
IBM Systems - iSeries

e-business and Web serving

WebSphere Application Server - Express Version 5

Performance

Version 5 Release 4

���

IBM Systems - iSeries

e-business and Web serving

WebSphere Application Server - Express Version 5

Performance

Version 5 Release 4

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 27.

Third Edition (February 2006)

This edition applies to version 5.0 of IBM WebSphere Application Server - Express for iSeries (product number

5722-IWE) and to all subsequent releases and modifications until otherwise indicated in new editions. This version

does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 2004, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tune performance 1

Performance overview 1

Performance guidelines 1

Performance resources 2

Performance tuning guidelines 5

Application server tuning parameters 6

Queuing network 10

Queue configuration tips 11

Web services tuning tips 13

Performance tips for wsadmin 14

Hardware capacity and configuration 15

Java virtual machine tuning parameters 16

Java memory tuning tips 18

Web server tuning parameters 23

Database tuning parameters 24

TCP/IP buffer sizes 25

Application assembly performance checklist . . 26

Appendix. Notices 27

Programming Interface Information 29

Trademarks 29

Terms and conditions 29

© Copyright IBM Corp. 2004, 2006 iii

iv IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

Tune performance

Performance is the measure of time and resources that are required to complete a task. The goal of

performance tuning is to decrease the amount of time and resources that your application server requires

to process requests. Performance tuning allows your application server to complete more tasks in less

time. WebSphere Application Server - Express relies on several different components to run an enterprise

application. As a result, you must determine how to optimize the performance of the entire system, in

addition to the performance of the individual components.

These topics provide information about performance and describe how you can tune the performance of

your WebSphere Application Server - Express environment.

“Performance overview”
This topic provides information to help you understand the factors that affect performance, and

links to performance management resources.

“Performance tuning guidelines” on page 5
This topic provides information about tuning performance for your enterprise applications,

application server, and other components of your system.

Performance overview

Performance is the measure of time and resources that are required to complete a task. Because of the

variety of resources involved, performance tuning for Web-based applications is more complex than

tuning most other applications.

To understand performance management, you need to know these basic performance concepts:

v Throughput is the number of client requests that the application server environment can process at a

given time.

v Response time is the elapsed time that it takes for the application server to process a client request.

v Load is the amount of resources, such as main storage, processor, and I/O support, that are required

by the application to process all client requests at a given time.

Application server performance is determined primarily by these components:

v Hardware resources such as system configuration, memory pools, and subsystems

v Web environment configuration such as garbage collection, request queuing, and data caching

v Application design and implementation such as object creation, connection pooling, and data access

configuration

See these topics for more information about performance and the resources that are available to help you

optimize performance:

“Performance guidelines”
This topic provides general guidelines that can help you ensure optimal performance.

“Performance resources” on page 2
This topic provides links to additional references and tools that can help you optimize performance.

Performance guidelines

This page provides basic guidelines that can help you ensure optimal performance.

© Copyright IBM Corp. 2004, 2006 1

v Verify that you have enough system capacity. For more information, see Prerequisites for installing and

running WebSphere Application Server - Express V5.0 for iSeries in the Installation topic. You can also

use the IBM eServer Workload Estimator or obtain professional services.

v Verify that hardware resources are allocated efficiently.

– Provide sufficient memory and activity level in the *BASE memory pool.

– If availability and performance are high priorities, it is recommended that you allocate WebSphere

Application Server - Express processing to a separate storage pool.

You can adjust memory pools manually or automatically.

v Verify that you have the latest WebSphere Application Server - Express Group PTF. For information

about PTFs and to download the most recent Group PTF, see WebSphere Application Server for iSeries:

PTFs.

v Tune the JVM garbage collector. For information about garbage collection, see Performance resources

(page 3).

v Configure queues for your application server components. See these topics for more information:

– “Queuing network” on page 10

– Thread pool settings

– Connection pool settings

v If your application server uses public key encryption, use hardware accelerators to improve

performance. For information about the hardware accelerators that are available for iSeries, see the

appropriate document based on your version of i5/OS:

– For V5R2: iSeries Cryptographic Offload Performance Considerations

v Design applications to optimize performance. Performance resources (page 3) includes links to

resources that can help you develop efficient Java applications.

v Use efficient SQL and JDBC practices to optimize data access.

Performance resources

These resources additional information and about performance:

v WebSphere Application Server performance resources (page 2)

v Java(TM) performance resources (page 3)

v iSeries performance resources (page 3)

v Performance tools (page 4)

WebSphere Application Server performance resources

WebSphere Application Server 5.0 for iSeries Performance Considerations

2 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

http://www-912.ibm.com/supporthome.nsf/document/16533356
http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/services/service.htm
http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/services/service.htm
help/uejb_rthrd.html
help/udat_conpoolset.html
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/CryptoV5R2.pdf
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/performancews50.html

This page provides links to information about basic performance considerations for WebSphere

Application Server. Although this information is intended for WebSphere Application Server Version

5.0, you can apply many of the same general practices to optimize performance for WebSphere

Application Server - Express Version 5.0.

WebSphere and Java tuning tips

This page provides links to papers and articles that can help you take advantage of the latest iSeries

performance improvements, tools, and tuning methods to optimize WebSphere Application Server -

Express performance.

Java(TM) performance resources

Tuning Garbage Collection for Java(TM) and WebSphere on iSeries

This PDF manual describes how to configure garbage collection for Java applications that run in

WebSphere Application Server - Express. You can find additional information about garbage

collection at IBM developerWorks.

Performance Documentation for the Java Platform

Sun Microsystems, Inc. provides links to performance documentation for the Java Platform.

Optimize your Java application’s performance

This article examines the optimization process as a whole, rather than focusing on a single

technique. You can also use the search function of the IBM developerWorks Web site to find

additional information about Java application performance.

Basic Java Performance for iSeries

This white paper explains JIT-MMI, the user classloader verification cache, and memory pool

considerations.

iSeries performance resources

Tune Java program performance with the IBM Developer Kit for Java
This Information Center topic describes how you can use the IBM Developer Kit for Java to

optimize the performance of your Java applications.

Performance management

This Web site provides extensive information about iSeries performance management.

Performance Management Resource Library

Tune performance 3

http://www.ibm.com/servers/eserver/iseries/perfmgmt/webjtune.html
http://www.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.pdf
http://www.ibm.com/developerworks/
http://java.sun.com/docs/performance/
http://www-106.ibm.com/developerworks/java/library/j-javaopt/
http://www.ibm.com/servers/eserver/iseries/perfmgmt/pdf/BasicJavaPerf.pdf
http://www.ibm.com/servers/eserver/iseries/perfmgmt/
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

This page provides links to information that you can use to optimize server performance. The

resource library includes white papers, articles, tools documentation, and more.

Performance Capabilities Reference Manual

The Performance Management Library provides links to several editions of the Performance

Capabilities Reference Manual. This manual includes information about optimizing performance for

DB2 UDB for iSeries, Web servers and WebSphere products, and Java applications.

Performance
This Information Center topic provides extensive information about managing and tuning the

performance of your iSeries server.

Performance tools

Java and WebSphere Performance on IBM eServer iSeries Servers

This Redbook provides tips, techniques, and methodologies for working with Java and WebSphere

Application Server - Express performance. The specific performance measurements this Redbook are

based on versions 3.5 and 4.0 of WebSphere Application Server and i5/OS V5R1. However, the

document might provide useful information about general performance concepts and techniques.

