object is using.

Programming 47

The state of the new system object might not be the same as that of the given system object, since user ID

and password validation has not been performed yet for the new one. Also, the new system object has no

connections associated with it, whereas the given system object may. Because of this, even though you

might not be able to change attributes of the given system object because of its state, you might be able

to change the attributes of the new system object because of its possibly different state.

cwbCO_DeleteSystem:

Purpose

Deletes the system object that is specified by its handle, and frees all resources the system object has

used.

Syntax

UINT CWB_ENTRY cwbCO_DeleteSystem(

 cwbCO_SysHandle system);

Parameters

cwbCO_SysHandle system - input

Handle that was returned by a previous call to either cwbCO_CreateSystem or

cwbCO_CreateSystemLike. It identifies the iSeries system.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

Usage

Before the system object resources are freed, if there are any connections that were made using the

specified system object, they will be ended, forcefully if necessary. To determine if there are active

connections, call cwbCO_IsConnected. If you want to know whether disconnecting any existing

connections was successful, call cwbCO_Disconnect explicitly before calling this API.

Communications and security: Connect and disconnect APIs

These APIs allow you to connect to and disconnect from the iSeries system, and for related behavior

cwbCO_Connect:

Purpose

Connect to the specified iSeries host service.

Syntax

UINT CWB_ENTRY cwbCO_Connect(

 cwbCO_SysHandle system,

 cwbCO_Service service,

 cwbSV_ErrHandle errorHandle);

48 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system to connect to.

cwbCO_Service service - input

The service to connect to on the iSeries system. Valid values are those listed in “Defines for

cwbCO_Service” on page 91, except for the values CWBCO_SERVICE_ANY and

CWBCO_SERVICE_ALL. Only one service may be specified for this API, unlike for

cwbCO_Disconnect, which can disconnect multiple services at once.

cwbSV_ErrHandle errorHandle - input/output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_SERVICE_NAME_ERROR

The service identifier is not a valid value, or was a combination of values (only a single value is

allowed for this API).

CWB_CONNECTION_TIMED_OUT

It took too long to find the iSeries system, so the attempt timed out.

CWB_CONNECTION_REFUSED

The iSeries system refused to accept our connection attempt.

CWB_NETWORK_IS_DOWN

A network error occurred, or TCP/IP is not configured correctly on the PC.

CWB_NETWORK_IS_UNREACHABLE

The network segment to which the iSeries system is connected currently is not reachable from the

segment to which the PC is connected.

CWB_USER_TIMEOUT

The connect timeout value associated with the system object expired before the connection

attempt completed, so we stopped waiting.

CWB_FIPS_UNAVAILABLE

This connection is configured for SSL and FIPS-compliant mode is enabled, however, SSL cannot

be used because FIPS support is not available. For recovery information, see message

CWBCO1060, using the following path:

 Start → iSeries Access for Windows folder → Service → Error and Trace Message Help →

iSeries Access for Windows messages → CWBCO1060

Note: Other return codes may be commonly returned as the result of a failed security validation attempt.

See the list of common return codes in the comments for cwbCO_Signon.

Usage

If signon to the iSeries system has not yet occurred, the signon will be performed first when

cwbCO_Connect is called. If you want the signon to occur at a separate time, call cwbCO_Signon first,

Programming 49

|
|
|
|

|
|

then call cwbCO_Connect at a later time. For more information about signon and its behavior, see

comments for cwbCO_Signon. If the signon attempt fails, a connection to the specified service will not be

established.

If the iSeries system as named in the specified system object does not exist in the System List, and the

system object Persistence Mode is set appropriately, then when cwbCO_Connect or cwbCO_Signon is first

successfully called, the iSeries system, as named in the system object, will be added to the System List.

For more information about the Persistence Mode, see the comments for cwbCO_SetPersistenceMode.

If a connection to the specified service already exists, no new connection will be established, and

CWB_OK will be returned. Each time this API is successfully called, the usage count for the connection to

the specified service will be incremented.

Each time cwbCO_Disconnect is called for the same service, the usage count will be decremented. When

the usage count reaches zero, the actual connection is ended.

Therefore, it is VERY IMPORTANT that for every call to the cwbCO_Connect API there is a later paired

call to the cwbCO_Disconnect API, so that the connection can be ended at the appropriate time. The

alternative is to call the cwbCO_Disconnect API, specifying CWBCO_SERVICE_ALL, which will

disconnect all existing connections to ALL services made through the specified system object, and reset all

usage counts to 0.

If the return code is CWB_USER_TIMEOUT, you may want to increase the connect timeout value for this

system object, by calling cwbCO_SetConnectTimeout, and try connecting again. If you want iSeries

Access to not give up until the TCP/IP communication stack itself does, set the connect timeout to

CWBCO_CONNECT_TIMEOUT_NONE, and try connecting again.

cwbCO_Disconnect:

Purpose

Disconnect from the specified iSeries host service.

Syntax

UINT CWB_ENTRY cwbCO_Disconnect(

 cwbCO_SysHandle system,

 cwbCO_Service service,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input

Handle that was returned by a previous call to either cwbCO_CreateSystem or

cwbCO_CreateSystemLike. It identifies the iSeries system from which to disconnect.

cwbCO_Service service - input

The service from which to disconnect on the iSeries system. Valid values are those listed at the start

of this file, except for the value CWBCO_SERVICE_ANY. If CWBCO_SERVICE_ALL is specified, the

connections to ALL connected services will be ended, and all connection usage counts reset back to

zero.

cwbSV_ErrHandle errorHandle - input/output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, or if the errorHandle is invalid, no messages will be retrieved.

50 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_SERVICE_NAME_ERROR

The service identifier is invalid.

CWB_NOT_CONNECTED

The single service was not connected.

Usage

This function should be called when a connection that is established by using cwbCO_Connect no longer

is needed.

If any service specified cannot be disconnected, the return code will indicate this error. If more than one

error occurs, only the first one will be returned as the API return code.

Usage Notes® for individual service disconnect:

This function will cause the usage count for this system object’s specified service to be

decremented, and may or may not end the actual connection. For more information, read the

Usage Notes for the cwbCO_Connect API.

 Disconnecting a service that is not currently connected results in CWB_NOT_CONNECTED.

 An individual service is gracefully disconnected.

Usage Notes for CWBCO_SERVICE_ALL:

The return code CWB_NOT_CONNECTED is not returned when CWBCO_SERVICE_ALL is

specified, regardless of the number of connected services.

 Requesting that all active services be disconnected may generate messages on the iSeries.

cwbCO_GetConnectTimeout:

Purpose

This function gets, for the specified system object, the connection timeout value, in seconds, currently set.

Syntax

UINT CWB_ENTRY cwbCO_GetConnectTimeout(

 cwbCO_SysHandle system,

 PULONG timeout);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

PULONG timeout - output

Returns the timeout value, in seconds. This value will be from CWBCO_CONNECT_TIMEOUT_MIN

to CWBCO_CONNECT_TIMEOUT_MAX, or will be CWBCO_CONNECT_TIMEOUT_NONE if no

connection timeout is desired.

Programming 51

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The timeout pointer is NULL.

Usage

None.

cwbCO_GetPersistenceMode:

Purpose

This function gets, for the specified system object, if the system it represents, along with its attributes,

will be added to the System List (if not already in the list) once a successful signon has occurred.

Syntax

UINT CWB_ENTRY cwbCO_GetPersistenceMode(

 cwbCO_SysHandle system,

 cwbCO_PersistenceMode *mode);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbCO_PersistenceMode * mode - output

Returns the persistence mode. See comments for cwbCO_SetPersistenceMode for possible values and

their meanings.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The mode pointer is NULL.

Usage

None.

cwbCO_IsConnected:

52 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

Find out if any, and how many, connections to the iSeries system that are using the specified system

object currently exist.

Syntax

UINT CWB_ENTRY cwbCO_IsConnected(

 cwbCO_SysHandle system,

 cwbCO_Service service,

 PULONG numberOfConnections);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

cwbCO_Service service - input

The service to check for a connection. Any of the cwbCO_Service values listed in “Defines for

cwbCO_Service” on page 91 are valid. To find out if ANY service is connected, specify

CWBCO_SERVICE_ANY. To find out how many services are connected using this system object,

specify CWBCO_SERVICE_ALL.

PULONG numberOfConnections - output

Used to return the number of connections active for the service(s) that are specified. If the service

specified is not CWBCO_SERVICE_ALL, the value returned will be either 0 or 1, since there can be at

most one active connection per service per system object. If CWBCO_SERVICE_ALL is specified, this

could be from zero to the possible number of services, since one connection per service might be

active.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion, all services specified are connected, or if CWBCO_SERVICE_ANY is

specified, at least one service is connected.

CWB_NOT_CONNECTED

If a single service was specified, that service is not connected. If the value

CWBCO_SERVICE_ANY was specified, there are NO active connections. If the value

CWBCO_SERVICE_ALL was specified, there is at least one service that is NOT connected.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_SERVICE_NAME_ERROR

The service identifier is invalid.

CWB_INVALID_POINTER

The numberOfConnections parameter is NULL.

Usage

If CWBCO_SERVICE_ALL was specified and CWB_NOT_CONNECTED is returned, there may be some

active connections, and the count of active connections still will be passed back. To find out how many

connections through the specified system object exist, call this API and specify CWBCO_SERVICE_ALL. If

the return code is either CWB_OK or CWB_NOT_CONNECTED, the number of connections that exist is

stored in numberOfConnections.

Programming 53

cwbCO_SetConnectTimeout:

Purpose

This function sets, for the specified system object, the number of seconds iSeries Access for Windows will

wait before giving up on a connection attempt and returning an error.

Syntax

UINT CWB_ENTRY cwbCO_SetConnectTimeout(

 cwbCO_SysHandle system,

 ULONG timeout);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

ULONG timeout - input

Specifies the connection timeout value, in seconds. The value must be from

CWBCO_CONNECT_TIMEOUT_MIN to CWBCO_CONNECT_TIMEOUT_MAX, or if no timeout is

desired, use CWBCO_CONNECT_TIMEOUT_NONE. If the value is below the minimum, then

CWBCO_CONNECT_TIMEOUT_MIN will be used; if it is above the maximum,

CWBCO_CONNECT_TIMEOUT_MAX will be used.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

Usage

If no timeout value has been suggested by policy, and none has been explicitly set using this API, the

connect timeout used is CWBCO_CONNECT_TIMEOUT_DEFAULT.

cwbCO_SetPersistenceMode:

Purpose

This function sets for the specified system object if the system it represents (as named in the system

object), along with its attributes, may be added to the System List (if not already in the list) once a signon

successfully has occurred.

Syntax

UINT CWB_ENTRY cwbCO_SetPersistenceMode(

 cwbCO_SysHandle system,

 cwbCO_PersistenceMode mode);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

54 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbCO_PersistenceMode mode - input

Specifies the persistence mode. Possible values are:

CWBCO_MAY_MAKE_PERSISTENT

If the system that is named in the specified system object is not yet in the System List, add it

to the list once a successful signon has completed. This will make the system, as defined by

this system object, available for selection by this AND other applications running, now or in

the future, on this personal computer (until the system is deleted from this list).

CWBCO_MAY_NOT_MAKE_PERSISTENT

The system that is named in the specified system object (along with its attributes) may NOT

be added to the System List.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_PARAMETER

The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON

Signon successfully has occurred by using the specified system object, so this setting no longer

may be changed.

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon

has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system

object.

If the system as named in the system object already is in the System List, this setting has no effect.

cwbCO_Verify:

Purpose

Verifies that a connection can be made to a specific host service on an iSeries system.

Syntax

UINT CWB_ENTRY cwbCO_Verify(

 cwbCO_SysHandle system,

 cwbCO_Service service,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input

Handle previously returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system to which to verify connectability.

cwbCO_Service service - input

The service to verify connectability to on the iSeries system. Valid values are those listed in “Defines

Programming 55

for cwbCO_Service” on page 91, except for the value CWBCO_SERVICE_ANY. To verify

connectability of ALL services, specify CWBCO_SERVICE_ALL.

cwbSV_ErrHandle errorHandle - input/output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through thecwbSV_GetErrText API. If the parameter is set to

zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_SERVICE_NAME_ERROR

The service identifier is invalid.

CWB_USER_TIMEOUT

The connect timeout value associated with the system object expired before the connection

verification attempt completed, so we stopped waiting.

CWB_COMMUNICATIONS_ERROR

An error occurred attempting to verify a connection to the service.

Usage

This API does not require user ID and password to be set, nor will it cause a signon to occur, thus it will

never prompt for this information. It does not change the state of the system object in any way.

If a connection to any specified service already exists, no new connection will be established, and

connectability will be considered verified for that service.

If CWBCO_SERVICE_ALL is specified for verification, the return code will be CWB_OK only if ALL

services can be connected to. If any one verification attempt fails, the return code will be that from the

first failure, although verification of the other services still will be attempted.

Since this API does not establish a usable connection, it automatically will disconnect when the

verification is complete; therefore, do NOT call cwbCO_Disconnect to end the connection.

Communication and security: Security validation and data APIs

These APIs provide security validation and data.

cwbCO_ChangePassword:

Purpose

Changes the password of the specified user on the iSeries system from a specified old to a specified new

value. This API does NOT use the user ID and password that currently are set in the given system object,

nor does it change these values.

Syntax

UINT CWB_ENTRY cwbCO_ChangePassword(

 cwbCO_SysHandle system,

 LPCSTR userID,

56 IBM Systems - iSeries: iSeries Access for Windows: Programming

LPCSTR oldPassword,

 LPCSTR newPassword,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

LPCSTR userID - input

A pointer to an ASCIIZ string that contains the user ID. The maximum length is

CWBCO_MAX_USER_ID + 1 characters, including the null terminator.

LPCSTR oldPassword - input

A pointer to a buffer which contains the old password. The maximum length is

CWBCO_MAX_PASSWORD + 1 bytes, including the null terminator.

LPCSTR newPassword - input

A pointer to a buffer which contains the new password. The maximum length is

CWBCO_MAX_PASSWORD + 1 bytes, including the null terminator.

cwbSV_ErrHandle errorHandle - input/output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

A pointer parameter is NULL.

CWB_GENERAL_SECURITY_ERROR

A general security error occurred. The user profile does not have a password or the password

validation program found an error in the password.

CWB_INVALID_PASSWORD

One or more characters in the new password is invalid or the password is too long.

CWB_INVALID_USERID

One or more characters in the user ID is invalid or the user ID is too long.

CWB_UNKNOWN_USERID

The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD

Password is not correct.

CWB_USER_PROFILE_DISABLED

The user ID has been disabled.

CWB_PW_TOO_LONG

New password longer than maximum accepted length.

CWB_PW_TOO_SHORT

New password shorter than minimum accepted length.

Programming 57

CWB_PW_REPEAT_CHARACTER

New password contains a character used more than once.

CWB_PW_ADJACENT_DIGITS

New password has adjacent digits.

CWB_PW_CONSECUTIVE_CHARS

New password contains a character repeated consecutively.

CWB_PW_PREVIOUSLY_USED

New password was previously used.

CWB_PW_DISALLOWED_CHAR

New password uses an installation-disallowed character.

CWB_PW_NEED_NUMERIC

New password must contain at least one numeric.

CWB_PW_MATCHES_OLD

New password matches old password in one or more character positions.

CWB_PW_NOT_ALLOWED

New password exists in a dictionary of disallowed passwords.

CWB_PW_CONTAINS_USERID

New password contains user ID as part of the password.

CWB_PW_LAST_INVALID_PWD

The next invalid password will disable the user profile.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

Valid password lengths depend on the current setting of the iSeries system password level. Password

levels 0 and 1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords

up to 128 characters in length.

cwbCO_GetDefaultUserMode:

Purpose

This function gets, for the specified system object, the default user mode that currently is set.

Syntax

UINT CWB_ENTRY cwbCO_GetDefaultUserMode(

 cwbCO_SysHandle system,

 cwbCO_DefaultUserMode *mode);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

58 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbCO_DefaultUserMode * mode - output

Returns the default user mode for this system object. See comments for cwbCO_SetDefaultUserMode

for the list of possible values and their meanings.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The mode pointer is NULL.

Usage

None.

cwbCO_GetFailedSignons:

Purpose

Retrieves the number of unsuccessful security validation attempts since the last successful attempt.

Syntax

UINT CWB_ENTRY cwbCO_GetFailedSignons(

 cwbCO_SysHandle system,

 PUSHORT numberFailedAttempts);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

PUSHORT numberFailedAttempts - output

A pointer to a short that will contain the number of failed logon attempts if this call is successful.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The numberFailedAttempts pointer is NULL.

CWB_INV_BEFORE_VALIDATE

The user ID and password that were set in the specified system object have not been validated

yet, so this information is not available.

Programming 59

Usage

You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or cwbCO_Connect

before using this API. If you want to ensure that the value that is returned is recent, you either must call

cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to CWBCO_VALIDATE_ALWAYS

before you call cwbCO_Signon or cwbCO_Connect.

cwbCO_GetPasswordExpireDate:

Purpose

Retrieves the date and time the password will expire for the user ID that is set in the given system object

on the iSeries system that it represents.

Syntax

UINT CWB_ENTRY cwbCO_GetPasswordExpireDate(

 cwbCO_SysHandle system,

 cwb_DateTime *expirationDateTime);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

cwb_DateTime * expirationDateTime - output

A pointer to a structure that contains the date and time at which the password will expire for the

current user ID, in the following format:

 Bytes Content

1 - 2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = 0x1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0

hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The pointer to the cwb_DateTime structure is NULL.

60 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INV_BEFORE_VALIDATE

The user ID and password that were set in the specified system object have not been validated

(so the password expire date is not available), or validation has occurred and the user profile

password expiration interval is set to *NOMAX.

Usage

You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or cwbCO_Connect

before using this API. If you want to ensure that the value that is returned is recent, you either must call

cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to CWBCO_VALIDATE_ALWAYS

before you call cwbCO_Signon or cwbCO_Connect.

If the user profile password expiration interval is set to *NOMAX, a password expire date does not exist.

To detect this case, first validate the user ID and password as noted above, and then, if successful, call

cwbCO_GetPasswordExpireDate. A return code of CWBCO_INV_BEFORE_VALIDATE means that the

password expiration interval is set to *NOMAX.

cwbCO_GetPrevSignonDate:

Purpose

Retrieves the date and time of the previous successful security validation.

Syntax

UINT CWB_ENTRY cwbCO_GetPrevSignonDate(

 cwbCO_SysHandle system,

 cwb_DateTime *signonDateTime);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

cwb_DateTime * signonDateTime - output

A pointer to a structure that contains the date and time at which the previous signon occurred, in the

following format:

 Bytes Content

1 - 2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = 0x1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0

hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes

The following list shows common return values.

Programming 61

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE

The user ID and password that were set in the specified system object have not been validated

yet, so this information is not available.

Usage

You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or cwbCO_Connect

before using this API. If you want to ensure that the value that is returned is recent, you either must call

cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to CWBCO_VALIDATE_ALWAYS

before you call cwbCO_Signon or cwbCO_Connect.

cwbCO_GetPromptMode:

Purpose

This function gets, for the specified system object, the prompt mode that currently is set.

Syntax

UINT CWB_ENTRY cwbCO_GetPromptMode(

 cwbCO_SysHandle system,

 cwbCO_PromptMode *mode);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbCO_PromptMode * mode - output

Returns the prompt mode. See comments for cwbCO_SetPromptMode for possible values and their

meanings.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The mode pointer is NULL.

Usage

None.

cwbCO_GetSignonDate:

62 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

Retrieves the date and time of the current successful security validation.

Syntax

UINT CWB_ENTRY cwbCO_GetSignonDate(

 cwbCO_SysHandle system,

 cwb_DateTime *signonDateTime);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

cwb_DateTime * signonDateTime - output

A pointer to a structure that will contain the date and time at which the current signon occurred, in

the following format:

 Bytes Content

1 - 2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = 0x1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0

hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE

The user ID and password set in the specified system object have not been validated yet, so this

information is not available.

Usage

You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or cwbCO_Connect

before using this API. If you want to ensure that the value returned is recent, you must either call

cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to CWBCO_VALIDATE_ALWAYS

before you call cwbCO_Signon or cwbCO_Connect.

Programming 63

cwbCO_GetUserIDEx:

Purpose

This function gets the current user ID that is associated with a specified system object. This is the user ID

that is being used for connections to the iSeries server.

Syntax

UINT CWB_ENTRY cwbCO_GetUserIDEx(

 cwbCO_SysHandle system,

 LPSTR userID,

 PULONG length);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

LPSTR userID - output

Pointer to a buffer that will contain the NULL-terminated user ID. The user ID will be at most

CWBCO_MAX_USER_ID characters long.

PULONG length - input/output

Pointer to the length of the userID buffer. If the buffer is too small to hold the user ID, including

space for the terminating NULL, the size of the buffer needed will be filled into this parameter.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW

The userID buffer is not large enough to hold the entire user ID name.

Usage

The user ID may or may not have been validated on the iSeries system yet. To make sure it has been, call

cwbCO_Signon or cwbCO_Connect before calling this API.

If no user ID has been set and a signon has not occurred for the system object, the returned user ID will

be the empty string, even if a default user ID has been configured for the iSeries system.

cwbCO_GetValidateMode:

Purpose

This function gets, for the specified system object, the validate mode currently set.

Syntax

UINT CWB_ENTRY cwbCO_GetValidateMode(

 cwbCO_SysHandle system,

 cwbCO_ValidateMode *mode);

64 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

cwbCO_ValidateMode * mode - output

Returns the validate mode. See comments for cwbCO_SetValidateMode for possible values and their

meanings.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The mode pointer is NULL.

Usage

None.

cwbCO_GetWindowHandle:

Purpose

This function gets, for the specified system object, the window handle, if any, that currently is associated

with it.

Syntax

UINT CWB_ENTRY cwbCO_GetWindowHandle(

 cwbCO_SysHandle system,

 HWND *windowHandle);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

HWND * pWindowHandle - output

Returns the window handle associated with the system object, or NULL if no window handle is

associated with it.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The windowHandle pointer is NULL.

Programming 65

Usage

None.

cwbCO_HasSignedOn:

Purpose

Returns an indication of whether the specified system object has ″signed on″ (whether the user ID and

password have been validated at some point in the life of the specified system object).

Syntax

UINT CWB_ENTRY cwbCO_HasSignedOn(

 cwbCO_SysHandle system,

 cwb_Boolean *signedOn);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwb_Boolean * signedOn - output

A pointer to a cwb_Boolean into which is stored the indication of ″signed-on-ness.″ If the specified

system object has signed on, it will be set to CWB_TRUE, otherwise it will be set to CWB_FALSE.

(On error it will be set to CWB_FALSE as well.)

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The signedOn pointer is NULL.

Usage

A returned indication of CWB_TRUE does not mean that the user ID and password have been validated

within a certain time period, but only that since the system object’s creation, a signon has occurred. That

signon may not have caused or included a connection and security validation flow to the iSeries system.

This means that, even if CWB_TRUE is returned, the next call to the system object that requires a

successful signon might connect and attempt to re-validate the user ID and password, and that

validation, and hence the signon, may fail. The signedOn indicator reflects the results of the most-recent

user ID and password validation. If user ID and password validation (signon) has occurred successfully

at one time, but since then this validation has failed, signedOn will be set to CWB_FALSE.

cwbCO_SetDefaultUserMode:

Purpose

This function sets, for the specified system object, the behavior with respect to any configured default

user ID.

66 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

UINT CWB_ENTRY cwbCO_SetDefaultUserMode(

 cwbCO_SysHandle system,

 cwbCO_DefaultUserMode mode);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbCO_DefaultUserMode mode - input

Specifies what will be done with the default user ID. Possible values are:

CWBCO_DEFAULT_USER_MODE_NOT_SET

No default user mode is currently in use. When this mode is active, and the Prompt Mode

setting does not prohibit prompting, the user will be prompted at signon or connect time to

select which of the remaining default user modes should be used from then on. The signon or

connect cannot succeed until one of these other mode values is selected. Setting the Default

User Mode back to this value will cause the prompt to appear the next time a default user ID

is needed by iSeries Access.

CWBCO_DEFAULT_USER_USE

When no user ID has explicitly been set (by using cwbCO_SetUserIDEx) and a signon is to

occur, use the default user ID that is configured for the iSeries system as named in the system

object.

CWBCO_DEFAULT_USER_IGNORE

Specifies never to use a default user ID. When a signon takes place and no user ID has

explicitly been set for this system object instance, the user will be prompted to enter a user

ID if the Prompt Mode allows it (see cwbCO_SetPromptMode comments), and no initial

value for the user ID will be filled in the prompt.

CWBCO_DEFAULT_USER_USEWINLOGON

The user ID that is used when logging on to Windows will be used as the default if no user

ID explicitly has been set for this system object (by using cwbCO_SetUserIDEx).

CWBCO_DEFAULT_USER_USE_KERBEROS

The kerberos principal created when logging into a Windows domain will be used as the

default if no user ID has explicitly been set for this system object (using

cwbCO_SetUserIDEx).

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_PARAMETER

The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON

Signon successfully has occurred by using the specified system object, so this setting no longer

may be changed.

Programming 67

CWB_KERB_NOT_AVAILABLE

Kerberos security package is not available on this version of Windows.

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon

has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system

object. The default user mode set with this API will be ignored if a user ID has been set explicitly with

the cwbCO_SetUserIDEx API.

Error code CWB_KERB_NOT_AVAILABLE will be returned if you attempt to set

CWBCO_DEFAULT_USER_USE_KERBEROS on a Windows platform that does not support Kerberos.

cwbCO_SetPassword:

Purpose

This function sets the password to associate with the specified system object. This password will be used

when connecting to the iSeries server with either the cwbCO_Signon or cwbCO_Connect call, and when a

user ID has been set with the cwbCO_SetUserIDEx call.

Syntax

UINT CWB_ENTRY cwbCO_SetPassword(

 cwbCO_SysHandle system,

 LPCSTR password);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

LPCSTR password - input

A pointer to a buffer that contains the NULL-terminated password. The maximum length is

CWBCO_MAX_PASSWORD + 1 bytes in length, including the NULL terminator.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The password pointer is NULL.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage that is being used.

CWB_INV_AFTER_SIGNON

Signon successfully has occurred by using the specified system object, so this setting no longer

may be changed.

68 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon

has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system

object. A password set with this API will not be used unless a corresponding user ID has been set with

cwbCO_SetUserIDEx.

Valid password lengths depend on the current setting of the iSeries system password level. Password

levels 0 and 1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords

up to 128 characters in length.

cwbCO_SetPromptMode:

Purpose

This function sets, for the specified system object, the prompt mode, which specifies when and if the user

should be prompted for user ID and password, or other information, when a signon is performed.

Syntax

UINT CWB_ENTRY cwbCO_SetPromptMode(

 cwbCO_SysHandle system,

 cwbCO_PromptMode mode);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbCO_PromptMode - input

Specifies the prompt mode. Possible values are:

CWBCO_PROMPT_IF_NECESSARY

iSeries Access for Windows will prompt if either the user ID or password have not been

explicitly set or cannot be retrieved from the persistent configuration for this system, the

password cache (if enabled), or by some other means.

 If the Default User Mode has not been set, and if for this iSeries system the user has not been

prompted yet for default user ID, iSeries access for Windows will prompt for it at

cwbCO_Connect or cwbCO_Signon time

CWBCO_PROMPT_ALWAYS

iSeries Access for Windows will always prompt when a signon is to occur for the specified

system object, even if a successful signon using the same user ID to the same iSeries system

has occurred using a different system object. Since a signon can occur only once for a system

object, this means that exactly one prompt per system object will occur. Additional explicit

signon calls will do nothing (including prompt). See two exceptions to using this mode in the

usage notes below.

CWBCO_PROMPT_NEVER

iSeries Access for Windows never will prompt for user ID and password, or for default user

ID. When this mode is used, a call to any API that requires a signon for completion (for

example, cwbCO_Signon or cwbCO_Connect) will fail if either the user ID or password have

not been set and cannot be programmatically retrieved (from the iSeries password cache).

This mode should be used when either

v iSeries Access for Windows is running on a PC that is unattended or for some other reason

cannot support end-user interaction.

v The application itself is prompting for or otherwise fetching the user ID and password, and

explicitly setting them by using cwbCO_SetUserIDEx and cwbCO_SetPassword.

Programming 69

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_PARAMETER

The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON

Signon successfully has occurred by using the specified system object, so this setting no longer

may be changed.

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon

has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system

object. Setting the prompt mode to CWBCO_PROMPT_ALWAYS will not prompt the user in the

following two cases:

v A user ID and password explicitly have been set with the cwbCO_setUserIDEx and

cwbCO_SetPassword APIs.

v Use Windows logon info (CWBCO_DEFAULT_USER_USEWINLOGON) has been set with the

cwbCO_SetDefaultUserMode API.

cwbCO_SetUserIDEx:

Purpose

This function sets the user ID to associate with the specified system object. This user ID will be used

when connecting to the iSeries server with either the cwbCO_Signon or cwbCO_Connect call.

Syntax

UINT CWB_ENTRY cwbCO_SetUserIDEx(

 cwbCO_SysHandle system,

 LPCSTR userID);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries server system.

LPCSTR userID - input

Pointer to a buffer that contains the NULL-terminated user ID. The user ID must not be longer than

CWBCO_MAX_USER_ID characters, not including the terminating NULL character.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

70 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The userID pointer is NULL.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage that is being used.

CWB_INV_AFTER_SIGNON

Signon successfully has occurred by using the specified system object, so this setting no longer

may be changed.

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon

has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system

object. Setting a user ID explicitly with this API will cause any default user mode set with the

cwbCO_SetDefaultUserMode API to be ignored.

cwbCO_SetWindowHandle:

Purpose

This function sets, for the specified system object, the window handle to use if any prompting is to be

done that is associated with the system object (for example, prompting for user ID and password). When

so set (to a non-NULL window handle), such a prompt would appear ’modal’ to the main application

window and therefore never would get hidden behind that window.

Syntax

UINT CWB_ENTRY cwbCO_SetWindowHandle(

 cwbCO_SysHandle system,

 HWND windowHandle);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

HWND windowHandle - input

Specifies the window handle to associate with the system object. If NULL, no window handle is

associated with the system object.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

Usage

This API may be used any time to change the window handle for the specified system object, even after a

successful signon.

cwbCO_SetValidateMode:

Programming 71

Purpose

This function sets, for the specified system object, the validate mode, which affects behavior when

validating the user ID and password.

Syntax

UINT CWB_ENTRY cwbCO_SetValidateMode(

 cwbCO_SysHandle system,

 cwbCO_ValidateMode mode);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbCO_ValidateMode mode - input

Specifies the validate mode. Possible values are:

CWBCO_VALIDATE_IF_NECESSARY

If validation of this user ID on this iSeries system has occurred from this PC within the last

24 hours, and the validation was successful, then use the results of the last validation and do

not connect to validate at this time. There may be other scenarios where re-validation will

occur; iSeries Access for Windows will re-validate as needed.

CWBCO_VALIDATE_ALWAYS

Communication with the iSeries system to validate user ID and password will occur every

time this validation is requested or required. Setting this mode forces the validation to occur

(when the system object is not signed on yet). Once a system object is signed on, this setting

is ignored.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_PARAMETER

The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON

Signon has successfully occurred using the specified system object, so this setting no longer may

be changed.

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon

has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system

object.

cwbCO_Signon:

72 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

Sign the user on to the iSeries system that is represented by the specified system object by using user ID

and password.

Note: Passing an incorrect password on the cwbCO_Signon API increments the invalid signon attempts

counter for the specified user. The user profile is disabled if sufficient invalid passwords are sent to

the host.

Syntax

UINT CWB_ENTRY cwbCO_Signon(

 cwbCO_SysHandle system,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbSV_ErrHandle errorHandle - input/output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_UNKNOWN_USERID

The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD

Password is not correct.

CWB_PASSWORD_EXPIRED

Password has expired.

CWB_USER_PROFILE_DISABLED

The user ID has been disabled.

CWB_INVALID_PASSWORD

One or more characters in the password is invalid or the password is too long.

CWB_INVALID_USERID

One or more characters in the user ID is invalid or the user ID is too long.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR

General API failure.

CWB_USER_CANCELLED

The user cancelled the signon process.

Programming 73

Other return codes commonly may be returned as a result of a failed attempt to connect to the signon

server. For a list of such return codes, see comments for cwbCO_Connect.

Usage

Both whether the user is prompted for user ID and password, and whether the iSeries system actually is

contacted during user validation, are influenced by current system object settings, such as user ID,

password, Prompt Mode, Default User Mode, and Validate Mode. See declarations for the get/set APIs of

these attributes for more information. If the iSeries system as named in the specified system object does

not exist in the System List, and the system object Persistence Mode is set appropriately, then when

cwbCO_Connect or cwbCO_Signon first is called successfully, the iSeries system, as named in the system

object, will be added to the System List.

For more information about the Persistence Mode, see the comments for cwbCO_SetPersistenceMode. If

successful, and iSeries server password caching is enabled, the password will be stored for the resulting

user ID in the PC’s iSeries server password cache.

See also:

v “Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 91

v “Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 91

cwbCO_VerifyUserIDPassword:

Purpose

This function verifies the correctness of the user ID and password passed in, on the iSeries system that

the specified system object represents. If the user ID and password are correct, it also retrieves data

related to signon attempts and password expiration.

Note: Passing an incorrect password on the cwbCO_VerifyUserIDPassword API increments the invalid

signon attempts counter for the specified user. The user profile is disabled if sufficient invalid

passwords are sent to the host.

Syntax

UINT CWB_ENTRY cwbCO_VerifyUserIDPassword(

 cwbCO_SysHandle system,

 LPCSTR userID,

 LPCSTR password,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

LPCSTR userID - input

Pointer to a buffer that contains the NULL-terminated user ID, which must not exceed

CWBCO_MAX_USER_ID characters in length, not including the terminating NULL.

LPCSTR password - input

A pointer to a buffer that contains the NULL-terminated password. The maximum length is

CWBCO_MAX_PASSWORD + 1 bytes in length, including the NULL terminator.

cwbSV_ErrHandle errorHandle - input/output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, or if the errorHandle is invalid, no messages will be retrieved.

74 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

A pointer supplied to the API is not valid.

CWB_UNKNOWN_USERID

The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD

Password is not correct.

CWB_PASSWORD_EXPIRED

Password has expired.

CWB_USER_PROFILE_DISABLED

The user ID has been disabled.

CWB_INVALID_PASSWORD

One or more characters in the password is invalid or the password is too long.

CWB_INVALID_USERID

One or more characters in the user ID is invalid or the user ID is too long.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate a temporary buffer.

CWB_API_ERROR

General API failure.

Usage

Valid password lengths depend on the current setting of the iSeries system password level. Password

levels 0 and 1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords

up to 128 characters in length.

See “Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 91 and

“Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 91.

Communications and security: Get and set attribute APIs

Use the APIs to get and set other system object attributes, or determine if the attributes are restricted by

policies.

cwbCO_CanModifyDefaultUserMode:

Purpose

Indicates whether the default user mode for the specified system object may be modified.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyDefaultUserMode(

 cwbCO_SysHandle system,

 cwb_Boolean *canModify);

Programming 75

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwb_Boolean *canModify - output

Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or

connection that is using the specified system object already has occurred. In these cases, canModify will

be set to CWB_FALSE. The results returned from this API are correct only at the time of the call.

If policy settings are changed or a signon or connection is performed using this system object, the results

of this API could become incorrect. This must be considered and managed, especially in a multi-threaded

application.

cwbCO_CanModifyIPAddress:

Purpose

Indicates whether IP Address that is used to connect may be modified for this system object.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyIPAddress(

 cwbCO_SysHandle system,

 cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwb_Boolean *canModify - output

Set to CWB_TRUE if the IP Address may be modified, otherwise set to CWB_FALSE.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

76 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INVALID_POINTER

The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or

connection by using the specified system object already has occurred. In these cases, canModify will be

set to CWB_FALSE. This value may not be modified if the IP Address Lookup Mode is not

CWBCO_IPADDR_LOOKUP_NEVER, and policy settings prohibit modification of the IP Address Lookup

Mode. In that case, canModify will be set to CWB_FALSE. The results returned from this API are correct

only at the time of the call. If policy settings are changed or a signon or connection is performed using

this system object, the results of this API could become incorrect. This must be considered and managed,

especially in a multi-threaded application.

cwbCO_CanModifyIPAddressLookupMode:

Purpose

Indicates whether the IP Address Lookup Mode may be modified for this system object.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyIPAddressLookupMode(

 cwbCO_SysHandle system,

 cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwb_Boolean *canModify - output

Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or

connection using the specified system object already has occurred. In these cases, canModify will be set to

CWB_FALSE. The results returned from this API are correct only at the time of the call.

If policy settings are changed or a signon or connection is performed using this system object, the results

of this API could become incorrect. This must be considered and managed, especially in a multi-threaded

application.

cwbCO_CanModifyPersistenceMode:

Programming 77

Purpose

Indicates whether persistence mode for the specified system object may be modified.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyPersistenceMode(

 cwbCO_SysHandle system,

 cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwb_Boolean *canModify - output

Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or

connection by using the specified system object has already occurred. In these cases, canModify will be

set to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy

settings are changed or a signon or connection is performed using this system object, the results of this

API could become incorrect. This must be considered and managed, especially in a multi-threaded

application.

cwbCO_CanModifyPortLookupMode:

Purpose

Indicates whether the port lookup mode for the specified system object may be modified.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyPortLookupMode(

 cwbCO_SysHandle system,

 cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwb_Boolean *canModify - output

Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

78 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or

connection by using the specified system object already has occurred. In these cases, canModify will be

set to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy

settings are changed or a signon or connection is performed using this system object, the results of this

API could become incorrect. This must be considered and managed, especially in a multi-threaded

application.

cwbCO_CanModifyUseSecureSockets:

Purpose

Indicates whether the secure sockets use setting may be modified for this system object.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyUseSecureSockets(

 cwbCO_SysHandle system,

 cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwb_Boolean *canModify - output

Set to CWB_TRUE if the secure sockets use setting may be modified, otherwise set to CWB_FALSE.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or

connection using the specified system object has already occurred. In these cases, canModify will be set to

CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy settings

Programming 79

are changed or a signon or connection is performed using this system object, the results of this API could

become incorrect. This must be considered and managed, especially in a multi-threaded application.

cwbCO_GetDescription:

Purpose

This function gets the text description associated with a specified system object.

Syntax

UINT CWB_ENTRY cwbCO_GetDescription(

 cwbCO_SysHandle system,

 LPSTR description,

 PULONG length);

Parameters

cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the

iSeries system.

LPSTR description - output

Pointer to a buffer that will contain the NULL-terminated description. The description will be at most

CWBCO_MAX_SYS_DESCRIPTION characters long, not including the terminating NULL.

PULONG length - input/output

Pointer to the length of the description buffer. If the buffer is too small to hold the description,

including space for the terminating NULL, the size of the buffer needed will be filled into this

parameter.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW

The description buffer is not large enough to hold the entire description.

cwbCO_GetHostCCSID:

Purpose

Returns the associated CCSID of the iSeries system that is represented by the given system object that

was in use when the signon to the iSeries system occurred, and that is associated with the user ID that is

set in the system object.

Syntax

UINT CWB_ENTRY cwbCO_GetHostCCSID(

 cwbCO_SysHandle system,

 PULONG pCCSID);

80 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

PULONG pCCSID - output

The host CCSID is copied into here if successful.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

the CCSID pointer is NULL.

CWB_DEFAULT_HOST_CCSID_USED

Host CCSID 500 is returned because this API is unable to determine the host CCSID appropriate

for the user ID as set in the system object.

CWB_USER_TIMEOUT

CWB_SSL_JAVA_ERROR

CWB_USER_TIMEOUT_SENDRCV

Usage

This API does not make or require an active connection to the host system to retrieve the associated

CCSID value. However, it does depend on a prior successful connection to the host system by using the

same user ID as is set in the specified system object. This is because the CCSID that is returned is the one

from the specific user profile, NOT the iSeries system’s default CCSID. To retrieve a host CCSID without

requiring a user ID, call cwbNL_GetHostCCSID.

cwbCO_GetHostVersionEx:

Purpose

Get the version and release level of the host.

Syntax

UINT CWB_ENTRY cwbCO_GetHostVersionEx(

 cwbCO_SysHandle system,

 PULONG version,

 PULONG release);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

PULONG version - output

Pointer to a buffer where the version level of the system is returned.

PULONG release - output

Pointer to a buffer where the release level of the system is returned.

Programming 81

Return Codes

The following list shows common return values:

CWB_OK

Successful Completion.

CWB_NOT_CONNECTED

The system has never been connected to when using the currently active environment.

CWB_INVALID_POINTER

One of the pointers passed in is NULL.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate a temporary buffer.

Usage

The host version is retrieved and saved whenever a connection is made to the iSeries system. If no

connection has been made yet to this iSeries system in the currently-active environment, this information

will not be available, and the error code CWB_NOT_CONNECTED will be returned. If you know that a

connection to the iSeries system recently was made successfully, it is likely that the version and release

levels returned are current. If you want to make sure that the values are available and recently have been

retrieved, call cwbCO_Signon or cwbCO_Connect for this system object first, then call

cwbCO_GetHostVersionEx.

cwbCO_GetIPAddress:

Purpose

This function gets, for the specified system object, the IP address of the iSeries system it represents. This

is the IP address that was used to connect to the iSeries system (or was set some other way, such as by

using cwbCO_SetIPAddress), and will be used for later connections, when using the specified system

object.

Syntax

UINT CWB_ENTRY cwbCO_GetIPAddress(

 cwbCO_SysHandle system,

 LPSTR IPAddress,

 PULONG length);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

LPSTR IPAddress - output

Pointer to a buffer that will contain the NULL-terminated IP address in dotted-decimal notation (in

the form ″nnn.nnn.nnn.nnn″ where each ″nnn″ is in the range of from 0 to 255).

PULONG length - input/output

Pointer to the length of the IPAddress buffer. If the buffer is too small to hold the output, including

room for the terminating NULL, the size of the buffer needed will be filled into this parameter and

CWB_BUFFER_OVERFLOW will be returned.

Return Codes

The following list shows common return values.

82 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

One of the input pointers is NULL.

CWB_BUFFER_OVERFLOW

The IPAddress buffer is not large enough to hold the entire IPAddress string.

Usage

None.

cwbCO_GetIPAddressLookupMode:

Purpose

This function gets, for the specified system object, the indication of when, if ever, the iSeries system’s IP

address will be looked up dynamically.

Syntax

UINT CWB_ENTRY cwbCO_GetIPAddressLookupMode(

 cwbCO_SysHandle system,

 cwbCO_IPAddressLookupMode *mode);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbCO_IPAddressLookupMode * mode - output

Returns the IP address lookup mode that currently is in use. See comments for

“cwbCO_SetIPAddressLookupMode” on page 87 for possible values and their meanings.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The mode pointer is NULL.

Usage

None.

cwbCO_GetPortLookupMode:

Purpose

This function gets, for the specified system object, the mode or method by which host service ports are

looked up when they are needed by iSeries Access for Windows to establish a service connection.

Programming 83

Syntax

UINT CWB_ENTRY cwbCO_GetPortLookupMode(

 cwbCO_SysHandle system,

 cwbCO_PortLookupMode *mode);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbCO_PortLookupMode * mode - output

Returns the host service port lookup mode. See comments for cwbCO_SetPortLookupMode for

possible values and their meanings.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The mode pointer is NULL.

Usage

None.

cwbCO_GetSystemName:

Purpose

This function gets the iSeries system name that is associated with the specified system object.

Syntax

UINT CWB_ENTRY cwbCO_GetSystemName(

 cwbCO_SysHandle system,

 LPSTR sysName,

 PULONG length);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

LPSTR sysName - output

Pointer to a buffer that will contain the NULL-terminated system name. The name will be

CWBCO_MAX_SYS_NAME characters long at most, not including the terminating NULL.

PULONG length - input/output

Pointer to the length of the sysName buffer. If the buffer is too small to hold the system name,

including room for the terminating NULL, the size of the buffer needed will be filled into this

parameter and CWB_BUFFER_OVERFLOW will be returned.

84 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW

The sysName buffer is not large enough to hold the entire system name.

Usage

None.

cwbCO_IsSecureSockets:

Purpose

This function gets (for the specified system object) whether Secure Sockets is being used (if connected), or

would be attempted (if not currently connected) for a connection.

Syntax

UINT CWB_ENTRY cwbCO_IsSecureSockets(

 cwbCO_SysHandle system,

 cwb_Boolean *inUse);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwb_Boolean * inUse - output

Returns whether iSeries Access is using, or will try to use, secure sockets for communication:

CWB_TRUE

IS in use or would be if connections active.

CWB_FALSE

NOT in use, would not try to use it.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

The inUse pointer is NULL.

Programming 85

Usage

This flag is an indication of what iSeries Access for Windows attempts will TRY to do for any future

communications. If CWB_TRUE is returned, then any attempt to communicate to the iSeries system that

cannot be performed using secure sockets will fail.

Although with limitations, iSeries Access for Windows enforces Federal Information Processing Standards

(FIPS) compliance when SSL is used, this API does not return an indication of whether FIPS compliance

is on or off. The only way to verify that FIPS-compliance is on or off is to visually inspect the FIPS

compliance checkbox in iSeries Access for Windows Properties. For more information about FIPS and its

use, see the User’s Guide installed with iSeries Access for Windows.

cwbCO_SetIPAddress:

Purpose

This function sets, for the specified system object, the IP address that will be used to connect to the

iSeries system. It also changes the IP Address Lookup Mode for the system object to

CWBCO_IPADDR_LOOKUP_NEVER. These changes will NOT affect any other system object that exists

or is created later.

Syntax

UINT CWB_ENTRY cwbCO_SetIPAddress(

 cwbCO_SysHandle system,

 LPCSTR IPAddress);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

LPCSTR IPAddress - input

Specifies the IP address as a character string, in dotted-decimal notation (″nnn.nnn.nnn.nnn″), where

each ″nnn″ is a decimal value ranging from 0 to 255. The IPAddress must not be longer than

CWBCO_MAX_IP_ADDRESS characters, not including the terminating NULL character.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_PARAMETER

The IPAddress parameter does not contain a valid IP address.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON

Signon has successfully occurred by using the specified system object, so this setting no longer

may be changed.

86 IBM Systems - iSeries: iSeries Access for Windows: Programming

|
|
|
|
|

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon

has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system

object.

Use this API to force use of a specific IP address whenever any connection is made using the specified

system object. Since the IP Address Lookup Mode is set to NEVER lookup the IP address, the address

specified always will be used, unless before a connect or signon occurs, the IP Address Lookup Mode is

changed by calling cwbCO_SetIPAddressLookupMode.

cwbCO_SetIPAddressLookupMode:

Purpose

This function sets, for the specified system object, when iSeries Access for Windows dynamically will

lookup the iSeries system’s IP address when a connection is to be made. If the system name that is

specified when cwbCO_CreateSystem or cwbCO_CreateSystemLike was called is an actual IP address,

this setting is ignored, because iSeries Access for Windows never needs to lookup the address.

Syntax

UINT CWB_ENTRY cwbCO_SetIPAddressLookupMode(

 cwbCO_SysHandle system,

 cwbCO_IPAddressLookupMode mode);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbCO_IPAddressLookupMode mode - input

Specifies when the dynamic address lookup can occur. Possible values are:

CWBCO_IPADDR_LOOKUP_ALWAYS

Every time a connection is to occur, dynamically lookup the iSeries system’s IP address.

CWBCO_IPADDR_LOOKUP_1HOUR

Lookup the IP address dynamically if it has been at least one hour since the last lookup for

this iSeries system.

CWBCO_IPADDR_LOOKUP_1DAY

Lookup the IP address dynamically if it has been at least one day since the last lookup for

this iSeries system.

CWBCO_IPADDR_LOOKUP_1WEEK

Lookup the IP address dynamically if it has been at least one week since the last lookup for

this iSeries system.

CWBCO_IPADDR_LOOKUP_NEVER

Never dynamically lookup the IP address of this iSeries system, always use the IP address

that was last used for this iSeries system on this PC.

CWBCO_IPADDR_LOOKUP_AFTER_STARTUP

Lookup the IP address dynamically if Windows has been re-started since the last lookup for

this iSeries system.

Return Codes

The following list shows common return values:

Programming 87

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_PARAMETER

The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON

Signon has successfully occurred by using the specified system object, so this setting no longer

may be changed.

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon

has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system

object.

Setting this to a value other than CWB_IPADDR_LOOKUP_ALWAYS could shorten the time to connect to

the iSeries system, since the dynamic lookup may cause network traffic and take many seconds to

complete. If the dynamic lookup is not performed, there is a risk that the IP address of the iSeries system

will have changed and a connection will either fail or will be made to the wrong iSeries system.

cwbCO_SetPortLookupMode:

Purpose

This function sets, for the specified system object, how a host server port lookup will be done.

Syntax

UINT CWB_ENTRY cwbCO_SetPortLookupMode(

 cwbCO_SysHandle system,

 cwbCO_PortLookupMode mode);

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iSeries system.

cwbCO_PortLookupMode mode - input

Specifies port lookup method. Possible values are:

CWBCO_PORT_LOOKUP_SERVER

Lookup of a host server port will be done by contacting the host (iSeries) server mapper each

time the connection of a service is to be made when one does not yet exist. The server

mapper returns the port number that is then used to connect to the desired service on the

iSeries system.

CWBCO_PORT_LOOKUP_LOCAL

Lookup of a host server port will be done by lookup in the SERVICES file on the PC itself.

CWBCO_PORT_LOOKUP_STANDARD

The ″standard″ port—that set by default for a given host server and in use if no one has

changed the services table on the iSeries system for that service—will be used to connect to

the desired service.

88 IBM Systems - iSeries: iSeries Access for Windows: Programming

The latter two modes eliminate the iSeries server mapper connection and its associated delay,

network traffic, and load on the iSeries system.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_PARAMETER

The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON

Signon has successfully occurred by using the specified system object, so this setting no longer

may be changed.

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon

has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system

object.

Use CWBCO_PORT_LOOKUP_SERVER to be most certain of the accuracy of the port number for a

service; however, this requires an extra connection to the server mapper on the iSeries system every time

a new connection to a service is to be made.

Use CWBCO_PORT_LOOKUP_STANDARD to achieve the best performance, although if the system

administrator has changed the ports of any iSeries Access host service in the service table on that iSeries

system, this mode will not work.

Use CWBCO_PORT_LOOKUP_LOCAL for best performance when the port for a iSeries Access host

service has been changed on the iSeries system represented by the system object. For this to work, entries

for each host service port must be added to a file on the PC named SERVICES. Each such entry must

contain first the standard name of the host service (for example, ″as-rmtcmd″ without the quotes)

followed by spaces and the port number for that service. The SERVICES file is located in a subdirectory

under the Windows install directory called system32\drivers\etc.

cwbCO_UseSecureSockets:

Purpose

Specify that all communication to the iSeries system that uses the specified system object either must use

secure sockets or must not use secure sockets.

Syntax

UINT CWB_ENTRY cwbCO_UseSecureSockets(

 cwbCO_SysHandle system,

 cwb_Boolean useSecureSockets);

Programming 89

Parameters

cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It

identifies the iServer system.

cwb_Boolean useSecureSockets - input

Specifies whether to require secure sockets use when communicating with the iSeries system that the

specified system object handle represents. Use the appropriate value:

CWB_TRUE

Require secure sockets use for communication

CWB_FALSE

Do not use secure sockets for communication

CWB_USER_TIMEOUT

The connect timeout value associated with the system object expired before the connection

verification attempt completed, so we stopped waiting.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_SECURE_SOCKETS_NOTAVAIL

Secure sockets is not available. It may not be installed on the PC, prohibited for this user, or not

available on the iServer system.

CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON

Signon has successfully occurred by using the specified system object, so this setting no longer

may be changed.

Usage

Even if a connection to the specified service already exists for the given system object, a new connection

is attempted. The attributes of the given system object, such as whether to use secure sockets, are used

for this connection attempt. It is therefore possible that connection verification may fail given the passed

system object, but might succeed to the same system given a system object whose attributes are set

differently. The most obvious example of this is where secure sockets use is concerned, since the

non-secure-sockets version of the service may be running on the iSeries system, while the secure-sockets

version of the service might not be running, or vice-versa.

iSeries Access for Windows may or may not be able to detect at the time this API is called if Secure

Sockets will be available for use at connect time for this iSeries system. Even if

CWB_SECURE_SOCKETS_NOTAVAIL is NOT returned, it may be determined at a later time that secure

sockets is not available.

Although with limitations, iSeries Access for Windows enforces Federal Information Processing Standards

(FIPS) compliance when SSL is used, this API does not return an indication of whether FIPS compliance

is on or off. The only way to verify that FIPS-compliance is on or off is to visually inspect the FIPS

compliance checkbox in iSeries Access for Windows Properties. For more information about FIPS and its

use, see the User’s Guide installed with iSeries Access for Windows.

90 IBM Systems - iSeries: iSeries Access for Windows: Programming

|
|
|
|
|

Defines for cwbCO_Service

The following values define cwbCO_Service.

v CWBCO_SERVICE_CENTRAL

v CWBCO_SERVICE_NETFILE

v CWBCO_SERVICE_NETPRINT

v CWBCO_SERVICE_DATABASE

v CWBCO_SERVICE_ODBC

v CWBCO_SERVICE_DATAQUEUES

v CWBCO_SERVICE_REMOTECMD

v CWBCO_SERVICE_SECURITY

v CWBCO_SERVICE_DDM

v CWBCO_SERVICE_WEB_ADMIN

v CWBCO_SERVICE_TELNET

v CWBCO_SERVICE_MGMT_CENTRAL

v CWBCO_SERVICE_ANY

v CWBCO_SERVICE_ALL

Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword

Following are listed some of the significant differences between cwbCO_Signon and

cwbCO_VerifyUserIDPassword.

v cwbCO_VerifyUserIDPassword requires that a user ID and password be passed-in (system object

values for these will NOT be used), and will not prompt for this information. cwbCO_Signon may use

prompting, depending on other system object settings, and in that case will use whatever values are

supplied by the user for user ID and password in its validation attempt.

v Since cwbCO_VerifyUserIDPassword never will prompt for user ID and password, these settings in the

specified system object will not be changed as a result of that call. A call to cwbCO_Signon, however,

may change the user ID or password of the system object as the result of possible prompting for this

information.

v cwbCO_VerifyUserIDPassword ALWAYS will result in a connection to the iSeries system being

established to perform user ID and password validation, and to retrieve current values (such as date

and time of last successful signon) related to signon attempts. cwbCO_Signon, however, might not

connect to validate the user ID and password, but instead may use recent results of a previous

validation. This is affected by recency of previous validation results as well as by the Validation Mode

attribute of the given system object.

v The password will be cached in the iSeries password cache only in the case of the successful

completion of cwbCO_Signon, never as the result of a call to cwbCO_VerifyUserIDPassword.

v cwbCO_VerifyUserIDPassword NEVER will set the system object state to ’signed on’, whereas a

successful cwbCO_Signon WILL change the state to ’signed on’. This is important because when a

system object is in a ’signed on’ state, most of its attributes may no longer be changed.

Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword

The following information illustrates the similarities between cwbCO_Signon and

cwbCO_VerifyUserIDPassword

Both APIs, when using a connection to validate the user ID and password, also retrieve current data

related to signon attempts. This data then can be retrieved by using the following APIs:

v cwbCO_GetSignonDate

v cwbCO_GetPrevSignonDate

v cwbCO_GetPasswordExpireDate

v cwbCO_GetFailedSignons

Programming 91

Communications: Create and delete APIs

Use these APIs to create a list of configured systems, either in the currently active environment or in a

different environment. Retrieve the number of entries in the list, and each entry in succession.

cwbCO_CreateSysListHandle:

Purpose

Creates a handle to a list of configured system names in the active environment.

Syntax

unsigned int CWB_ENTRY cwbCO_CreateSysListHandle(

 cwbCO_SysListHandle *listHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysListHandle *listHandle - output

Pointer to a list handle that will be passed back on output. This handle is needed for other calls using

the list.

cwbSV_ErrorHandle errorHandle - input

If the API call fails, the message object that is associated with this handle will be filled in with

message text that describes the error. If this parameter is zero, no messages will be available.

Return Codes

The following list shows common return values:

CWB_OK

Successful Completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_POINTER

Pointer to the list handle is NULL.

Usage

cwbCO_DeleteSysListHandle must be called to free resources that are allocated with this API.

cwbCO_CreateSysListHandleEnv:

Purpose

Creates a handle to list of configured system names of the specified environment.

Syntax

unsigned int CWB_ENTRY cwbCO_CreateSysListHandleEnv(

 cwbCO_SysListHandle *listHandle,

 cwbSV_ErrHandle errorHandle,

 LPCSTR pEnvironment);

Parameters

cwbCO_SysListHandle *listHandle - output

Pointer to a list handle that will be passed back on output. This handle is needed for other calls that

are using the list.

92 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbSV_ErrorHandle errorHandle - input

If the API call fails, the message object that is associated with this handle will be filled in with

message text that describes the error. If this parameter is zero, no messages will be available.

LPCSTR pEnvironment

Pointer to a string containing the desired environment name. If pEnvironment is the NULL pointer,

or points to the NULL string (″\0″), the system list of the current active environment is returned.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_POINTER

Pointer to the list handle is NULL.

CWBCO_NO_SUCH_ENVIRONMENT

The specified environment does not exist.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

cwbCO_DeleteSysListHandle must be called to free resources allocated with this API.

cwbCO_DeleteSysListHandle:

Purpose

Deletes a handle to a list of configured system names. This must be called when you are finished using

the system name list.

Syntax

unsigned int CWB_ENTRY cwbCO_DeleteSysListHandle(

 cwbCO_SysListHandle listHandle);

Parameters

cwbCO_SysListHandle - listHandle

A handle to the system name list to delete.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

Programming 93

Usage

Use this API to delete the list created with the cwbCO_CreateSysListHandle or

cwbCO_CreateSysListHandleEnv API.

cwbCO_GetNextSysName:

Purpose

Get the name of the next system from a list of systems.

Syntax

unsigned int CWB_ENTRY cwbCO_GetNextSysName(

 cwbCO_SysListHandle listHandle,

 char *systemName,

 unsigned long bufferSize,

 unsigned long *needed);

Parameters

cwbCO_SysListHandle handleList - input

Handle to a list of systems.

char *systemName - output

Pointer to a buffer that will contain the system name. This buffer should be large enough to hold at

least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL character.

unsigned long bufferSize - input

Size of the buffer pointed to by systemName.

unsigned long *needed - output

Number of bytes needed to hold entire system name.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

Pointer to system name or pointer to buffer size needed is NULL. Check messages in the History

Log to determine which are NULL.

CWB_BUFFER_OVERFLOW

Not enough room in output buffer to hold entire system name. Use *needed to determine the

correct size. No error message is logged to the History Log since the caller is expected to recover

from this error and continue.

CWBCO_END_OF_LIST

The end of the system list has been reached. No system name was returned.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR

General API failure.

94 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

If the system list passed in was created using the API cwbCO_CreateSystemListHandle, then the system

returned is configured in the currently active environment, unless between these API calls the user has

removed it or switched to a different environment. If cwbCO_CreateSysListHandleEnv was called to

create the system list, then the system returned is configured in the environment passed to that API,

unless the user has since removed it.

cwbCO_GetSysListSize:

Purpose

Gets the number of system names in the list.

Syntax

unsigned int CWB_ENTRY cwbCO_GetSysListSize(

 cwbCO_SysListHandle listHandle,

 unsigned long *listSize);

Parameters

cwbCO_SysListHandle listHandle - input

Handle of the list of systems.

unsigned long *listSize - output

On output this will be set to the number of systems in the list.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_POINTER

Pointer to the list size is NULL.

Usage

None.

Communications: System information APIs

Use these APIs to obtain information about individual systems that are configured or connected in the

current process. Unless the environment name is passed as a parameter, these APIs work only with the

currently active environment.

cwbCO_GetActiveConversations:

Purpose

Get the number of active conversations of the system.

Syntax

int CWB_ENTRY cwbCO_GetActiveConversations(

 LPCSTR systemName);

Programming 95

Parameters

LPCSTR systemName - input

Pointer to a buffer that contains the system name.

Return Codes

The number of active conversations, if any, is returned. If the systemName pointer is NULL, points to an

empty string, the system is not currently connected, or system name contains one or more Unicode

characters which cannot be converted, 0 will be returned.

Usage

This API returns the number of conversations active for the specified iSeries system within the CURRENT

PROCESS ONLY. There may be other conversations active within other processes running on the PC.

cwbCO_GetConnectedSysName:

Purpose

Get the name of the connected system corresponding to the index.

Syntax

unsigned int CWB_ENTRY cwbCO_GetConnectedSysName(

 char *systemName,

 unsigned long *bufferSize,

 unsigned long index);

Parameters

char *systemName - output

Pointer to a buffer that will contain the system name. This buffer should be large enough to hold at

least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output

input Size of the buffer pointed to by *systemName.

output

Size of buffer needed.

unsigned long index

Indicates which connected system to retrieve the name for. The first connected system’s index is 0,

the second index is 1, and so on.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

Pointer to system name or pointer to buffer size needed is NULL. Check messages in the History

Log to determine which are NULL.

CWB_BUFFER_OVERFLOW

Not enough room in output buffer to hold entire system name. Use *bufferSize to determine the

correct size. No error message is logged to the History Log since the caller is expected to recover

from this error and continue.

96 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBCO_END_OF_LIST

The end of connected system list has been reached. No system name was returned.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR

General API failure.

Usage

Connections for which system names can be retrieved are those within the current process only.

cwbCO_GetDefaultSysName:

Purpose

Get the name of the default system in the active environment.

Syntax

unsigned int CWB_ENTRY cwbCO_GetDefaultSysName(

 char *defaultSystemName,

 unsigned long bufferSize,

 unsigned long *needed,

 cwbSV_ErrHandle errorHandle);

Parameters

char *defaultSystemName - output

Pointer to a buffer that will contain the NULL-terminated system name. This buffer should be large

enough to hold at least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL

character.

unsigned long bufferSize - input

Size of input buffer.

unsigned long *needed - output

Number of bytes needed to hold entire system name including the terminating NULL.

cwbSV_ErrorHandle errorhandle - input

If the API call fails, the message object associated with this handle will be filled in with message text

that describes the error. If this parameter is zero, no messages will be available.

Return Codes

The following list shows common return values:

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

Pointer to the system name or pointer to buffer size needed is NULL. Check messages in the

History Log to determine which are NULL.

CWB_BUFFER_OVERFLOW

Not enough room in output buffer to hold the entire system name. Use *needed to determine the

correct size. No error message is logged to the History Log since the caller is expected to recover

from this error and continue.

CWBCO_DEFAULT_SYSTEM_NOT_DEFINED

The setting for the default system has not been defined in the active environment.

Programming 97

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR

General API failure.

Usage

None.

cwbCO_GetHostVersion:

Purpose

Get the version and release level of the host.

Syntax

unsigned int CWB_ENTRY cwbCO_GetHostVersion(

 LPCSTR system,

 unsigned int * version,

 unsigned int * release);

Parameters

LPCSTR systemName - input

Pointer to a buffer that contains the system name.

unsigned int * version - output

Pointer to a buffer where the version level of the system is returned.

unsigned int * release - output

Pointer to a buffer where the release level of the system is returned.

Return Codes

The following list shows common return values:

CWB_OK

Successful Completion.

CWBCO_SYSTEM_NOT_CONFIGURED

The system is not configured in the currently active environment.

CWBCO_SYSTEM_NOT_CONNECTED

The system has never been connected to when using the currently active environment.

CWB_INVALID_POINTER

One of the pointers passed is NULL.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

The host version is retrieved and saved whenever a connection is made to the system; this API does not

go to the host to get it on each call. The system must have been connected previously, though not

98 IBM Systems - iSeries: iSeries Access for Windows: Programming

necessarily at the time the API is called. Host information can only be retrieved for systems configured in

the currently active environment.

cwbCO_GetUserID:

Purpose

Get signon or default user ID of the input system as it is configured and possibly connected in the

currently active environment. This API is obsolete, and has been replaced.

Syntax

unsigned int CWB_ENTRY cwbCO_GetUserID(

 LPCSTR systemName,

 char *userID,

 unsigned int userID_Type,

 unsigned long *bufferSize);

Parameters

LPCSTR systemName - input

Pointer to a buffer that contains the system name.

char *userID - output

Pointer to a buffer where the desired userID of the system is returned. This buffer should be large

enough to hold at least CWBCO_MAX_USER_ID + 1 characters, including the terminating NULL

character.

unsigned int userID_Type - input

Specify whether current user ID of connected system (CWBCO_CURRENT_USER_ID) or default user

ID of configured system (CWBCO_DEFAULT_USER_ID) is to be returned.

unsigned long * bufferSize - input/output

Pointer to a value that indicates the size of the userID buffer. If the buffer is not big enough, the

value needed is returned.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

One or more input pointers are invalid.

CWB_INVALID_PARAMETER

The value for userID_Type is invalid.

CWB_BUFFER_OVERFLOW

Not enough room in userID buffer to store the user ID. Use *bufferSize to determine the correct

size. No error message is logged to the History Log since the caller is expected to recover from

this error and continue.

CWBCO_SYSTEM_NOT_CONNECTED

The system of the ″current user ID″ is not connected.

CWBCO_SYSTEM_NOT_CONFIGURED

The system of the ″default user ID″ is not configured in the currently active environment.

CWBCO_INTERNAL_ERROR

Internal error.

Programming 99

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

If the default user ID is specified, and none was entered when the connection was configured, CWB_OK

will be returned and the user ID sent back to the caller will be the empty string, ″\0″. The user ID

retrieved will be that of the specified system from the currently active environment.

cwbCO_IsSystemConfigured:

Purpose

Check if the input system is configured in the environment currently in use.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConfigured(

 LPCSTR systemName);

Parameters

LPCSTR systemName - input

Pointer to a buffer that contains the system name.

Return Codes

The following list shows common return values:

CWB_TRUE:

System is configured.

CWB_FALSE:

System is not configured, systemName is NULL, or system name contains one or more Unicode

characters that cannot be converted.

Usage

None

cwbCO_IsSystemConfiguredEnv:

Purpose

Check if the input system is configured in the environment specified.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConfiguredEnv(

 LPCSTR systemName,

 LPCSTR pEnvironment);

Parameters

LPCSTR systemName - input

Pointer to a buffer that contains the system name.

100 IBM Systems - iSeries: iSeries Access for Windows: Programming

LPCSTR pEnvironment - input

Pointer to a buffer that contains the environment name. If pEnvironment is NULL, or if it points to

an empty string, the environment currently in use is checked.

Return Codes

The following list shows common return values:

CWB_TRUE:

System is configured.

CWB_FALSE:

System is not configured, systemName is NULL, or system name contains one or more Unicode

characters that cannot be converted.

Usage

None

cwbCO_IsSystemConnected:

Purpose

Check if the input system is currently connected.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConnected(

 LPCSTR systemName);

Parameters

LPCSTR systemName - input

Pointer to a buffer that contains the system name.

Return Codes

The following list shows common return values.

CWB_TRUE:

System is connnected.

CWB_FALSE:

System is not connected, systemName is NULL, or system name contains one or more Unicode

characters that cannot be converted.

Usage

This API indicates connection status within the current process only. The system may be connected within

a different process, but this has no effect on the output of this API.

Communications: Configured environments information

Use these APIs to obtain the names of environments that have been configured.

cwbCO_GetActiveEnvironment:

Purpose

Get the name of the environment currently active.

Programming 101

Syntax

unsigned int CWB_ENTRY cwbCO_GetActiveEnvironment(

 char *environmentName,

 unsigned long *bufferSize);

Parameters

char *environmentName - output

Pointer to a buffer into which will be copied the name of the active environment, if the buffer that is

passed is large enough to hold it. The buffer should be large enough to hold at least

CWBCO_MAX_ENV_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output

input Size of the buffer pointed to by *environmentName.

output

Size of buffer needed.

Return Codes

The following list shows common return values:

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

One or more pointer parameters are NULL.

CWB_BUFFER_OVERFLOW

Not enough room in output buffer to hold entire environment name. Use *bufferSize to determine

the correct size. No error message is logged to the History Log since the caller is expected to

recover from this error and continue.

CWBCO_NO_SUCH_ENVIRONMENT

No environments have been configured, so there is no active environment.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR

General API failure.

Usage

None.

cwbCO_GetEnvironmentName:

Purpose

Get the name of the environment corresponding to the index.

Syntax

unsigned int CWB_ENTRY cwbCO_GetEnvironmentName(

 char *environmentName,

 unsigned long *bufferSize,

 unsigned long index);

102 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

char *environmentName - output

Pointer to a buffer that will contain the environment name. This buffer should be large enough to

hold at least CWBCO_MAX_ENV_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output

input Size of the buffer pointed to by *environmentName.

output

Size of buffer needed, if the buffer provided was too small.

unsigned long index - input

0 corresponds to the first environment.

Return Codes

The following list shows common return values:

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

One or more pointer parameters are NULL.

CWB_BUFFER_OVERFLOW

Not enough room in output buffer to hold entire environment name. Use *bufferSize to determine

the correct size. No error message is logged to the History Log since the caller is expected to

recover from this error and continue.

CWBCO_END_OF_LIST

The end of the environments list has been reached. No environment name was returned.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR

General API failure.

Usage

None.

cwbCO_GetNumberOfEnvironments:

Purpose

Get the number of iSeries Access environments that exist. This includes both the active and all non-active

environments.

Syntax

unsigned int CWB_ENTRY cwbCO_GetNumberOfEnvironments(

 unsigned long *numberOfEnv);

Parameters

unsigned long *numberOfEnv - output

On output this will be set to the number of environments.

Programming 103

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

The numberOfEnv pointer parameter is NULL.

Usage

None.

Communications: Environment and connection information

Use these APIs to determine if the calling application can modify environments and connection

information.

cwbCO_CanConnectNewSystem:

Purpose

Indicates whether the user may connect to a system not currently configured in the System List within

the active environment.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanConnectNewSystem();

Parameters

None

Return Codes

The following list shows common return values:

CWB_TRUE

Can connect to systems not already configured.

CWB_FALSE

Cannot connect to systems not already configured.

Usage

If this API returns CWB_FALSE, a call to cwbCO_CreateSystem with a system name not currently

configured will fail, as will various other iSeries Access for Windows APIs that take system name as a

parameter.

cwbCO_CanModifyEnvironmentList:

Purpose

Indicates whether the user can create/remove/rename environments.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanModifyEnvironmentList();

104 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

None

Return Codes

The following list shows common return values.

CWB_TRUE

Can create/remove/rename/delete environments.

CWB_FALSE

Cannot create/remove/rename/delete environments.

Usage

This API indicates whether environments can be manipulated. To see if systems within an environment

may be manipulated, use the cwbCO_CanModifySystemList and cwbCO_CanModifySystemListEnv APIs.

cwbCO_CanModifySystemList:

Purpose

Indicates whether the user can add/remove/delete systems within the active environment. Note that

systems ″suggested″ by the administrator via policies cannot be removed.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanModifySystemList();

Parameters

None

Return Codes

The following list shows common return values:

CWB_TRUE

Can modify system list.

CWB_FALSE

Cannot modify system list.

Usage

This API indicates whether systems within the active environment can be manipulated. To see if

environments can be manipulated see the cwbCO_CanModifyEnvironmentList API.

cwbCO_CanModifySystemListEnv:

Purpose

Indicates whether the user can add/remove/delete systems within an input environment. Note that

systems ″suggested″ by the administrator via policies cannot be removed.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanModifySystemListEnv(

 char *environmentName);

Programming 105

Parameters

char *environmentName - input

Pointer to a string that contains the desired environment name. If this pointer is NULL, or if it points

to an empty string, the currently active environment is used.

Return Codes

The following list shows common return values:

CWB_TRUE

Can modify system list.

CWB_FALSE

Cannot modify system list, or an error occurred, such as having been passed a non-existent

environment name.

Usage

This API indicates whether systems within an environment can be manipulated. To see if environments

can be manipulated see the cwbCO_CanModifyEnvironmentList API.

cwbCO_CanSetActiveEnvironment:

Purpose

Indicates whether the user can set an environment to be the active environment.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanSetActiveEnvironment();

Parameters

None

Return Codes

The following list shows common return values:

CWB_TRUE

Can set the active environment.

CWB_FALSE

Cannot set the active environment.

Usage

None

Example: Using iSeries Access for Windows communications APIs

The example program below shows the use of communications APIs to retrieve and display the names of

the default (managing) system, along with all the systems that are configured in the active environment.

/***

*

* Module:

* GETSYS.C

*

* Purpose:

* This module is used to demonstrate how an application might use the

* Communication API’s. In this example, these APIs are used to get

106 IBM Systems - iSeries: iSeries Access for Windows: Programming

* and display the list of all configured systems. The user can then

* select one, and that system’s connection properties (the attributes

* of the created system object) are displayed. All Client Access

* services are then checked for connectabliity, and the results displayed.

*

* Usage Notes:

*

* Include CWBCO.H, CWBCOSYS.H, and CWBSV.H

* Link with CWBAPI.LIB

*

* IBM grants you a nonexclusive license to use this as an example

* from which you can generate similar function tailored to your own

* specific needs. This sample is provided in the form of source

* material which you may change and use.

* If you change the source, it is recommended that you first copy the

* source to a different directory. This will ensure that your changes

* are preserved when the tool kit contents are changed by IBM.

*

* DISCLAIMER

* ----------

*

* This sample code is provided by IBM for illustrative purposes only.

* These examples have not been thoroughly tested under all conditions.

* IBM, therefore, cannot guarantee or imply reliability,

* serviceability, or function of these programs. All programs

* contained herein are provided to you "AS IS" without any warranties

* of any kind. ALL WARRANTIES, INCLUDING BUT NOT LIMITED TO THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE, ARE EXPRESSLY DISCLAIMED.

*

* Your license to this sample code provides you no right or licenses to

* any IBM patents. IBM has no obligation to defend or indemnify against

* any claim of infringement, including but not limited to: patents,

* copyright, trade secret, or intellectual property rights of any kind.

*

*

*

*

*

* COPYRIGHT

* ---------

* 5722-XE1 (C) Copyright IBM CORP. 1996, 2004

* All rights reserved.

* US Government Users Restricted Rights -

* Use, duplication or disclosure restricted

* by GSA ADP Schedule Contract with IBM Corp.

* Licensed Material - Property of IBM

*

*

***/

#include windows.h

#include stdio.h

#include "cwbsv.h" /* Service APIs for retrieving any FAILURE messages */

#include "cwbco.h" /* Comm APIs for enumerating systems configured */

#include "cwbcosys.h" /* Comm APIs for creating and using system objects */

#define SUCCESS (0)

#define FAILURE (1)

/*

 * Arrays of attribute description strings, for human-readable

 * display of these values.

 */

char* valModeStr[2] = { "CWBCO_VALIDATE_IF_NECESSARY" ,

Programming 107

"CWBCO_VALIDATE_ALWAYS" } ;

char* promptModeStr[3] = { "CWBCO_PROMPT_IF_NECESSARY" ,

 "CWBCO_PROMPT_ALWAYS" ,

 "CWBCO_PROMPT_NEVER" } ;

char* dfltUserModeStr[4] = { "CWBCO_DEFAULT_USER_MODE_NOT_SET" ,

 "CWBCO_DEFAULT_USER_USE" ,

 "CWBCO_DEFAULT_USER_IGNORE" ,

 "CWBCO_DEFAULT_USER_USEWINLOGON",

 "CWBCO_DEFAULT_USER_USE_KERBEROS" } ;

char* IPALModeStr[6] = { "CWBCO_IPADDR_LOOKUP_ALWAYS" ,

 "CWBCO_IPADDR_LOOKUP_1HOUR" ,

 "CWBCO_IPADDR_LOOKUP_1DAY" ,

 "CWBCO_IPADDR_LOOKUP_1WEEK" ,

 "CWBCO_IPADDR_LOOKUP_NEVER" ,

 "CWBCO_IPADDR_LOOKUP_AFTER_STARTUP" } ;

char* portLookupModeStr[3] = { "CWBCO_PORT_LOOKUP_SERVER" ,

 "CWBCO_PORT_LOOKUP_LOCAL" ,

 "CWBCO_PORT_LOOKUP_STANDARD" } ;

char* cwbBoolStr[2] = { "False", "True" } ;

/* NOTE! The corresponding service CONSTANT integers start

 * at 1, NOT at 0; that is why the dummy "FAILURE" value

 * was added at position 0.

 */

char* serviceStr[15] = { "CWBCO_SERVICE_THISISABADSERVICE!",

 "CWBCO_SERVICE_CENTRAL" ,

 "CWBCO_SERVICE_NETFILE" ,

 "CWBCO_SERVICE_NETPRINT" ,

 "CWBCO_SERVICE_DATABASE" ,

 "CWBCO_SERVICE_ODBC" ,

 "CWBCO_SERVICE_DATAQUEUES" ,

 "CWBCO_SERVICE_REMOTECMD" ,

 "CWBCO_SERVICE_SECURITY" ,

 "CWBCO_SERVICE_DDM" ,

 "", /* not used */

 "", /* not used */

 "CWBCO_SERVICE_WEB_ADMIN" ,

 "CWBCO_SERVICE_TELNET" ,

 "CWBCO_SERVICE_MGMT_CENTRAL" } ;

/*

 * Node in a singly-linked list to hold a pointer

 * to a system name. Note that the creator of an

 * instance of this node must allocate the space to

 * hold the system name himself, only a pointer is

 * supplied here.

 */

typedef struct sysListNodeStruct SYSLISTNODE, *PSYSLISTNODE;

struct sysListNodeStruct

{

 char* sysName;

 cwbCO_SysHandle hSys;

 PSYSLISTNODE next;

} ;

/**

 * Add a system name to the list of configured systems we will keep around.

108 IBM Systems - iSeries: iSeries Access for Windows: Programming

**/

UINT addSystemToList(

 char* sysName,

 SYSLISTNODE** ppSysList)

{

 SYSLISTNODE* pNewSys;

 char* pNewSysName;

 pNewSys = (SYSLISTNODE*) malloc (sizeof(SYSLISTNODE));

 if (pNewSys == NULL)

 {

 return FAILURE;

 }

 pNewSysName = (char*) malloc (strlen(sysName) + 1);

 if (pNewSysName == NULL)

 {

 free (pNewSys);

 return FAILURE;

 }

 strcpy(pNewSysName, sysName);

 pNewSys->sysName = pNewSysName;

 pNewSys->hSys = 0; /* delay creating sys object until needed */

 pNewSys->next = *ppSysList;

 *ppSysList = pNewSys;

 return SUCCESS;

}

/**

 * Clear the list of system names and clean up used storage.

 **/

void clearList(SYSLISTNODE* pSysList)

{

 PSYSLISTNODE pCur, pNext;

 pCur = pSysList;

 while (pCur != NULL)

 {

 pNext = pCur->next;

 free (pCur->sysName);

 free (pCur);

 pCur = pNext;

 }

}

/**

 * Retrieve and display Client Access FAILURE messages.

 **/

void reportCAErrors(cwbSV_ErrHandle hErrs)

{

 ULONG msgCount;

 UINT apiRC;

 UINT i;

 char msgText[200]; /* 200 is big enuf to hold most msgs */

 ULONG bufLen = sizeof(msgText); /* holds size of msgText buffer */

 ULONG lenNeeded; /* to hold length of buf needed */

 apiRC = cwbSV_GetErrCount(hErrs, &msgCount);

 if (CWB_OK != apiRC)

 {

 printf("Failed to get message count, cwbSV_GetErrCount rc=%u\n", apiRC);

Programming 109

if ((CWB_INVALID_POINTER == apiRC) ||

 (CWB_INVALID_HANDLE == apiRC))

 {

 printf(" --> likely a programming FAILURE!\n");

 }

 return;

 }

 bufLen = sizeof(msgText);

 for (i=1; i<=msgCount; i++)

 {

 apiRC = cwbSV_GetErrTextIndexed(hErrs, i, msgText, bufLen, &lenNeeded);

 if ((CWB_OK == apiRC) ||

 (CWB_BUFFER_OVERFLOW == apiRC)) /* if truncated, that’s ok */

 {

 printf("CA FAILURE #%u: %s\n", i, msgText);

 }

 else

 {

 printf("CA FAILURE #%u unuvailable, cwbSV_GetErrTextIndexed rc=%u\n",

 i, apiRC);

 }

 }

}

/**

 * Build the list of systems as it is currently configured in Client

 * Access.

 **/

UINT buildSysList(

 SYSLISTNODE** ppSysList)

{

 cwbSV_ErrHandle hErrs;

 cwbCO_SysListHandle hList;

 char sysName[CWBCO_MAX_SYS_NAME + 1];

 ULONG bufSize = sizeof(sysName);

 ULONG needed;

 UINT apiRC;

 UINT myRC = SUCCESS;

 UINT rc = SUCCESS;

 /* Create a FAILURE handle so that, in case of FAILURE, we can

 * retrieve and display the messages (if any) associated with

 * the failure.

 */

 apiRC = cwbSV_CreateErrHandle(&hErrs);

 if (CWB_OK != apiRC)

 {

 /* Failed to create a FAILURE handle, use NULL instead.

 * This means we’ll not be able to get at FAILURE messages.

 */

 hErrs = 0;

 }

 apiRC = cwbCO_CreateSysListHandle(*hList, hErrs);

 if (CWB_OK != apiRC)

 {

 printf("Failure to get a handle to the system list.\n");

 reportCAErrors(hErrs);

 myRC = FAILURE;

 }

 /* Get each successive system name and add the system to our

 * internal list for later use.

 */

 while ((CWB_OK == apiRC) && (myRC == SUCCESS))

110 IBM Systems - iSeries: iSeries Access for Windows: Programming

{

 apiRC = cwbCO_GetNextSysName(hList, sysName, bufSize, &needed);

 /* Note that since the sysName buffer is as large as it will

 * ever need to be, we don’t check specifically for the return

 * code CWB_BUFFER_OVERFLOW. We could instead choose to use a

 * smaller buffer, and if CWB_BUFFER_OVERFLOW were returned,

 * allocate one large enough and call cwbCO_GetNextSysName

 * again.

 */

 if (CWB_OK == apiRC)

 {

 myRC = addSystemToList(sysName, ppSysList);

 if (myRC != SUCCESS)

 {

 printf("Failure to add the next system name to the list.\n");

 }

 }

 else if (CWBCO_END_OF_LIST != apiRC)

 {

 printf("Failed to get the next system name.\n");

 myRC = FAILURE;

 }

 } /* end while (to build a list of system names) */

 /*

 * Free the FAILURE handle if one was created

 */

 if (hErrs != 0) /* (non-NULL if it was successfully created) */

 {

 apiRC = cwbSV_DeleteErrHandle(hErrs);

 if (CWB_INVALID_HANDLE == apiRC)

 {

 printf("Failure: FAILURE handle invalid, could not delete!\n");

 myRC = FAILURE;

 }

 }

 return myRC;

}

/**

 * Get a system object given an index into our list of systems.

 **/

UINT getSystemObject(

 UINT sysNum,

 SYSLISTNODE* pSysList,

 cwbCO_SysHandle* phSys)

{

 SYSLISTNODE* pCur;

 UINT myRC, apiRC;

 pCur = pSysList;

 for (; sysNum > 1; sysNum--)

 {

 /* We have come to the end of the list without finding

 * the system requested, break out of loop and set FAILURE rc.

 */

 if (NULL == pCur)

 {

 myRC = FAILURE;

 break;

 }

 pCur = pCur->next;

 }

Programming 111

/* If we’re at a real system node, continue

 */

 if (NULL != pCur)

 {

 /* We’re at the node/sysname of the user’s choice. If no

 * Client Access "system object" has yet been created for this

 * system, create one. Pass back the one for the selected system.

 */

 if (0 == pCur->hSys)

 {

 apiRC = cwbCO_CreateSystem(pCur->sysName, &(pCur->hSys));

 if (CWB_OK != apiRC)

 {

 printf(

 "Failed to create system object, cwbCO_CreateSystem rc = %u\n",

 apiRC);

 myRC = FAILURE;

 }

 }

 *phSys = pCur->hSys;

 }

 return myRC;

}

/**

 * Allow the user to select a system from the list we have.

 **/

UINT selectSystem(

 UINT* pNumSelected,

 SYSLISTNODE* pSysList,

 BOOL refreshList)

{

 UINT myRC = SUCCESS;

 SYSLISTNODE* pCur;

 UINT sysNum, numSystems;

 char choiceStr[20];

 /* If the user wants the list refreshed, clear any existing list

 * so we can rebuilt it from scratch.

 */

 if (refreshList)

 {

 clearList(pSysList);

 pSysList = NULL;

 }

 /* If the list of system names is NULL (no list exists), build

 * the list of systems using Client Access APIs.

 */

 if (NULL == pSysList)

 {

 myRC = buildSysList(&pSysList);

 if (SUCCESS != myRC)

 {

 *pNumSelected = 0;

 printf("Failed to build sys list, cannot select a system.\n");

 }

 }

 if (SUCCESS == myRC)

 {

 printf("-- \n");

 printf("The list of systems configured is as follows:\n");

112 IBM Systems - iSeries: iSeries Access for Windows: Programming

printf("-- \n");

 for (sysNum = 1, pCur = pSysList;

 pCur != NULL;

 sysNum++, pCur = pCur->next)

 {

 printf(" %u) %s\n", sysNum, pCur->sysName);

 }

 numSystems = sysNum - 1;

 printf("Enter the number of the system of your choice:\n");

 gets(choiceStr);

 *pNumSelected = atoi(choiceStr);

 if (*pNumSelected > numSystems)

 {

 printf("Invalid selection, there are only %u systems configured.\n");

 *pNumSelected = 0;

 myRC = FAILURE;

 }

 }

 return myRC;

}

/**

 * Display a single attribute and its value, or a failing return code

 * if one occurred when trying to look it up.

 **/

void dspAttr(

 char* label,

 char* attrVal,

 UINT lookupRC,

 BOOL* pCanBeModified,

 UINT canBeModifiedRC)

{

 if (CWB_OK == lookupRC)

 {

 printf("%25s : %-30s ", label, attrVal);

 if (CWB_OK == canBeModifiedRC)

 {

 if (pCanBeModified != NULL)

 {

 printf("%s\n", cwbBoolStr[*pCanBeModified]);

 }

 else

 {

 printf("(N/A)\n");

 }

 }

 else

 {

 printf("(Error, rc=%u)\n", canBeModifiedRC);

 }

 }

 else

 {

 printf("%30s : (Error, rc=%u)\n", label, lookupRC);

 }

}

/**

 *

 * Load the host/version string into the buffer specified. The

Programming 113

* buffer passed in must be at least 7 bytes long! A pointer to

 * the buffer itself is passed back so that the output from this

 * function can be used directly as a parameter.

 *

 **/

char* hostVerModeDescr(

 ULONG ver,

 ULONG rel,

 char* verRelBuf)

{

 char* nextChar = verRelBuf;

 if (verRelBuf != NULL)

 {

 *nextChar++ = ’v’;

 if (ver < 10)

 {

 *nextChar++ = ’0’ + (char)ver;

 }

 else

 {

 *nextChar++ = ’?’;

 *nextChar++ = ’?’;

 }

 *nextChar++ = ’r’;

 if (rel < 10)

 {

 *nextChar++ = ’0’ + (char)rel;

 }

 else

 {

 *nextChar++ = ’?’;

 *nextChar++ = ’?’;

 }

 *nextChar = ’\0’;

 }

 return verRelBuf;

}

/**

 * Display all attributes of the system whose index in the passed list

 * is passed in.

 **/

void dspSysAttrs(

 SYSLISTNODE* pSysList,

 UINT sysNum)

{

 cwbCO_SysHandle hSys;

 UINT rc;

 char sysName[CWBCO_MAX_SYS_NAME + 1];

 char IPAddr[CWBCO_MAX_IP_ADDRESS + 1];

 ULONG bufLen, IPAddrLen;

 ULONG IPAddrBufLen;

 UINT apiRC, apiRC2;

 cwbCO_ValidateMode valMode;

 cwbCO_DefaultUserMode dfltUserMode;

 cwbCO_PromptMode promptMode;

 cwbCO_PortLookupMode portLookupMode;

 cwbCO_IPAddressLookupMode IPALMode;

 ULONG ver, rel;

 char verRelBuf[10];

 ULONG verRelBufLen;

114 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwb_Boolean isSecSoc;

 cwb_Boolean canModify;

 IPAddrBufLen = sizeof(IPAddr);

 verRelBufLen = sizeof(verRelBuf);

 rc = getSystemObject(sysNum, pSysList, &hSys);

 if (rc == FAILURE)

 {

 printf("Failed to get system object for selected system.\n");

 return;

 }

 printf("\n\n");

 printf("---\n");

 printf(" S y s t e m A t t r i b u t e s \n");

 printf("---\n");

 printf("\n");

 printf("%25s : %-30s %s\n", "Attribute", "Value", "Modifiable");

 printf("%25s : %-30s %s\n", "---------", "-----", "----------");

 printf("\n");

 apiRC = cwbCO_GetSystemName(hSys, sysName, &bufLen);

 dspAttr("System Name", sysName, apiRC, NULL, 0);

 apiRC = cwbCO_GetIPAddress(hSys, IPAddr, &IPAddrLen);

 dspAttr("IP Address", IPAddr, apiRC, NULL, 0);

 apiRC = cwbCO_GetHostVersionEx(hSys, &ver, &rel);

 dspAttr("Host Version/Release",

 hostVerModeDescr(ver, rel, verRelBuf), apiRC, NULL, 0);

 apiRC = cwbCO_IsSecureSockets(hSys, &isSecSoc);

 apiRC2 = cwbCO_CanModifyUseSecureSockets(hSys, &canModify);

 dspAttr("Secure Sockets In Use", cwbBoolStr[isSecSoc],

 apiRC, &canModify, apiRC2);

 apiRC = cwbCO_GetValidateMode(hSys, &valMode);

 canModify = CWB_TRUE;

 dspAttr("Validate Mode", valModeStr[valMode], apiRC,

 &canModify, 0);

 apiRC = cwbCO_GetDefaultUserMode(hSys, &dfltUserMode);

 apiRC2 = cwbCO_CanModifyDefaultUserMode(hSys, &canModify);

 dspAttr("Default User Mode", dfltUserModeStr[dfltUserMode], apiRC,

 &canModify, apiRC2);

 apiRC = cwbCO_GetPromptMode(hSys, &promptMode);

 canModify = CWB_TRUE;

 dspAttr("Prompt Mode", promptModeStr[promptMode], apiRC,

 &canModify, 0);

 apiRC = cwbCO_GetPortLookupMode(hSys, &prtLookupMode);

 apiRC2 = cwbCO_CanModifyPortLookupMode(hSys, &canModify);

 dspAttr("Port Lookup Mode", portLookupModeStr[portLookupMode], apiRC,

 &canModify, apiRC2);

 apiRC = cwbCO_GetIPAddressLookupMode(hSys, &IPALMode);

 apiRC2 = cwbCO_CanModifyIPAddressLookupMode(hSys, &canModify);

 dspAttr("IP Address Lookup Mode", IPALModeStr[IPALMode], apiRC,

 &canModify, apiRC2);

 printf("\n\n");

}

Programming 115

/**

 * Display connectability to all Client Access services that are

 * possible to connect to.

