
IBM Systems - iSeries

Database 

Commitment control 

Version 5 Release 4 

 

 

 

  

���





IBM Systems - iSeries

Database 

Commitment control 

Version 5 Release 4 

 

 

 

  

���



Note  

Before  using  this  information  and  the  product  it supports,  read  the  information  in  “Notices,”  on  

page  109.

Fourth  Edition  (February  2006)  

This  edition  applies  to version  5, release  4, modification  0 of IBM  i5/OS  (product  number  5722-SS1)  and  to all 

subsequent  releases  and  modifications  until  otherwise  indicated  in new  editions.  This  version  does  not  run  on all 

reduced  instruction  set  computer  (RISC)  models  nor  does  it run  on CISC  models.  

© Copyright  International  Business  Machines  Corporation  2003,  2006.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

Commitment control  . . . . . . . . . 1 

What’s  new  for  V5R4   . . . . . . . . . . . 1 

Printable  PDF   . . . . . . . . . . . . . . 1 

Commitment  control  concepts   . . . . . . . . 2 

How  commitment  control  works  . . . . . . . 2 

How  commit  and  rollback  operations  work   . . . 3 

Commitment  definition  . . . . . . . . . . 5  

How  commitment  control  works  with  objects   . . 11 

Commitment  control  and  independent  disk  pools  20 

Considerations  and  restrictions  for commitment  

control   . . . . . . . . . . . . . . . 22 

Commitment  control  for  batch  applications  . . . 24 

Two-phase  commitment  control  . . . . . . . 24  

XA  transaction  support  for  commitment  control  41 

SQL  server  mode  and  thread-scoped  transactions  

for commitment  control   . . . . . . . . . 45 

Start  commitment  control  . . . . . . . . . . 46  

Commit  notify  object   . . . . . . . . . . 47 

Commit  lock  level   . . . . . . . . . . . 49  

End  commitment  control   . . . . . . . . . . 51 

System-initiated  end  of commitment  control   . . . 53  

Commitment  control  during  activation  group  end  53 

Implicit  commit  and  rollback  operations  . . . . 53 

Commitment  control  during  normal  routing  step  

end   . . . . . . . . . . . . . . . . 56  

Commitment  control  during  abnormal  system  or 

job  end  . . . . . . . . . . . . . . . 57 

Updates  to  the  notify  object   . . . . . . . . 58  

Commitment  control  recovery  during  initial  

program  load  after  abnormal  end   . . . . . . 60  

Manage  transactions  and  commitment  control  . . . 61  

Display  commitment  control  information   . . . 61 

Optimize  performance  for  commitment  control  63 

Scenarios  and  examples:  Commitment  control   . . . 68  

Scenario:  Commitment  control   . . . . . . . 68  

Practice  problem  for commitment  control   . . . 71 

Example:  Use  a transaction  logging  file  to start  

an application   . . . . . . . . . . . . 79 

Example:  Use  a notify  object  to start  an 

application   . . . . . . . . . . . . . 84 

Example:  Use  a standard  processing  program  to 

start  an application  . . . . . . . . . . . 89 

Troubleshoot  transactions  and  commitment  control  96 

Commitment  control  errors   . . . . . . . . 96 

Detect  deadlocks   . . . . . . . . . . . 103 

Recover  transactions  after  communications  

failure  . . . . . . . . . . . . . . . 104  

When  to force  commits  and  rollbacks  and  when  

to cancel  resynchronization  . . . . . . . . 104 

End  a long-running  rollback   . . . . . . . 106  

Related  information  for  commitment  control   . . . 107  

Code  license  and  disclaimer  information   . . . . 108  

Appendix. Notices  . . . . . . . . . 109 

Programming  Interface  Information   . . . . . . 110 

Trademarks   . . . . . . . . . . . . . . 111 

Terms and  conditions  . . . . . . . . . . . 111

 

© Copyright  IBM Corp. 2003, 2006 iii



iv IBM Systems  - iSeries: Database  Commitment  control



Commitment  control  

Commitment  control  is a function  that  ensures  data  integrity.  It allows  you  to define  and  process  a group  

of  changes  to  resources,  such  as  database  files  or  tables,  as  a transaction.  

Commitment  control  ensures  that  either  the  entire  group  of  individual  changes  occur  on  all  systems  that  

participate  or  that  none  of  the  changes  occur.  IBM® DB2  Universal  Database™ for  iSeries™ uses  the  

commitment  control  function  to  commit  and  rollback  database  transactions  that  are  running  with  an  

isolation  level  other  than  *NONE  (No  Commit).  

You can  use  commitment  control  to  design  an  application  so  that  the  system  can  restart  the  application  if 

a job,  an  activation  group  within  a job,  or  the  system  ends  abnormally.  With  commitment  control,  you  can  

have  assurance  that  when  the  application  starts  again,  no  partial  updates  are  in  the  database  due  to 

incomplete  transactions  from  a prior  failure.  

Note:   By  using  the  code  examples,  you  agree  to the  terms  of the  “Code  license  and  disclaimer  

information”  on  page  108.  

What’s new for V5R4 

This  topic  highlights  changes  to  commitment  control  for  IBM  i5/OS™ V5R4.  

What’s  new  for  Commitment  control: 

v   Enhancements  to  XA  functionality  (see  XA  transaction  support  for  commitment  control  for  detailed  

information)  : 

–   Remote  relational  database  (RDB)  support  for  XA  transactions  with  transaction  scoped  locks  

–   Optional  lock  sharing  for  loosely  coupled  transaction  branches  

–   Choice  of  XA  thread  of  control  

–   Support  for  traditional  database  access  within  XA  transactions  using  distributed  data  management  

(DDM)
v   Soft  commit

How to see what’s new or changed 

To help  you  see  where  technical  changes  have  been  made,  this  information  uses:  

v   The  

   

image  to mark  where  new  or  changed  information  begins.  

v   The  

   

image  to mark  where  new  or  changed  information  ends.

To  find  other  information  about  what’s  new  or  changed  this  release,  see  the  Memo  to  users.  

Printable PDF 

Use  this  to  view  and  print  a PDF  of  this  information.  

To view  or  download  the  PDF  version  of this  document,  select  Commitment  control  (about  1413  KB).  

Saving PDF files 

To save  a PDF  on  your  workstation  for  viewing  or  printing:  

1.   Right-click  the  PDF  in  your  browser  (right-click  the  link  above).  

 

© Copyright  IBM Corp. 2003, 2006 1

|
|

|

|
|

|

|

|

|
|

|

rzakj.pdf


2.   Click  the  option  that  saves  the  PDF  locally.  

3.   Navigate  to  the  directory  in  which  you  want  to  save  the  PDF. 

4.   Click  Save.

Downloading Adobe Reader 

You need  Adobe  Reader  installed  on  your  system  to  view  or  print  these  PDFs.  You can  download  a free  

copy  from  the  Adobe  Web site  (www.adobe.com/products/acrobat/readstep.html)  

  

. 

Commitment control concepts 

This  topic  provides  information  to  help  you  understand  how  commitment  control  works,  how  it interacts  

with  your  system,  and  how  it interacts  with  other  systems  in  your  network.  

How commitment control works 

Commitment  control  is  a function  that  allows  you  to  define  and  process  a group  of changes  to  resources,  

such  as  database  files  or  tables,  as  a transaction.  

Commitment  control  ensures  that  either  the  entire  group  of individual  changes  occur  on  all  systems  that  

participate  or  that  none  of  the  changes  occur. For  example,  when  you  transfer  funds  from  a savings  to  a 

checking  account,  more  than  one  change  occurs  as  a group.  To you,  this  transfer  seems  like  a single  

change.  However,  more  than  one  change  occurs  to the  database  because  both  savings  and  checking  

accounts  are  updated.  To keep  both  accounts  accurate,  either  all  the  changes  or  none  of the  changes  must  

occur  to  the  checking  and  savings  account.  

Commitment  control  allows  you  to:  

v   Ensure  that  all  changes  within  a transaction  are  completed  for  all  resources  that  are  affected.  

v   Ensure  that  all  changes  within  a transaction  are  removed  if processing  is  interrupted.  

v   Remove  changes  that  are  made  during  a transaction  when  the  application  determines  that  a transaction  

is in  error. 

You can  also  design  an  application  so  that  commitment  control  can  restart  the  application  if a job,  an  

activation  group  within  a job,  or  the  system  ends  abnormally.  With  commitment  control,  you  can  have  

assurance  that  when  the  application  starts  again,  no  partial  updates  are  in  the  database  due  to incomplete  

transactions  from  a prior  failure.  

Transaction 

A transaction  is  a group  of  individual  changes  to objects  on  the  system  that  appears  as  a single  atomic  

change  to  the  user.  

Note:   iSeries  navigator  uses  the  termtransaction, whereas  the  character-based  interface  uses  the  term  

Logical  Unit  of Work (LUW). The  two  terms  are  interchangeable.  This  topic,  unless  specifically  

referring  to  the  character-based  interface,  uses  the  term  transaction.  

A transaction  can  be  any  of  the  following  situations:  

v   Inquiries  in  which  no  database  file  changes  occur. 

v   Simple  transactions  that  change  one  database  file.  

v   Complex  transactions  that  changes  one  or  more  database  files.  

v   Complex  transactions  that  change  one  or  more  database  files,  but  these  changes  represent  only  a part  

of  a logical  group  of  transactions.  

 

2 IBM Systems  - iSeries:  Database  Commitment  control

|

|

|

http://www.adobe.com/products/acrobat/readstep.html


v   Simple  or  complex  transactions  that  involve  database  files  at more  than  one  location.  The  database  files  

can  be:  

–   On  a single  remote  system.  

–   On  the  local  system  and  one  or  more  remote  systems.  

–   Assigned  to  more  than  one  journal  on  the  local  system.  Each  journal  can  be  thought  of as  a local  

location.
v   Simple  or  complex  transactions  on  the  local  system  that  involve  objects  other  than  database  files.

How commit and rollback operations work 

Commit  and  rollback  operations  affect  changes  that  are  made  under  commitment  control.  

The  following  programming  languages  and  application  programming  interfaces  (APIs)  support  commit  

and  rollback  operations.  

 Language  or API  Commit  Rollback  

CL  COMMIT  command  ROLLBACK  command  

IBM  Integrated  Language  

Environment® (ILE)  RPG/400® 

COMIT  operation  code  ROLBK  operation  code  

ILE  COBOL/400® COMMIT  verb  ROLLBACK  verb  

ILE  C/400® _Rcommit  function  _Rrollbck  function  

PL/I  PLICOMMIT  subroutine  PLIROLLBACK  subroutine  

SQL  COMMIT  statement  ROLLBACK  statement  

SQL  Call  Level  Interface  (CLI)  SQLTransact() function  (Use  to commit  and  roll  back  a transaction)  

XA  APIs  xa_commit()  and  db2xa_commit()  

APIs  

xa_rollback()  and  db2xa_rollback()  

APIs
  

   Related  concepts  

   SQL  call  level  interface  

   Database  programming
   Related  information  

   COBOL/400  user’s  guide  PDF  

   RPG/400  user’s  guide  PDF  

   WebSphere  development  studio:  ILE  C/C++  programmer’s  guide  PDF  

   CL  programming  

   Application  programming  interfaces  (APIs)

Commit operation 

A  commit  operation  makes  permanent  all  changes  made  under  commitment  control  since  the  previous  

commit  or  rollback  operation.  The  system  also  releases  all  locks  related  to  the  transaction.  

The  system  performs  the  following  steps  when  it receives  a request  to commit:  

v   The  system  saves  the  commit  identification,  if one  is provided,  for  use  at recovery  time.  

v   The  system  writes  records  to  the  file  before  performing  the  commit  operation  if both  of  the  following  

are  true: 

–   Records  were  added  to  a local  or  remote  database  file  under  commitment  control.  

–   SEQONLY(*YES)  was  specified  when  the  file  was  opened  so that  blocked  I/O  feedback  is used  by 

the  system  and  a partial  block  of  records  exists.  

Otherwise,  the  I/O  feedback  area  and  I/O  buffers  are  not  changed.  

 

Commitment  control 3

|
|
|
|



v   The  system  makes  a call  to  the  commit  and  rollback  exit  program  for  each  API  commitment  resource  

that  is present  in  the  commitment  definition.  If  a location  has  more  than  one  exit  program  registered,  

the  system  calls  exit  programs  for  that  location  in  the  order  that  they  were  registered.  

v   If any  record  changes  were  made  to  resources  assigned  to  a journal,  the  system  writes  a C  CM  journal  

entry  to  every  local  journal  associated  with  the  commitment  definition.  Sequence  of journal  entries  

under  commitment  control  shows  the  entries  that  are  typically  written  while  a commitment  definition  

is active.  

v   The  system  makes  permanent  object-level  changes  that  are  pending.  

v   The  system  unlocks  record  and  object  locks  that  were  acquired  and  kept  for  commitment  control  

purposes.  Those  resources  are  made  available  to  other  users.  

v   The  system  changes  information  in  the  commitment  definition  to  show  that  the  current  transaction  has  

been  ended.  

The  system  must  perform  all  of  the  previous  steps  correctly  for  the  commit  operation  to  be  successful.  

   Related  concepts  

   “Commitment  definition”  on  page  5
You  create  a commitment  definition  when  you  use  the  Start  Commitment  Control  (STRCMTCTL)  

command  to  start  commitment  control  on  your  system.  Also,  DB2  Universal  Database  (UDB)  for  

iSeries  automatically  creates  a commitment  definition  when  the  isolation  level  is other  than  No  

Commit.  

   “Sequence  of  journal  entries  under  commitment  control”  on  page  16  

This  table  shows  the  sequence  of  entries  that  are  typically  written  while  a commitment  definition  is 

active.  You can  use  the  Journal  entry  information  finder  to  get  more  information  about  the  contents  of 

the  journal  entries.

Rollback operation 

A rollback  operation  removes  all  changes  made  since  the  previous  commit  or  rollback  operation.  The  

system  also  releases  all  locks  related  to  the  transaction.  

The  system  performs  the  following  steps  when  it receives  a request  to  roll  back:  

v   The  system  clears  records  from  the  I/O  buffer  if both  of  the  following  conditions  are  true: 

–   If records  were  added  to  a local  or  remote  database  file  under  commitment  control.  

–   If SEQONLY(*YES)  was  specified  when  the  file  was  opened  so  that  blocked  I/O  is used  by  the  

system  and  a partial  block  of records  exists  that  has  not  yet  been  written  to  the  database.  

Otherwise,  the  I/O  feedback  area  and  I/O  buffers  remain  unchanged.  

v   The  system  makes  a call  to  the  commit  or  rollback  exit  program  for  each  API  commitment  resource  

that  is present  in  the  commitment  definition.  If  a location  has  more  than  one  exit  program  registered,  

the  system  calls  the  exit  programs  for  that  location  in  reverse  order  from  the  order  in  which  they  were  

registered.  

v   If a record  was  deleted  from  a file,  the  system  adds  the  record  back  to  the  file.  

v   The  system  removes  any  changes  to  records  that  have  been  made  during  this  transaction,  and  places  

the  original  records  (the  before-images)  back  into  the  file.  

v   If any  records  were  added  to  the  file  during  this  transaction,  they  remain  in  the  file  as  deleted  records.  

v   If any  record  changes  were  made  to  resources  assigned  to  a journal  during  the  transaction,  the  system  

adds  a journal  entry  of C  RB  to  the  journal,  indicating  that  a rollback  operation  occurred.  The  journal  

also  contains  images  of  the  record  changes  that  were  rolled  back.  Before  the  rollback  operation  was  

requested,  the  before-images  and  after-images  of changed  records  were  placed  in the  journal.  The  

system  also  writes  C  RB  entry  to  the  default  journal  if any  committable  resources  are  assigned  to  that  

journal.  

v   The  system  positions  the  open  files  under  commitment  control  at one  of  the  following  positions:  

–   The  last  record  accessed  in  the  previous  transaction  

 

4 IBM Systems  - iSeries:  Database  Commitment  control



–   At  the  open  position  if no  commit  operation  has  been  performed  for  the  file  using  this  commitment  

definition

This  consideration  is important  if you  are  doing  sequential  processing.  

v   The  system  does  not  roll  back  noncommittable  changes  for  database  files.  For  example,  opened  files  are  

not  closed,  and  cleared  files  are  not  restored.  The  system  does  not  reopen  or  reposition  any  files  that  

were  closed  during  this  transaction.  

v   The  system  unlocks  record  locks  that  were  acquired  for  commitment  control  purposes  and  makes  those  

records  available  to  other  users.  

v   The  commit  identification  currently  saved  by  the  system  remains  the  same  as  the  commit  identification  

provided  with  the  last  commit  operation  for  the  same  commitment  definition.  

v   The  system  reverses  or  rolls  back  object-level  committable  changes  made  during  this  transaction.  

v   Object  locks  that  were  acquired  for  commitment  control  purposes  are  unlocked  and  those  objects  are  

made  available  to  other  users.  

v   The  system  establishes  the  previous  commitment  boundary  as  the  current  commitment  boundary.  

v   The  system  changes  information  in  the  commitment  definition  to show  that  the  current  transaction  has  

been  ended.  

The  system  must  perform  all  of  the  previous  steps  correctly  for  the  rollback  operation  to be  successful.  

Commitment definition 

You create  a commitment  definition  when  you  use  the  Start  Commitment  Control  (STRCMTCTL)  

command  to  start  commitment  control  on  your  system.  Also,  DB2  Universal  Database  (UDB)  for  iSeries  

automatically  creates  a commitment  definition  when  the  isolation  level  is other  than  No  Commit.  

The  commitment  definition  contains  information  that  pertains  to  the  resources  that  are  being  changed  

under  commitment  control  within  that  job.  The  system  maintains  the  commitment  control  information  in  

the  commitment  definition  as  the  commitment  resources  change,  until  the  commitment  definition  is 

ended.  Each  active  transaction  on  the  system  is represented  by  a commitment  definition.  A subsequent  

transaction  can  reuse  a commitment  definition  after  each  commit  or  rollback  of an  active  transaction.  

A  commitment  definition  generally  includes:  

v   The  parameters  on  the  STRCMTCTL  command.  

v   The  current  status  of  the  commitment  definition.  

v   Information  about  database  files  and  other  committable  resources  that  contain  changes  that  are  made  

during  the  current  transaction.  

For  commitment  definitions  with  job-scoped  locks,  only  the  job  that  starts  commitment  control  knows  

that  commitment  definition.  No  other  job  knows  that  commitment  definition.  

Programs  can  start  and  use  multiple  commitment  definitions.  Each  commitment  definition  for  a job  

identifies  a separate  transaction  that  has  committable  resources  associated  with  it.  These  transactions  can  

be  committed  or  rolled  back  independently  from  transactions  that  are  associated  with  other  commitment  

definitions  that  are  started  for  the  job.  

   Related  concepts  

   “Commit  operation”  on  page  3 

A commit  operation  makes  permanent  all  changes  made  under  commitment  control  since  the  previous  

commit  or  rollback  operation.  The  system  also  releases  all  locks  related  to  the  transaction.  

   “Commitment  control  and  independent  disk  pools”  on  page  20
Independent  disk  pools  and  independent  disk  pool  groups,  can  each  have  a separate  i5/OS  SQL  

database.  You can  use  commitment  control  with  these  databases.  

 

Commitment  control 5



“Independent  disk  pool  considerations  for  commitment  definitions”  on  page  20  

You must  be  aware  of  the  considerations  for  commitment  definitions  in  this  topic  when  you  use  

independent  disk  pools.

Scope for a commitment definition 

The  scope  of  a commitment  definition  determines  which  programs  will  use  that  commitment  definition,  

and  how  locks  acquired  during  transactions  are  scoped.  

The  interface  that  starts  the  commitment  definition  determines  the  scope  of  the  commitment  definition.  

There  are  four  possible  scopes  for  a commitment  definition,  which  fall  under  two  general  categories:  

Commitment  definitions  with  job-scoped  locks  

v   Activation-group-level  commitment  definition  

v   Job-level  commitment  definition  

v   Explicitly  named  commitment  definition  

Commitment  definitions  with  transaction-scoped  locks  

v   Transaction  scoped  commitment  definition  

Commitment  definitions  with  job-scoped  locks  can  be  used  only  by  programs  that  run in  the  job  that  

started  the  commitment  definitions.  In  comparison,  more  than  one  job  can  use  commitment  definitions  

with  transaction-scoped  locks.  

Applications  typically  use  either  activation-group-level  or  job-level  commitment  definitions.  These  

commitment  definitions  are  created  either  explicitly  with  the  Start  Commitment  Control  (STRCMTCTL)  

command,  or  implicitly  by  the  system  when  an  SQL  application  runs with  an  isolation  level  other  than  

*NONE.  

Activation-group-level commitment definition 

The  most  common  scope  is  to  the  activation  group.  The  activation-group-level  commitment  definition  is 

the  default  scope  when  the  STRCMTCTL  command  explicitly  starts  the  commitment  definition,  or  when  

an  SQL  application  that  runs with  an  isolation  level  other  than  No  Commit  implicitly  starts  the  

commitment  definition.  Only  programs  that  run within  that  activation  group  use  that  commitment  

definition.  Many  activation-group-level  commitment  definitions  can  be  active  for  a job  at one  time.  

However,  each  activation-group-level  commitment  definition  can  be  associated  only  with  a single  

activation  group.  The  programs  that  run within  that  activation  group  can  associate  their  committable  

changes  only  with  that  activation-group-level  commitment  definition.  

When  iSeries  Navigator,  the  Work with  Commitment  Definitions  (WRKCMTDFN)  command,  the  Display  

Job  (DSPJOB)  command,  or  the  Work with  Job  (WRKJOB)  command  displays  an  activation-group-level  

commitment  definition,  these  fields  display  the  following  information:  

v   The  commitment  definition  field  displays  the  name  of  the  activation  group.  It shows  the  special  value  

*DFTACTGRP  to  indicate  the  default  activation  group.  

v   The  activation  group  field  displays  the  activation  group  number.  

v   The  job  field  displays  the  job  that  started  the  commitment  definition.  

v   The  thread  field  displays  *NONE.

Job-level commitment definition 

A commitment  definition  can  be  scoped  to  the  job  only  by  issuing  STRCMTCTL  CMTSCOPE(*JOB).  Any  

program  running  in an  activation  group  that  does  not  have  an  activation-group-level  commitment  

definition  started  uses  the  job-level  commitment  definition,  if it has  already  been  started  by  another  

program  for  the  job.  You can  only  start  a single  job-level  commitment  definition  for  a job.  

 

6 IBM Systems  - iSeries:  Database  Commitment  control



When  iSeries  Navigator,  the  Work with  Commitment  Definitions  (WRKCMTDFN)  command,  the  Display  

Job  (DSPJOB)  command,  or  the  Work with  Job  (WRKJOB)  command  displays  a job-level  commitment  

definition,  these  fields  display  the  following  information:  

v   The  commitment  definition  field  displays  the  special  value  *JOB.  

v   The  activation  group  field  displays  a blank.  

v   The  job  field  displays  the  job  that  started  the  commitment  definition.  

v   The  thread  field  displays  *NONE.

For  a given  activation  group,  the  programs  that  run within  that  activation  group  can  use  only  a single  

commitment  definition.  Therefore,  programs  that  run within  an  activation  group  can  either  use  the  

job-level  or  the  activation-group-level  commitment  definition,  but  not  both  at the  same  time.  In  a 

multi-threaded  job  that  does  not  use  SQL  server  mode,  transactional  work  for  a program  will  be  scoped  

to  the  appropriate  commitment  definition  with  respect  to  the  activation  group  of  the  program,  regardless  

of  which  thread  performs  it.  If multiple  threads  use  the  same  activation  group,  they  must  cooperate  to  

perform  the  transactional  work  and  ensure  that  commits  and  rollbacks  occur  at  the  correct  time.  

Even  when  the  job-level  commitment  definition  is active  for  the  job,  a program  can  still  start  the  

activation-group-level  commitment  definition  if no  program  running  within  that  activation  group  has  

performed  any  commitment  control  requests  or  operations  for  the  job-level  commitment  definition.  

Otherwise,  you  must  first  end  the  job-level  commitment  definition  before  you  can  start  the  

activation-group-level  commitment  definition.  Commitment  control  requests  or  operations  for  the  

job-level  commitment  definition  that  can  prevent  the  activation-group-level  commitment  definition  from  

being  started  include:  

v   Opening  (full  or  shared)  a database  file  under  commitment  control.  

v   Using  the  Add  Commitment  Resource  (QTNADDCR)  API  to  add  an  API  commitment  resource.  

v   Committing  a transaction.  

v   Rolling  back  a transaction.  

v   Adding  a remote  resource  under  commitment  control.  

v   Using  the  Change  Commitment  Options  (QTNCHGCO)  API  to changing  commitment  options.  

v   Bringing  the  commitment  definition  to  a rollback  required  state  using  the  Rollback  Required  

(QTNRBRQD)  API.  

v   Sending  a user  journal  entry  that  includes  the  current  commit  cycle  identifier  by  using  the  Send  

Journal  Entry  (QJOSJRNE)  API  with  the  Include  Commit  Cycle  Identifier  parameter.

Likewise,  if the  programs  within  an  activation  group  are  currently  using  the  activation-group-level  

commitment  definition,  the  commitment  definition  must  first  be  ended  before  programs  running  within  

that  same  activation  group  can  use  the  job-level  commitment  definition.  

When  opening  a database  file,  the  open  scope  for  the  opened  file  can  be  either  to  the  activation  group  or  

to  the  job  with  one  restriction:  if a program  is opening  a file  under  commitment  control  and  the  file  is 

scoped  to  the  job,  then  the  program  making  the  open  request  must  use  the  job-level  commitment  

definition.  

Explicitly-named commitment definition 

Explicitly-named  commitment  definitions  are  started  by  the  system  when  it needs  to perform  its  own  

commitment  control  transactions  without  affecting  any  transactions  used  by  an  application.  An  example  

of  a function  that  starts  these  types  of  commitment  definitions  is the  problem  log.  An  application  cannot  

start  explicitly-named  commitment  definitions.  

When  iSeries  Navigator,  the  Work with  Commitment  Definitions  (WRKCMTDFN)  command,  the  Display  

Job  (DSPJOB)  command,  or  the  Work with  Job  (WRKJOB)  command  display  an  explicitly-named  

commitment  definition,  these  fields  display  the  following  information:  

 

Commitment  control 7



v   The  commitment  definition  field  displays  the  name  given  to  it  by  the  system.  

v   The  activation  group  field  displays  a blank.  

v   The  job  field  displays  the  job  that  started  the  commitment  definition.  

v   The  thread  field  displays  *NONE.

Transaction-scoped commitment definitions 

Transaction-scoped  commitment  definitions  are  started  with  the  XA  APIs  for  Transaction  Scoped  Locks.  

These  APIs  use  commitment  control  protocols  that  are  thread  based  or  SQL  connection  based,  and  not  

activation  group  based.  In other  words,  the  APIs  are  used  to  associate  the  commitment  definition  with  a 

particular  thread  or  SQL  connection  while  the  transactional  work  is performed,  and  to  commit  or rollback  

the  transactions.  The  system  attaches  these  commitment  definitions  to the  threads  that  perform  the  

transactional  work,  with  respect  to  the  API  protocols.  They  can  be  used  by  threads  in  different  jobs.  

When  iSeries  Navigator,  the  Work with  Commitment  Definitions  (WRKCMTDFN)  command,  the  Display  

Job  (DSPJOB)  command,  or  the  Work with  Job  (WRKJOB)  command  display  a transaction-scoped  

commitment  definition,  these  fields  display  the  following  information:  

v   The  commitment  definition  field  displays  the  special  value  *TNSOBJ.  

v   The  activation  group  field  displays  a blank.  

v   The  job  field  displays  the  job  that  started  the  commitment  definition.  Or, if the  commitment  definition  

is currently  attached  to  a thread,  the  thread’s  job  is displayed.  

v   The  thread  field  displays  the  thread  to  which  the  commitment  definition  is attached  (or  *NONE  if the  

commitment  definition  is not  currently  attached  to  any  thread).
   Related  reference  

   XA  APIs

Commitment definition names 

The  system  gives  names  to all  commitment  definitions  that  are  started  for  a job.  

The  following  table  shows  various  commitment  definitions  and  their  associated  names  for  a particular  

job.  

 Activation  group  Commit  scope  Commitment  definition  name  

Any  Job  *JOB  

Default  activation  group  Activation  group  *DFTACTGRP  

User-named  activation  group  Activation  group  Activation  group  name  (for example,  

PAYROLL)  

System-named  activation  group  Activation  group  Activation  group  number  (for  

example.  0000000145)  

None  Explicitly  named  QDIR001  (example  of a 

system-defined  commitment  

definition  for  system  use  only).  

System-defined  commitment  

definition  names  begin  with  Q. 

None  Transaction  *TNSOBJ
  

Only  IBM  Integrated  Language  Environment  (ILE)  compiled  programs  can  start  commitment  control  for  

activation  groups  other  than  the  default  activation  group.  Therefore,  a job  can  use  multiple  commitment  

definitions  only  if the  job  is running  one  or  more  ILE  compiled  programs.  

 

8 IBM Systems  - iSeries:  Database  Commitment  control

|
|



Original  Program  Model  (OPM)  programs  run in  the  default  activation  group,  and  by  default  use  the  

*DFTACTGRP  commitment  definition.  In  a mixed  OPM  and  ILE  environment,  jobs  must  use  the  job-level  

commitment  definition  if all  committable  changes  made  by  all  programs  are  to  be  committed  or  rolled  

back  together.  

An  opened  database  file  scoped  to  an  activation  group  can  be  associated  with  either  an  

activation-group-level  or  job-level  commitment  definition.  An  opened  database  file  scoped  to  the  job  can  

be  associated  only  with  the  job-level  commitment  definition.  Therefore,  any  program,  OPM  or  ILE,  which  

opens  a database  file  under  commitment  control  scoped  to  the  job  needs  to use  the  job-level  commitment  

definition.  

Application  programs  do  not  use  the  commitment  definition  name  to  identify  a particular  commitment  

definition  when  making  a commitment  control  request.  Commitment  definition  names  are  primarily  used  

in  messages  to  identify  a particular  commitment  definition  for  a job.  

For  activation-group-level  commitment  definitions,  the  system  determines  which  commitment  definition  

to  use,  based  on  which  activation  group  the  requesting  program  is running  in.  This  is possible  because  

the  programs  that  run within  an  activation  group  at any  point  in  time  can  only  use  a single  commitment  

definition.  

For  transactions  with  transaction-scoped  locks,  the  XA  APIs  and  the  transaction  related  attributes  added  

to  the  CLI  determine  which  commitment  definition  the  invoking  thread  uses.  

   Related  information  

   ILE  concepts  PDF

Example: Jobs and commitment definitions 

This  figure  shows  an  example  of  a job  that  uses  multiple  commitment  definitions.  

It  indicates  which  file  updates  are  committed  or  rolled  back  at  each  activation  group  level.  The  example  

assumes  that  all  of the  updates  that  are  made  to the  database  files  by  all  of  the  programs  are  made  under  

commitment  control.  

 

Commitment  control 9



10 IBM Systems  - iSeries:  Database  Commitment  control



The  following  table  shows  how  files  are  committed  or  rolled  back  if the  scenario  in  the  previous  figure  

changes.  

Additional examples of multiple commitment definitions in a job 

 

Change  in scenario  

Effect  on  changes  to these  files:  

F1  and  F2 F3 and  F4  F5 and  F6 F7 

PGMX  performs  a 

rollback  operation  

instead  of a commit  

operation  (3=  

=COMMIT  becomes  

ROLLBACK).  

Still  pending  Rolled  back  Already  committed  Rolled  back  

PGMZ  performs  a 

commit  operation  

before  returning  to 

PGMX.  

Still  pending  Committed  by PGMZ  Already  committed  Committed  

PGMZ  attempts  to 

start  commitment  

control  specifying  

CMTSCOPE(*ACTGRP)  

after  updating  file  F7.  

The  attempt  fails  

because  changes  are  

pending  using  the  

job-level  commitment  

definition.  

Still  pending  Still  pending  Already  committed  Still  pending  

PGMX  does  not  start  

commitment  control  

and  does  not  open  

files  F3 and  F4 with  

COMMIT(*YES).  

PGMZ  attempts  to 

open  file  F7 with  

COMMIT(*YES).  

Still  pending  Not  under  

commitment  control  

Already  committed  File  F7 cannot  be 

opened  because  no 

*JOB  commitment  

definition  exists  

(PGMX  did  not create  

it).

  

How commitment control works with objects 

When  you  place  an  object  under  commitment  control,  it becomes  a committable  resource.  It  is registered  

with  the  commitment  definition.  It  participates  in  each  commit  operation  and  rollback  operation  that  

occurs  for  that  commitment  definition.  

The  following  topics  describe  these  attributes  of  a committable  resource:  

v   Resource  type  

v   Location  

v   Commit  protocol  

v   Access  intent

Types of committable resources 

The  table  in  this  topic  lists  the  different  types  of  committable  resources.  

The  table  shows  the  following  items:  

v   The  types  of committable  resources.  

v   How  they  are  placed  under  commitment  control.  

 

Commitment  control 11



v   How  they  are  removed  from  commitment  control.  

v   Restrictions  that  apply  to  the  resource  type.

 

Resource  type  

How  to place  it 

under  commitment  

control  

How  to remove  it 

from  commitment  

control  

What  kinds  of 

changes  are  

committable  Restrictions  

FILE-  local  database  

files  

Opening  under  

commitment  control1 

Closing  the  file, if no  

changes  are  pending.  

If changes  are  

pending  when  the  file  

is closed,  after  

performing  the  next  

commit  or rollback  

operation.  

Record-level  changes  No  more  than  500 000  

000 records  can  be 

locked  for  a single  

transaction2. 

DDL-  object-level  

changes  to local  SQL  

tables  and  SQL  

collections.  

Running  SQL  under  

commitment  control  

Performing  a commit  

or rollback  operation  

after  the  object-level  

change.  

Object-level  changes,  

such  as: 

v   Create  SQL  

package  

v   Create  SQL  table  

v   Drop  SQL  table  

Only  object-level  

changes  made  using  

SQL  are  under  

commitment  control.  

DDM-  remote  

distributed  data  

management  (DDM)  

file  

Opening  under  

commitment  control.  

Commitment  control  

support  for DDM  has  

more  information  

about  commitment  

control  and  

distributed  data  

management.  

Closing  the  file, if no  

changes  are  pending.  

If changes  are  

pending  when  the  file  

is closed,  after  

performing  the  next  

commit  or rollback  

operation.  

Record-level  changes  

LU  6.2-  protected  

conversation  

Starting  the  

conversation3 

Ending  the  

conversation  

DRDA-  distributed  

relational  database  

Using  SQL  

CONNECT  statement  

Ending  the  

connection  

API-  local  API  

commitment  resource  

Add  Commitment  

Resource  

(QTNADDCR)  API  

Remove  Commitment  

Resource  

(QTNRMVCR)  API  

The  user  program  

determines  this.  

Journal  entries  might  

be written  by the  user  

program  using  the  

Send  Journal  Entry  

(QJOSJRNE)  API  to 

assist  with  tracking  

these  changes.  

The  application  must  

provide  an exit  

program  to be called  

during  commit,  

rollback,  or 

resynchronization  

operations.  

TCP-TCP/IP  

connection  

Using  SQL  

CONNECT  statement  

to an  RDB  defined  to 

use  TCP/IP  

connections,  or 

opening  a DDM  file  

defined  with  a 

TCP/IP  location  

Ending  the  SQL  

connection,  or closing  

the  DDM  file  if no 

changes  are  pending.  

If the DDM  file  is 

closed  with  changes  

pending,  the  

connection  is closed  

after  performing  the  

next  commit  or 

rollback  operation.  

 

12 IBM Systems  - iSeries:  Database  Commitment  control



Resource  type  

How  to place  it 

under  commitment  

control  

How  to remove  it 

from  commitment  

control  

What  kinds  of 

changes  are  

committable  Restrictions  

Notes:   

   

1 For  details  on  how  to place  a database  file under  commitment  control,  see the  appropriate  language  reference  

manual.  Related  information  for commitment  control  links  to language  manuals  that  you  can  use.  

   

2 You can  use  a QAQQINI  file  to  reduce  the  limit  of 500  000 000.  See  “Manage  transaction  size”  on page  66  for 

instructions.  

   

3 When  a DDM  connection  is started,  the  DDM  file  specifies  PTCCNV(*YES),  and  the DDM  file  is defined  with  

an SNA  remote  location;  an  LU  6.2  resource  is added  with  the DDM  resource.

When  a DRDA® connection  is started,  an LU  6.2 resource  is added  with  the  DRDA  resource  if both  of the  following  

conditions  are  true:  

v   The  program  is using  the  distributed  unit  of work  connection  protocols.  

v   The  connection  is to a rational  database  (RDB)  that  is defined  with  an SNA  remote  location.  For  more  information  

about  starting  protected  conversions,  see  APPC  Programming  

  

. 

  

   Related  concepts  

   Commitment  control  support  for  DDM  

   “Updates  to  the  notify  object”  on  page  58  

This  topic  lists  the  uncommitted  changes  for  purposes  of  the  notify  object.
   Related  reference  

   Add  Commitment  Resource  (QTNADDCR)  API  

   Remove  Commitment  Resource  (QTNRMVCR)  command  

   Send  Journal  Entry  (QJOSJRNE)  command

Local and remote committable resources 

A  committable  resource  can  be  either  a local  resource  or  a remote  resource.  

Local committable resource 

A  local  committable  resource  is  on  the  same  system  as  the  application.  Each  journal  associated  with  

resources  under  commitment  control  can  be  thought  of as  a local  location.  All  the  resources  that  are  

registered  without  a journal  (optionally  for  both  DDL  resources  and  API  resources)  can  be  thought  of as  a 

separate  local  location.  

If a committable  resource  is  on  an  independent  disk  pool,  the  resource  is not  considered  local  if the  

commitment  definition  is  on  a different  disk  pool.  

Remote committable resources 

A  remote  committable  resource  is on  a different  system  from  the  application.  A  remote  location  exists  for  

each  unique  conversation  to  a remote  system.  A commitment  definition  might  have  one  or  more  remote  

locations  on  one  or  more  remote  systems.  

When  you  place  a local  resource  under  commitment  control  for  the  system  disk  pool,  or  any  independent  

disk  pool,  you  must  use  DRDA  to  access  resources  under  commitment  control  in  any  other  independent  

disk  pool.  

The  following  table  shows  the  types  of  committable  resources  and  their  locations.  

 Resource  type  Location  

API  Local  

 

Commitment  control 13



Resource  type  Location  

DDL  Local  

DDM  Remote  

DRDA  Local  or remote  

FILE  Local  

LU62  Remote  

TCP  Remote
  

   Related  concepts  

   “Commitment  control  and  independent  disk  pools”  on  page  20
Independent  disk  pools  and  independent  disk  pool  groups,  can  each  have  a separate  i5/OS  SQL  

database.  You can  use  commitment  control  with  these  databases.

Access intent of a committable resource 

The  access  intent  determines  how  the  resources  participate  together  in a transaction.  

When  a resource  is  placed  under  commitment  control,  the  resource  manager  indicates  how  the  resource  

will  be  accessed:  

v   Update  

v   Read-only  

v   Undetermined  

The  following  table  shows  what  access  intents  are  possible  for  a particular  type  of  resource  and  how  the  

system  determines  the  access  intent  for  a resource  when  it is registered.  

 Resource  type  Possible  access  intents  How  the access  intent  is determined  

FILE  Update,  read-only  Based  on how  the  file  was  opened  

DDL  Update  Always  update  

API  Update  Always  update  

DDM  Update,  read-only  Based  on how  the  file  was  opened  

LU62  Undetermined  Always  undetermined  

DRDA  Update,  read-only,  undetermined  For DRDA  Level  1, the access  intent  

is update  if no other  remote  

resources  are  registered.  Otherwise,  

the access  intent  is read-only.  For  

DRDA  Level  2, the  access  intent  is 

always  undetermined.  

TCP  Undetermined  Always  undetermined
  

The  access  intent  of  resources  that  are  already  registered  determines  whether  a new  resource  can  be  

registered.  The  following  rules  apply:  

v   A one-phase  resource  whose  access  intent  is update  cannot  be  registered  when  any  of  the  following  

conditions  is true: 

–   Resources  whose  access  intent  is  update  are  already  registered  at other  locations.  

–   Resources  whose  access  intent  is  undetermined  are  already  registered  at other  locations.  

–   Resources  whose  access  intent  is  undetermined  are  already  registered  at the  same  location  and  the  

resources  have  been  changed  during  the  current  transaction.
v    A two-phase  resource  whose  access  intent  is  update  cannot  be  registered  when  a one-phase  resource  

whose  access  intent  is  update  is  already  registered.

 

14 IBM Systems  - iSeries:  Database  Commitment  control



The commit protocol of a committable resource 

Commit  protocol  is the  capability  a resource  has  to participate  in  one-phase  or  two-phase  commit  

processing.  Local  resources,  except  API  committable  resources,  are  always  two-phase  resources.  

If a committable  resource  resides  on  an  independent  disk  pool  and  the  commitment  definition  resides  on  

a different  disk  pool,  the  resource  is  not  considered  as a local  resource  or  a two-phase  resource.  

A  two-phase  resource  is  also  called  a protected  resource.  Remote  resources  and  API  committable  resources  

must  be  registered  as  one-phase  resources  or  two-phase  resources  when  they  are  placed  under  

commitment  control.  The  following  table  shows  what  types  of  committable  resources  can  coexist  in  a 

commitment  definition  with  a one-phase  resource.  