WebSphere Application Server Performance Tuning and Analysis Tools

This high-level online course is offered through IBM eServer Solutions Enablement. The course

describes elements that can affect WebSphere Application Server - Express performance, provides

basic guidelines to help you achieve optimal performance, and discusses various available tools that

you can use to analyze and tune performance.

Heap Analysis Tools for Java(TM)

This tool is a component of the iDoctor for iSeries suite of performance monitoring tools. The Heap

Analysis Tools component performs Java application heap analysis and object create profiling (size

and identification) over time. This tool is sometimes called Java Watcher or Heap Analyzer.

Applications for performance management
This Information Center topic provides links to several tools that you can use to monitor and

manage iSeries performance.

The ANZJVM (Analyze Java Virtual Machine) command
The ANZJVM command collects information about the Java Virtual Machine (JVM) for a specified

job. This command is available in i5/OS V5R2 and later.

The Dump Java Virtual Machine (DMPJVM) command
This command dumps JVM information for a specified job.

4 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246256.html?Open
http://www.ibm.com/servers/enable/site/education/ibo/record.html?webaserv
http://www-912.ibm.com/i_dir/idoctor.nsf/jv.html

Performance Tools for iSeries
Performance Tools for iSeries is a set of tools and commands that you can use to view and analyze

iSeries performance data in several ways. See this Information Center topic for more information.

Performance Explorer (PEX) Information Center topic
Performance explorer is a data collection tool that helps you identify the causes of performance

problems that cannot be identified with the other available tools or general trend analysis. See this

Information Center topic for more information.

Performance Explorer (PEX) Web site

This Web site provides additional information about PEX.

Performance Trace Data Visualizer

Performance Trace Data Visualizer (PTDV) for iSeries is a tool for processing, analyzing, and

viewing Performance Explorer collection data residing in PEX database files.

Performance Data Collector tool
The Performance Data Collector (PDC) tool provides profile information about the programs that

run on the iSeries server. See this Information Center topic for more information.

Collection Services
You can use Collection Services to collect performance data, which you can analyze with other

performance tools. See this Information Center topic for more information.

IBM Performance Management for eServer iSeries Information Center topic
IBM Performance Management for iSeries (formerly known as PM/400) uses Collection Services to

gather the nonproprietary performance and capacity data from your server and then sends the data

to IBM for analysis. See this Information Center topic for more information.

IBM Performance Management for eServer iSeries Web site

This Web site provides additional information about PM for eServer iSeries.

iDoctor for iSeries

iDoctor for iSeries is a suite of applications that can help you monitor performance and troubleshoot

common problems on your iSeries server.

Performance tuning guidelines

Each application server instance has several parameters that can influence application performance. You

can use the administrative console to configure and tune applications, Web containers, and application

servers in the administrative domain. You can also configure settings for other components of your

iSeries environment to optimize performance.

v WebSphere Application Server - Express tuning parameters (page 5)

v Additional tuning parameters (page 6)

WebSphere Application Server - Express tuning parameters

Tune performance 5

http://www.ibm.com/servers/eserver/iseries/perfmgmt/pex.htm
http://www.alphaworks.ibm.com/tech/ptdv
http://www.ibm.com/servers/eserver/iseries/pm/index.html
http://www-912.ibm.com/i_dir/iDoctor.nsf

These topics describe tuning parameters that are specific to WebSphere Application Server - Express and

application server instances.

“Application server tuning parameters”
You can tune parameters for several application server components, such as the Web container and

the Object Request Broker. This topic provides information about tuning these parameters.

“Queuing network” on page 10
This topic describes how to tune the components of the queueing network to optimize performance.

“Web services tuning tips” on page 13
This topic describes considerations for tuning Web services.

“Performance tips for wsadmin” on page 14
This topic provides tips to help you run wsadmin commands more efficiently.

Enabling security decreases performance. You can tune your security configuration to minimize this

impact. For more information, see Tune your security configuration in Security.

Additional tuning parameters

These topics provide information about other components of your environment that can affect WebSphere

Application Server - Express performance:

“Hardware capacity and configuration” on page 15
This topic provides information about configuring your hardware for optimal performance.

“Java virtual machine tuning parameters” on page 16
This topic describes tuning parameters for the i5/OS Java virtual machine and other tips for

optimizing Java application performance.

“Web server tuning parameters” on page 23
This topic provides information about optimizing the performance of your Web server.

“Database tuning parameters” on page 24
This topic provides information about tuning database performance.

“TCP/IP buffer sizes” on page 25
This topic describes how TCP/IP buffer sizes can affect performance.

You an also configure some settings during application assembly to optimize application performance.

See “Application assembly performance checklist” on page 26 for more information.

Application server tuning parameters

You can tune application server settings to control how an application server provides services for

running applications and their components. Each application server instance contains interrelated

components, called a queuing network, that must be properly tuned to support the specific needs of your

e-business application. The queuing network helps the system achieve maximum throughput and

maintain the overall stability of the system. For more information about the queuing network, see

“Queuing network” on page 10.

You can tune the following application server settings:

v Web container (page 7)

v Session management (page 8)

v Data sources (page 8)

6 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

v Process Priority (page 9)

Web container

Each application server includes a Web container. The application server routes servlet requests along a

transport queue between the Web server plug-in and the Web container. Default Web container properties

are set for simple Web applications. However, these values might not be appropriate for more complex

Web applications. You can adjust these parameters to tune the Web container based on the specific needs

of your environment:

v Thread pool Maximum size

– Description: This value limits the number of requests that your application server can process

concurrently. For more information, see Thread pool settings.

Note: The information on the settings page applies to all thread pools in WebSphere Application

Server - Express.

– How to view or set:

1. Start the administrative console.

2. In the topology tree, expand Servers and click Application Servers.

3. Click the name of the application server that you want to configure.

4. Click Web Container.

5. On the Web Container page, click Thread Pool.

6. Specify a value for the Maximum size field.

7. Click Apply or OK.

8. Save the configuration.

9. Stop and restart the application server.
– Default value: 50

– Recommended value: This value should be set to handle the peak load on your application server. It

is recommended that you specify a maximum size less than or equal to the number of threads

processing requests in your HTTP server. A value in the range 25-50 is generally a good starting

point.
v Growable thread pool

– Description: This setting specifies whether the number of threads can increase beyond the maximum

size configured for the thread pool. For more information, see Thread pool settings.

– How to view or set:

1. Start the administrative console.

2. In the topology tree, expand Servers and click Application Servers.

3. Click the name of the application server that you want to configure.

4. Click Web Container.

5. On the Web Container page, click Thread Pool.

6. Select Allow thread allocation beyond maximum thread size.

7. Click Apply or OK.

8. Save the configuration.

9. Stop and restart the application server.
– Default value: Disabled

Tune performance 7

help/uejb_rthrd.html
acstart.htm
acsave.htm
help/uejb_rthrd.html
acstart.htm
acsave.htm

– Recommended value: It is recommended that you do not enable this property if you are confident

the thread pool maximum size is large enough to adequately process the peak load on your

application server. If you want to allow the thread pool to exceed the configured maximum pool

size, enable this property. This setting is beneficial if the application server receives an unexpected

increase in requests or if the maximum pool size is set too low. In this scenario, additional threads

are created to handle the increased number of requests. These connections are destroyed when the

number of requests returns to its typical level. However, enabling the growable thread pool setting

might cause a large number of threads to be created, and can have a negative impact on system

storage and performance.

You can also tune several custom parameters for HTTP transports in the Web container. For more

information, see Set custom properties for an HTTP transport.

Session management

The installed default settings for session management are configured for optimal performance. For more

information, see Tune session management in Application development and Tuning parameter settings.