 **/

void dspConnectability(

 PSYSLISTNODE pSysList,

 UINT sysNum)

{

 UINT rc;

 UINT apiRC;

 cwbCO_Service service;

 cwbCO_SysHandle hSys;

 rc = getSystemObject(sysNum, pSysList, &hSys);

 if (rc == FAILURE)

 {

 printf("Failed to get system object for selected system.\n");

 }

 else

 {

 printf("\n\n");

 printf("---\n");

 printf(" S y s t e m S e r v i c e s S t a t u s \n");

 printf("---\n");

 for (service=(cwbCO_Service)1;

 service <= CWBCO_SERVICE_MGMT_CENTRAL;

 service++)

 {

 apiRC = cwbCO_Verify(hSys, service, 0); // 0=no err handle

 printf(" Service ’%s’: ", serviceStr[service]);

 if (apiRC == CWB_OK)

 {

 printf("CONNECTABLE\n");

 }

 else

 {

 printf("CONNECT TEST FAILED, rc = %u\n", apiRC);

 }

 }

 }

 printf("\n");

}

/**

 * MAIN PROGRAM BODY

 **/

void main(void)

{

 PSYSLISTNODE pSysList = NULL;

 UINT numSelected;

 UINT rc;

 char choiceStr[10];

 UINT choice;

 rc = buildSysList(&pSysList);

 if (SUCCESS != rc)

 {

 printf("Failure to build the system list, exiting.\n\n");

 exit(FAILURE);

 }

 do

 {

 printf("Select one of the following options:\n");

116 IBM Systems - iSeries: iSeries Access for Windows: Programming

printf(" (1) Display current system attributes\n");

 printf(" (2) Display service connectability for a system\n");

 printf(" (3) Refresh the list of systems\n");

 printf(" (9) Quit\n");

 gets(choiceStr);

 choice = atoi(choiceStr);

 switch (choice)

 {

 // ---- Display current system attributes ---------------

 case 1 :

 {

 rc = selectSystem(&numSelected, pSysList, FALSE);

 if (SUCCESS == rc)

 {

 dspSysAttrs(pSysList, numSelected);

 }

 break;

 }

 // ---- Display service connectability for a system -----

 case 2 :

 {

 rc = selectSystem(&numSelected, pSysList, FALSE);

 if (SUCCESS == rc)

 {

 dspConnectability(pSysList, numSelected);

 }

 break;

 }

 // ---- Refresh the list of systems ---------------------

 case 3 :

 {

 clearList(pSysList);

 pSysList = NULL;

 rc = buildSysList(&pSysList);

 break;

 }

 // ---- Quit --

 case 9 :

 {

 printf("Ending the program!\n");

 break;

 }

 default :

 {

 printf("Invalid choice. Please make a different selection.\n");

 }

 }

 } while (choice != 9);

 /* Cleanup the list, we’re done */

 clearList(pSysList);

 pSysList = NULL;

 printf("\nEnd of program.\n\n");

}

iSeries Access for Windows Data Queues APIs

Use iSeries Access for Windows Data Queues application programming interfaces (APIs) to provide easy

access to iSeries data queues. Data queues allow you to create client/server applications that do not

require the use of communications APIs.

Programming 117

iSeries Access for Windows Data Queues APIs required files:

 Header file Import library Dynamic Link Library

cwbdq.h cwbapi.lib cwbdq.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides Data Queues documentation, access to the cwbdq.h header file, and

links to sample programs. To access this information, open the Programmer’s Toolkit and select Data

Queues → C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

 Related reference

 “Data Queues APIs return codes” on page 23

 “iSeries system name formats for connection APIs” on page 5
APIs that take an iSeries system name as a parameter accept names in the following formats.

 “OEM, ANSI, and Unicode considerations” on page 6
Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three

forms: OEM, ANSI, or Unicode.

Data queues

A data queue is a system object that exists on the iSeries system.

Benefits of using data queues:

Data queues provide many benefits to PC developers and iSeries applications developers, including:

v They are a fast and efficient means of communication on the iSeries server.

v They have low system overhead and require very little setup.

v They are efficient because a single data queue can be used by a batch job to service several interactive

jobs.

v The contents of a data queue message are free-format (fields are not required), providing flexibility that

is not provided by other system objects.

v Access data queues through an iSeries API and through CL commands, which provides a

straight-forward means of developing client/server applications.

Ordering data queue messages

There are three ways to designate the order of messages on a data queue:

LIFO Last in, first out. The last message (newest) placed on the data queue will be the first message

taken off of the queue.

FIFO First in, first out. The first message (oldest) placed on the data queue will be the first message

taken off of the queue.

KEYED

Each message on the data queue has a key associated with it. A message can be taken off of the

queue only by requesting the key with which it is associated.

Work with data queues

You can work with data queues by using iSeries CL commands or callable programming interfaces.

Access to data queues is available to all iSeries applications regardless of the programming language in

which the application is written.

118 IBM Systems - iSeries: iSeries Access for Windows: Programming

Use the following iSeries system interfaces to work with data queues:

i5/OS™ commands:

CRTDTAQ

Creates a data queue and stores it in a specified library

DLTDTAQ

Deletes the specified data queue from the system

i5/OS application programming interfaces:

QSNDDTAQ

Send a message (record) to the specified data queue

QRCVDTAQ

Read a message (record) to the specified data queue

QCLRDTAQ

Clear all messages from the specified data queue

QMHQRDQD

Retrieve a data queue description

QMHRDQM

Retrieve an entry from a data queue without removing the entry

Typical use of data queues

A data queue is a powerful program-to-program interface. Programmers who are familiar with

programming on the iSeries servers are accustomed to using queues. Data queues simply represent a

method that is used to pass information to another program.

Because this interface does not require communications programming, use it either for synchronous or for

asynchronous (disconnected) processing.

Develop host applications and PC applications by using any supported language. For example, a host

application could use RPG while a PC application might use C++. The queue is there to obtain input

from one side and to pass input to the other.

The following example shows how data queues might be used:

v A PC user might take telephone orders all day, and key each order into a program, while the program

places each request on iSeries data queue.

v A partner program (either a PC program or an iSeries program) monitors the data queue and pulls

information from queue. This partner program could be simultaneously running, or started after peak

user hours.

v It may or may not return input to the initiating PC program, or it may place something on the queue

for another PC or iSeries program.

v Eventually the order is filled, the customer is billed, the inventory records are updated, and

information is placed on the queue for the PC application to direct a PC user to call the customer with

an expected ship date.

Objects

An application that uses the data queue function uses four objects. Each of these objects is identified to

the application through a handle. The objects are:

Queue object:

This object represents the iSeries data queue.

Programming 119

Attribute:

This object describes the iSeries data queue.

Data: Use these objects to write records to, and to read records from, the iSeries data queue.

Read object:

Use this object only with the asynchronous read APIs. It uniquely identifies a request to read a

record from the iSeries data queue. This handle is used on subsequent calls to check if the data

has been returned. See the cwbDQ_AsyncRead API for more information.

Data Queues: Create, delete, and open APIs

Use these APIs in conjunction with the cwbCO_SysHandle System Object handle.

cwbDQ_CreateEx:

Purpose

Create an iSeries data queue object. After the object is created it can be opened using the cwbDQ_OpenEx

API. It will have the attributes that you specify in the attributes handle.

Syntax

unsigned int CWB_ENTRY cwbDQ_CreateEx(

 cwbCO_SysHandle sysHandle,

 const char *queue,

 const char *library,

 cwbDQ_Attr queueAttributes,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle sysHandle - input

Handle to a system object

const char * queue - input

Pointer to the data queue name contained in an ASCIIZ string.

const char * library - input

Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current

library will be used (set library to ″*CURLIB″).

cwbDQ_Attr queueAttributes - input

Handle to the attributes for the data queue.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrTextAPI. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_COMMUNICATIONS_ERROR

A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND

iSeries application not found.

120 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_HOST_NOT_FOUND

iSeries system inactive or does not exist.

CWB_INVALID_POINTER

Bad or null pointer.

CWB_SECURITY_ERROR

A security error has occurred.

CWB_LICENSE_ERROR

A license error has occurred.

CWB_CONFIG_ERROR

A configuration error has occurred.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

CWBDQ_BAD_QUEUE_NAME

Queue name is incorrect.

CWBDQ_BAD_LIBRARY_NAME

Library name is incorrect.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR

Error in user exit program.

CWBDQ_USER_EXIT_ERROR

Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND

Library not found on system.

CWBDQ_NO_AUTHORITY

No authority to library.

CWBDQ_QUEUE_EXISTS

Queue already exists.

CWBDQ_QUEUE_SYNTAX

Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX

Library syntax is incorrect.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR

General API failure.

CWB_INVALID_HANDLE

Invalid system handle.

Usage

This function requires that you have previously issued the following APIs:

v cwbDQ_CreateSystem

v cwbDQ_CreateAttr

Programming 121

v cwbDQ_SetMaxRecLen

cwbDQ_DeleteEx:

Purpose

Remove all data from an iSeries data queue and delete the data queue object.

Syntax

unsigned int CWB_ENTRY cwbDQ_DeleteEx(

 cwbCO_SysHandle sysHandle

 const char *queue,

 const char *library,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle - input

Handle to a system object.

const char * queue - input

Pointer to the data queue name contained in an ASCIIZ string.

const char * library - input

Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current

library will be used (set library to ″*CURLIB″).

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_COMMUNICATIONS_ERROR

A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND

iSeries application not found.

CWB_HOST_NOT_FOUND

iSeries system inactive or does not exist.

CWB_INVALID_POINTER

Bad or null pointer.

CWB_SECURITY_ERROR

A security error has occurred.

CWB_LICENSE_ERROR

A license error has occurred.

CWB_CONFIG_ERROR

A configuration error has occurred.

CWBDQ_BAD_QUEUE_NAME

Queue name is too long.

122 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBDQ_BAD_LIBRARY_NAME

Library name is too long.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR

Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND

Library not found on system.

CWBDQ_QUEUE_NOT_FOUND

Queue not found on system.

CWBDQ_NO_AUTHORITY

No authority to queue.

CWBDQ_QUEUE_SYNTAX

Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX

Library syntax is incorrect.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR

General API failure.

CWB_INVALID_HANDLE

Invalid system handle.

Usage

This function requires that you previously have issued cwbCO_CreateSystem.

cwbDQ_OpenEx:

Purpose

Start a connection to the specified data queue. This will start a conversation with the iSeries system. If the

connection is not successful, a non-zero handle will be returned.

Syntax

unsigned int CWB_ENTRY cwbDQ_OpenEx(

 cwbCO_SysHandle sysHandle

 const char *queue,

 const char *library,

 cwbDQ_QueueHandle *queueHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle sysHandle - input

Handle to a system object.

const char * queue - input

Pointer to the data queue name contained in an ASCIIZ string.

Programming 123

const char * library - input

Pointer to the library name that is contained in an ASCIIZ string. If this pointer is NULL, the library

list will be used (set library to ″*LIBL″).

cwbDQ_QueueHandle * queueHandle - output

Pointer to a cwbDQ_QueueHandle where the handle will be returned. This handle should be used in

all subsequent calls.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_COMMUNICATIONS_ERROR

A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND

iSeries application not found.

CWB_HOST_NOT_FOUND

iSeries system inactive or does not exist.

CWB_COMM_VERSION_ERROR

Data Queues will not run with this version of communications.

CWB_INVALID_POINTER

Bad or null pointer.

CWB_SECURITY_ERROR

A security error has occurred.

CWB_LICENSE_ERROR

A license error has occurred.

CWB_CONFIG_ERROR

A configuration error has occurred.

CWBDQ_BAD_QUEUE_NAME

Queue name is too long.

CWBDQ_BAD_LIBRARY_NAME

Library name is too long.

CWBDQ_BAD_SYSTEM_NAME

System name is too long.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR

Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND

Library not found on system.

CWBDQ_QUEUE_NOT_FOUND

Queue not found on system.

124 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBDQ_NO_AUTHORITY

No authority to queue or library.

CWBDQ_DAMAGED_QUE

Queue is in unusable state.

CWBDQ_CANNOT_CONVERT

Data cannot be converted for this queue.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR

General API failure.

CWB_INVALID_HANDLE

Invalid system handle.

Usage

This function requires that you previously have issued cwbCO_CreateSystem.

Data Queues: Accessing data queues APIs

After the cwbDQ_Open API is used to create a connection to a specific data queue, these other APIs can

be used to utilize it. Use the cwbDQ_Close API when the connection no longer is needed.

cwbDQ_AsyncRead:

Purpose

Read a record from the iSeries data queue object that is identified by the specified handle. The

AsyncRead will return control to the caller immediately. This call is used in conjunction with the

CheckData API. When a record is read from a data queue, it is removed from the data queue. If the data

queue is empty for more than the specified wait time, the read is aborted, and the CheckData API returns

a value of CWBDQ_TIMED_OUT. You may specifying a wait time from 0 to 99,999 (in seconds) or

forever (-1). A wait time of zero causes the CheckData API to return a value of CWBDQ_TIMED_OUT on

its initial call if there is no data in the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_AsyncRead(

 cwbDQ_QueueHandle queueHandle,

 cwbDQ_Data data,

 signed long waitTime,

 cwbDQ_ReadHandle *readHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries

data queue object.

cwbDQ_Data data - input

The data object to be read from the iSeries data queue.

signed long waitTime - input

Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to

wait forever.

Programming 125

cwbDQ_ReadHandle * readHandle - output

Pointer to where the cwbDQ_ReadHandle will be written. This handle will be used in subsequent

calls to the cwbDQ_CheckData API.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_TIME

Invalid wait time.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

CWBDQ_INVALID_SEARCH

Invalid search order.

Usage

This function requires that you have previously issued the following APIs:

v cwbDQ_Open or cwbDQ_OpenEx

v cwbDQ_CreateData

cwbDQ_Cancel:

Purpose

Cancel a previously issued AsyncRead. This will end the read on the iSeries data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Cancel(

 cwbDQ_ReadHandle readHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbDQ_ReadHandle readHandle - input

The handle that was returned by the AsyncRead API.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

126 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBDQ_INVALID_READ_HANDLE

Invalid read handle.

Usage

This function requires that you have previously issued the following APIs:

v cwbDQ_Open or cwbDQ_OpenEx

v cwbDQ_CreateData

v cwbDQ_AsyncRead

cwbDQ_CheckData:

Purpose

Check if data was returned from a previously issued AsyncRead API. This API can be issued multiple

times for a single AsyncRead call. It will return 0 when the data actually has been returned.

Syntax

unsigned int CWB_ENTRY cwbDQ_CheckData(

 cwbDQ_ReadHandle readHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbDQ_ReadHandle readHandle - input

The handle that was returned by the AsyncRead API.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_READ_HANDLE

Invalid read handle.

CWBDQ_DATA_TRUNCATED

Data truncated.

CWBDQ_TIMED_OUT

Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED

Queue was destroyed.

CWBDQ_NO_DATA

No data.

CWBDQ_CANNOT_CONVERT

Unable to convert data.

Programming 127

Usage

This function requires that you have previously issued the following APIs:

v cwbDQ_Open or cwbDQ_OpenEx

v cwbDQ_CreateData

v cwbDQ_AsyncRead

If a time limit was specified on the AsyncRead, this API will return CWBDQ_NO_DATA until data is

returned (return code will be CWB_OK), or the time limit expires (return code will be

CWBDQ_TIMED_OUT).

cwbDQ_Clear:

Purpose

Remove all messages from the iSeries data queue object that is identified by the specified handle. If the

queue is keyed, messages for a particular key may be removed by specifying the key and key length.

These values should be set to NULL and zero, respectively, if you want to clear all messages from the

queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Clear(

 cwbDQ_QueueHandle queueHandle,

 unsigned char *key,

 unsigned short keyLength,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries

data queue object.

unsigned char * key - input

Pointer to the key. The key may contain embedded NULLs, so it is not an ASCIIZ string.

unsigned short keyLength - input

Length of the key in bytes.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

CWBDQ_BAD_KEY_LENGTH

Length of key is not correct.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

128 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

This function requires that you have previously issued:

v cwbDQ_Open or cwbDQ_OpenEx

cwbDQ_Close:

Purpose

End the connection with the iSeries data queue object that is identified by the specified handle. This will

end the conversation with the iSeries system.

Syntax

unsigned int CWB_ENTRY cwbDQ_Close(

 cwbDQ_QueueHandle queueHandle);

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open or cwbDQ_OpenEx function. This

identifies the iSeries data queue object.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

Usage

This function requires that you previously issued the following APIs:

v cwbDQ_Open or cwbDQ_OpenEx

cwbDQ_Create:

Purpose

Create an iSeries data queue object. After the object is created it can be opened using the cwbDQ_Open

API. It will have the attributes that you specify in the attributes handle.

Note: This API is obsolete. Use “cwbDQ_CreateEx” on page 120.

Syntax

unsigned int CWB_ENTRY cwbDQ_Create(

 char *queue,

 char *library,

 char *systemName,

 cwbDQ_Attr queueAttributes,

 cwbSV_ErrHandle errorHandle);

Parameters

char * queue - input

Pointer to the data queue name contained in an ASCIIZ string.

Programming 129

char * library - input

Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current

library will be used (set library to ″*CURLIB″).

char * systemName - input

Pointer to the system name contained in an ASCIIZ string.

cwbDQ_Attr queueAttributes - input

Handle to the attributes for the data queue.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages are retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_COMMUNICATIONS_ERROR

A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND

iSeries application not found.

CWB_HOST_NOT_FOUND

iSeries system inactive or does not exist.

CWB_INVALID_POINTER

Bad or null pointer.

CWB_SECURITY_ERROR

A security error has occurred.

CWB_LICENSE_ERROR

A license error has occurred.

CWB_CONFIG_ERROR

A configuration error has occurred.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

CWBDQ_BAD_QUEUE_NAME

Queue name is incorrect.

CWBDQ_BAD_LIBRARY_NAME

Library name is incorrect.

CWBDQ_BAD_SYSTEM_NAME

System name is incorrect.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR

Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND

Library not found on system.

130 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBDQ_NO_AUTHORITY

No authority to library.

CWBDQ_QUEUE_EXISTS

Queue already exists.

CWBDQ_QUEUE_SYNTAX

Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX

Library syntax is incorrect.

Usage

This function requires that you have previously issued the following APIs:

v cwbDQ_CreateAttr

v cwbDQ_SetMaxRecLen

cwbDQ_Delete:

Purpose

Remove all data from an iSeries data queue and delete the data queue object.

Note: This API is obsolete. Use “cwbDQ_DeleteEx” on page 122.

Syntax

unsigned int CWB_ENTRY cwbDQ_Delete(

 char *queue,

 char *library,

 char *systemName,

 cwbSV_ErrHandle errorHandle);

Parameters

char * queue - input

Pointer to the data queue name contained in an ASCIIZ string.

char * library - input

Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current

library will be used (set library to ″*CURLIB″).

char * systemName - input

Pointer to the system name contained in an ASCIIZ string.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_COMMUNICATIONS_ERROR

A communications error occurred.

Programming 131

CWB_SERVER_PROGRAM_NOT_FOUND

iSeries application not found.

CWB_HOST_NOT_FOUND

iSeries system inactive or does not exist.

CWB_INVALID_POINTER

Bad or null pointer.

CWB_SECURITY_ERROR

A security error has occurred.

CWB_LICENSE_ERROR

A license error has occurred.

CWB_CONFIG_ERROR

A configuration error has occurred.

CWBDQ_QUEUE_NAME

Queue name is too long.

CWBDQ_LIBRARY_NAME

Library name is too long.

CWBDQ_SYSTEM_NAME

System name is too long.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR

Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND

Library not found on system.

CWBDQ_QUEUE_NOT_FOUND

Queue not found on system.

CWBDQ_NO_AUTHORITY

No authority to queue.

CWBDQ_QUEUE_SYNTAX

Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX

Library syntax is incorrect.

Usage

None

cwbDQ_GetLibName:

Purpose

Retrieve the library name used with the cwbDQ_Open API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetLibName(

 cwbDQ_QueueHandle queueHandle,

 char *libName);

132 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries

data queue object.

char * libName - output

Pointer to a buffer where the library name will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

Usage

This function requires that you have previously issued cwbDQ_Open.

cwbDQ_GetQueueAttr:

Purpose

Retrieve the attributes of the iSeries data queue object that is identified by the specified handle. A handle

to the data queue attributes will be returned. The attributes then can be retrieved individually.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetQueueAttr(

 cwbDQ_QueueHandle queueHandle,

 cwbDQ_Attr queueAttributes,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries

data queue object.

cwbDQ_Attr queueAttributes - input/output

The attribute object. This was the output from the cwbDQ_CreateAttr call. The attributes will be filled

in by this function, and you should call the cwbDQ_DeleteAttr function to delete this object when

you have retrieved the attributes from it.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

Programming 133

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

Usage

This function requires that you have previously issued the following APIs:

v cwbDQ_Open or cwbDQ_OpenEx

v cwbDQ_CreateAttr

cwbDQ_GetQueueName:

Purpose

Retrieve the queue name used with the cwbDQ_Open API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetQueueName(

 cwbDQ_QueueHandle queueHandle,

 char *queueName);

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries

data queue object.

char * queueName - output

Pointer to a buffer where the queue name will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

Usage

This function requires that you have previously issued cwbDQ_Open.

cwbDQ_GetSysName:

Purpose

Retrieve the system name that is used with the cwbDQ_Open API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetSysName(

 cwbDQ_QueueHandle queueHandle,

 char *systemName);

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries

data queue object.

134 IBM Systems - iSeries: iSeries Access for Windows: Programming

char *systemName - output

Pointer to a buffer where the system name will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

Usage

This function requires that you previously have issued cwbDQ_Open or cwbDQ_OpenEx.

cwbDQ_Open:

Purpose

Start a connection to the specified data queue. This will start a conversation with the iSeries system. If the

connection is not successful, a non-zero handle will be returned.

Note: This API is obsolete. Use “cwbDQ_OpenEx” on page 123.

Syntax

unsigned int CWB_ENTRY cwbDQ_Open(

 char *queue,

 char *library,

 char *systemName,

 cwbDQ_QueueHandle *queueHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

char * queue - input

Pointer to the data queue name contained in an ASCIIZ string.

char * library - input

Pointer to the library name that is contained in an ASCIIZ string. If this pointer is NULL, the library

list will be used (set library to ″*LIBL″).

char * systemName - input

Pointer to the system name that is contained in an ASCIIZ string.

cwbDQ_QueueHandle * queueHandle - output

Pointer to a cwbDQ_QueueHandle where the handle will be returned. This handle should be used in

all subsequent calls.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

Programming 135

CWB_OK

Successful completion.

CWB_COMMUNICATIONS_ERROR

A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND

iSeries application not found.

CWB_HOST_NOT_FOUND

iSeries system inactive or does not exist.

CWB_COMM_VERSION_ERROR

Data Queues will not run with this version of communications.

CWB_INVALID_POINTER

Bad or null pointer.

CWB_SECURITY_ERROR

A security error has occurred.

CWB_LICENSE_ERROR

A license error has occurred.

CWB_CONFIG_ERROR

A configuration error has occurred.

CWBDQ_BAD_QUEUE_NAME

Queue name is too long.

CWBDQ_BAD_LIBRARY_NAME

Library name is too long.

CWBDQ_BAD_SYSTEM_NAME

System name is too long.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR

Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND

Library not found on system.

CWBDQ_QUEUE_NOT_FOUND

Queue not found on system.

CWBDQ_NO_AUTHORITY

No authority to queue or library.

CWBDQ_DAMAGED_QUE

Queue is in unusable state.

CWBDQ_CANNOT_CONVERT

Data cannot be converted for this queue.

Usage

None

cwbDQ_Peek:

136 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

Read a record from the iSeries data queue object that is identified by the specified handle. When a record

is peeked from a data queue, it remains in the data queue. You may wait for a record if the data queue is

empty by specifying a wait time from 0 to 99,999 or forever (-1). A wait time of zero will return

immediately if there is no data in the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Peek(

 cwbDQ_QueueHandle queueHandle,

 cwbDQ_Data data,

 signed long waitTime,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open API. This identifies the iSeries data

queue object.

cwbDQ_Data data - input

The data object to be read from the iSeries data queue.

signed long waitTime - input

Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to

wait forever.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_TIME

Invalid wait time.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

CWBDQ_INVALID_SEARCH

Invalid search order.

CWBDQ_DATA_TRUNCATED

Data truncated.

CWBDQ_TIMED_OUT

Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED

Queue was destroyed.

CWBDQ_CANNOT_CONVERT

Unable to convert data.

Programming 137

Usage

This function requires that you have previously issued cwbDQ_Open or cwbDQ_OpenEx and

cwbDQ_CreateData.

cwbDQ_Read:

Purpose

Read a record from the iSeries data queue object that is identified by the specified handle. When a record

is read from a data queue, it is removed from the data queue. You may wait for a record if the data

queue is empty by specifying a wait time from 0 to 99,999 or forever (-1). A wait time of zero will return

immediately if there is no data in the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Read(

 cwbDQ_QueueHandle queueHandle,

 cwbDQ_Data data,

 long waitTime,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries

data queue object.

cwbDQ_Data data - input

The data object to be read from the iSeries data queue.

long waitTime - input

Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to

wait forever.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_TIME

Invalid wait time.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

CWBDQ_INVALID_SEARCH

Invalid search order.

CWBDQ_DATA_TRUNCATED

Data truncated.

CWBDQ_TIMED_OUT

Wait time expired and no data returned.

138 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED

Queue was destroyed.

CWBDQ_CANNOT_CONVERT

Unable to convert data.

Usage

This function requires that you have previously issued cwbDQ_Open and cwbDQ_CreateData.

cwbDQ_Write:

Purpose

Write a record to the iSeries data queue object that is identified by the specified handle.

Syntax

unsigned int CWB_ENTRY cwbDQ_Write(

 cwbDQ_QueueHandle queueHandle,

 cwbDQ_Data data,

 cwb_Boolean commit,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open or cwbDQ_OpenEx functions. This

identifies the iSeries data queue object.

cwbDQ_Data data - input

The data object to be written to the iSeries data queue.

cwb_Boolean commit - input

This flag is no longer used and is ignored.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_BAD_DATA_LENGTH

Length of data is not correct.

CWBDQ_INVALID_MESSAGE_LENGTH

Invalid message length.

CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

Programming 139

CWBDQ_CANNOT_CONVERT

Unable to convert data.

Usage

This function requires that you previously have issued cwbDQ_Open or cwbDQ_OpenEx, and

cwbDQ_CreateData.

Data Queues: Attributes APIs

Use these APIs to declare attributes of a data queue. The attribute object is used when creating a data

queue or when obtaining the data queue attributes.

cwbDQ_CreateAttr:

Purpose

Create a data queue attribute object. The handle returned by this API can be used to set the specific

attributes you want for a data queue prior to using it as input for the cwbDQ_Create or

cwbDQ_CreateEx APIs. It also may be used to examine specific attributes of a data queue after using it as

input for the cwbDQ_GetQueueAttr API.

Syntax

cwbDQ_Attr CWB_ENTRY cwbDQ_CreateAttr(void);

Parameters

None

Return Codes

The following list shows common return values.

cwbDQ_Attr — A handle to a cwbDQ_Attr object.

Use this handle to obtain and set attributes. After creation, an attribute object will have the

default values of:

v Maximum Record Length - 1000

v Order - FIFO

v Authority - LIBCRTAUT

v Force to Storage - FALSE

v Sender ID - FALSE

v Key Length - 0

Usage

None

cwbDQ_DeleteAttr:

Purpose

Delete the data queue attributes.

Syntax

unsigned int CWB_ENTRY cwbDQ_DeleteAttr(

 cwbDQ_Attr queueAttributes);

140 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

cwbDQ_GetAuthority:

Purpose

Get the attribute for the authority that other users will have to the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetAuthority(

 cwbDQ_Attr queueAttributes,

 unsigned short *authority);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short * authority - output

Pointer to an unsigned short to where the authority will be written. This value will be one of the

following defined types:

v CWBDQ_ALL

v CWBDQ_EXCLUDE

v CWBDQ_CHANGE

v CWBDQ_USE

v CWBDQ_LIBCRTAUT

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Programming 141

Usage

None

cwbDQ_GetDesc:

Purpose

Get the attribute for the description of the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetDesc(

 cwbDQ_Attr queueAttributes,

 char *description);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

char * description - output

Pointer to a 51 character buffer where the description will be written. The description is an ASCIIZ

string.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

cwbDQ_GetForceToStorage:

Purpose

Get the attribute for whether records will be forced to auxiliary storage when they are enqueued.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetForceToStorage(

 cwbDQ_Attr queueAttributes,

 cwb_Boolean *forceToStorage);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean * forceToStorage - output

Pointer to a Boolean where the force-to-storage indicator will be written.

142 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

cwbDQ_GetKeySize:

Purpose

Get the attribute for the key size in bytes.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetKeySize(

 cwbDQ_Attr queueAttributes,

 unsigned short *keySize);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short * keySize - output

Pointer to an unsigned short where the key size will written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

cwbDQ_GetMaxRecLen:

Purpose

Get the maximum record length for the data queue.

Programming 143

Syntax

unsigned int CWB_ENTRY cwbDQ_GetMaxRecLen(

 cwbDQ_Attr queueAttributes,

 unsigned long *maxRecordLength);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a call to cwbDQ_CreateAttr.

unsigned long * maxRecordLength - output

Pointer to an unsigned long where the maximum record length will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

cwbDQ_GetOrder:

Purpose

Get the attribute for the queue order. If the order is CWBDQ_SEQ_LIFO, the last record written is the

first record read (Last In First Out). If the order is CWBDQ_SEQ_FIFO, the first record written is the first

record read (First In First Out). If the order is CWBDQ_SEQ_KEYED, the order in which records are read

from the data queue depends on the value of the search order attribute of the data object and the key

value specified for the cwbDQ_SetKey API. If multiple records contain the key that satisfies the search

order, a FIFO scheme is used among those records.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetOrder(

 cwbDQ_Attr queueAttributes,

 unsigned short *order);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short * order - output

Pointer to an unsigned short where the order will be written. Possible values are:

v CWBDQ_SEQ_LIFO

v CWBDQ_SEQ_FIFO

v CWBDQ_SEQ_KEYED

144 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

cwbDQ_GetSenderID:

Purpose

Get the attribute for whether information about the sender is kept with each record on the queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetSenderID(

 cwbDQ_Attr queueAttributes,

 cwb_Boolean *senderID);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes that are returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean * senderID - output

Pointer to a Boolean where the sender ID indicator will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

cwbDQ_SetAuthority:

Purpose

Set the attribute for the authority that other users will have to the data queue.

Programming 145

Syntax

unsigned int CWB_ENTRY cwbDQ_SetAuthority(

 cwbDQ_Attr queueAttributes,

 unsigned short authority);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short authority - input

Authority that other users on the iSeries system have to access the data queue. Use one of the

following defined types for authority:

v CWBDQ_ALL

v CWBDQ_EXCLUDE

v CWBDQ_CHANGE

v CWBDQ_USE

v CWBDQ_LIBCRTAUT

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

CWBDQ_INVALID_AUTHORITY

Invalid queue authority.

Usage

None

cwbDQ_SetDesc:

Purpose

Set the attribute for the description of the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetDesc(

 cwbDQ_Attr queueAttributes,

 char *description);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

char * description - input

Pointer to an ASCIIZ string that contains the description for the data queue. The maximum length for

the description is 50 characters.

146 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

CWBDQ_INVALID_QUEUE_TITLE

Queue title is too long.

Usage

None

cwbDQ_SetForceToStorage:

Purpose

Set the attribute for whether records will be forced to auxiliary storage when they are enqueued.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetForceToStorage(

 cwbDQ_Attr queueAttributes,

 cwb_Boolean forceToStorage);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean forceToStorage - input

Boolean indicator of whether each record is forced to auxiliary storage when it is enqueued.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

cwbDQ_SetKeySize:

Purpose

Set the attribute for the key size in bytes.

Programming 147

Syntax

unsigned int CWB_ENTRY cwbDQ_SetKeySize(

 cwbDQ_Attr queueAttributes,

 unsigned short keySize);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short keySize - input

Size in bytes of the key. This value should be zero if the order is LIFO or FIFO, and between 1 and

256 for KEYED.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_KEY_LENGTH

Invalid key length.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

cwbDQ_SetMaxRecLen:

Purpose

Set the maximum record length for the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetMaxRecLen(

 cwbDQ_Attr queueAttributes,

 unsigned long maxRecordLength);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned long maxLength - input

Maximum length for a data queue record. This value must be between 1 and 31744.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

148 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBDQ_INVALID_QUEUE_LENGTH

Invalid queue record length.

Usage

None

cwbDQ_SetOrder:

Purpose

Set the attribute for the queue order. If the order is CWBDQ_SEQ_LIFO, the last record written is the first

record read (Last In First Out). If the order is CWBDQ_SEQ_FIFO, the first record written is the first

record read (First In First Out). If the order is CWBDQ_SEQ_KEYED, the order in which records are read

from the data queue depends on the value of the search order attribute of the data object and the key

value specified for the cwbDQ_SetKey API. If multiple records contain the key that satisfies the search

order, a FIFO scheme is used among those records.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetOrder(

 cwbDQ_Attr queueAttributes,

 unsigned short order);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short order - input

Order in which new entries will be enqueued. Use one of the following defined types for order:

v CWBDQ_SEQ_LIFO

v CWBDQ_SEQ_FIFO

v CWBDQ_SEQ_KEYED

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

CWBDQ_INVALID_ORDER

Invalid queue order.

Usage

None

cwbDQ_SetSenderID:

Purpose

Set the attribute for whether information about the sender is kept with each record on the queue.

Programming 149

Syntax

unsigned int CWB_ENTRY cwbDQ_SetSenderID(

 cwbDQ_Attr queueAttributes,

 cwb_Boolean senderID);

Parameters

cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean senderID - input

Boolean indicator of whether information about the sender is kept with record on the queue.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE

Invalid attributes handle.

Usage

None

Data Queues: Read and write APIs

Use these APIs for writing to and reading from a data queue

cwbDQ_CreateData:

Purpose

Create the data object. This data object can be used for both reading and writing data to a data queue.

Syntax

cwbDQ_Data CWB_ENTRY cwbDQ_CreateData(void);

Parameters

None

Return Codes

The following list shows common return values.

cwbDQ_Data — A handle to the data object

After creation, a data object will have the default values of:

v data - NULL and length 0

v key - NULL and length 0

v sender ID info - NULL

v search order - NONE

v convert - FALSE

150 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

None

cwbDQ_DeleteData:

Purpose

Delete the data object.

Syntax

unsigned int CWB_ENTRY cwbDQ_DeleteData(

 cwbDQ_Data data);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_GetConvert:

Purpose

Get the value of the convert flag for a data handle. The convert flag determines if data sent to and

recieved from the host is CCSID converted (for example, between ASCII and EBCDIC).

Syntax

unsigned int CWB_ENTRY cwbDQ_GetConvert(

 cwbDQ_Data data,

 cwb_Boolean *convert);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

cwb_Boolean * convert - output

Pointer to a Boolean where the convert flag will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

Programming 151

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_GetData:

Purpose

Get the data attribute of the data object.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetData(

 cwbDQ_Data data,

 unsigned char *dataBuffer);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * data - output

Pointer to the data. The data may contain embedded NULLs, so it is not an ASCIIZ string.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_GetDataAddr:

Purpose

Get the address of the location of the data buffer.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetDataAddr(

 cwbDQ_Data data,

 unsigned char **dataBuffer);

152 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * * data - output

Pointer to where the buffer address will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

CWBDQ_ADDRESS_NOT_SET

Address not set with cwbDQ_SetDataAddr.

Usage

Use this function to retrieve the address of the location where the data is stored. The data address must

be set with the cwbDQ_SetDataAddr API, otherwise, the return code CWBDQ_ADDRESS_NOT_SET will

be returned.

cwbDQ_GetDataLen:

Purpose

Get the data length attribute of the data object. This is the total length of the data object. To obtain the

length of data that was read, use the cwbDQ_GetRetDataLen API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetDataLen(

 cwbDQ_Data data,

 unsigned long *dataLength);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned long * dataLength - output

Pointer to an unsigned long where the length of the data will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Programming 153

Usage

None

cwbDQ_GetKey:

Purpose

Get the key attribute of the data object, previously set by the cwbDQ_SetKey API. This is the key that is

used for writing data to a keyed data queue. Along with the search order, this key is also used to read

data from a keyed data queue. The key that is associated with the record retrieved can be obtained by

calling the cwbDQ_GetRetKey API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetKey(

 cwbDQ_Data data,

 unsigned char *key);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * key - output

Pointer to the key. The key may contain embedded NULLS, so it is not an ASCIIZ string.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_GetKeyLen:

Purpose

Get the key length attribute of the data object.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetKeyLen(

 cwbDQ_Data data,

 unsigned short *keyLength);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

154 IBM Systems - iSeries: iSeries Access for Windows: Programming

unsigned short * keyLength - output

Pointer to an unsigned short where the length of the key will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_GetRetDataLen:

Purpose

Get the length of data that was returned. The returned data length will be zero until a cwbDQ_Read or

cwbDQ_Peek API is called.Then it will have the length of the data that actually was returned.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetRetDataLen(

 cwbDQ_Data data,

 unsigned long *retDataLength);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned long * retDataLength - output

Pointer to an unsigned long where the length of the data returned will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_GetRetKey:

Programming 155

Purpose

Get the returned key of the data object. This is the key that is associated with the messages that are

retrieved from a keyed data queue. If the search order is a value other than CWBDQ_EQUAL, this key

may be different than the key that is used to retrieve the message.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetRetKey(

 cwbDQ_Data data,

 unsigned char *key);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * retKey - output

Pointer to the returned key. The key may contain embedded NULLs, so it is not an ASCIIZ string.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_GetRetKeyLen:

Purpose

Get the returned key length attribute of the data object. This is the length of the key that is returned by

the cwbDQ_GetKey API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetRetKeyLen(

 cwbDQ_Data data,

 unsigned short *retKeyLength);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned short * retKeyLength - output

Pointer to an unsigned short where the length of the key will be written.

Return Codes

The following list shows common return values.

156 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_GetSearchOrder:

Purpose

Get the search order of the open attributes. The search order is used when reading or peeking a keyed

data queue to identify the relationship between the key of the record to retrieve and the key value

specified on the cwbDQ_SetKey API. If the data queue order attribute is not CWBDQ_SEQ_KEYED, this

property is ignored.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetSearchOrder(

 cwbDQ_Data data,

 unsigned short *searchOrder);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned short * searchOrder - output

Pointer to an unsigned short where the order will be written. Possible values are:

v CWBDQ_NONE

v CWBDQ_EQUAL

v CWBDQ_NOT_EQUAL

v CWBDQ_GT_OR_EQUAL

v CWBDQ_GREATER

v CWBDQ_LT_OR_EQUAL

v CWBDQ_LESS

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Programming 157

Usage

None

cwbDQ_GetSenderInfo:

Purpose

Get the Sender Information attribute of the open attributes. This information only is available if the

senderID attribute of the Data Queue was set on creation.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetSenderInfo(

 cwbDQ_Data data,

 unsigned char *senderInfo);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * senderInfo - output

Pointer to a 36 character buffer where the sender information will be written. This buffer contains:

v Job Name (10 bytes)

v User Name (10 bytes)

v Job ID (6 bytes)

v User Profile (10 bytes)

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_SetConvert:

Purpose

Set the convert flag. If the flag is set, all data being written will be converted from PC CCSID (for

example, ASCII) to host CCSID (for example, EBCDIC), and all data being read will be converted from

host CCSID (for example, EBCDIC) to PC CCSID (for example, ASCII). Default behavior is no conversion

of data.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetConvert(

 cwbDQ_Data data,

 cwb_Boolean convert);

158 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

cwb_Boolean convert - input

Flag indicating if data written to and read from the queue will be CCSID converted.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

Usage

None

cwbDQ_SetData:

Purpose

Set the data and data length attributes of the data object. The default is to have no data with zero length.

This function will make a copy of the data.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetData(

 cwbDQ_Data data,

 unsigned char *dataBuffer,

 unsigned long dataLength);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * dataBuffer - input

Pointer to the data. The data may contain embedded NULLS, so it is not an ASCIIZ string.

unsigned long dataLength - input

Length of the data in bytes.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

CWBDQ_BAD_DATA_LENGTH

Length of data is not correct.

Programming 159

Usage

Use this function if you want to write a small amount of data or you do not want to manage the memory

for the data in your application. Data will be copied and this may affect your application’s performance.

cwbDQ_SetDataAddr:

Purpose

Set the data and data length attributes of the data object. The default is to have no data with zero length.

This function will not copy the data.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetDataAddr(

 cwbDQ_Data data,

 unsigned char *dataBuffer,

 unsigned long dataLength);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * dataBuffer - input

Pointer to the data. The data may contain embedded NULLS, so it is not an ASCIIZ string.

unsigned long dataLength - input

Length of the data in bytes.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

CWBDQ_BAD_DATA_LENGTH

Length of data is not correct.

Usage

This function is better for large amounts of data, or if you want to manage memory in your application.

Data will not be copied so performance will be improved.

cwbDQ_SetKey:

Purpose

Set the key and key length attributes of the data attributes. This is the key that is used for writing data to

a keyed data queue. In addition to the search order, this key is used to read data from a keyed data

queue. The default is to have no key with zero length; this is the correct value for a non-keyed (LIFO or

FIFO) data queue.

160 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY cwbDQ_SetKey(

 cwbDQ_Data data,

 unsigned char *key,

 unsigned short keyLength);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * key - input

Pointer to the key. The key may contain embedded NULLS, so it is not an ASCIIZ string.

unsigned short keyLength - input

Length of the key in bytes.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

CWBDQ_BAD_KEY_LENGTH

Length of key is not correct.

Usage

None

cwbDQ_SetSearchOrder:

Purpose

Set the search order of the open attributes. The default is no search order. If the cwbDQ_SetKey API is

called, the search order is changed to equal. Use this API to set it to something else. The search order is

used when reading or peeking a keyed data queue to identify the relationship between the key of the

record to retrieve and the key value specified on the cwbDQ_SetKey API. If the data queue order

attribute is not CWBDQ_SEQ_KEYED, this property is ignored.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetSearchOrder(

 cwbDQ_Data data,

 unsigned short searchOrder);

Parameters

cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned short searchOrder - input

Order to use when reading from a keyed queue. Possible values are:

v CWBDQ_NONE

v CWBDQ_EQUAL

v CWBDQ_NOT_EQUAL

Programming 161

v CWBDQ_GT_OR_EQUAL

v CWBDQ_GREATER

v CWBDQ_LT_OR_EQUAL

v CWBDQ_LESS

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBDQ_INVALID_DATA_HANDLE

Invalid data handle.

CWBDQ_INVALID_SEARCH

Invalid search order.

Usage

None

Example: Using Data Queues APIs

The following example illustrates using Data Queues APIs.

// Sample Data Queues application

#ifdef UNICODE

 #define _UNICODE

#endif

#include <windows.h>

// Include the necessary DQ Classes

#include <stdlib.h>

#include <iostream.h>

#include "cwbdq.h"

/**/

void main()

{

 cwbDQ_Attr queueAttributes;

 cwbDQ_QueueHandle queueHandle;

 cwbDQ_Data queueData;

 // Create an attribute object

 if ((queueAttributes = cwbDQ_CreateAttr()) == 0)

 return;

 // Set the maximum record length to 100

 if (cwbDQ_SetMaxRecLen(queueAttributes,

 100) != 0)

 return;

 // Set the order to First-In-First-Out

 if (cwbDQ_SetOrder(queueAttributes, CWBDQ_SEQ_FIFO) != 0)

 return;

 // Create the data queue DTAQ in library QGPL on system SYS1

 if (cwbDQ_Create(_TEXT("DTAQ"),

 _TEXT("QGPL"),

 _TEXT("SYSNAMEXXX"),

 queueAttributes,

162 IBM Systems - iSeries: iSeries Access for Windows: Programming

NULL) != 0)

 return;

 // Delete the attributes

 if (cwbDQ_DeleteAttr(queueAttributes) != 0)

 return;

 // Open the data queue

 if (cwbDQ_Open(_TEXT("DTAQ"),

 _TEXT("QGPL"),

 _TEXT("SYSNAMEXXX"),

 &queueHandle,

 NULL) != 0)

 return;

 // Create a data object

 if ((queueData = cwbDQ_CreateData()) == 0)

 return;

 // Set the data length and the data

 if (cwbDQ_SetData(queueData, (unsigned char*)"Test Data!", 10) != 0)

 return;

 // Write the data to the data queue

 if (cwbDQ_Write(queueHandle, queueData, CWB_TRUE, NULL) != 0)

 return;

 // Delete the data object

 if (cwbDQ_DeleteData(queueData) != 0)

 return;

 // Close the data queue

 if (cwbDQ_Close(queueHandle) != 0)

 return;

}

iSeries Access for Windows Data Transformation and National

Language Support (NLS) APIs

Use Data Transformation and National Language Support (NLS) APIs to enable your applications to

transform data.

iSeries Access for Windows data transformation APIs

iSeries Access for Windowsdata transformation application programming interfaces (APIs) enable your

client/server applications to transform numeric data between iSeries server and PC formats.

Transformation may be required when you send and receive numeric data to and from the iSeries server.

Data transformation APIs support transformation of many numeric formats.

iSeries Access for Windows data transformation APIs required files:

 Header file Import library Dynamic Link Library

cwbdt.h cwbapi.lib cwbdt.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides data transformation documentation, access to the cwbdt.h header file,

and links to sample programs. To access this information, open the Programmer’s Toolkit and select Data

Manipulation → C/C++ APIs.

Programming 163

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

 Related reference

 “iSeries system name formats for connection APIs” on page 5
APIs that take an iSeries system name as a parameter accept names in the following formats.

 “OEM, ANSI, and Unicode considerations” on page 6
Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three

forms: OEM, ANSI, or Unicode.

iSeries Access for Windows data transformation API list:

The following data transformation APIs are listed alphabetically.

 Note: iSeries Access for Windows data transformation APIs that accept strings are provided in Unicode

versions. In these APIs, ″ASCII″ is replaced by ″Wide″ (for example, cwbDT_ASCII11ToBin4 has a

Unicode version: cwbDT_Wide11ToBin4). These APIs are indicated in the table that follows. The

Unicode versions have different syntax, parameters and return values than their ASCII

counterparts.

cwbDT_ASCII11ToBin4:

Purpose

Translates (exactly) 11 ASCII numeric characters to a 4-byte integer stored most significant byte first. (The

source string is not expected to be zero-terminated.) This function can be used for translating ASCII

numeric data to the iSeries integer format.

Unicode version

cwbDT_Wide11ToBin4

Syntax

unsigned int CWB_ENTRY cwbDT_ASCII11ToBin4(

 char *target,

 char *source);

Parameters

char * target - output

Pointer to the target (4 byte integer).

char * source - input

Pointer to the source (11 byte ASCII).

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW

Overflow error.

other Offset of the first untranslated character plus one.

164 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

The target data will be stored with the Most Significant Byte first. This is the format that the iSeries

server uses and is the opposite of the format that is used by the Intel® x86 processors. Valid formats for

the ASCII source data are as follows:

v [blankspaces][sign][blankspaces][digits] or

v [sign][blankspaces][digits][blankspaces]

Examples:

 " + 123"

 "- 123 "

 " +123 "

 " 123"

 " -123"

 "+123 "

cwbDT_ASCII6ToBin2:

Purpose

Translates (exactly) 6 ASCII numeric characters to a 2-byte integer stored most significant byte first. (The

source string is not expected to be zero-terminated.) This function can be used for translating ASCII

numeric data to the iSeries integer format.

Unicode version

cwbDT_Wide6ToBin2

Syntax

unsigned int CWB_ENTRY cwbDT_ASCII6ToBin2(

 char *target,

 char *source);

Parameters

char * target - output

Pointer to the target (2 byte integer).

char * source - input

Pointer to the source (6 byte ASCII).

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW

Overflow error.

other Offset of the first untranslated character plus one.

Programming 165

Usage

The target data will be stored with the Most Significant Byte first. This is the format that the iSeries

server uses and is the opposite of the format that is used by Intel x86 processors. Valid formats for the

ASCII source data are as follows:

v [blankspaces][sign][blankspaces][digits] or

v [sign][blankspaces][digits][blankspaces]

Examples:

 " + 123"

 "- 123 "

 " +123 "

 " 123"

 " -123"

 "+123 "

cwbDT_ASCIIPackedToPacked:

Purpose

Translates data from ASCII packed format to packed decimal. This function can be used for translating

data from ASCII files to the iSeries system format.

Unicode version

None.

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIPackedToPacked(

 char *target,

 char *source,

 unsigned long length);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data.

unsigned long length - input

Number of bytes of source data to translate.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. This function

checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the

166 IBM Systems - iSeries: iSeries Access for Windows: Programming

last half-byte which contains the sign indicator (which can be 0x3 or 0xb).

cwbDT_ASCIIToHex:

Purpose

Translates data from ASCII (hex representation) to binary. One byte is stored in the target for each two

bytes in the source.

Unicode version

cwbDT_WideToHex

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIToHex(

 char *target,

 char *source,

 unsigned long length);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source (ASCII hex) data.

unsigned long length - input

Number of bytes of source data to translate/2.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage

For ’length’ bytes of source data ’length’/2 bytes of target data will be stored. The caller must make sure

that there is adequate space to hold the target information.

cwbDT_ASCIIToPacked:

Purpose

Translates ASCII numeric data to packed decimal format. This function can be used for translating ASCII

text data for use on the iSeries server.

Unicode version

cwbDT_WideToPacked

Programming 167

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIToPacked(

 char *target,

 char *source,

 unsigned long length,

 unsigned long decimalPosition);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data. Must be zero terminated.

unsigned long length - input

Number of bytes of target data to translate.

unsigned long decimalPosition - input

Position of the decimal point.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW

Overflow error.

CWB_NOT_ENOUGH_MEMORY

Unable to allocate temporary memory.

other Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. The sign half-byte

will be set to 0xd to indicate a negative number and hex 0xc to indicate a positive number. 0 <=

decimalPosition < (length * 2). Valid formats for the ASCII numeric data are as follows:

v [blankspaces][sign][blankspaces][digits] or

v [sign][blankspaces][digits][blankspaces] or

v [sign][digits][.digits][blankspaces] or

v [blankspaces][sign][digits][.digits][blankspaces]

Examples:

 " + 123\0"

 "- 123 \0"

 " +123 \0"

 " 123\0"

 " -12.3\0"

 "+1.23 \0"

cwbDT_ASCIIToZoned:

168 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

Translates ASCII numeric data to EBCDIC zoned decimal format. This function can be used for

translating ASCII text data for use on the iSeries server.

Unicode version

cwbDT_WideToZoned

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIToZoned(

 char *target,

 char *source,

 unsigned long length,

 unsigned long decimalPosition);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data. Must be zero terminated.

unsigned long length - input

Number of bytes of target data to translate.

unsigned long decimalPosition - input

Position of the decimal point.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW

Overflow error.

CWB_NOT_ENOUGH_MEMORY

Unable to allocate temporary memory.

other Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the information. The sign half-byte will be

set to 0xd to indicate a negative number and hex 0xc to indicate a positive number. 0 <= decimalPosition

<= length. Valid formats for the ASCII numeric data are as follows:

v [blankspaces][sign][blankspaces][digits] or

v [sign][blankspaces][digits][blankspaces] or

v [sign][digits][.digits][blankspaces] or

v [blankspaces][sign][digits][.digits][blankspaces]

Programming 169

Examples:

 " + 123\0"

 "- 123 \0"

 " +123 \0"

 " 123\0"

 " -12.3\0"

 "+1.23 \0"

cwbDT_ASCIIZonedToZoned:

Purpose

Translates data from ASCII zoned decimal format to EBCDIC zoned decimal. This function can be used

for translating data from ASCII files for use on the iSeries server.

Unicode version

None.

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIZonedToZoned(

 char *target,

 char *source,

 unsigned long length);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data.

unsigned long length - input

Number of bytes of source data to translate.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage

The left half of each byte (0x3) in the ASCII zoned decimal format will be converted to 0xf in the left

half-byte of the EBCDIC zoned data except for the last byte (sign). This function checks that the left half

of each byte in the ASCII zoned decimal data must be 0x3 except for the last byte. The high half of the

last byte must be 0x3 or 0xb. The right half of each byte in the ASCII zoned decimal data must be in the

range 0-9.

cwbDT_Bin2ToASCII6:

170 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

Translates a 2-byte integer stored most significant byte first to (exactly) 6 ASCII numeric characters. (The

target will not be zero terminated.) This function can be used for translating numeric data from an iSeries

server to ASCII.

Unicode version

cwbDT_Bin2ToWide6

Syntax

unsigned int CWB_ENTRY cwbDT_Bin2ToASCII6(

 char *target,

 char *source);

Parameters

char * target - output

Pointer to the target (6 byte) area.

char * source - input

Pointer to the source (2 byte integer).

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

Usage

The source data is assumed to be stored with the Most significant Byte first. This is the format that the

iSeries server uses and is the opposite of the format used by the Intel x86 processes.

cwbDT_Bin2ToBin2:

Purpose

Reverses the order of bytes in a 2-byte integer. This function can be used for translating a 2-byte integer

to or from the iSeries server format.

Unicode version

None.

Syntax

unsigned int CWB_ENTRY cwbDT_Bin2ToBin2(

 char *target,

 char *source);

Parameters

char * target - output

Pointer to the target (2 byte integer).

Programming 171

char * source - input

Pointer to the source (2 byte integer).

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

Usage

The source data and the target data must not overlap. The following example shows the result of the

translation:

v Source data: 0x1234

v Target data: 0x3412

cwbDT_Bin4ToASCII11:

Purpose

Translates a 4-byte integer stored most significant byte first to (exactly) 11 ASCII numeric characters. (The

target will not be zero terminated.) This function can be used for translating numeric data from an iSeries

server to ASCII.

Unicode version

cwbDT_Bin4ToWide11

Syntax

unsigned int CWB_ENTRY cwbDT_Bin4ToASCII11(

 char *target,

 char *source);

Parameters

char * target - output

Pointer to the target (11 byte) area.

char * source - input

Pointer to the source (4 byte integer).

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

Usage

The source data is assumed to be stored with the Most Significant Byte first. This is the format that the

iSeries server uses and is the opposite of the format used by the Intel x86 processors.

172 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbDT_Bin4ToBin4:

Purpose

Reverses the order of bytes in a 4-byte integer. This function can be used for translating a 4-byte integer

to or from the iSeries server format.

Unicode version

None.

Syntax

unsigned int CWB_ENTRY cwbDT_Bin4ToBin4(

 char *target,

 char *source);

Parameters

char * target - output

Pointer to the target (4 byte integer).

char * source - input

Pointer to the source (4 byte integer).

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

Usage

The source data and the target data must not overlap. The following example shows the result of the

translation:

v Source data: 0x12345678

v Target data: 0x78563412

cwbDT_EBCDICToEBCDIC:

Purpose

’Translates’ (copies unless character value less than 0x40 is encountered) EBCDIC data to EBCDIC.

Unicode version

None.

Syntax

unsigned int CWB_ENTRY cwbDT_EBCDICToEBCDIC(

 char *target,

 char *source,

 unsigned long length);

Programming 173

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data.

unsigned long length - input

Number of bytes of target data to translate.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information.

cwbDT_HexToASCII:

Purpose

Translates binary data to the ASCII hex representation. Two ASCII characters are stored in the target for

each byte of source data.

Unicode version

cwbDT_HexToWide

Syntax

unsigned int CWB_ENTRY cwbDT_HexToASCII(

 char *target,

 char *source,

 unsigned long length);

Parameters

char * target - output

Pointer to the target (ASCII hex) data.

char * source - input

Pointer to the source data.

unsigned long length - input

Number of bytes of source data to translate.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

174 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INVALID_POINTER

NULL pointer was passed by caller.

Usage

For ’length’ bytes of source data ’length’*2 bytes of target data will be stored. The caller must make sure

that there is adequate space to hold the target information.

cwbDT_PackedToASCII:

Purpose

Translates data from packed decimal format to ASCII numeric data. This function can be used for

translating data from the iSeries server for use in ASCII text format.

Unicode version

cwbDT_PackedToWide

Syntax

unsigned int CWB_ENTRY cwbDT_PackedToASCII(

 char *target,

 char *source,

 unsigned long length,

 unsigned long decimalPosition);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data.

unsigned long length - input

Number of bytes of source data to translate.

unsigned long decimalPosition - input

Position of the decimal point.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. This function

checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the

last half-byte which contains the sign indicator. 0 <= decimalPosition < (length * 2).

cwbDT_PackedToASCIIPacked:

Programming 175

Purpose

Translates data from packed decimal format to ASCII packed format. This function can be used for

translating data from the iSeries server for use in ASCII format.

Unicode version

None.

Syntax

unsigned int CWB_ENTRY cwbDT_PackedToASCIIPacked(

 char *target,

 char *source,

 unsigned long length);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data.

unsigned long length - input

Number of bytes of source data to translate.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. This function

checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the

last half-byte which contains the sign indicator (which can be 0-9, 0xd, or 0xb).

cwbDT_PackedToPacked:

Purpose

Translates packed decimal data to packed decimal. This function can be used for transferring data from

the iSeries system to no-conversion files and back.

Unicode version

None.

176 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY cwbDT_PackedToPacked(

 char *target,

 char *source,

 unsigned long length);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data.

unsigned long length - input

Number of bytes of source data to translate.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. This function

checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the

last half-byte which contains the sign indicator.

cwbDT_ZonedToASCII:

Purpose

Translates EBCDIC zoned decimal data to ASCII numeric format. This function can be used for

translating data from the iSeries server for use in ASCII text format.

Unicode version

cwbDT_ZonedToWide

Syntax

unsigned int CWB_ENTRY cwbDT_ZonedToASCII(

 char *target,

 char *source,

 unsigned long length,

 unsigned long decimalPosition);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data.

Programming 177

unsigned long length - input

Number of bytes of source data to translate.

unsigned long decimalPosition - input

Position of the decimal point.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW

Overflow error.

other Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. The high half of

the last byte of the zoned data indicates the sign of the number. If the high half-byte is 0xb or 0xd, then a

negative number is indicated. Any other value indicates a positive number. This function checks that the

high half of each byte of zoned data must be 0xf except for the last byte. The low half of each byte of

zoned data must be in the range 0-9. 0 <= decimalPosition < length.

cwbDT_ZonedToASCIIZoned:

Purpose

Translates data from EBCDIC zoned decimal format to ASCII zoned decimal format. This function can be

used for translating data from the iSeries server for use in ASCII files.

Unicode version

None.

Syntax

unsigned int CWB_ENTRY cwbDT_ZonedToASCIIZoned(

 char *target,

 char *source,

 unsigned long length);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data.

unsigned long length - input

Number of bytes of source data to translate.

Return Codes

The following list shows common return values.

178 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. The left half-byte

(0xf) in the EBCDIC zoned decimal data will be converted to 0x3 in the left half-byte of the ASCII zoned

decimal data except for the last byte (sign). The high half of the last byte of the EBCDIC zoned decimal

data indicates the sign of the number. If the high half-byte is 0xb or 0xb then a negative number is

indicated, any other value indicates a positive number. This function checks that the high half of each

byte of EBCDIC zoned decimal data must be 0xf except for the last byte. The low half of each byte of

EBCDIC zoned decimal data must be in the range 0-9.

cwbDT_ZonedToZoned:

Purpose

Translates data from zoned decimal format to zoned decimal. This function can be used for translating

data from the iSeries server for use in no-conversion files and vice-versa.

Unicode version

None.

Syntax

unsigned int CWB_ENTRY cwbDT_ZonedToZoned(

 char *target,

 char *source,

 unsigned long length);

Parameters

char * target - output

Pointer to the target data.

char * source - input

Pointer to the source data.

unsigned long length - input

Number of bytes of source data to translate.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWB_INVALID_POINTER

NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Programming 179

Usage

The caller must make sure that there is adequate space to hold the target information. The high half of

the last byte of the zoned data indicates the sign of the number. If the high half-byte is 0xb or 0xb then a

number is indicated, any other value indicates a positive number. This function checks that the high half

of each byte of zoned data must be 0xf except for the last byte. The low half of each byte of zoned data

must be in the range 0-9.

Example: Using data transformation APIs:

This example illustrates using data transformation APIs.

 /***/

/* Sample Data Transform Program using cwbDT_Bin4ToBin4 to reverse */

/* the order of bytes in a 4-byte integer. */

/***/

#include <iostream.h>

#include "cwbdt.h"

void main()

{

 unsigned int returnCode;

 long source,

 target;

 cout << "Enter source number:\n";

 while (cin >> source) {

 cout << "Source in Dec = " << dec << source;

 cout << "\nSource in Hex = " << hex << source << ’\n’;

 if (((returnCode = cwbDT_Bin4ToBin4((char *)&target,(char *)&source)) == CWB_OK)) {

 cout << "Target in Dec = " << dec << target;

 cout << "\nTarget in Hex = " << hex << target << ’\n’;

 } else {

 cout << "Conversion failed, Return code = " << returnCode << ’\n’ ;

 }; /* endif */

 cout << "\nEnter source number:\n";

 }; /* endwhile */

}

iSeries Access for Windows national language support (NLS) APIs

iSeries Access for Windows national language support APIs enable your applications to get and save

(query and change) the iSeries Access for Windows settings that are relevant to national language

support.

iSeries servers support many national languages, through national language support (NLS). NLS allows

users to work on an iSeries system in the language of their choice. The iSeries system also ensures that

the data that is sent to and received from the system appears in the form and order that is expected. By

supporting many different languages, the system operates as intended, from both a linguistic and a

cultural point of view.

All iSeries systems use a common set of program code, regardless of which language you use on the

system. For example, the program code on a U.S. English iSeries system and the program code on a

Spanish iSeries system are identical. Different sets of textual data are used, however, for different

languages. Textual data is a collective term for menus, displays, lists, prompts, options, Online help

information, and messages. This means that you see Help for the description of the function key for

180 IBM Systems - iSeries: iSeries Access for Windows: Programming

Online help information on a U.S. English system, while you see Ayuda on a Spanish system. Using the

same program code with different sets of textual data allows the iSeries system to support more than one

language on a single system.

You can add convenient functions into your iSeries Access for Windows applications, including the

capability to:

v Select from a list of installed national languages.

v Convert character data from one code page to another. This permits computers that use different code

pages, such as personal computers and the iSeries server, to share information.

v Automatically replace the translatable text (caption and control names) within dialog boxes. This

expands the size of the controls according to the text that is associated with them. The size of the

dialog-box frame also is adjusted automatically.

Note: It is essential to build national language support considerations into the design of the program

right from the start. It is much harder to add NLS or DBCS support after a program has been

designed or coded.

iSeries Access for Windows NLS APIs required files:

 NLS API type Header file Import library Dynamic Link Library

General cwbnl.h cwbapi.lib cwbnl.dll

Conversion cwbnlcnv.h cwbnl1.dll

Dialog-box cwbnldlg.h cwbnldlg.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides NLS documentation, access to the NLS APIs header files, and links to

sample programs. To access this information, open the Programmer’s Toolkit and select Data

Manipulation → C/C++ APIs.

 Related reference

 “iSeries system name formats for connection APIs” on page 5
APIs that take an iSeries system name as a parameter accept names in the following formats.

 “OEM, ANSI, and Unicode considerations” on page 6
Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three

forms: OEM, ANSI, or Unicode.

Coded character sets:

Graphic characters are printable or displayable symbols, such as letters, numbers, and punctuation marks.

A collection of graphic characters is called a graphic-character set, and often simply a character set.

 Each language requires its own graphic-character set to be printed or displayed properly. Characters are

encoded according to a code page, which is a table that assigns graphic and control characters to specific

values called code points.

Code pages are classified into many types according to the encoding scheme. Two important encoding

schemes for iSeries Access Family are the Host and PC code pages. Unicode also is becoming an

important encoding scheme. Unicode is a 16-bit worldwide character encoding scheme that is gaining

popularity on both the Host and the personal computer.

v Host code pages are encoded in accordance with IBM® Standard of Extended BCD Interchange Code

(EBCDIC) and usually used by S/390® and iSeries servers.

v PC Code pages are encoded based on ANSI X3.4, ASCII and usually used by IBM Personal Computers.

Programming 181

iSeries Access for Windows general NLS APIs list:

Find information about iSeries Access for Windows general NLS APIs.

 iSeries Access for Windows is translated into many languages. One or more of these languages can be

installed on the personal computer. The following iSeries Access for Windows general NLS APIs allow an

application to:

v Get a list of installed languages

v Get the current language setting

v Save the language setting

cwbNL_FindFirstLang:

Purpose

Returns the first available language.

Syntax

unsigned int CWB_ENTRY cwbNL_FindFirstLang(

 char *mriBasePath,

 char *resultPtr,

 unsigned short resultLen,

 unsigned short *requiredLen,

 unsigned long *searchHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

char * mriBasePath - input

Pointer to the mriBasePath, e.g. C:\Program Files\IBM\ClientAccess/400 If NULL, the mriBasePath

of the ClientAccess/400 product is used.

char * resultPtr - output

Pointer to the buffer to contain the result.

unsigned short resultLen - input

Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be

CWB_BUFFER_OVERFLOW.

unsigned long * searchHandle - output

Search handle to be passed on subsequent calls to cwbNL_FindNextLang.

cwbSV_ErrHandle errorHandle - input

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()

API The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to

zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

182 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_FILE_NOT_FOUND

File not found.

CWB_PATH_NOT_FOUND

Path not found.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

Usage

The result buffer will contain a language.

cwbNL_FindNextLang:

Purpose

Returns the next available language.

Syntax

unsigned int CWB_ENTRY cwbNL_FindNextLang(

 char *resultPtr,

 unsigned short resultLen,

 unsigned short *requiredLen,

 unsigned long *searchHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

char * resultPtr - output

Pointer to the buffer to contain the result.

unsigned short resultLen - input

Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be

CWB_BUFFER_OVERFLOW.

unsigned long * searchHandle - output

Search handle to be passed on subsequent calls to cwbNL_FindNextLang.

cwbSV_ErrHandle errorHandle - input

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()

API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to

zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

Programming 183

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NO_MORE_FILES

No more files are found.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

Usage

The result buffer will contain a language.

cwbNL_GetLang:

Purpose

Get the current language setting.

Syntax

unsigned int CWB_ENTRY cwbNL_GetLang(

 char *mriBasePath,

 char *resultPtr,

 unsigned short resultLen,

 unsigned short *requiredLen,

 cwbSV_ErrHandle errorHandle);

Parameters

char * mriBasePath - input

Pointer to the mriBasePath, e.g. C:\Program Files\IBM\ClientAccess/400. If NULL, the mriBasePath

of the ClientAccess/400 product is used.

char * resultPtr - output

Pointer to the buffer to contain the result.

unsigned short resultLen - input

Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be

CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()

API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to

zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

184 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_BUFFER_OVERFLOW

Buffer too small to contain result.

Usage

The result buffer will contain the name of the language subdirectory. This language subdirectory contains

the language-specific files. This language subdirectory name also can be passed to cwbNL_GetLangName.

cwbNL_GetLangName:

Purpose

Return the descriptive name of a language setting.

Syntax

unsigned int CWB_ENTRY cwbNL_GetLangName(

 char *lang,

 char *resultPtr,

 unsigned short resultLen,

 unsigned short *requiredLen,

 cwbSV_ErrHandle errorHandle);

Parameters

char * lang - input

Address of the ASCIIZ string representing the language.

char * resultPtr - output

Pointer to the buffer to contain the result.

unsigned short resultLen - input

Length of the result buffer. Recommended size is CWBNL_MAX_NAME_SIZE.

unsigned short * requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be

CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()

API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to

zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_INVALID_POINTER

NULL passed on output parameter.

Programming 185

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

Usage

The language must be a value returned from one of the following APIs:

v cwbNL_GetLang

v cwbNL_FindFirstLang

v cwbNL_FindNextLang

cwbNL_GetLangPath:

Purpose

Return the complete path for language files.

Syntax

unsigned int CWB_ENTRY cwbNL_GetLangPath(

 char *mriBasePath,

 char *resultPtr,

 unsigned short resultLen,

 unsigned short *requiredLen,

 cwbSV_ErrHandle errorHandle);

Parameters

char * mriBasePath - input

Pointer to the mriBasePath, for example C:\Program Files\IBM\ClientAccess/400. If NULL, the

mriBasePath of the ClientAccess/400 product is used.

char * resultPtr - output

Pointer to the buffer to contain the result.

unsigned short resultLen - input

Length of the result buffer. Recommended size is CWBNL_MAX_PATH_SIZE.

unsigned short * requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be

CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()

API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to

zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_INVALID_POINTER

NULL passed on output parameter.

186 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_PATH_NOT_FOUND

Path not found.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

Usage

The result buffer will contain the complete path of the language subdirectory. Language files should be

loaded from this path.

cwbNL_SaveLang:

Purpose

Save the language setting in the product registry.

Syntax

unsigned int CWB_ENTRY cwbNL_SaveLang(

 char *lang,

 cwbSV_ErrHandle errorHandle);

Parameters

char * lang - input

Address of the ASCIIZ string representing the language.

cwbSV_ErrHandle errorHandle - input

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()

API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to

zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Usage

The language must be a value returned from one of the following APIs:

v cwbNL_GetLang

v cwbNL_FindFirstLang

v cwbNL_FindNextLang

The following APIs are affected by this call:

v cwbNL_GetLang

v cwbNL_GetLangPath

Programming 187

iSeries Access for Windows conversion NLS APIs list:

This topic describes the iSeries Access for Windows conversion NLS APIs.

 The following iSeries Access for Windows conversion NLS APIs allow applications to:

v Convert character data from one code page to another

v Determine the current code page setting

v Determine the last CCSID setting

v Convert code page values to and from code character set identifiers (CCSID)

cwbNL_CCSIDToCodePage:

Purpose

Map CCSIDs to code pages.

Syntax

unsigned int CWB_ENTRY cwbNL_CCSIDToCodePage(

 unsigned long CCSID,

 unsigned long *codePage,

 cwbSV_ErrHandle errorHandle);

Parameters

unsigned long CCSID - input

CCSID to convert to a code page.

unsigned long * codePage - output

The resulting code page.

cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If the

parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Usage

None

cwbNL_CodePageToCCSID:

Purpose

Map code pages to CCSIDs.

188 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY cwbNL_CodePageToCCSID(

 unsigned long codePage,

 unsigned long *CCSID,

 cwbSV_ErrHandle errorHandle);

Parameters

unsigned long codePage - input

Code page to convert to a CCSID.

unsigned long * CCSID - output

The resulting CCSID.

cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If the

parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Usage

None

cwbNL_Convert:

Purpose

Convert strings by using a previously opened converter.

Syntax

unsigned int CWB_ENTRY cwbNL_Convert(

 cwbNL_Converter theConverter,

 unsigned long sourceLength,

 unsigned long targetLength,

 char *sourceBuffer,

 char *targetBuffer,

 unsigned long *numberOfErrors,

 unsigned long *firstErrorIndex,

 unsigned long *requiredLen,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbNL_Converter theConverter - output

Handle to the previously opened converter.

Programming 189

unsigned long sourceLength - input

Length of the source buffer.

unsigned long targetLength - input

Length of the target buffer. If converting from an ASCII code page that contains DBCS characters,

note that the resulting data could contain shift-out and shift-in bytes. Therefore, the targetBuffer may

need to be larger than the sourceBuffer.

char *sourceBuffer - input

Buffer containing the data to convert.

char *targetBuffer - output

Buffer to contain the converted data.

unsigned long *numberOfErrors - output

Contains the number of characters that could not be converted properly.

unsigned long *firstErrorIndex - output

Contains the offset of the first character in the source buffer that could not be converted properly.

unsigned long *requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be

CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If the

parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

Usage

None

cwbNL_ConvertCodePages:

Comments

cwbNL_ConvertCodePages is no longer supported. See cwbNL_ConvertCodePagesEx.

cwbNL_ConvertCodePagesEx:

Purpose

Convert strings from one code page to another. This API combines the following three converter APIs for

the default conversion:

190 IBM Systems - iSeries: iSeries Access for Windows: Programming

v cwbNL_CreateConverterEx

v cwbNL_Convert

v cwbNL_DeleteConverter

Syntax

unsigned int CWB_ENTRY cwbNL_ConvertCodePagesEx(

 unsigned long sourceCodePage,

 unsigned long targetCodePage,

 unsigned long sourceLength,

 unsigned long targetLength,

 char *sourceBuffer,

 char *targetBuffer,

 unsigned long *numberOfErrors,

 unsigned long *positionOfFirstError,

 unsigned long *requiredLen,

 cwbSV_ErrHandle errorHandle);

Parameters

unsigned long sourceCodePage - input

Code page of the data in the source buffer.

unsigned long targetCodePage - input

Code page to which the data should be converted.

unsigned long sourceLength - input.

Length of the source buffer

unsigned long targetLength - input.

Length of the target buffer

char *sourceBuffer - input

Buffer containing the data to convert.

char *targetBuffer - output

Buffer to contain the converted data.

unsigned long *numberOfErrors - output

Contains the number of characters that could not be converted properly.

unsigned long *positionOfFirstError - output

Contains the offset of the first character in the source buffer that could not be converted properly.

unsigned long *requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be

CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If the

parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

Programming 191

CWB_INVALID_POINTER

NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED

An error occurred while attempting to convert the characters. No conversion was done. The most

common reason is that a conversion table is missing. Conversion tables are either installed with

iSeries Access for Windows, or retrieved from the default iSeries system when needed. There may

have been some problem communicating with the default iSeries system.

CWBNL_ERR_CNV_ERR_STATUS

This return code is used to indicate that while the requested conversion is supported, and the

conversion completed, there were some characters that did not convert properly. Either the source

buffer contained null characters, or the characters do not exist in the target code page.

Applications can choose to ignore this return code or treat it as a warning.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Usage

The following values may be specified on the sourceCodePage and the targetCodePage parameters:

 Value Meaning

CWBNL_CP_UNICODE_F200 UCS2 Version 1.1 UNICODE

CWBNL_CP_UNICODE UCS2 Current® Version UNICODE

CWBNL_CP_AS400 iSeries server host code page

CWBNL_CP_CLIENT_OEM OEM client code page

CWBNL_CP_CLIENT_ANSI ANSI client code page

CWBNL_CP_CLIENT_UNICODE UNICODE client code page

CWBNL_CP_UTF8 UCS transformation form, 8–bit format

CWBNL_CP_CLIENT Generic client code page. Default is

CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is set to

CWBNL_CP_CLIENT_ANSI when CWB_ANSI is defined,

to CWBNL_CP_CLIENT_UNICODE when CWB_UNICODE

is defined and to CWBNL_CP_CLIENT_OEM when

CWB_OEM is defined.

CWBNL_CP_UTF16BE UTF-16 (Big-Endian)

CWBNL_CP_UTF16LE UTF-16 (Little-Endian)

CWBNL_CP_UTF16 CWBNL_CP_UTF16BE or CWBNL_CP_UTF16LE,

depending on the platform

CWBNL_CP_UTF32BE UTF-32 (Big-Endian)

CWBNL_CP_UTF32LE UTF-34 (Little-Endian)

CWBNL_CP_UTF32 CWBNL_CP_UTF32BE or CWBNL_CP_UTF32LE,

depending on the platform

cwbNL_CreateConverter:

Comments

cwbNL_CreateConverter is no longer supported. See cwbNL_CreateConverterEx.

Purpose

Create a cwbNL_Converter to be used on subsequent calls to cwbNL_Convert().

Syntax

unsigned int CWB_ENTRY cwbNL_CreateConverter(

 unsigned long sourceCodePage,

192 IBM Systems - iSeries: iSeries Access for Windows: Programming

unsigned long targetCodePage,

 cwbNL_Converter *theConverter,

 cwbSV_ErrHandle errorHandle,

 unsigned long shiftInShiftOutStatus,

 unsigned long padLength,

 char *pad);

Parameters

unsigned long sourceCodePage - input

Code page of the source data.

unsigned long targetCodePage - input

Code page to which the data should be converted.

cwbNL_Converter * theConverter - output

The newly created converter.

cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If the

parameter is set to zero, no messages will be retrievable.

unsigned long shiftInShiftOutStatus - input

Indicates whether the shift-in and shift-out bytes are part of the input or output data. 0 - False, no

shift-in and shift-out bytes are part of the data string. 1 - True, shift-in and shift-out characters are

part of the data string.

unsigned long padLength - input

Length of pad characters. 0 - No pad characters for this conversion request 1 - 1 byte of pad

character. This is valid only if the target code page is either SBCS or DBCS code page 2 - 2 bytes of

pad characters. This is valid only if the code page is not a single-byte code page.

char * pad - input

The character or characters for padding.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED

An error occurred while attempting to convert the characters. No conversion was done. The most

common reason is that a conversion table is missing. Conversion tables are either installed with

iSeries Access for Windows, or retrieved from the default iSeries system when needed. There may

have been some problem communicating with the default iSeries system.

CWBNL_ERR_CNV_ERR_STATUS

This return code is used to indicate that while the requested conversion is supported, and the

conversion completed, there were some characters that did not convert properly. Either the source

buffer contained null characters, or the characters do not exist in the target code page.

Applications can choose to ignore this return code or treat it as a warning.

CWBNL_ERR_CNV_INVALID_SISO_STATUS

Invalid SISO parameter.

Programming 193

CWBNL_ERR_CNV_INVALID_PAD_LENGTH

Invalid Pad Length parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Usage

The following values may be specified on the sourceCodePage and the targetCodePage parameters:

 Value Meaning

CWBNL_CP_UNICODE_F200 UCS2 Version 1.1 UNICODE

CWBNL_CP_UNICODE UCS2 Current Version UNICODE

CWBNL_CP_AS400 AS/400 host code page

CWBNL_CP_CLIENT_OEM OEM client code page

CWBNL_CP_CLIENT_ANSI ANSI client code page

CWBNL_CP_CLIENT_UNICODE UNICODE client code page

CWBNL_CP_UTF8 UCS transformation form, 8–bit format

CWBNL_CP_CLIENT Generic client code page. Default is

CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is set to

CWBNL_CP_CLIENT_ANSI when CWB_ANSI is defined, to

CWBNL_CP_CLIENT_UNICODE when CWB_UNICODE is

defined and to CWBNL_CP_CLIENT_OEM when CWB_OEM

is defined.

CWBNL_CP_UTF16BE UTF-16 (Big-Endian)

CWBNL_CP_UTF16LE UTF-16 (Little-Endian)

CWBNL_CP_UTF16 CWBNL_CP_UTF16BE or CWBNL_CP_UTF16LE, depending

on the platform

CWBNL_CP_UTF32BE UTF-32 (Big-Endian)

CWBNL_CP_UTF32LE UTF-34 (Little-Endian)

CWBNL_CP_UTF32 CWBNL_CP_UTF32BE or CWBNL_CP_UTF32LE, depending

on the platform

Instead of calling cwbNL_ConvertCodePagesEx multiple times with the same code pages:

v cwbNL_ConvertCodePagesEx(850, 500, ...);

v cwbNL_ConvertCodePagesEx(850, 500, ...);

v cwbNL_ConvertCodePagesEx(850, 500, ...);

It is more efficient to create a converter and use it multiple times:

v cwbNL_CreateConverter(850, 500, &conv, ...);

v cwbNL_Convert(conv, ...);

v cwbNL_Convert(conv, ...);

v cwbNL_Convert(conv, ...);

v cwbNL_DeleteConverter(conv, ...);

cwbNL_CreateConverterEx:

Purpose

Create a cwbNL_Converter to be used on subsequent calls to cwbNL_Convert().

Syntax

unsigned int CWB_ENTRY cwbNL_CreateConverterEx(

 unsigned long sourceCodePage,

 unsigned long targetCodePage,

194 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbNL_Converter *theConverter,

 cwbSV_ErrHandle errorHandle,

 unsigned long shiftInShiftOutStatus,

 unsigned long padLength,

 char *pad);

Parameters

unsigned long sourceCodePage - input

Code page of the source data.

unsigned long targetCodePage - input

Code page to which the data should be converted.

cwbNL_Converter * theConverter - output

The newly created converter.

cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If the

parameter is set to zero, no messages will be retrievable.

unsigned long shiftInShiftOutStatus - input

Indicates whether the shift-in and shift-out bytes are part of the input or output data. 0 - False, no

shift-in and shift-out bytes are part of the data string. 1 - True, shift-in and shift-out characters are

part of the data string.

unsigned long padLength - input

Length of pad characters. 0 - No pad characters for this conversion request 1 - 1 byte of pad

character. This is valid only if the target code page is either SBCS or DBCS code page 2 - 2 bytes of

pad characters. This is valid only if the code page is not a single-byte code page.

char * pad - input

The character or characters for padding.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED

An error occurred while attempting to convert the characters. No conversion was done. The most

common reason is that a conversion table is missing. Conversion tables are either installed with

@@xe1s@@, or retrieved from the default iSeries system when needed. There may have been some

problem communicating with the default iSeries system.

CWBNL_ERR_CNV_ERR_STATUS

This return code is used to indicate that while the requested conversion is supported, and the

conversion completed, there were some characters that did not convert properly. Either the source

buffer contained null characters, or the characters do not exist in the target code page.

Applications can choose to ignore this return code or treat it as a warning.

CWBNL_ERR_CNV_INVALID_SISO_STATUS

Invalid SISO parameter.

Programming 195

CWBNL_ERR_CNV_INVALID_PAD_LENGTH

Invalid Pad Length parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Usage

The following values may be specified on the sourceCodePage and the targetCodePage parameters:

 Value Meaning

CWBNL_CP_UNICODE_F200 UCS2 Version 1.1 UNICODE

CWBNL_CP_UNICODE UCS2 Current Version UNICODE

CWBNL_CP_AS400 AS/400 host code page

CWBNL_CP_CLIENT_OEM OEM client code page

CWBNL_CP_CLIENT_ANSI ANSI client code page

CWBNL_CP_CLIENT_UNICODE UNICODE client code page

CWBNL_CP_UTF8 UCS transformation form, 8–bit format

CWBNL_CP_CLIENT Generic client code page. Default is

CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is set to

CWBNL_CP_CLIENT_ANSI when CWB_ANSI is defined, to

CWBNL_CP_CLIENT_UNICODE when CWB_UNICODE is

defined and to CWBNL_CP_CLIENT_OEM when CWB_OEM

is defined.

CWBNL_CP_UTF16BE UTF-16 (Big-Endian)

CWBNL_CP_UTF16LE UTF-16 (Little-Endian)

CWBNL_CP_UTF16 CWBNL_CP_UTF16BE or CWBNL_CP_UTF16LE, depending

on the platform

CWBNL_CP_UTF32BE UTF-32 (Big-Endian)

CWBNL_CP_UTF32LE UTF-34 (Little-Endian)

CWBNL_CP_UTF32 CWBNL_CP_UTF32BE or CWBNL_CP_UTF32LE, depending

on the platform

Instead of calling cwbNL_ConvertCodePagesEx multiple times with the same code pages:

v cwbNL_ConvertCodePagesEx(850, 500, ...);

v cwbNL_ConvertCodePagesEx(850, 500, ...);

v cwbNL_ConvertCodePagesEx(850, 500, ...);

It is more efficient to create a converter and use it multiple times:

v cwbNL_CreateConverterEx(850, 500, &conv, ...);

v cwbNL_Convert(conv, ...);

v cwbNL_Convert(conv, ...);

v cwbNL_Convert(conv, ...);

v cwbNL_DeleteConverter(conv, ...);

cwbNL_DeleteConverter:

Purpose

Delete a cwbNL_Converter.

Syntax

unsigned int CWB_ENTRY cwbNL_DeleteConverter(

 cwbNL_Converter theConverter,

 cwbSV_ErrHandle errorHandle);

196 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbNL_Converter theConverter - input

A previously created converter.

cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle0 API. The messages may be retrieved with the cwbSV_GetErrText API. If the

parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Invalid handle.

Usage

None

cwbNL_GetCodePage:

Purpose

Get the current code page of the client system.

Syntax

unsigned int CWB_ENTRY cwbNL_GetCodePage(

 unsigned long *codePage,

 cwbSV_ErrHandle errorHandle);

Parameters

unsigned long * codePage - output

Returns the current code page of the client system or the OEM code page character conversion

override value, if one is specified on the Language tab of the iSeries Access Family Properties dialog.

cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If the

parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_INVALID_POINTER

NULL passed on output parameter.

Programming 197

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Usage

None

cwbNL_GetANSICodePage:

Purpose

Get the current ANSI code page of the client system.

Syntax

unsigned int CWB_ENTRY cwbNL_GetANSICodePage(

 unsigned long *codePage,

 cwbSV_ErrHandle errorHandle);

Parameters

unsigned long * codePage - output

Returns the current ANSI code page of the client system or the ANSI code page character conversion

override value, if one is specified on the Language tab of the iSeries Access Family Properties dialog.

cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If the

parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Usage

None

cwbNL_GetHostCCSID:

Purpose

Returns the associated CCSID of a given host system or the managing system or the EBCDIC code page

character conversion override value, if one is specified on the Language tab of the iSeries Access Family

Properties dialog.

198 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned long CWB_ENTRY cwbNL_GetHostCCSID(

 char * system,

 unsigned long * CCSID);

Parameters

char * system - input

The name of the host system. If NULL, the managing system is used.

unsigned * CCSID - output

Length of the result buffer.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWBNL_DEFAULT_HOST_CCSID_USED

Host CCSID 500 is returned

Usage

This API does not make or require an active connection to the host system to retrieve the associated

CCSID value. However, it does depend on a prior successful connection to the host system. If no prior

successful connection was made to the host system, the API determines the most appropriate associated

host CCSID by using an internal mapping table.

iSeries Access for Windows dialog-box NLS API list:

iSeries Access for Windows dialog-box NLS APIs are interfaces that are used to manipulate the

translatable text within dialog boxes.

 The following iSeries Access for Windows dialog-box NLS APIs allow applications to:

v Replace translatable text with a dialog box

v Expand dialog-box controls according to the text

Usage notes

This module works ONLY on the following kinds of dialog-box controls:

v Static text

v Button

v Group box

v Edit box

v Check box

v Radio button

It does NOT work on complex controls such as Combo box.

cwbNL_CalcControlGrowthXY:

Programming 199

Purpose

Routine to calculate the growth factor of an individual control within a dialog box.

Syntax

unsigned int CWB_ENTRY cwbNL_CalcControlGrowthXY(

 HWND windowHandle,

 HDC hDC,

 float* growthFactorX,

 float* growthFactorY);

Parameters

HWND windowHandle - input

Window handle of the control for which to calculate the growth factor.

HDC hDC - input

Device context. Used by GetTextExtentPoint32 to determine extent needed for the translated string in

the control.

float* growthFactorX - output

+/- growth to the width needed to contain the string for the control.

float* growthFactorY - output

+/- growth to the height needed to contain the string for the control.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion

Usage

It is assumed that the translated text has been loaded into the control prior to calling this function. A

control that does not contain text will return a 1.00 growth factor. This means that it does not need to

change size.

cwbNL_CalcDialogGrowthXY:

Purpose

Routine to calculate the growth factor of a dialog box. All of the controls within the dialog box will

looked at to determine how much the dialog-box size needs to be adjusted.

Syntax

unsigned int CWB_ENTRY cwbNL_CalcDialogGrowthXY(

 HWND windowHandle,

 float* growthFactorX,

 float* growthFactorY);

Parameters

HWND windowHandle - input

Window handle of the dialog box for which to calculate the growth factor.

float* growthFactorX - output

+/- growth to the width needed to contain the string for all of the controls in the dialog box.

200 IBM Systems - iSeries: iSeries Access for Windows: Programming

float* growthFactorY - output

+/- growth to the height needed to contain the string for all of the controls in the dialog box.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion

Usage

It is assumed that the translated text has been loaded into the controls prior to calling this function.

cwbNL_GrowControlXY:

Purpose

Routine to grow an individual control within a dialog box.

Syntax

unsigned int CWB_ENTRY cwbNL_GrowControlXY(

 HWND windowHandle,

 HWND parentWindowHandle,

 float growthFactorX,

 float growthFactorY,

 cwb_Boolean growAllControls);

Parameters

HWND windowHandle - input

Window handle of the control to be resized.

HWND parentWindowHandle - input

Window handle of the dialog box that contains the controls.

float growthFactorX - input

Multiplication factor for growing the width of the control. 1.00 = Stay same size. 1.50 = 1 1/2 times

original size.

float growthFactorY - input

Multiplication factor for growing the height of the control. 1.00 = Stay same size. 1.50 = 1 1/2 times

original size.

cwb_Boolean growAllControls - input

CWB_TRUE = All controls will be resized by the growthFactor. CWB_FALSE = Only controls with

text will be resized.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion

Usage

Care should be used to not pass in a growth factor that will cause a control to not fit on the physical

display.

Programming 201

cwbNL_GrowDialogXY:

Purpose

Internal routine to growth the dialog box and its controls proportionally based off of a growth factor that

is input.