 Resource  type  Can  coexist  with  

One-phase  API  resource  Other  local  resources.  No remote  resources.  

One-phase  remote  resource  Other  one-phase  resources  at the  same  location.  No local  

resources.
  

   Related  concepts  

   “Commitment  control  and  independent  disk  pools”  on  page  20
Independent  disk  pools  and  independent  disk  pool  groups,  can  each  have  a separate  i5/OS  SQL  

database.  You can  use  commitment  control  with  these  databases.

Journaled files and commitment control 

You must  journal  (log)  a database  file  (resource  type  FILE  or  DDM)  before  it can  be  opened  for  output  

under  commitment  control  or  referenced  by  an  SQL  application  that  uses  an  isolation  level  other  than  No  

Commit.  A  file  does  not  need  to  be  journaled  in  order  to  open  it  for  input  only  under  commitment  

control.  

An  error  occurs  if:  

v   An  attempt  is  made  to  open  a database  file  for  output  under  commitment  control,  but  the  file  is not  

currently  journaled.  

v   No  commitment  definition  is started  that  can  be  used  by  the  file  being  opened  under  commitment  

control.  

If only  the  after  images  are  being  journaled  for  a database  file  when  that  file  is opened  under  

commitment  control,  the  system  automatically  starts  journaling  both  the  before  and  after  images.  The  

before  images  are  written  only  for  changes  to  the  file  that  occur  under  commitment  control.  If  other  

changes  that  are  not  under  commitment  control  occur  to  the  file  at the  same  time,  only  after-images  are  

written  for  those  changes.  

The  system  automatically  writes  record-level  committable  changes  and  object-level  committable  changes  

to  a journal.  For  record-level  changes,  the  system  then  uses  the  journal  entries,  if necessary,  for  recovery  

purposes;  the  system  does  not  use  entries  from  object-level  committable  changes  for  recovery  purposes.  

Furthermore,  the  system  does  not  automatically  write  journal  entries  for  API  commitment  resources.  

However,  the  exit  program  for  the  API  resource  can  use  the  Send  Journal  Entry  (QJOSJRNE)  API  to  write  

journal  entries  to  provide  an  audit  trail  or  to  assist  with  recovery.  The  content  of  these  entries  is 

controlled  by  the  user  exit  program.  

The  system  uses  a technique  other  than  a journal  to perform  recovery  for  object-level  commitment  

resources.  Recovery  for  API  commitment  resources  is  accomplished  by  calling  the  commit  and  rollback  

exit  program  associated  with  each  particular  API  commitment  resource.  The  exit  program  has  the  

responsibility  for  performing  the  actual  recovery  that  is necessary  for  the  situation.  

   Related  concepts  

   Journal  management

 

Commitment  control 15



Sequence of journal entries under commitment control 

This  table  shows  the  sequence  of  entries  that  are  typically  written  while  a commitment  definition  is 

active.  You can  use  the  Journal  entry  information  finder  to  get  more  information  about  the  contents  of  the  

journal  entries.  

Commitment  control  entries  are  written  to  a local  journal  if at least  one  of the  following  conditions  is 

true: 

v   The  journal  is  specified  as  the  default  journal  on  the  Start  Commitment  Control  (STRCMTCTL)  

command.  

v   At  least  one  file  journaled  to  the  journal  is opened  under  commitment  control.  

v   At  least  one  API  commitment  resource  associated  with  the  journal  is registered  under  commitment  

control.

 Entry  type  Description  Where  it is written  When  it is written  

C BC Begin  commitment  control  To the  default  journal,  if 

one  is specified  on the  

STRCMTCTL  command.  

When  the  STRCMTCTL  

command  is used.  

To the  journal.  When  the  first  file  

journaled  to a journal  is 

opened  or when  an API  

resource  is registered  for a 

journal.  

C SC Start  commit  cycle  To the  journal.  When  the  first  record  

change  occurs  for  the 

transaction  for a file  

journaled  to this  journal1. 

To the  journal  for an API  

resource.  

When  the  QJOSJRNE  API  is 

first  used  with  the  Include  

Commit  Cycle  Identifier  key.  

Journal  codes  D and  F DDL  object-level  entries  To the  journal  associated  

with  the  object  being  

updated.  Only  journal  

entries  that  contain  a 

commit  cycle  identifier  

represent  a DDL  

object-level  change  that  is 

part  of the  transaction.  

When  updates  occur.  

Journal  code  R Record-level  entries  To the  journal  associated  

with  the  file  being  updated.  

When  the  updates  occur.  

Journal  code  U User-created  entries  To the  journal  associated  

with  an API  resource.  

If the application  program  

uses  the  QJOSJRNE  API  is 

first  used  with  the  Include  

Commit  Cycle  Identifier  key.  

C CM  Commit  To the  journal.  When  the  commit  has  

completed  successfully.  

To the  default  journal.  If any  committable  

resources  are  associated  

with  the journal.  

C RB Rollback  To the  journal.  After  the  rollback  operation  

has  completed.  

To the  default  journal.  If any  committable  

resources  are  associated  

with  the journal.  

 

16 IBM Systems  - iSeries:  Database  Commitment  control



Entry  type  Description  Where  it is written  When  it is written  

C LW End  transaction  To the  default  journal,  if 

one  is specified  on the  

STRCMTCTL  command.  

The  system  writes  an LW 

header  record  and  one  or 

more  detail  records.  These  

entries  are  written  only  if 

OMTJRNE(*NONE)  is 

specified  on the  

STRCMTCTL  command  or 

if a system  error  occurs.  

When  the commit  or 

rollback  operation  has 

completed.  

C EC  End  commitment  control  To the  journal.  When  the End  

Commitment  Control  

(ENDCMTCTL)  command  

is completed.  

To a local  journal  that  is not  

the default  journal.  

When  a commit  boundary  

is established,  following  the 

point  when  all committable  

resources  associated  with  

that  journal  have  been  

removed  from  commitment  

control.  

C SB  Start  of savepoint  or nested  

commit  cycle.  

To the  journal.  When  the application  

creates  an SQL  

SAVEPOINT,  or when  the 

system  creates  an internal  

nested  commit  cycle  to 

handle  a series  of database  

functions  as a single  

operation2. 

C SQ  Release  of savepoint  or 

commit  of nested  commit  

cycle.  

To the  journal.  When  the application  

releases  an SQL  

SAVEPOINT,  or when  the 

system  commits  an internal  

nested  commit  cycle2. 

C SU  Rollback  of savepoint  or 

nested  commit  cycle.  

To the  journal.  When  the application  rolls  

back  an SQL  SAVEPOINT,  

or when  the  system  rolls  

back  an internal  nested  

commit  cycle2. 

 

Commitment  control 17



Entry  type  Description  Where  it is written  When  it is written  

Notes:   

1 You can  specify  that  the  fixed-length  portion  of the journal  entry  includes  transaction  information  by  specifying  

the  Logical  Unit  of Work (*LUW)  value  for  the  Fixed-Length  Data  (FIXLENDTA)  parameter  of the  Create  Journal  

(CRTJRN)  or Change  Journal  (CHGJRN)  command.  By  specifying  the FIXLENDTA  (*LUW)  parameter,  the 

fixed-length  portion  of each  C SC  journal  entry  will  contain  the Logical  Unit  of Work ID (LUWID)  of the  current  

transaction.  Likewise  for XA  transactions,  if you  specify  the FIXLENDTA(*XID)  parameter,  the  fixed-length  portion  

of each  C SC journal  entry  will  contain  the  XID  of the  current  transaction.  The  LUWID  or XID  can  help  you  find  all  

the  commit  cycles  for a particular  transaction  if multiple  journals  or systems  are  involved  in the  transaction.  

2 These  entries  are  sent  only  if you  set the  QTN_JRNSAVPT_MYLIB_MYJRN  environment  variable  to *YES  where  

MYJRN  is the  journal  you  are  using  and  MYLIB  is the  library  the  journal  is stored  in. Special  value  *ALL  is 

supported  for  the  MYLIB  and  MYJRN  values.  You can  set these  variables  system-wide  or for a specific  job. To have  

the  entries  sent  for  journal  MYLIB/MYJRN  for  just  one  job,  use  this  command  in that  job: 

v   ADDENVVAR  ENVVAR(QTN_JRNSAVPT_MYLIB_MYJRN)  VALUE(*YES)

To  have  entries  sent  for  all  journals  for  all jobs,  use  this  command:  

v   ADDENVVAR  ENVVAR(’QTN_JRNSAVPT_*ALL_*ALL’)  VALUE(*YES)  LEVEL(*SYS)

You  need  to set  the  environment  variable  before  you  start  commitment  control.  

  

   Related  concepts  

   “Commit  operation”  on  page  3 

A commit  operation  makes  permanent  all  changes  made  under  commitment  control  since  the  previous  

commit  or  rollback  operation.  The  system  also  releases  all  locks  related  to the  transaction.  

   Journal  entry  information  finder
   Related  reference  

   End  Commitment  Control  (ENDCMTCTL)  command

Commit cycle identifier 

A commit  cycle  is the  time  from  one  commitment  boundary  to  the  next.  The  system  assigns  a commit  cycle  

identifier  to  associate  all  of the  journal  entries  for  a particular  commit  cycle  together.  Each  journal  that  

participates  in  a transaction  has  its  own  commit  cycle  and  its  own  commit  cycle  identifier.  

The  commit  cycle  identifier  is  the  journal  sequence  number  of the  C SC  journal  entry  written  for  the  

commit  cycle.  The  commit  cycle  identifier  is placed  in  each  journal  entry  written  during  the  commit  cycle.  

If more  than  one  journal  is  used  during  the  commit  cycle,  the  commit  cycle  identifier  for  each  journal  is 

different.  

You can  specify  that  the  fixed-length  portion  of the  journal  entry  includes  transaction  information  by  

specifying  the  Logical  Unit  of  Work (*LUW)  value  for  the  Fixed-Length  Data  (FIXLENDTA)  parameter  of 

the  Create  Journal  (CRTJRN)  or  Change  Journal  (CHGJRN)  command.  By  specifying  the  FIXLENDTA  

(*LUW)  parameter,  the  fixed-length  portion  of each  C SC  journal  entry  will  contain  the  Logical  Unit  of  

Work ID  (LUWID)  of  the  current  transaction.  Likewise  for  XA  transactions,  if you  specify  the  

FIXLENDTA  (*XID)  parameter,  the  fixed-length  portion  of  each  C SC  journal  entry  will  contain  the  XID  of  

the  current  transaction.  The  LUWID  or  XID  can  help  you  find  all  the  commit  cycles  for  a particular  

transaction  if multiple  journals  or  systems  are  involved  in  the  transaction.  

You can  use  the  Send  Journal  Entry  (QJOSJRNE)  API  to write  journal  entries  for  API  resources.  You have  

the  option  of including  the  commit  cycle  identifier  on  those  journal  entries.  

You can  use  the  commit  cycle  identifier  to  apply  or  remove  journaled  changes  to a commitment  boundary  

using  the  Apply  Journaled  Changes  (APYJRNCHG)  command  or  the  Remove  Journaled  Changes  

(RMVJRNCHG)  command.  These  limitations  apply:  

 

18 IBM Systems  - iSeries:  Database  Commitment  control



v   Most  object-level  changes  made  under  commitment  control  are  written  to the  journal  but  are  not  

applied  or  removed  using  the  APYJRNCHG  and  RMVJRNCHG  commands.  

v   The  QJOSJRNE  API  writes  user-created  journal  entries  with  a journal  code  of  U. These  entries  cannot  be  

applied  or  removed  using  the  APYJRNCHG  and  RMVJRNCHG  commands.  They  must  be  applied  or  

removed  with  a user-written  program.

Record locking 

When  a job  holds  a record  lock  and  another  job  attempts  to retrieve  that  record  for  update,  the  requesting  

job  waits  and  is removed  from  active  processing.  

The  requesting  job  will  be  active  till  one  of the  following  events  occurs:  

v   The  record  lock  is  released.  

v   The  specified  wait  time  ends.  

More  than  one  job  can  request  a record  to  be  locked  by  another  job.  When  the  record  lock  is released,  the  

first  job  to  request  the  record  receives  that  record.  When  waiting  for  a locked  record,  specify  the  wait  

time  in  the  WAITRCD  parameter  on  the  following  create,  change,  or  override  commands:  

v   Create  Physical  File  (CRTPF)  

v   Create  Logical  File  (CRTLF)  

v   Create  Source  Physical  File  (CRTSRCPF)  

v   Change  Physical  File  (CHGPF)  

v   Change  Logical  File  (CHGLF)  

v   Change  Source  Physical  File  (CHGSRCPF)  

v   Override  Database  File  (OVRDBF)  

When  you  specify  wait  time,  consider  the  following  information:  

v   If you  do  not  specify  a value,  the  program  waits  the  default  wait  time  for  the  process.  

v   For  commitment  definitions  with  transaction-scoped  locks  only,  the  job  default  wait  time  can  be  

overridden  by  a transaction  lock-wait  time  that  can  be  specified  on:  

–   The  xa_open  API.  

–   A  JDBC  or  JTA interface.  Distributed  transactions  lists  these  APIs.
v    If the  record  cannot  be  allocated  within  the  specified  time,  a notify  message  is sent  to  the  high-level  

language  program.  

v   If the  wait  time  for  a record  is  exceeded,  the  message  sent  to  the  job  log  gives  the  name  of  the  job  

holding  the  locked  record  that  caused  the  requesting  job  to  wait.  If  you  experience  record  lock  

exceptions,  you  can  use  the  job  log  to  help  determine  which  programs  to  alter  so  they  will  not  hold  

locks  for  long  durations.  

Programs  keep  record  locks  over  long  durations  for  one  of  the  following  reasons:  

v   The  record  remains  locked  while  the  workstation  user  is considering  a change.  

v   The  record  lock  is  part  of a long  commitment  transaction.  Consider  making  smaller  transactions  so  a 

commit  operation  can  be  performed  more  frequently.  

v   An  undesired  lock  has  occurred.  For  example,  assume  that  a file  is defined  as  an  update  file  with  

unique  keys,  and  that  the  program  updates  and  adds  additional  records  to  the  file.  If  the  workstation  

user  wants  to  add  a record  to  the  file,  the  program  might  attempt  to access  the  record  to  determine  

whether  the  key  already  exists.  If  it does,  the  program  informs  the  workstation  user  that  the  request  

made  is not  valid.  When  the  record  is  retrieved  from  the  file,  it is locked  until  it is implicitly  released  

by  another  read  operation  to  the  same  file,  or  until  it is explicitly  released.  

 

Commitment  control 19



Note:   For  more  information  about  how  to  use  each  high-level  language  interface  to  release  record  

locks,  see  the  appropriate  high-level  language  reference  manual.  Related  information  for  

commitment  control  has  links  to  high-level  language  manuals  that  you  can  use  with  

commitment  control.  

The  duration  of the  lock  is much  longer  if LCKLVL(*ALL)  is specified  because  the  record  that  was  

retrieved  from  the  file  is  locked  until  the  next  commit  or  rollback  operation.  It is  not  implicitly  released  

by  another  read  operation  and  cannot  be  explicitly  released.  

Another  function  that  can  put  a lock  on  a file  is the  save-while-active  function.  

   Related  concepts  

   Distributed  transactions  

   Save  your  server  while  it  is active
   Related  reference  

   “Related  information  for  commitment  control”  on  page  107
Listed  here  are  the  product  manuals  and  IBM  Redbooks™ (in  PDF  format),  Web sites,  and  information  

center  topics  that  relate  to  the  commitment  control  topic.  You can  view  or  print  any  of  the  PDFs.

Commitment control and independent disk pools 

Independent  disk  pools  and  independent  disk  pool  groups,  can  each  have  a separate  i5/OS  SQL  

database.  You can  use  commitment  control  with  these  databases.  

However,  because  each  independent  disk  pool  or  independent  disk  pool  group  has  a separate  SQL  

database,  you  should  be  aware  of  some  considerations.  

   Related  concepts  

   “Commitment  definition”  on  page  5
You  create  a commitment  definition  when  you  use  the  Start  Commitment  Control  (STRCMTCTL)  

command  to  start  commitment  control  on  your  system.  Also,  DB2  Universal  Database  (UDB)  for  

iSeries  automatically  creates  a commitment  definition  when  the  isolation  level  is other  than  No  

Commit.  

   “Local  and  remote  committable  resources”  on  page  13  

A committable  resource  can  be  either  a local  resource  or  a remote  resource.  

   “The  commit  protocol  of  a committable  resource”  on  page  15
Commit  protocol  is  the  capability  a resource  has  to  participate  in  one-phase  or  two-phase  commit  

processing.  Local  resources,  except  API  committable  resources,  are  always  two-phase  resources.

Independent disk pool considerations for commitment definitions 

You must  be  aware  of  the  considerations  for  commitment  definitions  in  this  topic  when  you  use  

independent  disk  pools.  

QRECOVERY library considerations 

When  you  start  commitment  control,  the  commitment  definition  is  created  in  the  QRECOVERY  library.  

Each  independent  disk  pool  or  independent  disk  pool  group  has  its  own  version  of a QRECOVERY  

library.  On  an  independent  disk  pool,  the  name  of  the  QRECOVERY  library  is QRCYxxxxx,  where  xxxxx  

is the  number  of  the  independent  disk  pool.  For  example,  the  name  of the  QRECOVERY  library  for  

independent  disk  pool  39  is QRCY00039.  Furthermore,  if the  independent  disk  pool  is part  of a disk  pool  

group,  only  the  primary  disk  pool  has  a QRCYxxxxx  library.  

When  you  start  commitment  control,  the  commitment  definition  is  created  in  the  QRECOVERY  library  of 

the  independent  disk  pool  that  is  associated  with  that  job,  making  commitment  control  active  on  the  

independent  disk  pool.  

 

20 IBM Systems  - iSeries:  Database  Commitment  control



Set ASP Group considerations 

Using  the  Set  ASP  Group  (SETASPGRP)  command  while  commitment  control  is  active  on  an  independent  

disk  pool  has  the  following  effects:  

v   If you  switch  from  an  independent  disk  pool  and  resources  are  registered  with  commitment  control  on  

the  disk  pool,  the  SETASPGRP  command  fails  with  message  CPDB8EC,  reason  code  2,  The  thread  has  

an  uncommitted  transaction.  This  message  is followed  by  message  CPFB8E9.  

v   If you  switch  from  an  independent  disk  pool  and  no  resources  are  registered  with  commitment  control,  

the  commitment  definitions  are  moved  to  the  independent  disk  pool  to which  you  are  switching.  

v   If you  switch  from  the  system  disk  pool  (ASP  group  *NONE),  commitment  control  is  not  affected.  The  

commitment  definitions  stay  on  the  system  disk  pool.  

v   If you  use  a notify  object,  the  notify  object  must  reside  on  the  same  independent  disk  pool  or  

independent  disk  pool  group  as  the  commitment  definition.  

v   If you  move  the  commitment  definition  to  another  independent  disk  pool  or  independent  disk  pool  

group,  the  notify  object  must  also  reside  on  that  other  independent  disk  pool  or  independent  disk  pool  

group.  The  notify  object  on  the  other  independent  disk  pool  or  independent  disk  pool  group  is 

updated  if  the  commitment  definition  ends  abnormally.  If  the  notify  object  is not  found  on  the  other  

independent  disk  pool  or  independent  disk  pool  group,  the  update  fails  with  message  CPF8358.

Default journal considerations 

You should  be  aware  of  the  following  default  journal  considerations:  

v   If you  use  the  default  journal,  the  journal  must  reside  on  the  same  independent  disk  pool  or 

independent  disk  pool  group  as  the  commitment  definition.  

v   If the  default  journal  is not  found  on  the  other  independent  disk  pool  or  independent  disk  pool  group  

when  commitment  control  starts,  the  commitment  control  start  fails  with  message  CPF9873.  

v   If you  move  the  commitment  definition  to  another  independent  disk  pool  or  independent  disk  pool  

group,  the  default  journal  must  also  reside  on  that  other  independent  disk  pool  or  independent  disk  

pool  group.  If  the  journal  is not  found  on  the  other  independent  disk  pool  or  independent  disk  pool  

group,  the  commitment  definition  is moved,  but  no  default  journal  is used  from  this  point  on.

IPL and vary off considerations 

You should  be  aware  of  the  following  IPL  and  vary  off  considerations:  

v   Recovery  of  commitment  definitions  residing  on  an  independent  disk  pool  is performed  during  the  

vary  on  processing  of  the  independent  disk  pool  and  is similar  to  IPL  recovery.  

v   Commitment  definitions  in an  independent  disk  pool  are  not  recovered  during  the  system  IPL.  

v   The  vary  off  of  an  independent  disk  pool  has  the  following  effects  on  commitment  definitions:  

–   Jobs  associated  with  the  independent  disk  pool  end.  

–   No  new  commitment  definitions  are  allowed  to  be  created  on  the  independent  disk  pool.  

–   Commitment  definitions  residing  on  the  independent  disk  pool  become  unusable.  

–   Commitment  definitions  residing  on  the  independent  disk  pool,  but  not  attached  to  a job,  release  

transaction  scoped  locks.

Remote database considerations 

You should  be  aware  of  the  following  remote  database  considerations:  

v   You cannot  use  an  LU6.2  SNA  connection  (protected  conversations  or  Distributed  Unit  of Work  

(DUW))  to connect  to  a remote  database  from  an  independent  disk  pool  database.  You can  use  

unprotected  SNA  conversations  to  connect  from  an  independent  disk  pool  database  to a remote  

database.  

 

Commitment  control 21



v   When  commitment  control  is active  for  a job  or  thread,  access  to data  outside  the  independent  disk  

pool  or  disk  pool  group  to  which  the  commitment  definition  belongs  is only  possible  remotely,  as if it  

were  data  that  resides  on  another  system.  When  you  issue  an  SQL  CONNECT  statement  to connect  to  

the  relational  database  (RDB)  on  the  independent  disk  pool,  the  system  makes  the  connection  a remote  

connection.  

v   The  system  disk  pool  and  basic  disk  pools  do  not  require  a remote  connection  for  read-only  access  to  

data  that  resides  on  an  independent  disk  pool.  Likewise,  an  independent  disk  pool  does  not  require  a 

remote  connection  for  read-only  access  to  data  that  resides  on  the  system  disk  pool  or  a basic  disk  

pool.
   Related  concepts  

   “Commitment  definition”  on  page  5
You  create  a commitment  definition  when  you  use  the  Start  Commitment  Control  (STRCMTCTL)  

command  to  start  commitment  control  on  your  system.  Also,  DB2  Universal  Database  (UDB)  for  

iSeries  automatically  creates  a commitment  definition  when  the  isolation  level  is other  than  No  

Commit.

Considerations for XA transactions 

In  the  XA  environment,  each  database  is considered  a separate  resource  manager.  When  a transaction  

manager  wants  to  access  two  databases  under  the  same  transaction,  it must  use  the  XA  protocols  to 

perform  two-phase  commit  with  the  two  resource  managers.  

Because  each  independent  disk  pool  is  a separate  SQL  database,  in  the  XA  environment  each  independent  

disk  pool  is also  considered  a separate  resource  manager.  For  an  application  server  to  perform  a 

transaction  which  targets  two  different  independent  disk  pools,  the  transaction  manager  must  also  use  a 

two-phase  commit  protocol.  

   Related  concepts  

   “XA  transaction  support  for  commitment  control”  on  page  41
DB2  Universal  Database  (UDB)  for  iSeries  can  participate  in  X/Open  global  transactions.  

   Independent  disk  pools

Considerations and restrictions for commitment control 

The  topic  talks  about  miscellaneous  considerations  and  restrictions  for  commitment  control.  

Database file considerations 

v   If you  specify  that  a shared  file  be  opened  under  commitment  control,  all  subsequent  uses  of that  file  

must  be  opened  under  commitment  control.  

v   If SEQONLY(*YES)  is specified  for  the  file  opened  for  read-only  with  LCKLVL(*ALL)  (either  implicitly  

or  by  a high-level  language  program,  or  explicitly  by  the  Override  with  Database  File  (OVRDBF)  

command),  then  SEQONLY(*YES)  is  ignored  and  SEQONLY(*NO)  is used.  

v   Record-level  changes  made  under  commitment  control  are  recorded  in  a journal.  These  changes  can  be  

applied  to  or  removed  from  the  database  with  the  Apply  Journaled  Changes  (APYJRNCHG)  command  

or  the  Remove  Journaled  Changes  (RMVJRNCHG)  command.  

v   Both  before-images  and  after-images  of  the  files  are  journaled  under  commitment  control.  If you  

specify  only  to  journal  the  after-images  of  the  files,  the  system  also  automatically  journals  the  

before-image  of  the  file  changes  that  occurred  under  commitment  control.  However,  because  the  

before-images  are  not  captured  for  all  changes  made  to  the  files,  you  cannot  use  the  RMVJRNCHG  

command  for  these  files.

Considerations for object and record-level changes 

v   Object-level  and  record-level  changes  made  under  commitment  control  using  SQL  will  use  the  

commitment  definition  that  is currently  active  for  the  activation  group  that  the  requesting  program  is 

running  in.  If neither  the  job-level  nor  the  activation-group-level  commitment  definition  is active,  SQL  

will  start  an  activation-group-level  commitment  definition.

 

22 IBM Systems  - iSeries:  Database  Commitment  control



One-phase and two-phase commit considerations 

v   While  a one-phase  remote  conversation  or  connection  is established,  remote  conversations  or  

connections  to  other  locations  are  not  allowed.  If a commitment  boundary  is established  and  all  

resources  are  removed,  the  location  can  be  changed.  

v   If you  are  using  two-phase  commit,  you  do  not  need  to  use  the  Submit  Remote  Command  

(SBMRMTCMD)  command  to  start  commitment  control  or  perform  any  other  commitment  control  

operations  at  the  remote  locations.  The  system  performs  these  functions  for  you.  

v   For  a one-phase  remote  location,  the  COMMIT  and  ROLLBACK  CL  commands  will  fail  if SQL  is  in the  

call  stack  and  the  remote  relational  database  is not  on  a system.  If SQL  is not  on  the  call  stack,  the  

COMMIT  and  ROLLBACK  commands  will  not  fail.  

v   For  a one-phase  remote  location,  commitment  control  must  be  started  on  the  source  system  before  

making  committable  changes  to  remote  resources.  The  system  automatically  starts  commitment  control  

for  distributed  database  SQL  on  the  source  system  at  connection  time  if the  SQL  program  is running  

with  the  commitment  control  option  other  than  *NONE.  When  the  first  remote  resource  is placed  

under  commitment  control,  the  system  starts  commitment  control  on  the  target  system.

Save consideration 

A  save  operation  is  prevented  if the  job  performing  the  save  has  one  or  more  active  commitment  

definitions  with  any  of  the  following  types  of  committable  changes:  

v   A  record  change  to a file  that  resides  in  the  library  being  saved.  For  logical  files,  all  the  related  physical  

files  are  checked.  

v   Any  object-level  changes  within  a library  that  is being  saved.  

v   Any  API  resource  that  was  added  using  the  Add  Commitment  Resource  (QTNADDCR)  API  and  with  

the  Allow  normal  save  processing  field  set  to the  default  value  of  N.

This  prevents  the  save  operations  from  saving  to  the  save  media  changes  that  are  due  to  a partial  

transaction.  

Note:   If you  use  the  new  save  with  partial  transactions  feature  the  object  can  be  saved  without  ending  a 

commitment  definition.  

Object  locks  and  record  locks  prevent  pending  changes  from  commitment  definitions  in  other  jobs  

from  being  saved  to  the  save  media.  This  is true only  for  API  commitment  resources  if locks  are  

acquired  when  changes  are  made  to  the  object  or  objects  associated  with  the  API  commitment  

resource.  

Miscellaneous considerations and restrictions 

v   Before  upgrading  your  system  to  a new  release,  all  pending  resynchronizations  must  either  be  

completed  or  canceled.  

v   The  COMMIT  and  ROLLBACK  values  are  shown  on  the  WRKACTJOB  Function  field  during  a commit  

or  rollback.  If  the  Function  remains  COMMIT  or  ROLLBACK  for  a long  time,  one  of  the  following  

events  might  have  occurred:  

–   A  resource  failure  during  the  commit  or  rollback  requires  resynchronization.  Control  will  not  return  

to  the  application  until  the  resynchronization  completes  or  is canceled.  

–   This  system  voted  read-only  during  the  commit.  Control  will  not  return  to the  application  until  the  

system  that  initiated  the  commit  sends  data  to  this  system.  

–   This  system  voted  OK  to  leave  out  during  the  commit.  Control  will  not  return  to  the  application  

until  the  system  that  initiated  the  commit  sends  data  to this  system.
   Related  concepts  

   Ensure  two-phase  commit  integrity  

 

Commitment  control 23



“Commit  lock  level”  on  page  49  

The  value  you  specify  for  the  LCKLVL  parameter  on  the  Start  Commitment  Control  (STRCMTCTL)  

command  becomes  the  default  level  of  record  locking  for  database  files  that  are  opened  and  placed  

under  commitment  control  for  the  commitment  definition.
   Related  reference  

   Override  with  Database  File  (OVRDBF)  command  

   Apply  Journaled  Changes  (APYJRNCHG)  command  

   Remove  Journaled  Changes  (RMVJRNCHG)  command  

   SQL  programming  

   Submit  Remote  Command  (SBMRMTCMD)  command  

   COMMIT  command  

   ROLLBACK  command  

   Add  Commitment  Resource  (QTNADDCR)  API

Commitment control for batch applications 

Batch  applications  might  or  might  not  need  commitment  control.  In  some  cases,  a batch  application  can  

perform  a single  function  of  reading  an  input  file  and  updating  a master  file.  However,  you  can  use  

commitment  control  for  this  type  of  application  if it is important  to  start  it  again  after  an  abnormal  end.  

The  input  file  is  an  update  file  with  a code  in  the  records  to indicate  that  a record  was  processed.  This  

file  and  any  files  updated  are  placed  under  commitment  control.  When  the  code  is present  in  the  input  

file,  it represents  a completed  transaction.  The  program  reads  through  the  input  file  and  bypasses  any  

records  with  the  completed  code.  This  allows  the  same  program  logic  to be  used  for  normal  and  starting  

again  conditions.  

If the  batch  application  contains  input  records  dependent  on  one  another  and  contains  switches  or  totals,  

a notify  object  can  be  used  to  provide  information  about  starting  again.  The  values  held  in  the  notify  

object  are  used  to start  processing  again  from  the  last  committed  transaction  within  the  input  file.  

If input  records  are  dependent  on  one  another,  they  can  be  processed  as  a transaction.  A  batch  job  can  

lock  a maximum  of  500  000  000  records.  You can  reduce  this  limit  by  using  a Query  Options  File  

(QAQQINI).  Use  the  QRYOPTLIB  parameter  of the  Change  Query  Attributes  (CHGQRYA)  command  to 

specify  a Query  Options  File  for  a job  to  use.  Use  the  COMMITMENT_CONTROL_LOCK_LEVEL  value  

in  the  Query  Options  File  as  the  lock  limit  for  the  job.  

Any  commit  cycle  that  exceeds  2000  locks  probably  slows  down  system  performance  noticeably.  

Otherwise,  the  same  locking  considerations  exist  as  for  interactive  applications,  but  the  length  of time  

records  are  locked  in  a batch  application  might  be  less  important  than  in  interactive  applications.  

   Related  concepts  

   “Commit  notify  object”  on  page  47
A  notify  object  is a message  queue,  data  area,  or  database  file  that  contains  information  identifying  the  

last  successful  transaction  completed  for  a particular  commitment  definition  if that  commitment  

definition  did  not  end  normally.  

   “Manage  transaction  size”  on  page  66  

Another  way  to  minimize  record  locks  is to manage  the  size  of  the  transaction.
   Related  reference  

   Change  Query  Attributes  (CHGQRYA)  command

Two-phase  commitment control 

Two-phase  commitment  control  ensures  that  committable  resources  on  multiple  systems  remain  

synchronized.  

 

24 IBM Systems  - iSeries:  Database  Commitment  control



i5/OS  supports  two-phase  commit  in  accordance  with  the  SNA  LU  6.2  architecture.  For  more  detailed  

information  about  the  internal  protocols  used  by  the  system  for  two-phase  commit,  see  the  SNA  

Transaction  Programmer’s  Reference  for  LU  Type 6.2,  GC30-3084-05. All  supported  releases  of  i5/OS  support  

the  Presumed  Nothing  protocols  of  SNA  LU  6.2  and  the  Presumed  Abort  protocols  of  SNA  LU  6.2.  

Two-phase  commit  is also  supported  using  TCP/IP  as  a Distributed  Unit  of  Work (DUW)  Distributed  

Relational  Database  Architecture™ (DRDA)  protocol.  To use  TCP/IP  DUW  connections,  all  of the  systems  

(both  the  application  requester  and  the  application  server)  must  be  at V5R1M0  or  newer.  For  more  

information  about  DRDA,  see  the  Open  Group  Technical  Standard,  DRDA  V2  Vol. 1:  Distributed  Relational  

Database  Architecture  at  the  Open  Group  Web site.  

Under  two-phase  commit,  the  system  performs  the  commit  operation  in two  waves:  

v   During  the  prepare  wave, a resource  manager  issues  a commit  request  to  its  transaction  manager.  The  

transaction  manager  informs  any  other  resources  it manages  and  the  other  transaction  managers  that  

the  transaction  is  ready  to  be  committed.  All  the  resource  managers  must  respond  that  they  are  ready  

to  commit.  This  is  called  the  vote. 

v   During  the  committed  wave, the  transaction  manager  that  initiates  the  commit  request  decides  what  to 

do,  based  on  the  outcome  of the  prepare  wave.  If the  prepare  wave  completes  successfully  and  all  

participants  vote  ready,  the  transaction  manager  instructs  all  the  resources  it manages  and  the  other  

transaction  managers  to  commit  the  transaction.  If the  prepare  wave  does  not  complete  successfully,  all  

the  transaction  managers  and  resource  managers  are  instructed  to roll  back  the  transaction.  

Commit and rollback operations with remote resources 

When  remote  resources  are  under  commitment  control,  the  initiator  sends  a commit  request  to all  remote  

agents.  The  request  is sent  throughout  the  transaction  program  network.  Each  agent  responds  with  the  

results  of  the  commit  operation.  

If errors  occur  during  the  prepare  wave,  the  initiator  sends  a rollback  request  to  all  agents.  If  errors  occur  

during  the  committed  wave,  the  system  attempts  to  bring  as  many  locations  as  possible  to  committed  

status.  These  attempts  might  result  in  a heuristic  mixed  state.  See  States  of the  transaction  for  two-phase  

commitment  control  for  more  information  about  the  possible  states.  

Any  errors  are  sent  back  to  the  initiator  where  they  are  signaled  to the  user. If a default  journal  was  

specified  on  the  Start  Commitment  Control  (STRCMTCTL)  command,  C LW entries  are  written.  If errors  

occur,  these  entries  are  written,  even  if OMTJRNE(*LUWID)  was  specified.  You can  use  these  entries,  

along  with  the  error  messages  and  the  status  information  for  the  commitment  definition,  to attempt  to  

synchronize  the  committable  resources  manually.  

When  remote  resources  are  under  commitment  control,  the  initiator  sends  a rollback  request  to  all  remote  

agents.  The  request  is sent  throughout  the  transaction  program  network.  Each  agent  responds  with  the  

results  of  the  rollback  operation.  

   Related  concepts  

   Open  Group  Web site
   Related  reference  

   Start  Commitment  Control  (STRCMTCTL)  command

Roles in commit processing 

If a commit  of  a transaction  involves  more  than  one  resource  manager,  each  resource  manager  plays  a 

role  in  the  transaction.  A  resource  manager  is responsible  for  committing  or  rolling  back  changes  made  

during  the  transaction.  

The  resource  managers  by  resource  type  are:  

FILE  Database  manager  

 

Commitment  control 25

http://www.opengroup.org/


DDM  Database  manager  

DDL  Database  manager  

DRDA  

Communications  transaction  program  

LU62  Communications  transaction  program  

API  API  exit  program

 The  following  figures  shows  the  basic  roles  in  a transaction.  The  structure  shown  in the  figures  is  called  a 

transaction  program  network. The  structure  can  be  in  a single-level  tree  and  a multilevel  tree.  

Roles in two-phase commit processing: Single-level tree 

When  an  application  on  System  A  issues  a commit  request,  the  resource  manager  on  System  A  becomes  

the  initiator. For  DRDA  distributed  unit  of  work  over  TCP/IP,  the  initiator  is called  the  coordinator. 

The  resource  managers  for  the  other  three  systems  (B,  C,  and  D)  become  agents  for  this  transaction.  For  

DRDA  distributed  unit  of  work  over  TCP/IP,  agents  are  sometimes  called  participants. 

  

 

Roles in two-phase commit processing: Multi-level tree 

If the  application  is  using  APPC  communications  to  perform  the  two-phase  commit,  the  relationship  

between  systems  can  change  from  one  transaction  to  the  next.  The  following  figure  shows  the  same  

systems  when  an  application  on  System  B issues  the  commit  request.  This  configuration  is a multi-level  

tree.  

 

26 IBM Systems  - iSeries:  Database  Commitment  control



The  roles  in  this  figure  do  not  apply  to  DRDA  distributed  unit  of work  over  TCP/IP  because  multi-level  

transactions  trees  are  not  supported.  

  

 

The  transaction  program  network  has  another  level  because  System  B is not  communicating  directly  with  

System  C and  System  D.  The  resource  manager  in  System  A  now  has  the  roles  of agent  and  cascaded  

initiator.  

To improve  performance  of  LU  6.2  two-phase  transactions,  the  initiator  might  assign  the  role  of  last  agent  

to  one  of  the  agents.  The  last  agent  does  not  participate  in  the  prepare  wave.  In  the  committed  wave,  the  

last  agent  commits  first.  If  the  last  agent  does  not  commit  successfully,  the  initiator  instructs  the  other  

agents  to  roll  back.  

For  DRDA  distributed  unit  of  work  over  TCP/IP,  the  coordinator  might  assign  the  role  of  resync  server  to 

a participant.  The  resync  server  is  responsible  to resynchronize  the  other  participants  in the  event  in 

which  there  is  a communications  failure  with  the  coordinator,  or  the  coordinator  has  a systems  failure.  

   Related  concepts  

   “Commitment  definition  for  two-phase  commit:  Allow  vote  read-only”  on  page  30  

Normally,  a transaction  manager  participates  in  both  phases  of  commit  processing.  To improve  the  

performance  of  commit  processing,  you  can  set  up  some  or  all  locations  in a transaction  to allow  the  

transaction  manager  to  vote  read-only.

States of the transaction for two-phase commitment control 

A  commitment  definition  is  established  at  each  location  that  is part  of the  transaction  program  network.  

For  each  commitment  definition,  the  system  keeps  track  of the  state  of its  current  transaction  and  

previous  transaction.  

 

Commitment  control 27



The  system  uses  the  state  to  decide  whether  to commit  or  roll  back  if a transaction  is interrupted  by  a 

communication  or  system  failure.  If multiple  locations  are  participating  in  a transaction,  the  states  of  the  

transactions  at  each  location  might  be  compared  to  determine  the  correct  action  (commit  or  rollback).  This  

process  of  communicating  between  locations  to  determine  the  correct  action  is called  resynchronization. 

The  following  table  shows:  

v   The  basic  states  that  might  occur  during  a transaction.  

v   Additional  states  that  might  occur. 

v   Whether  a state  requires  resynchronization  if the  transaction  is interrupted  by  a communications  or  

system  failure.  The  possible  values  are:  

Not  needed  

Each  location  can  make  the  correct  decision  independently.  

May  be  necessary  

Each  location  can  make  the  correct  decision,  but  the  initiator  might  need  to be  informed  of  the  

decision.  

Required  

The  state  of  each  location  must  be  determined  before  the  correct  decision  can  be  made.
v    Action  taken  by  a communications  or  system  failure.

 

State  name  Description  

Resynchronization  if the  

transaction  is interrupted  

Action  taken  by  a 

communications  or system  

failure  

Basic  states  during  two-phase  commit  processing:  

Reset  (RST) From  the  commitment  

boundary  until  a program  

issues  a request  to commit  

or  roll  back.  

Not  needed.  Pending  changes  are  rolled  

back.  

Prepare  in Progress  (PIP)  The  initiator  has  started  the 

prepare  wave.  All  locations  

have  not  yet  voted.  

May  be necessary.  Pending  changes  are  rolled  

back.  

Prepared  (PRP) This  location  and  all 

locations  further  down  in 

the  transaction  program  

network  have  voted  to 

commit.  This  location  has  

not  yet received  notification  

from  the  initiator  to 

commit.  

Required.  In doubt.  Depends  on the  

results  of the  

resynchronization  process.  

Commit  in Progress  (CIP)  All  locations  have  voted  to 

commit.  The  initiator  has  

started  the  committed  

wave.  

Required.  Pending  changes  are  

committed.  

Resynchronization  is 

performed  to ensure  that all 

locations  have  committed.  

If a heuristic  rollback  is 

reported  by  another  

location,  an error  is 

reported.  

Committed  (CMT) All  agents  have  committed  

and  returned  a reply  to this  

node.  

May  be necessary.  None.  