Data sources

Applications uses data sources to access databases. The following data source settings can affect

performance:

v Connection pooling For moreinformation about connection pooling, see Connection pooling in

Application Development and Connection pool settings.

– Maximum connection pool

- Description: This value specifies the maximum number of managed connections for a pool.

- How to view or set:

 1. Start the administrative console.

 2. In the topology tree, expand Resources and click JDBC Providers.

 3. Click the name of the provider for the data source that you want to configure.

 4. Click Data Sources.

 5. Click the name of the data source that you want to configure.

 6. Click Connection Pool.

 7. Specify a value in the Max Connections field.

 8. Click Apply or OK.

 9. Save the configuration.

10. Stop and restart the application server.
- Default value: 10

- Recommended value: Set the value for the connection pool lower than the value for the Max

Connections option in the Web container (page 7). If the pool is larger than necessary, it might

waste memory and other system resources. A setting of 10-25 is suitable for many applications.

For additional about connection pool size, see “Queuing network” on page 10.
– Minimum connection pool

- Description: This value specifies the minimum number of managed connections for a pool.

- How to view or set:

 1. Start the administrative console.

 2. In the topology tree, expand Resources and click JDBC Providers.

8 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

acshttpcp.htm
help/uprs_rtuning_parameters.html
help/udat_conpoolset.html
acstart.htm
acsave.htm
acstart.htm

3. Click the name of the provider for the data source that you want to configure.

 4. Click Data Sources.

 5. Click the name of the data source that you want to configure.

 6. Click Connection Pool.

 7. Specify a value in the Min Connections field.

 8. Click Apply or OK.

 9. Save the configuration.

10. Stop and restart the application server.
- Default value: 1

- Recommended value: Set the minimum pool size to handle the average load on the system.
v Statement cache size

– Description: WebSphere Application Server - Express provides a statement cache for each data

source. This value represents the number of free prepared statements per connection in the

connection pool. The statement cache stores query information for the data source. You can adjust to

size of the statement cache to optimize performance. For more information, see Data source settings.

– How to view or set:

1. Start the administrative console.

2. In the topology tree, expand Resources and click JDBC Providers.

3. Click the name of the provider for the data source that you want to configure.

4. Click Data Sources.

5. Click the name of the data source that you want to configure.

6. Specify a value in the Statement Cache Size field.

7. Click Apply or OK.

8. Save the configuration.

9. Stop and restart the application server.
– Default value: 10

– Recommended value: In most situations, it is recommended that you set this to the number of

unique statements for each application that uses the datasource. Setting the cache size to this value

avoids cache discards, and generally results in the best performance. However, if the cache is too

large, it might cause performance problems as a result of increased cache management and

increased use of system resources. If you have a large number of unique statements, a smaller

number might be appropriate. For information about tuning the statement cache size, see Tuning the

WebSphere Prepared Statement Cache.

Process Priority

v Description: The priority setting establishes the application server job’s run priority. The default process

priority is 25. The application server does not override the default behavior of Java thread creation.

Worker threads within the server are configured to run at 6 levels lower than the job’s run priority.

Therefore, by default, the priority of the worker threads is 31. For more information about this setting,

see Process execution settings.

v How to view or set:

1. Start the administrative console.

Tune performance 9

acsave.htm
help/udat_jdbcdatsordet.html#DATASOURCE_STATEMENTCACHESIZE_DISPLAYNAME
acstart.htm
acsave.htm
http://www.ibm.com/servers/eserver/iseries/perfmgmt/pdf/stmntcache.pdf
http://www.ibm.com/servers/eserver/iseries/perfmgmt/pdf/stmntcache.pdf
help/urun_rprocexec.html
acstart.htm

2. In the topology tree, expand Servers and click Application servers.

3. Click the name of the application server that you want to configure.

4. Click Process Definition.

5. Click Process Execution.

6. On the Process Execution page, specify a value in the Process Priority field.

7. Click Apply or OK.

8. Save the configuration.

9. Stop and restart the application server.
v Default value: 25

v Recommended value: In most situations, the default value is acceptable. However, if other workloads

are running at a higher priority (that is, with a lower priority number), you might need to adjust the

application server’s priority so that it can more easily access the necessary resources.

Queuing network

WebSphere Application Server - Express contains interrelated components that must be tuned to support

the custom needs of your e-business application. These adjustments help the system achieve maximum

throughput while maintaining the overall stability of the system. This group of interconnected

components is known as a queuing network. These queues or components include the network, Web

server, Web container, data source, and possibly a connection manager to a custom back-end system. Each

of these resources represents a queue of requests waiting to use that resource. Various queue settings

include:

v “Web server tuning parameters” on page 23: ThreadsPerChild

v Web container (page 7): Thread pool maximum size, HTTP transports MaxKeepAliveConnections, and

MaxKeepAliveRequests

v Data source (page 8): Connection pooling and Statement cache size

Most of the queues that make up the queuing network are closed queues. A closed queue places a limit

on the maximum number of requests present in the queue, while an open queue has no limit. A closed

queue supports strict management of system resources. For example, the Web container thread pool

setting controls the size of the Web container queue. If the average servlet running in a Web container

creates 10MB of objects during each request, a value of 100 for thread pools limits the memory consumed

by the Web container to 1GB.

In a closed queue, requests can be active or waiting. An active request is doing work or waiting for a

response from a downstream queue. For example, an active request in the Web server is doing work,

10 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

acsave.htm

such as retrieving static HTML, or waiting for a request to be processed in the Web container. A waiting

request is waiting to become active. The request remains in the waiting state until one of the active

requests leaves the queue.

All of the Web servers that WebSphere Application Server - Express supports are closed queues, as are

WebSphere Application Server - Express data sources. You can configure Web containers as open or

closed queues. In general, it is recommended that you use closed queues. If there are no threads available

in the pool, a new thread is created for the duration of the request.

“Queue configuration tips”
This topic provides tips to help you tune the queuing network configuration.

Queue configuration tips

This page outlines a methodology for configuring the WebSphere Application Server - Express queues.

Moving the database server onto another machine or providing more powerful resources, such as a faster

set of CPUs with more memory, can dramatically change the dynamics of your application server

environment.

v Minimize the number of requests in WebSphere Application Server - Express queues.
Performance is usually improved if requests wait in the network, ahead of the Web server, rather than

waiting in the application server. That is, only requests that can be processed enter the queuing

network. To achieve this result, set the size of upstream (closest to the client) queues large, and specify

progressively smaller sizes for downstream (further from the client) queues. This figure provides an

example of this configuration:

Queues in the queuing network become progressively smaller as work flows downstream. In this

example, 200 client requests arrive at the Web server. 125 requests remain queued in the network

because the Web server is set to handle 75 concurrent requests. As the 75 requests pass from the Web

server to the Web container, 25 requests remain queued in the Web server and the remaining 50 are

handled by the Web container. This process progresses through the data source until 25 user requests

arrive at the final destination, the database server. Because there is work waiting to enter a component

at each point upstream, no component in this system must wait for work to arrive. Most of the

requests wait in the network, outside of WebSphere Application Server - Express. This type of

configuration adds stability, because no component is overloaded.

v Draw throughput curves to determine when the system capabilities are maximized.
To run a test case that represents the full use of the production application, exercise all meaningful

code paths or use the production application. Run a set of tests to determine when the system

capabilities are fully stressed or when the network reaches the saturation point. Conduct these tests

after most bottlenecks are removed from the application. The goal of these tests is to drive CPUs to

near 100% utilization. For maximum concurrency through the system, start the initial baseline

Tune performance 11

experiment with large queues. For example, start the first experiment with a queue size of 100 at each

of the servers in the queuing network: Web server, Web container, and data source. Begin a series of

experiments to plot a throughput curve, increasing the concurrent user load after each experiment. For

example, perform experiments with 1, 2, 5, 10, 25, 50, 100, 150 and 200 users. After each test, record the

throughput requests per second, and response times in seconds per request. The curve resulting from

the baseline experiments resembles the following typical throughput curve:

WebSphere Application Server - Express throughput is a function of the number of concurrent requests

present in the total system. Section A, the light load zone, shows that as the number of concurrent user

requests increases, the throughput increases almost linearly with the number of requests. Under light

loads, concurrent requests face very little congestion within the WebSphere Application Server -

Express system queues. At some point, congestion starts to develop and throughput increases at a

much lower rate until it reaches a saturation point that represents the maximum throughput value, as

determined by some bottleneck in the WebSphere Application Server - Express system. The most

manageable type of bottleneck occurs when the WebSphere Application Server - Express machine CPUs

become fully utilized. To resolve this bottleneck, add processing power.