Syntax

unsigned int CWB_ENTRY cwbNL_GrowDialogXY(

 HWND windowHandle,

 float growthFactorX,

 float growthFactorY,

 cwb_Boolean growAllControls);

Parameters

HWND windowHandle - input

Window handle of the window owning the controls.

float growthFactorX - input

Multiplication factor for growing the dialog box, ie. 1.00 = Stay same size, 1.50 = 1 1/2 times original

size.

float growthFactorY - input

Multiplication factor for growing the dialog box, ie. 1.00 = Stay same size, 1.50 = 1 1/2 times original

size.

cwb_Boolean growAllControls - input

CWB_TRUE = All controls will be resized by the growthFactor, CWB_FALSE = Only controls with

text will be resized.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

Usage

It is assumed that the translated text has been loaded into the controls prior to calling this function. The

dialog-box frame will not be allowed to grow larger than the desktop window size.

cwbNL_LoadDialogStrings:

Purpose

This routine will control the replacement of translatable text within a dialog box. This includes dialog

control text as well as the dialog-box caption.

Syntax

unsigned int CWB_ENTRY cwbNL_LoadDialogStrings(

 HINSTANCE MRIHandle,

 HWND windowHandle,

 int nCaptionID,

 USHORT menuID,

 HINSTANCE menuLibHandle,

 cwb_Boolean growAllControls);

202 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

HINSTANCE MRIHandle - input

Handle of the module containing the strings for the dialog.

HWND windowHandle - input

Window handle of the dialog box.

int nCaptionID - input

ID of the caption string for the dialog box

USHORT menuID - input

ID of the menu for the dialog box.

HINSTANCE menuLibHandle - input

Handle of the module containing the menu for the dialog.

cwb_Boolean growAllControls - input

CWB_TRUE = All controls will be resized by the growthFactor CWB_FALSE = Only controls with text

will be resized.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion.

CWBNL_DLG_MENU_LOAD_ERROR

Could not load the menu.

CWBNL_DLG_INVALID_HANDLE

Incorrect MRIHandle.

Usage

This process begins by enumerating, replacing the text of, and horizontally adjusting, all dialog controls

within the dialog box, and finally right-adjusting the dialog box itself, relative to the adjusted controls

therein. These adjustments are made only if the current window extents do not fully encompass the

expansion space required for the text or all controls. After all of the text substitution has been completed,

if a menu ID has been passed, it will be loaded and attached to the dialog box. It is suggested that this

routine is called for every dialog-box procedure as the first thing done during the INITDLG message

processing.

cwbNL_LoadMenu:

Purpose

This routine will control the loading of the given menu from a module and replacing the translatable text

within the menu.

Syntax

HWND CWB_ENTRY cwbNL_LoadMenu(

 HWND windowHandle,

 HINSTANCE menuResourceHandle,

 USHORT menuID,

 HINSTANCE MRIHandle);

Parameters

HWND windowHandle - input

Window handle of the dialog box that contains the menu.

Programming 203

HINSTANCE menuResourceHandle - input

Handle of the resource dll containing the menu.

USHORT menuID - input

ID of the menu for the dialog box.

HINSTANCE MRIHandle - input

Handle of the resource dll containing the strings for the menu.

Return Codes

The following list shows common return values.

HINSTANCE

Handle of the menu.

Usage

None

cwbNL_LoadMenuStrings:

Purpose

This routine will control the replacement of translatable text within a menu.

Syntax

unsigned int CWB_ENTRY cwbNL_LoadMenuStrings(

 HWND WindowHandle,

 HINSTANCE menuHandle,

 HINSTANCE MRIHandle);

Parameters

HWND windowHandle - input

Window handle of the dialog box that contains the menu.

HMODULE menuHandle - input

Handle of the menu for the dialog.

HMODULE MRIHandle - input

Handle of the resource DLL containing the strings for the menu.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion

Usage

None

cwbNL_SizeDialog:

Purpose

This routine will control the sizing of the dialog box and its child controls. The expansion amount is

based off of the length of the text extent and the length of each control. The growth of the dialog box and

its controls will be proportional. By setting the growAllControls to FALSE, only controls with text will

204 IBM Systems - iSeries: iSeries Access for Windows: Programming

expand or contract. This allows the programmer the flexibility of non-translatable fields to remain the

same size. This may be appropriate for dialogs that contain drop-down lists, combo-boxes, or spin

buttons.

Syntax

unsigned int CWB_ENTRY cwbNL_SizeDialog(

 HWND windowHandle,

 cwb_Boolean growAllControls);

Parameters

HWND windowHandle - input

Window handle of the window owning the controls.

cwb_Boolean growAllControls - input

CWB_TRUE = All controls will be resized by the growthFactor, CWB_FALSE = Only controls with

text will be resized.

Return Codes

The following list shows common return values.

CWB_OK

Successful Completion

Usage

This routine assumes that the translated text has already been loaded into the dialog-box controls. If the

text has not been loaded into the controls, use cwbNL_LoadDialog.

Example: iSeries Access for Windows NLS APIs:

This example illustrates using iSeries Access for Windows NLS APIs.

/* National Language Support Code Snippet */

/* Used to demonstrate how the APIs would be run. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "CWBNL.H"

#include "CWBNLCNV.H"

#include "CWBSV.H"

cwbSV_ErrHandle errhandle;

/* Return the message text associated with the top-level */

/* error identified by the error handle provided. Since */

/* all APIs that fail use the error handle, this was moved */

/* into a separate routine. */

void resolveErr(cwbSV_ErrHandle errhandle)

{

 static unsigned char buf[BUFSIZ];

 unsigned long retlen;

 unsigned int rc;

 if ((rc = cwbSV_GetErrText(errhandle, buf, (unsigned long) BUFSIZ, &retlen)) != CWB_OK)

 printf("cwbSV_GetErrText() Service API failed with return code 0x%x.\n", rc);

 else

 printf("%s\n", (char *) buf);

}

Programming 205

void main(void){

 /* define some variables

 -------------------- */

 int SVrc = 0;

 int NLrc = 0;

 char *myloadpath = "";

 char *resultPtr;

 char *mylang;

 unsigned short resultlen;

 unsigned short reqlen;

 unsigned long searchhandle;

 unsigned long codepage;

 unsigned long trgtpage;

 char *srcbuf = "Change this string";

 char *trgtbuf;

 unsigned long srclen;

 unsigned long trgtlen;

 unsigned long nmbrerrs;

 unsigned long posoferr;

 unsigned long rqdlen;

 unsigned long ccsid;

 /* Create an error message object and return a handle to */

 /* it. This error handle can be passed to APIs that */

 /* support it. If an error occurs, the error handle can */

 /* be used to retrieve the message text associated with */

 /* the API error. */

 SVrc = cwbSV_CreateErrHandle(&errhandle);

 if (SVrc != CWB_OK) {

 printf("cwbSV_CreateErrHandle failed with return code %d.\n", SVrc);

 }

 /* Retreive the current language setting. */

 resultlen = CWBNL_MAX_LANG_SIZE+1;

 resultPtr = (char *) malloc(resultlen * sizeof(char));

 NLrc = cwbNL_GetLang(myloadpath, resultPtr, resultlen, &reqlen, errhandle);

 if (NLrc != CWB_NO_ERR) {

 if (NLrc == CWB_BUFFER_TOO_SMALL)

 printf("GetLang buffer too small, recommended size %d.\n", reqlen);

 resolveErr(errhandle);

 }

 printf("GetLang API returned %s.\n", resultPtr);

 mylang = (char *) malloc(resultlen * sizeof(char));

 strcpy(mylang, resultPtr);

 /* Retrieve the descriptive name of a language setting. */

 resultlen = CWBNL_MAX_NAME_SIZE+1;

 resultPtr = (char *) realloc(resultPtr, resultlen * sizeof(char));

 NLrc = cwbNL_GetLangName(mylang, resultPtr, resultlen, &reqlen, errhandle);

 if (NLrc != CWB_NO_ERR) {

 if (NLrc == CWB_BUFFER_TOO_SMALL)

 printf("GetLangName buffer too small, recommended size %d.\n", reqlen);

 resolveErr(errhandle);

 }

 printf("GetLangName API returned %s.\n", resultPtr);

 /* Return the complete path for language files. */

 resultlen = CWBNL_MAX_PATH_SIZE+1;

 resultPtr = (char *) realloc(resultPtr, resultlen * sizeof(char));

 NLrc = cwbNL_GetLangPath(myloadpath, resultPtr, resultlen, &reqlen, errhandle);

 if (NLrc != CWB_NO_ERR) {

 if (NLrc == CWB_BUFFER_TOO_SMALL)

 printf("GetLangPath buffer too small, recommended size %d.\n", reqlen);

 resolveErr(errhandle);

206 IBM Systems - iSeries: iSeries Access for Windows: Programming

}

 printf("GetLangPath API returned %s.\n", resultPtr);

 /* Get the code page of the current process. */

 NLrc = cwbNL_GetCodePage(&codepage, errhandle);

 if (NLrc != CWB_NO_ERR) {

 resolveErr(errhandle);

 }

 printf("GetCodePage API returned %u.\n", codepage);

 /* Convert strings from one code page to another. This */

 /* API combines three converter APIs for the default */

 /* conversion. The three converter APIs it combines are: */

 /* cwbNL_CreateConverterEx */

 /* cwbNL_Convert */

 /* cwbNL_DeleteConverter */

 srclen = strlen(srcbuf) + 1;

 trgtlen = srclen;

 trgtpage = 437;

 trgtbuf = (char *) malloc(trgtlen * sizeof(char));

 printf("String to convert is %s.\n",srcbuf);

 NLrc = cwbNL_ConvertCodePagesEx(codepage, trgtpage, srclen,

 trgtlen, srcbuf, trgtbuf, &nmbrerrs, &posoferr, &rqdlen,

 errhandle);

 if (NLrc != CWB_NO_ERR) {

 resolveErr(errhandle);

 printf("number of errors detected is %u.\n", nmbrerrs);

 printf("location of first error is %u.\n", posoferr);

 }

 printf("ConvertCodePagesEx API returned %s.\n", trgtbuf);

 /* Map a code page to the corresponding CCSID. */

 NLrc = cwbNL_CodePageToCCSID(codepage, &ccsid, errhandle);

 if (NLrc != CWB_NO_ERR) {

 resolveErr(errhandle);

 }

 printf("CodePageToCCSID returned %u.\n", ccsid);

 cwbSV_DeleteErrHandle(errhandle);

}

iSeries Access for Windows Directory Update APIs

The iSeries Access for Windows Directory Update function allows users to specify PC directories for

updating from a configured network server or from multiple networked servers. This permits users to

load non-iSeries Access for Windows software products on a server in the network, and to keep those

files updated on PCs. Directory Update is an optionally installable iSeries Access for Windows

component.

How to install iSeries Access for Windows Directory Update:

To install Directory Update, follow these steps when you install iSeries Access for Windows, or when you

run Selective Setup if iSeries Access for Windows is already installed:

1. Select the iSeries Access for Windows Optional Components check box.

2. Expand the view and make sure that the Directory Update subcomponent also is selected.

3. Follow the prompts to completion.

Programming 207

iSeries Access for Windows Directory Update C/C++ APIs:

iSeries Access for Windows Directory Update C/C++ application programming interfaces (APIs) allow

software developers to add, change and delete update entries that are used by the iSeries Access for

Windows Directory Update function.

Note: iSeries Access for Windows Directory Update APIs do not actually perform the updates. They are

for configuration purposes only. The task of updating files is handled exclusively by the Directory

Update application.

iSeries Access for Windows Directory Update APIs enable the:

v Creation of update entries.

v Deletion of update entries.

v Modification of update entries.

v Retrieval of information from update entries.

v Retrieval of information such as return codes. For example, only one application can access the Update

entries at a time. If you get a return code that indicates locked, use the information to find the name of

the application that has the entries open.

IMPORTANT: The iSeries Access for Windows client does not include support for network drives or for

universal naming conventions. This now is provided by the iSeries NetServer function.

Network drives that you previously mapped by using iSeries Access should be mapped

by using iSeries NetServer support. Set up the iSeries NetServer that comes with OS/400®

V4R2 and beyond in order to perform file serving to the iSeries server.

NetServer information resources:

v iSeries NetServer topic of the iSeries Information Center

v IBM iSeries NetServer Home Page

iSeries Access for Windows Directory Update APIs required files:

 Header file Import library Dynamic Link Library

cwbup.h cwbapi.lib cwbup.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides Directory Update documentation, access to the cwbup.h header file,

and links to sample programs. To access this information, open the Programmer’s Toolkit and select

Directory Update → C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

 Related reference

 “Directory Update APIs return codes” on page 25

 “iSeries system name formats for connection APIs” on page 5
APIs that take an iSeries system name as a parameter accept names in the following formats.

 “OEM, ANSI, and Unicode considerations” on page 6
Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three

forms: OEM, ANSI, or Unicode.

208 IBM Systems - iSeries: iSeries Access for Windows: Programming

http://www.ibm.com/eserver/iseries/netserver

Typical use of iSeries Access for Windows Directory Update APIs

iSeries Access for Windows Directory Update APIs typically are used for creating and configuring update

entries that are used to update files from a mapped network drive. It is important to note that the Update

APIs do not actually update the files, but rely on the Directory Update executable file to do this.

For example, files on the iSeries system might contain customer names and addresses. The files on your

iSeries system are your master files that are updated as new customers are added, deleted, or have a

name or address change. The same files on your networked personal computers are used to perform

selective market mailings (by zip code, state, age, number of children and so on). The files on the iSeries

system are your master files, and you want them secure, but you need to provide the data for work.

You could write a program that uses Directory Update APIs to create and configure update entries, which

would update the files located on your networked personal computers.

Requirements for Directory Update entries

The following are required for Directory Update entries.

Description:

A description displayed by the Directory Update application to show users what is being

updated.

Source path:

The path of the source or ″master″ files. For example:

E:\MYSOURCE

or

\\myserver\mysource

Target path:

The path of the files with which you wish to keep synchronized with the master files. For

example:

C:\mytarget

Options for Directory Update entries

The following are optional for Directory Update entries:

Package files:

PC files that contain information on other files to be updated. See “Directory Update package

files syntax and format” on page 210 for more information. Package files are added to update

entries by using the “cwbUP_AddPackageFile” on page 216 API.

Callback DLL:

A DLL provided by the application programmer that Directory Update will call into during

different stages of the update process. This allows programmers to perform application unique

processing during the different stages of an update. A callback DLL is added to an update entry

using the “cwbUP_SetCallbackDLL” on page 218 API.

 The different stages of update when Directory Update may call into the callback DLL are:

Pre-update:

This is when Directory Update is about to begin its processing of an update entry. The

following entry point prototype must be in the callback DLL: unsigned long

_declspec(dllexport) cwbUP_PreUpdateCallback();

Post-update:

This is when Directory Update has completed moving the files. The following entry point

prototype must be in the callback DLL: unsigned long _declspec(dllexport)

cwbUP_PostUpdateCallback();

Programming 209

Pre-migration:

This is when Directory Update is about to begin version-to-version migration of an

update entry. Version-to-version migrations are triggered by QPTFIDX files. The following

entry point prototype must be in the callback DLL: unsigned long _declspec(dllexport)

cwbUP_PreMigrationCallback();

Post-migration:

This is when Directory Update has completed processing of a version-to-version

migration of an update entry. The following entry point prototype must be in the callback

DLL: unsigned long _declspec(dllexport) cwbUP_PostMigrationCallback();

Attributes:

Set the type or mode of the update to be performed. Combinations of the attributes are allowed.

Attributes are:

File-driven update:

The files in the target directory are compared to the files in the source directory. Target

files with dates older than the source files are updated. No new files will be created in

the target.

Package-driven update:

The package files listed in the update entry are scanned for files to be updated. The dates

of the files that are listed in the package file are compared between the source and the

target directories. The source files with newer dates are updated or moved into the target

directory. If a file that is listed in the package file does not exist in the target, but exists in

the source, the file is created in the target directory.

Subdirectory update:

Subdirectories under the target directory are included in the update.

Onepass update:

Updates occur directly from source to target. If this is not specified, updates occur in two

passes. The first pass of the update will copy the files to be updated into a temporary

directory. Then the PC is restarted. On restart, the files are copied to the target directory.

This is useful for locked files.

Backlevel update:

This controls if updates will occur if the source files are older than the target files.

Directory Update package files syntax and format

Package files contain information that specifies and describes which target files users want to be kept

current with source files.

Package files syntax:

PKGF Description text

MBRF PROG1.EXE

MBRF INFO.TXT

MBRF SUBDIR\SHEET.XLS

DLTF PROG2.EXE

Note: Text must start in the first row and column of the file. Each package file must begin with

the PKGF keyword.

Package files format:

Package files consist of the following elements:

PKGF description (optional):

This identifier indicates that the file is a package file. If this tag is not found in the first

four characters of the file, Directory Update will not process the file while searching for

files to update. A description is optional.

210 IBM Systems - iSeries: iSeries Access for Windows: Programming

MBRF filename:

This identifies a file as part of the package to be updated. A path name also can be

specified; this indicates that the file is in a subdirectory of the source directory.

 The path should not contain the drive letter, or begin with a back-slash character (\).

When you begin the update function, you specify a target directory; the path that is

specified in the package file is considered a subdirectory of this target directory.

DLTF filename:

This identifies a file to be deleted from the target directory. A path name also can be

specified; this indicates that the file is in a subdirectory of the target directory. As with

the MBRF identifier, you should not specify a drive letter or begin with a back-slash

character (\).

Related topic:

See “Directory Update sample program” for sample Directory Update APIs and detailed

explanations of their attributes.

Directory Update sample program

For a Directory Update C/C++ sample program, you can go to the Programmer’s Toolkit - Directory

Update Web page.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

Go to Programmer’s Toolkit – Directory Update Web page

. Select dirupdat.exe for a description of

the sample, and to download the samples.

The sample program demonstrates creating, configuring, and deleting Directory Update entries.

See the iSeries Access for Windows User’s Guide for more information.

Directory Update: Create and delete APIs

The following iSeries Access for Windows Directory Update are used to create and delete an update

entry. The APIs are listed alphabetically.

Note: It is essential that is called when your application no longer is accessing the update entries. If

cwbUP_FreeLock is not called, other applications will not be able to access or modify the update

entries.

cwbUP_CreateUpdateEntry:

Purpose

Creates a new update entry and passes back a handle to it.

Syntax

unsigned int CWB_ENTRY cwbUP_CreateUpdateEntry(

 char * entryDescription,

 char * entrySource,

 char * entryTarget,

 cwbUP_EntryHandle *entryHandle);

Parameters

char * entryDescription - input

Points to a null-terminated string that contains a description to identify the update entry.

Programming 211

http://www.ibm.com/eserver/iseries/access/toolkit/dirupdat.htm

char * entrySource - input

Points to a null-terminated string that contains the source for the update entry. This can be either a

drive and path, or a UNC name.

char * entryTarget - input

Points to a null-terminated strings that contains the target for the update entry. This can be either a

drive and path, or a UNC name.

cwbUP_EntryHandle * entryHandle - input/output

Pointer to a cwbUP_EntryHandle where the handle will be returned. This handle must be used in

subsequent calls to the update entry APIs.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed as an address.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory to create handle.

CWBUP_TOO_MANY_ENTRIES

The maximum number of update entries already exist. No more can be created.

CWBUP_STRING_TOO_LONG

An input string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED

Another application is currently changing the update entry list. No changes are allowed at this

time.

Usage

When you use this call, and have completed your processing of the update entry, you must call

cwbUP_FreeEntryHandle. This call will ″unlock″ the entry, and free resources that are associated with it.

cwbUP_DeleteEntry:

Purpose

Deletes the update entry from the update entry list.

Syntax

unsigned int CWB_ENTRY cwbUP_DeleteEntry(

 cwbUP_EntryHandle entryHandle);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or cwbUP_FindEntry.

Return Codes

The following list shows common return values.

212 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWBUP_ENTRY_IS_LOCKED

Another application is currently changing the update entry list. No changes are allowed at this

time.

Usage

After this call, you do not need to call cwbUP_FreeEntryHandle. The entry is ″freed″ when the entry is

successfully deleted. If you retrieved the first update entry by using the cwbUP_GetEntryHandle API,

and then called this API to delete the entry, all of the update entries would shift one position to fill the

slot left by the delete. So, if you then wanted to get the next update item, you would pass the same index

that you did on the previous cwbUP_GetEntryHandle API call.

Directory Update: Access APIs

The following iSeries Access for Windows Directory Update are used to obtain access to an update entry.

The APIs are listed alphabetically.

Note: It is essential that is called when your application no longer is accessing the update entries. If

cwbUP_FreeLock is not called, other applications will not be able to access or modify the update

entries.

cwbUP_FindEntry:

Purpose

Gets a handle to an existing update entry by using entrySource and entryTarget as the search parameters.

Syntax

unsigned int CWB_ENTRY cwbUP_FindEntry(

 char * entrySource,

 char * entryTarget,

 unsigned long *searchStart,

 cwbUP_EntryHandle *entryHandle);

Parameters

char * entrySource - input

Points to a null-terminated string that contains the source for the update entry. This can be either a

drive and path, or a UNC name. This string will be used to search for a */ matching update entry.

char * entryTarget - input

Points to a null-terminated string that contains the target for the update entry. This can be either a

drive and path, or a UNC name. This string will be used to search for a matching update entry.

unsigned long * searchStart - input/output

Pointer to an index into the list of update entries to begin the search at. This would be used in cases

where multiple update entries may have matching source and targets. You would use this parameter

to ″skip″ over entries in the search, and continue on searching for a matching update entry that is

after searchStart in the list. On successful return, searchStart will be set to the position in the list

where the update entry was found. This should be set to CWBUP_SEARCH_FROM_BEGINNING if

you want to search all update entries.

cwbUP_EntryHandle * entryHandle - input/output

Pointer to a cwbUP_EntryHandle where the handle will be returned. This handle must be used in

subsequent calls to the update entry APIs.

Programming 213

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed as an address.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory to create handle.

CWBUP_SEARCH_POSITION_ERROR

Search starting position is not valid.

CWBUP_ENTRY_NOT_FOUND

No update entry matched search value.

CWBUP_STRING_TOO_LONG

An input string is longer than the maximum of CWBUP_MAX_LENGTH.

Usage

The handle that is returned from this call will be used for accessing the update entry with other Update

APIs. When you use this call, and have completed your processing of the update entry, you must call

cwbUP_FreeEntryHandle. This call will ″unlock″ the entry, and free resources with which it is associated.

cwbUP_FreeLock:

Purpose

Frees the lock to the update entries. This should be called when the application is done accessing the

update entries. If this is not called, other applications will not be able to access the update entries.

Syntax

unsigned int CWB_ENTRY cwbUP_FreeLock();

Parameters

None

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBUP_UNLOCK_WARNING

Application did not have the update entries locked.

Usage

A lock to the update entries is obtained whenever an application accesses or changes an update entry.

When the application no longer needs to access the update entries, the application should call this API.

cwbUP_GetEntryHandle:

Purpose

Gets a handle to an existing update entry at a given position in the list.

214 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY cwbUP_GetEntryHandle(

 unsigned long entryPosition,

 cwbUP_EntryHandle *entryHandle);

Parameters

unsigned long entryPosition - input

Index into the update entry list of the entry for which you want to retrieve a handle. (Pass in 1 if you

wish to retrieve the first update entry)

cwbUP_EntryHandle * entryHandle - input/output

Pointer to a cwbUP_EntryHandle where the handle will be returned. This handle must be used in

subsequent calls to the update entry APIs.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL was passed as an address.

CWBUP_ENTRY_NOT_FOUND

No update entry at the given position.

CWBUP_POSITION_INVALID

Position that is given is not in range.

Usage

The handle that is returned from this call will be used for accessing the update entry with other Update

APIs. When you use this call, and have completed your processing of the update entry, you must call

cwbUP_FreeEntryHandle. This call will ″unlock″ the entry, and free resources that are associated with it.

You must call cwbUP_FreeEntryHandle once for each time that you call an API that returns an entry

handle.

Directory Update: Free Resources APIs

The following iSeries Access for Windows Directory Update are used to free resources that are associated

with an entry handle. The APIs are listed alphabetically.

Note: It is essential that is called when your application no longer is accessing the update entries. If

cwbUP_FreeLock is not called, other applications will not be able to access or modify the update

entries.

cwbUP_FreeEntryHandle:

Purpose

Frees an entry handle and all resources with which is is associated.

Syntax

unsigned int CWB_ENTRY cwbUP_FreeEntryHandle(

 cwbUP_EntryHandle entryHandle);

Programming 215

Parameters

cwbUP_EntryHandle entryHandle - input

The entry handle that is to be freed.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid or has already been

Usage

After this call you can no longer access the update entry. To access the update entry or another update

entry, you would need to get a new entry handle.

Directory Update: Change APIs

The following iSeries Access for Windows Directory Update are used to change an update entry. The

APIs are listed alphabetically.

Note: It is essential that is called when your application no longer is accessing the update entries. If

cwbUP_FreeLock is not called, other applications will not be able to access or modify the update

entries.

cwbUP_AddPackageFile:

Purpose

Adds a package file to the package file list in the update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_AddPackageFile(

 cwbUP_EntryHandle entryHandle,

 char *entryPackage);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or cwbUP_FindEntry.

char * entryPackage - input

Pointer to a null-terminated string that contains the name of a package file to be added to the update

entry. Do not include the path for this file. The package file must exist in the source and target paths.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

216 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INVALID_POINTER

NULL was passed as an address.

CWBUP_TOO_MANY_PACKAGES

Maximum number of package files already exist for this entry.

CWBUP_STRING_TOO_LONG

The package file name is longer than CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED

Another application is currently changing the update entry list. No changes are allowed at this

time.

Usage

None

cwbUP_RemovePackageFile:

Purpose

Removes a package file from the list of package files that belong to an update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_RemovePackageFile(

 cwbUP_EntryHandle entryHandle,

 char *entryPackage);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryPackage - input

Pointer to a null-terminated string that contains the package file name that is to be removed from the

package file list.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWBUP_PACKAGE_NOT_FOUND

The package file was not found.

CWBUP_STRING_TOO_LONG

The package file string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED

Another application is currently changing the update entry list. No changes are allowed at this

time.

Programming 217

Usage

None

cwbUP_SetCallbackDLL:

Purpose

Sets the fully qualified name of the callback DLL for an update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_SetCallbackDLL(

 cwbUP_EntryHandle entryHandle,

 char *dllPath);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or cwbUP_FindEntry.

char * dllPath - input

Pointer to a null-terminated string that contains the fully qualified name of the DLL that will be

called when individual stages of the update occur.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWBUP_STRING_TOO_LONG

The callback DLL string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED

Another application is currently changing the update entry list. No changes are allowed at this

time.

Usage

None

cwbUP_SetDescription:

Purpose

Sets the description of the update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_SetDescription(

 cwbUP_EntryHandle entryHandle,

 char *entryDescription);

218 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryDescription - input

Pointer to a null-terminated string that contains the full description to be associated with the update

entry.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWBUP_STRING_TOO_LONG

The description string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED

Another application is currently changing the update entry list. No changes are allowed at this

time.

Usage

None

cwbUP_SetEntryAttributes:

Purpose

Sets any of the following attribute values of the update entry:

CWBUP_FILE_DRIVEN

Updates are based on file date comparisons between target and source files.

CWBUP_PACKAGE_DRIVEN

Updates are based on contents of the package file(s), and comparisons of their files’ dates

between target and source.

CWBUP_SUBDIRECTORY

Update compares and updates directories under the given path.

CWBUP_ONEPASS

Updates occur directly in one pass. If this isn’t specified, updates occur in two passes. The first

pass copies the files to be updated to a temporary directory, and then when the PC is rebooted,

the files are copied to the target directory.

CWBUP_BACKLEVEL_OK

If this is set, updates will occur if the dates of the files on the source and target don’t match. If

this is not set, updates will only occur if the source file is more recent than the target file.

Any combination of these values is valid.

Programming 219

Syntax

unsigned int CWB_ENTRY cwbUP_SetEntryAttributes(

 cwbUP_EntryHandle entryHandle,

 unsigned long entryAttributes);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

unsigned long entryAttributes - input

Combination of the attribute values. (See defines section for values)

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWBUP_ENTRY_IS_LOCKED

Another application is currently changing the update entry list. No changes are allowed at this

time.

Usage

An example of this call follows:

rc = cwbUP_SetEntryAttributes(entryHandle, CWBUP_FILEDRIVEN | CWBUP_ONEPASS);

This call would result in the update entry being file driven and the update would occur in one pass.

cwbUP_SetSourcePath:

Purpose

Sets the source path of the update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_SetSourcePath(

 cwbUP_EntryHandle entryHandle,

 char *entrySource);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entrySource - input

Pointer to a null-terminated string that contains the full source path for the update entry.

Return Codes

The following list shows common return values.

220 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWBUP_STRING_TOO_LONG

The source path string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED

Another application is currently changing the update entry list. No changes are allowed at this

time.

Usage

None

cwbUP_SetTargetPath:

Purpose

Sets the target path of the update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_SetTargetPath(

 cwbUP_EntryHandle entryHandle,

 char *entryTarget);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryTarget - input

Pointer to a null-terminated string that contains the full target path for the update entry.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWBUP_STRING_TOO_LONG

The target path string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED

Another application is currently changing the update entry list. No changes are allowed at this

time.

Programming 221

Usage

None

Directory Update: Information APIs

The following iSeries Access for Windows Directory Update are used to obtain information from an

update entry and to retrieve general Directory Update information. The APIs are listed alphabetically.

Note: It is essential that is called when your application no longer is accessing the update entries. If

cwbUP_FreeLock is not called, other applications will not be able to access or modify the update

entries.

cwbUP_GetCallbackDLL:

Purpose

Gets the fully qualified name of the callback DLL for an update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_GetCallbackDLL(

 cwbUP_EntryHandle entryHandle,

 char *dllPath,

 unsigned long bufferLength,

 unsigned long *actualLength);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * dllPath - input/output

Pointer to a buffer that will receive the fully qualified name of the DLL that will be called when

individual stages of the update occur.

unsigned long bufferLength - input

Length of the dllPath buffer. Space should be included for the null termination character. If the buffer

is not large enough to hold the entire DLL name, an error will be returned and the actualLength

parameter will be set to the number of bytes the dllPath buffer needs to be.

unsigned long * actualLength - input/output

Pointer to a length variable that will be set to the size of the buffer needed to contain the fully

qualified DLL name.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW

Buffer is too small to hold return data.

222 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

None

cwbUP_GetDescription:

Purpose

Gets the description of the update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_GetDescription(

 cwbUP_EntryHandle entryHandle,

 char *entryDescription,

 unsigned long bufferLength,

 unsigned long *actualLength);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryDescription - input/output

Pointer to a buffer that will receive the description of the update entry.

unsigned long bufferLength - input

Length of the buffer. An extra byte should be included for the null termination character. If the buffer

is not large enough to hold the entire description, an error will be returned and the actualLength

parameter will be set to the number of bytes the entryDescription buffer needs to be to contain the

data.

unsigned long * actualLength - input/output

Pointer to a length variable that will be set to the size of the buffer needed to contain the description.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW

Buffer is too small to hold return data.

Usage

None

cwbUP_GetEntryAttributes:

Purpose

Gets the attributes of the update entry. These include: one pass update, file driven update, package

driven update, and update subdirectories. Any combination of these is valid.

Programming 223

Syntax

unsigned int CWB_ENTRY cwbUP_GetEntryAttributes(

 cwbUP_EntryHandle entryHandle,

 unsigned long *entryAttributes);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

unsigned long * entryAttributes - input/output

Pointer to area to receive the attribute values. (See defines section for values)

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

Usage

The value that is contained in entryAttributes after this call is made may be a combination of the

attribute flags that are listed near the top of this file.

cwbUP_GetLockHolderName:

Purpose

Gets the name of the program that currently has the update entries in a locked state.

Syntax

unsigned int CWB_ENTRY cwbUP_GetLockHolderName(char *lockHolder,

 unsigned long bufferLength,

 unsigned long *actualLength);

Parameters

char * lockHolder - input/output

Pointer to a buffer that will receive the name of the application that is currently locking the update

entries.

unsigned long bufferLength - input

Length of the buffer. An extra byte should be included for the null termination character. If the buffer

is not large enough to hold the entire name, an error will be returned and the actualLength parameter

will be set to the number of bytes the lockHolder buffer needs to be to contain the data.

unsigned long * actualLength - input/output

Pointer to a length variable that will be set to the size of the buffer needed to contain the application

name.

224 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW

Buffer is too small to hold return data.

Usage

None

cwbUP_GetSourcePath:

Purpose

Gets the source path of the update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_GetSourcePath(

 cwbUP_EntryHandle entryHandle,

 char *entrySource,

 unsigned long bufferLength,

 unsigned long *actualLength);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entrySource - input/output

Pointer to a buffer that will receive the source path of the update entry.

unsigned long bufferLength - input

Length of the buffer. An extra byte should be included for the null termination character. If the buffer

is not large enough to hold the entire source path, an error will be returned and the actualLength

parameter will be set to the number of bytes the entrySource buffer needs to be to contain the data.

unsigned long * actualLength - input/output

Pointer to a length variable that will be set to the size of the buffer needed to contain the source path.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW

Buffer is too small to hold return data.

Programming 225

Usage

None

cwbUP_GetTargetPath:

Purpose

Gets the target path of the update entry.

Syntax

unsigned int CWB_ENTRY cwbUP_GetTargetPath(

 cwbUP_EntryHandle entryHandle,

 char *entryTarget,

 unsigned long bufferLength,

 unsigned long *actualLength);

Parameters

cwbUP_EntryHandle entryHandle - input

Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,

cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryTarget - input/output

Pointer to a buffer that will receive the target path of the update entry.

unsigned long bufferLength - input

Length of the buffer. An extra byte should be included for the null termination character. If the buffer

is not large enough to hold the entire target path, an error will be returned and the actualLength

parameter will be set to the number of bytes the entryTarget buffer needs to be to contain the data.

unsigned long * actualLength - input/output

Pointer to a length variable that will be set to the size of the buffer needed to contain the target path.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Update entry handle is not valid.

CWB_INVALID_POINTER

NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW

Buffer is too small to hold return data.

Usage

None

iSeries Access for Windows PC5250 emulation APIs

The iSeries Access for Windows PC5250 emulator provides desktop users with a graphical user interface

for existing iSeries applications. PC5250 allows users to easily and transparently interact with data and

applications that are stored on the iSeries server.

226 IBM Systems - iSeries: iSeries Access for Windows: Programming

PC5250 provides C/C++ application programming interfaces (APIs) for enabling workstation programs to

interact with iSeries host systems.

iSeries Access for Windows PC5250 C/C++ APIs:

Emulator high-level language API (EHLLAPI)

A simple, single-entry point interface that interprets the emulator screen.

Personal communications session API (PCSAPI)

Use this interface to start, stop, and control emulator sessions.

Host Access Class Library (HACL)

This interface provides a set of classes and methods for developing applications that access host

information at the data-stream level.

iSeries Access for Windows emulation APIs required files:

 Emulation interface Header file Import library Dynamic Link Library

Standard HLLAPI hapi_c.h pscal32.lib

 pcshll.dll

pcshll32.dll

Enhanced HLLAPI ehlapi32.h ehlapi32.lib ehlapi32.dll

Windows EHLLAPI whllapi.h

 whllapi.lib

whlapi32.lib

 whllapi.dll

whllapi32.dll

HACL interface eclall.hpp

 pcseclva.lib

pcseclvc.lib

 pcseclva.dll

pcseclvc.dll

PCSAPI interface pcsapi.h pcscal32.lib

 pcsapi.dll

pcsapi32.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides Emulator interfaces documentation, access to header files, and links

to sample applications. To access this information, open the Programmer’s Toolkit and select Emulation

—> C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

iSeries Objects APIs for iSeries Access for Windows

iSeries Objects for iSeries Access for Windows application programming interfaces (APIs) allow you to

work with iSeries print-related objects. These APIs make it possible to work with iSeries spooled files,

writer jobs, output queues, printers, and more.

By using iSeries Objects APIs, you can write workstation applications that are customized for the user’s

environment. For example, you can write an application to manage spooled files for a single user, or for

all users across a network of iSeries servers. This includes holding, releasing, changing attributes of,

deleting, sending, retrieving and answering messages for the spooled files.

Programming 227

iSeries Objects APIs for iSeries Access for Windows required files:

 Header file Import library Dynamic Link Library

cwbobj.h cwbapi.lib cwbobj.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides iSeries Objects documentation, access to the cwbobj.h header file, and

links to sample programs. To access this information, open the Programmer’s Toolkit and select iSeries

Operations → C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

 Related reference

 “iSeries Object APIs return codes” on page 26

 “iSeries system name formats for connection APIs” on page 5
APIs that take an iSeries system name as a parameter accept names in the following formats.

 “OEM, ANSI, and Unicode considerations” on page 6
Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three

forms: OEM, ANSI, or Unicode.

iSeries objects attributes

Network Print Server objects have attributes. The Network Print Server supports the following attributes.

Refer to the data stream description for each object/action to determine the attributes that are supported

for that combination.

Advanced Function Printing:

Key CWBOBJ_KEY_AFP

ID 0x000A

Type char[11]

Description

Indicates whether this spooled file uses AFP resources external to the spooled file. Valid values

are *YES and *NO.

Align Page:

Key CWBOBJ_KEY_ALIGN

ID 0x000B

Type char[11]

Description

Indicates whether a forms alignment message is sent prior to printing this spooled file. Valid

values are *YES, *NO.

Allow Direct Print:

Key CWBOBJ_KEY_ALWDRTPRT

ID 0x000C

Type char[11]

228 IBM Systems - iSeries: iSeries Access for Windows: Programming

Description

Indicates whether the printer writer allows the printer to be allocated to a job that prints directly

to a printer. Valid values are *YES, *NO.

Authority:

Key CWBOBJ_KEY_AUT

ID 0x000D

Type char[11]

Description

Specifies the authority that is given to users who do not have specific authority to the output

queue. Valid values are *USE, *ALL, *CHANGE, *EXCLUDE, *LIBCRTAUT.

Authority to Check:

Key CWBOBJ_KEY_AUTCHK

ID 0x000E

Type char[11]

Description

Indicates what type of authorities to the output queue allow the user to control all the files on the

output queue. Valid values are *OWNER, *DTAAUT.

Automatically End Writer:

Key CWBOBJ_KEY_AUTOEND

ID 0x0010

Type char[11]

Description

Specifies if the writer should be automatically ended. Valid values are *NO, *YES.

Back Margin Offset Across:

Key CWBOBJ_KEY_BACKMGN_ACR

ID 0x0011

Type float

Description

For the back side of a piece of paper, it specifies, how far in from the left side of the page

printing starts. The special value *FRONTMGN will be encoded as -1.

Back Margin Offset Down:

Key CWBOBJ_KEY_BACKMGN_DWN

ID 0x0012

Type float

Description

For the back side of a piece of paper, it specifies, how far down from the top of the page printing

starts. The special value *FRONTMGN will be encoded as -1.

Backside Overlay Library Name:

Key CWBOBJ_KEY_BKOVRLLIB

Programming 229

ID 0x0013

Type char[11]

Description

The name of the library that contains the back overlay. If the back overlay name field has a

special value, this library field will be blank.

Backside Overlay Name:

Key CWBOBJ_KEY_BKOVRLAY

ID 0x0014

Type char[11]

Description

The name of the back overlay. Valid special values include *FRONTMGN.

Back Overlay offset across:

Key CWBOBJ_KEY_BKOVL_ACR

ID 0x0016

Type float

Description

The offset across from the point of origin where the overlay is printed.

Back Overlay Offset Down:

Key CWBOBJ_KEY_BKOVL_DWN

ID 0x0015

Type float

Description

The offset down from the point of origin where the overlay is printed.

Characters per Inch:

Key CWBOBJ_KEY_CPI

ID 0x0017

Type float

Description

The number of characters per horizontal inch.

Code Page:

Key CWBOBJ_KEY_CODEPAGE

ID 0x0019

Type char[11]

Description

The mapping of graphic characters to code points for this spooled file. If the graphic character set

field contains a special value, this field may contain a zero (0).

Coded Font Name:

Key CWBOBJ_KEY_CODEDFNT

230 IBM Systems - iSeries: iSeries Access for Windows: Programming

ID 0x001A

Type char[11]

Description

The name of the coded font. A coded font is an AFP resource that is composed of a character set

and a code page. Special values include *FNTCHRSET.

Coded Font Library Name:

Key CWBOBJ_KEY_CODEDFNTLIB

ID 0x0018

Type char[11]

Description

The name of the library that contains the coded font. This field may contain blanks if the coded

font name field has a special value.

Copies:

Key CWBOBJ_KEY_COPIES

ID 0x001C

Type long

Description

The total number of copies to be produced for this spooled file.

Copies left to Produce:

Key CWBOBJ_KEY_COPIESLEFT

ID 0x001D

Type long

Description

The remaining number of copies to be produced for this spooled file.

Current Page:

Key CWBOBJ_KEY_CURPAGE

ID 0x001E

Type long

Description

Current page that is being written by the writer job.

Data Format:

Key CWBOBJ_KEY_DATAFORMAT

ID 0x001F

Type char[11]

Description

Data format. Valid values are *RCDDATA, *ALLDATA.

Data Queue Library Name:

Key CWBOBJ_KEY_DATAQUELIB

Programming 231

ID 0x0020

Type char[11]

Description

The name of the library that contains the data queue.

Data Queue Name:

Key CWBOBJ_KEY_DATAQUE

ID 0x0021

Type char[11]

Description

Specifies the name of the data queue that is associated with the output queue.

Date File Opened:

Key CWBOBJ_KEY_DATE

ID 0x0022

Type char[8]

Description

The date the spooled file was opened. The date is encoded in a character string with the

following format, C YY MM DD.

User Specified DBCS Data:

Key CWBOBJ_KEY_DBCSDATA

ID 0x0099

Type char[11]

Description

Whether the spooled file contains double-byte character set (DBCS) data. Valid values are *NO

and *YES.

DBCS Extension Characters:

Key CWBOBJ_KEY_DBCSEXTENSN

ID 0x009A

Type char[11]

Description

Whether the system is to process the DBCS extension characters. Valid values are *NO and *YES.

DBCS Character Rotation:

Key CWBOBJ_KEY_DBCAROTATE

ID 0x009B

Type char[11]

Description

Whether the DBCS characters are rotated 90 degrees counterclockwise before printing. Valid

values are *NO and *YES.

DBCS Characters per Inch:

Key CWBOBJ_KEY_DBCSCPI

232 IBM Systems - iSeries: iSeries Access for Windows: Programming

ID 0x009C

Type long

Description

The number of double-byte characters to be printed per inch. Valid values are -1, -2, 5, 6, and 10.

The value *CPI is encoded as -1. The value *CONDENSED is encoded as -2.

DBCS SO/SI Spacing:

Key CWBOBJ_KEY_DBCSSISO

ID 0x009D

Type char[11]

Description

Determines the presentation of shift-out and shift-in characters when printed. Valid values are

*NO, *YES, and *RIGHT.

Defer Write:

Key CWBOBJ_KEY_DFR_WRITE

ID 0x0023

Type char[11]

Description

Whether print data is held in system buffers before

Degree of Page Rotation:

Key CWBOBJ_KEY_PAGRTT

ID 0x0024

Type long

Description

The degree of rotation of the text on the page, with respect to the way the form is loaded into the

printer. Valid values are -1, -2, -3, 0, 90, 180, 270. The value *AUTO is encoded as -1, the value

*DEVD is encoded as -2, and the value *COR is encoded as -3.

Delete File After Sending:

Key CWBOBJ_KEY_DELETESPLF

ID 0x0097

Type char[11]

Description

Delete the spooled file after sending? Valid values are *NO and *YES.

Destination Option:

Key CWBOBJ_KEY_DESTOPTION

ID 0x0098

Type char[129]

Description

Destination option. A text string that allows the user to pass options to the receiving system.

Destination Type:

Programming 233

Key CWBOBJ_KEY_DESTINATION

ID 0x0025

Type char[11]

Description

Destination type. Valid values are *OTHER, *AS400, *PSF2.

Device Class:

Key CWBOBJ_KEY_DEVCLASS

ID 0x0026

Type char[11]

Description

The device class.

Device Model:

Key CWBOBJ_KEY_DEVMODEL

ID 0x0027

Type char[11]

Description

The model number of the device.

Device Type:

Key CWBOBJ_KEY_DEVTYPE

ID 0x0028

Type char[11]

Description

The device type.

Display any File:

Key CWBOBJ_KEY_DISPLAYANY

ID 0x0029

Type char[11]

Description

Whether users who have authority to read this output queue can display the output data of any

output file on this queue, or only the data in their own files. Valid values are *YES, *NO,

*OWNER.

Drawer for Separators:

Key CWBOBJ_KEY_DRWRSEP

ID 0x002A

Type long

Description

Identifies the drawer from which the job and file separator pages are to be taken. Valid values are

-1, -2, 1, 2, 3. The value *FILE is encoded as -1, and the value *DEVD is encoded as -2.

Ending Page:

234 IBM Systems - iSeries: iSeries Access for Windows: Programming

Key CWBOBJ_KEY_ENDPAGE

ID 0x002B

Type long

Description

The page number at which to end printing the spooled file. Valid values are 0 or the ending page

number. The value *END is encoded as 0.

File Separators:

Key CWBOBJ_KEY_FILESEP

ID 0x002C

Type long

Description

The number of file separator pages that are placed at the beginning of each copy of the spooled

file. Valid values are -1, or the number of separators. The value *FILE is encoded as -1.

Fold Records:

Key CWBOBJ_KEY_FOLDREC

ID 0x002D

Type char[11]

Description

Whether records that exceed the printer forms width are folded (wrapped) to the next line. Valid

values are *YES, *NO.

Font Identifier:

Key CWBOBJ_KEY_FONTID

ID 0x002E

Type char[11]

Description

The printer font that is used. Valid special values include *CPI and *DEVD.

Form Feed:

Key CWBOBJ_KEY_FORMFEED

ID 0x002F

Type char[11]

Description

The manner in which forms feed to the printer. Valid values are *CONT, *CUT, *AUTOCUT,

*DEVD.

Form Type:

Key CWBOBJ_KEY_FORMTYPE

ID 0x0030

Type char[11]

Description

The type of form to be loaded in the printer to print this spooled file.

Programming 235

Form Type Message Option:

Key CWBOBJ_KEY_FORMTYPEMSG

ID 0x0043

Type char[11]

Description

Message option for sending a message to the writer’s message queue when the current form type

is finished. Valid values are *MSG, *NOMSG, *INFOMSG, *INQMSG.

Front Margin Offset Across:

Key CWBOBJ_KEY_FTMGN_ACR

ID 0x0031

Type float

Description

For the front side of a piece of paper, it specifies, how far in from the left side of the page

printing starts. The special value *DEVD is encoded as -2.

Front Margin Offset Down:

Key CWBOBJ_KEY_FTMGN_DWN

ID 0x0032

Type float

Description

For the front side of a piece of paper, it specifies, how far down from the top of the page printing

starts. The special value *DEVD is encoded as -2.

Front Overlay Library Name:

Key CWBOBJ_KEY_FTOVRLLIB

ID 0x0033

Type char[11]

Description

The name of the library that contains the front overlay. This field may be blank if the front

overlay name field contains a special value.

Front Overlay Name:

Key CWBOBJ_KEY_FTOVRLAY

ID 0x0034

Type char[11]

Description

The name of the front overlay. Valid special values include *NONE.

Front Overlay Offset Across:

Key CWBOBJ_KEY_FTOVL_ACR

ID 0x0036

Type float

236 IBM Systems - iSeries: iSeries Access for Windows: Programming

Description

The offset across from the point of origin where the overlay is printed.

Front Overlay Offset Down:

Key CWBOBJ_KEY_FTOVL_DWN

ID 0x0035

Type float

Description

The offset down from the point of origin where the overlay is printed.

Graphic Character Set:

Key CWBOBJ_KEY_CHAR_ID

ID 0x0037

Type char[11]

Description

The set of graphic characters to be used when printing this file. Valid special values include

*DEVD, *SYSVAL, and *JOBCCSID.

Hardware Justification:

Key CWBOBJ_KEY_JUSTIFY

ID 0x0038

Type long

Description

The percentage that the output is right justified. Valid values are 0, 50, 100.

Hold Spool File:

Key CWBOBJ_KEY_HOLD

ID 0x0039

Type char[11]

Description

Whether the spooled file is held. Valid values are *YES, *NO.

Initialize the writer:

Key CWBOBJ_KEY_WTRINIT

ID 0x00AC

Type char[11]

Description

The user can specify when to initialize the printer device. Valid values are *WTR, *FIRST, *ALL.

Internet Address:

Key CWBOBJ_KEY_INTERNETADDR

ID 0x0094

Type char[16]

Programming 237

Description

The internet address of the receiving system.

Job Name:

Key CWBOBJ_KEY_JOBNAME

ID 0x003B

Type char[11]

Description

The name of the job that created the spooled file.

Job Number:

Key CWBOBJ_KEY_JOBNUMBER

ID 0x003C

Type char[7]

Description

The number of the job that created the spooled file.

Job Separators:

Key CWBOBJ_KEY_JOBSEPRATR

ID 0x003D

Type long

Description

The number of job separators to be placed at the beginning of the output for each job having

spooled files on this output queue. Valid values are -2, 0-9. The value *MSG is encoded as -2. Job

separators are specified when the output queue is created.

Job User:

Key CWBOBJ_KEY_USER

ID 0x003E

Type char[11]

Description

The name of the user that created the spooled file.

Last Page Printed:

Key CWBOBJ_KEY_LASTPAGE

ID 0x003F

Type long

Description

The number of the last printed page is the file if printing ended before the job completed

processing.

Length of Page:

Key CWBOBJ_KEY_PAGELEN

ID 0x004E

Type float

238 IBM Systems - iSeries: iSeries Access for Windows: Programming

Description

The length of a page. Units of measurement are specified in the measurement method attribute.

Library Name:

Key CWBOBJ_KEY_LIBRARY

ID 0x000F

Type char[11]

Description

The name of the library.

Lines Per Inch:

Key CWBOBJ_KEY_LPI

ID 0x0040

Type float

Description

The number of lines per vertical inch in the spooled file.

Manufacturer Type and Model:

Key CWBOBJ_KEY_MFGTYPE

ID 0x0041

Type char[21]

Description

Specifies the manufacturer, type, and model when transforming print data from SCS to ASCII.

Maximum Spooled Output Records:

Key CWBOBJ_KEY_MAXRECORDS

ID 0x0042

Type long

Description

The maximum number of records allowed in this file at the time this file was opened. The value

*NOMAX is encoded as 0.

Measurement Method:

Key CWBOBJ_KEY_MEASMETHOD

ID 0x004F

Type char[11]

Description

The measurement method that is used for the length of page and width of page attributes. Valid

values are *ROWCOL, *UOM.

Message Help:

Key CWBOBJ_KEY_MSGHELP

ID 0x0081

Type char(*)

Programming 239

Description

The message help, which is sometimes known as second-level text, can be returned by a ″retrieve

message″ request. The system limits the length to 3000 characters (English version must be 30 %

less to allow for translation).

Message ID:

Key CWBOBJ_KEY_MESSAGEID

ID 0x0093

Type char[8]

Description

The message ID.

Message Queue Library Name:

Key CWBOBJ_KEY_MSGQUELIB

ID 0x0044

Type char[11]

Description

The name of the library that contains the message queue.

Message Queue:

Key CWBOBJ_KEY_MSGQUE

ID 0x005E

Type char[11]

Description

The name of the message queue that the writer uses for operational messages.

Message Reply:

Key CWBOBJ_KEY_MSGREPLY

ID 0x0082

Type char[133]

Description

The message reply. Text string to be provided by the client which answers a message of type

″inquiry″. In the case of message retrieved, the attribute value is returned by the server and

contains the default reply which the client can use. The system limits the length to 132 characters.

Should be null-terminated due to variable length.

Message Text:

Key CWBOBJ_KEY_MSGTEXT

ID 0x0080

Type char[133]

Description

The message text, that is sometimes known as first-level text, can be returned by a ″retrieve

message″ request. The system limits the length to 132 characters.

Message Type:

Key CWBOBJ_KEY_MSGTYPE

240 IBM Systems - iSeries: iSeries Access for Windows: Programming

ID 0x008E

Type char[3]

Description

The message type, a 2-digit, EBCDIC encoding. Two types of messages indicate whether one can

″answer″ a ″retrieved″ message: ’04’ Informational messages convey information without asking

for a reply (may require a corrective action instead), ’05’ Inquiry messages convey information

and ask for a reply.

Message Severity:

Key CWBOBJ_KEY_MSGSEV

ID 0x009F

Type long

Description

Message severity. Values range from 00 to 99. The higher the value, the more severe or important

the condition.

Number of Bytes to Read/Write:

Key CWBOBJ_KEY_NUMBYTES

ID 0x007D

Type long

Description

The number of bytes to read for a read operation, or the number of bytes to write for a write

operation. The object action determines how to interpret this attribute.

Number of Files:

Key CWBOBJ_KEY_NUMFILES

ID 0x0045

Type long

Description

The number of spooled files that exist on the output queue.

Number of Writers Started to Queue:

Key CWBOBJ_KEY_NUMWRITERS

ID 0x0091

Type long

Description

The number of writer jobs started to the output queue.

Object Extended Attribute:

Key CWBOBJ_KEY_OBJEXTATTR

ID 0x000B1

Type char[11]

Description

An ″extended″ attribute used by some objects like font resources. This value shows up via

Programming 241

WRKOBJ and DSPOBJD commands on the iSeries server. The title on an iSeries server screen may

just indicate ″Attribute″. In the case of object types of font resources, for example, common values

are CDEPAG, CDEFNT, and FNTCHRSET.

Open time commands:

Key CWBOBJ_KEY_OPENCMDS

ID 0x00A0

Type char[11]

Description

Specifies whether the user wants SCS open time commands to be inserted into datastream prior

to spool file data. Valid values are *YES, *NO.

Operator Controlled:

Key CWBOBJ_KEY_OPCNTRL

ID 0x0046

Type char[11]

Description

Whether users with job control authority are allowed to manage or control the spooled files on

this queue. Valid values are *YES, *NO.

Order of Files On Queue:

Key CWBOBJ_KEY_ORDER

ID 0x0047

Type char[11]

Description

The order of spooled files on this output queue. Valid values are *FIFO, *JOBNBR.

Output Priority:

Key CWBOBJ_KEY_OUTPTY

ID 0x0048

Type char[11]

Description

The priority of the spooled file. The priority ranges from 1 (highest) to 9 (lowest). Valid values

are 0-9, where 0 represents *JOB.

Output Queue Library Name:

Key CWBOBJ_KEY_OUTQUELIB

ID 0x0049

Type char[11]

Description

The name of the library that contains the output queue.

Output Queue Name:

Key CWBOBJ_KEY_OUTQUE

ID 0x004A

242 IBM Systems - iSeries: iSeries Access for Windows: Programming

Type char[11]

Description

The name of the output queue.

Output Queue Status:

Key CWBOBJ_KEY_OUTQUESTS

ID 0x004B

Type char[11]

Description

The status of the output queue. Valid values are RELEASED, HELD.

Overflow Line Number:

Key CWBOBJ_KEY_OVERFLOW

ID 0x004C

Type long

Description

The last line to be printed before the data that is being printed overflows to the next page.

Pages Per Side:

Key CWBOBJ_KEY_MULTIUP

ID 0x0052

Type long

Description

The number of logical pages that print on each side of each physical page when the file is

printed. Valid values are 1, 2, 4.

Pel Density:

Key CWBOBJ_KEY_PELDENSITY

ID 0x00B2

Type char[2]

Description

For font resources only, this value is an encoding of the number of pels (″1″ represents a pel size

of 240, ″2″ represents a pel size of 320). Additional values may become meaningful as the iSeries

system defines them.

Point Size:

Key CWBOBJ_KEY_POINTSIZE

ID 0x0053

Type float

Description

The point size in which this spooled file’s text is printed. The special value *NONE will be

encoded as 0.

Print Fidelity:

Key CWBOBJ_KEY_FIDELITY

Programming 243

ID 0x0054

Type char[11]

Description

The kind of error handling that is performed when printing. Valid values are *ABSOLUTE,

*CONTENT.

Print on Both Sides:

Key CWBOBJ_KEY_DUPLEX

ID 0x0055

Type char[11]

Description

How the information prints. Valid values are *FORMDF, *NO, *YES, *TUMBLE.

Print Quality:

Key CWBOBJ_KEY_PRTQUALITY

ID 0x0056

Type char[11]

Description

The print quality that is used when printing this spooled file. Valid values are *STD, *DRAFT,

*NLQ, *FASTDRAFT.

Print Sequence:

Key CWBOBJ_KEY_PRTSEQUENCE

ID 0x0057

Type char[11]

Description

Print sequence. Valid values are *NEXT.

Print Text:

Key CWBOBJ_KEY_PRTTEXT

ID 0x0058

Type char[31]

Description

The text that is printed at the bottom of each page of printed output and on separator pages.

Valid special values include *BLANK and *JOB.

Printer:

Key CWBOBJ_KEY_PRINTER

ID 0x0059

Type char[11]

Description

The name of the printer device.

Printer Device Type:

Key CWBOBJ_KEY_PRTDEVTYPE

244 IBM Systems - iSeries: iSeries Access for Windows: Programming

ID 0x005A

Type char[11]

Description

The printer data stream type. Valid values are *SCS, *IPDS(*), *USERASCII, *AFPDS.

Printer File Library Name:

Key CWBOBJ_KEY_PRTRFILELIB

ID 0x005B

Type char[11]

Description

The name of the library that contains the printer file.

Printer File Name:

Key CWBOBJ_KEY_PRTRFILE

ID 0x005C

Type char[11]

Description

The name of the printer file.

Printer Queue:

Key CWBOBJ_KEY_RMTPRTQ

ID 0x005D

Type char[129]

Description

The name of the destination printer queue when sending spooled files via SNDTCPSPLF (LPR).

Record Length:

Key CWBOBJ_KEY_RECLENGTH

ID 0x005F

Type long

Description

Record length.

Remote System:

Key CWBOBJ_KEY_RMTSYSTEM

ID 0x0060

Type char[256]

Description

Remote system name. Valid special values include *INTNETADR.

Replace Unprintable Characters:

Key CWBOBJ_KEY_RPLUNPRT

ID 0x0061

Type char[11]

Programming 245

Description

Whether characters that cannot be printed are to be replaced with another character. Valid values

are *YES or *NO.

Replacement Character:

Key CWBOBJ_KEY_RPLCHAR

ID 0x0062

Type char[2]

Description

The character that replaces any unprintable characters.

Resource library name:

Key CWBOBJ_KEY_RSCLIB

ID 0x00AE

Type char[11]

Description

The name of the library that contains the external AFP (Advanced Function Print) resource.

Resource name:

Key CWBOBJ_KEY_RSCNAME

ID 0x00AF

Type char[11]

Description

The name of the external AFP resource.

Resource object type:

Key CWBOBJ_KEY_RSCTYPE

ID 0x00B0

Type Long

Description

A numerical, bit encoding of external AFP resource object type. Values are 0x0001, 0x0002, 0x0004,

0x0008, 0x0010 corresponding to *FNTRSC, *FORMDF, *OVL, *PAGSEG, *PAGDFN, respectively.

Restart Printing:

Key CWBOBJ_KEY_RESTART

ID 0x0063

Type long

Description

Restart printing. Valid values are -1, -2, -3, or the page number to restart at. The value *STRPAGE

is encoded as -1, the value *ENDPAGE is encoded as -2, and the value *NEXT is encoded as -3.

Save Spooled File:

Key CWBOBJ_KEY_SAVESPLF

ID 0x0064

Type char[11]

246 IBM Systems - iSeries: iSeries Access for Windows: Programming

Description

Whether the spooled file is to be saved after it is written. Valid values are *YES, *NO.

Seek Offset:

Key CWBOBJ_KEY_SEEKOFF

ID 0x007E

Type long

Description

Seek offset. Allows both positive and negative values relative to the seek origin.

Seek Origin:

Key CWBOBJ_KEY_SEEKORG

ID 0x007F

Type long

Description

Valid values include 1 (beginning or top), 2 (current), and 3 (end or bottom).

Send Priority:

Key CWBOBJ_KEY_SENDPTY

ID 0x0065

Type char[11]

Description

Send priority. Valid values are *NORMAL, *HIGH.

Separator page:

Key CWBOBJ_KEY_SEPPAGE

ID 0x00A1

Type char[11]

Description

Allows a user the option of printing a banner page. Valid values are *YES or *NO.

Source Drawer:

Key CWBOBJ_KEY_SRCDRWR

ID 0x0066

Type long

Description

The drawer to be used when the automatic cut sheet feed option is selected. Valid values are -1,

-2, 1-255. The value *E1 is encode as -1, and the value *FORMDF is encoded as -2.

Spool SCS:

Key CWBOBJ_KEY_SPLSCS

ID 0x00AD

Type Long

Programming 247

Description

Determines how SCS data is used during create spool file. Valid values are -1, 0, 1, or the page

number. The value *ENDPAGE is encoded as -1. For the value 0, printing starts on page 1. For

the value 1, the entire file prints.

Spool the Data:

Key CWBOBJ_KEY_SPOOL

ID 0x0067

Type char[11]

Description

Whether the output data for the printer device is spooled. Valid values are *YES, *NO.

Spooled File Name:

Key CWBOBJ_KEY_SPOOLFILE

ID 0x0068

Type char[11]

Description

The name of the spooled file.

Spooled File Number:

Key CWBOBJ_KEY_SPLFNUM

ID 0x0069

Type long

Description

The spooled file number.

Spooled File Status:

Key CWBOBJ_KEY_SPLFSTATUS

ID 0x006A

Type char[11]

Description

The status of the spooled file. Valid values are *CLOSED, *HELD, *MESSAGE, *OPEN,

*PENDING, *PRINTER, *READY, *SAVED, *WRITING.

Spooled Output Schedule:

Key CWBOBJ_KEY_SCHEDULE

ID 0x006B

Type char[11]

Description

Specifies, for spooled files only, when the spooled file is available to the writer. Valid values are

*IMMED, *FILEEND, *JOBEND.

Starting Page:

Key CWBOBJ_KEY_STARTPAGE

ID 0x006C

248 IBM Systems - iSeries: iSeries Access for Windows: Programming

Type long

Description

The page number at which to start printing the spooled file. Valid values are -1, 0, 1, or the page

number. The value *ENDPAGE is encoded as -1. For the value 0, printing starts on page 1. For

the value 1, the entire file prints.

Text Description:

Key CWBOBJ_KEY_DESCRIPTION

ID 0x006D

Type [51]

Description

Text to describe an instance of an iSeries object.

Time File Opened:

Key CWBOBJ_KEY_TIMEOPEN

ID 0x006E

Type char[7]

Description

The time this spooled file was opened. The time is encoded in a character 0x0005 with the

following format, HH MM SS.

Total Pages:

Key CWBOBJ_KEY_PAGES

ID 0x006F

Type long

Description

The number of pages that are contained in a spooled file.

Transform SCS to ASCII:

Key CWBOBJ_KEY_SCS2ASCII

ID 0x0071

Type char[11]

Description

Whether the print data is to be transformed from SCS to ASCII. Valid values are *YES, *NO.

Unit of Measure:

Key CWBOBJ_KEY_UNITOFMEAS

ID 0x0072

Type char[11]

Description

The unit of measure to use for specifying distances. Valid values are *CM, *INCH.

User Comment:

Key CWBOBJ_KEY_USERCMT

ID 0x0073

Programming 249

Type char[101]

Description

The 100 characters of user-specified comment that describe the spooled file.

User Data:

Key CWBOBJ_KEY_USERDATA

ID 0x0074

Type char[11]

Description

The 10 characters of user-specified data that describe the spooled file. Valid special values include

*SOURCE.

User defined data:

Key CWBOBJ_KEY_USRDFNDTA

ID 0x00A2

Type char[]

Description

User defined data to be utilized by user applications or user specified programs that process

spool files. All characters are acceptable. Max size is 255.

User defined object library:

Key CWBOBJ_KEY_USRDFNOBJLIB

ID 0x00A4

Type char[11]

Description

User defined object library to search by user applications that process spool files.

User defined object name:

Key CWBOBJ_KEY_USRDFNOBJ

ID 0x00A5

Type char[11]

Description

User defined object name to be utilized by user applications that process spool files.

User defined object type:

Key CWBOBJ_KEY_USRDFNOBJTYP

ID 0x00A6

Type char[11]

Description

User defined object type pertaining to the user defined object.

User defined option(s):

Key CWBOBJ_KEY_USEDFNOPTS

ID 0x00A3

250 IBM Systems - iSeries: iSeries Access for Windows: Programming

Type char[*]

Description

User defined options to be utilized by user applications that process spool files. Up to 4 options

may be specifies, each value is length char(10). All characters are acceptable.

User driver program:

Key CWBOBJ_KEY_USRDRVPGMDTA

ID 0x00A9

Type char[11]

Description

User data to be used with the user driver program. All characters are acceptable. Maximum size

is 5000 characters.

User driver program library:

Key CWBOBJ_KEY_USRDRVPGMLIB

ID 0x00AA

Type char[11]

Description

User defined library to search for driver program that processes spool files.

User driver program name:

Key CWBOBJ_KEY_USRDRVPGM

ID 0x00AB

Type char[11]

Description

User defined program name that processes spool files.

User ID:

Key CWBOBJ_KEY_TOUSERID

ID 0x0075

Type char[9]

Description

User ID to which the spooled file is sent.

User ID Address:

Key CWBOBJ_KEY_TOADDRESS

ID 0x0076

Type char[9]

Description

Address of user to whom the spooled file is sent.

User transform program library:

Key CWBOBJ_KEY_USRTFMPGMLIB

ID 0x00A7

Programming 251

Type char[11]

Description

User defined library search for transform program.

User transform program name:

Key CWBOBJ_KEY_USETFMPGM

ID 0x00A8

Type char[11]

Description

User defined transform program name that transforms spool file data before it is processed by the

driver program.

VM/MVS Class:

Key CWBOBJ_KEY_VMMVSCLASS

ID 0x0077

Type char[2]

Description

VM/MVS class. Valid values are A-Z and 0-9.

When to Automatically End Writer:

Key CWBOBJ_KEY_WTRAUTOEND

ID 0x0078

Type char[11]

Description

When to end the writer if it is to be ended automatically. Valid values are *NORDYF, *FILEEND.

Attribute Automatically end writer must be set to *YES.

When to End Writer:

Key CWBOBJ_KEY_WTREND

ID 0x0090

Type char[11]

Description

When to end the writer. Valid value are *CNTRLD, *IMMED, and *PAGEEND. This is different

from when to automatically end the writer.

When to Hold File:

Key CWBOBJ_KEY_HOLDTYPE

ID 0x009E

Type char[11]

Description

When to hold the spooled file. Valid values are *IMMED, and *PAGEEND.

Width of Page:

Key CWBOBJ_KEY_PAGEWIDTH

ID 0x0051

252 IBM Systems - iSeries: iSeries Access for Windows: Programming

Type float

Description

The width of a page. Units of measurement are specified in the measurement method attribute.

Workstation Customizing Object Name:

Key CWBOBJ_KEY_WSCUSTMOBJ

ID 0x0095

Type char[11]

Description

The name of the workstation customizing object.

Workstation Customizing Object Library:

Key CWBOBJ_KEY_WSCUSTMOBJL

ID 0x0096

Type char[11]

Description

the name of the library that contains the workstation customizing object.

Writer Job Name:

Key CWBOBJ_KEY_WRITER

ID 0x0079

Type char[11]

Description

The name of the writer job.

Writer Job Number:

Key CWBOBJ_KEY_WTRJOBNUM

ID 0x007A

Type char[7]

Description

The writer job number.

Writer Job Status:

Key CWBOBJ_KEY_WTRJOBSTS

ID 0x007B

Type char[11]

Description

The status of the writer job. Valid values are STR, END, JOBQ, HLD, MSGW.

Writer Job User Name:

Key CWBOBJ_KEY_WTRJOBUSER

ID 0x007C

Type char[11]

Programming 253

Description

The name of the user that started the writer job.

Writer Starting Page:

Key CWBOBJ_KEY_WTRSTRPAGE

ID 0x008F

Type long

Description

Specifies the page number of the first page to print from the first spooled file when the writer job

starts. This is only valid if the spooled file name is also specified when the writer starts.

Network Print Server Object Attributes:

The follow list is for object attributes for the network print server.

NPS Attribute Default Value:

Key CWBOBJ_KEY_ATTRDEFAULT

ID 0x0083

Type dynamic

Description

Default value for the attribute.

NPS Attribute High Limit:

Key CWBOBJ_KEY_ATTRMAX

ID 0x0084

Type dynamic

Description

High limit of the attribute value.

NPS Attribute ID:

Key CWBOBJ_KEY_ATTRID

ID 0x0085

Type long

Description

ID of the attribute.

NPS Attribute Low Limit:

Key CWBOBJ_KEY_ATTRMIN

ID 0x0086

Type dynamic

Description

Low limit of the attribute value.

NPS Attribute Possible Value:

Key CWBOBJ_KEY_ATTRPOSSIBL

ID 0x0087

254 IBM Systems - iSeries: iSeries Access for Windows: Programming

Type dynamic

Description

Possible value for the attribute. More than one NPS possible value instance may be present in a

code point.

NPS Attribute Text Description:

Key CWBOBJ_KEY_ATTRDESCRIPT

ID 0x0088

Type char(*)

Description

Text description that provides a name for the attribute.

NPS Attribute Type:

Key CWBOBJ_KEY_ATTRTYPE

ID 0x0089

Type long

Description

The type of the attribute. Valid values are the types that are defined by the Network Print Server.

NPS CCSID:

Key CWBOBJ_KEY_NPSCCSID

ID 0x008A

Type long

Description

CCSID that the Network Print Server expects that all strings will be encoded in.

NPS Object:

Key CWBOBJ_KEY_NPSOBJECT

ID 0x008B

Type long

Description

Object ID. Valid values are the objects that are defined by the Network Print Server.

NPS Object Action:

Key CWBOBJ_KEY_NPSACTION

ID 0x008C

Type long

Description

Action ID. Valid values are the actions that are defined by the Network Print Server.

NPS Level:

Key CWBOBJ_KEY_NPSLEVEL

ID 0x008D

Type char[7]

Programming 255

Description

The version, release, and modification level of the Network Print Server. This attribute is a

character string encoded as VXRYMY (ie. ″V3R1M0″) where

 X is in (0..9)

 Y is in (0..9,A..Z)

List APIs for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to List objects. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CloseList:

Purpose

Closes an opened list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseList(

 cwbOBJ_ListHandle listHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

Handle of the list to be closed. This list must be opened.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated list handle.

CWBOBJ_RC_LIST_NOT_OPEN

The list isn’t open.

Usage

Closing the list frees the memory used by the list to hold its items. Any object handles gotten with

cwbOBJ_GetObjHandle() API should be released before closing the list to free resources. These handles

are no longer valid.

cwbOBJ_CreateListHandle:

Purpose

Allocates a handle for a list of objects. After a list handle has been allocated, the filter criteria may be set

for the list with the cwbOBJ_SetListFilter() API, the list may be built with the cwbOBJ_OpenList() API,

256 IBM Systems - iSeries: iSeries Access for Windows: Programming

etc. cwbOBJ_DeleteListHandle() should be called to deallocated this list handle and free any resources

used by it.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateListHandle(

 const char *systemName,

 cwbOBJ_ListType type,

 cwbOBJ_ListHandle *listHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

const char *systemName - input

Pointer to the system name contained in ASCIIZ string

cwbOBJ_ListType type - input

Type of list to allocate (eg. spooled file list, output queue list, etc).

cwbOBJ_ListHandle *listHandle - output

Pointer to a list handle that will be passed back on output. This handle is needed for other calls using

the list.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage that is being used.

CWB_API_ERROR

General API failure.

Usage

Caller must call cwbOBJ_DeleteListHandle when done using this list handle. Typical calling sequence for

retrieving a list of objects would be:

1. cwbOBJ_CreateListHandle()

2. cwbOBJ_SetListFilter() { repeated as needed }

3. cwbOBJ_OpenList()

4. cwbOBJ_GetListSize() to get the size of the list.

5. For n=0 to list size - 1 cwbOBJ_GetObjHandle for list item in position n do something with the object

cwbOBJ_DeleteObjHandle()

6. cwbOBJ_CloseList() - You may go back to step 2 here.

7. cwbOBJ_DeleteListHandle()

cwbOBJ_DeleteListHandle:

Programming 257

Purpose

Deallocates a list handle that was previously allocated with the cwbOBJ_CreateListHandle() API. This will

free any resources associated with the list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DeleteListHandle(

 cwbOBJ_ListHandle listHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

List handle that will be deleted.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_INVALID_HANDLE

List handle not found.

Usage

If the list associated with this handle is opened, this call will close it. If there are opened handles to

objects in this list, they will no longer be valid. After this call returns successfully, the list handle is no

longer valid.

cwbOBJ_GetListSize:

Purpose

Get the size of an opened list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetListSize(

 cwbOBJ_ListHandle listHandle,

 unsigned long *size,

 cwbOBJ_List_Status *listStatus,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

Handle of the list to get the size of. This list must be opened.

unsigned long *size - output

On output, this will be set to the current size of the list.

cwbOBJ_List_Status *listStatus - output

Optional, may be NULL. This will always be CWBOBJ_LISTSTS_COMPLETED for lists opened

synchronously.

258 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated list handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_LIST_NOT_OPEN

The list isn’t open.

Usage

None

cwbOBJ_OpenList:

Purpose

Open the list. This actually builds the list. Caller must call the cwbOBJ_ClostList() API when done with

the list to free resources. After the list is opened, the caller may use other APIs on the list to do things

such as get the list size and get object handles to items in the list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_OpenList(

 cwbOBJ_ListHandle listHandle,

 cwbOBJ_List_OpenType openType,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

Handle of the list to open.

cwbOBJ_List_OpenType openHandle - input

Manner in which to open the list. Must be set to CWBOBJ_LIST_OPEN_SYNCH

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

Programming 259

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated list handle.

CWBOBJ_RC_LIST_OPEN

The list is already open.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_NOHOSTSUPPORT

Host doesn’t support this type of list.

Usage

None

cwbOBJ_ResetListAttrsToRetrieve:

Purpose

Resets the list attributes to retrieve information to its default list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_ResetListAttrsToRetrieve(

 cwbOBJ_ListHandle listHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

List handle to reset.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion

CWB_INVALID_HANDLE

Handle is not an allocated list handle.

Usage

Use this call to reset the list handle’s list of attributes to retrieve after calling

cwbOBJ_SetListAttrsToRetrieve().

cwbOBJ_ResetListFilter:

Purpose

Resets the filter on a list to what it was when the list was first allocated (the default filter).

260 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY cwbOBJ_ResetListFilter(

 cwbOBJ_ListHandle listHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

Handle of the list to have its filter reset.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not allocated list handle.

Usage

The list must be closed and reopened for the change to take affect.

cwbOBJ_SetListAttrsToRetrieve:

Purpose

An optional function that may be applied to list handle before the list is opened. The purpose of doing

this is to improve efficiency by allowing the cwbOBJ_OpenList() API to retrieve just the attributes of each

object that the application will be using.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetListAttrsToRetrieve(

 cwbOBJ_ListHandle listHandle,

 unsigned long numKeys,

 const cwbOBJ_KeyID *keys,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

List handle to apply the list of attribute keys to.

unsigned long numKeys - input

The number of keys pointed to by the ’keys’ parameter. May be 0, which means that no attributes are

needed for objects in the list.

const cwbOBJ_KeyID *keys - input

An array of numKeys keys that are the IDs of the attributes to be retrieved for each object in the list

when the list is opened.

Programming 261

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated list handle.

CWB_INVALID_PARAMETER

Invalid parameter specified.

Usage

This call is used to provide a clue to the cwbOBJ_OpenList() API as to what attributes the application is

interested in for the objects that are listed. Using this information, the cwbOBJ_OpenList() API can be

more efficient. The attribute keys that are valid in the ’keys’ list depend on type of object being listed (set

on cwbOBJ_CreateListHandle()) Call cwbOBJ_ResetListAttrsToRetrieve() to reset the list to its default list

of keys.

cwbOBJ_SetListFilter:

Purpose

Sets filters for the list. This filter is applied the next time cwbOBJ_OpenList() is called.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetListFilter(

 cwbOBJ_ListHandle listHandle,

 cwbOBJ_KeyID key,

 const char *value,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

List handle that this filter will be applied to.

cwbOBJ_KeyID key - input

The id of the filtering field to be set.

const void *value - input

The value this field should be set to.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

262 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_NO_ERROR

Successful completion.

CWB_INVALID_HANDLE

List handle not found.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

The value of key will determine the type that is pointed to value. The length of value is determined by

its type. The following filters may be set against these list types Spooled File Lists:

v CWBOBJ_LIST_SPLF:

– CWBOBJ_KEY_USER

Specifies which user’s spooled files are to be listed. May be a specific user ID or one of these special

values: *ALL - all users. *CURRENT - list spooled files for the current user only. *CURRENT is the

default.

– CWBOBJ_KEY_OUTQUELIB

Specifies which libraries to search for output queues in. May be a specific name or one of these

special values: ″″ - if the OUTQUEUE key word is *ALL, this combination will search all output

queue on the system. *CURLIB - the current library *LIBL - the library list *LIBL is the default if the

OUTQUE filter is not *ALL. ″″ is the default if the OUTQU filter is set to *ALL.

– CWBOBJ_KEY_OUTQUE

Specifies which output queues to search for spooled files on May be a specific name or the special

value *ALL. *ALL is the default.

– CWBOBJ_KEY_FORMTYPE

Specifies which spooled files are listed by the form type attribute that they have. May be a specific

name or one of these special values: *ALL - spooled files with any form type are listed. *STD -

spooled files with the form type of *STD are listed *ALL is the default.

– CWBOBJ_KEY_USERDATA

Specifies which spooled files are listed by the user data that they have. May be a specific value or

one of these special values: *ALL - spooled files with any user data value are listed. *ALL is the

default.

Output Queue Lists:

v CWBOBJ_LIST_OUTQ:

– CWBOBJ_KEY_OUTQUELIB

Specifies which libraries to search for output queues in. May be a specific name, a generic name or

any of these special values: *ALL - all libraries *ALLUSER - all user-defined libraries, plus libraries

containing user data and having names starting with Q *CURLIB - the current library *LIBL - the

library list *USRLIBL - the user portion o the library list. *LIBL is the default.

–

- CWBOBJ_KEY_OUTQUE

Specifies which output queues to list. May be a specific name, a generic name or *ALL. *ALL is

the default.

Printer Device Description Lists:

v CWBOBJ_LIST_PRTD:

– CWBOBJ_KEY_PRINTER

Programming 263

Specifies which printer device to list. May be a specific name, a generic name or *ALL. *ALL is the

default.

Printer File Lists:

v CWBOBJ_LIST_PRTF:

– CWBOBJ_KEY_PRTRFILELIB

Specifies which libraries to search for printer files in. May be a specific name, a generic name or any

of these special values:

- *ALL - all libraries

- *ALLUSER - all user-defined libraries, plus libraries containing user data and having names

starting with Q

- *CURLIB - the current library

- *LIBL - the library list

- *USRLIBL - the user portion o the library list.

- *ALL is the default.
– CWBOBJ_KEY_PRTRFILE

Specifies which printer files to list. May be a specific name, a generic name or *ALL. *ALL is the

default.

Writer Job Lists:

v CWBOBJ_LIST_WTR:

– CWBOBJ_KEY_WRITER

Specifies which writer jobs to list. May be a specific name, a generic name or *ALL. *ALL is the

default.

– CWBOBJ_KEY_OUTQUELIB & CWBOBJ_KEY_OUTQUE

These filters are used together to get a list of writers active to a particular output queue. If the

OUTQUE key is specified the WRITER key is ignored. (all writers for the specified output queue are

listed). If the OUTQUE key is specified and the OUTQUELIB isn’t, the OUTQUEULIB will default to

*LIBL - the system library list. The default is for neither of these to be specified.

Library Lists:

v CWBOBJ_LIST_LIB:

– CWBOBJ_KEY_LIBRARY

Specifies which libraries to list. May be a specific name, a generic name or any of these special

values:

- *ALL - all libraries

- *CURLIB - the current library

- *LIBL - the library list

- *USRLIBL - the user portion o the library list.

- *USRLIBL is the default.
v CWBOBJ_LIST_RSC:

– Resources can be lists in a spooled file (lists all of the external AFP resources used by this spooled

file) or in a library or set of libraries. To list resources for a spooled file, use the

cwbOBJ_SetListFilterWithSplF API along with the SetListFilter API for the RSCTYPE and RSCNAME

attributes.

- CWBOBJ_KEY_RSCLIB

Specifies which libraries to search for resources in. This filter is ignored if the list is filter by

spooled file (for example, SetListFilterWithSplF). May be a specific name, a generic name or any

of these special values:

264 IBM Systems - iSeries: iSeries Access for Windows: Programming

v *ALL - all libraries

v *ALLUSR - All user-defined libraries, plus libraries containing user data and having names

starting with Q.

v *CURLIB - the current library

v *LIBL - the library list

v *USRLIBL - the user portion o the library list.

v *LIBL is the default.
- CWBOBJ_KEY_RSCNAME

Specifies which resources to list by name. May be a specific name, a generic name or *ALL.

*ALL is the default.

- CWBOBJ_KEY_RESCTYPE

Specifies which type of resources to list. May be any combination of the following bits logically

OR’d together:

v CWBOBJ_AFPRSC_FONT

v CWBOBJ_AFPRSC_FORMDEF

v CWBOBJ_AFPRSC_OVERLAY

v CWBOBJ_AFPRSC_PAGESEG

v CWBOBJ_AFPRSC_PAGEDEF

cwbOBJ_SetListFilterWithSplF:

Purpose

Sets filter for a list to a spooled file. For listing resources this limits the resources returned by the

openList to those used by the spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetListFilterWithSplF(

 cwbOBJ_ListHandle listHandle,

 cwbOBJ_ObjHandle splFHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

List handle that this filter will be applied to.

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to filter on.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWBOBJ_RC_INVALID_TYPE

Incorrect type of list.

Programming 265

CWB_INVALID_HANDLE

List handle not found or bad spooled file handle.

Usage

Filtering by spooled file is used when listing AFP resources so the list type must be CWBOBJ_LIST_RSC.

If you filter resources based on a spooled file you cannot also filter based on a library or libraries. The

resource library filter will be ignored if both are specified. Resetting a list filter will also reset the spooled

file filter to nothing.

Object APIs for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to Objects. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CopyObjHandle:

Purpose

Creates a duplicate handle to an object. Use this API to get another handle to the same iSeries object. This

new handle will be valid until the cwbOBJ_DeleteObjHandle() API has been called to release it.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CopyObjHandle(

 cwbOBJ_ObjHandle objectHandle,

 cwbOBJ_ObjHandle *newObjectHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle objectHandle - input

Handle of the object to copy.

cwbOBJ_ObjHandle *newObjectHandle - output

Upon successful competition of this call, this handle will contain the new object handle.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

Usage

If you have a handle to an object in a list and wish to maintain a handle to that object after the list has

been close this API allows you to do that. cwbOBJ_DeleteObjHandle() must be called to release resources

for this handle.

266 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbOBJ_DeleteObjHandle:

Purpose

Releases a handle to an object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DeleteObjHandle(

 cwbOBJ_ObjHandle objectHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle objectHandle - input

Handle of the object to release.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

Usage

None

cwbOBJ_GetObjAttr:

Purpose

Get an attribute of an object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjAttr(

 cwbOBJ_ObjHandle objectHandle,

 cwbOBJ_KeyID key,

 void *buffer,

 unsigned long bufLen,

 unsigned long *bytesNeeded,

 cwbOBJ_DataType *keyType,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle objectHandle - input

Handle of the object to get the attribute for.

Programming 267

cwbOBJ_KeyID key - input

Identifying key of the attribute to retrieve. The CWBOBJ_KEY_XXX constants define the key ids. The

type of object pointed to by objectHandle determine which keys are valid.

void *buffer - output

The buffer that will hold the attribute value, if this call returns successfully. The value of the key

determines what type of data will be put into pBuffer. The type is also returned to the *keyType

parameter, if provided.

unsigned long bufLen - input

The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output

On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output

Optional, may be NULL. On output this will contain the type of data used to represent this attribute

and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW

Buffer too small.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY

Key isn’t valid.

CWB_API_ERROR

General API failure.