Additional  states  during  two-phase  commit  processing:  

 

28 IBM Systems  - iSeries:  Database  Commitment  control



State  name  Description  

Resynchronization  if the  

transaction  is interrupted  

Action  taken  by a 

communications  or system  

failure  

Last  Agent  Pending  (LAP) If a last  agent  is selected,  

this  state  occurs  at the 

initiator  between  the  PIP  

state  and  the  CIP  state.  The  

initiator  has  instructed  the  

last  agent  to commit  and  

has  not  yet  received  a 

response.  

Required.  In doubt.  Depends  on the 

results  of the  

resynchronization  process.  

Vote-Read-Only  (VRO) This  agent  responded  to the 

prepare  wave  by indicating  

that  it has  no  pending  

changes.  If the  

vote-read-only  state  is 

permitted,  this  agent  is not  

included  in the  committed  

wave.  

May  be necessary.  None.  

Rollback  Required  (RBR) One  of the  following  events  

occurred:  

v   An  agent  issued  a 

rollback  request  before  

the  commit  operation.  

v   A transaction  failure  has 

occurred.  

v   The  QTNRBRQD  API  

was  used  to place  the  

transaction  in  a rollback  

required  state.

The  transaction  program  is 

not  allowed  to perform  any  

additional  changes  under  

commitment  control.  

May  be necessary.  Pending  changes  are  rolled  

back.  

Conditions  that  occur  because  of operator  actions  or errors:  

Forced  Rollback  This  location  and  all 

locations  further  down  the  

transaction  program  

network,  except  the last  

agent,  have  been  rolled  

back  through  operator  

intervention.  

May  be necessary.  Pending  changes  have  

already  been  rolled  back.  

Forced  Commit  This  location  and  all 

locations  further  down  the  

transaction  program  

network,  except  the last  

agent,  have  committed  

through  operator  

intervention.  

May  be necessary.  Pending  changes  have  

already  been  committed.  

 

Commitment  control 29



State  name  Description  

Resynchronization  if the  

transaction  is interrupted  

Action  taken  by  a 

communications  or system  

failure  

Heuristic  Mixed  (HRM) Some  resource  managers  

have  committed.  Some  

have  rolled  back.  Operator  

intervention  was  used  or a 

system  error  occurred.  

Heuristic  mixed  does  not  

appear  as a status  on the  

commitment  definition  

displays.  Notification  

messages  are  sent  to the  

operator.  

May  be necessary.  The  operator  must  perform  

a restore  operation  at all  

participating  locations  to 

bring  the  database  to a 

consistent  state.

  

   Related  concepts  

   “Commitment  definition  for  two-phase  commit:  Allow  vote  read-only”  

Normally,  a transaction  manager  participates  in  both  phases  of commit  processing.  To improve  the  

performance  of  commit  processing,  you  can  set  up  some  or  all  locations  in  a transaction  to  allow  the  

transaction  manager  to  vote  read-only.  

   “Commitment  definition  for  two-phase  commit:  Not  wait  for  outcome”  on  page  32  

When  a communication  or  system  failure  occurs  during  a commit  operation  so  that  resynchronization  

is required,  the  default  is to  wait  until  the  resynchronization  is finished  before  the  commit  operation  

completes.  

   “Start  commitment  control”  on  page  46  

To start  commitment  control,  use  the  Start  Commitment  Control  (STRCMTCTL)  Command.  

   “Commitment  control  recovery  during  initial  program  load  after  abnormal  end”  on  page  60  

When  you  perform  an  initial  program  load  (IPL)  after  your  system  ends  abnormally,  the  system  

attempts  to  recover  all  the  commitment  definitions  that  were  active  when  the  system  ended.  

   “Commitment  control  errors”  on  page  96  

When  you  use  commitment  control,  it  is important  to understand  which  conditions  cause  errors  and  

which  do  not.

Commitment definitions for two-phase commitment control 

After  you  start  commitment  control,  you  can  use  the  Change  Commitment  Options  (QTNCHGCO)  API  to 

change  the  commitment  options  for  your  transaction.  

Depending  on  your  environment  and  your  applications,  changing  the  commitment  options  can  improve  

your  system’s  performance.  

Note:   If you  are  using  a DRDA  distributed  unit  of  work  over  TCP/IP  connection,  the  only  option  that  

applies  is Allow  vote  read-only.  

   Related  reference  

   Change  Commitment  Options  (QTNCHGCO)  API

Commitment  definition  for  two-phase  commit:  Allow  vote  read-only:   

Normally,  a transaction  manager  participates  in  both  phases  of  commit  processing.  To improve  the  

performance  of commit  processing,  you  can  set  up  some  or  all  locations  in  a transaction  to allow  the  

transaction  manager  to  vote  read-only.  

 If the  location  has  no  committable  changes  during  a transaction,  the  transaction  manager  votes  read-only  

during  the  prepare  wave.  The  location  does  not  participate  in  the  committed  wave.  This  improves  overall  

performance  because  the  communication  flows  that  normally  occur  during  the  committed  wave  are  

eliminated  during  transactions  in  which  no  updates  are  made  at one  or  more  remote  locations.  

 

30 IBM Systems  - iSeries:  Database  Commitment  control



After  you  start  commitment  control,  you  can  use  the  Change  Commitment  Options  (QTNCHGCO)  API  to  

change  the  Vote  read-only  permitted  option  to  Y.  You might  want  to  do  this  if the  following  conditions  

are  true: 

v   One  or  more  remote  systems  often  do  not  have  any  committable  changes  for  a transaction.  

v   A  transaction  does  not  depend  on  where  the  file  cursor  (next  record)  was  set  by  the  previous  

transaction.  When  a location  votes  read-only,  the  application  is never  notified  if the  transaction  is  rolled  

back.  The  location  has  committed  any  read  operations  to  the  database  files  and,  thus,  moved  the  cursor  

position.  The  position  of  the  file  cursor  is typically  important  only  if you  do  sequential  processing.  

If your  commitment  definition  is  set  up  to  allow  vote  read-only,  the  application  waits  for  the  next  

message  flow  from  another  location.  

The  Vote  read-only  permitted  option  is  intended  for  applications  that  are  client/server  in  nature.  If the  

purpose  of program  A is  only  to  satisfy  requests  from  program  I, not  to  do  any  independent  work,  it is 

appropriate  to  allow  the  Vote  read-only  option  for  program  A.  

Flow of commit processing without last agent optimization when agent votes 

read-only 

The  following  figure  shows  the  flow  of  messages  among  the  application  programs  and  the  transaction  

managers  when  an  application  program  issues  a commit  instruction  without  last  agent  optimization  when  

the  agent  votes  read-only.  Neither  the  initiator  application  program  nor  the  agent  application  programs  is 

aware  of  the  two-phase  commit  processing.  The  numbers  in  parentheses  ()  in  the  figure  correspond  to  the  

numbered  items  in the  description  that  follows.  

  

 

The  following  list  is a description  of  the  events  for  normal  processing  without  last  agent  optimization  

when  the  agent  votes  read  only.  This  describes  a basic  flow. The  sequence  of  events  can  become  much  

more  complex  when  the  transaction  program  network  has  multiple  levels  or  when  errors  occur.  

 

Commitment  control 31



1.   Application  program  A  does  a receive  request  to  indicate  that  it is ready  to  receive  a request  from  

program  I. 

2.   The  initiator  application  (I)  issues  a commit  instruction.  

3.   The  transaction  manager  for  the  initiator  (TM-I)  takes  the  role  of initiator  for  this  transaction.  It starts  

the  prepare  wave  by  sending  a prepare  message  to all  the  other  locations  that  are  participating  in  the  

transaction.  

4.   The  transaction  managers  for  every  other  location  take  the  role  of  agent  (TM-A).  The  application  

program  A  is notified  by  TM-A  that  a request  to  commit  has  been  received.  For  ICF  files,  the  

notification  is in  the  form  of  the  Receive  Take Commit  (RCVTKCMT)  ICF  indicator  being  set  on.  

5.   The  application  program  A  responds  by  issuing  a commit  instruction  (or  a rollback  instruction).  This  

is the  application  program’s  vote.  

6.   If application  program  A has  used  the  Change  Commitment  Options  API  (QTNCHGCO)  to  set  the  

Vote  read-only  permitted  commitment  option  to  Y and  no  changes  have  been  made  at  the  agent  

during  the  transaction,  the  agent  (TM-A)  responds  to  the  initiator  (TM-I)  with  a reset  message.  There  

is no  committed  wave  for  the  agent.  

7.   A return  is sent  to  the  application  program  (A)  to indicate  that  the  transaction  is complete  at agent  

TM-A.  

8.   The  next  time  the  initiator  (TM-I)  issues  any  message  to  the  agent  (TM-A),  either  a data  flow  or  a 

commitment  instruction,  TM-I  causes  its  current  transaction  ID  to  be  sent  with  the  message.  The  

reason  for  this  is that  a new  transaction  ID  might  have  been  generated  at TM-I  if a communications  

failure  had  occurred  between  TM-I  and  another  system  during  the  commit  operation.  

9.   A return  is sent  to  the  application  program  (A)  to indicate  that  the  transaction  is complete  at agent  

TM-A.  The  return  is  delayed  until  after  the  next  message  is  received  because  a new  transaction  ID  

must  be  received  from  TM-I  before  the  next  transaction  can  be  started  by  application  A.
   Related  concepts  

   “Roles  in  commit  processing”  on  page  25  

If a commit  of  a transaction  involves  more  than  one  resource  manager,  each  resource  manager  plays  a 

role  in  the  transaction.  A resource  manager  is  responsible  for  committing  or  rolling  back  changes  

made  during  the  transaction.  

   “States  of the  transaction  for  two-phase  commitment  control”  on  page  27  

A commitment  definition  is  established  at each  location  that  is part  of  the  transaction  program  

network.  For  each  commitment  definition,  the  system  keeps  track  of the  state  of its  current  transaction  

and  previous  transaction.  

   “Optimize  performance  for  commitment  control”  on  page  63  

Using  commitment  control  requires  resources  that  can  affect  system  performance.  Several  factors  affect  

system  performance  regarding  commitment  control.
   Related  reference  

   Change  Commitment  Options  (QTNCHGCO)  API

Commitment  definition  for  two-phase  commit:  Not  wait  for  outcome:   

When  a communication  or  system  failure  occurs  during  a commit  operation  so  that  resynchronization  is 

required,  the  default  is  to  wait  until  the  resynchronization  is finished  before  the  commit  operation  

completes.  

Note:   The  Not  wait  for  outcome  option  does  not  apply  if you  are  using  a DRDA  distributed  unit  of  work  

over  TCP/IP  connection.  DRDA  distributed  unit  of work  over  TCP/IP  connections  never  waits  for  

outcome.  

Consider  changing  this  behavior  if the  following  conditions  are  true: 

v   The  applications  that  participate  are  independent  of  each  other.  

 

32 IBM Systems  - iSeries:  Database  Commitment  control



v   Your program  logic  does  not  need  the  results  of previous  transactions  to ensure  that  your  database  files  

remain  synchronized.  

After  you  start  commitment  control,  you  can  use  the  Change  Commitment  Options  (QTNCHGCO)  API  to  

specify  that  the  commitment  definition  does  not  wait  for  the  outcome  of resynchronization.  If you  specify  

N  (No)  for  the  Wait  for  outcome  option,  the  system  uses  a database  server  job  (QDBSRVnn)  to handle  

resynchronization  asynchronously.  

Note:   These  database  server  jobs  are  started  during  the  IPL  process.  If you  change  the  options  for  

commitment  control,  this  has  no  effect  on  the  number  of jobs  that  the  system  starts.  

This  topic  only  refers  to  two  values  for  the  resolved  Wait  for  outcome  option,  Y (Yes) and  N  (No).  There  

are  actually  two  more  values  that  you  can  specify,  L (Yes or  Inherit  from  Initiator)  and  U (No  or  Inherit  

from  Initiator).  When  you  use  these  values,  the  actual  value  used  during  each  commit  operation  is 

resolved  to  Yes or  No  by  the  system.  The  QTNCHGCO  (Change  Commitment  Options)  API  topic  has  

more  details  about  these  values.  

Note:   The  initiator’s  value  can  only  be  inherited  by  an  agent  if both  the  initiator  and  the  agent  support  

presumed  abort.  

The  wait  for  outcome  (WFO)  option  does  not  affect  normal,  error-free  commit  processing.  If  an  error  

occurs,  the  WFO  option  determines  whether  the  application  waits  for  resynchronization  or  not,  with  the  

following  conditions:  

v   If the  resolved  WFO  option  is  Y (Yes), the  application  waits  for  the  result  of the  resynchronization.  

v   If the  resolved  WFO  option  is  N  (No)  and  a communication  failure  occurs  during  the  prepare  wave  or  

rollback  of  a location  that  supports  presumed  abort  protocols,  no  resynchronization  is performed  and  

the  commitment  definition  is  rolled  back.  

v   If the  commitment  definition  is  in doubt  (transaction  state  is prepared  or  Last  Agent  Pending),  the  

application  will  wait  for  the  result  of  the  resynchronization  regardless  of  the  resolved  WFO  value.  

v   If the  resolved  WFO  option  is  N  and  neither  one  of  conditions  two  or  three  is true, the  system  attempts  

to  resynchronize  once.  If  it is  not  successful,  the  system  signals  STATUS message  CPF83E6  to  the  

application  to  indicate  that  resynchronization  is in  progress.  

Because  CPF83E6  is  a STATUS message,  it only  has  an  effect  if the  application  is monitoring  for  it.  

Normally,  your  application  can  treat  this  message  as an  informational  message.  The  systems  that  are  

participating  in  the  transaction  attempt  to  resynchronize  the  transaction  until  the  failure  is  repaired.  

These  subsequent  resynchronization  attempts  are  performed  in the  database  server  jobs.  If a 

subsequent  resynchronization  attempt  that  is performed  in  a database  server  job  fails,  the  message  

CPI83D0  is sent  to  QSYSOPR.  

Wait  for outcome value: Yes 

In  the  following  figure,  the  commitment  definition  for  the  initiator  (I)  uses  the  default  value  of Y (Yes) for  

the  Wait  for  outcome  option.  When  communications  between  TM-I  and  TM-A  is  lost,  both  application  A  

and  application  I wait  until  the  transaction  is resynchronized.  

 

Commitment  control 33



Wait  for outcome value: No 

In  the  following  figure,  the  commitment  definition  for  the  initiator  has  the  resolved  WFO  set  to  N  (No).  

TM-A  meets  condition  3 in  the  preceding  list,  while  TM-I  meets  condition  4. Control  is returned  to  

application  I after  one  attempt  to  resynchronize  with  TM-A.  A  database  server  job  attempts  to 

resynchronize.  Application  I never  receives  the  return  indicator  when  the  commit  request  has  completed  

successfully.  Control  is not  returned  to  the  agent  application  (A)  until  after  communications  is 

reestablished.  This  depends  on  the  timing  of  the  failure.  In  this  case,  the  communications  failure  occurs  

before  the  commit  message  is  received  from  the  initiator,  leaving  TM-A  in  doubt  as to  whether  to commit  

or  rollback.  When  the  transaction  manager  is in  doubt,  it  retains  control  until  the  resynchronization  is 

completed,  regardless  of the  resolved  WFO  value  at that  system.  

If you  want  the  applications  at  all  systems  to  continue  before  resynchronization  completes,  you  must  

either  change  the  resolved  WFO  option  to  N  (No)  on  all  systems,  or  set  the  initiator  to  N  and  the  rest  of 

the  systems  to  U (No  or  Inherit  from  Initiator).  But  remember  that  the  resolved  WFO  option  is ignored  

when  the  transaction  manager  is  in  doubt  as  to  whether  to  commit  or  rollback,  and  always  waits  until  

resynchronization  completes  before  returning  control.  

 

34 IBM Systems  - iSeries:  Database  Commitment  control



When  a connection  is  made  to  a remote  relational  database,  and  no  protected  conversations  have  already  

been  started,  the  system  implicitly  changes  the  Wait  for  outcome  value  to N.  The  reason  for  this  is  that  

the  performance  of  commit  operations  is  improved  when  the  Wait  for  outcome  value  is  N  and  the  

remote  system  supports  presumed  abort.  This  implicit  change  of  the  Wait  for  outcome  value  is only  

performed  for  DRDA  and  DDM  applications.  APPC  applications  use  the  default  Wait  for  outcome  value  

of  Y  unless  they  call  the  QTNCHGCO  API  to  change  it.  

   Related  concepts  

   “States  of  the  transaction  for  two-phase  commitment  control”  on  page  27  

A commitment  definition  is established  at each  location  that  is part  of  the  transaction  program  

network.  For  each  commitment  definition,  the  system  keeps  track  of  the  state  of  its  current  transaction  

and  previous  transaction.  

 

Commitment  control 35



“Commitment  control  errors”  on  page  96  

When  you  use  commitment  control,  it  is important  to understand  which  conditions  cause  errors  and  

which  do  not.
   Related  reference  

   Change  Commitment  Options  (QTNCHGCO)  API

Commitment  definition  for  two-phase  commit:  Indicate  OK  to  leave  out:   

Normally,  the  transaction  manager  at  every  location  in  the  transaction  program  network  participates  in 

every  commit  or  rollback  operation.  To improve  performance,  you  can  set  up  some  or  all  locations  in  a 

transaction  to  allow  the  transaction  manager  to  indicate  OK  to leave  out.  

Note:   The  Indicate  OK  to  leave  out  option  does  not  apply  if you  are  using  a DRDA  distributed  unit  of  

work  over  TCP/IP  connection.  

If no  communications  flows  are  sent  to  the  location  during  a transaction,  the  location  is left  out  when  a 

commit  or  rollback  operation  is  performed.  This  improves  overall  performance  because  the  

communications  flows  that  normally  occur  during  the  commit  or  rollback  are  eliminated  during  

transactions  in  which  no  data  is sent  to  one  or  more  remote  locations.  

After  you  start  commitment  control,  you  can  use  the  Change  Commitment  Options  (QTNCHGCO)  API  to 

change  the  OK  to  leave  out  option  to  Y (Yes). You might  want  to  do  this  if one  or  more  remote  systems  

often  are  not  involved  in  a transaction.  

If your  commitment  definition  is  set  up  to  indicate  OK  to leave  out,  the  application  waits  for  the  next  

message  flow  from  another  location.  

The  OK  to  leave  out  option  is  intended  for  applications  that  are  client/server  in  nature.  If  the  only  

purpose  of  program  A  is  to  satisfy  requests  from  program  I and  not  to do  any  independent  work,  then  it 

is appropriate  to  allow  the  OK  to  leave  out  option  for  program  A.  

Flow of commit processing without last agent optimization when agent votes OK 

to leave out 

The  following  figure  shows  the  flow  of  messages  among  the  application  programs  and  the  transaction  

managers  when  an  application  program  issues  a commit  instruction  without  last  agent  optimization  when  

the  agent  indicates  OK  to  leave  out.  Both  the  initiator  application  program  and  the  agent  application  

programs  are  unaware  of  the  two-phase  commit  processing.  The  numbers  in  parentheses  ()  in  the  figure  

correspond  to  the  numbered  items  in  the  description  that  follows.  

 

36 IBM Systems  - iSeries:  Database  Commitment  control



Here  is a description  of  the  events  for  normal  processing  without  last  agent  optimization  when  the  agent  

votes  OK  to  leave  out.  This  describes  a basic  flow. The  sequence  of  events  can  become  much  more  

complex  when  the  transaction  program  network  has  multiple  levels  or  when  errors  occur.  

 1.   Application  program  A does  a receive  request  to indicate  that  it is ready  to  receive  a request  from  

program  I. 

 2.   The  initiator  application  (I)  issues  a commit  instruction.  

 3.   The  transaction  manager  for  the  initiator  (TM-I)  takes  the  role  of  initiator  for  this  transaction.  It  starts  

the  prepare  wave  by  sending  a prepare  message  to all  the  other  locations  that  are  participating  in  the  

transaction.  

 4.   The  transaction  managers  for  every  other  location  take  the  role  of  agent  (TM-A).  The  application  

program  A is notified  by  TM-A  that  a request  to  commit  has  been  received.  For  ICF  files,  the  

notification  is in  the  form  of  the  Receive  Take Commit  (RCVTKCMT)  ICF  indicator  being  set  on.  

 5.   The  application  program  A  responds  by  issuing  a commit  instruction  (or  a rollback  instruction).  This  

is the  application  program’s  vote.  

 6.   If application  program  A has  used  the  Change  Commitment  Options  API  (QTNCHGCO)  to set  the  

OK  to  leave  out  commitment  option  to Y,  an  indicator  is sent  when  the  agent  (TM-A)  responds  to  

the  initiator  (TM-I)  with  a request  commit  message.

Note:   Any  change  to  the  OK  to  leave  out  commitment  option  does  not  take  effect  until  the  next  

successful  commit  operation.

 

Commitment  control 37



7.   When  the  initiator  (TM-I)  receives  all  the  votes,  the  TM-I  sends  a commit  message.  This  starts  the  

committed  wave.  

 8.   Each  agent  (TM-A)  commits  and  responds  with  a reset  message.  

 9.   A  return  is  sent  to  the  application  program  (I)  to indicate  that  the  transaction  is complete  at  the  

initiator.  

10.   Any  number  of  transactions  might  occur  on  TM-I,  none  of  which  requires  changes  to  TM-A  or  data  

from  TM-A.  TM-A  is not  included  in  these  transactions.  

11.   The  next  time  the  initiator  (TM-I)  issues  a message  to  the  agent  (A),  a new  transaction  ID  is sent  

with  the  message.  If  the  initiator  performs  any  commit  or  rollback  operations  before  sending  a 

message  to  the  agent,  no  messages  are  sent  to  the  agent  during  those  operations  (the  agent  is ’left  

out’  of those  commits  or  rollbacks).  Because  one  or  more  transactions  might  have  been  committed  or  

rolled  back  at  the  initiator  while  the  agent  was  left  out,  the  initiator  must  communicate  its  current  

transaction  ID  when  the  next  message  is sent  to  the  agent.  

12.   A  return  is  sent  to  the  application  program  (A)  to indicate  that  the  original  commit  is complete  and  

that  it is  participating  in the  current  transaction.
   Related  concepts  

   “Optimize  performance  for  commitment  control”  on  page  63  

Using  commitment  control  requires  resources  that  can  affect  system  performance.  Several  factors  affect  

system  performance  regarding  commitment  control.

Commitment  definition  for  two-phase  commit:  Not  select  a last  agent:   

By  default,  the  transaction  manager  for  the  initiator  is  free  to select  any  agent  as  a last  agent  during  a 

commit  operation.  

Note:   The  Not  select  last  agent  option  does  not  apply  if you  are  using  a DRDA  distributed  unit  of work  

over  TCP/IP  connection.  

In  case  of a multi-level  tree,  any  agent  selected  as  a last  agent  by  its  initiator  is also  free  to  select  a last  

agent  of its  own.  Performance  is improved  when  a last  agent  is selected  during  the  commit  operation  

because  two  communications  flows  are  eliminated  between  an  initiator  and  its  last  agent  (the  prepare  

phase  is eliminated  for  these  systems).  

However,  when  the  initiator  sends  the  request  commit  to its  last  agent,  it must  wait  until  it has  received  

the  last  agent’s  vote  before  it can  continue.  This  is regardless  of the  Wait for  outcome  value  for  the  

commitment  definition.  During  normal,  error-free  commit  processing,  this  is not  an  issue.  But,  if an  error  

occurs  during  this  window,  the  initiator  cannot  continue  until  resynchronization  completes.  If the  initiator  

application  is  handling  requests  from  a user  at a terminal,  this  can  be  a usability  consideration.  

You must  consider  whether  the  improved  performance  during  normal  commit  operations  is more  

important  than  the  impact  on  usability  when  such  an  error  occurs.  Note  that  if the  error  occurs  before  the  

request  commit  is  sent  to  the  last  agent,  the  LUW  will  immediately  roll  back  and  the  initiator  will  not  

wait.  Therefore,  the  window  when  an  error  can  cause  the  initiator  to wait  is quite  small,  so  such  an  error  

is rare.  

If you  decide  that  the  usability  impact  is  not  worth  the  improved  performance,  you  can  change  your  

commitment  definitions  to  not  select  a last  agent.  After  you  start  commitment  control,  you  can  use  the  

Change  Commitment  Options  (QTNCHGCO)  API  to change  the  Last  agent  permitted  option  to N.  

   Related  reference  

   Change  Commitment  Options  (QTNCHGCO)  API

Vote  reliable  effect  on  flow  of  commit  processing:   

 

38 IBM Systems  - iSeries:  Database  Commitment  control



Vote  reliable  is an  optimization  that  improves  performance  by  returning  earlier  to the  initiator  application  

after  a commit  operation  and  eliminating  one  message  during  a commit  operation.  

 There  is no  explicit  vote  reliable  optimization  for  DRDA  distributed  unit  of work  over  TCP/IP.  However,  

i5/OS  never  requests  a reset  (forget)  confirmation  for  TCP/IP  connections.  Therefore,  a reset  (forget)  is 

always  implied  for  TCP/IP  connections.  

After  you  start  commitment  control,  you  can  use  the  Change  Commitment  Options  (QTNCHGCO)  API  to  

change  the  Accept  vote  reliable  option  to  Y.  

Vote  reliable  can  be  thought  of  as a promise  by  an  agent  to  its  initiator  that  no  heuristic  decisions  will  be  

made  at  the  agent  if communications  failure  occurs  while  the  agent  is in  doubt.  An  agent  that  is using  the  

vote  reliable  optimization  sends  an  indicator  to the  initiator  during  the  prepare  wave  of  the  commit.  If  

the  initiator  is  also  using  the  vote  reliable  optimization,  it then  sends  an  indicator  to  the  agent  that  no  

reset  is required  in  response  to  the  commit  message.  This  eliminates  the  reset  message,  and  allows  the  

transaction  manager  to  return  to  the  application  at the  initiator  as  soon  as  the  commit  message  is sent.  

Consider  using  the  vote  reliable  optimization  if the  following  conditions  are  true: 

v   It is  unlikely  that  a heuristic  decision  will  be  made  at an  in  doubt  agent  in  the  event  of a systems  or 

communications  failure  unless  the  failure  cannot  be  repaired.  

v   Your program  logic  does  not  need  the  results  of previous  transactions  to ensure  that  your  database  files  

remain  synchronized.  

The  vote  reliable  optimization  is  used  by  i5/OS  only  if all the  following  conditions  are  true: 

v   The  initiator  and  agent  locations  support  the  presumed  abort  level  of  commitment  control.  

v   The  initiator  location  accepts  the  vote  reliable  indication  from  the  agent.  On  i5/OS  initiators,  this  

depends  on  the  value  of  two  commitment  options:  

–   The  value  of  the  Wait for  outcome  commitment  option  must  be  No  (Yes is the  default).  

–   The  value  of  the  Accept  vote  reliable  commitment  option  must  be  Yes (Yes is the  default).
v    The  agent  location  votes  reliable  during  the  prepare  wave.  i5/OS  agents  always  vote  reliable.  This  is 

because  heuristic  decisions  can  be  made  only  through  a manual  procedure  that  warns  of  the  possible  

negative  side-effects  of  making  a heuristic  decision.  

Flow of commit processing with vote reliable optimization 

The  following  figure  shows  the  flow  of  messages  among  the  application  programs  and  the  transaction  

managers  when  the  vote  reliable  optimization  is used.  Both  the  initiator  application  program  and  the  

agent  application  programs  are  unaware  of the  two-phase  commit  processing.  The  numbers  in  

parentheses  () in  the  figure  correspond  to  the  numbered  items  in  the  description  that  follows.  

 

Commitment  control 39



The  following  list  describes  the  events  for  normal  processing  without  last  agent  optimization  when  the  

agent  votes  reliable.  This  describes  a basic  flow. The  sequence  of events  can  become  much  more  complex  

when  the  transaction  program  network  has  multiple  levels  or  when  errors  occur.  

1.   Application  program  A  does  a receive  request  to  indicate  that  it is ready  to  receive  a request  from  

program  I. 

2.   The  initiator  application  (I)  issues  a commit  instruction.  

3.   The  transaction  manager  for  the  initiator  (TM-I)  takes  the  role  of initiator  for  this  transaction.  It starts  

the  prepare  wave  by  sending  a prepare  message  to all  the  other  locations  that  are  participating  in  the  

transaction.  

4.   The  transaction  managers  for  every  other  location  take  the  role  of  agent  (TM-A).  The  application  

program  A  is notified  by  TM-A  that  a request  to  commit  has  been  received.  For  ICF  files,  the  

notification  is in  the  form  of  the  Receive  Take Commit  (RCVTKCMT)  ICF  indicator  being  set  on.  

5.   The  application  program  A  responds  by  issuing  a commit  instruction  (or  a rollback  instruction).  This  

is the  application  program’s  vote.  

6.   The  agent  (TM-A)  responds  to  the  initiator  (TM-I)  with  a request  commit  message.  i5/OS  systems  

send  a vote  reliable  indicator  with  the  request  commit.  

7.   When  the  initiator  (TM-I)  receives  all  the  votes,  the  TM-I  sends  a commit  message.  If the  Wait for  

outcome  commitment  option  is  N  (No)  and  the  Accept  vote  reliable  commitment  option  is Y (Yes),  a 

no  reset  indicator  is  sent  with  the  commit  message.  This  tells  the  agent  that  no  reset  message  is 

required  in  response  to  the  commit.  

8.   The  transaction  is complete.  A return  is sent  to  the  application  programs  (I and  A).  This  return  

indicates  that  the  commit  operation  was  successful.  If  a heuristic  damage  occurs  at system  A due  to a 

 

40 IBM Systems  - iSeries:  Database  Commitment  control



heuristic  decision  being  made  before  the  committed  message  is  received,  application  I is not  informed.  

Instead,  a message  is  sent  to  the  QSYSOPR  message  queue.  However,  application  A receives  the  

heuristic  damage  indication.  

9.   The  next  time  the  agent  (TM-A)  sends  any  message  to the  initiator  (TM-I),  either  a data  flow  or  a 

commitment  instruction,  an  implied  reset  indicator  is sent  with  the  message  to  inform  TM-I  that  

TM-A  completed  the  commit  successfully.  The  reason  for  this  is that  TM-I  must  retain  information  

about  the  completed  transaction  until  it has  confirmed  that  TM-A  successfully  received  the  commit  

message  in  step  7 on  page  40
   Related  reference  

   Change  Commitment  Options  (QTNCHGCO)  API

XA transaction support for commitment control 

DB2  Universal  Database  (UDB)  for  iSeries  can  participate  in  X/Open  global  transactions.  

The  Open  Group  has  defined  an  industry-standard  model  for  transactional  work  that  allows  changes  

made  against  unrelated  resources  to  be  part  of a single  global  transaction.  An  example  of this  is changes  

to  databases  that  are  provided  by  two  separate  vendors.  This  model  is called  the  X/Open  Distributed  

Transaction  Processing  model.  

The  following  publications  describe  the  X/Open  Distributed  Transaction  Processing  model  in  detail:  

v   X/Open  Guide, February  1996,  ″Distributed  Transaction  Processing:  Reference  Model,  Version  3″  

(ISBN:1-85912-170-5,  G504),  The  Open  Group.  

v   X/Open  CAE  Specification, December  1991,  ″Distributed  Transaction  Processing:  The  XA  Specification″ 

(ISBN:1-872630-24-3,  C193  or  XO/CAE/91/300),  The  Open  Group.  

v   X/Open  CAE  Specification, April  1995,  ″Distributed  Transaction  Processing:  The  TX  (Transaction  

Demarcation)  Specification″ (ISBN:1-85912-094-6,  C504),  The  Open  Group.  

Be  familiar  with  the  information  in  these  books,  particularly  the  XA  Specification,  before  attempting  to  

use  the  XA  transaction  support  provided  by  DB2® UDB  for  iSeries.  You can  find  these  books  at the  Open  

Group  Web site.  

There  are  five  components  to  the  DTP  model:  

Application  Program  (AP)  

It implements  the  required  function  of the  user  by  specifying  a sequence  of operations  that  

involves  resources  such  as  databases.  It  defines  the  start  and  end  of  global  transactions,  accesses  

resources  within  transaction  boundaries,  and  normally  makes  the  decision  whether  to  commit  or 

roll  back  each  transaction.  

Transaction  Manager  (TM)  

It manages  global  transactions  and  coordinates  the  decision  to  start  them  and  commit  them,  or  

roll  them  back  in order  to  ensure  atomic  transaction  completion.  The  TM  also  coordinates  

recovery  activities  with  the  RMs  after  a component  fails.  

Resource  Manager  (RM)  

It manages  a defined  part  of  the  computer’s  shared  resources,  such  as  a database  management  

system.  The  AP  uses  interfaces  defined  by  each  RM  to perform  transactional  work.  The  TM  uses  

interfaces  provided  by  the  RM  to  carry  out  transaction  completion.  

Communications  Resource  Manager  (CRM)  

It allows  an  instance  of  the  model  to  access  another  instance  either  inside  or  outside  the  current  

TM  domain.  CRMs  are  outside  the  scope  of  DB2  UDB  for  iSeries  and  are  not  discussed  here.  

Communication  Protocol  

The  protocols  used  by  CRMs  to  communicate  with  each  other.  This  is outside  the  scope  of  DB2  

UDB  for  iSeries  and  is not  discussed  here.

 

Commitment  control 41



The  XA  Specification  is  the  part  of  the  DTP  model  that  describes  a set  of  interfaces  that  is used  by  the  TM  

and  RM  components  of  the  DTP  model.  DB2  UDB  for  iSeries  implements  these  interfaces  as  a set  of 

UNIX® platform-style  APIs  and  exit  programs.  See  XA  APIs  for  detailed  documentation  of  these  APIs  and  

for  more  information  about  how  to  use  DB2  UDB  for  iSeries  as an  RM.  

iSeries Navigator and XA transactions 

iSeries  Navigator  supports  the  management  of XA  transactions  as Global  Transactions. 

A Global  Transaction  might  contain  changes  both  outside  and  within  DB2  UDB  for  iSeries.  A global  

transaction  is coordinated  by  an  external  Transaction  Manager  using  the  Open  Group  XA  architecture,  or  

another  similar  architecture.  An  application  commits  or  rolls  back  a global  transaction  using  interfaces  

provided  by  the  Transaction  Manager.  The  Transaction  Manager  uses  commit  protocols  defined  by  the  XA  

architecture,  or  another  architecture,  to  complete  the  transaction.  DB2  UDB  for  iSeries  acts  as  an  XA  

Resource  Manager  when  participating  in  a global  transaction.  There  are  two  types  of global  transactions:  

v   Transaction-scoped  locks:  Locks  acquired  on  behalf  of the  transaction  are  scoped  to  the  transaction.  

The  transaction  can  move  from  one  job  or  thread  to another.  

v   Job-scoped  locks:  Locks  acquired  on  behalf  of  the  transaction  are  scoped  to the  job.  The  transaction  

cannot  move  from  the  job  that  started  it.

Considerations for XA transactions 

The  XA  APIs  for  transaction-scoped  locks  are  recommended  for  new  users  of the  XA  transaction  support.  

The  XA  APIs  for  job-scoped  locks  will  continue  to  be  supported,  but  no  longer  have  any  advantages  over  

the  XA  APIs  for  transaction-scoped  locks.  The  XA  APIs  for  transaction-scoped  locks  have  fewer  

restrictions  and  better  performance  in  the  following  situations:  

v   If multiple  SQL  connections  are  ever  used  to  work  on  a single  XA  transaction  branch.  

v   If a single  SQL  connection  is used  to  work  on  multiple,  concurrent  XA  transaction  branches.

In  these  situations,  a separate  job  must  be  started  to  run XA  transaction  branches  when  you  use  the  XA  

APIs  for  Job  Scoped  Locks.  

Understand  the  following  considerations  and  restrictions  before  using  DB2  UDB  for  iSeries  as  a RM.  The  

term  thread  refers  to  either  a job  that  is not  thread  capable,  or  a single  thread  within  a thread  capable  job.  

The  following  considerations  apply  to  both  transactions  with  transaction-scoped  locks  and  transactions  

with  job-scoped  locks  unless  noted  otherwise.  

DB2 UDB for iSeries considerations 

v   XA  transactions  against  a local  database  must  be  performed  in  jobs  that  are  running  in  SQL  server  

mode,  which  means  that  applications  are  limited  to SQL  interfaces  when  making  changes  to  DB2  UDB  

for  iSeries  during  an  XA  transaction.  For  such  transactions,  if  the  xa_open()  or  db2xa_open()  API  is 

used  in a job  that  is not  already  running  in  SQL  server  mode,  SQL  server  mode  is implicitly  started.  

v    XA  transactions  against  a remote  database  are  required  to  use  SQL  server  mode  when  you  use  the  XA  

APIs  for  job-scoped  locks.  However,  server  mode  is  optional  for  XA  transactions  against  a remote  

database  when  you  use  the  XA  APIs  for  transaction-scoped  locks.  Furthermore,  changes  to  DDM  files  

using  traditional  i5/OS  database  access  methods  are  allowed  within  XA  transactions  against  a remote  

database  when  SQL  server  mode  is not  used.  

v   Any  errors  that  are  detected  by  DB2  UDB  for  iSeries  during  the  XA  API  invocations  are  reported  

through  return  codes  by  the  XA  specification.  Diagnostic  messages  are  left  in  the  job  log  when  the  

meaning  of  the  error  can  not  be  clear  from  the  return  code  alone.

 

42 IBM Systems  - iSeries:  Database  Commitment  control

|
|
|
|

|
|
|
|



Embedded SQL considerations 

v   In  order  to  use  a Structured  Query  Language  (SQL)  connection  for  XA  transactions,  you  must  use  the  

xa_open()  or  db2xa_open()  application  programming  interface  (API)  before  the  SQL  connection  is 

made.  The  relational  database  that  will  be  connected  to  must  be  passed  to  the  xa_open()  or  

db2xa_open()  API  by  the  xainfo  parameter.  The  user  profile  and  password  to  be  used  in  the  job  that  

the  connection  is routed  to  might  be  passed  to the  xa_open()  or  db2xa_open()  API.  If it  is not  passed,  

the  profile  uses  the  one  that  was  specified  or  used  as  the  default  during  the  connection  attempt.

Note:   The  following  consideration  applies  only  to  transactions  with  job-scoped  locks.  

v   If embedded  SQL  is  used  to  perform  XA  transactions,  the  work  performed  for  each  connection  is 

routed  to  a different  job,  even  if the  connections  are  made  in  the  same  thread.  This  is different  than  

SQL  server  mode  without  XA,  where  work  performed  for  all  connections  in a single  thread  is  routed  to 

the  same  job.  This  is  because  the  XA  specification  requires  a separate  prepare,  commit  or  rollback  call  

for  each  resource  manager  instance.

Note:   The  following  consideration  applies  only  to  transactions  with  job-scoped  locks.  

v   If embedded  SQL  is  used  to  perform  XA  transactions,  only  one  connection  per  relational  database  can  

be  made  per  thread.  Whenever  the  thread  is not  actively  associated  with  a transaction  branch,  work  

requested  over  one  of  the  thread’s  connections  will  cause  the  RM  to use  the  TM’s  ax_reg()  exit  

program  to  determine  whether  the  work  is to  start,  resume  or  join  a transaction  branch.  

If the  work  is  to  start  a transaction  branch,  it is  performed  over  that  thread’s  connection  to the  

corresponding  relational  database.  

If the  work  is  to  join  a transaction  branch,  it is  rerouted  over  the  connection  to the  corresponding  

relational  database  that  was  made  in  the  thread  that  started  the  transaction  branch.  Note  that  the  

system  does  not  enforce  that  the  user  profile  for  that  connection  is the  same  as  the  one  for  the  

connection  of  the  joining  thread.  The  TM  is  responsible  to  ensure  that  this  is not  a security  concern.  

Typical  TMs  use  the  same  user  profile  for  all  connections.  This  user  profile  is authorized  to all  data  

that  is managed  by  the  TM.  Further  security  of  access  to  this  data  is  managed  by  the  TM  or  AP  instead  

of using  the  standard  iSeries  security  techniques.

Note:   The  following  consideration  applies  only  to  transactions  with  job-scoped  locks.  

v   If the  work  is  to  resume  a transaction  branch,  the  connection  that  is used  depends  on  whether  the  

suspended  transaction  branch  association  was  established  by  starting  or  joining  the  transaction  branch.  

Subsequent  work  is performed  over  the  same  connection  until  the  db2xa_end()  API  is used  to suspend  

or  end  the  thread’s  association  with  that  transaction  branch.

CLI considerations 

v   If the  CLI  is  used  to  perform  XA  transactions,  more  than  one  connection  might  be  made  in  the  same  

thread  after  the  db2xa_open()  API  is used.  The  connections  can  be  used  in  other  threads  to perform  XA  

transactions,  as  long  as those  other  threads  first  use  the  db2xa_open()  API  with  the  same  xainfo  

parameter  value.

Note:   The  following  consideration  applies  only  to  transactions  with  job-scoped  locks.  

v   If the  CLI  is  used  to  perform  XA  transactions,  the  connection  that  is used  to  start  a transaction  branch  

must  be  used  for  all  work  on  that  transaction  branch.  If another  thread  is to  join  the  transaction  

branch,  the  connection  handle  for  the  connection  used  to  start  the  transaction  branch  must  be  passed  to  

the  joining  thread  so  that  it  can  perform  work  over  that  same  connection.  Likewise,  if a thread  is to  

resume  the  transaction  branch,  the  same  connection  must  be  used.  