In the heavy load zone, Section B, as the concurrent client load increases, throughput remains relatively

constant. However, the response time increases proportionally to the user load. That is, if the user load

is doubled in the heavy load zone, the response time doubles. At some point, represented by Section C,

the buckle zone, one of the system components becomes exhausted. At this point, throughput starts to

decrease. For example, the system might enter the buckle zone when the network connections at the

Web server exhaust the limits of the network adapter or if the requests exceed operating system limits

for file handles.

If the saturation point is reached by driving CPU utilization close to 100%, you can move on to the

next step. If the saturation point occurs before system utilization reaches 100%, another bottleneck is

probably the cause. For example, the application might be creating Java objects and causing excessive

garbage collection bottlenecks in the Java code.

There are two ways to manage application bottlenecks: remove the bottleneck or clone the bottleneck.

The best way to manage a bottleneck is to remove it. You can use a Java-based application profiler to

examine overall object utilization. For a list of available tools, see Performance tools (page 4).

v Decrease queue sizes as requests move downstream from the client.
The number of concurrent users at the throughput saturation point represents the maximum

concurrency of the application. For example, if the application saturates WebSphere Application Server

12 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

- Express at 50 users, using 48 users might produce the best combination of throughput and response

time. This value is called the Max Application Concurrency value. Max Application Concurrency

becomes the preferred value for adjusting the WebSphere Application Server - Express system queues.

Remember, it is desirable for most users to wait in the network; therefore, queue sizes should decrease

when moving downstream farther from the client. For example, given a Max Application Concurrency

value of 48, you might start with system queues at the following values: Web server 75, Web container

50, data source 45. Perform a set of additional tests with slightly higher and lower values to find the

best settings.

v Adjust queue settings to correspond to access patterns.
In many cases, only a fraction of the requests that pass through one queue enter the next queue

downstream. For example, on a Web site with many static pages, a number of requests are fulfilled at

the Web server and are not passed to the Web container. In this case, the Web server queue can be

significantly larger than the Web container queue. In the previous example, the Web server queue was

set to 75, rather than closer to the value of Max Application Concurrency. You can make similar

adjustments when different components have different execution times.

For example, in an application that spends 90% of its time in a complex servlet and only 10% of its

time making a short Java database connectivity (JDBC) query, on average 10% of the servlets are using

database connections at any time, so the database connection queue can be significantly smaller than

the Web container queue. Conversely, if the majority of servlet execution time is spent making a

complex query to a database, consider increasing the queue values at both the Web container and the

data source. Always monitor the CPU and memory utilization for both the WebSphere Application

Server - Express and the database servers to verify that the CPU or memory are not overloaded.

Web services tuning tips

Web services performance is affected primarily by these characteristics of the XML documents that are

sent to Web services:

v Size refers to the length of data elements in the XML document.

v Complexity refers to number of elements that the XML document contains.

v Level of nesting refers to objects or collections of objects that are defined within other objects in the

XML document, as in this example:

<primaryObject>

 <groupObject>

 <singleObject/>

 <singleObject/>

 </groupObject>

</primaryObject>

In addition, a Web services engine contains three major pressure points that define the performance of

Web services:

v Parsing (Input): When a request is received, the Web services engine parses the input. There are two

major performance components in parsing:

– scanner

– symbol or name identification
v XML-to-object deserialization (Input): As the document is parsed the XML input is deserialized and

converted into business objects that are presented as business object parameters to the Web services.

The Web services provider, which is a JavaBean provider, is not aware of its participation in a Web

service.

v Object-to-XML serialization (Output): After the request is processed, reply is serialized into an XML

document. Large documents or complex objects can affect output serialization.

Web services best practices

To optimize Web services performance, follow these general guidelines:

Tune performance 13

v Use WebSphere Application Server - Express Web services instead of SOAP
The WebSphere Application Server - Express Web services implementation performs better than the

SOAP implementation based on Apache SOAP. WebSphere Application Server - Express includes

support for the Apache SOAP implementation so that you can run existing Web services applications.

v Avoid large or complex XML documents
The performance of Web services is directly related to the size and complexity of the XML document

that is transferred. As input documents increase in size or number of elements, they require more

processing for parsing and deserialization. As output documents increase in size or number of

elements, they require more processing for serialization.

v Avoid small, frequent requests
By definition, every Web services request is a remote request. These requests usually involve the Web

container in addition to the XML overhead of parsing and deserialization. If you need to send or

retrieve a 50K object that has 10 properties that are each 5K long, you can retrieve the object in several

ways, such as:

– As one 50K request

– As 10 5K requests

– As 50 1K requests

Because of the overhead associated with the Web container, it is more efficient to transfer a single 50K

request than several smaller requests.

v Limit the level of nesting in XML documents
Increasing the level of object nesting results in an increase in the number of objects that are

deserialized and created when a request is processed. An object that is composed only of primitive

types or strings is processed more efficiently than an object of a similar size that is composed of deeply

nested Java objects.

v Use WebSphere Application Server - Express custom serializers
The WebSphere Application Server - Express Web services engine provides serialization and

deserialization helpers that improve runtime performance for business objects. These custom serializer

and deserializer helpers specifically describe an object’s properties. As a result, the Web services

runtime consumes fewer resources to obtain information about the object.

v When possible, use literal encoding instead of SOAP encoding
Literal and SOAP encoding are alternate forms for encoding Web services requests and responses. Each

element in the SOAP body includes the XML schema definition type of the data element. SOAP

encoding requires this information to make the XML document self-defining. SOAP encoding with the

embedded data types increases the amount of data transferred in the Web services request.

v Use descriptive but short property names
Web services is an XML text-based exchange protocol, and the names of variables and properties are

included in the XML for the SOAP body portion of the message. Longer property names increase the

size of the XML document.

Performance tips for wsadmin

v When you run a command from wsadmin, a new process is created with a new Java virtual machine

(JVM). If you run multiple wsadmin -c commands from a batch file or a shell script, each command

must run in its own JVM. The -f option creates only one process and JVM, and the Java classes are

loaded only once, regardless of how many commands are in the file.