Usage

The following attributes may be retrieved for these object types:

v CWBOBJ_LIST_SPLF:

CWBOBJ_KEY_AFP - AFP resources used

CWBOBJ_KEY_ALIGN - Align page

CWBOBJ_KEY_BKMGN_ACR - Back margin across

CWBOBJ_KEY_BKMGN_DWN - Back margin down

CWBOBJ_KEY_BKOVRLLIB - Back overlay library name

CWBOBJ_KEY_BKOVRLAY - Back overlay name

CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across

CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down

CWBOBJ_KEY_CPI - Characters per inch

CWBOBJ_KEY_CODEDFNTLIB - Coded font library name

268 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBOBJ_KEY_CODEDFNT - Coded font

CWBOBJ_KEY_COPIES - Copies (total)

CWBOBJ_KEY_COPIESLEFT - Copies left to produce

CWBOBJ_KEY_CURPAGE - Current page

CWBOBJ_KEY_DATE - Date file was opened

CWBOBJ_KEY_PAGRTT - Degree of page rotation

CWBOBJ_KEY_ENDPAGE - Ending page

CWBOBJ_KEY_FILESEP - File separators

CWBOBJ_KEY_FOLDREC - Wrap text to next line

CWBOBJ_KEY_FONTID - Font identifier to use (default)

CWBOBJ_KEY_FORMFEED - Form feed

CWBOBJ_KEY_FORMTYPE - Form type

CWBOBJ_KEY_FTMGN_ACR - Front margin across

CWBOBJ_KEY_FTMGN_DWN - Front margin down

CWBOBJ_KEY_FTOVRLLIB - Front overlay library name

CWBOBJ_KEY_FTOVRLAY - Front overlay

CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across

CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down

CWBOBJ_KEY_CHAR_ID - Graphic character set

CWBOBJ_KEY_JUSTIFY - Hardware justification

CWBOBJ_KEY_HOLD - Hold the spool file

CWBOBJ_KEY_JOBNAME - Name of the job that created file

CWBOBJ_KEY_JOBNUMBER - Number of the job that created file

CWBOBJ_KEY_USER - Name of the user that created file

CWBOBJ_KEY_LASTPAGE - Last page that printed

CWBOBJ_KEY_LPI - Lines per inch

CWBOBJ_KEY_MAXRECORDS - Maximum number of records allowed

CWBOBJ_KEY_OUTPTY - Output priority

CWBOBJ_KEY_OUTQUELIB - Output queue library name

CWBOBJ_KEY_OUTQUE - Output queue

CWBOBJ_KEY_OVERFLOW - Overflow line number

CWBOBJ_KEY_PAGELEN - Page length

CWBOBJ_KEY_MEASMETHOD - Measurement method

CWBOBJ_KEY_PAGEWIDTH - Page width

CWBOBJ_KEY_MULTIUP - Logical pages per physical side

CWBOBJ_KEY_POINTSIZE - The default font’s point size

CWBOBJ_KEY_FIDELITY - The error handling when printing

CWBOBJ_KEY_DUPLEX - Print on both sides of paper

CWBOBJ_KEY_PRTQUALITY - Print quality

CWBOBJ_KEY_PRTTEXT - Text printed at bottom of each page

CWBOBJ_KEY_PRTDEVTYPE - Printer dev type (data stream type)

CWBOBJ_KEY_PRTRFILELIB - Printer file library

CWBOBJ_KEY_PRTRFILE - Printer file

CWBOBJ_KEY_RECLENGTH - Record length

CWBOBJ_KEY_RPLUNPRT - Replace unprintable characters

CWBOBJ_KEY_RPLCHAR - Character to replace unprintables

CWBOBJ_KEY_RESTART - Where to restart printing at

CWBOBJ_KEY_SAVESPLF - Save file after printing

CWBOBJ_KEY_SRCDRWR - Source drawer

CWBOBJ_KEY_SPOOLFILE - Spool file name

CWBOBJ_KEY_SPLFNUM - Spool file number

CWBOBJ_KEY_SPLFSTATUS - Spool file status

CWBOBJ_KEY_STARTPAGE - Starting page to print

CWBOBJ_KEY_TIME - Time spooled file was opened at

CWBOBJ_KEY_PAGES - Number of pages in spool file

CWBOBJ_KEY_UNITOFMEAS - Unit of measure

CWBOBJ_KEY_USERCMT - User comment

CWBOBJ_KEY_USERDATA - User data

CWBOBJ_KEY_USRDFNDTA - User defined data

CWBOBJ_KEY_USRDFNOPTS - User defined options

CWBOBJ_KEY_USRDFNOBJ - User defined object

CWBOBJ_KEY_USRDFNOBJLIB- User defined object library

CWBOBJ_KEY_USRDFNOBJTYP- User defined object type

v CWBOBJ_LIST_OUTQ:

Programming 269

CWBOBJ_KEY_AUTHCHCK - authority to check

CWBOBJ_KEY_DATAQUELIB - data queue library

CWBOBJ_KEY_DATAQUE - data queue

CWBOBJ_KEY_DESCRIPTION - text description

CWBOBJ_KEY_DISPLAYANY - users can display any file on queue

CWBOBJ_KEY_JOBSEPRATR - number of job separators

CWBOBJ_KEY_NUMFILES - total spooled files on output queue

CWBOBJ_KEY_NUMWRITERS - number of writers started to queue

CWBOBJ_KEY_OPCNTRL - operator controlled

CWBOBJ_KEY_ORDER - order on queue (sequence)

CWBOBJ_KEY_OUTQUELIB - output queue library name

CWBOBJ_KEY_OUTQUE - output queue

CWBOBJ_KEY_OUTQUESTS - output queue status

CWBOBJ_KEY_PRINTER - printer

CWBOBJ_KEY_SEPPAGE - print banner page

CWBOBJ_KEY_USRDFNDTA - user defined data

CWBOBJ_KEY_USRDFNOBJ - user defined object

CWBOBJ_KEY_USRDFNOBJLIB- user defined object library

CWBOBJ_KEY_USRDFNOBJTYP- user defined object type

CWBOBJ_KEY_USRDFNOPTS - user defined options

CWBOBJ_KEY_USRDRVPGM - user driver program

CWBOBJ_KEY_USRDRVPGMLIB- user driver program library

CWBOBJ_KEY_USRDRVPGMDTA- user driver program data

CWBOBJ_KEY_USRTFMPGM - user data transform program

CWBOBJ_KEY_USRTFMPGMLIB- user data transform program library

CWBOBJ_KEY_WRITER - writer job name

CWBOBJ_KEY_WTRJOBNUM - writer job number

CWBOBJ_KEY_WTRJOBSTS - writer job status

CWBOBJ_KEY_WTRJOBUSER - writer job user

v CWBOBJ_LIST_PRTD:

CWBOBJ_KEY_AFP - AFP resources used

CWBOBJ_KEY_CODEPAGE - code page

CWBOBJ_KEY_DEVCLASS - device class

CWBOBJ_KEY_DEVMODEL - device model

CWBOBJ_KEY_DEVTYPE - device type

CWBOBJ_KEY_DRWRSEP - drawer to use for separators

CWBOBJ_KEY_FONTID - font identifier

CWBOBJ_KEY_FORMFEED - form feed

CWBOBJ_KEY_CHAR_ID - graphic character set

CWBOBJ_KEY_MFGTYPE - manufacturer’s type & model

CWBOBJ_KEY_MSGQUELIB - message queue library

CWBOBJ_KEY_MSGQUE - message queue

CWBOBJ_KEY_POINTSIZE - default font’s point size

CWBOBJ_KEY_PRINTER - printer

CWBOBJ_KEY_PRTQUALITY - print quality

CWBOBJ_KEY_DESCRIPTION - text description

CWBOBJ_KEY_SCS2ASCII - transform SCS to ASCII

CWBOBJ_KEY_USRDFNDTA - user defined data

CWBOBJ_KEY_USRDFNOPTS - user defined options

CWBOBJ_KEY_USRDFNOBJLIB- user defined object library

CWBOBJ_KEY_USRDFNOBJ - user defined object

CWBOBJ_KEY_USRDFNOBJTYP- user defined object type

CWBOBJ_KEY_USRTFMPGMLIB- user data transform

 program library

CWBOBJ_KEY_USRTFMPGM - user data transform program

CWBOBJ_KEY_USRDRVPGMDTA- user driver program data

CWBOBJ_KEY_USRDRVPGMLIB- user driver program library

CWBOBJ_KEY_USRDRVPGM - user driver program

v CWBOBJ_LIST_PRTF:

CWBOBJ_KEY_ALIGN - align page

CWBOBJ_KEY_BKMGN_ACR - back margin across

CWBOBJ_KEY_BKMGN_DWN - back margin down

CWBOBJ_KEY_BKOVRLLIB - back side overlay library

CWBOBJ_KEY_BKOVRLAY - back side overlay name

CWBOBJ_KEY_BKOVL_DWN - back overlay offset down

270 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBOBJ_KEY_BKOVL_ACR - back overlay offset across

CWBOBJ_KEY_CPI - characters per inch

CWBOBJ_KEY_CODEDFNTLIB - coded font library name

CWBOBJ_KEY_CODEPAGE - code page

CWBOBJ_KEY_CODEDFNT - coded font

CWBOBJ_KEY_COPIES - copies (total)

CWBOBJ_KEY_DBCSDATA - contains DBCS character set data

CWBOBJ_KEY_DBCSEXTENSN - process DBCS extension

 characters

CWBOBJ_KEY_DBCSROTATE - rotate DBCS characters

CWBOBJ_KEY_DBCSCPI - DBCS CPI

CWBOBJ_KEY_DBCSSISO - DBCS SI/SO positioning

CWBOBJ_KEY_DFR_WRITE - defer write

CWBOBJ_KEY_PAGRTT - degree of page rotation

CWBOBJ_KEY_ENDPAGE - ending page number to print

CWBOBJ_KEY_FILESEP - number of file separators

CWBOBJ_KEY_FOLDREC - wrap text to next line

CWBOBJ_KEY_FONTID - Font identifier to use (default)

CWBOBJ_KEY_FORMFEED - type of paperfeed to be used

CWBOBJ_KEY_FORMTYPE - name of the form to be used

CWBOBJ_KEY_FTMGN_ACR - front margin across

CWBOBJ_KEY_FTMGN_DWN - front margin down

CWBOBJ_KEY_FTOVRLLIB - front side overlay library

CWBOBJ_KEY_FTOVRLAY - front side overlay name

CWBOBJ_KEY_FTOVL_ACR - front overlay offset across

CWBOBJ_KEY_FTOVL_DWN - front overlay offset down

CWBOBJ_KEY_CHAR_ID - graphic character set for this file

CWBOBJ_KEY_JUSTIFY - hardware justification

CWBOBJ_KEY_HOLD - hold the spool file

CWBOBJ_KEY_LPI - lines per inch

CWBOBJ_KEY_MAXRCDS - maximum number of records allowed

CWBOBJ_KEY_OUTPTY - output priority

CWBOBJ_KEY_OUTQUELIB - output queue library

CWBOBJ_KEY_OUTQUE - output queue

CWBOBJ_KEY_OVERFLOW - overflow line number

CWBOBJ_KEY_LINES_PAGE - page length in lines per page

CWBOBJ_KEY_PAGELEN - page length in Units of Measurement

CWBOBJ_KEY_MEASMETHOD - measurement method

 (*ROWCOL or *UOM)

CWBOBJ_KEY_CHAR_LINE - page width in characters per line

CWBOBJ_KEY_PAGEWIDTH - width of page in Units of Measure

CWBOBJ_KEY_MULTIUP - logical pages per physical side

CWBOBJ_KEY_POINTSIZE - the default font’s point size

CWBOBJ_KEY_FIDELITY - the error handling when printing

CWBOBJ_KEY_DUPLEX - print on both sides of paper

CWBOBJ_KEY_PRTQUALITY - print quality

CWBOBJ_KEY_PRTTEXT - text printed at bottom of each page

CWBOBJ_KEY_PRINTER - printer device name

CWBOBJ_KEY_PRTDEVTYPE - printer dev type (data stream type)

CWBOBJ_KEY_PRTRFILELIB - printer file library

CWBOBJ_KEY_PRTRFILE - printer file

CWBOBJ_KEY_RPLUNPRT - replace unprintable characters

CWBOBJ_KEY_RPLCHAR - character to replace unprintables

CWBOBJ_KEY_SAVE - save spooled file after printing

CWBOBJ_KEY_SRCDRWR - source drawer

CWBOBJ_KEY_SPOOL - spool the data

CWBOBJ_KEY_SCHEDULE - when available to the writer

CWBOBJ_KEY_STARTPAGE - starting page to print

CWBOBJ_KEY_DESCRIPTION - text description

CWBOBJ_KEY_UNITOFMEAS - unit of measure

CWBOBJ_KEY_USERDATA - user data

CWBOBJ_KEY_USRDFNDTA - User defined data

CWBOBJ_KEY_USRDFNOPTS - User defined options

CWBOBJ_KEY_USRDFNOBJLIB- User defined object library

CWBOBJ_KEY_USRDFNOBJ - User defined object

CWBOBJ_KEY_USRDFNOBJTYP- User defined object type

v CWBOBJ_LIST_WTR:

Programming 271

CWBOBJ_KEY_WRITER - writer job name

CWBOBJ_KEY_WTRJOBNUM - writer job number

CWBOBJ_KEY_WTRJOBSTS - writer job status

CWBOBJ_KEY_WTRJOBUSER - writer job user

v CWBOBJ_LIST_LIB:

CWBOBJ_KEY_LIBRARY - the library name

CWBOBJ_KEY_DESCRIPTION - description of the library

v CWBOBJ_LIST_RSC:

CWBOBJ_KEY_RSCNAME - resource name

CWBOBJ_KEY_RSCLIB - resource library

CWBOBJ_KEY_RSCTYPE - resource object type

CWBOBJ_KEY_OBJEXTATTR - object extended attribute

CWBOBJ_KEY_DESCRIPTION - description of the resource

CWBOBJ_KEY_DATE - date object was last modified

CWBOBJ_KEY_TIME - time object was last modified

cwbOBJ_GetObjAttrs:

Purpose

Get several attributes of an object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjAttrs(

 cwbOBJ_ObjHandle objectHandle,

 unsigned long numAttrs,

 cwbOBJ_GetObjAttrParms *getAttrParms,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle objectHandle - input

Handle of the object to get the attribute for.

unsigned long numAttrs - input

number of attributes to retrieve

cwbOBJ_GetObjAttrParms *getAttrParms - input

an array of numAttrs elements that for each attribute to retrieve gives the attribute key (id), the

buffer where to store the value for that attribute and the size of the buffer

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW

Buffer too small.

272 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY

Key isn’t valid.

CWB_API_ERROR

General API failure.

Usage

See the Usage Notes in cwbOBJ_GetObjAttr to see which attribute are valid for the various types of

objects.

cwbOBJ_GetObjHandle:

Purpose

Get list object. This call gets a handle to an object in an opened list. The handle returned must be released

with the cwbOBJ_DeleteObjHandle when the caller is done with it to release resources. The handle

returned is only valid while the list is opened.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjHandle(

 cwbOBJ_ListHandle listHandle,

 unsigned long ulPosition,

 cwbOBJ_ObjHandle *objectHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ListHandle listHandle - input

Handle of the list to get the object handle from. This list must be opened.

unsigned long ulPosition - input

The position within the list of the object to get a handle for. It is 0 based. Valid values are 0 to the

number of objects in the list - 1. You can use cwbOBJ_GetListSize() to get the size of the list.

cwbOBJ_ObjHandle *objectHandle - output

On return, this will contain the handle of the object.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated list handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Programming 273

CWBOBJ_RC_LIST_NOT_OPEN

The list isn’t open.

CWBOBJ_RC_INVALID_INDEX

The ulPosition is out of range.

Usage

None

cwbOBJ_GetObjHandleFromID:

Purpose

Regenerate an object handle from it’s binary ID and type. cwbOBJ_DeleteObjHandle() must be called to

free resources when you are done using the object handle.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjHandleFromID(

 void *idBuffer,

 unsigned long bufLen,

 cwbOBJ_ObjType objectType,

 cwbOBJ_ObjHandle *objectHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

void *idBuffer - input

The buffer that holds the id of this object.

unsigned long bufLen - input

The length of the data pointed to by pIDBuffer.

cwbOBJ_ObjType type - input

Type of object this ID is for. This must match the type of object the ID was taken from.

cwbOBJ_ObjHandle *objectHandle - output

If this call returns successfully, this will be the handle to the object. This handle should be released

with the cwbOBJ_DeleteObjHandle() API when done using it.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWB_INVALID_PARAMETER

Invalid parameter specified.

274 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBOBJ_RC_INVALID_TYPE

objectType is not correct.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

None

cwbOBJ_GetObjID:

Purpose

Get the id of an object. This is the data the uniquely identifies this object on the server. The data gotten is

not readable and is binary. It can be passed back on the cwbOBJ_GetObjHandleFromID() API to get a

handle back to that object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjID(

 cwbOBJ_ObjHandle objectHandle,

 void *idBuffer,

 unsigned long bufLen,

 unsigned long *bytesNeeded,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle objectHandle - input

Handle of the object to get the ID from.

void *idBuffer - output

The buffer that will hold the ID of this object.

unsigned long bufLen - input

The length of the buffer pointed to by pIDBuffer.

unsigned long *bytesNeeded - output

On output, this will be the number of bytes needed to hold the ID.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW

Buffer too small.

Programming 275

Usage

None

cwbOBJ_RefreshObj:

Purpose

Refreshes the object with the latest information from the iSeries server. This will ensure the attributes

returned for the object are up to date.

Syntax

unsigned int CWB_ENTRY cwbOBJ_RefreshObj(

 cwbOBJ_ObjHandle objectHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle objectHandle - input

Handle of the object to be refreshed.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

The following object types may be refreshed:

v CWBOBJ_LIST_SPLF (spooled files)

v CWBOBJ_LIST_PRTF (printer files)

v CWBOBJ_LIST_OUTQ (output queues)

v CWBOBJ_LIST_PRTD (printer devices)

v CWBOBJ_LIST_WTR (writers)

Example: Assume listHandle points to a spooled file list with at least one entry in it.

cwbOBJ_ObjHandle splFileHandle;

ulRC = cwbOBJ_GetObjHandle(listHandle,

0,

&splFileHandle,

NULL);

if (ulRC == CWB_NO_ERROR)

{

276 IBM Systems - iSeries: iSeries Access for Windows: Programming

ulRC = cwbOBJ_RefreshObj(splFileHandle);

 get attributes for object

 ulRC = cwbOBJ_DeleteObjHandle(splFileHandle);

}

cwbOBJ_SetObjAttrs:

Purpose

Change the attributes of the object on the server.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetObjAttrs(

 cwbOBJ_ObjHandle objectHandle,

 cwbOBJ_ParmHandle parmListHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle objectHandle - input

Handle to the object that is to be changed.

cwbOBJ_ParmHandle parmListHandle - input

Handle to the parameter object which contains the attributes that are to be modified for the object.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

The following objects allow these attributes to be changed:

v CWBOBJ_LIST_SPLF (spooled files):

CWBOBJ_KEY_ALIGN - Align page

CWBOBJ_KEY_BKOVRLLIB - Back overlay library name

CWBOBJ_KEY_BKOVRLAY - Back overlay

CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across

CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down

CWBOBJ_KEY_COPIES - Copies

CWBOBJ_KEY_ENDPAGE - Ending page

CWBOBJ_KEY_FILESEP - File separators

CWBOBJ_KEY_FORMFEED - Form feed

CWBOBJ_KEY_FORMTYPE - Form type

Programming 277

CWBOBJ_KEY_FTOVRLLIB - Front overlay library name

CWBOBJ_KEY_FTOVRLAY - Front overlay

CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across

CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down

CWBOBJ_KEY_OUTPTY - Output priority

CWBOBJ_KEY_OUTQUELIB - Output queue library name

CWBOBJ_KEY_OUTQUE - Output queue

CWBOBJ_KEY_MULTIUP - Logical number of pages per side

CWBOBJ_KEY_FIDELITY - Print fidelity

CWBOBJ_KEY_DUPLEX - Print on both sides

CWBOBJ_KEY_PRTQUALITY - Print quality

CWBOBJ_KEY_PRTSEQUENCE - Print sequence

CWBOBJ_KEY_PRINTER - Printer

CWBOBJ_KEY_RESTART - Where to restart printing at

CWBOBJ_KEY_SAVESPLF - Save spooled file after printing

CWBOBJ_KEY_SCHEDULE - When spooled file available

CWBOBJ_KEY_STARTPAGE - Starting page

CWBOBJ_KEY_USERDATA - User data

CWBOBJ_KEY_USRDFNDTA - User defined data

CWBOBJ_KEY_USRDFNOPTS - User defined options

CWBOBJ_KEY_USRDFNOBJLIB - User defined object library

CWBOBJ_KEY_USRDFNOBJ - User defined object

CWBOBJ_KEY_USRDFNOBJTYP - User defined object type

v CWBOBJ_LIST_PRTF (printer files):

CWBOBJ_KEY_ALIGN - Align page

CWBOBJ_KEY_BKMGN_ACR - Back margin offset across

CWBOBJ_KEY_BKMGN_DWN - Back margin offset down

CWBOBJ_KEY_BKOVRLLIB - Back overlay library name

CWBOBJ_KEY_BKOVRLAY - Back overlay

CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across

CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down

CWBOBJ_KEY_CPI - Characters Per Inch

CWBOBJ_KEY_CODEPAGE - Code page

CWBOBJ_KEY_CODEDFNTLIB - Coded font library name

CWBOBJ_KEY_CODEDFNT - Coded font name

CWBOBJ_KEY_COPIES - Copies

CWBOBJ_KEY_DBCSDATA - Contains DBCS Data

CWBOBJ_KEY_DBCSEXTENSN - Process DBCS Extension characters

CWBOBJ_KEY_DBCSROTATE - DBCS character rotation

CWBOBJ_KEY_DBCSCPI - DBCS CPI

CWBOBJ_KEY_DBCSSISO - DBCS SO/SI spacing

CWBOBJ_KEY_DFR_WRITE - Defer writing

CWBOBJ_KEY_ENDPAGE - Ending page

CWBOBJ_KEY_FILESEP - File Separators(*FILE not

 allowed)

CWBOBJ_KEY_FOLDREC - Fold records

CWBOBJ_KEY_FONTID - Font identifier

CWBOBJ_KEY_FORMFEED - Form feed

CWBOBJ_KEY_FORMTYPE - Form type

CWBOBJ_KEY_FTMGN_ACR - Front margin offset across

CWBOBJ_KEY_FTMGN_DWN - Front margin offset down

CWBOBJ_KEY_FTOVRLLIB - Front overlay library name

CWBOBJ_KEY_FTOVRLAY - Front overlay

CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across

CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down

CWBOBJ_KEY_CHAR_ID - Graphic character set ID

CWBOBJ_KEY_JUSTIFY - Hardware Justification

CWBOBJ_KEY_HOLD - Hold spooled file

CWBOBJ_KEY_LPI - Lines per inch

CWBOBJ_KEY_MAXRECORDS - Maximum spooled file records

CWBOBJ_KEY_OUTPTY - Output priority

CWBOBJ_KEY_OUTQUELIB - Output queue library name

CWBOBJ_KEY_OUTQUE - Output queue

CWBOBJ_KEY_OVERFLOW - Overflow line number

CWBOBJ_KEY_PAGELEN - Page Length

CWBOBJ_KEY_MEASMETHOD - Measurement method

278 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBOBJ_KEY_PAGEWIDTH - Page width

CWBOBJ_KEY_MULTIUP - Logical number of pages per side

CWBOBJ_KEY_POINTSIZE - The default font’s point size

CWBOBJ_KEY_FIDELITY - Print fidelity

CWBOBJ_KEY_DUPLEX - Print on both sides

CWBOBJ_KEY_PRTQUALITY - Print quality

CWBOBJ_KEY_PRTTEXT - Print text

CWBOBJ_KEY_PRINTER - Printer

CWBOBJ_KEY_PRTDEVTYPE - Printer Device Type

CWBOBJ_KEY_RPLUNPRT - Replace unprintable characters

CWBOBJ_KEY_RPLCHAR - Replacement character

CWBOBJ_KEY_SAVESPLF - Save spooled file after printing

CWBOBJ_KEY_SRCDRWR - Source drawer

CWBOBJ_KEY_SPOOL - Spool the data

CWBOBJ_KEY_SCHEDULE - When spooled file available

CWBOBJ_KEY_STARTPAGE - Starting page

CWBOBJ_KEY_DESCRIPTION - Text description

CWBOBJ_KEY_UNITOFMEAS - Unit of measure

CWBOBJ_KEY_USERDATA - User data

CWBOBJ_KEY_USRDFNDTA - User defined data

CWBOBJ_KEY_USRDFNOPTS - User defined options

CWBOBJ_KEY_USRDFNOBJLIB - User defined object library

CWBOBJ_KEY_USRDFNOBJ - User defined object

CWBOBJ_KEY_USRDFNOBJTYP - User defined object type

v CWBOBJ_LIST_OUTQ (output queues):

v CWBOBJ_LIST_PRTD (printer devices):

v CWBOBJ_LIST_WTR (writers):

v CWBOBJ_LIST_LIB (libraries):

– NONE

Parameter object APIs for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to Parameter objects. The APIs are listed

alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CopyParmObjHandle:

Purpose

Creates a duplicate parameter list object. All attribute keys and values in the parameter list object will be

copied to the new parameter list object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CopyParmObjHandle(

 cwbOBJ_ParmHandle parmListHandle,

 cwbOBJ_ParmHandle *newParmListHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ParmHandle parmListHandle - input

Handle of the parameter list object to copy.

cwbOBJ_ParmHandle *newParmListHandle - output

Upon successful competition of this call, this handle will contain the new parameter list object

handle.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

Programming 279

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

Usage

The cwbOBJ_DeleteParmObjectHandle API must be called to free resources allocated by this call.

cwbOBJ_CreateParmObjHandle:

Purpose

Allocate a parameter list object handle. The parameter list object can be used to hold a list of parameters

that can be passed in on other APIs.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateParmObjHandle(

 cwbOBJ_ParmHandle *parmListHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ParmHandle *parmListHandle - output

Handle of the parameter object.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Usage

The cwbOBJ_DeleteParmObjectHandle API must be called to free resources allocated by this call.

cwbOBJ_DeleteParmObjHandle:

Purpose

Deallocate a parameter list object handle and free the resources used by it.

280 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY cwbOBJ_DeleteParmObjHandle(

 cwbOBJ_ParmHandle parmListHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ParmHandle parmListHandle - input

Handle of the parameter object.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not a parameter object handle.

Usage

After this call returns successfully, the parmListHandle is no longer valid.

cwbOBJ_GetParameter:

Purpose

Gets the value of a parameter in a parameter list object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetParameter(

 cwbOBJ_ParmHandle parmListHandle,

 cwbOBJ_KeyID key,

 void *buffer,

 unsigned long bufLen,

 unsigned long *bytesNeeded,

 cwbOBJ_DataType *keyType,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ParmHandle parmListHandle - input

Handle of the parameter object.

cwbOBJ_KeyID key - input

The id of the parameter to set.

void *buffer - output

The buffer that will hold the attribute value. If this call returns successfully. The value of the key

determines what type of data will be put into pBuffer. The type is also returned to the *keyType

parameter, if provided.

Programming 281

unsigned long bufLen - input

The length of the buffer pointed to by buffer.

unsigned long *bytesNeeded - output

On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output

Optional, may be NULL. On output this will contain the type of data used to represent this attribute

and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW

Buffer too small.

CWBOBJ_RC_KEY_NOT_FOUND

Key isn’t specified in parameter list.

CWB_API_ERROR

General API failure.

Usage

None

cwbOBJ_SetParameter:

Purpose

Sets the value of a parameter in a parameter list object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetParameter(

 cwbOBJ_ParmHandle parmListHandle,

 cwbOBJ_KeyID key,

 const void *value,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ParmHandle parmListHandle - input

Handle of the parameter object.

cwbOBJ_KeyID key - input

The id of the parameter to set.

282 IBM Systems - iSeries: iSeries Access for Windows: Programming

void *value - input

The value to set the parameter to. The type that value points to is determined by the value of key.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not a parameter object handle.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

None

Writer job APIs for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to Writer job. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_EndWriter:

Purpose

Ends an iSeries writer job.

Syntax

unsigned int CWB_ENTRY cwbOBJ_EndWriter(

 cwbOBJ_ObjHandle writerHandle,

 cwbOBJ_ParmHandle *parmListHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle writerHandle - input

Handle of the writer job to be stopped. This handle can be obtained by either listing writers and

getting the writer handle from that list or from starting a writer and asking for the writer handle to

be returned.

cwbOBJ_ParmHandle *parmListHandle - input

Optional. A pointer to a valid parameter list object handle that contains parameters for ending the

writer.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

Programming 283

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

After this calls returns successfully, cwbOBJ_DeleteObjHandle() should be called to release the

writerHandle. The following parameter key’s may be set in the pParmListHandl object:

v CWBOBJ_KEY_WTREND - When to end the writer. May be any these special values:

– *CNTRLD - end the writer after the current file is done printing.

– *IMMED - end the writer immediately

– *PAGEEND - end the writer at the end of the current page.

cwbOBJ_StartWriter:

Purpose

Starts an iSeries writer job.

Syntax

unsigned int CWB_ENTRY cwbOBJ_StartWriter(

 cwbOBJ_ObjHandle *printerHandle,

 cwbOBJ_ObjHandle *outputQueueHandle,

 cwbOBJ_ParmHandle *parmListHandle,

 cwbOBJ_ObjHandle *writerHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle *printerHandle - input

Required. A pointer to a valid printer object handle that identifies which printer this writer is to be

started to.

cwbOBJ_ObjHandle *outputQueueHandle - input

Optional. A pointer to a valid output queue object handle that identifies which output queue this

writer is to be started from. If the parmListHandle is also specified and contains the

CWBOBJ_KEY_OUTQUE parameter key, this parameter is ignored.

cwbOBJ_ParmHandle *parmListHandle - input

Optional. A pointer to a valid parameter list object handle that contains parameters for starting the

writer.

284 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbOBJ_ObjHandle *writerHandle - output

Optional. A pointer to a writer object handle that will be filled in upon successful return from this

API. If this parameter is specified, the caller must call cwbOBJ_DeleteObjHandle() to release resources

allocated for this writer handle.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

Calling this API causes the writer job to be submitted to run. The writer job may fail to start even though

this API returns successfully (the job may be successfully submitted, but fail to start). This is the behavior

of the STRPRTWTR command on the iSeries server. The following parameter keys may be set in the

parmListHandle object:

CWBOBJ_KEY_ALIGN - Align page

CWBOBJ_KEY_ALWDRTPRT - Allow direct printing

CWBOBJ_KEY_AUTOEND - Automatically end writer (*YES,*NO)

CWBOBJ_KEY_DRWRSEP - Drawer to use for separators

CWBOBJ_KEY_FILESEP - Number of file separators

CWBOBJ_KEY_FORMTYPE - Name of the form to be used

CWBOBJ_KEY_JOBNAME - Name of the job that created file

CWBOBJ_KEY_JOBNUMBER - Number of the job that created file

CWBOBJ_KEY_USER - Name of the user that created file

CWBOBJ_KEY_FORMTYPEMSG - Form type message option

CWBOBJ_KEY_MSGQUELIB - Message queue library

CWBOBJ_KEY_MSGQUE - Message queue name

CWBOBJ_KEY_OUTQUELIB - Output queue library

CWBOBJ_KEY_OUTQUE - Output queue

CWBOBJ_KEY_SPOOLFILE - Spool file name

CWBOBJ_KEY_SPLFNUM - Spool file number

CWBOBJ_KEY_WTRSTRPAGE - Page to start the writer on

CWBOBJ_KEY_WTREND - When to end the writer

CWBOBJ_KEY_WRITER - Writer job name

CWBOBJ_KEY_WTRINIT - When to initialize the printer device

Output queues APIs for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to Output queues. The APIs are listed

alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

Programming 285

cwbOBJ_HoldOutputQueue:

Purpose

Holds an iSeries output queue.

Syntax

unsigned int CWB_ENTRY cwbOBJ_HoldOutputQueue(

 cwbOBJ_ObjHandle queueHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle queueHandle - input

Handle of the output queue to be held.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not a valid queue handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

None

cwbOBJ_PurgeOutputQueue:

Purpose

Purges spooled files on an iSeries output queue.

Syntax

unsigned int CWB_ENTRY cwbOBJ_PurgeOutputQueue(

 cwbOBJ_ObjHandle queueHandle,

 cwbOBJ_ParmHandle *parmListHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle queueHandle - input

Handle of the output queue to be purged.

cwbOBJ_ParmHandle * parmListHandle - input

Optional. A pointer to a valid parameter list object handle that contains parameters for purging the

output queue.

286 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

The parameters specified in parmListHandle, if provided, will specify which spooled files are purged. If

parmListHandle is NULL, all spooled files for the current user are purged. The following parameter key’s

may be set in the parmListHandle object:

v CWBOBJ_KEY_USER

which user’s spooled files to purge. May be a specific user ID, ″*ALL″ or ″*CURRENT″. ″*CURRENT″

is the default.

v CWBOBJ_KEY_FORMTYPE

which spooled files to purge base on what formtype they have. May be a specific formtype, ″*ALL″ or

″*STD″. ″*ALL″ is the default.

v CWBOBJ_KEY_USERDATA

which spooled files to purge base on what userdata they have. May be a specific value or ″*ALL″.

″*ALL″ is the default.

cwbOBJ_ReleaseOutputQueue:

Purpose

Releases an iSeries output queue.

Syntax

unsigned int CWB_ENTRY cwbOBJ_ReleaseOutputQueue(

 cwbOBJ_ObjHandle queueHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle queueHandle - input

Handle of the output queue to be released.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

Programming 287

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not a valid queue handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

None

AFP resource APIs for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to AFP resources. The APIs are listed

alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CloseResource:

Purpose

Closes an AFP Resource object that was previously opened for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseResource(

 cwbOBJ_ObjHandle resourceHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle resourceHandle - input

Handle of the resource to be closed.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

288 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INVALID_HANDLE

Handle is not valid resource handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_RSCNOTOPEN

Resource not opened.

CWBOBJ_RC_SPLFNOTOPEN

Spooled file not open.

Usage

If the handle for the resource was obtained via a call to the cwbOBJ_OpenResourceForSplF() API, then

this api will delete the handle for you (the handle was dynamically allocated for you when you opened

the resource and this call deallocates it).

cwbOBJ_CreateResourceHandle:

Purpose

Create a resource handle for a particular AFP resource on a specified system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateResourceHandle(

 const char *systemName,

 const char *resourceName,

 const char *resourceLibrary,

 cwbOBJ_AFPResourceType resourceType,

 cwbOBJ_ObjHandle *objectHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

const char *systemName - input

Pointer to the system name contained in an ASCIIZ string.

const char *resourceName - input

Pointer to the name of the AFP resource.

const char *resourceLibrary - input

Pointer to the name of the iSeries library that contains the resource.

cwbOBJ_AFPResourceType resourceType - input

Specifies what type of resource this is. Must be one of the following:

v CWBOBJ_AFPRSC_FONT

v CWBOBJ_AFPRSC_FORMDEF

v CWBOBJ_AFPRSC_OVERLAY

v CWBOBJ_AFPRSC_PAGESEG

v CWBOBJ_AFPRSC_PAGEDEF

cwbOBJ_ObjHandle *objectHandle - output

On output this will contain the resource handle.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Programming 289

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR

General API failure.

Usage

Use this API to get a handle to a resource if you know the name library and type of resource. If you

don’t know either of these or want to choose from a list, use the list APIs to list AFP resources instead.

This API does no checking of the AFP resource on the host. The first time this handle is used to retrieve

data for the resource, a host error will be encountered if the resource file doesn’t exist.

cwbOBJ_DisplayResource:

Purpose

Displays the specified AFP resource to the user.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DisplayResource(

 cwbOBJ_ObjHandle resourceHandle,

 const char *view,

 const unsigned long flags,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle resourceHandle - input

Handle of the AFP Resource object. It must be an overlay or a pagesegment type of resource.

const char *view - input

Optional, may be NULL. If specified, it is a pointer to an ASCIIZ string that specifies the view to use

when invoking the AFP viewer. There are two predefined views shipped with the viewer: LETTER

(8.5″ x 11″) and SFLVIEW (132 column). Users may also add their own.

const unsigned long flags - input

Any of following bits may be set: CWBOBJ_DSPSPLF_WAIT - instructs this call to wait until the

viewer process has successfully opened the resource before returning. If this bit is 0, this API will

return after it starts the viewer process. If it is 1, this API will wait for the viewer to get the resource

open before returning. All other bits must be set to 0.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

290 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate a temporary buffer.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWB_NO_VIEWER

The viewer support for ClientAccess/400 was not installed.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the code page that is being used.

CWB_API_ERROR

General API failure.

CWBOBJ_RC_INVALID_TYPE

The handle given for resourceHandle is not a handle to an overlay or pagesegment resource.

Usage

Use this API to bring up the AFP viewer on the specified AFP resource. The type of the resource must be

an overlay or a pagesegment. A return code of CWB_NO_VIEWER means that the viewer component

was not installed on the workstation.

cwbOBJ_OpenResource:

Purpose

Opens an AFP resource object for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_OpenResource(

 cwbOBJ_ObjHandle resourceHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle resourceHandle - input

Handle of the AFP resource file to be opened for reading.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

Programming 291

CWB_INVALID_HANDLE

Handle is not valid resource handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_NOHOSTSUPPORT

Host doesn’t support working with resources.

Usage

The resource should be closed with the cwbOBJ_CloseResource() API when done reading from it.

cwbOBJ_OpenResourceForSplF:

Purpose

Opens an AFP Resource object for reading for a spooled file that is already opened for reading. The API

is useful if you are reading an AFP Spooled file and run into an external AFP Resource that you need to

read. By using this API you can open that resource for reading without having to first list the resource.

Syntax

unsigned int CWB_ENTRY cwbOBJ_OpenResourceForSplF(

 cwbOBJ_ObjHandle splFHandle,

 const char *resourceName,

 const char *resourceLibrary,

 unsigned long resourceType,

 const char *reserved,

 cwbOBJ_ObjHandle *resourceHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file that is already opened for reading and that the resource will be opened

against. The same conversation (and same instance of the network print server program on the iSeries

server) will be used for reading the resource and spooled file.

const char *resourceName - input

Pointer to the name of the AFP Resource in an ASCIIZ string.

const char *resourceLibrary - input

Optional, may be NULL. Pointer to the iSeries library of the AFP Resource in an ASCIIZ string. If no

library is specified, the library list of the spooled file is used to search for the resource.

unsigned long resourceType - input

An unsigned long integer with one of the following bits on:

v CWBOBJ_AFPRSC_FONT

v CWBOBJ_AFPRSC_FORMDEF

v CWBOBJ_AFPRSC_OVERLAY

v CWBOBJ_AFPRSC_PAGESEG

v CWBOBJ_AFPRSC_PAGEDEF

Specifies what type of resource to open.

const char *reserved -

Reserved, must be NULL.

292 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbOBJ_OBJHandle *resourceHandle - output

Pointer to an OBJHandle that on successful return will contain the dynamically allocated resource

handle that can be used to read, seek and eventually close the resource.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_FILE_NOT_FOUND

The resource wasn’t found.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_HANDLE

Handle is not valid resource handle.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN

The spooled file is not opened.

CWBOBJ_RC_NOHOSTSUPPORT

Host doesn’t support working with resources.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR

General API failure.

Usage

This call, if successful, will generate a temporary resource handle and return it in the resourceHandle

parameter. This handle will be deleted automatically when the caller calls the cwbOBJ_CloseResource()

API with it.

The resource should be closed with the cwbOBJ_CloseResource()) API when done reading from it.

cwbOBJ_ReadResource:

Purpose

Reads bytes from the current read location.

Syntax

unsigned int CWB_ENTRY cwbOBJ_ReadResource(

 cwbOBJ_ObjHandle resourceHandle,

 char *bBuffer,

Programming 293

unsigned long bytesToRead,

 unsigned long *bytesRead,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle resourceHandle - input

Handle of the AFP resource object to be read from.

char *buffer - input

Pointer to buffer to hold the bytes read from the resource.

unsigned long bytesToRead - input

Maximum number of bytes to read. The number read may be less than this.

unsigned long *bytesRead - output

Number of bytes actually read.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_RSCNOTOPEN

Resource file has not been opened yet.

CWBOBJ_RC_ENDOFFILE

The end of file was read.

Usage

The cwbOBJ_OpenResource() API must be called with this resource handle before this API is called OR

the handle must be retrieved with a call to the cwbOBJ_OpenResourceForSplF() API. If the end of file is

reached when reading, the return code will be CWBOBJ_RC_ENDOFFILE and bytesRead will contain the

actual number of bytes read.

cwbOBJ_SeekResource:

Purpose

Moves the current read position on a resource that is open for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SeekResource(

 cwbOBJ_ObjHandle resourceHandle,

294 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbOBJ_SeekOrigin seekOrigin,

 signed long seekOffset,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle resourceHandle - input

Handle of the AFP resource file to be seeked.

cwbOBJ_SeekOrigin seekOrigin - input

Where to seek from. Valid values are:

v CWBOBJ_SEEK_BEGINNING - seek from the beginning of file

v CWBOBJ_SEEK_CURRENT - seek from the current read position

v CWBOBJ_SEEK_ENDING - seek from the end of the file

signed long seekOffset - input

Offset (negative or positive) from the seek origin in bytes to move the current read pointer to.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_RSCNOTOPEN

Resource has not been opened yet.

CWBOBJ_RC_SEEKOUTOFRANGE

Seek offset out of range.

Usage

The cwbOBJ_OpenResource() API must be called with this resource handle before this API is called OR

the handle must be retrieved with a call to the cwbOBJ_OpenResourceForSplF() API.

APIs for new spooled files for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to working with new spooled files. The APIs are

listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CloseNewSplF:

Programming 295

Purpose

Closes a newly created spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseNewSplF(

 cwbOBJ_ObjHandle newSplFHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle newSplFHandle - input

New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

Once a spooled file is closed, you can no longer write to it.

cwbOBJ_CloseNewSplFAndGetHandle:

Purpose

Closes a newly created spooled file and returns a handle to it.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseNewSplFAndGetHandle(

 cwbOBJ_ObjHandle newSplFHandle,

 cwbOBJ_ObjHandle *splFHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle newSplFHandle - input

New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.

cwbOBJ_ObjHandle *splFHandle - output

Pointer to an object handle that, upon successful, completion of this call, will hold the spooled file

handle. This handle may be used with other APIs that take a spooled file handle as input.

296 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

The handle returned in splFHandle must be released with the cwbOBJ_DeleteObjHandle() API in order to

free resources.

cwbOBJ_CreateNewSplF:

Purpose

Creates a new spooled file on the iSeries server.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateNewSplF(

 const char *systemName,

 cwbOBJ_ParmHandle *parmListHandle,

 cwbOBJ_ObjHandle *printerFileHandle,

 cwbOBJ_ObjHandle *outputQueueHandle,

 cwbOBJ_ObjHandle *newSplFHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

const char *systemName - input

Pointer to the system name contained in ASCIIZ string

cwbOBJ_ParmHandle *parmListHandle - input

Optional. A pointer to a valid parameter list object handle that contains parameters for creating the

spooled file. Parameters set in this list override what is in the printer file and the

*outputQueueHandle parameter.

cwbOBJ_ObjHandle *printerFileHandle - input

Optional. A pointer to a valid printer file object handle that references the printer file to be used

when creating this spooled file. The printer file must exist on the same system that this spooled file is

being created on.

cwbOBJ_ObjHandle *outputQueueHandle - input

Optional. A pointer to a valid output queue object handle that references the output queue that this

spooled file should be created on. The output queue must exist on the same system that this spooled

Programming 297

file is being created on. If the output queue is set in the *parmListHandle parameter (with

CWBOBJ_KEY_OUTQUELIB & CWBOBJ_KEY_OUTQUE) it will override the output queue specified

by this output queue handle.

cwbOBJ_ObjHandle *newSplFHandle - output

A pointer to a object handle that will be filled in upon successful completion of this call with the

newly created spooled file handle. This handle is needed to write data into and close the new

spooled file.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

If the parmListHandle is NULL, or doesn’t specify an attribute, the attribute is taken from the printer file

used. If the output queue is specified with the *parmListHandle, this will override what is specified in

the *outputQueueHandle parameter. If the output queue is not specified (not in the *parmListHandle

AND outputQueueHandle is NULL), the output queue used is taken from the printer file. If the printer

file is not specified (printerFileHandle is NULL), the server will use the default network print printer file,

*LIBL/QNPSPRTF. The following parameter keys may be set in the pParmListHandl object:

CWBOBJ_KEY_ALIGN - Align page

CWBOBJ_KEY_BKOVRLLIB - Back overlay library name

CWBOBJ_KEY_BKOVRLAY - Back overlay

CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across

CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down

CWBOBJ_KEY_CPI - Characters Per Inch

(1)CWBOBJ_KEY_CODEPAGE - Code page

CWBOBJ_KEY_COPIES - Copies

CWBOBJ_KEY_DBCSDATA - Contains DBCS Data

CWBOBJ_KEY_DBCSEXTENSN - Process DBCS Extension

 characters

CWBOBJ_KEY_DBCSROTATE - DBCS character rotation

CWBOBJ_KEY_DBCSCPI - DBCS CPI

CWBOBJ_KEY_DBCSSISO - DBCS SO/SI spacing

CWBOBJ_KEY_DFR_WRITE - Defer writing

CWBOBJ_KEY_ENDPAGE - Ending page

(2)CWBOBJ_KEY_FILESEP - File Separators

CWBOBJ_KEY_FOLDREC - Fold records

CWBOBJ_KEY_FONTID - Font identifier

298 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBOBJ_KEY_FORMFEED - Form feed

CWBOBJ_KEY_FORMTYPE - Form type

CWBOBJ_KEY_FTOVRLLIB - Front overlay library name

CWBOBJ_KEY_FTOVRLAY - Front overlay

CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across

CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down

(1)CWBOBJ_KEY_CHAR_ID - Graphic character set ID

CWBOBJ_KEY_JUSTIFY - Hardware Justification

CWBOBJ_KEY_HOLD - Hold spooled file

CWBOBJ_KEY_LPI - Lines per inch

CWBOBJ_KEY_MAXRECORDS - Maximum spooled file records

CWBOBJ_KEY_OUTPTY - Output priority

CWBOBJ_KEY_OUTQUELIB - Output queue library name

CWBOBJ_KEY_OUTQUE - Output queue

CWBOBJ_KEY_OVERFLOW - Overflow line number

CWBOBJ_KEY_PAGELEN - Page length

CWBOBJ_KEY_MEASMETHOD - Measurement method

CWBOBJ_KEY_PAGEWIDTH - Page width

CWBOBJ_KEY_MULTIUP - Logical number of pages

 per side

CWBOBJ_KEY_POINTSIZE - The default font’s point size

CWBOBJ_KEY_FIDELITY - Print fidelity

CWBOBJ_KEY_DUPLEX - Print on both sides

CWBOBJ_KEY_PRTQUALITY - Print quality

CWBOBJ_KEY_PRTTEXT - Print text

CWBOBJ_KEY_PRINTER - Printer device name

CWBOBJ_KEY_PRTDEVTYPE - Printer device type

CWBOBJ_KEY_RPLUNPRT - Replace unprintable characters

CWBOBJ_KEY_RPLCHAR - Replacement character

CWBOBJ_KEY_SAVESPLF - Save spooled file after

 printing

CWBOBJ_KEY_SRCDRWR - Source drawer

CWBOBJ_KEY_SPOOL - Spool the data

CWBOBJ_KEY_SPOOLFILE - Spool file name

CWBOBJ_KEY_SCHEDULE - When spooled file available

CWBOBJ_KEY_STARTPAGE - Starting page

CWBOBJ_KEY_UNITOFMEAS - Unit of measure

CWBOBJ_KEY_USERCMT - User comment (100 chars)

CWBOBJ_KEY_USERDATA - User data (10 chars)

CWBOBJ_KEY_SPLSCS - Spool SCS Data

CWBOBJ_KEY_USRDFNDTA - User defined data

(3)CWBOBJ_KEY_USRDFNOPTS - User defined options

CWBOBJ_KEY_USRDFNOBJLIB - User defined object library

CWBOBJ_KEY_USRDFNOBJ - User defined object

CWBOBJ_KEY_USRDFNOBJTYP - User defined object type

Note:

1. Code page and graphic character set are dependent on each other. If you specify one of these,

you must specify the other.

2. The special value of *FILE is not allowed when using this attribute to create a new spooled file.

3. Up to 4 user defined options may be specified.

cwbOBJ_GetSplFHandleFromNewSplF:

Purpose

Uses a new spooled file handle to generate a spooled file handle. See notes below about using this API

on a new spool file that was created with data type automatic.

Programming 299

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetSplFHandleFromNewSplF(

 cwbOBJ_ObjHandle newSplFHandle,

 cwbOBJ_ObjHandle *splFHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle newSplFHandle - input

New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.

cwbOBJ_ObjHandle *splFHandle - output

Pointer to an object handle that, upon successful completion of this call, will hold the spooled file

handle. This handle may be used with other APIs that take a spooled file handle as input.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN

Spooled file hasn’t been created on the host yet.

Usage

The handle returned in splFHandle must be released with the cwbOBJ_DeleteObjHandle() API in order to

free resources.

If you are using automatic data typing for the spooled file (the attribute of CWBOBJ_KEY_PRTDEVTYPE

was set to *AUTO or or wasn’t specified on the cwbOBJ_CreateNewSplF() API) then creation of the

spooled file will be delayed until sufficient data has been written to the spooled file to determine the type

of the data (*SCS, *AFPDS or *USERASCII). If the new spooled file is in this state when you call this API,

the return code will be CWBOBJ_RC_SPLFNOTOPEN.

cwbOBJ_WriteNewSplF:

Purpose

Writes data into a newly created spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_WriteNewSplF(

 cwbOBJ_ObjHandle newSplFHandle,

300 IBM Systems - iSeries: iSeries Access for Windows: Programming

const char *data,

 unsigned long dataLen,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle newSplFHandle - input

New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.

const char *data - input

Pointer to the data buffer that will be written into the spooled file.

unsigned long ulDataLen - input

Length of the data to be written.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

None

APIs for reading spooled files for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to reading spooled files. The APIs are listed

alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CloseSplF:

Purpose

Closes an iSeries spooled file that was previously opened for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseSplF(

 cwbOBJ_ObjHandle splFHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be closed.

Programming 301

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

None

cwbOBJ_OpenSplF:

Purpose

Opens an iSeries spooled file for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_OpenSplF(

 cwbOBJ_ObjHandle splFHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be opened for reading.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

302 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

The spooled file should be closed with the cwbOBJ_CloseSplF() API when done reading from it.

cwbOBJ_ReadSplF:

Purpose

Reads bytes from the current read location.

Syntax

unsigned int CWB_ENTRY cwbOBJ_ReadSplF(

 cwbOBJ_ObjHandle splFHandle,

 char *bBuffer,

 unsigned long bytesToRead,

 unsigned long *bytesRead,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be read from.

char *buffer - input

Pointer to buffer to hold the bytes read from the spooled file.

unsigned long bytesToRead - input

Maximum number of bytes to read. The number read may be less than this.

unsigned long *bytesRead - output

Number of bytes actually read.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN

Spooled file has not been opened yet.

CWBOBJ_RC_SPLFENDOFFILE

The end of file was read.

Programming 303

Usage

The cwbOBJ_OpenSplF() API must be called with this spooled fil handle before this API is called. If the

end of file is reached when reading, the return code will be CWBOBJ_SPLF_ENDOFFILE and bytesRead

will contain the actual number of bytes read.

cwbOBJ_SeekSplF:

Purpose

Moves the current read position on a spooled file that is open for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SeekSplF(

 cwbOBJ_ObjHandle splFHandle,

 cwbOBJ_SeekOrigin seekOrigin,

 signed long seekOffset,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be closed.

cwbOBJ_SeekOrigin seekOrigin - input

Where to seek from. Valid values are:

v CWBOBJ_SEEK_BEGINNING - seek from the beginning of file

v CWBOBJ_SEEK_CURRENT - seek from the current read position

v CWBOBJ_SEEK_ENDING - seek from the end of the file

signed long seekOffset - input

Offset (negative or positive) from the seek origin in bytes to move the current read pointer to.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN

Spooled file has not been opened yet.

304 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBOBJ_RC_SEEKOUTOFRANGE

Seek offset out of range.

Usage

The cwbOBJ_OpenSplF() API must be called with this spooled file handle before this API is called.

APIs for manipulating spooled files for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to manipulating spooled files. The APIs are listed

alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CallExitPgmForSplF:

Purpose

Instructs the iSeries Access Netprint server program, QNPSERVR, to call down its exit program chain

passing this spooled file’s ID and some application specified data as parameters.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CallExitPgmForSplF(

 cwbOBJ_ObjHandle splFHandle,

 void *data,

 unsigned long dataLen,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be passes as a parameter to the exit programs.

void *data - input

Pointer to a block of date that will be passed to the exit programs. The format of this data is exit

program specific.

unsigned long dataLen - input

length of data pointed to by pData.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Programming 305

CWBOBJ_RC_INVALID_TYPE

Handle is not a spooled file handle.

CWBOBJ_RC_NO_EXIT_PGM

No exit program is registered with the Network Print server.

Usage

This is a way for a client program to communicate with its server portion to do processing of spooled

files. All exit programs registered with the QNPSERVR program on the iSeries server will be called, so it

is up to the client program and exit program to architect the format of the data in *data such that the exit

program can recognize it. See the iSeries server ’Guide to Programming for Print’ for information on the

interface between the QNPSERVR server program and the exit programs.

cwbOBJ_CreateSplFHandle:

Purpose

Create a spooled file handle for a particular spooled file on a specified system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateSplFHandle(

 const char *systemName,

 const char *jobName,

 const char *jobNumber,

 const char *jobUser,

 const char *splFName,

 const unsigned long splFNumber,

 cwbOBJ_ObjHandle *objectHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

const char *systemName - input

Pointer to the system name contained in an ASCIIZ string.

const char *jobName - input

Pointer to the name of the iSeries job that created the spooled file in an ASCIIZ string.

const char *jobNumber - input

Pointer to the number of the iSeries job that created the spooled file in an ASCIIZ string.

const char *jobNumber - input

Pointer to the user of the iSeries job that created the spooled file in an ASCIIZ string.

const char *splFName - input

Pointer to the name of the spooled file in an ASCIIZ string.

const unsigned long splFNumber - input

The number of the spooled file.

cwbOBJ_ObjHandle *objectHandle - output

On output this will contain the spooled file handle.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

306 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

This API does no checking of the spooled file on the host. The first time this handle is used to retrieve

data for the spooled file, a host error will be encountered if the spooled file doesn’t exist.

cwbOBJ_CreateSplFHandleEx:

Purpose

Create a spooled file handle for a particular spooled file on a specified system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateSplFHandleEx(

 const char *systemName,

 const char *jobName,

 const char *jobNumber,

 const char *jobUser,

 const char *splFName,

 const unsigned long splFNumber,

 const char *createdSystem,

 const char *createdDate,

 const char *createdTime,

 cwbOBJ_ObjHandle *objectHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

const char *systemName - input

Pointer to the system name contained in an ASCIIZ string.

const char *jobName - input

Pointer to the name of the iSeries job that created the spooled file in an ASCIIZ string.

const char *jobNumber - input

Pointer to the number of the iSeries job that created the spooled file in an ASCIIZ string.

const char *jobNumber - input

Pointer to the user of the iSeries job that created the spooled file in an ASCIIZ string.

const char *splFName - input

Pointer to the name of the spooled file in an ASCIIZ string.

const unsigned long splFNumber - input

The number of the spooled file.

const char *createdSystem - input

Pointer to the name of the system the spooled file was created on in an ASCIIZ string.

Programming 307

const char *createdDate - input

Pointer to the date the spooled file was created in an ASCIIZ string.

const char *createdTime - input

Pointer to the time the spooled file was created in an ASCIIZ string.

cwbOBJ_ObjHandle *objectHandle - output

On output this will contain the spooled file handle.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

This API does not check the spooled file on the host. The first time this handle is used to retrieve data for

the spooled file, a host error will be encountered if the spooled file doesn’t exist.

cwbOBJ_DeleteSplF:

Purpose

Delete an iSeries spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DeleteSplF(

 cwbOBJ_ObjHandle splFHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be deleted.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

308 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE

Handle is not a spooled file handle.

Usage

After this calls returns successfully, cwbOBJ_DeleteObjHandle() should be called to release the

splFHandle.

cwbOBJ_DisplaySplF:

Purpose

Displays the specified spooled file to the user.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DisplaySplF(

 cwbOBJ_ObjHandle splFHandle,

 const char *view,

 const unsigned long flags,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the parameter object.

const char *view - input

Optional, may be NULL. If specified it is a pointer to an ASCIIZ string that specifies the view to use

when invoking the spooled file viewer. The are two predefined views shipped with the viewer:

1. LETTER (8.5″ x 11″)

2. SFLVIEW (132 column)

Users may also add their own.

const unsigned long flags - input

Any of following bits may be set: CWBOBJ_DSPSPLF_WAIT - instructs this call to wait until the

viewer process has successfully opened the spooled file before returning. If this bit is 0, this API will

return after it starts the viewer process. If it is 1, this API will wait for the viewer to get the spooled

file open before returning. All other bits must be set to 0.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Programming 309

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWB_NO_VIEWER

The viewer support for ClientAccess/400 was not installed.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

Use this API to bring up the AFP viewer on the specified spooled file. The AFP viewer can view AFP

data, SCS data and plain ASCII text data. A return code of CWB_NO_VIEWER means that the viewer

component was not installed on the workstation.

cwbOBJ_HoldSplF:

Purpose

Holds a spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_HoldSplF(

 cwbOBJ_ObjHandle splFHandle,

 cwbOBJ_ParmHandle *parmListHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be held.

cwbOBJ_ParmHandle *parmListHandle - input

Optional. A pointer to a valid parameter list object handle that contains parameters for holding the

spooled file.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

310 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE

Handle is not a spooled file handle.

Usage

The following parameter key may be set in the parmListHandle object:

v CWBOBJ_KEY_HOLDTYPE

what type of hold to do. May be ″*IMMED″ or ″*PAGEEND″. ″*IMMED″ is the default.

cwbOBJ_IsViewerAvailable:

Purpose

Checks if the spooled file viewer is available.

Syntax

unsigned int CWB_ENTRY cwbOBJ_IsViewerAvailable(

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion (viewer is installed).

CWB_NO_VIEWER

Viewer not installed.

Usage

Use this function to test for the presence of the viewer on the workstation. If the viewer is installed this

function will return CWB_OK. If the viewer is not available, the function will return CWB_NO_VIEWER

and the errorHandle parameter (if provided) will contain an appropriate error message. Using this

function, applications can check for viewer support without calling the cwbOBJ_DisplaySplF() API.

cwbOBJ_MoveSplF:

Purpose

Moves an iSeries spooled file to another output queue or to another position on the same output queue.

Programming 311

Syntax

unsigned int CWB_ENTRY cwbOBJ_MoveSplF(

 cwbOBJ_ObjHandle splFHandle,

 cwbOBJ_ObjHandle *targetSplFHandle,

 cwbOBJ_ObjHandle *outputQueueHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be moved.

cwbOBJ_ObjHandle *targetSplFHandle - input

Optional. The handle of another spooled file on the same system, that specifies the spooled file to

move this spooled file after. If this is specified, *outputQueueHandle is not used.

cwbOBJ_ObjHandle *outputQueueHandle - input

Optional. The handle of an output queue on the same system that specifies which output queue to

move the spooled file to. The spooled file will be moved to the first position on this queue. This

parameter is ignored if targetSplFHandle is specified.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE

Handle is not a spooled file handle.

Usage

If both targetSplFHandle and outputQueueHandle are NULL, the spooled file will be moved to the first

position on the current output queue.

cwbOBJ_ReleaseSplF:

Purpose

Releases a spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_ReleaseSplF(

 cwbOBJ_ObjHandle splFHandle,

 cwbSV_ErrHandle errorHandle);

312 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be released.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE

Handle is not a spooled file handle.

Usage

None

cwbOBJ_SendNetSplF:

Purpose

Sends a spooled file to another user on the same system or to a remote system on the network.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SendNetSplF(

 cwbOBJ_ObjHandle splFHandle,

 cwbOBJ_ParmHandle parmListHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be sent.

cwbOBJ_ParmHandle parmListHandle - input

Required. A handle of a parameter list object that contains the parameters for sending the spooled

file.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

Programming 313

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid.

CWB_INVALID_PARAMETER

invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE

Handle is not a spooled file handle.

Usage

The equivalent of a send net spooled file (SNDNETSPLF) command will be issued against the spooled

file. The following parameter key’s MUST be set in the parmListHandl object:

v CWBOBJ_KEY_TOUSERID

Specifies user ID to send the spooled file to.

v CWBOBJ_KEY_TOADDRESS

Specifies the remote system to send the spooled file to. ″*NORMAL″ is the default.

The following parameter key’s may be set in the parmListHandle object:

v CWBOBJ_KEY_DATAFORMAT

Specifies the data format in which to transmit the spooled file. May be ″*RCDDATA″ or ″*ALLDATA″.

″*RCDDATA″ is the default.

v CWBOBJ_KEY_VMMVSCLASS

Specifies the VM/MVS SYSOUT class for distributions sent to a VM host system or to an MVS™ host

system. May be ″A″ to ″Z″ or ″0″ to ″9″. ″A″ is the default.

v CWBOBJ_KEY_SENDPTY

Specifies the queueing priority used for this spooled file when it is being routed through a snad

network. May be ″*NORMAL″ or ″*HIGH″. ″*NORMAL″ is the default.

cwbOBJ_SendTCPSplF:

Purpose

Sends a spooled file to be printed on a remote system. This is the iSeries server version of the TCP/IP

LPR command.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SendTCPSplF(

 cwbOBJ_ObjHandle splFHandle,

 cwbOBJ_ParmHandle parmListHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be sent.

314 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbOBJ_ParmHandle parmListHandle - input

Required. A handle of a parameter list object that contains the parameters for sending the spooled

file.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE

Handle is not a spooled file handle.

CWBOBJ_KEY_SEPPAGE

Specifies wether or not to print the separator page.

CWBOBJ_KEY_USRDTATFMLIB

Specifies the name of the user data transform library.

CWBOBJ_KEY_USRDTATFM

Specifies the name of the user data transform.

Usage

The equivalent of an iSeries server send TCP/IP spooled file (SNDTCPSPLF) command will be issued

against the spooled file. The following parameter key’s MUST be set in the parmListHandl object:

v CWBOBJ_KEY_RMTSYSTEM

Specifies the remote system to which the print request is sent. May be a remote system name or

″*INTNETADR″.

v CWBOBJ_KEY_RMTPRTQ

Specifies the name of the destination print queue.

The following parameter key’s may be set in the parmListHandle object:

v CWBOBJ_KEY_DELETESPLF

Specifies whether to delete the spooled file after it has been successfully sent. May be ″*NO″ or ″*YES″.

″*NO″ is the default.

v CWBOBJ_KEY_DESTOPTION

Specifies a destination-dependant option. These options will be sent to the remote system with the

spooled file.

v CWBOBJ_KEY_DESTINATION

Programming 315

Specifies the type of system to which the spooled file is being sent. When sending to other iSeries

systems, this value should be ″*AS/400″. May also be ″*OTHER″, ″*PSF/2″. ″*OTHER″ is the default.

v CWBOBJ_KEY_INTERNETADDR

Specifies the internet address of the receiving system.

v CWBOBJ_KEY_MFGTYPE

Specifies the manufacturer, type and model when transforming print data for SCS to ASCII.

v CWBOBJ_KEY_SCS2ASCII

Specifies wether the print data is to be transformed for SCS to ASCII. May be ″*NO″ or ″*YES″. ″*NO″

is the default.

v CWBOBJ_KEY_WSCUSTMOBJ

Specifies the name of the workstation customizing object.

v CWBOBJ_KEY_WSCUSTMOBJL

Specifies the name of the workstation customizing object library.

APIs for handling spooled file messages for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to handling spooled file messages. The APIs are

listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_AnswerSplFMsg:

Purpose

Answer the message that the spooled file is waiting on.

Syntax

unsigned int CWB_ENTRY cwbOBJ_AnswerSplFMsg(

 cwbOBJ_ObjHandle splFHandle,

 char *msgAnswer,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to answer the message for.

const char *msgAnswer - input

Pointer to a ASCIIZ string that contains the answer for the message.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not valid spooled file handle.

316 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle

CWBOBJ_RC_INVALID_TYPE

Handle is not a spooled file handle.

CWBOBJ_RC_SPLFNOMESSAGE

The spooled file isn’t waiting on a message.

Usage

None

cwbOBJ_GetSplFMsgAttr:

Purpose

Retrieves an attribute of a message that’s associated with a spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetSplFMsgAttr(

 cwbOBJ_ObjHandle splFHandle,

 cwbOBJ_KeyID key,

 void *buffer,

 unsigned long bufLen,

 unsigned long *bytesNeeded,

 cwbOBJ_DataType *keyType,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file.

cwbOBJ_KeyID key - input

Identifying key of the attribute to retrieve. The CWBOBJ_KEY_XXX constants define the key ids.

void *buffer - output

The buffer that will hold the attribute value, if this call returns successfully. The value of the key

determines what type of data will be put into pBuffer. The type is also returned to the *keyType

parameter, if provided.

unsigned long bufLen - input

The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output

On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output

Optional, may be NULL. On output this will contain the type of data used to represent this attribute

and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

Programming 317

CWB_NO_ERROR

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW

Buffer too small.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY

Key isn’t valid.

CWBOBJ_RC_SPLFNOMESSAGE

The spooled file isn’t waiting on a message.

CWB_API_ERROR

General API failure.

Usage

The following keys are valid:

CWBOBJ_KEY_MSGTEXT - Message text

CWBOBJ_KEY_MSGHELP - Message help text

CWBOBJ_KEY_MSGREPLY - Message reply

CWBOBJ_KEY_MSGTYPE - Message type

CWBOBJ_KEY_MSGID - Message ID

CWBOBJ_KEY_MSGSEV - Message severity

CWBOBJ_KEY_DATE - Message date

CWBOBJ_KEY_TIME - Message time

Message formatting characters will appear in the message text and should be used as follows:

&N Force the text to a new line indented to column 2. If the text is longer than 1 line, the next lines

should be indented to column 4 until the end of text or another format control character is found.

&P Force the text to a new line indented to column 6. If the text is longer than 1 line, the next lines

should be indented to column 4 until the end of text or another format control character is found.

&B Force the text to a new line indented to column 4. If the text is longer than 1 line, the next lines

should be indented to column 6 until the end of text or another format control character is found.

APIs for analyzing spooled file data for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to analyzing spooled file data. The APIs are listed

alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_AnalyzeSplFData:

Purpose

Analyze data for a spooled file and give a best guess as to what the data type is.

Syntax

unsigned int CWB_ENTRY cwbOBJ_AnalyzeSplFData(

 const char *data,

318 IBM Systems - iSeries: iSeries Access for Windows: Programming

unsigned long bufLen,

 cwbOBJ_SplFDataType *dataType,

 cwbSV_ErrHandle errorHandle);

Parameters

const char *data - input

pointer to data to be analyzed.

unsigned long bufLen - input

The length of the buffer pointed to by data.

cwbOBJ_SplFDataType *dataType - output

On output this will contain the data type. If the data type can not be determined, it defaults to

CWBOBJ_DT_USERASCII.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_PARAMETER

Invalid parameter specified.

Usage

This uses the same routine that is used during the creation of spooled files that don’t have a data type

specified or have a data type of *AUTO specified. The result defaults to *USERASCII if it can not be

determined.

Server program APIs for iSeries Access for Windows

The following iSeries Access for Windows APIs pertain to server programs. The APIs are listed

alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_DropConnections:

Purpose

Drops all unused conversations to all systems for the network print server for this process.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DropConnections(

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Programming 319

Return Codes

The following list shows common return values.

CWB_NO_ERROR

Successful completion.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

Usage

The CWBOBJ.DLL maintains a pool of available conversations to the network print server for use on the

APIs. These conversations normally time out after not having been used for 10 to 20 minutes and are

then dropped. This API allows the application to clean up the pool of conversations immediately without

waiting for the timeout. It can also be used at the end of the process to make sure that any conversations

are terminated. This API will drop all connections to all servers for this process that are not ″in use.″ In

use connections include those with open spooled files on them (for creating or reading from).

cwbOBJ_GetNPServerAttr:

Purpose

Get an attribute of the QNPSERVR program on a specified system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetNPServerAttr(

 const char *systemName,

 cwbOBJ_KeyID key,

 void *buffer,

 unsigned long bufLen,

 unsigned long *bytesNeeded,

 cwbOBJ_DataType *keyType,

 cwbSV_ErrHandle errorHandle);

Parameters

const char *systemName - input

Pointer to the system name contained in an ASCIIZ string.

cwbOBJ_KeyID key - input

Identifying key of the attribute to retrieve.

void *buffer - output

The buffer that will hold the attribute value. If this call returns successfully. The value of the key

determines what type of data will be put into pBuffer. The type is also returned to the *keyType

parameter, if provided.

unsigned long bufLen - input

The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output

On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output

Optional, may be NULL. On output this will contain the type of data used to represent this attribute

and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

320 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_BUFFER_OVERFLOW

Buffer too small.

CWB_INVALID_PARAMETER

Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY

Key isn’t valid.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

The following attributes may be retrieved from the QNPSERVR program:

v CWBOBJ_KEY_NPSCCSID - Server CCSID

v CWBOBJ_KEY_NPSLEVEL - Server code level

cwbOBJ_SetConnectionsToKeep:

Purpose

Set the number of connections that should be left active for a particular system. Normally, the cwbobj.dll

will time out and drop connections after they have not been used for a while. With this API you can

force it to leave open a certain number of connections for this system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetConnectionsToKeep(

 const char *systemName

 unsigned int connections

 cwbSV_ErrHandle errorHandle);

Parameters

const char *systemName - input

Pointer to the system name contained in ASCIIZ string.

unsigned int connections - input

The number to of connections to keep open.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created with the

cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.

If the parameter is set to zero, no messages will be retrievable.

Programming 321

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_PARAMETER

Invalid parameter specified.

Usage

The default number of connections left open per system is 0. The connections are made per process, so

this API only affects connections under the process it is called under. Setting the number of connections

to be left open does not open any new connections.

Example: Using iSeries Objects APIs for iSeries Access for Windows

The following example shows a typical calling sequence for retrieving a list of spooled files.

/**/

/* List all spooled files for the current user and */

/* display them to the user. */

/**/

 #ifdef UNICODE

 #define _UNICODE

 #endif

 #include <windows.h>

 #include <stdio.h>

 #include "CWBOBJ.H"

main(int argc, char *argv[], char *envp[])

{

 cwbOBJ_ListHandle listHandle;

 cwbOBJ_ObjHandle splFHandle;

 unsigned int ulRC;

 unsigned long ulListSize, ulObjPosition, ulBytesNeeded;

 cwbOBJ_KeyID keysWanted[] = { CWBOBJ_KEY_SPOOLFILE,

 CWBOBJ_KEY_USER };

 unsigned long ulNumKeysWanted = sizeof(keysWanted)/sizeof(*keysWanted);

 char szSplFName[11];

 char szUser[11];

 ulRC = cwbOBJ_CreateListHandle(_TEXT("ANYAS400"),

 CWBOBJ_LIST_SPLF,

 &listHandle,

 0);

 if (ulRC == CWB_OK)

 {

 /* Set up the filter for the list to be opened with */

 /* NOTE: this is just for example, the user defaults */

 /* to *CURRENT, so this isn’t really needed. */

 cwbOBJ_SetListFilter(listHandle, CWBOBJ_KEY_USER,

 _TEXT("*CURRENT"), 0);

 /* Optionally call to cwbOBJ_SetListAttrsToRetrieve to*/

 /* make walking the list faster */

 ulRC = cwbOBJ_SetListAttrsToRetrieve(listHandle,

 ulNumKeysWanted,

 keysWanted,

 0);

 /* open the list - this will build the list of spooled*/

 /* files. */

322 IBM Systems - iSeries: iSeries Access for Windows: Programming

ulRC = cwbOBJ_OpenList(listHandle,

 CWBOBJ_LIST_OPEN_SYNCH,

 0);

 if (ulRC == CWB_OK)

 {

 /* Get the number of items that are in the list */

 ulRC = cwbOBJ_GetListSize(listHandle,

 &ulListSize,

 (cwbOBJ_List_Status *)0,

 0);

 if (ulRC == CWB_OK)

 {

 /* walk through the list of items, displaying */

 /* each item to the user */

 ulObjPosition = 0;

 while (ulObjPosition < ulListSize)

 {

 /***/

 /* Get a handle to the next spooled file in*/

 /* the list. This handle is valid while */

 /* the list is open. If you want to */

 /* maintain a handle to the spooled file */

 /* after the list is closed, you could call*/

 /* cwbOBJ_CopyObjHandle() after this call. */

 /***/

 ulRC = cwbOBJ_GetObjHandle(listHandle,

 ulObjPosition,

 &splFHandle,

 0);

 if (ulRC == CWB_OK)

 {

 /**/

 /* call cwbOBJ_GetObjAttr() to get info */

 /* about this spooled file. May also */

 /* call spooled file specific APIs */

 /* with this handle, such as */

 /* cwbOBJ_HoldSplF(). */

 /**/

 ulRC = cwbOBJ_GetObjAttr(splFHandle,

 CWBOBJ_KEY_SPOOLFILE,

 (void *)szSplFName,

 sizeof(szSplFName),

 &ulBytesNeeded,

 NULL,

 0);

 if (ulRC == CWB_OK)

 {

 ulRC = cwbOBJ_GetObjAttr(splFHandle,

 CWBOBJ_KEY_USER,

 (void *)szUser,

 sizeof(szUser),

 &ulBytesNeeded,

 NULL,

 0);

 if (ulRC == CWB_OK)

 {

 printf("%3u: %11s %s\n",

 ulObjPosition, szSplFName, szUser);

 } else {

 /* ERROR on GetObjAttr! */

 }

 } else {

 /* ERROR on GetObjAttr! */

Programming 323

}

 /* free this object handle */

 cwbOBJ_DeleteObjHandle(splFHandle, 0);

 } else {

 /* ERROR on GetObjHandle! */

 }

 ulObjPosition++;

 }

 } else {

 /* ERROR on GetListSize! */

 }

 cwbOBJ_CloseList(listHandle, 0);

 } else {

 /* ERROR on OpenList! */

 }

 cwbOBJ_DeleteListHandle(listHandle, 0);

 }

iSeries Access for Windows Remote Command/Distributed Program

Call APIs

The iSeries Access for Windows Remote Command/Distributed Program Call APIs allow the PC

application programmer to access functions on the iSeries system. User program and system commands

can be called without requiring an emulation session. A single iSeries program serves commands and

programs, so only one iSeries job is started for both.

iSeries Access for Windows Remote Command APIs:

The iSeries Access for Windows Remote Command application programming interfaces (APIs) enable

your PC application to start non-interactive commands on the iSeries system and to receive completion

messages from these commands. The iSeries server command can send up to ten reply messages.

iSeries Access for Windows Distributed Program Call API:

The iSeries Access for Windows Distributed Program Call API allows your PC application to call any

iSeries program or command. Input, output and in/out parameters are handled through this function. If

the program runs correctly, the output and the in/out parameters will contain the data returned by the

iSeries program that was called. If the program fails to run correctly on the iSeries server, the program

can send up to ten reply messages.

iSeries Access for Windows Remote Command/Distributed Program Call APIs

required files:

 Header file Import library Dynamic Link Library

cwbrc.h cwbapi.lib cwbrc.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides Remote Command and Distributed Program Call documentation,

access to the cwbrc.h header file, and links to sample programs. To access this information, open the

Programmer’s Toolkit and select either Remote Command or Distributed Program Call → C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

 Related reference

 “Remote Command/Distributed Program Call APIs return codes” on page 27

324 IBM Systems - iSeries: iSeries Access for Windows: Programming

“iSeries system name formats for connection APIs” on page 5
APIs that take an iSeries system name as a parameter accept names in the following formats.

 “OEM, ANSI, and Unicode considerations” on page 6
Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three

forms: OEM, ANSI, or Unicode.

Typical use of iSeries Access for Windows Remote Command/Distributed Program

Call APIs

An application that uses the iSeries Access for Windows Remote Command/Distributed Program Call

function uses objects.

Each of these objects are identified to the application through a handle:

System object

This represents an iSeries system. The handle to the system object is provided to the StartSysEx

function to identify the system on which the commands or APIs will be run.

Command request object

This represents the request to the iSeries system. Commands can be run and programs can be

called on this object.

Note: The Command Request object previously was known as the ″system object″ in iSeries

Access for Windows.

Program object

This represents the iSeries program. Parameters can be added, and the program can be sent to the

system to run the program.

There is not a separate object for commands. The command string is sent directly to the command

request.

An application that uses the Remote Command/Distributed Program Call APIs first creates a system

object by calling the “cwbCO_CreateSystem” on page 46 function. This function returns a handle to the

system object. This handle then is used with the “cwbRC_StartSysEx” on page 327 function to start a

conversation with the iSeries system. The cwbRC_StartSysEx function returns a handle to the command

request. Use the command request handle to call programs or to run commands. The APIs that are

associated with the command request object are:

v “cwbRC_StartSysEx” on page 327

v “cwbRC_CallPgm” on page 331

v “cwbRC_RunCmd” on page 329

v “cwbRC_StopSys” on page 328

A command is a character string that is to be run on the iSeries system. Because it is a simple object (a

character string) no additional object will need to be created in order to run a command. The command

string simply is a parameter on the cwbRC_RunCmd API.

A program is a complex object that is created with the cwbRC_CreatePgm API, which requires the

program name and the library name as parameters. The handle that is returned by this function can have

0 to 35 parameters associated with it. Parameters are added with the cwbRC_AddParm function.

Parameters types can be input, output, or input/output. These parameters need to be in a format with

which the iSeries program can work (that is, one for which no data transform or data conversion will

occur). When all of the parameters have been added, the program handle is used with the

cwbRC_CallPgm API on the command request object. The APIs that are associated with the program

object are:

v “cwbRC_CreatePgm” on page 332

v “cwbRC_AddParm” on page 330

Programming 325

v “cwbRC_GetParmCount” on page 335

v “cwbRC_GetParm” on page 334

v “cwbRC_GetPgmName” on page 336

v “cwbRC_GetLibName” on page 334

v “cwbRC_SetParm” on page 337

v “cwbRC_SetPgmName” on page 339

v “cwbRC_SetLibName” on page 337

v “cwbRC_DeletePgm” on page 333

Remote Command/Distributed Program Call: Access remote command APIs list for

iSeries Access for Windows

Access the remote command server program on the iSeries system. The request handle is used to run

commands and to call programs. The APIs are listed alphabetically.

cwbRC_GetClientCCSID:

Purpose

Get the coded character set identifier (CCSID) associated with the current process. This CCSID along with

the host CCSID can be used to convert EBCDIC data returned by some iSeries program to ASCII data

that can be used in client applications.

Syntax

unsigned int CWB_ENTRY cwbRC_GetClientCCSID(

 cwbRC_SysHandle system,

 unsigned long *clientCCSID);

Parameters

cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the

iSeries server system.

unsigned long * clientCCSID - output

Pointer to an unsigned long where the client CCSID will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or NULL pointer.

CWBRC_INVALID_SYSTEM_HANDLE

Invalid system handle.

Usage

See related APIs in the CWBNLCNV.H file.

cwbRC_GetHostCCSID:

326 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

Get the coded character set identifier (CCSID) associated with the iSeries server job. This CCSID along

with the client CCSID can be used to convert EBCDIC data returned by some iSeries programs to ASCII

data that can be used in client applications.

Syntax

unsigned int CWB_ENTRY cwbRC_GetHostCCSID(

 cwbRC_SysHandle system,

 unsigned long *hostCCSID);

Parameters

cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the

iSeries system.

unsigned long * hostCCSID - output

Pointer to an unsigned long where the host CCSID will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or NULL pointer.

CWBRC_INVALID_SYSTEM_HANDLE

Invalid system handle.

Usage

See related APIs in the CWBNLCNV.H file.

cwbRC_StartSysEx:

Purpose

This function starts a conversation with the specified system. If the conversation is successfully started, a

handle is returned. Use this handle with all subsequent calls to issue commands or call programs. When

the conversation no longer is needed, use the handle with the cwbRC_StopSys API to end the

conversation. The cwbRC_StartSysEx API may be called multiple times within an application. If the same

system object handle is used on StartSysEx calls, only one conversation with the iSeries server will be

started. If you want multiple conversations to be active, you must call StartSysEx multiple times,

specifying different system object handles.

Syntax

unsigned int CWB_ENTRY cwbRC_StartSysEx(

 const cwbCO_SysHandle systemObj,

 cwbRC_SysHandle *request);

Parameters

const cwbCO_SysHandle systemObj - input

Handle to an existing system object of the system on which you want programs and commands to be

run.

Programming 327

cwbRC_SysHandle *request - output

Pointer to a cwbRC_SysHandle where the handle of the command request will be returned.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_COMMUNICATIONS_ERROR

A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND

iSeries application not found.

CWB_HOST_NOT_FOUND

iSeries system inactive or does not exist.

CWB_SECURITY_ERROR

A security error has occurred.

CWB_LICENSE_ERROR

A license error has occurred.

CWB_CONFIG_ERROR

A configuration error has occurred.

CWBRC_SYSTEM_NAME

System name is too long.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

None.

cwbRC_StopSys:

Purpose

This function stops a conversation with the system specified by the handle. This handle can no longer be

used to issue program calls or commands.

Syntax

unsigned int CWB_ENTRY cwbRC_StopSys(

 cwbRC_SysHandle system);

Parameters

cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the

iSeries system.

328 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWBRC_INVALID_SYSTEM_HANDLE

Invalid system handle.

Usage

None

Remote Command/Distributed Program Call: Run APIs list for iSeries Access for

Windows

Use these APIs to run an iSeries command. The APIs are listed alphabetically.

cwbRC_RunCmd:

Purpose

Issues the command on the system identified by the handle. The return code will indicate success or

failure of the command. Additional messages can be returned by using the message handle that is

returned.

Syntax

unsigned int CWB_ENTRY cwbRC_RunCmd(

 cwbRC_SysHandle system,

 const char *commandString,

 cwbSV_ErrHandle msgHandle);

Parameters

cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the

iSeries system.

const char *commandString - input

Pointer to a string that contains the command to be issued on the iSeries system. This is an ASCIIZ

string.

cwbSV_ErrHandle msgHandle - output

Any messages returned from the iSeries server will be written to this object. It is created with the

cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrTextIndexed

API. If the parameter is set to zero, no messages will be retrieved.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or NULL pointer.

CWBRC_INVALID_SYSTEM_HANDLE

Invalid system handle.

CWBRC_REJECTED_USER_EXIT

Command rejected by user exit program.

Programming 329

CWBRC_USR_EXIT_ERROR

Error in user exit program.

CWBRC_COMMAND_FAILED

Command failed.

CWBRC_COMMAND_TOO_LONG

Command string is too long.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

None

Remote Command/Distributed Program Call: Access programs APIs list for iSeries

Access for Windows

Use these APIs to access programs and their parameters.

cwbRC_AddParm:

Purpose

Add a parameter to the program that is identified by the handle. This function should be called once for

each parameter that is to be added to the program. When the program is called the parameters will be in

the same order that they are added using this function.

Syntax

unsigned int CWB_ENTRY cwbRC_AddParm(

 cwbRC_PgmHandle program,

 unsigned short type,

 unsigned long length,

 const unsigned char *parameter);

Parameters

cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object.

unsigned short type - input

The type of parameter this is. Use one of the defined parameter types: CWBRC_INPUT,

CWBRC_OUTPUT, CWBRC_INOUT. If you want to automatically convert between local CCSID and

host CCSID, add the appropriate convert flag to this field with a bitwise, or use one of the defined

parameter types:

v CWBRC_TEXT_CONVERT

v CWBRC_TEXT_CONVERT_INPUT

v CWBRC_TEXT_CONVERT_OUTPUT

The last two types are intended for use with CWBRC_INOUT when conversion is only needed in one

direction.

330 IBM Systems - iSeries: iSeries Access for Windows: Programming

unsigned long length - input

The length of the parameter. If this is an CWBRC_OUTPUT parameter, the length should be the

length of the buffer where the returned parameter will be written.

const unsigned char * parameter - input

Pointer to a buffer that will contain: the value if the type is CWBRC_INPUT or CWBRC_INOUT, or

the place where the returned parameter is to be written if the type is CWBRC_OUTPUT or

CWBRC_INOUT.

Return Codes

The following list shows common return values:

CWB_OK

Successful completion.

CWBRC_INVALID_PROGRAM

Invalid program handle.

CWBRC_INVALID_TYPE

Invalid type specified.

CWBRC_INVALID_PARM_LENGTH

Invalid parameter length.

CWBRC_INVALID_PARM

Invalid parameter.

Usage

Parameter data is assumed to be binary. No conversion will be performed on the parameter data unless

one of the conversion flags is set. For example:

cwbRC_AddParm(hPgm,

CWBRC_INOUT | CWBRC_TEXT_CONVERT_OUTPUT,

bufferSize,

buffer);

will use the buffer as is to send to the host, and will convert the output (eg to ASCII) before putting the

result into the buffer.

cwbRC_CallPgm:

Purpose

Calls the program identified by the handle. The return code will indicate the success or failure of the

program. Additional messages can be returned by using the message handle that is returned.

Syntax

unsigned int CWB_ENTRY cwbRC_CallPgm(

 cwbRC_SysHandle system,

 cwbRC_PgmHandle program,

 cwbSV_ErrHandle msgHandle);

Parameters

cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the

iSeries system.

Programming 331

cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object. object.

cwbSV_ErrHandle msgHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrTextIndexed API. If the parameter is

set to zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_COMMUNICATIONS_ERROR

A communications error occurred.

CWBRC_INVALID_SYSTEM_HANDLE

Invalid system handle.

CWBRC_INVALID_PROGRAM

Invalid program handle.

CWBRC_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBRC_USER_EXIT_ERROR

Error in user exit program.

CWBRC_PROGRAM_NOT_FOUND

Program not found.

CWBRC_PROGRAM_ERROR

Error when calling program.

Usage

None

cwbRC_CreatePgm:

Purpose

This function creates a program object given a program and library name. The handle that is returned can

be used to add parameters to the program and then call the program.

Syntax

unsigned int CWB_ENTRY cwbRC_CreatePgm(

 const char *programName,

 const char *libraryName,

 cwbRC_PgmHandle *program);

Parameters

const char *programName - input

Pointer to an ASCIIZ string that contains the name of the program that you want to call. The name is

uppercased unless enclosed in double quotes.

332 IBM Systems - iSeries: iSeries Access for Windows: Programming

const char *libraryName - input

Pointer to an ASCIIZ string that contains the name of the library where the program resides. The

name is uppercased unless enclosed in double quotes.

cwbRC_PgmHandle * program - output

Pointer to a cwbRC_PgmHandle where the handle of the program will be returned.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or NULL pointer.

CWBRC_PROGRAM_NAME

Program name is too long.

CWBRC_LIBRARY_NAME

Library name is too long.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

You should create a separate program object for each program you want to call on the iSeries server. You

can use the functions described in this file to change the values of the parameters being sent to the

program, but cannot change the number of parameters being sent.

cwbRC_DeletePgm:

Purpose

This function deletes the program object that is identified by the handle provided.

Syntax

unsigned int CWB_ENTRY cwbRC_DeletePgm(

 cwbRC_PgmHandle program);

Parameters

cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

Programming 333

CWBRC_INVALID_PROGRAM

Invalid program handle.

Usage

None.

cwbRC_GetLibName:

Purpose

Get the name of the library that was used when creating this program object.

Syntax

unsigned int CWB_ENTRY cwbRC_GetLibName(

 cwbRC_PgmHandle program,

 char *libraryName);

Parameters

cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object.

char * libraryName - output

Pointer to a ten character buffer where the name of the library will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or NULL pointer.

CWBRC_INVALID_PROGRAM

Invalid program handle.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate the temporary buffer.

CWB_API_ERROR

General API failure.

Usage

None

cwbRC_GetParm:

Purpose

Retrieve the parameter identified by the index. The index will range from 0 to the total number of

parameters - 1. This number can be obtained by calling the cwbRC_GetParmCount API.

Syntax

unsigned int CWB_ENTRY cwbRC_GetParm(

 cwbRC_PgmHandle program,

334 IBM Systems - iSeries: iSeries Access for Windows: Programming

unsigned short index,

 unsigned short *type,

 unsigned long *length,

 unsigned char **parameter);

Parameters

cwbRC_PgmHandle handle - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object.

unsigned short index - input

The number of the specific parameter in this program that should be retrieved. This index is

zero-based.

unsigned short * type - output

Pointer to the type of parameter this is. The value will be one of the defined parameter types:

v CWBRC_INPUT

v CWBRC_OUTPUT

v CWBRC_INOUT

unsigned long * length - input

Pointer to the length of the parameter.

unsigned char * * parameter - output

Pointer to a buffer that will contain the address of the actual parameter.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or NULL pointer.

CWBRC_INVALID_PROGRAM

Invalid program handle.

CWBRC_INDEX_RANGE_ERROR

Index is out of range.

Usage

None

cwbRC_GetParmCount:

Purpose

Get the number of parameters for this program object.

Syntax

unsigned int CWB_ENTRY cwbRC_GetParmCount(

 cwbRC_PgmHandle program,

 unsigned short *count);

Programming 335

Parameters

cwbRC_PgmHandle handle - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object.

unsigned short * count - output

Pointer to an unsigned short where the parameter count will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or NULL pointer.

CWBRC_INVALID_PROGRAM

Invalid program handle.

Usage

None

cwbRC_GetPgmName:

Purpose

Get the name of the program that was used when creating this program.

Syntax

unsigned int CWB_ENTRY cwbRC_GetPgmName(

 cwbRC_PgmHandle program,

 char *programName);

Parameters

cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object.

char * programName - output

Pointer to a ten character buffer where the name of the program will be written.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

Bad or NULL pointer.

CWBRC_INVALID_PROGRAM

Invalid program handle.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate the temporary buffer.

336 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_API_ERROR

General API failure.

Usage

None

cwbRC_SetLibName:

Purpose

Set the name of the library for this program object.

Syntax

unsigned int CWB_ENTRY cwbRC_SetLibName(

 cwbRC_PgmHandle program,

 const char *libraryName);

Parameters

cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object.

const char *libraryName - input

Pointer to an ASCIIZ string that contains the name of the library where the program resides.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBRC_INVALID_PROGRAM

Invalid program handle.

CWBRC_LIBRARY_NAME

Library name is too long.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

Use this function to change the name of the name of the library that contains the program you want to

call. This function should not be used to call a different program with different parameters.

cwbRC_SetParm:

Purpose

Set the parameter value identified by the index. The index will range from 0 to the total number of

parameters - 1. This number can be obtained by calling the cwbRC_GetParmCount API. Note that this

function is to be used to change a parameter. Use cwbRC_AddParm to create the parameter.

Programming 337

Syntax

unsigned int CWB_ENTRY cwbRC_SetParm(

 cwbRC_PgmHandle program,

 unsigned short index,

 unsigned short type,

 unsigned long length,

 const unsigned char *parameter);

Parameters

cwbRC_PgmHandle handle - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object.

unsigned short index - input

The number of the specific parameter in this program that should be changed. This index is

zero-based.

unsigned short type - input

The type of parameter this is. Use one of the defined parameter types:

v CWBRC_INPUT

v CWBRC_OUTPUT

v CWBRC_INOUT

If you want to automatically convert between local CCSID and host CCSID, add the appropriate

convert flag to this field with a bitwise-OR. Use one of the defined parameter types:

v CWBRC_TEXT_CONVERT

v CWBRC_TEXT_CONVERT_INPUT

v CWBRC_TEXT_CONVERT_OUTPUT

The latter two are intended for use with CWBRC_INOUT when conversion is only needed in one

direction.

unsigned long length - input

The length of the parameter. If this is an CWBRC_OUT parameter, the length should be the length of

the buffer where the returned parameter will be written.

const unsigned char * parameter - input

Pointer to a buffer that will contain the value if the type is CWBRC_INPUT or CWBRC_INOUT, or

the place where the return parameter is to be written if the type is CWBRC_OUTPUT or

CWBRC_INOUT.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBRC_INVALID_PROGRAM

Invalid program handle.

CWBRC_INVALID_TYPE

Invalid type specified.

CWBRC_INVALID_PARM_LENGTH

Invalid parameter length.

CWBRC_INVALID_PARM

Invalid parameter.

338 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

Parameter data is assumed to be binary. No conversion will be performed on the parameter data unless

one of the conversion flags is set. For example:

 cwbRC_SetParm(hPgm,

 CWBRC_INOUT | CWBRC_TEXT_CONVERT_OUTPUT,

 bufferSize,

 buffer);

will use the buffer as is to send to the host, and will convert the output (for example, to ASCII) before

putting the result into the buffer.

cwbRC_SetPgmName:

Purpose

Set the name of the program for this program object.

Syntax

unsigned int CWB_ENTRY cwbRC_SetPgmName(

 cwbRC_PgmHandle program,

 const char *programName);

Parameters

cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program

object.

const char *programName - input

Pointer to an ASCIIZ string that contains the name of the program that you want to call.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWBRC_INVALID_PROGRAM

Invalid program handle.

CWBRC_PROGRAM_NAME

Program name is too long.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR

General API failure.

Usage

Use this function to change the name of the program that you want to call. This function should not be

used to change the program object to call a different program with different parameters.

Programming 339

Example: Using Remote iSeries Access for Windows Command/Distributed

Program Call APIs

This example illustrates using remote iSeries Access for Windows Command/Distributed Program Call

APIs.