Because  CLI  connection  handles  cannot  be  used  in  a different  job,  the  join  function  is  limited  to threads  

running  in  the  same  job  that  started  the  transaction  branch  when  the  CLI  is used.

 

Commitment  control 43

|
|
|
|
|
|

|

|



Remote relational database considerations

Note:   These  considerations  for  a remote  relational  database  apply  only  to  transactions  with  job-scoped  

locks.  

v   XA  connections  to  a remote  relational  database  are  supported  only  if the  relational  database  resides  on  

a system  that  supports  Distributed  Unit  of  Work  (DUW)  DRDA  connections.  This  includes  iSeries  

systems  that  run DRDA  over  SNA  LU6.2  conversations,  or  that  use  V5R1  or  later  when  running  DRDA  

using  TCP/IP  connections.  This  also  includes  non-iSeries  systems  that  support  DRDA  over  SNA  LU6.2  

or  that  support  the  XA  protocol  using  DRDA  over  TCP/IP  

v   Before  using  the  XA  join  function,  the  db2xa_open()  API  must  be  used  in  the  joining  thread.  The  same  

relational  database  name  and  RMID  must  be  specified  on  the  db2xa_open()  API  in  both  the  thread  that  

started  the  transaction  branch  and  the  joining  thread.  If the  transaction  branch  is active  when  a join  is 

attempted,  the  joining  thread  is  blocked.  The  joining  thread  remains  blocked  until  the  active  thread  

suspends  or  ends  its  association  with  the  transaction  branch.

Recovery consideration 

v   The  manual  heuristic  commit  and  rollback  support  that  is provided  for  all  commitment  definitions  can  

be  used  if it becomes  necessary  to  force  a transaction  branch  to  commit  or  roll  back  while  it is in  a 

prepared  state.

Transaction branch considerations 

v   Information  about  XA  transaction  branches  is  shown  as part  of  the  commitment  control  information  

displayed  by  iSeries  Navigator  and  the  Work with  Job  (WRKJOB),  Display  Job  (DSPJOB),  and  Work 

with  Commitment  Definition  (WRKCMTDFN)  commands.  The  TM  name,  transaction  branch  state,  

transaction  identifier  and  branch  qualifier  are  all  shown.  The  commitment  definitions  related  to  all  

currently  active  XA  transactions  can  be  displayed  by  using  the  command  WRKCMTDFN  JOB(*ALL)  

STATUS(*XOPEN)  or  by  displaying  the  Global  Transactions  in  iSeries  Navigator.

Note:   The  following  item  applies  only  to  transactions  with  job-scoped  locks.  

v   If an  association  between  a thread  and  an  existing  transaction  branch  is suspended  or  ended  using  the  

db2xa_end()  API,  the  thread  might  start  a new  transaction  branch.  If  the  connection  used  to  start  the  

new  transaction  branch  was  used  earlier  to start  a different  transaction  branch  and  the  thread’s  

association  with  that  transaction  branch  has  been  ended  or  suspended  by  the  db2xa_end()  API,  a new  

SQL  server  job  might  be  started.  A new  SQL  server  job  is  needed  only  if the  first  transaction  branch  

has  not  yet  been  completed  by  the  db2xa_commit()  or  db2xa_rollback()  API.  In  this  case,  another  

completion  message  SQL7908  is  sent  to  the  job  log  identifying  the  new  SQL  server  job,  just  as  the  

connection’s  original  SQL  server  job  was  identified  when  the  connection  was  established.  All  SQL  

requests  for  the  new  transaction  branch  are  routed  to  the  new  SQL  server  job.  When  the  transaction  

branch  is completed  by  the  db2xa_commit()  or  db2xa_rollback()  API,  the  new  SQL  server  job  is 

recycled  and  returned  to  the  prestart  job  pool.  

v   A transaction  branch  is  marked  Rollback  Only  in  the  following  situations  only  for  the  XA  transactions  

for  job-scoped  locks:  

–   A  thread  ends  when  it is still  associated  with  the  transaction  branch.  This  includes  a thread  ending  

as the  result  of  process  termination.  

–   The  system  fails.
v   With  XA  transactions  for  transaction-scoped  locks,  a transaction  branch  is rolled  back  by  the  system  if 

any  threads  are  still  associated  with  it when  any  of  the  following  situations  occur:  

–   The  connection  that  is  related  to  the  transaction  branch  is ended.  

–   The  job  that  started  the  transaction  branch  is ended.  

–   The  system  fails.

Note:   The  following  consideration  applies  only  to  transactions  with  job-scoped  locks.

 

44 IBM Systems  - iSeries:  Database  Commitment  control

|
|

|
|

|

|
|

|

|

|

|



v   There  is one  situation  where  a transaction  branch  will  be  rolled  back  by  the  system,  regardless  of 

whether  there  are  still  associated  threads.  This  occurs  when  the  SQL  server  job  that  the  connection’s  

work  is being  routed  to  is ended.  This  can  only  happen  when  the  End  Job  (ENDJOB)  CL  command  is 

used  against  that  job.  

v   A  transaction  branch  is  not  affected  if no  threads  have  an  active  association  with  it when  any  of the  

following  situations  occur.  The  TM  can  commit  or  roll  back  the  transaction  branch  from  any  thread  that  

has  used  the  xa_open()  or  db2xa_open()  API  with  the  same  xainfo  parameter  value  that  was  specified  

in  the  thread  that  started  the  transaction  branch.  

–   The  connection  that  is related  to  the  transaction  branch  is ended.  

–   A  thread  or  job  that  performed  work  for  the  transaction  branch  uses  the  xa_close()  or  db2xa_close()  

API.  

–   The  system  fails.  In  this  case,  the  transaction  branch  is  not  affected  only  if it  is in  prepared  state.  If it  

is in  idle  state,  the  system  rolls  it back.
v    When  the  transaction  identifier  (XID)  of two  XA  transaction  branches  have  the  same  global  transaction  

identifier  (GTRID),  but  different  branch  qualifiers  (BQUALs),  they  are  said  to  be  loosely  coupled. By  

default,  loosely  coupled  transaction  branches  do  not  share  locks.  However,  when  using  the  XA  APIs  for  

transaction-scoped  locks,  there  is  an  option  that  allows  loosely  coupled  transactions  to share  locks.
   Related  concepts  

   “Considerations  for  XA  transactions”  on  page  22  

In  the  XA  environment,  each  database  is considered  a separate  resource  manager.  When  a transaction  

manager  wants  to  access  two  databases  under  the  same  transaction,  it must  use  the  XA  protocols  to 

perform  two-phase  commit  with  the  two  resource  managers.  

   Open  Group  Web site  

   “SQL  server  mode  and  thread-scoped  transactions  for  commitment  control”  

Commitment  definitions  with  job-scoped  locks  are  normally  scoped  to an  activation  group.
   Related  tasks  

   “When  to  force  commits  and  rollbacks  and  when  to cancel  resynchronization”  on  page  104  

You can  find  when  and  how  to  force  a rollback  or  commit,  and  when  to  cancel  resynchronization  in  

this  topic.

SQL server mode and thread-scoped transactions for commitment 

control 

Commitment  definitions  with  job-scoped  locks  are  normally  scoped  to  an  activation  group.  

If a job  is  multithreaded,  all  threads  in  the  job  have  access  to  the  commitment  definition  and  changes  

made  for  a particular  transaction  can  be  spread  across  multiple  threads.  That  is,  all  threads  whose  

programs  run in  the  same  activation  group  participate  in  a single  transaction.  

There  are  cases  where  it is  desirable  for  transactional  work  to  be  scoped  to  the  thread,  rather  than  an  

activation  group.  In  other  words,  each  thread  has  its  own  commitment  definition  and  transactional  work  

for  each  commitment  definition  is independent  of work  performed  in  other  threads.  

This  is supported  by  DB2  Universal  Database  (UDB)  for  iSeries  by  using  the  Change  Job  (QWTCHGJB)  

API  to  change  the  job  to  run in  SQL  server  mode.  When  an  SQL  connection  is requested  in SQL  server  

mode,  it is routed  to  a separate  job.  All  subsequent  SQL  operations  that  are  performed  for  that  connection  

are  also  routed  to  that  job.  When  the  connection  is made,  completion  message  SQL7908  is sent  to  the  SQL  

server  mode  job’s  job  log  indicating  which  job  the  SQL  requests  are  being  routed  to.  The  commitment  

definition  is owned  by  the  job  that  is  indicated  in  this  message.  If errors  occur,  it might  be  necessary  to  

look  at  the  job  logs  for  both  jobs  to  understand  the  source  of  the  problem  because  no  real  work  is being  

done  in  the  job  performing  the  SQL  statements.  

 

Commitment  control 45

|
|
|
|

http://www.opengroup.org


When  running  in  SQL  server  mode,  only  SQL  interfaces  can  be  used  to  perform  work  under  commitment  

control.  Embedded  SQL  or  Call  Level  Interface  (CLI)  can  be  used.  All  connections  made  through  

embedded  SQL  in  a single  thread  are  routed  to the  same  back-end  job.  This  allows  a single  commit  

request  to  commit  the  work  for  all  the  connections,  just  as  it can  be  in  a job  that  is  not  running  in  SQL  

server  mode.  Each  connection  made  through  the  CLI  is  routed  to  a separate  job.  The  CLI  requires  work  

that  is performed  for  each  connection  to  be  committed  or  rolled  back  independently.  

You cannot  perform  the  following  operations  under  commitment  control  when  running  in  SQL  server  

mode:  

v   Record  changes  that  are  made  with  interfaces  that  are  not  SQL  interfaces  

v   Changes  to  DDM  files  

v   Changes  to  API  commitment  resources  

You cannot  start  commitment  control  directly  in  a job  running  in  SQL  server  mode.  

   Related  concepts  

   “XA  transaction  support  for  commitment  control”  on  page  41
DB2  Universal  Database  (UDB)  for  iSeries  can  participate  in  X/Open  global  transactions.  

   Run  DB2  UDB  CLI  in server  mode  

   Start  DB2  CLI  in  SQL  Server  Mode  

   Restrictions  for  running  DB2  UDB  CLI  in  server  mode
   Related  reference  

   Change  Job  (QWTCHGJB)  API

Start commitment control 

To start  commitment  control,  use  the  Start  Commitment  Control  (STRCMTCTL)  Command.  

Note:   Commitment  control  does  not  need  to  be  started  by  SQL  applications.  SQL  implicitly  starts  

commitment  control  at  connect  time  when  the  SQL  isolation  level  is not  *NONE.  

When  you  use  the  STRCMTCTL  command,  you  can  specify  these  parameters.  

Commit  lock-level  

Specify  the  lock-level  with  the  LCKLVL  parameter  on  the  STRCMTCTL  command.  The  level  you  

specify  becomes  the  default  level  of record  locking  for  database  files  that  are  opened  and  placed  

under  commitment  control  for  the  commitment  definition.  

Commit  notify  object  

Use  the  NTFY  parameter  to  specify  the  notify  object.  A  notify  object  is a message  queue,  data  

area,  or  database  file  that  contains  information  identifying  the  last  successful  transaction  

completed  for  a particular  commitment  definition  if that  commitment  definition  did  not  end  

normally.  

Commit  scope  parameter  

Use  the  CMTSCOPE  parameter  to  specify  commit  scope.  When  commitment  control  is started,  the  

system  creates  a commitment  definition.  The  commit  scope  parameter  identifies  the  scope  for  the  

commitment  definition.  The  default  is to  scope  the  commitment  definition  to  the  activation  group  

of  the  program  making  the  start  commitment  control  request.  The  alternative  scope  is to  the  job.  

Default  journal  parameter  

You can  specify  a default  journal  when  you  start  commitment  control.  You might  use  a default  

journal  for  these  reasons:  

 

46 IBM Systems  - iSeries:  Database  Commitment  control



v   You want  to  capture  transaction  journal  entries.  These  entries  can  assist  you  in  analyzing  the  

history  of  what  resources  are  associated  with  a transaction.  They  are  not  used  for  applying  and  

removing  journaled  changes.  The  omit  journal  entries  (OMTJRNE)  parameter  determines  

whether  the  system  writes  transaction  entries.  

v   You want  to  improve  performance  for  jobs  that  close  files  and  open  them  again  within  a 

routing  step.  If  you  close  all  the  files  assigned  to a journal  that  is not  the  default  journal,  all  the  

system  information  about  the  journal  is  removed  from  the  routing  step.  If a file  that  is assigned  

to  that  journal  is  opened  later, all  the  information  about  the  journal  must  be  created  again.  The  

system  keeps  information  about  the  default  journal  with  the  commitment  definition,  whether  

any  resources  that  are  assigned  to  the  journal  are  active.

Commit  text  parameter  

Use  the  TEXT  parameter  to  identify  the  specific  text  to be  associated  with  a commitment  

definition  when  displaying  information  about  the  commitment  definitions  started  for  a job.  If no  

text  is specified,  the  system  provides  a default  text  description.  

Omit  journal  entries  parameter  

If you  specify  a default  journal  to  improve  performance,  you  can  use  the  OMTJRNE  parameter  to  

prevent  the  system  from  writing  transaction  journal  entries.  Having  the  system  write  transaction  

entries  significantly  increases  the  size  of your  journal  receiver  and  degrades  performance  during  

commit  and  rollback  operations.  

 Transaction  entries  can  be  useful  when  you  are  setting  up  and  testing  either  your  commitment  

control  environment  or  a new  application.  

 Transaction  entries  are  written  to  the  default  journal  regardless  of the  value  of the  OMTJRNE  

parameter  under  these  conditions:  

v   A  system  error  occurs  during  a commit  or  rollback  operation.  

v   A  manual  change  is made  to  a resource  that  participated  in  a transaction,  and  the  change  

caused  a heuristic  mixed  condition.  See  States  of  the  transaction  for  two-phase  commitment  

control  for  a description  of  the  heuristic  mixed  condition.  This  type  of manual  change  is called  

a heuristic  decision.

You  can  use  the  information  about  what  resources  participated  in  the  transaction  to determine  

what  action  to  take  in  these  situations.  

 You can  use  the  Journal  entry  information  finder  to  show  the  layouts  for  the  entry-specific  data  

for  transaction  (commitment  control)  journal  entries.
    Related  concepts  

   “States  of  the  transaction  for  two-phase  commitment  control”  on  page  27  

A commitment  definition  is established  at each  location  that  is part  of  the  transaction  program  

network.  For  each  commitment  definition,  the  system  keeps  track  of  the  state  of  its  current  transaction  

and  previous  transaction.  

   Journal  entry  information  finder
   Related  tasks  

   “When  to  force  commits  and  rollbacks  and  when  to cancel  resynchronization”  on  page  104  

You can  find  when  and  how  to  force  a rollback  or  commit,  and  when  to  cancel  resynchronization  in  

this  topic.
   Related  reference  

   Start  Commitment  Control  (STRCMTCTL)  command

Commit notify object 

A  notify  object  is  a message  queue,  data  area,  or  database  file  that  contains  information  identifying  the  last  

successful  transaction  completed  for  a particular  commitment  definition  if that  commitment  definition  did  

not  end  normally.  

 

Commitment  control 47



The  information  used  to  identify  the  last  successful  transaction  for  a commitment  definition  is given  by  

the  commit  identification  that  associates  a commit  operation  with  a specific  set  of  committable  resource  

changes.  

The  commit  identification  of  the  last  successful  transaction  for  a commitment  definition  is placed  in  the  

notify  object  only  if the  commitment  definition  does  not  end  normally.  This  information  can  be  used  to  

help  determine  where  processing  for  an  application  ended  so  that  the  application  can  be  started  again.  

For  independent  disk  pools,  the  notify  object  must  reside  on  the  same  independent  disk  pool  or  

independent  disk  pool  group  as  the  commitment  definition.  If  you  move  the  commitment  definition  to  

another  independent  disk  pool  or  independent  disk  pool  group,  the  notify  object  must  also  reside  on that  

other  independent  disk  pool  or  independent  disk  pool  group.  The  notify  object  on  the  other  independent  

disk  pool  or  independent  disk  pool  group  is updated  if the  commitment  definition  ends  abnormally.  If 

the  notify  object  is not  found  on  the  other  independent  disk  pool  or  independent  disk  pool  group,  the  

update  fails  with  message  CPF8358.  

If journaled  resources  participate  in  the  current  transaction  and  a commit  operation  is performed  with  a 

commit  identification,  the  commit  identification  is placed  in  the  commit  journal  entry  (journal  code  and  

entry  type  of  C CM)  that  identifies  that  particular  transaction  as  being  committed.  A commit  journal  

entry  containing  the  commit  identification  is sent  to  each  journal  associated  with  resources  that  

participated  in  the  transaction.  

The  following  table  shows  how  you  specify  the  commit  identification  and  its  maximum  size.  If the  

commit  identification  exceeds  its  maximum  size,  it  is truncated  when  it is written  to  the  notify  object.  

 

Language  Operation  

Maximum  characters  in commit  

identification  

CL COMMIT  command  3000  

1 

ILE  RPG*  COMIT  operation  code  4000  

1 

PLI.  PLICOMMIT  subroutine  4000  

1 

ILE  C* _Rcommit  function  4000  

1 

ILE  COBOL*  COMMIT  verb  Not  supported  

SQL  COMMIT  statement  Not  supported  

Note:  

1If the  notify  object  is a data  area,  the  maximum  size  is 2000  characters.
  

When  a notify  object  is  updated  with  the  commit  identification,  it is  updated  as  follows:  

Database  file  

If a database  file  is  used  as  the  notify  object,  the  commit  identification  is added  to  the  end  of the  

file.  Any  existing  records  will  be  left  in  the  file.  Because  several  users  or  jobs  can  be  changing  

records  at  the  same  time,  each  commit  identification  in the  file  contains  unique  information  to 

associate  the  data  with  the  job  and  commitment  definition  that  failed.  The  file  that  serves  can  be  

journaled  

Data  area  

If a data  area  is  used  as  the  notify  object,  the  entire  content  of  the  data  area  is replaced  when  the  

commit  identification  is  placed  in  the  data  area.  If more  than  one  user  or  job  is using  the  same  

program,  only  the  commit  identification  from  the  last  commitment  definition  that  did  not  end  

normally  will  be  in the  data  area.  Consequently,  a single  data  area  notify  object  might  not  

produce  the  correct  information  for  starting  the  application  programs  again.  To solve  this  

problem,  use  a separate  data  area  for  each  commitment  definition  for  each  workstation  user  or  

job.  

Message  queue  

If a message  queue  is  used  as  a notify  object,  message  CPI8399  is sent  to the  message  queue.  The  

 

48 IBM Systems  - iSeries:  Database  Commitment  control



commit  identification  is  placed  in  the  second-level  text  for  message  CPI8399.  As  with  using  a 

database  file  for  the  notify  object,  the  contents  of each  commit  identification  uniquely  identify  a 

particular  commitment  definition  for  a job  so  that  an  application  program  can  be  started  again.
    Related  concepts  

   “Commitment  control  for  batch  applications”  on  page  24  

Batch  applications  might  or  might  not  need  commitment  control.  In  some  cases,  a batch  application  

can  perform  a single  function  of reading  an  input  file  and  updating  a master  file.  However,  you  can  

use  commitment  control  for  this  type  of  application  if it is important  to  start  it again  after  an  

abnormal  end.  

   “Example:  Use  a notify  object  to  start  an  application”  on  page  84  

When  a program  is  started  after  an  abnormal  end,  it  can  look  for  an  entry  in  the  notify  object.  If the  

entry  exists,  the  program  can  start  a transaction  again.  After  the  transaction  has  been  started  again,  

the  notify  object  is  cleared  by  the  program  to  prevent  it  from  starting  the  same  transaction  yet  another  

time.

Commit lock level 

The  value  you  specify  for  the  LCKLVL  parameter  on  the  Start  Commitment  Control  (STRCMTCTL)  

command  becomes  the  default  level  of  record  locking  for  database  files  that  are  opened  and  placed  under  

commitment  control  for  the  commitment  definition.  

The  default  level  of  record  locking  cannot  be  overridden  when  opening  local  database  files.  However,  

database  files  accessed  by  SQL  use  the  current  SQL  isolation  level  in  effect  at the  time  of  the  first  SQL  

statement  issued  against  it.  

The  lock  level  must  be  specified  with  respect  to your  needs,  the  wait  periods  allowed,  and  the  release  

procedures  used  most  often.  

The  following  descriptions  apply  only  to  files  that  are  opened  under  commitment  control:  

*CHG  Lock  Level  

Use  this  value  if you  want  to  protect  changed  records  from  changes  by  other  jobs  running  at the  

same  time.  For  files  that  are  opened  under  commitment  control,  the  lock  is held  for  the  duration  

of the  transaction.  For  files  not  opened  under  commitment  control,  the  lock  on  the  record  is held  

only  from  the  time  the  record  is  read  until  the  update  operation  is complete.  

*CS  Lock  Level  

Use  this  value  to  protect  both  changed  and  retrieved  records  from  changes  by  other  jobs  running  

at  the  same  time.  Retrieved  records  that  are  not  changed  are  protected  only  until  they  are  

released,  or  a different  record  is retrieved.  

 The  *CS  lock  level  ensures  that  other  jobs  are  not  able  to  read  a record  for  update  that  this  job  

has  read.  In  addition,  the  program  cannot  read  records  for  update  that  have  been  locked  with  a 

record  lock  type  of  *UPDATE  in  another  job  until  that  job  accesses  a different  record.  

*ALL  Lock  Level  

Use  this  value  to  protect  changed  records  and  retrieved  records  that  are  under  commitment  

control  from  changes  by  other  jobs  running  under  commitment  control  at  the  same  time.  Records  

that  are  retrieved  or  changed  are  protected  until  the  next  commit  or  rollback  operation.  

 The  *ALL  lock  level  ensures  that  other  jobs  are  not  able  to  access  a record  for  update  that  this  job  

has  read.  This  is  different  from  normal  locking  protocol.  When  the  lock  level  is specified  as  *ALL,  

even  a record  that  is  not  read  for  update  cannot  be  accessed  if it is locked  with  a record  lock  type  

of *UPDATE  in  another  job.

 The  following  table  shows  the  duration  of  record  locks  for  files  under  and  not  under  commitment  

control.  

 

Commitment  control 49



Request  LCKLVL  parameter  Duration  of lock  Lock  type  

Read-only  No  commitment  control  No lock  None  

*CHG  No lock  None  

*CS  From  read  to next  read,  

commit,  or rollback  

*READ  

*ALL  From  read  to commit  or 

rollback  

*READ  

Read  for  update  then  

update  or delete1 

No  commitment  control  From  read  to update  or 

delete  

*UPDATE  

*CHG  From  read  to update  or 

delete  

*UPDATE  

Then  from  update  or delete  

to next  commit  or rollback2 

*UPDATE  

*CS  From  read  to update  or 

delete  

*UPDATE  

Then  from  update  or delete  

to next  commit  or rollback2 

*UPDATE  

*ALL  From  read  to update  or 

delete  

*UPDATE  

Then  from  update  or delete  

to next  commit  or rollback2 

Read  for  update  then  

release1 

No  commitment  control  From  read  to release  *UPDATE  

*CHG  From  read  to release  *UPDATE  

*CS  From  read  to release,  

commit,  or rollback  

*UPDATE  

Then  from  release  to next  

read,  commit,  or rollback  

*UPDATE  

*ALL  From  read  to release,  

commit,  or rollback  

*UPDATE  

Then  from  release  to next  

commit  or rollback  

Add  No  commitment  control  No lock  None  

*CHG  From  add  to commit  or 

rollback  

*UPDATE  

*CS  From  add  to commit  or 

rollback  

*UPDATE  

*ALL  From  add  to commit  or 

rollback  

*UPDATE  

Write direct  No  commitment  control  For  duration  of write  direct  *UPDATE  

*CHG  From  write  direct  to 

commit  or rollback  

*UPDATE  

*CS  From  write  direct  to 

commit  or rollback  

*UPDATE  

*ALL  From  write  direct  to 

commit  or rollback  

*UPDATE  

 

50 IBM Systems  - iSeries:  Database  Commitment  control



Request  LCKLVL  parameter  Duration  of lock  Lock  type  

Note:   

1If a commit  or rollback  operation  is performed  after  a read-for-update  operation  but  before  the  record  is updated,  

deleted,  or released,  the  record  is unlocked  during  the  commit  or rollback  operation.  The  protection  on the  record  is 

lost  as soon  as the  commit  or rollback  completes.  

2If a record  is deleted  but  the  commit  or  rollback  has  not  yet  been  issued  for  the  transaction,  the  deleted  record  does  

not  remain  locked.  If the  same  or a different  job attempts  to read  the  deleted  record  by  key,  the  job receives  a record  

not  found  indication.  However,  if a unique  keyed  access  path  exists  over  the  file,  another  job is prevented  from  

inserting  or updating  a record  with  the  same  unique  key  value  as that  of the  deleted  record  until  the transaction  is 

committed.  

  

A  record  lock  type  of  *READ  is  obtained  on  records  that  are  not  read  for  update  when  the  lock  level  is 

*CS  or  *ALL.  This  type  of  lock  prevents  other  jobs  from  reading  the  records  for  update  but  does  not  

prevent  the  records  from  being  accessed  from  a read-only  operation.  

A  record  lock  type  of  *UPDATE  is obtained  on  records  that  are  updated,  deleted,  added,  or  read  for  

update.  This  type  of  lock  prevents  other  jobs  from  reading  the  records  for  update,  and  prevents  jobs  

running  under  commitment  control  with  a record  lock  level  of *CS  or  *ALL  from  accessing  the  records  for  

even  a read-only  operation.  

Programs  that  are  not  using  commitment  control  can  read  records  locked  by  another  job,  but  cannot  read  

records  for  update,  regardless  of  the  value  specified  for  the  LCKLVL  parameter.  

The  lock  level,  specified  for  a commitment  definition  when  commitment  control  is  started  for  an  

activation  group  or  for  the  job,  applies  only  to  opens  associated  with  that  particular  commitment  

definition.  

Note:   The  *CS  and  *ALL  lock-level  values  protect  you  from  retrieving  a record  that  currently  has  a 

pending  change  from  a different  job.  However,  the  *CS  and  *ALL  lock-level  values  do  not  protect  

you  from  retrieving  a record  using  a program  running  in  one  activation  group  that  currently  has  a 

pending  change  from  a program  running  in  a different  activation  group  within  the  same  job.  

Within  the  same  job,  a program  can  change  a record  that  has  already  been  changed  within  the  current  

transaction  as  long  as  the  record  is accessed  again  using  the  same  commitment  definition.  When  using  

the  job-level  commitment  definition,  the  access  to  the  changed  record  can  be  made  from  a program  

running  within  any  activation  group  that  is using  the  job-level  commitment  definition.  

   Related  concepts  

   “Considerations  and  restrictions  for  commitment  control”  on  page  22  

The  topic  talks  about  miscellaneous  considerations  and  restrictions  for  commitment  control.
   Related  reference  

   Start  Commitment  Control  (STRCMTCTL)  command

End commitment control 

You can  find  what  prerequisites  are  necessary  to  end  commitment  control  and  how  to  end  commitment  

control  in this  topic.  

You can  end  commitment  control  for  either  the  job-level  or activation-group-level  commitment  definition  

using  the  End  Commitment  Control  (ENDCMTCTL)  command.  Issuing  the  ENDCMTCTL  command  

indicates  to  the  system  that  the  commitment  definition  in  use  by  the  program  making  the  request  is to be  

ended.  The  ENDCMTCTL  command  ends  only  one  commitment  definition  for  the  job  and  all  other  

commitment  definitions  for  the  job  remain  unchanged.  

 

Commitment  control 51



If the  activation-group-level  commitment  definition  is ended,  then  programs  running  within  that  

activation  group  can  no  longer  make  changes  under  commitment  control,  unless  the  job-level  

commitment  definition  is already  started  for  the  job.  If  the  job-level  commitment  definition  is active,  then  

it is immediately  made  available  for  use  by  the  programs  running  within  the  activation  group  that  just  

ended  commitment  control.  

If the  job-level  commitment  definition  is ended,  then  any  program  running  within  the  job  that  was  using  

the  job-level  commitment  definition  can  no  longer  make  changes  under  commitment  control  without  first  

starting  commitment  control  again  with  the  STRCMTCTL  command.  

Before  issuing  the  ENDCMTCTL  command,  the  following  conditions  must  be  satisfied  for  the  

commitment  definition  to  be  ended:  

v   All  files  opened  under  commitment  control  for  the  commitment  definition  to  be  ended  must  first  be 

closed.  When  ending  the  job-level  commitment  definition,  this  includes  all  files  opened  under  

commitment  control  by  any  program  running  in  any  activation  group  that  is using  the  job-level  

commitment  definition.  

v   All  API  commitment  resources  for  the  commitment  definition  to  be  ended  must  first  be  removed  using  

the  QTNRMVCR  API.  When  ending  the  job-level  commitment  definition,  this  includes  all  API  

commitment  resources  added  by  any  program  running  in  any  activation  group  that  is using  the  

job-level  commitment  definition.  

v   A remote  database  associated  with  the  commitment  definition  to be  ended  must  be  disconnected.  

v   All  protected  conversations  associated  with  the  commitment  definition  must  be  ended  normally  using  

the  correct  synchronization  level.  

If commitment  control  is being  ended  in  an  interactive  job  and  one  or  more  committable  resources  

associated  with  the  commitment  definition  have  pending  changes,  inquiry  message  CPA8350  is sent  to  

the  user  asking  whether  to  commit  the  pending  changes,  roll  back  the  pending  changes,  or  cancel  the  

ENDCMTCTL  request.  

If commitment  control  is being  ended  in  a batch  job,  and  one  or  more  closed  files  associated  with  the  

commitment  definition  to  be  ended  still  have  pending  changes,  the  changes  are  rolled  back  and  a 

message  is  sent:  

v   CPF8356  if only  local  resources  are  registered  

v   CPF835C  if only  remote  resources  are  registered  

v   CPF83E4  if both  local  and  remote  resources  are  registered  

If a notify  object  is defined  for  the  commitment  definition  being  ended,  it might  be  updated.  

When  an  activation  group  that  has  an  API  registered  as  the  last  agent  is ending,  the  exit  program  for  the  

API  is called  to  receive  the  commit  or  rollback  decision.  In  this  case,  even  though  the  activation  group  is  

ending  normally,  a rollback  request  can  still  be  returned  from  the  API  exit  program.  Thus,  the  implicit  

commit  operation  might  not  be  performed.  

After  the  commitment  definition  has  successfully  ended,  all  the  necessary  recovery,  if any,  has  been  

performed.  No  additional  recovery  is  performed  for  the  commitment  resources  associated  with  the  

commitment  definition  just  ended.  

After  the  commitment  definition  is  ended,  the  job-level  or  activation-group-level  commitment  definition  

can  then  be  started  again  for  the  programs  running  within  the  activation  group.  The  job-level  

commitment  definition  can  be  started  only  if it  is not  already  started  for  the  job.  

Although  commitment  definitions  can  be  started  and  ended  many  times  by  the  programs  that  run within  

an  activation  group,  the  amount  of  system  resources  required  for  the  repeated  start  and  end  operations  

 

52 IBM Systems  - iSeries:  Database  Commitment  control



can  cause  a decrease  in  job  performance  and  overall  system  performance.  Therefore,  it is  recommended  

that  a commitment  definition  be  left  active  if a program  to  be  called  later  will  use  it.  

   Related  concepts  

   “Updates  to  the  notify  object”  on  page  58  

This  topic  lists  the  uncommitted  changes  for  purposes  of  the  notify  object.
   Related  reference  

   End  Commitment  Control  (ENDCMTCTL)  command

System-initiated end of commitment control 

The  system  can  end  commitment  control,  or  perform  an  implicit  commit  or  rollback  operation.  Sometimes  

the  system-initiated  end  of  commitment  control  is normal.  Other  times,  commitment  control  ends  with  an  

abnormal  system  or  job  end.  

Commitment control during activation group end 

The  system  automatically  ends  an  activation-group-level  commitment  definition  when  an  activation  

group  ends.  

If pending  changes  exist  for  an  activation-group-level  commitment  definition  and  the  activation  group  is  

ending  normally,  the  system  performs  an  implicit  commit  operation  for  the  commitment  definition  before  

it  is ended.  Otherwise,  an  implicit  rollback  operation  is performed  for  the  activation-group-level  

commitment  definition  before  being  ended  if the  activation  group  is ending  abnormally,  or if errors  were  

encountered  by  the  system  when  closing  any  files  opened  under  commitment  control  scoped  to the  

activation  group.  

Note:   An  implicit  commit  or  rollback  operation  is never  performed  during  activation-group  end  

processing  for  the  *JOB  or  *DFTACTGRP  commitment  definitions.  This  is because  the  *JOB  and  

*DFTACTGRP  commitment  definitions  are  never  ended  due  to an  activation  group  ending.  Instead,  

these  commitment  definitions  are  either  explicitly  ended  with  an  ENDCMTCTL  command  or  

ended  by  the  system  when  the  job  ends.  

The  system  automatically  closes  any  files  scoped  to  the  activation  group  when  the  activation  group  ends.  

This  includes  any  database  files  scoped  to  the  activation  group  opened  under  commitment  control.  The  

close  for  any  such  file  occurs  before  any  implicit  commit  operation  that  might  be  performed  for  the  

activation-group-level  commitment  definition.  Therefore,  any  records  that  reside  in  an  I/O  buffer  are  first  

forced  to  the  database  before  any  implicit  commit  operation  is performed.  

As  part  of  the  implicit  commit  or  rollback  operation  that  might  be  performed,  a call  is made  to  the  API  

commit  and  rollback  exit  program  for  each  API  commitment  resource  associated  with  the  

activation-group-level  commitment  definition.  The  exit  program  must  complete  its  processing  within  5 

minutes.  After  the  API  commit  and  rollback  exit  program  is called,  the  system  automatically  removes  the  

API  commitment  resource.  

If an  implicit  rollback  operation  is  performed  for  a commitment  definition  that  is being  ended  due  to an  

activation  group  being  ended,  then  the  notify  object,  if one  is defined  for  the  commitment  definition,  

might  be  updated.  

   Related  concepts  

   “Updates  to  the  notify  object”  on  page  58  

This  topic  lists  the  uncommitted  changes  for  purposes  of  the  notify  object.

Implicit commit and rollback operations 

In  some  instances  a commit  or  rollback  operation  is initiated  by  the  system  for  a commitment  definition.  

These  types  of  commit  and  rollback  operations  are  known  as implicit  commit  and  rollback  requests. 

 

Commitment  control 53



Typically,  a commit  or  rollback  operation  is  initiated  from  an  application  program  using  one  of  the  

available  programming  languages  that  supports  commitment  control.  These  types  of  commit  and  rollback  

operations  are  known  as  explicit  commit  and  rollback  requests. 

The  following  two  tables  show  what  the  system  does  when  certain  events  occur  related  to a commitment  

definition  that  has  pending  changes.  A  commitment  definition  has  pending  changes  if any  of the  

following  conditions  is true: 

v   Any  committable  resource  has  been  updated.  

v   A database  file  opened  under  commitment  control  has  been  read  because  reading  a file  changes  the  file  

position.  

v   The  commitment  definition  has  an  API  resource.  Because  changes  to  API  resources  are  done  by  a user  

program,  the  system  must  assume  that  all  API  resources  have  pending  changes.  

The  C  CM  (commit  operation)  journal  entry  and  C RB  (rollback  operation)  journal  entry  indicate  whether  

the  operation  was  explicit  or  implicit.  

The  following  table  shows  the  actions  the  system  takes  when  a job  ends,  either  normally  or abnormally,  

based  on  the  following  situations:  

v   The  state  of the  transaction.  

v   The  action-if-end  job  value  for  the  commitment  definition.  

v   Whether  an  API  resource  is  the  last  agent.

 

State  Last  agent  API  

Action  if Endjob1 

option  Commit  or rollback  operation  

RST  N/A  N/A  If the  commitment  definition  is not  

associated  with  an X/Open  global  

transaction,  an implicit  rollback  is 

performed.  

If the  commitment  definition  is associated  

with  an X/Open  global  transaction,  the 

following  events  occur:  

v   If the  transaction  branch  state  is not  

Active  (S1),  no action  is performed  and 

the  transaction  branch  is left  in  the same  

state.  

v   If the  transaction  branch  state  is Active  

(S1),  an implicit  rollback  is performed.  

PIP  N/A  N/A  If the  commitment  definition  is not  

associated  with  an X/Open  global  

transaction,  an implicit  rollback  is 

performed.  

If the  commitment  definition  is associated  

with  an X/Open  global  transaction,  the 

transaction  branch  is in the Idle  (S2)  state,  

and  it is left  in the  Idle  (S2)  state.  

 

54 IBM Systems  - iSeries:  Database  Commitment  control



State  Last  agent  API  

Action  if Endjob1 

option  Commit  or rollback  operation  

PRP  N/A  WAIT If the  commitment  definition  is not 

associated  with  an X/Open2 global  

transaction,  the following  occurs:  

v   Resynchronization  is started  to receive  the 

decision  from  the initiator  of the  commit  

operation.  

v   The  returned  decision  to commit  or 

rollback  is performed.  It is considered  an 

explicit  operation.  

PRP  N/A  C If the  commitment  definition  is not 

associated  with  an X/Open2 global  

transaction,  an implicit  commit  operation  is 

performed.  

R If the  commitment  definition  is not 

associated  with  an X/Open  global  

transaction,  an implicit  rollback  operation  is 

performed.  

If the  commitment  definition  is associated  

with  an X/Open  global  transaction,  the 

following  occurs:  

v   If the  job that  started  the  transaction  ends,  

the  transaction  is left in a prepared  state  

until  the XA  TM  either  commits  it or rolls  

it back.  The  XA transaction  branch  state  

will  be left  at Prepared  (S3)  in this  case.  

v   If the  SQL  server  job that  the transaction’s  

work  is being  routed  to is ended,  a forced  

rollback  is implicitly  performed.  The  XA 

transaction  branch  state  will be changed  

to Heuristically  Completed  (S5) in  this  

case.  

CIP  N/A  N/A  An  explicit  commit  operation  is performed.  

LAP  NO  WAIT 1. Resynchronization  to the last  agent  is 

used  to retrieve  the  decision  to commit  or to 

roll  back.  

2. The  returned  decision  to commit  or to roll  

back  is performed.  It is considered  an 

explicit  operation.  

LAP  YES  WAIT 1. The  last  agent  API  is called  to retrieve  the 

commit  or rollback  decision.  

2. The  commit  or rollback  operation  is 

performed.  It is considered  an explicit  

operation.  

LAP  N/A  C An  implicit  commit  operation  is performed.  

R An  implicit  rollback  operation  is performed.  

CMT  N/A  N/A  A commit  operation  has  already  completed  

for this  commitment  definition  and  any  

downstream  locations.  The  commit  

operation  is complete.  

 

Commitment  control 55



State  Last  agent  API  

Action  if Endjob1 

option  Commit  or rollback  operation  

VRO  N/A  N/A  The  local  and  remote  agents  voted  to 

read-only.  All downstream  agents  must  also  

have  voted  to read-only.  No  action  is 

required.  

RBR  N/A  N/A  A rollback  operation  is required.  An  explicit  

rollback  operation  is performed.  

Note:   

1 You can  change  the  Action  if  Endjob  option  with  the  Change  Commitment  Options  (QTNCHGCO)  API.  

2If the  commitment  definition  is associated  with  an X/Open  global  transaction,  the  following  events  occur:  

v   If the  job  that  started  the  transaction  ends,  the transaction  is left  in a prepared  state  until  the XA  TM  either  

commits  it or rolls  it back.  The  XA transaction  branch  state  will  be left  at Prepared  (S3)  in this  case.  

v   For  transaction-scoped  locks  only,  if the  SQL  server  job  that  the  transaction’s  work  is being  routed  to is ended,  a 

forced  rollback  is implicitly  performed.  The  XA  transaction  branch  state  will be changed  to Heuristically  

Completed  (S5)  in this  case.
  

The  following  table  shows  the  actions  the  system  takes  when  an  activation  group  ends  and  applies  only  

to  transactions  with  job-scoped  locks.  The  system  actions  are  based  on  the  following  items:  

v   The  state  of the  transaction.  (It  is  always  reset  (RST)  when  an  activation  group  ends.)  

v   How  the  activation  group  ends-normally  or  abnormally.  

v   Whether  an  API  resource  is  the  last  agent.  

Note:   If an  API  resource  is  registered  as  the  last  agent,  this  gives  control  of the  commit  or  rollback  

decision  to  the  last  agent.  The  result  of the  decision  is considered  an  explicit  operation

 State  Last  agent  API  Type of end  Commit  or rollback  operation  

RST  No  Normal  An  implicit  commit  operation  is performed.  

If protected  conversations  exist,  the  

commitment  definition  will  become  the root  

initiator  of the  commit  operation.  

RST  No  Abnormal  An  implicit  rollback  is performed.  

RST  Yes Normal  The  API  exit  program  is called.  The  commit  

or rollback  operation  is determined  by the 

API.  

RST  Yes Abnormal  The  API  exit  program  is called.  The  commit  

or rollback  operation  is determined  by the 

API.
  

   Related  concepts  

   “Commitment  control  during  abnormal  system  or  job  end”  on  page  57  

This  topic  applies  only  to  commitment  definitions  with  job-scoped  locks.
   Related  reference  

   Change  Commitment  Options  (QTNCHGCO)  API

Commitment control during normal routing step end 

The  system  ends  all  commitment  definitions  for  a job  when  a routing  step  is normally  ended.  