This example invokes multiple application installation commands:

wsadmin -c “$AdminApp install /home/myApps/App1.ear {-appname appl1}”

wsadmin -c “$AdminApp install /home/myApps/App2.ear {-appname appl2}”

wsadmin -c “$AdminApp install /home/myApps/App3.ear {-appname appl3}”

To improve performance, you can run the wsadmin command with the -f option and specify a file that

contains the installation commands. For example, you can create a file called appinst.jacl that contains

these commands:

14 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

$AdminApp install /home/myApps/App1.ear {-appname appl1}

$AdminApp install /home/myApps/App2.ear {-appname appl2}

$AdminApp install /home/myApps/App3.ear {-appname appl3}

To invoke the file, run this command:

wsadmin -f appinst.jacl

v The AdminControl queryNames and completeObjectName commands can consume a large amount of

resources in more complex topologies. For example, if you run a single instance that contains only a

few MBeans, the $AdminControl queryNames * command performs well. However, if a scripting client

connects to the deployment manager in a multiple machine environment, use a command only if it is

necessary for the script to obtain a list of all of the MBeans in the system. If you need the MBeans on a

specific node, it is recommended that you run the command as follows:

$AdminControl queryNames node=myNode,*

In this example, the command returns a list of only the MBeans on myNode.

Hardware capacity and configuration

These parameters include considerations for selecting and configuring the hardware on which the

application servers can run:

v Disk speed
Disk speed and the number of disk arms can have a significant effect on application server

performance in these cases:

– Your application is heavily dependent on database support

– Your application uses messaging extensively

In these situations, it is recommended that you use disk I/O subsystems that are optimized for

performance, such as a RAID array. Distribute the disk processing across as many disks as possible to

avoid contention issues that typically occur with 1 or 2 disk systems. For more information about disk

arms and how they can affect performance, see iSeries Disk Arm Requirements.

v Processor speed
In the absence of other bottlenecks, increasing the processing power can improve throughput, response

times, or both. On iSeries, processing power can be related to the Commercial Processing Workload

(CPW) value of the system. For more information about CPW values, see the Performance Capabilities

Reference Manual in the Performance Management Resource Library.

v System memory
If a large number of page faults occur, performing these tasks might improve performance:

– Increase the memory available to WebSphere Application Server - Express.

– Move WebSphere Application Server - Express to another memory pool.

– Remove jobs from the WebSphere Application Server - Express memory pool.

To determine the current page fault level, run the Work with System Status (WRKSYSSTS) command

from an CL command line. For information about the minimum memory requirements, see iSeries and

AS/400 hardware requirements in the Installation topic.

v Storage pool activity levels
Verify that the activity levels for storage pools are sufficient. Increasing these values can prevent

threads from transitioning into the ineligible condition.

– To modify the activity level for the storage pool in which you are running WebSphere Application

Server - Express, run the Work with System Status (WRKSYSSTS) command from an CL command

line:

WRKSYSSTS ASTLVL(*INTERMED)

Tune performance 15

http://www.ibm.com/servers/eserver/iseries/perfmgmt/pdf/V5R2FiSArmct.pdf
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

– Set the system value QMAXACTLVL to a value equal to or greater than the total activity level for all

pools, or *NOMAX.

1. Run the Work with System Value (WRKSYSVAL) command from an i5/OS comand line:

WRKSYSVAL SYSVAL(QMAXACTLVL)

2. Adjust the value in the Max Active column.
v Networks

Run network cards and network switches at full duplex. Running at half duplex decreases

performance. Verify that the network speed can accommodate the required throughput. On 10/100

Ethernet networks, verify that 100MB is in use. You might also want to monitor the IOP utilization. For

information about IOP utilization, see the Performance Capabilities Reference in the Performance

Management Resource Library.

Java virtual machine tuning parameters

Because the application server is a Java process, it requires a Java virtual machine (JVM) to run, and to

support the Java applications running on it. For more information about JVM settings, see Java virtual

machine settings.

For additional tuning information, see “Java memory tuning tips” on page 18. If your application

experiences slow response times at startup or first touch, you may want to consider using the Java user

classloader cache. For more information, see Java cache for user classloaders in the Programming topic.

You can adjust these settings that determine how the system uses the JVM:

v Class garbage collection (-Xnoclassgc)

– Description: This argument disables class garbage collection so that your applications can reuse

classes more easily. You can monitor garbage collection using the -verbosegc configuration setting

because its output includes class garbage collection statistics.

– How to view or set:

1. Start the administrative console.

2. In the topology tree, expand Servers and click Application Servers.

3. Click the name of the application server that you want to configure.

4. Click Process Definition.

5. On the Process Definition page, click Java Virtual Machine.

6. In the Generic JVM arguments field, type -Xnoclassgc.

7. Click Apply or OK.

8. Save the configuration.

9. Stop and restart the application server.
– Default value: By default, class garbage collection is enabled.

– Recommended value: Do not disable class garbage collection.
v Initial heap size

– Description: The initial heap size specifies how often garbage collection runs, and can have a

significant effect on performance. For more information, see Tuning Garbage Collection for Java(TM)

and WebSphere on iSeries.

– How to view or set:

16 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
help/urun_rconfproc_jvm.html
help/urun_rconfproc_jvm.html
acstart.htm
acsave.htm
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.pdf
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.pdf

1. Start the administrative console.

2. In the topology tree, expand Servers and click Application Servers.

3. Click the name of the application server that you want to configure.

4. Click Process Definition.

5. On the Process Definition page, click Java Virtual Machine.

6. In the Initial Heap Size field, specify a value.

7. Click Apply or OK.

8. Save the configuration.

9. Stop and restart the application server.
– Default value: For iSeries, the default value is 96.

– Recommended value: 96MB per processor
v Maximum heap size

– Description: This parameter specifies the maximum heap size available to the JVM code, in

megabytes.

– How to view or set:

1. Start the administrative console.

2. In the topology tree, expand Servers and click Application Servers.

3. Click the name of the application server that you want to configure.

4. Click Process Definition.

5. On the Process Definition page, click Java Virtual Machine.

6. The value is displayed in the Maximum Heap Size field.

7. Click Apply or OK.

8. Save the configuration.

9. Stop and restart the application server.
– Default value: For iSeries, the default value is 0. A value of 0 specifies that there is no maximum

value.

– Recommended value: It is recommended that you do not change the maximum heap size. When the

maximum heap size triggers a garbage collection cycle, the iSeries JVM’s garbage collection stops

operating asynchronously. As a result, the application server cannot process user threads until the

garbage collection cycle ends, and performance is significantly lower.
v Just-In-Time (JIT) compiler

– Description: A Just-In-Time (JIT) compiler is a platform-specific compiler that generates machine

instructions for each method as needed. For more information, see Using the Just-In-Time compiler

and Just-In-Time compiler in the IBM Developer Kit for Java topic.

– How to view or set:

1. Start the administrative console.

2. In the topology tree, expand Servers and click Application Servers.

3. Click the name of the application server that you want to configure.

4. Click Process Definition.

5. On the Process Definition page, click Java Virtual Machine.

6. If you want to disable JIT, select the checkbox for Disable JIT.

7. Click Apply or OK.

8. Save the configuration.

9. Stop and restart the application server.
– Default value: By default, JIT is enabled.

Tune performance 17

acstart.htm
acsave.htm
acstart.htm
acsave.htm
acstart.htm
acsave.htm

– Recommended value: It is recommended that you do not disable the JIT compiler. The

os400.jit.mmi.threshold can have a significant effect on performance. For more information about the

JIT compiler and the os400.jit.mmi.threshold property, see Just-In-Time compiler in the IBM Developer

Kit for Java topic.

Java memory tuning tips

Enterprise applications written in the Java language involve complex object relationships and utilize large

numbers of objects. Although the Java language automatically manages memory associated with object

life cycles, understanding the application usage patterns for objects is important. For more information,

see WebSphere and Java tuning tips.

v Verify that the application is not creating a large number of short-lived objects.

v Verify that the application is not leaking objects.

v Verify that the Java heap parameters are set properly to handle a given object usage pattern.