#ifdef UNICODE

 #define _UNICODE

#endif

#include <windows.h>

// Include the necessary RC/DPC Classes

#include <stdlib.h>

#include <iostream.h>

#include <TCHAR.H>

#include "cwbrc.h"

#include "cwbcosys.h"

/**/

void main()

{

 cwbCO_SysHandle system;

 cwbRC_SysHandle request;

 cwbRC_PgmHandle program;

 // Create the system object

 if ((cwbCO_CreateSystem("AS/400SystemName",&system)) != CWB_OK)

 return;

 // Start the system

 if ((cwbRC_StartSysEx(system,&request)) != CWB_OK)

 return;

 // Call the command to create a library

 char* cmd1 = "CRTLIB LIB(RCTESTLIB) TEXT(’RC TEST LIBRARY’)";

 if ((cwbRC_RunCmd(request, cmd1, 0)) != CWB_OK)

 return;

 cout << "Created Library" << endl;

 // Call the command to delete a library

 char* cmd2 = "DLTLIB LIB(RCTESTLIB)";

 if ((cwbRC_RunCmd(request, cmd2, 0)) != CWB_OK)

 return;

 cout << "Deleted Library" << endl;

 // Create a program object to create a user space

 if (cwbRC_CreatePgm(_TEXT("QUSCRTUS"),

 _TEXT("QSYS"),

 &program) != CWB_OK)

 return;

 // Add the parameters

 // name is DPCTESTSPC/QGPL

 unsigned char name[20] = {0xC4,0xD7,0xC3,0xE3,0xC5,0xE2,0xE3,0xE2,0xD7,0xC3,

 0xD8,0xC7,0xD7,0xD3,0x40,0x40,0x40,0x40,0x40,0x40};

 // extended attribute is not needed

 unsigned char attr[10] = {0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40};

 // initial size is 100 bytes

 unsigned long size = 0x64000000;

 // initial value is blank

 unsigned char init = 0x40;

 // public authority is CHANGE

340 IBM Systems - iSeries: iSeries Access for Windows: Programming

unsigned char auth[10] = {0x5C,0xC3,0xC8,0xC1,0xD5,0xC7,0xC5,0x40,0x40,0x40};

 // description is DPC TEMP SPACE

 unsigned char desc[50] = {0xC4,0xD7,0xC3,0x40,0xE3,0xC5,0xD4,0xD7,0x40,0xE2,

 0xD7,0xC1,0xC3,0xC5,0x40,0x40,0x40,0x40,0x40,0x40,

 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,

 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,

 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40};

 if (cwbRC_AddParm(program, CWBRC_INPUT, 20, name) != CWB_OK)

 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 10, attr) != CWB_OK)

 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 4, (unsigned char*)&size) != CWB_OK)

 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 1, &init) != CWB_OK)

 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 10, auth) != CWB_OK)

 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 50, desc) != CWB_OK)

 return;

 // Call the program

 if (cwbRC_CallPgm(request, program, 0) != CWB_OK)

 return;

 cout << "Created User Space" << endl;

 // Delete the program

 if (cwbRC_DeletePgm(program) != CWB_OK)

 return;

 // Create a program object to delete a user space

 if (cwbRC_CreatePgm(_TEXT("QUSDLTUS"),

 _TEXT("QSYS"),

 &program) != CWB_OK)

 return;

 // Add the parameters

 // error code structure will not be used

 unsigned long err = 0x00000000;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 20, name) != CWB_OK)

 return;

 if (cwbRC_AddParm(program, CWBRC_INOUT, 4, (unsigned char*)&err) != CWB_OK)

 return;

 // Call the program

 if (cwbRC_CallPgm(request, program, 0) != CWB_OK)

 return;

 // Delete the program

 if (cwbRC_DeletePgm(program) != CWB_OK)

 return;

 cout << "Deleted User Space" << endl;

 // Stop the system

 if (cwbRC_StopSys(request) != CWB_OK)

 return;

Programming 341

// Delete the system object

 if (cwbCO_DeleteSystem(system) != CWB_OK)

 return;

}

iSeries Access for Windows Serviceability APIs

The iSeries Access for Windows Serviceability application programming interfaces (APIs) allow you to log

service file messages and events within your program.

A set of APIs allows you to read the records from the service files that are created. These APIs allow you

to write a customized service-file browser.

The following general categories of iSeries Access for Windows Serviceability API functions are provided:

v Writing message text to the History log

v Writing Trace entries to the Trace file

v Reading service files

v Retrieving message text that is associated with error handles

Why you should use iSeries Access for Windows Serviceability APIs:

The iSeries Access for Windows Serviceability APIs provide an efficient means of adding message logging

and trace points to your code. Incorporate these functions into programs that are shipped as part of your

product, and use them to help debug programs that are under development. The file structure supports

multiple programs (that are identified by unique product and component strings) logging to the same

files simultaneously. This provides a complete picture of logging activity on the client workstation.

iSeries Access for Windows Serviceability APIs required files:

 Header file Import library Dynamic Link Library

cwbsv.h cwbapi.lib cwbsv.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides Serviceability documentation, access to the cwbsv.h header file, and

links to sample programs. To access this information, open the Programmer’s Toolkit and select Error

Handling → C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

 Related reference

 “Serviceability APIs return codes” on page 29

History log and trace files

History logs and trace files allow you to log information about your programs.

History log:

The log functions allow you to write message text to the iSeries Access for Windows History Log. The

message text needs to be displayable ASCII character data.

iSeries Access for Windows has instrumented all of its programs to log messages to the iSeries Access for

Windows History Log. Messages also are logged by the DLLs that are supplied with the product.

342 IBM Systems - iSeries: iSeries Access for Windows: Programming

The History Log is a file where message text strings are logged through the cwbSV_LogMessageText API.

The log provides a history of activity that has taken place on the client workstation.

Trace files:

The trace functions allow you to log low-level events that occur as your program runs. For example, you

can track various return codes that were received from calling other functions. If your program is sending

and receiving data, you may want to log the significant fields of the data (for example, function byte or

bytes, and data length) to aid in debugging if something goes wrong. Use the Detailed data trace

function (cwbSV_LogTraceData) to accomplish this.

Another form of trace, the Entry Point trace function, allows you to track entry into and exit from your

routines. iSeries Access for Windows defines two different types of entry point trace points:

API trace point:

Use the API (application programming interface) trace point to track entry and exit from routines

that you externalize to other programs.

SPI trace point:

Use the SPI (system programming interface) trace point to track entry and exit from key internal

routines of the program that you want to trace.

The key piece of information that is provided on the APIs is a one-byte eventID. It allows you to identify

which API or SPI is being entered or exited. Data such as input values can be traced on entry, as well as

tracing output values on exit from a routine. These trace functions are intended to be used in pairs (for

example, cwbSV_LogAPIEntry and cwbSV_LogAPIExit) in the routines that utilize them. These types of

trace points provide a record of flow of control through the code.

iSeries Access for Windows has instrumented the procedural APIs described in this topic with Entry/Exit

API trace points. When one of these procedural APIs is called, entry and exit trace points are logged to

the Entry Point trace file if tracing is active. The Entry/Exit SPI trace logs internal calling sequences. The

Detailed data trace function logs data which is useful in debugging problems.

iSeries Access for Windows supports the following types of traces:

Detailed (Data):

Allows you to trace a buffer of information at a point in your code via the cwbSV_LogTraceData

API. This buffer can be a mixture of ASCII and/or binary values (for example, C-struct). The data

is logged in binary form.

Entry/Exit (API):

A specialized form of trace which allows you to trace entry into and exit from your externalized

routines via the cwbSV_LogAPIEntry and cwbSV_LogAPIExit APIs.

Entry/Exit (SPI):

A specialized form of trace that allows you to trace entry into and exit from your key internal

routines by using the cwbSV_LogSPIEntry and cwbSV_LogSPIExit APIs.

Error handles

The error handle functions allow you to create an error handle (cwbSV_CreateErrHandle) to use on

iSeries Access for Windows APIs that support it.

If an error occurs (a non-zero return code) on the iSeries Access for Windows API call, you can call other

error handle functions to retrieve information such as:

v The number of error messages (cwbSV_GetErrCount) that are associated with the return code

v The message text (cwbSV_GetErrTextIndexed) for each of the error messages

Programming 343

Typical use of Serviceability APIs

Typical uses of serviceability APIs include history logs and error handles.

History log:

Serviceability APIs provide a tracking mechanism for activity that is taking place on the client

workstation. As a result, you can use the message-logging APIs to log messages to the iSeries Access for

Windows History Log. Examples of messages to log include an indication that your application was

started, and other significant events. For example, a log message may indicate that a file successfully was

transferred to the iSeries server, a database query failed for some reason, or that a job was submitted for

printing.

The product and component strings that you provide when you are using the Serviceability APIs allow

your messages and events to be distinguished from other entries in the service files. The recommended

hierarchy is to define a product ID, with one or many component IDs defined under it.

Error handles:

Use the error-handle parameter on iSeries Access for Windows C/C++ APIs to retrieve message text that

is associated with a failure return code. This enables your application to display the message text, instead

of providing your own text for the set of iSeries Access return codes.

Serviceability APIs list: Writing to history log

Use these APIs to write message text to a history log

cwbSV_CreateMessageTextHandle:

Purpose

This function creates a message text object and returns a handle to it. This message handle can be used in

your program to write message text to the currently active history log. The message text is supplied in a

buffer passed on the cwbSV_LogMessageText() call.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateMessageTextHandle(

 char *productID,

 char *componentID,

 cwbSV_MessageTextHandle *messageTextHandle);

Parameters

char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.

Parameter is optional, if null, no productID is set. NOTE: A maximum of

CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID. Larger strings will be

truncated.

char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this message

entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of

CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be

truncated.

cwbSV_MessageTextHandle * messageTextHandle - input/output

Pointer to a cwbSV_MessageTextHandle where the handle will be returned. This handle should be

used in subsequent calls to the message text functions.

344 IBM Systems - iSeries: iSeries Access for Windows: Programming

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory to create handle.

Usage

It is recommended that you set a unique product ID and component ID in the message handle before

using it to log message text. These ID’s will distinguish your messages from other messages in the history

log.

cwbSV_DeleteMessageTextHandle:

Purpose

This function deletes the message text object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteMessageTextHandle(

 cwbSV_MessageTextHandle messageTextHandle);

Parameters

cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to the cwbSV_CreateMessageTextHandle() function.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Unusable handle passed in on request.

Usage

This call should be made when the handle is no longer needed.

cwbSV_LogMessageText:

Purpose

This function will log the supplied message text to the currently active history log. The product and

component ID’s set in the entry will be written along with the date and time of the when the text was

logged.

Programming 345

Syntax

unsigned int CWB_ENTRY cwbSV_LogMessageText(

 cwbSV_MessageTextHandle messageTextHandle,

 char *messageText,

 unsigned long messageTextLength);

Parameters

cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().

char * messageText - input

Points to a buffer that contains the message text you want to log.

unsigned long messageTextLength - input

Specifies the number of bytes in the message text buffer to log for this message entry.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Unusable handle passed in on request.

Usage

None

cwbSV_SetMessageClass:

Purpose

This function allows setting of the message class (severity) to associate with the message being written to

the history log.

Syntax

unsigned int CWB_ENTRY cwbSV_SetMessageClass(

 cwbSV_MessageTextHandle messageTextHandle,

 cwbSV_MessageClass messageClass);

Parameters

cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().

cwbSV_MessageClass messageClass - input

One of the following:

v CWBSV_CLASS_INFORMATIONAL

v CWBSV_CLASS_WARNING

v CWBSV_CLASS_ERROR

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

346 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INVALID_HANDLE

Unusable handle passed in on request.

CWBSV_INVALID_MSG_CLASS

Invalid message class passed in.

Usage

This value should be set before calling the corresponding log function, ″cwbSV_LogMessageText()″.

cwbSV_SetMessageComponent:

Purpose

This function allows setting of a unique component identifier in the message handle that is provided.

Along with setting the product ID (see cwbSV_SetMessageProduct), this call should be used to

distinguish your message entries from other product’s entries in the history log.

Syntax

unsigned int CWB_ENTRY cwbSV_SetMessageComponent(

 cwbSV_MessageTextHandle messageTextHandle,

 char *componentID);

Parameters

cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().

char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this message

entry. NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component

ID. Larger strings will be truncated.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Unusable handle passed in on request.

Usage

This value should be set before calling the corresponding log function, ″cwbSV_LogMessageData()″. The

suggested hierarchy is that you would define a product ID with one or many components that are

defined under it.

cwbSV_SetMessageProduct:

Purpose

This function allows setting of a unique product identifier in the message handle that is provided. Along

with setting the component ID (see cwbSV_SetMessageComponent), this call should be used to

distinguish your message entries from other product’s entries in the history log.

Programming 347

Syntax

unsigned int CWB_ENTRY cwbSV_SetMessageProduct(

 cwbSV_MessageTextHandle messageTextHandle,

 char *productID);

Parameters

cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().

char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.

NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID.

Larger strings will be truncated.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Unusable handle passed in on request.

Usage

This value should be set before calling the corresponding log function, ″cwbSV_LogMessageData()″. The

suggested hierarchy is that you would define a product ID with one or many components that are

defined under it.

Serviceability APIs list: Writing trace data

Use these APIs to write trace data to a detail trace file

cwbSV_CreateTraceDataHandle:

Purpose

This function creates a trace data object and returns a handle to it. This trace handle can be used in your

program to log trace information to trace files. The trace information is supplied in a buffer passed on

cwbSV_LogTraceData() calls.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateTraceDataHandle(

 char *productID,

 char *componentID,

 cwbSV_TraceDataHandle *traceDataHandle);

Parameters

char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.

Parameter is optional, if null, no productID is set. NOTE: A maximum of

CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID. Larger strings will be

truncated.

char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this message

348 IBM Systems - iSeries: iSeries Access for Windows: Programming

entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of

CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be

truncated.

cwbSV_TraceDataHandle * traceDataHandle - input/output

Pointer to a cwbSV_TraceDataHandle where the handle will be returned. This handle should be used

in subsequent calls to the trace data functions.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory to create handle.

Usage

It is recommended that you set a unique product ID and component ID in the trace data handle before

using it to log trace entries. These ID’s will distinguish your trace entries from other entries in the trace

file.

cwbSV_DeleteTraceDataHandle:

Purpose

This function deletes the trace data object that is identified by the trace handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteTraceDataHandle(

 cwbSV_TraceDataHandle traceDataHandle);

Parameters

cwbSV_TraceDataHandle traceDataHandle - input

Handle that was returned by a previous call to the cwbSV_CreateTraceDataHandle() function.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This call should be made when the handle is no longer needed.

cwbSV_LogTraceData:

Programming 349

Purpose

This function will log the supplied trace data to the currently active trace file. The product and

component ID’s set in the entry will be written along with the date and time of the when the data was

logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogTraceData(

 cwbSV_TraceDataHandle traceDataHandle,

 char *traceData,

 unsigned long traceDataLength);

Parameters

cwbSV_TraceDataHandle traceDataHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceDataHandle().

char * traceData - input

Points to a buffer that contains the trace data you want to log. The buffer can contain binary data

because the length parameter is used in determining the amount to trace.

unsigned long traceDataLength - input

Specifies the number of bytes in the trace data buffer to log for this trace entry.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

None

cwbSV_SetTraceComponent:

Purpose

This function allows setting of a unique component identifier in service entry that is provided. Along

with setting the product ID (see cwbSV_SetTraceProduct), this call should be used to distinguish your

trace entries from other product’s entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetTraceComponent(

 cwbSV_TraceDataHandle traceDataHandle,

 char *componentID);

Parameters

cwbSV_TraceDataHandle traceDataHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceDataHandle().

350 IBM Systems - iSeries: iSeries Access for Windows: Programming

char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this trace entry.

NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID.

Larger strings will be truncated.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This value should be set before calling the corresponding log function, ″cwbSV_LogTraceData()″. The

suggested hierarchy is that you would define a product ID with one or many components that are

defined under it.

cwbSV_SetTraceProduct:

Purpose

This function allows setting of a unique product identifier in the trace handle that is provided. Along

with setting the component ID (see cwbSV_SetTraceComponent), this call should be used to distinguish

your trace entries from other product’s entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetTraceProduct(

 cwbSV_TraceDataHandle traceDataHandle,

 char *productID);

Parameters

cwbSV_TraceDataHandle traceDataHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceDataHandle().

char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this trace entry.

NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID.

Larger strings will be truncated.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This value should be set before calling the corresponding log function, cwbSV_LogTraceData. The

suggested hierarchy is that you would define a product ID with one or many components that are

defined under it.

Programming 351

Serviceability API list: Writing trace points

Use these APIs to write trace points to an entry/exit trace file

cwbSV_CreateTraceAPIHandle:

Purpose

This function creates a trace API object and returns a handle to it. This trace API handle can be used in

your program to log entry to and exit from your API entry points.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateTraceAPIHandle(

 char *productID,

 char *componentID,

 cwbSV_TraceAPIHandle *traceAPIHandle);

Parameters

char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.

Parameter is optional, if null, no productID is set. NOTE: A maximum of

CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID. Larger strings will be

truncated.

char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this message

entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of

CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be

truncated.

cwbSV_TraceAPIHandle * traceAPIHandle - input/output

Pointer to a cwbSV_TraceAPIHandle where the handle will be returned. This handle should be used

in subsequent calls to the trace API functions.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory to create handle.

Usage

It is recommended that you set a unique product ID and component ID in the trace data handle before

using it to log trace entries. These ID’s will distinguish your trace entries from other entries in the trace

file.

cwbSV_CreateTraceSPIHandle:

Purpose

This function creates a trace SPI object and returns a handle to it. This trace SPI handle can be used in

your program to log entry to and exit from your SPI entry points.

352 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY cwbSV_CreateTraceSPIHandle(

 char *productID,

 char *componentID,

 cwbSV_TraceSPIHandle *traceSPIHandle);

Parameters

char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.

Parameter is optional, if null, no productID is set. NOTE: A maximum of

CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID. Larger strings will be

truncated.

char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this message

entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of

CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be

truncated.

cwbSV_TraceSPIHandle * traceSPIHandle - input/output

Pointer to a cwbSV_TraceSPIHandle where the handle will be returned. This handle should be used

in subsequent calls to the trace SPI functions.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory to create handle.

Usage

It is recommended that you set a unique product ID and component ID in the trace data handle before

using it to log trace entries. These ID’s will distinguish your trace entries from other entries in the trace

file.

cwbSV_DeleteTraceAPIHandle:

Purpose

This function deletes the trace API object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteTraceAPIHandle(

 cwbSV_TraceAPIHandle traceAPIHandle);

Parameters

cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to the cwbSV_CreateTraceAPIHandle() function.

Programming 353

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This call should be made when the handle is no longer needed.

cwbSV_DeleteTraceSPIHandle:

Purpose

This function deletes the trace SPI object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteTraceSPIHandle(

 cwbSV_TraceSPIHandle traceSPIHandle);

Parameters

cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to the cwbSV_CreateTraceSPIHandle() function.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This call should be made when the handle is no longer needed.

cwbSV_LogAPIEntry:

Purpose

This function will log an API entry point to the currently active entry/exit trace file. The product and

component ID’s set in the entry will be written along with the date and time of the when the data was

logged. The apiID, along with any optional data that is passed on the request, will also be logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogAPIEntry(

 cwbSV_TraceAPIHandle traceAPIHandle,

 unsigned char apiID,

 char *apiData,

 unsigned long apiDataLength);

354 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().

unsigned char apiID - input

A unique one-byte code that will distinguish this API trace point from others that are logged by your

program. Definition of these codes are left up to the caller of this API. The recommended approach is

to use the defined range (0x00 - 0xFF) for each unique component in your product (that is, start at

0x00 for each component)

char * apiData - input

Points to a buffer that contains additional data (for example, input parameter values from your caller)

that you want to log along with this entry point. Parameter is optional, it is ignored if the address is

NULL or the data length is zero. This buffer can contain binary data because the length parameter is

used in determining the amount to trace.

unsigned long apiDataLength - input

Specifies the number of bytes in the API data buffer to log for this trace entry.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This call should allows be used in conjunction with a corresponding ″cwbSV_LogAPIExit()″. It is

recommended that these calls would be put at the beginning and end of an API routine that you write.

The other method would be to use these log functions around calls to external routines that are not

written by you.

cwbSV_LogAPIExit:

Purpose

This function will log an API exit point to the currently active entry/exit trace file. The product and

component ID’s set in the entry will be written along with the date and time of the when the data was

logged. The API ID, along with any optional data that is passed on the request, will also be logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogAPIExit(

 cwbSV_TraceAPIHandle traceAPIHandle,

 unsigned char apiID,

 char *apiData,

 unsigned long apiDataLength);

Parameters

cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().

unsigned char apiID - input

A unique one-byte code that will distinguish this API trace point from others that are logged by your

Programming 355

program. Definition of these codes are left up to the caller of this API. The recommended approach is

to use the defined range (0x00 - 0xFF) for each unique component in your product (that is, start at

0x00 for each component)

char * apiData - input

Points to a buffer that contains additional data (for example, output parameter values passed back to

your caller) that you want to log along with this exit point. Parameter is optional, it is ignored if the

address is NULL or the data length is zero. This buffer can contain binary data because the length

parameter is used in determining the amount to trace.

unsigned long apiDataLength - input

Specifies the number of bytes in the API data buffer to log for this trace entry.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This call should allows be used in conjunction with a corresponding ″cwbSV_LogAPIEntry()″. It is

recommended that these calls would be put at the beginning and end of an API routine that you write.

The other method would be to use these log functions around calls to external routines that are not

written by you.

cwbSV_LogSPIEntry:

Purpose

This function will log an SPI entry point to the currently active entry/exit trace file. The product and

component ID’s set in the entry will be written along with the date and time of the when the data was

logged. The spiID, along with any optional data that is passed on the request, will also be logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogSPIEntry(

 cwbSV_TraceSPIHandle traceSPIHandle,

 unsigned char spiID,

 char *spiData,

 unsigned long spiDataLength);

Parameters

cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().

unsigned char spiID - input

A unique one-byte code that will distinguish this SPI trace point from others that are logged by your

program. Definition of these codes are left up to the caller of this API. The recommended approach is

to use the defined range (0x00 - 0xFF) for each unique component in your product (that is, start at

0x00 for each component)

char * spiData - input

Points to a buffer that contains additional data (for example, input parameter values from your caller)

356 IBM Systems - iSeries: iSeries Access for Windows: Programming

that you want to log along with this entry point. Parameter is optional, it is ignored if the address is

NULL or the data length is zero. This buffer can contain binary data because the length parameter is

used in determining the amount to trace.

unsigned long spiDataLength - input

Specifies the number of bytes in the SPI data buffer to log for this trace entry.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

IHandle is not valid.

Usage

This call should allows be used in conjunction with a corresponding ″cwbSV_LogSPIExit()″. It is

recommended that these calls would be put at the beginning and end of an API routine that you write.

The other method would be to use these log functions around calls to external routines that are not

written by you.

cwbSV_LogSPIExit:

Purpose

This function will log an SPI exit point to the currently active entry/exit trace file. The product and

component ID’s set in the entry will be written along with the date and time of the when the data was

logged. The spiID, along with any optional data that is passed on the request, will also be logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogSPIExit(

 cwbSV_TraceSPIHandle traceSPIHandle,

 unsigned char spiID,

 char *spiData,

 unsigned long spiDataLength);

Parameters

cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().

unsigned char spiID - input

A unique one-byte code that will distinguish this SPI trace point from others that are logged by your

program. Definition of these codes are left up to the caller of this API. The recommended approach is

to use the defined range (0x00 - 0xFF) for each unique component in your product (that is, start at

0x00 for each component)

char * spiData - input

Points to a buffer that contains additional data (for example, output parameter values passed back to

your caller) that you want to log along with this exit point. Parameter is optional, it is ignored if the

address is NULL or the data length is zero. This buffer can contain binary data because the length

parameter is used in determining the amount to trace.

unsigned long spiDataLength - input

Specifies the number of bytes in the SPI data buffer to log for this trace entry.

Programming 357

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This call should allows be used in conjunction with a corresponding ″cwbSV_LogSPIEntry()″. It is

recommended that these calls would be put at the beginning and end of an API routine that you write.

The other method would be to use these log functions around calls to external routines that are not

written by you.

cwbSV_SetAPIComponent:

Purpose

This function allows setting of a unique component identifier in trace entry that is provided. Along with

setting the product ID (see cwbSV_SetAPIProduct), this call should be used to distinguish your trace

entries from other product’s entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetAPIComponent(

 cwbSV_TraceAPIHandle traceAPIHandle,

 char *componentID);

Parameters

cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().

char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this trace entry.

NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID.

Larger strings will be truncated.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This value should be set before calling the corresponding log functions, ″cwbSV_LogAPIEntry()″ and

″cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or many

components that are defined under it.

cwbSV_SetAPIProduct:

358 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

This function allows setting of a unique product identifier in the trace handle that is provided. Along

with setting the component ID (see cwbSV_SetAPIComponent), this call should be used to distinguish

your trace entries from other product’s entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetAPIProduct(

 cwbSV_TraceAPIHandle traceAPIHandle,

 char *productID);

Parameters

cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().

char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this trace entry.

NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID.

Larger strings will be truncated.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This value should be set before calling the corresponding log functions, ″cwbSV_LogAPIEntry()″ and

″cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or many

components that are defined under it.

cwbSV_SetSPIComponent:

Purpose

This function allows setting of a unique component identifier in trace entry that is provided. Along with

setting the product ID (see cwbSV_SetSPIProduct), this call should be used to distinguish your trace

entries from other product’s entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetSPIComponent(

 cwbSV_TraceSPIHandle traceSPIHandle,

 char *componentID);

Parameters

cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().

char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this trace entry.

NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID.

Larger strings will be truncated.

Programming 359

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This value should be set before calling the corresponding log functions, ″cwbSV_LogAPIEntry()″ and

″cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or many

components that are defined under it.

cwbSV_SetSPIProduct:

Purpose

This function allows setting of a unique product identifier in the trace handle that is provided. Along

with setting the component ID (see cwbSV_SetSPIComponent), this call should be used to distinguish

your trace entries from other product’s entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetSPIProduct(

 cwbSV_TraceSPIHandle traceSPIHandle,

 char *productID);

Parameters

cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().

char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this trace entry.

NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID.

Larger strings will be truncated.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This value should be set before calling the corresponding log functions, ″cwbSV_LogAPIEntry()″ and

″cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or many

components that are defined under it.

Serviceability API list: Reading service files

Use these APIs to read service files, service file records, and service file header information. Additionally,

you can read history log service records, detail trace file service records, and entry/exit trace file service

records.

360 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbSV_ClearServiceFile:

Purpose

Clears the service file that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_ClearServiceFile(

 cwbSV_ServiceFileHandle serviceFile,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile() function.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_FILE_IO_ERROR

File could not be cleared.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

None

cwbSV_CloseServiceFile:

Purpose

Closes the service file identified by the handle provided.

Syntax

unsigned int CWB_ENTRY cwbSV_CloseServiceFile(

 cwbSV_ServiceFileHandle serviceFile,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile() function.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Programming 361

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_FILE_IO_ERROR

File could not be closed.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

None

cwbSV_CreateServiceRecHandle:

Purpose

This function creates a service record object and returns a handle to it.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateServiceRecHandle(

 cwbSV_ServiceRecHandle *serviceRecHandle);

Parameters

cwbSV_ServiceRecHandle * serviceRecHandle - input/output

Pointer to a cwbSV_ServiceRecordHandle where the handle will be returned. This handle should be

used in subsequent calls to the service record functions.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed as handle address.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory to create handle.

Usage

This handle can be used in your program to read records from an open service file and extract

information from the record.

cwbSV_DeleteServiceRecHandle:

Purpose

This function deletes the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteServiceRecHandle(

 cwbSV_ServiceRecHandle serviceRecHandle);

362 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This call should be made when the handle is no longer needed.

cwbSV_GetComponent:

Purpose

Returns the component ID value for the service record object that is identified by the handle provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetComponent(

 cwbSV_ServiceRecHandle serviceRecHandle,

 char *componentID,

 unsigned long componentIDLength,

 unsigned long *returnLength);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * componentID - input/output

Pointer to a buffer that will receive the component ID that is stored in the record that is identified by

the handle.

unsigned long componentIDLength - input

Length of the receive buffer passed in. It should include space for the ending null character. If the

buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength

will be set. NOTE: The recommended size is CWBSV_MAX_COMP_ID.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

Programming 363

CWB_INVALID_HANDLE

Handle is not valid.

Usage

The service record handle needs to be filled in by a call to a ″read″ function before calling this routine,

otherwise a NULL string will be returned. This function is valid for all service record types.

cwbSV_GetDateStamp:

Purpose

Returns the date stamp (in localized format) for the service record that is identified by the handle that is

provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetDateStamp(

 cwbSV_ServiceRecHandle serviceRecHandle,

 char *dateStamp,

 unsigned long dateStampLength,

 unsigned long *returnLength);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * dateStamp - input/output

Pointer to a buffer that will receive the datestamp that is stored in the record that is identified by the

handle.

unsigned long dateStampLength - input

Length of the receive buffer passed in. It should include space for the ending null character. If the

buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength

will be set. NOTE: The recommended size is CWBSV_MAX_DATE_VALUE.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

The service record handle needs to be filled in by a call to a ″read″ function before calling this routine,

otherwise a NULL string will be returned. This function is valid for all service record types.

364 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbSV_GetMaxRecordSize:

Purpose

Returns the size (in bytes) of the largest record in the service file that is identified by the file handle that

is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetMaxRecordSize(

 cwbSV_ServiceFileHandle serviceFile,

 unsigned long *maxRecordSize);

Parameters

cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

unsigned long * recordCount - input/output

Pointer to variable that receives the size of the largest record in the file.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

None

cwbSV_GetMessageText:

Purpose

Returns the message text portion of the service record object that is identified by the handle that is

provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetMessageText(

 cwbSV_ServiceRecHandle serviceRecHandle,

 char *messageText,

 unsigned long messageTextLength,

 unsigned long *returnLength);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * messageText - input/output

Pointer to a buffer that will receive the message text that is stored in the record that is identified by

the handle.

Programming 365

unsigned long messageTextLength - input

Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and

CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

data if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_INVALID_RECORD_TYPE

Type is not CWBSV_MESSAGE_REC.

Usage

If the record type is not CWBSV_MESSAGE_REC, a return code of CWBSV_INVALID_RECORD_TYPE

will be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetProduct:

Purpose

Returns the product ID value for the service record object that is identified by the handle that is

provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetProduct(

 cwbSV_ServiceRecHandle serviceRecHandle,

 char *productID,

 unsigned long productIDLength,

 unsigned long *returnLength);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * productID - input/output

Pointer to a buffer that will receive the product ID that is stored in the record that is identified by the

handle.

unsigned long productIDLength - input

Length of the receive buffer passed in. It should include space for the ending null character. If the

buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength

will be set. NOTE: The recommended size is CWBSV_MAX_PRODUCT_ID.

366 IBM Systems - iSeries: iSeries Access for Windows: Programming

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

The service record handle needs to be filled in by a call to a ″read″ function before calling this routine,

otherwise a NULL string will be returned. This function is valid for all service record types.

cwbSV_GetRecordCount:

Purpose

Returns the total numbers of records in the service file that is identified by the file handle that is

provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetRecordCount(

 cwbSV_ServiceFileHandle serviceFile,

 unsigned long *recordCount);

Parameters

cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

unsigned long * recordCount - input/output

Pointer to variable that receives the total number of records in the file.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

Programming 367

Usage

None

cwbSV_GetServiceFileName:

Purpose

Returns the fully-qualified path and file name of where the service records are being logged to for a

particular file type.

Syntax

unsigned int CWB_ENTRY cwbSV_GetServiceFileName(

 cwbSV_ServiceFileType serviceFileType,

 char *fileName,

 unsigned long fileNameLength,

 unsigned long *returnLength);

Parameters

cwbSV_ServiceFileType serviceFileType - input

Value indicating which service file name you want returned. - CWBSV_HISTORY_LOG -

CWBSV_PROBLEM_LOG - CWBSV_DETAIL_TRACE_FILE - CWBSV_ENTRY_EXIT_TRACE_FILE

char * fileName - input/output

Pointer to a buffer that will receive the service file name associated with the one that was requested.

unsigned long fileNameLength - input

Length of the receive buffer passed in. It should include space for the ending null character. If the

buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength

will be set. NOTE: The recommended size is CWBSV_MAX_FILE_PATH.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWBSV_INVALID_FILE_TYPE

Unusable file type passed-in.

Usage

The filename string returned could be used as input to the cwbSV_OpenServiceFile() routine.

cwbSV_GetServiceType:

368 IBM Systems - iSeries: iSeries Access for Windows: Programming

Purpose

Returns the type of record (trace, message, entry/exit, and so forth) for the service record that is

identified by the handle that is provided. Note: The service record needs to be filled in by a call to a

″read″ function before calling this function.

Syntax

unsigned int CWB_ENTRY cwbSV_GetServiceType(

 cwbSV_ServiceRecHandle serviceRecHandle,

 cwbSV_ServiceRecType *serviceType,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

cwbSV_ServiceRecType * serviceType - output

Pointer to a cwbSV_ServiceRecType where the serviceType will be returned. -

CWBSV_MESSAGE_REC - CWBSV_PROBLEM_REC - CWBSV_DATA_TRACE_REC -

CWBSV_API_TRACE_REC - CWBSV_SPI_TRACE_REC

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_INVALID_RECORD_TYPE

Unusable record type detected.

Usage

The service record handle needs to be filled in by a call to a ″read″ function before calling this routine,

otherwise CWBSV_INVALID_RECORD_TYPE will be returned.

cwbSV_GetTimeStamp:

Purpose

Returns the timestamp (in localized format) for the service record that is identified by the handle that is

provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTimeStamp(

 cwbSV_ServiceRecHandle serviceRecHandle,

Programming 369

char *timeStamp,

 unsigned long timeStampLength,

 unsigned long *returnLength);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * timeStamp - input/output

Pointer to a buffer that will receive the timestamp that is stored in the record that is identified by the

handle.

unsigned long timeStampLength - input

Length of the receive buffer passed in. It should include space for the ending null character. If the

buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength

will be set. NOTE: The recommended size is CWBSV_MAX_TIME_VALUE.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

The service record handle needs to be filled in by a call to a ″read″ function before calling this routine,

otherwise a NULL string will be returned. This function is valid for all service record types.

cwbSV_GetTraceData:

Purpose

Returns the trace data portion of the service record object that is identified by the handle that is

provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceData(

 cwbSV_ServiceRecHandle serviceRecHandle,

 char *traceData,

 unsigned long traceDataLength,

 unsigned long *returnLength);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

370 IBM Systems - iSeries: iSeries Access for Windows: Programming

char * traceData - input/output

Pointer to a buffer that will receive the trace data that is stored in the record that is identified by the

handle. Note: The data that is returned is binary. Hence, it is NOT returned as an ASCIIZ string.

unsigned long traceDataLength - input

Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and

CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

data if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_INVALID_RECORD_TYPE

Type is not CWBSV_DATA_TRACE_REC.

Usage

If the record type is not CWBSV_TRACE_DATA_REC, a return code of

CWBSV_INVALID_RECORD_TYPE will be returned. (note: cwbSV_GetServiceType() returns the current

record type)

cwbSV_GetTraceAPIData:

Purpose

Returns the API trace data portion of the service record that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceAPIData(

 cwbSV_ServiceRecHandle serviceRecHandle,

 char *apiData,

 unsigned long apiDataLength,

 unsigned long *returnLength);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

char * apiData - input/output

Pointer to a buffer that will receive the API trace data that is stored in the record that is identified by

the handle. Note: The data that is returned is binary. Hence, it is NOT returned as an ASCIIZ string.

unsigned long apiDataLength - input

Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and

CWB_BUFFER_OVERFLOW and returnLength will be set.

Programming 371

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

data if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_INVALID_RECORD_TYPE

Type is not CWBSV_API_TRACE_REC.

Usage

If the record type is not CWBSV_API_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE

will be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceAPIID:

Purpose

Returns the API event ID of the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceAPIID(

 cwbSV_ServiceRecHandle serviceRecHandle,

 char *apiID);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

char * apiID - input/output

Pointer to one-byte field that receives the API event ID.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_INVALID_RECORD_TYPE

Type is not CWBSV_API_TRACE_REC.

372 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

If the record type is not CWBSV_API_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE

will be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceAPIType:

Purpose

Returns the API event type of the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceAPIType(

 cwbSV_ServiceRecHandle serviceRecHandle,

 cwbSV_EventType *eventType,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

cwbSV_EventType * eventType - output

Pointer to a cwbSV_EventType where the eventType will be returned. - CWBSV_ENTRY_POINT -

CWBSV_EXIT_POINT

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_INVALID_RECORD_TYPE

Type is not CWBSV_API_TRACE_REC.

CWBSV_INVALID_EVENT_TYPE

Unusable event type detected.

Usage

If the record type is not CWBSV_API_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE

will be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceSPIData:

Purpose

Returns the SPI trace data portion of the service record that is identified by the handle that is provided.

Programming 373

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceSPIData(

 cwbSV_ServiceRecHandle serviceRecHandle,

 char *spiData,

 unsigned long spiDataLength,

 unsigned long *returnLength);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

char * spiData - input/output

Pointer to a buffer that will receive the SPI trace data that is stored in the record that is identified by

the handle. Note: The data that is returned is binary. Hence, it is NOT returned as an ASCIIZ string.

unsigned long spiDataLength - input

Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and

CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

data if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_INVALID_RECORD_TYPE

Type is not CWBSV_SPI_TRACE_REC.

Usage

If the record type is not CWBSV_SPI_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE

will be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceSPIID:

Purpose

Returns the SPI event ID of the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceSPIID(

 cwbSV_ServiceRecHandle serviceRecHandle,

 char *spiID);

374 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

char * spiID - input/output

Pointer to one-byte field that receives the SPI event ID.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_INVALID_RECORD_TYPE

Type is not CWBSV_SPI_TRACE_REC.

Usage

If the record type is not CWBSV_SPI_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE

will be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceSPIType:

Purpose

Returns the SPI event type of the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceSPIType(

 cwbSV_ServiceRecHandle serviceRecHandle,

 cwbSV_EventType *eventType,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

cwbSV_EventType * eventType - output

Pointer to a cwbSV_EventType where the eventType will be returned. - CWBSV_ENTRY_POINT -

CWBSV_EXIT_POINT

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

Programming 375

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_INVALID_RECORD_TYPE

Type is not CWBSV_SPI_TRACE_REC.

CWBSV_INVALID_EVENT_TYPE

Unusable event type detected.

Usage

If the record type is not CWBSV_SPI_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE

will be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_OpenServiceFile:

Purpose

Opens the specified service file for READ access (history log, trace file, and so forth) and returns a handle

to it.

Syntax

unsigned int CWB_ENTRY cwbSV_OpenServiceFile(

 char *serviceFileName,

 cwbSV_ServiceFileHandle *serviceFileHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

char * serviceFileName - input

Points to a buffer that contains the fully-qualified name (for example, c:\path\filename.ext) of the

service file to open.

cwbSV_ServiceFileHandle * serviceFileHandle - input/output

Pointer to a cwbSV_ServiceFileHandle where the handle will be returned. This handle should be used

in subsequent calls to the service file functions.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed as handle address.

CWB_FILE_IO_ERROR

File could not be opened.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory to create handle.

376 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

None

cwbSV_ReadNewestRecord:

Purpose

Reads the newest record in the service file into the record handle that is provided. Subsequent calls can

be made to retrieve the information that is stored in this record (for example, GetProduct(),

GetDateStamp(), and so forth). Note: This record is the one with the newest time and date stamp in the

file.

Syntax

unsigned int CWB_ENTRY cwbSV_ReadNewestRecord(

 cwbSV_ServiceFileHandle serviceFileHandle,

 cwbSV_ServiceRecHandle serviceRecHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_END_OF_FILE

End of file has been reached.

CWB_FILE_IO_ERROR

Record could not be read.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This read would be used as a ″priming-type″ read before issuing a series of cwbSV_ReadPrevRecord()

calls until the end-of-file indicator is returned.

cwbSV_ReadNextRecord:

Purpose

Reads the next record in the service file into the record handle that is provided. Subsequent calls can be

made to retrieve the information that is stored in this record (for example, GetProduct(), GetDateStamp(),

and so forth).

Programming 377

Syntax

unsigned int CWB_ENTRY cwbSV_ReadNextRecord(

 cwbSV_ServiceFileHandle serviceFileHandle,

 cwbSV_ServiceRecHandle serviceRecHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_END_OF_FILE

End of file has been reached.

CWB_FILE_IO_ERROR

Record could not be read.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This read would normally be used once the priming read, ″ReadOldestRecord()″ is performed.

cwbSV_ReadOldestRecord:

Purpose

Reads the oldest record in the service file into the record handle that is provided. Subsequent calls can be

made to retrieve the information that is stored in this record (for example, GetProduct(), GetDateStamp(),

and so forth). Note: This record is the one with the oldest time and date stamp in the file.

Syntax

unsigned int CWB_ENTRY cwbSV_ReadOldestRecord(

 cwbSV_ServiceFileHandle serviceFileHandle,

 cwbSV_ServiceRecHandle serviceRecHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

378 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_END_OF_FILE

End of file has been reached.

CWB_FILE_IO_ERROR

Record could not be read.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This read would be used as a ″priming-type″ read before issuing a series of cwbSV_ReadNextRecord()

calls until the end-of-file indicator is returned.

cwbSV_ReadPrevRecord:

Purpose

Reads the previous record in the service file into the record handle that is provided. Subsequent calls can

be made to retrieve the information that is stored in this record (for example, GetProduct(),

GetDateStamp(), and so forth).

Syntax

unsigned int CWB_ENTRY cwbSV_ReadPrevRecord(

 cwbSV_ServiceFileHandle serviceFileHandle,

 cwbSV_ServiceRecHandle serviceRecHandle,

 cwbSV_ErrHandle errorHandle);

Parameters

cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

V_ServiceRecHandle serviceRecHandle -input Handle that was returned by a previous call to the

cwbSV_CreateServiceRecHandle function.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle

API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to

zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_END_OF_FILE

End of file has been reached.

Programming 379

CWB_FILE_IO_ERROR

Record could not be read.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This read would normally be used once the priming read, ″ReadNewestRecord()″ is performed.

Serviceability API list: Retrieving message text

Use these APIs to retrieve message text associated with error handles

cwbSV_CreateErrHandle:

Purpose

This function creates an error message object and returns a handle to it. This error handle can be passed

to @@xe1s@@ APIs that support it. If an error occurs on one of these APIs, the error handle can be used

to retrieve the error messages text that is associated with the API error.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateErrHandle(

 cwbSV_ErrHandle *errorHandle);

Parameters

cwbSV_ErrHandle *errorHandle - input/output

Pointer to a cwbSV_ErrHandle where the handle will be returned.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed as handle address.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory to create handle.

Usage

None

cwbSV_DeleteErrHandle:

Purpose

This function deletes the error message object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteErrHandle(

 cwbSV_ErrHandle errorHandle);

380 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbSV_ErrHandle errorHandle - output

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

This call should be made when the handle is no longer needed.

cwbSV_GetErrClass:

Purpose

Returns the message class associated with the top-level (most recent) error that is identified by the error

handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrClass(

 cwbSV_ErrHandle errorHandle,

 unsigned long *errorClass);

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

unsigned long * errorClass - output

Pointer to a variable that will receive the error class that is stored in the error that is identified by the

handle.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_NO_ERROR_MESSAGES

No error messages associated with error handle.

Usage

None

cwbSV_GetErrClassIndexed:

Programming 381

Purpose

Returns the message class associated with the error index provided. An index value of 1 will retrieve the

lowest-level (for example, the oldest) message that is associated with the error handle. An index value of

″cwbSV_GetErrCount()’s returned errorCount″ will retrieve the top-level (for example, the most recent)

message associated with the error handle.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrClassIndexed(

 cwbSV_ErrHandle errorHandle,

 unsigned long errorIndex,

 unsigned long *errorClass);

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

unsigned long errorIndex - input

Index value that indicates which error text to return if multiple errors are associated with the error

handle.

unsigned long * errorClass - output

Pointer to a variable that will receive the error class that is stored in the error that is identified by the

index.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_NO_ERROR_MESSAGES

No error messages associated with error handle.

Usage

Valid index values are from 1 to cwbSV_GetErrCount()’s return value. Index values less than 1 act as if 1

was passed. Index values greater than cwbSV_GetErrCount() act as if errorCount was passed.

cwbSV_GetErrCount:

Purpose

Returns the number of messages associated with the error handle provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrCount(

 cwbSV_ErrHandle errorHandle,

 unsigned long *errorCount);

382 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

unsigned long * errorCount - input/output

Pointer to variable that receives the number of messages associated with this error handle. If zero is

returned, no errors are associated with the error handle.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Handle is not valid.

Usage

None

cwbSV_GetErrFileName:

Purpose

Returns the message file name for the top-level (the. most recent) message added to the error handle

provided. This message attribute only pertains to messages returned from the iSeries server. The file

name is the name of the iSeries server message file that contains the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrFileName(

 cwbSV_ErrHandle errorHandle,

 char *fileName,

 unsigned long fileNameLength,

 unsigned long *returnLength);

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

char * fileName - input/output

Pointer to a buffer that will receive the message file name stored in the error identified by the handle.

The value returned is an ASCIIZ string.

unsigned long fileNameLength - input

Length of the receive buffer passed in. It should include space for the terminating null character. If

the buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength

will be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_NAME.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Programming 383

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Invalid handle.

CWBSV_NO_ERROR_MESSAGES

No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET

Attribute not set in current message.

Usage

iSeries server messages may be added to the error handle when using the cwbRC_CallPgm() and

cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the message file name for the

iSeries server messages contained in the error handle. If there is no message file name attribute for the

message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned.

cwbSV_GetErrFileNameIndexed:

Purpose

Returns the message file name for the message identified by the index provided. This message attribute

only pertains to messages returned from the iSeries server. The file name is the name of the iSeries server

message file containing the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrFileNameIndexed(

 cwbSV_ErrHandle errorHandle,

 unsigned long index,

 char *fileName,

 unsigned long fileNameLength,

 unsigned long *returnLength);

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

unsigned long index - input

Index value indicating which message file name to return if multiple errors are associated with the

error handle. The valid index range is from 1 to the number of messages contained in the error

handle. The number of messages can be obtained by calling the cwbSV_GetErrCount() API.

char * fileName - input/output

Pointer to a buffer that will receive the message file name stored in the error identified by the index.

The value returned is an ASCIIZ string.

unsigned long fileNameLength - input

Length of the receive buffer passed in. It should include space for the terminating null character. If

384 IBM Systems - iSeries: iSeries Access for Windows: Programming

the buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength

will be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_NAME.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Invalid handle.

CWBSV_NO_ERROR_MESSAGES

No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET

Attribute not set in current message.

Usage

iSeries server messages may be added to the error handle when using the cwbRC_CallPgm() and

cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the message file name for the

iSeries server messages contained in the error handle. If there is no message file name attribute for the

message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned. An index value of 1 works with

the lowest-level (i.e. oldest) message in the error handle. An index value equal to the count returned by

the cwbSV_GetErrCount() API works with the top-level (i.e. most recent) message in the error handle.

Index values less than 1 act as if 1 was passed in. Index values greater than the number of messages

contained in the error handle act as if the returned count value from the cwbSV_GetErrCount() API was

passed in.

cwbSV_GetErrLibName:

Purpose

Returns the message file library name for the top-level (i.e. most recent) message added to the error

handle provided. This message attribute only pertains to messages returned from the iSeries server. The

library name is the name of the iSeries library containing the message file for the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrLibName(

 cwbSV_ErrHandle errorHandle,

 char *libraryName,

 unsigned long libraryNameLength,

 unsigned long *returnLength);

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

Programming 385

char * libraryName - input/output

Pointer to a buffer that will receive the message file library name stored in the error identified by the

handle. The value returned is an ASCIIZ string.

unsigned long libraryNameLength - input

Length of the receive buffer passed in. It should include space for the terminating null character. If

the buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength

will be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_LIBR.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Invalid handle.

CWBSV_NO_ERROR_MESSAGES

No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET

Attribute not set in current message.

Usage

iSeries messages may be added to the error handle when using the cwbRC_CallPgm() and

cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the message file library name for

the iSeries messages contained in the error handle. If there is no message file library name attribute for

the message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned.

cwbSV_GetErrLibNameIndexed:

Purpose

Returns the message file library name for the message identified by the index provided. This message

attribute only pertains to messages returned from the iSeries server. The library name is the name of the

iSeries library containing the message file for the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrLibNameIndexed(

 cwbSV_ErrHandle errorHandle,

 unsigned long index,

 char *libraryName,

 unsigned long libraryNameLength,

 unsigned long *returnLength);

386 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

unsigned long index - input

Index value indicating which message file library name to return if multiple errors are associated

with the error handle. The valid index range is from 1 to the number of messages contained in the

error handle. The number of messages can be obtained by calling the cwbSV_GetErrCount() API.

char * libraryName - input/output

Pointer to a buffer that will receive the message file library name stored in the error identified by the

index. The value returned is an ASCIIZ string.

unsigned long libraryNameLength - input

Length of the receive buffer passed in. It should include space for the terminating null character. If

the buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength

will be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_LIBR.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Invalid handle.

CWBSV_NO_ERROR_MESSAGES

No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET

Attribute not set in current message.

Usage

iSeries messages may be added to the error handle when using the cwbRC_CallPgm() and

cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the message file library name for

the iSeries messages contained in the error handle. If there is no message file library name attribute for

the message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned. An index value of 1 works

with the lowest-level (i.e. oldest) message in the error handle. An index value equal to the count returned

by the cwbSV_GetErrCount() API works with the top-level (i.e. most recent) message in the error handle.

Index values less than 1 act as if 1 was passed in. Index values greater than the number of messages

contained in the error handle act as if the returned count value from the cwbSV_GetErrCount() API was

passed in.

cwbSV_GetErrSubstText:

Purpose

Returns the message substitution data for the top-level (the most recent) message identified by the error

handle provided. This message attribute only pertains to messages returned from the iSeries server. The

Programming 387

substitution data are inserted into the substitution variable fields defined for the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrSubstText(

 cwbSV_ErrHandle errorHandle,

 char *substitutionData,

 unsigned long substitutionDataLength,

 unsigned long *returnLength);

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

char * substitutionData - input/output

Pointer to a buffer that will receive the substitution data for the message identified by the handle.

NOTE: The data returned is binary, hence it is NOT returned as an ASCIIZ string. Any character

strings contained in the substitution data are returned as EBCDIC values.

unsigned long substitutionDataLength - input

Length of the receive buffer passed in. If the buffer is too small, the value will be truncated and

CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

data if the receive buffer is too small. It will also be set to the actual number of bytes of output data

returned upon successful completion.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Invalid handle.

CWBSV_NO_ERROR_MESSAGES

No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET

Attribute not set in current message.

Usage

iSeries server messages may be added to the error handle when using the cwbRC_CallPgm() and

cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the substitution data for the

iSeries server messages contained in the error handle. If there is no substitution data for the message,

return code CWBSV_ATTRIBUTE_NOT_SET will be returned. Use the returnLength parameter to

determine the actual number of bytes returned in the substitution data when the return code is CWB_OK.

The substitution data returned on this API could be used on a subsequent host retrieve message API call

(QSYS/QMHRTVM) to retrieve the format of the substitution data or to return secondary help text with

the substitution data added in. Host API’s are called using the cwbRC_CallPgm() API.

388 IBM Systems - iSeries: iSeries Access for Windows: Programming

cwbSV_GetErrSubstTextIndexed:

Purpose

Returns the message substitution data for the message identified by the index provided. This message

attribute only pertains to messages returned from the iSeries server. The substitution data is the data

inserted into the substitution variable fields defined for the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrSubstTextIndexed(

 cwbSV_ErrHandle errorHandle,

 unsigned long index,

 char *substitutionData,

 unsigned long substitutionDataLength,

 unsigned long *returnLength);

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

unsigned long index - input

Index value indicating which substitution data to return if multiple errors are associated with the

error handle. The valid index range is from 1 to the number of messages contained in the error

handle. The number of messages can be obtained by calling the cwbSV_GetErrCount() API.

char * substitutionData - input/output

Pointer to a buffer that will receive the substitution data stored in the error identified by the index.

Note: The data returned is binary, hence it is NOT returned as an ASCIIZ string. Any character

strings contained in the substitution data are returned as EBCDIC values.

unsigned long substitutionDataLength - input

Length of the receive buffer passed in. If the buffer is too small, the value will be truncated and

CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

data if the receive buffer is too small. It will also be set to the actual number of bytes of output data

returned upon successful completion.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

CWB_INVALID_HANDLE

Invalid handle.

CWBSV_NO_ERROR_MESSAGES

No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET

Attribute not set in current message.

Programming 389

Usage

iSeries server messages may be added to the error handle when using the cwbRC_CallPgm() and

cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the substitution data for the

iSeries server messages contained in the error handle. If there is no substitution data for the message,

return code CWBSV_ATTRIBUTE_NOT_SET will be returned. An index value of 1 works with the

lowest-level (i.e. oldest) message in the error handle. An index value equal to the count returned by the

cwbSV_GetErrCount() API works with the top-level (i.e. most recent) message in the error handle. Index

values less than 1 act as if 1 was passed in. Index values greater than the number of messages contained

in the error handle act as if the returned count value from the cwbSV_GetErrCount() API was passed in.

Use the returnLength parameter to determine the actual number of bytes returned in the substitution

data when the return code is CWB_OK. The substitution data returned on this API could be used on a

subsequent host retrieve message API call (QSYS/QMHRTVM) to retrieve the format of the substitution

data or to return secondary help text with the substitution data added in. Host API’s are called using the

cwbRC_CallPgm() API.

cwbSV_GetErrText:

Purpose

Returns the message text associated with the top-level (for example, the most recent) error that is

identified by the error handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrText(

 cwbSV_ErrHandle errorHandle,

 char *errorText,

 unsigned long errorTextLength,

 unsigned long *returnLength);

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

char * errorText - input/output

Pointer to a buffer that will receive the error message text that is stored in the error that is identified

by the handle.

unsigned long errorTextLength - input

Length of the receive buffer passed in. It should include space for the ending null character. If the

buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength

will be set.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

390 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_NO_ERROR_MESSAGES

No error messages associated with error handle.

Usage

None

cwbSV_GetErrTextIndexed:

Purpose

Returns the message text associated with the error index provided. An index value of 1 will retrieve the

lowest-level (for example, the oldest) message that is associated with the error handle. An index value of

″cwbSV_GetErrCount()’s returned errorCount″ will retrieve the top-level (for example, the most recent)

message associated with the error handle.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrTextIndexed(

 cwbSV_ErrHandle errorHandle,

 unsigned long errorIndex,

 char *errorText,

 unsigned long errorTextLength,

 unsigned long *returnLength);

Parameters

cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

unsigned long errorIndex - input

Index value that indicates which error text to return if multiple errors are associated with the error

handle.

char * errorText - input/output

Pointer to a buffer that will receive the error message text that is stored in the error that is identified

by the index.

unsigned long errorTextLength - input

Length of the receive buffer passed in. It should include space for the ending null character. If the

buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength

will be set.

unsigned long * returnLength - input/output

Optional, may be NULL. A return address to store the number of bytes needed to hold the output

string if the receive buffer is too small.

Return Codes

The following list shows common return values.

CWB_OK

Successful completion.

CWB_BUFFER_OVERFLOW

Output buffer too small, data truncated.

CWB_INVALID_POINTER

NULL passed on output parameter.

Programming 391

CWB_INVALID_HANDLE

Handle is not valid.

CWBSV_NO_ERROR_MESSAGES

No error messages associated with error handle.

Usage

Valid index values are from 1 to cwbSV_GetErrCount()’s return value. Index values less than 1 act as if 1

was passed. Index values greater than cwbSV_GetErrCount() act as if errorCount was passed.

Example: Using iSeries Access for Windows Serviceability APIs

The following example uses the iSeries Access for Windows Serviceability APIs to log a message string to

theiSeries Access for Windows History Log.

#include <stdio.h>

#include "CWBSV.H"

unsigned int logMessageText(char *msgtxt)

/* Write a message to the active message log. */

{

 cwbSV_MessageTextHandle messageTextHandle;

 unsigned int rc;

 /* Create a handle to a message text object, so that we may write */

 /* message text to the active message log. */

 if ((rc = cwbSV_CreateMessageTextHandle("ProductID", "ComponentID",

 &messageTextHandle)) != CWB_OK)

 return(rc);

 /* Log the supplied message text to the active message log. */

 rc = cwbSV_LogMessageText(messageTextHandle, msgtxt, strlen(msgtxt));

 /* Delete the message text object identified by the handle provided.*/

 cwbSV_DeleteMessageTextHandle(messageTextHandle);

 return(rc);

}

unsigned int readMessageText(char **bufptr, cwbSV_ErrHandle errorHandle)

/* Read a message from the active message log. */

{

 cwbSV_ServiceFileHandle serviceFileHandle;

 cwbSV_ServiceRecHandle serviceRecHandle;

 static char buffer[BUFSIZ];

 unsigned int rc;

 /* Retrieve the fully-qualified path and file name of the active */

 /* message log. */

 if ((rc = cwbSV_GetServiceFileName(CWBSV_HISTORY_LOG, buffer, BUFSIZ,

 NULL)) != CWB_OK)

 return(rc);

 /* Open the active message log for READ access and return a handle */

 /* to it. */

 if ((rc = cwbSV_OpenServiceFile(buffer, &serviceFileHandle, errorHandle))

 != CWB_OK)

 return(rc);

 /* Create a service record object and return a handle to it. */

 if ((rc = cwbSV_CreateServiceRecHandle(&serviceRecHandle)) != CWB_OK) {

 cwbSV_CloseServiceFile(serviceFileHandle, 0);

 return(rc);

 }

 /* Read the newest record in the active message log into the */

392 IBM Systems - iSeries: iSeries Access for Windows: Programming

/* record handle provided. */

 if ((rc = cwbSV_ReadNewestRecord(serviceFileHandle, serviceRecHandle,

 errorHandle)) != CWB_OK) {

 cwbSV_DeleteServiceRecHandle(serviceRecHandle);

 cwbSV_CloseServiceFile(serviceFileHandle, 0);

 return(rc);

 }

 /* Retrieve the message text portion of the service record object */

 /* identified by the handle provided. */

 if ((rc = cwbSV_GetMessageText(serviceRecHandle, buffer, BUFSIZ, NULL))

 == CWB_OK || rc == CWB_BUFFER_OVERFLOW) {

 *bufptr = buffer;

 rc = CWB_OK;

 }

 /* Delete the service record object identified by the */

 /* handle provided. */

 cwbSV_DeleteServiceRecHandle(serviceRecHandle);

 /* Close the active message log identified by the handle provided.*/

 cwbSV_CloseServiceFile(serviceFileHandle, errorHandle);

 return(rc);

}

void main(int argc, char *argv[[)

{

 cwbSV_ErrHandle errorHandle;

 char *msgtxt = NULL, errbuf[BUFSIZ];

 unsigned int rc;

 /* Write a message to the active message log. */

 if (logMessageText("Sample message text") != CWB_OK)

 return;

 /* Create an error message object and return a handle to it. */

 cwbSV_CreateErrHandle(&errorHandle);

 /* Read a message from the active message log. */

 if (readMessageText(&msgtxt, errorHandle) != CWB_OK) {

 if ((rc = cwbSV_GetErrText(errorHandle, errbuf, BUFSIZ, NULL)) ==

 CWB_OK || rc == CWB_BUFFER_OVERFLOW)

 fprintf(stdout, "%s\n", errbuf);

 }

 else if (msgtxt)

 fprintf(stdout, "Message text: \"%s\"\n", msgtxt);

 /* Delete the error message object identified by the */

 /* handle provided. */

 cwbSV_DeleteErrHandle(errorHandle);

}

iSeries Access for Windows System Object Access (SOA) APIs

System Object Access enables you to view and manipulate iSeries objects through a graphical user

interface.

System Object Access application programming interfaces (APIs) for iSeries Access for Windows provide

direct access to object attributes. For example, to obtain the number of copies for a given spool file, you

can call a series of SOA APIs, and change the value as needed.

Programming 393

System Object Access APIs for iSeries Access for Windows required files:

 Interface definition file Import library Dynamic Link Library

cwbsoapi.h cwbapi.lib cwbsoapi.dll

Programmer’s Toolkit:

The Programmer’s Toolkit provides System Object Access documentation, access to the cwbsoapi.h header

file, and links to sample programs. To access this information, open the Programmer’s Toolkit and select

iSeries Operations → C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

 Related reference

 “System Object Access APIs return codes” on page 29

 “iSeries system name formats for connection APIs” on page 5
APIs that take an iSeries system name as a parameter accept names in the following formats.

SOA objects

Use System Object Access to view and to manipulate the following iSeries objects.

You can view and manipulate these objects:

v Jobs

v Printers

v Printed output

v Messages

v Spooled files

You only can manipulate these objects:

v Users and groups

v TCP/IP interfaces

v TCP/IP routes

v Ethernet lines

v Token-ring lines

v Hardware resources

v Software resources

v Libraries in QSYS

iSeries object views

Two types of iSeries object views are provided with iSeries Access for Windows.

List view:

Displays a customizable graphical list view of the selected iSeries objects. The user can perform a

variety of actions on one or more objects.

Properties view:

Displays a detailed graphical view of the attributes of a specific iSeries object. The user can view

all attributes if desired, and make changes to those attributes that are changeable.

Typical use of System Object Access APIs for iSeries Access for Windows

Three summaries for and examples of System Object Access API usage are provided below.

394 IBM Systems - iSeries: iSeries Access for Windows: Programming

Each example is presented twice; a typical sequence of API calls is shown in summary form, and then an

actual C-language sample program is presented. The summary indicates which APIs are required (R) and

which are optional (O). Normally, additional code would be required to check for and handle errors on

each function call; this has been omitted for illustration purposes.

Displaying a customized list of iSeries objects:

In this example, a list object for a list of iSeries spool files is created. After setting the desired sort and

filter criteria, the list is displayed to the user, with the user interface customized so that certain user

actions are disabled.

 When the user is finished viewing the list, the filter criteria are saved in the application profile and the

program exits.

Displaying a customized list of iSeries objects (summary)

 (O) cwbRC_StartSys Start an iSeries conversation

 (R) CWBSO_CreateListHandle Create a list of iSeries objects

 (O) CWBSO_SetListProfile Set name of application

 (O) CWBSO_ReadListProfile Load application preferences

 (O) CWBSO_SetListFilter Set list filter criteria

 (O) CWBSO_SetListSortFields Set list sort criteria

 (O) CWBSO_DisallowListFilter Do not allow user to change filter criteria

 (O) CWBSO_DisallowListActions Disallow selected list actions

 (O) CWBSO_SetListTitle Set title of list

 (R) CWBSO_CreateErrorHandle Create an error object

 (R) CWBSO_DisplayList Display the customized list

 (O) CWBSO_DisplayErrMsg Display error message if error occurred

 (O) CWBSO_WriteListProfile Save list filter criteria

 (R) CWBSO_DeleteErrorHandle Delete error object

 (R) CWBSO_DeleteListHandle Delete list

 (O) cwbRC_StopSys End iSeries conversation

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

Sample program: Displaying a customized list of iSeries objects:

#ifdef UNICODE

 #define _UNICODE

#endif

#include <windows.h> // Windows APIs and datatypes

#include "cwbsoapi.h" // System Object Access APIs

#include "cwbrc.h" // iSeries DPC APIs

#include "cwbun.h" // iSeries Navigator APIs

#define APP_PROFILE "APPPROF" // Application profile name

Programming 395

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

MSG msg; // Message structure

HWND hWnd; // Window handle

cwbRC_SysHandle hSystem; // System handle

CWBSO_LIST_HANDLE hList = CWBSO_NULL_HANDLE; // List handle

CWBSO_ERR_HANDLE hError = CWBSO_NULL_HANDLE; // Error handle

cwbCO_SysHandle hSystemHandle; // System object handle

unsigned int rc; // System Object Access return codes

unsigned short sortIDs[] = { CWBSO_SFL_SORT_UserData,

 CWBSO_SFL_SORT_Priority };

 // Array of sort IDs

unsigned short actionIDs[] = { CWBSO_ACTN_PROPERTIES };

 // Array of action IDs

//**

// Start a conversation with iSeries server SYSNAME. Specify

// application name APPNAME.

//**

cwbUN_GetSystemHandle((char *)"SYSNAME", (char *)"APPNAME", &hSystemHandle);

cwbRC_StartSysEx(hSystemHandle, &hSystem);

//***

// Create a list of spooled files. Set desired sort/filter criteria.

// Create a list of spooled files on system SYSNAME

CWBSO_CreateListHandleEx(hSystemHandle,

 CWBSO_LIST_SFL,

 &hList);

// Identify the name of the application profile

CWBSO_SetListProfile(hList, APP_PROFILE);

// Create an error handle

CWBSO_CreateErrorHandle(&hError);

// Load previous filter criteria

CWBSO_ReadListProfile(hList, hError);

// Only show spooled files on printer P3812 for user TLK

CWBSO_SetListFilter(hList, CWBSO_SFLF_DeviceFilter, "P3812");

CWBSO_SetListFilter(hList, CWBSO_SFLF_UserFilter, "TLK");

// Sort by ’user specified data’, then by ’output priority’

CWBSO_SetListSortFields(hList, sortIDs, sizeof(sortIDs) / sizeof(short));

//***

// Customize the UI by disabling selected UI functions. Set the list title.

//***

// Do not allow users to change list filter

CWBSO_DisallowListFilter(hList);

// Do not allow the ’properties’ action to be selected

CWBSO_DisallowListActions(hList, actionIDs, sizeof(actionIDs) / sizeof(short));

// Set the string that will appear in the list title bar

CWBSO_SetListTitle(hList, "Application Title");

//***

// Display the list.

//***

// Display the customized list of spooled files

396 IBM Systems - iSeries: iSeries Access for Windows: Programming

rc = CWBSO_DisplayList(hList, hInstance, nCmdShow, &hWnd, hError);

// If an error occurred, display a message box

if (rc == CWBSO_ERROR_OCCURRED)

 CWBSO_DisplayErrMsg(hError);

else

{

 // Dispatch messages for the list window

 while(GetMessage(&msg, NULL, 0, 0))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 // List window has been closed - save filter criteria in application profile

 CWBSO_WriteListProfile(hList, hError);

}

//***

// Processing complete - clean up and exit.

//***

// Clean up handles

CWBSO_DeleteErrorHandle(hError);

CWBSO_DeleteListHandle(hList);

// End the conversation started by EHNDP_StartSys

cwbRC_StopSys(hSystem);

//**

// Return from WinMain.

//**

return rc;

}

Displaying the Properties view for an iSeries Object:

A list object for a list of iSeries spool files is created. After setting the desired filter criteria, the list is

opened, and a handle to the first object in the list is obtained. A properties view that shows the attributes

for this object is displayed to the user.

 Displaying the properties view for an object (Summary)

(O) cwbRC_StartSys Start a conversation with an iSeries server

(R) CWBSO_CreateListHandle Create a list of iSeries objects

(O) CWBSO_SetListFilter Set list filter criteria

(R) CWBSO_CreateErrorHandle Create an error object

(R) CWBSO_OpenList Open the list (builds a list on the iSeries server)

(O) CWBSO_DisplayErrMsg Display error message if error occurred

(O) CWBSO_GetListSize Get number of objects in the list

(R) CWBSO_GetObjHandle Get an object from the list

(R) CWBSO_DisplayObjAttr Display the properties view for the object

(R) CWBSO_DeleteObjHandle Delete the object

(O) CWBSO_CloseList Close the list

Programming 397

(R) CWBSO_DeleteErrorHandle Delete error object

(R) CWBSO_DeleteListHandle Delete list

(O) cwbRC_StopSys End iSeries conversation

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

Sample program: Displaying the Properties view of an object:

#ifdef UNICODE

 #define _UNICODE

#endif

#include <windows.h> // Windows APIs and datatypes

#include "cwbsoapi.h" // System Object Access APIs

#include "cwbrc.h" // iSeries DPC APIs

#include "cwbun.h" // iSeries Navigator APIs

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

MSG msg; // Message structure

HWND hWnd; // Window handle

cwbRC_SysHandle hSystem; // System handle

CWBSO_LIST_HANDLE hList = CWBSO_NULL_HANDLE; // List handle

CWBSO_ERR_HANDLE hError = CWBSO_NULL_HANDLE; // Error handle

CWBSO_OBJ_HANDLE hObject = CWBSO_NULL_HANDLE; // Object handle

cwbCO_SysHandle hSystemHandle; // System object handle

unsigned long listSize = 0; // List size

unsigned short listStatus = 0; // List status

unsigned int rc; // System Object Access return codes

//***

// Start a conversation with iSeries server SYSNAME. Specify

// application name APPNAME.

//**

cwbUN_GetSystemHandle((char *)"SYSNAME", (char *)"APPNAME", &hSystemHandle);

cwbRC_StartSysEx(hSystemHandle, &hSystem);

//***

// Create a list of spooled files. Set desired filter criteria.

//***

// Create a list of spooled files on system SYSNAME

CWBSO_CreateListHandleEx(hSystemHandle,

 CWBSO_LIST_SFL,

 &hList);

// Only include spooled files on printer P3812 for user TLK

CWBSO_SetListFilter(hList, CWBSO_SFLF_DeviceFilter, "P3812");

CWBSO_SetListFilter(hList, CWBSO_SFLF_UserFilter, "TLK");

//***

// Open the list.

//***

// Create an error handle

CWBSO_CreateErrorHandle(&hError);

// Open the list of spooled files

rc = CWBSO_OpenList(hList, hError);

// If an error occurred, display a message box

if (rc == CWBSO_ERROR_OCCURRED)

398 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBSO_DisplayErrMsg(hError);

else

{

 //***

 // Display the properties of the first object in the list

 //***

 // Get the number of objects in the list

 CWBSO_GetListSize(hList, &listSize, &listStatus, hError);

 if (listSize > 0)

 {

 // Get the first object in the list

 CWBSO_GetObjHandle(hList, 0, &hObject, hError);

 // Display the properties window for this object

 CWBSO_DisplayObjAttr(hObject, hInstance, nCmdShow, &hWnd, hError);

 // Dispatch messages for the properties window

 while(GetMessage(&msg, NULL, 0, 0))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 // Properties window has been closed - delete object handle

 CWBSO_DeleteObjHandle(hObject);

 }

}

//***

// Processing complete - clean up and exit.

//***

// Close the list

CWBSO_CloseList(hList, hError);

// Clean up handles

CWBSO_DeleteErrorHandle(hError);

CWBSO_DeleteListHandle(hList);

// End the conversation started by EHNDP_StartSys

cwbRC_StopSys(hSystem);

//**

// Return from WinMain.

//**

return rc;

}

Accessing and updating data for iSeries Objects:

A list object for a list of iSeries spool files is created. After setting the desired filter criteria, the list is

opened. A parameter object is created which will be used to change the output priority for each spooled

file in the list.

 After storing the desired output priority value of ″9″ in the parameter object, a loop is entered. Each

object in the list is examined in turn, and if a spooled file is found to have more than 10 pages then its

output priority is changed.

In this example, all spooled files for device P3812 that have 10 or more pages have their output priority

changed to 9 so that they will not print before smaller files.

Programming 399

Accessing and updating data for iSeries objects (Summary)

(R) CWBSO_CreateListHandle Create a list of iSeries objects

(O) CWBSO_SetListFilter Set list filter criteria

(R) CWBSO_CreateErrorHandle Create an error object

(R) CWBSO_OpenList Open the list (automatically starts

 a conversation with the iSeries server)

(O) CWBSO_DisplayErrMsg Display error message if error occurred

(R) CWBSO_CreateParmObjHandle Create a parameter object

(R) CWBSO_SetParameter Set new value for object attribute

 or attributes

(R) CWBSO_WaitForObj Wait until first object is available

. . . Loop through all objects

.

. (R) CWBSO_GetObjHandle Get an object from the list

.

. (R) CWBSO_GetObjAttr Read data for a particular attribute

.

. (R) CWBSO_SetObjAttr Update an attribute on the iSeries server

.

. (R) CWBSO_DeleteObjHandle Clean up object handle

.

. (R) CWBSO_WaitForObj Wait for next object in list

.

..............

(R) CWBSO_DeleteParmObjHandle Delete the parameter object

(O) CWBSO_CloseList Close the list

(R) CWBSO_DeleteErrorHandle Delete error object

(R) CWBSO_DeleteListHandle Delete list (automatically ends the

 iSeries conversation)

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

Sample program: Accessing and updating data for iSeries objects:

#include <windows.h> // Windows APIs and datatypes

#include <stdlib.h> // For atoi

#include "cwbsoapi.h" // System Object Access APIs

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

CWBSO_LIST_HANDLE hList = CWBSO_NULL_HANDLE; // List handle

CWBSO_ERR_HANDLE hError = CWBSO_NULL_HANDLE; // Error handle

CWBSO_PARMOBJ_HANDLE hParmObject = CWBSO_NULL_HANDLE; // Parm object

CWBSO_OBJ_HANDLE hObject = CWBSO_NULL_HANDLE; // Object handle

unsigned int rc, setRC; // System Object Access return codes

unsigned long bytesNeeded = 0; // Bytes needed

unsigned short errorIndex = 0; // Error index (SetObjAttr)

char szString[100]; // Buffer for formatting

int totalPages = 0; // Total pages

int i = 0; // Loop counter

int nNbrChanged = 0; // Count of changed objects

400 IBM Systems - iSeries: iSeries Access for Windows: Programming

MessageBox(GetFocus(), "Start of Processing", "PRIORITY", MB_OK);

//**

// Create a list of spooled files. Set desired filter criteria.

//**

// Create a list of spooled files on system SYSNAME

CWBSO_CreateListHandle("SYSNAME",

 "APPNAME",

 CWBSO_LIST_SFL,

 &hList);

// Only include spooled files for device P3812

CWBSO_SetListFilter(hList, CWBSO_SFLF_DeviceFilter, "P3812");

//***

// Open the list.

//***

// Create an error handle

CWBSO_CreateErrorHandle(&hError);

// Open the list of spooled files

rc = CWBSO_OpenList(hList, hError);

// If an error occurred, display a message box

if (rc == CWBSO_ERROR_OCCURRED)

 CWBSO_DisplayErrMsg(hError);

else

{

 //***

 // Set up to change output priority for all objects in the list.

 //***

 // Create a parameter object to hold the attribute changes

 CWBSO_CreateParmObjHandle(&hParmObject);

 // Set the parameter to change the output priority to ’9’

 CWBSO_SetParameter(hParmObject,

 CWBSO_SFL_OutputPriority,

 "9",

 hError);

 //**

 // Loop through the list, changing the output priority for any

 // files that have more than 10 total pages. Loop will

 // terminate when CWBSO_WaitForObj

 // returns CWBSO_BAD_LIST_POSITION, indicating that there

 // are no more objects in the list.

 //**

 // Wait for first object in the list

 rc = CWBSO_WaitForObj(hList, i, hError);

 // Loop through entire list

 while (rc == CWBSO_NO_ERROR)

 {

 // Get the list object at index i

 CWBSO_GetObjHandle(hList, i, &hObject, hError);

 // Get the total pages attribute for this spooled file

 CWBSO_GetObjAttr(hObject,

 CWBSO_SFL_TotalPages,

 szString,

 sizeof(szString),

Programming 401

&bytesNeeded,;

 hError);

 totalPages = atoi(szString);

 // Update the output priority if necessary

 if (totalPages > 10)

 {

 // Change the spool file’s output priority to ’9’

 setRC = CWBSO_SetObjAttr(hObject, hParmObject, &errorIndex, hError);

 if (setRC == CWBSO_NO_ERROR)

 nNbrChanged++;

 }

 // Delete the object handle

 CWBSO_DeleteObjHandle(hObject);

 // Increment list item counter

 i++;

 // Wait for next list object

 rc = CWBSO_WaitForObj(hList, i, hError);

 } /* end while */

 // Parameter object no longer needed

 CWBSO_DeleteParmObjHandle(hParmObject);

 } /* end if */

// Display the number of spooled files that had priority changed

wsprintf (szString, "Number of spool files changed: %d", nNbrChanged);

MessageBox(GetFocus(), szString, "PRIORITY", MB_OK);

//**

// Processing complete - clean up and exit.

//**

// Close the list

CWBSO_CloseList(hList,hError);

// Clean up handles

CWBSO_DeleteErrorHandle(hError);

CWBSO_DeleteListHandle(hList);

//**

// Return from WinMain.

//**

return 0;

}

iSeries Access for Windows System Object Access programming considerations

See the following topics for important SOA programming considerations.

About System Object Access errors:

All System Object Access APIs use return codes to report error conditions.

 Check for errors on each function call. In addition, certain APIs incorporate a handle to an “error object”

in their interface. The error object is used to provide additional information for errors which occurred

during the processing of a request. Often these errors are encountered while interacting with the iSeries

server, in which case the error object will contain the error message text.

402 IBM Systems - iSeries: iSeries Access for Windows: Programming

If a function call returns CWBSO_ERROR_OCCURRED then the error object will have been filled in with

information that describe the error. CWBSO_GetErrMsgText may be used to retrieve the error message

text. The message will have been translated into the language that is specified for the user’s execution

environment. Alternatively, the error message may be displayed to the user directly by calling

CWBSO_DisplayErrMsg.

For internal processing errors, error objects automatically log an entry in the System Object Access log file

soa.log, in the iSeries Access for Windows install directory. This file is English only and is intended for

use by IBM personnel for problem analysis.

 Related reference

 “System Object Access APIs return codes” on page 29

System Object Access application profiles:

By default, user-specified list filter criteria are not saved to disk. System Object Access provides APIs for.

 v Requesting the use of an application-specific registry key for loading the filter data from the registry

into a given list object

v Saving the data for a particular list object in the registry

The data is saved by iSeries system name, and within system name by object type. To read or write

profile data, a system name must be specified on the CWBSO_CreateListHandle call for the list object.

Managing iSeries communications sessions for application programs:

System Object Access APIs for iSeries Access for Windows communicate with the iSeries server through

the use of one or more client/server conversations.

 Because it often takes several seconds to establish a conversation, your application may experience delays

when a list first is opened. This topic explains how to control and manage the initiation of conversations

so that the performance impact on application programs is minimized.

The default behavior of System Object Access may be summarized as follows:

v If no conversation has been established with the iSeries system object that is identified on the

CWBSO_CreateListHandleEx API, a conversation automatically will be started when the list is opened

or displayed. If iSeries Access for Windows has not yet established a connection to the specified

system, a dialog box will appear prompting the user for the appropriate UserID and password.

v If another instance of the application program starts, the above process repeats itself. No conversation

sharing occurs between application programs that run in different processes (that is, with different

instance handles).

v When the application program deletes the last System Object Access list, the conversation with the

iSeries server is automatically ended (Note that CWBSO_CloseList does not end the conversation with

the iSeries server).

A System Object Access conversation may be started using the cwbRC_StartSysEx API. This API accepts

an iSeries system object as a parameter, and returns a system handle. Save this handle for later use on the

cwbRC_StopSys API, when the application is terminating and it is time to end the conversation with the

iSeries server.

When the cwbRC_StartSysEx API is called, the application is blocked until the conversation is established.

Therefore, it is good practice to inform the user that a connection is about to be attempted immediately

before the call. On return, the conversation will have been initiated, and System Object Access list

processing will use this conversation instead of starting a new one.

Programming 403

When cwbRC_StartSysEx is used in this way, the last list to be deleted will not end the conversation. You

must call cwbRC_StopSys explicitly before you exit the application.

System Object Access APIs for iSeries Access for Windows List

The following System Object Access APIs for iSeries Access for Windows are listed alphabetically.

SOA enablers:

System Object Access also includes enablers (APIs), which applications can use to access data in iSeries

objects or to request graphical lists and attribute views of the object data. The APIs for manipulating lists

of objects must be called in the correct order. The basic flow is as follows:

CreateErrorHandle -- Creates a handle to an "error" object

 to be passed to other APIs

CreateListHandle -- Instantiates a list object on the client

OpenList -- Builds list on iSeries server associated with client

 list

(Manipulate the list and its objects using various generic

 and subclass APIs)

CloseList -- Closes list and release resource on iSeries server

DeleteListHandle -- Destroys list object on the client

The CWBSO_CreateListHandle API must be called to create a list before any other list APIs are called.

The CWBSO_CreateListHandle API returns a list handle to the caller. The list handle must be passed as

input to all other list APIs.

After the list is allocated, the CWBSO_SetListFilter API can be called to change the filter criteria for the

list. CWBSO_SetListFilter is optional; if it is not called, the list will be built with the default filter criteria.

Similarly, the CWBSO_SetListSortFields API can be called to define the attributes on which the list will be

sorted. If it is not called the list will not be sorted.

The CWBSO_OpenList API must be called to build the list of objects. This will result in a request to be

sent to the iSeries server. The list will be built on the iSeries server, and some or all of the objects

(records) in the list will be buffered down to the list on the client. Although all objects in the list are not

necessarily cached on the client, the APIs will behave as if they are. Once the CWBSO_OpenList API is

called successfully, the following APIs can be called:

CWBSO_GetObjHandle

Retrieves a handle to a specific object in the list. The object handle can then be used to

manipulate the specific object.

CWBSO_DeleteObjHandle

Releases the handle returned by CWBSO_GetObjHandle.

CWBSO_DisplayList

Displays the spreadsheet view of the list.

CWBSO_GetListSize

Retrieves the number of objects in the list.

CWBSO_CloseList

Closes the list on the iSeries server and destroy all client objects in the list. All object handles

returned by CWBSO_GetListObject no longer are valid after the list is closed. After the list is

closed, the APIs in this list cannot be called until the CWBSO_OpenList API is called again. The

CWBSO_DeleteListHandle API should be called to destroy the list object.

CWBSO_CloseList:

Purpose

Closes the list of objects and frees up resources allocated on the iSeries server.

404 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY CWBSO_CloseList(

 CWBSO_LIST_HANDLE listHandle,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error that was returned by a previous call to CWBSO_CreateErrorHandle. When the

value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used to

retrieve the error message text or display the error to the user.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_ERROR_OCCURRED

An error occurred. Use the error handle for more information.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be

called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be

passed as input to this API. The list must currently be open. The list is opened by calling

CWBSO_OpenList. This API will not end the conversation with the iSeries server. For the conversation to

be ended the list must be deleted using CWBSO_DeleteListHandle.

CWBSO_CopyObjHandle:

Purpose

Creates a new instance of an object and returns a handle to the new instance. This does not create a new

object on the iSeries server. It merely creates an additional instance of an iSeries object on the client.

Object handles that are returned by CWBSO_GetObjHandle are always destroyed when the list that

contains the object is closed. This API allows the creation of an instance of the object that will persist

after the list is closed. The object instance that was created by this API is kept in sync with the object in

the list. In other words, if one of the objects is changed, the changes will be apparent in the other object.

Syntax

unsigned int CWB_ENTRY CWBSO_CopyObjHandle(

 CWBSO_OBJ_HANDLE objectHandle,

 CWBSO_OBJ_HANDLE far* lpNewObjectHandle);

Programming 405

Parameters

CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or

CWBSO_CopyObjHandle.

CWBSO_OBJ_HANDLE far* lpNewObjectHandle - output

A long pointer to a handle which will be set to a new handle for the same iSeries object. This handle

may be used with any other API that accepts an object handle with the exception that some APIs

only operate on specific types of objects.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_BAD_OBJ_HANDLE

The object handle that is specified is not valid.

Usage

CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object

handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input

to this API. When the object is no longer needed, the calling program is responsible for doing the

following:

v Call CWBSO_DeleteObjHandle to free up resources that are allocated on the client.

CWBSO_CreateErrorHandle:

Purpose

Creates an error handle. An error handle is used to contain error messages that are returned from other

APIs. The error handle may be used to display the error in a dialog or retrieve the associated error

message text.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateErrorHandle(

 CWBSO_ERR_HANDLE far* lpErrorHandle);

Parameters

CWBSO_ERR_HANDLE far* lpErrorHandle - output

A long pointer to a handle which will be set to the handle for an error.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

406 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

When the error handle is no longer needed, the calling program is responsible for doing the following:

v Call CWBSO_DeleteErrorHandle to free up resources that are allocated on the client.

CWBSO_CreateListHandle:

Purpose

Creates a new list and returns a handle to the list.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateListHandle(

 char far* lpszSystemName,

 char far* lpszApplicationName,

 CWBSO_LISTTYPE type,

 CWBSO_LIST_HANDLE far* lpListHandle);

Parameters

char far* lpszSystemName - input

The name of the iSeries system on which the list will be built. The name that is specified must be a

configured iSeries server. If the client is not currently connected to the iSeries server, a connection

will be established when the list is opened. If NULL is specified for the system name, the current

iSeries Access default system will be used.

char far* lpszApplicationName - input

A character string that identifies the application that will be interacting with the list. The maximum

length of this string is 10 characters, excluding the NULL terminator.

CWBSO_LISTTYPE type - input

The type of list to be built. Specify one of the following:

CWBSO_LIST_JOB

List of jobs.

CWBSO_LIST_SJOB

List of server jobs.

CWBSO_LIST_SJOB

List of server jobs.

CWBSO_LIST_MSG

List of messages.

CWBSO_LIST_PRT

List of printers.

CWBSO_LIST_SFL

List of spooled files.

CWBSO_LIST_IFC

List interfaces.

CWBSO_LIST_ELN

List Ethernet lines.

CWBSO_LIST_TLN

List token-ring lines.

CWBSO_LIST_HWL

List hardware resources.

Programming 407

CWBSO_LIST_SW

List software products.

CWBSO_LIST_RTE

List TCP/IP route.

CWBSO_LIST_PRF

List user profiles.

CWBSO_LIST_SMP

List libraries in QSYS.

CWBSO_LIST_HANDLE far* lpListHandle - output

A long pointer to a handle that will be set to the handle for the newly created list. This handle may

be used with any other API that accepts a list handle.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LISTTYPE

The value that is specified for type of list is not valid.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_BAD_SYSTEM_NAME

The system name that is specified is not a valid iSeries system name.

Usage

When the list is no longer needed, the calling program is responsible for doing the following:

v Call CWBSO_DeleteListHandle to free up resources that are allocated on the client.

CWBSO_CreateListHandleEx:

Purpose

Creates a new list and returns a handle to the list.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateListHandleEx(

 cwbCO_SysHandle systemObjectHandle,

 CWBSO_LISTTYPE type,

 CWBSO_LIST_HANDLE far* lpListHandle);

Parameters

cwbCO_SysHandle systemObjectHandle - input

A handle to the system object that represents the iSeries system on which the list will be built. The

handle specified must be for a configured iSeries server.

CWBSO_LISTTYPE

The type of list to be built. Specify one of the following:

CWBSO_LIST_JOB

List of jobs.

CWBSO_LIST_SJOB

List of server jobs.

408 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBSO_LIST_SJOB

List of server jobs.

CWBSO_LIST_MSG

List of messages.

CWBSO_LIST_PRT

List of printers.

CWBSO_LIST_SFL

List of spooled files.

CWBSO_LIST_IFC

List interfaces.

CWBSO_LIST_ELN

List Ethernet lines.

CWBSO_LIST_TLN

List token-ring lines.

CWBSO_LIST_HWL

List hardware resources.

CWBSO_LIST_SW

List software products.

CWBSO_LIST_RTE

List TCP/IP route.

CWBSO_LIST_PRF

List user profiles.

CWBSO_LIST_SMP

List libraries in QSYS.

CWBSO_LIST_HANDLE far* lpListHandle - output

A long pointer to a handle that will be set to the handle for the newly created list. This handle may

be used with any other API that accepts a list handle.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LISTTYPE

The value that is specified for type of list is not valid.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_BAD_SYSTEM_NAME

The system name that is specified is not a valid iSeries system name.

Usage

When the list is no longer needed, the calling program is responsible for doing the following:

v Call CWBSO_DeleteListHandle to free up resources that are allocated on the client.

CWBSO_CreateObjHandle:

Programming 409

Purpose

Creates a new object handle and returns a handle to the object. Use this API to access remote object that

do not conform to the list format.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateObjHandle(

 char far* lpszSystemName,

 char far* lpszApplicationName,

 CWBSO_OBJTYPE type,

 CWBSO_OBJ_HANDLE far* lpObjHandle);

Parameters

char far* lpszSystemName - input

The name of the iSeries system on which the object will be built. The name that is specified must be a

configured iSeries server. If the client is not currently connected to the iSeries, a connection will be

established when the list is opened. If NULL is specified for the system name, the current iSeries

default system will be used.

char far* lpszApplicationName - input

A character string that identifies the application that will be interacting with the list. The maximum

length of this string is 10 characters, excluding the NULL terminator.

CWBSO_OBJTYPE type - input

The type of object to be built. Specify the following:

v CWBSO_OBJ_TCIPATTR - TCP/IP attributes

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_BAD_SYSTEM_NAME

The system name that is specified is not a valid iSeries system name.

Usage

When the list is no longer needed, the calling program is responsible for doing the following:

v Call CWBSO_DeleteObjHandle to free up resources that are allocated on the client.

CWBSO_CreateParmObjHandle:

Purpose

Creates a parameter object and returns a handle to the object. A parameter object contains a set of

parameter IDs and values which may be passed as input to other APIs.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateParmObjHandle(

 CWBSO_PARMOBJ_HANDLE far* lpParmObjHandle);

410 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameters

CWBSO_PARMOBJ_HANDLE far* lpParmObjHandle - output

A long pointer to a handle which will be set to the handle for the new parameter object.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

Usage

When the parameter object is no longer needed, the calling program is responsible for doing the

following:

v Call CWBSO_DeleteParmObjHandle to free up resources that are allocated on the client.

CWBSO_DeleteErrorHandle:

Purpose

Deletes an error handle and frees up resources allocated on the client.

Syntax

unsigned int CWB_ENTRY CWBSO_DeleteErrorHandle(

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_ERR_HANDLE errorHandle - input

An error handle that is returned by a previous call to CWBSO_CreateErrorHandle.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

Usage

CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is returned by

CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_DeleteListHandle:

Purpose

Deletes the list of objects and frees up resources allocated on the client.

Programming 411

Syntax

unsigned int CWB_ENTRY CWBSO_DeleteListHandle(

 CWBSO_LIST_HANDLE listHandle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API.

CWBSO_DeleteObjHandle:

Purpose

Deletes an object handle returned from a previous call to CWBSO_GetObjHandle or

CWBSO_CopyObjHandle.

Syntax

unsigned int CWB_ENTRY CWBSO_DeleteObjHandle(

 CWBSO_OBJ_HANDLE objectHandle);

Parameters

CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that is returned by a previous call to CWBSO_GetObjHandle or

CWBSO_CopyObjHandle.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_OBJ_HANDLE

The object handle that is specified is not valid.

Usage

CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object

handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input

to this API.

412 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBSO_DeleteParmObjHandle:

Purpose

Deletes a parameter object handle and frees up resources allocated on the client.

Syntax

unsigned int CWB_ENTRY CWBSO_DeleteParmObjHandle(

 CWBSO_PARMOBJ_HANDLE parmObjHandle);

Parameters

CWBSO_PARMOBJ_HANDLE parmObjHandle - input

A handle to a parameter object that is returned by a previous call to CWBSO_CreateParmObjHandle.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_PARMOBJ_HANDLE

The parameter object handle that is specified is not valid.

Usage

CWBSO_CreateParmObjHandle must be called prior to calling this API. The parameter object handle that

is returned by CWBSO_CreateParmObjHandle must be passed as input to this API.