Note:   The  following  information  applies  only  to  commitment  definitions  with  job-scoped  locks.

 

56 IBM Systems  - iSeries:  Database  Commitment  control



A  routing  step  ends  normally  by  one  of  the  following  situations:  

v   A  normal  end  for  a batch  job.  

v   A  normal  sign-off  for  an  interactive  job.  

v   The  Reroute  Job  (RRTJOB),  Transfer  Job  (TFRJOB),  or  Transfer  Batch  Job  (TFRBCHJOB)  command  ends  

the  current  routing  step  and  starts  a new  routing  step.  

Any  other  end  of a routing  step  is  considered  abnormal  and  is recognized  by  a nonzero  completion  code  

in  job  completion  message  CPF1164  in  the  job  log.  

Before  ending  a commitment  definition  during  routing  step  end,  the  system  performs  an  implicit  rollback  

operation  if the  commitment  definition  has  pending  changes.  This  includes  calling  the  API  commit  and  

rollback  exit  program  for  each  API  commitment  resource  associated  with  the  commitment  definition.  The  

exit  program  must  complete  its  processing  within  5 minutes.  After  the  API  commit  and  rollback  exit  

program  is called,  the  system  automatically  removes  the  API  commitment  resource.  

If a notify  object  is  defined  for  the  commitment  definition,  it can  be  updated.  

   Related  concepts  

   “Updates  to  the  notify  object”  on  page  58  

This  topic  lists  the  uncommitted  changes  for  purposes  of  the  notify  object.

Commitment control during abnormal system or job end 

This  topic  applies  only  to  commitment  definitions  with  job-scoped  locks.  

The  system  ends  all  commitment  definitions  for  a job  when  the  job  ends  abnormally.  These  commitment  

definitions  are  ended  during  the  end  job  processing.  If  the  system  ends  abnormally,  the  system  ends  all 

commitment  definitions  that  were  started  and  being  used  by  all  active  jobs  at the  time  of  the  abnormal  

system  end.  These  commitment  definitions  are  ended  as  part  of  the  database  recovery  processing  that  is 

performed  during  the  next  IPL  after  the  abnormal  system  end.  

 Attention:   The  recovery  for  commitment  definitions  refers  to  an  abnormal  end  for  the  system  or  a job  

due  to  a power  failure,  a hardware  failure,  or  a failure  in  the  operating  system  or  licensed  internal  code.  

You must  not  use  the  End  Job  Abnormal  (ENDJOBABN)  command  to  force  a job  to  end  abnormally.  The  

abnormal  end  can  result  in  pending  changes  for  active  transactions  for  the  job  you  are  ending  to be 

partially  committed  or  rolled  back.  The  next  IPL  might  attempt  recovery  for  any  partial  transactions  for  

the  job  ended  with  the  ENDJOBABN  command.  

The  outcome  of  commitment  control  recovery  that  the  system  performs  during  an  IPL  for  a job  that  you  

end  with  the  ENDJOBABN  command  is  uncertain.  It is because  all  locks  for  commitment  resources  are  

released  when  the  job  is  ended  abnormally.  Any  pending  changes  due  to  partial  transactions  are  made  

available  to  other  jobs.  These  pending  changes  can  then  cause  other  application  programs  to  make  

additional  erroneous  changes  to  the  database.  Likewise,  any  ensuing  IPL  recovery  that  is performed  later  

can  adversely  affect  the  changes  made  by  applications  after  the  job  was  ended  abnormally.  For  example,  

an  SQL  table  might  be  dropped  during  IPL  recovery  as  the  rollback  action  for  a pending  create  table.  

However,  other  applications  might  have  already  inserted  several  rows  into  the  table  after  the  job  was  

ended  abnormally.  

The  system  performs  as  follows  for  commitment  definitions  being  ended  during  an  abnormal  job  end  or  

during  the  next  IPL  after  an  abnormal  system  end:  

v   Before  ending  a commitment  definition,  the  system  performs  an  implicit  rollback  operation  if the  

commitment  definition  has  pending  changes,  unless  processing  for  the  commitment  definition  was  

interrupted  in  the  middle  of  a commit  operation.  If ended  in  the  middle  of a commit  operation,  the  

transaction  might  be  rolled  back,  resynchronized,  or committed,  depending  on  its  state.  The  processing  

to  perform  the  implicit  rollback  operation  or  to  complete  the  commit  operation  includes  calling  the  API  

 

Commitment  control 57



commit  and  rollback  exit  program  for  each  API  commitment  resource  associated  with  the  commitment  

definition.  After  the  API  commit  and  rollback  exit  program  is called,  the  system  automatically  removes  

the  API  commitment  resource.  

 Attention:   Ending  the  job  while  a transaction  is in  doubt  (transaction  state  is LAP  or  PRP)  can  cause  

inconsistencies  in  the  database  (changes  might  be  committed  on  one  or  more  systems  and  rolled  back  

on  other  systems).  

–   If the  Action  if  Endjob  commitment  option  is COMMIT,  changes  on  this  system  are  committed  if the  

job  is ended,  without  regard  to  whether  changes  on  the  other  systems  participating  in  the  

transaction  are  committed  or  rolled  back.  

–   If the  Action  if  Endjob  commitment  option  is ROLLBACK,  changes  on  this  system  are  rolled  back  if 

the  job  is ended,  without  regard  to  whether  changes  on  the  other  systems  participating  in  the  

transaction  are  committed  or  rolled  back.  

–   If the  Action  if  Endjob  commitment  option  is WAIT, the  job  will  not  end  until  resynchronization  

completes  to the  system  that  owns  the  commit  or  rollback  decision.  To make  the  job  end  before  

resynchronization  is  complete,  a heuristic  decision  must  be  made  and  resynchronization  must  be  

canceled.

Ending  the  job  or  system  abnormally  during  a long-running  rollback  is not  recommended.  This  will  

cause  another  rollback  to  occur  as  the  job  ends  (or  during  the  next  IPL  if the  system  is ended).  The  

subsequent  rollback  will  repeat  the  work  performed  by  the  original  rollback  and  take  significantly  

longer  to  run. 

v   If a notify  object  is  defined  for  the  commitment  definition,  it might  be  updated.  

If a process  ends  before  commitment  control  is ended  and  protected  conversations  are  still  active,  the  

commitment  definition  might  be  required  to  commit  or  roll  back.  The  action  is based  on  the  State  option  

and  the  Action  if end  job  option  for  the  commitment  definition.  

   Related  concepts  

   “Implicit  commit  and  rollback  operations”  on  page  53
In  some  instances  a commit  or  rollback  operation  is initiated  by  the  system  for  a commitment  

definition.  These  types  of  commit  and  rollback  operations  are  known  as  implicit  commit  and  rollback  

requests.  

   “Updates  to  the  notify  object”  

This  topic  lists  the  uncommitted  changes  for  purposes  of the  notify  object.

Updates to the notify object 

This  topic  lists  the  uncommitted  changes  for  purposes  of  the  notify  object.  

v   An  update  to  a record  that  is made  under  commitment  control.  

v   A record  that  is deleted  under  commitment  control.  

v   An  object  level  change  that  is made  to  a local  DDL  object  under  commitment  control.  

v   A read  operation  performed  for  a database  file  that  was  opened  under  commitment  control.  This  is  

because  file  position  is  brought  back  to  the  last  commitment  boundary  when  a rollback  operation  is 

performed.  If  you  perform  a read  operation  under  commitment  control,  the  file  position  is changed  

and  therefore,  an  uncommitted  change  then  exists  for  the  commitment  definition.  

v   A commitment  definition  with  one  of  the  following  resources  that  are  added  is always  considered  to  

have  uncommitted  changes:  

–   An  API  commitment  resource  

–   A  remote  Distributed  Relational  Database  Architecture  (DRDA  *) resource  

–   A  Distributed  Database  Management  Architecture  (DDM)  resource  

–   An  LU  6.2  resource

 

58 IBM Systems  - iSeries:  Database  Commitment  control



This  is because  the  system  does  not  know  when  a real  change  is made  to  the  object  or  objects  that  are  

associated  with  these  types  of  resources.  Types  of  committable  resources  has  more  information  about  

how  you  add  and  work  with  these  types  of  resources.  

The  system  makes  updates  to  the  notify  object,  based  on  the  following  ways  that  a commitment  

definition  can  end:  

v   If a job  ends  normally  and  no  uncommitted  changes  exist,  the  system  does  not  place  the  commit  

identification  of  the  last  successful  commit  operation  in  the  notify  object.  

v   If an  implicit  commit  operation  is performed  for  an  activation-group-level  commitment  definition  when  

the  activation  group  is ended,  the  system  does  not  place  the  commit  identification  of the  last  successful  

commit  operation  in  the  notify  object.

Note:   Implicit  commit  operations  are  never  performed  for  the  *DFTACTGRP  or  *JOB  commitment  

definition  

v   If the  system,  job,  or  an  activation  group  ends  abnormally  before  the  first  successful  commit  operation  

for  a commitment  definition,  the  system  does  not  update  the  notify  object  because  there  is no  last  

commit  identification.  To differentiate  between  this  condition  and  a normal  program  completion,  your  

program  must  update  the  notify  object  with  a specific  entry  before  completing  the  first  successful  

commit  operation  for  the  commitment  definition.  

v   If an  abnormal  job  end  or  an  abnormal  system  end  occurs  after  at least  one  successful  commit  

operation,  the  system  places  the  commit  identification  of that  commit  operation  in  the  notify  object.  If 

the  last  successful  commit  operation  did  not  specify  a commit  identification,  then  the  notify  object  is 

not  updated.  For  an  abnormal  job  end,  this  notify  object  processing  is performed  for  each  commitment  

definition  that  was  active  for  the  job.  For  an  abnormal  system  end,  this  notify  object  processing  is  

performed  for  each  commitment  definition  that  was  active  for  all  jobs  on  the  system.  

v   The  system  updates  the  notify  object  with  the  commit  identification  of the  last  successful  commit  

operation  for  that  commitment  definition  if all  of  the  following  events  occur:  

–   A  activation  group  ends.  

–   An  implicit  rollback  operation  is performed  for  the  activation-group-level  commitment  definition.  

–   At  least  one  successful  commit  operation  has  been  performed  for  that  commitment  definition.  

If the  last  successful  commit  operation  did  not  specify  a commit  identification,  then  the  notify  object  is 

not  updated.  An  implicit  rollback  operation  is performed  for  an  activation-group-level  commitment  

definition  if the  activation  group  is  ending  abnormally  or  errors  occurred  when  closing  the  files  that  

were  opened  under  commitment  control  and  that  were  scoped  to  that  activation  group.  For  more  

information  about  scoping  database  files  to  activation  groups  and  how  activation  groups  can  be  ended,  

see  the  reference  book  for  the  ILE  language  that  you  are  using.  

v   If uncommitted  changes  exist  when  a job  ends  normally  and  at least  one  successful  commit  operation  

has  been  performed,  the  commit  identification  of the  last  successful  commit  operation  is placed  in  the  

notify  object  and  the  uncommitted  changes  are  rolled  back.  If the  last  successful  commit  operation  did  

not  specify  a commit  identification,  then  the  notify  object  is not  updated.  This  notify  object  processing  

is performed  for  each  commitment  definition  that  was  active  for  the  job  when  the  job  ended.  

v   If uncommitted  changes  exist  when  the  ENDCMTCTL  command  is run, the  notify  object  is updated  

only  if the  last  successful  commit  operation  specified  a commit  identification:  

–   For  a batch  job,  the  uncommitted  changes  are  rolled  back  and  the  commit  identification  of  the  last  

successful  commit  operation  is placed  in  the  notify  object.  

–   For  an  interactive  job,  if the  response  to inquiry  message  CPA8350  is to  rollback  the  changes,  the  

uncommitted  changes  are  rolled  back  and  the  commit  identification  of  the  last  successful  commit  

operation  is placed  in  the  notify  object.  

–   For  an  interactive  job,  if the  response  to inquiry  message  CPA8350  is to  commit  the  changes,  the  

system  prompts  for  a commit  identification  to  use  and  the  changes  are  committed.  The  commit  

identification  that  is  entered  on  the  prompt  display  is placed  in  the  notify  object.  

 

Commitment  control 59



–   For  an  interactive  job,  if the  response  to  inquiry  message  CPA8350  is to  cancel  the  ENDCMTCTL  

request,  the  pending  changes  remain  and  the  notify  object  is  not  updated.  

   Related  concepts  

   “End  commitment  control”  on  page  51  

You can  find  what  prerequisites  are  necessary  to end  commitment  control  and  how  to  end  

commitment  control  in  this  topic.  

   “Commitment  control  during  activation  group  end”  on  page  53  

The  system  automatically  ends  an  activation-group-level  commitment  definition  when  an  activation  

group  ends.  

   “Commitment  control  during  normal  routing  step  end”  on  page  56  

The  system  ends  all  commitment  definitions  for  a job  when  a routing  step  is normally  ended.  

   “Commitment  control  during  abnormal  system  or  job  end”  on  page  57  

This  topic  applies  only  to  commitment  definitions  with  job-scoped  locks.  

   “Types  of  committable  resources”  on  page  11 

The  table  in  this  topic  lists  the  different  types  of committable  resources.

Commitment control recovery during initial program load after 

abnormal end 

When  you  perform  an  initial  program  load  (IPL)  after  your  system  ends  abnormally,  the  system  attempts  

to  recover  all  the  commitment  definitions  that  were  active  when  the  system  ended.  

Likewise,  when  you  vary  on  an  independent  disk  pool,  the  system  attempts  to  recover  all  the  

commitment  definitions  related  to  that  independent  disk  pool  that  were  active  when  it was  varied  off  or  

ended  abnormally.  

The  recovery  is performed  by  database  server  jobs  that  are  started  by  the  system  during  IPL.  Database  

server  jobs  are  started  by  the  system  to  handle  work  that  cannot  or  must  not  be  performed  by  other  jobs.  

The  database  server  jobs  are  named  QDBSRVnn,  where  nn  is a two-digit  number.  The  number  of  database  

server  jobs  depends  on  the  size  of  your  system.  Likewise,  the  name  of  the  database  server  job  for  an  

independent  disk  pool  or  independent  disk  pool  group  is QDBSxxxVnn,  where  xxx  is the  independent  

disk  pol  number  and  nn  is a two-digit  number.  For  example,  QDBS035V02  can  be  the  name  of the  

database  server  job  for  independent  disk  pool  35.  

States  of  the  transaction  for  two-phase  commitment  control  shows  the  actions  that  the  system  takes,  

depending  on  the  state  of  the  transaction  when  the  failure  occurred.  For  two  states,  PRP  and  LAP, the  

system  action  is in doubt.  

Notes:   

v   The  following  applies  only  to  commitment  definitions  with  job-scoped  locks.  

v   The  transaction  manager  recovers  commitment  definitions  associated  with  XA  transactions  

(whether  their  locks  are  job-scoped  or  transaction-scoped)  using  XA  APIs,  not  the  

resynchronization  process  described  in  this  topic.

The  system  cannot  determine  what  to  do  until  it performs  resynchronization  with  the  other  locations  that  

participated  in  the  transaction.  This  resynchronization  is performed  after  the  IPL  or  vary  on  operation  

completes.  

The  system  uses  the  database  server  jobs  to  perform  this  resynchronization.  The  commitment  definitions  

that  need  to  be  recovered  are  associated  with  the  database  server  jobs.  During  the  IPL,  the  system  

acquires  all  record  locks  and  other  object  locks  that  were  held  by  the  commitment  definition  before  the  

system  ended.  These  locks  are  necessary  to  protect  the  local  commitment  resources  until  

resynchronization  is  complete  and  the  resources  can  be  committed  or  rolled  back.  

 

60 IBM Systems  - iSeries:  Database  Commitment  control



Messages  are  sent  to  the  job  logs  of  the  database  server  jobs  to  indicate  the  status  of resynchronization  

with  the  remote  locations.  If the  transaction  is in  doubt,  resynchronization  must  be  completed  with  the  

location  that  owns  the  decision  for  the  transaction  before  local  resources  can  be  committed  or  rolled  back.  

When  the  decision  for  a transaction  is made,  the  following  messages  might  be  sent  to  the  job  log  for  the  

database  server  job.  

CPI8351  

&1  pending  changes  being  rolled  back  

CPC8355  

Post-IPL  recovery  of commitment  definition  &8  for  job  &19/&18/&17  completed.  

CPD835F  

IPL  recovery  of commitment  definition  &8  for  job  &19/&18/&17  failed.

 Other  messages  related  to  the  recovery  can  also  be  sent.  These  messages  are  sent  to the  history  (QHST)  

log.  If errors  occur,  messages  are  also  sent  to  the  QSYSOPR  message  queue.  

You can  determine  the  progress  of  the  recovery  by  using  iSeries  Navigator,  by  displaying  the  job  log  for  

the  database  server  job,  or  by  using  the  Work with  Commitment  Definitions  (WRKCMTDFN)  command.  

Although  iSeries  Navigator  and  the  Work with  Commitment  Definitions  display  allow  you  to force  the  

system  to  commit  or  roll  back,  you  must  use  this  only  as  a last  resort.  If you  anticipate  that  all  of  the  

locations  that  participated  in  the  transaction  will  eventually  be  returned  to  operation,  you  must  allow  the  

systems  to  resynchronize  themselves.  This  ensures  the  integrity  of your  databases.  

   Related  concepts  

   “States  of  the  transaction  for  two-phase  commitment  control”  on  page  27  

A commitment  definition  is established  at each  location  that  is part  of  the  transaction  program  

network.  For  each  commitment  definition,  the  system  keeps  track  of  the  state  of  its  current  transaction  

and  previous  transaction.

Manage transactions and commitment control 

Manage  a system  with  commitment  control  by  using  these  instructions.  

Display commitment control information 

You can  use  iSeries  Navigator  to  display  information  about  all  transactions  (logical  units  of  work)  on  the  

system.  You can  also  look  at  information  about  the  job,  if any,  associated  with  a transaction.  

Note:   These  display  operations  do  not  display  the  isolation  level  for  SQL  applications.  

To display  information,  proceed  as  follows:  

1.   In  the  iSeries  Navigator  window,  expand  the  server  you  want  to use.  

2.   Expand  Databases. 

3.   Expand  the  system  you  want  to  work  with.  

4.   Expand  Transactions. 

Note:   To view  a transaction  that  is  associated  with  an  X/Open  global  transaction,  expand  Global  

Transactions. To view  a DB2  Universal  Database  (UDB)  managed  transaction,  expand  Database  

Transactions. 

5.   Expand  Global  Transactions  or  Database  Transactions. 

This  display  shows  the  following  information:  

v   Unit  of Work  ID  

v   Unit  of Work  State  

 

Commitment  control 61



v   Job  

v   User  

v   Number  

v   Resynchronization  in  Progress  

v   Commitment  Definition

Online  help  provides  information  about  all  the  status  displays  and  the  fields  on  each  display.  

   Related  tasks  

   “Detect  deadlocks”  on  page  103  

Find  deadlock  conditions  by  using  these  instructions.  

   “Recover  transactions  after  communications  failure”  on  page  104  

You can  use  instructions  in  this  topic  to  handle  transactions  performing  work  on  a remote  system  after  

the  communication  with  that  system  fails.  

   “When  to  force  commits  and  rollbacks  and  when  to  cancel  resynchronization”  on  page  104  

You can  find  when  and  how  to  force  a rollback  or  commit,  and  when  to cancel  resynchronization  in 

this  topic.

Display locked objects for a transaction 

You can  display  locked  objects  for  global  transactions  with  transaction-scoped  locks  only.  

To display  locked  objects  for  a transaction,  follow  these  steps:  

1.   In  the  iSeries  Navigator  window,  expand  the  server  you  want  to use.  

2.   Expand  Databases. 

3.   Expand  the  system  you  want  to  work  with.  

4.   Expand  Transactions. 

5.   Expand  Global  Transactions. 

6.   Right-click  the  transaction  that  you  want  to  work  with  and  select  Locked  Objects. 

   Related  tasks  

   “Detect  deadlocks”  on  page  103  

Find  deadlock  conditions  by  using  these  instructions.

Display jobs associated with a transaction 

1.   In  the  iSeries  Navigator  window,  expand  the  server  you  want  to use.  

2.   Expand  Databases. 

3.   Expand  the  system  you  want  to  work  with.  

4.   Expand  Transactions. 

5.   Expand  Global  Transactions.  or  Database  Transactions. 

6.   Right-click  the  transaction  that  you  want  to  work  with  and  select  Jobs. 

For  database  transactions  and  global  transactions  with  job-scoped  locks,  a list  of the  jobs  associated  with  

the  transaction  is displayed.  

For  global  transactions  with  transaction-scoped  locks,  a list  of  jobs  with  this  transaction  object  attached  or 

waiting  for  this  transaction  object  to  be  attached  is displayed  

   Related  tasks  

   “Detect  deadlocks”  on  page  103  

Find  deadlock  conditions  by  using  these  instructions.

 

62 IBM Systems  - iSeries:  Database  Commitment  control



Display resource status of a transaction 

1.   In  the  iSeries  Navigator  window,  expand  the  server  you  want  to use.  

2.   Expand  Databases. 

3.   Expand  the  system  you  want  to  work  with.  

4.   Expand  Transactions. 

5.   Expand  Global  Transactions  or  Database  Transactions. 

6.   Right-click  the  transaction  that  you  want  to  work  with  and  select  Resource  status.

Display transaction properties 

1.   In  the  iSeries  Navigator  window,  expand  the  server  you  want  to use.  

2.   Expand  Databases. 

3.   Expand  the  system  you  want  to  work  with.  

4.   Expand  Transactions. 

5.   Expand  Global  Transactions  or  Database  Transactions. 

6.   Right-click  the  transaction  that  you  want  to  work  with  and  select  Properties.

Optimize performance for commitment control 

Using  commitment  control  requires  resources  that  can  affect  system  performance.  Several  factors  affect  

system  performance  regarding  commitment  control.  

Factor that does not affect performance 

Open  a file  

If you  open  a file  without  specifying  the  commit  open  option,  no  additional  system  resource  is 

used  even  if a commitment  definition  has  been  started.  For  more  information  about  specifying  

the  commit  open  option,  see  the  appropriate  high-level  language  reference  manual.

Factors that degrade performance 

Journal  

Journaling  a file  requires  system  resources.  However,  in  most  cases  journaling  performs  better  

with  commitment  control  than  without  commitment  control.  If you  specify  only  after-images,  

commitment  control  changes  this  to  both  before-images  and  after-images  while  commitment  

control  is  in  effect.  Typically  this  is a space,  not  a performance,  consideration.  

Commit  operation  

If any  changes  were  made  to  journaled  resources  during  the  transaction,  each  commit  of  a 

transaction  adds  two  entries  to  each  journal  related  to those  resources.  The  number  of  entries  

added  can  increase  significantly  for  a large  volume  of  small  transactions.  You might  want  to  place  

the  journal  receivers  in  a separate  disk  pool  from  the  journals.  

Rollback  operation  

Because  commitment  control  must  roll  back  the  pending  changes  recorded  in  the  database,  

additional  system  resources  are  required  whenever  a rollback  occurs.  Also,  if record  changes  are  

pending,  a rollback  operation  causes  additional  entries  to be  added  to the  journal.  

Start  Commitment  Control  (STRCMTCTL)  and  End  Commitment  Control  (ENDCMTCTL)  commands  

Additional  overhead  is  incurred  by  the  system  each  time  a commitment  definition  is started  using  

the  STRCMTCTL  command  and  is ended  using  the  ENDCMTCTL  command.  Avoid  using  the  

STRCMTCTL  and  ENDCMTCTL  commands  for  each  transaction.  Use  them  only  when  necessary.  

You can  establish  a commitment  definition  at the  beginning  of  an  interactive  job  and  use  it  for  the  

duration  of the  job.  

Use  more  than  one  journal  for  commitment  control  transactions  

With  two-phase  commit,  files  that  are  opened  under  commitment  control  can  be  journaled  to 

 

Commitment  control 63



more  than  one  journal.  However,  using  more  than  one  journal  takes  additional  system  resources  

to  manage  the  commitment  definition.  Using  more  than  one  journal  can  also  make  recovery  more  

complicated.  

Record  locking  

Record  locking  can  affect  other  applications.  The  number  of records  locked  within  a particular  job  

increases  the  overall  system  resources  used  for  the  job.  Applications  needing  to  access  the  same  

record  must  wait  for  the  transaction  to  end.  

Request  SEQONLY(*YES)  

If you  request  the  SEQONLY(*YES)  option  (by  using  the  OVRDBF  command  or  the  application  

program  implicitly  attempts  to use  SEQONLY(*YES))  and  the  file  is opened  for  input  only  under  

commitment  control  with  LCKLVL(*ALL),  the  option  is changed  to SEQONLY(*NO).  This  option  

can  affect  the  performance  of input  files  because  records  will  not  be  blocked.  

Request  a record-level  change  for  a database  file  when  save-while-active  processing  is  active  

A  request  to  make  a record-level  change  under  commitment  control  for  a database  file  might  be  

delayed  if the  commitment  definition  is at a commitment  boundary  and  a save-while-active  

operation  is  running  in  a different  job.  This  can  happen  when  a file  is journaled  to the  same  

journal  as some  of  the  objects  on  the  save  request.

Note:   The  Status  column  on  the  Work with  Active  Jobs  (WRKACTJOB  command)  display  shows  

CMTW  (commit  wait)  when  a job  is being  held  due  to save-while-active  checkpoint  

processing.

Commit  or  roll  back  changes  when  save-while-active  processing  is  active  

A  commit  or  rollback  operation  might  be  delayed  at a commitment  boundary  when  a 

save-while-active  operation  is running  in  a different  job.  This  can  happen  when  an  API  

commitment  resource  was  previously  added  to  the  commitment  definition,  unless  the  API  

resource  was  added  using  the  QTNADDCR  API  and  the  Allow  normal  save  processing  field  has  a 

value  of  Y. 

 Because  the  job  is  held  during  the  commit  or  rollback  request,  and  because  a commit  or  rollback  

request  can  be  performed  only  for  a single  commitment  definition  at a time,  jobs  with  more  than  

one  commitment  definition  with  API  commitment  resources  added  can  prevent  a 

save-while-active  operation  from  completing.

Note:   If you  use  the  new  save  with  partial  transactions  feature  the  object  can  be  saved  without  

ending  a commitment  definition.

Request  an  object-level  change  when  save-while-active  processing  is  active  

A  request  to  make  an  object-level  change  under  commitment  control  might  be  delayed  if the  

commitment  definition  is  at  a commitment  boundary  and  a save-while-active  operation  is 

running  in a different  job.  This  can  happen  when  an  object-level  change  is  made  while  the  

save-while-active  operation  is running  against  the  library  the  object  is in.  For  example,  the  create  

SQL  table  operation  under  commitment  control  for  table  MYTBL  in  library  MYSQLLIB  might  be  

delayed  when  a save-while-active  operation  is running  against  library  MYSQLLIB.

Note:   If the  wait  time  exceeds  60  seconds,  inquiry  message  CPA8351  is sent  to  ask  the  user  

whether  to  continue  waiting  or  cancel  the  operation.

Add  an  API  resource  using  the  QTNADDCR  API  

A  request  to  add  an  API  commitment  resource  using  the  QTNADDCR  API  might  be  delayed  if all 

commitment  definitions  for  the  job  are  at  a commitment  boundary  and  a save-while-active  

operation  is  running  in  a different  job.

Notes:   

1.   If the  wait  time  exceeds  60  seconds,  inquiry  message  CPA8351  is sent  to  ask  the  user  

whether  to  continue  waiting  or  cancel  the  operation.  

 

64 IBM Systems  - iSeries:  Database  Commitment  control



2.   This  does  not  apply  to  API  resources  that  were  added  using  the  QTNADDCR  API  if 

the  Allow  normal  save  processing  field  has  a value  of Y.

Factors that improve performance 

Use  a default  journal  

Using  a default  journal  can  help  performance  if you  close  and  reopen  all  files  under  commitment  

control  while  the  commitment  definition  is active.  However,  using  a default  journal  with  

OMTJRNE(*NONE)  degrades  the  performance  of commit  and  rollback  operations.  

Select  a last  agent  

Performance  is  enhanced  when  a last  agent  is selected  because  fewer  interactions  between  the  

system  and  the  last  agent  are  required  during  a commit  operation.  However,  if a communications  

failure  occurs  during  a commit  operation,  the  commit  operation  will  not  complete  until  

resynchronization  completes,  regardless  of the  value  of  the  wait  for  outcome  option.  Such  a 

failure  is  rare  but  this  option  allows  the  application  writer  to consider  the  negative  impact  of 

causing  the  user  to  wait  indefinitely  for  the  resynchronization  to complete  when  a failure  does  

occur.  Weigh  this  against  the  performance  enhancement  that  is provided  by  last  agent  

optimization  during  successful  commit  operations.  This  consideration  is generally  more  

significant  for  interactive  jobs  than  for  batch  jobs.  

 The  default  is  that  a last  agent  is  permitted  to be  selected  by  the  system  but  the  user  can  modify  

this  value  using  the  QTNCHGCO  API.  

Not  use  the  wait  for  outcome  option  

When  remote  resources  are  under  commitment  control,  performance  is improved  when  the  Wait 

for  Outcome  option  is  set  to  N (No)  and  all  remote  systems  support  presumed  abort.  The  Wait for  

Outcome  option  is set  to  N  by  the  system  for  DRDA  and  DDM  application  when  the  first  

connection  is  made  to  a remote  system.  APPC  applications  must  explicitly  set  the  Wait for  

Outcome  option,  or  the  default  value  of  Y will  be  used.  

Select  the  OK  to  Leave  Out  option  

Performance  is  improved  when  the  OK  to Leave  Out  option  is selected.  

Select  the  Vote  Read  Only  option  

Performance  is  improved  when  the  Vote  Read  Only  option  is selected.
   Related  concepts  

   Journal  management  

   “Commitment  definition  for  two-phase  commit:  Indicate  OK  to  leave  out”  on  page  36  

Normally,  the  transaction  manager  at  every  location  in  the  transaction  program  network  participates  

in  every  commit  or  rollback  operation.  To improve  performance,  you  can  set  up  some  or  all  locations  

in  a transaction  to  allow  the  transaction  manager  to indicate  OK  to  leave  out.  

   “Commitment  definition  for  two-phase  commit:  Allow  vote  read-only”  on  page  30  

Normally,  a transaction  manager  participates  in  both  phases  of  commit  processing.  To improve  the  

performance  of  commit  processing,  you  can  set  up  some  or  all  locations  in a transaction  to allow  the  

transaction  manager  to  vote  read-only.

Minimize locks 

A  typical  way  to  minimize  record  locks  is to  release  the  record  lock.  (This  technique  does  not  work  if 

LCKLVL(*ALL)  has  been  specified.)  

Here  is an  example  of  minimize  record  by  releasing  the  record  lock.  A single  file  maintenance  application  

typically  follows  these  steps:  

1.   Display  a prompt  for  a record  identification  to be  changed.  

2.   Retrieve  the  requested  record.  

3.   Display  the  record.  

4.   Allow  the  workstation  user  to  make  the  change.  

 

Commitment  control 65



5.   Update  the  record.

In  most  cases,  the  record  is locked  from  the  access  of the  requested  record  through  the  update.  The  record  

wait  time  might  be  exceeded  for  another  job  that  is waiting  for  the  record.  To avoid  locking  a record  

while  the  workstation  user  is considering  a change,  release  the  record  after  it is retrieved  from  the  

database  (before  the  record  display  appears).  You then  need  to access  the  record  again  before  updating.  If 

the  record  was  changed  between  the  time  it was  released  and  the  time  it  was  accessed  again,  you  must  

inform  the  workstation  user. The  program  can  determine  if the  record  was  changed  by  saving  one  or  

more  fields  of the  original  record  and  comparing  them  to  the  fields  in  the  same  record  after  it is retrieved  

as  follows:  

v   Use  an  update  count  field  in  the  record  and  add  1 to  the  field  just  before  an  update.  The  program  

saves  the  original  value  and  compares  it  to  the  value  in  the  field  when  the  record  is retrieved  again.  If 

a change  has  occurred,  the  workstation  user  is informed  and  the  record  appears  again.  The  update  

count  field  is  changed  only  if an  update  occurs.  The  record  is  released  while  the  workstation  user  is  

considering  a change.  If  you  use  this  technique,  you  must  use  it in  every  program  that  updates  the  file.  

v   Save  the  contents  of  the  entire  data  record  and  compare  it to the  record  the  next  time  it is retrieved.

In  both  cases  above,  the  sequence  of  operations  prevents  the  simple  use  of externally  described  data  in  

RPG  where  the  same  field  names  are  used  in  the  master  record  and  in the  display  file.  Using  the  same  

field  names  (in  RPG)  does  not  work  because  the  workstation  user’s  changes  are  overlaid  when  the  record  

is retrieved  again.You  can  solve  this  problem  by  moving  the  record  data  to  a data  structure.  Or,  if you  

use  the  DDS  keyword  RTNDTA,  you  can  continue  to  use  externally  described  data.  The  RTNDTA  

keyword  allows  your  program  to  reread  data  on  the  display  without  the  operating  system  having  to 

move  data  from  the  display  to  the  program.  This  allows  the  program  to  do  as  follows:  

1.   Prompt  for  the  record  identification.  

2.   Retrieve  the  requested  record  from  the  database.  

3.   Release  the  record.  

4.   Save  the  field  or  fields  used  to  determine  if the  record  was  changed.  

5.   Display  the  record  and  wait  for  the  workstation  user  to  respond.  

If the  workstation  user  changes  the  record  on  the  display,  the  program  uses  the  following  sequence:  

1.   Retrieve  the  record  from  the  database  again.  

2.   Compare  the  saved  fields  to  determine  if the  database  record  has  been  changed.  If it has  been  

changed,  the  program  releases  the  record  and  sends  a message  when  the  record  appears.  

3.   Retrieve  the  record  from  the  display  by  running  a read  operation  with  the  RTNDTA  keyword  and  

updates  the  record  in the  database  record.  

4.   Proceed  to  the  next  logical  prompt  because  there  are  no  additional  records  to  be  released  if the  

workstation  user  cancels  the  request.

LCKLVL(*CHG)  and  LCKLVL(*CS)  work  in  this  situation.  If LCKLVL(*ALL)  is used,  you  must  release  the  

record  lock  by  using  a commit  or  rollback  operation.  

   Related  tasks  

   “Detect  deadlocks”  on  page  103  

Find  deadlock  conditions  by  using  these  instructions.

Manage transaction size 

Another  way  to  minimize  record  locks  is  to  manage  the  size  of the  transaction.  

For  this  discussion,  a transaction  is  interactive.  (Commitment  control  can  also  be  used  for  batch  

applications,  which  often  can  be  considered  a series  of transactions.)  Many  of  the  same  considerations  

apply  to  batch  applications,  which  are  discussed  in  Commitment  control  for  batch  applications.  

 

66 IBM Systems  - iSeries:  Database  Commitment  control



You can  lock  a maximum  of  500  000  000  records  during  a transaction  for  each  journal  associated  with  the  

transaction.  You can  reduce  this  limit  by  using  a Query  Options  File  (QAQQINI).  Use  the  QRYOPTLIB  

parameter  of  the  Change  Query  Attributes  (CHGQRYA)  command  to  specify  a Query  Options  File  for  a 

job  to  use.  Use  the  COMMITMENT_CONTROL_LOCK_LEVEL  value  in  the  Query  Options  File  as  the  

lock  limit  for  the  job.  

When  choosing  the  lock  level  for  your  records,  consider  the  size  of  your  transactions.  Use  size  to  

determine  how  long  records  are  locked  before  a transaction  ends.  You must  decide  if a commit  or  

rollback  operation  for  commitment  control  is limited  to a single  use  of  the  Enter  key,  or  if the  transaction  

consists  of many  uses  of  the  Enter  key.  

Note:   The  shorter  the  transaction,  the  earlier  the  job  waiting  to  start  save-while-active  checkpoint  

processing  can  continue  and  complete.  

For  example,  for  an  order  entry  application,  a customer  might  order  several  items  in  a single  order  

requiring  an  order  detail  record  and  an  inventory  master  record  update  for  every  item  in the  order. If the  

transaction  is  defined  as  the  entire  order  and  each  use  of  the  Enter  key  orders  an  item,  all  records  

involved  in  the  order  are  locked  for  the  duration  of  the  entire  order.  Therefore,  often  used  records  (such  

as  inventory  master  records)  might  be  locked  for  long  periods  of time,  preventing  other  work  from  

progressing.  If  all  items  are  entered  with  a single  Enter  key  using  a subfile,  the  duration  of  the  locks  for  

the  entire  order  is  minimized.  

In  general,  the  number  and  duration  of locks  must  be  minimized  so  several  workstation  users  can  access  

the  same  data  without  long  waiting  periods.  You can  do  this  by  not  holding  locks  while  the  user  is 

entering  data  on  the  display.  Some  applications  might  not  require  more  than  one  workstation  user  

accessing  the  same  data.  For  example,  in  a cash  posting  application  with  many  open  item  records  per  

customer,  the  typical  approach  is to  lock  all  the  records  and  delay  them  until  a workstation  user  

completes  posting  the  cash  for  a given  receipt.  

If the  workstation  user  presses  the  Enter  key  several  times  for  a transaction,  it is  possible  to  perform  the  

transaction  in  a number  of  segments.  For  example:  

v   The  first  segment  is  an  inquiry  in  which  the  workstation  user  requests  the  information.  

v   The  second  segment  is  a confirmation  of the  workstation  user’s  intent  to  complete  the  entire  

transaction.  

v   The  third  segment  is  retrieval  and  update  of the  affected  records.  

This  approach  allows  record  locking  to  be  restricted  to  a single  use  of  Enter. 

This  inquiry-first  approach  is  normally  used  in  applications  where  a decision  results  from  information  

displayed.  For  example,  in  an  airline  reservation  application,  a customer  might  want  to  know  what  flight  

times,  connecting  flights,  and  seating  arrangements  are  available  before  making  a decision  on  which  

flight  to  take.  After  the  customer  makes  a decision,  the  transaction  is entered.  If  the  transaction  fails  (the  

flight  is now  full),  the  rollback  function  can  be  used  and  a different  request  entered.  If the  records  were  

locked  from  the  first  inquiry  until  a decision  is made,  another  reservation  clerk  would  be  waiting  until  

the  other  transaction  is  complete.  

   Related  concepts  

   “Commitment  control  for  batch  applications”  on  page  24  

Batch  applications  might  or  might  not  need  commitment  control.  In  some  cases,  a batch  application  

can  perform  a single  function  of reading  an  input  file  and  updating  a master  file.  However,  you  can  

use  commitment  control  for  this  type  of  application  if it is important  to  start  it again  after  an  

abnormal  end.

Soft commit 

You can  improve  the  performance  of  database  transactions  with  soft  commit.  Soft  commit  limits  the  

number  of  times  that  the  system  writes  journal  entries  associated  with  a transaction  to  disk.  

 

Commitment  control 67

|
|
|



Soft  commit  can  improve  transaction  performance,  but  it might  cause  one  or  more  transactions  to be  lost  

in  the  event  of a system  failure.  Traditional  commitment  control  on  DB2  Universal  Database  for  iSeries  

ensures  transaction  durability,  which  means  that  when  a transaction  has  been  committed,  the  transaction  

persists  on  the  system.  Soft  commit  does  not  provide  this  durability,  although  it still  ensures  the  atomicity  

of the  transaction.  In  other  words,  the  system  guarantees  a commit  boundary,  but  one  or  more  complete  

transactions  might  be  lost  in  the  event  of a system  failure.  

To use  soft  commit,  both  for  a particular  job  or  across  the  system,  specify  *NO  on  the  

QIBM_TN_COMMIT_DURABLE  environment  variable.  You can  change  this  variable  with  the  Add  

Environment  Variable  (ADDENVVAR)  command.  

For  example,  to  request  soft  commit  from  a particular  job,  run the  following  command  from  the  job:  

ADDENVVAR  ENVVAR  (QIBM_TN_COMMIT_DURABLE)  VALUE  (*NO)  

To request  soft  commit  across  the  system,  run the  following  command:  

ADDENVVAR  ENVVAR  (QIBM_TN_COMMIT_DURABLE)  VALUE  (*NO)  LEVEL  (*SYS)  

Note:   You must  have  *JOBCTL  authority  to  set  this  environment  variable  system  wide.  

If the  default  case  QIBM_TN_COMMIT_DURABLE  environment  variable  has  not  been  added,  or  if the  

environment  variable  has  been  set  to  any  value  other  than  *NO,  the  system  does  not  use  soft  commit;  

instead,  the  system  uses  traditional  commitment  control  so  that  the  durability  of  transactions  will  be  

ensured.  

You can  check  the  existence  of  this  new  environment  variable,  and  its  value  and  level  if it exists,  using  

the  Work  with  Environment  Variables  (WRKENVVAR)  command.  

For  some  transactions,  the  operating  system  chooses  to  ignore  your  request  for  soft  commit,  and  instead,  

performs  traditional  commitment.  This  happens  in  some  complex  environments,  where  multiple  database  

connections  are  required  or  DDL  operations  are  underway.  The  operating  system  can  determine  when  it 

is appropriate  to  perform  the  request  and  when  it makes  more  sense  to  perform  a traditional  commitment  

operation.  So  it  is  not  harmful  to  request  soft  commit  in  such  environments.  

Scenarios and examples: Commitment control 

You can  read  scenarios  and  examples  in  this  topic  to  see  how  one  company  sets  up  commitment  control.  