Understanding the effect of garbage collection is necessary to apply these management techniques.

See these sections for more information:

v The Java garbage collection bottleneck (page 18)

v The garbage collection gauge (page 18)

v Detecting large numbers of short-lived objects (page 19)

v Detecting memory leaks (page 20)

v Java heap parameters (page 21)

The Java garbage collection bottleneck

Examining Java garbage collection can help you understand how the application is utilizing memory.

Because Java provides garbage collection, your application does not need to manage server memory. As a

result, Java applications are more robust than applications written in languages that do not provide

garbage collection. This robustness applies as long as the application is not over-utilizing objects.

Garbage collection normally consumes from 5% to 20% of total execution time of a properly functioning

application. If you do not manage garbage collection, it can have a significant negative impact on

application performance, especially when running on symmetric multiprocessing (SMP) server machines.

The i5/OS JVM uses concurrent (asynchronous) garbage collection. This type of garbage collection results

in shorter pause times and allows application threads to continue processing requests during the garbage

collection cycle.

Garbage collection in the i5/OS JVM is controlled by the heap size settings. The initial heap size is a

threshold that triggers new garbage collection cycles. If the initial heap size is 10 MB, for example, then a

new collection cycle is triggered as soon as the JVM detects that 10 MB have been allocated since the last

collection cycle. Smaller heap sizes result in more frequent garbage collections than larger heap sizes. If

the maximum heap size is reached, the garbage collector stops operating asynchronously, and user

threads are forced to wait for collection cycles to complete. This situation has a significant negative

impact on performance. A maximum heap size of 0 (*NOMAX) assures that garbage collection operates

asynchronously at all times. For more information about tuning garbage collection with the JVM heap

settings, see “Java virtual machine tuning parameters” on page 16.

The garbage collection gauge

18 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/webjtune.html

You can use garbage collection to evaluate application performance health. Monitoring garbage collection

when the server is under a fixed workload can help you determine if the application is creating several

short-lived objects and can detect the presence of memory leaks.

You can monitor garbage collection statistics with any of these tools:

v The -verbosegc JVM configuration setting
If you specify this setting, garbage collection generates verbose output.

Note: The -verbosegc format is not standardized between different JVMs or release levels.

v The Dump Java Virtual Machine (DMPJVM) command
This command dumps JVM information for a specified job.

v Heap Analysis Tools for Java(TM)

This tool is a component of the iDoctor for iSeries suite of performance monitoring tools. The Heap

Analysis Tools component performs Java application heap analysis and object create profiling (size and

identification) over time. This tool is sometimes called Java Watcher or Heap Analyzer. For more

information, about iDoctor for iSeries, see iDoctor for iSeries.

v Performance Explorer (PEX)

You can use a Performance Explorer (PEX) trace to determine how much CPU is being used by the

garbage collector. For detailed instructions, see Tuning Garbage Collection for Java(TM) and WebSphere

on iSeries.

To obtain meaningful statistics, run the application under a fixed workload until the application state is

steady. It usually takes several minutes to reach a steady state.

Detecting large numbers of short-lived objects

You can also use these tools to monitor JVM object creation:

v The DMPJVM (Dump Java Virtual Machine) command
The DMPJVM command dumps information about the JVM for a specified job.

v The ANZJVM (Analyze Java Virtual Machine) command
The ANZJVM command collects information about the Java Virtual Machine (JVM) for a specified job.

This command is available in i5/OS V5R2 and later.

v The Performance Trace Data Visualizer (PTDV)

The best result for the average time between garbage collections is at least 5 to 6 times the average

duration of a single garbage collection cycle. If the average time is shorter, the application is spending

more than 15% of its time in garbage collection.

If the information indicates a garbage collection bottleneck, there are two ways to clear the bottleneck.

The most efficient way to optimize the application is to implement object caches and pools. Use a Java

profiler to determine which objects to cache. If you can not optimize the application, you can add

memory, processors, and clones. Additional memory allows each clone to maintain a reasonable heap

size. Additional processors allow the clones to run in parallel.

Tune performance 19

http://www-912.ibm.com/i_dir/idoctor.nsf/jv.html
http://www-912.ibm.com/i_dir/iDoctor.nsf
http://www.ibm.com/servers/eserver/iseries/perfmgmt/pex.htm
http://www.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.pdf
http://www.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.pdf
http://www.alphaworks.ibm.com/tech/ptdv

Detecting memory leaks

Memory leaks in the Java language are a significant contributor to garbage collection bottlenecks.

Memory leaks are more damaging than memory overuse, because a memory leak ultimately leads to

system instability. Over time, there is typically an increase in paging and garbage collection times.

Garbage collection times increase until the heap is too large to fit into memory, paging rates increase, and

eventually garbage collections are forced into synchronous mode. As a result, threads that are waiting for

memory allocation are stopped. From a client’s point of view, the application stops processing requests.

Clients might also receive java.lang.OutOfMemoryError exceptions.

Memory leaks occur when an unused object has references that are never freed. Memory leaks most

commonly occur in collection classes, such as Hashtable because the table always has a reference to the

object, even after real references are deleted.

High workload often causes applications to perform poorly after deployment in the production

environment. This is especially true for leaking applications where the high workload accelerates the

magnification of the leakage and the heap size grows too large for the garbage collector to manage.

Memory leak testing

The goal of memory leak testing is to magnify numbers. Memory leaks are measured in terms of the

amount of bytes or kilobytes that garbage collection cannot collect. The delicate task is to differentiate

these amounts between expected sizes of useful and unusable memory. This task is achieved more easily

if the numbers are magnified, resulting in larger gaps and easier identification of inconsistencies. The

following list contains important conclusions about memory leaks:

v Long-running test
Memory leak problems can manifest only after a period of time. Therefore, memory leaks are found

easily during long-running tests. Short running tests can lead to false alarms. It is sometimes difficult

to know when a memory leak is occurring in the Java language, especially when memory usage has

seemingly increased either abruptly or monotonically in a given period of time. The reason it is hard to

detect a memory leak is that these kinds of increases can be valid or might be the intention of the

developer. You can learn how to differentiate the delayed use of objects from completely unused

objects by running applications for a longer period of time. Long-running application testing gives you

higher confidence for whether the delayed use of objects is actually occurring.

v Repetitive test
In many cases, memory leak problems occur by successive repetitions of the same test case. The goal of

memory leak testing is to establish a big gap between unusable memory and used memory in terms of

their relative sizes. By repeating the same scenario over and over again, the gap is multiplied in a very

progressive way. This testing helps if the number of leaks caused by the execution of a test case is so

minimal that it is hardly noticeable in one run.

You can use repetitive tests at the system level or module level. The advantage with modular testing is

better control. When a module is designed to keep the private module without creating external side

effects such as memory usage, testing for memory leaks is easier. First, the memory usage before

running the module is recorded. Then, a fixed set of test cases are run repeatedly. At the end of the test

run, the current memory usage is recorded and checked for significant changes.

v Concurrency test
Some memory leak problems can occur only when there are several threads running in the application.

Unfortunately, synchronization points are very susceptible to memory leaks because of the added

complication in the program logic. Careless programming can lead to kept or unreleased references.

The incident of memory leaks is often facilitated or accelerated by increased concurrency in the system.

The most common way to increase concurrency is to increase the number of clients in the test driver.

Consider the following points when choosing which test cases to use for memory leak testing:

20 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

– A good test case exercises areas of the application where objects are created. Most of the time,

knowledge of the application is required. A description of the scenario can suggest creation of data

spaces, such as adding a new record, creating an HTTP session, performing a transaction and

searching a record.