CWBSO_DisallowListActions:

Purpose

Sets actions the user is not allowed to perform on objects in a list. This affects the actions available when

the list is displayed by calling CWBSO_DisplayList. Disallowed actions do not appear in the menu bar,

tool bar, or object pop-up menus. This API can only be called once for a list, and it must be called prior

to displaying the list.

Syntax

unsigned int CWB_ENTRY CWBSO_DisallowListActions(

 CWBSO_LIST_HANDLE listHandle,

 unsigned short far* lpusActionIDs,

 unsigned short usCount);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

unsigned short far* lpusActionIDs - input

A long pointer to an array of action identifier values These values identify which actions the user will

not be allowed to perform. The valid values for this parameter depend on the type of objects in the

list. See the appropriate header files for the valid values:

v cwbsojob.h

v cwbsomsg.h

v cwbsoprt.h

Programming 413

v cwbsosfl.h

unsigned short usCount - input

The number of action identifier values specified.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_ACTION_ID

An action ID specified is not valid for the type of list.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_NOT_ALLOWED_NOW

The action that was requested is not allowed at this time.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API.

CWBSO_DisallowListFilter:

Purpose

Sets the list to disallow the user from changing the filter values for the list. This disables the INCLUDE

choice from the VIEW pull-down menu when the list is displayed. The list is displayed by calling

CWBSO_DisplayList. This API is only meaningful for lists which are displayed by using the

CWBSO_DisplayList API. This API can only be called once for a list, and it must be called prior to

displaying the list.

Syntax

unsigned int CWB_ENTRY CWBSO_DisallowListFilter(

 CWBSO_LIST_HANDLE listHandle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

414 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API.

CWBSO_DisplayErrMsg:

Purpose

Displays an error message in a dialog box. This API should only be called when

CWBSO_ERROR_OCCURRED is the return value from a call to another API. In this case, there is an error

message that is associated with the error handle.

Syntax

unsigned int CWB_ENTRY CWBSO_DisplayErrMsg(

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_NO_ERROR_MESSAGE

The error handle that is specified contains no error message.

CWBSO_DISP_MSG_FAILED

The request to display the message failed.

Usage

CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is returned by

CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_DisplayList:

Purpose

Displays the list in a window. From this window, the user is allowed to perform actions on the objects in

the list.

Syntax

unsigned int CWB_ENTRY CWBSO_DisplayList(

 CWBSO_LIST_HANDLE listHandle,

 HINSTANCE hInstance,

 int nCmdShow,

 HWND far* lphWnd ,

 CWBSO_ERR_HANDLE errorHandle);

Programming 415

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

HINSTANCE hInstance - input

The program instance passed to the calling program’s WinMain procedure.

int nCmdShow - input

The show window parameter passed to the calling program’s WinMain procedure. Alternatively, any

of the constants defined for the Windows API ShowWindow() may be used.

HWND far* lphWnd - output

A long pointer to a window handle. This will be set to the handle of the window in which the list is

displayed.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retreive the error message text or display the error to the user.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_DISPLAY_FAILED

The window could not be created.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be

called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be

passed as input to this API. It is not necessary to call CWBSO_OpenList or CWBSO_CloseList when using

this API. CWBSO_DisplayList handles both the opening and closing of the list. Your program must have

a message loop to receive the Windows messages that will be sent during the use of the system object

list.

This API only applies to the following list types: Jobs, Messages, Printers, Printer Output, and Spooled

Files.

CWBSO_DisplayObjAttr:

Purpose

Displays the attributes window for an object. From this window, the user is allowed to view the object

attributes and change attributes that are changeable.

416 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY CWBSO_DisplayObjAttr(

 CWBSO_OBJ_HANDLE objectHandle,

 HINSTANCE hInstance,

 int nCmdShow,

 HWND far* lphWnd ,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or

CWBSO_CopyObjHandle.

HINSTANCE hInstance - input

The program instance passed to the calling program’s WinMain procedure.

int nCmdShow - input

The show window parameter passed to the calling program’s WinMain procedure. Alternatively, any

of the constants defined for the Windows API ShowWindow() may be used.

HWND far* lphWnd - output

A long pointer to a window handle. This will be set to the handle of the window in which the object

attributes are displayed.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retrieve the error message and message help.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_OBJ_HANDLE

The object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_DISPLAY_FAILED

The window could not be created.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.

Usage

CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object

handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input

to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is

returned by CWBSO_CreateErrorHandle must be passed as input to this API. Your program must have a

message loop to receive the Windows messages that will be sent during the use of the system object

attributes window.

Programming 417

This API only applies to the following list types: Jobs, Messages, Printers, Printer Output, and Spooled

Files.

CWBSO_GetErrMsgText:

Purpose

Retrieves the message text from an error handle. This API should only be called when

CWBSO_ERROR_OCCURRED is the return value from a call to another API. In this case there is an error

message associated with the error handle.

Syntax

unsigned int CWB_ENTRY CWBSO_GetErrMsgText(

 CWBSO_ERR_HANDLE errorHandle ,

 char far* lpszMsgBuffer ,

 unsigned long ulBufferLength,

 unsigned long far* lpulBytesNeeded);

Parameters

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retreive the error message and message help.

char far* lpszMsgBuffer - output

A long pointer to the output buffer where the message text will be placed. The message text that is

returned by this API will be translated text. The output buffer is not changed when the return code is

not set to CWBSO_NO_ERROR.

unsigned long ulBufferLength - input

The size, in bytes, of the output buffer argument.

unsigned long far* lpulBytesNeeded - output

A long pointer to an unsigned long that will be set to the number of bytes needed to place the entire

message text in the output buffer. When this value is less than or equal to the size of output buffer

that is specified, the entire message text is placed in the output buffer. When this value is greater

than the size of output buffer that is specified, the output buffer contains a null string. The output

buffer is not changed beyond the bytes that are needed for the message text. This value is set to zero

when the return code is not set to CWBSO_NO_ERROR.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_NO_ERROR_MESSAGE

The error handle that is specified contains no error message.

CWBSO_GET_MSG_FAILED

The error message text could not be retrieved.

Usage

CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is returned by

CWBSO_CreateErrorHandle must be passed as input to this API. For errors which occurred on the iSeries

server, the message text will be in the language that is specified for the user’s execution environment. All

418 IBM Systems - iSeries: iSeries Access for Windows: Programming

other message text will be in the language that is specified in the Windows Control Panel on the user’s

personal computer.

CWBSO_GetListSize:

Purpose

Retrieves the number of objects in a list.

Syntax

unsigned int CWB_ENTRY CWBSO_GetListSize(

 CWBSO_LIST_HANDLE listHandle,

 unsigned long far* lpulSize,

 unsigned short far* lpusStatus,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

unsigned long far* lpulSize - output

A long pointer to an unsigned long that will be set to the number of entries currently in the list. If

the list status indicates that the list is complete, this value represents the total number of objects for

the list. If the list status indicates that the list is not completely built, this value represents the

number of objects currently available from the host and a subsequent call to this API may indicate

that more entries are available.

unsigned short far* lpusStatus - output

A long pointer to an unsigned short that will be set to indicate whether the list is completely built.

The value will be set to 0 if the list is not completely built or it will be set to 1 if the list is completely

built.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retrieve the error message and message help.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be

Programming 419

called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be

passed as input to this API. The list must currently be open. The list is opened by calling

CWBSO_OpenList. If CWBSO_CloseList is called to close a list, CWBSO_OpenList must be called again

before this API can be called.

CWBSO_GetObjAttr:

Purpose

Retrieves the value of an attribute from an object.

Syntax

unsigned int CWB_ENTRY CWBSO_GetObjAttr(

 CWBSO_OBJ_HANDLE objectHandle,

 unsigned short usAttributeID,

 char far* lpszBuffer,

 unsigned long ulBufferLength,

 unsigned long far* lpulBytesNeeded,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or

CWBSO_CopyObjHandle.

unsigned short usAttributeID - input

The identifier of the attribute to be retrieved. The valid values for this parameter depend on the type

of object. See the appropriate header files for the valid values:

v cwbsojob.h

v cwbsomsg.h

v cwbsoprt.h

v cwbsosfl.h

char far* lpszBuffer - output

A long pointer to the output buffer where the attribute value will be placed. The value that is

returned by this API is NOT a translated string. For instance, *END would be returned instead of

Ending page for the ending page attribute of a spooled file. See “SOA attribute special values” on

page 433 for information on special values that may be returned for each type of object. The output

buffer is not changed when the return code is not set to CWBSO_NO_ERROR.

unsigned long ulBufferLength - input

The size, in bytes, of the output buffer argument.

unsigned long far* lpulBytesNeeded - output

A long pointer to an unsigned long that will be set to the number of bytes needed to place the entire

attribute value in the output buffer. When this value is less than or equal to the size of output buffer

that is specified, the entire attribute value is placed in the output buffer. When this value is greater

than the size of output buffer that is specified, the output buffer contains a null string. The output

buffer is not changed beyond the bytes that are needed for the attribute value. This value is set to

zero when the return code is not set to CWBSO_NO_ERROR.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retrieve the error message and message help.

Return Codes

The following list shows common return values.

420 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_OBJ_HANDLE

The object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_BAD_ATTRIBUTE_ID

The attribute key is not valid for this object.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.

Usage

CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object

handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input

to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is

returned by CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_GetObjHandle:

Purpose

Gets a handle to an object in a list. The object handle that is returned by this API is valid until the list is

closed or until the object handle is deleted. The object handle may be used to call the following APIs:

v CWBSO_CopyObjHandle

v CWBSO_DeleteObjHandle

v CWBSO_DisplayObjAttr

v CWBSO_GetObjAttr

v CWBSO_RefreshObj

v CWBSO_SetObjAttr

v CWBSO_WaitForObj

Syntax

unsigned int CWB_ENTRY CWBSO_GetObjHandle(

 CWBSO_LIST_HANDLE listHandle,

 unsigned long ulPosition,

 CWBSO_OBJ_HANDLE far* lpObjectHandle,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

unsigned long ulPosition - input

The position of the object within the list for which a handle is needed. NOTE: The first object in a list

is considered position 0.

Programming 421

CWBSO_OBJ_HANDLE far* lpObjectHandle - output

A long pointer to a handle which will be set to the handle for the iSeries object. This handle may be

used with any other API that accepts an object handle with the exception that some APIs only

operate on specific types of objects.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retrieve the error message and message help.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_BAD_LIST_POSITION

The position in list that is specified is not valid.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be

called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be

passed as input to this API. The list must currently be open. The list is opened by calling

CWBSO_OpenList. If CWBSO_CloseList is called to close a list, CWBSO_OpenList must be called again

before this API can be called. You cannot access an object by using this API until that object has been

included in the list. For example, if you issue this API to get the object in position 100 immediately after

calling CWBSO_OpenList, the object may not immediately available. In such instances, use

CWBSO_WaitForObj to wait until an object is available. The object handle that is returned by this API

must be deleted by a subsequent call to CWBSO_DeleteObjHandle.

CWBSO_OpenList:

Purpose

Opens the list. A request is sent to the iSeries system to build the list.

Syntax

unsigned int CWB_ENTRY CWBSO_OpenList(

 CWBSO_LIST_HANDLE listHandle,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

422 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error that was returned by a previous call to CWBSO_CreateErrorHandle. When the

value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used to

retrieve the error message text or display the error to the user.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use the error for more information.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be

called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be

passed as input to this API. When the list is no longer needed, the calling program is responsible for

doing the following:

v Call CWBSO_CloseList to close the list and free up resources that are allocated on the iSeries server.

v Call CWBSO_DeleteListHandle to free up resources that are allocated on the client.

CWBSO_ReadListProfile:

Purpose

Reads the filter information for the list from the Windows Registry. The application name must have been

set using the CWBSO_SetListProfile API. This API should be called prior to opening the list by using the

CWBSO_OpenList or CWBSO_DisplayList APIs.

Syntax

unsigned int CWB_ENTRY CWBSO_ReadListProfile(

 CWBSO_LIST_HANDLE listHandle,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object that was created by a previous call to CWBSO_CreateErrorHandle. When

the value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used

to retrieve the error message text or display the error to the user.

Programming 423

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_SYSTEM_NAME_DEFAULTED

No system name was specified on the CWBSO_CreateListHandle call for the list.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use the error handle for more information.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. CWBSO_SetListProfile must be called

prior to calling this API. This API has no effect on a list that has been opened. In order for the filter

criteria in the profile to take effect, the list must be opened after calling this API.

CWBSO_RefreshObj:

Purpose

Refreshes an object’s attributes from the iSeries server. Refreshes all open System Object Access views of

the object.

Syntax

unsigned int CWB_ENTRY CWBSO_RefreshObj(

 CWBSO_OBJ_HANDLE objectHandle,

 HWND hWnd ,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or

CWBSO_CopyObjHandle.

HWND hWnd - input

Handle of window to receive the focus after the refresh is complete. This parameter may be NULL. If

this API is being called from an application window procedure, then the current window handle

should be supplied. Otherwise, focus will shift to the most recently opened System Object Access

window if one is open.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retrieve the error message and message help.

Return Codes

The following list shows common return values.

424 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_OBJ_HANDLE

The object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.

Usage

CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object

handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input

to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is

returned by CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_ResetParmObj:

Purpose

Resets a parameter object to remove any attribute values from the object.

Syntax

unsigned int CWB_ENTRY CWBSO_ResetParmObj(

 CWBSO_PARMOBJ_HANDLE parmObjHandle);

Parameters

CWBSO_PARMOBJ_HANDLE parmObjHandle - input

A handle to a parameter object that was returned by a previous call to

CWBSO_CreateParmObjHandle.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_PARMOBJ_HANDLE

The parameter object handle is not valid.

Usage

CWBSO_CreateParmObjHandle must be called prior to calling this API. The parameter object handle that

is returned by CWBSO_CreateParmObjHandle must be passed as input to this API.

CWBSO_SetListFilter:

Purpose

Sets a filter value for a list. Depending on the type of list, various filter values may be set. The filter

values control which objects will be included in the list when the list is built by a call to

CWBSO_OpenList.

Programming 425

Syntax

unsigned int CWB_ENTRY CWBSO_SetListFilter(

 CWBSO_LIST_HANDLE listHandle,

 unsigned short usFilterID,

 char far* lpszValue);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

unsigned short usFilterID - input

The filter identifier specifies which portion of the filter to set. The valid values for this parameter

depend on the type of objects in the list. See the appropriate header files for the valid values:

v cwbsojob.h

v cwbsomsg.h

v cwbsoprt.h

v cwbsosfl.h

char far* lpszValue - input

The value for the filter attribute. If multiple items are specified, they must be separated by commas.

Filter value items that specify iSeries object names must be in uppercase. Qualified object names must

be in the form of library/object. Qualified job names must be in the form of job-number/user/job-
name. Filter value items specifying special values (beginning with asterisk) must be specified in

upper case. See “SOA attribute special values” on page 433 for information on the special values that

may be supplied for each type of object.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_FILTER_ID

The filter ID specified is not valid for the type of list.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. This API has no effect on a list that has

been opened. In order for the filter criteria to take effect, the list must be opened after calling this API.

Caution should be used when requesting complex filters as list performance may be adversely affected.

CWBSO_SetListProfile:

Purpose

Sets the profile name by adding the application name into the Windows Registry. Use

CWBSO_ReadListProfile to read the filter information from the Registry prior to displaying a list. Use

CWBSO_WriteListProfile to write the updated filter information to the Registry before deleting the list. If

this API is not called, CWBSO_ReadListProfile and CWBSO_WriteListProfile will have no effect.

426 IBM Systems - iSeries: iSeries Access for Windows: Programming

Syntax

unsigned int CWB_ENTRY CWBSO_SetListProfile(

 CWBSO_LIST_HANDLE listHandle,

 char far* lpszKey);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or to

CWBSO_CreateListHandleEx.

char far* lpszKey - input

A long pointer to a string that will be used as the key in the Windows Registry for the list. This name

could be the name of the application.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_PROFILE_NAME

The profile name that is specified is not valid.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API.

CWBSO_SetListSortFields:

Purpose

Sets the sort criteria for a list. The sort criteria determines the order objects will appear in the list when

the list is built by a call to CWBSO_OpenList. This API is only valid for lists of jobs and lists of spooled

files. This API is not allowed for lists of messages and lists of printers.

Syntax

unsigned int CWB_ENTRY CWBSO_SetListSortFields(

 CWBSO_LIST_HANDLE listHandle,

 unsigned short far* lpusSortIDs,

 unsigned short usCount);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

unsigned short far* lpusSortIDs - input

A long pointer to an array of sort column identifiers. The sort IDs specified will replace the current

sort criteria for the list. The valid values for this parameter depend on the type of objects in the list.

See the appropriate header files for the valid values:

v cwbsojob.h

v cwbsosfl.h

Programming 427

Note: If multiple sort IDs are specified, the order in which they appear in the array defines the order

in which sorting will take place.

unsigned short usCount - input

The number of sort column identifiers specified.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_SORT_ID

A sort ID specified is not valid for the type of list.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_SORT_NOT_ALLOWED

Sorting is not allowed for this type of list.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. This API has no effect on a list that has

been opened. In order for the sort criteria to take effect, the list must be opened after calling this API.

Caution should be used when requesting complex sorts as list performance may be adversely affected.

CWBSO_SetListTitle:

Purpose

Sets the title for a list. The title is displayed in the title bar of the window when the list is displayed by a

call to CWBSO_DisplayList.

Syntax

unsigned int CWB_ENTRY CWBSO_SetListTitle(

 CWBSO_LIST_HANDLE listHandle ,

 char far* lpszTitle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

char far* lpszTitle - input

A long pointer to a string to be used for the list title. The length of the string must be less than or

equal to 79.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

428 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_TITLE

The title that is specified is not valid.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API.

CWBSO_SetObjAttr:

Purpose

Sets the value of one or more attributes of an object.

Syntax

unsigned int CWB_ENTRY CWBSO_SetObjAttr(

 CWBSO_OBJ_HANDLE objectHandle,

 CWBSO_PARMOBJ_HANDLE parmObjHandle,

 unsigned short far* lpusErrorIndex,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or

CWBSO_CopyObjHandle.

CWBSO_PARMOBJ_HANDLE parmObjHandle - input

A handle to a parameter object that was returned by a previous call to

CWBSO_CreateParmObjHandle. The parameter object contains the attributes that are to be changed

for the object.

unsigned short far* lpusErrorIndex - output

If an error occurred, this value will be set to the index of the parameter item that caused the error.

The first parameter item is 1. This value will be set to 0 if none of the parameter items were in error.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retrieve the error message and message help.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_OBJECT_HANDLE

The object handle that is specified is not valid.

CWBSO_BAD_PARMOBJ_HANDLE

The parameter object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_CANNOT_CHANGE_ATTRIBUTE

Attribute is not changeable at this time.

Programming 429

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.

Usage

CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object

handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input

to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is

returned by CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_SetParameter:

Purpose

Sets the value of an attribute of an object. Multiple calls may be made to this API prior to calling

CWBSO_SetObjAttr. This allows you to change several attributes for a specific object with one call to

CWBSO_SetObjAttr.

Syntax

unsigned int CWB_ENTRY CWBSO_SetParameter(

 CWBSO_PARMOBJ_HANDLE parmObjHandle,

 unsigned short usAttributeID,

 char far* lpszValue,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_PARMOBJ_HANDLE parmObjHandle - input

A handle to a parameter object that was returned by a previous call to

CWBSO_CreateParmObjHandle.

unsigned short usAttributeID - input

The attribute ID for the parameter to be set. The valid values for this parameter depend on the type

of object. See the appropriate header files for the valid values:

v cwbsojob.h

v cwbsomsg.h

v cwbsoprt.h

v cwbsosfl.h

char far* lpszValue - input

A long pointer to an attribute value. Note that only ASCIIZ strings are accepted. Binary values must

be converted to strings by using the appropriate library function. See “SOA attribute special values”

on page 433 for information on the special values that may be supplied for each type of object.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retreive the error message and message help.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

430 IBM Systems - iSeries: iSeries Access for Windows: Programming

CWBSO_BAD_PARMOBJ_HANDLE

The parameter object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.

Usage

CWBSO_CreateParmObjHandle must be called prior to calling this API. The parameter object handle that

is returned by CWBSO_CreateParmObjHandle must be passed as input to this API.

CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is returned by

CWBSO_CreateErrorHandle must be passed as input to this API. Calling this API does NOT update an

object’s attributes on the iSeries server. You must call CWBSO_SetObjAttr to actually update the attribute

value or values on the iSeries server for the specified object.

CWBSO_WaitForObj:

Purpose

Waits until an object is available in a list that is being built asynchronously.

Syntax

unsigned int CWB_ENTRY CWBSO_WaitForObj(

 CWBSO_LIST_HANDLE listHandle,

 unsigned long ulPosition,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

unsigned long ulPosition - input

The position of the desired object within the list. NOTE: The first object in a list is considered

position 0.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to

retrieve the error message and message help.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_BAD_LIST_POSITION

The position in list that is specified does not exist.

Programming 431

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be

called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be

passed as input to this API.

CWBSO_WriteListProfile:

Purpose

Writes the filter information for the list to the specified key in the Windows registry. The key name must

previously have been set using the CWBSO_SetListProfile API. This API should be called before deleting

the list. This will save any filter criteria that was changed by the user during the CWBSO_DisplayList

API. Filter information is saved in the registry by iSeries system and by type of list. For example, if your

application accesses objects from two different iSeries systems, and displays all four types of lists, you

would have eight different sections in the registry that specify filter information.

Syntax

unsigned int CWB_ENTRY CWBSO_WriteListProfile(

 CWBSO_LIST_HANDLE listHandle,

 CWBSO_ERR_HANDLE errorHandle);

Parameters

CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or

CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object that was created by a previous call to CWBSO_CreateErrorHandle. When

the value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used

to retrieve the error message text or display the error to the user.

Return Codes

The following list shows common return values.

CWBSO_NO_ERROR

No error occurred.

CWBSO_BAD_LIST_HANDLE

The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE

The error handle that is specified is not valid.

CWBSO_SYSTEM_NAME_DEFAULTED

No system name was specified on the CWBSO_CreateListHandle call for the list.

CWBSO_LOW_MEMORY

Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED

An error occurred. Use the error for more information.

432 IBM Systems - iSeries: iSeries Access for Windows: Programming

Usage

CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by

CWBSO_CreateListHandle must be passed as input to this API. CWBSO_SetListProfile must be called

prior to calling this API.

SOA attribute special values:

The topics that are listed below provide a description of special values that may be returned by

CWBSO_GetObjAttr, and specified on CWBSO_SetObjAttr, for each type of object. In addition, any special

values that may be specified on CWBSO_SetListFilter for each type of list object are discussed.

 Special considerations:

v For attributes that are numeric, it is common practice for iSeries APIs to return negative numeric

values to indicate which special value (if any) an object attribute contains. System Object Access

automatically maps these negative numbers to their corresponding special value string. For example,

the Retrieve Spooled File Attributes (QUSRSPLA) API returns ″-1″ for page rotation if output reduction

is performed automatically. CWBSO_GetObjAttr returns “*AUTO”.

v Some list filter criteria accept multiple values. For example, it is possible to filter a list of printers on

multiple printer names. In such cases, commas should separate the supplied values.

Where to find additional information about attribute special values:

See the i5/OS APIs topic in the iSeries Information Center.

Job attributes:

System Object Access uses the List Job (QUSLJOB) and Retrieve Job Information (QUSRJOBI) iSeries APIs

to retrieve attributes for jobs.

 The possible special values are the same as those that are documented in the i5/OS APIs: Work

Management APIs topic in the iSeries Information Center. The following special value mappings are not

documented explicitly:

CWBSO_JOB_CpuTimeUsed

If the field is not large enough to hold the actual result, QUSRJOBI returns -1. System Object

Access returns “++++”.

CWBSO_JOB_MaxCpuTimeUsed,

CWBSO_JOB_MaxTemporaryStorage,

CWBSO_JOB_DefaultWaitTime

If the value is *NOMAX, QUSRJOBI returns -1. System Object Access returns “*NOMAX”.

CWBSO_SetListFilter accepts all special values that are supported by the List Job (QUSLJOB) API.

Message attributes:

System Object Access uses the List Nonprogram Messages (QMHLSTM) i5/OS API to retrieve attributes

for messages.

 The possible special values are the same as those that are documented in the i5/OS APIs: Message

Handling APIs topic in the iSeries Information Center.

Programming 433

CWBSO_SetListFilter accepts the special values that are supported by the List Nonprogram Messages

(QMHLSTM) API for Severity Criteria. In addition, a 10-character user name may be supplied, by

specifying the CWBSO_MSGF_UserName filter ID. “*CURRENT” may be used to obtain a list of

messages for the current user.

Printer attributes:

System Object Access uses iSeries APIs to retrieve attributes for printer objects.

 A printer is a “logical” object that is actually a combination of a device description, a writer, and an

output queue. The attributes and their possible values are as follows.

CWBSO_PRT_AdvancedFunctionPrinting

Whether the printer device supports Advanced Function Printing™ (AFP).

*NO The printer device does not support Advanced Function Printing.

*YES The printer device supports Advanced Function Printing.

CWBSO_PRT_AllowDirectPrinting

Whether the printer writer allows the printer to be allocated to a job that prints directly to a

printer.

*NO Direct printing is not allowed

*YES Direct printing is allowed.

CWBSO_PRT_BetweenCopiesStatus

Whether the writer is between copies of a multiple copy spooled file. The possible values are Y

(yes) or N (no).

CWBSO_PRT_BetweenFilesStatus

Whether the writer is between spooled files. The possible values are Y (yes) or N (no).

CWBSO_PRT_ChangesTakeEffect

The time at which the pending changes to the writer take effect. Possible values are:

*NORDYF

When all the current eligible files are printed.

*FILEEND

When the current spooled file is done printing.

blank No pending changes to the writer.

CWBSO_PRT_CopiesLeftToProduce

The number of copies that are left to be printed. This field is set to 0 when no file is printing.

CWBSO_PRT_CurrentPage

The page number in the spooled file that the writer is currently processing. The page number

shown may be lower or higher than the actual page number being printed because of buffering

done by the system. This field is set to 0 when no spooled file is printing.

CWBSO_PRT_Description

The text description of the printer device.

CWBSO_PRT_DeviceName

The name of the printer device.

CWBSO_PRT_DeviceStatus

The status of the printer device. Possible values are the same as the device status that is returned

by the Retrieve Configuration Status (QDCRCFGS) API.

CWBSO_PRT_EndAutomatically

When to end the writer if it is to end automatically.

434 IBM Systems - iSeries: iSeries Access for Windows: Programming

*NORDYF

When no files are ready to print on the output queue from which the writer is selecting

files to be printed.

*FILEEND

When the current spooled file has been printed.

*NO The writer will not end, but it will wait for more spooled files.

CWBSO_PRT_EndPendingStatus

Whether an End Writer (ENDWTR) command has been issued for this writer. Possible values are:

N No ENDWTR command was issued.

I *IMMED: The writer ends as soon as its output buffers are empty.

C *CNTRLD: The writer ends after the current copy of the spooled file has been printed.

P *PAGEEND: The writer ends at the end of the page.

CWBSO_PRT_FileName

The name of the spooled file that the writer is currently processing. This field is blank when no

file is printing.

CWBSO_PRT_FileNumber

The number of the spooled file that the writer is currently processing. This field is set to 0 when

no spooled file is printing.

CWBSO_PRT_FormsAlignment

The time at which the forms alignment message will be sent. Possible values are:

*WTR The writer determines when the message is sent.

*FILE Control of the page alignment is specified by each file.

CWBSO_PRT_FormType

The type of form that is being used to print the spooled file. Possible values are:

*ALL The writer is started with the option to print all spooled files of any form type.

*FORMS

The writer is started with the option to print all the spooled files with the same form

type before using a different form type.

*STD The writer is started with the option to print all the spooled files with a form type of

*STD.

form type name

The writer is started with the option to print all the spooled files with the form type you

specified.

CWBSO_PRT_FormTypeNotification

Message option for sending a message to the message queue when this form is finished. Possible

values are:

*MSG A message is sent to the message queue.

*NOMSG

No message is sent to the message queue.

*INFOMSG

An informational message is sent to the message queue.

*INQMSG

An inquiry message is sent to the message queue.

Programming 435

CWBSO_PRT_HeldStatus

Whether the writer is held. The possible values are Y (yes) or N (no).

CWBSO_PRT_HoldPendingStatus

Whether a Hold Writer (HLDWTR) command has been issued for this writer. Possible values are:

N No HLDWTR command was issued.

I *IMMED: The writer is held as soon as its output buffers are empty.

C *CNTRLD: The writer is held after the current copy of the file has been printed.

P *PAGEEND: The writer is held at the end of the page.

CWBSO_PRT_JobName

The name of the job that created the spooled file which the writer is currently processing. This

field is blank when no spooled file is printing.

CWBSO_PRT_JobNumber

The number of the job that created the spooled file which the writer currently is processing. This

field is blank when no spooled file is printing.

CWBSO_PRT_MessageKey

The key to the message that the writer is waiting for a reply. This field will be blank when the

writer is not waiting for a reply to an inquiry message.

CWBSO_PRT_MessageQueueLibrary

The name of the library that contains the message queue.

CWBSO_PRT_MessageQueueName

The name of the message queue that this writer uses for operational messages.

CWBSO_PRT_MessageWaitingStatus

Whether the writer is waiting for a reply to an inquiry message. The possible values are Y (yes)

or N (no).

CWBSO_PRT_NextFormType

The name of the next form type to be printed. Possible values are:

*ALL The writer is changed with the option to print all spooled files of any form type.

*FORMS

The writer is changed with the option to print all the spooled files with the same form

type before using a different form type.

*STD The writer is changed with the option to print all the spooled files with a form type of

*STD.

form type name

The writer is changed with the option to print all the spooled files with the form type

name you specified.

blank No change has been made to this writer.

CWBSO_PRT_NextFormTypeNotification

The message option for sending a message to the message queue when the next form type is

finished. Possible values are:

*MSG A message is sent to the message queue.

*NOMSG

No message is sent to the message queue.

*INFOMSG

An informational message is sent to the message queue.

436 IBM Systems - iSeries: iSeries Access for Windows: Programming

*INQMSG

An inquiry message is sent to the message queue.

blank No change is pending.

CWBSO_PRT_NextOutputQueueLibrary

The name of the library that contains the next output queue. This field is blank if no changes

have been made to the writer.

CWBSO_PRT_NextOutputQueueName

The name of the next output queue to be processed. This field is blank if no changes have been

made to the writer.

CWBSO_PRT_NextSeparatorDrawer

This value indicates the drawer from which to take the separator pages if there is a change to the

writer. Possible values are:

*FILE Separator pages print from the same drawer that the spooled file prints from. If you

specify a drawer different from the spooled file that contains colored or different type

paper, the page separator is more identifiable.

*DEVD

Separator pages print from the separator drawer that is specified in the printer device

description.

empty string

No pending change to the writer.

1 The first drawer.

2 The second drawer.

3 The third drawer.

CWBSO_PRT_NextSeparators

The next number of separator pages to be printed when the change to the writer takes place.

Possible values are:

*FILE The number of separator pages is specified by each file.

empty string

No pending change to the writer.

number of separators

The number of separator pages to be printed.

CWBSO_PRT_NumberOfSeparators

The number of separator pages to be printed. Possible values are:

*FILE The number of separator pages is specified by each file.

Number of separators

The number of separator pages to be printed.

CWBSO_PRT_OnJobQueueStatus

Whether the writer is on a job queue and, therefore, is not currently running. The possible values

are Y (yes) or N (no).

CWBSO_PRT_OutputQueueLibrary

The name of the library that contains the output queue from which spooled files are selected for

printing.

CWBSO_PRT_OutputQueueName

The name of the output queue from which spooled files are being selected for printing.

Programming 437

CWBSO_PRT_OutputQueueStatus

The status of the output queue from which spooled files are being selected for printing. Possible

values are:

H The output queue is held.

R The output queue is released.

CWBSO_PRT_PrinterDeviceType

The type of the printer that is being used to print the spooled file. Valid values are:

*SCS SNA (Systems Network Architecture) character stream

*IPDS Intelligent Printer Data Stream™

CWBSO_PRT_SeparatorDrawer

Identifies the drawer from which the job and file separator pages are to be taken. Possible values

are:

*FILE The separator page prints from the same drawer that the file is printed from. If you

specify a drawer different from the file that contains colored or different type paper, the

page separator is more identifiable.

*DEVD

The separator pages will print from the separator drawer that is specified in the printer

device description.

1 The first drawer.

2 The second drawer.

3 The third drawer.

CWBSO_PRT_StartedByUser

The name of the user that started the writer.

CWBSO_PRT_Status

The overall status of the logical printer. This field is derived from the printer device status (from

the Retrieve Configuration Status QDCRCFGS API), the output queue status (from the List

Printer and Writer Status and the XPF macro) and writer status (from the Retrieve Writer

Information, QSPRWTRI, API). Possible values are:

1 Unavailable

2 Powered off or not yet available

3 Stopped

4 Message waiting

5 Held

6 Stop (pending)

7 Hold (pending)

8 Waiting for printer

9 Waiting to start

10 Printing

11 Waiting for printer output

12 Connect pending

13 Powered off

14 Unusable

438 IBM Systems - iSeries: iSeries Access for Windows: Programming

15 Being serviced

999 Unknown

CWBSO_PRT_TotalCopies

The total number of copies to be printed.

CWBSO_PRT_TotalPages

The total number of pages in the spooled file. Possible values are:

number

The number of pages in the spooled file.

0 No spooled file is printing.

CWBSO_PRT_User

The name of the user who created the spooled file that the writer is currently processing. This

field is blank when no file is printing.

CWBSO_PRT_UserSpecifiedData

The user-specified data that describe the file that the writer is currently processing. This field is

blank when no file is printing.

CWBSO_PRT_WaitingForDataStatus

Whether the writer has written all the data that is currently in the spooled file and is waiting for

more data. Possible values are:

N The writer is not waiting for more data.

Y The writer has written all the data currently in the spooled file and is waiting for more

data. This condition occurs when the writer is producing an open spooled file with

SCHEDULE(*IMMED) that is specified.

CWBSO_PRT_WaitingForDeviceStatus

Whether the writer is waiting to get the device from a job that is printing directly to the printer.

N The writer is not waiting for the device.

Y The writer is waiting for the device

CWBSO_PRT_WriterJobName

The job name of the printer writer.

CWBSO_PRT_WriterJobNumber

The job number of the printer writer.

CWBSO_PRT_WriterJobUser

The name of the system user.

CWBSO_PRT_WriterStarted

Indication of whether a writer is started for this printer. Possible values are:

0 No writer is started

1 Writer is started

CWBSO_PRT_WriterStatus

The status of the writer for this printer. Possible values are:

X’01’ Started

X’02’ Ended

X’03’ On job queue

X’04’ Held

X’05’ Waiting on message

Programming 439

CWBSO_PRT_WritingStatus

Whether the printer writer is in writing status. The possible values are:

Y The writer is in writing status.

N The writer is not in writing status.

S The writer is writing the file separators.

System Object Access accepts a comma-separated list of printer names. Up to 100 printer names may be

specified. A special value of “*ALL” may be supplied to request a list of all printers on the iSeries server.

Printer output attributes:

System Object Access uses the List Spooled Files (QUSLSPL) and Retrieve Spooled File Attributes

(QUSRSPLA) iSeries APIs to retrieve attributes for printer output.

 The possible special values are the same as those that are documented in the i5/OS APIs: Spooled File

APIs topic in the iSeries Information Center. The following special value mappings are not explicitly

documented:

CWBSO_SFL_StartingPage

If the ending page value is to be used, QUSRSPLA returns -1. System Object Access returns

“*ENDPAGE”.

CWBSO_SFL_EndingPage

If the last page is to be the ending page, QUSRSPLA returns 0 or 2147483647. System Object

Access returns “*END”.

CWBSO_SFL_MaximumRecords

If there is no maximum, QUSRSPLA returns 0. System Object Access returns “*NOMAX”.

CWBSO_SFL_PageRotation

If no rotation is done, QUSRSPLA returns 0. System Object Access returns “*NONE”.

An undocumented API is used to retrieve the printer device name or names for a spooled file. The

attribute and its possible values are described below.

CWBSO_SFL_DeviceNames

The name of the printer device that will print the file. If the printer output is assigned to more

than one printer device, this field contains all of the printer names in the group of printers.

Possible values are:

printer name

The name of the printer to which the printer output is assigned.

list of printer names

The names of the printers in the group to which the printer output is assigned. Commas

will separate the printer names.

empty string

The printer output is not assigned to a printer or group of printers.

CWBSO_SetListFilter accepts all special values that are supported by the List Spooled Files (QUSLSPL)

API.

TCP/IP interfaces attributes:

System Object Access uses the iSeries API List Network Interfaces (QtocLstNetIfc) to retrieve attributes

for TCP/IP interfaces.

 To retrieve attributes used by System Object Access for TCP/IP interfaces use one of the following APIs.

440 IBM Systems - iSeries: iSeries Access for Windows: Programming

v Change IPv4 Interface (QTOCC4IF) API

– This API is documented by a program temporary fix (PTF). For the PTF details, enter SI17284 in the

search function on the following page:

- iSeries Access for Windows Service Packs

(http://www.ibm.com/servers/eserver/iseries/access/casp.htm)
v List Network Interfaces (QtocLstNetIfc) API

Ethernet lines attributes:

You can find information about Ethernet lines in the Configuration APIs topic.

 See the Configuration APIs topic in the iSeries Information Center.

Token-ring lines attributes:

You can find information about token-ring lines in the Configuration APIs topic.

 See the Configuration APIs topic in the iSeries Information Center.

Hardware resources attributes:

You can find information about hardware resources in the Hardware Resource APIs topic.

 See the Hardware Resource APIs topic in the iSeries Information Center.

Software products attributes:

You can find information about software products in the Software Product APIs topic.

 See the Software Product APIs topic in the iSeries Information Center.

TCP/IP routes attributes:

System Object Access uses the iSeries API TCP/IP route (QTOCRTEU) to retrieve attributes for TCP/IP

routes.

 The possible special values are:

CWBSO_RTE_TCPIPNetworkName

CWBSO_RTE_InternetAddress

CWBSO_RTE_BinaryInternetAddress

*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header.

The interface structure will repeat for each route returned.

CWBSO_RTE_SubnetMask

CWBSO_RTE_BinarySubnetMask

*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header.

The interface structure will repeat for each route returned.

CWBSO_RTE_NextHopAddress

CWBSO_RTE_BinaryNextHop

*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header.

The interface structure will repeat for each route returned.

CWBSO_RTE_BindingInterface

Programming 441

CWBSO_RTE_BinaryBindingIP

*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header.

The interface structure will repeat for each route returned.

CWBSO_RTE_MaximumTransmissionUnit

CWBSO_RTE_TypeOfService

v 1=Normal

v 2=Minmum delay

v 3=Maximum throughput

v 4=Maximum reliability

v 5=Minimum cost

CWBSO_RTE_RoutePrecedence

CWBSO_RTE_RIPMetric

CWBSO_RTE_RIPRedistribution

v 1=Yes

v 2=No

CWBSO_RTE_PPPProfile

Not valid for *xxxRTE

CWBSO_RTE_PPPCallerUserid

Not valid for *xxxRTE

CWBSO_RTE_PPPCallerIP

Not valid for *xxxRTE

CWBSO_RTE_ApplicationDefined

Users and groups attributes:

The possible users and groups special values are valid for users and groups.

 v CWBSO_USR_ProfileName

v CWBSO_USR_ProfileOrGroupIndicator

v CWBSO_USR_GroupHasMembers

v CWBSO_USR_TextDescription

v CWBSO_USR_PreviousSignonDate

v CWBSO_USR_PreviousSignonTime

v CWBSO_USR_SignonAttemptsNotValid

v CWBSO_USR_Status

v CWBSO_USR_PasswordChangeDate

v CWBSO_USR_NoPasswordIndicator

v CWBSO_USR_PasswordExpirationInterval

v CWBSO_USR_DatePasswordExpires

v CWBSO_USR_DaysUntilPasswordExpires

v CWBSO_USR_SetPasswordToExpire

v CWBSO_USR_DisplaySignonInformation

v CWBSO_USR_UserClassName

v CWBSO_USR_AllObjectAccess

v CWBSO_USR_SecurityAdministration

v CWBSO_USR_JobControl

442 IBM Systems - iSeries: iSeries Access for Windows: Programming

v CWBSO_USR_SpoolControl

v CWBSO_USR_SaveAndRestore

v CWBSO_USR_SystemServiceAccess

v CWBSO_USR_AuditingControl

v CWBSO_USR_SystemConfiguration

v CWBSO_USR_GroupProfileName

v CWBSO_USR_Owner

v CWBSO_USR_GroupAuthority

v CWBSO_USR_LimitCapabilities

v CWBSO_USR_GroupAuthorityType

v CWBSO_USR_SupplementalGroups

v CWBSO_USR_AssistanceLevel

v CWBSO_USR_CurrentLibraryName

v CWBSO_USR_InitialMenuName

v CWBSO_USR_InitialMenuLibraryName

v CWBSO_USR_InitialProgramName

v CWBSO_USR_InitialProgramLibraryName

v CWBSO_USR_LimitDeviceSessions

v CWBSO_USR_KeyboardBuffering

v CWBSO_USR_MaximumAllowedStorage

v CWBSO_USR_StorageUsed

v CWBSO_USR_HighestSchedulingPriority

v CWBSO_USR_JobDescriptionName

v CWBSO_USR_JobDescriptionNameLibrary

v CWBSO_USR_AccountingCode

v CWBSO_USR_MessageQueueName

v CWBSO_USR_MessageQueueLibraryName

v CWBSO_USR_MessageQueueDeliveryMethod

v CWBSO_USR_MessageQueueSeverity

v CWBSO_USR_OutputQueue

v CWBSO_USR_OutputQueueLibrary

v CWBSO_USR_PrintDevice

v CWBSO_USR_SpecialEnvironment

v CWBSO_USR_AttentionKeyHandlingProgramName

v CWBSO_USR_AttentionKeyHandlingProgramLibrary

v CWBSO_USR_LanguageID

v CWBSO_USR_CountryID

v CWBSO_USR_CharacterCodeSetID

v CWBSO_USR_ShowParameterKeywords

v CWBSO_USR_ShowAllDetails

v CWBSO_USR_DisplayHelpOnFullScreen

v CWBSO_USR_ShowStatusMessages

v CWBSO_USR_DoNotShowStatusMessages

v CWBSO_USR_ChangeDirectionOfRollkey

v CWBSO_USR_SendMessageToSpoolFileOwner

Programming 443

v CWBSO_USR_SortSequenceTableName

v CWBSO_USR_SortSequenceTableLibraryName

v CWBSO_USR_DigitalCertificateIndicator

v CWBSO_USR_CharacterIDControl

v CWBSO_USR_ObjectAuditValue

v CWBSO_USR_CommandUsage

v CWBSO_USR_ObjectCreation

v CWBSO_USR_ObjectDeletion

v CWBSO_USR_JobTasks

v CWBSO_USR_ObjectManagement

v CWBSO_USR_OfficeTasks

v CWBSO_USR_ProgramAdoption

v CWBSO_USR_SaveAndRestoreTasks

v CWBSO_USR_SecurityTasks

v CWBSO_USR_ServiceTasks

v CWBSO_USR_SpoolManagement

v CWBSO_USR_SystemManagement

v CWBSO_USR_OpticalTasks

v CWBSO_USR_UserIDNumber

v CWBSO_USR_GroupIDNumber

v CWBSO_USR_DoNotSetAnyJobAttributes

v CWBSO_USR_UseSystemValue

v CWBSO_USR_CodedCharacterSetID

v CWBSO_USR_DateFormat

v CWBSO_USR_DateSeparator

v CWBSO_USR_SortSequenceTable

v CWBSO_USR_TimeSeparator

v CWBSO_USR_DecimalFormat

v CWBSO_USR_HomeDirectoryDelimiter

v CWBSO_USR_HomeDirectory

v CWBSO_USR_Locale

v CWBSO_USR_IndirectUser

v CWBSO_USR_PrintCoverPage

v CWBSO_USR_MailNotification

v CWBSO_USR_UserID

v CWBSO_USR_LocalDataIndicator

v CWBSO_USR_UserAddress

v CWBSO_USR_SystemName

v CWBSO_USR_SystemGroup

v CWBSO_USR_UserDescription

v CWBSO_USR_FirstName

v CWBSO_USR_PreferredName

v CWBSO_USR_MiddleName

v CWBSO_USR_LastName

v CWBSO_USR_FullName

444 IBM Systems - iSeries: iSeries Access for Windows: Programming

v CWBSO_USR_JobTitle

v CWBSO_USR_CompanyName

v CWBSO_USR_DepartmentName

v CWBSO_USR_NetworkUserID

v CWBSO_USR_PrimaryTelephoneNumber

v CWBSO_USR_SecondaryTelephoneNumber

v CWBSO_USR_FaxNumber

v CWBSO_USR_Location

v CWBSO_USR_BuildingNumber

v CWBSO_USR_OfficeNumber

v CWBSO_USR_MailingAddress

v CWBSO_USR_MailingAddress2

v CWBSO_USR_MailingAddress3

v CWBSO_USR_MailingAddress4

v CWBSO_USR_CCMailAddress

v CWBSO_USR_CCMailComment

v CWBSO_USR_MailServerFrameworkServiceLevel

v CWBSO_USR_PreferredAddressFieldName

v CWBSO_USR_PreferredAddressProductID

v CWBSO_USR_PreferredAddressTypeValue

v CWBSO_USR_PreferredAddressTypeName

v CWBSO_USR_PreferredAddress

v CWBSO_USR_ManagerCode

v CWBSO_USR_SMTPUserID

v CWBSO_USR_SMTPDomain

v CWBSO_USR_SMTPRoute

v CWBSO_USR_GroupMemberIndicator

Note: In release/version V4R4 and later, the following attributes are meaningful only when Lotus Notes®

is installed on the iSeries server:

v CWBSO_USR_NotesServerName

v CWBSO_USR_NotesCertifierID

v CWBSO_USR_MailType

v CWBSO_USR_NotesMailFileName

v CWBSO_USR_CreateMailFiles

v CWBSO_USR_NotesForwardingAddress

v CWBSO_USR_SecurityType

v CWBSO_USR_LicenseType

v CWBSO_USR_MinimumNotesPasswordLength

v CWBSO_USR_UpdateExistingNotesUser

v CWBSO_USR_NotesMailServer

v CWBSO_USR_LocationWhereUserIDIsStored

v CWBSO_USR_ReplaceExistingNotesID

v CWBSO_USR_NotesComment

v CWBSO_USR_NotesUserLocation

Programming 445

v CWBSO_USR_UserPassword

v CWBSO_USR_NotesUserPassword

v CWBSO_USR_NotesCertifierPassword

v CWBSO_USR_ShortName

Libraries in QSYS attributes:

You can find information about libraries in QSYS in the Object APIs topic.

 See the Object APIs topic in the iSeries Information Center.

iSeries Access for Windows: Database programming

iSeries Access for Windows provides multiple programming interfaces for accessing database files on the

iSeries server.

Some of the common interfaces allow you to write a single application to access both the iSeries database

and non-iSeries databases. In addition, a proprietary C API interface is supported to expose the unique

strengths of DB2® for iSeries. You can also use both Structured Query Language (SQL) to access DB2

Universal Database™ (UDB) for iSeries database files and stored procedures and use record-level access

interfaces for access to single records within a file.

The following are the iSeries Access for Windows interfaces that are supported:

IBM Toolbox for Java JDBC Driver Allows Java programs to access iSeries database files using

standard JDBC interfaces.

 The DB2 UDB for iSeries SQL Programming book contains detailed information.

How to access the book:

Follow these steps to view a hypertext markup language (HTML) online version of the DB2 UDB

for iSeries SQL Programming book, and to print a PDF version:

1. Link to the DB2 Universal Database for iSeries SQL Reference topic in the iSeries Information

Center

2. Select SQL Programming

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

iSeries Access for Windows .NET provider

iSeries Access for Windows .NET provider allows .NET managed programs to access the iSeries database

files using SQL.

Your iSeries Access for Windows .NET support is known by any of the following:

v Managed Provider

v IBM DB2 UDB for iSeries .NET Provider

v IBM.Data.DB2.iSeries data provider

Regardless of the name that is referenced, this data provider allows development and support for your

PC-to-iSeries SQL applications, when the .NET Data Access Framework connects you to your iSeries

server. It consists of a set of classes and data types that provide access to connection, command,

DataAdapter, and DataReader functions as defined and supported by the ADO.NET architectural model.

446 IBM Systems - iSeries: iSeries Access for Windows: Programming

The IBM.Data.DB2.iSeries data provider complements the existing OLE DB database providers. It allows

you to use Visual Basic and C# to develop your .NET client/server applications. You can use the

Programmer’s Toolkit along with this provider to make development of your .NET Windows client PC

applications quicker and easier.

The Managed Provider follows the .NET Framework specifications for managed code, including the

requirement to have the .NET Framework already installed on your PC. Once it is installed, follow these

steps to install the provider using Selective Setup:

1. Start → Programs → IBM iSeries Access for Windows → Selective Setup.

2. On the Component Selection panel, in the Data Access component select .NET Data Provider.

3. Continue through the Selective Setup wizard.

See Microsoft Web site

for the architecture and details on Microsoft’s .NET Framework, ADO.NET,

Windows Installer, GAC, the CLR, and specifications for managed code.

To access technical details:

v The IBM DB2 UDB for iSeries .NET Provider Technical Reference, which is shipped with iSeries

Access for Windows, provides complete documentation of the Managed Provider’s support. To access

this information, use this path: Start → Programs → IBM iSeries Access for Windows → Programmer’s

Toolkit → Programmer’s Toolkit → Common Interfaces → ADO.NET.

v Restriction:

– There are some iDB2CommandBuilder restrictions on pre-V5R2M0 servers.

.NET framework

See Microsoft Web site

for the architecture and details on Microsoft’s .NET Framework, ADO.NET,

Windows Installer, GAC, the CLR, and specifications for managed code.

To install Programmer’s Toolkit :

v You can optionally install the Programmer’s Toolkit when you install iSeries Access for Windows or

you can run Selective Setup after iSeries Access for Windows is already installed. See Programmer’s

Toolkit.

Other .NET information resources:

v IBM iSeries Access for Windows .NET Provider Web site

v IBM Redbook Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET. SG24-6440

iDB2CommandBuilder restrictions on pre-V5R2M0 servers

Due to limitations in iSeries i5/OS releases prior to V5R2M0, using the iDB2CommandBuilder on these

servers has limited support.

Properly specifying Select command text on the iDB2Command object used with the

iDB2CommandBuilder is key when connecting to pre-V5R2M0 servers. Here are some recommended

guidelines for creating Select statements for use on pre-V5R2M0 servers.

v Simple statements produce the best results. For example, SELECT * FROM MYSCHEMA.MYTABLE.

v Fully qualify the table name with its schema. For example, MYSCHEMA.MYTABLE.

v Selection fields are allowed, but must be specified in simple format. Only columns specified in the

query table should be used. For example, SELECT ID, NAME, BALANCE FROM

MYSCHEMA.MYTABLE.

Programming 447

|

|

|

|

http://www.msdn.com
http://www.msdn.com
http://www.ibm.com/eserver/iseries/access/dotnet
http://www.redbooks.ibm.com/abstracts/sg246440.html

v Derived fields or constants in the selection criteria are discouraged. They may produce unpredictable

results. For example, SELECT ID, LENGTH(NAME), ’Name’ FROM MYSCHEMA.MYTABLE.

iSeries Access for Windows OLE DB provider

Supports record-level access and SQL access to iSeries database files. Use the ActiveX Data Objects (ADO)

and the OLE DB interfaces to take advantage of this support.

The iSeries Access for Windows OLE DB Providers, along with the Programmer’s Toolkit, make iSeries

client/server application development quick and easy from the Windows client PC. The iSeries Access for

Windows OLE DB Provider component gives iSeries programmers record-level access interfaces to iSeries

logical and physical DB2 Universal Database (UDB) for iSeries database files. In addition, they provide

support for SQL, data queues, programs, and commands. If you use Visual Basic, the Visual Basic

Wizards make it simple and easy to develop customized, working applications.

ADO and OLE DB standards provide programmers with consistent interfaces to iSeries server data and

services. All three of the providers (the IBMDA400, the IBMDASQL, and the IBMDARLA) handle all

iSeries server-to-PC and data type-to-data type conversions.

To install OLE DB Provider:

When you install iSeries Access for Windows(or when you run Selective Setup if iSeries Access

for Windows is installed), select the Data Access component. Make sure that the OLE DB

Provider subcomponent also is selected.

Note: The OLE DB Provider will not be installed if the computer does not have MDAC 2.5 or

later installed, before installing iSeries Access for Windows. MDAC can be downloaded

from Microsoft: www.microsoft.com/data/doc.htm.

To access OLE DB Technical Reference:

The iSeries Access for Windows OLE DB Technical Reference, which is shipped with iSeries

Access for Windows, provides complete documentation of OLE DB Provider support. To access it

from the Programmer’s Toolkit, select Overview → Common Interfaces → ADO/OLE DB.

To install Programmer’s Toolkit and the iSeries ADO Wizards for Visual Basic:

When you install iSeries Access for Windows (or when you run Selective Setup if iSeries Access

for Windows is installed), select the Programmer’s Toolkit component. See “Install the

Programmer’s Toolkit” on page 5 for more information.

Other OLE DB information resources:

v IBM iSeries Access for Windows OLE DB Support Web site.

v IBM Redbook Fast Path to iSeries Client/Server Using iSeries OLE DB Support: SG24-5183

iSeries Access for Windows ODBC

A common database interface that uses SQL as its database access language. iSeries Access for Windows

provides an ODBC driver to support this interface.

What is ODBC?

ODBC stands for open database connectivity. It consists of:

v A well-defined set of functions (application programming interfaces)

v Standards for SQL syntax (that are recommended but not imposed)

v Error codes

v Data types

448 IBM Systems - iSeries: iSeries Access for Windows: Programming

http://www.ibm.com/eserver/iseries/access/oledb
http://www.redbooks.ibm.com/abstracts/sg245183.html

The application programming interfaces provide a rich set of functions to connect to a database

management system, run SQL statements and to retrieve data. Also included are functions to interrogate

the SQL catalog of the database and the capabilities of the driver.

ODBC drivers return standard error codes and translate data types to a common (ODBC) standard.

ODBC allows the application developer to obtain integrated database error information, and to avoid

some of the most complex problems that are involved with making applications portable.

What you can do with ODBC:

Use ODBC to:

v Send SQL requests to the database management system (DBMS).

v Use the same program to access different database management system (DBMS) products without

recompiling.

v Create an application that is independent of the data communications protocol.

v Handle data in a format convenient to the application.

The flexibility of ODBC APIs allows you to use them in transaction-based, line-of-business applications

(where the SQL is predefined) and also in query tools (where the select statement is created at run time).

Structured Query Language (SQL):

ODBC supports dynamic SQL, which sometimes is associated with poor performance. However, careful

use of parameter markers enables repeated statements to achieve static SQL-like performance. Also,

extended dynamic SQL–a special capability of the iSeries Access for Windows ODBC driver–enables

previously prepared SQL statements to achieve performance that rivals static SQL.

For more information on SQL, see the IBM SQL Reference book. View an HTML online version of the

book, or print a PDF version, from the DB2 Universal Database for iSeries SQL Reference iSeries

Information Center topic.

iSeries Access for Windows ODBC topics:

Note: The information linked to from this page applies to the iSeries Access for Windows 32-bit ODBC

driver, the iSeries Access for Windows 64-bit ODBC driver, and the iSeries Access for Linux®

ODBC driver. For additional information regarding setup for the iSeries Access for Linux ODBC

driver see iSeries ODBC Driver for Linux.

You can find documentation on the ODBC standard by searching for ODBC at the Microsoft Web site.

Files required to build an ODBC application

Identify the files required to build an ODBC application.

Choose from the following topics for information on files and other concepts used in building an ODBC

application.

Note: The Programmer’s Toolkit provides ODBC documentation, and links to sample programs and

related information. To access this information, open the Programmer’s Toolkit and select Database

→ ODBC.

Choose an interface to access the ODBC driver:

There are different programming interfaces that can be used with the iSeries Access for Windows ODBC

Driver. Each interface has its strengths and weaknesses.

Programming 449

http://www.ibm.com/servers/eserver/iseries/linux/odbc
http://www.microsoft.com/

Three of the more common programming interfaces are ActiveX Data Objects (ADO), Rapid Application

Development (RAD) tools, and ODBC APIs. The supported languages, reasons for using, and sources of

more information for these three interfaces, are provided below.

ActiveX Data Objects (ADO)

ADO refers to ActiveX Data Objects and is Microsoft’s high level object model for data access.

v Supported programming languages:

– Visual Basic

– Active Server Pages (ASP)

– Delphi

– Visual Basic Script

– any other language or script that supports ActiveX or COM
v Reasons to use this method:

– Eliminates the coding of ODBC APIs

– Supports switching providers, when needed
v Where to go for more information:

– More on how to use ADO, see the ADO documentation that comes in MDAC:

www.microsoft.com/data/doc.htm

– More on using the iSeries Access OLE-DB Provider through ADO refer to:“iSeries Access for

Windows OLE DB provider” on page 448
v Special notes:

– To use ODBC through ADO an application needs to specify the MSDASQL provider in a connection

string. MSDASQL converts ADO calls into ODBC API calls which communicate with the ODBC

driver.

– An example using an ADO connection string follows:

 ConnectionString = ″Provider=MSDASQL;Data Source=MYODBCDS;″

Rapid Application Development (RAD) tools

Rapid Application Development tools are tools that help in creating applications quickly. The tools make

it so that the application writer does not have to know much about the ODBC specification.

v Supported programming languages:

– Depends on which RAD tool is used.

– Some of the more commonly used tools include Powerbuilder, Delphi, and Seagate Crystal Reports.
v Reasons to use this method:

– Eliminates the coding of ODBC APIs

– Works with multiple ODBC drivers using one program, with few or no changes
v Where to go for more information:

– Refer to the documentation included with the RAD tool.

Direct ODBC API calls

Direct ODBC API calls are when an application is written directly to the ODBC specification.

v Supported programming language:

C/C++

v Reasons to use this method:

450 IBM Systems - iSeries: iSeries Access for Windows: Programming

– Allows direct control over which ODBC APIs are called so can be faster than using ADO objects or

RAD tools

– Designed to take advantage of driver-specific features
v Where to go for more information:

– For information on the ODBC specification and some samples see the ODBC documentation that

comes in MDAC: www.microsoft.com/data/doc.htm.

– For more information about driver-specific features see “Implementation issues of ODBC APIs” on

page 470

ODBC C/C++ application header files:

Identify C/C++ header files for an ODBC C/C++ application.

 Header files Import library Dynamic Link Library

sql.h

sqlext.h

sqltypes.h

sqlucode.h

odbc32.lib odbc32.dll

ODBC APIs: General concepts:

The following general concepts apply to ODBC APIs:

Environments:

The environment in which Windows makes available some memory for ODBC to monitor its

run-time information.

Connections:

Within the environment there can be multiple connections, each to a data source. The connections

may be to different physical servers, to the same server, or any combination of both.

Statements:

Multiple statements can be run within each connection.

Handles:

Handles are identifiers for storage areas that are allocated by the Driver Manager or individual

drivers. The three types of handles are:

Environment handle:

Global information, that includes other handles. One handle is allowed per application.

Connection handle:

Information about connection to a data source. Multiple connection handles are allowed

per environment.

Statement handle:

Information about a particular SQL statement. Multiple statement handles are allowed

per connection. Statement handles can be reused for other SQL statements and long as

the statement state is valid.

Descriptor handle:

Information about explicit descriptors that are associated with the connection handle. The

application creates these, and asks the driver to use them instead of the implicit

descriptors associated with a statement handle.

Essentially, a handle can be considered as an identifier for a resource that is recognized by ODBC

(an environment, connection or statement). ODBC provides an identifier (the handle) for this

Programming 451

resource that you can use in your program. Exactly what ODBC stores in the handle (which is

held as a long integer) is not relevant. Be careful not to change the value, and to assign unique

names to the variables that hold the various handles.

 Some APIs set the handle (for example, SQLAllocEnv or SQLAllocHandle with

SQL_HANDLE_ENV handle type), and you must pass in a reference, or pointer to the variable.

Some APIs refer to a handle that previously was set (for example, SQLExecute), and you must

pass in the variable by value.

Parameter markers:

Parameter markers act as place holders for values that are supplied by the program when you instruct

the data source to run the SQL statement.

 When you use SQLPrepare, the statement that contains the parameter markers is passed to the data

source to be prepared by the SQL “Optimizer” on page 518. The Optimizer builds a plan of the statement

and holds it for later reference. Each parameter marker must be associated with a program variable

(strictly, a pointer to a program variable), and SQLBindParameter is used for this purpose.

SQLBindParameter is a complex function. Careful study of the relevant section in the Microsoft ODBC

Software Development Kit and Programmer’s Reference ISBN 1-57231-516-4 is strongly recommended. For

most SQL statements, using SQLBindParameter provides input information to the function, but with

stored procedures it also can receive data back.

After you have prepared the statement and bound the parameters, use SQLExecute to set to the data

source the current values of the associated variables.

SQLFetch and SQLGetData:

SQLGetData provides an alternative to SQLBindCol to retrieve data from the columns of a retrieved

row. It can only be called after calling fetch APIs and when the array size is 1.

 As a general rule, SQLBindCol is preferable to SQLGetData. There is less performance overhead; you

need to run SQLBindCol only once rather than after every fetch. However, there are special

considerations for using SQLBindCol in Visual Basic.

Visual Basic moves character strings to different locations to conserve memory. If a string variable is

bound to a column, the memory that is referenced by a subsequent SQLFetch may not place the data in

the desired variable. It is likely that a General Protection Fault will result. A similar problem can occur

with SQLBindParameter.

Using strings in Visual Basic is not recommended. One way to avoid this problem is to use byte arrays.

Byte arrays are of a fixed size and are not subject to movement in memory.

Another circumvention is to employ Windows memory allocation API functions that are documented in

the Microsoft Development Library Knowledge Base. However, this method involves some difficult

programming that is not totally transportable between Windows 3.1 and later releases.

Using SQLGetData rather than SQLBindCol and SQLParamData and SQLPutData in conjunction with

SQLBindParameter produce software that is more in keeping with Visual Basic. However, this method

involves some difficult programming.

Code directly to ODBC APIs:

Many PC applications make ODBC calls that allow the user to seamlessly access data on different

platforms. Before you begin developing your own application with ODBC APIs, you should understand

how an ODBC application connects to and exchanges information with a database server.

452 IBM Systems - iSeries: iSeries Access for Windows: Programming

http://msdn.microsoft.com/library/default.asp

There are supported ODBC APIs that:

v Set up the ODBC environment

v Establish and end connections to data sources

v Execute SQL statements

v Clean up the ODBC environment

Call stored procedures:

Use stored procedures to improve the performance and function of an ODBC application.

 Any iSeries program can act as a stored procedure. iSeries stored procedures support input, input/output

and output parameters. They also support returning result sets, both single and multiple. The stored

procedure program can return a result set by specifying a cursor to return (from an embedded SQL

statement) or by specifying an array of values. See “Stored procedures” on page 536 for more

information.

To call a stored procedure, complete the following steps:

1. Verify that the stored procedure has been declared by using the SQL statement CREATE

PROCEDURE.

Detail: CREATE PROCEDURE should be executed only once for the life of the stored procedure.

DROP PROCEDURE can be used to delete the procedure without deleting the procedure’s

program. DECLARE PROCEDURE also can be used, but this method has several

disadvantages. The Database Programming book contains additional information about

DECLARE PROCEDURE. View an HTML online version of the book, or print a PDF version,

from the DB2 Universal Database for iSeries SQL Reference topic in the iSeries Information

Center.

2. Prepare the call of the stored procedure by using SQL Prepare.

3. Bind the parameters for input and output parameters.

4. Execute the call to the stored procedure.

5. Retrieve the result set (if one is returned)

In this C example, a COBOL program named NEWORD which resided in the default iSeries library, is

called. A value in a field named szCustId is passed, and it returns a value to a field named szName.

SQLRETURN rc;

HSTMT hstmt;

SQLCHAR Query[320];

SQLCHAR szCustId[10];

SQLCHAR szName[30];

SQLINTEGER strlen_or_indPtr = SQL_NTS, strlen_or_indPtr2 = SQL_NTS;

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

// Create the stored procedure definition.

// The create procedure could be moved to the application’s

// install program so that it is only executed once.

strcpy(Query,"CREATE PROCEDURE NEWORD (:CID IN CHAR(10), :NAME OUT CHAR(30))");

strcat(Query," (EXTERNAL NAME NEWORD LANGUAGE COBOL GENERAL WITH NULLS)");

// Create the stored procedure

rc = SQLExecDirect(hstmt, (unsigned char *)Query, SQL_NTS);

strcpy(Query, "CALL NEWORD(?,?)");

// Prepare the stored procedure call

rc = SQLPrepare(hstmt, (unsigned char *)Query, SQL_NTS);

Programming 453

// Bind the parameters

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

 10, 0, szCustId, 11, &strlen_or_intPtr);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_VARCHAR,

 30, 0, szName, 31, &strlen_or_indPtr2);

strcpy (szCustId,"0000012345");

// Execute the stored procedure

rc = SQLExecute(hstmt);

Block insert and block fetch C example:

Block inserts and block fetches can be used to enhance the performance of an ODBC application.

 They allow you to insert or retrieve rows in blocks, rather than individually. This reduces the data flows

and line turnaround between the client and the server. Block fetches can be accomplished using either the

SQLFetch (forward only) or SQLExtendedFetch or SQLFetchScroll API.

A block fetch:

v Returns a block of data (one row set) in the form of an array for each bound column.

v Scrolls through the result set according to the setting of a scroll type argument; forward, backward, or

by row number.

v Uses the row set size specified with the SQLSetStmtAttr API.

The C example below does a block insert of 6 rows of data followed by two block fetches of two rows.

#define NUM_ROWS_INSERTED 6

#define NAME_LEN 10

HSTMT hstmt;

SQLINTEGER rowcnt = NUM_ROWS_INSERTED;

SQLCHAR itemNames[NUM_ROWS_INSERTED][NAME_LEN+1] = { "puzzle ", "candy bar ",

 "gum ","kite ", "toy car ", "crayons " };

SQLINTEGER itemPrices[NUM_ROWS_INSERTED] = { 5, 2, 1, 10, 3, 4 };

SQLCHAR queryItemNames[NUM_ROWS_INSERTED][NAME_LEN+1]; // Name return array

SQLINTEGER queryItemPrices[NUM_ROWS_INSERTED]; // price return array

SQLINTEGER cbqueryItemNames[NUM_ROWS_INSERTED], cbqueryItemPrices[NUM_ROWS_INSERTED];

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

rc = SQLExecDirect(hstmt, "CREATE TABLE ITEMS (NAME VARCHAR(10), PRICE INT)", SQL_NTS);

// set the paramset size to 6 as we are block inserting 6 rows of data

rc = SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)rowcnt, SQL_IS_INTEGER);

// bind the arrays to the parameters

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

 NAME_LEN, 0, itemNames[0], NAME_LEN + 1, NULL);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

 NUM_ROWS_INSERTED, 0, &itemPrices[0],

 sizeof(long), NULL);

// do the block insert

rc = SQLExecDirect(hstmt, "INSERT INTO ITEMS ? ROWS VALUES(?,?)", SQL_NTS);

// set up things for the block fetch

// We set the concurrency below to SQL_CONCUR_READ_ONLY, but since SQL_CONCUR_READ_ONLY

// is the default this API call is not necessary. If update was required then you would use

// SQL_CONCUR_LOCK value as the last parameter.

rc = SQLSetStmtAttr(hstmt, SQL_ATTR_CONCURRENCY, (SQLPOINTER)SQL_CONCUR_READ_ONLY,

 SQL_IS_INTEGER);

// We set the cursor type to SQL_CURSOR_FORWARD_ONLY, but since SQL_CURSOR_FORWARD_ONLY

454 IBM Systems - iSeries: iSeries Access for Windows: Programming

// is the default this API call is not necessary.

rc = SQLSetStmtAttr(hstmt, SQL_ATTR_CURSOR_TYPE,

 (SQLPOINTER)SQL_CURSOR_FORWARD_ONLY, SQL_IS_INTEGER);

// We want to block fetch 2 rows at a time so we need to set SQL_ATTR_ROW_ARRAY_SIZE to 2.

// If we were going to use SQLExtendedFetch instead of SQLFetchScroll we would instead need

// to set the statement attribute SQL_ROWSET_SIZE to 2.

rc = SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, (SQLPOINTER)2, SQL_IS_INTEGER);

rc = SQLExecDirect(hstmt, "SELECT NAME, PRICE FROM ITEMS WHERE PRICE < 5", SQL_NTS);

// bind arrays to hold the data for each column in the result set

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, queryItemNames, NAME_LEN + 1, cbqueryItemNames);

rc = SQLBindCol(hstmt, 2, SQL_C_LONG, queryItemPrices, sizeof(long), cbqueryItemPrices);

// We know that there are 4 rows that fit the criteria for the SELECT statement so we call

// two fetches to get all the data

rc = SQLFetchScroll(hstmt, SQL_FETCH_FIRST, 0);

// at this point 2 rows worth of data will have been fetched and put into the buffers

// that were bound by SQLBindCol

rc = SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0);

// at this point 2 rows worth of data will have been fetched and put into the buffers

// that were bound by SQLBindCol. Note that this second fetch overwrites the data in

// those buffers with the new data

// ...

// Application processes the data in bound columns...

// ...

Example: Block inserts using Visual Basic:

This example is a Visual Basic block insert that is significantly faster than a ″parameterized″ insert.

 Block inserts allow you to:

v Insert blocks of records with one SQL call.

v Reduces the flows between the client and server.

See “Block insert and block fetch C example” on page 454 for additional information.

Dim cbNTS(BLOCKSIZE - 1) As Long ’NTS array

 Dim lCustnum(BLOCKSIZE - 1) As Long ’Customer number array

 ’2nd parm passed by actual length for demo purposes

 Dim szLstNam(7, BLOCKSIZE - 1) As Byte ’NOT USING NULL ON THIS PARM

 Dim cbLenLstNam(BLOCKSIZE - 1) As Long ’Actual length of string to pass

 Dim cbMaxLenLstNam As Long ’Size of one array element

 ’These will be passed as sz string so size must include room for null

 Dim szInit(3, BLOCKSIZE - 1) As Byte ’Size for field length + null

 Dim szStreet(13, BLOCKSIZE - 1) As Byte ’Size for field length + null

 Dim szCity(6, BLOCKSIZE - 1) As Byte ’Size for field length + null

 Dim szState(2, BLOCKSIZE - 1) As Byte ’Size for field length + null

 Dim szZipCod(5, BLOCKSIZE - 1) As Byte ’Size for field length + null

 Dim fCdtLmt(BLOCKSIZE - 1) As Single

 Dim fChgCod(BLOCKSIZE - 1) As Single

 Dim fBalDue(BLOCKSIZE - 1) As Single

 Dim fCdtDue(BLOCKSIZE - 1) As Single

 Dim irow As Long ’ row counter for block errors

 Dim lTotalRows As Long ’ ************ Total rows to send *************

 Dim lNumRows As Long ’ Rows to send in one block

 Dim lRowsLeft As Long ’ Number of rows left to send

 Dim I As Long

Programming 455

Dim J As Long

 Dim S As String

 Dim hStmt As Long

 ’ This program needs QCUSTCDT table in your own collection.

 ’ At the iSeries server command line type:

 ’===> CRTLIB SAMPCOLL

 ’===> CRTDUPOBJ OBJ(QCUSTCDT) FROMLIB(QIWS)

 ’ OBJTYPE(*FILE) TOLIB(SAMPCOLL) NEWOBJ(*SAME)

 ’===> CHGPF FILE(SAMPCOLL/QCUSTCDT) SIZE(*NOMAX)

 ’===> CLRPFM FILE(SAMPCOLL/QCUSTCDT)

 ’************** Start ***

 S = "Number of records to insert into QCUSTCDT. "

 S = S & "Use menu option Table Mgmt, Create QCUSTCDT to "

 S = S & "create the table. Use Misc, iSeries Cmd and CLRPFM "

 S = S & "command if you wish to clear it"

 S = InputBox(S, gAppName, "500")

 If Len(S) = 0 Then Exit Sub

 lTotalRows = Val(S) ’Total number to insert

 rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, hStmt)

 If (Not (rc = SQL_SUCCESS Or rc = SQL_SUCCESS_WITH_INFO)) Then GoTo errBlockInsert

 rc = SQLPrepare(hStmt, _

 "INSERT INTO QCUSTCDT ? ROWS VALUES (?,?,?,?,?,?,?,?,?,?,?)", _

 SQL_NTS)

 If (Not (rc = SQL_SUCCESS Or rc = SQL_SUCCESS_WITH_INFO)) Then GoTo errBlockInsert

 rc = SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, _

 10, 0, lCustnum(0), 0, ByVal 0)

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 ’Pass first parm w/o using a null

 cbMaxLenLstNam = UBound(szLstNam, 1) - LBound(szLstNam, 1) + 1

 rc = SQLBindParameter(hStmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _

 8, _

 0, _

 szLstNam(0, 0), _

 cbMaxLenLstNam, _

 cbLenLstNam(0))

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 rc = SQLBindParameter(hStmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _

 3, 0, szInit(0, 0), _

 UBound(szInit, 1) - LBound(szInit, 1) + 1, _

 cbNTS(0))

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 rc = SQLBindParameter(hStmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _

 13, 0, szStreet(0, 0), _

 UBound(szStreet, 1) - LBound(szStreet, 1) + 1, _

 cbNTS(0))

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 rc = SQLBindParameter(hStmt, 5, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _

 6, 0, szCity(0, 0), _

 UBound(szCity, 1) - LBound(szCity, 1) + 1, _

 cbNTS(0))

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

456 IBM Systems - iSeries: iSeries Access for Windows: Programming

rc = SQLBindParameter(hStmt, 6, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _

 2, 0, szState(0, 0), _

 UBound(szState, 1) - LBound(szState, 1) + 1, _

 cbNTS(0))

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 rc = SQLBindParameter(hStmt, 7, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_NUMERIC, _

 5, 0, szZipCod(0, 0), _

 UBound(szZipCod, 1) - LBound(szZipCod, 1) + 1, _

 cbNTS(0))

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 rc = SQLBindParameter(hStmt, 8, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_NUMERIC, _

 4, 0, fCdtLmt(0), 0, ByVal 0)

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 rc = SQLBindParameter(hStmt, 9, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_NUMERIC, _

 1, 0, fChgCod(0), 0, ByVal 0)

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 rc = SQLBindParameter(hStmt, 10, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_NUMERIC, _

 6, 2, fBalDue(0), 0, ByVal 0)

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 rc = SQLBindParameter(hStmt, 11, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_NUMERIC, _

 6, 2, fCdtDue(0), 0, ByVal 0)

 If (rc = SQL_ERROR) Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

 lRowsLeft = lTotalRows ’Initialize row counter

 For J = 0 To ((lTotalRows - 1) \ BLOCKSIZE)

 For I = 0 To BLOCKSIZE - 1

 cbNTS(I) = SQL_NTS ’ init array to NTS

 lCustnum(I) = I + (J * BLOCKSIZE) ’Customer number = row number

 S = "Nam" & Str(lCustnum(I)) ’Last Name

 cbLenLstNam(I) = Len(S)

 rc = String2Byte2D(S, szLstNam(), I)

 ’Debug info: Watch address to see layout

 addr = VarPtr(szLstNam(0, 0))

 ’addr = CharNext(szLstNam(0, I)) ’address of 1,I

 ’addr = CharPrev(szLstNam(0, I), szLstNam(1, I)) ’address of 0, I)

 ’addr = CharNext(szLstNam(1, I))

 ’addr = CharNext(szLstNam(6, I)) ’should point to null (if used)

 ’addr = CharNext(szLstNam(7, I)) ’should also point to next row

 rc = String2Byte2D("DXD", szInit, I)

 ’Vary the length of the street

 S = Mid("1234567890123", 1, ((I Mod 13) + 1))

 rc = String2Byte2D(S, szStreet, I)

 rc = String2Byte2D("Roches", szCity, I)

 rc = String2Byte2D("MN", szState, I)

 rc = String2Byte2D("55902", szZipCod, I)

 fCdtLmt(I) = I

 fChgCod(I) = 1

 fBalDue(I) = 2 * I

 fCdtDue(I) = I / 2

 Next I

 lNumRows = lTotalRows Mod BLOCKSIZE ’ Number of rows to send in this block

 If (lRowsLeft >= BLOCKSIZE) Then _

 lNumRows = BLOCKSIZE ’ send remainder or full block

Programming 457

irow = 0

 lRowsLeft = lRowsLeft - lNumRows

 rc = SQLSetStmtAttr(hStmt, SQL_ATTR_PARAMSET_SIZE, lNumRows, 0)

 If (rc = SQL_ERROR) Then GoTo errBlockInsert

 rc = SQLSetStmtAttr(hStmt, SQL_ATTR_PARAMS_PROCESSED_PTR, irow, 0)

 If (rc = SQL_ERROR) Then GoTo errBlockInsert

 rc = SQLExecute(hStmt)

 If (rc = SQL_ERROR) Then

 S = "Error on Row: " & Str(irow) & Chr(13) & Chr(10)

 MsgBox S, , gAppName

 GoTo errBlockInsert

 End If

 Next J

 rc = SQLEndTran(SQL_HANDLE_DBC, ghDbc, SQL_COMMIT)

 If (Not (rc = SQL_SUCCESS Or rc = SQL_SUCCESS_WITH_INFO)) Then GoTo errBlockInsert

 rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt)

 Exit Sub

errBlockInsert:

 rc = SQLEndTran(SQL_HANDLE_DBC, ghDbc, SQL_ROLLBACK)

 rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt)

Public Function String2Byte2D(InString As String, OutByte() As Byte, RowIdx As Long)

As Boolean

 ’VB byte arrays are layed out in memory opposite of C. The string would

 ’be by column instead of by row so must flip flop the string.

 ’ASSUMPTIONS:

 ’ Byte array is sized before being passed

 ’ Byte array is padded with nulls if > size of string

 Dim I As Integer

 Dim SizeOutByte As Integer

 Dim SizeInString As Integer

 SizeInString = Len(InString)

 SizeOutByte = UBound(OutByte, 1)

 ’Convert the string

 For I = 0 To SizeInString - 1

 OutByte(I, RowIdx) = AscB(Mid(InString, I + 1, 1))

 Next I

 ’If byte array > len of string pad

 If SizeOutByte > SizeInString Then ’Pad with Nulls

 For I = SizeInString To SizeOutByte - 1

 OutByte(I, RowIdx) = 0

 Next I

 End If

 ’ViewByteArray OutByte, "String2Byte"

 String2Byte2D = True

End Function

Visual Basic: The compromise between Jet and ODBC APIs:

While the database objects are easy to code, they sometimes can adversely affect performance. Coding to

the APIs and to stored procedures can be a frustrating endeavor. Fortunately, if you are using Visual

Basic Enterprise Edition in the Windows 95 environment, there are additional options. These options are a

good compromise between the usability of database objects and the high performance of APIs: Remote

Data Objects (RDO) and Remote Data Control (RDC).

458 IBM Systems - iSeries: iSeries Access for Windows: Programming

RDO is a thin layer over the ODBC APIs. It provides a simple interface to advanced ODBC functionality

without requiring programming to the API level. It does not have all of the overhead of the Jet Engine

controlled Data Access Object (DAO) or its SQL optimizer. Yet it maintains a nearly identical

programming interface as the DAOs. If you understand programming to the DAO, then switching over to

the RDO is relatively simple compared to trying to switch over to API calls.

The following are differences between DAO and RDO:

v The DAO model is used for ISAM, Access and ODBC databases. The RDO model is designed for

ODBC databases only, and it has been optimized for Microsoft SQL Server 6.0 and Oracle.

v The RDO model can have better performance, with the processing being done by the server and not

the local machine. Some processing is done locally with the DAO model, so performance may not be as

good.

v The DAO model uses the Jet Engine. The RDO model does not use Jet Engine, it uses the ODBC

backend engine.

v The RDO model has the capability to perform synchronous or asynchronous queries. The DAO model

has limitations in performing these type of queries.

v The RDO model can perform complex cursors, which are limited in the DAO model.

The RDC is a data control similar to the standard data control. This means that where ever you might

have used a data control, and the Jet engine, you now can use the RDC. You can drag a ″data aware″

control on your form. It can be bound to an RDC, as it could be bound to a regular data control.

Some of the advanced ODBC functionality the RDO allows is prepared SQL statements, multiple result

sets, and stored procedures. When Jet executes a SQL statement dynamically it is a two-step process on

the iSeries server. In the first step, the iSeries server looks at the statement and determines the best plan

to retrieve the data requested based on the current database schema. In the second step, that plan is used

to actually retrieve the data. Creating that plan can be expensive in terms of time because the iSeries

server has to evaluate many alternatives and determine the best way to access the data. There is an

alternative to forcing the iSeries server to recreate the access plan every time a SQL statement is run. The

CreatePreparedStatement method of the rdoConnection object allows you to compile a data access plan

on the iSeries server for an SQL statement without executing it. You can even include parameters in

prepared statements, so you can pass new selection criteria every time you run the select statement.

The following sample Visual Basic code will show how to prepare a SQL statement with a parameter

marker and run it multiple times with different values.

Programming 459

Label A shows where the SQL statement is defined. Notice that the statement does not include a specific

for the CUSTNUM, but has a question mark for the value. The question mark signifies that this value is a

parameter of the prepared statement. Before you can create a result set with the prepared statement, you

must set the value of any parameters in the statement.

Label B shows where the value for the parameter is defined. Notice that the first parameter is defined as

0 not as 1. Once the value for the parameter is set you can run the OpenResultSet method of the

rdoPreapredStatement to return the requested data.

Before you can re-query a prepared statement on the iSeries server, you have to make sure that the cursor

has been completely processed and closed. Label C shows the MoreResults method of the rdoResultSet

being used to do this. The MoreResults method queries the database. It determines if there is any more

data in the result set to be processed, or if the result set has been processed completely. Once the cursor

has been fully processed you can reset the parameter value and run the ReQuery method of the

rdoResultSet to open a new result set.

Retrieve results:

In order to work with all of the rows in a result set, call the SQLFetch API until no more rows are

returned.

Figure 1. Visual Basic 4.0 RDO sample code

460 IBM Systems - iSeries: iSeries Access for Windows: Programming

Running some SQL statements returns results to the application program. Running an SQL SELECT

statement returns the selected rows in a result set. The SQLFetch API then sequentially retrieves the

selected rows from the result set into the application program’s internal storage.

You also may issue a Select statement where you do not specify what columns you want returned. For

example, SELECT * FROM RWM.DBFIL selects all columns. You may not know what columns or how many

columns will be returned.

SQLNumResultCols

Returns the number of columns in a result set.

v A storage buffer that receives the information is passed as a parameter.
 SQLSMALLINT nResultCols;

rc = SQLNumResultCols(hstmt, &nResultCols);

SQLDescribeCol

Returns the result descriptor for one column in a result set.

v Column name

v Column type

v Column size

This is used with SQLNumResultCols to retrieve information about the columns returned.

Using this approach, as opposed to hard coding the information in the program, makes for

more flexible programs.

The programmer first uses SQLNumResultCols to find out how many columns were returned

in the result set by a select statement. Then a loop is set up to use SQLDescribeCol to retrieve

information about each column.

In C, this statement is coded:

SQLCHAR szColName[51];

SQLSMALLINT lenColName, colSQLtype, scale, nullable;

SQLUSMALLINT colNum = 1;

SQLUINTEGER cbColDef;

rc = SQLDescribeCol(hstmt, colNum, szColName, sizeof(szColName),

 &lenColName, &colSQLtype, &cbColDef, &scale, &nullable);

SQLBindCol

Assigns the storage and data type for a column in a result set:

v Storage buffer that receives the information.

v Length of storage buffer.

v Data type conversion.

In C, this statement is coded:

SQLUSMALLINT colNum = 1;

SQLUINTEGER cbColDef;

SQLINTEGER idNum, indPtr, strlen_or_indPtr;

SQLCHAR szIDName[51];

colNum = 1;

rc = SQLBindCol(hstmt, colNum, SQL_C_LONG, &idNum, sizeof(SQLINTEGER), &indPtr);

colNum = 2;

rc = SQLBindCol(hstmt, colNum, SQL_C_CHAR, szIDName, sizeof(szIDName), &strlen_or_indPtr);

Note: If you use this with Visual Basic, it is recommended that you use an array of Byte data

type in place of String data types.

Programming 461

SQLFetch

Each time SQLFetch is called, the driver fetches the next row. Bound columns are stored in the

locations specified. Data for unbound columns may be retrieved using SQLGetData.

 In C, this statement is coded:

rc = SQLFetch(hstmt);

Visual Basic does not directly support pointers or fixed memory location ANSI character

null-terminated strings. For this reason, it is best to use another method to bind Character and

Binary parameters. One method is to convert Visual Basic String data types to/from an array of

Byte data types and bind the array of Byte. Another method is to use the SQLGetData function

instead of SQLBindCol.

SQLGetData

Retrieves data for unbound columns after a fetch. In this example, three columns are returned

and SQLGetData is used to move them to the correct storage location.

 In C, this statement is coded:

SQLCHAR szTheName[16], szCredit[2];

float iDiscount, iTax;

rc = SQLFetch(hstmt);

rc = SQLGetData(hstmt, 1, SQL_C_CHAR, szTheName, 16, &strlen_or_indPtr);

rc = SQLGetData(hstmt, 2, SQL_C_FLOAT, &iDiscount, sizeof(float), &indPtr);

rc = SQLGetData(hstmt, 3, SQL_C_CHAR, szCredit, 2, &strlen_or_indPtr);

rc = SQLGetData(hstmt, 4, SQL_C_FLOAT, &iTax, sizeof(float), &indPtr);

In Visual Basic, this statement is coded:

 rc = SQLFetch(hStmt)

 If rc = SQL_NO_DATA_FOUND Then

 Call DisplayWarning("No record found!")

 rc = SQLCloseCursor(hStmt)

 If rc <> SQL_SUCCESS Then

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Close cursor failed.")

 End If

 Else

 ’ Reset lcbBuffer for the call to SQLGetData

 lcbBuffer = 0

 ’Get part ID from the fetched record

 rc = SQLGetData(hStmt, 1, SQL_C_LONG, _

 lPartIDReceived, Len(lPartIDReceived), lcbBuffer)

 If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, _

 "Problem getting data for PartID column")

 ’Get part description from the fetched record

 rc = SQLGetData(hStmt, 2, SQL_C_CHAR, _

 szDescription(0), 257, lcbBuffer)

 If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, _

 "Problem getting data for PartDescription column")

 ’Get part provider from the fetched record

 rc = SQLGetData(hStmt, 3, SQL_C_CHAR, _

 szProvider(0), 257, lcbBuffer)

 If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, _

 "Problem getting data for PartProvider column")

 Call DisplayMessage("Record found!")

462 IBM Systems - iSeries: iSeries Access for Windows: Programming

rc = SQLCloseCursor(hStmt)

 If rc <> SQL_SUCCESS Then _

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Close cursor failed.")

 End If

Access a database server with an ODBC application:

An ODBC application needs to follow a basic set of steps in order to access a database server.

1. Connect to the data source.

2. Place the SQL statement string to be executed in a buffer. This is a text string.

3. Submit the statement in order that it can be prepared or immediately run.

v Retrieve and process the results.

v If there are errors, retrieve the error information from the driver.
4. End each transaction with a commit or rollback operation (if necessary).

5. Terminate the connection.

Establish ODBC connections:

Use these handle types to establish an ODBC connection.

 SQLAllocHandle with SQL_HANDLE_ENV as the handle type

v Allocates memory for an environment handle.

– Identifies storage for global information:

- Valid connection handles

- Current active connection handles

- Variable type HENV
v Must be called by application prior to calling any other ODBC function.

v Variable type HENV is defined by ODBC in the SQL.H header file provided by the C

programming language compiler or by the ODBC Software Development Kit (SDK).

The header file contains a type definition for a far pointer:

 typedef void far * HENV

v In C programming language this statement is coded:

SQLRETURN rc;

HENV henv;

rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

v In Visual Basic, this statement is coded:

Dim henv As long

SQLAllocEnv(henv)

SQLAllocHandle with SQL_HANDLE_DBC as the handle type

v Allocates memory for an connection handle within the environment.

– Identifies storage for information about a particular connection.

- Variable type HDBC

- Application can have multiple connection handles.
v Application must request a connection handle prior to connecting to the data source.

v In C, this statement is coded:

HDBC hdbc;

rc = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

v In Visual Basic, this statement is coded:

Programming 463

Dim hdbc As long

SQLAllocConnect(henv,hdbc)

SQLSetEnvAttr

v Allows an application to set attributes of an environment.

v To be considered an ODBC 3.x application, you must set the SQL_ATTR_ODBC_VERSION to

SQL_OV_ODBC3 prior to allocating a connection handle.

v In C, this statement is coded:

rc = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);

SQLConnect

v Loads driver and establishes a connection.

v Connection handle references information about the connection.

v Data source is coded into application.

In C, this statement is coded:

SQLCHAR source[] = "myDSN";

SQLCHAR uid[] = "myUID";

SQLCHAR pwd[] = "myPWD";

rc = SQLConnect(hdbc, source, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

Note: SQL_NTS indicates that the parameter string is a null-terminated string.

SQLDriverConnect

v Alternative to SQLConnect

v Allows application to override data source settings.

v Displays dialog boxes (optional).

Execute ODBC functions:

Use these handle types to execute ODBC functions.

 SQLAllocHandle with SQL_HANDLE_STMT as the handle type

v Allocates memory for information about an SQL statement.

– Application must request a statement handle prior to submitting SQL statements.

– Variable type HSTMT.

In C, this statement is coded:

HSTMT hstmt;

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

SQLExecDirect

v Executes a preparable statement.

v Fastest way to submit an SQL string for one time execution.

v If rc is not equal to SQL_SUCCESS, the SQLGetDiagRec API can be used to find the cause of

the error condition.