Read  code  examples  for  programs  that  use  commitment  control.  

The  following  scenario  shows  how  the  JKL  toy  company  implements  commitment  control  to  track  

transactions  on  its  local  database.  

The  following  examples  provide  sample  code  for  commitment  control.  The  practice  problem  is an  RPG  

program  that  implements  commitment  control.  It includes  a logic  flow  that  shows  what  is happening  

each  step  of  the  way.  

Scenario: Commitment control 

The  JKL  Toy Company  uses  commitment  control  to protect  the  database  records  for  manufacturing  and  

inventory.  This  scenario  shows  how  JKL  toy  company  uses  commitment  control  to  transfer  a part  from  its  

inventory  department  to  its  manufacturing  department.  

The  Scenario:  Journal  management  includes  a description  of  JKL  Toy Company’s  network  environment.  

The  scenario  that  follows  shows  how  commitment  control  works  on  its  production  server,  JKLPROD.  

 

68 IBM Systems  - iSeries:  Database  Commitment  control

|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|
|



This  scenario  illustrates  the  advantages  of using  commitment  control  in  two  examples.  The  first  example  

shows  how  the  company’s  inventory  program,  Program  A,  might  work  without  commitment  control,  and  

the  possible  problems  that  can  occur.  The  second  example  shows  how  the  program  works  with  

commitment  control.  

JKL  Toy Company  uses  an  inventory  application  program,  Program  A,  on  its  server  JKLPROD.  Program  

A  uses  two  records.  One  record  tracks  items  that  are  stored  in  the  stock  room.  Another  record  keeps  track  

of  items  that  are  removed  from  the  stock  room,  and  used  in  production.  

Program A without commitment control 

Assume  that  the  following  application  program  does  not  use  commitment  control.  The  system  locks  

records  read  for  updating.  The  following  steps  describe  how  the  application  program  tracks  a diode  as  it 

is  removed  from  the  stock  room  and  transferred  to checking  account:  

v   Program  A locks  and  retrieves  the  stock  room  record.  (This  action  might  require  a wait  if the  record  is 

locked  by  another  program.)  

v   Program  A locks  and  retrieves  the  production  record.  (This  might  also  require  a wait.)  Program  A  now  

has  both  records  locked,  and  no  other  program  can  change  them.  

v   Program  A updates  the  stock  room  record.  This  causes  the  record  to be  released  so  it is now  available  

to  be  read  for  update  by  any  other  program.  

v   Program  A updates  the  production  record.  This  causes  the  record  to  be  released  so  it is  now  available  

to  be  read  for  update  by  any  other  program.

Without  using  commitment  control,  a problem  needs  to  be  solved  to make  this  program  work  properly  in  

all  circumstances.  For  example,  a problem  occurs  if program  A  does  not  update  both  records  because  of  a 

job  or  system  failure.  In this  case,  the  two  files  are  not  consistent  -- diodes  are  removed  from  the  stock  

room  record,  but  they  are  not  added  to  the  production  record.  Using  commitment  control  allows  you  to  

ensure  that  all  changes  involved  in  the  transaction  are  completed,  or  that  the  files  are  returned  to  their  

original  state  if the  processing  of  the  transaction  is interrupted.  

Program A with commitment control 

If commitment  control  is used,  the  preceding  example  is changed  as  follows:  

1.   Commitment  control  is  started.  

2.   Program  A locks  and  retrieves  the  stock  room  record.  (This  action  can  require  a wait  if the  record  is 

locked  by  another  program.)  

3.   Program  A locks  and  retrieves  the  production  record.  (This  can  also  require  a wait.)  Program  A now  

has  both  records  locked,  and  no  other  program  can  change  them.  

4.   Program  A updates  the  stock  room  record,  and  commitment  control  keeps  the  lock  on  the  record.  

5.   Program  A updates  the  production  record,  and  commitment  control  keeps  the  lock  on  the  record.  

6.   Program  A commits  the  transaction.  The  changes  to the  stock  room  record  and  the  production  record  

are  made  permanent  in the  files.  The  changes  are  recorded  in  the  journal,  which  assumes  they  will  

appear  on  disk.  Commitment  control  releases  the  locks  on  both  records.  The  records  are  now  available  

to  be  read  for  update  by  any  other  program.

Because  the  locks  on  both  records  are  kept  by  commitment  control  until  the  transaction  is  committed,  a 

situation  cannot  arise  in  which  one  record  is updated  and  the  other  is not.  If  a routing  step  or  system  

failure  occurs  before  the  transaction  is  committed,  the  system  removes  (rolls  back)  the  changes  that  have  

been  made  so  that  the  files  are  updated  to  the  point  where  the  last  transaction  was  committed.  

For  each  routing  step  in  which  files  are  to  be  under  commitment  control,  the  steps  shown  in  the  

following  figure  occur:  

 

Commitment  control 69



The  operations  that  are  performed  under  commitment  control  are  journaled  to the  journal.  The  start  

commitment  control  journal  entry  appears  after  the  first  file  open  entry  under  commitment  control.  This  

is because  the  first  file  open  entry  determines  what  journal  is  used  for  commitment  control.  The  journal  

entry  from  the  first  open  operation  is  then  used  to  check  subsequent  open  operations  to  ensure  that  all  

files  are  using  the  same  journal.  

When  a job  failure  or  system  failure  occurs,  the  resources  under  commitment  control  are  updated  to  a 

commitment  boundary.  If a transaction  is  started  but  is not  completed  before  a routing  step  ends,  that  

transaction  is rolled  back  by  the  system  and  does  not  appear  in  the  file  after  the  routing  step  ends.  If the  

system  abnormally  ends  before  a transaction  is completed,  that  transaction  is rolled  back  by  the  system  

and  does  not  appear  in  the  file  after  a subsequent  successful  initial  program  load  (IPL)  of  licensed  

internal  code.  Anytime  a rollback  occurs,  reversing  entries  are  placed  in  the  journal.  

For  example,  assume  that  JKL  company  has  100  diodes  in  stock.  Manufacturing  takes  out  20  from  stock,  

for  a new  balance  of  80.  The  database  update  causes  both  before-image  (100)  and  after-image  (80)  journal  

entries.  

Assume  the  system  abnormally  ended  after  journaling  the  entries,  but  before  reaching  the  commitment  

point  or  rollback  point.  After  the  IPL,  the  system  reads  the  journal  entry  and  updates  the  corresponding  

database  record.  This  update  produces  two  journal  entries  that  reverse  the  update:  the  first  entry  is the  

before-image  (80)  and  the  second  entry  is  the  after-image  (100).  

When  the  IPL  is successfully  completed  after  the  abnormal  end,  the  system  removes  (or  rolls  back)  any  

database  changes  that  are  not  committed.  In  the  preceding  example,  the  system  removes  the  changes  

 

70 IBM Systems  - iSeries:  Database  Commitment  control



from  the  stock  room  record  because  a commit  operation  is not  in  the  journal  for  that  transaction.  In  this  

case,  the  before-image  of  the  stock  room  record  is placed  in  the  file.  The  journal  contains  the  rolled  back  

changes,  and  an  indication  that  a rollback  operation  occurred.  

   Related  concepts  

   Scenario:  Journal  management

Practice problem for commitment control 

This  practice  problem  assists  you  in  understanding  commitment  control  and  its  requirements.  These  steps  

assume  that  you  are  familiar  with  the  i5/OS  licensed  program,  the  data  file  utility  (DFU),  and  this  topic  

collection.  

The  logic  flow  might  help  you  further  understand  this  practice  program  for  commitment  control.  

Note:   By  using  the  code  examples,  you  agree  to the  terms  of the  “Code  license  and  disclaimer  

information”  on  page  108.  

Before  beginning  this  problem,  follow  these  prerequisite  steps:  

v   Create  a special  library  for  this  practice  problem.  In the  instructions,  the  library  is called  CMTLIB.  

Substitute  the  name  of  your  library  where  you  see  CMTLIB.  

v   Create  source  files  and  a job  description.

To  use  commitment  control,  follow  these  steps:  

 1.   Create  a physical  file  named  ITMP  (item  master  file).  The  data  description  specification  (DDS)  for  

this  file  is:  

10    A    R ITMR  

20    A      ITEM      2 

30    A      ONHAND    5   0 

40    A    K ITEM  

 2.   Create  a physical  file  named  TRNP  (transaction  file).  This  file  is used  as  a transaction  log  file.  The  

DDS  for  this  file  is:  

10    A    R TRNR  

20    A      QTY      5  0 

30    A      ITEM     2 

40    A      USER     10 

 3.   Create  a logical  file  named  TRNL  (transaction  logical).  This  file  is used  to  assist  in  starting  the  

application  again.  The  USER  field  is  the  type  LIFO  sequence.  The  DDS  for  this  file  is:  

10                        LIFO  

20    A     R TRNR         PFILE  (TRNP)  

30    A     K USER  

 4.   Enter  the  STRDFU  command,  and  create  a DFU  application  named  ITMU  for  the  ITMP  file.  Accept  

the  defaults  offered  by  DFU  during  the  application  definition.  

 5.   Type the  command  CHGDTA  ITMU  and  enter  the  following  records  for  the  ITMP  file:  

 Item  On  hand  

AA  450 

BB  375 

CC  4000
  

 6.   End  the  program  using  F3.  This  entry  provides  some  data  against  which  the  program  will  operate.  

 7.   Create  the  CL  program  Item  Process  (ITMPCSC)  as follows:  

 

Commitment  control 71



PGM  

DCL  &USER  *CHAR  LEN(10)  

RTVJOBA  USER(&USER)  

CALL  ITMPCS  PARM(&USER)  

ENDPGM  

This  is the  control  program  that  calls  the  ITMPCS  program.  It retrieves  the  user  name  and  passes  it 

to  the  processing  program.  This  application  assumes  that  unique  user  names  are  used.  

 8.   Create  a display  file  named  ITMPCSD  from  the  DDS  as  follows.  

There  are  two  formats,  the  first  for  the  basic  prompt  display  and  the  second  to  allow  the  operator  to  

review  the  last  transaction  entered.  This  display  file  is used  by  the  ITMPCS  program.  

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ... ...  5 ...  ...  6 ...  ...  7 .. 

  

  1.00       A          R PROMPT  

  2.00       A                                      CA03(93  ’End  of program’)  

  3.00       A                                      CA04(94  ’Review  last’)  

  4.00       A                                      SETOFF(64  ’No  rcd  to rvw’)  

  5.00       A                                  1  2’INVENTORY  TRANSACTIONS’  

  6.00       A                                  3  2’Quantity’  

  7.00       A            QTY             5  0I    +1 

  8.00       A  61                                  ERRMSG(’Invalid  + 

  9.00       A                                      quantity’  61)  

 10.00       A                                    +5’ITEM’  

 11.00       A            ITEM            2    I   +1 

 12.00       A  62                                  ERRMSG(’Invalid  + 

 13.00       A                                      Item  number’  62)  

 14.00       A  63                                  ERRMSG(’Rollback  + 

 15.00       A                                      occurred’  63) 

 16.00       A  64                             24  2’CF4  was  pressed  and  + 

 17.00       A                                      there  are no + 

 18.00       A                                      transactions  for  + 

 19.00       A                                      this  user’  

 20.00       A                                      DSPATR(HI)  

 21.00       A                                 23  2’CF4  Review  last  + 

 22.00       A                                      transaction’  

 23.00       A          R REVW  

 24.00       A                                  1  2’INVENTORY  TRANSACTIONS’  

 25.00       A                                    +5’REVIEW  LAST  TRANSACTION’  

 26.00       A                                  3  2’Quantity’  

 27.00       A            QTY             5  0     +1EDTCDE(Z)  

 28.00       A                                    +5’Item’  

 29.00       A            ITEM            2        +1 

 9.   Study  the  logic  flow  provided  in  Logic  flow  for  the  practice  program  for  commitment  control.  

10.   Enter  the  STRSEU  command  and  type  the  source  as  follows:  

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ... ...  5 ...  ...  6 ...  ...  7 .. 

  

  1.00       FITMP     UF  E           K        DISK  

  2.00       F*                                             KCOMIT  

  3.00       FTRNP     O   E                    DISK  

  4.00       F*                                             KCOMIT  

  5.00       FTRNL     IF  E           K        DISK  

  6.00       F            TRNR                               KRENAMETRNR1  

  7.00       FITMPCSD   CF E                    WORKSTN  

  8.00       C* Enter  parameter  with  User  name  for  -TRNP-  file  

  9.00       C           *ENTRY     PLIST  

 10.00       C                     PARM            USER    10 

 11.00       C           LOOP       TAG  

 12.00       C                     EXFMTPROMPT  

 13.00       C*  Check  for  CF3  for  end  of program  

 14.00       C   93                DO                              End  of Pgm 

 15.00       C                     SETON                      LR 

 16.00       C                     RETRN  

 17.00       C                     END  

 18.00       C*  Check  for  CF4  for  review  last  transaction

 

72 IBM Systems  - iSeries:  Database  Commitment  control



19.00       C   94                DO                              Review  last  

 20.00       C* Check  for  existence  of a record  for this  user  in -TRNL-  file  

 21.00       C           USER       CHAINTRNR1                 64    Not  found  

 22.00       C   64                GOTO  LOOP  

 23.00       C                     EXFMTREVW  

 24.00       C                     GOTO  LOOP  

 25.00       C                     END  

 26.00       C* Access  Item  record  

 27.00       C           ITEM       CHAINITMR                  62    Not  found  

 28.00       C* Handle  -not  found-  Condition  

 29.00       C   62                GOTO  LOOP  

 30.00       C* Does  sufficient  quantity  exist  

 31.00       C           ONHAND     SUB   QTY        TEST     50   61  Minus  

 32.00       C* Handle  insufficient  quantity  

 33.00       C    61               DO 

 34.00       C* Release  Item  record  which  was  locked  by the CHAIN  for  update  

 35.00       C                     EXCPTRLSITM  

 36.00       C                     GOTO  LOOP  

 37.00       C                     END  

 38.00       C* Change  ONHAND  and  update  the  Item  record  

 39.00       C                     Z-ADDTEST       ONHAND  

 40.00       C                     UPDATITMR  

 41.00       C* Test  for  Special  Simulation  Conditions  

 42.00       C           ITEM       IFEQ  ’CC’  

 43.00       C*      Simulate  program  need  for rollback  

 44.00       C           QTY        IFEQ  100 

 45.00       C                     SETON                      63    Simult  Rlbck  

 46.00       C*                    ROLBK  

 47.00       C                     GOTO  LOOP  

 48.00       C                     END  

 49.00       C*      Simulate  an abnormal  program  cancellation  by Div  by zero  

 50.00       C*        Operator  Should  respond  -C-  to inquiry  message  

 51.00       C           QTY        IFEQ  101 

 52.00       C                     Z-ADD0          ZERO     30 

 53.00       C           TESTZ      DIV   ZERO       TESTZ    30       Msg  occurs  

 54.00       C                     END  

 55.00       C*      Simulate  an abnormal  job  cancellation  by DSPLY.  

 56.00       C*        Operator  Should  System  Request  to another  job  

 57.00       C*         and  cancel  this  one  with  OPTION(*IMMED)  

 58.00       C           QTY        IFEQ  102 

 59.00       C           ’CC=102’   DSPLY                            Msg  occurs  

 60.00       C                     END  

 61 00      C                     END                              ITEM=CC  

 62.00       C* Write  the  -TRNP-  file  

 63 00      C                     WRITETRNR  

 64.00       C* Commit  the  update  to -ITMP-  and write  to -TRNP-  

 65.00       C*                    COMIT  

 66.00       C                     GOTO  LOOP  

 67.00       OITMR     E                RLSITM  

11.   Enter  the  CRTRPGPGM  command  to  create  program  ITMPCS  from  the  source  entered  in  the  

previous  step.  

12.   Type the  command  CALL  ITMPCSC,  press  Enter, and  press  F4.  A message  states  that  there  are  no  

entries  for  this  operator.  

13.   Enter  the  following  data  to  see  if the  program  operates  correctly:  

 Quantity  Item  

3 AA  

4 BB
  

14.   Press  F4.  The  review  display  shows  the  BB  item  last  entered.  Enter  the  following  data:  

 Quantity  Item  

5 FF (Invalid  item  number  message  occurs.)  

 

Commitment  control 73



Quantity  Item  

9000  BB (Insufficient  quantity  error  message  occurs.)  

100  CC (Rollback  message  occurs.)  

102  CC (RPG  DSPLY operation  must  occur. Press  the  Enter  

key.)  

101  CC (The  program  must  display  an  inquiry  message  

stating  that  a divide  by zero  condition  has  occurred  or 

end,  depending  on the setting  of job attribute  

INQMSGRPY.  If the inquiry  message  appears,  enter  C 

to cancel  the  RPG  program  and  then  C to cancel  the  

CL program  on  the  subsequent  inquiry.  This  simulates  

an unexpected  error  condition.)
  

15.   Type the  Display  Data  command  DSPDTA  ITMP.  

See  if the  records  AA  and  BB  have  been  updated  correctly.  The  values  must  be  AA  = 447,  BB  = 371,  

and  CC  = 3697.  Note  that  the  quantities  subtracted  from  CC  occurred,  but  the  transaction  records  

were  not  written.  

16.   Create  a journal  receiver  for  commitment  control.  Use  the  Create  Journal  Receiver  (CRTJRNRCV)  

command  to  create  a journal  receiver  called  RCVR1  in the  CMRLIB  library.  Specify  a threshold  of at  

least  5000KB.  A larger  threshold  is recommended  if your  system  has  sufficient  space  in  order  to  

maximize  the  time  between  generation  of new  journal  receivers  to minimize  the  performance  

impacts  of  too  frequent  change  journals.  

17.   Create  a journal  for  commitment  control.  Use  the  Create  Journal  (CRTJRN)  command  to  create  a 

journal  called  JRNTEST  in  the  CMTLIB  library.  Because  this  journal  is used  only  for  commitment  

control,  specify  MNGRCV(*SYSTEM)  DLTRCV(*YES). For  the  JRNRCV  parameter,  specify  the  journal  

receiver  that  you  created  in  step  16.  

18.   Use  the  Start  Journal  Physical  File  (STRJRNPF)  command  with  the  parameters  FILE(CMTLIB/ITMP  

CMTLIB/TRNP)  JRN(CMTLIB/JRNTEST)  to  journal  the  files  to be  used  for  commitment  control.  

The  IMAGES  parameter  uses  a default  of  *AFTER,  meaning  that  only  after-image  changes  of  the  

records  appear  in  the  journal.  The  files  ITMP  and  TRNP  have  now  started  journaling.  

Normally,  you  save  the  files  after  starting  journaling.  You cannot  apply  journaled  changes  to a 

restored  file  that  does  not  have  the  same  JID  as  the  journal  entries.  Because  this  practice  problem  

does  not  require  you  to  apply  journaled  changes,  you  can  skip  saving  the  journaled  files.  

19.   Type the  command  CALL  ITMPCSC  and  enter  the  following  transactions:  

 Quantity  Item  

5 AA  

6 BB
  

End  the  program  by  pressing  F3.  

20.   Type the  Display  Journal  command:  DSPJRN  CMTLIB/JRNTEST.  

Note  the  entries  appearing  in  the  journal.  The  same  sequence  of entries  (R  UP  = update  of ITMP  

followed  by  R PT  = record  added  to  TRNP)  occurs  in  the  journal  as  was  performed  by  the  program.  

This  is because  a logical  file  is defined  over  the  physical  file  TRNP  and  the  system  overrides  the  

RPG  default.  If no  logical  file  existed,  the  RPG  assumption  of SEQONLY(*YES)  is used,  and  a block  

of PT  entries  appear  because  the  records  are  kept  in  the  RPG  buffer  until  the  block  is full.  

21.   Change  the  CL  program  ITMPCSC  as follows  (the  new  statements  are  shown  with  an  asterisk).  

     PGM  

     DCL  &USER  *CHAR  LEN(10)  

     RTVJOBA  USER(&USER)  

*    STRCMTCTL  LCKLVL(*CHG)  

     CALL  ITMPCS  PARM(&USER)  

*    MONMSG  MSGID(RPG9001)  EXEC(ROLLBACK)  

*    ENDCMTCTL  

     ENDPGM  

 

74 IBM Systems  - iSeries:  Database  Commitment  control



The  STRCMTCTL  command  sets  up  the  commitment  control  environment.  The  LCKLVL  word  

specifies  that  records  read  for  update  but  not  updated  can  be  released  during  the  transaction.  The  

MONMSG  command  handles  any  RPG  escape  messages  and  performs  a ROLLBACK  in  case  the  

RPG  program  abnormally  ends.  The  ENDCMTCTL  command  ends  the  commitment  control  

environment.  

22.   Delete  the  existing  ITMPCSC  program  and  create  it  again.  

23.   Change  the  RPG  program  to  remove  the  comment  symbols  at  statements  2.00,  4.00,  46.00,  and  65.00.  

The  source  is  now  ready  for  use  with  commitment  control.  

24.   Delete  the  existing  ITMPCS  program  and  create  it again.  The  program  is now  ready  to operate  under  

commitment  control.  

25.   Type the  command  CALL  ITMPCSC  and  the  following  transactions:  

 Quantity  Item  

7 AA  

8 BB
  

26.   Use  System  Request  and  request  the  option  to  display  the  current  job.  When  the  Display  Job  display  

appears,  select  option  16  to  request  the  display  of  the  commitment  control  status.  

Note  the  values  on  the  display.  There  must  be  two  commits  because  two  commit  statements  were  

run in  the  program.  

27.   Press  F9  to  see  a list  of  the  files  under  commitment  control  and  the  amount  of  activity  for  each  file.  

28.   Return  to  the  program  and  end  it by  pressing  F3.  

29.   Type DSPJRN  CMTLIB/JRNTEST  and  note  the  entries  for  the  files  and  the  special  journal  entries  for  

commitment  control:  

 Entry  Meaning  

C BC  STRCMTCTL  command  occurred.  

C SC Start  commit  cycle.  This  occurs  whenever  the  first  

database  operation  in the  transaction  causes  a record  to 

be inserted,  updated,  or deleted  as part  of commitment  

control.  

C CM  Commit  operation  has  occurred.  

C EC  ENDCMTCTL  command  occurred.
  

The  commitment  control  before-images  and  after-images  (R  UB  and  R  UP  types)  automatically  occur  

even  though  you  had  originally  requested  IMAGES(*AFTER)  for  the  journal.  

30.   Type the  command  CALL  ITMPCSC  and  the  following  transactions:  

 Quantity  Item  

12 AA  

100  CC (This  is the  condition  to simulate  the  need  for an 

application  use  of rollback.  The  CC record  in the ITMP  

file,  which  was  updated  by RPG  statement  40.00  is 

rolled  back.)
  

31.   Press  F4  to  determine  the  last  transaction  entered.  

The  last  committed  transaction  is the  entry  for  item  AA.  

32.   Use  System  Request  and  request  the  Display  Current  Job  option.  When  the  Display  Job  display  

appears,  request  the  display  of  the  commitment  control  status.  

Note  the  values  on  the  display  and  how  they  have  been  changed  by  the  rollback.  

33.   Return  to  the  program.  

34.   Return  to  the  basic  prompt  display  and  end  the  program  by  pressing  F3.  

35.   Type the  command  DSPJRN  CMTLIB/JRNTEST.  

 

Commitment  control 75



Note  the  additional  entries  that  appear  in  the  journal  for  the  use  of  the  rollback  entry  (C  RB  entry).  

When  the  ITMP  record  is  rolled  back,  three  entries  are  placed  in  the  journal.  This  is because  any  

change  to  the  database  file  under  commitment  control  produces  a before  (R  BR)  and  after  (R  UR)  

entry.  

36.   Display  the  entries  with  journal  code  R and  these  entry  types:  UB,  UP,  BR,  and  UR.  Use  option  5 to  

display  the  full  entries.  Because  the  Quantity  field  is in  packed  decimal,  use  F11 to  request  a hex  

display.  Note  the  following  conditions:  

v   The  on-hand  value  of  the  ITMP  record  in the  UB  record  

v   How  the  on-hand  value  is reduced  by  the  UP  record  

v   How  the  BR  record  is the  same  as  the  UP  record  

v   How  the  UR  record  returns  the  value  as  originally  displayed  for  the  UB  record  

The  last  entry  is  the  RB  entry  for  the  end  of  the  rollback.  

37.   Type the  command  CALL  ITMPCSC;  press  Enter;  and  press  F4.  Note  the  last  transaction  entered.  

38.   Type the  following  transactions:  

 Quantity  Item  

13 AA  

101  CC (This  is the condition  to simulate  an  unexpected  

error  condition,  which  causes  the program  to end.  The  

simulation  occurs  by dividing  a field  by 0. The  

program  will  display  an inquiry  message  or end,  

depending  on the  setting  of the  job attribute  

INQMSGRPY.  If the inquiry  message  appears,  enter  C 

to end  the  program.  Because  the  CL program  was  

changed  to monitor  for RPG  program  errors,  the  

second  inquiry  which  occurred  does  not  occur.)
  

39.   Type the  command  DSPJRN  CMTLIB/JRNTEST.  

The  same  type  of rollback  handling  has  occurred,  but  this  time  the  rollback  was  caused  by  the  EXEC  

parameter  of  the  MONMSG  command  in  the  CL  program  instead  of the  RPG  program.  Display  the  

two  RB  entries  to  see  which  program  caused  them.  

40.   Type the  command  WRKJOB  and  write  down  the  fully  qualified  job  name  to be  used  later. 

41.   Type the  command  CALL  ITMPCSC  and  enter  the  following  transaction:  

 Quantity  Item  

14 AA  

102  CC (The  RPG  DSPLY operation  must  occur  to the 

external  message  queue.  Use  the  System  Request  key  

and  select  option  1 on the  system  request  menu  to 

transfer  to a secondary  job.)
  

42.   Sign  on  to  the  second  job  and  reestablish  your  environment.  

43.   Type the  command  ENDJOB  and  specify  the  fully  qualified  job  name  identified  earlier  and  

OPTION(*IMMED).  This  simulates  an  abnormal  job  or  system  end.  

44.   Wait about  30  seconds,  type  the  command  CALL  ITMPCSC  and  press  F4.  

Note  the  last  committed  transaction.  It must  be  the  AA  item  entered  earlier.  

45.   Return  to  the  basic  prompt  display  and  end  the  program  by  pressing  F3.  

46.   Type the  command  DSPJRN  CMTLIB/JRNTEST.  

The  same  type  of rollback  handling  has  occurred,  but  this  time  the  rollback  was  caused  by  the  

system  instead  of  one  of  the  programs.  The  RB  entry  was  written  by  the  program  QWTPITPP,  which  

is the  work  management  abnormal  end  program.

 

76 IBM Systems  - iSeries:  Database  Commitment  control



You have  now  used  the  basic  functions  of  commitment  control.  You can  proceed  with  commitment  

control  on  your  applications  or  try  some  of  the  other  functions  such  as:  

v   Using  a notify  object  

v   Locking  records  that  are  only  read  with  LCKLVL(*ALL)  

v   Locking  multiple  records  in  the  same  file  with  LCKLVL(*ALL)

Logic flow for practice problem 

This  image  shows  the  flow  of  the  Practice  problem  for  commitment  control.  

See  “Steps  associated  with  the  logic  flow  for  the  practice  program”  on  page  79  for  details  about  each  of  

the  steps  shown  in  the  image.  

 

Commitment  control 77



78 IBM Systems  - iSeries:  Database  Commitment  control



Steps associated with the logic flow for the practice program 

These  steps  are  associated  with  the  logic  flow  of the  practice  problem.  

 1.   Retrieve  the  user  name  that  is  passed  in  as  a parameter.  This  is  used  to  write  to  the  TRNP  file  and  

also  used  to  retrieve  the  last  transaction  entered  by  each  operator.  This  application  assumes  unique  

user  names  for  operators.  

 2.   Prompt  for  the  basic  display  using  the  format  name  PROMPT.  

 3.   If F3  is pressed,  start  an  end  of  program  function.  

 4.   If F4  is pressed,  start  a routine  to  access  the  last  transaction  entered  by  the  operator.  

 5.   Read  the  item  record  using  the  field  ITEM. Because  the  file  is an  update  file,  this  request  locks  the  

record.  

 6.   Check  for  a not  found  condition  in  the  file  ITMP.  

 7.   If no  ITMP  record  exists,  set  on  indicator  62  to cause  the  error  message  and  return  to  step  2. 

 8.   Subtract  the  quantity  requested  (QTY)  from  the  on  hand  balance  (ONHAND)  into  a work  area.  

 9.   Check  to  see  if sufficient  quantity  exists  to  meet  the  request.  

10.   If insufficient  quantity  exists,  release  the  lock  on  the  record  in the  ITMP  file.  This  step  is needed  

because  of  insufficient  quantity.  

11.   Set  on  indicator  61  to  signal  an  insufficient  quantity  display  error  message  and  return  to  step  2.  

12.   Change  the  ONHAND  field  for  the  new  balance  and  update  the  ITMR  record.  

13.   Check  for  special  entry  in  the  ITEM  field  that  can  be  used  to  simulate  conditions  where  ROLLBACK  

is required.  

14.   Check  for  QTY=100.  Issue  a ROLLBACK  operation.  This  simulates  a condition  where  the  program  

senses  a need  for  rollback.  

15.   Check  for  QTY=101.  Cause  an  exception  in  the  program  that  will  produce  an  inquiry  message.  Use  

divide  by  zero  for  this  function.  The  operator  should  enter  C to cancel  the  program  unless  the  job  

description  INQMSGRPH  option  provides  an  automatic  reply.  This  simulates  a condition  where  an 

unexpected  error  has  occurred  and  the  operator  cancels  the  program.  

16.   Check  for  QTY=102.  Issue  a display  with  inquiry  operation.  This  stops  the  program  at this  step  and  

allows  the  use  of  the  System  Request  key  to get  to a different  job.  Cancel  the  updating  job.  This  

simulates  a condition  where  an  abnormal  job  or  system  end  has  occurred  in  the  middle  of a commit  

boundary.  

17.   Write the  transaction  record  to  TRNP.  

18.   Commit  the  records  for  the  transaction  and  return  to  step  2.  

19.   Read  the  first  record  on  the  access  path  for  file  TRNL,  using  USER  as  the  key.  Because  this  file  is in  

LIFO  sequence,  this  will  be  the  last  transaction  record  entered  by  this  user. 

20.   Check  for  a record  not  found  condition  in  the  TRNL  file  that  is caused  if the  file  does  not  contain  

entries  for  this  user. 

21.   If there  is no  record  for  this  user,  set  on  indicator  64  to cause  an  error  message  and  return  to  step  2.  

22.   Display  the  last  transaction  entered  for  this  user. This  information  can  be  used  if the  operator  forgets  

what  was  previously  entered  or  when  the  transaction  is restarted.  When  the  operator  responds,  

return  to  step  2. 

23.   Perform  any  end  of  program  functions.

Example: Use a transaction logging file to start an application 

This  example  provides  sample  code  and  instructions  of how  to  use  a transaction  logging  file  to start  an 

application  after  an  abnormal  end.  

Note:   By  using  the  code  examples,  you  agree  to the  terms  of the  “Code  license  and  disclaimer  

information”  on  page  108.

 

Commitment  control 79



A transaction  logging  file  is used  to  start  an  application  again  after  a system  or  job  failure  when  a notify  

object  is  not  used.  A transaction  logging  file  is often  used  in  interactive  applications  to  summarize  the  

effects  of  a transaction.  

For  example,  in  an  order  entry  application,  a record  is typically  written  to  a transaction  logging  file  for  

each  item  ordered.  The  record  contains  the  item  ordered,  the  quantity,  and  the  price.  In  an  accounts  

payable  application,  a record  is written  to  a transaction  logging  file  for  each  account  number  that  is to 

receive  a charge.  This  record  normally  contains  such  information  as  the  account  number,  the  amount  

charged,  and  the  vendor.  

In  many  of the  applications  where  a transaction  logging  file  already  exists,  a workstation  user  can  request  

information  about  the  last  transaction  entered.  By  adding  commitment  control  to the  applications  in 

which  a transaction  logging  file  already  exists,  you  can:  

v   Ensure  that  the  database  files  are  updated  to  a commitment  boundary.  

v   Simplify  the  starting  of  the  transaction  again.  

You must  be  able  to  uniquely  identify  the  workstation  user  if you  use  a transaction  logging  file  for  

starting  applications  again  under  commit  control.  If  unique  user  profile  names  are  used  on  the  system,  

that  profile  name  can  be  placed  in  a field  in  the  transaction  logging  record.  This  field  can  be  used  as  the  

key  to  the  file.  

The  following  examples  assume  that  an  order  inventory  file  is being  used  to  perform  transactions  and  

that  a transaction  logging  file  already  exists.  The  program  does  the  following  tasks:  

1.   Prompt  the  workstation  user  for  a quantity  and  item  number.  

2.   Update  the  quantity  in  the  production  master  file  (PRDMSTP).  

3.   Write a record  to  the  transaction  logging  file  (ISSLOGL).  

If the  inventory  quantity  on  hand  is  insufficient,  the  program  rejects  the  transaction.  The  workstation  user  

can  ask  the  program  where  the  data  entry  was  interrupted,  because  the  item  number,  description,  

quantity,  user  name,  and  date  are  written  to  the  transaction  logging  file.  

DDS for physical file PRDMSTP 

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ...  4 ... ...  5 ...  ...  6 ...  ... 7 

  

  1.00       A          R PRDMSTR                    TEXT(’Master  record’)  

  2.00       A            PRODCT          3          COLHDG(’Product’  ’Number’)  

  3.00       A            DESCRP         20          COLHDG(’Description’)  

  4.00       A            ONHAND          5  0       COLHDG(’On  Hand’  ’Amount’)  

  5.00       A                                      EDTCDE(Z)  

  6.00       A          K PRODCT  

DDS for physical file ISSLOGP used by ISSLOGP 

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ...  4 ... ...  5 ...  ...  6 ...  ... 7 

  

  1.00       A          R ISSLOGR                    TEXT(’Product  log  record’)  

  2.00       A            PRODCT          3          COLHDG(’Product’  ’Number’)  

  3.00       A            DESCRP         20          COLHDG(’Description’)  

  4.00       A            QTY             3  0       COLHDG(’Quantity’)  

  5.00       A                                      EDTCDE(Z)  

  6.00       A            USER           10          COLHDG(’User’  ’Name’)  

  7.00       A            DATE            6  0       EDTCDE(Y)  

  8.00       A                                      COLHDG(’Date’)  

 

80 IBM Systems  - iSeries:  Database  Commitment  control



DDS for logical file ISSLOGL 

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ...  ... 5 ...  ... 6 ...  ...  7 

  

  1.00       A                                      LIFO  

  2.00       A          R ISSLOGR                    PFILE(ISSLOGP)  

  3.00       A          K USER  

DDS for display file PRDISSD used in the program 

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ...  ... 5 ...  ... 6 ...  ...  7 .. 

  

 1.00        A                                      REF(ISSLOGP)  

 2.00        A          R PROMPT  

 3.00        A                                      CA03(98  ’End  of program’)  

 4.00        A                                      CA02(97  ’Where  am I’) 

 5.00        A                                  1 20’ISSUES  PROCESSING’  

 6.00        A                                  3  2’Quantity’  

 7.00        A            QTY        R        I    +1 

 8.00        A  62                                  ERRMSG(’Not  enough  + 

 9.00        A                                      Qty’  62) 

 10.00       A                                    +6’Product’  

 11.00       A            PRODCT     R        I    +1 

 12.00       A  61                                  ERRMSG(’No  Product  + 

 13.00       A                                      record  found’  62) 

 14.00       A  55                             15  2’No  Previous  record  exists’  

 15.00       A                                 24  2’CF2  Last  transaction’  

 16.00       A          R RESTART  

 17.00       A                                  1 20’LAST  TRANSACTION  + 

 18.00       A                                      INFORMATION’  

 19.00       A                                  5  2’Product’  

 20.00       A            PRODCT     R             +1 

 21.00       A                                  7  2’Description’  

 22.00       A            DESCRP     R             +1 

 23.00       A                                  9  2’Qty’  

 24.00       A            QTY        R             +1REFFLD(QTY)  

This  process  is outlined  in  the  Program  flow. 

Program flow

 

Commitment  control 81



The  RPG  COMMIT  operation  code  is  specified  after  the  PRDMSTP  file  is updated  and  the  record  is  

written  to  the  transaction  logging  file.  Because  each  prompt  to  the  operator  represents  a boundary  for  a 

new  transaction,  the  transaction  is  considered  a single  Enter  transaction.  

The  user  name  is passed  to  the  program  when  it  is called.  The  access  path  for  the  transaction  logging  file  

is defined  in  last-in-first-out  (LIFO)  sequence  so  the  program  can  easily  access  the  last  record  entered.  

The  workstation  user  can  start  the  program  again  after  a system  or  job  failure  by  using  the  same  function  

that  identified  where  data  entry  was  stopped.  No  additional  code  needs  to  be  added  to the  program.  If 

you  are  currently  using  a transaction  logging  file  but  are  not  using  it to find  out  where  you  are,  add  the  

user  name  to  the  transaction  logging  file  (assuming  that  user  names  are  unique)  and  use  this  approach  in 

the  program.  

 

82 IBM Systems  - iSeries:  Database  Commitment  control



The  following  example  shows  the  RPG  program  used.  Statements  required  for  commitment  control  are  

marked  with  arrows  (==>).  

RPG Program 

 SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ...  4 ...  ...  5 ...  ...  6 ...  .. 7 .. 

 =>1.00       FPRDMSTP  UP   E           K        DISK         KCOMIT  

 =>2.00       FISSLOGL  IF   E           K        DISK         KCOMIT  

   3.00       PRDISSD   CP   E                    WORKSTN  

   4.00                   *ENTRY     PLIST  

   5.00                             PARM            USER     10 

   6.00       C* 

   7.00       C*  Initialize  fields  used  in Trans  Log  Rcd  

   8.00       C* 

   9.00       C                     MOVE  UDATE      DATE  

  10.00       C* 

  11.00       C*  Basic  processing  loop  

  12.00       C* 

  13.00       C           LOOP       TAG  

  14.00       C                     EXFMTPROMPT  

  15.00       C   98                GOTO  END                        End  of pgm 

  16.00       C   97                DO                             Where  am I 

  17.00       C                     EXSR  WHERE  

  18.00       C                     GOTO  LOOP  

  19.00       C                     END  

  20.00       C           PRODCT     CHAINPRDMSTR               61      Not  found  

  21.00       C   61                GOTO  LOOP  

  22.00       C           ONHAND     SUB   QTY       TEST     50    62   Less  than  

  23.00       C   62                DO                               Not  enough  

  24.00       C                     EXCPTRLSMST                       Release  lock  

  25.00       C                     GOTO  LOOP  

  26.00       C                     END  

  27.00       C* 

  28.00       C*  Update  master  record  and  output  the  Transaction  Log  Record  

  29.00       C* 

  30.00       C                     Z-ADDTEST      ONHAND  

  31.00       C                     UPDATPRDMSTR  

  32.00       C                     WRITEISSLOGR  

=>33.00       C                     COMIT  

  34.00       C                     GOTO  LOOP  

  35.00       C* 

  36.00       C*  End  of program  processing  

  37.00       C* 

  38.00       C           END        TAG  

  39.00       C                     SETON                      LR 

  40.00       C* 

  41.00       C* WHERE  subroutine  for  "Where  am I" requests  

  42.00       C* 

  43.00       C           WHERE      BEGSR  

  44.00       C           USER       CHAINISSLOGL               55    Not found  

  45.00       C  N55                 EXFMTRESTART  

  46.00       C                     ENDSR  

  47.00       OPRDMSTR  E                RLSMST  

CL program used to call RPG program PRDISS 

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ...  ... 5 ...  ... 6 ...  ...  7 .. 

  

  1.00             PGM  

  2.00             DCL           &USER  *CHAR  LEN(10)  

  3.00             STRCMTCTL     LCKLVL(*CHG)  

  4.00             RTVJOBA       USER(&USER)  

  5.00             CALL          PRDISS  PARM(&USER)  

  6.00             MONMSG        MSGID(RPG900l)  EXEC(ROLLBACK)  

  7.00             ENDCMTCTL  

  8.00             ENDPGM  

 

Commitment  control 83



To use  commitment  control  in  this  program,  a lock  level  of *CHG  is normally  specified.  The  record  is 

locked  by  the  change  until  a commit  operation  is run. Note  that  if there  is an  insufficient  quantity  of  

inventory,  the  record  is explicitly  released.  (If  the  record  are  not  explicitly  released  in  the  program,  it  is 

released  when  the  next  record  is read  for  update  from  the  file.)  

In  this  example,  there  is no  additional  advantage  to  using  the  lock  level  *ALL.  If *ALL  were  used,  a 

rollback  or  commit  operation  must  be  used  to  release  the  record  when  an  insufficient  quantity  existed.  

The  previous  code  is  a CL  program  that  calls  the  RPG  program  PRDISS.  Note  the  use  of 

STRCMTCTL/ENDCMTCTL  commands.  The  unique  user  name  is retrieved  (RTVJOBA  command)  and  

passed  to the  program.  The  use  of  the  MONMSG  command  to  cause  a rollback  is described  in  Example:  

Use  a standard  processing  program  to  start  an  application.  

   Related  concepts  

   “Example:  Use  a standard  processing  program  to  start  an  application”  on  page  89  

A standard  processing  program  is one  way  to start  your  application  again  using  one  database  file  as 

the  notify  object  for  all  applications.  This  approach  assumes  that  user  profile  names  are  unique  by  

user  for  all  applications  using  the  standard  program.  