– Look at areas where collections of objects are used. Typically, memory leaks are composed of objects

within the same class. Also, collection classes such as Vector and Hashtable are common places

where references to objects are implicitly stored by calling corresponding insertion methods. For

example, the get method of a Hashtable object does not remove its reference to the retrieved object.

You can use these tools to detect memory leaks:

v The DMPJVM (Dump Java Virtual Machine) command
The DMPJVM command dumps information about the JVM for a specified job.

v The ANZJVM (Analyze Java Virtual Machine) command
The ANZJVM command collects information about the Java Virtual Machine (JVM) for a specified job.

This command is available in i5/OS V5R2 and later.

v Heap Analysis Tools for Java(TM)

This tool is a component of the iDoctor for iSeries suite of performance monitoring tools. The Heap

Analysis Tools component performs Java application heap analysis and object create profiling (size and

identification) over time. This tool is sometimes called Java Watcher or Heap Analyzer.

For best results, follow these guidelines:

v Use the tools to take a series of readings of the number of objects in the heap. Allowing at least 10 to

20 garbage collection cycles between each reading. You can compare the results of each reading to see

if there are classes with a monotonically increasing count of objects.

v Repeat experiments with increasing duration, like 1000, 2000, and 4000-page requests. If the application

uses several objects that are larger than 64KB, the total heap size may decrease after a garbage

collection cycle. The JVM reuses the heap space for smaller objects, and only releases that space after

long periods of idle activity. If the heap size continually increases and never reaches a steady state,

there might be a memory leak.

v Look at the difference between the number of objects allocated and the number of objects freed. If the

gap between the two increases over time, there is a memory leak. In most cases, determining object

counts by class is the most useful way to detect leaks with the i5/OS JVM.

Java heap parameters

The Java heap parameters also influence the behavior of garbage collection. Because a large heap takes

longer to fill, the application runs longer before a garbage collection occurs. For more information about

heap settings, see “Java virtual machine tuning parameters” on page 16.

v Initial heap size

When tuning a production system where the working set size of the Java application is not

understood, it is recommended that you set the initial heap size to 96MB per processor. The total heap

size in an i5/OS JVM can be approximated as the sum of the amount of live (in use) heap space at the

end of the last garbage collection plus the initial heap size.

Tune performance 21

http://www-912.ibm.com/i_dir/idoctor.nsf/jv.html

The illustration represents three CPU profiles, each running a fixed workload with a varying initial

Java heap size. In the middle profile, the initial size is set to 128MB. Four garbage collections occur.

The total time in garbage collection is about 15% of the total run. When the initial heap size is doubled

to 256MB, as in the top profile, the length of the work time increases between garbage collections. Only

three garbage collections occur, but the length of each garbage collection is also increased. In the third

profile, the heap size is reduced to 64MB and exhibits the opposite effect. With a smaller heap size,

both the time between garbage collections and the time for each garbage collection are shorter.

This example shows that the total time in garbage collection is approximately the same in all cases.

However, in most cases, setting a smaller initial heap size results in more total time spent in garbage

collection, especially if the initial heap size is small compared to the pace of object allocation. If the

initial heap size is too small the garbage collector runs almost continuously.

Run a series of test experiments that vary the initial Java heap settings. For example, run experiments

with 128MB, 192MB, 256MB, and 320MB. During each experiment, monitor the total memory usage.

When all of the runs are finished, compare these statistics:

– Number of garbage collection calls

– Average duration of a single garbage collection call

– Ratio between the length of a single garbage collection call and the average time between calls
If the application is not over-utilizing objects and has no memory leaks, the state of steady memory

utilization is reached. Garbage collection also occurs less frequently and for short duration.

Note that unlike other JVM implementations, a large amount of heap free space is not generally a

concern for the i5/OS JVM.

v Maximum heap size

The maximum heap size can affect application performance. This value specifies the maximum amount

of object space the garbage collected heap can consume. If the maximum heap size is too small,

performance might degrade significantly, or the application might receive out of memory errors when

the maximum heap size is reached. Due to the complexity of determining a correct value for the

maximum heap size, a value of 0 (meaning there is no size limit) is recommended unless an absolute

limit on the object space for the garbage collected heap size is required.

In a situation where an absolute limit for the garbage collected heap is required, the value specified

should be large enough so that performance is not negatively affected. To determine an appropriate

22 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

value, run your application under a heavy load with a maximum heap value of 0. Determine the

maximum size of the garbage collected heap for the JVM using DMPJVM or iDoctor. The smallest

acceptable value for the maximum heap size is 125 percent of the garbage collected heap size. This

value is a reasonable estimate for your garbage collected heap working set size. You can specify a

larger value for the maximum heap size without affecting performance, and it is recommended that

you set the largest possible value based on the resource restrictions of the JVM or the limitations of the

system configuration.

After you determine an appropriate value for the maximum heap size, you might need to set up or

adjust the pool in which the JVM runs. By default, WebSphere Application Server - Express jobs run in

the base system pool (storage pool 2 as shown by WRKSYSSTS), but you can specify a different pool.

The maximum heap size should not be set larger than 125 percent of the size of the pool in which the

JVM is running. It is recommended that you run the JVM in its own memory pool with the memory

permanently assigned to that pool, if possible.

If the performance adjuster is set to adjust the memory pools (that is, the system value QPFRADJ is set

to a value other than 0), it is recommended that you specify a minimum size for the pool using

WRKSHRPOOL. The minimum size should be approximately equal to your garbage collected heap

working set size. Setting a correct maximum heap size and properly configuring the memory pool can

prevent a JVM with a memory leak from consuming system resources, but still offers excellent

performance.

When a JVM must run in a shared pool, it is more difficult to determine an appropriate value for the

maximum heap size. Other jobs running in the pool can cause the garbage collected heap pages to be

aged out of the pool. If the garbage collected heap pages are aged out of the pool, the garbage collector

must fault the pages back into the pool on the next garbage collection cycle because it needs to access

all of the pages in the garbage collected heap. Because the i5/OS JVM does not stop all of the JVM

threads to clean the heap, excessive page faulting causes the garbage collector to slow down and the

garbage collected heap to grow. Instead the size of the heap is increased and threads continue to run.

This heap growth is an artificial inflation of the garbage collected heap working set size, and must be

considered if you want to specify a maximum heap value. When a small amount of artificial inflation

occurs, the garbage collector reduces the size of the heap over time if the space remains unused and

the activity in the pool returns to a steady state. However, in a shared pool, you might experience

problems if the maximum heap size is set incorrectly

– If the maximum heap size is too small, artificial inflation can result in severe performance

degradation or system failure if the JVM throws an out of memory error.

– If the maximum heap size is set too large the garbage collector might reach a point where it is

unable to recover the artificial inflation of the garbage collected heap. In this case, performance is

also negatively affected. A value that is too large might not be able to prevent a JVM failure, but it

can prevent a run-away JVM from consuming excessive amounts of system resources.

If you want to determine the proper value for the maximum heap size, you must run multiple tests,

because the appropriate value is different for each configuration or workload combination. If you want

to prevent a run-away JVM, set the maximum heap size larger than you expect the heap to grow, but

not so large that it affects the performance of the rest of the machine.

If you must set the maximum heap size to guarantee that the heap size does not exceed a given level,

specify an initial heap size that is 80-90% smaller than the maximum heap size.

Web server tuning parameters

WebSphere Application Server - Express provides plug-ins for several Web server brands and versions. If

you are running your Web server on a non-iSeries platform, see the product documentation for

performance tuning information. For additional information, refer to Chapter 6 of the Performance

Capabilities Reference Manual. This manual is available in the Performance Management Resource

Library.