In C, this statement is coded:

SQLCHAR stmt[] = "CREATE TABLE NAMEID (ID INTEGER, NAME VARCHAR(50))";

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

v Return code

– SQL_SUCCESS

– SQL_SUCCESS_WITH_INFO

– SQL_ERROR

464 IBM Systems - iSeries: iSeries Access for Windows: Programming

– SQL_INVALID_HANDLE

SQLGetDiagRec

To retrieve error information for an error on a statement:

 In C, this statement is coded:

SQLSMALLINT i = 1, cbErrorMsg ;

SQLCHAR szSQLState[6], szErrorMsg[SQL_MAX_MESSAGE_LENGTH];

SQLINTEGER nativeError;

rc = SQLGetDiagRec(SQL_HANDLE_STMT, hstmt, i, szSQLState, &nativeError, szErrorMsg,

 SQL_MAX_MESSAGE_LENGTH, &cbErrorMsg);

v szSQLState

– 5 character string

– 00000 = success

– 01004 = data truncated

– 07001 = wrong number of parameters

Note: The previous items are only several of many possible SQL states.
v fNativeError - specific to data source

v szErrorMsg - Error Message text

Execute prepared statements:

If an SQL statement is used more than once, it is best to have the statement prepared and then executed.

 When a statement is prepared, variable information can be passed as parameter markers, which are

denoted by question marks (?). When the statement is executed, the parameter markers are replaced with

the real variable information.

Preparing the statement is performed at the server. The SQL statements are compiled and the access plans

are built. This allows the statements to be executed much more efficiently. When compared to using

dynamic SQL to execute the statements, the result is much closer to static SQL. Extened Dynamic

preserves prepared statements accross job sessions. This allows prepared statements with parameter

markers to be executed multiple times within the job session even without Extended Dynamic ON. When

the database server prepares the statements, it saves some of them in a special iSeries object called a

package (*SQLPKG). This approach is called Extended Dynamic SQL. Packages are created automatically

by the driver; an option is provided to turn off Package Support. This is covered in “The performance

architecture of the iSeries Access for Windows ODBC driver” on page 508.

SQLPrepare

Prepares an SQL statement for execution:

In C, this statement is coded:

SQLCHAR szSQLstr[] = "INSERT INTO NAMEID VALUES (?,?)";

rc = SQLPrepare(hstmt, szSQLstr, SQL_NTS);

Note: SQL_NTS indicates that the string is null-terminated.

SQLBindParameter

Allows application to specify storage, data type, and length associated with a parameter marker in an

SQL statement.

Programming 465

In the example, parameter 1 is found in a signed double word field called id. Parameter 2 is found in an

unsigned character array called name. Since the last parameter is null, the driver expects that name is

null-terminated as it will calculate the string’s length.

In C, this statement is coded:

SQLCHAR szName[51];

SQLINTEGER id, parmLength = 50, lenParm1 = sizeof(SQLINTEGER) , lenParm2 = SQL_NTS ;

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

 sizeof(SQLINTEGER), 0, &id, sizeof(SQLINTEGER), &lenParm1);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

 parmLength, 0, szName, sizeof(szName), &lenParm2);

SQLExecute

Executes a prepared statement, using current values of parameter markers:

In C, this statement is coded:

id=500;

strcpy(szName, "TEST");

rc = SQLExecute(hstmt); // Insert a record with id = 500, name = "TEST"

id=600;

strcpy(szName, "ABCD");

rc = SQLExecute(hstmt); // Insert a record with id = 600, name = "ABCD"

SQLParamData / SQLPutData

Visual Basic does not directly support pointers or fixed-location ANSI character null-terminated strings.

For this reason, it is best to use another method to bind Character and Binary parameters. One method is

to convert Visual Basic String data types to/from an array of Byte data types and bind the array of Byte.

This method is demonstrated in “Convert strings and arrays of byte” on page 468.

Another method, that should only be used for input parameters, is to supply the parameters at

processing time. This is done using SQLParamData and SQLPutData APIs:

v They work together to supply parameters.

v SQLParamData moves the pointer to the next parameter.

v SQLPutData then supplies the data for that parameter.
’s_parm is a character buffer to hold the parameters

 ’s_parm(1) contains the first parameter

 Static s_parm(2) As String

 s_parm(1) = "Rear Bumper"

 s_parm(2) = "ABC Auto Part Store"

 Dim rc As Integer

 Dim cbValue As Long

 Dim s_insert As String

 Dim hStmt As Long

 Dim lPartID As Long

 rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, hStmt)

 If rc <> SQL_SUCCESS Then _

 Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLAllocStmt failed.")

 s_insert = "INSERT INTO ODBCSAMPLE VALUES(?, ?, ?)"

 rc = SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, _

 4, 0, lPartID, 4, ByVal 0)

 If rc <> SQL_SUCCESS Then _

 Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLBindParameter failed.")

466 IBM Systems - iSeries: iSeries Access for Windows: Programming

’#define SQL_LEN_DATA_AT_EXEC_OFFSET (-100) the parms will be supplied at run time

 cbValue = -100

 ’ Caller set 8th parameter to "ByVal 2" so driver will return

 ’ 2 in the token when caller calls SQLParamData

 rc = SQLBindParameter(hStmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _

 4, 0, ByVal 2, 0, cbValue)

 If rc <> SQL_SUCCESS Then _

 Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLBindParameter failed.")

 ’ Caller set 8th parameter to "ByVal 3" so driver will return

 ’ 3 in the token when caller calls SQLParamData the second time.

 rc = SQLBindParameter(hStmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _

 4, 0, ByVal 3, 0, cbValue)

 If rc <> SQL_SUCCESS Then _

 Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLBindParameter failed.")

 ’ Prepare the insert statement once.

 rc = SQLPrepare(hStmt, s_insert, SQL_NTS)

 lPartID = 1

 rc = SQLExecute(hStmt) ’ Execute multiple times if needed.

 ’ Since parameters 2 and 3 are bound with cbValue set to -100,

 ’ SQLExecute returns SQL_NEED_DATA

 If rc = SQL_NEED_DATA Then

 ’ See comment at SQLBindParameter: token receives 2.

 rc = SQLParamData(hStmt, token)

 If rc <> SQL_NEED_DATA Or token <> 2 Then _

 Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLParamData failed.")

 ’ Provide data for parameter 2.

 rc = SQLPutData(hStmt, ByVal s_parm(1), Len(s_parm(1)))

 If rc <> SQL_SUCCESS Then _

 Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLPutData failed.")

 ’ See comment at SQLBindParameter: token receives 3.

 rc = SQLParamData(hStmt, token)

 If rc <> SQL_NEED_DATA Or token <> 3 Then _

 Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLParamData failed.")

 ’ Provide data for parameter 2.

 rc = SQLPutData(hStmt, ByVal s_parm(2), Len(s_parm(2)))

 If rc <> SQL_SUCCESS Then _

 Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLPutData failed.")

 ’ Call SQLParamData one more time.

 ’ Since all data are provided, driver will execute the request.

 rc = SQLParamData(hStmt, token)

 If rc <> SQL_SUCCESS Then _

 Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLParamData failed.")

 Else

 Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "SQLExecute failed.")

 End If

Notes:

1. These two statements operate together to supply unbound parameter values when the

statement is executed.

2. Each call to SQLParamData moves the internal pointer to the next parameter for SQLPutData

to supply data to. After the last parameter is filled, SQLParamData must be called again for

the statement to be executed.

Programming 467

3. If SQLPutData supplies data for parameter markers, the parameter must be bound. Use the

cbValue parameter set to a variable whose value is SQL_DATA_AT_EXEC when the statement

is executed.

Convert strings and arrays of byte:

The following Visual Basic functions can assist in converting strings and arrays of byte.

 Public Sub Byte2String(InByte() As Byte, OutString As String)

 ’Convert array of byte to string

 OutString = StrConv(InByte(), vbUnicode)

End Sub

Public Function String2Byte(InString As String, OutByte() As Byte) As Boolean

 ’vb byte-array / string coercion assumes Unicode string

 ’so must convert String to Byte one character at a time

 ’or by direct memory access

 Dim I As Integer

 Dim SizeOutByte As Integer

 Dim SizeInString As Integer

 SizeOutByte = UBound(OutByte)

 SizeInString = Len(InString)

 ’Verify sizes if desired

 ’Convert the string

 For I = 0 To SizeInString - 1

 OutByte(I) = AscB(Mid(InString, I + 1, 1))

 Next I

 ’If size byte array > len of string pad with Nulls for szString

 If SizeOutByte > SizeInString Then ’Pad with Nulls

 For I = SizeInString To SizeOutByte - 1

 OutByte(I) = 0

 Next I

 End If

 String2Byte = True

End Function

Public Sub ViewByteArray(Data() As Byte, Title As String)

 ’Display message box showing hex values of byte array

 Dim S As String

 Dim I As Integer

 On Error GoTo VBANext

 S = "Length: " & Str(UBound(Data)) & " Data (in hex):"

 For I = 0 To UBound(Data) - 1

 If (I Mod 8) = 0 Then

 S = S & " " ’add extra space every 8th byte

 End If

 S = S & Hex(Data(I)) & " "

 VBANext:

 Next I

 MsgBox S, , Title

End Sub

ODBC API return codes:

Every ODBC API function returns a value of type SQLRETURN (a short integer). There are seven

possible return codes, and associated with each is a manifest constant.

468 IBM Systems - iSeries: iSeries Access for Windows: Programming

The following list provides an explanation of each particular code. Some return codes can be interpreted

as an error on the function call. Others indicate success. Still others indicate that more information is

needed or pending.

A particular function may not return all possible codes. See the Microsoft ODBC 3.0 Software Development

Kit and Programmer’s Reference, Version 3.0 ISBN 1-57231-516-4. for possible values, and for the precise

interpretation for that function.

Pay close attention to return codes in your program, particularly those that are associated with the

processing of SQL statements processing and with data source data access. In many instances the return

code is the only reliable way of determining the success of a function.

SQL_SUCCESS

Function has completed successfully; no additional information available.

SQL_SUCCESS_WITH_INFO

Function completed successfully; possibly with a nonfatal error. The application can call

SQLGetDiagRec to retrieve additional information.

SQL_NO_DATA_FOUND

All rows from the result set have been fetched.

SQL_ERROR

Function failed. The application can call SQLGetDiagRec to retrieve error information.

SQL_INVALID_HANDLE

Function failed due to an unusable environment, connection, or statement handle. Programming

error.

SQL_NEED_DATA

The driver is asking the application to send parameter data values.

End ODBC functions:

The last procedure that must be completed before ending an ODBC application is to free the resources

and memory allocated by the application. This must be done so that they are available when the

application is run the next time.

 SQLFreeStmt

Stops processing associated with a specific statement handle.

rc = SQLFreeStmt(hstmt, option); // option can be SQL_CLOSE, SQL_RESET_PARAMS. or SQL_UNBIND

SQL_CLOSE

Closes the cursor associated with the statement handle, and discards all pending results.

Alternately, you can use SQLCloseCursor.

SQL_RESET_PARAMS

Releases all common buffers that are bound by SQLBindParameter.

SQL_UNBIND

Releases all common buffers that are bound by SQLBindCol.

SQLFreeHandle with SQL_HANDLE_STMT as the handle type

Frees all resources for this statement.

 rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

SQLDisconnect

Closes the connection associated with a specific connection handle.

rc = SQLDisconnect(hdbc);

SQLFreeHandle with SQL_HANDLE_DBC as the handle type

Releases connection handle and frees all memory associated with a connection handle.

Programming 469

rc = SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

SQLFreeHandle with SQL_HANDLE_ENV as the handle type

Frees environment handle and releases all memory associated with the environment handle.

rc = SQLFreeHandle(SQL_HANDLE_ENV, henv);

Implementation issues of ODBC APIs

Learn about implementations issues when using ODBC APIs.

Choose from the following topics for information regarding implementation of ODBC APIs.

Note: For a description and work-around for several problems that can occur when using the iSeries

Access ODBC driver with Microsoft’s ADO interface, search the Software Knowledge Base, using

ADO Stored Procedure Calls with MSDASQL as a search string.

 Related reference

 “Example: Run CL commands that use SQL stored procedures and ODBC” on page 538
Stored procedure support provides a means to run iSeries server Control Language (CL) commands

by using the SQL CALL statement.
 Related information

 Software Knowledge Base

For a description and work-around for several problems that can occur when using the iSeries Access

ODBC driver with Microsoft’s ADO interface, search the Software Knowledge Base, using ADO Stored

Procedure Calls with MSDASQL as a search string.

ODBC 3.x APIs Notes:

The following table lists ODBC 3.x APIs by their associated task and identifies considerations for each

API.

 Notes:

v The iSeries Access for Windows ODBC Driver is a Unicode driver; however, ANSI applications

will still continue to work with it. The ODBC Driver Manager will handle converting an ANSI

ODBC API call to the wide version before calling the iSeries Access for Windows ODBC Driver.

To write a Unicode application, you must call the wide version for some of these APIs. When

writing an application to the wide ODBC interface, you need to know whether the length for

each API is defined as character, in bytes, or if the length is not applicable. Refer to the ’Type’

column in the following table for this information.

v For more details on how these APIs work, search for ODBC at the Microsoft Web site.

 Type API Description Other considerations

Connecting to a data source

Note: For information on how the connection APIs prompt signon dialogs see “Signon dialog behavior” on page

497..Also see connection pooling for more information.

N/A SQLAllocHandle Obtains an environment and

connection handle. One

environment handle is used

for one or more connections.

May also allocate a

statement or a descriptor

handle.

Char SQLConnect Connects to a specific data

source name with a specific

user ID and password.

There is an option to control whether this API

prompts a signon dialog when the user ID and

password are not specified. This option can be set

from the Connection options dialog on the

General tab of the DSN.

470 IBM Systems - iSeries: iSeries Access for Windows: Programming

 http://www-912.ibm.com/s_dir/slkbase.nsf/$$Search?openform

Type API Description Other considerations

Char SQLDriverConnect Connects to a specific driver

by connection string or

requests that the Driver

Manager and driver display

connection dialogs for the

user.

Uses all keywords. Only DSN is required. Other

values are optional. Refer to “Connection string

keywords” on page 480 for more information.

Char SQLBrowseConnect Returns successive levels of

connection attributes and

valid attribute values. When

a value has been specified

for each connection

attribute, connects to the

data source.

To make a connection attempt the SYSTEM

keyword and either the DSN or DRIVER

keywords must be specified. All the other

keywords are optional. Note, the PWD keyword

is not returned in the output string for security

purposes. Refer to “Connection string keywords”

on page 480 for more implementation issues.

Get information regarding a driver or data source

Programming 471

Type API Description Other considerations

Byte SQLGetInfo Returns information about a

specific driver and data

source.

Special attributes returned differently based on

attributes and keywords.The information that is

returned by SQLGetInfo can vary depending on

which keywords and attributes are in use. The

InfoType options that are affected are:

v SQL_CATALOG_NAME_SEPARATOR – By

default a period is returned. If the connection

string keyword NAM is set to 1, a comma is

returned.

v SQL_CURSOR_COMMIT_BEHAVIOR,

SQL_CURSOR_ROLLBACK_BEHAVIOR – By

default SQL_CB_PRESERVE is returned. If the

connection attribute, 1204, is set

SQL_CB_DELETE is returned.

v SQL_DATA_SOURCE_READ_ONLY – By

default N is returned. If the connection string

keyword CONNTYPE is set to 0 then Y is

returned.

v SQL_IDENTIFIER_QUOTE_CHAR – By default

a double-quote mark is returned. If the

application in use is MS QUERY (MSQRY32)

then a single blank is returned.

v SQL_IDENTIFIER_CASE – By default

SQL_IC_UPPER is returned. If the connection

string keyword DEBUG has the option 2 set

then SQL_IC_MIXED is rteurned.

v SQL_MAX_QUALIFIER_NAME_LEN – By

default 18 is returned. If the connection string

keyword DEBUG has the 8 bit set then 0 is

returned.

v SQLDriverVer - Returns the version of the

driver in the format of VV.RR.SSST, where,

– VV represents the version of iSeries Access

for Windows,

– RR is the release identifier of iSeries Access

for Windows,

– SSS is the number of the service pack that

has been applied to iSeries Access for

Windows, and

– T is the version of the test fix that has been

applied for an ODBC driver problem,

otherwise, it is 0.

472 IBM Systems - iSeries: iSeries Access for Windows: Programming

Type API Description Other considerations

N/A SQLGetTypeInfo Returns information about

supported data types.

Different result sets can be seen when running to

different iSeries server versions. For example, the

BIGINT data type is only in the result set when

running to V4R5 or later servers.

The ″LONG VARCHAR″ data type is not returned

in the result set. This is due to problems that were

seen with some applications expecting to specify a

length with this type. ″LONG VARCHAR FOR

BIT DATA″ and ″LONG VARGRAPHIC″ are also

not returned for similar reasons.

In the TYPE_NAME column, when a data type

requires a value to be in parentheses, the

parentheses are included in the data type name.

However the parentheses are omitted when the

parentheses would end up at the end of the data

type string. In the following string example, the

″CHAR″ data type is followed by parenthesis

while the ″DATA″ data type is not followed by

parentheses: ″CHAR() FOR BIT DATA″.

The setting for the connection string keyword

GRAPHIC affects whether the driver returns

graphic (DBCS) data types as supported types or

not.See “ODBC data types and how they

correspond to DB2 UDB database types” on page

498 for more information.

Set and retrieve driver attributes

Note: Refer to “Connection and statement attributes” on page 501 for details on driver-specific connection and

statement attributes applicable to the following APIs.

Byte SQLSetConnectAttr Sets a connection option.

Byte SQLGetConnectAttr Returns the value of a

connection option.

N/A SQLSetEnvAttr Sets an environment option.

N/A SQLGetEnvAttr Returns the value of an

environment option.

Programming 473

Type API Description Other considerations

Byte SQLSetStmtAttr Sets a statement option. The SQL_ATTR_PARAMSET_SIZE,

SQL_ATTR_ROW_ARRAY_SIZE,

SQL_DESC_ARRAY_SIZE, and

SQL_ROWSET_SIZE attributes support up to

32767 rows. If working with LOB locator fields

the driver restricts these values to 1 row at a time.

LOB fields are handled as locators if the

MAXFIELDLEN connection string value is less

than the LOB field size.

SELECT statements that contain the FOR FETCH

ONLY or FOR UPDATE clause override the

current setting of SQL_ATTR_CONCURRENCY

attribute. An error is not returned during the

SQLExecute or SQLExecDirect if the

SQL_ATTR_CONCURRENCY setting conflicts

with the clause in the SQL statement.

The following are not supported:

v SQL_ATTR_ASYNC_ENABLE

v SQL_ATTR_RETRIEVE_DATA

v SQL_ATTR_SIMULATE_CURSOR

v SQL_ATTR_USE_BOOKMARKS

v SQL_ATTR_FETCH_BOOKMARK_PTR

v SQL_ATTR_KEYSET_SIZE

Setting SQL_ATTR_MAX_ROWS is supported,

however, it only impacts performance for static

cursors. The full result set is still built with other

cursor types even if this option is set. Using the

FETCH FIRST x ROWS ONLY clause in your SQL

query may work better since it reduces the

amount of work the server does.This API has

been extended to also contain the cursor row

count for the following two result set types:

v stored procedure result sets

v static cursor result sets

Byte SQLGetStmtAttr Returns the value of a

statement option.

The following are not supported:

v SQL_ATTR_ASYNC_ENABLE

v SQL_ATTR_RETRIEVE_DATA

v SQL_ATTR_SIMULATE_CURSOR

v SQL_ATTR_USE_BOOKMARKS

v SQL_ATTR_FETCH_BOOKMARK_PTR

Set and retrieve descriptor fields

Byte SQLGetDescField Returns a piece of

information from a

descriptor.

Char SQLGetDescRec Returns several pieces of

information from a

descriptor.

Byte SQLSetDescField Sets a descriptor field. Can not set descriptor fields for an IRD other

than SQL_DESC_ARRAY_STATUS_PTR and

SQL_DESC_ROWS_PROCESSED_PTR.

Does not support named parameters.

474 IBM Systems - iSeries: iSeries Access for Windows: Programming

Type API Description Other considerations

Char SQLSetDescRec Sets several options for a

descriptor.

N/A SQLCopyDesc Copies information from

one descriptor to another

descriptor.

SQLCopyDesc does not support named

parameters.

Prepare SQL requests

Char SQLPrepare Prepares an SQL statement

for later processing.

Packages are created the first time a SQL

statement is prepared for that Connection. This

results in the first prepare taking slightly longer

to complete than it would normally take. If there

are any problems with a pre-existing package the

first prepare may return an error depending on

the setting for the package as specified in the

DSN setup GUI. On the Package tab of the DSN

setup GUI are default package settings. These

settings are used when package settings have not

already been customized for that application.

Note, these are not global settings

By default, the driver sends SQL statement text to

the host in the EBCDIC CCSID associated with

your job. Set the UNICODESQL keyword equal 1

or equal 2, to enable the driver to send SQL

statement text to the host in Unicode. Note that

when sending Unicode SQL statements the driver

generates a different package name to avoid

collisions with existing packages that contain

EBCDIC SQL statements. Setting the connection

string keyword UNICODESQL allows an

application to specify Unicode data for literals in

the SQL statement.

See SQL Statement Considerations for several SQL

statements that are not recommended to be

prepared and executed.

For information on which escape sequences and

scalar functions the driver supports see

“SQLPrepare and SQLNativeSQL escape

sequences and scalar functions” on page 503.

Programming 475

Type API Description Other considerations

Byte SQLBindParameter Assigns storage for a

parameter in an SQL

statement. See “Parameter

markers” on page 452 for

additional information.

Data conversions are made directly from the C

type that is specified to the actual host parameter

(column) data type.

The SQL data type and column size that are

specified are ignored.

Conversions that involve character data convert

directly from the client codepage to the column

CCSID.

The driver returns an error during the execution

of the SQL statement if SQL_DEFAULT_PARAM

is specified for the Strlen_or_IndPtr parameter.

Default parameters are not supported by the DB2

UDB database. The driver handles the binding of

a parameter with the SQL_DEFAULT_PARAM

option by returning an error with an SQLSTATE

of 07S01 during the execution of the CALL

statement.

Char SQLGetCursorName Returns the cursor name

associated with a statement

handle.

The driver will upper case all cursor names

without double-quotes around the name.

Char SQLSetCursorName Specifies a cursor name. The cursor name is converted to capital letters if it

is not entered in quotes. Cursor names that are

entered in quotes are not converted. For example,

myCursorName becomes MYCURSORNAME

while ″myCursorName″ is treated as

myCursorName, with a length of 14 since the

quotes are included in the length.

The driver supports only these characters in

cursor names: ″″,a-z, A-Z, 0-9, or _. No error will

be returned by SQLSetCursorName if an invalid

name is entered, however, an error will be

returned later when trying to use an invalid

name.

The cursor name can only be 18 characters long,

including the leading and trailing double quotes if

they exist, and must be in characters that can be

translated from UNICODE to ANSI.

If an application wishes to use a DRDA®

connection through ODBC then they will have the

following restrictions:

v Cursor name changes are not allowed during

the DRDA connection.

v Cursor names will be changed by the driver

and should be checked via SQLGetCursorName

after the cursor is open. (after SQLExecute or

SQLExecDirect).

Submit requests

476 IBM Systems - iSeries: iSeries Access for Windows: Programming

Type API Description Other considerations

N/A SQLExecute Runs a prepared statement. SQLExecute is affected by the settings of several

of the connection string keywords such as

PREFETCH, CONNTYPE, CMT, and

LAZYCLOSE. Refer to “Connection string

keywords” on page 480 for descriptions of these

keywords.

Char SQLExecDirect Runs a statement. See SQLPrepare and SQLExecute.

Char SQLNativeSQL Returns the text of an SQL

statement as translated by

the driver.

Char SQLDescribeParam Returns the description for a

specific parameter in a

statement.

N/A SQLNumParams Returns the number of

parameters in a statement.

N/A SQLParamData Returns the storage value

assigned to a parameter for

which data will be sent at

run time (useful for long

data values).

Byte SQLPutData Send part or all of a data

value for a parameter

(useful for long data

values).

Retrieve results and related information

N/A SQLRowCount Returns the number of rows

that are affected by an

insert, update, or delete

request.

This API has been extended to also contain the

cursor row count for a result set using a static

cursor to V5R1 or later server versions.

N/A SQLNumResultCols Returns the number of

columns in the result set.

Char SQLDescribeCol Describes a column in the

result set.

Byte SQLColAttribute Describes attributes of a

column in the result set.

Byte SQLBindCol Assigns storage for a result

column and specifies the

data type.

N/A SQLExtendedFetch Returns rows in the result

set. This is a supported 2.x

ODBC API. However, new

applications should use

SQLFetchScroll API instead.

Uses the value of the statement attribute

SQL_ROWSET_SIZE instead of

SQL_ATTR_ROW_ARRAY_SIZE for the rowset

size.

You can only use SQLExtendedFetch in

combination with SQLSetPos and SQLGetData if

the row size is 1.

SQL_FETCH_BOOKMARK is not supported.

The result set for catalog APIs (such as SQLTables

and SQLColumns) is forward only and read only.

When SQLExtendedFetch is used with result sets

generated by catalog APIs, no scrolling is allowed.

Programming 477

Type API Description Other considerations

N/A SQLFetch Returns rows in the result

set.

Can only be used with SQL_FETCH_FIRST and

SQL_FETCH_NEXT since the cursor is forward

only.

N/A SQLFetchScroll Returns rows in the result

set. Can be used with

scrollable cursors.

Does not support the fetch orientation of

SQL_FETCH_BOOKMARK because the driver

does not support bookmarks.

Byte SQLGetData Returns part or all of one

column of one row of a

result set (useful for long

data values). See “SQLFetch

and SQLGetData” on page

452 for additional

information.

SQLGetData can only be used with single row

fetches. Errors are reported by SQLGetData if the

row array size is larger than one.

N/A SQLSetPos Positions a cursor within a

fetched block of data.

SQL_UPDATE, SQL_DELETE, SQL_ADD are

unsupported options for Operations parameter.

SQL_LOCK_EXCLUSIVE, SQL_LOCK_UNLOCK

are unsupported options for the LockType

parameter.

N/A SQLBulkOperations Performs bulk insertions

and bulk bookmark

operations, including

update, delete, and fetch by

bookmark.

The driver does not support SQLBulkOperations.

N/A SQLMoreResults Determines whether there

are more result sets

available and if so,

initializes processing for the

next result set.

Byte SQLGetDiagField Returns a piece of

diagnostic information.

The SQL_DIAG_CURSOR_ROW_COUNT option

is only accurate for static cursors when running to

V5R1 or later server versions.

Char SQLGetDiagRec Returns additional error or

status information.

Get data source system table information

Char SQLColumnPrivileges Returns a list of columns

and associated privileges for

one or more tables.

Returns an empty result set when:

v V5R1 or earlier servers or

v V5R2 servers, when option 2 of the

CATALOGOPTIONS connection string keyword

is not set

By default, when accessing V5R2 servers, column

privilege information will be returned.

Char SQLColumns Returns a list of information

on columns in one or more

tables.

Char SQLForeignKeys Returns a list of column

names that comprise foreign

keys, if they exist for a

specified table.

478 IBM Systems - iSeries: iSeries Access for Windows: Programming

Type API Description Other considerations

Char SQLProcedureColumns Returns the list of input and

output parameters, as well

as the columns that make

up the result set for the

specified procedures.

The driver does not return information about

columns that make up result sets generated by

procedures. The driver only returns information

about the parameters to the procedures.

Char SQLProcedures Returns the list of procedure

names stored in a specific

data source.

Char SQLSpecialColumns Retrieves information about

the optimal set of columns

that uniquely identifies a

row in a specified table. It

also retrieves information

about the columns that are

automatically updated when

any value in the row is

updated by a transaction.

If called with the SQL_BEST_ROWID option,

returns all indexed columns of that table.

Char SQLStatistics Retrieves statistics about a

single table and the list of

indexes that are associated

with the table.

Beginning with V5R4, you can define a derived

key index. When SQLStatistics is used to retrieve

information about the index, the

COLUMN_NAME result set column returns the

expression that represents the derived key index.

Char SQLTables Returns a list of schemas,

tables, or table types in the

data source.

See “SQLTables Description” on page 506

Char SQLTablePrivileges Returns a list of tables and

the privileges that are

associated with each table.

Returns an empty result set when:

v V5R1 or earlier servers or

v V5R2 servers, when option 2 of the

CATALOGOPTIONS connection string keyword

is not set

By default, when accessing V5R2 servers, tables

privilege information will be returned.

Char SQLPrimaryKeys Returns the list of column

name or names that

comprise the primary key

for a table.

Clean up a statement

N/A SQLFreeStmt Ends statement processing

and closes the associated

cursor, and discards

pending results.

N/A SQLCloseCursor Closes a cursor that is open

on the statement handle.

N/A SQLCancel Cancels an SQL statement. Not all queries can be cancelled. This is

recommended only for long running queries. For

more information, see “Handle long-running

queries” on page 506.

N/A SQLEndTran Commits or rolls back a

transaction.

For information regarding commitment control,

see Commitment control considerations.

Terminate a connection

N/A SQLDisconnect Closes the connection.

Programming 479

Type API Description Other considerations

N/A SQLFreeHandle Releases resources

associated with handles.

 Related information

 ODBC API restrictions and unsupported functions
The way in which some functions are implemented in the iSeries Access for Windows ODBC Driver

does not meet the specifications in the Microsoft ODBC Software Development Kit Programmer’s

Reference.

 Microsoft Web site

SQL Statement Considerations:

Identify SQL statement functions that are accomplished using ODBC.

 There are several SQL statements that are not recommended to be prepared and executed. Examples of

these are:

v SET™ TRANSACTION

v SET SCHEMA

v SET PATH

v COMMIT

v ROLLBACK

v CONNECT TO

v DISCONNECT ALL

For these statements, you can accomplish the same behavior in other ways through ODBC. For example,

if you turn off autocommit for the ODBC connection, you can use the SQLEndTran option instead of

attempting to execute a COMMIT or ROLLBACK statement.

Note that the SET SESSION AUTHORIZATION SQL statement changes the user that is in control of that

connection which leads to unpredictable behavior when used in combination with ODBC connection

pooling. The recommended way to use the SET SESSION AUTHORIZATION statement, through ODBC,

is to free all open statement handles except for the SET SESSION AUTHORIZATION on which is it to

run. Once SET SESSION AUTHORIZATION is run, you should free the statement handle.

Connection string keywords:

The iSeries Access ODBC driver has many connection string keywords that can be used to change the

behavior of the ODBC connection.

 These same keywords and their values are stored when an ODBC data source is setup. When an ODBC

application makes a connection, any keywords specified in the connection string override the values

specified in the ODBC data source.

Choose from the following tables for more information on the connection string keywords that are

recognized by the iSeries Access ODBC driver.

Connection string keywords - General properties:

Use these iSeries Access ODBC driver connection string keywords to change General properties of the

ODBC connection.

480 IBM Systems - iSeries: iSeries Access for Windows: Programming

http://www.microsoft.com/

The following table lists connection string keywords for General properties that are recognized by the

iSeries Access ODBC driver:

 Table 3. iSeries Access ODBC connection string keywords for General properties

Keyword Description Choices Default

DSN Specifies the name of the ODBC data

source that you want to use for the

connection.

Data source (DSN) name none

DRIVER Specifies the name of the ODBC driver

that you want to use.

Note: This should not be used if the

DSN property has been specified.

″iSeries Access ODBC Driver″

Client Access ODBC Driver (32-bit)

Note: When installing iSeries Access,

V5R2 or later, two ODBC drivers are

registered. Both the Client Access

ODBC Driver (32-bit) and the

iSeries Access ODBC Driver names

are registered, however, both of these

registered names point to the same

ODBC driver. These two registered

names do not indicate that two

different ODBC drivers are installed.

The older name of Client Access

ODBC Driver (32-bit) is registered to

support backward compatibility.

none

PWD or Password Specifies the password for connecting

to the iSeries server.

iSeries password none

SIGNON Specifies what default user ID to use if

the connection cannot be completed

with the current user ID and password

information.

0 = Use Windows user name

1 = Use default user ID

2 = None

3 = Use iSeries Navigator default

4 = Use Kerberos principal

3

SSL Specifies whether a Secure Sockets

Layer (SSL) connection is used to

communicate with the server. SSL

connections are only available when

connecting to servers at V4R4 or later.

0 = Encrypt only the password

1 = Encrypt all clients/server

communication

0

SYSTEM Specifies the name of the iSeries server

that you want to connect to.

iSeries server name. See iSeries

system name formats for ODBC

Connection APIs.

none

UID or UserID Specifies the user ID for connecting to

the iSeries server.

iSeries user ID none

Connection string keywords - Server Properties:

Use these iSeries Access ODBC driver connection string keywords to change Server properties of the

ODBC connection.

 The following table lists connection string keywords for Server properties that are recognized by the

iSeries Access ODBC driver:

Programming 481

Table 4. iSeries Access ODBC connection string keywords for Server properties

Keyword Description Choices Default

CMT or CommitMode Specifies the default transaction

isolation level.

0 = Commit immediate (*NONE)

1 = Read committed (*CS)

2 = Read uncommitted (*CHG)

3 = Repeatable read (*ALL)

4 = Serializable (*RR)

2

CONNTYPE or

ConnectionType

Specifies the level of database access

for the connection.

0 = Read/Write (all SQL statements

allowed)

1 = Read/Call (SELECT and CALL

statements allowed)

2 = Read-only (SELECT statements

only)

0

DATABASE Specifies the iSeries relational database

(RDB) name to connect. Note, this

option is only valid to V5R2 iSeries

servers. This option will be ignored

when connecting to earlier pre-V5R2

servers.

Special values for this option include

specifying an empty-string or

*SYSBAS. An empty-string indicates to

use the user-profile’s default setting for

database. Specifying *SYSBAS will

connect a user to the SYSBAS database

(RDB name).

iSeries relational database name empty-
string

DBQ or DefaultLibraries Specifies the iSeries libraries to add to

the server job’s library list. The

libraries are delimited by commas or

spaces, and *USRLIBL may be used as

a place holder for the server job’s

current library list. The library list is

used for resolving unqualified stored

procedure calls and finding libraries in

catalog API calls. If *USRLIBL is not

specified, the specified libraries will

replace the server job’s current library

list.

Note: The first library listed in this

property will also be the default

library, which is used to resolve

unqualified names in SQL statements.

To specify no default library, a comma

should be entered before any libraries.

iSeries libraries

Only 25 libraries are supported in a

library list on a connection to a

pre-V5R1 server. 75 entries are

supported on a V5R1 and later

servers. Entries over 75 are ignored.

QGPL

MAXDECPREC or

Maximum Decimal

Precision

Specifies the maximum precision of

decimal data that will be returned.

31 or 63 31

MAXDECSCALE or

Maximum Decimal

Scale

Specifies the maximum scale used in

arithmetic calculations involving

decimal data. This value must be less

than the value of MAXDECPREC.

0 – 63 31

482 IBM Systems - iSeries: iSeries Access for Windows: Programming

Table 4. iSeries Access ODBC connection string keywords for Server properties (continued)

Keyword Description Choices Default

MINDIVSCALE or

Minimum Divide Scale

Specifies the minimum scale used in

arithmetic calculations involving

decimal data.

0 – 9 0

NAM or Naming Specifies the naming convention used

when referring to tables.

0 = ″sql″ (as in schema.table)

1 = ″system″ (as in schema/table)

0

Connection string keywords - Format properties:

Use these iSeries Access ODBC driver connection string keywords to change Format properties of the

ODBC connection.

 The following table lists connection string keywords for Format properties that are recognized by the

iSeries Access ODBC driver:

 Table 5. iSeries Access ODBC connection string keywords for Format properties

Keyword Description Choices Default

DFT or DateFormat Specifies the date format used in date

literals within SQL statements.

0 = yy/dd (*JUL)

1 = mm/dd/yy (*MDY)

2 = dd/mm/yy (*DMY)

3 = yy/mm/dd (*YMD)

4 = mm/dd/yyyy (*USA)

5 = yyyy-mm-dd (*ISO)

6 = dd.mm.yyyy (*EUR)

7 = yyyy-mm-dd (*JIS)

5

DSP or DateSeparator Specifies the date separator used in

date literals within SQL statements.

This property has no effect unless the

DateFormat property is set to 0 (*JUL),

1 (*MDY), 2 (*DMY), or 3 (*YMD).

0 = ″/″ (forward slash)

1 = ″-″ (dash)

2 = ″.″ (period)

3 = ″,″ (comma)

4 = ″ ″ (blank)

1

DEC or Decimal Specifies the decimal separator used in

numeric literals within SQL statements.

0 = ″.″ (period)

1 = ″,″ (comma)

0

TFT or TimeFormat Specifies the time format used in time

literals within SQL statements.

0 = hh:mm:ss (*HMS)

1 = hh:mm AM/PM (*USA)

2 = hh.mm.ss (*ISO)

3 = hh.mm.ss (*EUR)

4 = hh:mm:ss (*JIS)

0

Programming 483

Table 5. iSeries Access ODBC connection string keywords for Format properties (continued)

Keyword Description Choices Default

TSP or TimeSeparator Specifies the time separator used in

time literals within SQL statements.

This property has no effect unless the

″time format″ property is set to ″hms″.

v 0 = ″:″ (colon)

v 1 = ″.″ (period)

v 2 = ″,″ (comma)

v 3 = ″ ″ (blank)

0

Connection string keywords - Package properties:

Use these iSeries Access ODBC driver connection string keywords to change Package properties of the

ODBC connection.

 The following table lists connection string keywords for Package properties that are recognized by the

iSeries Access ODBC driver:

 Table 6. iSeries Access ODBC connection string keywords for the Package properties

Keyword Description Choices Default

DFTPKGLIB or

DefaultPkgLibrary

Specifies the library for the SQL

package. This property has no effect

unless the XDYNAMIC property is set

to 1.

Library for SQL package QGPL

PKG or DefaultPackage Specifies how the extended dynamic

(package) support will behave. The

string for this property must be in the

following format:

A/DEFAULT(IBM),x,0,y,z,0

The x, y, and z are special attributes

that need to be replaced with how the

package is to be used.

v x = Specifies whether or not to add

statements to an existing SQL

package.

v y = Specifies the action to take when

SQL package errors occur. When a

SQL package error occurs, the driver

will return a return code based on

the value of this property.

v z = Specifies whether or not to cache

SQL packages in memory. Caching

SQL packages locally reduces the

amount of communication to the

server in some cases.

Note: This property has no effect

unless the XDYNAMIC property is set

to 1.

A/DEFAULT(IBM),x,0,y,z,0

Values for x option:

v 1 = Use (Use the package, but do

not put any more SQL statements

into the package)

v 2 = Use/Add (Use the package

and add new SQL statements into

the package)

Values for y option:

v 0 = Return an error (SQL_ERROR)

to the application

v 1 = Return a warning

(SQL_SUCCESS_WITH_INFO) to

the application

v 2 = Return success

(SQL_SUCCESS) to the application

Values for z option:

v 0 = Do not cache SQL package

locally

v 1 = Cache SQL package locally

default

484 IBM Systems - iSeries: iSeries Access for Windows: Programming

Table 6. iSeries Access ODBC connection string keywords for the Package properties (continued)

Keyword Description Choices Default

XDYNAMIC or

ExtendedDynamic

Specifies whether to use extended

dynamic (package) support.

Extended dynamic support provides a

mechanism for caching dynamic SQL

statements on the server. The first time

a particular SQL statement is run, it is

stored in a SQL package on the server.

On subsequent runs of the same SQL

statement, the server can skip a

significant part of the processing by

using information stored in the SQL

package.

Note: For more information see “Use

Extended Dynamic SQL” on page 510.

0 = Disable extended dynamic

support

1 = Enable extended dynamic

support

1

Note: A/DEFAULT(IBM),x,0,y,z,0 is the default value for PKG or DefaultPackage.

Connection string keywords - Performance properties:

Use these iSeries Access ODBC driver connection string keywords to change Performance properties of

the ODBC connection.

 The following table lists connection string keywords for Performance properties that are recognized by

the iSeries Access ODBC driver:

 Table 7. iSeries Access ODBC connection string keywords for Performance properties

Keyword Description Choices Default

BLOCKFETCH Specifies whether or not internal

blocking will be done on fetches of 1

row. When set, the driver will try to

optimize the fetching of records when

one record is requested by the

application. Multiple records will be

retrieved and stored by the driver for

later retrieval by the application. When

an application requests another row,

the driver will not need to send

another flow to the host database to

get it. If not set, blocking will be used

according to the application’s ODBC

settings for that particular statement.

Note: For more information on setting

this option see the Fine-tuning record

blocking topic.

0 = Use ODBC settings for blocking

1 = Use blocking with a fetch of 1

row

1

BLOCKSIZE or

BlockSizeKB

Specifies the block size (in kilobytes) to

retrieve from the iSeries server and

cache on the client. This property has

no effect unless the BLOCKFETCH

property is 1. Larger block sizes reduce

the frequency of communication to the

server, and therefore may increase

performance.

1 – 8192 32

Programming 485

Table 7. iSeries Access ODBC connection string keywords for Performance properties (continued)

Keyword Description Choices Default

COMPRESSION or

AllowDataCompression

Specifies whether to compress data

sent to and from the server. In most

cases, data compression improves

performance due to less data being

transmitted between the driver and the

server.

0 = Disable compression

1 = Enable compression

1

CONCURRENCY Specifies whether to override the

ODBC concurrency setting by opening

all cursors as updateable.

Note: In the following two cases,

setting this option has no effect:

1. When building a SELECT SQL

statement the FOR FETCH ONLY

or FOR UPDATE clause can be

added. If either of these clauses are

present in a SQL statement the

ODBC driver will honor the

concurrency that is associated with

the clause.

2. Catalog result sets are always

read-only.

0 = Use ODBC concurrency settings

1 = Open all cursors as updateable

0

CURSORSENSITIVITY Specifies the cursor sensitivity to use

when opening cursors. This option

applies to all forward-only and

dynamic cursors that are opened on

the same connection. Static cursors are

always insensitive.

0 - Unspecified/Asensitive

1 = Insensitive

2 = Sensitive

EXTCOLINFO or

ExtendedColInfo

The extended column information

affects what the SQLGetDescField and

SQLColAttribute APIs return as

Implementation Row Descriptor (IRD)

information. The extended column

information is available after the

SQLPrepare API has been called. The

information that is returned is:

v

 SQL_DESC_AUTO_UNIQUE_VALUE

v

 SQL_DESC_BASE_COLUMN_NAME

v SQL_DESC_BASE_TABLE_NAME

and SQL_DESC_TABLE_NAME

v SQL_DESC_LABEL

v SQL_DESC_SCHEMA_NAME

v SQL_DESC_SEARCHABLE

v SQL_DESC_UNNAMED

v SQL_DESC_UPDATABLE

Note: the driver sets the

SQL_DESC_AUTO_UNIQUE_VALUE

flag only if a column is an identity

column with the ALWAYS option over

a numeric data type (such as integer).

Refer to the DB2 UDB SQL Reference

for details on identity columns.

0 = Do not retrieve extended column

information

1 = Retrieve extended column

information

0

486 IBM Systems - iSeries: iSeries Access for Windows: Programming

Table 7. iSeries Access ODBC connection string keywords for Performance properties (continued)

Keyword Description Choices Default

LAZYCLOSE Specifies whether to delay closing

cursors until subsequent requests. This

will increase overall performance by

reducing the total number of requests.

Note: This option can cause problems

due to the cursors still holding locks

on the result set rows after the close

request.

0 = Close all cursors immediately

1 = Delay closing of cursors until the

next request

0

MAXFIELDLEN or

MaxFieldLength

Specifies the maximum LOB (large

object) size (in kilobytes) that can be

retrieved as part of a result set. LOBs

that are larger than this threshold will

be retrieved in pieces using extra

communication to the server. Larger

LOB thresholds will reduce the

frequency of communication to the

server, but will download more LOB

data, even if it is not used. Smaller

LOB thresholds may increase

frequency of communication to the

server, but they will only download

LOB data as it is needed.

Notes:

v Setting this property to 0 forces the

driver to always retrieve the LOB

values with additional

communication flows.

v Setting this property larger than

15360 KB has no effect. Anything

larger than 15360 KB is retrieved in

pieces from the server. Retrieving

the data in pieces reduces the

amount of memory needed, at any

given time, on the client.

0 — 2097152 32

PREFETCH Specifies whether to prefetch data

upon executing a SELECT statement.

This will increase performance when

accessing the initial rows in the

ResultSet.

0 = Do not prefetch data

1 = Prefetch data

0

QUERYTIMEOUT Specifies whether the driver will

disable support for the query timeout

attribute,

SQL_ATTR_QUERY_TIMEOUT. If

disabled, SQL queries will run until

they finish.

0 = Disable support for the query

timeout attribute

1 = Allow the query timeout attribute

to be set

1

 Related reference

 “Fine-tune record-blocking” on page 509
Record-blocking is a technique that significantly reduces the number of network flows.

Connection string keywords - Sort properties:

Use these iSeries Access ODBC driver connection string keywords to change Sort properties of the ODBC

connection.

Programming 487

|
|
|
|

|
|
|
|
|
|
|

The following table lists connection string keywords for Sort properties that are recognized by the iSeries

Access ODBC driver:

 Table 8. iSeries Access ODBC connection string keywords for Sort properties

Keyword Description Choices Default

LANGUAGEID Specifies a 3-character language id to

use for selection of a sort sequence.

This property has no effect unless the

SORTTYPE property is set to 2.

AFR, ARA, BEL, BGR, CAT, CHS,

CHT, CSY, DAN, DES, DEU, ELL,

ENA, ENB, ENG, ENP, ENU, ESP,

EST, FAR, FIN, FRA, FRB, FRC, FRS,

GAE, HEB, HRV, HUN, ISL, ITA, ITS,

JPN, KOR, LAO, LVA, LTU, MKD,

NLB, NLD, NON, NOR, PLK, PTB,

PTG, RMS, ROM, RUS, SKY, SLO,

SQI, SRB, SRL, SVE, THA, TRK,

UKR, URD, VIE

ENU

SORTTABLE Specifies the library and file name of a

sort sequence table stored on the

iSeries server. This property has no

effect unless the SORTTYPE property

is set to 3.

Qualified sort table name none

SORTTYPE or

SortSequence

Specifies how the server sorts records

before sending them to the client.

0 or 1 = Sort based on hexadecimal

values

2 = Sort based on the language set in

LANGUAGEID property

3 = Sort based on the sort sequence

table set in the SORTTABLE property

0

SORTWEIGHT Specifies how the server treats case

while sorting records. This property

has no effect unless the SORTTYPE

property is set to 2.

0 = Shared-Weight (uppercase and

lowercase characters sort as the same

character)

1 = Unique-Weight (uppercase and

lowercase characters sort as different

characters)

0

Connection string keywords - Catalog properties:

Use these iSeries Access ODBC driver connection string keywords to change Catalog properties of the

ODBC connection.

 The following table lists connection string keywords for Catalog properties that are recognized by the

iSeries Access ODBC driver:

488 IBM Systems - iSeries: iSeries Access for Windows: Programming

Table 9. iSeries Access ODBC connection string keywords for the Catalog properties

Keyword Description Choices Default

CATALOGOPTIONS Specifies one or more options to affect

how catalog APIs return information.

To specify multiple catalog options,

add the values associated with the

options that you want.

To determine the value for this

keyword, add the values below that

are associated with each option that

you want.

1 = Return information about aliases

in the SQLColumns result set.

2 = Return result set information for

SQLTablePrivileges and

SQLColumnPrivileges. Note, this will

only work with V5R2 hosts. On older

hosts the driver will return an empty

result set.

3

LIBVIEW or

LibraryView

Specifies the set of libraries to be

searched when returning information

when using wildcards with catalog

APIs. In most cases, use the default

library list or default library option as

searching all the libraries on the server

will take a long time.

0 = Use default library list

1 = All libraries on the server

2 = Use default library only

0

REMARKS or

ODBCRemarks

Specifies the source of the text for

REMARKS columns in catalog API

result sets.

0 = i5/OS object description

1 = SQL object comment

0

SEARCHPATTERN Specifies whether the driver will

interprets string search patterns and

underscores in the library and table

names as wildcards (search patterns).

By default, % is treated as an ’any

number of characters’ wildcard, and _

is treated as a ’single character’

wildcard.

0 = Do not treat search patterns as

wildcards

1 = Treat search patterns as wildcards

1

Note: ″A/DEFAULT(IBM),x,0,y,z,0″ is the default value for PKG or DefaultPackage.

Connection string keywords - Translation properties:

Use these iSeries Access ODBC driver connection string keywords to change Translation properties of the

ODBC connection.

 The following table lists connection string keywords for Translation properties that are recognized by the

iSeries Access ODBC driver:

 Table 10. iSeries Access ODBC connection string keywords for Translation properties

Keyword Description Choices Default

ALLOWUNSCHAR or

AllowUnsupportedChar

Specifies whether or not to suppress

error messages which occur when

characters that can not be translated

(because they are unsupported) are

detected.

0 = Report error messages when

characters can not be translated

1 = Suppress error messages when

characters can not be translated

0

CCSID Specifies a codepage to override the

default client codepage setting with.

Client codepage setting or 0 (use

default client codepage setting)

0

Programming 489

Table 10. iSeries Access ODBC connection string keywords for Translation properties (continued)

Keyword Description Choices Default

GRAPHIC This property affects the handling of

the graphic (DBCS) data types of

GRAPHIC, VARGRAPHIC, LONG

VARGRAPHIC, and DBCLOB that

have a CCSID other than Unicode.

This property affects two different

behaviors:

1. Whether the length of a graphic

field is reported as a character

count or as a byte count by the

SQLDescribeCol API.

2. Whether graphic fields are reported

as a supported type in the

SQLGetTypeInfo result set

0 = Report character count, report as

not supported

1 = Report character count, report as

supported

2 = Report byte count, report as not

supported

3 = Report byte count, report as

supported

0

HEXPARSEROPT or

Hex Parser Option

Specifies how SQL hexadecimal

constants will be interpreted in SQL

statements.

0 = Treat hexadecimal constants as

character data

1 = Treat hexadecimal constants as

binary data

0

TRANSLATE or

ForceTranslation

Specifies whether or not to convert

binary data (CCSID 65535) to text.

When this property is set to 1, binary

fields are treated as character fields.

Note: This setting has no effect when

accessing tables on V5R3 and later

servers that contain the new BINARY

and VARBINARY data types.

0 = Do not convert binary data to

text

1 = Convert binary data to text

0

UNICODESQL Specifies whether or not to send

Unicode SQL statements to the server.

If set to 0, the driver will send EBCDIC

SQL statements to the server. This

option is only available when

connecting to servers at V5R1 or later.

0 = Send EBCDIC SQL statements to

the server

1 = Send Unicode SQL statements to

the server

0

XLATEDLL or

TranslationDLL

Specifies the full path name of the DLL

to be used by the ODBC driver to

translate the data that is passed

between the ODBC driver and the

server. The DLL is loaded when a

connection is established.

Full path name of the translation

DLL

none

XLATEOPT or

TranslationOption

Specifies a 32-bit integer translation

option that is passed to the translation

DLL. This parameter is optional. The

meaning of this option depends on the

translation DLL that is being used.

Refer to the documentation provided

with the translation DLL for more

information. This option is not used

unless the XLATEDLL property is set.

32-bit integer translation option 0

Connection string keywords - Diagnostic properties:

Use these iSeries Access ODBC driver connection string keywords to change Diagnostic properties of the

ODBC connection.

490 IBM Systems - iSeries: iSeries Access for Windows: Programming

The following table lists connection string keywords for Diagnostic properties that are recognized by the

iSeries Access ODBC driver:

 Table 11. iSeries Access ODBC connection string keywords for Diagnostic properties

Keyword Description Choices Default

MAXTRACESIZE Specifies the maximum trace size (in

MB) of the internal driver trace.

Specifying a value of 0 means no limit.

This property has no effect unless the

TRACE property has option 1 set.

0 (no limit) - 1000 0

MULTTRACEFILES or

MultipleTraceFiles

Specifies whether or not trace data

from the internal driver trace will be

put into multiple files. A new file will

be created for each thread that the

application is using. This property has

no effect unless the TRACE property

has option 1 set.

0 = Trace data into a single file

1 = Trace data into multiple files

1

QAQQINILIB or

QAQQINILibrary

Specifies a query options file library.

When a query options file library is

specified the driver will issue the

command CHGQRYA passing the

library name for the QRYOPTLIB

parameter. The command is issued

immediately after the connection is

established. This option should only be

used when debugging problems or

when recommended by support as

enabling it will adversely affect

performance.

Query options file library none

SQDIAGCODE Specifies DB2 UDB SQL diagnostic

options to be set. Use only as directed

by your technical support provider.

DB2 UDB SQL diagnostic options none

TRACE Specifies one or more trace options. To

specify multiple trace options add

together the values for the options that

you want. For example, if you want

the Database Monitor and Start Debug

command to be activated on the server

then the value you would want to

specify is 6. These options should only

be used when debugging problems or

when recommended by support as

they will adversely affect performance.

To determine the value for this

keyword, add the values below that

are associated with each option that

you want.

0 = No tracing

1 = Enable internal driver tracing

2 = Enable Database Monitor

4 = Enable the Start Debug

(STRDBG) command

8 = Print job log at disconnect

16 = Enable job trace

32 = Enable database host server

trace

0

Programming 491

Table 11. iSeries Access ODBC connection string keywords for Diagnostic properties (continued)

Keyword Description Choices Default

TRACEFILENAME Specifies the full path name to either

the file or the directory in which to put

the internal driver trace data into. A

path name to the file should be

specified if MULTTRACEFILES is set

to 0. A path name to a directory

should be specified if

MULTTRACEFILES is set to 1. This

property has no effect unless the

TRACE property has option 1 set.

Full path name to file or directory none

Connection string keywords - other properties:

Use these iSeries Access ODBC driver connection string keywords to change other properties of the

ODBC connection.

 The following table lists other connection string keywords that are recognized by the iSeries Access

ODBC driver:

 Table 12. iSeries Access ODBC connection string keywords for other properties

Keyword Description Choices Default

ALLOWPROCCALLS Specifies whether stored procedures

can be called when the connection

attribute,

SQL_ATTR_ACCESS_MODE, is set

to SQL_MODE_READ_ONLY.

0 = Do not allow stored procedures

to be called

1 = Allow stored procedures to be

called

0

DB2SQLSTATES Specifies whether or not to return

ODBC-defined SQL States or DB2

SQL States. Refer to the DB2 UDB

SQL Reference for more details on

the DB2 SQL States. This option

should be used only if you have the

ability to change the ODBC

application’s source code. If not, you

should leave this option set to 0 as

most applications are coded only to

handle the ODBC-defined SQL

States.

0 = Return ODBC-defined SQLStates

1 = Return DB2 SQL States

0

492 IBM Systems - iSeries: iSeries Access for Windows: Programming

Table 12. iSeries Access ODBC connection string keywords for other properties (continued)

Keyword Description Choices Default

DATETIMETOCHAR or

ConvertDateTimeToChar

Specifies one or more options on

how date, time, and timestamp data

types are reported to an application.

To specify multiple options add

together the values for the options.

This option supports cases in which

date values such as 24:00:00 are

used.

To determine the value for this

keyword, add the values below that

are associated with each option that

you want.

0 = Continue to map the DATE,

TIME, and TIMESTAMP data types

as SQL_TYPE_DATE,

SQL_TYPE_TIME, and

SQL_TYPE_TIMESTAMP

1 = Return DATE data type as

SQL_CHAR

2 = Return TIME data type as

SQL_CHAR

4 = Return TIMESTAMP data type as

SQL_CHAR

0

DBCSNoTruncError Specifies whether or not to report a

DBCS string conversion overflow

error as an ODBC trunctation error.

0 = Report DBCS string conversion

overflow error as ODBC truncation

error

1 = Ignore truncation error

0

Programming 493

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|

Table 12. iSeries Access ODBC connection string keywords for other properties (continued)

Keyword Description Choices Default

DEBUG Specifies one or more debug options.

To specify multiple debug options

add together the values for the

options that you want. In most cases

you will not need to set this option.

To determine the value for this

keyword, add the values below that

are associated with each option that

you want.

2 = Return SQL_IC_MIXED for the

SQL_IDENTIFIER_CASE option of

SQLGetInfo

4 = Store all SELECT statements in

the package

8 = Return zero for the

SQL_MAX_QUALIFIER_NAME_LEN

option of option of SQLGetInfo

16 = Add positioned UPDATEs /

DELETEs into packages

32 = Convert static cursors to

dynamic cursors

64 = Send the entire column size

worth of data for variable length

fields (VARCHAR, VARGRAPHIC,

BLOB, etc.) Note, set this option with

caution as this can have an adverse

impact on performance.

128 = Subtract one from the

SQLBindParameter sourcelength if

the last character in the buffer is a

null-terminator character.

256 = Ignore data decimal errors

512 = Ignore case warnings

(SQL0402) for scrollable cursors

1024 = Disable variable length

compression

2048 = Return no support for

SQL_CVT_DATE when calling the

SQLGetInfo’s

SQL_CONVERT_TIMESTAMP

option.

32768 = If the result of a query

results in a column being divided by

0, return a NULL value instead of an

error.

0

494 IBM Systems - iSeries: iSeries Access for Windows: Programming

Table 12. iSeries Access ODBC connection string keywords for other properties (continued)

Keyword Description Choices Default

TRUEAUTOCOMMIT Specifies how to handle autocommit

support. In past ODBC drivers,

turning autocommit on resulted in

the server running under the

*NONE isolation level. Now

autocommit can run under any

isolation level. Applications that

require strict conformance to the

SQL specification should use setting

1. Note that this setting requires that

all files be journaled. Setting 0 offers

better performance for most

applications. See the SQL reference

for further information on

Transaction Isolation levels.

0 = run autocommit under the

*NONE isolation level

1 = run autocommit under the

isolation level that is set for the

connection. The connection’s

isolation level is set using the

SQLSetConnectAttr API and the

SQL_ATTR_TXN_ISOLATION

option.

0

NEWPWD Specifies a new password used to

override the current user’s iSeries

password. This option is only

honored if set by an application.

When using this option, the UID

and PWD keywords should also be

specified.

New password to use none

XALCS or

XALooselyCoupledSupport

Specifies whether locks are shared

between loosely coupled distributed

transaction branches.

0 = Locks are not shared

1 = Locks are shared

1 (for

Windows)

0 (for

Linux)

XALOCKTIMEOUT Specifies the maximum amount of

time (in seconds) that a distributed

transaction waits on a lock request

before timing out.

0 = Use the default system setting

0 – 999999999 = the number of

seconds to wait

0

XATXNTIMEOUT or

XATransactionTimeout

Specfies the amount of time (in

seconds) that a distributed

transaction waits before timing out.

0 = Wait indefinitely for the

transaction to finish

0 – 999999999 = the number of

seconds to wait

0

Version and release changes in the ODBC driver behavior:

This topic describes version and release changes in the ODBC driver behavior.

 The following list describes some of the important changes for V5R4:

There are several new features available when using the ODBC driver to access data on a V5R4 iSeries

server. These features include:

v Support for 128-byte column names

v Support for longer SQL statements (commands can be up to 2,097,152 bytes or 1,048,576 characters

long)

v Support for passing an IBM Enterprise Workload Manager (eWLM) correlator to the iSeries host

v Improved support for table and column names that are not all uppercase

v Enhanced distributed transaction support for loosely coupled transactions

v A Linux 64-bit ODBC driver

Programming 495

|
|
|
|
|
|
|

||
|
|
|
|
|
|

||

|

|
|

|

|
|

|

|

|

|

The following list describes some of the important changes for V5R3:

There are several new features available when using the ODBC driver to access data on a V5R3 iSeries

server. These features include:

v DB2 UDB database types of BINARY and VARBINARY

v UTF-8 and UTF-16 data

v Increased precision of decimal numbers

v Support for accessing stored procedure result sets with scrollable cursors

v Enhanced commitment control model so that autocommit can run with any isolation level

v Enhanced Microsoft Transaction Server (MTS) / XA support which allows the coordination of

transactions across multiple iSeries connections

The following list describes some of the important changes for V5R2:

There are several new features available when using the ODBC driver to access data on a V5R2 iSeries

server. These features include:

v Ability to send Structured Query Language (SQL) statements that are 64K bytes long to the DB2 UDB

database (the previous limit was 32K bytes)

v Ability to make use of the DB2 UDB database type of ROWID

v Ability to get back additional descriptor information, such as the base table name for a result set

column

v Ability to access multiple databases on the same iSeries server

v Ability to retrieve meaningful information from the SQLTablePrivileges and SQLColumnPrivileges APIs

v Ability to use Kerberos support for authenticating a user to an iSeries server

v Ability to retrieve, regardless of the iSeries server version, more information in the result sets for the

catalog APIs. The driver now queries the iSeries catalog tables directly to provide the result set for the

catalog APIs.

The following list describes some of the important changes for V5R1:

v Character data for parameter markers is converted from the iSeries Access(PC) codepage directly to the

column CCSID. If a new iSeries Access codepage setting was specified on the Advanced Translation

Options dialog of the DSN setup GUI, it will be the iSeries Access(PC) codepage. The V4R5 driver first

converted character data from the iSeries Access(PC) codepage to the job CCSID before it was

converted to the column CCSID.

v Character column data is converted directly from the column CCSID to the iSeries Access(PC)

codepage. If the C type specified is SQL_C_WCHAR, then the data is converted to Unicode.

v If the value type specified in SQLBindParameter is SQL_C_WCHAR, then the driver converts the

parameter marker data from Unicode to the column CCSID.

v When calling SQLBindParameter for a SQL_C_CHAR to INTEGER conversion, if BufferLength is 0 and

the buffer contains an empty string then an error is returned. The V4R5 driver would accept the empty

string and insert the value of 0 into the table.

v The lazy close option default is 0 (OFF), and in V4R5 its default was 1 (ON).

v The prefetch option default is 0 (OFF), and in V4R5 its default was 1 (ON).

v Unicode SQL statements can be sent to V5R1 or later iSeries servers. The package names are generated

differently than in V4R5 when sending Unicode SQL statements.

v Managed DSNs (created through V4R5 or earlier iSeries Navigator) are not supported. They are instead

treated like a User DSN, meaning that the DSN information is not updated from the server copy.

v BIGINT data type is supported to V4R5 (or later) hosts.

v Static cursor supported to V5R1 or later hosts. In earlier hosts, and in previous iSeries Access for

Windows ODBC drivers, static cursor type is mapped to dynamic.

496 IBM Systems - iSeries: iSeries Access for Windows: Programming

v The V5R1 driver supports the ODBC 3.51 specification. In V4R5, the ODBC 2.5 specification was

supported.

v In V5R1, no conversion is performed when fetching data from a char field and retrieving it as

SQL_C_BINARY. In V4R5, the driver translated data from EBCDIC codepages to ASCII codepages.

ODBC API restrictions and unsupported functions:

The way in which some functions are implemented in the iSeries Access for Windows ODBC Driver does

not meet the specifications in the Microsoft ODBC Software Development Kit Programmer’s Reference.

 The table below describes some global restrictions and unsupported functions. See “ODBC 3.x APIs

Notes” on page 470 for a list of individual APIs and their associated considerations.

 Table 13. Limitations of ODBC API functions

Function Description

Global considerations No asynchronous processes are supported. However, SQLCancel can be called, from a

different thread (in a multi-threaded application), to cancel a long running query.

Translation DLLs are only called when converting data from buffers.

SQLSetScrollOptions (2x API) SQL_CONCUR_ROWVER, SQL_CONCUR_VALUES are unsupported options for

Concurrency parameter.

The SQL_SCROLL_KEYSET_DRIVEN is mapped to SQL_SCROLL_DYNAMIC by the

driver.

Signon dialog behavior:

The signon dialog behavior has been simplified from the behavior seen in previous iSeries Access for

Windows ODBC drivers. The signon dialog behavior is based on how your data source is set up and

which ODBC API (SQLConnect, SQLDriverConnect, SQLBrowseConnect) your application uses to

connect.

 When configuring an ODBC data source there are two options which can influence the signon dialog

behavior. These are both located on the dialog you get after clicking Connection Options on the General

tab of the DSN Setup GUI.

Note: On the DSN setup GUI there is an option which controls whether or not a dialog prompting for

signon information is allowed or not. An application that calls SQLConnect in a 3-tier environment

should always choose ’Never prompt for SQLConnect’. This 3-tier application also needs to make

sure it specifies the userid and password when calling SQLConnect.

v In the Default user ID section you can specify which default user ID to use:

– Use Windows user name

– Use the user ID specified below

– None

– Use iSeries Navigator default

– Use Kerberos principal
v In the Signon dialog prompting section you can specify if the signon dialog should be prompted if

your application uses the SQLConnect ODBC API.

When coding your application you have total control over how the userid, password, and signon dialog

prompting will behave. The userid and password that is used is figured out in the following order:

1. Userid / Password arguments specified by the application.

v The SQLConnect API accepts userid and password arguments.

Programming 497

v The SQLDriverConnect and SQLBrowseConnect APIs accept the UID, PWD, and SIGNON

connection string keywords.
2. GUI setting for Default user ID

The signon dialog prompting depends on which ODBC API is used by the application to connect.

SQLConnect prompts the signon dialog if needed unless the GUI setting for Signon dialog prompting

says to never prompt. SQLDriverConnect prompts the signon dialog according to the value of the

DriverCompletion. A setting of SQL_DRIVER_NOPROMPT will prevent any signon dialogs from being

prompted. A setting of SQL_DRIVER_PROMPT, SQL_DRIVER_COMPLETE or

SQL_DRIVER_COMPLETE_REQUIRED will prompt the signon dialog if needed. SQLBrowseConnect

prompts the signon dialog if needed.

ActiveX Data Objects (ADO) prompting

When coding your ODBC application using ActiveX Data Objects (ADO) the default behavior for

prompting is adPromptNever. To prompt differently, set the Prompt property on the Connection object

prior to calling the Connection’s Open method. For example, the following ADO code would result in

prompting only as needed. Adding the SIGNON, UID, or PWD keywords allow you to have more control

over the amount of prompting.

Dim conn As New ADODB.Connection

conn.Properties("Prompt") = adPromptComplete

conn.Open "Provider = MSDASQL;DSN=myODBCDSN;

ODBC data types and how they correspond to DB2 UDB database types:

The ODBC driver maps data types between ODBC types and DB2 UDB types. The following table shows

this mapping.

 For more information see DB2 UDB database types.

 Table 14.

3.x ODBC Data Type DB2 UDB Database Type

SQL_BIGINT BIGINT

SQL_BINARY BINARY or

CHAR FOR BIT DATA

SQL_CHAR CHAR or GRAPHIC

SQL_DECIMAL DECIMAL

SQL_DOUBLE DOUBLE

SQL_FLOAT FLOAT

SQL_INTEGER INTEGER

SQL_LONGVARBINARY BLOB

SQL_LONGVARCHAR CLOB or DBCLOB

SQL_NUMERIC NUMERIC

SQL_REAL REAL

SQL_SMALLINT SMALLINT

SQL_TYPE_DATE DATE

SQL_TYPE_TIME TIME

SQL_TYPE_TIMESTAMP TIMESTAMP

498 IBM Systems - iSeries: iSeries Access for Windows: Programming

Table 14. (continued)

3.x ODBC Data Type DB2 UDB Database Type

SQL_VARBINARY VARBINARY

VARCHAR FOR BIT DATA

LONG VARCHAR FOR BIT DATA

ROWID

SQL_VARCHAR VARCHAR

VARGRAPHIC

LONG VARCHAR

LONG VARGRAPHIC

DATALINK

SQL_WCHAR GRAPHIC CCSID 1200

GRAPHIC CCSID 13488

SQL_WLONGVARCHAR DBCLOB CCSID 1200

DBCLOB CCSID 13488

SQL_WVARCHAR VARGRAPHIC CCSID 1200

VARGRAPHIC CCSID 13488

LONGVARGRAPHIC CCSID 1200

LONG VARGRAPHIC CCSID 13488

Implementation notes:

v All conversions in the Microsoft ODBC Software Development Kit Programmer’s Reference Version 3.5

are supported for these ODBC SQL data types.

v Call the ODBC API SQLGetTypeInfo to learn more about each of these data types.

v The database type of VARCHAR will be changed to LONG VARCHAR by the database if the column

size that is specified is larger than 255.

v The ODBC driver does not support any of the interval SQL data types.

v 2.x ODBC applications use the SQL_DATE, SQL_TIME, and SQL_TIMESTAMP defines in place of the

SQL_TYPE_DATE, SQL_TYPE_TIME, and SQL_TYPE_TIMESTAMP defines.

v Unicode fields, which are the data types with a CCSID of 1200 (UTF-16) or 13488 (UCS-2), report to

ODBC 2.x applications as SQL_CHAR, SQL_VARCHAR, and SQL_LONGVARCHAR instead of

SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR.

v LOBs (BLOB, CLOB, and DBCLOB) up to 2 GB in size are supported with V5R2 (or later) iSeries

servers. Earlier releases support up to 15 MB. For more information on LOBs and datalinks see “Large

objects (LOBs) considerations.”

v Increased decimal precision for its data types is available on V5R3 (and later) iSeries servers. Note that

to retrieve decimal fields with large precision successfully you must bind the column as

SQL_C_CHAR. The structure that stores SQL_C_NUMERIC data can hold 38 digits.

Large objects (LOBs) considerations:

Use LOBs with iSeries Access for Windows ODBC to store and access large text documents.

Programming 499

Large objects (LOBs):

Large object (LOB) data types allow applications to store large data objects as strings. On V5R1,

and earlier servers, the ODBC driver could access LOB fields that were 15 MB or less in size. On

V5R2 and later servers the ODBC driver can access 2 GB LOBs.

 When uploading large LOB data fields to the server, it is recommended that you use the

SQLParamData and SQLPutData APIs. The SQLPutData API sends the LOB data to the server as

it is received and reduces the amount of memory needed on the client.

 LOB data types:

BLOB Binary large data objects

CLOB Single-byte large character data objects

DBCLOB

Double-byte character large data objects

To view an example that uses the BLOB data type:

See “Example: Use the BLOB data type”

For more information on LOBs:

See the Using Large Objects topic under the Using the Object-Relational Capabilities

heading in the SQL Programming Concepts Information Center topic.

DataLinks:

DataLink data types allow you to store many types of data in a database. Data is stored as a

uniform resource locator (URL). The URL points to an object, which might be an image file,

sound file, text file, and so forth.

For more information on DataLinks:

See the Using DataLinks topic under the Processing special data types heading in the

SQL Programming Concepts Information Center topic.

Example: Use the BLOB data type:

The following is a partial C program that uses the BLOB data type:

BOOL params = TRUE; // TRUE if you want to use parameter markers

SQLINTEGER char_len = 10, blob_len = 400;

SQLCHAR szCol1[21], szCol2[400], szRecCol1[21], szRecCol2[400];

SQLINTEGER cbCol1, cbCol2;

SQLCHAR stmt[2048];

// Create a table with a CHAR field and a BLOB field

rc = SQLExecDirect(hstmt, "CREATE TABLE TABBLOB(COL1 CHAR(10), COL2 BLOB(400))", SQL_NTS);

strcpy(szCol1, "1234567890");

if (!params) // no parameter markers

{

 strcpy(szCol2, "414243444546"); // 0x41 = ’A’, 0x42 = ’B’, 0x43 = ’C’, ...

 wsprintf(stmt, "INSERT INTO TABBLOB VALUES(’%s’, BLOB(x’%s’))", szCol1, szCol2);

}

else

{

 strcpy(szCol2, "ABCDEF"); // ’A’ = 0x41, ’B’ = 0x42, ’C’ = 0x43, ...

 strcpy(stmt, "INSERT INTO TABBLOB VALUES(?,?)");

}

// Prepare the ’Insert’ statement

rc = SQLPrepare(hstmt, stmt, SQL_NTS);

// Bind the parameter markers

if (params) // using parameter markers

{

 cbCol1 = char_len;

500 IBM Systems - iSeries: iSeries Access for Windows: Programming

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

 char_len, 0, szCol1, char_len + 1, &cbCol1);

 cbCol2 = 6;

 rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_LONGVARBINARY,

 blob_len, 0, szCol2, blob_len, &cbCol2);

}

// Execute the ’Insert’ statement to put a row of data into the table

rc = SQLExecute(hstmt);

// Prepare and Execute a ’Select’ statement

rc = SQLExecDirect(hstmt, "SELECT * FROM TABBLOB", SQL_NTS);

// Bind the columns

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, szRecCol1, char_len + 1, &cbCol1);

rc = SQLBindCol(hstmt, 2, SQL_C_BINARY, szRecCol2, blob_len, &cbCol2);

// Fetch the first row

rc = SQLFetch(hstmt);

szRecCol2[cbCol2] = ’\0’;

// At this point szRecCol1 should contain the data "1234567890"

// szRecCol2 should contain the data 0x414243444546 or "ABCDEF"

Connection and statement attributes:

The ODBC specification defines several connection and statement attributes.

 This ODBC specification is extended with several iSeries Access for Windows customized attributes, that

are described in the following 2 tables.

 Table 15. Customized connection attributes

Attribute Get/Set Description

1204 both An unsigned value that controls the cursor commit behavior and cursor rollback

behavior. Possible values:

v 0 - SQL_CB_DELETE is returned for SQLGetInfo’s

SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR

options.

v 1 - (default) SQL_CB_PRESERVE is returned for SQLGetInfo’s SQL

_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR

options.

2100 both Can be used as an alternative to using the DFTPKGLIB connection string keyword

This is a character string that specifies the default package library to be used. This

should be set prior to preparing a statement on this connection.

2101 both This is a character string that specifies the package name to be used. This should be

set prior to preparing a statement on this connection.

2103 get Returns an unsigned integer value which is the server CCSID value (job CCSID) that

the ODBC connection is dealing with. By default, SQL statements will be sent to the

host in this CCSID

2104 both Can be used as an alternative to the Divide by zero option of the DEBUG connection

string keyword. This is an unsigned value indicating whether or not dividing a value

by zero should return an error for data in a particular cell in the result set. Possible

values:

v 0 - (default) A cell in a result set that contains a value calculated by dividing by

zero will be returned as an error.

v 1 - A cell in a result set that contains a value calculated by dividing by zero will be

returned as a NULL value. No error will be returned.

Programming 501

Table 15. Customized connection attributes (continued)

Attribute Get/Set Description

2106 both An alternative to using the COMPRESSION connection string keyword. This is an

unsigned integer value. Possible values:

v 0 = compression off

v 1 = compression on

2109 set An unsigned value specifying whether or not to trim trailing spaces from data

returned from CHAR fields. This will make CHAR fields appear like VARCHAR fields

as VARCHAR fields are always trimmed of trailing spaces. Possible values:

v 0 - (default) - don’t trim CHAR fields

v 1 - trim CHAR fields

2110 get Returns a character string containing information about the prestart job that the ODBC

connection is using. The information is returned as a string with the following format:

v 10 character job name,

v 10 character user,

v 6 character job

2116 set A pointer to a buffer containing the IBM Enterprise Workload Manager (eWLM)

correlator. Specifying this attribute allows you to tie your application with the eWLM

support (Enterprise Workload Manager).

2140 both An unsigned integer value that specifies the amount of time (in seconds) that a

distributed transaction waits before timing out. A value of 0 indicates to wait

indefinitely for the transaction to finish. Setting this overrides any value that was set

for the XATIMEOUT connection string keyword. The default value for this attribute is

0.

2141 both An unsigned integer value that specifies the maximum amount of time (in seconds)

that a distributed transaction waits on a lock request before timing out. A value of 0

indicates to use the default system settings. Setting this overrides any value that was

set for the XALOCKTIMEOUT connection string keyword. The default value for this

attribute is 0.

2142 both An integer value that specifies the RMID to use for XA transaction work. This can be

set at anytime. The RMID that is set must be unique for the process. If this value is set

to 0 it indicates that any current XA transaction work has been completed for this

connection. The default value for this attribute is 0.

2143 get A character string that identifies the iSeries Access driver to call into for XA calls. This

string is only valid if the 2142 connection attribute has been set. This string is set after

the connection is established. The default value for this attribute is an empty-string.

 Table 16. Customized statement attributes

Attribute Get/Set Description

1014 get Returns an unsigned integer value indicating how many result sets are available to be

fetched. This is useful when a stored procedure has been called and an application

wants to know how many result sets the stored procedure generated.

2106 both Allows compression to be turned on an off at the statement level. Possible values are:

v 0 = compression off,

v 1 = compression on

2114 get Returns an unsigned integer value that indicates the offset into a SQL statement at

which a SQL syntax error has occurred. This will be set when SQLExecute or

SQLExecDirect returns an SQL_ERROR return code.

Connection pooling:

502 IBM Systems - iSeries: iSeries Access for Windows: Programming

|||
|
|

Connection pooling refers to the behavior where ODBC connections are left open after the application has

requested to disconnect them. Connections that are in the pool can be reused by the same application

avoiding the time consuming operation of creating a brand new connection.

 To get an application to use connection pooling support with the iSeries Access ODBC driver two basic

steps must be taken:

1. Connection pooling support has to be enabled for the driver. To enable this support, open ODBC

Administrator, click on the Connection Pooling tab, double-click on iSeries Access ODBC Driver

(32-bit), and switch the checkbox to indicate to pool connections to this driver. There is also a spot on

the window to fill in the amount of time that unused connections remain in the pool.

Note: Beginning with the V5R3 iSeries Access product, connection pooling support is automatically

enabled for the driver. No additional steps are needed unless you want to override the default

time (60 seconds) that unused connections remain in the pool.

2. Connection pooling support has to be enabled by the application. An application does this by setting

the SQL_ATTR_CONNECTION_POOLING environment attribute as part of the connection process.

For more details on connection pooling support, search for ODBC at Microsoft’s web site.

SQLPrepare and SQLNativeSQL escape sequences and scalar functions:

ODBC has escape sequences and scalar functions that can be used to avoiding having to code directly to

the syntax of a particular DBMS’s version of SQL.

 See Microsoft’s ODBC specification on how to use escape sequences. The following ODBC escape

sequences are supported by the iSeries Access for Windows ODBC driver.

Escape sequences:

v d

v t

v ts

v escape

v oj

v call

v ?=call – This escape sequence should be used when trying to take advantage of the DB2 UDB for

iSeries support for return values from a stored procedure. The parameter marker will need to be bound

as an output parameter using the SQLBindParameter API. Note, at this time stored procedures can

only return values of type integer.

v fn – This escape sequence is used when using the scalar functions below. The syntax is { fn

scalar_function }.

Scalar functions mapped by the ODBC driver to the DB2 UDB for iSeries SQL

syntax:

v length

v log

v database (Mapped on pre-V5R3 servers only)

v insert (Mapped on pre-V5R3 servers only)

v right (Mapped on pre-V5R3 servers only)

Note: All other scalar functions are supported natively in the DB2 UDB for iSeries SQL syntax, so no

mapping is required.

Programming 503

http://www.microsoft.com/

Distributed transaction support:

Distributed transactions allow an application to coordinate units of work across multiple databases.

 There are two different interfaces into the ODBC driver that allow one to complete a distributed

transaction. The two interfaces are MTS (Microsoft Transaction Server) and XA API support. Both of these

interfaces are affected by the setting of the XALOCKTIMEOUT and XATXNTIMEOUT connection string

settings.

MTS

For more information on MTS refer to Using Microsoft Transaction Server (MTS).

XA API support

Refer to the 2140, 2141, 2142, and 2143 connection attributes on the Connection and statement attributes

page for a description of some of the relevant options for getting the XA support to work. Note, that the

2141 and 2142 connection attributes do the same thing as the XALOCKTIMEOUT and XATXNTIMEOUT

connection string settings.

Note:

v Multiple iSeries connections can be included in the distributed transaction only on V5R3 or later

servers.

v xa_open is only called by the application for recovery purposes. When connecting through the

ODBC API SQLConnect or SQLDriverConnect the xa_open is done automatically if the RMID

was set via the 2142 connection attribute.

v The connection attribute SQL_ATTR_AUTOCOMMIT must be set as SQL_AUTOCOMMIT_ON.

v If an application wishes to start an XA transaction and then do some non-XA transaction work,

one must set the RMID to 0 to indicate to the driver that the XA work is completed.

v To do XA recovery an application calls xa_open with a string of:

SYSTEM=mySystem;UID=myUserID;PWD=″myPassword″;DATABASE=myDatabase; – replacing

mySystem with your system name, myUserID with your user ID on that system, and

myPassword with that user ID’s password. Note that the string must be specified exactly as

shown. Alternatively you can specify just SYSTEM=mySystem;.

Cursor Behavior Notes:

Cursor behaviors can affect how data is fetched when working with the iSeries Access ODBC driver.

 Cursor types can be set via SQLSetStmtAttr with the SQL_ATTR_CURSOR_TYPE option.

Cursor types:

v SQL_CURSOR_FORWARD_ONLY - All catalog and stored procedure result sets use this type of cursor.

When a catalog or stored procedure result set has been generated the cursor type will be automatically

changed to this.

v SQL_CURSOR_KEYSET_DRIVEN - mapped to SQL_CURSOR_STATIC if the host supports it,

otherwise it is mapped to SQL_CURSOR_DYNAMIC

v SQL_CURSOR_DYNAMIC - supported.

v SQL_CURSOR_STATIC - A static cursor is supported to V5R1 and later iSeries servers. This cursor type

is mapped to SQL_CURSOR_DYNAMIC for earlier iSeries versions.

Note: For more information on cursor types and stored procedure result sets see Stored procedure result

sets.

504 IBM Systems - iSeries: iSeries Access for Windows: Programming

The following factors can affect the concurrency of the cursor:

v If the SQL statement contains the ″FOR UPDATE″ clause the value for SQL_ATTR_CONCURRENCY

will be set to SQL_CONCUR_LOCK.

v If the CONCURRENCY keyword / DSN setting is set to 1 (checked) then if the SQL statement does

not have ″FOR FETCH ONLY″ clause in it the ODBC driver will lock records from the result set.

Rowset size:

The ODBC driver uses the value of SQL_ROWSET_SIZE when dealing with SQLExtendedFetch. The

driver uses the value of SQL_ATTR_ROW_ARRAY_SIZE when dealing with SQLFetch and

SQLFetchScroll.

When there are LOBs in a result set there is a chance that locators may be used by the driver. Locators

are internal handles to LOB fields. Locators are used when the setting for the MAXFIELDLEN connection

option has a smaller value than the size of a LOB column in the result set. Locators can improve

performance in some cases as the driver only gets the data the application asks for. The downside of

locators is that there is some extra communication needed with the server. When locators are not used

the driver will download more LOB data even if it is not used. It is strongly encouraged that the

COMPRESSION connection option be enabled if locators are not being used. See Connection String

keywords descriptions for more details on the MAXFIELDLEN keyword

SQLGetData can only be used for accessing data from single row fetches. Calling SQLGetData with

multiple-row fetches is not supported.

Result set row counts:

There are several options that your application can use to determine the row count before fetching data:

v You can set the cursor type to SQL_CURSOR_STATIC.

v If your application uses ADO, you can use client-side cursors.

v Your application can use the COUNT() function by calling SELECT COUNT(*) FROM MYTABLE prior

to running the actual query.

v You can run the same query twice. The first time the query is run, fetch all the data to count the

number of rows.

Extended dynamic disabled error:

The Extended dynamic support disabled message is seen when a SQL package is unusable for some reason.

 On older servers, this message can be seen when a user connects with a different default library than the

user who created the package. To workaround this message you can either:

1. Delete the SQL package on the system so that when you run your application the package will be

created with your default package settings

2. Change the SQL default library connection string setting to match the setting that is saved with the

SQL package

3. Switch theReturn code for unusable package ODBC DSN setting to Ignore or Warning. Alternatively, you

can get this same behavior by setting the PKG connection string setting.

4. Disable the XDYNAMIC connection string setting.

Restrictions of the 64–bit iSeries Access for Windows ODBC Driver:

MTS is not supported on the 64-bit iSeries Access for Windows ODBC driver.

 For more information on MTS see Use Microsoft Transaction Server (MTS) .

Programming 505

SQLTables Description:

The following is a discussion about SQLTables description.

 v The CatalogName parameter is ignored, with or without wildcards, since the catalog name is always

the relational database name. The only time the catalog name value matters is when it must be an

empty string to generate a list of libraries for the server.

You must specify table names for the TableName parameter exactly as you would when creating a SQL

statement. In other words, you must capitalize the table name unless you created the table name with

double quotes around the table name. If you created the table with double quotes around the table

name, you need to specify the TableName parameter as it appears in quotes, matching the case of the

letters.

v The ″Library view″ option on the Catalog tab of the DSN setup GUI only affects this API when you

choose the combination that attempts to retrieve the list of libraries for that server. It does not allow

you to generate a result set based on a search through multiple libraries for specific tables.

v The ″Object description type″ option on the Catalog tab of the DSN setup GUI affects the output you

get in the ″RESULTS″ column of the result set when getting a list of tables.

v If you have a string with mixed ’_’ and ’_’ then if SQL_ATTR_METADATA_ID is SQL_FALSE then

we’ll treat the first ’_’ as an actual ’_’, but the ’_’ will be treated as the wildcard. If

SQL_ATTR_METADATA_ID is SQL_TRUE then the first ’_’ will be treated like an actual ’_’ and the

’_’ will also be treated like an actual ’_’. The driver will internally convert the second ’_’ to a ’_’.

v In order to use the wildcard character underscore (_) as a literal precede it with a backlash (\). For

example, to search for only MY_TABLE (not MYATABLE, MYBTABLE, etc...) you need to specify the

search string as MY_TABLE.

Specifiying ’\%’ in a name is invalid, as the iSeries server does not allow an actual ’%’ in a library or

table name.

When queried for the list of libraries, the driver returns the TABLE_CAT and REMARKS fields as

meaningful data.

The ODBC specification says to return everything, except the TABLE_SCHEM as nulls.

Handle long-running queries:

There are at least two ways you can handle long running queries through ODBC.

 1. An application can set the SQL_ATTR_QUERY_TIMEOUT connection attribute to specify the

maximum amount of time a query can run. Note, the query will not start if the SQL Optimizer

determines that the amount of time needed to process the query will exceed the

SQL_ATTR_QUERY_TIMEOUT value. The default value for SQL_ATTR_QUERY_TIMEOUT is 0

which indicates that the query will run until completion.

2. An application can call the SQLCancel API. To do this an application needs to be multi-threaded.

While the long running query is running on one thread, another thread calls SQLCancel using the

same statement handle.

Commitment control considerations:

Run ODBC autocommit support to different commit levels.

 Beginning with V5R3, the commitment control model for the iSeries server, allows you to run ODBC

autocommit support to use other commit levels than just *NONE. Prior to V5R3, autocommit support

always runs under the *NONE commit level and *NONE will continue to be the default.

By specifying something other than *NONE, you can run autocommit under a different commit level. Be

aware that an autocommit commitment levels other than *NONE require that you make additional other

changes and that it changes the behavior of some functions, like eliminating the ability to update

non-journaled files. For more

506 IBM Systems - iSeries: iSeries Access for Windows: Programming

There is a SQLDriverConnect keyword called TRUEAUTOCOMMIT which allows an application to

control whether or not it run autocommit under the *NONE commit level or the

SQL_ATTR_TXN_ISOLATION setting. If TRUEAUTOCOMMIT is set to 1 in the SQLDriverConnect

connection string then the application will run autocommit using the SQL_ATTR_TXN_ISOLATION

setting. If TRUEAUTOCOMMIT is not set, the default value of 0 is used. The default behavior will run

autocommit using the *NONE commit level.

iSeries Access for Windows ODBC performance

See any of the following ODBC performance topics.

Performance-tuning iSeries Access for Windows ODBC:

A key consideration for ODBC application developers is achieving maximum performance from

client/server applications.

 The following topics explore client/server performance issues in general, and address the performance

implications of ODBC with popular query tools and development environments:

Introduction to server performance:

The performance characteristics of any computing environment may be described in the following terms.

 Response time

The amount of time that is required for a request to be processed

Utilization

The percentage of resources that are used when processing requests

Throughput

The volume of requests (per unit of time) that are being processed

Capacity

The maximum amount of throughput that is possible

Typically, response time is the critical performance issue for users of a server. Utilization frequently is

important to the administrators of a server. Maximum throughput is indicative of the performance

bottleneck, and may not be a concern. While all of these characteristics are interrelated, the following

summarizes server performance:

v Every computing server has a bottleneck that governs performance: throughput.

v When server utilization increases, response time degrades.

In many servers, capacity is considerable, and is not an issue with users. In others, it is the primary

performance concern. Response time is critical. One of the most important questions for administrators is:

How much can the server be degraded (by adding users, increasing utilization) before users begin objecting?

Introduction to client/server performance:

The performance characteristics of a client/server environment are different than those of centralized

environments.

 This is because client/server applications are split between the client and the server. The client and server

communicate by sending and receiving requests and messages. This model is far different than that for a

centralized environment. In that environment, a program calls the CPU, and the memory and disk drives

are fully dedicated.

Instead, when a client requests processing time and data from the server, it transmits the request on the

network. The request travels to the server and waits in a queue until the server is able to process it. The

performance characteristics of this type of architecture degrade exponentially as the number of requests

Programming 507

increase. In other words, response times increase gradually as more requests are made, but then increase

dramatically at some point, which is known as the ″knee of the curve.″ This concept is illustrated by the

following graph:

It is important to determine this point at which performance begins to degrade significantly. The point

can vary with every client/server installation.

The following is a suggested guideline for client/server operations: Communicate with the server only when

necessary, and in as few data transmissions as possible. Opening a file and reading one record at a time often

results in problems for client-server projects and tools.

The performance architecture of the iSeries Access for Windows ODBC driver:

For the iSeries Access for Windows ODBC driver, all of the internal data flows between the client and the

server are chained together, and transmit only when needed.

 This reduces server utilization because communications-layer resources are allocated only once. Response

times improve correspondingly.

These types of enhancements are transparent to the user. However, there are some enhancements which

are exposed on the iSeries Access for Windows ODBC Setup dialog. Look at the online help on the

Peformance tab of the setup GUI or refer to the Performance options on the Connection String keywords

descriptions for more information. A few of these performance options are also discussed in more detail

at the following links:

Select a stringent level of commitment control:

Do not use commitment control unnecessarily. The overhead that is associated with locking not only

increases utilization, but also reduces concurrency. However, if your application is not read-only,

commitment control may be required.