   “Example:  Unique  notify  object  for  each  program”  on  page  85  

Using  a single,  unique  notify  object  for  each  job  allows  use  of  an  externally  described  commit  

identification  even  though  there  might  be  multiple  users  of  the  same  program.

Example: Use a notify object to start an application 

When  a program  is  started  after  an  abnormal  end,  it  can  look  for  an  entry  in  the  notify  object.  If the  entry  

exists,  the  program  can  start  a transaction  again.  After  the  transaction  has  been  started  again,  the  notify  

object  is  cleared  by  the  program  to  prevent  it from  starting  the  same  transaction  yet  another  time.  

Here  are  ways  to  use  a notify  object:  

v   If the  commit  identification  is  placed  in  a database  file,  query  this  file  to determine  where  to  start  each  

application  or  workstation  job  again.  

v   If the  commit  identification  is  placed  in  a message  queue  for  a particular  workstation,  a message  can  

be  sent  to  the  work  station  users  when  they  sign  on  to  inform  them  of the  last  transaction  committed.  

v   If the  commit  identification  is  placed  in  a database  file  that  has  a key  or  user  name,  the  program  can  

read  this  file  when  it is  started.  If  a record  exists  in  the  file,  start  the  program  again.  The  program  can  

send  a message  to  the  workstation  user  identifying  the  last  transaction  committed.  Any  recovery  is 

performed  by  the  program.  If a record  existed  in  the  database  file,  the  program  deletes  that  record  at 

the  end  of the  program.  

v   For  a batch  application,  the  commit  identification  can  be  placed  in  a data  area  that  contains  totals,  

switch  settings,  and  other  status  information  necessary  to  start  the  application  again.  When  the  

application  is started,  it  accesses  the  data  area  and  verifies  the  values  stored  there.  If the  application  

ends  normally,  the  data  area  is set  up  for  the  next  run. 

v   For  a batch  application,  the  commit  identification  can  be  sent  to  a message  queue.  A program  that  is  

run when  the  application  is  started  can  retrieve  the  messages  from  the  queue  and  start  the  programs  

again.  

You can  use  several  techniques  for  starting  your  applications  again,  depending  on  your  application  needs.  

In  choosing  the  technique,  consider  the  following  information:  

v   When  there  are  multiple  users  of  a program  at  the  same  time,  a single  data  area  cannot  be  used  as  the  

notify  object  because  after  an  abnormal  system  end,  the  commit  identification  for  each  user  will  

overlay  each  other  in  the  data  area.  

v   Your design  for  deleting  information  in  the  notify  object  must  handle  the  situation  when  a failure  

occurs  immediately  following  use  of  the  information:  

–   If information  is  deleted  immediately,  it  does  not  exist  if another  failure  occurs  before  processing  the  

interrupted  transaction.  

 

84 IBM Systems  - iSeries:  Database  Commitment  control



–   The  information  in the  notify  object  must  not  be  deleted  until  the  successful  processing  of  the  

interrupted  transaction.  In  this  case,  more  than  one  entry  will  exist  in the  notify  object  if it is  a 

database  file  or  message  queue.  

–   The  program  must  access  the  last  record  if there  is more  than  one  entry.
v    A  notify  object  cannot  be  used  to  provide  the  work  station  user  with  the  last  transaction  committed  

because  the  notify  object  is  updated  only  if a system  or job  failure  occurs  or  if uncommitted  changes  

exist  at  the  normal  end  of  a job.  

v   If information  is displayed  to  the  workstation  user, it must  be  meaningful.  This  might  require  that  the  

program  translate  codes  kept  in the  notify  object  into  information  that  will  help  the  user  start  again.  

v   Information  for  starting  again  must  be  displayed  if the  work  station  user  needs  it. Additional  logic  in  

the  program  is  required  to  prevent  information  from  being  displayed  again  when  it is no  longer  

meaningful.  

v   A  single  notify  object  and  a standard  processing  program  can  provide  a starting  again  function  if the  

notify  object  is  a database  file.  This  standard  processing  program  is called  by  the  programs  that  require  

the  ability  to  start  again  to  minimize  the  changes  to  each  individual  program.  

   Related  concepts  

   “Commit  notify  object”  on  page  47
A  notify  object  is  a message  queue,  data  area,  or  database  file  that  contains  information  identifying  the  

last  successful  transaction  completed  for  a particular  commitment  definition  if that  commitment  

definition  did  not  end  normally.

Example: Unique notify object for each program 

Using  a single,  unique  notify  object  for  each  job  allows  use  of an  externally  described  commit  

identification  even  though  there  might  be  multiple  users  of  the  same  program.  

In  the  following  examples,  a database  file  is used  as  a notify  object  and  it is used  only  by  this  program.  

The  program  has  two  database  files  (PRDMSTP  and  PRDLOCP)  that  must  be  updated  for  receipts  to  

inventory.  The  display  file  used  by  the  program  is named  PRDRCTD.  A  database  file,  PRDRCTP,  is used  

as  the  notify  object.  This  notify  object  is defined  to  the  program  as a file  and  is also  used  as the  definition  

of  a data  structure  for  the  notify  function.  

Note:   By  using  the  code  examples,  you  agree  to the  terms  of the  “Code  license  and  disclaimer  

information”  on  page  108.  

DDS for physical file PRDLOCP 

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ...  ... 5 ...  ... 6 ...  ...  7 

  

  1.00       A          R PRDLOCR                    TEXT(’Location  record’)  

  2.00       A            PRODCT          3          COLHDG(’Product’  ’Number’)  

  3.00       A            LOCATN          6          COLHDG(’Location’)  

  4.00       A            LOCAMT          5  0       COLHDG(’Location’  ’Amount’)  

  5.00       A                                      EDTCDE(Z)  

  6.00       A          K PRODCT  

  7.00       A          K LOCATN  

DDS for display file PRDRCTD 

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ...  ... 5 ...  ... 6 ...  ...  7 .. 

  

  1.00       A                                      REF(PRDMSTP)  

  2.00       A          R PROMPT  

  3.00       A                                      CA03(98  ’End  of program’)  

  4.00       A                                      SETOFF(71  ’RESTART’)  

  5.00       A                                 1  20’PRODUCT  RECEIPTS’  

  6.00       A                                 3   2’Quantity’  

  7.00       A            QTY            3  OI     +1 

  8.00       A                                    +6’Product’

 

Commitment  control 85



9.00       A            PRODCT    R        I     +1  

 10.00       A  61                                  ERRMSG(’No  record  + 

 11.00       A                                      found  in the  + 

 12.00       A                                      master  file’  62)  

 13.00       A                                    +6’Location’  

 14.00       A            LOCATN    R        I     +1REFFLD(LOCATN  PRDLOCP)  

 15.00       A  62                                  ERRMSG(’No  record  + 

 16.00       A                                      found  in the  + 

 17.00       A                                      location  file’  62)  

 18.00       A                                 9   2’Last  Transaction’  

 19.00       A  71                                +6’This  is  restart  + 

 20.00       A                                       information’  

 21.00       A                                      DSPATR(HI  BL)  

 22.00       A                                12   2’Quantity’  

 23.00       A                                12  12’Product’  

 24.00       A                                12  23’Location’  

 25.00       A                                12  35’Description’  

 26.00       A            LSTPRD    R          14  15REFFLD(PRODCT)  

 27.00       A            LSTLOC    R          14  26REFFLD(LOCATN  *SRC)  

 28.00       A            LSTQTY    R          14   5REFFLD(QTY  *SRC)  

 29.00       A                                      EDTCDE(Z)  

 30.00       A            LSTDSC    R          14  35REFFLD(DESCRP)  

DDS for notify object and externally described data structure (PRDRCTP) 

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ...  4 ... ...  5 ...  ...  6 ...  ... 7 .. 

  

  1.00       A                                      LIFO  

  2.00       A                                      REF(PRDMSTP)  

  3.00       A          R PRDRCTR  

  4.00       A            USER           10 

  5.00       A            PRODCT     R 

  6.00       A            DESCRP     R 

  7.00       A            QTY             3  0 

  8.00       A            LOCATN     R               REFFLD(LOCATN  PRDLOCP)  

  9.00       A          K USER  

The  program  processes  the  notify  object  as  follows:  

v   At  the  beginning,  the  program  randomly  processes  the  notify  object  and  displays  a record  if it exists  

for  the  specific  key:  

–   If multiple  records  exist,  the  last  record  for  this  key  is used  because  the  PRDRCTP  file  is in  LIFO  

sequence.  

–   If no  record  exists,  a transaction  was  not  interrupted  so it is not  necessary  to start  again.  

–   If the  program  fails  before  the  first  successful  commit  operation,  it does  not  consider  that  starting  

again  is  required.
v   The  routine  to  clear  the  notify  object  occurs  at the  end  of  the  program:  

–   If there  were  multiple  failures,  the  routine  can  handle  deletion  of  multiple  records  in  the  notify  

object.  

–   Although  the  system  places  the  commit  identification  in  a database  file,  the  commit  identification  

must  be  specified  as  a variable  in the  RPG  program.  

–   Because  RPG  allows  a data  structure  to  be  externally  described,  a data  structure  is  a convenient  way  

of specifying  the  commit  identification.  In  this  example,  the  data  structure  uses  the  same  external  

description  that  the  database  file  used  as  the  notify  object.

The  processing  for  this  program  prompts  the  user  for  a product  number,  a location,  and  a quantity:  

v   Two files  must  be  updated:  

–   Product  master  file  (PRDMSTP)  

–   Product  location  file  (PRDLOCP)
v    A record  in  each  file  must  exist  before  either  is updated.  

 

86 IBM Systems  - iSeries:  Database  Commitment  control



v   The  program  moves  the  input  fields  to  corresponding  last  fields  after  each  transaction  is  successfully  

entered.  These  last  fields  are  displayed  to  the  operator  on  each  prompt  as feedback  for  what  was  last  

entered.  

v   If information  for  starting  again  exists,  it is  moved  to  these  last  fields  and  a special  message  appears  on  

the  display.

This  process  is outlined  in  the  following  figure.  The  user  name  is passed  to the  program  to provide  a 

unique  record  in  the  notify  object.  

Program flow
  

 

 

Commitment  control 87



The  following  example  is about  the  RPG  source  code.  The  notify  object  (file  PRDRCTP)  is used  as  a 

normal  file  at  the  beginning  and  end  of  the  program,  and  is  also  specified  as  the  notify  object  in  the  CL  

(STRCMTCTL  command)  before  calling  the  program.  

RPG source 

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ...  4 ... ...  5 ...  ...  6 ...  ... 7 .. 

  

  1.00       FPRDMSTP  UF   E           K        DISK          KCOMIT  

  2.00       FPRDLOCP  UF   E           K        DISK          KCOMIT  

  3.00       FPRDRCTD  CF   E                    WORKSTN  

  4.00       F* 

  5.00       F* The  following  file  is the  specific  notify  object  for  this  pgm.  

  6.00       F*      It is accessed  only  in a restart  situation  and  at the  

  7.00       F*        end  of the  program  to delete  any  records.   The records  

  8.00       F*        are  written  to the notify  object  by Commitment  Control.  

  9.00       F* 

 10.00       FPRDRCTP  UF  E           K        DISK  

 11.00       ICMTID      E DSPRDRCTP  

 12.00       C           *ENTRY     PLIST  

 13.00       C                     PARM            USER10  10 

 14.00       C                     MOVE  USER10     USER  

 15.00       C* 

 16.00       C*  Check  for  restart  information  - get last  rcd per user  

 17.00       C*    PRDRCTP  file  access  path  is in LIFO  sequence  

 18.00       C* 

 19.00       C           USER       CHAINPRDRCTR              20     Not found  

 20.00       C  N20                 DO                              Restart  

 21.00       C                     EXSR  MOVLST                      Move  to last  

 22.00       C                     SETON                     71     Restart  

 23.00       C                     END  

 24.00       C* 

 25.00       C*  Basic  processing  loop  

 26.00       C* 

 27.00       C           L00P       TAG  

 28.00       C                     EXFMTPROMPT  

 29.00       C   98                GOTO  END                         End of pgm 

 30.00       C           PRODCT     CHAINPRDMSTR              61     Not  found  

 31.00       C   61                GOTO  L00P  

 32.00       C           KEY        KLIST  

 33.00       C                     KFLD            PRODCT  

 34.00       C                     KFLD            LOCATN  

 35.00       C           KEY        CHAINPRDLOCR              62     Not  found  

 36.00       C   62                DO 

 37.00       C                     EXCPTRLSMST                      Release  lck 

 38.00       C                     GOTO  L00P  

 39.00       C                     END  

 40.00       C                     ADD   QTY        ONHAND            Add  

 41.00       C                     ADD   QTY        LOCAMT  

 42.00       C                     UPDATPRDMSTR                     Update  

 43.00       C                     UPDATPRDLOCR                     Update  

 44.00       C* 

 45.00       C*  Commit  and  move  to previous  fields  

 46.00       C* 

 47.00       C           CMTID      COMIT  

 48.00       C                     EXSR  MOVLST                      Move  to last  

 49.00       C                     GOTO  L00P  

 50.00       C* 

 51.00       C*  End  of program  processing  

 52.00       C* 

 53.00       C           END        TAG  

 54.00       C                     SETON                     LR 

 55.00       C*56.00       C*  Delete  any  records  in the  notify  object  

 57.00       C* 

 58.00       C           DLTLP      TAG  

 59.00       C           USER       CHAINPRDRCTR              20     Not found  

 60.00       C  N20                 DO

 

88 IBM Systems  - iSeries:  Database  Commitment  control



61.00       C                     DELETPRDRCTR                     Delete  

 62.00       C                     GOTO  DLTLP  

 63.00       C                     END  

 64.00       C* 

 65.00       C*  Move  to -Last  Used-  fields  for operator  feedback  

 66.00       C* 

 67.00       C           MOVLST     BEGSR  

 68.00       C                     MOVE  PRODCT     LSTPRD  

 69.00       C                     MOVE  LOCATN     LSTLOC  

 70.00       C                     MOVE  QTY        LSTQTY  

 71.00       C                     MOVE  DESCRP     LSTDSC  

 72.00       C                     ENDSR  

 73.00       OPRDMSTR  E                RLSMST  

   Related  concepts  

   “Example:  Use  a transaction  logging  file  to start  an  application”  on  page  79  

This  example  provides  sample  code  and  instructions  of how  to  use  a transaction  logging  file  to start  

an  application  after  an  abnormal  end.  

   “Example:  Single  notify  object  for  all  programs”  

Using  a single  notify  object  for  all  programs  is advantageous  because  all  information  required  to start  

again  is in  the  same  object  and  a standard  approach  to  the  notify  object  can  be  used  in  all  programs.  

In  this  situation,  use  a unique  combination  of  user  and  program  identifications  to  make  sure  that  the  

program  accesses  the  correct  information  when  it  starts  again.

Example: Single notify object for all programs 

Using  a single  notify  object  for  all  programs  is advantageous  because  all  information  required  to  start  

again  is in  the  same  object  and  a standard  approach  to the  notify  object  can  be  used  in  all  programs.  In  

this  situation,  use  a unique  combination  of user  and  program  identifications  to  make  sure  that  the  

program  accesses  the  correct  information  when  it starts  again.  

Because  the  information  required  to  start  again  might  vary  from  program  to  program,  do  not  use  an 

externally  described  data  structure  for  the  commit  identification.  If a single  notify  object  is used,  the  

preceding  program  can  describe  the  data  structure  within  the  program  rather  than  externally.  For  

example:  

 1   10      USER  

11    20      PGMNAM  

21    23      PRODCT  

24    29      LOCATN  

30    49      DESC  

50    51  0   QTY  

52   220       DUMMY  

In  each  program  that  uses  this  notify  object,  the  information  specified  for  the  commit  identification  is 

unique  to  the  program  (the  user  and  program  names  are  not  unique).  The  notify  object  must  be  large  

enough  to  contain  the  maximum  information  that  any  program  can  place  in  the  commit  identification.  

   Related  concepts  

   “Example:  Unique  notify  object  for  each  program”  on  page  85  

Using  a single,  unique  notify  object  for  each  job  allows  use  of an  externally  described  commit  

identification  even  though  there  might  be  multiple  users  of the  same  program.

Example: Use a standard processing program to start an application 

A  standard  processing  program  is  one  way  to  start  your  application  again  using  one  database  file  as the  

notify  object  for  all  applications.  This  approach  assumes  that  user  profile  names  are  unique  by  user  for  all  

applications  using  the  standard  program.  

Note:   By  using  the  code  example,  you  agree  to the  terms  of the  “Code  license  and  disclaimer  

information”  on  page  108.

 

Commitment  control 89



For  this  approach,  the  physical  file  NFYOBJP  is  used  as  the  notify  object  and  defined  as:  

Unique  user  profile  name    10 characters  

Program  identification      10  characters  

Information  for  

     starting  again         Character  field  

                           (This  must  be large  

                           enough  to contain  the  maximum  

                           amount  of information  for starting  

                           programs  again  that  require  

                           information  for  starting  again.  

                           This  field  is required  by 

                           the  application  programs.  

                           In the  example,  it is 

                           assumed  to be a length  of 200.)  

The  file  is created  with  SHARE(*YES).  The  first  two  fields  in  the  file  are  the  key  to the  file.  (This  file  can  

also  be  defined  as  a data  structure  in  RPG  programs.)  

   Related  concepts  

   “Example:  Use  a transaction  logging  file  to  start  an  application”  on  page  79  

This  example  provides  sample  code  and  instructions  of  how  to use  a transaction  logging  file  to start  

an  application  after  an  abnormal  end.

Example: Code for a standard processing program 

This  is an  example  of  using  a standard  processing  program.  

The  application  shown  in  the  following  code  example  performs  as  follows:  

1.   The  application  program  receives  the  user  name  in  a parameter  and  uses  it  with  the  program  name  as  

a unique  identifier  in  the  notify  object.  

2.   The  application  program  passes  a request  code  of  R to  the  standard  commit  processing  program,  

which  determines  if a record  exists  in  the  notify  object.  

3.   If the  standard  commit  processing  program  returns  a code  of 1,  a record  was  found  and  the  

application  program  presents  the  information  needed  to start  again  to  the  user. 

4.   The  application  program  proceeds  with  normal  processing.  

5.   When  a transaction  is  completed,  values  are  saved  for  reference  so  the  workstation  user  can  see  what  

was  done  for  the  previous  transaction.  

The  information  saved  is not  provided  by  the  notify  object  because  the  notify  object  is updated  only  if 

a job  or  system  failure  occurs.  

Note:   By  using  the  code  examples,  you  agree  to  the  terms  of  the  “Code  license  and  disclaimer  

information”  on  page  108.  

Application  program  example  

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ...  4 ... ...  5 ...  ...  6 ...  ... 7 .. 

  

  1.00       FPRDMSTP  UF   E           K        DISK          KCOMIT  

  2.00       FPRDLOCP  UF   E           K        DISK          KCOMIT  

  3.00       FPRDRCTD  CF   E                    WORKSTN  

  4.00       F* 

  5.00       F* The  following  is a compile  time  array  which  contains  the 

  6.00       F*    restart  information  used  in the  next  example  

  7.00       F* 

  8.00       E                    RTXT    50  50  1               Restart  text  

  9.00       I* 

 10.00       I* Data  structure  used  for  info  passed  to notify  object  

 11.00       I* 

 12.00       ICMTID        DS 

 13.00       I                                       1  10 USER  

 14.00       I                                      11  20 PGMNAM

 

90 IBM Systems  - iSeries:  Database  Commitment  control



15.00       I                                      21  23 PRODCT  

 16.00       I                                      24  29 LOCATN  

 17.00       I                                      30  49 DESCRP  

 18.00       I                                   P  50  510QTY  

 19.00       I                                      52 170  DUMMY  

 20.00       I                                     171  220 RSTART  

 21.00       C           *ENTRY     PLIST  

 22.00       C                     PARM           USER10  10 

 23.00       C* 

 24.00       C*  Initialize  fields  used  to communicate  with  std program  

 25.00       C* 

 26.00       C                     MOVE  USER10     USER  

 27.00       C                     MOVEL’PRDRC2’   PGMNAM  

 28.00       C                     MOVE  ’R’        RQSCOD            Read  Rqs 

 29.00       C                CALL  ’STDCMT’  

 30.00       C                     PARM            RQSCOD   1 

 31.00       C                     PARM            RTNCOD   1 

 32.00       C                     PARM            CMTID  220         Data  struct  

 33.00       C            RTNCOD    IFEQ  ’1’                         Restart  

 34.00       C                     EXSR  MOVLST                      Move  to  last  

 35.00       C SETON                                          71     Restart  

 36.00       C                     END  

 37.00       C* 

 38.00       C*  Initialize  fields  used  in notify  object  

 39.00       C* 

 40.00       C                     MOVEARTXT,1     RSTART            Move  text  

 41.00       C* 

 42.00       C* Basic  processing  loop  

 43.00       C* 

 44.00       C            LOOP      TAG  

 45.00       C                     EXFMTPROMPT  

 46.00       C   98                 GOTO  END  

 47.00       C            PRODCT    CHAINPRDMSTR               61    Not  found  

 48.00       C   61                 GOTO  LOOP  

 49.00       C            KEY       KLIST  

 50.00       C                     KFLD            PRODCT  

 51.00       C                     KFLD            LOCATN  

SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ...  ... 5 ...  ... 6 ...  ...  7 .. 

  

 52.00       C           KEY        CHAINPRDLOCR               62    Not  found  

 53.00       C   62                 DO 

 54.00       C                     EXCPTRLSMST                      Release  lck 

 55.00       C                     GOTO  LOOP  

 56.00       C                     END  

 57.00       C                     ADD   QTY        ONHAND            Add  

 58.00       C                     ADD   QTY        LOCAMT  

 59.00       C                     UPDATPRDMSTR                     Update  

 60.00       C                     UPDATPRDLOCR                     Update  

 61.00       C* 

 62.00       C*  Commit  and  move  to  previous  fields  

 63.00       C* 

 64.00       C           CMTID      COMIT  

 65.00       C                     EXSR  MOVLST                      Move  to  last  

 66.00       C                     GOTO  LOOP  

 67.00       C*  End  of program  processing  

 68.00       C* 

 69.00       C           END        TAG  

 70.00       C                     MOVE  ’D’        RQSCOD            Dlt Rqs 

 71.00       C                     CALL  ’STDCMT’  

 72.00       C                     PARM            RQSCOD  

 73.00       C                     PARM            RTNCOD  

 74.00       C                     PARM            CMTID  

 75.00       C                     SETON                      LR  

 76.00       C* 

 77.00       C*  Move  to -Last  Used-  fields  for operator  feedback  

 78.00       C* 

 79.00       C           MOVLST     BEGSR

 

Commitment  control 91



80.00       C                     MOVE  PRODCT     LSTPRD  

 81.00       C                     MOVE  LOCATN     LSTLOC  

 82.00       C                     MOVE  DESCRP     LSTDSC  

 83.00       C                     MOVE  QTY        LSTQTY  

 84.00       C                     ENDSR  

 85.00       OPRDMSTR  E                RLSMST  

 86.00  ** RTXT        Restart  Text  

 87.00  Inventory  Menu  - Receipts  Option  

Processing  flow:   

This  topic  shows  the  processing  flow  of  the  processing  program.  

 The  standard  program  is  called  from  applications  that  must  start  again.  The  application  programs  pass  

this  parameter  list  to  the  standard  program:  

v   Request  code  

v   Return  code  

v   Data  structure  name  (the  contents  of  the  notify  object)  

Request  codes  the  following  operations:  

v   R (Read)  

Retrieves  the  last  record  added  to  the  notify  object  with  the  same  key.  The  return  code  is set  as:  

0 No  record  is  available  (no  start  again  required).  

1 Record  returned  in  the  information  field  for  starting  again  (start  again  required).
v    WA (Write)  

Writes  a record  to  the  file.  This  code  can  be  used  if you  use  a notify  object  for  your  own  purposes.  For  

example,  if the  program  determines  that  the  transaction  needs  to  be  started  again,  the  program  can  

write  a record  to  the  notify  object  to  simulate  what  the  system  will  do  if a job  or  the  system  fails.  

v   DE  (Delete)  

Deletes  all  records  in  the  notify  object  with  the  same  key.  The  return  code  is set  as:  

0 No  records  exist  to  be  deleted.  

1 One  or  more  records  were  deleted.
v    OE  (Open)  

The  O request  code  is  optional  and  is used  to  avoid  having  to start  the  processing  program  each  time  it 

is called.  

v   CA  (Close)  

After  the  open  request  code  is  used,  using  the  close  request  code  ensures  that  the  file  is closed.  

v   SA  (Search)  

Returns  the  last  record  for  this  user. The  program  name  is not  used.  This  code  can  be  used  in  an  initial  

program  to  determine  whether  starting  again  is required.

Example: Code for a standard commit processing program 

The  standard  commit  (STDCMT)  processing  program  performs  the  functions  required  to communicate  

with  a single  notify  object  used  by  all  applications.  

While  the  commitment  control  function  automatically  writes  an  entry  to  the  notify  object,  a user-written  

standard  program  must  process  the  notify  object.  The  standard  program  simplifies  and  standardizes  the  

approach.  

The  program  is written  to  verify  the  parameters  that  were  passed  and  perform  the  appropriate  action  as  

follows:  

 

92 IBM Systems  - iSeries:  Database  Commitment  control



O=Open  

The  calling  program  requests  the  notify  object  file  be  kept  open  on  return.  Because  the  notify  

object  is  opened  implicitly  by  the  RPG  program,  the  program  must  not  close  it. Indicator  98  is set  

so  that  the  program  returns  with  LR  off  to  keep  the  program’s  work  areas  and  leaves  the  notify  

object  open  so  it can  be  called  again  without  excess  overhead.  

C=Close  

The  calling  program  has  determined  that  it no  longer  needs  the  notify  object  and  requests  a close.  

Indicator  98  is  set  off  to  allow  a full  close  of the  notify  object.  

R=Read  

The  calling  program  requests  that  a record  with  matching  key  fields  be  read  and  passed  back.  

The  program  uses  the  passed  key  fields  to  attempt  to  retrieve  a record  from  NFYOBJP.  If 

duplicate  records  exist  for  the  same  key,  the  last  record  is returned.  The  return  code  is set  

accordingly  and,  if the  record  existed,  it is passed  back  in  the  data  structure  CMTID.  

W=Write  

The  calling  program  requests  a record  to  be  written  to the  notify  object  to  allow  the  calling  

program  to  start  again  the  next  time  it is called.  The  program  writes  the  contents  of the  passed  

data  as  a record  in  NFYOBJP.  

D=Delete  

The  calling  program  requests  that  records  for  this  matching  key  be  deleted.  This  function  is  

typically  performed  at  the  successful  completion  of the  calling  program  to  remove  any  

information  about  starting  again.  The  program  attempts  to  delete  any  records  for  passed  key  

fields.  If  no  records  exist,  a different  return  code  is passed  back.  

S=Search  

The  calling  program  requests  a search  for  a record  for  a particular  user  regardless  of which  

program  wrote  it.  This  function  is used  in  the  program  for  sign-on  to  indicate  that  starting  again  

is required.  The  program  uses  only  the  user  name  as  the  key  to see  if records  exist.  The  return  

code  is set  appropriately,  and  the  contents  of  the  last  record  for  this  key  (if  it exists)  are  read  and  

passed  back.

 The  following  example  shows  the  standard  commit  processing  program,  STDCMT.  

Standard commit processing program

Note:   By  using  the  code  example,  you  agree  to the  terms  of the  “Code  license  and  disclaimer  

information”  on  page  108.
SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ...  ... 5 ...  ... 6 ...  ...  7 .. 

  

  1.00       FNFYOBJP  UF  E           K        DISK                       A 

  2.00       ICMTID        DS 

  3.00       I                                        1  10 UNQUSR  

  4.00       I                                       11  20 UNQPGM  

  5.00       I                                       21 220  BIGFLD  

  6.00       C           *ENTRY     PLIST  

  7.00       C                     PARM            RQSCOD   1 

  8.00       C                     PARM            RTNCOD   1 

  9.00       C                     PARM            CMTID  220  

 10.00       C            UNQUSR    CABEQ*BLANKS    BADEND          H1 Invalid  

 11.00       C            UNQPGM    CABEQ*BLANKS    BADEND          H2 Invalid  

 12.00       C* 

 13.00       C*  ’O’  for  Open  

 14.00       C* 

 15.00       C            RQSCOD    IFEQ  ’O’                          Open  

 16.00       C                     SETON                      98     End  LR  

 17.00       C                     GOTO  END  

 18.00       C                     END  

 19.00       C* 

 20.00       C*  ’C’  for  Close

 

Commitment  control 93



21.00       C* 

 22.00       C            RQSCOD    IFEQ  ’C’                          Close  

 23.00       C                     SETOF                      98 

 24.00       C                     GOTO  END  

 25.00       C                     END  

 26.00       C* 

 27.00       C*  ’R’  for  Read  - Get  last  record  for the  key  

 28.00       C* 

 29.00       C            RQSCOD    IFEQ  ’R’                         Read  

 30.00       C            KEY       KLIST  

 31.00       C                     KFLD            UNQUSR  

 32.00       C                     KFLD            UNQPGM  

 33.00       C            KEY       CHAINNFYOBJR               51    Not  found  

 34.00       C   51                MOVE  ’0’        RTNCOD  

 35.00       C   51                GOTO  END  

 36.00       C                     MOVE  ’1’        RTNCOD             Found  

 37.00       C            LOOPl     TAG  

 38.00       C            KEY       READENFYOBJR                   20 EOF  

 39.00       C   20                GOTO  END  

 40.00       C                     GOTO  LOOP1  

 41.00       C                     END  

 42.00       C* 

 43.00       C*  ’W’  FOR  Write  

 44.00       C* 

 45.00       C            RQSCOD    IFEQ  ’W’                          Write  

 46.00       C                     WRITENFYOBJR  

 47.00       C                     GOTO  END  

 48.00       C                     END  

 49.00       C* 

 50.00       C*  ’D’  for  Delete  - Delete  all  records  for  the  key  

 51.00       C* 

 52.00       C           RQSCOD     IFEQ  ’D’                          Delete  

 53.00       C           KEY        CHAINNFYOBJR               51    Not  found  

 54.00       C   51                MOVE  ’0’        RTNCOD  

 55.00       C   51                GOTO  END  

 56.00       C                     MOVE  ’1’        RTNCOD             Found  

 57.00       C           LOOP2      TAG  

 58.00       C                     DELETNFYOBJR  

 59.00       C           KEY        READENFYOBJR                   20 EOF  

 60.00       C  N20                 GOTO  LOOP2  

 61.00       C                     GOTO  END  

 62.00       C                     END  

 63.00       C* 

 64.00       C*  ’S’  for  Search  for  the  last  record  for  this  user  

 65.00       C*              (Ignore  the  -Program-  portion  of the key)  

 66.00       C* 

 67.00       C           RQSCOD     IFEQ  ’S’                         Search  

 68.00       C           UNQUSR     SETLLNFYOBJR                  20 If equal  

 69.00       C  N20                 MOVE  ’0’        RTNCOD  

 70.00       C  N20                 GOTO  END  

 71.00       C                     MOVE  ’1’        RTNCOD            Found  

 72.00       C           LOOP3      TAG  

 73.00       C           UNQUSR     READENFYOBJR                  20 EOF  

 74.00       C  N20                 GOTO  LOOP3  

 75.00       C                     GOTO  END  

 76.00       C                     END  

 77.00       C* 

 78.00       C*  Invalid  request  code  processing  

 79.00       C* 

 80.00       C                     SETON                      H2    Bad RQS  code  

 81.00       C                     GOTO  BADEND  

 82.00       C* 

 83.00       C*  End  of program  processing  

 84.00       C* 

 85.00       C           END        TAG

 

94 IBM Systems  - iSeries:  Database  Commitment  control



86.00       C  N98                 SETON                      LR 

 87.00       C                     RETRN  

 88.00       C* BADEND  tag  is used  then  fall  thru  to  RPG  cycle  error  return  

 89.00       C           BADEND     TAG  

   Related  concepts  

   “Example:  Use  a standard  processing  program  to decide  whether  to  restart  the  application”  

This  example  is  about  a sample  CL  code  for  using  a standard  processing  program  to decide  whether  

to  restart  an  application  after  an  abnormal  IPL.

Example: Use a standard processing program to decide whether to restart the 

application 

This  example  is  about  a sample  CL  code  for  using  a standard  processing  program  to  decide  whether  to  

restart  an  application  after  an  abnormal  IPL.  

The  initial  program  can  call  the  standard  commit  processing  program  to  determine  if it  is necessary  to  

start  again.  The  workstation  user  can  than  decide  whether  to start  again.  

The  initial  program  passes  a request  code  of S (search)  to the  standard  program,  which  searches  for  any  

record  for  the  user. If a record  exists,  the  information  for  starting  again  is passed  to the  initial  program  

and  the  information  is  displayed  to  the  workstation  user. 

The  commit  identification  in  the  notify  object  contains  information  that  the  initial  program  can  display  

identifying  what  program  needs  to  be  started  again.  For  example,  the  last  50  characters  of  the  commit  

identification  can  be  reserved  to  contain  this  information.  In  the  application  program,  this  information  

can  be  in  a compile  time  array  and  moved  to  the  data  structure  in  an  initialization  step.  Example:  Code  

for  a standard  commit  processing  program  shows  how  to include  this  in  the  application  program.  

The  following  example  shows  an  initial  program,  which  determines  if a record  exists  in  the  notify  object.  

Example: Initial program

Note:   By  using  the  code  example,  you  agree  to the  terms  of the  “Code  license  and  disclaimer  

information”  on  page  108.
SEQNBR  *...  ...  1 ...  ...  2 ...  ...  3 ...  ... 4 ...  ... 5 ...  ... 6 ...  ...  7 

  

  1.00             PGM  

  2.00             DCLF        CMTINLD  

  3.00             DCL         &RQSCOD  *CHAR  LEN(1)  VALUE(S)   /* Search  */ 

  4.00             DCL         &RTNCOD  *CHAR  LEN(1)  

  5.00             DCL         &CMTID  *CHAR  LEN(220)  

  6.00             DCL         &USER  *CHAR  LEN(10)  

  7.00             DCL         &INFO  *CHAR  LEN(50)  

  8.00             RTVJOBA     USER(&USER)  

  9.00             CHGVAR      &CMTID  (&USER  *CAT  XX)  

 10.00                        /* The  XX is required  to prevent  a blank  Pgm  nam  */ 

 11.00             CALL        STDCMT  PARM(&RQSCOD  &RTNCOD  &CMTID)  

 12.00             IF         (&RTNCOD  *EQ  ’1’)  DO /* RESTART  REQD  */ 

 13.00             CHGVAR      &INFO  %SST(&CMTID  171  50)  

 14.00             SNDRCVF     RCDFMT(RESTART)  

 15.00             ENDDO  

 16.00                        /*                                          */ 

 17.00                        /* Enter  normal  initial  program  statements   */ 

 18.00                        /*    or -TFRCTL-  to first  menu  program       */ 

 19.00                        /*                                           */ 

 20.00             ENDPGM  

   Related  concepts  

 

Commitment  control 95



“Example:  Code  for  a standard  commit  processing  program”  on  page  92  

The  standard  commit  (STDCMT)  processing  program  performs  the  functions  required  to  communicate  

with  a single  notify  object  used  by  all  applications.

Troubleshoot transactions and commitment control 

You can  read  this  information  when  you  need  to troubleshoot  commitment  control.  

Commitment control errors 

When  you  use  commitment  control,  it is  important  to  understand  which  conditions  cause  errors  and  

which  do  not.  

In  general,  errors  occur  when  commitment  control  functions  are  used  inconsistently,  such  as  running  an  

End  Commitment  Control  (ENDCMTCTL)  command  when  files  that  use  the  commitment  definition  are  

still  open.  

Errors during commit processing 

If a communications  or  system  failure  occurs  during  a commit  operation,  resynchronization  might  need  

to  be  performed  to  ensure  that  the  transaction  managers  keep  the  data  consistent  on  all  the  systems  

involved  in  the  transaction.  The  behavior  of the  resynchronization  and  how  it  affects  the  commit  

operation  depends  on  these  factors  : 

v   The  Wait  for  outcome  commitment  option.  

v   The  state  of the  transaction.

If  the  failure  is catastrophic  such  that  it  can  never  be  repaired,  or  it cannot  be  repaired  in  a timely  

manner,  the  system  operators  for  other  systems  involved  in  the  transaction  must  make  a heuristic  

decision.  The  heuristic  decision  commits  or  rolls  back  the  changes  made  on  that  system  during  the  

transaction.  If the  failure  is  repaired  after  such  a decision,  and  the  resynchronization  detects  that  the  

decision  caused  data  integrity  problems,  message  CPD83D9  or  CPD83E9  is sent  to the  QSYSOPR  message  

queue.  

   Related  concepts  

   “Commitment  definition  for  two-phase  commit:  Not  wait  for  outcome”  on  page  32  

When  a communication  or  system  failure  occurs  during  a commit  operation  so  that  resynchronization  

is required,  the  default  is to  wait  until  the  resynchronization  is finished  before  the  commit  operation  

completes.  

   “States  of the  transaction  for  two-phase  commitment  control”  on  page  27  

A commitment  definition  is  established  at each  location  that  is part  of  the  transaction  program  

network.  For  each  commitment  definition,  the  system  keeps  track  of the  state  of its  current  transaction  

and  previous  transaction.

Error conditions 

If an  error  occurs,  an  escape  message  that  you  can  monitor  for  in  a program  is sent.  

Here  are  some  typical  errors  related  to  commitment  control:  

v   Consecutive  STRCMTCTL  commands  are  run without  an  intervening  ENDCMTCTL  command.  

v   Files  are  opened  under  commitment  control,  but  no  STRCMTCTL  command  was  run. 

This  is  not  an  error  condition  for  programs  that  run within  an  activation  group  that  are  to  use  the  

job-level  commitment  definition.  The  job-level  commitment  definition  can  be  started  only  by  a single  

program,  but  when  started  by  a program,  the  job-level  commitment  definition  is used  by  any  program  

running  in  any  activation  group  that  is  not  using  an  activation-group-level  commitment  definition.  

 

96 IBM Systems  - iSeries:  Database  Commitment  control



Programs  that  run within  an  activation  group  that  are  to use  the  activation-group-level  commitment  

definition  must  first  start  the  activation-group-level  commitment  definition  with  the  STRCMTCTL  

command.  

v   Files  that  are  opened  for  output  under  commitment  control  are  not  journaled.  

v   The  first  open  operation  of  a shared  file  places  the  file  under  commitment  control,  but  subsequent  open  

operations  of  the  same  shared  file  do  not.  

v   The  first  open  operation  of  a shared  file  does  not  place  the  file  under  commitment  control,  but  

subsequent  open  operations  of  the  same  shared  file  do.  

v   The  record  lock  limit  for  the  job  is reached  in  a single  transaction.  

v   The  program  issues  a read  operation,  a commit  operation,  and  a change  to  the  same  record.  The  read  

operation  must  be  issued  again  after  the  commit  operation  because  the  commit  operation  has  freed  the  

lock  on  the  record.  

v   For  a one-phase  location,  resources  placed  under  commitment  control  do  not  reside  at the  same  

location  as  resources  already  under  commitment  control  for  the  commitment  definition.  

v   Uncommitted  changes  exist  when  an  ENDCMTCTL  command  is issued.  

This  is not  an  error  condition  for  the  ENDCMTCTL  command  if all  files  are  closed,  any  remote  

database  is disconnected,  and  no  API  commitment  resource  is still  associated  with  the  commitment  

definition  to  be  ended.  

v   A  commit,  rollback,  or  ENDCMTCTL  command  is run, and  a STRCMTCTL  command  was  not  run. 

This  is not  an  error  condition  for  programs  that  run within  an  activation  group  and  the  job-level  

commitment  definition  is active.  The  job-level  commitment  definition  can  be  started  only  by  a single  

program,  but  when  started  by  a program,  the  job-level  commitment  definition  is  used  by  any  program  

running  in  any  activation  group  that  is not  using  an  activation-group-level  commitment  definition.  

Programs  that  run within  an  activation  group  and  are  to  use  the  activation-group-level  commitment  

definition  must  first  start  the  activation-group-level  commitment  definition  with  the  STRCMTCTL  

command.  

v   An  ENDCMTCTL  command  is  run with  files  still  open  under  commitment  control  for  the  commitment  

definition.  

v   A  job  performing  a save  operation  has  one  or  more  commitment  definitions  that  are  not  at a 

commitment  boundary.  

v   A  save-while-active  operation  ended  because  other  jobs  with  committable  resources  did  not  reach  a 

commitment  boundary  in the  time  specified  for  the  SAVACTWAIT  parameter.  

v   A  save-while-active  process  was  not  able  to continue  because  of API  committable  resources  being  

added  to  more  than  one  commitment  definition  for  a single  job.  

v   More  than  1023  commitment  definitions  exist  for  a single  job.  

v   The  conversation  to  a remote  location  is lost  due  to a resource  failure.  This  might  cause  the  transaction  

to  be  rolled  back.  

v   A  one-phase  resource  that  is  opened  for  update  is present  at a node  that  did  not  initiate  the  commit  

operation.  You must  remove  either  the  resource  or  the  node  that  initiated  the  commit  request.  

v   A  commit  operation  is  requested  while  the  transaction  is in  rollback  required  (RBR)  state.  A  rollback  

operation  must  be  done.  

v   An  API  exit  program  issues  a commit  request  or  a rollback  request.  

v   A  trigger  program  issues  a commit  request  or  a rollback  request  for  the  commitment  definition  under  

which  the  trigger  program  was  called.  