Tune performance 23

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

The IBM HTTP Server (powered by Apache) is a multi-process, multi-threaded server. For IBM HTTP

Server for i5/OS, you can adjust these settings:

v Access logs

– Description: The access logs record all incoming HTTP requests. Logging can degrade performance.

On iSeries, overhead is minimized, because logging occurs in a separate process from the Web

server function.

– How to view or set:

1. Open the IBM HTTP Server httpd.conf file, located in the /QIBM/ProdData/HTTPA/conf

directory.

2. Search for lines with the text CustomLog.

3. To enable a custom access log, remove the hash mark (#) at the beginning of the line.

4. Save and close the httpd.conf file.

5. Stop and restart the IBM HTTP Server.
– Default value: By default, the access log is disabled.

– Recommended value: Do not enable the access logs.
v ThreadsPerChild

– Description: This directive specifies the maximum number of concurrent client requests that the

server processes at any time. The Web server uses one thread for each request that it processes. This

value does not represent the number of active clients.

– How to view or set: Edit or view the ThreadsPerChild directive in the IBM HTTP Server httpd.conf

file.

– Default value: 40

– Recommended value: It is recommended that you use the default value, and only increase this value

if necessary.
v ListenBackLog

– Description: This parameter sets the length of a pending connections queue. When several clients

request connections to the IBM HTTP Server, and all threads are in use, a queue exists to hold

additional client requests. However, if you use the default Fast Response Cache Accelerator (FRCA)

feature, the ListenBackLog directive is not used, because FRCA uses its own internal queue.

– How to view or set: For non-FRCA: Edit or view the ListenBackLog directive in the IBM HTTP

Server httpd.conf file.

– Default value: For IBM HTTP Server 1.3.26: 1024 with FRCA enabled, 511 with FRCA disabled

– Recommended value: Use the default value.

Database tuning parameters

For tuning information for DB2 UDB for iSeries, see these resources:

v Query performance and query optimization in the Database topic.

v Chapter 4 of the Performance Capabilities Reference. Links to several editions of the Performance

Capabilities Reference are listed in the Performance Management Resource Library.

You might also want to adjust the QSQSRVR prestart job settings for your system. On iSeries, QSQSRVR

jobs process Java database access (JDBC). By default, five QSQSRVR jobs are initially active. When fewer

than two QSQSRVR jobs are unused, two more jobs are created. An application that establishes a large

number of database connections over a short period of time may be able to create connections more

quickly if these values are increased. To increase the initial number of jobs, threshold, and additional

number of jobs values, run this command on an CL command line:

CHGPJE SBSD(QSYS/QSYSWRK) PGM(QSYS/QSQSRVR)

24 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

Do not start more QSQSRVR jobs than your application requires, because there is some overhead

associated with having QSQSRVR jobs active, even if they are not being used.

If you use a different database, refer to that product’s documentation.

TCP/IP buffer sizes

WebSphere Application Server - Express uses the TCP/IP sockets communication mechanism extensively.

For a TCP/IP socket connection, the send and receive buffer sizes define the receive window. The receive

window specifies the amount of data that can be sent and not received before the send is interrupted. If

too much data is sent, it overruns the buffer and interrupts the transfer. The mechanism that controls

data transfer interruptions is referred to as flow control. If the receive window size for TCP/IP buffers is

too small, the receive window buffer is frequently overrun, and the flow control mechanism stops the

data transfer until the receive buffer is empty.

Flow control can consume a significant amount of CPU time and result in additional network latency as a

result of data transfer interruptions. It is recommended that you increase buffer sizes to avoid flow

control under normal operating conditions. A larger buffer size reduces the potential for flow control to

occur, and results in improved CPU utilization. However, a large buffer size can have a negative effect on

performance in some cases. If the TCP/IP buffers are too large and applications are not processing data

fast enough, paging can increase. The goal is to specify a value large enough to avoid flow control, but

not so large that the buffer accumulates more data than the system can process.

The default buffer size is 8KB. The maximum size is 8MB. The optimal buffer size depends on several

network environment factors including types of switches and systems, acknowledgment timing, error

rates, network topology, memory size, and data transfer size. When data transfer size is extremely large,

you might want to set the buffer sizes up to the maximum value to improve throughput, reduce the

occurrence of flow control, and reduce CPU cost.

Buffer sizes for the socket connections between the Web server and WebSphere Application Server -

Express are set at 64KB. In most cases this value is adequate.

Flow control can be an issue when an application uses either the IBM Developer Kit for Java(TM) JDBC

driver or the IBM Toolbox for Java JDBC driver to access a remote database. If the data transfers are

large, flow control can consume a large amount of CPU time. If you use the IBM Toolbox for Java JDBC

driver, you can use custom properties to configure the buffer sizes for each data source. It is

recommended that you specify large buffer sizes, such as 1MB.

Some system-wide settings can override the default 8KB buffer size for sockets. With some applications,

such as WebSphere Commerce Suite, a buffer size of 180KB reduces flow control and typically does not

increase paging. The optimal value is dependent on specific system characteristics. You might need to try

several values before you determine the ideal buffer size for your system. To change the system wide

value follow these steps:

1. Run the Change TCP/IP Attributes (CHGTCPA) command on an CL command line.

2. On the Change TCP/IP Attributes display, press F4. The buffer sizes are displayed as the TCP receive

and send buffer size.

3. Specify new values.

4. Save your changes.

5. Recycle TCP/IP.

6. Monitor CPU and paging rates to determine if they are within recommended system guidelines.

Repeat this process until you determine the ideal buffer size.

For more information about TCP/IP performance, see Chapter 5 of the Performance Capabilities

Reference. Links to several editions of the Performance Capabilities Reference are listed in the

Tune performance 25

Performance Management Resource Library.

Application assembly performance checklist

Application assembly tools are used to build J2EE components and modules into J2EE applications.

Application assembly consists of defining application components and their attributes including

enterprise beans, servlets and resource references. Many of these application configuration settings and

attributes play an important role in the run-time performance of the deployed application. Use this

information as a check list of important parameters and advice for finding optimal settings:

v Web modules assembly settings

– Distributable

– Reload interval

– Reload enabled
v Web component settings

– Load on startup

You can also use the JSP pre-touch tool to enhance application server performance. This tool causes all

JSPs to be compiled when your application server starts. For more information, see Pre-touch tool for

compiling and loading JSP files in the Application development topic.

26 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
help/uweb_wmdprp.html
help/uweb_complibprp.html

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 2004, 2006 27

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

28 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

Programming Interface Information

This WebSphere Application Server - Express publication documents intended Programming Interfaces

that allow the customer to write programs to obtain the services of IBM i5/OS.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

AIX

AIX 5L

e(logo)server

eServer

i5/OS

IBM

IBM (logo)

iSeries

pSeries

WebSphere

xSeries

zSeries

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,

other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the p <?Pub Caret?>ublications is detrimental to its interest or, as determined by IBM, the above

instructions are not being properly followed.

Appendix. Notices 29

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

30 IBM Systems - iSeries: e-business and Web serving WebSphere Application Server - Express Version 5 Performance

����

Printed in USA

	Contents
	Tune performance
	Performance overview
	Performance guidelines
	Performance resources

	Performance tuning guidelines
	Application server tuning parameters
	Queuing network
	Queue configuration tips

	Web services tuning tips
	Performance tips for wsadmin
	Hardware capacity and configuration
	Java virtual machine tuning parameters
	Java memory tuning tips

	Web server tuning parameters
	Database tuning parameters
	TCP/IP buffer sizes
	Application assembly performance checklist

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