 A common alternative is to use optimistic locking. Optimistic locking involves issuing explicit UPDATEs

by using a WHERE clause that uniquely determines a particular record. Optimistic locking ensures that

the record does not change after it is retrieved.

508 IBM Systems - iSeries: iSeries Access for Windows: Programming

Many third-party tools use this approach, which is why they often require a unique index to be defined

for updatable tables. This allows the record update to be made by fully qualifying the entire record

contents. Consider the following example:

 UPDATE table SET C1=new_val1, C2=new_val2, C2=new_val3

 WHERE C1=old_val1 AND C2=old_val2 AND C3=old_val3

This statement would guarantee that the desired row is accurately updated, but only if the table

contained only three columns, and each row was unique. A better-performing alternative would be:

 UPDATE table SET C1=new_val1, C2=new_val2, C3=CURRENT_TIMESTAMP

 WHERE C3=old_timestamp

This only works, however, if the table has a timestamp column that holds information on when the

record was last updated. Set the new value for this column to CURRENT_TIMESTAMP to guarantee row

uniqueness.

Note: This technique does not work with any object model that uses automation data types (for example,

Visual Basic, Delphi, scripting languages). The variant DATE data type has a timestamp precision

of approximately one millisecond. The iSeries server timestamp is either truncated or rounded off,

and the WHERE clause fails.

If commitment control is required, use the lowest level of record locking possible. For example, use

*CHG: over *CS when possible, and never use *ALL when *CS provides what you require.

 Related information

 Database Commitment control

 DB2 UDB for iSeries SQL Reference

Fine-tune record-blocking:

Record-blocking is a technique that significantly reduces the number of network flows.

 It does this by returning a block of rows from the server on the first FETCH request for a cursor.

Subsequent FETCH requests are retrieved from the local block of rows, rather then going to the server

each time. This technique dramatically increases performance when it is properly used. The default

settings should be sufficient for most situations.

A change to one of the record-blocking parameters can make a significant difference when the

performance of your environment is approaching the exponential threshold that is illustrated in

“Introduction to client/server performance” on page 507. For example, assume that an environment has n

decision-support clients doing some amount of work with large queries, typically returning 1 MB of data.

At the opposite extreme is a scenario where users consistently ask for large amounts of data, but typically

never examine more than a few rows. The overhead of returning 32KB of rows when only a few are

needed could degrade performance. Setting the BLOCKSIZE or BlockSizeKB connection string keyword to

a lower value, setting the BLOCKFETCH connection string keyword to 0 (Use ODBC blocking) or

disabling record blocking altogether, might actually increase performance.

It is important to note that, as always in client/server, performance results may vary. You might make

changes to these parameters and not realize any difference. This may indicate that your performance

bottleneck is not the client request queue at the server. This parameter gives you one more tool to use

when your users start objecting.

 Related reference

 “Connection string keywords - Performance properties” on page 485
Use these iSeries Access ODBC driver connection string keywords to change Performance properties

of the ODBC connection.

Programming 509

Use Extended Dynamic SQL:

Use the ODBC call level interface to dynamically run your SQL statements.

 Traditional SQL interfaces used an embedded SQL approach. SQL statements were placed directly in an

application’s source code, along with high-level language statements written in C, COBOL, RPG, and

other programming languages. The source code then was precompiled, which translated the SQL

statements into code that the subsequent compile step could process. This method sometimes was

referred to as static SQL. One performance advantage to this approach is that SQL statements were

optimized in advance, rather than at runtime while the user was waiting.

ODBC, however, is a call level interface (CLI) that uses a different approach. Using a CLI, SQL

statements are passed to the database management system (DBMS) within a parameter of a runtime API.

Because the text of the SQL statement is never known until runtime, the optimization step must be

performed each time an SQL statement is run. This approach commonly is referred to as dynamic SQL.

The use of this feature (which is enabled by default) not only can improve response times, but can

improve dramatically server utilization. This is because optimizing SQL queries can be costly, and

performing this step only once always is advantageous. This works well with a unique feature of DB2

UDB for iSeries. Unlike other DBMSs, it ensures that statements which are stored in packages are kept

up-to-date in terms of optimization, without administrator intervention. Even if a statement was prepared

for the first time weeks or months ago, DB2 UDB for iSeries automatically regenerates the access plan

when it determines that sufficient database changes require reoptimization.

For more information on packages and the types of SQL statements stored in them see SQL packages.

Performance considerations of common end-user tools:

Having an ODBC driver that is optimally tuned is only part of the performance equation. The other part

is the tools that are used; whether they are used simply to query the data, or to build complex programs.

 Some of the more common tools include:

v Crystal Services Crystal Reports Professional

v Cognos Impromptu

v Gupta SQL Windows

v IBM Visualizer for Windows

v Lotus® Approach®

v Lotus Notes

v Notes Pump

v Microsoft Access

v Microsoft Internet Information Server

v Microsoft SQL Server

v Microsoft Visual Basic

v Powersoft PowerBuilder

There are many more tools available than are on this list, and every tool in the marketplace has its own

strengths, weaknesses, and performance characteristics. But most have one thing in common: support for

ODBC database servers. However, because ODBC serves as a common denominator for various database

management systems, and because there are subtle differences from one ODBC driver to the next, many

tool providers write to the more common ODBC and SQL interfaces. By doing this, they avoid taking

advantage of a unique characteristic of a particular database server. This may ease programming efforts,

but it often degrades overall performance.

510 IBM Systems - iSeries: iSeries Access for Windows: Programming

Examples of ODBC performance-degrading tools:

“Examples: Common tool behaviors that degrade ODBC performance”

Examples: Common tool behaviors that degrade ODBC performance:

The following examples demonstrate performance problems that are associated with writing SQL and

ODBC calls that do NOT take advantage of a unique feature of a particular ODBC driver or the server

database management system.

Example: Query tool A:

This example illustrates using ODBC bound columns to retrieve information faster.

 Query Tool A makes the following ODBC calls to process SELECT statements:

 SQLExecDirect("SELECT * FROM table_name")

 WHILE there_are_rows_to_fetch DO

 SQLFetch()

 FOR every_column DO

 SQLGetData(COLn)

 END FOR

 ...process the data

 END WHILE

This tool does not make use of ODBC bound columns, which can help performance. A faster way to

process this is as follows:

 SQLExecDirect("SELECT * FROM table_name")

 FOR every_column DO

 SQLBindColumn(COLn)

 END FOR

 WHILE there_are_rows_to_fetch DO

 SQLFetch()

 ...process the data

 END WHILE

If a table contained one column, there would be little difference between the two approaches. But for a

table with a 100 columns, you end up with 100 times as many ODBC calls in the first example, for every

row fetched. You also can optimize the second scenario because the target data types specified by the tool

will not change from one FETCH to the next, like they could change with each SQLGetData call.

Example: Query tool B:

This example illustrates using one allocation statement for the entire call.

 Query tool B allows you to update a spreadsheet of rows and then send the updates to the database. It

makes the following ODBC calls:

 FOR every_row_updated DO

 SQLAllocHandle(SQL_HANDLE_STMT)

 SQLExecDirect("UPDATE...SET COLn=’literal’...WHERE COLn=’oldval’...")

 SQLFreeHandle(SQL_HANDLE_STMT)

 END LOOP

The first thing to note is that the tool performs a statement allocation-and-drop for every row. Only one

allocate statement is needed. This change would save the overhead of creating and destroying a

statement handle for every operation. Another performance concern is the use of SQL with literals instead

Programming 511

of with parameter markers. The SQLExecDirect() call causes an SQLPrepare and SQLExecute every time.

A faster way to perform this operation would be as follows:

 SQLAllocHandle(SQL_HANDLE_STMT)

 SQLPrepare("UPDATE...SET COL1=?...WHERE COL1=?...")

 SQLBindParameter(new_column_buffers)

 SQLBindParameter(old_column_buffers)

 FOR every_row_updated DO

 ...move each rows data into the SQLBindParameter buffers

 SQLExecute()

 SQLFreeHandle(SQL_HANDLE_STMT)

 END LOOP

These sets of ODBC calls will outperform the original set by a large factor when you are using the iSeries

Access for Windows ODBC driver. The server CPU utilization will decrease to 10 percent of what it was,

which pushes the scaling threshold out a lot farther.

Example: Query tool C:

In this example, the complex decision support-type queries ended up making the query run longer.

 Query tool C allows complex decision support-type queries to be made by defining complex query

criteria with a point-and-click interface. You might end up with SQL that looks like this for a query:

 SELECT A.COL1, B.COL2, C.COL3 , etc...

 FROM A, B, C, etc...

 WHERE many complex inner and outer joins are specified

That you did not have to write this complex query is advantageous, but beware that your tool may not

actually process this statement. For example, one tool might pass this statement directly to the ODBC

driver, while another splits up the query into many individual queries, and processes the results at the

client, like this:

 SQLExecDirect("SELECT * FROM A")

 SQLFetch() all rows from A

 SQLExecDirect("SELECT * FROM B")

 SQLFetch() all rows from B

 Process the first join at the client

 SQLExecDirect("SELECT * FROM C")

 SQLFetch() all rows from C

 Process the next join at the client

 .

 .

 .

 And so on...

This approach can lead to excessive amounts of data being passed to the client, which will adversely

affect performance. In one real-world example, a programmer thought that a 10-way inner/outer join was

being passed to ODBC, with four rows being returned. What actually was passed, however, was 10

simple SELECT statements and all the FETCHes associated with them. The net result of four rows was

achieved only after 81,000 ODBC calls were made by the tool. The programmer initially thought that

ODBC was responsible for the slow performance, until the ODBC trace was revealed.

SQL performance:

Good application design includes the efficient use of machine resources. To run in a manner that is

acceptable to the end user, an application program must be efficient in operation, and must run with

adequate response time.

512 IBM Systems - iSeries: iSeries Access for Windows: Programming

SQL performance general considerations:

Performance of SQL in application programs is important to ALL server users, because inefficient usage

of SQL can waste server resources.

 The primary goal in using SQL is to obtain the correct results for your database request, and in a timely

manner.

Before you start designing for performance, review the following considerations:

When to consider performance:

v Database with over 10,000 rows - Performance impact: noticeable

v Database with over 100,000 rows - Performance impact: concern

v When repetitively using complex queries

v When using multiple work stations with high transaction rates

What resource to optimize:

v I/O usage

v CPU usage

v Effective usage of indexes

v OPEN/CLOSE performance

v Concurrency (COMMIT)

How to design for performance:

v Database design:

– Table structure

– Indexes

– Table data management

– Journal management
v Application design:

– Structure of programs involved
v Program design:

– Coding practices

– Performance monitoring

The SQL Reference book contains additional information. You can view an HTML online version of the

book, or print a PDF version, from the DB2 Universal Database for iSeries SQL Reference iSeries

Information Center topic.

Database design:

Use the following topics to determine what tables you require in your database and to understand the

relationship between those tables.

Normalization:

Several available design methods allow you to design technically correct databases, and effective

relational database structure. Some of these methods are based on a design approach called

normalization. Normalization refers to the reduction or elimination of storing redundant data.

 The primary objective of normalization is to avoid problems that are associated with updating redundant

data.

Programming 513

However, this design approach of normalization (for example, 3NF–3rd Normal Form), may result in

large numbers of tables. If there are numerous table join operations, SQL performance may be reduced.

Consider overall SQL performance when you design databases. Balance® the amount of redundant data

with the number of tables that are not fully normalized.

The following graphic illustrates that the proportion of redundant data to the number of tables affects

performance:

Minimize the use of code tables when little is gained from their use. For example, an employee table

contains a JOBCODE column, with data values 054, 057, and so forth. This table must be joined with

another table to translate the codes to Programmer, Engineer, and so on. The cost of this join could be

quite high compared to the savings in storage and potential update errors resulting from redundant data.

For example:

514 IBM Systems - iSeries: iSeries Access for Windows: Programming

Figure 2. Normalized data form:

Programming 515

The set level (or mass operation) nature of SQL significantly lessens the danger of a certain redundant

data form. For example, the ability to update a set of rows with a single SQL statement greatly reduces

this risk. In the following example, the job title Engineer must be changed to Technician for all rows that

match this condition.

Use SQL to update JOBTITLE:

 UPDATE EMPLOYEE

 SET JOBTITLE = "Technician"

 WHERE JOBTITLE = "Engineer"

Table size:

The size of the tables that your application program accesses has a significant impact on the performance

of the application program.

 Consider the following:

Large row length:

For sequentially accessed tables that have a large row length because of many columns (100 or

more), you may improve performance by dividing the tables into several smaller ones, or by

creating a view. This assumes that your application is not accessing all of the columns. The main

reason for the better performance is that I/O may be reduced because you will get more rows per

page. Splitting the table will affect applications that access all of the columns because they will

incur the overhead of joining the table back together again. You must decide where to split the

table based on the nature of the application and frequency of access to various columns.

Large number of rows:

If a table has a large number of rows, construct your SQL statements so that the “Optimizer” on

page 518 uses an index to access the table. The use of indexes is very important for achieving the

best possible performance.

Use indexes:

The use of indexes can improve significantly the performance of your applications.

Figure 3. Redundant data form:

516 IBM Systems - iSeries: iSeries Access for Windows: Programming

This is because the “Optimizer” on page 518 uses them for performance optimization. Indexes are created

in five different ways:

v CREATE INDEX (in SQL)

v CRTPF, with key

v CRTLF, with key

v CRTLF, as join logical file

v CRTLF, with select/omit specifications, without a key, and without dynamic selection (DYNSLT).

Indexes are used to enable row selection by means of index-versus-table scanning, which is usually

slower. Table scanning sequentially processes all rows in a table. If a permanent index is available,

building a temporary index can be avoided. Indexes are required for:

v Join tables

v ORDER BY

v GROUP BY

Indexes will be created, if no permanent index exists.

Manage the number of indexes to minimize the extra server cost of maintaining the indexes during

update operations. Below are general rules for particular types of tables:

Primarily read-only tables:

Create indexes over columns as needed. Consider creating an index only if a table is greater than

approximately 1,000 rows or is going to be used with ORDER BY, GROUP BY, or join processing.

Index maintenance could be costlier than occasionally scanning the entire table.

Primarily read-only table, with low update rate:

Create indexes over columns as needed. Avoid building indexes over columns that are updated

frequently. INSERT, UPDATE, and DELETE will cause maintenance to all indexes related to the

table.

High update-rate tables:

Avoid creating many indexes. An example of a table that has a high update rate is a logging or a

history table.

Match attributes of join fields:

Columns in tables that are joined should have identical attributes: the same column length, same data

type (character, numeric), and so forth. Nonidentical attributes result in temporary indexes being built,

even though indexes over corresponding columns may exist.

 In the following example, join will build a temporary index and ignore an existing one:

 SELECT EMPNO, LASTNAME, DEPTNAME

 FROM TEMPL, TDEPT

 WHERE TEMPL.DEPTNO = TDEPT.DEPTNO

Programming 517

Optimizer:

Optimizer is an important module of the i5/OS Query component because it makes the key decisions for

good database performance. Its main objective is to find the most efficient access path to the data.

 Query optimization is a trade-off between the time spent to select a query implementation and the time

spent to run it. Query optimization must handle the following distinct user needs:

v Quick interactive response

v Efficient use of total-machine resources

In deciding how to access data, Optimizer does the following:

v Determines possible implementations

v Picks the optimal implementation for the i5/OS Query component to execute

Cost estimation:

At runtime, the Optimizer chooses an optimal access method for the query by calculating an

implementation cost based on the current state of the database.

 The Optimizer models the access cost of each of the following:

v Reading rows directly from the table (dataspace scan processing)

v Reading rows through an access path (using either key selection or key positioning)

v Creating an access path directly from the dataspace

v Creating an access path from an existing access path (index-from-index)

v Using the query sort routine (if conditions are satisfied)

The cost of a particular method is the sum of:

v The start-up cost

v The cost associated with the given optimization mode. The OPTIMIZE FOR n ROWS clause indicates

to the query Optimizer the optimization goal to be achieved. The Optimizer can optimize SQL queries

with one of two goals:

1. Minimize the time required to retrieve the first buffer of rows from the table. This goal biases the

optimization towards not creating an index.

Note: This is the default if you do not use OPTIMIZE FOR n ROWS.

Either a data scan or an existing index is preferred. This mode can be specified by:

– The OPTIMIZE FOR n ROWS allowing the users to specify the number of rows they expect to

retrieve from the query.

The Optimizer using this value to determine the percentage of rows that will be returned and

optimizes accordingly. A small value instructs the Optimizer to minimize the time required to

retrieve the first n rows.
2. Minimize the time to process the whole query assuming that all selected rows are returned to the

application. This does not bias the Optimizer to any particular access method. Specify this mode by

using OPTIMIZE FOR n ROWS, which allows the users to specify the number of rows they expect

to retrieve from the query.

The Optimizer uses this value to determine the percentage of rows that will be returned and

optimizes accordingly. A value greater than or equal to the expected number of resulting rows

instructs the Optimizer to minimize the time required to run the entire query.
v The cost of any access path creations.

v The cost of the expected number of page faults to read the rows and the cost of processing the

expected number of rows.

518 IBM Systems - iSeries: iSeries Access for Windows: Programming

Page faults and number of rows processed may be predicted by statistics the Optimizer obtains from

the database objects, including:

– Table size

– Row size

– Index size

– Key size

A weighted measure of the expected number of rows to process. This is based on what the relational

operators in the row selection predicates (default filter factors) are likely to retrieve:

– 10% for equal

– 33% for less-than, greater-than, less-than-equal-to, or greater-than-equal-to

– 90% for not equal

– 25% for BETWEEN range

– 10% for each IN list value

Key range estimate is a method that the Optimizer uses to gain more accurate estimates of the number

of expected rows that are selected from one or more selection predicates. The Optimizer estimates by

applying the selection predicates against the left-most keys of an existing index. The default filter

factors then can be further refined by the estimate based on the key range. If the left-most keys in an

index match columns that are used in row-selection predicates, use that index to estimate the number

of keys that match the selection criteria. The estimate of the number of keys is based on the number of

pages and key density of the machine index. It is performed without actually accessing the keys. Full

indexes over columns that are used in selection predicates can significantly help optimization.

Optimizer decision-making rules:

In performing its function, Optimizer uses a general set of guidelines to choose the best method for

accessing data.

 Optimizer does the following:

v Determines the default filter factor for each predicate in the selection clause.

v Extracts attributes of the table from internally stored information.

v Performs an estimate key range to determine the true filter factor of the predicates when the selection

predicates match the left-most keys of an index.

v Determines the cost of creating an index over a table if an index is required.

v Determines the cost of using a sort routine if selection conditions apply and an index is required.

v Determines the cost of dataspace scan processing if an index is not required.

v For each index available, in the order of most recently created to oldest, Optimizer does the following

until its time limit is exceeded:

– Extracts attributes of the index from internally stored statistics.

– Determines if the index meets the selection criteria.

– Determines the cost of using the index using the estimated page faults and the predicate filter

factors to help determine the cost.

– Compares the cost of using this index with the previous cost (current best).

– Selects the cheapest one.

– Continues to search for best index until time out or no more indexes.

The time limit factor controls how much time is spent choosing an implementation. It is based on how

much time has been spent and the current best implementation cost found. Dynamic SQL queries are

subject to Optimizer time restrictions. Static SQL queries optimization time is not limited.

Programming 519

For small tables, the query Optimizer spends little time in query optimization. For large tables, the query

Optimizer considers more indexes. Generally, Optimizer considers five or six indexes (for each table of a

join) before running out of optimization time.

ODBC blocked insert statement:

The blocked INSERT statement provides a means to insert multiple rows with a single SQLExecute

request. For performance, it provides the one of the best ways to populate a table, at times providing a

tenfold performance improvement over the next best method.

 The three forms of INSERT statements that can be executed from ODBC are:

v INSERT with VALUES using constants

v INSERT with VALUES using parameter markers

v blocked INSERT

The INSERT with VALUES using constants statement is the least efficient method of performing inserts.

For each request, a single INSERT statement is sent to the server where it is prepared, the underlying

table is opened, and the record is written.

Example:

 INSERT INTO TEST.TABLE1 VALUES(’ENGINEERING’,10,’JONES’,’BOB’)

The INSERT with VALUES using parameter markers statement performs better than the statement that

uses constants. This form of the INSERT statement allows for the statement to be prepared only once and

then reused on subsequent executions of the statement. It also allows the table on the server to remain

open, thus removing the overhead of opening and closing the file for each insert.

Example:

 INSERT INTO TEST.TABLE1 VALUES (?, ?, ?, ?)

The blocked INSERT statement most efficiently performs inserts into a table when multiple records can

be cached on the client and sent at once. The advantages with blocked INSERT are:

v The data for multiple rows is sent in one communication request rather than one request per row.

v The server has an optimized path built into the database support for blocked INSERT statements.

Example:

 INSERT INTO TEST.TABLE1 ? ROWS VALUES (?, ?, ?, ?)

The INSERT statement has additional syntax that identifies it as a blocked INSERT. The ″? ROWS″ clause

indicates that an additional parameter will be specified for this INSERT statement. It also indicates that

the parameter will contain a row count that determines how many rows will be sent for that execution of

the statement. The number of rows must be specified by means of the SQLSetStmtAttr API.

Note: With the V5R1 driver, you do not need to specify the ″? ROWS″ clause to iSeries servers. V4R5

iSeries servers added this support via PTFs SF64146 and SF64149.

To view examples of blocked insert calls from C:

See “Block insert and block fetch C example” on page 454

Catalog functions:

Catalog functions return information about the DB2 UDB for iSeries database with which you are

working.

520 IBM Systems - iSeries: iSeries Access for Windows: Programming

To process ODBC SQLTables requests, logical files are built over the server cross reference file

QADBXREF in library QSYS. QADBXREF is a database file for database-maintained cross-reference

information that is part of the dictionary function for the server.

The following are the actions for SQLTables when TableType is set to the following:

NULL Selects all LOGICAL and PHYSICAL files and SQL TABLES and VIEWS.

TABLE

Selects all PHYSICAL files, and SQL TABLES that are not server files (cross reference or data

dictionary).

VIEW Selects all LOGICAL files and SQL VIEWS that are not server files (cross reference or data

dictionary).

SYSTEM TABLE

Selects all PHYSICAL and LOGICAL files and SQL VIEWS that are either server files or data

dictionary files.

TABLE, VIEW

Selects all LOGICAL and PHYSICAL files and all SQL TABLES and VIEWS that are not server

files or data dictionary files.

Non-relational files (files with more than one format) are not selected. Also not selected are indexes, flat

files and IDDU-defined files.

The result sets returned by the catalog functions are ordered by table type. In addition to the TABLE and

VIEW types, the iSeries server has the data source-specific type identifiers of PHYSICAL and LOGICAL

files. The PHYSICAL type is handled as a TABLE, and the LOGICAL type is handled as a VIEW.

To process ODBC SQLColumns requests, a logical file is built over the server cross-reference file

QADBIFLD in the QSYS library. This logical file selects all relational database files except for indexes.

QADBIFLD is a database file for database-maintained cross-reference information that is part of the

dictionary function for the server. Specifically, this includes database file column and field information.

For additional information:

The Appendix of the SQL Reference book contains additional information. View an HTML online

version of the book, or print a PDF version, from the DB2 Universal Database for iSeries SQL

Reference iSeries Information Center topic.

Exit programs:

An exit program is a program to which control is passed from a calling program.

 When you specify an exit program, the servers pass the following two parameters to the exit program

before running your request:

v A 1-byte return code value.

v A structure containing information about your request. This structure is different for each of the exit

points.

These two parameters allow the exit program to determine whether your request is allowed. If the exit

program sets the return code to X’F0’, the server rejects the request. If the return code is set to anything

else, the server allows the request.

The same program can be used for multiple exit points. The program can determine what function is

being called by looking at the data in the second parameter structure.

Use the Work with Registration Information (WRKREGINF) command to add your exit programs to the

database exit points.

Programming 521

The database server has five different exit points defined:

QIBM_QZDA_INIT

called at server initiation

QIBM_QZDA_NDB1

called for native database requests

QIBM_QZDA_SQL1

called for SQL requests

QIBM_QZDA_SQL2

called for SQL requests

QIBM_QZDA_ROI1

called for retrieving object information requests and SQL catalog functions

Note: This exit point is called less often than in V5R1 and earlier Client Access ODBC drivers. If

you have an exit program that uses this exit point, verify that it still works as intended.

Examples: User exit programs:

The following examples do not show all of the programming considerations or techniques. Review the

examples before you begin application design and coding.

Example: ILE C/400 user exit program for exit point QIBM_QZDA_INIT:

The following ILE C/400® program handles ODBC security by rejecting requests from certain users. It

can be used as a shell for developing exit programs tailored for your operating environment.

 /*--

 * @@ss1s@@ Servers - Sample Exit Program

 *

 * Exit Point Name : QIBM_QZDA_INIT

 *

 * Description : The following ILE C/400 program handles

 * ODBC security by rejecting requests from

 * certain users.

 * It can be used as a shell for developing

 * exit programs tailored for your

 * operating environment.

 *

 * Input : A 1-byte return code value

 * X’F0’ server rejects the request

 * anything else server allows the request

 * Structure containing information about the

 * request. The format used by this program

 * is ZDAI0100.

 --/

/*--

 * Includes

 --/

#include <string.h> /* string functions */

/*--

 * User Types

 --/

typedef struct { /* Exit Point QIBM_QZDA_INIT format ZDAI0100 */

 char User_profile_name[10]; /* Name of user profile calling server*/

 char Server_identifier[10]; /* database server value (*SQL) */

 char Exit_format_name[8]; /* User exit format name (ZDAI0100) */

 long Requested_function; /* function being preformed (0) */

} ZDAI0100_fmt_t;

 /*--

 --*/

522 IBM Systems - iSeries: iSeries Access for Windows: Programming

/*==

 * Start of mainline executable code

 ==/

int main (int argc, char *argv[])

{

 ZDAI0100_fmt_t input; /* input format record */

 /* copy input parm into structure */

 memcpy(&input, (ZDAI0100_fmt_t *)argv[2], 32);

 if /* if user name is GUEST */

 (memcmp(input.User_profile_name, "GUEST ", 10)==0)

 {

 /* set return code to reject the request. */

 memcpy(argv[1], "0", 1);

 }

 else /* else user is someone else */

 {

 /* set return code to allow the request. */

 memcpy(argv[1], "1", 1);

 }

} /* End of mainline executable code */

Example: CL user exit program for exit point QIBM_QZDA_INIT:

The following Control Language program handles ODBC security by rejecting requests from certain

users. It can be used as a shell for developing exit programs tailored for your operating environment.

 /* */

/* @@ss1s@@ Servers - Sample Exit Program */

/* */

/* Exit Point Name : QIBM_QZDA_INIT */

/* */

/* Description : The following Control Language program */

/* handles ODBC security by rejecting */

/* requests from certain users. */

/* It can be used as a shell for developing */

/* exit programs tailored for your */

/* operating environment. */

/* */

PGM PARM(&STATUS &REQUEST)

/* */

/* Program call parameter declarations */

/* */

 DCL VAR(&STATUS) TYPE(*CHAR) LEN(1) /* Accept/Reject indicator */

 DCL VAR(&REQUEST) TYPE(*CHAR) LEN(34) /* Parameter structure */

/* */

/* Parameter declares */

/* */

 DCL VAR(&USER) TYPE(*CHAR) LEN(10) /* User profile name calling server*/

 DCL VAR(&SRVID) TYPE(*CHAR) LEN(10) /* database server value (*SQL) */

 DCL VAR(&FORMAT) TYPE(*CHAR) LEN(8) /* Format name (ZDAI0100) */

 DCL VAR(&FUNC) TYPE(*CHAR) LEN(4) /* function being preformed (0) */

/* */

/* Extract the various parameters from the structure */

/* */

 CHGVAR VAR(&USER) VALUE(%SST(&REQUEST 1 10))

 CHGVAR VAR(&SRVID) VALUE(%SST(&REQUEST 11 10))

 CHGVAR VAR(&FORMAT) VALUE(%SST(&REQUEST 21 8))

 CHGVAR VAR(&FUNC) VALUE(%SST(&REQUEST 28 4))

/*--

 --*/

Programming 523

/* */

/* Begin main program */

/* */

 /* set return code to allow the request. */

 CHGVAR VAR(&STATUS) VALUE(’1’)

 /* if user name is GUEST set return code to reject the request. */

 IF (&USER *EQ ’GUEST’) THEN(+

 CHGVAR VAR(&STATUS) VALUE(’0’))

EXIT:

ENDPGM

Example: ILE C/400 Program for exit point QIBM_QZDA_SQL1:

The following ILE C/400 program will reject any UPDATE request for user GUEST. It can be used as a

shell for developing exit programs tailored for your operating environment.

 /*--

 * @@ss1s@@ Servers - Sample Exit Program

 *

 * Exit Point Name : QIBM_QZDA_SQL1

 *

 * Description : The following ILE C/400 program will

 * reject any UPDATE request for user GUEST.

 * It can be used as a shell for developing

 * exit programs tailored for your

 * operating environment.

 *

 * Input : A 1-byte return code value

 * X’F0’ server rejects the request

 * anything else server allows the request

 * Structure containing information about the

 * request. The format used by this program

 * is ZDAQ0100.

 --/

/*--

 * Includes

 --/

#include <string.h> /* string functions */

#include <stdio.h> /* standard IO functions */

#include <ctype.h> /* type conversion functions */

/*==

 * Start of mainline executable code

 ==/

main(int argc, char *argv[])

{

 long i;

 _Packed struct zdaq0100 {

 char name[10];

 char servid[10];

 char fmtid[8];

 long funcid;

 char stmtname[18];

 char cursname[18];

 char prepopt[2];

 char opnattr[2];

 char pkgname[10];

 char pkglib[10];

 short drdaind;

 char commitf;

 char stmttxt[512];

 } *sptr, stx;

/*--

524 IBM Systems - iSeries: iSeries Access for Windows: Programming

--*/

 /* initialize return variable to indicate ok status */

 strncpy(argv[1],"1",1);

 /**/

 /* Address parameter structure for @@sqll@@ exit program and move local */

 /* parameters into local variables. */

 /* (note : this is not necessary to evaluate the arguments passed in). */

 /**/

 sptr = (_Packed struct zdaq0100 *) argv[2];

 strncpy(stx.name, sptr->name, 10);

 strncpy(stx.servid, sptr->servid, 10);

 strncpy(stx.fmtid, sptr->fmtid, 8);

 stx.funcid = sptr->funcid;

 strncpy(stx.stmtname, sptr->stmtname, 18);

 strncpy(stx.cursname, sptr->cursname, 18);

 strncpy(stx.opnattr, sptr->opnattr, 2);

 strncpy(stx.prepopt, sptr->prepopt, 2);

 strncpy(stx.pkglib, sptr->pkglib, 10);

 strncpy(stx.pkgname, sptr->pkgname, 10);

 stx.drdaind = sptr->drdaind;

 stx.commitf = sptr->commitf;

 strncpy(stx.stmttxt, sptr->stmttxt, 512);

 /**/

 /* check for user GUEST and an UPDATE statement */

 /* if found return an error */

 /**/

 if (! (strncmp(stx.name, "GUEST ", 10)))

 {

 for (i=0; i<6; i++)

 stx.stmttxt[i] = toupper(stx.stmttxt[i]);

 if (! strncmp(stx.stmttxt, "UPDATE", 6))

 /* Force error out of @@sqll@@ user exit pgm */

 strncpy(argv[1], "0", 1);

 else;

 }

 return;

} /* End of mainline executable code */

/*--

 --*/

 /* initialize return variable to indicate ok status */

 strncpy(argv[1],"1",1);

 /**/

 /* Address parameter structure for @@sqll@@ exit program and move local */

 /* parameters into local variables. */

 /* (note : this is not necessary to evaluate the arguments passed in). */

 /**/

 sptr = (_Packed struct zdaq0100 *) argv[2];

 strncpy(stx.name, sptr->name, 10);

 strncpy(stx.servid, sptr->servid, 10);

 strncpy(stx.fmtid, sptr->fmtid, 8);

 stx.funcid = sptr->funcid;

 strncpy(stx.stmtname, sptr->stmtname, 18);

 strncpy(stx.cursname, sptr->cursname, 18);

 strncpy(stx.opnattr, sptr->opnattr, 2);

 strncpy(stx.prepopt, sptr->prepopt, 2);

 strncpy(stx.pkglib, sptr->pkglib, 10);

 strncpy(stx.pkgname, sptr->pkgname, 10);

 stx.drdaind = sptr->drdaind;

 stx.commitf = sptr->commitf;

Programming 525

strncpy(stx.stmttxt, sptr->stmttxt, 512);

 /**/

 /* check for user GUEST and an UPDATE statement */

 /* if found return an error */

 /**/

 if (! (strncmp(stx.name, "GUEST ", 10)))

 {

 for (i=0; i<6; i++)

 stx.stmttxt[i] = toupper(stx.stmttxt[i]);

 if (! strncmp(stx.stmttxt, "UPDATE", 6))

 /* Force error out of @@sqll@@ user exit pgm */

 strncpy(argv[1], "0", 1);

 else;

 }

 return;

} /* End of mainline executable code */

Example: ILE C/400 program for exit point QIBM_QZDA_ROI1:

The following ILE C/400 program logs all requests for catalog functions to the ZDALOG file in QGPL. It

can be used as a shell for developing exit programs tailored for your operating environment.

 /*--

 * @@ss1s@@ Servers - Sample Exit Program

 *

 * Exit Point Name : QIBM_QZDA_ROI1

 *

 * Description : The following ILE C/400 program logs all

 * requests for catalog functions to the

 * ZDALOG file in QGPL.

 * It can be used as a shell for developing

 * exit programs tailored for your

 * operating environment.

 *

 * Input : A 1-byte return code value

 * X’F0’ server rejects the request

 * anything else server allows the request

 * Structure containing information about the

 * request. The format used by this program

 * is ZDAR0100.

 *

 * Dependencies : The log file must be created using the

 * following command:

 * CRTPF FILE(QGPL/ZDALOG) RCDLEN(132)

 --/

/*--

 * Includes

 --/

#include <recio.h> /* record IO functions */

#include <string.h> /* string functions */

/*--

 * User Types

 --/

typedef struct { /* Exit Point QIBM_QZDA_ROI1 format ZDAR0100 */

 char User_profile_name[10]; /* Name of user profile calling server*/

 char Server_identifier[10]; /* database server value (*RTVOBJINF) */

 char Exit_format_name[8]; /* User exit format name (ZDAR0100) */

 long Requested_function; /* function being preformed */

 char Library_name[20]; /* Name of library */

 char Database_name[36]; /* Name of relational database */

 char Package_name[20]; /* Name of package */

 char File_name[256]; /* Name of file */

 char Member_name[20]; /* Name of member */

 char Format_name[20]; /* Name of format */

} ZDAR0100_fmt_t;

526 IBM Systems - iSeries: iSeries Access for Windows: Programming

/*--

 --*/

/*==

 * Start of mainline executable code

 ==/

int main (int argc, char *argv[])

{

 _RFILE *file_ptr; /* pointer to log file */

 char output_record[132]; /* output log file record */

 ZDAR0100_fmt_t input; /* input format record */

 /* set return code to allow the request. */

 memcpy(argv[1], "1", 1);

 /* open the log file for writing to the end of the file */

 if ((file_ptr = _Ropen("QGPL/ZDALOG", "ar")) == NULL)

 {

 /* open failed */

 return;

 }

 /* copy input parm into structure */

 memcpy(&input, (ZDAR0100_fmt_t *)argv[2], 404);

 switch /* Create the output record based on requested function */

 (input.Requested_function)

 {

 case 0X1800: /* Retrieve library information */

 sprintf(output_record,

 "%10.10s retrieved library %20.20s",

 input.User_profile_name, input.Library_name);

 break;

 case 0X1801: /* Retrieve relational database information */

 sprintf(output_record,

 "%10.10s retrieved database %36.36s",

 input.User_profile_name, input.Database_name);

 break;

 case 0X1802: /* Retrieve @@sqll@@ package information */

 sprintf(output_record,

 "%10.10s retrieved library %20.20s package %20.20s",

 input.User_profile_name, input.Library_name,

 input.Package_name);

 break;

 case 0X1803: /* Retrieve @@sqll@@ package statement information */

 sprintf(output_record,

 "%10.10s retrieved library %20.20s package %20.20s statement info",

 input.User_profile_name, input.Library_name,

 input.Package_name);

 break;

/*--

 --*/

 case 0X1804: /* Retrieve file information */

 sprintf(output_record,

 "%10.10s retrieved library %20.20s file %40.40s",

 input.User_profile_name, input.Library_name, input.File_name);

 break;

 case 0X1805: /* Retrieve file member information */

 sprintf(output_record,

 "%10.10s retrieved library %20.20s member %20.20s file %40.40s",

 input.User_profile_name, input.Library_name,

 input.Member_name, input.File_name);

 break;

 case 0X1806: /* Retrieve record format information */

 sprintf(output_record,

 "%10.10s retrieved library %20.20s format %20.20s file %40.40s",

Programming 527

input.User_profile_name, input.Library_name,

 input.Format_name, input.File_name);

 break;

 case 0X1807: /* Retrieve field information */

 sprintf(output_record,

 "%10.10s retrieved field info library %20.20s file %40.40s",

 input.User_profile_name, input.Library_name, input.File_name);

 break;

 case 0X1808: /* Retrieve index information */

 sprintf(output_record,

 "%10.10s retrieved index info library %20.20s file %40.40s",

 input.User_profile_name, input.Library_name, input.File_name);

 break;

 case 0X180B: /* Retrieve special column information */

 sprintf(output_record,

 "%10.10s retrieved column info library %20.20s file %40.40s",

 input.User_profile_name, input.Library_name, input.File_name);

 break;

 default : /* Unknown requested function */

 sprintf(output_record, "Unknown requested function");

 break;

 } /* end switch statement */

 /* write the output record to the file */

 _Rwrite(file_ptr, &output_record, 132);

 /* close the log file */

 _Rclose (file_ptr);

} /* End of mainline executable code */

Exit program parameter formats:

The exit points for native database and retrieving object information have two formats that are defined:

QIBM_QZDA_SQL1 and QIBM_QZDA_SQL2. Depending on the type of function that is requested, one

of the formats is used.

 The QIBM_QZDA_SQL2 exit point is defined to run an exit point for certain SQL requests that are

received for the database server. This exit point takes precedence over the QIBM_QZDA_SQL1 exit point.

If a program is registered for the QIBM_QZDA_SQL2 exit point, it will be called, and a program for the

QIBM_QZDA_SQL1 exit point will not be called.

Functions that cause the exit program to be called

v Prepare

v Open

v Execute

v Connect

v Create package

v Clear package

v Delete package

v Return package information

v Stream fetch

v Execute immediate

v Prepare and describe

v Prepare and execute or prepare and open

v Open and fetch

v Execute or open

528 IBM Systems - iSeries: iSeries Access for Windows: Programming

Parameter fields for exit point QIBM_QZDA_SQL2 format ZDAQ0200:

The following table shows parameter fields and their descriptions for the exit program called at exit point

QIBM_QZDA_SQL2 with the ZDAQ0200 format.

 Table 17. Exit point QIBM_QZDA_SQL2 format ZDAQ0200

Offset

Type Field Description Dec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling

the server.

10 A CHAR(10) Server identifier The value is *SQLSRV for this exit point.

20 14 CHAR(8) Format name The user exit format name being used. For

QIBM_QZDA_SQL1, the format name is

ZDAQ0100.

28 1C BINARY(4) Requested function The function being performed.

This field contains one of the following:

v X’1800’ - Prepare

v X’1803’ - Prepare and describe

v X’1804’ - Open/describe

v X’1805’ - Execute

v X’1806’ - Execute immediate

v X’1809’ - Connect

v X’180C’ - Stream fetch

v X’180D’ - Prepare and execute

v X’180E’ - Open and fetch

v X’180F’ - Create package

v X’1810’ - Clear package

v X’1811’ - Delete package

v X’1812’ - Execute or open

v X’1815’ - Return package information

32 20 CHAR(18) Statement name Name of the statement used for the prepare

or execute functions.

50 32 CHAR(18) Cursor name Name of the cursor used for the open

function.

68 44 CHAR(2) Prepare option Option used for the prepare function.

70 46 CHAR(2) Open attributes Option used for the open function.

72 48 CHAR(10) Extended dynamic

package name

Name of the extended dynamic package.

82 52 CHAR(10) Package library name Name of the library for extended dyanmic

SQL package.

92 5C BINARY(2) DRDA indicator v 0 - Connected to local RDB

v 1 - Connected to remote RDB

94 5E CHAR(1) Commitment control

level

v ’A’ - Commit *ALL

v ’C’ - Commit *CHANGE

v ’N’ - Commit *NONE

v ’S’ - Commit *CS (cursor stability)

Programming 529

Table 17. Exit point QIBM_QZDA_SQL2 format ZDAQ0200 (continued)

Offset

Type Field Description Dec Hex

95 5F CHAR(10) Default SQL

collection

Name of the default SQL collection used by

the iSeries Database Server.

105 69 CHAR(129) Reserved Reserved for future parameters.

234 EA BINARY(4) SQL statement text

length

Length of SQL statement text in the field

that follows. The length can be a maximum

of 32K.

238 EE CHAR(*) SQL statement text Entire SQL statement.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and QCBLLESRC

in library QSYSINC.

The QIBM_QZDA_INIT exit point is defined to run an exit program at server initiation. If a program is

defined for this exit point, it is called each time the database server is initiated.

Parameter fields for exit point QIBM_QZDA_INIT format ZDAI0100:

The following table shows parameter fields and their descriptions for the exit program called at exit point

QIBM_QZDA_INIT using the ZDAI0100 format.

 Table 18. Exit point QIBM_QZDA_INIT format ZDAI0100

Offset

Type Field Description Dec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling

the server.

10 A CHAR(10) Server identifier The value is *SQL for this exit point.

20 14 CHAR(8) Format name The user exit format name being used. For

QIBM_QZDA_INIT the format name is

ZDAI0100.

28 1C BINARY(4) Requested function The function being performed.

The only valid value for this exit point is 0.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and QCBLLESRC

in library QSYSINC.

The QIBM_QZDA_NDB1 exit point is defined to run an exit program for native database requests for the

database server. Two formats are defined for this exit point.

Functions that use format ZDAD0100:

v Create source physical file

v Create database file, based on existing file

v Add, clear, delete database file member

v Override database file

v Delete database file override

v Delete file

Note: Format ZDAD0200 is used when a request is received to add libraries to the library list.

Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0100:

530 IBM Systems - iSeries: iSeries Access for Windows: Programming

The following table shows parameter fields and their descriptions for the exit program called at exit point

QIBM_QZDA_NDB1 using the ZDAD0100 format.

 Table 19. Exit point QIBM_QZDA_NDB1 format ZDAD0100

Offset

Type Field Description Dec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling

the server.

10 A CHAR(10) Server identifier For this exit point the value is *NDB.

20 14 CHAR(8) Format name The user exit format name being used.

For the following functions, the format

name is ZDAD0100.

28 1C BINARY(4) Requested

function

The function being performed.

This field contains one of the following:

v X’1800’ - Create source physical file

v X’1801’ - Create database file, based on

existing file

v X’1802’ - Add database file member

v X’1803’ - Clear database file member

v X’1804’ - Delete database file member

v X’1805’ - Override database file

v X’1806’ - Delete database file override

v X’1807’ - Create save file

v X’1808’ - Clear save file

v X’1809’ - Delete file

32 20 CHAR(128) File name Name of the file used for the requested

function.

160 A0 CHAR(10) Library name Name of the library that contains the file.

170 AA CHAR(10) Member name Name of the member to be added, cleared,

or deleted.

180 B4 CHAR(10) Authority Authority to the created file

190 BE CHAR(128) Based on file name Name of the file to use when creating a file

based on an existing file.

318 13E CHAR(10) Based on library

name

Name of the library containing the based on

file

328 148 CHAR(10) Override file name Name of the file to be overridden

338 152 CHAR(10) Override library

name

Name of the library that contains the file to

be overridden

348 15C CHAR(10) Override member

name

Name of the member to be overridden

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and QCBLLESRC

in library QSYSINC.

Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0200:

The following table shows parameter fields and their descriptions for the exit program called at exit point

QIBM_QZDA_NDB1 by using the ZDAD0200 format.

Programming 531

Table 20. Exit point QIBM_QZDA_NDB1 format ZDAD0200

Offset

Type Field Description Dec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling

the server.

10 A CHAR(10) Server identifier For this exit point the value is *NDB.

20 14 CHAR(8) Format name The user exit format name being used. For

the add to library list function the format

name is ZDAD0200.

28 1C BINARY(4) Requested function The function being performed.

v X’180C’ - Add library list

32 20 BINARY(4) Number of libraries The number of libraries (the next field)

36 24 CHAR(10) Library name The library names for each library

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and QCBLLESRC

in library QSYSINC.

The QIBM_QZDA_SQL1 exit point is defined to run an exit point for certain SQL requests that are

received for the database server. Only one format is defined for this exit point.

Functions that use format ZDAD0200:

v Prepare

v Open

v Execute

v Connect

v Create package

v Clear package

v Delete package

v Execute immediate

v Prepare and describe

v Prepare and execute or prepare and open

v Open and fetch

v Execute or open

Parameter fields for exit point QIBM_QZDA_SQL1 format ZDAQ0100:

The following table shows parameter fields and their descriptions for the exit program called at exit point

QIBM_QZDA_SQL1 using the ZDAQ0100 format.

 Table 21. Exit point QIBM_QZDA_SQL1 format ZDAQ0100

Offset

Type Field Description Dec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling

the server.

10 A CHAR(10) Server identifier For this exit point the value is *SQLSRV.

20 14 CHAR(8) Format name The user exit format name being used. For

QIBM_QZDA_SQL1 the format name is

ZDAQ0100.

532 IBM Systems - iSeries: iSeries Access for Windows: Programming

Table 21. Exit point QIBM_QZDA_SQL1 format ZDAQ0100 (continued)

Offset

Type Field Description Dec Hex

28 1C BINARY(4) Requested

function

The function being performed.

This field contains one of the following:

v X’1800’ - Prepare

v X’1803’ - Prepare and describe

v X’1804’ - Open/Describe

v X’1805’ - Execute

v X’1806’ - Execute immediate

v X’1809’ - Connect

v X’180D’ - Prepare and execute or prepare

and open

v X’180E’ - Open and fetch

v X’180F’ - Create package

v X’1810’ - Clear package

v X’1811’ - Delete package

v X’1812’ - Execute or open

v X’1815’ - Return package information

32 20 CHAR(18) Statement name Name of the statement used for the prepare

or execute functions.

50 32 CHAR(18) Cursor name Name of the cursor used for the open

function.

68 44 CHAR(2) Prepare option Option used for the prepare function.

70 46 CHAR(2) Open attributes Option used for the open function.

72 48 CHAR(10) Extended dynamic

package name

Name of the extended dynamic SQL

package.

82 52 CHAR(10) Package library name Name of the library for extended dynamic

SQL package.

92 5C BINARY(2) DRDA indicator v 0 - Connected to local RDB

v 1 - Connected to remote RDB

94 5E CHAR(1) Commitment control

level

v ’A’ - Commit *ALL

v ’C’ - Commit *CHANGE

v ’N’ - Commit *NONE

v ’S’ - Commit *CS (cursor stability)

95 5F CHAR(512) First 512 bytes of the

SQL statement text

First 512 bytes of the SQL statement

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and QCBLLESRC

in library QSYSINC.

The QIBM_QZDA_ROI1 exit point is defined to run an exit program for the requests that retrieve

information about certain objects for the database server. It is also used for SQL catalog functions.

This exit point has two formats defined.

Objects for which format ZDAR0100 is used to retrieve information:

v Field (or column)

Programming 533

v File (or table)

v File member

v Index

v Library (or collection)

v Record format

v Relational database (or RDB)

v Special columns

v SQL package

v SQL package statement

Objects for which format ZDAR0200 is used to retrieve information:

v Foreign keys

v Primary keys

Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0100:

The following table shows parameter fields and their descriptions for the exit program called at exit point

QIBM_QZDA_ROI1 using the ZDAR0100 format.

 Table 22. Exit point QIBM_QZDA_ROI1 format ZDAR0100

Offset

Type Field Description Dec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling

the server.

10 A CHAR(10) Server identifier For the database server the value is

*RTVOBJINF.

20 14 CHAR(8) Format name The user exit format name being used. For

the following functions, the format name is

ZDAR0100.

28 1C BINARY(4) Requested

function

The function being performed.

This field contains one of the following:

v X’1800’ - Retrieve library information

v X’1801’ - Retrieve relational database

information

v X’1802’ - Retrieve SQL package

information

v X’1803’ - Retrieve SQL package statement

information

v X’1804’ - Retrieve file information

v X’1805’ - Retrieve file member

information

v X’1806’ - Retrieve record format

information

v X’1807’ - Retrieve field information

v X’1808’ - Retrieve index information

v X’180B’ - Retrieve special column

information

534 IBM Systems - iSeries: iSeries Access for Windows: Programming

Table 22. Exit point QIBM_QZDA_ROI1 format ZDAR0100 (continued)

Offset

Type Field Description Dec Hex

32 20 CHAR(20) Library name The library or search pattern used when

retrieving information about libraries,

packages, package statements, files,

members, record formats, fields, indexes,

and special columns.

52 34 CHAR(36) Relational database

name

The relational database name or search

pattern used to retrieve RDB information.

88 58 CHAR(20) Package name The package name or search pattern used to

retrieve package or package statement

information.

108 6C CHAR(256) File name (SQL alias

name)

The file name or search pattern used to

retrieve file, member, record format, field,

index, or special column information.

364 16C CHAR(20) Member name The member name or search pattern used

to retrieve file member information.

384 180 CHAR(20) Format name The format name or search pattern used to

retrieve record format information.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and QCBLLESRC

in library QSYSINC.

Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0200:

The following table shows parameter fields and their descriptions for the exit program called at exit point

QIBM_QZDA_ROI1 using the ZDAR0200 format.

 Table 23. Exit point QIBM_QZDA_ROI1 format ZDAR0200

Offset

Type Field Description Dec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling

the server.

10 A CHAR(10) Server identifier For the database server the value is

*RTVOBJINF.

20 14 CHAR(8) Format name The user exit format name being used. For

the following functions, the format name is

ZDAR0200.

28 1C BINARY(4) Requested function The function being performed.

This field contains one of the following:

v X’1809’ - Retrieve foreign key information

v X’180A’ - Retrieve primary key

information

32 20 CHAR(10) Primary key table

library name

The name of the library that contains the

primary key table used when retrieving

primary and foreign key information.

42 2A CHAR(128) Primary key table

name (alias name)

The name of the table that contains the

primary key used when retrieving primary

or foreign key information.

Programming 535

Table 23. Exit point QIBM_QZDA_ROI1 format ZDAR0200 (continued)

Offset

Type Field Description Dec Hex

170 AA CHAR(10) Foreign key table

library name

The name of the library that contains the

foreign key table used when retrieving

foreign key information.

180 64 CHAR(128) Foreign key table

name (alias name)

The name of the table that contains the

foreign key used when retrieving foreign

key information.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and QCBLLESRC

in library QSYSINC.

Stored procedures:

Stored procedures commonly are used in client/server applications, especially in the area of online

transaction processing (OLTP), since they can provide performance, transaction-integrity and security

benefits.

 For information regarding specific SQL commands that are used in the examples of stored procedures,

see the SQL Reference book. View an HTML online version of the book, or print a PDF version, from the

DB2 Universal Database for iSeries SQL Reference iSeries Information Center topic.

The illustration below shows an application where one transaction consists of four separate I/O

operations, each that requires an SQL statement to be processed. In the client/server environment, this

requires a minimum of eight messages between the server and the client, as shown. This can represent

significant overhead, especially where the communication speed is slow (for example over a dial-up line),

or where the turnaround speed for the connection is slow (for example over a satellite link).

The following illustration shows the same transaction by a stored procedure on the server. As illustrated,

the communications traffic has been reduced to a single message pair. There are additional benefits. For

536 IBM Systems - iSeries: iSeries Access for Windows: Programming

example, the procedure can arrange to send back only the data that is absolutely required (for example,

just a few characters from a long column). A DB2 for i5/OS stored procedure can be any iSeries program,

and does not have to use SQL for data access.

Stored procedure result sets:

Define scrollable SQL stored procedure result sets.

 An application can now have scrollable SQL stored procedure result sets when running to a V5R3 (or

later) iSeries server. To take advantage of this support, make the following two changes.

1. Create the stored procedure with the cursor defined as scrollable.

a. This is done by adding the SCROLL keyword into the CREATE PROCEDURE. In the following

two examples, the first stored procedure returns a scrollable result set while the second one does

not.

v CREATE PROCEDURE MYLIB.SCROLLSP () RESULT SETS 1 LANGUAGE SQL

sqlproc: begin

DECLARE CUR1 SCROLL CURSOR FOR

SELECT * FROM QIWS.QCUSTCDT;

OPEN CUR1;

SET RESULT SETS CURSOR CUR1;

end

v CREATE PROCEDURE MYLIB.NOSCROLLSP () RESULT SETS 1 LANGUAGE SQL

sqlproc: begin

DECLARE CUR1 CURSOR FOR

SELECT * FROM QIWS.QCUSTCDT;

OPEN CUR1;

SET RESULT SETS CURSOR CUR1;

end

2. Code the application using ODBC to ask for a scrollable cursor type.

a. Call the SQLSetStmtAttr API.

b. Set the SQL_ATTR_CURSOR_TYPE option to SQL_CURSOR_DYNAMIC.

If an attempt is made to scroll backwards with a stored procedure that did not specify a scrollable

cursor, several different problems can occur. In most cases an error is returned from the server

indicating scrolling is invalid, and in some cases incorrect data is returned.

Programming 537

Even if the stored procedure returns multiple result sets, you can only use one cursor type. ODBC

either returns an error or ignores the cursor type when a different cursor type is specified for the

second result set. To use a scrollable result set as one of the result sets, the application needs to set

the cursor type to be scrollable as defined above.

Any attempts to use an updateable cursor with a stored procedure is ignored. Stored procedure

result sets are read-only.

Cursor sensitivity may not be honored with stored procedure result sets. Cursor sensitivity is

controlled by the way the server cursor is defined when creating the procedure.

Examples: Stored procedures:

View examples of stored procedures.

Example: Run CL commands that use SQL stored procedures and ODBC:

Stored procedure support provides a means to run iSeries server Control Language (CL) commands by

using the SQL CALL statement.

 Use CL commands when:

v Performing an override for files

v Initiating debug

v Using other commands that can affect the performance of subsequent SQL statements

The following examples show cases where a CL command is run on the iSeries server by using the CALL

statement, which calls the program that processes CL commands. That program (QCMDEXC in library

QSYS) expects two parameters:

1. A string that contains the command text to execute

2. A decimal (15,5) field that contains the length of the command text

The parameters must include these attributes for the command to be interpreted properly. The second

parameter on the CALL statement must have characters explicitly specified for all places of the decimal

(15,5) field.

In the following example, a C program on the PC is going to run an OVRDBF command that is 65

characters long (including embedded blanks). The text of the OVRDBF command is as follows:

 OVRDBF FILE(TESTER) TOFILE(JMBLIB/TESTER) MBR(NO2) OVRSCOPE(*JOB)

The code for performing this command by using ODBC APIs is as follows:

 HSTMT hstmt;

SQLCHAR stmt[301];

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

strcpy(stmt,"CALL QSYS.QCMDEXC(’OVRDBF FILE(TESTER) TOFILE(MYLIB/");

strcat(stmt,"TESTER) MBR(NO2) OVRSCOPE(*JOB)’,0000000064.00000)");

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

Statements now run against file MYLIB/TESTER will reference member number 2 rather than the first

member.

Another CL command that is useful to run against a database server job is the STRDBG command. You

do not have to call a stored procedure to run this command, though. There is an option on the Diagnostic

tab of the DSN setup GUI on the Diagnostic tab that will automatically run the STRDBG command

during the connection attempt.

 Related concepts

538 IBM Systems - iSeries: iSeries Access for Windows: Programming

“Implementation issues of ODBC APIs” on page 470

Learn about implementations issues when using ODBC APIs.

Example: Stored procedure calls from Visual Basic with return values:

The following example of Visual Basic source code shows how to call an iSeries server stored procedure

and then retrieve the returned values into Visual Basic variables.

 Visual Basic is able to call external functions that are found in a DLL. Since all ODBC drivers are DLLs,

Visual Basic can be used to code directly to the ODBC APIs. By coding directly to the ODBC APIs a

Visual Basic application can call an iSeries server stored procedure and return result values. See “Code

directly to ODBC APIs” on page 452 for more information.

’***

’* *

’* Because of the way Visual Basic stores and manages the String data *

’* type, it is recommended that you use an array of Byte data type *

’* instead of a String variable on the SQLBindParameter API. *

’* *

’***

Dim sTemp As String

Custnum As Integer

Dim abCustname(34) As Byte

Dim abAddress(34) As Byte

Dim abCity(24) As Byte

Dim abState(1) As Byte

Dim abPhone(14) As Byte

Dim abStatus As Byte

Dim RC As Integer

Dim nullx As Long ’Used to pass null pointer, not pointer to null

Dim lpSQL_NTS As Long ’Used to pass far pointer to SQL_NTS

Static link(7) As Long ’Used as an array of long pointers to the size

 ’each parameter which will be bound

 ’***

 ’* *

 ’* Initialize the variables needed on the API calls *

 ’* *

 ’***

link(1) = 6

link(2) = Ubound(abCustname) +1

link(3) = Ubound(abAddress) +1

link(4) = Ubound(abCity) +1

link(5) = Ubound(abState) +1

link(6) = Ubound(abPhone) +1

link(7) = 1

RC = 0

nullx = 0

lpSQL_NTS = SQL_NTS ’ -3 means passed as sz string

’***

’* *

’* Create the procedure on the iSeries. This will define the *

’* procedure’s name, parameters, and how each parameter is passed. *

’* Note: This information is stored in the server catalog tables and *

’* and only needs to be executed one time for the life of the stored *

’* procedure. It normally would not be run in the client application. *

’* *

’***

sTemp = "Create Procedure Storedp2 (:Custnum in integer, "

sTemp = sTemp & ":Custname out char(35), :Address out char(35),"

Programming 539

sTemp = sTemp & ":City out char(25), :State out char(2),"

sTemp = sTemp & ":Phone out char(15), :Status out char(1))

sTemp = sTemp & "(External name rastest.storedp2 language cobol General)"

RC = SQLExecDirect(Connection.hstmt, sTemp, Len(sTemp))

’Ignore error assuming that any error would be from procedure already

’created.

’***

’* *

’* Prepare the call of the procedure to the iSeries. *

’* For best performance, prepare the statement only one time and

’* execute many times.

’* *

’***

sTemp = "Call storedp2(?, ?, ?, ?, ?, ?, ?)"

RC = SQLPrepare(Connection.hstmt, sTemp, Len(sTemp))

If (RC <> SQL_SUCCESS) Then

 DescribeError Connection.hdbc, Connection.hstmt

 frmMain.Status.Caption = "Error on SQL_Prepare " & RTrim$(Tag)

End If

’***

’* *

’* Bind all of the columns passed to the stored procedure. This will *

’* set up the variable’s data type, input/output characteristics, *

’* length, and initial value. *

’* The SQLDescribeParam API can optionally be used to retrieve the

’* parameter types.

’* *

’* To properly pass an array of byte to a stored procedure and receive *

’* an output value back, you must pass the first byte ByRef. *

’* *

’***

RC = SQLBindParameter(Connection.hstmt, 1, SQL_PARAM_INPUT, SQL_C_SHORT, _

 SQL_NUMERIC, 6, 0, Custnum, 6, link(1))

RC = SQLBindParameter(Connection.hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, _

 SQL_CHAR, 35, 0, abCustname(0), UBound(abCustname)+1, link(2))

RC = SQLBindParameter(Connection.hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_CHAR, _

 SQL_CHAR, 35, 0, abAddress(0), UBound(abAddress)+1, link(3))

RC = SQLBindParameter(Connection.hstmt, 4, SQL_PARAM_OUTPUT, SQL_C_CHAR, _

 SQL_CHAR, 25, 0, abCity(0), UBound(abCity)+1, link(4))

RC = SQLBindParameter(Connection.hstmt, 5, SQL_PARAM_OUTPUT, SQL_C_CHAR, _

 SQL_CHAR, 2, 0, abState(0), UBound(abState)+1, link(5))

RC = SQLBindParameter(Connection.hstmt, 6, SQL_PARAM_OUTPUT, SQL_C_CHAR, _

 SQL_CHAR, 15, 0, abPhone(0), UBound(abPhone)+1, link(6))

RC = SQLBindParameter(Connection.hstmt, 7, SQL_PARAM_OUTPUT, SQL_C_CHAR, _

 SQL_CHAR, 1, 0, abStatus, 1, link(7))

’***

’* *

’* The Prepare and Bind only needs to be execute once. The Stored

’* procedure can now be called multiple times by just changing the data

’* *

’***

Do While

’***

’* Read in a customer number *

540 IBM Systems - iSeries: iSeries Access for Windows: Programming

’* *

’***

Custnum = Val(input.text)

’***

’* *

’* Execute the call of the procedure to the iSeries. *

’* *

’***

RC = SQLExecute(Connection.hstmt)

frmMain.Status.Caption = "Ran Stored Proc" & RTrim$(Tag)

If (RC <> SQL_SUCCESS) Then

 DescribeError Connection.hdbc, Connection.hstmt

 frmMain.Status.Caption = "Error on Stored Proc Execute " & RTrim$(Tag

End If

’***

’* *

’* Set text labels to display the output data *

’* You must convert the array of Byte back to a String

’* *

’***

lblCustname = StrConv(abCustname(), vbUnicode)

lblAddress = StrConv(abAddress(), vbUnicode)

lblCity = StrConv(abCity(), vbUnicode)

lblState = StrConv(abState(), vbUnicode)

lblPhone = StrConv(abPhone(), vbUnicode)

lblStatus = StrConv(abStatus(), vbUnicode)

Loop

Example: Call an iSeries stored procedure by using Visual Basic:

The Visual Basic programming examples listed below show a stored procedure call being prepared.

 Two statements are shown:

1. A statement for the creation of the stored procedure

2. A statement to prepare the call

Create the stored procedure only once. The definition that it provides is available to ODBC applications,

as well as to integrated i5/OS applications.

Because of the way Visual Basic stores and manages the String data type, using an array of Byte data

type instead of a String variable is recommended for the following parameter types:

v Input/output parameters

v Output parameters

v Any parameter that contains binary data (rather then standard ANSI characters)

v Any input parameter that has a variable address which is set once, but referred to many times

The last case would be true for the if the application made multiple calls to SQLExecute, while

modifying Parm1 between each call. The following Visual Basic functions assist in converting strings and

arrays of byte:

Public Sub Byte2String(InByte() As Byte, OutString As String)

 ’Convert array of byte to string

 OutString = StrConv(InByte(), vbUnicode)

Programming 541

End Sub

Public Function String2Byte(InString As String, OutByte() As Byte) As Boolean

 ’vb byte-array / string coercion assumes Unicode string

 ’so must convert String to Byte one character at a time

 ’or by direct memory access

 ’This function assumes Lower Bound of array is 0

 Dim I As Integer

 Dim SizeOutByte As Integer

 Dim SizeInString As Integer

 SizeOutByte = UBound(OutByte) + 1

 SizeInString = Len(InString)

 ’Verify sizes if desired

 ’Convert the string

 For I = 0 To SizeInString - 1

 OutByte(I) = AscB(Mid(InString, I + 1, 1))

 Next I

 ’If size byte array > len of string pad with Nulls for szString

 If SizeOutByte > SizeInString Then ’Pad with Nulls

 For I = SizeInString To UBound(OutByte)

 OutByte(I) = 0

 Next I

 End If

 String2Byte = True

End Function

Public Sub ViewByteArray(Data() As Byte, Title As String)

 ’Display message box showing hex values of byte array

 Dim S As String

 Dim I As Integer

 On Error GoTo VBANext

 S = "Length: " & Str(UBound(Data) - LBound(Data) + 1) & " Data (in hex):"

 For I = LBound(Data) To UBound(Data)

 If (I Mod 8) = 0 Then

 S = S & " " ’add extra space every 8th byte

 End If

 S = S & Hex(Data(I)) & " "

 VBANext:

 Next I

 MsgBox S, , Title

End Sub

Example: Call CL command stored procedures:

It is possible to run iSeries server commands by using stored procedures. The two examples that are

provided here apply to ODBC programs.

 Simply call Execute Command (QCMDEXC) to run the command. The process is relatively simple, but

ensure that you include all of the zeros in the length parameter. Use the Remote Command API as an

alternative.

The first example enables the powerful SQL tracing facility that writes data into the joblog for the job

running the SQL (in this case, the server job).

542 IBM Systems - iSeries: iSeries Access for Windows: Programming

The second example overcomes a restriction in SQL: its limited ability to work with multi-member files.

You cannot create a multi-member file through CREATE TABLE. However, the following example shows

you how to access with ODBC anything but the first member of a file that is created through DDS:

 Dim hStmt As Long

 rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, hStmt)

 If rc <> SQL_SUCCESS Then

 Call DspSQLError(SQL_HANDLE_DBC, ghDbc, "Problem: Allocating Debug Statement Handle")

 End If

 ’ Note that the string within single quotes ’STRDBG UPDPROD(*YES)’ is exactly 20 bytes

 cmd = "call qsys.qcmdexc(’STRDBG UPDPROD(*YES)’,0000000020.00000)"

 ’ Put the iSeries job in debug mode

 rc = SQLExecDirect(hStmt, cmd, SQL_NTS)

 If rc <> SQL_SUCCESS Then

 Call DspSQLError(SQL_HANDLE_STMT, hStmt, "Problem: Start Debug")

 End If

 rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, ovrhstmt)

 If rc <> SQL_SUCCESS Then

 Call DspSQLError(SQL_HANDLE_DBC, ghDbc, "Problem: Allocating Override Statement Handle")

 End If

 ’ Note that the string within single quotes ’OVRDBF FILE(BRANCH)... OVRSCOPE(*JOB)’

 is exactly 68 bytes

 cmd = "call qsys.qcmdexc(’OVRDBF FILE(BRANCH) TOFILE(HOALIB/BRANCH) MBR(FRANCE)

 OVRSCOPE(*JOB)’,0000000068.00000)"

 ’ Override the iSeries file to point to the ’france’ member

 rc = SQLExecDirect(hStmt, cmd, SQL_NTS)

 If rc <> SQL_SUCCESS Then

 Call DspSQLError(SQL_HANDLE_STMT, hStmt, "File Override")

 End If

Tips: Run and call iSeries stored procedures:

Use these tips for running and calling iSeries stored procedures.

 Running a stored procedure on the iSeries server:

ODBC provides a standard interface for calling stored procedures. The implementation of stored

procedures differs significantly across various databases. This simple example follows the recommended

approach for running a stored procedure on the iSeries server:

1. Set up a create procedure statement for the stored procedure and create it. The creation of the stored

procedure only needs to be done once and it does not have to be done through ODBC. The definition

that it provides is available to all ODBC as well as integrated i5/OS applications.

2. Prepare the stored procedure call.

3. Bind the parameters of the procedure, indicating whether each parameter is to be used for input to

the procedure, output from the procedure, or input/output.

4. Call the stored procedure.

Calling iSeries stored procedures using Visual Basic:

Use care in coding the SQLBindParameter functions. Never use Visual Basic strings as a buffer when

binding either columns (SQLBindCol) or parameters (SQLBindParameter). Instead, use byte arrays,

which–unlike strings–will not be moved around in memory. See “Example: Call an iSeries stored

procedure by using Visual Basic” on page 541 for more information.

Programming 543

Pay careful attention to the data types that are involved. There may be subtle differences with those that

you use with, for instance, a select statement. Also, ensure that you have an adequately sized buffer for

output and input/output parameters. The way that you code the stored procedure on the iSeries server

can affect performance significantly. Whenever possible, avoid closing the program with exit() in C

language and with SETON LR in RPG language. Preferably, use RETRN or return, but you may need to

re-initialize variables on each call, and by-pass file opens.

ODBC program examples

The following ODBC programming examples demonstrate simple queries, and accessing and returning

data by calling stored procedures. C/C++, Visual Basic and RPG programming language versions are

provided.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

Note that many of the C/C++ samples are not complete programs. For complete discussions and

programming samples, refer to the following locations:

v To access ODBC programming samples (Visual Basic, C++, and Lotus Script programming

environments), link to the IBM ftp site

on the Web. Select index.txt to see what programming

examples are available and to download to your PC).

v For information on Stored Procedures and examples on how to call them see “Stored procedures” on

page 536.

v Search for ODBC samples in Microsoft’s MSDN library or ODBC webpage. Examples can be found for

Visual Basic, ADO, and C/C++.

v The C programming example in the Programmer’s Toolkit

Example: Visual C++ - Access and return data by a call to a stored procedure:

This example illustrates using Visual C++ to access and return data by a call to a stored procedure.

 Only the code relevant to the stored procedure call has been included here. This code assumes the

connection has already been established. See “Examples: RPG - Host code for ODBC stored procedures”

on page 547 for the source code for the stored procedure.

544 IBM Systems - iSeries: iSeries Access for Windows: Programming

|
|
|
|
|

|
|

|

|
|

|

|
|
|

ftp://testcase.software.ibm.com/as400/fromibm/ApiSamples/

Creating the stored procedure

 //* Drop the old Procedure

 strcpy(szDropProc,"drop procedure apilib.partqry2");

 rc = SQLExecDirect(m_hstmt, (unsigned char *)szDropProc, SQL_NTS);

 // This statement is used to create a stored procedure

 // Unless the

 // procedure is destroyed, this statement need never be re-created

 strcpy(szCreateProc,"CREATE PROCEDURE APILIB.PARTQRY2 (INOUT P1 INTEGER,");

 strcat(szCreateProc,"INOUT P2 INTEGER)");

 strcat(szCreateProc,"EXTERNAL NAME APILIB.SPROC2 LANGUAGE RPG GENERAL")

 //’ Create the new Procedure

 rc = SQLExecDirect(m_hstmt, (unsigned char *)szCreateProc, SQL_NTS);

 if (rc != SQL_SUCCESS &&; rc != SQL_SUCCESS_WITH_INFO) {

 DspSQLError(m_henv, m_hdbc, SQL_NULL_HSTMT);

 return APIS_INIT_ERROR;

 }

 if(rc != SQL_SUCCESS) {

 DspSQLError(m_henv, m_hdbc, SQL_NULL_HSTMT);

 return APIS_INIT_ERROR;

 }

Preparing the statements

// Prepare the procedure call

 strcpy(szStoredProc, "call partqry2(?, ?)");

 // Prepare the stored procedure statement

 rc = SQLPrepare(m_hstmt, (unsigned char *) szStoredProc, strlen(szStoredProc));

 if(rc != SQL_SUCCESS &&; rc != SQL_SUCCESS_WITH_INFO) {

 DspSQLError(m_henv, m_hdbc, m_hstmt);

 return APIS_INIT_ERROR;

 }

Binding the parameters

 // Bind the parameters for the stored procedure

rc = SQLBindParameter(m_hstmt, 1, SQL_PARAM_INPUT_OUTPUT, SQL_C_LONG,

 SQL_INTEGER, sizeof(m_lOption), 0, &m_lOption, sizeof(m_lOption), &lcbon),

 &lcbOption);

rc |= SQLBindParameter(m_hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_LONG,

 SQL_INTEGER, sizeof(m_lPartNo), 0, &m_lPartNo, sizeof(m_lPartNo), &lcbon),

 &lcbOption);

 // Bind the Columns

 rc = SQLBindCol(m_hstmt, 1, SQL_C_SLONG, &m_lSPartNo,

 sizeof(m_lSPartNo), &lcbBuffer);

 rc |= SQLBindCol(m_hstmt, 2, SQL_C_CHAR, &m_szSPartDesc,

 26, &lcbBuffer);

 rc |= SQLBindCol(m_hstmt, 3, SQL_C_SLONG, &m_lSPartQty,

 sizeof(m_lSPartQty), &lcbBuffer);

 rc |= SQLBindCol(m_hstmt, 4, SQL_C_DOUBLE, &m_dSPartPrice,

 sizeof(m_dSPartPrice), &lcbBuffer);

 rc |= SQLBindCol(m_hstmt, 5, SQL_C_DATE, &m_dsSPartDate,

 10, &lcbBuffer);

Calling the stored procedure

 // Request a single record

 m_lOption = ONE_RECORD;

 m_lPartNo = PartNo;

 // Run the stored procedure

 rc = SQLExecute(m_hstmt);

 if (rc != SQL_SUCCESS) {

Programming 545

DspSQLError(m_henv, m_hdbc, m_hstmt);

 return APIS_SEND_ERROR;

 }

 // (Try to) fetch a record

 rc = SQLFetch(m_hstmt);

 if (rc == SQL_NO_DATA_FOUND) {

 // Close the cursor for repeated processing

 rc = SQLCloseCursor(m_hstmt);

 return APIS_PART_NOT_FOUND;

 }

 else if (rc != SQL_SUCCESS) {

 DspSQLError(m_henv, m_hdbc, m_hstmt);

 return APIS_RECEIVE_ERROR;

 }

 // If we are still here we have some data, so map it back

 // Format and display the data

 .

 .

 .

Example: Visual Basic - Access and return data by a call to a stored procedure:

Visual Basic is able to call external functions that are found in DLLs. Since all ODBC drivers are DLLs,

Visual Basic can be used to code directly to the ODBC APIs. By coding directly to the ODBC APIs a

Visual Basic application can call an iSeries server stored procedure and return result values.

 See “Code directly to ODBC APIs” on page 452 for more information. See “Examples: RPG - Host code

for ODBC stored procedures” on page 547 for the source code for the stored procedure.

Creating the stored procedure

 ’ This statement will drop an existing stored procedure

 szDropProc = "drop procedure apilib.partqry2"

 ’* This statement is used to create a stored procedure

 ’* Unless the

 ’* procedure is destroyed, this statement need never be re-created

 szCreateProc = "CREATE PROCEDURE APILIB.PARTQRY2 (INOUT P1 INTEGER,"

 szCreateProc = szCreateProc & "INOUT P2 INTEGER)"

 szCreateProc = szCreateProc & "EXTERNAL NAME APILIB.SPROC2 LANGUAGE RPG GENERAL"

 ’* Allocate statement handle

 rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, hStmt)

 If rc <> SQL_SUCCESS Then

 Call DisplayError(rc, "SQLAllocStmt failed.")

 Call DspSQLError(henv, SQL_NULL_HDBC, SQL_NULL_HSTMT)

 End If

 ’* Drop the old Procedure

 rc = SQLExecDirect(hstmt, szDropProc, SQL_NTS)

 ’ Create the new Procedure

 rc = SQLExecDirect(hstmt, szCreateProc, SQL_NTS)

 If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then

 Call DisplayError(rc, "SQLCreate failed.")

 Call DspSQLError(henv, hdbc, hstmt)

 End If

Preparing the statements

 ’* This statement will be used to call the stored procedure

 szStoredProc = "call partqry2(?, ?)"

 ’* Prepare the stored procedure call statement

546 IBM Systems - iSeries: iSeries Access for Windows: Programming

rc = SQLPrepare(hstmt, szStoredProc, Len(szStoredProc))

 If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then

 Call DisplayError(rc, "SQLPrepare failed.")

 Call DspSQLError(henv, hdbc, hstmt)

 End If

Binding the parameters

 ’Bind the parameters for the stored procedure

 rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, _

 SQL_INTEGER, lLen1, 0, sFlag, lLen1, lCbValue)

 If rc <> SQL_SUCCESS Then

 Call DisplayError(rc, "Problem binding parameter ")

 End If

 rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG, _

 SQL_INTEGER, 4, 0, lPartNumber, lLen2, lCbValue)

 If rc <> SQL_SUCCESS Then

 Call DisplayError(rc, "Problem binding parameter ")

 End If

Calling the stored procedure

 rc = SQLExecute(hstmt)

 If lRc <> SQL_SUCCESS Then

 ’ Free the statement handle for repeated processing

 rc = SQLFreeHandle(

 Call DspSQLError(henv, hdbc, hstmt)

 End If

 rc = SQLFetch(hstmt)

 If rc = SQL_NO_DATA_FOUND Then

 mnuClear_Click ’Clear screen

 txtPartNumber = lPartNumber ’Show the part number not found

 Call DisplayMessage("RECORD NOT FOUND")

 .

 .

 Else

 ’Get Description

 rc = SQLGetData(hstmt, 2, SQL_C_CHAR, sSDescription, _

 25, lcbBuffer)

 ’Get Quantity. SQLGetLongData uses alias SQLGetData

 rc = SQLGetLongData(hstmt, 3, SQL_C_SLONG, lSQuantity, _

 Len(lSQuantity), lcbBuffer)

 ’Get Price. SQLGetDoubleData uses alias SQLGetData

 rc = SQLGetDoubleData(hstmt, 4, SQL_C_DOUBLE, dSPrice, _

 Len(dSPrice), lcbBuffer)

 ’Get Received date

 rc = SQLGetData(hstmt, 5, SQL_C_CHAR, sSReceivedDate, _

 10, lcbBuffer)

 txtDescription = sSDescription ’Show description

 txtQuantity = lSQuantity ’Show quantity

 txtPrice = Format(dSPrice, "currency") ’Convert dSPrice to

 txtReceivedDate = CDate(sSReceivedDate) ’Convert string to d

 Call DisplayMessage("Record found")

 End If

Examples: RPG - Host code for ODBC stored procedures:

In this example, the program, SPROC2, is called from the client as a stored procedure via ODBC. It

returns data to the client from the PARTS database file.

Programming 547

RPG/400® (non-ILE) example:

 * THIS EXAMPLE IS WRITTEN IN RPG/400 (NON-ILE)

 *

 * DEFINES PART AS AN INTEGER (BINARY 4.0)

 *

 I#OPTDS DS

 I B 1 40#OPT

 I#PRTDS DS

 I B 1 40#PART

 C *ENTRY PLIST

 C PARM #OPTDS

 C PARM #PRTDS

 * COPY PART NUMBER TO RPG NATIVE VARIABLE WITH SAME

 * ATTRIBUTES OF FIELD IN PARTS MASTER FILE (PACKED DECIMAL 5,0)

 C Z-ADD#PART PART 50

 C #OPT CASEQ1 ONEREC

 C #OPT CASEQ2 ALLREC

 C ENDCS

 C SETON LR

 C RETRN

 *

 C ONEREC BEGSR

 * PROCESS REQUEST FOR A SINGLE RECORD.

 C/EXEC SQL DECLARE C1 CURSOR FOR

 C+ SELECT

 C+ PARTNO,

 C+ PARTDS,

 C+ PARTQY,

 C+ PARTPR,

 C+ PARTDT

 C+

 C+ FROM PARTS -- FROM PART MASTER FILE

 C+

 C+ WHERE PARTNO = :PART

 C+

 C+

 C+ FOR FETCH ONLY -- READ ONLY CURSOR

 C/END-EXEC

 C*

 C/EXEC SQL

 C+ OPEN C1

 C/END-EXEC

 C*

 C/EXEC SQL

 C+ SET RESULT SETS CURSOR C1

 C/END-EXEC

 C ENDSR

 C ALLREC BEGSR

 * PROCESS REQUEST TO RETURN ALL RECORDS

 C/EXEC SQL DECLARE C2 CURSOR FOR

 C+ SELECT

 C+ PARTNO,

 C+ PARTDS,

 C+ PARTQY,

 C+ PARTPR,

 C+ PARTDT

 C+

 C+ FROM PARTS -- FROM PART MASTER FILE

 C+

 C+

 C+ ORDER BY PARTNO -- SORT BY PARTNO

 C+

 C+ FOR FETCH ONLY -- READ ONLY CURSOR

548 IBM Systems - iSeries: iSeries Access for Windows: Programming

C/END-EXEC

 C*

 C/EXEC SQL

 C+ OPEN C2

 C/END-EXEC

 C*

 C/EXEC SQL

 C+ SET RESULT SETS CURSOR C2

 C/END-EXEC

 C ENDSR

ILE-RPG example:

 * This example is written in ILE-RPG

 *

 * Define option and part as integer

 D#opt s 10i 0

 D#part s 10i 0

 * Define part as packed 5/0

 Dpart s 5p 0

 C *entry plist

 C parm #opt

 C part parm #part

 C #opt caseq 1 onerec

 C #opt caseq 2 allrec

 C endcs

 C eval *inlr = *on

 C return

 *

 C onerec begsr

 * Process request for a single record.

 C/EXEC SQL DECLARE C1 CURSOR FOR

 C+ SELECT

 C+ PARTNO,

 C+ PARTDS,

 C+ PARTQY,

 C+ PARTPR,

 C+ PARTDT

 C+

 C+ FROM PARTS -- FROM PART MASTER FILE

 C+

 C+ WHERE PARTNO = :PART

 C+

 C+

 C+ FOR FETCH ONLY -- READ ONLY CURSOR

 C/END-EXEC

 C*

 C/EXEC SQL

 C+ OPEN C1

 C/END-EXEC

 C*

 C/EXEC SQL

 C+ SET RESULT SETS CURSOR C1

 C/END-EXEC

 C endsr

 C allrec begsr

 * Process request to return all records

 C/EXEC SQL DECLARE C2 CURSOR FOR

 C+ SELECT

 C+ PARTNO,

Programming 549

C+ PARTDS,

 C+ PARTQY,

 C+ PARTPR,

 C+ PARTDT

 C+

 C+ FROM PARTS -- FROM PART MASTER FILE

 C+

 C+

 C+ ORDER BY PARTNO -- SORT BY PARTNO

 C+

 C+ FOR FETCH ONLY -- READ ONLY CURSOR

 C/END-EXEC

 C*

 C/EXEC SQL

 C+ OPEN C2

 C/END-EXEC

 C*

 C/EXEC SQL

 C+ SET RESULT SETS CURSOR C2

 C/END-EXEC

 C endsr

iSeries Access for Windows database APIs

The iSeries Access for Windows proprietary C/C++ Database APIs provide support for iSeries database

and catalog functions, in addition to SQL access to iSeries database files. Choose this link for important

information regarding these APIs.

Important: Enhancements to the C/C++ APIs (Optimized SQL APIs) were discontinued, starting with

V5R3. It is strongly recommended that you use one of the other technologies for database

access. See the iSeries Access for Windows database programming topic collection for details

on the other technologies, which include:

v NET Framework Classes

v ADO/OLE DB

v ODBC

v JDBC

v Database Transfer

v ActiveX automation objects
 Related reference

 “Database APIs return codes” on page 20

Java programming

The Java programming language, which was defined by Sun, enables the development of portable

Web-based applications.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

See the IBM Toolbox for Java

The IBM Toolbox for Java, which is shipped with iSeries Access for Windows, provides Java

classes for accessing iSeries resources. IBM Toolbox for Java uses the iSeries Access for Windows

Host Servers as access points to the system. However, you do not need iSeries Access for

Windows to use IBM Toolbox for Java. Use the Toolbox to write applications that run

independent of iSeries Access for Windows.

Note: IBM Toolbox for Java interface behaviors such as security and tracing may differ from

those of other iSeries Access for Windows interfaces.

550 IBM Systems - iSeries: iSeries Access for Windows: Programming

ActiveX programming

ActiveX automation is a programming technology that is defined by Microsoft.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 552.

iSeries Access for Windows provides the following methods for accessing iSeries resources by using

ActiveX automation:

Automation objects:

These objects provide support for:

v Accessing iSeries data queues

v Calling iSeries system application programming interfaces and user programs

v Managing iSeries connections and validating security

v Running CL commands on the iSeries server

v Performing data-type and code-page conversions

v Performing database transfers

v Interfacing with host emulation sessions

“iSeries Access for Windows OLE DB provider” on page 448:

Call the iSeries Access for Windows OLE DB Provider, by using Microsoft’s ActiveX Data Objects

(ADO), to access the following iSeries server resources:

v The iSeries database, through record-level access

v The iSeries database, through SQL

v SQL stored procedures

v Data queues

v Programs

v CL commands

Custom controls:

ActiveX custom controls are provided for:

v iSeries data queues

v iSeries CL commands

v iSeries system names for previously connected systems

v iSeries Navigator

Programmer’s Toolkit:

For detailed information on ActiveX support for iSeries Access for Windows, see the ActiveX

topic in the Programmer’s Toolkit component of iSeries Access for Windows. It includes complete

documentation of ADO and ActiveX automation objects, and links to ActiveX information

resources.

How to access the ActiveX topic:

1. Ensure that the Programmer’s Toolkit is installed (see “Install the Programmer’s

Toolkit” on page 5).

2. Launch the Programmer’s Toolkit (see “Launch the Programmer’s Toolkit” on page 5).

3. Select the Overview topic.

4. Select Programming Technologies.

5. Select ActiveX.

Programming 551

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

552 IBM Systems - iSeries: iSeries Access for Windows: Programming

|
|
|
|
|

|
|

|

|
|

|

|
|
|

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1999, 2006 553

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

554 IBM Systems - iSeries: iSeries Access for Windows: Programming

|
|
|

Programming Interface Information

This iSeries Access publication documents intended Programming Interfaces that allow the customer to

write programs to obtain the services of iSeries Access.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 Advanced Function Presentation

 Advanced Function Printing

 AFP

 Approach

 AS/400

 C/400

 DB2

 DB2 Universal Database

 DRDA

 i5/OS

 IBM

 IBM (logo)

 Intelligent Printer Data Stream

 iSeries

 Lotus

 Lotus Notes

 MVS

 Notes

 RPG/400

 S/390

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,

other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Appendix. Notices 555

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

556 IBM Systems - iSeries: iSeries Access for Windows: Programming

����

Printed in USA

	Contents
	iSeries Access for Windows: Programming
	What's new
	Printable PDFs
	iSeries Access for Windows C/C++ APIs
	iSeries Access for Windows C/C++ APIs overview
	API groups, header files, import libraries, and DLLs
	Programmer's Toolkit
	iSeries system name formats for connection APIs
	OEM, ANSI, and Unicode considerations
	Obsolete iSeries Access for Windows APIs
	Return codes and error messages

	iSeries Access for Windows Administration APIs
	Administration APIs list
	Example: Administration APIs

	iSeries Access for Windows Communications and Security APIs
	System object attributes
	Communications and security: Create and delete APIs
	Communications and security: Connect and disconnect APIs
	Communication and security: Security validation and data APIs
	Communications and security: Get and set attribute APIs
	Defines for cwbCO_Service
	Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword
	Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword
	Communications: Create and delete APIs
	Communications: System information APIs
	Communications: Configured environments information
	Communications: Environment and connection information
	Example: Using iSeries Access for Windows communications APIs

	iSeries Access for Windows Data Queues APIs
	Data queues
	Ordering data queue messages
	Work with data queues
	Typical use of data queues
	Data Queues: Create, delete, and open APIs
	Data Queues: Accessing data queues APIs
	Data Queues: Attributes APIs
	Data Queues: Read and write APIs
	Example: Using Data Queues APIs

	iSeries Access for Windows Data Transformation and National Language Support (NLS) APIs
	iSeries Access for Windows data transformation APIs
	iSeries Access for Windows national language support (NLS) APIs

	iSeries Access for Windows Directory Update APIs
	Typical use of iSeries Access for Windows Directory Update APIs
	Requirements for Directory Update entries
	Options for Directory Update entries
	Directory Update package files syntax and format
	Directory Update sample program
	Directory Update: Create and delete APIs
	Directory Update: Access APIs
	Directory Update: Free Resources APIs
	Directory Update: Change APIs
	Directory Update: Information APIs

	iSeries Access for Windows PC5250 emulation APIs
	iSeries Objects APIs for iSeries Access for Windows
	iSeries objects attributes
	List APIs for iSeries Access for Windows
	Object APIs for iSeries Access for Windows
	Parameter object APIs for iSeries Access for Windows
	Writer job APIs for iSeries Access for Windows
	Output queues APIs for iSeries Access for Windows
	AFP resource APIs for iSeries Access for Windows
	APIs for new spooled files for iSeries Access for Windows
	APIs for reading spooled files for iSeries Access for Windows
	APIs for manipulating spooled files for iSeries Access for Windows
	APIs for handling spooled file messages for iSeries Access for Windows
	APIs for analyzing spooled file data for iSeries Access for Windows
	Server program APIs for iSeries Access for Windows
	Example: Using iSeries Objects APIs for iSeries Access for Windows

	iSeries Access for Windows Remote Command/Distributed Program Call APIs
	Typical use of iSeries Access for Windows Remote Command/Distributed Program Call APIs
	Remote Command/Distributed Program Call: Access remote command APIs list for iSeries Access for Windows
	Remote Command/Distributed Program Call: Run APIs list for iSeries Access for Windows
	Remote Command/Distributed Program Call: Access programs APIs list for iSeries Access for Windows
	Example: Using Remote iSeries Access for Windows Command/Distributed Program Call APIs

	iSeries Access for Windows Serviceability APIs
	History log and trace files
	Error handles
	Typical use of Serviceability APIs
	Serviceability APIs list: Writing to history log
	Serviceability APIs list: Writing trace data
	Serviceability API list: Writing trace points
	Serviceability API list: Reading service files
	Serviceability API list: Retrieving message text
	Example: Using iSeries Access for Windows Serviceability APIs

	iSeries Access for Windows System Object Access (SOA) APIs
	SOA objects
	iSeries object views
	Typical use of System Object Access APIs for iSeries Access for Windows
	iSeries Access for Windows System Object Access programming considerations
	System Object Access APIs for iSeries Access for Windows List

	iSeries Access for Windows: Database programming
	iSeries Access for Windows .NET provider
	iDB2CommandBuilder restrictions on pre-V5R2M0 servers

	iSeries Access for Windows OLE DB provider
	iSeries Access for Windows ODBC
	Files required to build an ODBC application
	Implementation issues of ODBC APIs
	iSeries Access for Windows ODBC performance
	ODBC program examples

	iSeries Access for Windows database APIs

	Java programming
	ActiveX programming
	Code license and disclaimer information

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