The  trigger  program  can  start  a separate  commitment  definition  and  issue  a commit  or  rollback  request  

for  that  definition.  

Non-error conditions 

This  topic  lists  situations  that  appear  to  have  the  potential  to  cause  an  error  message.  However,  

commitment  control  allows  these  situations  in  which  no  error  occurs.  

 

Commitment  control 97



Here  are  some  situations  for  commitment  control  in  which  no  errors  occur:  

v   A commit  or  rollback  operation  is  run and  no  resources  are  under  commitment  control.  This  allows  

you  to  include  commit  or  rollback  operations  in  your  program  without  considering  whether  there  are  

resources  under  commitment  control.  It also  allows  you  to  specify  a commit  identification  before  

making  any  committable  changes.  

v   A commit  or  rollback  operation  is  run and  there  are  no  uncommitted  resource  changes.  This  allows  you  

to  include  commit  and  rollback  operations  within  your  program  without  considering  whether  there  are  

uncommitted  resource  changes.  

v   A file  under  commitment  control  is  closed  and  uncommitted  records  exist.  This  situation  allows  

another  program  to  be  called  to  perform  the  commit  or  rollback  operation.  This  occurs  regardless  of  

whether  the  file  is  shared.  This  function  allows  a subprogram  to  make  database  changes  that  are  part  

of  a transaction  involving  multiple  programs.  

v   A job  ends,  either  normally  or  abnormally,  with  uncommitted  changes  for  one  or  more  commitment  

definitions.  The  changes  for  all  commitment  definitions  are  rolled  back.  

v   An  activation  group  ends  with  pending  changes  for  the  activation-group-level  commitment  definition.  

If the  activation  group  is ending  normally  and  there  are  no  errors  encountered  when  closing  any  files  

opened  under  commitment  control  scoped  to  the  same  activation  group  that  is ending,  an  implicit  

commit  is performed  by  the  system.  Otherwise,  an  implicit  rollback  is performed.  

v   A program  accesses  a changed  record  again  that  has  not  been  committed.  This  allows  a program  to: 

–   Add  a record  and  update  it before  specifying  the  commit  operation.  

–   Update  the  same  record  twice  before  specifying  the  commit  operation.  

–   Add  a record  and  delete  it before  specifying  the  commit  operation.  

–   Access  an  uncommitted  record  again  by  a different  logical  file  (under  commitment  control).
v    You specify  LCKLVL(*CHG  or  *CS)  on  the  STRCMTCTL  command  and  open  a file  with  a commit  

operation  for  read-only.  In  this  case,  no  locks  occur  on  the  request.  It  is treated  as  if commitment  

control  is not  in effect,  but  the  file  does  appear  on  the  WRKJOB  menu  option  of  files  under  

commitment  control.  

v   You issue  the  STRCMTCTL  command  and  do  not  open  any  files  under  commitment  control.  In  this  

situation,  any  record-level  changes  made  to  the  files  are  not  made  under  commitment  control.

Error messages to monitor for during commitment control 

Several  different  error  messages  can  be  returned  by  the  commit  or  rollback  operations  or  sent  to  the  job  

log,  depending  on  the  type  of  message  and  when  the  error  occurred.  

The  error  messages  can  occur  during  the  following  processing:  

v   Normal  commit  or  rollback  processing  

v   Commit  or  rollback  processing  during  job  process  end  

v   Commit  or  rollback  processing  during  activation  group  end  

You cannot  monitor  for  any  of the  following  messages  during  activation  group  end  or  job  process  end.  

Also,  you  can  only  monitor  for  CPFxxxx  messages.  CPDxxxx  messages  are  always  sent  as diagnostic  

messages,  which  cannot  be  monitored.  Any  errors  encountered  when  ending  an  activation-group-level  

commitment  definition  during  activation  group  end  or  ending  any  commitment  definition  during  job  end  

are  left  in  the  job  log  as  diagnostic  messages.  

Error  messages  related  to  commitment  control  to look  for  are  as  follows:  

CPD8351  

Changes  might  not  have  been  committed.  

CPD8352  

Changes  not  committed  at remote  location  &3.  

 

98 IBM Systems  - iSeries:  Database  Commitment  control



CPD8353  

Changes  to  relational  database  &1  might  not  have  been  committed.  

CPD8354  

Changes  to  DDM  file  &1  might  not  have  been  committed.  

CPD8355  

Changes  to  DDL  object  &1  might  not  have  been  committed.  

CPD8356  

Rolled  back  changes  might  have  been  committed.  

CPD8358  

Changes  to  relational  database  &1  might  not  have  been  rolled  back.  

CPD8359  

Changes  to  DDM  file  &1  might  not  have  been  rolled  back.  

CPD835A  

Changes  to  DDL  object  &3  might  not  have  been  rolled  back.  

CPD835C  

Notify  object  &1  in  &2  not  updated.  

CPD835D  

DRDA  resource  does  not  allow  SQL  cursor  hold.  

CPF835F  

Commit  or  rollback  operation  failed.  

CPD8360  

Members  or  files  or  both  were  already  deallocated.  

CPD8361  

API  exit  program  &1  failed  during  commit.  

CPD8362  

API  exit  program  &1  failed  during  roll  back.  

CPD8363  

API  exit  program  &1  ended  after  &4  minutes  during  commit.  

CPD8364  

API  exit  program  &1  ended  after  &4  minutes  during  rollback.  

CPD836F  

Protocol  error  occurred  during  commitment  control  operation.  

CPD83D1  

API  resource  &4  cannot  be  last  agent.  

CPD83D2  

Resource  not  compatible  with  commitment  control.  

CPD83D7  

Commit  operation  changed  to  rollback.  

CPD83D9  

A heuristic  mixed  condition  occurred.  

CPF83DB  

Commit  operation  resulted  in  rollback.  

CPD83DC  

Action  If  Problems  Used  to  determine  commit  or  rollback  operation;  reason  &2.  

 

Commitment  control 99



CPD83DD  

Conversation  ended;  reason  &1.  

CPD83DE  

Return  information  not  valid.  

CPD83EC  

API  exit  program  &1  voted  rollback.  

CPD83EF  

Rollback  operation  started  for  next  logical  unit  of work.  

CPF8350  

Commitment  definition  not  found.  

CPF8355  

ENDCMTCTL  not  allowed.  Pending  changes  active.  

CPF8356  

Commitment  control  ended  with  &1  local  changes  not  committed.  

CPF8358  

Notify  object  &1  in  &2  not  updated.  

CPF8359  

Rollback  operation  failed.  

CPF835A  

End  of  commitment  definition  &1  canceled.  

CPF835B  

Errors  occurred  while  ending  commitment  control.  

CPF835C  

Commitment  control  ended  with  remote  changes  not  committed.  

CPF8363  

Commit  operation  failed.  

CPF8364  

Commitment  control  parameter  value  is not  valid.  Reason  code  &3.  

CPF8367  

Cannot  perform  commitment  control  operation.  

CPF8369  

Cannot  place  API  commitment  resource  under  commitment  control;  reason  code  &1.  

CPF83D0  

Commitment  operation  not  allowed.  

CPF83D2  

Commit  complete  ==  Resynchronization  in progress  has  been  returned.  

CPF83D3  

Commit  complete  ==  Heuristic  Mixed  has  been  returned.  

CPF83D4  

Logical  unit  of  work  journal  entry  not  sent.  

CPF83E1  

Commit  operation  failed  due  to  constraint  violation.  

CPF83E2  

Rollback  operation  required.  

 

100 IBM Systems  - iSeries:  Database  Commitment  control



CPF83E3  

Requested  nesting  level  is  not  active.  

CPF83E4  

Commitment  control  ended  with  resources  not  committed.  

CPF83E6  

Commitment  control  operation  completed  with  resynchronization  in  progress.  

CPF83E7  

Commit  or  rollback  of  X/Open  global  transaction  not  allowed.

Monitor for errors after a CALL command 

When  a program  that  uses  commitment  control  is called,  monitor  for  unexpected  errors  and  perform  a 

rollback  operation  if an  error  occurs.  

For  example,  uncommitted  records  can  exist  when  a program  encounters  an  unexpected  error  such  as  an  

RPG  divide-by-zero  error. 

Depending  on  the  status  of  the  inquiry  message  reply  (INQMSGRPY)  parameter  for  a job,  the  program  

sends  an  inquiry  message  or  performs  a default  action.  If  the  operator  response  or  the  default  action  ends  

the  program,  uncommitted  records  still  exist  waiting  for  a commit  or  rollback  operation.  

If another  program  is called  and  causes  a commit  operation,  the  partially  completed  transaction  from  the  

previous  program  is committed.  

To prevent  partially  completed  transactions  from  being  committed,  monitor  for  escape  messages  after  the  

CALL  command.  For  example,  if it is  an  RPG  program,  use  the  following  coding:  

CALL  RPGA  

MONMSG  MSGID(RPG9001)  

EXEC(ROLLBACK)  /*Rollback  if pgm  is canceled*/  

If it  is a COBOL  program:  

CALL  COBOLA  

MONMSG  MSGID(CBE9001)  

EXEC(ROLLBACK)  /*Rollback  if pgm  is canceled*/  

Failure of normal commit or rollback processing 

Errors  might  occur  at  any  time  during  commit  or  rollback  processing.  

The  following  table  divides  this  processing  into  four  situations.  The  middle  column  describes  the  actions  

taken  by  the  system  when  it encounters  errors  during  each  situation.  The  third  column  suggests  what  

you  or  your  application  must  do  in  response  to the  messages.  These  suggestions  are  consistent  with  the  

way  commitment  control  processing  is handled  by  the  system.  

 Situation  Commit  or rollback  processing  Suggested  action  

Record-level  I/O  commit  fails  v   If the  error  occurs  during  the  

prepare  wave,  the  transaction  is 

rolled  back  and  message  CPF83DB  

is sent.  

v   If the  error  occurs  during  the  

committed  wave,  commit  

processing  continues  to commit  as 

many  remaining  resources  as 

possible.  Message  CPF8363  is sent  

at the  end  of commit  processing.  

Monitor  for messages;  handle  as  you  

want  

 

Commitment  control 101



Situation  Commit  or rollback  processing  Suggested  action  

Object-level  or commit  and  rollback  

exit  program  for API  commitment  

resource  fails  during  commit  

v   If the  error  occurs  during  the  

prepare  wave,  the  transaction  is 

rolled  back  and  message  CPF83DB  

is sent.  

v   If the  error  occurs  during  the  

committed  wave,  processing  

continues  to commit  or roll  back  as 

many  remaining  resources  as 

possible.  One  of the following  

messages  is returned,  depending  

on  the  commitment  resource  type:  

–   CPD8353  

–   CPD8354  

–   CPD8355  

–   CPD8361  

Message  CPF8363  is sent  at the  

end  of commit  processing.  

Monitor  for  messages;  handle  as you  

want  

Record-level  I/O  rollback  fails  1.   Returns  CPD8356  

2.   Attempt  to continue  processing  to  

rollback  object-level  or API  

commitment  resources  

3.   Returns  CPF8359  at end  of 

processing  

Monitor  for  messages;  handle  as you  

want  

Object-level  or commit  and  rollback  

exit  program  for API  commitment  

resources  fails  during  rollback  

1.   Returns  one  of the  following  

messages  depending  on the 

commitment  resource  type:  

v   CPD8358  

v   CPD8359  

v   CPD835A  

v   CPD8362

2.   Continues  processing  

3.   Returns  CPF8359  at end  of 

processing  

Monitor  for  messages;  handle  as you  

want

  

Commit or rollback processing during job end 

All  of  the  situations  described  in  the  previous  table  also  apply  when  a job  is ending  except  that  one  of  

the  following  messages  is  sent:  

v   CPF8356  if only  local  resources  are  registered  

v   CPF835C  if only  remote  resources  are  registered  

v   CPF83E4  if both  local  and  remote  resources  are  registered

In  addition,  one  of  two  messages  might  appear  specific  to job  completion  if a commit  and  rollback  exit  

program  for  an  API  committable  resource  has  been  called.  If the  commit  and  rollback  exit  program  does  

not  complete  within  5 minutes,  the  program  is canceled;  a diagnostic  message  CPD8363  (for  commit)  or  

CPD8364  (for  rollback)  is  sent;  and  the  remainder  of  the  commit  or  rollback  processing  continues.  

 

102 IBM Systems  - iSeries:  Database  Commitment  control



Commit or rollback processing during IPL 

All  of the  situations  described  in  the  previous  table  also  apply  during  IPL  recovery  for  commitment  

definitions  except  that  message  CPF835F  is sent  instead  of  message  CPF8359  or  CPF8363.  Messages  that  

get  sent  for  a particular  commitment  definition  might  appear  in the  job  log  for  one  of  the  QDBSRVxx  jobs  

or  the  QHST  log.  In  the  QHST  log,  message  CPI8356  indicates  the  beginning  of IPL  recovery  for  a 

particular  commitment  definition.  Message  CPC8351  indicates  the  end  of  IPL  recovery  for  a particular  

commitment  definition  and  any  other  messages  regarding  the  recovery  of  that  commitment  definition  is 

found  between  those  two  messages.  

One  of  two  messages  might  appear  specific  to a commitment  definition  if a commit  and  rollback  exit  

program  for  an  API  committable  resource  has  been  called.  If the  commit  and  rollback  exit  program  does  

not  complete  within  5 minutes,  the  program  is canceled;  a diagnostic  message  CPD8363  (for  commit)  or 

CPD8364  (for  rollback)  is sent;  and  the  remainder  of the  commit  or  rollback  processing  continues.  

Detect deadlocks 

Find  deadlock  conditions  by  using  these  instructions.  

A  deadlock  condition  can  occur  when  a job  holds  a lock  on  an  object,  object  A,  and  is waiting  to obtain  a 

lock  on  another  object,  object  B.  At  the  same  time,  another  job  or  transaction  currently  holds  a lock  on  

object  B  and  is  waiting  to  obtain  a lock  on  object  A.  

Do  the  following  steps  to  find  out  if a deadlock  condition  has  occurred  and  fix  it if it  has:  

1.   Locate  the  suspended  job  in the  list  of  active  jobs.  

2.   Look  at  the  objects  the  job  is  waiting  to lock.  

3.   For  all  the  objects  the  job  is waiting  to  lock,  look  at  the  list  of lock  holders  (transactions  or  jobs)  and  

try  to  find  a conflicting  lock  corresponding  to  the  level  requested  by  the  suspended  job.  

4.   If a transaction  is  holding  a conflicting  lock,  display  the  jobs  associated  with  this  transaction  and  see  

if one  of  them  is  waiting  to  lock.  

5.   Determine  if this  waiting  job  is trying  to  lock  one  of the  objects  locked  by  the  initial  suspended  job.  

When  you  find  the  job  that  is  trying  to  lock  on  of the  objects  locked  by  the  initial  suspended  job,  you  

can  identify  the  objects  in  question  as  the  trouble  spots.  

6.   Investigate  the  transaction  in  order  to  determine  the  appropriate  course  of  action.  

a.   Look  at  the  transaction  properties  to  find  out  what  application  initiated  it and  then  look  at the  

application  code.  

b.   Or  trace  the  transaction’s  actions  up  to this  point  by  finding  the  Commit  cycle  ID  in  the  

transaction  properties  and  then  searching  in a journal  for  entries  containing  this  ID.  To do  this,  

you  can  use  the  Retrieve  Journal  Entry  (RTVJRNE)  command  and  specify  the  CMTCYCID  

parameter.  

c.   After  obtaining  relevant  information,  you  can  choose  to force  a rollback  or  commit  operation.  

   Related  tasks  

   “Minimize  locks”  on  page  65  

A typical  way  to  minimize  record  locks  is to  release  the  record  lock.  (This  technique  does  not  work  if 

LCKLVL(*ALL)  has  been  specified.)  

   Determine  the  status  of a job  

   “Display  locked  objects  for  a transaction”  on  page  62  

   “Display  jobs  associated  with  a transaction”  on  page  62  

   “Display  commitment  control  information”  on  page  61
You  can  use  iSeries  Navigator  to  display  information  about  all  transactions  (logical  units  of work)  on  

the  system.  You can  also  look  at  information  about  the  job,  if any,  associated  with  a transaction.  

 

Commitment  control 103



“When  to  force  commits  and  rollbacks  and  when  to  cancel  resynchronization”  

You can  find  when  and  how  to  force  a rollback  or  commit,  and  when  to cancel  resynchronization  in 

this  topic.
   Related  reference  

   Retrieve  Journal  Entry  (RTVJRNE)  command

Recover transactions after communications failure 

You can  use  instructions  in  this  topic  to  handle  transactions  performing  work  on  a remote  system  after  

the  communication  with  that  system  fails.  

In  case  of a communications  failure,  the  system  typically  completes  the  resynchronization  with  any  

remote  system  automatically.  However,  if the  failure  is catastrophic  such  that  the  communications  will  

never  be  reestablished  to  the  remote  system  (if,  for  instance,  the  communication  line  is cut),  you  must  

cancel  resynchronization  and  restore  transactions  yourself.  The  transactions  also  might  be  holding  locks  

that  need  to  be  released.  

1.   In  iSeries  Navigator,  display  commitment  control  information  for  the  transaction  with  which  you  are  

working.  

2.   Find  the  transaction  of  interest  that  is trying  to  resynchronize  with  the  remote  system.  The  

Resynchronization  in  Progress  field  for  that  transaction  is set  to yes. 

3.   Look  for  transactions  that  had  a connection  to  the  remote  system  by  checking  the  resource  Status  for  

individual  transactions.  

4.   After  identifying  transactions,  you  must  force  commit  or  force  rollback  depending  on  the  state  of  the  

transaction.  

5.   You can  make  the  decision  to  commit  or  rollback  after  you  investigate  the  transaction  properties.  

v   You can  use  the  Unit  of  Work ID  to  find  other  parts  of the  transaction  on  other  systems.  

v   You can  also  determine  to  commit  or  rollback  from  the  state  of  transaction.  For  example,  if a 

database  transaction  is performing  two-phase  commit  during  communication  failure  and  its  state  

after  the  failure  is  ″prepared″ or  ″last  agent  pending″,  you  might  choose  to  force  commit  on  the  

transaction.
6.   After  forcing  a commit  or  rollback  on  the  transactions  in  doubt,  stop  resynchronization  on  the  failed  

connection  for  the  identified  transactions.  

   Related  tasks  

   “Display  commitment  control  information”  on  page  61
You  can  use  iSeries  Navigator  to  display  information  about  all  transactions  (logical  units  of  work)  on  

the  system.  You can  also  look  at  information  about  the  job,  if any,  associated  with  a transaction.  

   “When  to  force  commits  and  rollbacks  and  when  to  cancel  resynchronization”  

You can  find  when  and  how  to  force  a rollback  or  commit,  and  when  to cancel  resynchronization  in 

this  topic.

When to force commits and rollbacks and when to cancel 

resynchronization 

You can  find  when  and  how  to  force  a rollback  or  commit,  and  when  to  cancel  resynchronization  in  this  

topic.  

The  decision  to  force  a commit,  roll  back,  or  cancel  resynchronization  is called  a heuristic  decision. A 

heuristic  decision  is  the  action  that  you  take  when  you  force  the  system  to commit  or to  roll  back  a 

transaction.  When  you  make  a heuristic  decision,  the  state  of the  transaction  becomes  heuristic  mixed  if 

your  decision  is inconsistent  with  the  results  of the  other  locations  in  the  transaction.  You must  take  

responsibility  for  determining  the  action  taken  by  all  the  other  locations  that  participated  in  the  

transaction  and  resynchronizing  the  database  records.  

 

104 IBM Systems  - iSeries:  Database  Commitment  control



Before  you  make  a heuristic  decision,  gather  as much  information  as  you  can  about  the  transaction.  

Display  the  jobs  that  are  associated  with  the  commitment  definition  and  make  a record  of what  journals  

and  files  are  involved.  You can  use  this  information  later  if you  need  to display  journal  entries  and  apply  

or  remove  journaled  changes  manually.  

The  best  place  to  find  out  information  about  a transaction  is to  look  at the  location  that  was  the  initiator  

for  that  transaction.  However,  the  decision  to  commit  or  roll  back  might  be  owned  by  an  API  resource  or  

by  a last  agent.  

If an  API  resource  was  registered  as  a last  agent  resource,  the  final  decision  of  whether  to  commit  or  roll  

back  is owned  by  the  API  resource.  You need  to  look  at information  about  the  application  and  how  it 

uses  the  API  resource  to  determine  whether  to  commit  or  to  roll  back.  

If the  transaction  has  a last  agent  selected,  the  last  agent  owns  the  decision  to  commit  or  roll  back.  Look  

at  the  status  of  the  last  agent  for  information  about  the  transaction.  

When  you  must  make  heuristic  decisions  or  cancel  resynchronization  due  to  a system  or  communications  

failure  that  cannot  be  repaired,  you  can  find  all  transactions  in  doubt  by  using  the  following  steps:  

1.   In  iSeries  Navigator,  expand  the  system  you  want  to work  with.  

2.   Expand  Databases  and  the  local  database  for  the  system.  

3.   Expand  Transactions.  

4.   Expand  Database  Transactions  or  Global  Transactions. 

In  this  display  windows,  you  can  see  the  commitment  definition,  resynchronization  status,  the  current  

unit  of  work  ID,  and  the  current  unit  of  work  state  for  each  transaction.  Look  for  transactions  with  the  

following  information:  

v   Transactions  with  a Logical  Unit  of  Work State  of  Prepared  or  Last  Agent  Pending.  

v   Transactions  that  show  Resynchronization  in  Progress  status  of  yes.

To  work  with  the  job  that  is participating  in  the  transaction  on  this  system  right-click  the  transaction  and  

select  job. 

When  you  right-click  the  transaction,  you  can  also  select  Force  Commit,  Force  Rollback, or  Cancel  

Resynchronization.  

Before  making  a heuristic  decision  or  canceling  resynchronization,  you  might  want  to check  the  status  of  

the  jobs  on  other  systems  associated  with  the  transaction.  Checking  the  jobs  on  remote  systems  might  

help  you  avoid  decisions  that  cause  database  inconsistencies  between  systems.  

1.   Right-click  the  transaction  you  want  to  work  with.  

2.   Select  Resource  Status. 

3.   In  the  Resource  Status  dialog,  select  the  Conversation  tab  for  SNA  connections;  select  Connection  for  

TCP/IP  connections.

Each  conversation  resource  represents  a remote  system  that  is participating  in  the  transaction.  On  the  

remote  systems,  you  can  use  iSeries  Navigator  to see  the  transactions  associated  with  the  transaction.  

The  base  portion  of  the  unit  of work  ID  is the  same  on  all  the  systems.  When  you  display  commitment  

control  information  on  the  remote  system,  look  for  the  base  portion  of  the  unit  of  work  ID  that  is  the  

same  on  the  local  system.  

For  example,  if the  unit  of work  ID  on  the  local  system  starts  with:  APPN.RCHASL97.X’112233445566, look  

for  the  unit  of  work  ID  on  the  remote  system  that  also  starts  with  APPN.RCHASL97.X’112233445566. 

   Related  concepts  

 

Commitment  control 105



“XA  transaction  support  for  commitment  control”  on  page  41
DB2  Universal  Database  (UDB)  for  iSeries  can  participate  in  X/Open  global  transactions.  

   “Start  commitment  control”  on  page  46  

To start  commitment  control,  use  the  Start  Commitment  Control  (STRCMTCTL)  Command.
   Related  tasks  

   “Detect  deadlocks”  on  page  103  

Find  deadlock  conditions  by  using  these  instructions.  

   “Recover  transactions  after  communications  failure”  on  page  104  

You can  use  instructions  in  this  topic  to  handle  transactions  performing  work  on  a remote  system  after  

the  communication  with  that  system  fails.  

   “Display  commitment  control  information”  on  page  61
You  can  use  iSeries  Navigator  to  display  information  about  all  transactions  (logical  units  of  work)  on  

the  system.  You can  also  look  at  information  about  the  job,  if any,  associated  with  a transaction.

End a long-running rollback 

You can  find  how  to  end  long-running  rollbacks  that  consume  critical  processor  time,  lock  resources,  or  

take  up  storage  space  in  this  topic.  

A rollback  operation  removes  all  changes  made  within  a transaction  since  the  previous  commit  operation  

or  rollback  operation.  During  a rollback  operation,  the  system  also  releases  locks  related  to  the  

transaction.  If the  system  contains  thousands  of transactions,  the  system  can  take  hours  to  complete  a 

rollback  operation.  These  long-running  rollbacks  can  consume  critical  processor  time,  lock  resources  or  

take  up  storage  space.  

Before  you  end  a long-running  rollback,  you  need  to  know  which  commitment  definitions  are  being  

rolled  back  and  what  state  the  commitment  definitions  are  in.  The  State  field  for  commitment  definitions  

that  are  rolling  back  is  set  to  ROLLBACK  IN  PROGRESS.  

Use  the  Work with  Commitment  Definitions  (WRKCMTDFN)  command  to  check  the  status  of a rollback  

by  following  these  steps:  

1.   Type WRKCMTDFN  JOB(*ALL)  from  the  character-based  interface.  

2.   Type F11 to  display  the  State  field.  

If you  end  a long-running  rollback,  files  that  were  changed  during  the  transaction  will  be  left  with  partial  

transactions.  You must  not  end  a rollback  if your  files  cannot  have  partial  transactions.  To see  which  files  

were  changed  during  the  transaction,  choose  option  5 to  display  status  from  the  WRKCMTDFN  list.  Press  

F6  to  display  resource  status  and  select  Record  Level.  

You must  have  All  Object  (*ALLOBJ)  special  authority  to  end  a long-running  rollback.  To end  a 

long-running  rollback,  follow  these  steps:  

1.   Type WRKCMTDFN  JOB(*ALL)  from  the  character-based  interface.  

2.   Type option  20  (End  rollback)  on  the  commitment  definition  you  want  to  end.  

Files  with  partial  transactions  have  the  Partial  Transactions  Exist,  Rollback  Ended  field  set  to *YES  in  the  

output  from  the  Display  File  Description  (DSPFD)  command.  You must  remove  partial  transactions  before  

the  file  can  be  used.  You can  remove  partial  transactions  by  deleting  the  file  and  restoring  the  file  from  a 

prior  save.  If you  do  not  have  a prior  save,  you  can  use  the  Change  Journaled  Object  (CHGJRNOBJ)  

command  to  reset  the  Partial  Transaction  Exists  state  so  that  you  can  open  the  file.  Using  the  

CHGJRNOBJ  requires  you  to  edit  the  file  to  bring  the  file  to  a consistent  state.  You must  use  the  

CHGJRNOBJ  command  only  if no  prior  save  is available.  

 

106 IBM Systems  - iSeries:  Database  Commitment  control



Disable the ability to end a long-running rollback 

Users  with  *ALLOBJ  special  authority  can  end  rollbacks  by  default.  If you  want  to  restrict  users  who  

have  *ALLOBJ  special  authority  from  ending  rollbacks,  you  can  do  this  by  creating  data  area  

QGPL/QTNNOENDRB.  

   Related  reference  

   Create  Data  Area  (CRTDTAARA)  command

Related information for commitment control 

Listed  here  are  the  product  manuals  and  IBM  Redbooks  (in  PDF  format),  Web sites,  and  information  

center  topics  that  relate  to  the  commitment  control  topic.  You can  view  or  print  any  of  the  PDFs.  

Manuals 

v   See  the  COBOL/400  User’s  Guide  

   

(5939  KB)  on  the  V5R1  Supplemental  Manuals  Web site.  

v   See  the  RPG/400  User’s  Guide  

   

(2048  KB)  on  the  V5R1  Supplemental  Manuals  Web site.

IBM Redbooks 

v   Connecting  WebSphere® to  DB2  UDB  Server  

   

(5 MB)  

v   Advanced  Functions  and  Administration  on  DB2  Universal  Database  for  iSeries  

   

(5529  KB)  

v   Stored  Procedures  and  Triggers  on  DB2  Universal  Database  for  iSeries  

   

(5836  KB)  

v   Striving  for  Optimal  Journal  Performance  on  DB2  Universal  Database  for  iSeries  

   

(3174  KB)

Web sites 

v   The  Open  Group  (www.opengroup.org)  

  

Other information 

v   Database  programming  

v   SQL  programming  

v   XA  APIs  

v   Journal  management

Saving PDF files 

To save  a PDF  on  your  workstation  for  viewing  or  printing:  

1.   Right-click  the  PDF  in  your  browser  (right-click  the  link  above).  

2.   Click  the  option  that  saves  the  PDF  locally.  

3.   Navigate  to  the  directory  in  which  you  would  like  to save  the  PDF. 

4.   Click  Save.

Downloading Adobe Acrobat Reader 

You need  Adobe  Reader  installed  on  your  system  to view  or  print  these  PDFs.  You can  download  a free  

copy  from  the  Adobe  Web site  (www.adobe.com/products/acrobat/readstep.html)
  

. 

 

Commitment  control 107

|

|

|

http://www.redbooks.ibm.com/abstracts/sg246219.html
http://www.redbooks.ibm.com/abstracts/sg244249.html
http://www.redbooks.ibm.com/abstracts/sg246503.html
http://www.redbooks.ibm.com/abstracts/sg246286.html
http://www.opengroup.org
http://www.adobe.com/products/acrobat/readstep.html


Code license and disclaimer information 

IBM  grants  you  a nonexclusive  copyright  license  to  use  all  programming  code  examples  from  which  you  

can  generate  similar  function  tailored  to  your  own  specific  needs.  

SUBJECT  TO  ANY  STATUTORY  WARRANTIES  WHICH  CANNOT  BE  EXCLUDED,  IBM,  ITS  

PROGRAM  DEVELOPERS  AND  SUPPLIERS  MAKE  NO  WARRANTIES  OR  CONDITIONS  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OR  

CONDITIONS  OF  MERCHANTABILITY,  FITNESS  FOR  A  PARTICULAR  PURPOSE,  AND  

NON-INFRINGEMENT,  REGARDING  THE  PROGRAM  OR  TECHNICAL  SUPPORT,  IF  ANY.  

UNDER  NO  CIRCUMSTANCES  IS  IBM,  ITS  PROGRAM  DEVELOPERS  OR  SUPPLIERS  LIABLE  FOR  

ANY  OF  THE  FOLLOWING,  EVEN  IF  INFORMED  OF  THEIR  POSSIBILITY:  

1.   LOSS  OF, OR  DAMAGE  TO,  DATA; 

2.   DIRECT,  SPECIAL,  INCIDENTAL,  OR  INDIRECT  DAMAGES,  OR  FOR  ANY  ECONOMIC  

CONSEQUENTIAL  DAMAGES;  OR  

3.   LOST  PROFITS,  BUSINESS,  REVENUE,  GOODWILL,  OR  ANTICIPATED  SAVINGS.  

SOME  JURISDICTIONS  DO  NOT  ALLOW  THE  EXCLUSION  OR  LIMITATION  OF  DIRECT,  

INCIDENTAL,  OR  CONSEQUENTIAL  DAMAGES,  SO  SOME  OR  ALL  OF  THE  ABOVE  LIMITATIONS  

OR  EXCLUSIONS  MAY  NOT  APPLY  TO  YOU.  

 

108 IBM Systems  - iSeries:  Database  Commitment  control

|
|
|
|
|

|
|

|

|
|

|

|
|
|



Appendix.  Notices  

This  information  was  developed  for  products  and  services  offered  in  the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in  other  countries.  

Consult  your  local  IBM  representative  for  information  on  the  products  and  services  currently  available  in 

your  area.  Any  reference  to  an  IBM  product,  program,  or  service  is not  intended  to  state  or  imply  that  

only  that  IBM  product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  program,  

or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  be  used  instead.  However,  it is 

the  user’s  responsibility  to  evaluate  and  verify  the  operation  of any  non-IBM  product,  program,  or  

service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  described  in this  

document.  The  furnishing  of  this  document  does  not  grant  you  any  license  to these  patents.  You can  send  

license  inquiries,  in  writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  Intellectual  Property  

Department  in  your  country  or  send  inquiries,  in  writing,  to:

IBM  World  Trade  Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  country  where  such  

provisions  are  inconsistent  with  local  law:  INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  

PROVIDES  THIS  PUBLICATION  “AS  IS”  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  EXPRESS  

OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  

NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  FOR  A PARTICULAR  PURPOSE.  Some  

states  do  not  allow  disclaimer  of  express  or  implied  warranties  in  certain  transactions,  therefore,  this  

statement  may  not  apply  to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  Changes  are  periodically  

made  to  the  information  herein;  these  changes  will  be  incorporated  in new  editions  of the  publication.  

IBM  may  make  improvements  and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  convenience  only  and  do  not  in  

any  manner  serve  as  an  endorsement  of those  Web sites.  The  materials  at those  Web sites  are  not  part  of  

the  materials  for  this  IBM  product  and  use  of  those  Web sites  is at  your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in  any  way  it believes  appropriate  without  

incurring  any  obligation  to  you.  

Licensees  of this  program  who  wish  to  have  information  about  it for  the  purpose  of enabling:  (i)  the  

exchange  of information  between  independently  created  programs  and  other  programs  (including  this  

one)  and  (ii)  the  mutual  use  of  the  information  which  has  been  exchanged,  should  contact:

IBM  Corporation

 

© Copyright  IBM Corp. 2003, 2006 109



Software  Interoperability  Coordinator,  Department  YBWA  

3605  Highway  52  N  

Rochester,  MN  55901  

U.S.A.

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  including  in  some  cases,  

payment  of  a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  available  for  it are  provided  

by  IBM  under  terms  of  the  IBM  Customer  Agreement,  IBM  International  Program  License  Agreement,  

IBM  License  Agreement  for  Machine  Code,  or  any  equivalent  agreement  between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  environment.  Therefore,  the  

results  obtained  in  other  operating  environments  may  vary  significantly.  Some  measurements  may  have  

been  made  on  development-level  systems  and  there  is no  guarantee  that  these  measurements  will  be  the  

same  on  generally  available  systems.  Furthermore,  some  measurements  may  have  been  estimated  through  

extrapolation.  Actual  results  may  vary.  Users  of  this  document  should  verify  the  applicable  data  for  their  

specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of those  products,  their  

published  announcements  or  other  publicly  available  sources.  IBM  has  not  tested  those  products  and  

cannot  confirm  the  accuracy  of  performance,  compatibility  or  any  other  claims  related  to non-IBM  

products.  Questions  on  the  capabilities  of non-IBM  products  should  be  addressed  to  the  suppliers  of  

those  products.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to  change  or  withdrawal  without  

notice,  and  represent  goals  and  objectives  only.  

This  information  contains  examples  of  data  and  reports  used  in  daily  business  operations.  To illustrate  

them  as  completely  as  possible,  the  examples  include  the  names  of  individuals,  companies,  brands,  and  

products.  All  of  these  names  are  fictitious  and  any  similarity  to  the  names  and  addresses  used  by  an  

actual  business  enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  illustrate  programming  

techniques  on  various  operating  platforms.  You may  copy,  modify,  and  distribute  these  sample  programs  

in  any  form  without  payment  to  IBM,  for  the  purposes  of developing,  using,  marketing  or  distributing  

application  programs  conforming  to  the  application  programming  interface  for  the  operating  platform  for  

which  the  sample  programs  are  written.  These  examples  have  not  been  thoroughly  tested  under  all  

conditions.  IBM,  therefore,  cannot  guarantee  or  imply  reliability,  serviceability,  or  function  of these  

programs.  

Each  copy  or  any  portion  of  these  sample  programs  or  any  derivative  work,  must  include  a copyright  

notice  as  follows:  

© (your  company  name)  (year).  Portions  of  this  code  are  derived  from  IBM  Corp.  Sample  Programs.  © 

Copyright  IBM  Corp.  _enter  the  year  or  years_.  All  rights  reserved.  

If you  are  viewing  this  information  softcopy,  the  photographs  and  color  illustrations  may  not  appear.  

Programming Interface Information 

This  Commitment  control  publication  documents  intended  Programming  Interfaces  that  allow  the  

customer  to  write  programs  to  obtain  the  services  of IBM  i5/OS.  

 

110  IBM Systems  - iSeries:  Database  Commitment  control

|
|
|



Trademarks  

The  following  terms  are  trademarks  of  International  Business  Machines  Corporation  in the  United  States,  

other  countries,  or  both:

 C/400  

 COBOL/400  

 DB2  

 DB2  Universal  Database  

 Distributed  Relational  Database  Architecture  

 DRDA  

 i5/OS  

 IBM  

 IBM  (logo)  

 Integrated  Language  Environment  

 iSeries  

 Redbooks  

 RPG/400  

 WebSphere  

UNIX  is a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  countries.  

Other  company,  product,  or  service  names  may  be  trademarks  or  service  marks  of  others.  

Terms  and conditions 

Permissions  for  the  use  of  these  publications  is granted  subject  to  the  following  terms  and  conditions.  

Personal  Use:  You may  reproduce  these  publications  for  your  personal,  noncommercial  use  provided  that  

all  proprietary  notices  are  preserved.  You may  not  distribute,  display  or  make  derivative  works  of  these  

publications,  or  any  portion  thereof,  without  the  express  consent  of IBM.  

Commercial  Use:  You may  reproduce,  distribute  and  display  these  publications  solely  within  your  

enterprise  provided  that  all  proprietary  notices  are  preserved.  You may  not  make  derivative  works  of  

these  publications,  or  reproduce,  distribute  or  display  these  publications  or  any  portion  thereof  outside  

your  enterprise,  without  the  express  consent  of  IBM.  

Except  as  expressly  granted  in  this  permission,  no  other  permissions,  licenses  or  rights  are  granted,  either  

express  or  implied,  to  the  publications  or  any  information,  data,  software  or  other  intellectual  property  

contained  therein.  

IBM  reserves  the  right  to  withdraw  the  permissions  granted  herein  whenever,  in  its  discretion,  the  use  of 

the  publications  is  detrimental  to  its  interest  or, as determined  by  IBM,  the  above  instructions  are  not  

being  properly  followed.  

You may  not  download,  export  or  re-export  this  information  except  in  full  compliance  with  all  applicable  

laws  and  regulations,  including  all  United  States  export  laws  and  regulations.  

IBM  MAKES  NO  GUARANTEE  ABOUT  THE  CONTENT  OF  THESE  PUBLICATIONS.  THE  

PUBLICATIONS  ARE  PROVIDED  ″AS-IS″ AND  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESSED  OR  IMPLIED,  INCLUDING  BUT  NOT  LIMITED  TO  IMPLIED  WARRANTIES  OF  

MERCHANTABILITY,  NON-INFRINGEMENT,  AND  FITNESS  FOR  A PARTICULAR  PURPOSE.
 

 

Appendix.  Notices  111



112  IBM Systems  - iSeries:  Database  Commitment  control





����

  

Printed in USA 

 

 

 

 


	Contents
	Commitment control
	What's new for V5R4
	Printable PDF
	Commitment control concepts
	How commitment control works
	How commit and rollback operations work
	Commit operation
	Rollback operation

	Commitment definition
	Scope for a commitment definition
	Commitment definition names
	Example: Jobs and commitment definitions

	How commitment control works with objects
	Types of committable resources
	Local and remote committable resources
	Access intent of a committable resource
	The commit protocol of a committable resource
	Journaled files and commitment control
	Sequence of journal entries under commitment control
	Commit cycle identifier
	Record locking

	Commitment control and independent disk pools
	Independent disk pool considerations for commitment definitions
	Considerations for XA transactions

	Considerations and restrictions for commitment control
	Commitment control for batch applications
	Two-phase commitment control
	Roles in commit processing
	States of the transaction for two-phase commitment control
	Commitment definitions for two-phase commitment control

	XA transaction support for commitment control
	SQL server mode and thread-scoped transactions for commitment control

	Start commitment control
	Commit notify object
	Commit lock level

	End commitment control
	System-initiated end of commitment control
	Commitment control during activation group end
	Implicit commit and rollback operations
	Commitment control during normal routing step end
	Commitment control during abnormal system or job end
	Updates to the notify object
	Commitment control recovery during initial program load after abnormal end

	Manage transactions and commitment control
	Display commitment control information
	Display locked objects for a transaction
	Display jobs associated with a transaction
	Display resource status of a transaction
	Display transaction properties

	Optimize performance for commitment control
	Minimize locks
	Manage transaction size
	Soft commit


	Scenarios and examples: Commitment control
	Scenario: Commitment control
	Practice problem for commitment control
	Logic flow for practice problem
	Steps associated with the logic flow for the practice program

	Example: Use a transaction logging file to start an application
	Example: Use a notify object to start an application
	Example: Unique notify object for each program
	Example: Single notify object for all programs

	Example: Use a standard processing program to start an application
	Example: Code for a standard processing program
	Example: Code for a standard commit processing program
	Example: Use a standard processing program to decide whether to restart the application


	Troubleshoot transactions and commitment control
	Commitment control errors
	Error conditions
	Non-error conditions
	Error messages to monitor for during commitment control
	Monitor for errors after a CALL command
	Failure of normal commit or rollback processing

	Detect deadlocks
	Recover transactions after communications failure
	When to force commits and rollbacks and when to cancel resynchronization
	End a long-running rollback

	Related information for commitment control
	Code license and disclaimer information

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions


