
IBM Systems - iSeries

Journal Management

Version 5 Release 4

���

IBM Systems - iSeries

Journal Management

Version 5 Release 4

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 359.

Fourth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SSI) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 2004, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Journal management 1

What’s new for V5R4 1

Printable PDFs 3

System-managed access-path protection 4

Benefits of SMAPP 4

How SMAPP works 5

How the system chooses access paths to protect . 6

Effects of SMAPP on performance and storage . . 6

How SMAPP handles changes in disk pool

configuration 7

SMAPP and access path journaling 8

SMAPP and independent disk pools 9

Start SMAPP or change SMAPP values 9

Display SMAPP status 10

Local journal management 11

Journal management concepts 11

Plan for journal management 18

Set up journaling 56

Start and end journaling and change journaling

attributes 60

Manage journals 71

Scenario: Journal management 92

Recovery operations for journal management . . 94

Journal entry information 132

Remote journal management 290

Remote journal concepts 290

Plan for remote journals 306

Set up remote journals 314

Remove remote journals 316

Activate and inactivate remote journals 318

Manage remote journals 323

Scenarios: Remote journal management and

recovery 339

Related information for journal management . . . 357

Code license and disclaimer information 358

Appendix. Notices 359

Programming Interface Information 361

Trademarks 361

Terms and conditions 361

© Copyright IBM Corp. 2004, 2006 iii

||

iv IBM Systems - iSeries: Journal Management

Journal management

Journal management provides a means by which you can record the activity of objects on your system.

When you use journal management, you create an object called a journal. The journal records the

activities of the objects you specify in the form of journal entries. The journal writes the journal entries in

another object called a journal receiver.

Journal management provides you with the following:

v Decreased recovery time after an abnormal end

v Powerful recovery functions

v Powerful audit functions

v The ability to replicate journal entries on a remote system

This topic provides information about how to set up, manage, and troubleshoot system-managed

access-path protection (SMAPP), local journals, and remote journals on an iSeries™ server.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer

information.

What’s new for V5R4

Highlights the changes and improvements made to Journal management.

For V5R4, there are a number of improvements and additions to journal management. The following

items contain a summary of these improvements and additions.

Default for SMAPP is set to 50 minutes from 60 minutes

v How SMAPP works

SMAPP and Journal support for additional access paths

SMAPP and access path journaling is now provided for encoded vector indexes and for most access paths

with international components for unicode (ICU) sort sequence tables.

v Journal entry information finder

Easier ability to change the journal receiver threshold value

The CHGJRN command can now be used to modify the journal receiver threshold value.

v Manage journals

v Swap journal receivers

Increased journal object limit

The maximum number of objects that can be associated with one journal is now either 250,000 or

10,000,000.

v Journal object limit

© Copyright IBM Corp. 2004, 2006 1

|

|

|
|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

rzakifinder.htm

Enhanced support to allow users to automatically start journaling

Extension of the QDFTJRN support to allow a user to indicate that data areas and data queues created,

moved, or restored into the library should automatically start journaling.

v Automatically Start Journaling

New default value of *SYSDFT is provided on the Receiver Size Options

(RCVSIZOPT) parameter for the Create Journal (CRTJRN) command

The new receiver size option value *SYSDFT will be the default value on the CRTJRN command and will

be an optional value on the CHGJRN command.

v Receiver size options for journals

Viewable entry-specific data for minimized journal entries

A new value for the MINENTDTA parameter, *FLDBDY, allows minimizing file entries on a field

boundary. Along with this new minimizing value is a new parameter that can be specified when reading

journal entries, Format minimized data (FMTMINDTA). This parameter allows you to specify whether

entry specific data which has been minimized on field boundaries will be returned in a readable format.

v Minimized entry-specific data for journal entries

v Swap journal receivers

Customizable recovery count for individual journals

A new parameter Journal Recovery Count (JRNRCYCNT) added to the Change Journal (CHGJRN)

command indicates how many journal entries can exist between the last deposited entry and the oldest

forced entry for a journal.

v Customize the journal recovery count

v The Change journal (CHGJRN) command

Additional object selection capabilities when reading journal entries

Support has been enhanced for the commands DSPJRN, RCVJRNE, and RTVJRNE and the

QjoRetrieveJournalEntries API. These commands have previously been able to selectively return journal

entries related to a specific database file or set of database files but have now been extended to include

selection capabilities for all objects types eligible for journaling.

v Work with journal entry information

Support for forward recovery for journaled data queues

Forward recovery support has been added for journaled data queues using save/restore and

APYJRNCHG commands.

v Recover journaled objects

Enhancements to the Work with Journals (WRKJRN) command

The enhanced Work with Journals (WRKJRN) command support now includes all object types.

v Display information for journaled objects, journals, and receivers

v “Recover a damaged journal” on page 98

v Recover journaled objects

v “Apply journaled changes with the WRKJRN command” on page 107

v “Remove journaled changes with the WRKJRN command” on page 111

2 IBM Systems - iSeries: Journal Management

|

|
|

|

|
|

|
|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|
|

|

|

|

|

|

|

|

|

Remote Journal Error Handling Enhancements

i5/OS™ will provide timely and detailed messages in the event of a Remote Journal failure. If the source

system cannot communicate with the target system, the source system will be notified immediately, end

the remote journal environment, and provide detailed messages as to the possible cause. Similarly, if the

target system cannot communicate with the source system, the target system will be notified immediately,

end the remote journal environment, and provide detailed messages as to the possible cause.

v Work with remote journal error messages

Information enhancements

The journal entry information finder includes entry-specific data for journal code B integrated file system

entries, code E data area operation, code Q data queue operation, and many other journal codes. It also

includes documentation for new journal entries added with this release.

v Actions of applying or removing journaled changes by journal code

v Journal entry information finder

To find other information about what’s new or changed this release, see the Memo to Users.

Printable PDFs

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select Journal management (3.2 MB).

You can view or download these related topics:

v Database programming (3.1 MB) contains the following topics:

– Setting up a database on an iSeries server.

– Using a database on an iSeries server.
v Integrated file system (1.4 MB) contains the following topics:

– What is the integrated file system?

– Integrated file system concepts and terminology.

– The interfaces you can use to interact with the integrated file system.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As if you are using Internet Explorer. Click Save Link As if you are using Netscape

Communicator.

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

Downloading Adobe Acrobat Reader

You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the Adobe

Web site (www.adobe.com/products/acrobat/readstep.html)

.

Journal management 3

|

|
|
|
|
|

|

|

|
|
|

|

|

|

rzakifinder.htm
rzaki.pdf
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

System-managed access-path protection

System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling

without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart your system

after an abnormal end.

SMAPP is a way to reduce the time for an iSeries server or independent disk pool to restart after an

abnormal end. An access path describes the order in which records in a database file are processed. A file

can have multiple access paths, if different programs need to see the records in different sequences.

When the system or an independent disk pool ends abnormally, the system must rebuild the access paths

the next time you restart the system, or vary on an independent disk pool. When the system must rebuild

access paths, the next restart or vary on operation takes longer to complete than if the system ended

normally.

When you use SMAPP, the system protects the access paths so the system does not need to rebuild the

access paths after an abnormal end. This topic introduces SMAPP, describes SMAPP concepts, and

provides setup and management tasks.

SMAPP concepts

Use this information to find out why you might want to use SMAPP, how it works, and how it

affects your system.

v Benefits of SMAPP

v How SMAPP works

v How the system chooses access paths to protect

v Effects of SMAPP on performance and storage

v How SMAPP handles changes in disk pool configuration

v SMAPP and access path journaling

v SMAPP and independent disk pools

Start or change SMAPP and display SMAPP status

Use this information to start or change SMAPP and to display the status of SMAPP on your

server.

v Start SMAPP or change SMAPP values

v Display SMAPP status
 Related concepts

 “Reasons to journal access paths” on page 23

If you journal access paths, the system can use the journal entries to recover access paths instead of

rebuilding them completely.

 “Reasons to journal before-images” on page 24

When you journal an object, the system always writes an after-image for every change that is made.

You can request that the system write before-image journal entries for database files and data areas.

All other object types only journal after-images. This significantly increases the auxiliary storage

requirements for journaling.

 “Functions that increase the journal receiver size” on page 27

Some optional functions available with journal management can significantly increase auxiliary

storage requirements.

Benefits of SMAPP

System-managed access-path protection (SMAPP) can greatly reduce the amount of time it takes to restart

your system or vary on an independent disk pool, after an abnormal end.

4 IBM Systems - iSeries: Journal Management

The time is reduced by protecting access paths. A protected access path can be recovered much quicker

than a unprotected access path. It is an automatic function that runs without attention. SMAPP

determines which access paths to protect without any intervention by the user. It adjusts to changes in

the environment, such as the addition of new applications or new hardware.

SMAPP does not require any setup. You do not have to change your applications. You do not have to

journal any physical files or even use journaling at all. You simply need to determine your policy for

access path recovery:

v After a failure, how long you can afford to spend rebuilding access paths when you restart the system,

or vary on an independent disk pool.

v How to balance access path protection with other demands on system resources.

v Whether to have different target times for recovering access paths for different disk pools.

You may need to experiment with different target recovery times for access paths to achieve the correct

balance for your system. If you configure additional basic or independent disk pools, you must also

evaluate your access path recovery times.

The system protects access paths by journaling the access paths to internal system journals. Therefore,

SMAPP requires some additional auxiliary storage for journal receivers. However, SMAPP is designed to

keep the additional disk usage to a minimum. SMAPP manages journal receivers and removes them from

the system as soon as they are no longer needed.

 Related concepts

 Independent disk pool

How SMAPP works

The purpose of system-managed access-path protection (SMAPP) is to reduce the amount of time it takes

to restart the system or vary on an independent disk pool, after an abnormal end.

It can take much longer than normal to restart the system when the system ends abnormally because of

something like a power interruption. Also, if you are using an independent disk pool, the next vary on of

the independent disk pool can take much longer than normal.

Access paths

An access path describes the order in which records in a database file are processed. A file can have

multiple access paths, if different programs need to see the records in different sequences.

How SMAPP works with abnormal ends

When the system restarts after an abnormal end, the system rebuilds access paths that were open for

updating at the time of the abnormal end. Rebuilding access paths contributes to this long restart time.

Likewise, when you vary on an independent disk pool, the system rebuilds access paths that were open

for updating at the time the independent disk pool ended abnormally. The system does not rebuild access

paths that are specified as MAINT(*REBLD) when you create them. When protecting access paths with

SMAPP, the system uses information that it has collected to bring access paths up to date, rather than

rebuilding them.

You can specify the target time for rebuilding access paths after the system ends abnormally. The target

time is a goal that the system does its best to achieve. The actual recovery time for access paths after a

specific failure may be somewhat more or less than this target.

The target recovery time for access paths can be specified for the entire system or for individual disk

pools. The system dynamically selects which access paths to protect to meet this target. It periodically

estimates how long it will take to recover access paths that are open for change.

Journal management 5

For new systems, the system-wide recovery time for access paths is 50 minutes, which is the default. If

you move from a release that does not provide the SMAPP function to a release that supports SMAPP,

the system-wide recovery time for access paths is also set to 50 minutes.

How the system chooses access paths to protect

The system periodically examines access path exposure and estimates how long it would take to rebuild

all the exposed access paths. If the rebuild time exceeds your target recovery times for access paths, the

system selects additional access paths for protection.

An access path is exposed when the access path has changed because records have been added or

deleted or because a key field has changed, and those changes have not yet been written to the disk. The

system periodically examines access path exposure and estimates the time required to rebuild all the

exposed access paths. If the rebuild time exceeds your target recovery times for access paths, the system

selects additional access paths for protection. The system can also remove access paths from protection if

the estimated time for rebuilding access paths consistently falls below your target recovery times for

access paths. The recover attribute of a file is not used in determining whether to protect access paths.

Some access paths are not eligible for protection by SMAPP:

v A file that specifies MAINT(*REBLD).

v An access path that is already explicitly journaled.

v An access path in the QTEMP library.

v An access path whose underlying physical files are journaled to different journals.

v A file journaled to a journal in standby state.

v Some access paths that use an international component for unicode (ICU) sort sequence table.

You can use the Display Recovery for Access Paths (DSPRCYAP) command to see a list of access paths

that are not eligible for SMAPP.

Effects of SMAPP on performance and storage

System-managed access-path protection (SMAPP) is designed to have minimal affect to your system.

Though it is minimal, SMAPP does affect your system’s processor performance and auxiliary storage.

Processor performance

SMAPP has some affect on processor performance. The lower the target recovery time you specify for

access paths, the greater this affect is. Typically, the affect on processor performance is not very

noticeable, unless the processor is nearing capacity.

Auxiliary storage

SMAPP causes increased disk activity, which increases the load on disk input/output processors. Because

the disk write operations for SMAPP do not happen at the same time, they do not directly affect the

response time for a specific transaction. However, the increased disk activity might affect overall response

time.

Also when you use SMAPP, the system creates an internal journal and journal receiver for each disk pool

on your system. The journal receivers that SMAPP uses take additional auxiliary storage. If the target

recovery time for access paths for a disk pool is set to *NONE, the journal receiver has no entries. The

internal journal receivers are spread across all the arms in a disk pool, up to a maximum of 100 arms.

The system manages the journal receivers automatically to minimize the affect as much as possible. It

regularly discards internal journal receivers that are no longer needed for recovery and recovers the disk

6 IBM Systems - iSeries: Journal Management

|

space. The internal journal receivers that are used by SMAPP require less auxiliary storage than the

journal receivers for explicit journaling of access paths. Internal journal receivers are more condensed

because they are used only for SMAPP entries.

If you have already set up journaling for a physical file, the system uses the same journal to protect any

access paths that are associated with that physical file. If the system chooses to protect additional access

paths, your journal receivers will grow larger more quickly. You will need to change journal receivers

more often.

Tips to reduce SMAPP’s affect on auxiliary storage

v When you set up SMAPP, specify target recovery times for access paths either for the entire server or

for individual disk pools, but not for both. If you specify both, the system does extra work by

balancing the overall target with the individual targets.

v If you also journal physical files, to deal with the increased size of your journal receivers, consider

specifying to remove internal entries when you set up journaling or swap journal receivers. If you

specify this, the system periodically removes internal entries from user journal receivers when it no

longer needs them to recover access paths. This prevents your journal receivers from growing

excessively large because of SMAPP.

v If your system cannot support dedicating any resources to SMAPP, you can specify *OFF for the

system target recovery time. Before choosing this option, consider setting the recovery time to *NONE

for a normal business cycle, perhaps a week. During that time, periodically display the estimated

recovery time for access paths. Evaluate whether those times are acceptable or whether you need to

dedicate some system resources to protecting access paths.

If you turn SMAPP off, any disk storage that has already been used will be recovered shortly

thereafter. If you set the SMAPP values to *NONE, any disk storage that has already been used will be

recovered after the next time you restart your system.

Note: If you want to change the target system recovery time to a different value after you have set it

to *OFF, the system must be in a restricted state.

For more information about removing internal entries, see Receiver size options for journals. See the

Performance topic for more information about system performance.

 Related concepts

 “Receiver size options for journals” on page 45

A journal receiver holds journal entries that you might use for recovery and entries that the system

might use for recovery. For example, you might use record level entries, such as database record

changes, and file level entries, such as the entry for opening or closing a file. Also, the system writes

entries that you never see or use, such as entries for explicitly journaled access paths, for SMAPP, or

for commitment control.

 Performance

How SMAPP handles changes in disk pool configuration

When you restart the system, the system checks to see if your disk pool configuration has changed. The

system may change either the size of the SMAPP receiver or the placement of the receiver based on the

change to the disk units.

When you restart your system, the system checks to see if your disk pool configuration has changed. The

system does the following:

v If any disk units have been added or removed from an existing disk pool, the system may change

either the size of the SMAPP receiver or the placement of the receiver.

v If any new disk pools are in the configuration and do not have any access path recovery times

assigned for SMAPP, the system assigns a recovery time of *NONE for that disk pool. If you remove a

Journal management 7

disk pool from your configuration and later add it back, the access path for that disk pool is set to

*NONE, even if that disk pool previously had a recovery time for access paths.

v If all basic user disk pools have been removed from your configuration so that you have only the

system disk pool, the system access path recovery time is set to the lower of the following values:

– The existing system access path recovery time.

– The current access path recovery time for disk pool 1. If the current access path recovery time for

disk pool 1 is *NONE, the system access path recovery time is not changed.

When you vary on an independent disk pool, the system checks to see if any disk units have been added

or removed from the independent disk pool. The system may change either the size of the SMAPP

receiver or the placement of the receiver based on the change to the disk units. If this is the first time the

independent disk pool is varied on, then the system assigns a recovery time of *NONE for that

independent disk pool.

When you add disk units to your disk configuration while your system is active, or your independent

disk pool is varied on, the system does not consider those changes in making SMAPP storage decisions

until the next time you restart the system, or vary on the independent disk pool. The system uses the size

of the disk pool to determine the threshold size for SMAPP receivers. If you add disk units, the system

does not increase the threshold size for the receivers until the next time you restart the system restart or

vary on the independent disk pool. This means that the frequency of changing SMAPP receivers will not

go down until you restart the system, or vary off the independent disk pool.

When you create a new user disk pool while your system is active, add all of the planned disks to the

disk pool at the same time. The system uses the initial size of the new disk pool to make storage

decisions for SMAPP. If you later add more disk units to the disk pool, those disk units are not

considered until the next time you restart the system or vary on the independent disk pool. When you

create a new user disk pool, the access path recovery time for that disk pool is set to *NONE. You can

use the EDTRCYAP command to set a target recovery time for the new disk pool, if desired.

For more information about disk pools and how to manage them, see Manage disk units in disk pools.

 Related concepts

 Disk management

SMAPP and access path journaling

In addition to using system-managed access path protection (SMAPP), you can choose to journal some

access paths yourself by using the Start Journaling Access Path (STRJRNAP) command. This is called

explicit journaling.

To journal an access path explicitly, you must first journal all the underlying physical files. SMAPP does

not require that the underlying physical files be journaled.

The reason for choosing to journal an access path explicitly is that you consider the access path (and the

underlying files) absolutely critical. You want to make sure that the files are available as soon as possible

when the system is started after an abnormal end.

Under SMAPP, the system looks at all access paths to determine how it can meet the specified target

times for recovering access paths. It may not choose to protect an access path that you consider critical.

When the system determines how to meet the target times for recovering access paths, it considers only

access paths that are not explicitly journaled.

How SMAPP is different from explicitly journaling access paths:

v SMAPP does not require that underlying physical files be journaled.

8 IBM Systems - iSeries: Journal Management

v SMAPP determines which access paths to protect based strictly on the target recovery times for all

access paths. You might choose to journal an access path explicitly because of your requirements for

the availability of a specific file.

v SMAPP continually evaluates which access paths to protect and responds to changes in your server

environment.

v SMAPP does not require any user intervention to manage its internal journals and journal receivers.

v SMAPP uses less disk space for journal receivers because they are detached and deleted regularly.

For more information about when to journal access paths, see Reasons to journal access paths.

 Related concepts

 “Reasons to journal access paths” on page 23

If you journal access paths, the system can use the journal entries to recover access paths instead of

rebuilding them completely.
 Related reference

 Start Journal Access Path (STRJRNAP) command

SMAPP and independent disk pools

Use SMAPP to protect access paths for independent disk pools.

When you use SMAPP to protect access paths in independent disk pools, you can specify the recovery

time individually for each independent disk pool. This improves the performance when you vary on your

independent disk pool after an abnormal vary off.

The recovery time that you specify moves with the independent disk pool if you switch it between

systems. Therefore if you are switching an independent disk pool between systems, you only need to

specify the recovery time once.

The only time the specified recovery time is not moved is when the system you are moving the

independent disk pool to has its system recovery time specified as *OFF. In this case the independent

disk pool’s recovery time is set to *NONE when you vary on the independent disk pool.

 Related concepts

 Independent disk pools

Start SMAPP or change SMAPP values

Use the Edit Recovery Access Path (EDTRCYAP) display to start or change values for system-managed

access-path protection (SMAPP).

If you use basic or independent disk pools to separate objects that have different recovery and availability

requirements, you might also want to specify different recovery times for access paths in those disk

pools.

For example, if you have a large history file that changes infrequently, you can put the file in a separate

disk pool and set the access path recovery time for that disk pool to *NONE. Or, if you have an

independent disk pool, and you want the recovery time to move with the disk pool when it is switched

to another server, you can specify a specific time for that disk pool.

To start SMAPP or change SMAPP values, proceed as follows:

1. On the display, specify one of the following values in the System access path recovery time field:

v *SYSDFT

v *NONE

v *MIN

Journal management 9

v *OFF

v A specific value between 1 and 1440 minutes.
2. At the Include access paths field select one of the following:

v *ALL

v *ELIGIBLE
3. If you are starting or changing SMAPP for disk pools, change the Target field for individual disk

pools.

To change the access path recovery time from *OFF to another value, your server must be in a restricted

state.

You can also use the Change Recovery for Access Paths (CHGRCYAP) command to change the target

recovery times without using the Edit Recovery Access Path display.

The system performance monitor also provides information about access path recovery times. The Work

Management and Performance Tools for iSeries topics provide more information about monitoring

performance and about what SMAPP information is available through the tools.

 Related reference

 Edit Recovery Access Path (EDTRCYAP) command

 Change Recovery for Access Paths (CHGRCYAP) command
 Related information

 Work Management

 Performance Tools for iSeries PDF

Display SMAPP status

You can display many types of status for SMAPP.

You can use the Edit Recovery Access Path screen to view the following values for system-managed

access-paths (SMAPP):

v The entire server.

v Basic and independent disk pools.

v Access paths not eligible for protection.

v Protected access paths.

Use the top part of the display to see the values for the entire server. Use the bottom part of the display

to see the values for individual disk pools on the system. If you do not have basic or independent disk

pools that are active, the bottom part of the display says No user ASP configured or information not

available.

Estimated time for recovery

To see the number of minutes the system estimates it will need to recover most of the access paths, look

at the Estimated recovery time for access paths field. The time is an estimated maximum, based on most

circumstances. It assumes that the system is recovering access paths on a dedicated server (during a

restart) and that all eligible access paths are being recovered or rebuilt. It does not include time to rebuild

access paths that must be rebuilt for one of the following reasons:

v The access path is damaged.

v The access path was marked as not valid during a previous abnormal end and was not successfully

rebuilt.

v One of the following commands marked the access path as not valid and was running when the

system failed:

10 IBM Systems - iSeries: Journal Management

– Copy File (CPYF), if the system chose to rebuild the access path for efficiency.

– Reorganize Physical File Member (RGZPFM)

– Restore Object (RSTOBJ)

If you have basic or independent disk pools, the estimated recovery time for access paths for the entire

server (System access path recovery time field) might not equal the total estimated recovery time for the

disk pools (Access Path Recovery Time-Estimated (Minutes)). When you restart the system or vary on

an independent disk pool, the system overlaps processing when recovering access paths to reduce the

total time it requires.

Disk space used

The Disk Storage Used field on the display shows the disk space that SMAPP uses only for internal

system journals and journal receivers. It does not include any additional space in user-managed journal

receivers for protecting access paths whose underlying physical files are already journaled.

Access paths not eligible

You can display all access paths that are not eligible for protection. To view access paths that are not

eligible for protection, press F13. Access paths that are not eligible for access protection are as follows:

v Access paths built over physical files which are journaled to separate journals.

v Access paths built over a physical file which is journaled to a journal whose state is currently standby.

Protected access paths

You can also display up to 500 protected access paths by pressing F14. The system displays the access

paths with the highest estimated recovery time first.

Use can also use the Display Recovery for Access Paths (DSPRCYAP) command to display or print the

estimated recovery times and disk usage.

 Related reference

 Display Recovery for Access Paths (DSPRCYAP) command

Local journal management

Use local journal management to recover the changes to an object that have occurred since the object was

last saved, as an audit trail, or to help replicate an object. Setting up journaling locally is a prerequisite

for other iSeries functions such as Remote journal management and Commitment control. Use this

information to set up, manage, and troubleshoot journaling on a local server.

 Related information

 Journal entry information finder

Journal management concepts

This topic explains how journal management works, why to use it, and how it affects your system.

Journal management enables you to recover the changes to an object that have occurred since the object

was last saved. You can also use journal management to provide an audit trail or to help replicate an

object. You use a journal to define what objects you want to protect with journal management. The

system keeps a record of changes you make to objects that are journaled and of other events that occur

on the system.

This topic provides information about how journals work, information about journal entries, and how

journals affect system performance.

Journal management 11

rzakifinder.htm

Benefits of journal management

The primary benefit of journal management is that it enables you to recover the changes to an object that

have occurred since the object was last saved. This ability is especially useful if you have an unscheduled

outage such as a power failure.

In addition to powerful recovery functions, journal management also has the following benefits:

v Journal management enhances system security. You can create an audit trail of activity that occurs for

objects.

v Journal management allows you to generate user defined journal entries to record activity, even for

objects that do not allow journaling.

v Journal management provides quicker recovery of access paths if your system ends abnormally.

v Journal management provides quicker recovery when restoring from save-while-active media.

v Journal management provides the means to recover an object that was saved with partial transactions.

Save your server while it is active has instructions for saving an object with partial transactions. See the

example below for instructions about recovering objects with partial transactions.

 Related tasks

 Save your server while it is active

 “Example: Recover objects with partial transactions” on page 129

If you restore an object that was saved with a save-while-active operation that specified that the object

can be saved before it reaches a commitment boundary, it can have partial transactions. To recover

objects that are in a partial state you must perform an apply or a remove journaled changes operation.

How journal management works

Use journal management to create an object called a journal. Use a journal to define which objects you

want to protect. You can have more than one journal on your system. A journal can define protection for

more than one object.

You can journal the objects that are listed below:

v Database physical files

v Access paths

v Data areas

v Data queues

v Integrated file system objects (stream files, directories, and symbolic links).

Journal entries

The system keeps a record of changes you make to objects that are journaled and of other events that

occur on the system. These records are called journal entries. You can also write journal entries for events

that you want to record, or for objects other than the object that you want to protect with journaling.

For example, some journal entries identify activity for a specific database record such as add, update, or

delete. (If the updated object image after the update is the same as the image before the update, then

journal entries are not deposited for that update.) Also journal entries identify activity such as a save,

open, or close operation for an object. Journal entries can also identify other events that occur, such as

security-relevant events on the system or changes made by dynamic performance tuning. The Journal

entry information link below describes all the possible journal entry types and their contents.

Each journal entry can include additional control information that identifies the source of the activity,

including the user, job, program, time, and date. The entries that the system deposits for a journaled

object reflect the changes made to that journaled object. For example, the entries for changes to database

records can include the entire image of the database record, not just the changed information.

12 IBM Systems - iSeries: Journal Management

|
|

Journal receivers

The system writes entries to an object called a journal receiver. The system sends entries for all the

objects associated with a particular journal to the same journal receiver.

You can attach journal receivers to a journal by using iSeries Navigator or the Create Journal (CRTJRN)

and Change Journal (CHGJRN) commands. The system adds journal entries to the attached receiver.

Journal receivers that are no longer attached to a journal and are still known to the system are associated

with that journal. Use the Work with Journal Attributes (WRKJRNA) command to see a list of receivers

associated with a journal.

The system adds an entry to the attached journal receiver when an event occurs to a journaled object. The

system numbers each entry sequentially. For example, it adds an entry when you change a record in a

journaled database file member. Journal entries contain information that identifies:

v Type of change

v Record that has been changed

v Change that has been made to the record

v Information about the change (such as the job being run and the time of the change)

When you are journaling objects, changes to the objects are added to the journal receiver. The system

does not journal data that you retrieved but did not change. If the logical file record format of a database

file does not contain all the fields that are in the dependent physical file record format, the journal entry

still contains all the fields of the physical file record format. In addition, if you are journaling access

paths, entries for those access paths are added to the journal. If the updated physical file image after the

update is the same as the image before the update, and if the file has no variable length fields, then

journal entries are not deposited for that update. If the updated data area image after the update is the

same as the image before the update, then journal entries are not deposited for that update. If the

attribute that was requested to be changed was already that value, then journal entries are not deposited

for that change.

Summary of the journaling process

The following figure shows a summary of journal processing. Objects A and B are journaled; object C is

not. Programs PGMX and PGMY use object B. When you make a change to object A or B, the following

occurs:

v The change is added to the attached journal receiver.

v The journal receiver is written to auxiliary storage.

v The changes are written to the main storage copy of the object.

Object C changes are written directly to the main storage copy of the object because it is not being

journaled. Only the entries added to the journal receiver are written immediately to auxiliary storage.

Changes against the object may stay in main storage until the object is closed.

Journal management 13

You can also take advantage of the remote journal function. The remote journal function allows you to

associate a journal on a remote system with a journal on a local system. Journal entries on the local

system are replicated to the remote journal receiver.

 Related concepts

 “Journal entry information” on page 132

This topic provides information and tasks for working with journal entries.

 “Remote journal management” on page 290

Use remote journal management to establish journals and journal receivers on a remote system that

are associated with specific journals and journal receivers on a local system. Remote journal

management replicates journal entries from the local system to the journals and journal receivers that

are located on the remote system after they have been established.
 Related reference

14 IBM Systems - iSeries: Journal Management

Create Journal (CRTJRN) command

 Change Journal (CHGJRN) command

 Work with Journal Attributes (WRKJRNA) command

Journal entries

When you use journal management, the system keeps a record of changes that you make to objects that

are journaled and of other events that occur on the system. These records are called journal entries. You

can use journal entries to help recover objects or analyze changes that were made to the objects.

Every journal entry is stored internally in a compressed format. The operating system must convert

journal entries to an external form before you can see them. You cannot change or access the journal

entries directly. Not even the security officer can remove or change journal entries in a journal receiver.

You can use these journal entries to help you recover your objects or analyze changes that were made to

the objects.

Contents of a journal entry

Journal entries contain the following information:

v Information that identifies the type of change.

v Information that identifies the data that was changed.

v The after-image of the data.

v Optionally, the before-image of the data (this is a separate entry in the journal).

v Information that identifies the job, the user, and the time of change.

v The journal identifier of the object.

v Information that indicates if the entry-specific data is minimized.

The system also places entries in the journal that are not for a particular journaled object. These entries

contain information about the operation of the system and the control of the journal receivers.

Journal identifier

When you start journaling an object, the system assigns a unique journal identifier (JID) to that object.

The system uses the JID to associate the journal entry with the corresponding journaled object.

Journal entry numbering

Each journal entry is sequentially numbered without any missing numbers until you reset the sequence

number with the Change Journal (CHGJRN) command or iSeries Navigator. However, when you display

journal entries, sequence numbers can be missing because the system uses some entries only internally.

For audit purposes, you can display these internal entries with the INCHIDENT option on the Display

Journal (DSPJRN) command.

When the system exceeds the largest sequence number, a message is sent to the system operator

identifying the condition and requesting action. No other journal entries can be added to the journal until

the journal receivers are changed and the sequence number is reset.

Fixed-length and variable-length portions

A journal entry that is converted for displaying or processing contains a fixed-length prefix portion that is

followed by a variable-length portion. The variable-length portion contains entry-specific data and, in

some cases, null-values indicator data. The format of the converted entry depends on the command that

you use and the format that you specify. The entry-specific data varies by entry type. The Send Journal

Entry (SNDJRNE) command or the QJOSJRNE API specifies the entry-specific data for user-created

journal entries.

Journal management 15

Related concepts

 “Why you must save objects after you start journaling” on page 60

After you start journaling, it is essential that you save objects that you are journaling.

 “Journal entry information” on page 132

This topic provides information and tasks for working with journal entries.
 Related reference

 Apply Journaled Changes (APYJRNCHG) command

 Apply Journaled Changes Extend (APYJRNCHGX) command

 Compare Journal Images (CMPJRNIMG) command

 Delete Pointer Handle (QjoDeletePointerHandle) API

 Display Journal (DSPJRN) command

 Get Path Name of Object from Its File ID (Qp0lGetPathFromFileID()) API

 Receive Journal Entry (RCVJRNE) command

 Retrieve Journal Entry (RTVJRNE) command

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

 Remove Journaled Changes (RMVJRNCHG) command

 Replay Database Operation (QDBRPLAY) API

 Send Journal Entry (SNDJRNE) command

 Send Journal Entry (QJOSJRNE) API

Journal management and system performance

Journal management prevents transactions from being lost if your system ends abnormally or has to be

recovered. To do this, journal management writes changes to journaled objects immediately to the journal

receiver in auxiliary storage. This increases the disk activity on your system and can have a noticeable

affect on system performance. Journaling also increases the overhead associated with opening objects and

closing objects.

As the number of objects you are journaling increases, the general performance of the system can be

slower. The time it takes to perform an IPL on your system can also increase, particularly if your system

ends abnormally.

The system takes measures to minimize the performance effect of using journaling features. For example,

the system packages before-images and after-images and any access path changes for a record in a single

write operation to auxiliary storage. Therefore, journaling access paths and before-images, in addition to

after-images, usually does not cause additional performance overhead. However, they do add to the

auxiliary storage requirements for journaling.

The system also spreads journal receivers across multiple disk units to improve performance. If you do

not specify a maximum receiver-size option, then the system can place the journal receiver on up to ten

disk units in a disk pool. If you specify a maximum receiver-size option, then the system can place the

journal receiver on up to 100 disk units in a disk pool.

You can take measures to minimize the effect of journaling on your system performance:

v Consider using journal caching. Journal caching is a separately chargeable feature that causes the

system to write journal entries to memory in large groups. When there are several journal entries in

memory then the system writes journal entries from memory to disk. If the application performs a

large number of changes, this can result in fewer synchronous disk writes resulting in improved

performance. However, when you use journal caching, you sacrifice single system recovery because the

entries that are still in the cache might be lost on an abnormal IPL.

v Do not set the force-write ratio (FRCRATIO) parameter for physical files that you are journaling. You

can let the system manage when to write records for the physical file to disk because the journal

receiver has a force-write ratio of 1.

16 IBM Systems - iSeries: Journal Management

|

v Isolate journal receivers in a disk pool that is not the system disk pool, if the separate disk pool has at

least two disk arms. This reduces contention when accessing the disks. If the separate disk pool does

not have at least two disk arms, there is no performance benefit. For optimal performance, ensure that

your I/O processors have adequate write cache. Performance can be better if the disk units in the disk

pool are protected through device parity protection rather than mirrored.

v Consider using record blocking when a program processes a journaled file sequentially

(SEQONLY(*YES)). When you add or insert records to the file, the records are not written to the journal

receiver until the block is filled. You can specify record blocking with the Override with Database File

(OVRDBF) command or in some high-level language programs. If you use the OVRDBF command, do

the following:

– Set the SEQONLY parameter to (*YES).

– Use a large enough value for the NBRRCDS parameter to make the buffer approach the optimal size

of 128KB.
v Consider minimizing the fixed-length portion of the journal entry using RCVSIZOPT(*MINFIXLEN) for

the journal. When you specify this option, all of the data that is selectable by the FIXLENDTA

parameter is not deposited. Therefore, that information does not have to be retrieved, benefiting

journal performance.

v Consider omitting information from the journal entry you do not need using the OMTJRNE parameter.

When you specify the OMTJRNE parameter for database physical files you will not deposit the file

open and close entries which saves processing as well as disk storage space. Similarly, if you specify

the OMTJRNE parameter for directories and stream files, the object open, close, and force entries are

not deposited.

v Ensure you have enough write cache for your I/O processor (IOP).

 Related concepts

 “Receiver size options for journals” on page 45

A journal receiver holds journal entries that you might use for recovery and entries that the system

might use for recovery. For example, you might use record level entries, such as database record

changes, and file level entries, such as the entry for opening or closing a file. Also, the system writes

entries that you never see or use, such as entries for explicitly journaled access paths, for SMAPP, or

for commitment control.

 “Journal cache” on page 54
Journal caching is separately chargeable feature with which you can specify that the system cache

journal entries in main storage, before writing them to disk. Journal caching is option 42 of the i5/OS®

operating system.

 “Frequently asked questions about journaling and disk arm usage” on page 25

Journaling affects the disk arms that store the journal receiver.

 Performance

 Disk management

 Striving for Optimal Journal Performance on DB2 Universal Database for iSeries
 Related tasks

 “Factors that affect remote journal performance” on page 310

There are two main performance objectives for the remote journal function. To provide a timely

delivery of journal entries to a target system and to minimize impacts to the journaling throughput on

the source system.
 Related reference

 Override with Database File (OVRDBF) command

Journal management with the save-while-active function

Journaling can help you with recovery if you use the save-while-active function in your backup strategy.

If you plan to save an application without ending it for checkpoint processing, consider journaling all of

the objects associated with the application. After the save operation is complete, save all of the journal

receivers for the objects you are saving.

Journal management 17

http://www.redbooks.ibm.com/abstracts/sg246286.html?Open

If you need to perform recovery, you can restore objects from the save-while-active media. Then you can

apply journal changes to an application boundary.

You also can use the save-while-active function to save an object with partial transactions--before the

transactions reach a commit boundary. When you restore an object with partial transactions, you cannot

use it without additional actions. Journaling enables you to apply or remove changes to an object with

partial transactions to restore it to a usable state.

Using the save-while-active function to save your journaled objects can help you recover your objects

more quickly when you need to apply or remove journaled changes specifying FROMENT(*LASTSAVE)

or FROMENTLRG(*LASTSAVE). When you use the save-while-active function to save your journaled

objects, the system saves and then restores information that indicates which starting journal sequence

number is needed for the apply or remove operation. When this information is available for all objects to

which you are applying or removing journaled changes, the system does not need to scan the journal

receivers to determine this starting point. Scanning journal receiver data to find the starting points can be

time consuming.

Also, using the save-while-active function when saving your objects allows you to restore a version of

your object which was not from the last save and to still specify FROMENT(*LASTSAVE) or

FROMENTLRG(*LASTSAVE) on the apply or remove command and successfully apply or remove

changes.

See the Save your server while it is active link below for more information about the save-while-active

function. See the Example: Recover objects with partial transactions link for information about restoring

objects with partial transactions to a usable state. The Commitment control topic link has more detailed

information about transactions.

 Related concepts

 Commitment control
 Related tasks

 Save your server while it is active

 “Example: Recover objects with partial transactions” on page 129

If you restore an object that was saved with a save-while-active operation that specified that the object

can be saved before it reaches a commitment boundary, it can have partial transactions. To recover

objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Plan for journal management

This topic provides you with the information you need to ensure you have enough disk space, to plan

what objects to journal, and to plan which journaling options to use.

Before you start to journal an object, you must make decisions that will determine how you will create

journals and receivers, what objects to journal and how to journal those objects. These decisions include:

v Whether to use iSeries Navigator to set up your journaling environment.

v What objects to protect with journaling.

v Whether to journal other objects that the system does not journal.

v Whether to combine journaling with the save-while-active function.

v How many journals you need and which objects must be assigned to each journal.

v Whether to journal after-images only or both before-images and after-images.

v Whether your application programs must write journal entries to assist with recovery.

v What type of disk pool in which to store your journal receiver.

v Whether to use the remote journal function to replicate the journal entries and receivers to one or more

additional systems.

v Whether to omit the optional open, close, or force entries for your objects.

18 IBM Systems - iSeries: Journal Management

You also need to make operational decisions about journal management:

v How often must journal receivers be changed and saved?

v How often must you save journaled objects?

v How must journals and journal receivers be secured?

Finally, you need to balance the benefits of journaling with the affect it may have on your system

performance and auxiliary storage requirements.

Use the following information to help you make these decisions:

Note: The Remote journal management topic has information about remote journaling.

 Related concepts

 “Remote journal management” on page 290

Use remote journal management to establish journals and journal receivers on a remote system that

are associated with specific journals and journal receivers on a local system. Remote journal

management replicates journal entries from the local system to the journals and journal receivers that

are located on the remote system after they have been established.

iSeries Navigator versus the character-based interface for journaling objects

There are two environments that you can use for journal management: iSeries Navigator and the

character-based interface. iSeries Navigator provides a graphical interface for journaling that is easy to

use and does not require the use of control language (CL) commands. The character-based interface

requires the use of CL commands or APIs, but has more functionality than iSeries Navigator.

The following is a list of journaling functions that are only available with the character-based interface:

v Journal access paths.

v Specify a maximum receiver-size option.

v Specify that objects allow journal entries to have minimized entry-specific data.

v Specify the data that is included in the fixed-length portion of the journal entries.

v Specify the time to delay the next attempt to automatically attach or delete a new journal receiver with

system journal-receiver management.

v Specify journal caching.

v Specify journal standby state.

v Specify the journal object limit.

v Specify the journal recovery count.

v Change the threshold for a journal receiver.

v Compare journal entries.

v Apply journaled changes.

v Remove journaled changes.

v Display journal entries.

v Look at the journal to display all object types which are journaled to that journal.

v Change the journaling attributes for a journaled object without ending journaling.

Other journaling differences between iSeries Navigator and the character-based interface are as follows:

v With iSeries Navigator, you create the journal and journal receiver together. With the character-based

interface, you create the journal receiver first.

v With iSeries Navigator you set the permissions for the journal and receiver after they are created. With

the character-based interface you can set permissions (authority) at creation time.

Journal management 19

Decide which of the two interfaces to use before you set up journal management, since the

character-based interface creates journal receivers and journals separately, and iSeries Navigator creates

journals and receivers together. However, if you decide to use a function that iSeries Navigator does not

support after you start journaling, you can do so with the character-based interface, even if you used

iSeries Navigator to set up journaling.

 Related concepts

 “Receiver size options for journals” on page 45

A journal receiver holds journal entries that you might use for recovery and entries that the system

might use for recovery. For example, you might use record level entries, such as database record

changes, and file level entries, such as the entry for opening or closing a file. Also, the system writes

entries that you never see or use, such as entries for explicitly journaled access paths, for SMAPP, or

for commitment control.

 “Minimized entry-specific data for journal entries” on page 49

On the Create Journal (CRTJRN) and Change Journal (CHGJRN) commands, you can specify to allow

for the deposit of minimized journal entries. This will decrease the size of your journal entries.

 “Fixed-length options for journal entries” on page 53

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change

Journal (CHGJRN) commands to audit security related activity for journaled objects on your system.

 “Journal cache” on page 54
Journal caching is separately chargeable feature with which you can specify that the system cache

journal entries in main storage, before writing them to disk. Journal caching is option 42 of the i5/OS

operating system.

 “JKLPROD” on page 93

JKLPROD is the system that JKL uses for all of their customer orders and where their business

applications are installed (inventory control, customer orders, contracts and pricing, accounts

receivable). The information about this server is extremely critical to their business and changes often.
 Related tasks

 “Change the state of local journals” on page 90

Local journals can be in one of two states, active or standby. When the journal state of a local journal

is active, journal entries are allowed to be deposited to the journal receiver.

 “Set up journaling” on page 56

Provides instructions on how to set up journals and journal receivers.

Plan which objects to journal

When you plan which objects to journal, consider the following:

v What types of objects you can journal.

v What makes an object a good candidate for journaling.

v What rules for journaling apply to those objects.

v Whether or not to send journal entries for objects the system does not journal.

Types of objects that are eligible for journaling

You can journal the following object types:

v Database physical files

v Access paths

v Data areas

v Data queues

v Integrated file system objects (stream files, directories, and symbolic links)

20 IBM Systems - iSeries: Journal Management

General characteristics that make objects good candidates for journaling

v An object with a high volume of transactions between save operations is a good candidate for

journaling.

v An object that is difficult to reconstruct the changes made to it, such as an object that receives many

changes without physical documentation. For example, an object used for telephone order entry is

more difficult to reconstruct than an object used for orders that arrive in the mail on order forms.

v An object that contains critical information. For example, if you restore an object back to the last save

operation, and the delay from reconstructing changes to that object has a negative effect on your

operation: that object is a good candidate for journaling.

v Objects that relate to other objects on the system. Although the information in a particular object may

not change often, that object may be critical to other, more dynamic objects on the system. For

example, many files may depend on a customer master file. If you are reconstructing orders, the

customer master file must include new customers or changes in credit limits.

v Objects that require that all the actions on it be replicated.

v An object, that, after a crash, has a requirement to be recovered to a consistent state and have a journal

entry show what actions completed.

v An object that can cause a negative consequence to your operation if a crash damages that object while

the system is in the process of updating it.

v An object for which you want to have an audit trail of changes.

Considerations for journaling database physical files

v If you journal one file that participates in a referential constraint, you must journal all the related files.

Referential constraints are not enforced when you apply or remove journaled changes, but the

referential integrity of those constraints is verified.

v If you journal all related files, the process for applying and removing journaled changes keeps the

relationships between your database files valid. If you do not journal all related files, your referential

constraint may show a status of check pending after you apply or remove journaled changes. For

some types of referential constraints, the system requires that you journal all of the related files.

v For a file that has a trigger program, if the trigger program only performs processing on object types

which can be journaled and applied, you must journal all of the objects processed by the trigger

program. If the trigger programs do additional work that must be reconstructed during a recovery,

consider using the API support for sending journal entries.

v In general, database source files must not be journaled. If you use the Start Source Entry Utility

(STRSEU) command to update a member, every record in that member is considered changed and

every record is journaled to the journal. However, if changes to a source file are critical, you can

journal the file in the same manner as data files.

Considerations for journaling integrated file system objects

v When you start journaling on a symbolic link, the link is not followed. Therefore if you want to protect

the actual object with journaling, you have to journal the actual object separately.

v If you want to automatically protect all objects which are created in a directory which itself is

journaled, consider the use and impacts of the inherit journaling attribute that you can associate with a

journaled directory.

v Do you want to protect the structure of the directory tree, or just the data stored in stream files within

that directory structure? If you just want to protect the data stored in stream files, then for

performances reasons, it may be best to only journal the stream files themselves instead of journaling

changes to each directory in the directory tree. You must consider this question when you use the

subtree and inherit journaling attributes options on the start journaling interfaces.

v You cannot journal objects on a user-defined file system (UDFS) independent disk pool. If you want to

journal objects in a UDFS, you must use a library capable independent disk pool. Journal management

and independent disk pools has more information about journaling and independent disk pools.

Journal management 21

System objects

It is recommended that you do not journal changes to IBM-supplied objects. The system sometimes

creates and manages these objects differently than user-created objects. The system does not assure the

recovery of these files even though all recovery activity normally succeeds.

Journal entries for objects the system does not journal

Some applications depend on information in objects that the server does not journal. For example, an

application programming interface (API) might use a user space to pass data between two jobs.

You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to

write journal entries for these resources. See Send your own journal entries for instructions. If you need

to perform recovery, you can use a program to retrieve these journal entries and make sure these

application objects are synchronized with the objects you are journaling.

If you are using commitment control, you can use APIs to register these objects as committable resources.

Before images and access paths

v Reasons to journal access paths has detailed information about whether or not to journal access paths.

v Reasons to journal before-images discusses whether or not to journal before-images

Journaled object limit

The journaled object limit is the maximum number of objects that can be journaled to one journal. You

can set the journal object limit to either 250,000 or 10,000,000. Use the Journal Object Limit (JRNOBJLMT)

parameter on the Create Journal (CRTJRN) or Change Journal (CHGJRN) command to set the maximum

number of journaled objects.

Journal recovery count

On the CHGJRN command, you can use the Journal Recovery Count (JRNRCYCNT) parameter to

indicate how many journal entries can exist between the last deposited entry and the oldest forced entry

for a journaled object. A value between 10,000 and 2,000,000,000 will be allowed. A value of *SYSDFT will

also be allowed to reset the journal’s recovery count to the system default journal recovery count.

 Related concepts

 “Journal management and independent disk pools” on page 33

Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file

system (UDFS) independent disk pools or library-capable independent disk pools.

 “Send your own journal entries” on page 90

Use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to add

your own entries to a journal. The system places these entries in the journal’s attached journal receiver

along with the system-created journal entries.

 Commitment control

 “JKLPROD” on page 93

JKLPROD is the system that JKL uses for all of their customer orders and where their business

applications are installed (inventory control, customer orders, contracts and pricing, accounts

receivable). The information about this server is extremely critical to their business and changes often.

 “JKLDEV” on page 94

JKLDEV is JKL’s development server. Though it does not require 24x7 availability, the data on it

represent many person hours of work by the developers. Therefore it is important that in the event of

a crash, the system be brought to a current state. Also, since it is a development server, changes to the

data occur often.
 Related reference

22 IBM Systems - iSeries: Journal Management

|

|
|
|
|

|

|
|
|
|

Work with triggers and contraints

Reasons to journal access paths:

If you journal access paths, the system can use the journal entries to recover access paths instead of

rebuilding them completely.

 When your server ends abnormally, perhaps because of a power interruption, the next IPL can take much

longer than a normal IPL. Rebuilding access paths contributes to this long IPL time. When you perform

an IPL after an abnormal end, the system rebuilds access paths that were exposed, except those access

paths that are specified as MAINT(*REBLD) when you create the file. An access path is exposed if

changes have been made to it that have not been written to the disk.

If you journal access paths, the system can use the journal entries to recover access paths instead of

rebuilding them completely. This reduces the time it takes to IPL after the system ends abnormally.

Access path journaling is strictly for the purpose of server recovery during an IPL. You do not use access

path journal entries when you are applying journal changes to recover a file.

If certain access paths and their underlying files are critical to your operation, you want to ensure that

these files are available as soon as possible after the system ends abnormally. You can choose to journal

these access paths. This is called explicit access path journaling.

Explicit access path journaling differs system-managed access-path protection (SMAPP) in that with

SMAPP you cannot control which access paths the system chooses to protect. Therefore, if the system

does not protect the access path that you consider critical to meet your target recovery times, you must

explicitly journal that access path.

If you choose to journal an access path, remember the following:

v You can journal an access path for a physical file only if the physical file has a keyed access path or an

index created by a referential constraint.

v Before you start journaling an access path, you must journal all the underlying physical files to the

same journal.

v You can journal only access paths that are defined as MAINT(*IMMED) or MAINT(*DLY).

v Some access paths with international components for unicode (ICU) sort sequence tables are too

complex to be journaled. You can journal access paths with other sort sequence tables, and many of the

access paths with ICU sort sequence tables.

The System-managed access-path protection topic has detailed information about SMAPP.

 Related concepts

 “SMAPP and access path journaling” on page 8
In addition to using system-managed access path protection (SMAPP), you can choose to journal some

access paths yourself by using the Start Journaling Access Path (STRJRNAP) command. This is called

explicit journaling.

 “System-managed access-path protection” on page 4

System-managed access-path protection (SMAPP) allows you to use some of the advantages of

journaling without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart

your system after an abnormal end.

 “JKLPROD” on page 93

JKLPROD is the system that JKL uses for all of their customer orders and where their business

applications are installed (inventory control, customer orders, contracts and pricing, accounts

receivable). The information about this server is extremely critical to their business and changes often.

 “JKLDEV” on page 94

JKLDEV is JKL’s development server. Though it does not require 24x7 availability, the data on it

Journal management 23

|
|
|

represent many person hours of work by the developers. Therefore it is important that in the event of

a crash, the system be brought to a current state. Also, since it is a development server, changes to the

data occur often.
 Related tasks

 “Journal access paths” on page 65

After you have started journaling for physical files, you can set up explicit journaling of access paths.

Reasons to journal before-images:

When you journal an object, the system always writes an after-image for every change that is made. You

can request that the system write before-image journal entries for database files and data areas. All other

object types only journal after-images. This significantly increases the auxiliary storage requirements for

journaling.

 However, you can choose to journal before-images for these reasons:

v Before-images are required for a backout recovery, where you remove journal changes with the Remove

Journaled Changes (RMVJRNCHG) command rather than applying journal changes to a restored copy

of an object. Backout recovery is often complex, particularly if multiple users and programs are

accessing the same object. It is most commonly used when new applications or programs are being

tested.

v For database physical files, before-images are required to use the Compare Journal Images

(CMPJRNIMG) command. This command highlights the differences between the before-images and

after-images. It is sometimes used to audit changes to a database file.

v For database physical files, if you want a copy of the record that is deleted to be part of the deleted

record journal entry information, you must specify before-images.

v Commitment control requires before-images for the system to roll back uncommitted changes. When

you open a database file under commitment control, the system automatically journals both

before-images and after-images while the commitment definition is active. If you normally journal only

after-images, the system writes before-images only for the changes made under commitment control. If

the system initiates the journaling of before-images, you cannot use them to remove journaled changes.

Commitment control does not support integrated file system objects, data areas, or data queues.

v Access path journaling also requires before-images for the system to use for IPL recovery. When you

journal access paths, or the system journals an access path to provide system-managed access-path

protection, the system will automatically journal both before and after-images. If you normally journal

only after-images, the system also writes before-images if you are journaling the access path.

You can select before-images on an object-by-object basis. You specify whether you want after-images or

both when you start journaling for a database file or a data area. After you start journaling a database file

or a data area, you can use the Change Journal Object (CHGJRNOBJ) command to change whether you

are journaling before-images.

 Related concepts

 “System-managed access-path protection” on page 4

System-managed access-path protection (SMAPP) allows you to use some of the advantages of

journaling without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart

your system after an abnormal end.
 Related tasks

 “Journal database physical files (tables)” on page 62

When you start journaling a physical file (table), you specify whether you want after-images saved, or

both before-images and after-images.

 “Journal data areas and data queues” on page 66

When you start journaling for a data area or a data queue, the system writes journal entries for all

changes to the data area or data queue.
 Related reference

24 IBM Systems - iSeries: Journal Management

Remove Journaled Changes (RMVJRNCHG) command

 Compare Journal Images (CMPJRNIMG) command

 Change Journaled Object (CHGJRNOBJ) command

Plan for journal use of auxiliary storage

If you are journaling an object, journal management writes a copy of every object change to the journal

receiver. It writes additional entries for object level activity, such as opening and closing the object,

adding a member, or changing an object attribute. If you have a busy system and journal many objects,

your journal receivers can quickly become very large.

The maximum size for a single journal receiver varies. It depends on how the system allocates the journal

receiver across multiple disk arms. The maximum size ranges from approximately 1.9 GB to 1.0 TB

depending on what value you specified for the associated journal’s receiver size option.

To avoid possible problems with a journal receiver exceeding the maximum size allowed on the system,

specify a threshold for the receiver of no more than 900 000 000 KB if you specified a journal receiver

maximum-size option for the associated journal. Otherwise, specify a threshold of no more than

1 441 000 KB.

The following topics provide more information about how journal management affects auxiliary storage:

v Functions that increase the journal receiver size

v Methods to estimate the size of a journal receiver

v Journal receiver calculator

v Methods to reduce the storage that journal receivers use

v Determine the type of disk pool in which to place journal receivers

v Journals and independent disk pools

 Related concepts

 “Receiver size options for journals” on page 45

A journal receiver holds journal entries that you might use for recovery and entries that the system

might use for recovery. For example, you might use record level entries, such as database record

changes, and file level entries, such as the entry for opening or closing a file. Also, the system writes

entries that you never see or use, such as entries for explicitly journaled access paths, for SMAPP, or

for commitment control.

 “Threshold (disk space) for journal receivers” on page 36
When you create a journal receiver with iSeries Navigator or the Create Journal Receiver

(CRTJRNRCV) command, you specify a disk space threshold that indicates when you want the system

to warn you or take action.

Frequently asked questions about journaling and disk arm usage:

Journaling affects the disk arms that store the journal receiver.

 How the journal receiver affects the disk arm depend on several factors:

v The threshold setting you are using for your journal receiver.

v Whether or not you are using a maximum receiver-size option.

v The way in which the system writes journal entries to disk.

The following are frequently asked questions about journaling and disk arm usage:

“How many arms in my disk unit will journaling use?” on page 26

“Which journal parameters and settings affect the number of the disk arms the journal receiver uses?” on

page 26

Journal management 25

“Why is the system not using the new disk arms I added to my disk pool?”

“Why are some disk arms used by journal receivers noticeably busier than the others and what can I do

to spread out the usage?” on page 27

How many arms in my disk unit will journaling use?

How many disk arms the journal receiver uses depends on your threshold value and whether you use a

maximum receiver-size option. When you create a journal receiver and attach it to a journal that does not

specify a maximum receiver-size option, the system spreads the journal receiver on up to 10 disk arms. If

you use a maximum receiver-size option, the system spreads the journal receiver on up to 100 disk arms.

Some rules that the system uses when determining the number of disk arms are as follows:

v The system cannot use more disk arms than are available in your disk pool.

v The system will not use fewer than 10 disk arms if that many arms are available.

You can use the following formula to determine how many disk arms you will use:

Number of disk arms = Journal receiving threshold setting / 64 MB

For more information about disk arm use and journaling see Striving for Optimal Journal Performance on

DB2® Universal Database for iSeries.

Back to questions

Which journal parameters and settings affect the number of the disk arms the

journal receiver uses?

The threshold for the journal receiver and whether you use a maximum receiver-size option have the

largest effect on how many disk arms the journal receiver uses. If you have a system which is before

V5R2, removing internal entries also affects the number of disk arms that are used.

Back to questions

Why is the system not using the new disk arms I added to my disk pool?

There can be a several reasons. First, to use the newly added disk arms, you must perform a change

journal operation to attach a new journal receiver. Also, the system does not necessarily use all of the

disk arms in a disk pool. If you are not using a maximum receiver-size option, the most disk arms the

system will spread the receiver over is ten. The number of disk arms the receiver uses also depends on

the threshold you use for your journal receiver. If you use a maximum receiver-size option and increase

your threshold, it is more likely that your new disk arm will be used.

If you use system-managed access-path protection (SMAPP), the system generates internal journal entries

to protect the access paths for database files. If you have not upgraded to at least V5R2, setting your

journal receiver to remove internal entries is an issue if you are not producing these internal entries.

Before V5R2, removing internal entries can steal disk arms from the normal journal entries. For example,

if you have six disk arms in the disk pool housing your journal receiver and remove internal entries, two

arms are dedicated to the internal entries and four arms are used for your regular journal entries. If you

do not produce any internal entries, those two arms remained idle. For V5R2 and later, this is not an

issue.

For more information about disk arm use and journaling see Striving for Optimal Journal Performance on

DB2 Universal Database for iSeries.

Back to questions

26 IBM Systems - iSeries: Journal Management

http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open

Why are some disk arms used by journal receivers noticeably busier than the

others and what can I do to spread out the usage?

The journal receivers probably use some disk arms more than other because of the way journal

management writes journal entries to disk. When the system produces journal entries, journal

management stores the journal entries in memory. When it is ready, journal management sends the

journal entries to a disk arm in one group. When the next group of journal entries are ready, journal

management sends the entries to the next disk arm. Journal management continues in this sequential

manner until all of the disk arms it uses have received a group of journal entries. The cycle then repeats.

You can spread out the usage by increasing your threshold and using a maximum receiver-size option.

For more information about disk arm use and journaling see Striving for Optimal Journal Performance on

DB2 Universal Database for iSeries.

Back to questions

 Related concepts

 “Journal management and system performance” on page 16

Journal management prevents transactions from being lost if your system ends abnormally or has to

be recovered. To do this, journal management writes changes to journaled objects immediately to the

journal receiver in auxiliary storage. This increases the disk activity on your system and can have a

noticeable affect on system performance. Journaling also increases the overhead associated with

opening objects and closing objects.

 “Threshold (disk space) for journal receivers” on page 36
When you create a journal receiver with iSeries Navigator or the Create Journal Receiver

(CRTJRNRCV) command, you specify a disk space threshold that indicates when you want the system

to warn you or take action.

 “Receiver size options for journals” on page 45

A journal receiver holds journal entries that you might use for recovery and entries that the system

might use for recovery. For example, you might use record level entries, such as database record

changes, and file level entries, such as the entry for opening or closing a file. Also, the system writes

entries that you never see or use, such as entries for explicitly journaled access paths, for SMAPP, or

for commitment control.

Functions that increase the journal receiver size:

Some optional functions available with journal management can significantly increase auxiliary storage

requirements.

 You can select to journal both before-images and after-images. The system uses more storage if you select

both before-images and after-images, although storage use is not necessarily doubled. If you journal

access paths, the before-images and after-images are written to the journal receiver when a database file is

updated. Only after-images are written when a database file is added (write operation) or deleted.

Neither the before-image nor after-image is deposited into the journal if the after-image is exactly the

same as the before-image.

Using Fixed-length options for journal entries can also increase auxiliary storage requirements. The

additional storage that fixed-length options use is similar to the extra space that is used by journaling

both before-images after-images.

The system requires additional space to journal access paths. The space required depends on the

following items:

v How many access paths are journaled.

v How often you change the access paths. When you update a record in a database file, you cause an

access path journal entry only if you update a field included in the access path.

Journal management 27

http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open

v The method used to update access paths. More journal entries are written if you update access paths

randomly than if you update them in ascending or descending sequence. Doing a mass change to an

access path field, such as a date change, causes the fewest journal entries.

If you are using system-managed access-path protection and you journal database files, the system uses

the same journal receiver to protect access paths for that file. This also increases the size of your journal

receivers.

The information in Methods to estimate a journal receiver will help you predict your requirements for

auxiliary storage.

 Related concepts

 “Fixed-length options for journal entries” on page 53

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change

Journal (CHGJRN) commands to audit security related activity for journaled objects on your system.

 “System-managed access-path protection” on page 4

System-managed access-path protection (SMAPP) allows you to use some of the advantages of

journaling without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart

your system after an abnormal end.
 Related tasks

 “Methods to estimate the size of a journal receiver”

You can use the methods below to estimate the effect a journal receiver will have on auxiliary storage.

Methods to estimate the size of a journal receiver:

You can use the methods below to estimate the effect a journal receiver will have on auxiliary storage.

 The actual auxiliary storage used will be somewhat larger because the system writes additional entries

for such actions as opening and closing objects unless you to omit open and close journal entries when

start journaling for database physical files or integrated file system objects.

 Related concepts

 “Functions that increase the journal receiver size” on page 27

Some optional functions available with journal management can significantly increase auxiliary

storage requirements.

 “Minimized entry-specific data for journal entries” on page 49

On the Create Journal (CRTJRN) and Change Journal (CHGJRN) commands, you can specify to allow

for the deposit of minimized journal entries. This will decrease the size of your journal entries.

 “Threshold (disk space) for journal receivers” on page 36
When you create a journal receiver with iSeries Navigator or the Create Journal Receiver

(CRTJRNRCV) command, you specify a disk space threshold that indicates when you want the system

to warn you or take action.
 Related tasks

 “Journal database physical files (tables)” on page 62

When you start journaling a physical file (table), you specify whether you want after-images saved, or

both before-images and after-images.

 “Journal integrated file system objects” on page 63

You can journal the following integrated file system objects if they are in the ″root″(/), QOpenSys, and

user-defined file systems:

 “Set up journaling” on page 56

Provides instructions on how to set up journals and journal receivers.

 “Start journaling” on page 61

This topic provides information about how to start journaling for all object types.
 Related reference

28 IBM Systems - iSeries: Journal Management

Display Journal Receiver Attributes (DSPJRNRCVA) command
 Related information

 Journal receiver calculator

Method 1- Journal receiver calculator:

Use Journal receiver calculator. The Journal receiver calculator provides an easy way for you to estimate

the size of your journal receiver without setting up journaling.

The calculator assumes the following:

v You are journaling after-images only.

v You are using a single journal receiver for an entire day’s transactions.

v You are journaling database physical files only. It does not include estimates for access path journaling,

integrated file system objects, data areas, data queues, or user-created entries.

v You are not minimizing entry-specific data for the files.

Method 2 - Running a test:

Another method for estimating the size of the journal receiver is to run a test. This method is more

accurate because it includes all journal entries. Additionally, this method will work for any object type

which can be journaled, not just database physical files unlike method one. To use this method, you must

either have journaling set up already or you must set it up.

If you are already using journaling, skip steps 1 and 2 below. Instead, issue a Display Journal Receiver

Attributes (DSPJRNRCVA) command before the time period so you can compare sizes from the beginning

of the period to the end.

This method assumes that the same receiver is used during the whole test. If there is a change journal to

attach a new journal receiver during the test, you must include the sizes of all the receivers.

1. Set up journaling by creating the receiver and journal.

2. Start journaling for all the objects that you plan to journal.

3. Choose a time period (1 hour) with typical transaction rates.

4. After one hour, use the Display Journal Receiver Attributes (DSPJRNRCVA) command to display the

size of the receiver.

5. Multiple the size by the number of hours that your system is active in a day.

Estimate the size of the journal receiver manually:

Use this procedure to estimate the size of your journal receiver.

 This procedure assumes the following:

v You are journaling after-images only.

v You are using a single journal receiver for an entire day’s transactions.

v You are journaling database physical files only. It does not include estimates for access path journaling,

integrated file system objects, data areas, data queues, or user-created entries.

v You are not using the MINENTDTA parameter to minimize entry-specific data for the files.

v Most of the journal entries are record-level (changes to records in a file) instead of object-level (like

renaming or moving objects, ALTER TABLE requests, creating and deleting objects, etc).

Follow the steps below to estimate the size of a journal receiver:

Journal management 29

rzakisizecalc.htm

1. Determine the average record length for all the files that you plan to journal. If the record lengths

vary significantly and the information is available, use a weighted average based on the relative

number of transactions per file.

2. If you are not minimizing the fixed-length portion of the journal entry (not specifying

RCVSIZOPT(*MINFIXLEN) on the CRTJRN command), you can specify the data that is included in

the fixed-length portion (FIXLENDTA) of the journal entries. Find the sum of the bytes for the options

you are using. Select the options from the following list:

 *JOB = 26 bytes

 *USR = 10 bytes

 *PGM = 10 bytes

 *PGMLIB = 22 bytes

 *SYSSEQ = 8 bytes

 *RMTADR = 20 bytes

 *THD = 8 bytes

 *LUW = 27 bytes

 *XID = 140 bytes
3. Estimate the number of transactions for a day.

4. The system-created portion of a journal entry is approximately 50 bytes. (It varies by the type of

journal entry.)

5. Estimate the number bytes of auxiliary storage needed for one day’s transactions by using the

following formula:

Total bytes needed = (a+b+50)*c

where:

 a = the average record length of files (step 1)

 b = sum of values selected for FIXLENDTA (step 2)

 c = number of transactions for a day (step 3)

For example:

1. The average record length for journaled files is 115 bytes.

2. *JOB, *USR, and *PGM options of FIXLENDTA are selected. Their sum is 46 bytes.

3. The number of journaled transactions per day is 10 000.

4. The total bytes needed to journal after-images for a day is:

(115+46+50) * 10 000 = 2 110 000

 Related concepts

 “Fixed-length options for journal entries” on page 53

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change

Journal (CHGJRN) commands to audit security related activity for journaled objects on your system.

Methods to reduce the storage that journal receivers use:

Reduce the size of journal entries by methods such as journaling after-images only, or specifying certain

journaling options including the Fixed Length Data (FIXLENDTA) option on the Create Journal (CRTJRN)

and Change Journal (CHGJRN) commands.

 Methods to reduce the storage needed for journaling are as follows:

Journal after-images only

Unless you are using commitment control, after-images are sufficient for your recovery needs.

When you start journaling, the default is to journal after-images only. You can use the Change

Journal Object (CHGJRNOBJ) command to stop journaling before-images without ending

journaling for that object.

30 IBM Systems - iSeries: Journal Management

Omit the journal entries for open, close or force operations to journaled objects

You can omit these journal entries with the OMTJRNE parameter on the Start Journal Physical file

(STRJRNPF) or Start Journal (STRJRN) command. For database files (tables), you can select

Exclude open and close entries when you start journaling with iSeries Navigator. For integrated

file system objects, ensure that Include open, close, and synchronization entries is not selected

when you start journaling with iSeries Navigator. You can also use the CHGJRNOBJ command to

start omitting these journal entries for objects that you are currently journaling.

 Omitting these journal entries can have a noticeable effect on both space and performance if an

application opens, closes, or forces objects frequently. Also, any time one looks up an object in a

directory, that can cause an open and close entry to occur for that directory. This can be a lot of

additional journal entries if they are not omitted from the directory objects. However, if you omit

the journal entries for opening and closing objects, you cannot perform the following tasks:

v Use open and close boundaries when applying or removing journal changes (the TOJOBO and

TOJOBC parameters).

v Audit which users open particular objects.

Swap journal receivers, save them, and free storage more frequently

Frequently saving and freeing storage for journal receivers help reduce the auxiliary storage that

the receivers use. However, moving journal receivers off-line increases your recovery time

because receivers have to be restored before journal changes can be applied.

Specify receiver size options that can decrease journal receiver size

Specifying the following receiver size options can help reduce journal receivers size:

v Remove internal entries. This causes the system to periodically remove internal entries that it

no longer needs, such as access path entries.

v Minimize the fixed-length portion the journal entry. This causes the system to no longer

deposit all of the data selectable by the FIXLENDTA parameter in the journal entry, thus

reducing the size of the entries. However, if you require this journal entry information for audit

or other uses, you cannot use this storage saving technique. Additionally, it reduces the options

available as selection criteria used on the following commands and API:

– Display Journal (DSPJRN) command

– Receiver Journal Entry (RCVJRNE) command

– Retrieve Journal Entry (RTVJRNE) command

– Compare Journal Images (CMPJRNIMG) command

– Apply Journaled Changes (APYJRNCHG) command

– Apply Journaled Changes Extend (APYJRNCHGX) command

– Remove Journaled Changes (RMVJRNCHG) command

– Retrieve Journaled Entries (QjoRetrieveJournalEntries) API

Minimized entry-specific data for journals

Minimizing entry-specific data allows the system to write data to the journal entries in a

minimized format.

Select the fixed-length options for data carefully

Fixed-length options can quickly increase the size of your journal receiver. The journal receiver

calculator can help you determine the effect of fixed-length options on your auxiliary storage.

If you are journaling a physical file, specify SHARE(*YES) for the file.

You can do this using the Create Physical File (CRTPF) command or the Change Physical File

(CHGPF) command. The system writes a single open and close entry regardless of how often the

shared open data path (ODP) is opened or closed within a routing step.
 Related concepts

 “Receiver size options for journals” on page 45

A journal receiver holds journal entries that you might use for recovery and entries that the system

Journal management 31

|
|
|
|
|

might use for recovery. For example, you might use record level entries, such as database record

changes, and file level entries, such as the entry for opening or closing a file. Also, the system writes

entries that you never see or use, such as entries for explicitly journaled access paths, for SMAPP, or

for commitment control.

 “Fixed-length options for journal entries” on page 53

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change

Journal (CHGJRN) commands to audit security related activity for journaled objects on your system.

 “Remote journals and auxiliary storage” on page 312

Auxiliary storage will be required on both the source and target systems. The amount that is required

will be about the same on both systems.
 Related tasks

 “Factors that affect remote journal performance” on page 310

There are two main performance objectives for the remote journal function. To provide a timely

delivery of journal entries to a target system and to minimize impacts to the journaling throughput on

the source system.
 Related information

 Journal receiver calculator

Determine the type of disk pool in which to place journal receivers:

Use disk pools (auxiliary storage pool) to control which objects are allocated to which groups of disk

units. If you are journaling many active objects to the same journal, the journal receiver can become a

performance bottleneck. One way to minimize the performance impact of journaling is to put the journal

receiver in a separate disk pool. This also provides additional protection because your objects are on

different disk units from the journal receiver, which contains a copy of changes to the objects.

 iSeries servers have several types of disk pools:

System disk pool

The system disk pool contains the operating system. It can also contain user libraries and objects.

The system disk pool is always disk pool number 1.

Basic disk pool

Basic disk pools are disk pool numbers 2 through 32. A basic disk pool can be a library or a non

library disk pool. The differences are as follows:

v A library disk pool contains one or more user libraries or user-defined file systems. It does not

contain the operating system. This is the current recommended method of configuring user

disk pools.

v A non library disk pool contains no user libraries or user-defined file systems. It may contain

journals, journal receivers, and save files. If you place a journal receiver in a non library basic

disk pool, the journal must be in either the system disk pool or the same non library disk pool.

The journaled objects must be in the system disk pool.

Independent disk pool

Independent disk pools are disk pools 33 through 255. If you use independent disk pools, you

can only put journals and journal receivers on independent disk pools that are library capable. If

you are going to place the journal receiver in a switchable independent disk pool, the journal

receiver, the journal, and journaled object must be in the same disk pool group (though they do

not have to be in the same disk pool).

 When disk pools were first introduced, they were called auxiliary storage pools (ASPs). Only non library

user ASPs were available. Many systems still have this type of ASP. However, recovery steps are more

complex for non library user ASPs. Therefore, for systems implementing journaling for the first time,

library disk pools are recommended.

32 IBM Systems - iSeries: Journal Management

rzakisizecalc.htm

Journal management and independent disk pools has more specific information about using journaling

with independent disk pools. Manage disk units in disk pools has specific information about disk pools.

The Independent disk pools topic has detailed information about setting up independent disk pools.

 Related concepts

 “Journal management and independent disk pools”

Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file

system (UDFS) independent disk pools or library-capable independent disk pools.

 Manage disk units in disk pools

 Independent disk pools

 “Object assignment to journals” on page 55

You can use one journal to manage all the objects you are journaling. Or, you can set up several

journals if groups of objects have different backup and recovery requirements. Every journal has a

single attached receiver. All journal entries for all objects being managed by the journal are written to

the same journal receiver.

 “Journal receiver disk pool considerations” on page 313
The receiver configuration is the disk pool the receiver resides in, and how the data for the receiver is

spread across the disk arms within that disk pool.

Journal management and independent disk pools:

Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file

system (UDFS) independent disk pools or library-capable independent disk pools.

 UDFS and library-capable independent disk pools

UDFS independent disk pools are independent disk pools that only have a user-defined file system.

UDFS independent disk pools cannot store journals and receivers. In contrast to UDFS disk pools,

library-capable independent disk pools have libraries and are capable of storing journals and receivers. If

you plan to journal objects on an independent disk pool, you must use a library-capable independent

disk pool.

Note: A library-capable independent disk pool can have integrated file system objects. You can also

journal integrated file system objects on a library-capable independent disk pool.

You cannot journal objects on a UDFS independent disk pool.

Switchable and dedicated independent disk pools

Independent disk pools can also be switchable or dedicated. Dedicated independent disk pools are used

on only one system. Switchable independent disk pools can be switched between systems. If they are

library-capable, you can journal objects on either switchable or dedicated independent disk pools.

Disk pool groups

You can group switchable independent disk pools into disk pool groups. Disk pool groups consist of one

primary disk pool and one or more secondary disk pools. If you are going to journal an object in a disk

pool group, the object and the journal must be in the same disk pool. The journal receiver can be in a

different disk pool, but must be in the same disk pool group as the journal and journaled object.

Rules for journaling objects on independent disk pools

Use the following rules when journaling objects on independent disk pools:

v The disk pool must be available on the system on which you are working.

Journal management 33

v The disk pool must be a library-capable disk pool. You cannot journal an object on a UDFS

independent disk pool.

v In a disk pool group, the journaled object and the journal must be in the same disk pool.

v In a disk pool group, the journal receiver can be in a different disk pool, but must be in the same disk

pool group.

Manage disk units in disk pools has information about managing disk pools. The Independent disk pools

topic has information about setting up and managing independent disk pools.

 Related concepts

 “Plan which objects to journal” on page 20

When you plan which objects to journal, consider the following:

 “Determine the type of disk pool in which to place journal receivers” on page 32

Use disk pools (auxiliary storage pool) to control which objects are allocated to which groups of disk

units. If you are journaling many active objects to the same journal, the journal receiver can become a

performance bottleneck. One way to minimize the performance impact of journaling is to put the

journal receiver in a separate disk pool. This also provides additional protection because your objects

are on different disk units from the journal receiver, which contains a copy of changes to the objects.

 User-defined file system

 Disk management

 Independent disk pools

 “Library redirection with remote journals” on page 302
Library redirection provides a means for remote journals and any of their associated journal receivers

to optionally reside in differently named libraries on the target system from the corresponding local

journal and journal receivers on the local system.

Plan setup for journal receivers

The following topics provide information to plan configuration for journal receivers. They provide

information about each option that you can select for journal receivers.

Disk pool assignment for journal receivers:

Placing journal receivers in a different disk pool from the journaled objects may prevent performance

bottlenecks.

 Before you place the journal receiver in a library basic disk pool, you must first create the library for the

journal receiver in the disk pool.

You can only place a journal receiver in an independent disk pool if the independent disk pool is library

capable. If you are placing the journal receiver in a switchable independent disk pool, you must place it

in the same disk pool group as the journal and the object you are journaling. Manage disk units in disk

pools has more information about disk pools. The Independent disk pools topic has detailed information

about independent disk pools.

If you are creating the journal receiver with the Create Journal Receiver (CRTJRNRCV) command, you

can use the ASP parameter to allocate storage space for the journal receiver in a different disk pool (ASP)

than the library to which you assigned the journal receiver. Do this only if the disk pool is a basic

nonlibrary disk pool.

 Related concepts

 Manage disk units in disk pools

 Independent disk pools
 Related reference

 Create Journal Receiver (CRTJRNRCV) command

34 IBM Systems - iSeries: Journal Management

Library assignment for journal receivers:

When you create a journal receiver, you specify a qualified name that includes the library for the receiver.

The library must exist before you create the journal receiver.

 You can assign a library from either the New Journal dialog in iSeries Navigator or with the Create

Journal Receiver (CRTJRNRCV) command.

 Related reference

 Create Journal Receiver (CRTJRNRCV) command

Naming conventions for journal receivers:

When you create a journal receiver either with iSeries Navigator or the Create Journal Receiver

(CRTJRNRCV) command, you assign a name to the journal receiver.

 When you use iSeries Navigator or the Change Journal (CHGJRN) command to detach the current

journal receiver and create and attach a new receiver, you can assign a name or have the system generate

one. If you use system journal-receiver management, the system generates the name when it detaches a

receiver and creates and attaches a new one.

If you plan to have more than one journal on your system, use a naming convention that links each

journal with its associated receiver.

To simplify recovery and avoid confusion, make each journal receiver name unique for your entire

system, not unique within a library. If you have two journal receivers with the same name in different

libraries and they both become damaged, the reclaim storage operation renames both journal receivers

when they are placed in the QRCL library. When you use the Move Object (MOVOBJ) command for a

journal or journal receiver in the QRCL library, you can move an object from QRCL back to its original

library. You cannot change the name of the journal or the journal receiver.

When you detach the receiver from the journal and attach a new one, you can have the system generate

the name for the new receiver by incrementing the previous receiver name. If you use system

change-journal management by specifying MNGRCV(*SYSTEM) for the journal, the system also generates

a new receiver name when it changes journal receivers. The default for the Create Journal (CRTJRN)

command is to use system change-journal management.

The following table shows the rules the system uses to generate a new receiver name. It applies these

rules in the sequence shown in the table.

 Current name System action Example

Last 4 characters are numeric. Adds 1 DSTR0001 to DSTR0002

Last character is not numeric. Truncates the name to 6 characters, if

necessary. Adds 0001

DSTRCVR to DSTRCV0001

Last character is numeric. Last

non-numeric character is in position 5

or less.

Adds 1 DSTR01 to DSTR02

Last character is numeric. Last

non-numeric character is in position 6

or higher.

Truncates to 6 characters, if necessary.

Adds 0001.

DSTRCVR01 to DSTRCV0001

If you restore a journal to your system, the system creates a new journal receiver and attaches it to the

journal. The system generates a name for the new journal receiver based on the name of the journal

receiver that was attached when the journal was saved. The following table shows the rules the system

uses to generate a new receiver name when you restore a journal:

Journal management 35

Current name System action Example

Last 4 or more characters are

numeric.

Adds 1 to the leftmost digit of the

numeric portion.

DSTR0001 to DSTR1001

Last character is not numeric. Truncates to six characters, if

necessary. Adds 1000.

DSTRCVR to DSTRCV1000.

Ending numeric portion is less than 4

digits.

Pads the left portion of the numeric

portion with zeroes to create a 4-digit

suffix. Adds 1 to the leftmost digit.

DSTRCV01 to DSTRCV1001.

If the name generated by the system is the same as the name of a journal receiver already on the system,

the system adds 1 to the name until it creates a name that is not a duplicate. For example, assume a

journal receiver named RCV1 was attached when the journal was saved. When the journal is restored, the

system attempts to create a new journal receiver named RCV1001. If that name already exists, the system

tries the name RCV1002.

The following table shows examples of how the system generates new receiver names:

 Last journal receiver known to the

system1 Created by change journal2 Created by restoring journal

A A0001 A1000

ABCDEF ABCDEF0001 ABCDEF1000

ABCDEFG ABCDEF00013 ABCDEF10003

ABCDEF1234 ABCDEF1235 ABCDEF2234

A0001 A0002 A1001

A1 A2 A1001

A9 A10 A1009

ABCDEF7 ABCDEF00013 ABCDEF10073

ABCDEF9999 Error4 ABCDEF0999

A1B15 A1B16 A1B1015

Notes:

1If the journal exists on the system, the last journal receiver known to the system is the journal receiver that is

currently attached. If the journal does not exist, the last journal receiver known to the system is the journal receiver

that was attached when the journal was saved.

2Either when a user issues the CHGJRN command with JRNRCV(*GEN) or when the journal is changed by system

change-journal management.

3The last character of the current name is dropped because it exceeds 6 characters.

4If the journal is set up as MNGRCV(*SYSTEM), the receiver name wraps around to 0’s (ABCDEF0000). If the

journal is set up as MNGRCV(*USER), an error occurs because adding 1 to 9999 causes an overflow condition.

 Related concepts

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

Threshold (disk space) for journal receivers:

36 IBM Systems - iSeries: Journal Management

|

When you create a journal receiver with iSeries Navigator or the Create Journal Receiver (CRTJRNRCV)

command, you specify a disk space threshold that indicates when you want the system to warn you or

take action.

 On the CHGJRN command, you can use the Journal Receiver Threshold (THRESHOLD) parameter to

change the next receiver’s threshold when specified in combination with JRNRCV(*GEN).

When the receiver reaches that threshold, the system takes the action specified in the manage receiver

(MNGRCV) parameter for the journal. The default storage threshold is 1 500 000 KB.

In specifying a storage threshold, you need to balance the amount of space that you have available with

the additional system resources that are used to change journal receivers frequently.

 Related concepts

 “Plan for journal use of auxiliary storage” on page 25

If you are journaling an object, journal management writes a copy of every object change to the

journal receiver. It writes additional entries for object level activity, such as opening and closing the

object, adding a member, or changing an object attribute. If you have a busy system and journal many

objects, your journal receivers can quickly become very large.

 “Frequently asked questions about journaling and disk arm usage” on page 25

Journaling affects the disk arms that store the journal receiver.

 “Receiver size options for journals” on page 45

A journal receiver holds journal entries that you might use for recovery and entries that the system

might use for recovery. For example, you might use record level entries, such as database record

changes, and file level entries, such as the entry for opening or closing a file. Also, the system writes

entries that you never see or use, such as entries for explicitly journaled access paths, for SMAPP, or

for commitment control.

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

 “Journal message queue” on page 40

When you create or change a journal, you can specify where the system sends messages that are

associated with the journal. In addition, you can create a program to monitor this message queue and

handle any messages associated with the journal. The system also sends messages that are related to

the remote journal function to this message queue.
 Related tasks

 “Methods to estimate the size of a journal receiver” on page 28

You can use the methods below to estimate the effect a journal receiver will have on auxiliary storage.

 “Swap journal receivers” on page 71
An important task for journal management is to swap (or change) journal receivers. You typically

swap journal receivers when they reach their storage threshold. You can swap journal receivers either

with iSeries Navigator or with the Change Journal (CHGJRN) command. If you use system

journal-receiver management, the system changes journal receivers for you.
 Related reference

 Create Journal Receiver (CRTJRNRCV) command
 Related information

 Journal receiver calculator

Base the size on your available auxiliary storage:

This topic lists the steps necessary to determine a receiver threshold, based on the amount of auxiliary

storage available for use.

 Base the size on your available auxiliary storage:

Journal management 37

|
|
|

|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|

|

|

|

|
|

|

rzakisizecalc.htm

1. Calculate the amount of auxiliary storage space that you have available in the user ASP for the

journal receiver.

2. Assign a receiver threshold that is 75 to 80 percent of that space.

Base the size on how often you want to change journal receivers:

This topic lists the steps necessary to determine a receiver threshold, based on how often you want to

change journal receivers.

 Base the size on how often you want to change journal receivers:

1. Use the one of the methods described in Methods to estimate the size of a journal receiver to calculate

how large your receiver can be for a day. If you are just journaling database physical files, you can

use the Journal receiver calculator to estimate the size of your journal receiver.

2. Determine how many times a day you will detach and save the journal receiver.

3. Divide the result of step 1 by the result of step 2. This is your receiver threshold.

Do not make the journal receiver size too small, or the system will spend too much resource changing

journal receivers or sending threshold messages. To avoid possible problems with a journal receiver

exceeding the maximum size allowed on the system, specify a threshold for the receiver of no more than

900 000 000 KB if you specify a maximum receiver-size option for the associated journal. Otherwise,

specify a threshold of no more than 1 441 000 KB.

Manual versus system journal-receiver management discusses options for managing your journal

receivers.

Security for journal receivers:

If a journal receiver has confidential data, someone with authority to that journal receiver could possibly

display that confidential data.

 When you create a journal receiver, you specify the authority that all users on the system have to access

it (public authority). The default authority for the Create Journal Receiver (CRTJRNRCV) command and

iSeries Navigator is *LIBCRTAUT, which means the system uses the value of the create authority

(CRTAUT) parameter for the journal receiver’s library.

When you create a journal receiver with iSeries Navigator, you set permissions (authority) after you

create the journal receiver.

Journal receivers contain copies of changes from all objects being journaled. Someone with access to the

journal receiver could display confidential data. The authority to a journal receiver must be as strict as

the authority for the most confidential object that is being journaled.

You do not need any authority to the journal or to the journal receiver to use an object that is journaled.

Authority to the journal receiver is checked only when using commands that operate directly on the

receiver. The authority you set for the journal receiver has no effect on the people using the journaled

objects. iSeries Security Reference has more information about the authority required to access objects and

perform commands that use journals and journal receivers.

 Related reference

 Create Journal Receiver (CRTJRNRCV) command

Plan setup for journals

The following topics provide information to plan configuration for journals. They provide information

about each option that you can select for journal.

 Related tasks

38 IBM Systems - iSeries: Journal Management

|
|

|

|

|
|

|

|
|
|

|

|

|
|
|
|
|

|
|

“Set up journaling” on page 56

Provides instructions on how to set up journals and journal receivers.

Disk pool assignment for journals:

If you want to place the journal in a library basic disk pool, you must first create the library for the

journal in the disk pool. If you use a library basic disk pool, the journal and all the objects you are

journaling to it must be in the same library basic disk pool.

 You can only place a journal in an independent disk pool if the independent disk pool is library capable.

If you are placing the journal in a switchable independent disk pool, you must place it in the same disk

pool group as the journal receiver associated with the journal. Manage disk units in disk pools has more

information about disk pools. The Independent disk pools topic has information about independent disk

pools.

If you want to place the journal in a non library basic disk pool, you must first create the library for the

journal in the system disk pool. If the journal is in a non library basic disk pool, all the objects being

journaled to it must be in the system disk pool.

If you are creating the journal with the Create Journal (CRTJRN) command, you can use the ASP

parameter to allocate storage space for the journal in a different disk pool (ASP) than the library to which

you assigned the journal. Do this only if the disk pool is a basic nonlibrary disk pool.

 Related concepts

 Manage disk units in disk pools

 Independent disk pools
 Related reference

 Create Journal (CRTJRN) command

Library assignment for journals:

When you create a journal, you specify a qualified name that includes the library for the journal. The

library must exist before you create the journal.

 You can assign a library from either iSeries Navigator or with the Create Journal (CRTJRN) command.

 Related reference

 Create Journal (CRTJRN) command

Naming conventions for journals:

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you assign a

name to it. If you plan to have more than one journal on your system, use a naming convention that

links each journal with its associated receiver.

 To simplify recovery and avoid confusion, make each journal name unique for your entire system, not

unique within a library. If you have two journals with the same name in different libraries and they both

become damaged, the reclaim storage operation renames both journals when they are placed in the QRCL

library. When you use the Move Object (MOVOBJ) command for a journal in the QRCL library, you can

change the name of the library back to the original library name. You cannot change the name of the

journal itself. In this case, you would not be able to recover your journal from QRCL since its name has

been changed.

Journal management 39

|
|
|
|
|
|
|

Naming conventions to ensure restore sequence

Name the libraries for the journals, objects, and journal receivers to ensure that the objects are restored in

the correct order. A naming convention will ensure that the system automatically starts journaling after a

restore operation. To ensure that journaling is automatically started again, the journals must be restored

before the objects being journaled. (If the journals and associated objects are in the same library, then the

system automatically restores the objects in the correct order.)

If you start the name of the library for the journal with a special character, such as #, $, or @, the system

will restore the library for the journal before the library for the objects. This is because in normal sort

sequence, special characters appear before alphabetic characters.

When the journals and associated objects are in different libraries, you must ensure that the objects are

restored in the correct order.

Since independent file system objects do not exist in a library, your restore processing must ensure the

objects are restored in the correct order. That is, you must restore your libraries which contain the

journals before restoring the independent file system objects that were journaled to that journal.

 Related reference

 Create Journal (CRTJRN) command

Journal and journal receiver association:

When you create a journal, you must specify the name of the journal receiver to be attached to it. If you

are using the Create Journal (CRTJRN) command to create the journal, the journal receiver must exist

before you can create the journal.

 The receiver that you attach may not have been previously attached to a different journal or have been

interrupted while being attached to any journal. You can specify up to two journal receivers, but the

system ignores the second receiver.

With iSeries Navigator, you simply create the journal. When you create the journal, iSeries Navigator

creates the journal receiver in the library you specify in the New Journal dialog.

 Related reference

 Create Journal (CRTJRN) command

Journal message queue:

When you create or change a journal, you can specify where the system sends messages that are

associated with the journal. In addition, you can create a program to monitor this message queue and

handle any messages associated with the journal. The system also sends messages that are related to the

remote journal function to this message queue.

 A common use for this message queue is to handle threshold messages. When you create a journal

receiver, you can specify a storage threshold. If you choose to change journal receivers yourself, you can

specify where the system sends messages when the journal receiver exceeds its storage threshold. You can

create a special message queue for this purpose and create a program to monitor the message queue for

message CPF7099. When the message is received, the program can, for example, detach the receiver and

save it.

If you specify that the system manages the journal receiver, the system does not send a threshold

message. Instead, when the system automatically changes the journal receiver, it sends message CPF7020,

which indicates that it successfully detached the journal receiver.

40 IBM Systems - iSeries: Journal Management

There are other messages which are sent to this journal message queue related to processing for the

Delete Receiver (DLTRCV) option of the Create Journal (CRTJRN) command. See Delete journal receivers

for more information.

For iSeries Navigator, you select the message queue in the Advanced Journal Attributes or Journal

Properties dialogs. For the character-based interface, you can select the message queue with the Create

Journal (CRTJRN) or Change Journal (CHGJRN) command.

See Threshold (disk space) for journal receivers for information about storage threshold. See Manual

versus system journal-receiver management for methods to specify journal receiver management.

 Related concepts

 “Threshold (disk space) for journal receivers” on page 36
When you create a journal receiver with iSeries Navigator or the Create Journal Receiver

(CRTJRNRCV) command, you specify a disk space threshold that indicates when you want the system

to warn you or take action.

 “Manual versus system journal-receiver management”

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.
 Related tasks

 “Delete journal receivers” on page 77

Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal

management task is to delete journal receivers after you no longer need them.
 Related reference

 Create Journal (CRTJRN) command

 Change Journal (CHGJRN) command

Manual versus system journal-receiver management:

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

 The default for the CRTJRN command is to have the system manage the journal receivers.

User journal-receiver management

If you specify user journal receiver management, you are responsible for changing the journal receiver

when it approaches its storage threshold. If you choose this option, you can have the system send a

message to a message queue when the journal receiver approaches its storage threshold.

System journal-receiver management

If you use system journal-receiver management, you can avoid having to do some journal management

chores. However, if you are journaling for recovery purposes, you need to ensure that you save all

journal receivers that have not been saved, not just the currently attached receiver. Also, if you are

journaling for recovery purposes, be sure to specify that the system does not automatically delete

receivers when no longer needed. Automatic deletion of journal receivers describes this option.

If you use system journal-receiver management, you must ensure that your environment is suitable and

that you regularly check the QSYSOPR message queue and the message queues assigned to your

journals.

If the system cannot complete the change journal operation because it cannot obtain the necessary locks,

it retries every 10 minutes (or as specified by the MNGRCVDLY parameter). It sends messages (CPI70E5)

to the journal’s message queue and to the QSYSOPR message queue. If this occurs, you may want to

Journal management 41

determine why the operation cannot be performed and either correct the condition or swap the journal

receiver your self with iSeries Navigator or the CHGJRN command.

If the system cannot complete the change journal operation for any reason other than lock conflicts, it

temporarily discontinues system journal-receiver management for that journal and sends a message

(CPI70E3) to the message queue assigned to the journal or to the QSYSOPR message queue. This might

occur because a journal receiver already exists with the name that it would generate. Look at the

messages in the QHST job log to determine the problem. After you correct the problem, perform a swap

journal operation to do the following:

v Create a new journal receiver

v Detach the current receiver and attach a new journal receiver

v The system then resumes system journal-receiver management.

System journal-receiver management when you restart the system

When you restart the system or vary on an independent disk pool, the system performs a CHGJRN

command to change the journal receiver and reset the journal sequence number.

Note: If the journal has *MAXOPT3 specified as a receiver size option, the sequence number is not reset

when you restart the system or vary on an independent disk pool unless the sequence number is

approaching the maximum sequence number allowed.

Also, if the journal is attached while a maximum receiver-size option is specified, the system attempts to

perform a CHGJRN command to reset the sequence number when the following is true:

v When the sequence number exceeds 9 900 000 000 if RCVSIZOPT(*MAXOPT1) or RCVSIZOPT

(*MAXOPT2) is in effect for the journal.

v When the sequence number exceeds 18 446 644 000 000 000 000 if RCVSIZOPT(*MAXOPT3) is in

effect for the journal.

For all other journal receivers, the system attempts this CHGJRN when the sequence number exceeds

2 147 000 000.

The system does not reset the journal sequence number when you restart the system or vary on an

independent disk pool if the entries in the receiver may be needed for commitment control recovery.

Delay automatic journal change

If you use the CRTJRN or CHGJRN command, you can use the Manage Receiver Delay Time

(MNGRCVDLY) parameter. When you use system journal-receiver management for a journal, if the

system cannot allocate an object needed to attach a new journal receiver to the journal, it will wait the

length of time that you specify in the MNGRCVDLY parameter before its next attempt to attach the new

journal receiver. If you do not specify this parameter, the system will wait ten minutes, which is the

default.

The following topics have information related to management of journal receivers:

v Automatic deletion of journal receivers

v Threshold (disk space) for journal receivers

v Swap journal receivers

v Receiver size options for journals
 Related concepts

 “Naming conventions for journal receivers” on page 35
When you create a journal receiver either with iSeries Navigator or the Create Journal Receiver

(CRTJRNRCV) command, you assign a name to the journal receiver.

42 IBM Systems - iSeries: Journal Management

“Threshold (disk space) for journal receivers” on page 36
When you create a journal receiver with iSeries Navigator or the Create Journal Receiver

(CRTJRNRCV) command, you specify a disk space threshold that indicates when you want the system

to warn you or take action.

 “Journal message queue” on page 40

When you create or change a journal, you can specify where the system sends messages that are

associated with the journal. In addition, you can create a program to monitor this message queue and

handle any messages associated with the journal. The system also sends messages that are related to

the remote journal function to this message queue.

 “Automatic deletion of journal receivers”

If you choose system journal receiver management, you can also have the system delete journal

receivers that are no longer needed for recovery. You can only specify this if you are using system

journal receiver management.

 “Receiver size options for journals” on page 45

A journal receiver holds journal entries that you might use for recovery and entries that the system

might use for recovery. For example, you might use record level entries, such as database record

changes, and file level entries, such as the entry for opening or closing a file. Also, the system writes

entries that you never see or use, such as entries for explicitly journaled access paths, for SMAPP, or

for commitment control.

 “Manage journals” on page 71

Provides tasks to manage your journaling environment.

 “Work with IBM-supplied journals” on page 88

The operating system and some licensed programs use journals to provide audit trails and assist with

recovery.

 “JKLDEV” on page 94

JKLDEV is JKL’s development server. Though it does not require 24x7 availability, the data on it

represent many person hours of work by the developers. Therefore it is important that in the event of

a crash, the system be brought to a current state. Also, since it is a development server, changes to the

data occur often.

 “Journals that are good candidates for remote journal management” on page 306

Journals that you are currently replicating, or that you plan to replicate, in their entirety to one or

more systems, are excellent candidates for the remote journal function.
 Related tasks

 “Swap journal receivers” on page 71
An important task for journal management is to swap (or change) journal receivers. You typically

swap journal receivers when they reach their storage threshold. You can swap journal receivers either

with iSeries Navigator or with the Change Journal (CHGJRN) command. If you use system

journal-receiver management, the system changes journal receivers for you.

 “Delete journal receivers” on page 77

Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal

management task is to delete journal receivers after you no longer need them.
 Related reference

 Create Journal (CRTJRN) command

Automatic deletion of journal receivers:

If you choose system journal receiver management, you can also have the system delete journal receivers

that are no longer needed for recovery. You can only specify this if you are using system journal receiver

management.

 The system can only evaluate whether a receiver is needed for its own recovery functions, such as

recovering access paths or rolling back committed changes. It cannot determine whether a receiver is

needed to apply or remove journaled changes.

Journal management 43

Attention: Use automatic deletion of journal receivers with care if you use save-while-active operations

to save objects before they reach a commitment boundary. Ensure that you save the journal receivers

before the system deletes them. If an object is saved before it reaches a commitment boundary it can have

partial transactions. To avoid data loss you must have access to the journal receivers that were attached

during the save-while-active operation when you restore the objects with partial transactions.

The system will automatically delete journal receivers if you do one of the following:

v Specify Delete receivers when no longer needed in the iSeries Navigator Advanced Journal Attributes

or Journal Properties dialog.

v Specify DLTRCV (*YES) in the Create Journal (CRTJRN) or Change journal (CHGJRN) commands.

However, even if you select one of the previous items, the system cannot delete the journal receiver if

any of the following conditions is true:

v An exit program that is registered for the Delete Journal Receiver exit point

(QIBM_QJO_DLT_JRNRCV) indicates that the receiver is not eligible for deletion.

v A journal has remote journals associated with it, and one or more of the associated remote journals

does not have a full copy of this receiver.

v The system could not get the appropriate locks that are required to complete the operation.

v The exit program registration facility was not available to determine if any exit programs were

registered.

If you use system delete-receiver support, you must ensure that your environment is suitable. You must

also regularly check the QSYSOPR message queue and the message queues that are assigned to your

journals.

v If the system cannot complete the DLTJRNRCV command for any of the above reasons, it retries every

10 minutes (or the value you specify on the DLTRCVDLY parameter). It sends a CPI70E6 message to

the journal’s message queue, and to QSYSOPR message queue. If this occurs, you might want to

determine why the operation cannot be performed and either correct the condition or run the

DLTJRNRCV command.

v If the system cannot complete the command for any other reason, it sends a CPI70E1 message to the

message queue that is assigned to the journal. If you have not specifically assigned a message queue to

the journal, the message will be sent to the QSYSOPR message queue. Look at the messages in QHST

to determine the problem. After you correct the problem, use the DLTJRNRCV command on the

specific journal receiver.

Do not select to have the detached journal receiver deleted if you might need it for recovery or if you

want to save it before it is deleted. The system does not save the journal receiver before deleting it. The

system does not issue the warning message (CPA7025) that it sends if a user tries to delete a receiver that

has not been saved.

Examples of when you might specify automatic journal deletion include:

v You are journaling only because it is required to use commitment control.

v You are journaling for explicit access-path protection.

v You are replicating the journal receiver to another system through the remote journal function, and that

system is providing the backup copy of the journal receiver.

Delay the next attempt to delete a journal receiver

If you are using the CRTJRN or CHGJRN command, you can use the Delete Receiver Delay Time

(DLTRCVDLY) parameter. The system waits the time you specify (in minutes) with the DLTRCVDLY

parameter before its next attempt to delete a journal receiver that is associated with the journal when one

of the following is true:

v The system cannot allocate a needed object.

44 IBM Systems - iSeries: Journal Management

v You are using an exit program, and the exit program votes no.

v You are using remote journaling and the receiver has not been replicated to all the remote journals.

If you do not specify this parameter, the system waits ten minutes, which is the default.

Save your server while it is active has instructions for saving an object with transactions in a partial state.

Example: Recover objects with partial transactions has instructions for recovering objects with partial

transactions.

 Related concepts

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

 “Journals that are good candidates for remote journal management” on page 306

Journals that you are currently replicating, or that you plan to replicate, in their entirety to one or

more systems, are excellent candidates for the remote journal function.

 “Journal receiver management with remote journals” on page 330

As with local journals, regularly save and delete your journal receivers to minimize the amount of

online auxiliary storage which is used by the journal receivers.
 Related tasks

 Save your server while it is active

 “Example: Recover objects with partial transactions” on page 129

If you restore an object that was saved with a save-while-active operation that specified that the object

can be saved before it reaches a commitment boundary, it can have partial transactions. To recover

objects that are in a partial state you must perform an apply or a remove journaled changes operation.

 “Delete journal receivers” on page 77

Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal

management task is to delete journal receivers after you no longer need them.
 Related reference

 Create Journal (CRTJRN) command

 Change journal (CHGJRN) command

 Delete Journal Receiver exit point (QIBM_QJO_DLT_JRNRCV) API
 Related information

 “Scenario: Data replication environment for remote journals” on page 339

In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only.

Receiver size options for journals:

A journal receiver holds journal entries that you might use for recovery and entries that the system might

use for recovery. For example, you might use record level entries, such as database record changes, and

file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you

never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment

control.

 When you create a journal with the Create Journal (CRTJRN) command, the Change Journal (CHGJRN)

command, or iSeries Navigator, you can specify options that will limit the data that gets deposited into

these journal entries, or increases the maximum allowable size for the journal receiver. These options are

as follows:

v The RCVSIZOPT parameter of the CRTJRN command

v The RCVSIZOPT parameter of the CHGJRN command

v The Advanced Journal Attributes dialog box of iSeries Navigator

v The Journal Properties dialog box of iSeries Navigator

Journal management 45

|

|
|
|
|
|

|
|
|
|

|

|

|

|

Note: Specifying *SYSDFT for the RCVSIZOPT parameter is the same as specifying

RCVSIZOPT(*MAXOPT2 *RMVINTENT).

The following subtopics explain the benefits of some of the values for receiver size options.

Remove internal entries

When you specify to remove internal entries the system periodically removes internal journal entries from

the attached journal receiver when it no longer needs them for recovery purposes. Removing internal

entries may have a very slight impact on system performance, because the system has to manage these

internal entries separately and periodically remove them.

To remove internal entries specify the RCVSIZOPT(*RMVINTENT) parameter. The iSeries Navigator

equivalent to the RCVSIZOPT(*RMVINTENT) parameter is Remove internal entries in the Advanced

Journal Attributes or Journal Properties dialog.

Specifying to remove internal entries has these benefits:

v It reduces the impact that SMAPP may have on journal receivers for user-created journals.

v It reduces the size of journal receivers that are on the system.

v It reduces the amount of time and media required to save journal receivers, because unnecessary

entries are not saved.

v It reduces the time that it takes to apply journal entries, because the system does not have to evaluate

unnecessary entries.

v It reduces the communications overhead if the remote journal function is being used because

unnecessary entries are not sent.

Minimize fixed-length portion of entries

Minimizing the fixed-length portion of entries has the following effects:

v All information selectable by the FIXLENDTA parameter is not deposited in the entries.

v Minimizing the fixed-length portion of entries reduces auxiliary storage space and some CPU time as

well.

v When you view journal entries with this information removed, the displayed value is *OMITTED,

blanks, or zeros, depending on the type of data.

v To determine if a journal receiver was attached to a journal while minimizing the fixed-length portion

of entries, use the Display Journal Receiver Attributes DSPJRNRCVA command display.

v Do not use minimize the fixed-length portion of entries if you require an audit trail.

v Minimizing the fixed-length portion of entries limits the selection criteria you can use on the following:

– Apply Journaled Changes (APYJRNCHG) command

– Apply Journaled Changes Extend (APYJRNCHGX) command

– Compare Journal Images (CMPJRNIMG) command

– Display Journal (DSPJRN) command

– Receive Journal Entry (RCVJRNE) command

– Remove Journaled Changes (RMVJRNCHG) command

– Retrieve Journal Entry (RTVJRNE) command

– Retrieve Journal Entries (QjoRetrieveJournalEntries) API
v Minimizing the fixed-length portion of entries reduces the communications overhead if the remote

journal function is being used because unnecessary data is not sent.

46 IBM Systems - iSeries: Journal Management

|
|

|

|

|
|
|
|

|
|
|

|

|

|

|
|

|
|

|
|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

To minimize the fixed-length portion of entries specify RCVSIZOPT(*MINFIXLEN). The iSeries Navigator

equivalent to RCVSIZOPT(*MINFIXLEN) is Minimize fixed portion of entries in the Advanced Journal

Attributes or Journal Properties dialog.

If you are using minimizing the fixed-length portion of entries, you cannot use the FIXLENDTA

parameter. See Fixed-length options for journal entries for more information about the FIXLENDTA

parameter.

Maximum receiver-size options

Use the following options to specify the maximum allowable size for your journal receivers and to

specify the largest allowable sequence numbers for journal entries. There is no iSeries Navigator

equivalent to the following options.

RCVSIZOPT(*SYSDFT)

Using RCVSIZOPT(*SYSDFT) is currently the same as specifying RCVSIZOPT(*RMVINTENT

*MAXOPT2). This the default.

RCVSIZOPT(*MAXOPT1)

Use RCVSIZOPT(*MAXOPT1) to set the maximum size of a journal receiver attached to your

journal to approximately one terabyte (1 099 511 627 776 bytes) and a maximum sequence

number of 9 999 999 999. Additionally, the maximum size of the journal entry which can be

deposited is 15 761 440 bytes.

RCVSIZOPT(*MAXOPT2)

Use RCVSIZOPT(*MAXOPT2) to set the maximum size of a journal receiver attached to your

journal to approximately one terabyte (1 099 511 627 776 bytes) and a maximum sequence

number of 9 999 999 999. However, with RCVSIZOPT(*MAXOPT2), the system can deposit a

journal entry as large as 4 000 000 000 bytes.

RCVSIZOPT(*MAXOPT3)

Use RCVSIZOPT(*MAXOPT3) to set the maximum size of a journal receiver attached to your

journal to approximately one terabyte (1 099 511 627 776 bytes). In addition, with

RCVSIZOPT(*MAXOPT3) the journal receiver can have a maximum sequence number of

18 446 744 073 709 551 600. With RCVSIZOPT(*MAXOPT3), the system can deposit a journal

entry as large as 4 000 000 000 bytes. You cannot save or restore these journal receivers to any

releases before V5R3M0. Nor can you replicate them to any remote journals on any systems at a

release before V5R3M0.

 If you use RCVSIZOPT(*MAXOPT3) you must use the FROMENTLRG and TOENTLRG

parameters to specify a journal entry sequence number larger than 9 999 999 999 when you

perform the following commands:

v APYJRNCHG

v APYJRNCHGX

v CMPJRNIMG

v DSPJRN

v RCVJRNE

v RMVJRNCHG

v RTVJRNE

Recovery count

A value of *SYSDFT resets the journal’s recovery count to the system default journal recovery count. The

Work with journal attributes (WRKJRNA) command will indicate the Journal recovery count on the panel

display and in the printed output. A value of *SYSDFT will be displayed if the system default journal

recovery count is being used.

Journal management 47

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

The Retrieve Journal Information (QjoRetrieveJournalInformation) API will also return the Journal

Recovery Count. A value of ‘0’ will be returned if the system default journal recovery count is being

used.

 Related concepts

 “Effects of SMAPP on performance and storage” on page 6

System-managed access-path protection (SMAPP) is designed to have minimal affect to your system.

Though it is minimal, SMAPP does affect your system’s processor performance and auxiliary storage.

 “Journal management and system performance” on page 16

Journal management prevents transactions from being lost if your system ends abnormally or has to

be recovered. To do this, journal management writes changes to journaled objects immediately to the

journal receiver in auxiliary storage. This increases the disk activity on your system and can have a

noticeable affect on system performance. Journaling also increases the overhead associated with

opening objects and closing objects.

 “iSeries Navigator versus the character-based interface for journaling objects” on page 19
There are two environments that you can use for journal management: iSeries Navigator and the

character-based interface. iSeries Navigator provides a graphical interface for journaling that is easy to

use and does not require the use of control language (CL) commands. The character-based interface

requires the use of CL commands or APIs, but has more functionality than iSeries Navigator.

 “Plan for journal use of auxiliary storage” on page 25

If you are journaling an object, journal management writes a copy of every object change to the

journal receiver. It writes additional entries for object level activity, such as opening and closing the

object, adding a member, or changing an object attribute. If you have a busy system and journal many

objects, your journal receivers can quickly become very large.

 “Frequently asked questions about journaling and disk arm usage” on page 25

Journaling affects the disk arms that store the journal receiver.

 “Methods to reduce the storage that journal receivers use” on page 30
Reduce the size of journal entries by methods such as journaling after-images only, or specifying

certain journaling options including the Fixed Length Data (FIXLENDTA) option on the Create Journal

(CRTJRN) and Change Journal (CHGJRN) commands.

 “Threshold (disk space) for journal receivers” on page 36
When you create a journal receiver with iSeries Navigator or the Create Journal Receiver

(CRTJRNRCV) command, you specify a disk space threshold that indicates when you want the system

to warn you or take action.

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

 “Fixed-length options for journal entries” on page 53

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change

Journal (CHGJRN) commands to audit security related activity for journaled objects on your system.
 Related reference

 Create Journal (CRTJRN) command

 Change Journal (CHGJRN) command

 Display Journal Receiver Attributes (DSPJRNRCVA) command

 Apply Journaled Changes (APYJRNCHG) command

 Apply Journaled Changes Extend (APYJRNCHGX) command

 Compare Journal Images (CMPJRNIMG) command

 Display Journal (DSPJRN) command

 Receive Journal Entry (RCVJRNE) command

 Remove Journaled Changes (RMVJRNCHG) command

 Retrieve Journal Entry (RTVJRNE) command

48 IBM Systems - iSeries: Journal Management

|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Journal object limit:

The journal object limit (JRNOBJLMT) parameter allows you to set the maximum number of objects that

will be allowed to be journaled to the journal.

 The journaled object limit is the maximum number of objects that can be journaled to one journal. You

can set the journal object limit to either 250,000 or 10,000,000. Use the Journal Object Limit (JRNOBJLMT)

parameter on the Create Journal (CRTJRN) or Change Journal (CHGJRN) command to set the maximum

number of journaled objects.

The value *MAX10M can only be specified for the Journal Object Limit (JRNOBJLMT) parameter if the

Receiver Size Option (RCVSIZOPT) parameter has one of the receiver maximum values specified, or if

RCVSIZOPT is *SYSDFT.

Some factors to consider in determining the journal object limit are:

v Number of objects that would be actively changing at any given time

v The impact journaling has on the performance of your system

v Importance in being able to get some parallelism at IPL, run-time, hot-site apply, and high-availability

(HA) replay time

v Complexity of managing your journal environment with multiple journals

v Complexity of your hot-site recovery procedures if you have dependencies between objects journaled

to different journals

v Number of objects you may need to journal in the future

v Increasing the quantity of objects associated with a single journal may increase your IPL time,

independent ASP vary on time, or disaster recovery time. As a general rule, if the number of actively

changing objects is likely to be greater than 5,000, consider journaling some of these objects to a

separate journal. The larger the number of actively changing objects for a given journal at system

termination, the longer it will take to recover the journal at IPL or vary on of an independent ASP.

*MAX250K

The maximum number of objects that can be journaled to one journal is 250,000. This is the default value.

*MAX10M

The maximum number of objects that can be journaled to a single journal is 10,000,000. A journal

employing this attribute cannot be saved and restored to any releases prior to V5R4 nor can it be

replicated to any remote journals on any systems prior to V5R4.

Note: Once you have chosen the *MAX10M option, you cannot switch back to the *MAX250K value.

If the number of currently journaled objects is greater than the maximum number of journaled objects, a

start journal request will fail.

Note: A new receiver must be attached at the same time as this value is changed.

Minimized entry-specific data for journal entries:

On the Create Journal (CRTJRN) and Change Journal (CHGJRN) commands, you can specify to allow for

the deposit of minimized journal entries. This will decrease the size of your journal entries.

Journal management 49

|

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|

When you specify the Minimized Entry Specific Data (MINENTDTA) parameter for an object type, the

entry-specific data for the entries of those object types can be minimized. You can minimize journal

entries for database physical files and data areas.

The system only minimizes entries if the minimized entry is smaller in size than a complete journal entry

deposit. Therefore, even if you specify this option, not all entries that are deposited will be minimized.

The Display Journal (DSPJRN) command, Receiver Journal Entry (RCVJRNE) command, Retrieve Journal

Entry (RTVJRNE) command, and QjoRetrieveJournalEntries API return data that indicates whether the

entry is actually minimized.

The *FILE, *DTAARA, and *FLDBDY values are allowed on the MINENTDTA parameter for the CRTJRN

and CHGJRN commands and indicate the following:

*FILE Journaled files may have journal entries deposited with minimized entry specific data. The

minimizing will not occur on field boundaries, and the entry specific data may not be viewable

and may not be used for auditing purposes. This value cannot be specified if *FLDBDY is

specified.

*FLDBDY

Journaled files may have journal entries deposited with minimized entry specific data. The

minimizing will occur on field boundaries, and the entry specific data will be viewable and may

be used for auditing purposes.

v The DSPJRN command always displays the entries which have been minimized on field

boundaries with formatting.

v The *FILE value is not available in releases prior to V5R4.

*DTAARA

Journaled data areas may have journal entries deposited with minimized entry specific data.

Note: You cannot save or restore a journal receiver with minimized journal entries to any release prior to

V5R1M0, nor can they be replicated to any remote journal on a system at a release prior to

V5R1M0.

An optional parameter, Format minimized data (FMTMINDTA), is available on the Retrieve Journal

Entries (RTVJRNE) command, the Receive Journal Entries (RCVJRNE) command, and the Retrieve Journal

Entries (QjoRetrieveJournalEntries) API. This parameter allows you to specify whether entry specific data

which has been minimized on field boundaries will be returned in a readable format, which allows you

to determine what changes have been made. The possible values for the FMTMINDTA parameter are

*NO or *YES, with the default being *NO. By default, the methods used by these commands provide the

data in their raw format. The RTVJRNE command will indicate whether or not *FLDBDY has been

specified for Minimized entry specific data with a value of ‘2’ in the already existing “MINIMIZED

ENTRY DATA” field for the appropriate entry formats. *FILE and *DTAARA will appear as ’1’ in their

fields.

Using the Display Journal (DSPJRN) command, entries are viewable to the screen, an outfile, or printed

output. The DSPJRN command will also indicate whether or not the *FLDBDY value has been specified

for Minimized entry specific data on the “Display Journal Entry” panel and will indicate a value of ‘2’ in

the “Minimized entry specific data” field of the *OUTFILE and in the “Min” field of the printed output.

*FILE and *DTAARA will appear as ’1’ in their fields.

See the Journal code finder link below to see which entries are eligible for minimization. See the

Considerations for entries which contain minimized entry-specific data link for more information and

considerations when using these entries.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

50 IBM Systems - iSeries: Journal Management

|
|

|

|

|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

 Related concepts

 “iSeries Navigator versus the character-based interface for journaling objects” on page 19
There are two environments that you can use for journal management: iSeries Navigator and the

character-based interface. iSeries Navigator provides a graphical interface for journaling that is easy to

use and does not require the use of control language (CL) commands. The character-based interface

requires the use of CL commands or APIs, but has more functionality than iSeries Navigator.

 “Considerations for entries which contain minimized entry-specific data” on page 289

Reduce the size of journal receivers by specifying minimized entry-specific data on the Create Journal

(CRTJRN) and Change Journal (CHGJRN) commands.
 Related tasks

 “Methods to estimate the size of a journal receiver” on page 28

You can use the methods below to estimate the effect a journal receiver will have on auxiliary storage.
 Related reference

 Create Journal (CRTJRN) command

 Change Journal (CHGJRN) command
 Related information

 Journal code finder

Example: MINENTDTA (*FLDBDY):

The following SQL script provides an example of the of the *FLDBDY value used with the Minimized

entry specific data (MINENTDTA) parameter for the CRTJRN and CHGJRN commands.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer

information.

/* Setup of environment */

create collection payroll

create table payroll/wages (employee int, wages char(10),

 startdate date, benefits char(50))

create index payroll/wageix on payroll/wages (employee)

CL:CHGJRN payroll/QSQJRN jrnrcv(*GEN) minentdta(*FLDBDY)

/* Changes against files to be audited */

insert into payroll/wages values (1001, ’22.00/hour’,

 ’01/01/2003’, ’Qualifies for health benefits, 401k match’)

insert into payroll/wages values (1002, ’18.00/hour’,

 ’10/01/2004’, ’Qualifies for health benefits’)

update payroll/wages set wages = ’24.50/hour’ where employee = 1001

update payroll/wages set wages = ’19.00/hour’ where employee = 1002

/* Auditing procedure */

CL:DSPJRN JRN(PAYROLL/QSQJRN) JRNCDE((R)) OUTPUT(*OUTFILE) OUTFILFMT(*TYPE5)

Journal management 51

|
|

|
|

|

|
|

|

|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

rzakifinder.htm

OUTFILE(PAYROLL/DSPJRNOUT) ENTDTALEN(*CALC) NULLINDLEN(4)

create table payroll/auditfile (fixeddata char(555), nvi char(4),

 employee int, wages char(10), startdate char(10), benefits char(50))

CL:CPYF FROMFILE(PAYROLL/DSPJRNOUT) TOFILE(PAYROLL/AUDITFILE)

 MBROPT(*ADD) OUTFMT(*HEX) FMTOPT(*NOCHK)

select nvi, employee, wages, startdate, benefits

 from payroll/auditfile

Note: the NVI (Null value indicator) field houses metadata which reveals which columns residing within

the journal entry were collected and what variety of data they house. Some columns will house null

values for fields which were collected, some will house a copy of the data deposited during the update

operation, while others will house filler values representing the default value for that column. Such

filler values will appear on behalf of those columns whose contents were not changed and were not

required to be collected. These are the same columns which did not consume space within the journal

entry because a copy of their value was not collected. In order to recognize the difference between these

three varieties, refer to the table below. The first NVI character corresponds to the first field (EMPLOYEE

), the second NVI character

corresponds to the second field (WAGES), etc. When the NVI value is a ’0’, it signifies that an exact copy

of the field is present. When the NVI value is a ’1’, the corresponding field houses a null. When the

NVI value is a ’9’, the corresponding field was not collected (because it was minimized) and, therefore,

what will be displayed is the default value.

NVI EMPLOYEE WAGES STARTDATE BENEFITS

0000 1,001 22.00/hour 2004-01-01 Qualifies for health benefits, 401k match

0000 1,002 18.00/hour 2004-10-01 Qualifies for health benefits

0099 1,001 22.00/hour 0001-01-01

0099 1,001 24.50/hour 0001-01-01

0099 1,002 18.00/hour 0001-01-01

0099 1,002 19.00/hour 0001-01-01

The first 2 entries are for the inserts. The second 2 entries are the update before image and update after

image for the first update. The last 2 entries are the update before image and update after image for the

final update. Notice that the update entries have real data for the first 2 fields and default data for the

second 2 fields as indicated by the null value indicators. The first field is collected because it is a key

field. The second field is collected because the data within the field has changed. Any of the fixed journal

entry information (for example, sequence number, journal code) can also be included by either

substringing the fixed field in the audit file or creating the audit file with fields formatted such as the

*TYPE5 outfile.

Customize the journal recovery count:

Use the Journal Recovery Count (JRNRCYCNT) parameter in the CHGJRN command to set the journal

recovery ratio for each journal.

 This parameter will indicate how many journal entries can exist between the last deposited entry and the

oldest forced entry for a journaled object. A value between 10,000 and 2,000,000,000 will be allowed. A

value of *SYSDFT will also be allowed to reset the journal’s recovery count to the system default journal

recovery count.

The journal recovery count allows you to choose between faster abnormal IPL recovery and decreased

run time processing. Specifying a smaller value decreases the number of changes that would need to be

recovered from this journal during an abnormal IPL by increasing the frequency with which changed

objects are forced. Specifying a larger value increases the number of changes that would need to be

recovered for this journal during an abnormal IPL by decreasing the frequency with which changed

objects are forced.

Note: Changing the journal recovery count value may affect overall system performance as it affects the

utilization of auxiliary storage devices.

The WRKJRNA command indicates the Journal Recovery Count on the panel display and in the printed

output. A value of *SYSDFT displays if the system default journal recovery count is being used. All

52 IBM Systems - iSeries: Journal Management

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

journals are created with the system default journal recovery count, and if a value other than the system

default (*SYSDFT) is specified, the system default journal recovery count will no longer be in effect for

the journal. The Retrieve Journal Information API will also return the Journal Recovery Count.

The operating system is shipped with a system default journal recovery count of 250,000. The

QJOCHRVC API changes the system default journal recovery count for all newly created journals on the

system and all existing journals that have the system default (*SYSDFT) specified for their journal

recovery count.

Fixed-length options for journal entries:

You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change

Journal (CHGJRN) commands to audit security related activity for journaled objects on your system.

 With the FIXLENDTA parameter, you can elect to include security related information in the fixed-length

portion of the journal entries. You cannot use the FIXLENDTA parameter and Minimize fixed-length

portion of entries at the same time.

Fixed-length options

With the FIXLENDTA parameter, you can specify that the following data is included in the journal entries

that are deposited into the attached journal receiver:

Job name

Use the *JOB value to specify the job name.

User profile name

Use the *USR value to specify the effective user profile name.

Program name

Use the *PGM value to specify the program name.

Program library name

Use the *PGMLIB value to specify the program library name and the auxiliary storage pool

device name that contains the program library.

System sequence number

Use the *SYSSEQ value to specify the system sequence number. The system sequence number

gives a relative sequence to all journal entries in all journal receivers on the system.

Remote address

Use the *RMTADR value to specify the remote address, the address family and the remote port.

Thread identifier

Use the *THD value to specify the thread identifier. The thread identifier helps distinguish

between multiple threads running in the same job.

Logical unit of work identifier

Use the *LUW value to specify the logical unit of work identifier. The logical unit of work

identifies work related to specific commit cycles.

Transaction identifier

Use the *XID value to specify the transaction identifier. The transaction identifier identifies

transactions related to specific commit cycles.
 Related concepts

 “iSeries Navigator versus the character-based interface for journaling objects” on page 19
There are two environments that you can use for journal management: iSeries Navigator and the

character-based interface. iSeries Navigator provides a graphical interface for journaling that is easy to

use and does not require the use of control language (CL) commands. The character-based interface

requires the use of CL commands or APIs, but has more functionality than iSeries Navigator.

Journal management 53

|
|
|

|
|
|
|

“Functions that increase the journal receiver size” on page 27

Some optional functions available with journal management can significantly increase auxiliary

storage requirements.

 “Methods to reduce the storage that journal receivers use” on page 30
Reduce the size of journal entries by methods such as journaling after-images only, or specifying

certain journaling options including the Fixed Length Data (FIXLENDTA) option on the Create Journal

(CRTJRN) and Change Journal (CHGJRN) commands.

 “Receiver size options for journals” on page 45

A journal receiver holds journal entries that you might use for recovery and entries that the system

might use for recovery. For example, you might use record level entries, such as database record

changes, and file level entries, such as the entry for opening or closing a file. Also, the system writes

entries that you never see or use, such as entries for explicitly journaled access paths, for SMAPP, or

for commitment control.
 Related tasks

 “Estimate the size of the journal receiver manually” on page 29

Use this procedure to estimate the size of your journal receiver.
 Related reference

 Create Journal (CRTJRN) command

 Change Journal (CHGJRN) command

Journal cache:

Journal caching is separately chargeable feature with which you can specify that the system cache journal

entries in main storage, before writing them to disk. Journal caching is option 42 of the i5/OS operating

system.

 After you have you purchased journal caching, you can specify it with the JRNCACHE parameter on the

Create Journal (CRTJRN) or Change Journal (CHGJRN) commands.

Journal caching provides significant performance improvement for batch applications which perform

large numbers of changes to the data portion of the journaled objects. The actions that show a

performance improvement if journal caching is enabled are as follows:

v Changes to database files from add, update, or delete operations

v Changes to data areas from uses of the change data area command or API

v Changes to data queues from uses of the send data queue API or the receive data queue API

v Changes to integrated file system objects from various write and fclear operations on journaled stream

files

Applications using commitment control will see less improvement (commitment control already performs

some journal caching).

Journal caching modifies the behavior of traditional noncached journaling in batch. Without journal

caching, a batch job waits for each new journal entry to be written to disk. Journal caching allows most

operations to no longer be held up waiting for synchronous disk writes to the journal receiver.

Journal caching is especially useful for situations where journaling is being used to enable replication to a

second system.

It is not recommended to use journal caching if it is unacceptable to lose even one recent change in the

event of a system failure where the contents of main memory are not preserved. This type of journaling is

directed primarily toward batch jobs and may not be suitable for interactive applications where single

system recovery is the primary reason for using journaling.

54 IBM Systems - iSeries: Journal Management

Furthermore, the results from the following commands or API will not display the journal entries in the

cache:

v Display Journal (DSPJRN) command

v Retrieve Journal Entry (RTVJRNE) command

v Receive Journal Entry (RCVJRNE) command

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

The Display Journal Receiver Attributes (DSPJRNRCVA) Command and the Retrieve Journal Receiver

Information (QjoRtvJrnReceiverInformation) API show the total number of journal entries in a journal

receiver. However if some of those entries are in the cache, you cannot see these journal entries using the

DSPJRN, RTVJRNE, and RCVJRNE commands, and the QjoRetrieveJournalEntries API. For example, if

there are 100 journal entries in a journal receiver, the DSPJRNRCVA command and

QjoRtvJrnReceiverInformation API show that the total number of entries is 100. However, if the last 25

entries are in the journal cache, you can only view the first 75 entries.

Journal caching also affects remote journaling. Journal entries are not sent to the remote system until they

are written from the cache to disk. Since journal entries are not sent to the target system right away, the

number of journal entries that are not confirmed are always greater than if you are not using journal

caching.

Contact your service representative for more information about ordering journal caching.

 Related concepts

 “Journal management and system performance” on page 16

Journal management prevents transactions from being lost if your system ends abnormally or has to

be recovered. To do this, journal management writes changes to journaled objects immediately to the

journal receiver in auxiliary storage. This increases the disk activity on your system and can have a

noticeable affect on system performance. Journaling also increases the overhead associated with

opening objects and closing objects.

 “iSeries Navigator versus the character-based interface for journaling objects” on page 19
There are two environments that you can use for journal management: iSeries Navigator and the

character-based interface. iSeries Navigator provides a graphical interface for journaling that is easy to

use and does not require the use of control language (CL) commands. The character-based interface

requires the use of CL commands or APIs, but has more functionality than iSeries Navigator.
 Related reference

 Create Journal (CRTJRN) command

 Change Journal (CHGJRN) command

Object assignment to journals:

You can use one journal to manage all the objects you are journaling. Or, you can set up several journals

if groups of objects have different backup and recovery requirements. Every journal has a single attached

receiver. All journal entries for all objects being managed by the journal are written to the same journal

receiver.

 When deciding how many journals to use and how to assign objects to journals, consider the following:

v Using one journal (and journal receiver) is the simplest method for managing both daily operations

and recovery.

v There is a limit of 10,000,000 objects that can be journaled to a single journal.

v If using a single journal receiver causes a performance bottleneck, you can alleviate this by placing the

journal receiver in a separate disk pool from the objects that you are journaling.

v To simplify recovery, assign objects that are used together in the same application to the same journal.

Journal management 55

|

v If you are journaling database files, all the physical files underlying a logical file must be assigned to

the same journal.

v Files opened under the same commitment definition within a job can be journaled to different journals.

In commitment control, each journal is considered a local location.

v If your major applications have completely separate objects and backup schedules, separate journals for

the applications may simplify operating procedures and recovery.

v If you journal different objects for different reasons; such as recovery, auditing, or transferring

transactions to another system; you may want to separate these functions into separate journals.

However, you can assign an object to only one journal.

v If the security of certain objects requires that you exclude their backup and recovery procedures from

the procedures for other objects, assign them to a separate journal, if possible.

v If you have basic disk pools with libraries, all objects assigned to a journal must be in the same disk

pool as the journal. The journal receiver may be in a different disk pool. If you place a journal in a disk

pool without libraries (non library disk pool), objects being journaled must be in the system disk pool.

The journal receiver may be in either the system disk pool or the non library disk pool with the

journal. See Determine the type disk pool in which to place journal receivers for more information

about the types of disk pools.

v If you have independent disk pools, they must be library capable in order to journal objects on them.

You cannot journal objects on User-Defined File System (UDFS) independent disk pools.

 Related concepts

 “Determine the type of disk pool in which to place journal receivers” on page 32

Use disk pools (auxiliary storage pool) to control which objects are allocated to which groups of disk

units. If you are journaling many active objects to the same journal, the journal receiver can become a

performance bottleneck. One way to minimize the performance impact of journaling is to put the

journal receiver in a separate disk pool. This also provides additional protection because your objects

are on different disk units from the journal receiver, which contains a copy of changes to the objects.

 “JKLDEV” on page 94

JKLDEV is JKL’s development server. Though it does not require 24x7 availability, the data on it

represent many person hours of work by the developers. Therefore it is important that in the event of

a crash, the system be brought to a current state. Also, since it is a development server, changes to the

data occur often.

Set up journaling

Provides instructions on how to set up journals and journal receivers.

After you have decided how you will use journaling, follow these steps to set up journaling on your

system. If you have decided to use more than one journal, work through all the steps for one journal at a

time. Then repeat the steps for the next journal.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

You can choose one of the following methods to set up journaling:

v Set up journaling with iSeries Navigator.

v Set up journaling with the character-based interface. See Example: Set up journaling for a code example

of setting up journaling for character-based interface.

For information about the difference between the two methods, see iSeries Navigator versus

character-based interface for object journaling.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

56 IBM Systems - iSeries: Journal Management

|
|
|

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

 Related concepts

 “Plan setup for journals” on page 38

The following topics provide information to plan configuration for journals. They provide information

about each option that you can select for journal.

 “iSeries Navigator versus the character-based interface for journaling objects” on page 19
There are two environments that you can use for journal management: iSeries Navigator and the

character-based interface. iSeries Navigator provides a graphical interface for journaling that is easy to

use and does not require the use of control language (CL) commands. The character-based interface

requires the use of CL commands or APIs, but has more functionality than iSeries Navigator.

 “Start and end journaling and change journaling attributes” on page 60

The following links provide instructions on how to start and end journaling for all of the object types

that journaling supports.
 Related tasks

 “Methods to estimate the size of a journal receiver” on page 28

You can use the methods below to estimate the effect a journal receiver will have on auxiliary storage.

 “Prepare to use remote journals” on page 314

This topic outlines the basic steps for preparing to use remote journals.
 Related reference

 Create Journal Receiver (CRTJRNRCV) command

 Create Journal (CRTJRN) command

Information you need to set up journaling

Setting up journaling consists of creating a journal and a journal receiver, then starting journaling. When

you create a journal receiver you have the following information:

Information to create the journal receiver

v The name of the journal receiver

v The disk pool assignment for journal receiver

v The storage threshold for the journal receiver

v Who has authority to the journal receiver

Information to create the journal

v The name of the journal.

v The library assignment of the journal.

v The journal receiver name to associate with the journal.

v Which disk pool to assign storage space for the journal (only if you are using the ASP parameter in the

CRTJRN command).

Journal management 57

|
|

|
|

|

|
|

|

|
|
|

v The journal message queue.

v Whether or not to use manual or system journal-receiver management.

v Whether or not to have automatic deletion of the journal receiver.

v The receiver size options for the journal.

v The journal object limit for the journal.

v Who has authority to the journal.

v Whether or not to minimize entry-specific data (character-based interface only).

v Whether or not to use journal caching (character-based interface only).

v Whether or not to delay the next attempt to automatically change the journal receiver (character-based

interface only).

v Whether or not to delay the next attempt to automatically delete the journal receiver (character-based

interface only).

v Whether or not to include fixed-length data in the journal entries (character-based interface only).

Set up journaling with the character-based interface

1. Create the journal receiver using the Create Journal Receiver (CRTJRNRCV) command.

2. Create the journal using the Create Journal (CRTJRN) command.

3. Start journaling for each object that you plan to journal.

Set up journaling with iSeries Navigator

1. Expand Databases.

2. Expand your system’s local database.

3. Expand Schemas.

4. Right click the schema in which you want to create the journal.

5. Select New → Journals.

6. Start journaling for each object that you plan to journal.

Example: Set up journaling

The following are three examples of setting up journaling in the character-based interface. The first

example sets up journaling with the both the journal and receiver in the system disk pool. The second

and third examples set up journaling with the journal and journal receiver in separate basic disk pools.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer

information.

 Related reference

 Create Journal Receiver (CRTJRNRCV) command

 Create Journal (CRTJRN) command

Journal and receiver in system disk pool:

In this example, the library $DSTJRN is in the system disk pool and has the following description:

v Type: PROD

v Disk pool of library: 1

v Create authority: *EXCLUDE
1. The $DSTJRN library already exists in the system disk pool.

2. The Create Journal Receiver (CRTJRNRCV) command creates journal receiver RCVDST1 in the

$DSTJRN library:

CRTJRNRCV JRNRCV($DSTJRN/RCVDST1) THRESHOLD(1500000)

 TEXT(’RECEIVER FOR $DSTJRN JOURNAL’)

58 IBM Systems - iSeries: Journal Management

|

|

3. The journal receiver is placed in the system disk pool with the library because *LIBASP is the default

value for the ASP parameter on the CRTJRNRCV command.

4. Public authority for the journal receiver is *EXCLUDE because the Create authority value for the

library is *EXCLUDE and the default for the authority (AUT) parameter is *LIBCRTAUT.

5. The Create Journal (CRTJRN) command creates the associated local journal:

CRTJRN JRN($DSTJRN/JRNLA) JRNRCV($DSTJRN/RCVDST1)

 MNGRCV(*USER)

The receiver size option is *MAXOPT2 and *RMVINTENT since the RCVSIZOPT(*SYSDFT) is the default

for the CRTJRN command.

Journal receiver in a nonlibrary basic disk pool:

In this example, the journal receiver is in a nonlibrary basic disk pool and the journal is in the system

disk pool.

1. The CRTJRNRCV command creates journal receiver RCVDST2 in a nonlibrary basic disk pool

CRTJRNRCV JRNRCV($DSTJRN/RCVDST2) THRESHOLD(1000000)

 ASP(2) TEXT(’RECEIVER FOR $DSTJRN JOURNAL’)

2. The CRTJRN command creates the local journal in the system disk pool:

CRTJRN JRN($DSTJRN/JRNLB) JRNRCVR($DSTJRN/RCVDST2)

 MSGQ($DSTJRN/JRNLBMSG)

 MNGRCV(*USER)

3. When the receiver RCVDST2 exceeds 1 024 000 000 bytes of storage, a message (CPF7099) is sent to

the JRNLBMSG message queue in the $DSTJRN library.

4. The objects to be journaled must also be in the system disk pool.

Journal and journal receiver in basic disk pools:

In this example, the libraries ARLIBR and ARLIB are in basic library disk pools and have the following

description:

ARLIBR

v Type: PROD

v Disk pool of library: 3

v Create authority: *USE

v Text description: A/R Receiver LIB

ARLIB

v Type: PROD

v Disk pool of library: 4

v Create authority: *USE

v Text description: A/R Receiver LIB
1. The CRTJRNRCV command creates journal receiver RCVDST3 in the library basic disk pool

CRTJRNRCV JRNRCV(ARLIBR/RCVDST3) THRESHOLD(1500000)

 TEXT(’RECEIVER FOR ARJRN JOURNAL’)

2. Because public authority is not specified, the public authority is set to *USE (the Create authority

value for the ARLIBR library).

3. The CRTJRN command creates the local journal that is associated with the RCVDST3 journal receiver:

CRTJRN JRN(ARLIB/ARJRN) JRNRCV(ARLIBR/RCVDST3)

When the RCVDST3 journal receiver exceeds 1 536 000 000 bytes of storage, the system creates a new

journal receiver named RCVDST4, attaches it to the journal, and sends message CPF7020 (journal

receiver detached) to the QSYSOPR message queue (the default queue).

Journal management 59

|
|

4. All objects journaled to the ARJRN journal must be in ASP 4 because the journal is in ASP 4.

5. In this case, the database files and journal are in the same library. The journal receivers are in a library

that is saved and restored after the journal library if a single command is used, because ARLIBR

comes after ARLIB in a normal sort sequence.

Start and end journaling and change journaling attributes

The following links provide instructions on how to start and end journaling for all of the object types that

journaling supports.

 Related tasks

 “Set up journaling” on page 56

Provides instructions on how to set up journals and journal receivers.

Why you must save objects after you start journaling

After you start journaling, it is essential that you save objects that you are journaling.

It is critical to save the journaled object after journaling is started to be able to apply journaled changes.

When you start journaling an object, the system assigns a unique journal identifier (JID) to that object. If

the object is a physical database file, each member is also assigned a unique JID. If you start journaling

on a distributed file, the piece on each server has its own unique JID. The JID is part of every journal

entry added to the journal receiver for a given object. The system uses the JID to associate the journal

entry with the corresponding journaled object. The copy of the object on the save media that was saved

before it was journaled does not have the journal identifier saved with it. Therefore, if this copy of the

object is restored to the server, the journal entries cannot be associated with the object and cannot be

applied.

After you start journaling an object, do the following:

v Save the object immediately after you have started journaling it, before any changes have occurred.

v Save a physical file or a logical file after you start journaling access paths for the file. This ensures that

when you restore the file, journaling access paths is started automatically.

v If you are using distributed files, save the file separately on the systems in the node group after

starting journaling for the distributed file.

Saving these objects ensures that you can completely recover all the objects by using your saved copy

and your journal receivers.

Update the history

If you are not using the save-while-active function, update the history for the object when you save it so

that processing for applying and removing journaled changes will have the best information for

verification. If you save the object using the SAV command, change the UPDHST value to something

other than *NO. The default value for the SAV command is to not preserve the update history. For the

other Save related commands, the default value is to preserve the update history. When you use the

save-while-active function, you do not need to update the history for the object for verification when you

apply and remove journaled changes. When you use the save-while-active function, information is saved

on the media with the object and restored when the object is restored. This extra information provides the

last save information for applying and removing journaled changes.

Saving queue contents

v To save the contents of the queue as well, one must specify QDTA((*DTAQ) on the save commands.

The JID and other journaling operations

Not only do you need the JID to apply journaled changes, other journaling operations use the JID. All

formats, except the *TYPE1, *TYPE2, and *TYPE3 formats, for the Display Journal (DSPJRN), Receive

60 IBM Systems - iSeries: Journal Management

|

|

Journal Entry (RCVJRNE), or Retrieve Journal Entry (RTVJRNE) command include the JID for the object.

The JID is also included with the *TYPEPTR and *JRNENTFMT format for the RCVJRNE command, as

well as the Retrieve Journal Entries (QjoRetrieveJournalEntries) API. You can use the Retrieve JID

Information (QJORJIDI) API to retrieve an object’s name (for an object not in the integrated file system)

or the file identifier (for an object in the integrated file system), if you know its JID.

Commands for saving objects

You can use one of the following commands to save journaled objects:

Physical database files, data areas, and data queues

v Save Changed Objects (SAVCHGOBJ) and specify OBJTYPE(*object-type) OBJJRN(*YES)

v Save Object (SAVOBJ)

v Save Library (SAVLIB)

v Save (SAV)

Integrated file system objects

v SAV

See the Manually saving parts of your server topic for more information about saving journaled objects.

 Related concepts

 “Journal entries” on page 15

When you use journal management, the system keeps a record of changes that you make to objects

that are journaled and of other events that occur on the system. These records are called journal

entries. You can use journal entries to help recover objects or analyze changes that were made to the

objects.

 “Recover journaled objects” on page 102

One of the primary advantages of journaling is its ability to return a journaled object to its current

state since the last save.
 Related tasks

 Manually saving parts of your server

Start journaling

This topic provides information about how to start journaling for all object types.

After you have created the journal and journal receiver, you can start journaling. When journaling has

been started for an object, the system writes journal entries for all changes to the object.

The start journal command must obtain an exclusive lock on the object. However, for database physical

files and integrated file system objects, you can start journaling even if an object is open. The

recommended procedure for starting journaling is:

1. Start journaling the object.

2. Save the object. If the object is open for changing, this will be a save-while-active type save.

If you are not using the save-while-active function, it is highly recommended that you update the history

for the object when you save it so that processing for applying and removing journaled changes will have

the best information for verification. If you saved the object using the SAV command, the default value is

to not preserve the update history. Therefore, change the UPDHST value to something other than *NO.

For the other save related commands, the default value is to preserve the update history. When using

save-while-active, updating the history for the object is not needed for verification when applying and

Journal management 61

|
|

|
|

|
|
|

|

|

|
|
|
|

|
|

removing journaled changes. In this case, information is saved on media with the object, and restored

when the object is restored. This extra information provides the last save information for applying and

removing journaled changes.

Normally, only the definition of a data queue is saved, not its contents. To save the contents of the queue

as well, one must specify QDTA(*DTAQ) on the save commands.

The maximum number of objects that can be associated with one journal is either 250,000 or 10,000,000.

The option of setting the journal object limit to 10,000,000 simplifies journaling because there are fewer

journals to manage, but allows for less parallelism during IPL and disaster recovery. You can also have all

objects created within a subdirectory start journaling automatically without having to be broken up when

you reach the 250,000 limit. The value *MAX10M can only be specified for the Journal Object Limit

(JRNOBJLMT) parameter if the Receiver Size Option (RCVSIZOPT) parameter has one of the *MAXOPT

values specified or if RCVSIZOPT is *SYSDFT.

The following links provide instructions to start journaling for each object type:

 Related tasks

 “Methods to estimate the size of a journal receiver” on page 28

You can use the methods below to estimate the effect a journal receiver will have on auxiliary storage.

 “Correct order for restoration of journaled objects” on page 82

You must restore journals and their associated objects in the correct order.

Journal database physical files (tables):

When you start journaling a physical file (table), you specify whether you want after-images saved, or

both before-images and after-images.

 To reduce the number of journal entries, you can omit entries for open operations and close operations

for the file. To omit open and close entries from being journaled, select the Exclude open and close

entries in iSeries Navigator. Or you can Specify OMTJRNE(*OPNCLO) on the Start Journal Physical File

(STRJRNPF) command. If you choose to omit open journal entries and close journal entries, be aware

that:

v You cannot use the journal to audit who has accessed the file.

v You cannot apply or remove journal changes to open boundaries and close boundaries using the

TOJOBO and TOJOBC parameters.
 Related concepts

 “Reasons to journal before-images” on page 24

When you journal an object, the system always writes an after-image for every change that is made.

You can request that the system write before-image journal entries for database files and data areas.

All other object types only journal after-images. This significantly increases the auxiliary storage

requirements for journaling.
 Related tasks

 “Methods to estimate the size of a journal receiver” on page 28

You can use the methods below to estimate the effect a journal receiver will have on auxiliary storage.
 Related reference

 Start Journal Physical File (STRJRNPF) command
 Related information

 DB2 Universal Database

Start journaling for physical database files:

1. In iSeries Navigator, expand the system with the object you want to journal.

2. Expand Databases and the database with the object you want to journal.

62 IBM Systems - iSeries: Journal Management

|
|
|

|
|

|
|
|
|
|
|
|

|

|

|
|

|
|

|

|
|

|
|
|
|
|

|

|
|

|

|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

3. Expand Schemas and select the schema with the object you want to journal.

4. Click Tables.

5. Right-click the table you want to journal and select Journaling.

Or you can use the STRJRNPF command to start journaling physical database files.

The DB2™ Universal Database topic has complete information about database files.

Journal DB2 Multisystem files:

When you successfully start journaling on a distributed file, the system distributes the start journal

request to the other servers in the node group.

 All servers are attempted even if there is a failure at any one server. Once journaling is started on a

server in the node group, it stays started even if there is a failure at any of the other servers.

The journal has to exist with the same name on all servers in the node group. The journal itself is not

distributed, only the Start Journal Physical File (STRJRNPF) command.

The journal and its receiver are associated only with the changes made to the file on the one server. If

you have two servers in the node group and a file is updated on both servers, the update on server A is

only in server A’s journal and receiver and the update on system B is only in system B’s journal and

receiver.

The journal identifier (JID) is different on each piece of the distributed file. Each server piece has its own

JID. This means that you cannot use the journal entries that are deposited on one server to apply or

remove journaled changes to a different piece of the file on another server.

 Related concepts

 Distributed database administration
 Related reference

 Start Journal Physical File (STRJRNPF) command

Journal integrated file system objects:

You can journal the following integrated file system objects if they are in the ″root″(/), QOpenSys, and

user-defined file systems:

 v Stream files (*STMF)

v Directories (*DIR)

v Symbolic links (*SYMLNK)

When you use the SAV command to save an integrated file system object, the default is to not update the

history information for the object. If you plan to apply journaled changes to the objects you are

journaling, and you are not using the save-while-active function, specify to preserve the update history

information about the SAV command.

If you are journaling *DIR or *STMF objects, you can reduce the number of journal entries in the journal

receiver. In iSeries Navigator, if you ensure that Include open, close, and synchronization entries is

unselected (OMTJRNE(*OPNCLOSYN) on the Start Journal (STRJRN) command), you can omit entries for open

operations, close operations, and force entries for the object. If you choose not to journal these entries be

aware of the following:

v You cannot use the journal to audit who has accessed the object for opens, closes, and forces.

v If an object is journaled, it cannot be memory mapped.

Journal management 63

|

|

|

|

|

|

|
|

|
|

|
|

|
|
|
|

|
|
|

|

|

|

|

|

|
|

|

|

|

|
|
|
|

|
|
|
|
|

|

|

v You cannot apply journal changes to open boundaries and close boundaries using the TOJOBO and

TOJOBC parameters.

v This option is only valid for *DIR and *STMF objects.

If you are journaling symbolic links, the system does not follow the symbolic link to determine what to

journal. That is, the system only journals the actual symbolic link. If you want to journal the end object,

you must journal the end object directly.

If you are journaling a directory and select Journal new files and folders in iSeries Navigator

(INHERIT(*YES) on the STRJRN command), then objects created into that directory will be automatically

journaled to the same journal. Therefore use caution because you can journal more objects than you

realize. Also, even if this option is on, if an object is restored to the directory, it keeps the journaling

attributes it had before the restore operation (when it was saved). For example, if you restore a stream

file that is journaled to Journal X, but the directory you restore the stream file to is being journaled to

Journal Y, the stream file will still be journaled to Journal X, even if the directory has the inherit option

on.

Note: If you end journaling for an object and then rename that object in the same directory in which it

currently resides, journaling is not started for the object, even if the directory has the inherit option

on.

If you select Current folder and all subfolders in iSeries Navigator (SUBTREE(*ALL) on the STRJRN

command), journaling only starts on objects that exist in the subtree when the STRJRN command is

executed. To start journaling on objects that are added to the subtree after this point you have three

options:

v You can start journaling for each object after it is created.

v You can select Journal new files and folders (INHERIT option) on the original start journal request.

v After journaling is started you can use the Change Journaled Objects (CHGJRNOBJ) command and

specify INHERIT(*YES).

If you select to journal the current folder and all subfolders, and there are object types in the subtree that

are not supported for journaling, the unsupported object types are skipped over so that only object types

that are supported for journaling get journaled.

 Related concepts

 Windows environment on iSeries

 Integrated file system

 “Automatically Start Journaling” on page 67

Using a data area named QDFTJRN, you can automatically start journaling when a non-integrated file

system object (data area, data queue, or file) is created, moved, or restored into the library, thus,

ensuring the very first change to the object will be recorded in the journal and that no lock on the

user’s part prevents journaling from starting in the library. The QDFTJRN data area must exist in the

library where the object is being added.
 Related tasks

 “Methods to estimate the size of a journal receiver” on page 28

You can use the methods below to estimate the effect a journal receiver will have on auxiliary storage.
 Related reference

 Memory Map a File (mmap()) API

 Start Journal (STRJRN) command

 Start Journal (QjoStartJournal) API

Restrictions for journaling integrated file system objects:

Restrictions for journaling integrated file system objects are as follows:

64 IBM Systems - iSeries: Journal Management

|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|

|
|

|
|
|

|

|

|

|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

v You cannot journal files which are memory mapped. The Memory Map a File (mmap()) API

documentation has information about memory mapping.

v iSeries servers allocate disk space for Integrated xSeries servers as virtual disk drives for the xSeries®

servers. From the perspective of the iSeries server, virtual drives appear as byte stream files within the

integrated file system. You cannot journal these byte stream files. See the Windows® environment on

iSeries topic for more information about Integrated xSeries servers.

v Virtual volume files cannot be journaled.

Start journaling for integrated file system objects:

To start journaling for integrated file system objects do the following steps:

1. In iSeries Navigator select the system on which the object that you want to journal is located.

2. Expand File Systems.

3. Expand Integrated File Systems.

4. Expand the file system with the object you want to journal.

5. If you are journaling a directory, right-click the directory and select Journaling.

6. If you are journaling an object in a directory, expand the directory and right click that object. Select

Journaling.

Or, use the STRJRN command or Start Journal (QjoStartJournal) API for integrated file system objects that

you want to journal.

For more information about integrated file system objects, see the Integrated file system topic.

Journal access paths:

After you have started journaling for physical files, you can set up explicit journaling of access paths.

 You can use the Start Journal Access Path (STRJRNAP) command to start journaling access paths owned

by physical files or logical files. When you start journaling access paths for a physical file, the system

journals any of these, if they exist:

v Keyed access paths

v Access paths for primary key constraints

v Access paths for unique constraints

v Access paths for referential constraints

v Encoded vector access paths

v Many access paths with sort sequence tables

Some access paths that use an international component for Unicode (ICU) sort sequence table may be too

complex to be journaled.

All underlying physical files must be journaled to the same journal before you can start journaling for an

access path. The entries created when you journal an access path are used to recover the access path after

the system ends abnormally. They are not used when you apply or remove journal entries. You can

specify RCVSIZOPT(*RMVINTENT) for the journal to have the system remove these entries when they

are no longer needed for recovery. This reduces the disk storage requirements for the journal receiver.

You cannot start journaling for an access path that is in use. The STRJRNAP command must obtain an

*EXCL lock on the logical file.

The recommended procedure for starting access path journaling is as follows:

1. Use the STRJRNAP command to start journaling the access path.

Journal management 65

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|

|
|
|

|

|

|

|

|

|

|
|

|
|
|
|
|

|
|

|

|

2. Save all the underlying physical files, specifying ACCPTH(*YES).

If you have target recovery times for access paths set up on your system, you may not need to set up

explicit journaling for access paths. See Reasons to journal access paths for more information.

 Related concepts

 “Reasons to journal access paths” on page 23

If you journal access paths, the system can use the journal entries to recover access paths instead of

rebuilding them completely.
 Related reference

 Start Journal Access Path (STRJRNAP) command

Journal data areas and data queues:

When you start journaling for a data area or a data queue, the system writes journal entries for all

changes to the data area or data queue.

 The following restrictions apply for journaling data areas and data queues:

v For data areas, only local external data area objects may be journaled. The special data areas (*LDA,

*GDA, *PDA) and DDM data areas cannot be journaled.

v For data queues, only local data queues are supported. DDM data queues cannot be journaled.

When you start journaling a data area, you specify whether you want after-images saved, or both

before-images and after-images.

 Related concepts

 “Reasons to journal before-images” on page 24

When you journal an object, the system always writes an after-image for every change that is made.

You can request that the system write before-image journal entries for database files and data areas.

All other object types only journal after-images. This significantly increases the auxiliary storage

requirements for journaling.
 Related reference

 Start Journal (STRJRN) command

 Start Journal Object (STRJRNOBJ) command

 Start Journal (QjoStartJournal) API
 Related information

 CL programming

 Work Management

Start journaling for data areas and data queues:

1. In iSeries Navigator, expand the system with the data area or data queue you want to journal.

2. Expand File Systems.

3. Expand Integrated File System.

4. Expand QSYS.LIB.

5. Select the library with the data area or data queue.

6. Right-click the data area or data queue you want to journal and select Journaling.

Or, after you have created the journal, use one the following commands or API for each data area or data

queue you want to journal:

v Start Journal (STRJRN) command

v Start Journal Object (STRJRNOBJ) command

v Start Journal (QjoStartJournal) API

66 IBM Systems - iSeries: Journal Management

|

|
|

|

|
|
|

|

|

|

|
|

|

|
|

|

|
|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

Automatically Start Journaling:

Using a data area named QDFTJRN, you can automatically start journaling when a non-integrated file

system object (data area, data queue, or file) is created, moved, or restored into the library, thus, ensuring

the very first change to the object will be recorded in the journal and that no lock on the user’s part

prevents journaling from starting in the library. The QDFTJRN data area must exist in the library where

the object is being added.

Note:

v The QDFTJRN data area must be created by the user.

v To automatically start journaling for integrated file system objects, see the discussion of journal

inheritance in Journal integrated file system objects.

If a data area called QDFTJRN exists 1) in the same library into which the data area, data queue, or

physical file is created, or 2) in the same schema that the SQL table is created into, and 3) the user (in

either instance) is authorized to the data area, journaling will be started to the journal named in the data

area if all the following are true:

v The identified library for the data area, data queue, or physical file or identified schema for the SQL

table must not be QSYS, QSYS2, QRECOVERY, QSPL, QRCL, QRPLOBJ, QGPL, QTEMP, or any of the

independent auxiliary storage pool (IASP) equivalents to these libraries. (An iASP equivalent of

QRPLOBJ, for example, is QRPLxxxxx where ’xxxxx’ is the number of a primary auxiliary storage pool

(ASP).)

v The journal specified in the data area must exist and the user must be authorized to start journaling to

the journal.

See the table below for a detailed description of the values within the data area.

When creating SQL tables within a schema, the QSQJRN journal within the schema is used to start

journaling the tables. To start journaling the tables to a different journal than QSQJRN within the schema,

create the QDFTJRN data area in the schema and specify a different journal name inside the QDFTJRN

data area.

This table shows formats of the QDFTJRN data area.

 Offset Field Format Description

1 Library name Char (10) Name of the library that contains the journal.

11 Journal name Char (10) Name of the journal to use to automatically start journaling.

21 Repeat the set of Object type and Option as needed:

Object type Char (10) Object type value:

 *FILE = database files or SQL tables

 *DTAARA = data areas

 *DTAQ = data queues

 *ALL = all journal eligible objects which are not in an

integrated file system

 *NONE = no objects

Journal management 67

|

|
|
|
|
|

|

|

|
|

|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

|

|||||

||||

||||

||

||||

|

|

|

|
|

|

Offset Field Format Description

Option Char (10) Option:

 *CREATE = Start journaling when an object is created

into the library

 *MOVE = Start journaling when an object is moved into

the library

 *RESTORE = Start journaling when an object is restored

into the library

 *ALLOPR = Start journaling in all cases possible

Note: The values in the data area must be in upper case.

 Related tasks

 “Journal integrated file system objects” on page 63

You can journal the following integrated file system objects if they are in the ″root″(/), QOpenSys, and

user-defined file systems:

Change journaling attributes of journaled objects without ending journaling

Provides information about how to change the journaling attributes of a journaled object without ending

journaling.

Use the Change Journal Object (CHGJRNOBJ) command to change journaling attributes of journaled

objects without ending and restarting journaling. You can use the CHGJRNOBJ command to do the

following:

v Change whether you are journaling both before and after images or just after images.

v Change whether you are omitting open, close, and force journal entries from the journal receiver.

v Change whether you are journaling objects that are created in a directory.

v Remove the partial transaction state from a database file.

Except for removing the partial transaction state from a database file, the objects whose attributes you are

changing must currently be journaled. Also, you can only change one attribute at a time.

Before and after images

Use the Images (IMAGES) parameter to change if you are journaling only after images or both before and

after images. The object whose journaling attributes you are changing must already be journaled. You can

change this journaling attribute for the following object types:

v Database physical files

v Data areas

Omit journal entries

Use the Omit Journal Entries (OMTJRNE) parameter to change whether to omit open, close, and force

journal entries from the journal receiver. The object whose journaling attributes you are changing must

already be journaled. You can change this journaling attribute for the following object types:

v Database physical files

v Integrated file system stream files

v Integrated file system directories

68 IBM Systems - iSeries: Journal Management

||||

||||

|
|

|
|

|
|

|
|

|

|

|
|
|

Journal new objects in a directory

Use the New Objects Inherit Journaling (INHERIT) parameter to change whether journaling starts

automatically for objects that are created in a journaled integrated file system directory after the attribute

is changed.

Partial transaction state

Attention: Use of this parameter can result in loss of data. Use this parameter only as a last resort, if the

appropriate journal receivers are unavailable to do an apply or remove journaled changes operation.

Use the Partial Transactions (PTLTNS) parameter to allow an object that contains partial transactions to

be used. You use this parameter only for one of the following reasons:

v You are unable to apply or remove the journaled changes to complete or remove the transactions

because the journal receivers are unavailable.

v The object was involved in a rollback operation that was ended early and there is no saved version of

the object to use.

Only use this parameter as a last resort because the partial transactions remain within the object.

For instructions for recovering objects in a partial transaction state, see Example: Recover objects with

partial transactions.

Consideration for distributed files

When you successfully change the journal attributes for a distributed file, the system distributes the

request to change a journal attribute to the other servers in the group. All servers are attempted even if

there is a failure at any one server. When the journaling attribute has been changed on a server in the

node group, it remains that way even if there is a failure at any of the other servers.

 Related tasks

 “Example: Recover objects with partial transactions” on page 129

If you restore an object that was saved with a save-while-active operation that specified that the object

can be saved before it reaches a commitment boundary, it can have partial transactions. To recover

objects that are in a partial state you must perform an apply or a remove journaled changes operation.
 Related reference

 Change Journaled Object (CHGJRNOBJ) command

End journaling

Provides information about how to end journaling and why ending journaling might be necessary.

You may need to end journaling for several reasons:

v If a journal is damaged and you need to delete it, you must first end journaling for all objects assigned

to the journal.

v In some situations, you might want to end journaling before running a large batch application, if that

application has exclusive use of the object. This is done either to improve the speed of the batch

application or to reduce the auxiliary storage needed for the journal receiver. If you do this, use this

method:

1. End journaling for the objects.

2. If journaling physical files save them specifying ACCPTH(*YES).

3. If journaling other object types, save them.

4. Run the batch application.

5. Start journaling for the objects.

6. Save the physical files, specifying ACCPTH(*YES).

Journal management 69

7. Save the other journaled objects.

To end journaling proceed as follows:

1. End journaling for access paths with the End Journal Access Path (ENDJRNAP) command

2. In iSeries Navigator expand the system with the object that you want stop journaling.

3. If the object is a database file, proceed as follows:

a. Expand Databases and the database with the journal that you want to end journaling.

b. Expand Schemas.

c. Click the schema with the table (file) you are journaling.

d. Click Tables.

e. Right-click table and select Journaling.

f. Click End to end journaling.
4. If the object is an integrated file system object proceed as follows:

a. Expand File Systems.

b. Expand Integrated File System.

c. Expand the file system with the object you are ending journaling.

d. If you are ending journaling for a directory, right click that directory. If you are ending journaling

for an object in a directory, open the directory and right click the object.

e. Right-click the object or directory and select Journaling

f. Click End to end journaling.
5. If the object is a data area or data queue, proceed as follows:

a. Expand File Systems.

b. Expand Integrated File System.

c. Expand QSYS.LIB.

d. Select the library with the data area or data queue.

e. Right-click the data area or data queue you want to end journaling and select Journaling.

f. Click End to end journaling.

Or, use the following commands or API to end journaling:

v End Journal Access Path (ENDJRNAP) command for access paths

v End Journal Physical File (ENDJRNPF) command for database files

v End Journal (ENDJRN) command for integrated file system objects

v End Journal Object (ENDJRNOBJ) command for other objects

v End Journal (QjoEndJournal) API for integrated file system objects, data areas, and data queues.

You must end journaling for any access paths based on a physical file before you can end journaling for

the physical file.

In the following cases, the system implicitly ends journaling:

v When you delete an object, journaling is ended for the object.

v When you remove a physical file member, journaling is ended for the member.

v When you remove a physical file member, journaling is ended for any access paths associated with the

member unless an access path is shared and journaled by another file member.

v When you delete a file, journaling is ended for any access paths associated with the file unless an

access path is shared and journaled by another file.
 Related concepts

 Distributed database administration

70 IBM Systems - iSeries: Journal Management

Related tasks

 “Delete journals” on page 79

Each journal on the system causes additional time and resource to be used when you restart the

system or vary on an independent disk pool after an abnormal end. If you no longer need a journal,

you can delete it.
 Related reference

 End Journal Access Path (ENDJRNAP) command

 End Journal Physical File (ENDJRNPF) command

 End Journal (ENDJRN) command

 End Journal Object (ENDJRNOBJ) command

 End Journal (QjoEndJournal) API

How to end journaling for distributed files:

When you successfully end journaling on a distributed file, the system distributes the end journal request

to the other systems in the node group. All systems are attempted even if there is a failure at any one

system. Once journaling is ended on a system in the node group, it stays ended even if there is a failure

at any of the other systems.

Even if a distributed file is not locally journaled, and if you specify the file name and the journal name

on the ENDJRNPF command, the system will still attempt to distribute the end-journal request to the

other systems in the file node group.

Manage journals

Provides tasks to manage your journaling environment.

Managing your journaling environment requires these basic tasks:

v Keep records of which objects you are journaling.

v Evaluate the impact on journaling when new applications or logical files are added.

v Regularly detach, save, and delete journal receivers.

Your journal receivers enable you to recover changes to your important objects. They also provide an

audit trail of activity that occurs on your system.

Protect your journal receivers by regularly detaching them and saving them; or you can have the system

take over the job of changing journal receivers by specifying system journal-receiver management.

Do the following tasks to manage your journaling environment:

 Related concepts

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

Swap, delete, and save journals and receivers

The management tasks that you need to perform most often for journaling are swapping journal receivers

and saving and deleting journal receivers.

Swap journal receivers:

An important task for journal management is to swap (or change) journal receivers. You typically swap

journal receivers when they reach their storage threshold. You can swap journal receivers either with

iSeries Navigator or with the Change Journal (CHGJRN) command. If you use system journal-receiver

management, the system changes journal receivers for you.

Journal management 71

You can use iSeries Navigator or the Change Journal (CHGJRN) command to change the attributes of the

journal. You also use the iSeries Navigator or the CHGJRN command to change the receiver for a journal

(detach the current receiver, create and attach a new receiver) and to reset the sequence number for

journal entries.

When you swap a journal receiver, the old journal receiver becomes detached. When you detach a journal

receiver, you cannot reattach it to any journal. You can do these things with a detached journal receiver:

v Save or restore it.

v Display entries.

v Retrieve entries.

v Receive entries.

v Use it to apply or remove journaled changes.

v Use it to compare journaled images.

v Display its status or position in a receiver chain.

v Delete it.

v Replicate it with the remote journal function.

You must swap journal receivers to change the following journaling attributes:

v Manual or system journal management (MNGRCV parameter)

v Receiver size options (RCVSIZOPT parameter)

v Minimized entry specific data (MINENTDTA parameter)

v Journal receiver threshold value (THRESHOLD parameter)

v Fixed-length data (FIXLENDTA parameter)

v Journal object limit (JRNOBJLMT parameter)

v Reset journal sequence numbers (SEQOPT parameter)
 Related concepts

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

 “Threshold (disk space) for journal receivers” on page 36
When you create a journal receiver with iSeries Navigator or the Create Journal Receiver

(CRTJRNRCV) command, you specify a disk space threshold that indicates when you want the system

to warn you or take action.

 “Work with inoperable journal receivers” on page 87

If you have specified journaling for any objects, the system ensures that you have corrected problems

that affect journaling before continuing with operations on those objects. If the attached journal

receiver becomes inoperable, the operation that writes a journal entry is interrupted and the system

sends an inquiry message that notifies the system operator.

 “Work with IBM-supplied journals” on page 88

The operating system and some licensed programs use journals to provide audit trails and assist with

recovery.

 “Swap journal receiver operations with remote journals” on page 330

To swap journal receivers on a remote journal, perform a swap journal receiver operation on the

source system to attach a new receiver to a local journal. When this happens, the remote journal

function automatically attaches a new receiver to the remote journals that are currently being

maintained synchronously or asynchronously.
 Related tasks

 Save your server while it is active

72 IBM Systems - iSeries: Journal Management

|

|

“Recover a damaged journal receiver” on page 97

If a journal receiver becomes damaged, the system sends message CPF8136 or message CPF8137 to the

system operator and the job log.

 “Details: Recovery for remote journaling scenario” on page 346

A description of the recovery process for remote journaling.

Swap a journal receiver with iSeries Navigator:

To swap a journal receiver with iSeries Navigator, without changing options proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Schemas.

4. Right-click the journal you want to use and select Swap Receivers. The system generates a new name

when it creates the receiver.

Change options when you swap a journal receiver with iSeries Navigator:

To change options when you swap a journal receiver with iSeries Navigator proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Schemas.

4. Double-click the journal you want to use.

5. Select Swap receivers and the journaling options you want to use.

6. Click OK. The Journal properties dialog closes. The new journal receiver is automatically created and

attached.

The CHGJRN command:

Use JRNRCV(*GEN) on the Change Journal (CHGJRN) command to create the new receiver with the

same attributes as the currently attached receiver, and in the same library. These attributes include the

owner, private authorities, public authority, object auditing, ASP identifier, threshold, and text.

You must use the CHGJRN command to change the journaling options to one of the following:

v Specify a journal receiver-size option.

v Specify that objects allow journal entries to have minimized entry-specific data.

v Specify a different journal receiver threshold value using the Journal Receiver Threshold

(THRESHOLD) parameter in combination with the JRNRCV(*GEN) parameter.

v Specify the data that is included in the fixed-length portion of the journal entries.

v Specify the time to delay the next attempt to automatically attach or delete a new journal receiver with

system journal receiver management.

v Specify journal caching.

v Specify journal standby state.

v Change the journal recovery count.

v Change the journal object limit.

CAUTION:

If you use save-while-active operations to save objects before they reach a commitment boundary,

ensure that you save the journal receiver after you detach it. If you delete the journal receiver before it

is saved, you can lose the ability to recover any pending transactions for those objects.

Keep track of journal receiver chains:

Journal management 73

|
|

Journal receivers that are associated with a journal (that is presently or previously attached to the journal)

are linked in one or more receiver chains. Each journal receiver, except the first one, has a previous

receiver that was detached when the current receiver was attached. Each journal receiver, except the one

that is currently attached, also has a next receiver.

 The following figure illustrates the process by which journal receiver chains are created. If you leave the

previously attached receivers RCVA7 through RCVA9 online, you can use them to apply changes, to

remove changes, or to display journal entries without restoring them first.

Journal receiver chain

The figure above represents a journal receiver chain. It shows four journal receivers for journal JRNA.

Journal receivers RCVA7, RCVA8, and RCVA9 are online. Journal receiver RCVA10 is currently attached

to journal JRNA. Journal receivers RCVA1 through RCVA6 are saved to backup media and not are not on

the system.

If a complete copy of a receiver is missing in a chain of journal receivers linked together in the previously

described relationship, the result is a chain break. Avoid receiver chain breaks. A receiver chain break

indicates that any changes made between the last entry in the last receiver in one chain and the first

entry in the first receiver in the next chain are not available in any journal receiver on the system.

Note: If you use save-while-active operations to save objects before they reach a commitment boundary,

it is crucial that you keep track of your journal receiver chains.

Using a save-while-active operation to save objects before they reach a commitment boundary can result

in objects saved to the media that have partial transactions. A break in a journal receiver chain can

prevent you from recovering these objects with partial transactions.

A set of receivers for a journal that has one or more receiver chain breaks has multiple receiver chains.

Receiver chain breaks result from the following:

v You restored an old journal receiver and its next receiver is not on the system.

74 IBM Systems - iSeries: Journal Management

|
|
|
|

v A journal receiver was saved while it was attached, a partial receiver is restored, and no complete copy

of the receiver is on the system or restored.

v A receiver that has not had its storage freed by a save operation is restored, and the next receiver has

had its storage freed by a save operation.

v The journal is restored. All journal receivers associated with the previous copy of the journal (before

the journal was deleted and restored) will not be in the same receiver chain as the currently attached

journal receiver.

v The user or the system deleted a damaged or destroyed journal receiver from the middle of a chain.

v A journal receiver from another system is restored. The journal receiver will be associated with a

journal at restore time if the associated library and journal on the source system had the same library

name and journal name as the library and journal on the target system.

v You chose to replicate specific receivers instead of all receivers in the receiver directory chain. This

occurred while replicating journal receivers from a source system to a target system.

You cannot use the following commands and API across multiple receiver chains:

v Apply Journaled Changes (APYJRNCHG) command

v Apply Journaled Changes Extend (APYJRNCHGX) command

v Remove Journaled Changes (RMVJRNCHG) command

v Receive Journal Entries (RCVJRNE) command

v Display Journal (DSPJRN) command

v Retrieve Journal Entries (RTVJRNE) command

v Compare Journal Images CMPJRNIMG command

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

If multiple receiver chains exist, you need to determine:

v Whether any journal entries are missing.

v Whether your data will be valid if you use more than one receiver chain.

If you decide to proceed, you must run a separate command for each receiver chain.

You can use the Work with Journal Attributes (WRKJRNA) command to display the receiver chain (F15)

and work with journal receivers. See Display information for journaled objects, journals, and receivers for

more information about the WRKJRNA command.

See the Save your server while it is active link below for instructions for saving an object with

transactions in a partial state. See the Example: Recover objects with partial transactions link for

instructions for recovering objects with transactions in a partial state.

 Related concepts

 “Journal receivers associated with a remote journal” on page 299

Journal receivers that are associated with a remote journal are exact replicas of the corresponding

journal receivers that are associated with the journal on the source system.
 Related tasks

 “Display information for journaled objects, journals, and receivers” on page 85
iSeries Navigator, Control Language commands, and APIs provide several ways you can display

information about journaled objects, journals, and journal receivers.

 Save your server while it is active

 “Example: Recover objects with partial transactions” on page 129

If you restore an object that was saved with a save-while-active operation that specified that the object

can be saved before it reaches a commitment boundary, it can have partial transactions. To recover

objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Journal management 75

“Correct order for restoration of journaled objects” on page 82

You must restore journals and their associated objects in the correct order.

 “Catch-up phase for remote journals” on page 319
Catch-up refers to the process of replicating journal entries that existed in the journal receivers of the

source journal before the remote journal was activated.

Reset the sequence number of journal entries:

Normally, when you change journal receivers, you continue the sequence number of journal entries.

When the sequence number becomes very large, consider resetting the sequence to start the numbering at

1. You can reset the sequence number only when all changes are forced to auxiliary storage for all

journaled objects and commitment control is not active for the journal. Resetting the sequence number

has no effect on how the new journal receiver is named.

 Some conditions prevent you from resetting the sequence number, such as an active commit cycle. If the

system cannot reset the sequence number, you receive message CPF7018.

If you use system journal-receiver management for a journal and RCVSIZOPT(*MAXOPT3) is not

specified, the sequence number for the journal is reset to 1 whenever you restart the system or vary on

the independent disk pool containing the journal. When you restart the system or vary on an

independent disk pool, the system performs the change journal operation for every journal on the system

or disk pool that specifies system journal-receiver management. The operation that the system performs is

equivalent to CHGJRN JRN(xxx) JRNRCV(*GEN) SEQOPT(*RESET). The sequence number is not reset if journal

entries exist that are needed for commitment control IPL recovery. When RCVSIZOPT(*MAXOPT3) is

specified, the sequence number is only reset when you restart your system or vary on an independent

disk pool if it is approaching the maximum value.

If you specify RCVSIZOPT(*MAXOPT1), RCVSIZOPT(*MAXOPT2), or RCVSIZOPT(*SYSDFT) for the

journal to which you attached the receiver, the maximum sequence number is 9 999 999 999. If you

specify RCVSIZOPT(*MAXOPT3), the maximum sequence number is 18 446 744 073 709 551 600. If you

do not specify a receiver-size option, the maximum sequence number is 2 147 483 136. If these numbers

are reached, journaling stops for that journal. Whenever you change journal receivers, the system tells

you what the starting sequence number is through message CPF7019. Also, when you are approaching

the sequence number limit, CPF7019 is additionally sent to the QSYSOPR message queue every time you

change journal receivers.

The system sends a warning message (CPI70E7) to the journal’s message queue when the sequence

number exceeds 2 147 000 000. If you specified RCVSIZOPT(*MAXOPT1), RCVSIZOPT(*MAXOPT2), or

RCVSIZOPT(*SYSDFT) for the journal that you attached the receiver to, the system sends the warning

message when the sequence number exceeds 9 900 000 000. If you specified RCVSIZOPT(*MAXOPT3),

the system sends the warning message when the sequence number exceeds 18 446 644 000 000 000 000.

If you use system change-journal management support (MNGRCV(*SYSTEM)) for the journal, the system

attempts to change the journal and reset the sequence number one time. The message is sent only if the

attempt is not successful.

To reset the sequence numbers for journal entries proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Schemas.

4. Double-click the journal you want to use.

5. Select Swap receivers and under Sequence numbering select Reset.

6. Click OK. The Journal properties dialog closes. The new journal receiver is automatically created and

attached.

76 IBM Systems - iSeries: Journal Management

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Note: If you attempt to use the CHGJRN command with the same journal receiver name and

SEQOPT(*CONT), you may receive the message CPF701A. To recover, delete the journal receiver

and use the CHGJRN command again.

To change the sequence number with the Change Journal (CHGJRN) command, specify the

SEQOPT(*RESET) parameter.

 Related reference

 Change Journal (CHGJRN) command

Delete journal receivers:

Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal

management task is to delete journal receivers after you no longer need them.

 Related concepts

 “Journal message queue” on page 40

When you create or change a journal, you can specify where the system sends messages that are

associated with the journal. In addition, you can create a program to monitor this message queue and

handle any messages associated with the journal. The system also sends messages that are related to

the remote journal function to this message queue.

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

 “Automatic deletion of journal receivers” on page 43

If you choose system journal receiver management, you can also have the system delete journal

receivers that are no longer needed for recovery. You can only specify this if you are using system

journal receiver management.

 “Work with pointers in journal entries” on page 286

Under certain conditions, not all of the journal entry data will be immediately retrievable from a

journal entry. Instead, part of the journal entry information will include pointers to additional journal

entry-specific data.

 “Journal receiver management with remote journals” on page 330

As with local journals, regularly save and delete your journal receivers to minimize the amount of

online auxiliary storage which is used by the journal receivers.
 Related tasks

 “Inactivate the replication of journal entries to a remote journal” on page 321

When you end replication of journal entries to a remote journal, it is recommended that the replication

of entries be ended from the source system whenever possible, rather than from the target system.

Usually, ending replication from the target system for a remote journal is only necessary when the

source system has failed, and the system has not ended the remote journal function.

 “Delete journals” on page 79

Each journal on the system causes additional time and resource to be used when you restart the

system or vary on an independent disk pool after an abnormal end. If you no longer need a journal,

you can delete it.

 “Recover a damaged journal receiver” on page 97

If a journal receiver becomes damaged, the system sends message CPF8136 or message CPF8137 to the

system operator and the job log.
 Related reference

 QIBM_QJO_DLT_JRNRCV exit point

How to determine whether to delete a journal receiver:

When you are determining whether to delete a journal receiver, consider the following:

Journal management 77

v Journal receivers you need for recovery.

v Journal receivers you do not need for recovery.

v Where the journal receiver is in the receiver chain.

Journal receivers you need for recovery:

Do not delete a journal receiver that has not been saved if you need that journal for recovery. Any journal

receiver that you need to perform an apply or remove journaled changes operation is needed for

recovery.

Attention: Use care when you delete journal receivers if you use save-while-active operations to save

objects before they reach a commitment boundary. Ensure that you save the journal receivers before you

delete them. If an object is saved before it reaches a commitment boundary it can have partial

transactions. If you need to restore objects with partial transactions, you must have access to the journal

receivers that were attached during the partial transactions to avoid data loss.

To determine if a journal receiver has been saved, in iSeries Navigator, right-click the journal receiver, and

select Properties. If the Saved field shows no date, then you have not saved the journal receiver.

If you have saved the journal receiver, but the journaled objects are not saved, then you still need that

journal receiver for recovery. If you have space on your system, wait to delete journal receivers until it is

unlikely that you need them for a recovery. (You saved the journaled object). Restoring journal receivers

before applying or removing journaled changes may significantly increase your recovery time.

Although it is not recommended, the system does not prevent you from deleting a receiver you detached

and is not saved or that is required to provide adequate recovery. If you try to delete a journal receiver

that was once attached but has not been saved, the system issues an inquiry message. You can then

continue or cancel the delete operation. You can use the system reply list to specify the reply the system

is to send for this inquiry message (rather than explicitly responding to each inquiry message).

Journal receivers you do not need for a recovery:

If you are journaling only for access path protection or commitment control, most likely you do not need

the journal receivers to recover journaled changes. You do not need to save these journal receivers before

deleting them.

To make your journaling tasks easier, you can even automate the deletion of these journal receivers by

specifying the following:

v Specify system journal-receiver management.

v Specify automatic deletion of journal receivers.

When you specify automatic deletion of journal receivers, the system does not send a message when it

deletes a journal receiver. By specifying automatic deletion for journal receivers, you indicate that you do

not need the journal receivers for user recovery.

Where the journal receiver is in the receiver chain:

To ensure logical recovery, the system does not allow you to delete a journal receiver from the middle of

the receiver chain unless one of the following conditions exists:

v The journal is using automatic deletion of journal receivers.

v The journal is a remote journal.

However, if a journal receiver is damaged, you can delete it from the middle of the chain. If an attached

journal receiver is damaged, you must perform a change journal operation to detach the damaged

receiver before you can delete it.

78 IBM Systems - iSeries: Journal Management

|
|
|

|
|
|

|
|
|

Rules for deleting journal receivers:

The rules for deleting journal receivers are as follows:

v You cannot delete a journal receiver that is attached to a local journal. You must perform a change

journal operation to detach a journal receiver before you delete it.

v You must delete journal receivers in the same order they were attached to a journal.

v You can delete a damaged or inoperable receiver regardless of the previous restriction. However, if an

attached receiver is damaged, you must detach it before you delete it.

v You cannot delete a journal receiver that is attached to a remote journal if the remote journal has a

journal state of active. If you attempt to delete a receiver that is attached to a remote journal, the

system sends the inquiry message CPA705E. The results of the reply to the message are the same as

those that occur with message CPA7025.

Procedure for deleting journal receivers:

Proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Schemas.

4. Click the schema you want to work with.

5. Right-click the journal receiver you want to delete and click Delete.

6. At the Confirm Object Deletion dialog click Delete.

You can also use the Delete Journal Receiver (DLTJRNRCV) command to delete journal receivers. If you

use the DLTJRNRCV command, an exit point is available to use with an exit program to help automate

journal receiver deletion.

Exit point for the DLTJRNRCV command:

One example of using this exit point is a situation where your application is using the data in the journal

receiver. The application is dependent on the journal receiver being present until your application

processing is complete. By registering an exit program with the QIBM_QJO_DLT_JRNRCV exit point, the

program will be called every time a journal receiver is deleted from the system. If your program

determines that your application is not yet done with the receiver, it can indicate that the journal receiver

is not eligible for deletion.

If you must delete the receiver regardless of what an exit program indicates, you can specify

*IGNEXITPGM for the DLTOPT parameter on the DLTJRNRCV command. This parameter value requests

that any user exit programs that are registered for QIBM_QJO_DLT_JRNRCV exit point be ignored.

You can also use the following values for the DLTOPT parameter:

*IGNTGTRCV

Ignore target receiver. If you specify this value, the system does not verify that all remote journals

that are associated with this journal, and are immediately downstream on a target system, have

full copies of this journal receiver. The delete operation will continue, even if a remote journal

does not have a full copy.

*IGNINQMSG

Ignore inquiry message. Inquiry message CPA7025 will not be presented, even if this receiver has

not been fully saved. Also, inquiry message CPA705E is not presented to the user even if the

receiver is attached to a remote journal. The delete operation continues.

Delete journals:

Journal management 79

Each journal on the system causes additional time and resource to be used when you restart the system

or vary on an independent disk pool after an abnormal end. If you no longer need a journal, you can

delete it.

 The system does not allow you to delete a journal if any of the following conditions exist:

v You are journaling objects to it.

v Commitment control is active, and the journal is associated with a commitment definition.

Note: If you have certain types of referential constraints defined, the system starts commitment control

if it is not already started. For example, if you have defined a cascaded delete constraint for an

object, the system starts commitment control if you open the object for a delete operation. The

default commitment definition that is created is active until the job ends.

v Any of the associated remote journals have a journal state *ACTIVE.

If you no longer need a journal and its associated receivers, perform the following steps:

1. Use the Work with Journal Attributes (WRKJRNA) command to determine the following:

v Which objects are being journaled to this journal.

v Whether or not commitment control is active and the journal is associated with it.
2. If commitment control is active and the journal is associated with it, end commitment control with the

End Commitment Control (ENDCMTCTL) command.

3. End journaling for all objects associated with the journal.

4. If any commitment definitions are active that use this journal as the default journal, use the ENDJOB

command to end the jobs that are using the commitment definitions. This includes commitment

control that is started because of a referential constraint.

5. If any remote journals have a journal state of *ACTIVE, inactivate them. See Inactivate the replication

of journal entries to a remote journal for more information.

6. Delete the journal by doing the following:

a. In the iSeries Navigator window, expand the system you want to use.

b. Expand Databases.

c. Expand the database that you want to work with and Schemas.

d. Click the schema you want to work with.

e. Right-click the journal you want to delete and click Delete.

f. At the Confirm Object Deletion dialog click Delete.
7. Delete the journal receiver.

You can also use the Delete Journal (DLTJRN) command to delete the journal and the Delete Journal

Receiver (DLTJRNRCV) command to delete the journal receiver.

 Related tasks

 “End journaling” on page 69

Provides information about how to end journaling and why ending journaling might be necessary.

 “Inactivate the replication of journal entries to a remote journal” on page 321

When you end replication of journal entries to a remote journal, it is recommended that the replication

of entries be ended from the source system whenever possible, rather than from the target system.

Usually, ending replication from the target system for a remote journal is only necessary when the

source system has failed, and the system has not ended the remote journal function.

 “Delete journal receivers” on page 77

Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal

management task is to delete journal receivers after you no longer need them.
 Related reference

 Delete Journal (DLTJRN) command

80 IBM Systems - iSeries: Journal Management

Delete Journal Receiver (DLTJRNRCV) command

Save journals and journal receivers:

You must save the journal receivers when they are no longer attached, so that you have all the journal

entries saved.

 Using a save-while-active operation to save objects before they reach a commitment boundary can result

in objects that are saved with partial transactions. Saving journal receivers ensures that they are available

to recover objects that are restored with partial transactions.

When you save a journal receiver that is no longer attached, you can free storage. However, a journal

receiver whose storage has been freed must be restored before you can use it for recovery.

Notes:

v Saving journals and journal receivers in the Back up your server topic provides more

information about saving journals and journal receivers. Example: Recover objects with partial

transactions has instructions for recovering objects with partial transactions.

v Read the Code example disclaimer for important legal information.
 Related concepts

 Back up your server topic
 Related tasks

 “Example: Recover objects with partial transactions” on page 129

If you restore an object that was saved with a save-while-active operation that specified that the object

can be saved before it reaches a commitment boundary, it can have partial transactions. To recover

objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Use SAVCHGOBJ to save journal receivers:

One technique for saving journal receivers is to use the Save Changed Object (SAVCHGOBJ) command.

When you use the SAVCHGOBJ command to save journal receivers, ensure that you omit the attached

journal receiver.

 In the following example, all your journal receivers are in a library called RCVLIB. The currently attached

journal receiver is MYJRCV0004.

SAVCHGOBJ OBJ(*ALL) OMITOBJ(MYJRCV0004) LIB(RCVLIB) OBJTYPE(*JRNRCV)

 DEV(media-device-name) ENDOPT(*LEAVE)

This example saves all journal receivers that have any new entries since the entire library was saved but

omits the currently attached journal receiver MYJRCV0004.

A possible disadvantage to using the SAVCHGOBJ command to save journal receivers is that you can

accidentally save the journal receivers that are currently attached. Those journal receivers are saved as

partial receivers. If you need to do a recovery, you may need to handle the error condition that occurs

when you attempt to restore the partial receiver over the receiver that is currently on the system and has

not yet been saved. Also, partial journal receivers make tasks such as displaying entries and performing

apply and remove journaled changes operations more difficult. Therefore you must avoid saving attached

journal receivers.

Note: Read the Code example disclaimer for important legal information.

 Related concepts

 “Recover journaled objects” on page 102

One of the primary advantages of journaling is its ability to return a journaled object to its current

state since the last save.

Journal management 81

Related reference

 Save Changed Objects (SAVCHGOBJ) command

Methods to save journal receivers:

Following are three methods to save journal receivers. The first method saves journal receivers

individually. The two other methods save the journal receiver automatically.

 Save journal receivers individually

Use the Work with Journal Attributes (WRKJRNA) command to display the receiver directory for each

journal. The receiver directory tells which journal receivers have not yet been saved. Then use the Save

Object (SAVOBJ) command to save them.

The advantage to using this technique is that each journal receiver is saved only once. You will not have

problems with duplicate names and partial receivers if you need to restore. The disadvantage to this

technique is that it requires manual effort to determine the names of the journal receivers to be saved.

Save journal receivers by name - Automated method 1

You can use a combination of system journal-receiver management and a control language (CL) program

to automate most journal management tasks. Do the following:

v Specify a threshold size for the journal receiver.

v Specify MNGRCV(*SYSTEM), DLTRCV(*NO), and a message queue for the journal.

v Use a CL program to monitor the journal message queue for the message (CPF7020) that indicates that

the system has successfully detached the journal receiver.

v Your CL program can then save the receiver that was detached and optionally delete it.

Save journal receivers by name - Automated method 2

An alternate method of automatically saving journal receivers is to use a high level language program

that uses the Retrieve Journal Information (QjoRetrieveJournalInformation) API. The program can use this

API to determine the journal receiver directory and which receivers are not saved. The program can then

save the journal receivers that are not marked as saved. You can set up this program to run on a regular

basis or as part of normal processing.

See CL Programming for information about control language programming.

 Related information

 CL Programming

Correct order for restoration of journaled objects:

You must restore journals and their associated objects in the correct order.

 For the system to automatically reestablish your journaling environment, restore objects in this sequence:

1. Journals

2. Based-on physical files

3. Dependent logical files

4. Other journaled object types

5. Journal receivers

You can restore journal receivers at any point after you restore the journals. You do not need to restore

them after the journaled objects.

82 IBM Systems - iSeries: Journal Management

When these objects are in the same library, the system restores them in the correct sequence. When these

objects are in different libraries or directories, you must restore them in the correct sequence, or you must

manually reestablish your journaling environment after the restore operation.

You can restore journal receivers in any sequence. After restoring them, use option 9 (Associate receivers

with journal) from the Work with Journal (WRKJRN) command display to build the receiver chain in the

correct sequence. You can also use Option 9 to build the receiver chain if you restore the journal after the

journal receivers. The journal must be on the system for the receiver chain to be built.

If you restore journaled objects before restoring the journal, you must start journaling again.

Your journals and journal receivers can be in different libraries. If this is true, you must ensure that the

library that will contain the journal receivers is on the system before restoring the journal. Ensuring this

will also ensure that the journal receiver is created in the desired library, since a journal receiver is

created when the journal is restored. Only the library needs to be on the system, not the journal receivers

in that library. If you do not ensure this, you may need to create a journal receiver in the desired journal

receiver library. You would then have to run the Change Journal (CHGJRN) command to attach the new

receiver to your journal.

 Related concepts

 “Keep track of journal receiver chains” on page 73
Journal receivers that are associated with a journal (that is presently or previously attached to the

journal) are linked in one or more receiver chains. Each journal receiver, except the first one, has a

previous receiver that was detached when the current receiver was attached. Each journal receiver,

except the one that is currently attached, also has a next receiver.
 Related tasks

 “Start journaling” on page 61

This topic provides information about how to start journaling for all object types.
 Related reference

 Change Journal (CHGJRN) command
 Related information

 Backup and Recovery

Evaluate how system changes affect journal management

After you have established your journaling environment, you need to keep up with changes that occur on

your system.

When you add new applications, evaluate whether to journal the objects.

If you use SMAPP, the system automatically considers new access paths when deciding how to meet your

target recovery times for access paths.

Journaling places some limits on what changes you can make. For example:

v You cannot protect a logical file, either explicitly or with SMAPP, if the underlying physical files are

journaled to different journals.

v You cannot move an object to a different disk pool from the disk pool of the library that contains its

journal.

Keep records of journaled objects

You must always have a current list of objects that you are journaling and their assigned journals. Print a

new list whenever you add or remove objects from the journal.

Do this to print a list:

1. Type WRKJRN.

Journal management 83

2. Specify *ALL for both the Journal and Library fields.

3. Press Enter twice.

4. Write down the names of all the journals or use the PRINT key for each panel of the display.

5. For each journal in the list that is used to journal objects, type WRKJRNA JRN(library-name/

journal-name) OUTPUT(*PRINT). Additionally, the WRKJRNA command can send the journaled objects

to an outfile. The print and outfile option on the WRKJRNA command also allows subsetting the

output of the journaled object types.

Keep the lists with your most recent set of backup media that you used to save the entire system. You

can also use the Retrieve Journal Information (QjoRetrieveJournalInformation) API to retrieve information

about your journaling environment.

You might need this list for the following reasons:

v You need to recover your journaling environment; for example, if the journal is damaged or deleted.

Although you can recover your journaling environment by restoring the objects, in many cases starting

journaling for the objects is a quicker and safer method.

v You create new access paths. The system cannot protect access paths, either explicitly or by using

SMAPP, if the underlying physical files are not journaled to the same journal.

v You want to move objects to another disk pool. Journaled objects must be in the same disk pool as the

journal, unless the objects are in the system disk pool and the journal is in a nonlibrary basic disk pool.
 Related concepts

 Plan a backup and recovery strategy
 Related reference

 Retrieve Journal Information (QjoRetrieveJournalInformation) API

Keep records of your journal receivers:

Choose the method for saving journal receivers that works best for your organization. Then be sure to

keep track of what you do. Label your save media so that you know which journal receiver media

volumes are required to apply journal changes to the last complete saved copy of the journaled objects.

Think through possible recovery scenarios. For example, assume this is your save procedure:

v You save all user libraries and directories on Sunday evening.

v You save changed objects every evening.

v You save journal receivers every 2 hours during normal business hours.

Given the preceding list, what are your recovery steps if you lose a journaled object at 3 p.m. on

Thursday?

For complete information about developing a recovery plan, see Plan a backup and recovery strategy.

Manage security for journals

Use journal management to provide an audit trail of changes that were made to your objects. You can

determine which program or user made changes to objects by using the journal entries.

By specifying the FIXLENDTA parameter of the Change Journal (CHGJRN) or Create Journal (CRTJRN)

commands you can specify that the following data is included in the journal entry:

v The job name.

v The effective user profile name.

v The program name.

v The program library name and the auxiliary storage pool device name that contains the program

library.

84 IBM Systems - iSeries: Journal Management

|
|
|
|

v The system sequence number. The system sequence number gives a relative sequence to all journal

entries in all journal receivers on the system.

v The remote address, the address family and the remote port.

v The thread identifier. The thread identifier helps distinguish between multiple threads running in the

same job.

v The logical unit of work identifier. The logical unit of work identifies work related to specific commit

cycles.

v The transaction identifier. The transaction identifier identifies transactions related to specific commit

cycles.

For database physical files, you can determine what changes were made to specific records by using the

Compare Journal Images (CMPJRNIMG) command. However, you cannot use the CMPJRNIMG

command for journal entries that have minimized entry-specific data. If you specified the

MINENTDTA(*FILE) or MINENTDTA(*FLDBDY) parameter on the Create Journal (CRTJRN) or Change

Journal (CHGJRN) commands, you might have minimized entry-specific data.

Use Journal management to provide an audit trail because of the following reasons:

v No one, even the security officer, can remove or change the journal entries.

v Journal entries represent a chronological sequence of events.

v Each journal entry in the system is sequentially numbered without gaps until the CHGJRN command

resets the sequence number.

Note: When you display the journal entries, there can be gaps in the sequence numbers because some

journal entries are only used internally by the system. These gaps occur if you are using

commitment control, database file journaling, or access-path journaling. To view the entries in

the gaps, you can use the INCHIDENT parameter on the Display Journal (DSPJRN) command.

v The journal contains entries that indicate when each journal receiver was changed and the name of the

next journal receiver in the chain.

v Whenever journaling for an object is ended or whenever an object is restored an entry is written.

Remember that the date and time recorded in the journal entries depends on the date and time entered

during an IPL and therefore, may not represent the actual date and time. Also, if you use shared files, the

program name that appears in the journal entry is the name of the program that first opened the shared

file.

A special journal, that is called the audit (QAUDJRN) journal, can provide a record of many

security-relevant events that occur on the system. See the iSeries Security Reference for information about

the QAUDJRN journal.

For more information about security on your iSeries server, see the Security topic.

 Related concepts

 Security
 Related information

 iSeries Security Reference PDF

Display information for journaled objects, journals, and receivers

iSeries Navigator, Control Language commands, and APIs provide several ways you can display

information about journaled objects, journals, and journal receivers.

 Related concepts

 “Keep track of journal receiver chains” on page 73
Journal receivers that are associated with a journal (that is presently or previously attached to the

journal) are linked in one or more receiver chains. Each journal receiver, except the first one, has a

Journal management 85

|
|
|
|
|

previous receiver that was detached when the current receiver was attached. Each journal receiver,

except the one that is currently attached, also has a next receiver.

 “Get information about remote journal entries” on page 324

Working with the journal entries in a remote journal is essentially the same as working with the

journal entries in a local journal.

Information for journaled objects:

Use the following methods to get information about journaled objects:

iSeries Navigator

You can use iSeries Navigator to display information such as whether the object is journaled, the

name of the object’s journal, what library the object’s journal is in, and which journaling options

are being used. You can use iSeries Navigator to display journaling information for the following

object types:

v Tables (database files)

v Integrated file system directories

v Integrated file system stream files

v Integrated file system symbolic links

CL commands and APIs:

The advantage to using these commands and APIs is that they can get information about groups of

objects. Using iSeries Navigator, you can only get information about one object at time. Use the following

commands and APIs to get information about journaled objects.

v Display File Description (DSPFD) command

v Display Object Description (DSPOBJD) command

v Display Object Links (DSPLNK) command

v Get Attributes (Qp0lGetAttr()) API

v List Objects (QUSLOBJ) API

v Open List of Objects (QGYOLOBJ) API

v Work with Object Links (WRKLNK)

Information for journal receivers:

Ways that you can display information about journals and related receivers are as follows:

v iSeries Navigator

v Display Journal Receiver Attributes (DSPJRNRCVA) command

v Retrieve Journal Information (QjoRetrieveJournalInformation) API

v Work with Journal Attributes (WRKJRNA) command

v Retrieve Journal Receiver Information (QjoRtvJrnReceiverInformation) API

These methods can identify:

v The journal receivers currently attached to the journal.

v A directory of the journal receivers still on the system that are associated with the journal.

v The names of all of the objects that are being journaled instead of the journal.

v The commitment control uses of this journal.

v The attributes of the journal.

v Information about all remote journals that are associated with the journal.

Furthermore, the DSPJRNRCVA command or the QjoRtvJrnReceiverInformation API can identify:

86 IBM Systems - iSeries: Journal Management

v Fixed-length data

v ASP of the journal receiver

v Minimized entry data

v The next and previous journal receiver information

You can find the status of a journal receiver by using the WRKJRNA command, then pressing F15

(Receiver directory) from the Work with Journal Attributes display. You can also use the DSPJRNRCVA

command. Or in iSeries Navigator, you can the find status of a journal receiver by doing the following

steps:

1. Expand the system with the journal receiver

2. Expand Databases and the database with the journal receiver.

3. Expand Schemas and the schema (library) with the journal receiver.

4. Click Journal Receivers.

5. Right-click the journal receiver, and select Properties.

When the journal receiver is in partial status:

The partial status of a journal receiver indicates the following:

v The disk unit on which the journal receiver is stored is damaged. No more journal entries can be

recorded.

v A journal receiver was saved while it was attached to the journal. This means that additional entries

may have been recorded in the journal receiver after the save operation occurred. The receiver was

later restored, and no complete version is available.

v The journal receiver is associated with a remote journal. It does not contain all the journal entries that

are in the associated journal receiver that is attached to the source journal.

v A partial receiver does not contain all the entries that are recorded in the journal while this receiver

was attached. It does contain entries that are recorded up to the last save operation.

v The most complete version of the journal receiver is no longer on the system because it was destroyed

during a failure.

v You have restored an older, partial version.

Work with inoperable journal receivers

If you have specified journaling for any objects, the system ensures that you have corrected problems that

affect journaling before continuing with operations on those objects. If the attached journal receiver

becomes inoperable, the operation that writes a journal entry is interrupted and the system sends an

inquiry message that notifies the system operator.

The operator can swap the journal receiver with iSeries Navigator or the Change Journal (CHGJRN)

command. You can then respond to the inquiry message. A receiver can become inoperable if the receiver

is damaged, the maximum sequence number has been reached, or there is no more space.

 Related tasks

 “Swap journal receivers” on page 71
An important task for journal management is to swap (or change) journal receivers. You typically

swap journal receivers when they reach their storage threshold. You can swap journal receivers either

with iSeries Navigator or with the Change Journal (CHGJRN) command. If you use system

journal-receiver management, the system changes journal receivers for you.
 Related reference

 Change Journal (CHGJRN) command

Journal management 87

Compare journal images

Use the Compare Journal Images (CMPJRNIMG) command to compare and list the differences between

the before-image of a record and the after-image of that record, or the after-image of a record with the

previous after-image of that record.

Note: If you are using maximum receiver-size option RCVSIZOPT(*MAXOPT3) and your entry sequence

numbers exceed 9 999 999 999, specify the FROMENTLRG and TOENTLRG parameters when you

use the CMPJRNIMG command.

You can only use the CMPJRNIMG command for journaled physical database files. You cannot use the

CMPJRNIMG command for journal entries that have minimized entry-specific data. If you specified the

minimized entry-specific data (MINENTDTA(*FILE) or MINENTDTA(*FLDBDY) parameter on the Create

Journal (CRTJRN) or Change Journal (CHGJRN) commands, the journal entries might have minimized

entry-specific data, preventing you from being able to compare journaled images.

If the journaled files have null-capable fields, the null value indicators corresponding to the fields in the

before-image of the record are compared with the null value indicators corresponding to the fields in the

after-image of the record. A field-by-field basis compare does this.

The printed output from the CMPJRNIMG command shows the before-images and after-images of a

record followed by a line that indicates (with asterisks) the specific change in the record on a

character-by-character basis. If you compare the after-images, the output shows the previous after-image

of the record and the current after-image of the record, followed by a line indicating the changes.

If you use this command to compare journal images for a file that contains any fields of data type BLOB

(binary large object), CLOB (character large object), or DBCLOB (double-byte character large object), these

fields are not included in the comparison. All other fields in the file are compared.

Work with IBM-supplied journals

The operating system and some licensed programs use journals to provide audit trails and assist with

recovery.

The following table lists some of the IBM-supplied journals:

 Journal name Library name Description

QACGJRN QSYS Keeps job accounting information. Job Accounting in the

Work Management topic describes the use of this

optional journal.

QAOSDIAJRN QUSRSYS Provides recovery for the document library files and the

distribution files. Used by Integrated xSeries Server.

QASOSCFG QUSRSYS The journal for the QASOSCFG physical file. The

QASOSCFG file stores secure client SOCKets Secure

(SOCKS) configuration data. The Client SOCKS support

topic provides more information about SOCKS.

QAUDJRN QSYS Keeps an audit record of security-relevant activity on

the system. iSeries Security Reference describes this

optional journal.

QCQJMJRN QUSRSYS Provides an audit trail for Managed System Services.

QDSNX QUSRSYS Provides an audit trail for DSNX activity.

QIPFILTER QUSRSYS Provides information for troubleshooting and auditing

IP filter rules. See the IP filtering and network address

translation topic for more information about IP filtering

rules.

88 IBM Systems - iSeries: Journal Management

|
|
|
|
|

|
|
|

Journal name Library name Description

QIPNAT QUSRSYS Provides information for troubleshooting and auditing

network address translation (NAT). See the IP filtering

and network address translation topic for more

information about NAT.

QLYJRN QUSRSYS Keeps a log of transactions made to the Application

Development Manager datastore files.

QLYPRJLOG QUSRSYS Keeps the project logs for the Application Development

Manager licensed program. Used by the system if

recovery is necessary.

QLZALOG QUSRSYS Used by the licensed management program to log

requests that exceed the usage limit of a license.

QPFRADJ QSYS Keeps a log of dynamic performance tuning

information. Job Accounting in the Work Management

topic describes using this optional journal.

QSNADS QUSRSYS Provides an audit trail for SNADS activity.

QSZAIR QUSRSYS A journal for Storage Management Services (SMS)

QSNMP QUSRSYS Provides an audit trail for network management

information. Simple Network Management Protocol

(SNMP) describes using this journal.

QSXJRN QUSRSYS Provides a log of the activity that occurs in the database

files for service-related activity. Keep the information in

this journal for 30 days.

QTOVDBJRN QUSRSYS A journal for virtual private networking (VPN).

QVPN0001 QUSRSYS Provides an audit trail for Virtual Private Networking

(VPN) connections. TCP/IP Configuration and Reference

describes this journal.

QYPSDBJRN QUSRSYS A journal for the systems management platform

QZCAJRN QUSRSYS Contains a record for each SNMP PDU in and out of the

SNMP agent, by PDU type (SNMP GET, SNMP

GETNEXT, SNMP SET, SNMP TRAP). TCP/IP

Configuration and Reference provides more information

about this journal.

QZMF QUSRSYS Provides an audit trail for the mail server framework.

AnyMail/400 Mail Server Framework Support provides

more information about this journal.

If you are using licensed programs or system functions that require these journals, consult the

documentation for those functions for instructions on how to manage the journals and journal receivers.

In general, you swap journal receivers to detach the journal receiver and create and attach a new receiver

on a regular basis. You may need to save detached receivers before deleting them, or you may be able to

delete them without saving them. This depends on how the journal receivers are being used and whether

the journal is using system journal-receiver management.

In some cases, you can use the automatic cleanup function of Operational Assistant to remove detached

journal receivers that are no longer needed.

 Related concepts

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

Journal management 89

Related tasks

 “Swap journal receivers” on page 71
An important task for journal management is to swap (or change) journal receivers. You typically

swap journal receivers when they reach their storage threshold. You can swap journal receivers either

with iSeries Navigator or with the Change Journal (CHGJRN) command. If you use system

journal-receiver management, the system changes journal receivers for you.

Send your own journal entries

Use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to add

your own entries to a journal. The system places these entries in the journal’s attached journal receiver

along with the system-created journal entries.

To help identify your entries, you can associate each entry with a particular journaled object. If you use

the QJOSJRNE API, you can include the commit cycle identifier with the journal entry and send a larger

amount of entry-specific data.

You may add entries to the journal to identify significant events (such as a checkpoint) or to help in the

recovery of your applications. On the SNDJRNE command, the data specified on the ENTDTA parameter

becomes the Entry-Specific Data field in the journal entry, and the TYPE parameter value becomes the

entry type field. On the QJOSJRNE API, you use the entry data parameter to specify the entry-specific

data and the journal entry type parameter to specify the entry type. For both the command and API

deposits, the entries journal code is ’U’.

The maximum user entry data size for the QJOSJRNE API is 15 MB, which is the maximum journal entry

size for a journal that does not have one of the receiver maximums chosen

(RCVSIZOPT(*MAXOPT1/*MAXOPT2/*MAXOPT3)). If the length of the entry data is greater than 32KB,

then a pointer to the entry data will be returned when retrieving the entry. If the retrieve interface is

expecting pointers, the data can be accessed through the pointer returned on the retrieve. Otherwise, the

data returned by the retrieve interface will be *POINTER.

The QJOSJRNE API optionally returns the following values in the location specified by the receiver

variable:

v Number of bytes returned in the receiver variable

v Number of bytes available that could have been returned in the receiver variable

v Sequence number of the journal entry that was just deposited

v Journal receiver name

v Journal receiver library

v Independent Auxiliary Storage Pool (IASP) name

 Related concepts

 “Plan which objects to journal” on page 20

When you plan which objects to journal, consider the following:

 “Journaled changes with trigger programs” on page 116

The system does not call trigger programs when it is applying or removing journal entries.

 “Journal code descriptions” on page 133

This topic provides a description of all of the journal codes and categories.

Change the state of local journals

Local journals can be in one of two states, active or standby. When the journal state of a local journal is

active, journal entries are allowed to be deposited to the journal receiver.

To put a journal in standby state use the Change Journal (CHGJRN) command. You can also use iSeries

Navigator or the CHGJRN command to change the state of a journal back to active.

 Related concepts

90 IBM Systems - iSeries: Journal Management

|
|
|
|
|
|

|
|

|

|

|

|

|

|

“iSeries Navigator versus the character-based interface for journaling objects” on page 19
There are two environments that you can use for journal management: iSeries Navigator and the

character-based interface. iSeries Navigator provides a graphical interface for journaling that is easy to

use and does not require the use of control language (CL) commands. The character-based interface

requires the use of CL commands or APIs, but has more functionality than iSeries Navigator.

 “File identifier considerations for working with integrated file system entries” on page 324

If you plan to replay the integrated file system operations in the remote journal to objects on the

target system, and if you primed that target system with objects that were restored from the source

system, then some additional considerations apply to replaying those journal entries.
 Related reference

 Change Journal State (QjoChangeJournalState) API

 Change Journal (CHGJRN) command
 Related information

 Journal entry information finder

Standby state:

Journal standby state is a separately purchased feature that prevents most journal entries from being

entered into the journal. Standby state is option 42 of the i5/OS operating system. You can start or stop

journaling while the journal is in standby. However, while a journal is in standby state, you cannot use

explicit commitment control. Also, databases files that have referential integrity constraints or data links

defined cannot be used when a journal is in standby state. The operating system needs to use

commitment control for these functions. However, referential integrity constraints can be used in standby

state if RESTRICT is specified on the ON UPDATE or ON DELETE attribute for the constraint.

An example of when you might want to put a journal on standby state is if the journal is on a backup

system. By having the journal in standby state, a switchover to the target system can be accomplished

more quickly because all objects on the backup system can be journaled thus allowing the switchover

processing to skip the costly step of starting journaling for all objects. At the same time though, the

backup system is not incurring the overhead of journaling because most journal entries are not deposited

when the journal is in standby state.

If there is an attempt to deposit a journal entry when the journal is in standby state, no entry is

deposited, but no error messages are sent to the application. Journal codes ’J’ and entry types ’SI’ and

’SX’ are deposited when the local journal is put into and out of standby. Furthermore, there are some

journal entries that will be deposited in a journal, even though the journal state is standby. Use the

Journal entry information finder to see if a journal entry is still deposited even though the journal in

standby state.

Active state:

When a local journal is created, the journal state of that journal is *ACTIVE. This means that journal

entries can be deposited to the local journal. If a local journal is in standby state, journal entries with

journal code ’J’ and entry type ’LA’ are deposited when the local journal is activated.

If a local journal has been put in standby state, activate it by doing the following:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database you want to work with and Schemas.

4. Click the Schema that contains the journal you want to activate.

5. Right-click the journal, and select Properties.

6. On the Journal Properties dialog box select Activate journal

Journal management 91

rzakifinder.htm

You can also use the Change Journal State (QjoChangeJournalState) API or Change Journal (CHGJRN)

command to activate the local journal.

Scenario: Journal management

Provides the steps that a fictitious company, JKL Toy company, takes as it implements journal

management on its iSeries server.

Sharon Jones, the system administrator for the JKL Toy Company, is responsible for backing up their

servers and making sure that their servers can be recovered in the event of a natural disaster or system

failure. As security officer, she is also responsible for ensuring the security of the servers.

The JKL Toy Company has a network that consists of a development server, a production server, and an

http server. Click on a server on the diagram below for a description of the system and the journaling

strategy Sharon uses.

 Related tasks

 Scenario: Backup using BRMS
 Related information

 “Scenarios: Remote journal management and recovery” on page 339

These scenarios describe the possible ways that JKL Toy Company can use remote journal

management. JKL Toy Company uses the server JKLINT as their web server.

92 IBM Systems - iSeries: Journal Management

JKLPROD

JKLPROD is the system that JKL uses for all of their customer orders and where their business

applications are installed (inventory control, customer orders, contracts and pricing, accounts receivable).

The information about this server is extremely critical to their business and changes often.

Also, there are several users who have remote access to the system from home connection. In addition,

even though the company’s web site is static, the company has plans to establish a transactional site.

Because of the importance of the information about JKLPROD, Sharon wants to be able to audit the

activity that occurs on the system.

JKLPROD journaling strategy

Since the objects on JKLPROD are crucial to JKL, and since they change often, Sharon has decided that

they are good candidates for journaling.

v Since there are access paths that are critical to her operation, Sharon journals access paths.

v Sharon already separates the information about JKLPROD on separate disk pools:

– Disk pool 2 - inventory control

– Disk pool 3 - customer orders

– Disk pool 4 - contracts and pricing

– Disk pool 5 - accounts receivable

Since the journal and the journaled objects must be in the same disk pool, Sharon creates four journals.

v Since she wants to audit the activity that occurs on the system, and since people have remote access to

the system, Sharon journals fixed-length data using the following values:

– Job name (*JOB)

– User profile (*USR)

– Program name (*PGM)

– Remote address (*RMTADR)
v Since Sharon is using the FIXLENDTA parameter, she cannot minimize the fixed-length portion of the

journal entries.

v Because she is using the FIXLENDTA parameter for all of the journals, and since she is journaling

access paths Sharon uses the character-based interface to set up journaling.
 Related concepts

 “Plan which objects to journal” on page 20

When you plan which objects to journal, consider the following:

 “Reasons to journal access paths” on page 23

If you journal access paths, the system can use the journal entries to recover access paths instead of

rebuilding them completely.

 “iSeries Navigator versus the character-based interface for journaling objects” on page 19
There are two environments that you can use for journal management: iSeries Navigator and the

character-based interface. iSeries Navigator provides a graphical interface for journaling that is easy to

use and does not require the use of control language (CL) commands. The character-based interface

requires the use of CL commands or APIs, but has more functionality than iSeries Navigator.

JKLINT

JKLINT is the system that JKL uses for their Web site and e-mail. While this data is critical to their

business, it is fairly static.

They need 24x7 availability for the critical data on this server, and they accomplish that by having a

second server, JKLINT2, that shadows JKLINT. They use a high availability replication solution to copy

the data from JKLINT to JKLINT2. Then, if JKLINT goes down, they can switch to JKLINT2.

Journal management 93

Since Sharon is using a high availability solution she uses remote journaling with the two servers.

Scenarios: Remote journal management and recovery description shows the different ways that Sharon

can set up remote journaling between JKLINT and JKLINT2.

 Related information

 “Scenarios: Remote journal management and recovery” on page 339

These scenarios describe the possible ways that JKL Toy Company can use remote journal

management. JKL Toy Company uses the server JKLINT as their web server.

JKLDEV

JKLDEV is JKL’s development server. Though it does not require 24x7 availability, the data on it

represent many person hours of work by the developers. Therefore it is important that in the event of a

crash, the system be brought to a current state. Also, since it is a development server, changes to the data

occur often.

JKLDEV is used by both web and database developers. So several different types of data are stored on

this server, including stream files and database files.

JKLDEV journaling strategy

Since many of the objects on JKLDEV are important and changes often, Sharon has decided that they are

good candidates for journaling.

JKLDEV is used by both web and database developers, so there are several physical files, and many

stream files that she wants to journal. Sharon has decided to do the following:

v Since none of the access paths are critical to her operation, Sharon does not journal access paths.

v To simplify setup and recovery, Sharon assigns all of the objects to one journal.

v Since there are many stream files to journal, Sharon journals the integrated file system directories, in

addition to individual files. She elects to use the Current folder and all subfolders option and Journal

new files and folders option. This choice ensures that the objects currently in the directory and in any

subfolders are journaled and objects that are created in the future are also journaled.

v Since journaling with the Journal new files and folders option can quickly make the journal receiver

size grow quickly, she uses system journal-receiver management.

v Because it supports all of the options she has chosen, Sharon sets up journaling on iSeries Navigator.
 Related concepts

 “Plan which objects to journal” on page 20

When you plan which objects to journal, consider the following:

 “Reasons to journal access paths” on page 23

If you journal access paths, the system can use the journal entries to recover access paths instead of

rebuilding them completely.

 “Object assignment to journals” on page 55

You can use one journal to manage all the objects you are journaling. Or, you can set up several

journals if groups of objects have different backup and recovery requirements. Every journal has a

single attached receiver. All journal entries for all objects being managed by the journal are written to

the same journal receiver.

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

Recovery operations for journal management

Provides tasks that show you how to use journaling to recover data on your iSeries server.

The following information contains recovery tasks to perform if you have an abnormal system end, need

to recover a damaged journal, journal receiver, or journaled object:

94 IBM Systems - iSeries: Journal Management

Determine recovery needs using journal status

Use the Work with Journal (WRKJRN) command to display the damage status of a journal and display

whether or not the last IPL was normal.

Option 5 on the Work with Journal display shows the current status of the journal. It shows if the last

system end was Normal or Abnormal, and if the journal is damaged. The damage status is None or Full.

If the last system end was abnormal, this display indicates whether the system synchronized the

journaled objects or not. This indicates if the system synchronized each object in use during the abnormal

end to match the entries in the attached journal receiver during the previous initial program load (IPL) or

vary on of an independent disk pool.

If the last system end was normal, the display indicates that all objects are synchronized with the journal.

If the journal is damaged, the display indicates that the system was unable to determine whether or not

all objects are synchronized.

The display also presents information about the currently attached receiver and its damage status. The

damage status of the receiver can be None, Partial, or Full. If the journal damage is such that the system

cannot determine the status of the attached journal receiver, no attached receiver shows on the display.

If some objects are not synchronized or damage has been detected, a message appears indicating the form

of recovery that you must perform.

Recovery for journal management after abnormal system end

This topic describes the recovery actions that take place in the event of an abnormal system end.

If the system abnormally ends while you are journaling objects, the system does the following:

Journal management 95

1. Brings all journals, journal receivers, and objects you are journaling to a usable and predictable

condition during the IPL or vary on of an independent disk pool, including any access paths being

journaled and in use at the time the system abnormally ended.

2. Checks all recently recorded entries in the journal receivers that were attached to a journal.

3. Places an entry in the journal to indicate that an abnormal system end occurred. When the system

completes the IPL or vary on of an independent disk pool, all entries are available for processing.

4. Checks that the journal receivers attached to journals can be used for normal processing of the journal

entries. If some of the objects you are journaling could not be synchronized with the journal, the

system sends message CPF3172 to the history log (QHST) that identifies the journals that could not be

synchronized. If a journal or a journal receiver is damaged, the system sends a message to the history

log identifying the damage that occurred (message CPF3171 indicates that the journal is damaged,

and messages CPF3173 or CPF3174 indicate that the journal receiver is damaged). If a journal or

journal receiver is found to no longer exist within a library, the system sends message CPI70EE to the

history log.

5. Recovers each object that was in use at the time the system ended abnormally, using the normal

system recovery procedures for objects.

In addition, if an object being journaled was opened for output, update, or delete operations, the

system performs the following functions so changes to that object will not be lost:

a. Ensures that the changes appear in the object. Changes that do not appear in the journal receiver

are not in the object.

b. Places an entry in the journal receiver that indicates whether the object was synchronized with the

journal. For database files, if the file could not be synchronized with the journal, the system places

message CPF3175 in the history log identifying the failure, and you must correct the problem. For

other journaled objects, the system places message CPF700C in the history log identifying the

failure, and you must correct the problem.
A synchronization failure can occur if the data portion of the object is damaged, a journal receiver

required to perform the synchronization is damaged, or the journal is inoperable.

 Related tasks

 “Recover a damaged journal receiver” on page 97

If a journal receiver becomes damaged, the system sends message CPF8136 or message CPF8137 to the

system operator and the job log.

 “Recover a damaged journal” on page 98

If a journal becomes damaged, the system sends message CPF8135 to the system operator and to the

job log.

Recover after abnormal system end:

After an abnormal system end, perform the following steps:

1. Perform a manual IPL.

2. Check the history log to determine if there are any damaged objects, objects that are not synchronized,

or any damaged journals or journal receivers.

3. If necessary, recover the damaged journals or journal receivers as described in Recover a damaged

journal receiver and Recover a damaged journal.

4. If there is a damaged object:

a. Delete the object.

b. Restore the object from the latest saved version.

c. Allocate the object so no one else can access it.

d. Restore the needed journal receivers if they are not online. Journal receivers do not need to be

restored in a particular sequence. The system establishes the receiver chains correctly when they

are restored.

e. Use the APYJRNCHG or APYJRNCHGX command to apply the changes to the object.

96 IBM Systems - iSeries: Journal Management

|
|
|
|
|
|
|
|

f. Deallocate the object.
5. If an object could not be synchronized, use the information in the history log and in the journal to

determine why the object could not be synchronized and how to proceed with recovery. For example,

you may need to use the DFU or a user-written program to bring a database file to a usable

condition.

6. Determine which applications or programs were active, and determine where to restart the

applications from the information in the history log and in the journal.

If a journaled access path is in use during an abnormal system end, that access path does not appear on

the Edit Rebuild Access Path display.

If the maintenance for the access path is immediate or delayed, the system automatically recovers the

access path during IPL or vary on of an independent disk pool. A status message is displayed for each

access path whose maintenance is immediate or delayed as it is being recovered during an IPL or vary on

of an independent disk pool. The system places message CPF3123 in the system history log for each

access path that is recovered through the journal during the IPL or vary on of an independent disk pool.

This message appears for access paths that are explicitly journaled and for access paths that are protected

by SMAPP.

Recover a damaged journal receiver

If a journal receiver becomes damaged, the system sends message CPF8136 or message CPF8137 to the

system operator and the job log.

If a journal receiver becomes damaged, there are two ways you can recover from it:

v Recover from a damaged receiver manually

v Recover from a damaged receiver with the Work with Journal (WRKJRN) command. It is

recommended that you use the WRKJRN command.
 Related tasks

 “Recovery for journal management after abnormal system end” on page 95

This topic describes the recovery actions that take place in the event of an abnormal system end.

 “Swap journal receivers” on page 71
An important task for journal management is to swap (or change) journal receivers. You typically

swap journal receivers when they reach their storage threshold. You can swap journal receivers either

with iSeries Navigator or with the Change Journal (CHGJRN) command. If you use system

journal-receiver management, the system changes journal receivers for you.

 “Delete journal receivers” on page 77

Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal

management task is to delete journal receivers after you no longer need them.
 Related reference

 Work with Journal (WRKJRN) command

 Display Journal (DSPJRN) command

 Change Journal (CHGJRN) command

 Create Journal Receiver (CRTJRNRCV) command

Recover from a damaged receiver manually:

1. If the damaged receiver is currently attached to a journal, swap the journal receiver to attach a new

receiver and detach the damaged receiver.

2. If the journal receiver is not currently attached to a journal and you have a complete saved copy of

the receiver (that is, one that was saved after the receiver was detached), then delete the journal

receiver and restore a previously saved copy. If no complete saved copy of the journal receiver exits,

then you may wish to read as many entries as possible before deleting the journal receiver.

Journal management 97

|
|
|
|

3. If the journal receiver was never attached to a journal, delete the receiver and create it again or restore

it.

If the journal receiver is partially damaged, all journal entries except those in the damaged portion of the

journal receiver can be viewed using the Display Journal (DSPJRN) command. Using this list, you can

determine what you need to do to recover your objects. Applying or removing journal changes cannot be

done with a partially damaged journal receiver.

Recover from a damaged receiver with the WRKJRN command:

To use the Work with Journals display to recover damaged journal receivers, use Option 7 (Recover

damaged journal receivers). Option 7 checks to determine which journal receivers that are associated with

the specified journal are damaged. If none are damaged, a message appears.

If there are damaged journal receivers associated with the specified journal, the Recover Damaged Journal

Receivers display appears and lists those receivers.

The status fields initially show a value of Damaged. After recovery has been successfully completed, the

status shows a value of Recovered (receiver recovered).

To view the online help, type WRKJRN at a command line, and press F1. The online help also contains a

description of the journal menus.

Recovery for a damaged journal receiver guides you through the following steps:

1. If the attached receiver is damaged, you must run a Change Journal (CHGJRN) command to attach a

new receiver.

Indicate that you want to create a new receiver. The system presents the Create Journal Receiver

(CRTJRNRCV) command prompt for receiver name and attributes. After you create the new receiver,

the system shows the CHGJRN command prompt.

If the attached receiver is not damaged, the preceding step is omitted.

2. The damaged journal receiver is deleted.

3. A prompt for the restore of the damaged journal receiver is shown. Any of the values on the prompt

can be changed except the receiver name. Save information in the prompt is provided by the system.

Recover a damaged journal

If a journal becomes damaged, the system sends message CPF8135 to the system operator and to the job

log.

You can use the Work with Journals (WRKJRN) command to recover a damaged journal, or you can

perform the following steps:

 1. End journaling for all access paths associated with the journal by using the End Journal Access Path

(ENDJRNAP) command.

 2. End journaling for all physical files associated with the journal by using the End Journal Physical

File (ENDJRNPF) command.

 3. End journaling for all integrated file system objects by using the End Journal (ENDJRN) command.

 4. End journaling for all other object types by using the End Journal Object (ENDJRNOBJ) command.

 5. Delete the damaged journal by using the Delete Journal (DLTJRN) command.

 6. Create a journal receiver (CRTJRNRCV command) and create a journal (CRTJRN command) with the

same name and in the same library as the damaged journal, or restore the journal from a previously

saved version.

Note: If you have remote journals associated with this journal, it is suggested that you restore a

previously saved version of the journal rather than creating the journal.

98 IBM Systems - iSeries: Journal Management

|
|
|

|
|

|
|

|
|

|

|

|

|
|
|

|
|

7. Start journaling the physical files that were journaled by using the Start Journal Physical File

(STRJRNPF) command.

 8. Start journaling the access paths that were journaled by using the Start Journal Access Path

(STRJRNAP) command.

 9. Start journaling integrated file system objects with the Start Journal (STRJRN) command.

10. Start journaling other new object types with the Start Journal Object (STRJRNOBJ) command.

Note: You can also restore your journaling environment by deleting and restoring all the objects that

were being journaled. Objects that were journaled at the time of their save automatically begin

journaling at restore time if the journal is online.

11. Save the journaled objects to allow for later recovery.

12. Associate the old journal receivers with the new journal. Do the following:

a. Type WRKJRN and press the Enter key.

b. On the prompt display, enter the name of the journal.

c. From the Work with Journals display, select option 9 (Associate receivers).

d. Press F12 to cancel the display.

e. Type WRKJRNA JRN(library-name/journal-name) and press the Enter key.

f. From the Work with Journal Attributes display, press F15 to display the receiver directory.

g. A new panel now gets displayed after selecting option 9. This new panel is called ″Specify

Journal Receivers″. Fill in *ALL for journal receiver name and put in the specific library name

that the receivers are located in. This is faster than searching the entire system looking at all

receivers.

h. After receivers are attached, then Press F12 to cancel out of the ″Work with Journals″ display.

Each time a journal is restored, a new receiver chain is started because the last journal receiver in the

chain that existed prior to the restore process did not have the newly created receivers as its next

receivers.

Note: If the damaged journal had any remote journals associated with it and a previously saved version

of the journal was not restored, use the Add Remote Journal (QjoAddRemoteJournal) API or Add

Remote Journal (ADDRMTJRN) command to reassociate those remote journals. See the Add remote

journals link below for more information.

 Related tasks

 “Recovery for journal management after abnormal system end” on page 95

This topic describes the recovery actions that take place in the event of an abnormal system end.

 “Add remote journals” on page 315

This topic provides instructions for adding a remote journal.

Associate receivers with journals:

Use Option 9 on the Work with Journals display if the journal was restored or created again. The system

associates all applicable receivers with the restored or recreated journal so that a restore of these receivers

is not necessary.

 The system now displays the Specify Journal Receivers screen. There are new input lines so you can enter

specific receivers, generic receivers or *ALL. Additionally, the second input line allows a library to be

specified so the checking for valid receivers is now restricted to a specific library instead of searching the

entire system to find all receivers and checking all of these receivers to see if they should be associated

with this newly created journal. This new screen significantly speeds up the reassociation of receivers to a

journal.

Journal management 99

|
|

|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

|

|
|
|

|
|
|
|

|

|
|

|
|

|

|
|
|

|
|
|
|
|
|

The system displays the Specify Journal Receivers screen. There are input lines so you can enter specific

receivers, generic receivers or *ALL. Additionally, the second input line allows a library to be specified so

the checking for valid receivers is restricted to a specific library instead of searching the entire system to

find all receivers and checking all of these receivers to see if they should be associated with this journal.

This screen significantly speeds up the reassociation of receivers to a journal.

A journal receiver is associated with a journal if the journal receiver appears in the journal receiver

directory. A receiver that was previously attached to a journal but is not currently associated with a

journal cannot be used with the journal commands, such as:

v Display Journal (DSPJRN)

v Receive Journal Entry (RCVJRNE)

v Retrieve Journal Entry (RTVJRNE)

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

v Apply Journaled Changes (APYJRNCHG)

v Apply Journaled Changes Extend (APYJRNCHGX)

v Remove Journaled Changes (RMVJRNCHG)

 Related reference

 Display Journal (DSPJRN) command

 Receive Journal Entry (RCVJRNE) command

 Retrieve Journal Entry (RTVJRNE) command

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

 Apply Journaled Changes (APYJRNCHG) command

 Apply Journaled Changes Extend (APYJRNCHGX) command

 Remove Journaled Changes (RMVJRNCHG) command

Recover a damaged journal with the WRKJRN command:

The Work with Journal (WRKJRN) command can be used to recover a damaged journal.

 The WRKJRN command associates the receivers with the recovered journals without you having to delete

and restore the receivers.

Option 6 on the Work with Journals display verifies that the journal is damaged before proceeding with

recovery. If the journal is not damaged, an informational message appears.

For a description of the Work with Journals display, see the WRKJRN command in the online command

help. To view the help, type WRKJRN on a command line, and press F1.

Recovery for a damaged journal guides you through the following steps:

1. The system attempts to determine which objects are currently being journaled to the indicated journal.

If the system cannot successfully build this list, a message appears before the recovery operation

begins. For each object type whose journaling is being ended, a status message is sent indicating how

many objects have ended.

2. Journaling is ended for all access paths that are currently being journaled to the specified journal.

3. Journaling is ended for all database files that are currently being journaled to the specified journal.

Journaling is ended for all objects.

4. The system deletes the journal.

5. The system presents the Recover Damaged Journal display, which asks you whether to restore or

create the journal and what state to create the journal. The state is *ACTIVE or *STANDBY. If you

have remote journals associated with your damaged journal it is suggested that you take the option to

restore a previously saved version of the journal.

100 IBM Systems - iSeries: Journal Management

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|

|
|
|
|

|

|
|

|

|
|
|
|

a. If the journal will be restored, the system prompts for the values that are needed for the restore

operation.

b. If the journal will be created, the system prompts for the receiver name and attributes with the

CRTJRNRCV command prompt. The system prompts for values needed to create the journal with

the CRTJRN command prompt, with known values that are shown.
6. Journaling is restarted for all objects for which it was previously ended. The screen displays after each

object type has been restarted. If there were no objects for a specific type, then that step is skipped. A

status message is sent periodically while journaling is being started to update you on how many

objects have started journaling.

7. The system now displays the Specify Journal Receivers screen. There are new input lines so you can

enter specific receivers, generic receivers or *ALL. On the display you can enter a specific receiver, a

generic name for journal receivers, or *ALL. Additionally, a library name can be specified to limit the

search for receivers to only a specific library when finding receivers to associate with the newly

created journal. Limiting the search to only certain receivers can significantly speed up the

reassociation processing.

A journal receiver is associated with a journal if the journal receiver appears in the journal receiver

directory. A receiver that was previously attached to a journal, but is not currently associated with a

journal, cannot be used with the journal commands such as Display Journal (DSPJRN), Apply

Journaled Changes (APYJRNCHG), Apply Journaled Changes Extend (APYJRNCHGX), and Remove

Journaled Changes (RMVJRNCHG).

As the recovery of a damaged journal proceeds, the Display Journal Recovery Status display appears. The

information about this display is updated as the operation progresses to indicate which steps have been

completed, which steps have been bypassed, and which step will be run next. Whenever a user action is

required, the status display is replaced by the appropriate prompt display.

The status field indicates the following operation status:

v Pending. The step has not been started.

v Next. The step will be performed next (after the Enter key is pressed).

v Bypassed. The step was not performed. (It was not necessary).

v Complete. The step has been performed.

v Error. The step has been performed, but errors were encountered.

The first display you usually see after the first status display is the Recover Damaged Journal display.

Use this display to choose whether the journal is to be created or restored.

When the last step of the recovery process is complete, a message appears indicating that all objects for

which journaling was started must be saved to establish a new recovery point.

If the damaged journal had any remote journals associated with it and a previously saved version of the

journal was not restored, use the Add Remote Journal (QjoAddRemoteJournal) API or Add Remote

Journal (ADDRMTJRN) command to reassociate those remote journals. See Add remote journals for

information about adding remote journals.

 Related tasks

 “Add remote journals” on page 315

This topic provides instructions for adding a remote journal.
 Related reference

 Work with Journal (WRKJRN) command

 Display Journal (DSPJRN) command

 Apply Journaled Changes (APYJRNCHG) command

 Apply Journaled Changes Extend (APYJRNCHGX) command

 Remove Journaled Changes (RMVJRNCHG) command

Journal management 101

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|
|

|
|

|
|
|
|

|

|
|

|

|

|

|

|

|

Add Remote Journal (QjoAddRemoteJournal) API

 Add Remote Journal (ADDRMTJRN) command

Recover journaled objects

One of the primary advantages of journaling is its ability to return a journaled object to its current state

since the last save.

You can recover from many types of damage to journaled objects by using journaled changes. For

example, an object is damaged and becomes unusable, an error in an application program caused records

to be improperly updated, or incorrect data was used to update an object. In each of these instances, only

restoring a saved version of the object can result in the loss of a significant amount of data.

If you use the Apply Journaled Changes (APYJRNCHG) or Apply Journaled Changes Extend

(APYJRNCHGX) command to apply journaled changes, significantly less data may be lost. You can use

the Remove Journaled Changes (RMVJRNCHG) command to recover from improperly updated records or

incorrect data if before-images have been journaled. This command removes (or backs out) changes that

were made to an object.

Use the APYJRNCHG command to apply changes to these object types:

v Database file

v Integrated file system object

v Data area

v Data queue

Use the APYJRNCHGX command to apply changes to database files.

Use the RMVJRNCHG command to remove changes that were made to these object types:

v Database file

v Data area

To recover an object by applying or removing journaled changes, the object must be currently journaled.

The journal entries must have the same journal identifier (JID) as the object. To ensure the journal

identifiers are the same, save the object immediately after journaling is started for the object.

To apply or remove journaled changes to or from a restored copy of the object, you must have already

saved the object while it was being journaled. Why you must save objects after you start journaling has

more information about saving journaled objects and about JIDs.

If you need to recover objects that were journaled to a journal that you deleted, restore the journal from a

saved copy or create a new journal with the same name in the same library. Then restore the object and

all the needed receivers before applying or removing journaled changes with that journal. You can use an

option on the Work with Journals display to reassociate any journal receivers that are still on the system.

To use the Work with Journals display, use the Work with Journals (WRKJRN) command.

Some types of entries in the journal receiver cause the apply or remove process to possibly stop. These

entries are written by events that the system cannot reconstruct. Certain illogical conditions, such as a

duplicate key in a database file defined as unique, can also cause processing to end.

Use the Object Error Option (OBJERROPT) of the APYJRNCHG, APYJRNCHGX, or RMVJRNCHG

commands to determine how the system responds to an error. If you select OBJERROPT(*CONTINUE)

and an error occurs, processing of journal entries stops only for the object associated with that error.

Processing continues for the other objects. The system sends a diagnostic message indicating that the

processing of journaled changes for that object was not successful. The system also places an indication

102 IBM Systems - iSeries: Journal Management

|

|

that processing ended early for the specific object in any output file record. If you select

OBJERROPT(*END), processing ends for all objects when an error occurs.

Using save-while-active to save your journaled objects can help you recover your objects more quickly

when you need to apply or remove journaled changes specifying FROMENT(*LASTSAVE) or

FROMENTLRG(*LASTSAVE). When you use the save-while-active function to save your journaled

objects, the system saves and then restores information that indicates which starting journal sequence

number is needed for the apply or remove operation. When this information is available for all objects to

which you are applying or removing journaled changes, the system does not need to scan the journal

receivers to determine this starting point. Scanning journal receiver data to find the starting points can be

time consuming.

Also, using save-while-active when saving your objects allows you to restore a version of your object

which was not from the last save and to still specify FROMENT(*LASTSAVE) or

FROMENTLRG(*LASTSAVE) on the apply or remove command and successfully apply or remove

changes.

Actions of applying or removing journaled changes by journal code shows how operations that apply

and remove journaled changes handle journal entry types. It shows which entry types cause processing to

end for an object and what processing is done when the entry is applied or removed.

You can use partial receivers to apply or remove changes from an object. If you attempt to restore a saved

receiver while a more current version of the receiver is on the system, an escape message is sent to

prevent you from restoring the receiver. The system makes sure that the most complete version is

preserved.

You can use a partial receiver as the first receiver in the receiver chain for a RMVJRNCHG command

only if you specify a sequence number for the FROMENT or FROMENTLRG parameter.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

 Related concepts

 “Why you must save objects after you start journaling” on page 60

After you start journaling, it is essential that you save objects that you are journaling.

 “Use SAVCHGOBJ to save journal receivers” on page 81

One technique for saving journal receivers is to use the Save Changed Object (SAVCHGOBJ)

command. When you use the SAVCHGOBJ command to save journal receivers, ensure that you omit

the attached journal receiver.

Apply journaled changes:

Journal management 103

|
|
|
|
|

|
|

|

|
|

|

|
|
|

If an object becomes damaged or is not usable you can recover the object using the Apply Journaled

Changes (APYJRNCHG) or Apply Journaled Changes Extend (APYJRNCHGX) command. If you restore

an object that was saved with partial transactions, then you must apply journaled changes to that object

before it is usable.

 Difference between APYJRNCHG and APYJRNCHGX

There are slight differences between the Apply Journaled Changes (APYJRNCHG) command and the

Apply Journaled Changes Extend (APYJRNCHGX) command. The APYJRNCHGX command only applies

entries for database files and requires entries to be applied for all files in a library. This command will

also apply entries for logical files found in the library, and it will apply the create file (D CT) journal

entry. The APYJRNCHG command will not apply entries for logical files, or the create file entry. The

APYJRNCHG command also applies entries for non-database objects.

Applying journaled changes to all objects

You can apply journaled changes to all objects that are journaled to the journal by specifying

OBJ(*ALLJRNOBJ) on the APYJRNCHG command.

Applying journaled changes and commitment control

You can ensure that commitment transaction boundaries are honored during the apply journaled changes

operations by using the commit boundary (CMTBDY) parameter. The default value for the CMTBDY

parameter is *YES. If the system encounters a journal entry that causes the apply or remove process to

stop for the object, the commitment boundary might not be honored.

Error handling

When the system encounters a journal entry it cannot process, it ends apply processing either for that

specific object or for the entire apply operation. You can specify how the system behaves when it

encounters a journal entry it cannot process with the Object Error Option (OBJERROPT) parameter on the

APYJRNCHG or APYJRNCHGX command. If you specify OBJERROPT(*CONTINUE), the system ends

apply processing for the specific object that has an error, but it continues apply processing for the other

objects in the apply operation. If you specify OBJERROPT(*END), the system ends processing for the

entire apply operation. The OBJERROPT parameter is also available for the Remove Journaled Changes

(RMVJRNCHG) command. Actions of applying or removing journaled changes by journal code shows

which entry types cause processing to end for an object.

Before you start applying changes

You must first reestablish the object to a condition that you know is undamaged.

v To reestablish the object, restore the last saved copy of the object. The object must have been saved

while it was being journaled.

v If you saved a database physical file by using the Copy File (CPYF) command, use the CPYF command

to restore the member by overlaying the contents of the existing object with the old values.

v If the member of a database physical file was just initialized, initialize the member again using the

Initialize Physical File Member (INZPFM) command or a user-created application program.

v If a member of a database physical file was just reorganized, reorganize the member again using the

Reorganize Physical File Member (RGZPFM) command.

You must restore the needed journal receivers if any of the following are true:

v If the journal receivers were deleted since the object was last staved (or some other point).

v If the journal receivers were saved with their storage freed.

104 IBM Systems - iSeries: Journal Management

|
|
|
|
|
|

When you apply journaled changes to an object, the object cannot be in use by anyone else.

Starting and stopping points for applying journaled changes

When the condition of the object has been established, use the APYJRNCHG or APYJRNCHGX command

to apply the changes that are recorded in the journal to the object.

The system applies the changes to the object in the same order as they were originally made. You must

plan where you want to start and stop applying changes. Use the Display Journal (DSPJRN) command to

identify the desired starting and ending points. If you use a control language (CL) program for your

recovery procedures, use the following:

v Receive Journal Entry (RCVJRNE) command to receive journal entries as they are written to the journal

receiver.

v Retrieve Journal Entry (RTVJRNE) command to retrieve a journal entry and place it in program

variables.

You can also use the QjoRetrieveJournalEntries API to retrieve the information into a High Level

Language (HLL) program.

Start the apply

On the APYJRNCHG or APYJRNCHGX command, specify the first journal entry to be applied to the

object. This entry can be selected from any of the following points:

v After the last save of the object

v From the first journal entry

v From an identified sequence number that corresponds to a date and time stamp

v From an identified sequence number that corresponds to the start or end of a particular job’s use of the

object provided that you did not specify one of the following:

– OMTJRNE(*OPNCLO) when starting journaling or changing the journaling attributes for object.

– OMTJRNE(*OPNCLOSYN) when starting journaling or changing the journaling attributes for a

directory or stream file.

– RCVSIZOPT(*MINFIXLEN) for the journal at any time while the object was journaled.

– A FIXLENDTA option that omitted the job name.
v A specific sequence number

Note: If an object was restored with partial transactions, then you must specify

FROMENT(*LASTSAVE) or FROMENTLRG (*LASTSAVE).

End the apply

You can stop applying the journal entries at the following:

v The end of the data in the last journal receiver in the receiver range

v A particular entry in the journal

v A date and time stamp

v A commitment boundary

v The start or end of a particular job’s use of the data in the object, provided you did not specify the

following:

– OMTJRNE(*OPNCLO) when starting journaling or changing the journaling attributes for the object.

– OMTJRNE(*OPNCLOSYN) when starting journaling or changing the journaling attributes for a

directory or stream file.

– RCVSIZOPT(*MINFIXLEN) for the journal at any time while the object was journaled.

Journal management 105

– A FIXLENDTA option that omitted the job name.
v The journal entry that indicates when the object was last restored

v A specific sequence number

The apply and remove journaled changes output file

It is highly recommended that you use the apply and remove journaled changes output file when you

apply journaled changes. The output file contains a record for each object that the apply operation

processes. It contains a record for each object created and each object deleted during the apply. This

output file is especially useful when the apply ends early. It is much easier to query the output file for

the status of each object rather then searching through the job log messages. Also the messages are

limited to 512 while the output file is not limited.

Considerations for applying changes

Considerations for applying changes are as follows:

v When you apply journaled changes to integrated file system objects, you need to be aware of

integrated file system considerations.

v If you need to apply entries for less than 300 objects, and your database files have only one member, or

you will be applying changes to all members of the files, then you may wish to use the Forward

Recovery option through the Work with Journals (WRKJRN) command.
 Related concepts

 “Actions of applying or removing journaled changes by journal code” on page 117

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),

Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)

command by journal code and entry type.

 “Use the apply and remove journaled changes output file” on page 112

Use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the

activity that occurs when you perform an apply or remove journaled changes operation.
 Related reference

 Apply Journaled Changes (APYJRNCHG) command

 Apply Journaled Changes Extend (APYJRNCHGX) command

 Copy File (CPYF) command

 Initialize Physical File Member (INZPFM) command

 Reorganize Physical File Member (RGZPFM) command

 Display Journal (DSPJRN) command

 Receive Journal Entry (RCVJRNE) command

 Retrieve Journal Entry (RTVJRNE) command

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Integrated file system considerations for applying journaled changes:

If there is a create entry or delete entry in the range of journal entries to which you are applying

journaled changes, changes to a directory can cause the creation or deletion of an object.

 If you are journaling a directory using the Journal new files and folders (INHERIT(*YES)) option and an

object is created into that directory, the system automatically starts journaling that new object and

deposits associated create and start journal object journal entries. The apply of these create and start

journal entries during the apply operation on the directory then creates the objects and starts journaling

for them during the apply operation. For any subsequent journaled entries for that object, the apply

106 IBM Systems - iSeries: Journal Management

operation applies any entries that it encounters for that object as well. Similarly, if an entry is

encountered which deletes (unlinks) an integrated file system object, that object is actually deleted as part

of the apply operation.

Additionally, the apply operation will start journaling for any integrated file system journal entry that

adds a link to the journaled directory, such as moving a nonjournaled object into the journaled directory,

or adding a new hard link to a nonjournaled object into this journaled directory. However, no entries will

be applied to these objects since the state of those objects is not fully know during the apply.

As objects are created, they are included in the maximum number of objects which can be applied as part

of one Apply Journaled Changes (APYJRNCHG) request.

Error handling considerations

When you apply journaled changes, you can use the Object Error Option (OBJERROPT) of the

APYJRNCHG command to specify how the system responds to errors. If you specify *CONTINUE, the

system stops applying changes to the object that encounters an error, but continues the apply operation

for the remaining objects.

For integrated file system objects, the system processes errors for directory-level operations separately

from object-level operations. For example, you perform an apply journaled changes operation for a

directory and a stream file in that directory. During the apply operation, an error occurs for the stream

file and the apply process ends for that stream file. You might expect some operations that are associated

with that stream file, such as remove link, to end also. But since remove link is a directory level

operation, the remove link operation still occurs, even though the apply operation ended for that stream

file.

Therefore even though object-level operations for an object might end, directory-level operations that are

associated with that object still occur.

Commitment control considerations

Many journaled integrated file system operations use system initiated commitment control for the

duration of the operation. These operations are not considered completed successfully unless the

commitment control cycle is committed. Commitment control, here, refers to commitment control that the

system initiates. Integrated file system operations cannot be included in a user initiated commitment

control cycle.

For integrated file system journal entries that are part of a commitment control cycle, do not apply

individual entries from within the cycle without applying the entire commit cycle. Using the Commit

Boundary (CMTBDY(*YES)) parameter on the APYJRNCHG command can help enforce this. If you do

not use this option and choose a specific starting point, start from the Start of commit cycle (C SC) entry

for that cycle. Likewise, if you choose to end applying a journaled change at a specific point, end on the

Commit (C CM) or Rollback (C RB) entry for that cycle.

See Actions of applying or removing journaled changes by journal code for what operations are applied

for integrated file system related journal entries.

 Related concepts

 “Actions of applying or removing journaled changes by journal code” on page 117

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),

Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)

command by journal code and entry type.

Apply journaled changes with the WRKJRN command:

Journal management 107

|

The Work with Journal (WRKJRN) command can be used to recover any journaled object. When you

select option 2, you choose from a list of object types for recovery. Choose an object type to view the

journaled objects of that type and the current status for each object.

 The status field for each object indicates the following:

v Not journaled

v Different journal

v Not found

v Damaged

v Not Synchronized

v Restore complete

v Recovered

v Deleted

v Database files

Note: The WRKJRN command support should be considered only if you are applying changes for less

than 300 objects.

 Related concepts

 “Remove journaled changes with the WRKJRN command” on page 111
Remove journaled changes with the Work With Journal (WRKJRN) command by selecting Option 3

(Backout recovery).

Tasks with the Work With Forward Recovery display:

You can use the Work With Forward Recovery display to perform the following tasks:

Add object to list

To add an object to the list on the display, use Option 1 (Add member to list). Do this if you want

to restore those objects. This task is not available for Integrated File System objects.

Apply journaled changes

To apply journaled changes to an object, use Option 2 (Apply journaled changes). This option

applies journaled changes and changes the status to Recovered (if the apply operation was

successful). If the apply operation was not successful, messages appear indicating why and the

last successful status is displayed. If any required receivers are missing or damaged while

running the APYJRNCHG command, the system prompts for the restore of the missing or

damaged receivers.

 If any of the objects in the list have a status of Damaged, the system prompts you with the

command necessary to recover the object. For objects that are damaged, recovery involves

deleting the object, a restore of the last save of the object, followed by the Apply Journaled

Changes (APYJRNCHG) command. The system guides you through the recovery of physical files

as follows:

Note: The recovery is similar for data areas, data queues, and integrated file system objects,

except for the dependent logical files references. Also, the restore command names are

different for integrated file systems it is RST, but for all others its RSTOBJ.
1. For physical files, the system identifies all the logical files dependent on the specified damaged file.

The Dependent Logical Files display appears identifying these files.

2. The dependent logical files are deleted.

3. The system deletes the files to be recovered (or restored).

4. The system displays prompts for the restore of files to be recovered. After all restores are completed

successfully, the files to be recovered are allocated exclusively to prevent any other processing. This

allocation is maintained until the recovery procedures are complete.

108 IBM Systems - iSeries: Journal Management

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

|

|
|
|

5. The system displays prompts for the restores of the dependent logical files.

6. An APYJRNCHG command is prompted.

7. If the APYJRNCHG command encounters a required journal receiver that is not online, the system

prompts for the restore of the required receiver and again starts the APYJRNCHG command.

When the recovery process is complete, the status field for the member indicates Recovered (if the

operation was successful). If the operation failed, the status field remains unchanged, and messages

appear indicating why the operation failed.

Restore objects

If you wish to restore any objects, use Option 3 (Restore). This is particularly useful for objects

with a status of Not Found. Objects that are restored successfully have a status of Restore

Complete. Objects that are not restored keep their old status. A message is sent indicating that the

restore did not complete successfully. All objects that are restored are included in the list of

objects to recover.

Note: The last save information is provided for the restore operation. If either of the following

are true, then you must use the RSTOBJ command instead of Option 3 (Restore):

v The device provided is tape, diskette, or optical and you choose to restore from a save

file (*SAVF).

v The device provided is a save file (*SAVF) and you choose to restore from tape, diskette,

or optical media.

If you choose option 3 to restore a damaged object, the restore process involves deleting the

object prior to prompting to restore the object. The process is similar for all object types except

there are extra steps if restoring damaged physical files that have dependent logical files. The

system guides you through the restore process of damaged physical files as follows:

v The system identifies all the logical files dependent on the specified damaged physical file.

v The Dependent Logical Files display appears identifying these logical files.

v The system deletes the files to be restored.

v The system then prompts with a restore command for the physical files.

v Once the physical files are restored, the system prompts with a restore command to restore the

logical files.

Remove object from list

To remove an object from the list, use Option 4 (Remove object or member from list). Option 4

removes objects from the list of objects to be recovered.

Remove journaled changes:

Depending on the type of damage to the journaled object and the amount of activity since the object was

last saved, removing changes from the object can be easier than applying changes to the object. Use the

Remove Journaled Changes (RMVJRNCHG) command to remove changes from an object if you are

journaling before-images.

 The RMVJRNCHG command removes changes in reverse chronological order, starting with the most

recent change.

On the RMVJRNCHG command, you identify the first journal entry to be removed from the object. This

entry can be from:

v The last journal entry that is contained within the range of journal receivers specified.

v The entry that corresponds to the last save of the object.

v An identified sequence number.

Journal management 109

|

|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|

|

|

|

|
|

|
|
|

You can control the changes that are removed from the object. For example, assume that an application

updated data incorrectly for a period of time. In this case, you can remove the changes from the object

until that application first opened the object.

You can stop removing journaled changes at:

v The start of the commit cycle for a transaction.

v The end of data in the journal receivers. This corresponds to the first journal entry that was recorded

on the range of journal receivers that are specified.

v An identified sequence number that corresponds to a particular entry in the journal.

v The start of a particular job’s use of the object. You can only specify this if you did not specify any the

following:

– To exclude open and close journal entries (OMTJRNE(*OPNCLO)) when starting journaling for the

file

– To minimize fixed-length entries RCVSIZOPT(*MINFIXLEN) for the journal at any time while the

object was journaled.

– To omit a FIXLENDTA option that includes the job name.

You can ensure that commitment transaction boundaries are honored on the remove journaled changes

operations by using the CMTBDY parameter on these commands.

If the system encounters a journal entry that causes the apply or remove process to stop, the commitment

boundary may not be honored.

Error handling

When the system encounters a journal entry it cannot process, it ends remove processing either for that

specific object or for the entire remove operation. You can specify how the system behaves when it

encounters a journal entry it cannot process with the Object Error Option (OBJERROPT) on the Remove

Journaled Changes (RMVJRNCHG) command. If you specify OBJERROPT(*CONTINUE), the system ends

remove processing for the specific object, but it continues remove processing for the other objects in the

remove operation. If you specify OBJERROPT(*END), the system ends processing for the entire remove

operation. Actions of applying or removing journaled changes by journal code shows which entry types

cause processing to end for an object.

Starting and ending points

Use the Display Journal (DSPJRN) command to identify the required starting and ending points. If you

use a control language (CL) program for your recovery procedures, use the following:

v Receive Journal Entry (RCVJRNE) command to receive journal entries as they are written to the journal

receiver.

v Retrieve Journal Entry (RTVJRNE) command to retrieve a journal entry and place it in program

variables.

You can also use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API to retrieve the information

into a High Level Language (HLL) program.

Another way to remove journaled changes is to Remove journaled changes with the WRKJRN command

and follow the command prompts.

The apply and remove journaled changes output file

It is highly recommended that you use the apply and remove journaled changes output file when you

remove journaled changes. The output file contains a record for each object that the remove operation

processes. It contains a record for each object created and each object deleted during the remove. This

110 IBM Systems - iSeries: Journal Management

output file is especially useful when the remove ends early. It is much easier to query the output file for

the status of each object rather then searching through the job log messages. Also the messages are

limited to 512 while the output file is not limited.

 Related concepts

 “Actions of applying or removing journaled changes by journal code” on page 117

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),

Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)

command by journal code and entry type.

 “Use the apply and remove journaled changes output file” on page 112

Use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the

activity that occurs when you perform an apply or remove journaled changes operation.

Remove journaled changes with the WRKJRN command:

Remove journaled changes with the Work With Journal (WRKJRN) command by selecting Option 3

(Backout recovery).

 After selecting Option 3 , a menu display gives you the option to select either physical files or data areas

as the object type. Then, after selecting one of the object types, a list of the journaled objects of that type

is displayed.

The Work with Backout Recovery display is useful because the system guides you through the process.

However, it can be used for journaling access paths, database files, and data areas only.

The same options on the Work with Forward Recovery display are available on the Work with Backout

Recovery display, except the option to restore the object. However, the option to restore the object is not

valid for backout recovery. The status field that is shown on the Work with Backout Recovery display is

either blank or it indicates the same status as for forward recovery, except for Restore Complete.

The status field for each object indicates the following:

v Not found

v Damaged

v Not synchronized

v Recovered

v Not journaled

v Different journal

Tasks with the Work With Backout Recovery display

You can use the Work With Backout Recovery display to perform the following tasks:

Add object to list

To add an object to the list select Option 1 (Add object to list).

Remove journaled changes

To remove journaled changes, select Option 2 (Remove journaled changes). Option 2 shows the

Remove Journaled Changes (RMVJRNCHG) command prompt, removes the journaled changes,

and changes the status to Recovered (if the operation was successful). If any required journal

receivers are missing or damaged while the RMVJRNCHG command is running, the system

displays prompts for the necessary restore procedures for the missing or damaged receivers. If

the remove operation was not successful, messages appear indicating why the status remains the

same.

Journal management 111

|
|
|

|
|

If any objects in the list have a status of Not Found or Damaged when on the Work with Backout

Recovery display, the operation is not allowed. These objects must be recovered in a forward

fashion after they have been restored. Forward recovery of specific files must be used for this

type of recovery.

Remove object from list

Use Option 4 (Remove object from list) to remove objects from the list.
 Related tasks

 “Apply journaled changes with the WRKJRN command” on page 107
The Work with Journal (WRKJRN) command can be used to recover any journaled object. When you

select option 2, you choose from a list of object types for recovery. Choose an object type to view the

journaled objects of that type and the current status for each object.

Use the apply and remove journaled changes output file:

Use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the

activity that occurs when you perform an apply or remove journaled changes operation.

 When you specify to create the output file, the system uses the QAJRNCHG output file in the QSYS

library with the format name QJOAPYRM as a model.

The words in parenthesis in the Field column indicate the column heading used in the output file.

See the following commands for the all of the parameters used with this output file:

v Apply Journaled Changes (APYJRNCHG) command

v Apply Journaled Changes Extend (APYJRNCHGX) command

v Remove Journaled Changes (RMVJRNCHG) command

The following table describes the fields that the output file creates.

 Relative

offset Field Format Description

Fields defining the header information

1 Command (QJOCMD) Char (10) Indicates if APYJRNCHG, APYJRNCHGX, or

RMVJRNCHG was used.

11 Detail option (QJODET) Char (1) Specifies the level of detail that was selected for this

output file:

 A = DETAIL(*ALL) The file contains information

about the command and an entry for each object

that was applied to, whether it existed when the

apply command started or it was created during the

apply.

 E = DETAIL(*ERR) The file contains information

about the command and an entry only for each

object that was not successfully applied to. If the

apply ends early for an object an entry is included

for it.

12 System (QJOSYS) Char (8) The name of the system where the apply or remove

journaled changes operation was performed.

20 Release (QJOSRL) Char (6) The release of i5/OS that the system performing the

apply or remove operation uses.

26 Journal name (QJOJRN) Char (10) The name of the journal.

36 Library name (QJOJLB) Char (10) The name of the library for the journal.

112 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

46 ASP device (QJOASP) Char (10) The name of the auxiliary storage pool (ASP) device for

the library.

56 Commit boundary

(QJOCMT)

Char (1) Indicates if a commit boundary was used in the apply

or remove operation.

 Y = CMTBDY(*YES) was specified

 N = CMTBDY(*NO) was specified

57 Reserved (QJORS1) Char (30) Reserved

Results summary fields

87 Number of objects

(QJONOB)

Char (10) Total number of objects processed during the apply or

remove operation.

97 Total entries (QJONEN) Char (20) Total number of entries processed during the apply or

remove operation.

117 Last entry (QJOLST) Char (20) Last entry examined in the apply or remove operation.

137 End partial LUW

(QJOLUW)

Char (1) At least one transaction was omitted because

CMTBYD(*YES) was specified and the ending sequence

number was not at a commit boundary.

 Y = Yes

 N = No

138 Reserved (QJORS2) Char (20) Reserved

Object apply or remove information

158 Object deleted (QJOOSD) Char (1) Indicates if the object was deleted during the apply or

remove operation.

 Y = Yes

 N = No

159 Object created (QJOOSC) Char (1) Indicates if the object was created during the apply or

remove operation.

 Y = Yes

 N = No

160 Early end (QJOOSE) Char (1) Indicates if the apply or remove operation ended early

for this object.

 Y = Yes

 N = No

161 Change not made

(QJOOSU)

Char (1) Indicates that a change was found for this object after

an early end to the apply operation.

 Y = Yes

 N = No

162 End reason code (QJORCD) Hex (1) Reason code for early end. See message MCH4801 for

the possible values.

163 End message ID (QJOMID) Char (7) Message identifier associated with an early end to the

apply operation.

170 Error condition (QJOENO) Hex (4) Error condition associated with an early end to the

apply operation.

174 Partial transactions remain

(QJOPTL)

Char (1) Changes for partial transactions remain for this object.

 Y = Yes

 N = No

Journal management 113

Relative

offset Field Format Description

175 Partial transactions

removed (QJOPTR)

Char (1) Indicates whether partial transactions were removed for

this object.

 Y = Yes

 N = No

176 Reserved (QJORS3) Char (20) Reserved

196 Starting sequence number

(QJOSSN)

Char (20) Specified starting sequence number for the apply or

remove operation.

216 Starting receiver name

(QJOSRC)

Char (10) The name of the first receiver from which entries were

applied or removed.

226 Receiver library (QJOSLB) Char (10) The library for the starting journal receiver.

236 Ending sequence number

(QJOESN)

Char (20) Specified ending sequence number for the apply or

remove operation.

256 Ending receiver name

(QJOERC)

Char (10) The name of the last or ending receiver from which

entries were applied or removed.

266 Library name (QJOERL) Char (10) The library for the ending journal receiver.

276 First entry applied or

removed (QJOASN)

Char (20) The first entry of the apply or remove operation.

296 Last entry applied or

removed (QJOAEN)

Char (20) The last entry of the apply or remove operation.

316 Number of entries

(QJONUM)

Char (20) The number of journal entries that were applied or

removed.

336 Partial transaction starting

sequence number

(QJOBSN)

Char (20) Starting sequence number for any partial transactions

that were removed. For integrated file system objects,

this field is always zero.

356 Partial transaction ending

sequence number

(QJOBEN)

Char (20) Ending sequence number for any partial transactions

that were removed. For integrated file system objects

and data areas, this field is always zero.

376 Number of partial

transaction removed

(QJOBNM)

Char (20) Count of number of entries removed for partial

transactions. For integrated file system objects and data

areas, this number is always zero.

396 No entries applied

indicator (QJONAIN)

Char (1) Indicates why no entries were applied to the object.

 1 = The object was created during apply, but did not

get journaled or can never be journaled.

 2 = The object existed before the apply and was

journaled as a result of the apply. However, no

entries were applied because it could not be

determined that the correct version of the object was

on the server at the time of the apply.

397 Reserved (QJORS4) Char (19) Reserved

Object identification information

416 Object type (QJOOTP) Char (10) The type of object.

426 Object name (QJOONM) Char (10) The name of the object.

436 Object library (QJOOLB) Char (10) The object’s library.

446 Member name (QJOOMB) Char (10) Member name.

456 FID (QJOOFD) Char (16) The file identifier of an integrated file system object.

114 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

472 Path indicator (QJOAPI) Char (1) The absolute or relative path indicator. The possible

values for this field are:

 0 = The path contains an absolute path name. The

Relative directory FID field is hex zeros.

 1 =The path contains a relative path name. The

Relative directory FID field is valid and can be used

to form a complete path name.

This field only applies to integrated file system objects.

473 Relative directory FID

(QJORPI)

Char (16) The path contains a relative path name. The Relative

directory FID field is valid and can be used to form a

complete path name. This field only applies to

integrated file system objects.

489 Path name CCSID

(QJOPCC)

Hex (4) The coded character set identifier (CCSID) for the path

name. This field only applies to integrated file system

objects.

493 Path name region ID

(QJOPRE)

Char (2) The region or country identifier for national language

support. This field only applies to integrated file system

objects.

495 Path name language ID

(QJOPLN)

Char (3) The language identifier national language support. This

field only applies to integrated file system objects.

498 Reserved (QJORS5) Char (3) Reserved

501 Path name type (QJOPNT) Hex (4) The possible values for this field are:

 0 = The path name is a character string with a one

byte delimiter.

 2 = The path name is a character string with a two

byte delimiter.

This field only applies to integrated file system objects.

505 Path name length

(QJOPNL)

Hex (4) The length of the path name. This field only applies to

integrated file system objects.

509 Path name delimiter

(QJOPND)

Char (2) The path name delimiter. This field only applies to

integrated file system objects.

511 Reserved (QJORS6) Char (8) Reserved

519 Path name (QJOPNM) Char (5000) The path name. The length of this field is variable,

depending on the path name. This field only applies to

integrated file system objects.

 Related concepts

 “Apply journaled changes” on page 103
If an object becomes damaged or is not usable you can recover the object using the Apply Journaled

Changes (APYJRNCHG) or Apply Journaled Changes Extend (APYJRNCHGX) command. If you

restore an object that was saved with partial transactions, then you must apply journaled changes to

that object before it is usable.

 “Remove journaled changes” on page 109

Depending on the type of damage to the journaled object and the amount of activity since the object

was last saved, removing changes from the object can be easier than applying changes to the object.

Use the Remove Journaled Changes (RMVJRNCHG) command to remove changes from an object if

you are journaling before-images.

Journal management 115

“Example: Remove journaled changes” on page 128

Even though the following examples show database physical files and data areas being processed

separately, you can do them with one Remove Journaled Changes (RMVJRNCHG) command if you

use the OBJ parameter for both object types.
 Related tasks

 “When the system ends applying or removing journaled changes” on page 124

The system ends applying or removing journaled changes as a result from one of the following items:
 Related reference

 Apply Journaled Changes (APYJRNCHG) command

 Apply Journaled Changes Extend (APYJRNCHGX) command

 Remove Journaled Changes (RMVJRNCHG) command

Journaled changes with trigger programs:

The system does not call trigger programs when it is applying or removing journal entries.

 If an event occurs that would normally cause a trigger program to run, it is up to you to ensure that the

processing performed by the trigger program is recovered correctly.

Normal recovery processing will work correctly if all of the following are true:

v The trigger program only performs processing on object types which can be journaled and applied.

v The processed object types are journaled.

v Journaled changes are applied to or are removed from all the objects that are affected by the trigger

program.

If additional work is performed by the trigger program or objects other than object types which can be

journaled and applied are updated, you must use user-written programs to recover the work performed

by the trigger program.

If you use trigger programs to perform these actions, consider using the Send Journal Entry (QJOSJRNE)

API to send journal entries when trigger programs are called. See Send your own journal entries. To help

with recovery, you can develop a program to retrieve these entries and perform the same operations.

The output format for journal entries (except the *TYPE1, *TYPE2, and *TYPE3 formats) and the

QjoRetrieveJournalEntries API interface include information about whether a journal entry was created

because of actions that were performed when a trigger program was called.

 Related concepts

 “Send your own journal entries” on page 90

Use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to add

your own entries to a journal. The system places these entries in the journal’s attached journal receiver

along with the system-created journal entries.
 Related reference

 Work with triggers and constraints

 Send Journal Entry (QJOSJRNE) API

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Journaled changes with referential constraints:

When you apply or remove journaled changes, journal management does not support referential

constraints.

116 IBM Systems - iSeries: Journal Management

In the following cases, files may be in CHECK PENDING status after you have applied or removed

journaled changes:

v When you restore a file that already exists, the referential constraints for the system copy of the file are

used. Some of the journaled changes that you apply may have been valid with the referential

constraints that were associated with the saved copy. However, they are not necessarily valid with the

current referential constraints. If you have changed the referential constraints on the file, considering

doing one of the following before applying or removing journaled changes:

– Deleting the system copy and then restoring the file

– Recreating the changes to the referential constraints

When you apply or remove journaled changes, the system attempts to verify the referential constraints

at the end of the command, before returning control to you. This may result in a CHECK PENDING

status.

v Some referential constraints cause an action to another file. You may define a constraint so that deleting

a record in one file causes a related record to be deleted in another file. Because referential constraints

are not enforced when you apply journaled changes, the second delete operation does not happen

automatically. However, if you are journaling both files and applying journaled changes to both files,

the system applies the journal entry for the second file when it encounters it.

If one of the files in a referential constraint was not journaled or is not included when you apply or

remove journaled changes, the referential constraint will probably be put in CHECK PENDING status.

The output format for journal entries (except the *TYPE1, *TYPE2, and *TYPE3 formats) and the

QjoRetrieveJournalEntries API interface include information about whether a journal entry was created

because of changes that occurred to a record that was part of a referential constraint.

 Related concepts

 Work with triggers and constraints
 Related reference

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Actions of applying or removing journaled changes by journal code:

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),

Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)

command by journal code and entry type.

 If All is specified for the Entry Type, it indicates that all entry types for that journal code have the

specified actions taken by the APYJRNCHG, APYJRNCHGX, or RMVJRNCHG command.

When the system ends applying or removing journaled changes has detailed information about when an

apply or remove journaled changes action ends automatically.

Actions by journal code and entry type

 Journal

code

Entry

type Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

A All Ignores Ignores Ignores

B AA Change audit attribute Attribute is

changed

Ignores Ignores

B AJ Start of apply Ends for this

object3

Ignores Ignores

B AT End of apply Ends for this

object3

Ignores Ignores

Journal management 117

|

|
|
|

|
|

|
|

|

||
|
|
|||||

||||||

||||
|
||

||||
|
||

||||
|
||

Journal

code

Entry

type Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

B BD Integrated file system object

deleted

Ignores Ignores Ignores

B B0 Begin create Ignores Ignores Ignores

B B1 Create summary Object is created

and linked

Ignores Ignores

B B2 Link to existing object Object is linked Ignores Ignores

B B3 Rename, move object Object is moved or

renamed

Ignores Ignores

B B4 Remove link (parent

directory)

Object link is

removed

Ignores Ignores

B B5 Remove link (link) Object link is

removed

Ignores Ignores

B B6 Bytes cleared, after-image Object is updated Ignores Ignores

B B7 Created object authority

information

Authority is

changed

Ignores Ignores

B CS Integrated file system object

closed

Ignores Ignores Ignores

B ET End journaling for object Ends for this

object3

Ignores Ignores

B FA Integrated file system object

attribute changed

Attribute is

changed

Ignores Ignores

B FC Integrated file system object

forced

Ignores Ignores Ignores

B FF Storage for object freed Ignores Ignores Ignores

B FR Integrated file system object

restored

Ends for this

object3

Ignores Ignores

B FS Integrated file system object

saved

Ignores Ignores Ignores

B FW Start of save Ignores Ignores Ignores

B JA Change journaled objects

attribute

Journal attribute

changed

Ignores Ignores

B JT Start journaling for object Ignores Ignores Ignores

B OA Change object authority Authority is

changed

Ignores Ignores

B OF Integrated file system object

opened

Ignores Ignores Ignores

B OG Change primary group Primary group is

changed

Ignores Ignores

B OI Object in use at abnormal

end, object is synchronized1

Ignores Ignores Ignores

B OI Object in use at abnormal

end, object is not

synchronized1

Ends for this

object3

Ignores Ignores

B OO Change Object Owner Owner is changed Ignores Ignores

B RN Rename file identifier File identifier

renamed

Ignores Ignores

118 IBM Systems - iSeries: Journal Management

|
|
|
|||||

|||
|
|||

||||||

||||
|
||

||||||

||||
|
||

|||
|
|
|
||

||||
|
||

||||||

|||
|
|
|
||

|||
|
|||

||||
|
||

|||
|
|
|
||

|||
|
|||

||||||

|||
|
|
|
||

|||
|
|||

||||||

|||
|
|
|
||

||||||

||||
|
||

|||
|
|||

||||
|
||

|||
|
|||

|||
|
|

|
|
||

||||||

||||
|
||

Journal

code

Entry

type Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

B TR Integrated file system object

truncated

Object is truncated Ignores Ignores

B WA Write, after-image Object is updated Ignores Ignores

C All Ignores Ignores Ignores

D AC Add RI constraint Constraint is added Constraint is added Ignores

D CG Change file File is changed File is changed Ignores

D CT Create database file Ignores File is created Ignores

D DC Remove RI constraint Constraint is

removed

Constraint is

removed

Ignores

D DD End of apply Ends for this

object3

Ends for this

object3

Ignores

D DF Delete file Ignores Ignores Ignores

D DG Start of Apply Ends for this

object3

Ends for this

object3

Ignores

D DH File saved Ignores Ignores Ignores

D DJ Changed journaled object

attribute

Journal attribute

changed

Ignores Ignores

D DT Delete file File is deleted File is deleted Ignores

D DW Start of save Ignores Ignores Ignores

D DZ File restored Ends for this

object3

Ends for this

object3

Ignores

D EF End journal for file Ends for this

object3

Ends for this

object3

Ignores

D FM File moved File is moved File is moved Ignores

D FN File renamed File is renamed File is renamed Ignores

D GC Change constraint Constraint is

changed

Constraint is

changed

Ignores

D GO Change owner Owner is changed Owner is changed Ignores

D GT Grant authority Authority is

granted

Authority is

granted

Ignores

D ID File in use Ignores Ignores Ignores

D JF Start journaling file Ignores Ignores Ignores

D MA Member added List of objects

being applied is

updated.

List of objects

being applied is

updated.

Ignores

D RV Revoke authority Authority is

revoked

Authority is

revoked

Ignores

D TC Create trigger Trigger is created Trigger is created Ignores

D TD Remove trigger Trigger is removed Trigger is removed Ignores

D TG Change trigger Trigger is changed Trigger is changed Ignores

D TQ Refresh table Table is refreshed Table is refreshed Ignores

D ZB Change Object Attribute Attribute Changed Attribute Changed Ignores

E EA Update data area, after image Data area modified Ignores Ignores

Journal management 119

|
|
|
|||||

|||
|
|||

||||||

||||||

||||||

||||||

||||||

||||
|
|
|
|

||||
|
|
|
|

||||||

||||
|
|
|
|

||||||

|||
|
|
|
||

||||||

||||||

||||
|
|
|
|

||||
|
|
|
|

||||||

||||||

||||
|
|
|
|

||||||

||||
|
|
|
|

||||||

||||||

||||
|
|

|
|
|

|

||||
|
|
|
|

||||||

||||||

||||||

||||||

||||||

||||||

Journal

code

Entry

type Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

E EB Update data area, before

image

Ignores Ignores Data area modified

E ED Data area deleted Ends for this

object3

Ignores Ends for this

object3

E EE Create data area Ignores Ignores Ignores

E EG Start journal for data area Ignores Ignores Ends for this

object3

E EH End journal for data area Ends for this

object3

Ignores Ignores

E EI Data area in use, object

synchronized1

Ignores Ignores Ignores

E EI Data area in use, object not

synchronized1

Ends for this

object3

Ignores Ends for this

object3

E EK Change journaled objects

attribute

Attribute changed Ignores Ignores

E EL Data area restored Ends for this

object3

Ignores Ends for this

object3

E EM Data area moved Date area is moved Ignores Ignores

E EN Data area renamed Data area is

renamed

Ignores Ignores

E EQ Data area changes applied Ends for this

object3

Ignores Ends for this

object3

E ES Data area saved Ignores Ignores Ignores

E EU RMVJRNCHG command

started

Ends for this

object3

Ignores Ends for this

object3

E EW Start of save for data area Ignores Ignores Ignores

E EX Data area changes removed Ends for this

object3

Ignores Ends for this

object3

E EY APYJRNCHG command

started

Ends for this

object3

Ignores Ends for this

object3

E ZA Change authority Object authority

changed

Ignores Ignores

E ZB Change object attribute Attribute changed Ignores Ignores

E ZO Change owner Owner changed Ignores Ignores

E ZP Change primary group Primary group

changed

Ignores Ignores

E ZT Change audit attribute Audit attribute

changed

Ignores Ignores

F AY Journaled changes applied Ends for this

object3

Ends for this

object3

Ends for this

object3

F CB Change File member Member is changed Member is changed Ignores

F CE Change end of data Member end of

data changed2

Member end of

data changed2

Ends for this

object3

F CH File changed Ignores Ignores Ignores

F CL Member closed Ignores Ignores Ignores

120 IBM Systems - iSeries: Journal Management

|
|
|
|||||

|||
|
|||

||||
|
||
|

||||||

||||||
|

||||
|
||

|||
|
|||

|||
|
|
|
||
|

|||
|
|||

||||
|
||
|

||||||

||||
|
||

||||
|
||
|

||||||

|||
|
|
|
||
|

||||||

||||
|
||
|

|||
|
|
|
||
|

||||
|
||

||||||

||||||

||||
|
||

||||
|
||

||||
|
|
|
|
|

||||||

||||
|
|
|
|
|

||||||

||||||

Journal

code

Entry

type Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

F CR Member cleared Member cleared of

all records2

Member cleared of

all records2

Ends for this object

3

F C1 End Rollback IF CMTBDY(*NO)

is selected, ends for

this object. If

CMTBDY(*YES) is

selected, ignores.

IF CMTBDY(*NO)

is selected, ends for

this object. If

CMTBDY(*YES) is

selected, ignores.

IF CMTBDY(*NO)

is selected, ends for

this object. If

CMTBDY(*YES) is

selected, ignores.

F DE Member deleted record count Ignores Ignores Ignores

F DM Delete member Member is deleted Member is deleted Ignores

F EJ End journaling Ends for this

object3

Ends for this

object3

Ignores

F EP End journaling access paths Ignores Ignores Ignores

F FD Member forced to auxiliary

storage

Ignores Ignores Ignores

F FI Internal format information Ignores Ignores Ignores

F IU Member in use at abnormal

end, object synchronized1

Ignores Ignores Ignores

F IU Member in use at abnormal

end, object not synchronized1

Ends for this object Ends for this object Ends for this object

F IT Identity Value File identity

changed

File identity

changed

Ignores

F IZ Member initialized Initialized records

inserted in member

Initialized records

inserted in member

Initialized records

deleted from

member

F JC Change journal attribute Ignores Ignores Ignores

F JM Start journaling member Ignores Ignores Ends for this

object3

F JP Start journaling access paths Ignores Ignores Ignores

F MC Create member Member is created Member is created Ignores

F MD Member deleted Ignores Ignores Ends for this

object3

F MF Member saved with storage

freed

Ends for this

object3

Ends for this

object3

Ends for this

object3

F MM Member moved Member is moved Member is moved Ignores

F MN Member renamed Member is

renamed

Member is

renamed

Ignores

F MO Member changed Ends for this

object3

Ends for this

object3

Ends for this

object3

F MR Member restored Ends for this

object3

Ends for this

object3

Ends for this

object3

F MS Member saved Ignores Ignores Ignores

F OP Member opened Ignores Ignores Ignores

F PD Access path deleted Ignores Ignores Ignores

F PM Logical owning member of

access path moved

Ignores Ignores Ignores

Journal management 121

|
|
|
|||||

||||
|
|
|
|
|

||||
|
|
|
|

|
|
|
|
|

|
|
|
|
|

||||||

||||||

||||
|
|
|
|

||||||

|||
|
|||

||||||

|||
|
|||

|||
|
|||

||||
|
|
|
|

||||
|
|
|
|
|
|

||||||

||||||
|

||||||

||||||

||||||
|

|||
|
|
|
|
|
|
|

||||||

||||
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|
|

||||||

||||||

||||||

|||
|
|||

Journal

code

Entry

type Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

F PN Logical owning member of

access path renamed

Ignores Ignores Ignores

F RC Journaled changes removed Ends for this

object3

Ends for this

object3

Ends for this

object3

F RG Member reorganized Ignores Ignores Ends for this

object3

F RM Member reorganized Member is

reorganized

Member is

reorganized

Ignores

F SA Start of APYJRNCHG Ends for this

object3

Ends for this

object3

Ends for this

object3

F SR Start of RMVJRNCHG Ends for this

object3

Ends for this

object3

Ends for this

object3

F SS Start of save active Ignores Ignores Ignores

I All Ignores Ignores Ignores

J All

(Except

SI and

SX)

Ignores Ignores Ignores

J SI Enter JRNSTATE(*STANDBY) Ends Ignores Ignores

J SX Exit JRNSTATE(*STANDBY) Ignores Ignores Ends

L All Ignores Ignores Ignores

M All Ignores Ignores Ignores

P All Ignores Ignores Ignores

Q QA Create data queue Ignores Ignores Ignores

Q QB Start data queue journaling Ignores Ends for this object Ignores

Q QC Data queue cleared, no key Data queue is

cleared

Ignores Ignores

Q QD Data queue deleted Ends for this

object4

Ignores Ignores

Q QE End data queue journaling Ends for this

object4

Ignores Ignores

Q QH Data queue changes applied Ends for this

object4

Ignores Ignores

Q QI Queue in use, object

synchronized

Ignores Ignores Ignores

Q QI Queue in use, object not

synchronized

Ends for this

object4

Ignores Ignores

Q QJ Data queue cleared, has key Data queue is

cleared

Ignores Ignores

Q QK Send data queue entry, has

key

Entry is sent Ignores Ignores

Q QL Receive data queue entry, has

key

Entry is received Ignores Ignores

Q QM Data queue moved Data queue is

moved

Ignores Ignores

122 IBM Systems - iSeries: Journal Management

|
|
|
|||||

|||
|
|||

||||
|
|
|
|
|

||||||
|

||||
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|
|

||||||

||||||

||
|
|
|

||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||
|
||

||||
|
||

||||
|
||

||||
|
||

|||
|
|||

|||
|
|
|
||

||||
|
||

|||
|
|||

|||
|
|||

||||
|
||

Journal

code

Entry

type Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

Q QN Data queue renamed Data queue is

renamed

Ignores Ignores

Q QR Receive data queue entry, no

key

Entry is received Ignores Ignores

Q QS Send data queue entry, no

key

Entry is sent Ignores Ignores

Q QW APYJRNCHG command

started

Ends for this object

4

Ignores Ignores

Q QX Start of save for data queue Ignores Ignores Ignores

Q QY Data queue saved Ignores Ignores Ignores

Q QZ Data queue restored Ends for this object

4

Ignores Ignores

Q VE Internal entry Ignores Ignores Ignores

Q VQ Internal entry Ends for this object

4

Ignores Ignores

Q VW Internal entry Entries resequenced Ignores Ignores

Q ZA Change authority Object authority

changed

Ignores Ignores

Q ZB Object attribute change Attribute changed Ignores Ignores

Q ZO Change owner Owner changed Ignores Ignores

Q ZP Change primary group Primary group

changed

Ignores Ignores

Q ZT Change audit attribute Audit attribute

changed

Ignores Ignores

R BR Before-image updated for

rollback operation

Ignores Ignores Record updated

with before-image

R DL Record deleted Record deleted Record deleted Record updated

with before-image

R DR Record deleted for rollback

operation

Record deleted Record deleted Record updated

R IL Increment record limit Ignores Ignores Ignores

R PT Record written to member Record written to

member

Record written to

member

Record deleted

from member

R PX Record added directly to

member

Record added Record added Record deleted

from member

R UB Record updated

(before-image)

Ignores Ignores Record updated

with before-image

R UP Record updated (after-image) Record updated

with after-image

Record updated

with after-image

Ignores

R UR After-image updated for

rollback operation

Record updated

with after-image

Record updated

with after-image

Ignores

S All Ignores Ignores Ignores

T All Ignores Ignores Ignores

U User-
specified

User entry Ignores Ignores Ignores

Journal management 123

|
|
|
|||||

||||
|
||

|||
|
|||

|||
|
|||

|||
|
|
|
||

||||||

||||||

||||
|
||

||||||

||||
|
||

||||||

||||
|
||

||||||

||||||

||||
|
||

||||
|
||

|||
|
|||
|

||||||
|

|||
|
|||

||||||

||||
|
|
|
|
|

|||
|
|||
|

|||
|
|||
|

||||
|
|
|
|

|||
|
|
|
|
|
|

||||||

||||||

||
|
||||

Journal

code

Entry

type Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

Notes:

1The Flag field in the journal entry indicates whether the object is synchronized (0 = object was synchronized; 1 =

object was not synchronized).

2Applying journaled changes stops at this entry if referential constraints that this entry violates are active during the

apply operation.

3Any changes found for the object that follow this entry are not applied. If any additional changes are found for this

object an indication will be returned in the end of apply or remove journal entry, and in any output file generated.

If you specify *END for the Object Error Option (OBJERROPT) when you issue the apply or remove journaled

changes command, the entire apply or remove operation ends.

4Any changes found for the object that follow this entry will NOT be applied when OBJERROPT(*CONTINUE) is

specified. If any additional changes are found for this object, an indication will be returned in the end of

apply/remove journal entry and in any outfile generated.

5If the attribute change is to add before images, then the apply ends for the object.

For more information about the journal codes, entry types, and journal entries, see Journal entry

information.

 Related concepts

 “Apply journaled changes” on page 103
If an object becomes damaged or is not usable you can recover the object using the Apply Journaled

Changes (APYJRNCHG) or Apply Journaled Changes Extend (APYJRNCHGX) command. If you

restore an object that was saved with partial transactions, then you must apply journaled changes to

that object before it is usable.

 “Integrated file system considerations for applying journaled changes” on page 106

If there is a create entry or delete entry in the range of journal entries to which you are applying

journaled changes, changes to a directory can cause the creation or deletion of an object.

 “Remove journaled changes” on page 109

Depending on the type of damage to the journaled object and the amount of activity since the object

was last saved, removing changes from the object can be easier than applying changes to the object.

Use the Remove Journaled Changes (RMVJRNCHG) command to remove changes from an object if

you are journaling before-images.

 “Journal entry information” on page 132

This topic provides information and tasks for working with journal entries.
 Related tasks

 “When the system ends applying or removing journaled changes”

The system ends applying or removing journaled changes as a result from one of the following items:
 Related reference

 Apply Journaled Changes (APYJRNCHG) command

 Apply Journaled Changes Extend (APYJRNCHGX) command

 Remove Journaled Changes (RMVJRNCHG) command

When the system ends applying or removing journaled changes:

The system ends applying or removing journaled changes as a result from one of the following items:

 v Certain journaled entries

v A format error for a database physical file (such as an undefined entry for that file member)

124 IBM Systems - iSeries: Journal Management

|
|
|
|||||

|

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|

|

|

|

|

v A logical error for a database physical file (such as updating a record that has not been inserted or a

duplicate key exception)

v A logical error for a data queue (such as inserting a keyed entry into a non-keyed queue)

v Unexpected error processing an entry

When one of the previous items occur, the apply or remove journaled changes action can end either for

the object or for the entire apply or remove operation. You can determine this behavior by using the

Object Error Option (OBJERROPT) parameter on the Apply Journaled Changes (APYJRNCHG), Apply

Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG) commands.

When OBJERROPT(*END) is specified, for entries that end applying or removing journaled changes, a

message identifying the reason for the end is placed in the job log, and the corresponding change is not

made to the object. The message contains the sequence number of the journal entry on which the failing

condition was detected. When OBJERROPT(*CONTINUE) is specified, message CPD7016 indicates what

entry the apply or removed stopped at, and the reason code. This information is also available in the

output file if one was generated. To correct the problem do the following:

1. Analyze the error.

2. Make the necessary correction.

3. Start applying or removing journal changes again using the appropriate sequence number.

For example, if the entry that causes a RMVJRNCHG command to end is entry code F of type RG, you

must reorganize the physical file member referred to in the journal entry. Use the same options that were

originally specified on the reorganize request when the journal entry was recorded in the journal receiver.

Resume removing journal changes by starting with the journal entry that follows the ’F RG’ reorganize

physical file member journal entry.

When you apply or remove journaled changes you also have the option to have the system send

information about the operation to an output file. You can specify whether information is sent about all

objects in the operation or only objects that have errors. To specify that the system sends information to

an output file use the Output (OUTPUT) option on the APYJRNCHG, APYJRNCHGX, or RMVJRNCHG

commands.

The APYJRNCHG, APYJRNCHGX, and RMVJRNCHG commands send an escape message and ends the

operation if any required journal receiver defined by the RCVRNG parameter is not on the system and

associated with the journal. Use the WRKJRNA command to select the Work with journal receiver

directory display, to see which journal receivers are on the system and associated with the journal. The

escape message contains the name of the required journal receiver if the reason code of message CPF7053

is 1 or if message CPF9801 is sent.

When the processing of applying or removing journaled changes ends with an escape message, the

objects can be partially changed. To determine how many changes were applied or removed for each

object do one of the following:

v Review the diagnostic messages in the job log prior to the final escape message for each object.

v Use the DSPJRN command to display the journal entries indicating completion of the command.

v If you specified to have the system send information to an output file, review the output file. The

output file contains a record for each object that was processed. You can view that object’s record to

determine if processing completed successfully for that object.

The command completion journal entries by object type are as follows:

Database physical file members

F journal code and an entry type of AY or RC D journal code and entry type of DD

Integrated file system objects

B journal code and entry type of AJ

Journal management 125

|

|

Data area objects

E journal code and entry type of EQ or EX

Data queue objects

Q journal code and entry type of QH

The Count field in the journal entry contains the number of journal entries that are applied or removed.

The system puts out a maximum of 512 diagnostic messages from Apply or Remove Journaled Changes.

Therefore, it is recommended that you create an output file to determine how many changes were

applied or removed for each object. For more information about the output file, see Use the apply and

remove journaled changes output file.

 Related concepts

 “Actions of applying or removing journaled changes by journal code” on page 117

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),

Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)

command by journal code and entry type.

 “Use the apply and remove journaled changes output file” on page 112

Use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the

activity that occurs when you perform an apply or remove journaled changes operation.

Example: Apply journaled changes:

The following are examples of the Apply Journaled Changes (APYJRNCHG) command applied to a

database physical file, integrated file system object, data queues, and data area.

 The following examples show database physical files, data areas, and integrated file system objects being

processed separately. However, you can use one APYJRNCHG command if you use the OBJ parameter

for files and data areas, and the OBJPATH parameter for the integrated file system objects on one

command call.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer

information.

All journaled objects

This example recovers all objects that are journaled to the journal JRN2 in one apply operation. For this

example, assume that journal JRN2 is using the receiver size-option RCVSIZOPT(*MAXOPT3). Since the

ending sequence number is greater than 9 999 999 999, the TOENTLRG parameter is required. The

example starts applying journaled changes from the last save of the objects, to entry sequence number

500 000 000 000.

By default, the system honors the commitment boundaries. So if there is an object whose commitment

boundary ends after sequence number 500 000 000 000, the the apply operations will not apply any

changes to that object for any commit cycles that end after sequence number 500 000 000 000. The apply

operation continues for the other objects that are journaled to the journal.

 APYJRNCHG JRN(JRN2) OBJ(*ALLJRNOBJ)

 FROMENT(*LASTSAVE) TOENTLRG(500000000000)

 RCVRNG(*LASTSAVE)

Database physical file

The following command applies the changes in journal JRNA to all the members of all files in the library

DSTPRODLIB that are being journaled to journal JRNA.

APYJRNCHG JRN(JRNLIB/JRNA) FILE((DSTPRODLIB/*ALL))

 FROMENTLRG(*LASTSAVE) TOENTLRG(*LASTRST)

126 IBM Systems - iSeries: Journal Management

|

|

|
|

|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|

Because the RCVRNG parameter is not specified, the system determines the range of journal receivers to

use as a result of the save information for the files. The FROMENTLRG parameter defaults to apply the

changes that begin with the first journal entry after the save of the object. The earliest required receiver is

the receiver that contains the D DW journal entry indicating the earliest start of save entry for any file in

DSTPRODLIB.

If the file was last saved with the save-while-active function, the saved copy of each file member includes

all object-level changes in the journal entries up to the corresponding F SS journal entry. In this case, the

system applies changes that begin with the first journal entry that follows the F SS entry.

If the file was last saved when it was not in use (normal save), the saved copy of each member includes

all object-level changes in the journal entries up to the corresponding F MS member saved journal entry.

In this case, the system applies changes that begin with the first journal entry that follows the F MS entry.

The following command applies the changes to the file from the journal receiver that is currently attached

to the journal:

APYJRNCHG JRN(JRNLIB/JRNA) FILE((LIBA/FILEA MBR1))

 RCVRNG(*CURRENT) FROMENTLRG(*FIRST)

 TOENTLRG(*LASTRST) OUTPUT(*OUTFILE)

 OUTFILE(MYFILE) DETAIL(*ERR)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning

of the operation. The system applies the changes from the first journal entry in this receiver to the entry

before the object was last restored. Changes are applied to member MBR1 of the file FILEA.

Because OUTPUT(*OUTFILE) is specified, an output file with the name MYFILE is created. The output

file contains a record for each object, if any, for which the apply ends early because DETAIL(*ERR) is

specified.

The following command applies the changes in the journal JRNA to all members of the file FILEA

beginning with the first journal entry after the file member was last saved:

APYJRNCHG JRN(JRNLIB/JRNA) FILE((LIBA/FILEA *ALL))

 TOJOBC(000741/USERP/WORKSTP)

The operation continues until the specified job closes any of the members in the file that it opened. The

operation is not restricted only to those journal entries that are recorded by the specified job.

Note: This example works only if you do not specify OMTJRNE (*OPNCLO) when starting journaling for

the file and you did not specify RCVSIZOPT(*MINFIXLEN) or you did not use a FIXLENDTA

option that would have omitted the job name for the journal at any time while the file was

journaled).

Integrated file system object

The following command applies the changes in journal JRNA to the objects in the directory MyDirectory,

and its subdirectories, that are being journaled to journal JRNA:

APYJRNCHG JRN(JRNLIB/JRNA) OBJPATH((’/MyDirectory’)) SUBTREE(*ALL)

Because the RCVRNG parameter is not specified, the system determines the range of journal receivers to

use as a result of the save information for the objects. Because the FROMENT or the FROMENTLRG

parameters are not specified, the system applies the changes that begin with the journal entry for the last

save of each of the objects.

If the object was last saved with the save-while-active function, the saved copy of each object includes all

changes in the journal entries up to the corresponding B FW journal entry. In this case, the system applies

changes that begin with the first journal entry that follows the B FW entry.

Journal management 127

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

|

|
|
|
|

|
|
|

If the object was last saved when it was not in use (normal save), the saved copy of each object includes

all changes in the journal entries up to the corresponding B FS saved journal entry. In this case, the

system applies changes that begin with the first journal entry that follows the B FS entry.

Data area

The following command applies the changes to the data area DATA1 from the journal receiver that is

currently attached to the journal:

APYJRNCHG JRN(JRNLIB/JRNA) OBJ((LIBA/DATA1 *DTAARA))

 RCVRNG(*CURRENT) FROMENTLRG(*FIRST)

 TOENTLRG(*LASTRST)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning

of the operation. The system applies the changes from the first journal entry in this receiver to the entry

before the object was last restored. Changes are applied to data area DATA1.

Note: Read the Code example disclaimer for important legal information.

 Related reference

 Apply Journaled Changes (APYJRNCHG) command

Example: Remove journaled changes:

Even though the following examples show database physical files and data areas being processed

separately, you can do them with one Remove Journaled Changes (RMVJRNCHG) command if you use

the OBJ parameter for both object types.

 Note: By using the code examples, you agree to the terms of the Code license and disclaimer

information.

Database physical file

The following command removes the changes in journal JRNA from the all the members of FILEA:

RMVJRNCHG JRN(JRNLIB/JRNA) FILE(DSTPRODLIB/FILEA)

 FROMENT(*LAST) TOENT(*FIRST)

 RCVRNG(*CURRENT)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning

of the operation. The system starts removing the changes beginning with the latest entry for that member

in this receiver and continues to the earliest entry for that member in this receiver.

The following command removes the changes in journal JRNA from all the members of FILEA:

RMVJRNCHG JRN(JRNLIB/JRNA) FILE(DSTPRODLIB/FILEA)

 FROMENT(*LAST) TOENT(*FIRST)

 RCVRNG(JRNLIB/RCVA10 JRNLIB/RCVA8)

 OUTPUT(*OUTFILE) OUTFILE(MYFILE)

The system starts removing the changes beginning with the last entry (the latest entry) for that member

in journal receiver RCVA10 and continues to the first entry (the earliest entry) for that member on journal

receiver RCVA8.

Because OUTPUT(*OUTFILE) is specified, an output file with the name MYFILE is created. The output

file contains a record for each object that the remove operation processes. See Use the apply and remove

journaled changes output file for an explanation of each field in the record.

128 IBM Systems - iSeries: Journal Management

|
|
|

|

|
|

|
|
|

|
|
|

|

|

|

Data area

The following removes the changes in JRNA from data area DATA1 from the last save entry to entry

number 1003.

RMVJRNCHG JRN(JRNLIB/JRNA) OBJ((LIBA/DATA1 *DTAARA))

 RCVRNG(*CURRENT) FROMENT(*LASTSAVE) TOENT(1003)

If the last save operation used the save-while-active function, the system starts by removing changes from

the entry preceding the last E EW start of save entry. If the last save operation was a normal save

operation, the system starts by removing changes from the entry that precedes the last E ES data area

saved entry. In the example, journaled changes are removed back to entry 1003.

Note: Read the Code example disclaimer for important legal information.

 Related concepts

 “Use the apply and remove journaled changes output file” on page 112

Use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the

activity that occurs when you perform an apply or remove journaled changes operation.
 Related reference

 Remove Journaled Changes (RMVJRNCHG) command

Example: Recover objects with partial transactions:

If you restore an object that was saved with a save-while-active operation that specified that the object

can be saved before it reaches a commitment boundary, it can have partial transactions. To recover objects

that are in a partial state you must perform an apply or a remove journaled changes operation.

 Another reason that an object can have partial transactions is if a long-running rollback was forced to

end. However, if an object has partial transactions because of a long-running rollback, you cannot recover

it with an apply or remove journaled changes operation.

If you perform save-while-active operations that can result in objects that are saved with partial

transaction, it is recommended that you use Backup, Recovery, and Media Services (BRMS). You can use

BRMS to automate your backup and recovery operations. BRMS automatically applies changes to objects

with partial transactions and restores them to a usable state. For more detailed information see the BRMS

topic.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer

information.

 Related concepts

 “Benefits of journal management” on page 12

The primary benefit of journal management is that it enables you to recover the changes to an object

that have occurred since the object was last saved. This ability is especially useful if you have an

unscheduled outage such as a power failure.

 “Journal management with the save-while-active function” on page 17

Journaling can help you with recovery if you use the save-while-active function in your backup

strategy. If you plan to save an application without ending it for checkpoint processing, consider

journaling all of the objects associated with the application. After the save operation is complete, save

all of the journal receivers for the objects you are saving.

 “Automatic deletion of journal receivers” on page 43

If you choose system journal receiver management, you can also have the system delete journal

receivers that are no longer needed for recovery. You can only specify this if you are using system

journal receiver management.

Journal management 129

“Change journaling attributes of journaled objects without ending journaling” on page 68

Provides information about how to change the journaling attributes of a journaled object without

ending journaling.

 “Keep track of journal receiver chains” on page 73
Journal receivers that are associated with a journal (that is presently or previously attached to the

journal) are linked in one or more receiver chains. Each journal receiver, except the first one, has a

previous receiver that was detached when the current receiver was attached. Each journal receiver,

except the one that is currently attached, also has a next receiver.

 “Save journals and journal receivers” on page 81

You must save the journal receivers when they are no longer attached, so that you have all the journal

entries saved.

 BRMS topic

Required journal receivers:

When you recover objects with partial transactions, all of the journal receivers that are required for the

recovery operation must be on the system. The recovery operation might require more journal receivers

than just the last one you detached. The system looks for the last journal receiver with an journal entry

for the object that indicates one of the following:

v The last regular save.

v The last save-while-active in which the object was saved without any partial transactions.

v The earliest SC (start commit) entry for any open transactions that affect the saved object for a save

with partial transactions.

The following illustration demonstrates these requirements.

1. Starting with receiver MYRCV05 the apply journaled changes operation starts.

2. The systems finds the SS entry that indicates the object was saved with partial transactions.

3. If journal receiver MYRCV05 has the CM entry that indicates the transaction for the object was

committed, the apply journaled changes operation applies the changes.

4. If journal receiver MYRCV05 does not have the CM entry, the system looks back to previous journal

receivers.

5. Since the SC entry is not in MYRCV04, the system looks in MYRCV03.

6. The system finds the SC entry in MYRCV03 and the transaction is rolled back to that point.

130 IBM Systems - iSeries: Journal Management

As the previous figure shows, even if you are performing an apply journaled changes operation, it is still

possible that the transaction can be rolled back and you will need previous journal receivers.

Restore examples:

All of the objects in the following examples are database files. The following are examples of recovering

objects in a partial state from three possible scenarios:

v Restore of a single object with partial transactions.

v Restore of multiple objects with partial transactions resulting from a rollback that was forced to end.

v Remove the partial transactions from an object that was restored with partial transactions.

Restore of a single object with partial transactions:

In this example, an object, OBJ1 in library LIB1 was saved with a save-while-active operation while it had

pending transactions. The save-while-active operation is the object’s most recent save. Journaled changes

start from the last save and end at the last sequence number in the journal receiver.

Journal management 131

The following is an example of the APYJRNCHG command. The default value for FROMENT is

*LASTSAVE. The TOENT parameter uses the *LASTRST value to apply journaled changes up to the

journal entry when the object was last restored.

 APYJRNCHG JRN(JRN1) FILE(LIB1/OBJ1)

 FROMENT(*LASTSAVE) TOENT(*LASTRST)

 RCVRNG(*LASTSAVE)

The following is an example of the RMVJRNCHG command. The following command removes the

changes in journal JRN1 from the all the members of OBJ1:

RMVJRNCHG JRN(JRNA1) FILE(LIB1/OBJ1)

 FROMENT(*LASTSAVE) TOENT(*COMMITSTART)

 RCVRNG(*LASTSAVE)

Starting with the last save journal entry, only changes for journal entries for any partial transactions are

removed, back to the start of the commit transaction.

Remove partial transaction status from an object with partial transactions:

This example uses the Change Journal Object (CHGJRNOBJ) command because the journal receivers are

not available to perform an apply or remove journaled changes operation. The Partial Transactions

(PTLTNS) parameter allows the object to be used, but does not complete the transactions. The object,

BRKNOBJ, still has changes caused by the partial transactions, but you are able to open the file.

Attention: Only use the following command as a last resort. You will lose data if you use this

command. You should only use this command for the following reasons:

v You have objects with partial transaction as a result of the termination of a long-running rollback and

you have no saved version to restore.

v You have objects with partial transactions as a result of a save-while-active operation, and the journal

receivers required to apply or remove journaled changes have been lost, destroyed, or damaged

beyond repair.
 CHGJRNOBJ OBJECT(LIB1/BRKNOBJ *FILE) PTLTNS(*ALWUSE)

Note: Read the Code example disclaimer for important legal information.

Journal entry information

This topic provides information and tasks for working with journal entries.

The system creates different types of journal entries in the journal receiver for different kinds of activities.

You cannot access the information in journal receivers directly. Several system commands provide

formatted information from a journal receiver:

v Use the Display Journal (DSPJRN) command to display entries, print them, or write them to an output

file.

v Use the Receive Journal Entry (RCVJRNE) command to specify an exit program. When entries are

added to the journal receiver, they are also passed to the exit program. The exit program can, for

example, write entries to save media or send them to another system.

v Use the Retrieve Journal Entry (RTVJRNE) command to retrieve journal entries to a CL program.

v Use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API to retrieve journal entries into a high

level language program.

Note: When working with multiple journal entries, the RCVJRNE command is usually the most efficient

interface to get the journal entry information.

When the system formats journal entries for you with the DSPJRN and RTVJRNE commands, it uses one

of several layouts. These layouts include a fixed-length portion and a variable-length portion. The

132 IBM Systems - iSeries: Journal Management

|
|

variable-length portion includes entry-specific data and null value indicators, if applicable. The

fixed-length portion of the journal entry appears as separate fields in these layouts.

v Journal entry information finder - The Journal code finder shows all the journal codes and entry types

for journal entries. You can search for individual codes, display codes by category, or display all

journal codes.

v Journal code descriptions

v Fixed-length portion of the journal entry

v Variable-length portion of the journal entry

v Work with journal entry information

Note: For information about which journal codes are affected by applying or removing journaled changes

see Actions of applying or removing journaled changes by journal code.

 Related concepts

 “How journal management works” on page 12
Use journal management to create an object called a journal. Use a journal to define which objects

you want to protect. You can have more than one journal on your system. A journal can define

protection for more than one object.

 “Journal entries” on page 15

When you use journal management, the system keeps a record of changes that you make to objects

that are journaled and of other events that occur on the system. These records are called journal

entries. You can use journal entries to help recover objects or analyze changes that were made to the

objects.

 “Actions of applying or removing journaled changes by journal code” on page 117

The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),

Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)

command by journal code and entry type.

Journal code descriptions

This topic provides a description of all of the journal codes and categories.

Following are descriptions of all the possible journal codes or categories of journal entries.

Journal Code A - System Accounting Entry

Journal entries with a journal code of A contain information about job accounting. See Job

Accounting in the Work Management topic for a detailed description of the contents of converted

journal entries with journal code A.

Journal Code B- Integrated File System

Journal entries with a journal code of B contain information about changes to integrated file

system objects. The only integrated file system objects that are supported are those with an object

of type *STMF, *DIR or *SYMLNK. These objects must be in the ″root″(/), QOpenSys, and

User-defined file systems. See the Integrated file system topic for more information about file

systems.

Journal Code C - Commitment Control Operation

Journal entries with a journal code of C contain commitment control information.

Journal Code D - Database File Operation

Journal entries with a journal code of D contain file level information about changes for a

physical file, not an individual member.

Journal Code E - Data Area Operation

Journal entries with a journal code of E contain information about changes to journaled data

areas. See Work Management on the V5R1 Supplemental Manuals Web site for more information

about data areas.

Journal management 133

Journal Code F - Database File Member Operation

Journal entries with a journal code of F contain file level information about changes for a physical

file member that are being journaled to this journal. (If you use a logical file in a program, the file

level information reflects the physical file on which the logical file is based.) Journal entries with

journal code F can also contain file level information for access paths that are associated with

physical or logical file members that are being journaled to this journal.

Journal Code I - Internal Operation

Journal entries with a journal code of I contain information about access paths or indexes or other

internal operations. Entries with a journal code of I are displayed only if JRN(*INTSYSJRN) is

specified or INCHIDENT(*YES) is specified on the DSPJRN command.

Journal Code J - Journal or Receiver Operation

Journal entries with a journal code of J contain information about the journal and the journal

receivers.

Journal Code L - License Management

Journal entries with a journal code of L contain information about license management, such as

changes to the usage limit and usage limit violations.

Journal Code M - Network Management Data

Journal entries with a journal code of M contain information about Network Management,

including TCP/IP. For a description of the TCP/IP entries, see see TCP/IP configuration and

reference on the V5R1 Supplemental Manuals Web site. For a description of the Network

Management entries, see Simple Network Management Protocol (SNMP) Support.

Journal Code P - Performance Tuning Entry

Journal entries with a journal code of P contain information about performance. For the

description of the layout of these entries, see Work Management on the V5R1 Supplemental

Manuals Web site.

Journal Code Q - Data Queue Operation

Journal entries with a journal code of Q contain information about changes to journaled data

queues. See CL Programming: Communicate between programs and procedures for more

information about data queues.

Journal Code R - Operation on Specific Record

Journal entries with a journal code of R contain information about a change to a specific record in

the physical file member that is being journaled to the journal. For a given physical file member,

the record-level journal entries appear in the journal in the order that the changes were made to

the file.

Journal Code S - Distributed Mail Services

Journal entries with a journal code of S contain information about SNA distribution services

(SNADS), X.400, and mail server framework. For the description of the layout of these entries,

refer to these books:

v SNA Distribution Services on the V5R1 Supplemental Manuals Web site

v AnyMail/400 Mail Server Framework Support

Journal Code T - Audit Trail Entry

Journal entries with a journal code of T contain auditing information.

Journal Code U - User-Generated Entry

Journal entries with a code of U are sent to the journal receiver by the Send Journal Entry

(SNDJRNE) command or by the Send Journal Entry (QJOSJRNE) API.
 Related concepts

 “Send your own journal entries” on page 90

Use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to add

your own entries to a journal. The system places these entries in the journal’s attached journal receiver

along with the system-created journal entries.

134 IBM Systems - iSeries: Journal Management

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

“Layouts for the fixed-length portion of journal entries” on page 185

Use this topic to determine layouts for the fixed-length portion of journal entries.

 “Display and print journal entries” on page 276
Use the Display Journal (DSPJRN) command to display journal entries. The entries are displayed at a

work station, printed, or written to an output file. You cannot directly access the journal entries in the

form in which they are contained in the journal receivers.

Journal entries by code and type

 Table 1. Journal entries by code and type

Journal code Entry type Description Notes

A DP Direct print information See Work Management for

the layout of the entry

specific data.

A JB Job resource information See Work Management for

the layout of the entry

specific data.

A SP Spooled print information See Work Management for

the layout of the entry

specific data.

B AA Change audit attribute The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B AJ Start of apply

B AT End of apply The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B BD Integrated file system object

deleted

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Journal management 135

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

B B0 Begin create The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B B1 Create summary The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B B2 Link to existing object The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B B3 Rename, move object Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B B4 Remove link (parent

directory)

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B B5 Remove link (link) The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

136 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

B B6 Bytes cleared, after-image The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B B7 Created object authority

information.

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B CS Integrated file system object

closed

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Journal management 137

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

B ET End journaling for object Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B FA Integrated file system object

attribute changed

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B FC Integrated file system object

forced

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B FF Storage for object freed These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

138 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

B FR Integrated file system object

restored

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B FS Integrated file system object

saved

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Journal management 139

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

B FW Start of save for

save-while-active

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B JA Change journaled object

attribute

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B JT Start journaling for object Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B OA Change object authority The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B OF Integrated file system object

opened

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

140 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

B OG Change primary group The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B OI Object in use at abnormal

end

See the layout for the

variable width portion of

this journal entry.

B OO Change object owner The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B RN Rename file identifier The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

B TR Integrated file system object

truncated

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Journal management 141

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

B WA Write, after-image This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

C BA Commit in use at abnormal

end

See the layout for the

variable width portion of

this journal entry.

C BC Start commitment control

(STRCMTCTL)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

C CM Set of record changes

committed (COMMIT)

See the layout for the

variable width portion of

this journal entry.

C CN Rollback ended early See the layout for the

variable width portion of

this journal entry.

C DB Internal entry Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

C EC End commitment control

(ENDCMTCTL)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

142 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

C LW A logical unit of work

(LUW) has ended

See the layouts for the

Logical Unit of Work

journal entry and the

following:

v Header record.

v Local record.

v API record.

v DDL record.

v RMT record.

v DDM record.

C PC Prepare commit block

C RB Set of record changes rolled

back (ROLLBACK)

See the layout for the

variable width portion of

this journal entry.

C R1 Rollback started

C SB Start of savepoint This is the start of the

savepoint or nested commit

cycle where it is written to

the journal and occurs

when the application

creates an SQL

SAVEPOINT. The system

can also create an internal

nested commit cycle to

handle a series of database

functions as a single

operation. The

entry-specific data for this

journal entry is all internal

data.

C SC Commit transaction started

C SQ Release of savepoint This is the release of the

savepoint or commit of

nested commit cycle.

Entries are written to the

journal when the

application releases an SQL

SAVEPOINT or when the

system commits an internal

nested commit cycle. See

the layout for the variable

width portion of this

journal entry.

Journal management 143

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

C SU Rollback of save point This is the release of the

savepoint or commit of

nested commit cycle.

Entries are written to the

journal when the

application releases an SQL

SAVEPOINT or when the

system commits an internal

nested commit cycle. See

the layout for the variable

width portion of this

journal entry.

D AC Add referential integrity

constraint

See the layout for the

variable width portion of

this journal entry.

D CG Change file See the layout for the

variable width portion of

this journal entry.

D CT Create database file See the layout for the

variable width portion of

this journal entry.

D DC Remove referential integrity

constraint

See the layout for the

variable width portion of

this journal entry.

D DD End of apply or remove See the layout for the

variable width portion of

this journal entry.

D DF File was deleted Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

D DG Start of apply or remove

D DH File saved These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

See the layout for the

variable width portion of

this journal entry.

D DJ Change journaled object

attribute

See the layout for the

variable width portion of

this journal entry.

144 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

D DT Delete file Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

D DW Start of save-while-active

save

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

See the layout for the

variable width portion of

this journal entry.

D DZ File restored These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

D EF Journaling for a physical

file ended (ENDJRNPF)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

D FM File moved to a different

library (MOVOBJ or

RNMOBJ OBJTYPE(*LIB))

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

Journal management 145

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

D FN File renamed (RNMOBJ) Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

D GC Change constraint See the layout for the

variable width portion of

this journal entry.

D GO Change owner See the layout for the

variable width portion of

this journal entry.

D GT Grant authority See the layout for the

variable width portion of

this journal entry.

D ID File in use See the layout for the

variable width portion of

this journal entry.

D JF Journaling for a physical

file started (STRJRNPF

(JRNPF))

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

D MA Member added to file

D RV Revoke authority See the layout for the

variable width portion of

this journal entry.

D TC Add trigger See the layout for the

variable width portion of

this journal entry.

D TD Remove trigger See the layout for the

variable width portion of

this journal entry.

D TG Change trigger See the layout for the

variable width portion of

this journal entry.

D TQ Refresh table See the layout for the

variable width portion of

this journal entry.

146 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

D ZB Change object attribute The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QP0LJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E EA Update data area, after

image

Neither the before-image

nor after-image is deposited

into the journal if the

after-image is exactly the

same as the before-image.

This entry may have

minimized entry specific

data (ESD). It will have

minimized ESD if its

corresponding object type

deposits minimized journal

entries through the

MINENTDTA parameter

for this journal or journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E EB Update data area, before

image

Neither the before-image

nor after-image is deposited

into the journal if the

after-image is exactly the

same as the before-image.

This entry may have

minimized entry specific

data (ESD). It will have

minimized ESD if its

corresponding object type

deposits minimized journal

entries through the

MINENTDTA parameter

for this journal or journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Journal management 147

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

E ED Data area deleted Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

E EE Create data area The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E EG Start journal for data area Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

E EH End journal for data area Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

E EI Data area in use

E EK Change journaled object

attribute

See the layout for the

variable width portion of

this journal entry.

E EL Data area restored These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

148 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

E EM Data area moved Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E EN Data area renamed Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E EQ Data area changes applied The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E ES Data area saved These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E EU Remove journaled changes

(RMVJRNCHG) command

started

Journal management 149

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

E EW Start of save for data area These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E EX Data area changes removed The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QWCJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E EY Apply journaled changes

(APYJRNCHG) command

started

E ZA Change authority The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QSYJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E ZB Change object attribute The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QLIJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E ZO Ownership change The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QSYJRNL.H.

See the layout for the

variable width portion of

this journal entry.

150 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

E ZP Change primary group The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QSYJRNL.H.

See the layout for the

variable width portion of

this journal entry.

E ZT Auditing change The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QSYJRNL.H.

See the layout for the

variable width portion of

this journal entry.

F AY Journaled changes applied

to a physical file member

(APYJRNCHG)

See the layout for the

variable width portion of

this journal entry.

F CB Physical file member

changed

F CE Change end of data for

physical file member

See the layout for the

variable width portion of

this journal entry.

F CH Change file As of V5R1M0, the journal

entry D CG is also being

sent for the change file

operations. IBM

(TM)

strongly recommends that

you do your processing

based on the D CG entry

instead of the F CH entry

because the F CH entry

may be retired in a future

release.

F CL Physical file member closed

(for shared files, a close

entry is made for the last

close operation of the file)

See the layout for the

variable width portion of

this journal entry.

F CR Physical file member

cleared (CLRPFM)

F C1 Rollback ended early See the layout for the

variable width portion of

this journal entry.

F DE Physical file member

deleted record count

Journal management 151

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

F DM Delete member Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

F EJ Journaling for a physical

file member ended

(ENDJRNPF)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

F EP Journaling access path for a

database file member

ended (ENDJRNAP)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

F FD Physical file member forced

(written) to auxiliary

storage

See the layout for the

variable width portion of

this journal entry.

F FI System-generated journal

entry format information

F IT Identity value See the layout for the

variable width portion of

this journal entry.

F IU Physical file member in use

at the time of abnormal

system end

See the layout for the

variable width portion of

this journal entry.

F IZ Physical file member

initialized (INZPFM)

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

See the layout for the

variable width portion of

this journal entry.

152 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

F JC Change journaled object

attribute

See the layout for the

variable width portion of

this journal entry.

F JM Journaling for a physical

file member started

(STRJRNPF)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

F JP Journaling access path for a

database file member

started (STRJRNAP)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

F MC Create member See the layout for the

variable width portion of

this journal entry.

F MD Physical file member

deleted. This entry is

created when you remove

the member (RMVM) or

delete the file (DLTF)

containing the member.

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

F MF Physical file member saved

with storage freed

(SAVOBJ, SAVCHGOBJ, or

SAVLIB)

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

F MM Physical file containing the

member moved to a

different library (MOVOBJ

or RNMOBJ

OBJTYPE(*LIB))

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

F MN Physical file containing the

member renamed (RNMM

or RNMOBJ)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

Journal management 153

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

F MO Allow use with partial

transactions

See the layout for the

variable width portion of

this journal entry.

F MR Physical file member

restored (RSTOBJ or

RSTLIB)

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

See the layout for the

variable width portion of

this journal entry.

F MS Physical file member saved

(SAVOBJ, SAVLIB, or

SAVCHGOBJ)

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

See the layout for the

variable width portion of

this journal entry.

F OP Physical file member

opened (for shared files, an

open entry is added for the

first open operation for the

file)

See the layout for the

variable width portion of

this journal entry.

F PD Database file member’s

access path deleted (this

entry is created when you

remove the member

(RMVM) or delete the file

(DLTF) containing the

member)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The object name for this

entry might be misleading.

It is the original name the

path had when journaling

started. The name is not

updated if the access path

is moved, renamed, or if it

is implicitly shared by

another logical file.

See the layout for the

variable width portion of

this journal entry.

154 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

F PM The logical owner of a

journaled access path was

moved (MOVOBJ or

RNMOBJ OBJTYPE(*LIB))

After you have installed

V4R2M0 or a later release,

this journal type is no

longer generated.

See the layout for the

variable width portion of

this journal entry.

F PN The logical owner of a

journaled access path was

renamed (RNMOBJ or

RNMM)

After you have installed

V4R2M0 or a later release,

this journal type is no

longer generated.

See the layout for the

variable width portion of

this journal entry.

F RC Journaled changes removed

from a physical file

member (RMVJRNCHG)

See the layout for the

variable width portion of

this journal entry.

F RG Physical file member

reorganized (RGZPFM)

See the layout for the

variable width portion of

this journal entry.

F RM Member reorganized

F SA The point at which the

APYJRNCHG command

started running

F SR The point at which the

RMVJRNCHG command

started running

F SS The start of the save of a

physical file member using

the save-while-active

function

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

See the layout for the

variable width portion of

this journal entry.

I DA Directory in use at

abnormal end

See the layout for the

variable width portion of

this journal entry.

I DK Internal entry

I IB Internal recovery

I IC Access path protection

I IE Directory recovery

I IF Access path protection

I IG Access path restored

Journal management 155

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

I IH Access path protection

I II Access path in use at

abnormal end

I IO Access path protection

I IQ Access path protection

I IV Access path protection

I IW Access path protection

I IX Start of save for access path

I IY Access path saved

I UE Unknown entry type

J CI Journal caching started Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J CX Journal caching ended Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J EZ End journaling for journal

receiver

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J IA System IPL after abnormal

end

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J IN System IPL after normal

end

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J JI Journal receiver in use at

abnormal end

See the layout for the

variable width portion of

this journal entry.

J JR Start journaling for journal

receiver

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J KR Keep journal receivers for

recovery

J LA Activate local journal Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

156 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

J LI Inactivate local journal Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J NK Do not keep journal

receivers for recovery

J NR Identifier for the next

journal receiver (the

receiver that was attached

when the indicated receiver

was detached)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

J PR Identifier for the previous

journal receiver (the

receiver that was detached

when the indicated receiver

was attached)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

J RD Deletion of a journal

receiver (DLTJRNRCV)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

See the layout for the

variable width portion of

this journal entry.

J RF Storage for a journal

receiver freed (SAVOBJ,

SAVCHGOBJ, or SAVLIB)

See the layout for the

variable width portion of

this journal entry.

J RR Restore operation for a

journal receiver (RSTOBJ or

RSTLIB)

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

See the layout for the

variable width portion of

this journal entry.

Journal management 157

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

J RS Save operation for a journal

receiver (SAVOBJ,

SAVCHGOBJ, or SAVLIB)

These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

See the layout for the

variable width portion of

this journal entry.

J SI Enter journal state

(*STANDBY)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J SL Severed link Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

This is the start of the

savepoint or nested commit

cycle where it is written to

the journal and occurs

when the application

creates an SQL

SAVEPOINT. The system

can also create an internal

nested commit cycle to

handle a series of database

functions as a single

operation. The

entry-specific data for this

journal entry is all internal

data.

J SX Exit journal state

(*STANDBY)

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J UA User independent auxiliary

storage pool vary on

abnormal

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

J UN User independent auxiliary

storage pool vary on

normal

Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

158 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

J XP Internal entry Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

L LK License key is not valid See the layout for the

variable width portion of

this journal entry.

L LL Usage limit changed See the layout for the

variable width portion of

this journal entry.

L LU Usage limit exceeded See the layout for the

variable width portion of

this journal entry.

M MP Modification of QoS

policies

M SN Simple Network

Management Protocol

(SNMP) information

See Simple Network

Management Protocol

(SNMP) Support

for information about the

entry specific data for

SNMP journal entries.

M TF IP filter rules actions Refer to TCP/IP

configuration and reference

on the V5R1 Supplemental

Manuals Web site

for information about the

entry specific data for

TCP/IP journal entries.

M TN IP NAT rules actions Refer to TCP/IP

configuration and reference

on the V5R1 Supplemental

Manuals Web site

for information about the

entry specific data for

TCP/IP journal entries.

M TS Virtual private networking

(VPN) information

Refer to TCP/IP

configuration and reference

on the V5R1 Supplemental

Manuals Web site

for information about the

entry specific data for

TCP/IP journal entries.

Journal management 159

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

P TP Performance shared pool

change

See Work Management for

the layout of the entry

specific data.

Q QA Create data queue The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QLIJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QB Start data queue journaling Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QLIJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QC Data queue cleared, no key This entry only has

entry-specific data which

the system uses for internal

processing. There is no

structure for it in the

QSYSINC include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QD Data queue deleted Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

There is no entry-specific

data for this entry.

Q QE End data queue journaling Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

There is no entry-specific

data for this entry.

160 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

Q QH Data queue changes

applied

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QI Queue in use at abnormal

end

There is no entry-specific

data for this entry.

Q QJ Data queue cleared, has key The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QK Send data queue entry, has

key

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Journal management 161

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

Q QL Receive data queue entry,

has key

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QM Data queue moved Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QN Data queue renamed Even if this journal has a

journal state of *STANDBY,

this entry type will still be

deposited in the journal

receiver.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QR Receive data queue entry,

no key

This entry only has

entry-specific data which

the system uses for internal

processing. There is no

structure for it in the

QSYSINC include file,

QMHQJRNL.H.

162 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

Q QS Send data queue entry, no

key

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

This entry only has

entry-specific data which

the system uses for internal

processing. There is no

structure for it in the

QSYSINC include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QW Apply journaled changes

(APYJRNCHG) command

started

 The entry specific data for

this entry varies, and only

represents data required

internally by the operation

system. Therefore, the entry

layout is not documented.

Journal management 163

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

Q QX Start of save for data queue These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

This entry only has

entry-specific data which

the system uses for internal

processing. There is no

structure for it in the

QSYSINC include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q QY Data queue saved These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QMHQJRNL.H

See the layout for the

variable width portion of

this journal entry.

Q QZ Data queue restored These entries do not

indicate that they occurred

as the result of a trigger

program, even if a trigger

program caused the event.

That information is not

available at the time the

entry is written to the

journal.

The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file,

QMHQJRNL.H.

See the layout for the

variable width portion of

this journal entry.

164 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

Q VE Internal entry This is an internal entry. No

layout of entry-specific data

is provided.

Q VQ Internal entry This is an internal entry. No

layout of entry-specific data

is provided.

Q VW Internal entry This is an internal entry. No

layout of entry-specific data

is provided.

Q ZA Change authority The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QSYJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q ZB Change object attribute The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QLIJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q ZO Ownership change The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QLIJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q ZP Change primary group The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QSYJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Q ZT Auditing change The entry-specific data for

these journal entries is laid

out in the QSYSINC

include file, QLIJRNL.H.

See the layout for the

variable width portion of

this journal entry.

Journal management 165

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

R BR Before-image of record

updated for rollback

operation

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

This entry may have

minimized entry specific

data (ESD). It will have

minimized ESD if its

corresponding object type

deposits minimized journal

entries through the

MINENTDTA parameter

for this journal or journal

receiver.

See the layout for the

variable width portion of

this journal entry.

R DL Record deleted in the

physical file member

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

See the layout for the

variable width portion of

this journal entry.

166 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

R DR Record deleted for rollback

operation

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

See the layout for the

variable width portion of

this journal entry.

R IL Increment record limit These entries have

entry-specific data which

the system uses for internal

processing.

R PT Record added to a physical

file member. If the file is set

up to reuse deleted records,

then you may receive either

a PT or PX journal entry for

the change

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

See the layout for the

variable width portion of

this journal entry.

Journal management 167

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

R PX Record added directly by

RRN (relative record

number) to a physical file

member. If the file is set up

to reuse deleted records,

then you may receive either

a PT or PX journal entry for

the change

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

This entry may have

minimized entry specific

data (ESD). It will have

minimized ESD if its

corresponding object type

deposits minimized journal

entries through the

MINENTDTA parameter

for this journal or journal

receiver.

This entry may have

minimized entry specific

data (ESD). It will have

minimized ESD if its

corresponding object type

deposits minimized journal

entries through the

MINENTDTA parameter

for this journal or journal

receiver.

See the layout for the

variable width portion of

this journal entry.

168 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

R UB Before-image of a record

that is updated in the

physical file member (this

entry is present only if

IMAGES(*BOTH) is

specified on the STRJRNPF

command)

Neither the before-image

nor after-image is deposited

into the journal if the

after-image is exactly the

same as the before-image.

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

This entry may have

minimized entry specific

data (ESD). It will have

minimized ESD if its

corresponding object type

deposits minimized journal

entries through the

MINENTDTA parameter

for this journal or journal

receiver.

See the layout for the

variable width portion of

this journal entry.

Journal management 169

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

R UP After-image of a record that

is updated in the physical

file member

Neither the before-image

nor after-image is deposited

into the journal if the

after-image is exactly the

same as the before-image.

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

This entry may have

minimized entry specific

data (ESD). It will have

minimized ESD if its

corresponding object type

deposits minimized journal

entries through the

MINENTDTA parameter

for this journal or journal

receiver.

See the layout for the

variable width portion of

this journal entry.

170 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

R UR After-image of a record that

is updated for rollback

information

This journal entry may

have data which can only

be accessed by using either

the

QjoRetrieveJournalEntries

API or the RCVJRNE

command. For the

RCVJRNE command, use

the ENTFMT(*TYPEPTR) or

ENTFMT(*JRNENTFMT)

parameters. In all other

interfaces, if the data is not

visible, the incomplete data

indicator will be on and

*POINTER will appear in

the Entry Specific Data. For

more information, refer to

Work with pointers in

journal entries.

This entry may have

minimized entry specific

data (ESD). It will have

minimized ESD if its

corresponding object type

deposits minimized journal

entries through the

MINENTDTA parameter

for this journal or journal

receiver.

See the layout for the

variable width portion of

this journal entry.

S AL SNA alert focal point

information

See SNA Distribution

Services

on the V5R1 Supplemental

Manuals Web site for the

layout of the entry specific

data for entries generated

by SNADS.

Journal management 171

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

S CF Mail configuration

information

See SNA Distribution

Services

on the V5R1 Supplemental

Manuals Web site for the

layout of the entry specific

data for entries generated

by SNADS.

See AnyMail/400 Mail

Server Framework Support

for the layout of the entry

specific data.

S DX X.400

(R) process debug

entry

S ER Mail error information See SNA Distribution

Services

on the V5R1 Supplemental

Manuals Web site for the

layout of the entry specific

data for entries generated

by SNADS.

See AnyMail/400 Mail

Server Framework Support

for the layout of the entry

specific data.

S LG Mail logging table

information

See SNA Distribution

Services

on the V5R1 Supplemental

Manuals Web site for the

layout of the entry specific

data for entries generated

by SNADS.

See AnyMail/400 Mail

Server Framework Support

for the layout of the entry

specific data.

S MX A change was made to

X.400

(R) MTA configuration

S NX A change was made to

X.400

(R) delivery

notification

172 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

S RT Mail routing information See SNA Distribution

Services

on the V5R1 Supplemental

Manuals Web site for the

layout of the entry specific

data for entries generated

by SNADS.

See AnyMail/400 Mail

Server Framework Support

for the layout of the entry

specific data.

S RX A change was made to

X.400

(R) route

configuration

S SY Mail system information See SNA Distribution

Services

on the V5R1 Supplemental

Manuals Web site for the

layout of the entry specific

data for entries generated

by SNADS.

See AnyMail/400 Mail

Server Framework Support

for the layout of the entry

specific data.

S UX A change was made to

X.400

(R) user or probe

S XE DSNX error entry See SNA Distribution

Services

on the V5R1 Supplemental

Manuals Web site for the

layout of the entry specific

data for entries generated

by SNADS.

S XL DSNX logging entry See SNA Distribution

Services

on the V5R1 Supplemental

Manuals Web site for the

layout of the entry specific

data for entries generated

by SNADS.

Journal management 173

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

S XX An error was detected by

the X.400

(R) process

T AD A change was made to the

auditing attribute

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T AF All authority failures See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T AP A change was made to

program adopt

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T AU Attribute change See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T CA Changes to object authority

(authorization list or object)

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T CD A change was made to a

command string

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T CO Create object See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T CP Create, change, restore user

profiles

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

174 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

T CQ A change was made to a

change request descriptor

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T CU Cluster operation See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T CV Connection verification See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T CY Cryptographic

configuration

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T DI Directory services See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T DO All delete operations on the

system

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T DS DST security officer

password reset

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T EV Environment variable See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T GR General purpose audit

record

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

Journal management 175

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

T GS A descriptor was given See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T IM Intrusion monitor See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T IP Inter-process

communication event

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T IR IP rules actions See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T IS Internet security

management

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T JD Changes to the USER

parameter of a job

description

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T JS A change was made to job

data

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T KF Key ring file name See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T LD A link, unlink, or lookup

operation to a directory

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

176 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

T ML A change was made to

office services mail

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T NA Changes to network

attributes

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T ND Directory search violations See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T NE End point violations See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T OM Object management change See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T OR Object restored See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T OW Changes to object

ownership

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T O1 Single optical object access See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T O2 Dual optical object access See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

Journal management 177

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

T O3 Optical volume access See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T PA Changes to programs

(CHGPGM) that will now

adopt the owner’s authority

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T PG Changes to an object’s

primary group

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T PO A change was made to

printed output

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T PS Profile swap See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T PW Passwords used that are

not valid

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T RA Restore of objects when

authority changes

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T RJ Restore of job descriptions

that contain user profile

names

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T RO Restore of objects when

ownership information

changes

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

178 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

T RP Restore of programs that

adopt their owner’s

authority

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T RQ A change request descriptor

was restored

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T RU Restore of authority for

user profiles

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T RZ The primary group for an

object was changed during

a restore operation

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T SD A change was made to the

system directory

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T SE Changes to subsystem

routing

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T SF A change was made to a

spooled output file

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T SG Asynchronous signals See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T SK Secure sockets connection See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

Journal management 179

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

T SM A change was made by

system management

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T SO A change was made by

server security

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T ST A change was made by

system tools

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T SV Changes to system values See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VA Changes to access control

list

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VC Connection started or

ended

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VF Server files were closed See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VL An account limit was

exceeded

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VN A logon or logoff operation

on the network

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

180 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

T VO Actions on validation lists See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VP A network password error See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VR A network resources was

accessed

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VS A server session started or

ended

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VU A network profile was

changed

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T VV Service status was changed See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T X0 Network authentication See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T X1 Identity token See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T X2 Reserved for future audit

entry

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

Journal management 181

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

T X3 Reserved for future audit

entry

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T X4 Reserved for future audit

entry

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T X5 Reserved for future audit

entry

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T X6 Reserved for future audit

entry

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T X7 Reserved for future audit

entry

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T X8 Reserved for future audit

entry

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T X9 Reserved for future audit

entry

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T YC A change was made to

DLO change access

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T YR A change was made to

DLO read access

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

182 IBM Systems - iSeries: Journal Management

Table 1. Journal entries by code and type (continued)

Journal code Entry type Description Notes

T ZC A change was made to

object change access

Only one entry per opened

file. The member name will

not be displayed in the

entry specific data for

based on physical files.

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

T ZR A change was made to

object read access

See iSeries

(TM)Security

Reference

for the layout of the entry

specific data.

U User-specified. The

Entry-specific data is the

value specified on the

ENTDTA parameter of the

SNDJRNE command or

with the entry data

parameter for the

QJOSJRNE API

The entry is deposited in

the journal receiver even if

the journal state is

*STANDBY, if the user

chooses to override the

*STANDBY state on the

SNDJRNE command or

QJOSJRNE API.

Fixed-length portion of the journal entry

Provides the layouts of the fixed-length portion of the journal entries.

When you use the Display Journal (DSPJRN) command, Receive Journal Entry (RCVJRNE) command,

Retrieve Journal Entry (RTVJRNE) command, or the Retrieve Journal Entries (QjoRetrieveJournalEntries)

API you can select one of the formats in which to receive the layout for the fixed-length portion of the

journal entry:

v *TYPE1

v *TYPE2

v *TYPE3

v *TYPE4

v *TYPE5

*TYPE1 format

The *TYPE1 format shows the fields that are common for all journal entry types. These fields are

shown when you request *TYPE1 for the output file format or the entry type format.

*TYPE2 format

If you request OUTFILFMT(*TYPE2) on the DSPJRN command, or ENTFMT(*TYPE2) on the

RCVJRNE or RTVJRNE command, then the fixed-length portion of each converted journal entry

is the same as the format in *TYPE1, except for the information that follows the commit cycle

identifier field. The fields of the prefix that follow the commit cycle identifier are shown in

*TYPE2 field descriptions.

TYPE3 field descriptions

A third value, *TYPE3, is supported on the OUTFILFMT parameter for the DSPJRN command,

and the ENTFMT parameter for the RCVJRNE and RTVJRNE commands. If either

Journal management 183

OUTFILFMT(*TYPE3) is specified on the DSPJRN command or ENTFMT(*TYPE3) is specified on

the RCVJRNE or RTVJRNE command, the information in the prefix portion of a converted journal

entry is shown in *TYPE3 field descriptions. *TYPE3 has the same information as the *TYPE1 and

*TYPE2 formats, except that it has a different date format and a null-values indicator.

*TYPE4 field descriptions

A fourth value, *TYPE4, is supported on the OUTFILFMT parameter for the DSPJRN command

and the ENTFMT parameter for the RCVJRNE and RTVJRNE commands. If either

OUTFILFMT(*TYPE4) is specified on the DSPJRN command or ENTFMT(*TYPE4) is specified on

the RCVJRNE or RTVJRNE command, the information in the prefix portion of a converted journal

entry is shown in Table 4. *TYPE4 output includes all of the *TYPE3 information, plus

information about journal identifiers, triggers, and referential constraints and entries which will

be ignored by the APYJRNCHG or RMVJRNCHG commands.

*TYPE5 field descriptions

The *TYPE5 format is only available with the DSPJRN and RTVJRNE commands. The *TYPE5

format is supported on the OUTFILFMT parameter for the DSPJRN command and ENTFMT

parameter of the RTVJRNE command. If you specify OUTFILFMT(*TYPE5) on the DSPJRN

command or ENTFMT(*TYPE5) on the RTVJRNE command, the information in the prefix portion

of a converted journal entry is shown in Table 5. *TYPE5 output includes all of the *TYPE4

information, plus information about the following:

v System sequence number

v Thread identifier

v Remote address

v Address family

v Remote port

v Arm number

v Receiver name

v Receiver library name

v Receiver library ASP device name

v Program library name

v Program library ASP device name

v Program library ASP number

v Logical unit of work

v Transaction identifier

v Receiver library ASP number

v Object type

v File type

v Nested commit level

The RCVJRNE command also supports the *TYPEPTR and *JRNENTFMT formats. The layout of

the journal entry data for the *TYPEPTR interface is the same as the RJNE0100 format which is

described in the QjoRetrieveJournalEntries API.

 The layout of the journal entry data for the *JRNENTFMT interface is the same as either the

RJNE0100 format or the RJNE0200 format of the QjoRetrieveJournalEntries API. You can select

which format to use by selecting the RJNE0100 or the RJNE0200 value for the Journal Entry

Format (JRNENTFMT) parameter of the RCVJRNE command.

 You can find the field descriptions for layouts *TYPE1, *TYPE2, *TYPE3, *TYPE4, and *TYPE5 in

the Journal entry information finder.
 Related reference

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

184 IBM Systems - iSeries: Journal Management

|

|

|

Related information

 Journal entry information finder

Layouts for the fixed-length portion of journal entries

Use this topic to determine layouts for the fixed-length portion of journal entries.

TYPE1 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE1 for the output file format or the entry type format. The

uppercase field names shown in parentheses are used in the system-supplied output file

QSYS/QADSPJRN. The field names that are in italics are the variable names for these fields in the

QjoRetrieveJournalEntries API header file. These variables are under the type definition for the RJNE0100

format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the QSYSINC library.

 Relative

offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry including

the entry length field, all subsequent positions of

the journal entry, and any portion of the journal

entry that was truncated if the length of the

output record is less than the length of the record

created for the journal entry.

If the journal entry has the incomplete data

indicator on, then this length does not include that

additional data which could be pointed to. This

length includes the length of the data that is

actually returned, which includes entry specific

data of up to 32 766 bytes.

6 Sequence number (JOSEQN,

Seq_Number)

Zoned (10,0) Assigned by the system to each journal entry. It is

initially set to 1 for each new or restored journal

and is incremented until you request that it be

reset when you attach a new receiver. There are

occasional gaps in the sequence numbers because

the system uses internal journal entries for control

purposes. These gaps occur if you use

commitment control, journal physical files, or

journal access paths.

This field can contain a -1 if receiver-size option

RCVSIZOPT(*MAXOPT3) is selected and the

actual value of the sequence number is larger than

9 999 999 999.

Journal management 185

rzakifinder.htm

Relative

offset Field Format Description

16 Journal code (JOCODE,

Jrn_Code)

Char (1) Identifies the primary category of the journal

entry:

 A = System accounting entry

 B = Integrated file system operation

 C = Commitment control operation

 D = Database file operation

 E = Data area operation

 F = Database file member operation

 I = Internal operation

 J = Journal or receiver operation

 L = License management

 M = Network management data

 P = Performance tuning entry

 Q = Data queue operation

 R = Operation on a specific record

 S = Distributed mail services

 T = Audit trail entry

 U = User-generated entry (added by the

SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail in

Journal code descriptions.

17 Entry type (JOENTT,

Entry_Type)

Char (2) Further identifies the type of user-created or

system-created entry. See the Journal code finder

for descriptions of the entry types.

19 Date stamp (JODATE) Char (6) Specifies the system date when the entry was

added and is in the format of the job attribute

DATFMT. The system cannot assure that the date

stamp is always in ascending order for sequential

journal entries because you can change the value

of the system date.

25 Time stamp (JOTIME) Zoned (6,0) Corresponds to the system time (in the format

hhmmss) when the entry was added. The system

cannot assure that the time stamp is always in

ascending order for sequential journal entries

because you can change the value of the system

time.

31 Job name (JOJOB, Job_Name) Char (10) Specifies the name of the job that added the entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, then *OMITTED is given for the

job name.

2. If the job name was not available when the

journal entry was deposited, then *NONE is

written for the job name.

186 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

41 User name (JOUSER,

User_Name)

Char (10) Specifies the user profile name of the user that

started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then blanks are written for the user

name.

51 Job number (JONBR,

Job_Number)

Zoned (6,0) Specifies the job number of the user that started

the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then zeroes are written for the job

number.

57 Program name (JOPGM,

Program_Name)

Char (10) Specifies the name of the program that added the

entry. If an application or CL program did not add

the entry, the field contains the name of a

system-supplied program such as QCMD or

QPGMMENU. If the program name is the special

value *NONE, then one of the following is true:

v The program name does not apply to this

journal entry.

v The program name was not available when the

journal entry was made.

For example, the program name is not available if

the program was destroyed.

Notes:

1. If the program that deposited the journal entry

is an original program model program, this

data will be complete. Otherwise, this data will

be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, *OMITTED is given for the

program name.

67 Object name (JOOBJ, Object) Char (10) Specifies the name of the object for which the

journal entry was added.1 This is blank for some

entries.

If the journaled object is an integrated file system

object, then this field is the first 10 bytes of the file

identifier.

77 Library name (JOLIB) Char (10) Specifies the name of the library containing the

object1.

If the journaled object is an integrated file system

object, then the first 6 characters of this field are

the last 6 bytes of the file identifier.

87 Member name (JOMBR) Char (10) Specifies the name of the physical file member or

is blank if the object is not a physical file1.

Journal management 187

Relative

offset Field Format Description

97 Count/relative record number

(JOCTRR,

Count_Rel_Rec_Num)

Zoned (10,0) Contains either the relative record number (RRN)

of the record that caused the journal entry or a

count that is pertinent to the specific type of

journal entry. The following tables show specific

values for this field, if applicable:

v APYJRNCHG and RMVJRNCHG journal entries

v Change end of data journal entry

v CHGJRN journal entries

v COMMIT journal entry

v INZPFM journal entry

This field can contain a -1 if receiver-size option

RCVSIZOPT(*MAXOPT3) is selected and the

actual value of the count or relative record

number is larger than 9 999 999 999.

107 Indicator flag (JOFLAG,

Indicator_Flag)

Char (1) Contains an indicator for the operation. The

following tables show specific values for this field,

if applicable:

v APYJRNCHG and RMVJRNCHG journal entries

v COMMIT journal entry

v INZPFM journal entry

v IPL and in-use journal entries

v Journal code R (all journal entry types except

IL)

v ROLLBACK journal entry

v Start-journal journal entries

108 Commit cycle identifier

(JOCCID, Commit_Cycle_Id)

Zoned (10,0) Contains a number that identifies the commit

cycle. A commit cycle is from one commit or

rollback operation to another.

The commit cycle identifier is found in every

journal entry that is associated with a commitment

transaction. If the journal entry was not made as

part of a commitment transaction, this field is

zero.This field can contain a -1 if receiver-size

option RCVSIZOPT(*MAXOPT3) is selected and

the actual value of the commit cycle identifier is

larger than 9 999 999 999.

188 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

118 Incomplete data (JOINCDAT,

Incomplete_Data)

Char (1) Indicates whether this entry has data that is not

being retrieved for one of the following reasons:

v The length of the entry-specific data exceeds

32 766 bytes.

v The entry is associated with a database file that

has one or more fields of data type BLOB

(binary large object), CLOB (character large

object), or DBCLOB (double-byte character large

object).

The possible values are:

 0 = This entry has all possible data

 1 = This entry has incomplete data.

Any data which is marked as incomplete, can only

be viewed by using either the

QjoRetrieveJournalEntries API, or the command

RCVJRNE with any of the following parameters:

v ENTFMT(*TYPEPTR)

v ENTFMT(*JRNENTFMT)

v RTNPTR (with any value specified other than

*NONE)

119 Minimized entry specific data

(JOMINESD, Min_ESD)

Char (1) Indicates whether this entry has minimized entry

specific data.

The possible values are:

 0 = This entry has all possible data

 1 = This entry has incomplete data.

 2 = This entry has entry specific data that has

been minimized on field boundaries.

120 Reserved field (JORES) Char (6) Always contains zeros. Contains hexadecimal

zeros in the output file.

Note:

1If the journal receiver was attached prior to installing V4R2M0 on your system, then the following items are true:

v If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then the fully

qualified name is the most recent name of the file when the newest receiver in the receiver range was the

attached receiver and when the file was still being journaled.

v If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified name of

the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the fully qualified

name is the name of the object at the time the journal entry was deposited.

*TYPE2 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE2 for the output file format or the entry type format. The

uppercase field names shown in parentheses are used in the system-supplied output file

QSYS/QADSPJR2. The field names that are in italics are the variable names for these fields in the

QjoRetrieveJournalEntries API header file. These variables are under the type definition for the RJNE0100

format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the QSYSINC library.

Journal management 189

Offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry including

the entry length field, all subsequent positions of

the journal entry, and any portion of the journal

entry that was truncated if the length of the

output record is less than the length of the record

created for the journal entry.

If the journal entry has the incomplete data

indicator on, then this length does not include that

additional data which could be pointed to. This

length includes the length of the data that is

actually returned, which includes entry specific

data of up to 32 766 bytes.

6 Sequence number (JOSEQN,

Seq_Number)

Zoned (10,0) Assigned by the system to each journal entry. It is

initially set to 1 for each new or restored journal

and is incremented until you request that it be

reset when you attach a new receiver. There are

occasional gaps in the sequence numbers because

the system uses internal journal entries for control

purposes. These gaps occur if you use

commitment control, journal physical files, or

journal access paths.

This field can contain a -1 if receiver-size option

RCVSIZOPT(*MAXOPT3) is selected and the

actual value of the sequence number is larger than

9 999 999 999.

16 Journal code (JOCODE,

Jrn_Code)

Char (1) Identifies the primary category of the journal

entry:

 A = System accounting entry

 B = Integrated file system operation

 C = Commitment control operation

 D = Database file operation

 E = Data area operation

 F = Database file member operation

 I = Internal operation

 J = Journal or receiver operation

 L = License management

 M = Network management data

 P = Performance tuning entry

 Q = Data queue operation

 R = Operation on a specific record

 S = Distributed mail services

 T = Audit trail entry

 U = User-generated entry (added by the

SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail in

Journal code descriptions.

17 Entry type (JOENTT,

Entry_Type)

Char (2) Further identifies the type of user-created or

system-created entry. See the Journal code finder

for descriptions of the entry types.

190 IBM Systems - iSeries: Journal Management

Offset Field Format Description

19 Date stamp (JODATE) Char (6) Specifies the system date when the entry was

added and is in the format of the job attribute

DATFMT. The system cannot assure that the date

stamp is always in ascending order for sequential

journal entries because you can change the value

of the system date.

25 Time stamp (JOTIME) Zoned (6,0) Corresponds to the system time (in the format

hhmmss) when the entry was added. The system

cannot assure that the time stamp is always in

ascending order for sequential journal entries

because you can change the value of the system

time.

31 Job name (JOJOB, Job_Name) Char (10) Specifies the name of the job that added the entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, then *OMITTED is given for the

job name.

2. If the job name was not available when the

journal entry was deposited, then *NONE is

written for the job name.

41 User name (JOUSER,

User_Name)

Char (10) Specifies the user profile name of the user that

started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then blanks are written for the user

name.

51 Job number (JONBR,

Job_Number)

Zoned (6,0) Specifies the job number of the user that started

the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then zeroes are written for the job

number.

57 Program name (JOPGM,

Program_Name)

Char (10) Specifies the name of the program that added the

entry. If an application or CL program did not add

the entry, the field contains the name of a

system-supplied program such as QCMD or

QPGMMENU. If the program name is the special

value *NONE, then one of the following is true:

v The program name does not apply to this

journal entry.

v The program name was not available when the

journal entry was made.

For example, the program name is not available if

the program was destroyed.

Notes:

1. If the program that deposited the journal entry

is an original program model program, this

data will be complete. Otherwise, this data will

be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, *OMITTED is given for the

program name.

Journal management 191

Offset Field Format Description

67 Object name (JOOBJ, Object) Char (10) Specifies the name of the object for which the

journal entry was added.1 This is blank for some

entries.

If the journaled object is an integrated file system

object, then this field is the first 10 bytes of the file

identifier.

77 Library name (JOLIB) Char (10) Specifies the name of the library containing the

object1.

If the journaled object is an integrated file system

object, then the first 6 characters of this field are

the last 6 bytes of the file identifier.

87 Member name (JOMBR) Char (10) Specifies the name of the physical file member or

is blank if the object is not a physical file1.

97 Count/relative record number

(JOCTRR,

Count_Rel_Rec_Num)

Zoned (10,0) Contains either the relative record number (RRN)

of the record that caused the journal entry or a

count that is pertinent to the specific type of

journal entry. The following tables show specific

values for this field, if applicable:

v APYJRNCHG and RMVJRNCHG journal entries

v Change end of data journal entry

v CHGJRN journal entries

v COMMIT journal entry

v INZPFM journal entry

This field can contain a -1 if receiver-size option

RCVSIZOPT(*MAXOPT3) is selected and the

actual value of the count or relative record

number is larger than 9 999 999 999.

107 Indicator flag (JOFLAG,

Indicator_Flag)

Char (1) Contains an indicator for the operation. The

following tables show specific values for this field,

if applicable:

v APYJRNCHG and RMVJRNCHG journal entries

v COMMIT journal entry

v INZPFM journal entry

v IPL and in-use journal entries

v Journal code R (all journal entry types except

IL)

v ROLLBACK journal entry

v Start-journal journal entries

108 Commit cycle identifier

(JOCCID, Commit_Cycle_Id)

Zoned (10,0) Contains a number that identifies the commit

cycle. A commit cycle is from one commit or

rollback operation to another.

The commit cycle identifier is found in every

journal entry that is associated with a commitment

transaction. If the journal entry was not made as

part of a commitment transaction, this field is

zero.This field can contain a -1 if receiver-size

option RCVSIZOPT(*MAXOPT3) is selected and

the actual value of the commit cycle identifier is

larger than 9 999 999 999.

192 IBM Systems - iSeries: Journal Management

Offset Field Format Description

118 User profile (JOUSPF,

User_Profile)

Char (10) Specifies the name of the user profile under which

the job was running when the entry was created.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then *OMITTED is given for the user

profile.

128 System name (JOSYNM,

System_Name)

Char (8) Specifies the name of the system on which the

entry is being displayed, printed, retrieved, or

received if the journal receiver was attached prior

to installing V4R2M0 on the system. If the journal

receiver was attached while the system was

running V4R2M0 or a later release, the system

name is the system where the journal entry was

actually deposited.

136 Incomplete data (JOINCDAT,

Incomplete_Data)

Char (1) Indicates whether this entry has data that is not

being retrieved for one of the following reasons:

v The length of the entry-specific data exceeds

32 766 bytes.

v The entry is associated with a database file that

has one or more fields of data type BLOB

(binary large object), CLOB (character large

object), or DBCLOB (double-byte character large

object).

The possible values are:

 0 = This entry has all possible data

 1 = This entry has incomplete data

Any data which is marked as incomplete, can only

be viewed by using either the

QjoRetrieveJournalEntries API, or the command

RCVJRNE with any of the following parameters:

v ENTFMT(*TYPEPTR)

v ENTFMT(*JRNENTFMT)

v RTNPTR (with any value specified other than

*NONE)

137 Minimized entry specific data

(JOMINESD, Min_ESD)

Char (1) Indicates whether this entry has minimized entry

specific data.

The possible values are:

 0 = This entry has complete entry specific data.

 1 = This entry has minimized entry specific

data.

 2 = This entry has entry specific data that has

been minimized on field boundaries.

138 Reserved field (JORES) Char (18) Always contains zeros. Contains hexadecimal

zeros in the output file.

Journal management 193

Offset Field Format Description

Note:

1 If the journal receiver was attached prior to installing V4R2M0 on your system, then the following items are true:

v If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then the fully

qualified name is the most recent name of the file when the newest receiver in the receiver range was the

attached receiver and when the file was still being journaled.

v If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified name of

the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the fully qualified

name is the name of the object at the time the journal entry was deposited.

*TYPE3 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE3 for the output file format or the entry type format. The

uppercase field names shown in parentheses are used in the system-supplied output file

QSYS/QADSPJR3. The field names that are in italics are the variable names for these fields in the

QjoRetrieveJournalEntries API header file. These variables are under the type definition for the RJNE0100

format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the QSYSINC library.

 Offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry including

the entry length field, all subsequent positions of

the journal entry, and any portion of the journal

entry that was truncated if the length of the

output record is less than the length of the record

created for the journal entry.

If the journal entry has the incomplete data

indicator on, then this length does not include that

additional data which could be pointed to. This

length includes the length of the data that is

actually returned, which includes entry specific

data of up to 32 766 bytes.

6 Sequence number (JOSEQN,

Seq_Number)

Zoned decimal

(10,0)

Assigned by the system to each journal entry. It is

initially set to 1 for each new or restored journal

and is incremented until you request that it be

reset when you attach a new receiver. There are

occasional gaps in the sequence numbers because

the system uses internal journal entries for control

purposes. These gaps occur if you use

commitment control, journal physical files, or

journal access paths.

This field can contain a -1 if receiver-size option

RCVSIZOPT(*MAXOPT3) is selected and the

actual value of the sequence number is larger than

9 999 999 999.

194 IBM Systems - iSeries: Journal Management

Offset Field Format Description

16 Journal code (JOCODE,

Jrn_Code)

Char (1) Identifies the primary category of the journal

entry:

 A = System accounting entry

 B = Integrated file system operation

 C = Commitment control operation

 D = Database file operation

 E = Data area operation

 F = Database file member operation

 I = Internal operation

 J = Journal or receiver operation

 L = License management

 M = Network management data

 P = Performance tuning entry

 Q = Data queue operation

 R = Operation on a specific record

 S = Distributed mail services

 T = Audit trail entry

 U = User-generated entry (added by the

SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail in

Journal code descriptions.

17 Entry type (JOENTT,

Entry_Type)

Char (2) Further identifies the type of user-created or

system-created entry. See the Journal code finder

for descriptions of the entry types.

19 Time stamp (JOTMST,

Time_Stamp)

Char (26) Corresponds to the system date and time when

the journal entry was added in the journal

receiver. The time stamp is in SAA® format. The

system cannot assure that the time stamp is

always in ascending order for sequential journal

entries because you can change the value of the

system time.

45 Job name (JOJOB, Job_Name)

1 Char (10) Specifies the name of the job that added the entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, then *OMITTED is given for the

job name.

2. If the job name was not available when the

journal entry was deposited, then *NONE is

written for the job name.

55 User name (JOUSER,

User_Name)

Char (10) Specifies the user profile name of the user that

started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then blanks are written for the user

name.

Journal management 195

Offset Field Format Description

65 Job number (JONBR,

Job_Number)

Zoned (6,0) Specifies the job number of the user that started

the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then zeroes are written for the job

number.

71 Program name (JOPGM,

Program_Name)

Char (10) Specifies the name of the program that added the

entry. If an application or CL program did not add

the entry, the field contains the name of a

system-supplied program such as QCMD or

QPGMMENU. If the program name is the special

value *NONE, then one of the following is true:

v The program name does not apply to this

journal entry.

v The program name was not available when the

journal entry was made.

For example, the program name is not available if

the program was destroyed.

Notes:

1. If the program that deposited the journal entry

is an original program model program, this

data will be complete. Otherwise, this data will

be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, *OMITTED is given for the

program name.

81 Object name (JOOBJ, Object) Char (10) Specifies the name of the object for which the

journal entry was added.1 This is blank for some

entries.

If the journaled object is an integrated file system

object, then this field is the first 10 bytes of the file

identifier.

91 Library name (JOLIB) Char (10) Specifies the name of the library containing the

object1.

If the journaled object is an integrated file system

object, then the first 6 characters of this field are

the last 6 bytes of the file identifier.

101 Member name (JOMBR) Char (10) Specifies the name of the physical file member or

is blank if the object is not a physical file1.

196 IBM Systems - iSeries: Journal Management

Offset Field Format Description

111 Count/relative record number

(JOCTRR,

Count_Rel_Rec_Num)

Zoned (10,0) Contains either the relative record number (RRN)

of the record that caused the journal entry or a

count that is pertinent to the specific type of

journal entry.

v APYJRNCHG and RMVJRNCHG journal entries

v Change end of data journal entry

v CHGJRN journal entries

v COMMIT journal entry

v INZPFM journal entry

This field can contain a -1 if receiver-size option

RCVSIZOPT(*MAXOPT3) is selected and the

actual value of the count or relative record

number is larger than 9 999 999 999.

121 Indicator flag (JOFLAG,

Indicator_Flag)

Char (1) Contains an indicator for the operation. The

following tables show specific values for this field,

if applicable:

v APYJRNCHG and RMVJRNCHG journal entries

v COMMIT journal entry

v INZPFM journal entry

v IPL and in-use journal entries

v Journal code R (all journal entry types except

IL)

v ROLLBACK journal entry

v Start-journal journal entries

122 Commit cycle identifier

(JOCCID, Commit_Cycle_Id)

Zoned (10,0) Contains a number that identifies the commit

cycle. A commit cycle is from one commit or

rollback operation to another.

The commit cycle identifier is found in every

journal entry that is associated with a commitment

transaction. If the journal entry was not made as

part of a commitment transaction, this field is

zero.This field can contain a -1 if receiver-size

option RCVSIZOPT(*MAXOPT3) is selected and

the actual value of the commit cycle identifier is

larger than 9 999 999 999.

132 User profile (JOUSPF,

User_Profile)

Char (10) Specifies the name of the user profile under which

the job was running when the entry was created.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then *OMITTED is given for the user

profile.

142 System name (JOSYNM,

System_Name)

Char (8) Specifies the name of the system on which the

entry is being displayed, printed, retrieved, or

received if the journal receiver was attached prior

to installing V4R2M0 on the system. If the journal

receiver was attached while the system was

running V4R2M0 or a later release, the system

name is the system where the journal entry was

actually deposited.

Journal management 197

Offset Field Format Description

150 Incomplete data (JOINCDAT,

Incomplete_Data)

Char (1) Indicates whether this entry has data that is not

being retrieved for one of the following reasons:

v The length of the entry-specific data exceeds

32 766 bytes.

v The entry is associated with a database file that

has one or more fields of data type BLOB

(binary large object), CLOB (character large

object), or DBCLOB (double-byte character large

object).

The possible values are:

 0 = This entry has all possible data

 1 = This entry has incomplete data.

Any data which is marked as incomplete, can only

be viewed by using either the

QjoRetrieveJournalEntries API, or the command

RCVJRNE with any of the following parameters:

v ENTFMT(*TYPEPTR)

v ENTFMT(*JRNENTFMT)

v RTNPTR (with any value specified other than

*NONE)

151 Minimized entry specific data

(JOMINESD, Min_ESD)

Char (1) Indicates whether this entry has minimized entry

specific data.

The possible values are:

 0 = This entry has complete entry specific data.

 1 = This entry has minimized entry specific

data.

 2 = This entry has entry specific data that has

been minimized on field boundaries.

152 Reserved field (JORES) Char (18) Always contains zeros. Contains hexadecimal

zeros in the output file.

Note:

1If the journal receiver was attached prior to installing V4R2M0 on your system, then the following items are true:

v If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then the fully

qualified name is the most recent name of the file when the newest receiver in the receiver range was the

attached receiver and when the file was still being journaled.

v If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified name of

the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the fully qualified

name is the name of the object at the time the journal entry was deposited.

*TYPE4 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE4 for the output file format or the entry type format. The

uppercase field names shown in parentheses are used in the system-supplied output file

QSYS/QADSPJR4. The field names which are in italics are the variable names for these fields in the

QjoRetrieveJournalEntries API header file. These variables are under the type definition for the RJNE0100

format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the QSYSINC library.

198 IBM Systems - iSeries: Journal Management

Offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry including

the entry length field, all subsequent positions of

the journal entry, and any portion of the journal

entry that was truncated if the length of the

output record is less than the length of the record

created for the journal entry.

If the journal entry has the incomplete data

indicator on, then this length does not include that

additional data which could be pointed to. This

length includes the length of the data that is

actually returned, which includes entry specific

data of up to 32 766 bytes.

6 Sequence number (JOSEQN,

Seq_Number)

Zoned decimal

(10,0)

Assigned by the system to each journal entry. It is

initially set to 1 for each new or restored journal

and is incremented until you request that it be

reset when you attach a new receiver. There are

occasional gaps in the sequence numbers because

the system uses internal journal entries for control

purposes. These gaps occur if you use

commitment control, journal physical files, or

journal access paths.

This field can contain a -1 if receiver-size option

RCVSIZOPT(*MAXOPT3) is selected and the

actual value of the sequence number is larger than

9 999 999 999.

16 Journal code (JOCODE,

Jrn_Code)

Char (1) Identifies the primary category of the journal

entry:

 A = System accounting entry

 B = Integrated file system operation

 C = Commitment control operation

 D = Database file operation

 E = Data area operation

 F = Database file member operation

 I = Internal operation

 J = Journal or receiver operation

 L = License management

 M = Network management data

 P = Performance tuning entry

 Q = Data queue operation

 R = Operation on a specific record

 S = Distributed mail services

 T = Audit trail entry

 U = User-generated entry (added by the

SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail in

Journal code descriptions.

17 Entry type (JOENTT,

Entry_Type)

Char (2) Further identifies the type of user-created or

system-created entry. See the Journal code finder

for descriptions of the entry types.

Journal management 199

Offset Field Format Description

19 Time stamp (JOTMST,

Time_Stamp)

Char (26) Corresponds to the system date and time when

the journal entry was added in the journal

receiver. The time stamp is in SAA format. The

system cannot assure that the time stamp is

always in ascending order for sequential journal

entries because you can change the value of the

system time.

45 Job name (JOJOB, Job_Name)

1 Char (10) Specifies the name of the job that added the entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, then *OMITTED is given for the

job name.

2. If the job name was not available when the

journal entry was deposited, then *NONE is

written for the job name.

55 User name (JOUSER,

User_Name)

Char (10) Specifies the user profile name of the user that

started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then blanks are written for the user

name.

65 Job number (JONBR,

Job_Number)

Zoned (6,0) Specifies the job number of the user that started

the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then zeroes are written for the job

number.

71 Program name (JOPGM,

Program_Name)

Char (10) Specifies the name of the program that added the

entry. If an application or CL program did not add

the entry, the field contains the name of a

system-supplied program such as QCMD or

QPGMMENU. If the program name is the special

value *NONE, then one of the following is true:

v The program name does not apply to this

journal entry.

v The program name was not available when the

journal entry was made.

For example, the program name is not available if

the program was destroyed.

Notes:

1. If the program that deposited the journal entry

is an original program model program, this

data will be complete. Otherwise, this data will

be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, *OMITTED is given for the

program name.

200 IBM Systems - iSeries: Journal Management

Offset Field Format Description

81 Object name (JOOBJ, Object) Char (10) Specifies the name of the object for which the

journal entry was added.1 This is blank for some

entries.

If the journaled object is an integrated file system

object, then this field is the first 10 bytes of the file

identifier.

91 Library name (JOLIB) Char (10) Specifies the name of the library containing the

object1.

If the journaled object is an integrated file system

object, then the first 6 characters of this field are

the last 6 bytes of the file identifier.

101 Member name (JOMBR) Char (10) Specifies the name of the physical file member or

is blank if the object is not a physical file1.

111 Count/relative record number

(JOCTRR,

Count_Rel_Rec_Num)

Zoned (10,0) Contains either the relative record number (RRN)

of the record that caused the journal entry or a

count that is pertinent to the specific type of

journal entry.

v APYJRNCHG and RMVJRNCHG journal entries

v Change end of data journal entry

v CHGJRN journal entries

v COMMIT journal entry

v INZPFM journal entry

This field can contain a -1 if receiver-size option

RCVSIZOPT(*MAXOPT3) is selected and the

actual value of the count or relative record

number is larger than 9 999 999 999.

121 Indicator flag (JOFLAG,

Indicator_Flag)

Char (1) Contains an indicator for the operation. The

following tables show specific values for this field,

if applicable:

v APYJRNCHG and RMVJRNCHG journal entries

v COMMIT journal entry

v INZPFM journal entry

v IPL and in-use journal entries

v Journal code R (all journal entry types except

IL)

v ROLLBACK journal entry

v Start-journal journal entries

122 Commit cycle identifier

(JOCCID, Commit_Cycle_Id)

Zoned (10,0) Contains a number that identifies the commit

cycle. A commit cycle is from one commit or

rollback operation to another.

The commit cycle identifier is found in every

journal entry that is associated with a commitment

transaction. If the journal entry was not made as

part of a commitment transaction, this field is

zero.This field can contain a -1 if receiver-size

option RCVSIZOPT(*MAXOPT3) is selected and

the actual value of the commit cycle identifier is

larger than 9 999 999 999.

Journal management 201

Offset Field Format Description

132 User profile (JOUSPF,

User_Profile)

Char (10) Specifies the name of the user profile under which

the job was running when the entry was created.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then *OMITTED is given for the user

profile.

142 System name (JOSYNM,

System_Name)

Char (8) Specifies the name of the system on which the

entry is being displayed, printed, retrieved, or

received if the journal receiver was attached prior

to installing V4R2M0 on the system. If the journal

receiver was attached while the system was

running V4R2M0 or a later release, the system

name is the system where the journal entry was

actually deposited.

150 Journal identifier (JOJID, Jid) Char(10) Specifies the journal identifier (JID) for the object.

When journaling is started for an object, the

system assigns a unique JID to that object. The JID

remains constant even if the object is renamed or

moved. However, if journaling is stopped, there is

no guarantee that the JID will be the same if

journaling is started again for the same object.

If no JID is associated with the entry, this field has

hexadecimal zeros.

160 Referential constraint

(JORCST,

Referential_Constraint)

Char(1) Indicates whether this entry was recorded for

actions that occurred on records that are part of a

referential constraint.

The possible values are:

 0 = This entry was not created as part of a

referential constraint.

 1 = This entry was created as part of a

referential constraint.

161 Trigger (JOTGR, Trigger) Char(1) Indicates whether this entry was created as result

of a trigger program.

The possible values are:

 0 = This entry was not created as the result of

a trigger program.

 1 = This entry was created as the result of a

trigger program.

202 IBM Systems - iSeries: Journal Management

Offset Field Format Description

162 Incomplete data (JOINCDAT,

Incomplete_Data)

Char (1) Indicates whether this entry has data that is not

being retrieved for one of the following reasons:

v The length of the entry-specific data exceeds

32 766 bytes.

v The entry is associated with a database file that

has one or more fields of data type BLOB

(binary large object), CLOB (character large

object), or DBCLOB (double-byte character large

object).

The possible values are:

 0 = This entry has all possible data.

 1 = This entry has incomplete data.

Any data which is marked as incomplete, can only

be viewed by using either the

QjoRetrieveJournalEntries API, or the command

RCVJRNE with any of the following parameters:

v ENTFMT(*TYPEPTR)

v ENTFMT(*JRNENTFMT)

v RTNPTR (with any value specified other than

*NONE)

163 Ignored by APYJRNCHG or

RMVJRNCHG (JOIGNAPY,

Ignore_during_APYRMV)

Char (1) Indicates whether this journal entry will be

ignored by the execution of the APYJRNCHG or

RMVJRNCHG commands, even though normally

this journal entry type has an effect during those

command invocations.

The possible values are:

 0 = This entry is not ignored by the

APYJRNCHG or RMVJRNCHG commands.

 1 = This entry is ignored by the APYJRNCHG

or RMVJRNCHG commands.

164 Minimized entry specific data

(JOMINESD, Min_ESD)

Char (1) Indicates whether this entry has minimized entry

specific data.

The possible values are:

 0 = This entry has complete entry specific data.

 1 = This entry has minimized entry specific

data.

 2 = This entry has entry specific data that has

been minimized on field boundaries.

165 Reserved area (JORES) Char (5) Always contains zeros. Contains hexadecimal

zeros in the output file.

Note:

1If the journal receiver was attached prior to installing V4R2M0 on your system, then the following items are

true:

v If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then the fully

qualified name is the most recent name of the file when the newest receiver in the receiver range was the

attached receiver and when the file was still being journaled.

v If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified name of

the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the fully qualified

name is the name of the object at the time the journal entry was deposited.

Journal management 203

*TYPE5 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE5 for the output file format or the entry type format. The

uppercase field names shown in parentheses are used in the system-supplied output file

QSYS/QADSPJR5. The field names that are italics are the variable names for these fields in the

QjoRetrieveJournalEntries API header file. These variables are under the type definition for the RJNE0200

format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the QSYSINC library.

 Offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry including

the entry length field, all subsequent positions of

the journal entry, and any portion of the journal

entry that was truncated if the length of the

output record is less than the length of the record

created for the journal entry.

If the journal entry has the incomplete data

indicator on, then this length does not include that

additional data which could be pointed to. This

length includes the length of the data that is

actually returned, which includes entry specific

data of up to 32 766 bytes.

6 Sequence number (JOSEQN,

Seq_Number)

Char (20) Assigned by the system to each journal entry. It is

initially set to 1 for each new or restored journal

and is incremented until you request that it be

reset when you attach a new receiver. There are

occasional gaps in the sequence numbers because

the system uses internal journal entries for control

purposes. These gaps occur if you use

commitment control, journal physical files, or

journal access paths.

26 Journal code (JOCODE,

Jrn_Code)

Char (1) Identifies the primary category of the journal

entry:

 A = System accounting entry

 B = Integrated file system operation

 C = Commitment control operation

 D = Database file operation

 E = Data area operation

 F = Database file member operation

 I = Internal operation

 J = Journal or receiver operation

 L = License management

 M = Network management data

 P = Performance tuning entry

 Q = Data queue operation

 R = Operation on a specific record

 S = Distributed mail services

 T = Audit trail entry

 U = User-generated entry (added by the

SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail in

Journal code descriptions.

204 IBM Systems - iSeries: Journal Management

Offset Field Format Description

27 Journal entry type (JOENTT,

Entry_Type)

Char (2) Further identifies the type of user-created or

system-created entry. See the Journal code finder

for descriptions of the entry types.

29 Time stamp (JOTSTP) Char (26) Corresponds to the system date and time when

the journal entry was added in the journal

receiver. The time stamp is in SAA format. The

system cannot assure that the time stamp is

always in ascending order for sequential journal

entries because you can change the value of the

system time.

55 Job name (JOJOB, Job_Name) Char (10) Specifies the name of the job that added the entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, then *OMITTED is given for the

job name.

2. If the job name was not available when the

journal entry was deposited, then *NONE is

written for the job name.

65 User name (JOUSER,

User_Name)

Char (10) Specifies the user profile name of the user that

started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then blanks are written for the user

name.

75 Job number (JONBR,

Job_Number)

Zoned (6, 0) Specifies the job number of the user that started

the job.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then zeroes are written for the job

number.

81 Program name (JOPGM,

Program_Name)

Char (10) Specifies the name of the program that added the

entry. If an application or CL program did not add

the entry, the field contains the name of a

system-supplied program such as QCMD or

QPGMMENU. If the program name is the special

value *NONE, then one of the following is true:

v The program name does not apply to this

journal entry.

v The program name was not available when the

journal entry was made.

For example, the program name is not available if

the program was destroyed.

Notes:

1. If the program that deposited the journal entry

is an original program model program, this

data will be complete. Otherwise, this data will

be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, *OMITTED is given for the

program name.

Journal management 205

Offset Field Format Description

91 Program library name

(JOPGMLIB,

Program_Library_Name)

Char (10) The name of the library that contains the program

that added the library. If a RCVSIZOPT or a

FIXLENDTA option was specified that omitted the

collection of this information, then *OMITTED will

be returned for the program library name.

IF *NONE is returned for Program name, then

*NONE is also returned for the program library

name.

101 Program library ASP device

name (JOPGMDEV,

Program_ASP_Device_Name)

Char (10) The name of the ASP device that contains the

program. If a RCVSIZOPT or a FIXLENDTA

option was specified that omitted the collection of

this information, then *OMITTED will be returned

for the program library ASP device name.

IF *NONE is returned for Program name, then

*NONE is also returned for the program library

ASP device name.

111 Program library ASP number

(JOPGMASP, Program_ASP)

Zoned (5,0) The number for the auxiliary storage pool that

contains the program that added the journal entry.

If a RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, then hexadecimal 0 will be returned

for the program library ASP number.

116 Object name (JOOBJ, Object) Char (10) Specifies the name of the object for which the

journal entry was added.1 This is blank for some

entries.

If the journaled object is an integrated file system

object, then this field is the first 10 bytes of the file

identifier.

126 Object library (JOLIB) Char (10) Specifies the name of the library containing the

object1.

If the journaled object is an integrated file system

object, then the first 6 characters of this field are

the last 6 bytes of the file identifier.

136 Member name (JOMBR) Char (10) Specifies the name of the physical file member or

is blank if the object is not a physical file1.

146 Count or relative record

number (JOCTRR,

Count_Rel_Rec_Num)

Char (20) Contains either the relative record number (RRN)

of the record that caused the journal entry or a

count that is pertinent to type of journal entry.

166 Indicator flag (JOFLAG,

Indicator_Flag)

Char (1) Contains an indicator for the operation. The

following tables show specific values for this field,

if applicable:

v APYJRNCHG and RMVJRNCHG journal entries

v COMMIT journal entry

v INZPFM journal entry

v IPL and in-use journal entries

v Journal code R (all journal entry types except

IL)

v ROLLBACK journal entry

v Start-journal journal entries

206 IBM Systems - iSeries: Journal Management

Offset Field Format Description

167 Commit control ID (JOCCID,

Commit_Cycle_Identifier)

Char (20) Contains a number that identifies the commit

cycle. A commit cycle is from one commit or

rollback operation to another.

The commit cycle identifier is found in every

journal entry that is associated with a commitment

transaction. If the journal entry was not made as

part of a commitment transaction, this field is

zero.

187 User profile (JOUSPF,

User_profile)

Char (10) Specifies the name of the user profile under which

the job was running when the entry was created.

Note: If a RCVSIZOPT or a FIXLENDTA option

was specified that omitted the collection of this

information, then *OMITTED is given for the user

profile.

197 System name (JOSYNM,

System_Name)

Char (8) Specifies the name of the system on which the

entry is being displayed, printed, retrieved, or

received if the journal receiver was attached prior

to installing V4R2M0 on the system. If the journal

eceiver was attached while the system was

running V4R2M0 or a later release, the system

name is the system where the journal entry was

actually deposited.

205 Journal identifier (JOJID, Jid) Char (10) Specifies the journal identifier (JID) for the object.

When journaling is started for an object, the

system assigns a unique JID to that object. The JID

remains constant even if the object is renamed or

moved. However, if journaling is stopped, there is

no guarantee that the JID will be the same if

journaling is started again for the same object.

If no JID is associated with the entry, this field has

hexadecimal zeros.

215 Referential constraint

(JORCST,

Referential_Constraint)

Char (1) Indicates whether this entry was recorded for

actions that occurred on records that are part of a

referential constraint.

The possible values are:

 0 = This entry was not created as part of a

referential constraint.

 1 = This entry was created as part of a

referential constraint.

216 Trigger (JOTGR, Trigger) Char (1) Indicates whether this entry was created as result

of a trigger program.

The possible values are:

 0 = This entry was not created as the result of

a trigger program.

 1 = This entry was created as the result of a

trigger program.

Journal management 207

Offset Field Format Description

217 Incomplete data (JOINCDAT,

Incomplete_Data)

Char (1) Indicates whether this entry has data that is not

being retrieved for one of the following reasons:

v The length of the entry-specific data exceeds

32 766 bytes.

v The entry is associated with a database file that

has one or more fields of data type BLOB

(binary large object), CLOB (character large

object), or DBCLOB (double-byte character large

object).

The possible values are:

 0 = This entry has all possible data

 1 = This entry has incomplete data.

Any data which is marked as incomplete, can only

be viewed by using either the

QjoRetrieveJournalEntries API, or the command

RCVJRNE with any of the following parameters:

v ENTFMT(*TYPEPTR)

v ENTFMT(*JRNENTFMT)

v RTNPTR (with any value specified other than

*NONE)

218 Ignored by APYJRNCHG or

RMVJRNCHG (JOIGNAPY,

Ignore_during_APYRMV)

Char (1) Indicates whether this journal entry will be

ignored by the execution of the APYJRNCHG or

RMVJRNCHG commands, even though normally

this journal entry type has an effect during those

command invocations.

The possible values are:

 0 = This entry is not ignored by the

APYJRNCHG or RMVJRNCHG commands.

 1 = This entry is ignored by the APYJRNCHG

or RMVJRNCHG commands.

219 Minimized entry-specific data

(JOMINESD, Min_ESD)

Char (1) Indicates whether this entry has minimized entry

specific data.

The possible values are:

 0 = This entry has complete entry specific data.

 1 = This entry has minimized entry specific

data.

 2 = This entry has entry specific data that has

been minimized on field boundaries.

208 IBM Systems - iSeries: Journal Management

Offset Field Format Description

220 Object indicator (JOOBJIND,

Object_Name_Indicator)

Char (1) An indicator with respect to the information in the

object field2. The valid values are:

 0 = Either the journal entry has no object

information or the object information in the

journal entry header does not necessarily

reflect the name of the object at the time the

journal entry was deposited into the journal.

 1 = The object information in the journal entry

header reflects the name of the object at the

time the journal entry was deposited into the

journal.

 2 = The object information in the journal entry

header does not necessarily reflect the name of

the object at the time the journal entry was

deposited into the journal. The object

information may be returned as a previously

known name for the object prior to the journal

entry being deposited into the journal or be

returned as *UNKNOWN.

221 System sequence number

(JOSYSSEQ,

System_Sequence_Number)

Char (20) The system sequence number indicates the relative

sequence of when this journal entry was deposited

into the journal. You can use the sequence number

to sequentially order journal entries that are in

separate journal receivers. If a RCVSIZOPT or a

FIXLENDTA option was specified that omitted the

collection of this information, then hexadecimal 0

will be returned for the system sequence number.

241 Receiver name (JORCV) Char (10) The name assigned to the journal receiver

251 Receiver library name

(JORCVLIB)

Char (10) The name of the library in which the journal

receiver resides.

261 Receiver library ASP device

name (JORCVDEV)

Char (10) The name of the ASP device for journal receivers

that reside on an independent disk pool

271 Receiver library ASP number

(JORCVASP)

Zoned (5,0) The number of the ASP on which the journal

receiver resides.

276 Arm number (JOARM,

Arm_Number)

Zoned (5,0) The number of the disk arm that contains the

journal entry.

281 Thread identifier (JOTHDX,

Thread_ID)

Hexadecimal (8) Identifies the thread within the process that added

the journal entry. If a RCVSIZOPT or a

FIXLENDTA option was specified that omitted the

collection of this information, then hexadecimal 0

will be returned for the thread identifier.

289 Thread identifier formatted

(JOTHD)

Char (16) See Thread identifier.

Journal management 209

Offset Field Format Description

305 Address family (JOADF,

Address_Family)

Char (1) The address family identifies the format of the

remote address for this journal entry. If a

RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, then 0 will be returned for the

address family.

The possible values are:

 0 = This entry was not associated with any

remote address.

 4 = The format of the remote address is

Internet protocol version 4.

 6 = The format of the remote address is

Internet protocol version 6.

306 Remote port (JORPORT) Zoned (5, 0) The remote port of a the journal entries. If a

RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, then hexadecimal 0 will be returned

for the remote port.

311 Remote address (JORADR) Char (46) The remote address of a the journal entries. If a

RCVSIZOPT or a FIXLENDTA option was

specified that omitted the collection of this

information, then hexadecimal 0 will be returned

for the remote address.

357 Logical unit of work (JOLUW) Char (39) The logical unit of work identifies entries to be

associated with a given unit of work, usually

within a commit cycle. If a RCVSIZOPT or a

FIXLENDTA option was specified that omitted the

collection of this information, then blanks will be

returned for the logical unit of work.

396 Transaction identifier (JOXID) Char (140) See the QSYSINC/H.XA header file for the layout

of this data. If a RCVSIZOPT or a FIXLENDTA

option was specified that omitted the collection of

this information, then the displacement to the

transaction identifier is 0 and no transaction

identifier is returned.

536 Object type (JOOBJTYP) Char (7) The type of object associated with this entry.

(*FILE, *DTAARA, etc)

543 File type indicator (JOFILTYP) Char (1) The type of object associated with this entry. (’0’ is

physical, ’1’ is logical)

544 Nested commit level

(JOCMTLVL)

Char (7) The nested transaction level at which this entry

was deposited.

551 Reserved Char (5) Reserved area. It always contains hexadecimal

zeros.

210 IBM Systems - iSeries: Journal Management

Offset Field Format Description

Notes:

1If the journal receiver was attached prior to installing V4R2M0 on your system, then the following items are true:

v If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then the fully

qualified name is the most recent name of the file when the newest receiver in the receiver range was the

attached receiver and when the file was still being journaled.

v If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified name of

the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the fully qualified

name is the name of the object at the time the journal entry was deposited.

2This value will be returned only when retrieving journal entries from a remote journal and the remote journal is

currently being caught up from its source journal. A remote journal is being caught up from its source journal when

the Change Remote Journal (CHGRMTJRN) command or Change Journal State (QjoChangeJournalState) API is

called and is currently replicating journal entries to the remote journal. After the call to the CHGRMTJRN command

or QjoChangeJournalState API returns, the remote journal is maintained with a synchronous or asynchronous

delivery mode, and the remote journal is no longer being caught up.

 Related concepts

 “Journal code descriptions” on page 133

This topic provides a description of all of the journal codes and categories.

 “Display and print journal entries” on page 276
Use the Display Journal (DSPJRN) command to display journal entries. The entries are displayed at a

work station, printed, or written to an output file. You cannot directly access the journal entries in the

form in which they are contained in the journal receivers.

 “Format of database output files” on page 279

When you direct the output of the Display Journal (DSPJRN) command to a database file, the system

creates the output file records in a standard format.
 Related information

 Journal entry information finder

Variable-length portion of the journal entry

Provides the layouts of the variable-length portion of the journal entries.

For output formats *TYPE1 and *TYPE2, the variable length portion of the journal entry includes just the

Entry-specific data field. The contents of the Entry-specific data field depends on the journal entry code

and entry type. For the layout of the output format *TYPEPTR or *JRNENTFMT, see the

QjoRetrieveJournalEntries API. For all other output formats, the variable-length portion of the converted

journal entry potentially has two fields:

v Null value indicators

v Entry-specific data

The Null Value Indicators field, contains relevant information only for entries with journal code R. Null

value indicators are present in journal entries for record level operations as follows:

v The corresponding physical file has null capable fields.

v The record image has been minimized in the entry specific data.

Otherwise, it contains blanks. If the record image has not been minimized in the entry specific data, the

Null Value Indicators field is a character string with one character for each field in the physical file that

has record images appearing in the journal. Each character has the following interpretation:

v 0 = corresponding field in the record is not NULL.

Journal management 211

rzakifinder.htm

v 1 = corresponding field in the record is NULL.

If the record image was minimized on field boundaries (MINENTDTA(*FLDBDY), and it has been

formatted when reading (FMTMINDTA(*YES)) then each character has the following interpretation:

v 0 = The corresponding field was recorded and is not NULL.

v 1 = The corresponding field was recorded and is NULL.

v 9 = The corresponding field was not recorded and it’s default value was returned.

System-supplied output files

The following system-supplied output files define the Null Value Indicators and Entry-Specific Data fields

as variable-length character fields:

v QSYS/QADSPJR3

v QSYS/QADSPJR4

v QSYS/QADSPJR5

For additional details regarding the *TYPE3, *TYPE4, and *TYPE5 formats and the exact layout of these

two fields, see the following commands:

v Display Journal (DSPJRN)

v Receive Journal Entry (RCVJRNE)

v Retrieve journal entry (RTVJRNE)

Layouts for journal entry types

Use the Journal entry information finder to find the layout for the variable-length portion of the journal

entry. Some one journal entry types are described in other places than this topic. The Journal entry

information finder indicates those journal entries.

Some journal entry types are documented in QSYSINC library includes, as indicated in the Journal code

finder. Some entry types do not have entry-specific data.

These layouts include specific values for fields in the fixed-length portion of the entry and the fields in

the entry-specific portion of the entry. The offsets show the relative offset within the Entry-specific data

field. The beginning position of the Entry-specific data field depends on the format type that you specify.

You can also use the Journal entry information finder to see these layouts.

 Related reference

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

 Display Journal (DSPJRN) command

 Receive Journal Entry (RCVJRNE) command

 Retrieve journal entry (RTVJRNE) command

Layouts for variable-length portion of journal entries

The following tables contain the variable-length portion of the layouts for journal entries.

Allow use with partial transactions (F MO) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

212 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

1 Reason code Char (1)

 01 = Partial transactions exist due to restore.

 02 = Partial transactions exist because a

rollback was ended early.

2 Reserved Char (3) Reserved. Set to zeros.

5 Number commit IDs Bin (32) The number of commit identifiers.

9 Reserved Char (72) Reserved. Set to zeros.

81 Commit IDs Bin (64) [*] The array of commit cycle identifiers for partial

transactions that remain in the object.

APYJRNCHG (B AT, D DD, E EQ, F AY, Q QH) and RMVJRNCHG (E EX, F RC)

journal entries

 Relative

offset Field Format Description

Specific values for this entry type:

Count or Relative Record

Number (JOCTRR)

Zoned (10,0) Contains the number of journal entries applied or

removed. For *TYPE5 output files, the format of

this field is Char (20).

Flag (JOFLAG) Char (1) The results of the apply or remove operation:

 0 = Command completed normally.

 1 = Command completed abnormally.

Entry-specific data. This data appears as one field in the standard output formats:

1 First entry applied or

removed

Zoned (10,0) The sequence number of the first entry actually

applied or removed. This field is set to -1 if the

actual value is larger than 9 999 999 999. See the

First entry applied or removed--large field for the

actual value.

11 Last entry applied or

removed.

Zoned (10,0) The sequence number of the last entry actually

applied or removed. This field is set to -1 if the

actual value is larger than 9 999 999 999. See the

Last entry applied or removed--large field for the

actual value.

21 Starting receiver name Char (10) The name of the first receiver from which entries

were applied or removed.

31 Library name Char (10) The name of the library for the starting journal

receiver.

41 Ending receiver name Char (10) The name of the last or ending receiver from

which entries were applied or removed.

51 Library name Char (10) The library for the ending journal receiver.

61 Starting sequence number Char (10) The specified starting sequence number for the

apply or remove operation. This field is set to -1 if

the actual value is larger than 9 999 999 999. See

the Starting sequence number--large field for the

actual value.

Journal management 213

|
|

||
||||

|

||
|
||
|
|

||||

|

|

|

||
|
||
|
|
|
|

||
|
||
|
|
|
|

||||
|

||||
|

||||
|

||||

||||
|
|
|
|

Relative

offset Field Format Description

71 Ending sequence number Char (10) The specified ending sequence number for the

apply or remove operation. This field is set to -1 if

the actual value is larger than 9 999 999 999. See

the Ending sequence number--large field for the

actual value.

81 Incomplete commit

transaction not applied or

removed

Char (1)

 0 = Indicates that either CMTBDY(*NO) was

specified or CMTBDY(*YES) was specified and

no partial commitment control transactions

were found in the range specified by the

starting and ending sequence numbers

 1 = Indicates that CMTBDY(*YES) was

specified and one or more partial commitment

control transactions were found in the range

specified by the starting and ending sequence

numbers

82 First entry applied or

removed--large

Char (20) The sequence number of the first entry actually

applied or removed. This field always contains a

sequence number.

102 Last entry applied or

removed--large

Char (20) The sequence number of the last entry actually

applied or removed. This field always contains a

sequence number.

122 Starting sequence

number--large

Char (20) The specified starting sequence number for the

apply or remove operation. This field always

contains a sequence number.

142 Ending sequence

number--large

Char (20) The specified ending sequence number for the

apply or remove operation. This field always

contains a sequence number.

162 Number of entries Char (20) The number of entries that were applied or

removed.

182 Partial transaction starting

sequence number

Char (20) Starting sequence number for any partial

transactions that were removed. For integrated file

system objects and data areas, this field is always

zero.

202 Partial transaction ending

sequence number

Char (20) Ending sequence number for any partial

transactions that were removed. For integrated file

system objects and data areas, this field is always

zero.

222 Number of partial transaction

removed

Char (20) Count of number of entries removed for partial

transactions. For integrated file system objects and

data areas, this number is always zero.

242 Object deleted Char (1) Indicates that the object was deleted during the

apply or remove operation.

 Y = Yes

 N = No

243 Object created Char (1) Indicates that the object was created during the

apply operation.

 Y = Yes

 N = No

214 IBM Systems - iSeries: Journal Management

|
||||

||||
|
|
|
|

||
|
|

||
|
|
|
|

|
|
|
|
|

||
|
||
|
|

||
|
||
|
|

||
|
||
|
|

||
|
||
|
|

||||
|

||
|
||
|
|
|

||
|
||
|
|
|

||
|
||
|
|

||||
|

|

|

||||
|

|

|

Relative

offset Field Format Description

244 Early end Char (1) Indicates if the apply or remove operation ended

early for this object.

 Y = Yes

 N = No

245 Change not made Char (1) Indicates that a change was found for this object

after an early end to the apply operation.

 Y = Yes

 N = No

246 End reason code Char (1) Reason code for early end. See message MCH4801

for the possible values.

247 End message ID Char (7) The message identifier associated with an early

end to the apply operation.

254 Error condition Bin (31) The error condition code associated with an early

end to the apply operation.

258 Partial transactions remain Char (1) Indicates that partial transactions remain for this

object.

 Y = Yes

 N = No

259 Partial transactions removed Char (1) Indicates that at least some partial transactions

were removed during the apply operation.

 Y = Yes

 N = No

Auditing Change (E ZT, Q ZT) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Audit value Char (10) Object audit value

Change authority (E ZA, Q ZA) journal entry

 Relative

offset Field Format Description

Specific values for this entry type:

1 User Char (10) The user profile or REFUSER on GRTUSRAUT

command.

11 Authorization list Char (10) The name of the authorization list name.

21 Object existence authority Char (1)

 Y = User has *OBJEXIST authority to the object.

 blank = User does not have *OBJEXIST

authority to the object.

22 Object management authority Char (1)

 Y = User has *OBJMGT authority to the object.

 blank = User does not have *OBJMGT

authority to the object.

Journal management 215

|
||||

||||
|

|

|

||||
|

|

|

||||
|

||||
|

||||
|

||||
|

|

|

||||
|

|

|
|

|

|

||
||||

|

||||
|

||||

||||

|
|

||||

|
|

Relative

offset Field Format Description

23 Object operational authority Char (1)

 Y = User has *OBJOPR authority to the object.

 blank = User does not have *OBJOPR

authority to the object.

24 Authorization list

management authority

Char (1) Blank if user does not have authorization list

management authority to the object.

25 Authorization list *PUBLIC

authority

Char (1)

 Y = User has *PUBLIC authority to the object.

 blank = User does not have *PUBLIC authority

to the object.

26 Read authority Char (1)

 Y = User has *READ authority to the object.

 blank = User does not have *READ authority

to the object.

27 Add authority Char (1)

 Y = User has *ADD authority to the object.

 blank = User does not have *ADD authority to

the object.

28 Update authority Char (1)

 Y = User has *UPD authority to the object.

 blank = User does not have *UPD authority to

the object.

29 Delete authority Char (1)

 Y = User has *DLT authority to the object.

 blank = User does not have *DLT authority to

the object.

30 Exclude authority Char (1)

 Y = User has *EXCLUDE authority to the

object.

 blank = User does not have *EXCLUDE

authority to the object.

31 Execute authority Char (1)

 Y = User has *EXECUTE authority to the

object.

 blank = User does not have *EXECUTE

authority to the object.

32 Object alter authority Char (1)

 Y = User has *OBJALTER authority to the

object.

 blank = User does not have *OBJALTER

authority to the object.

33 Object reference authority Char (1)

 Y = User has *OBJREF authority to the object.

 blank = User does not have *OBJREF authority

to the object.

34 Reserved Char (4) Reserved.

38 Operation type Char (3) Possible values are:

 GRT = Grant.

 RPL = Grant with replace.

 RVK = Revoke.

216 IBM Systems - iSeries: Journal Management

|
||||

||||

|
|

||
|
||
|

||
|
||

|
|

||||

|
|

||||

|
|

||||

|
|

||||

|
|

||||
|

|
|

||||
|

|
|

||||
|

|
|

||||

|
|

||||

||||

|

|

|
|

Change end of data (F CE) journal entry

 Relative

offset Field Format Description

Specific values for this entry type:

Count or relative record

number (JOCTRR)

Zoned (10,0) The relative record number of the last record kept

in the physical file member.

Change journaled object attributes (B JA, D DJ, E EK, F JC) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Attribute changed Char (1) Identifies which journal attribute was changed:

 1 = IMAGES

 2 = OMTJRNE

 3 = INHERIT

2 New attributes value Char (10) The new value for the attribute that changed. The

valid values for each attribute are as follows:

v IMAGES(*BOTH)

v IMAGES(*AFTER)

v OMTJRNE(*NONE)

v OMTJRNE(*OPNCLOSYN)

v INHERIT(*YES)

v INHERIT(*NO)

Note: Only the characters in the parenthesis

appear in this field.

Change object attribute (E ZB, D ZB, Q ZB) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Number of records Bin (4) The number of variable length records that follow.

5 Key Bin (4) The field of an object attribute to change. See

Change Object Description (QLICOBJD) API.

9 Length of data Bin (4) The length of the data used to change a specific

field of an object attribute.

13 Data Char (*) The data used to change a specific field of an

object attribute.

Change primary group (E ZP, Q ZP) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Old group Char (10) The name of the old primary group.

11 New group Char (10) The name of the new primary group.

Journal management 217

|

|

||
||||

|

||||

||||
|

||||
|

||||
|
|

|

||
||||

|

||||

||||

Relative

offset Field Format Description

21 Object existence authority Char (1)

 Y = *PUBLIC has *OBJEXIST authority to the

object.

 blank = *PUBLIC does not have *OBJEXIST

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

22 Object management authority Char (1)

 Y = *PUBLIC has *OBJMGT authority to the

object.

 blank = *PUBLIC does not have *OBJMGT

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

23 Object operational authority Char (1)

 Y = *PUBLIC has *OBJOPR authority to the

object.

 blank = *PUBLIC does not have *OBJOPR

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

24 Object alter authority Char (1)

 Y = *PUBLIC has *OBJALTER authority to the

object.

 blank = *PUBLIC does not have *OBJALTER

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

25 Object reference authority Char (1)

 Y = *PUBLIC has *OBJREF authority to the

object.

 blank = *PUBLIC does not have *OBJREF

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

26 Reserved Char (10) Reserved. Set to blank.

36 Read authority Char (1)

 Y = *PUBLIC has *READ authority to the

object.

 blank = *PUBLIC does not have *READ

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

37 Add authority Char (1)

 Y = *PUBLIC has *ADD authority to the object.

 blank = *PUBLIC does not have *ADD

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

38 Update authority Char (1)

 Y = *PUBLIC has *UPD authority to the object.

 blank = *PUBLIC does not have *UPD

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

39 Delete authority Char (1)

 Y = *PUBLIC has *DLT authority to the object.

 blank = *PUBLIC does not have *DLT

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

40 Execute authority Char (1)

 Y = *PUBLIC has *EXECUTE authority to the

object.

 blank = *PUBLIC does not have *EXECUTE

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

218 IBM Systems - iSeries: Journal Management

|
||||

||||
|

|
|
|

||||
|

|
|
|

||||
|

|
|
|

||||
|

|
|
|

||||
|

|
|
|

||||

||||
|

|
|
|

||||

|
|
|

||||

|
|
|

||||

|
|
|

||||
|

|
|
|

Relative

offset Field Format Description

41 Reserved Char (10) Reserved. Set to blank.

51 Exclude authority Char (1)

 Y = *PUBLIC has *EXCLUDE authority to the

object.

 blank = *PUBLIC does not have *EXCLUDE

authority to the object. This field is only used

when Authorization list *PUBLIC is blank.

52 Old owner Char (10) The name of the old primary group.

62 New owner Char (10) The name of the new primary group.

72 Revoke Char (10)

 Y = The previous primary group authority to

the object was revoked.

 blank = The previous primary group authority

to the object was not revoked.

CHGJRN (J NR, J PR) journal entries

 Relative

offset Field Format Description

Specific values for this entry type:

Count or relative record

number (JOCTRR)

Zoned (10,0) Contains the number of receivers attached or

detached.

Entry-specific data. This data appears as one field in the standard output formats:

1 First receiver name Char (10) The name of the first receiver that is attached or

detached.

11 First receiver library name Char (10) The name of the library for the first receiver that is

attached or detached.

21 Dual receiver name Char (10) The name of the dual receiver that is attached or

detached. Blank if only one receiver is used for the

journal.

31 Dual receiver library name Char (10) The name of the library for the dual receiver that

is attached or detached. Blank if only one receiver

is used for the journal.

COMMIT (C CM) journal entry

 Relative

offset Field Format Description

Specific values for this entry type:

Count or relative record

number (JOCTRR)

Zoned (10,0) Contains the length of the commit identification.

Flag (JOFLAG) Char (1) Whether the commit operation was initiated by

the system or the user:

 0 = All record-level changes were committed

for a commit operation initiated by a user.

 2 = All record-level changes were committed

for a commit operation initiated by the

operating system.

Entry-specific data. This data appears as one field in the standard output formats:

Journal management 219

|
||||

||||

||||
|

|
|
|

||||

||||

||||
|

|
|
|

|

Relative

offset Field Format Description

1 Commit ID Char (*) Contains the commit identification specified by the

operation. The Count field specifies the length of

this field.

Create data area (E EE) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Create time of day and date Char (8) The date and timestamp when the data area was

created.

9 Data area name Char (10) The data area name.

19 Data area library name Char (10) The data area library name.

29 Data area type Char (5) The created data area type. The valid types are:

v *CHAR - character

v *DEC - decimal

v *LOG - logical

34 Reserved Char (3) The filler to maintain alignment.

37 Number of elements Bin (32) The number of elements. If the type is *CHAR,

only Length will contain a value. If the type is

*DEC, both Length and Fraction length will

contain values.

41 Length Bin (32) The declared length.

45 Fraction length Bin (32) The decimal positions.

49 Actual value length Bin (32) The length of entered data as seen by the user.

53 Value Char (2000) The data or value.

2053 Public authority Char (10) The public authority. The valid authorities are:

 *LIBCRTAUT

 *CHANGE

 *ALL

 *EXCLUDE

 *NAME

2063 Text description Text (50) The description or text.

Create data queue (Q QA) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Create time of day and date Char (8) The date and timestamp when the data queue was

created.

9 Data queue name Char (10) The data queue name.

19 Data queue library Char (10) The library containing the data queue.

29 Maximum entry length Bin (32) Maximum entry length. Possible values are 1

through 64512.

220 IBM Systems - iSeries: Journal Management

|

|

|

||
||||

|

||||
|

||||

||||

||||
|

Relative

offset Field Format Description

33 Force auxiliary storage Char (1) Force queue to auxiliary storage on send and

receive:

 N = Force is not done

 Y = Force is done

34 Reserved Char (8) Reserved.

42 Sequence Char (1) Sequence in which entries are received from the

data queue:

 F = FIFO queue

 K = Keyed queue

 L = LIFO queue

43 Key length Bin (16) Key length of a keyed queue. Possible values are 1

through 256.

45 Include sender ID Char (1) Attach a sender ID to each entry sent to the

queue:

 N = Do not include ID

 Y = Include ID

46 Queue type Char (1) Type of data queue:

 S = Standard data queue

Note: DDM data queues cannot be journaled

47 Reserved Bin (32) Reserved. This field is set to zero.

51 Queue size maximum entries Bin (32) The maximum number of entries to allow:

 -1 = *MAX16MB

 -2 = *MAX2GB

55 Queue size initial entries Bin (32) Initial number of entries to allocate.

Note: The default on the CRTDTAQ command is

16.

59 Automatic reclaim Char (1) The settings for this field are:

 0 = no storage released

 1 = storage is released

60 Reserved Char (481) Reserved. This field is set to zero.

541 Authority Char (10) The public authority to the data queue.

551 Text Char (50) Text description.

Data queue cleared, has key (Q QJ) journal entry

 Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reserved Char (2) Reserved for future use.

3 Key length Bin (16) The number of characters

in the key.

Journal management 221

|
||||

||||
|

|

|

||||

||||
|

|

|

|

||||
|

||||
|

|

|

||||

|

|

||||

||||

|

|

||||
|
|

||||

|

|

||||

||||

||||
|

|

|||||

|

||||

||||
|

Relative offset Field Format Description

5 Key order Char (2)

The Key order is as

follows:

GT = Greater than

 LT = Less than

 NE = Not equal

 EQ = Equal

 GE = Greater than

or equal

 LE = Less than or

equal

7 Key Char (*) The data to be used to

remove a message from the

data queue.

Delete access path (F PD) journal entry

 Relative

offset Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) The JID is not provided with the *TYPE1, *TYPE2,

and *TYPE3 formats. It can be used with the

QJORJIDI API.

Delete receiver (J RD, J RF) journal entries

 Relative

offset Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) The JID is not provided with the *TYPE1, *TYPE2,

and *TYPE3 formats. It can be used with the

QJORJIDI API.

Database file OPEN (F OP) and database file CLOSE (F CL) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats.

1 File name Char (10) The name of the file that was opened or closed. If

a physical file is opened, this field and the JOOBJ

field are the same. If a logical file is opened, this

field contains the name of the logical file. JOOBJ

field contains the name of the physical file.

11 Library name Char (10) The library containing the file.

21 Member name Char (10) The file member that was opened of closed.

31 Open options Char (4) Only used for file open (entry type OP). Values of

the bytes follow:

222 IBM Systems - iSeries: Journal Management

||||

|||
|
|
|

|

|

|

|
|

|
|

||||
|
|
|

|

Relative

offset Field Format Description

31 Input Char (1) Whether the file was opened for input:

 I = File opened for input

 blank = Input not specified

32 Output Char (1) Whether the file was opened for output:

 O = File opened for output

 blank = Output not specified

33 Update Char (1) Whether the file was opened for update:

 U = File opened for update

 blank = Update not specified

34 Delete Char (1) Indicates if the file was opened for delete:

 D = File opened for delete

 blank = Delete not specified

Force data to auxiliary storage (F FD) journal entry

 Relative

offset Field Format Description

Specific values for this entry type:

Job name (JOJOB) Char (10) Blank if the entry is written during IPL or vary on

of an independent disk pool.

Job number (JONBR) Zoned (6,0) Zero if entry is written during IPL or vary on of

an independent disk pool.

Program name (JOPGM) Char (10) Blank if the entry is written during IPL or vary on

of an independent disk pool.

Integrated file system begin create (B B0) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object name offset Bin (32) The offset from the beginning of the entry-specific

data to the beginning of the Object name field.

5 Object type Char (7) The object type that was created.

12 Start journaling indicator Char (1) Indicates whether journaling will be started.

 Y = Journaling will be started

 blank = Journaling will not be started

13 Reserved Bin (32) Reserved. This field is set to zero.

17 Object name Char (*) See the “Object name” on page 273 for the layout

of this field.

Integrated file system bytes cleared, after-image (B B6) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

Journal management 223

Relative

offset Field Format Description

1 Object FID Char (16) The file identifier of the object.

17 Data length Bin (64) The length of the data.

25 Offset Bin (64) The offset to begin write of hex zeros (clear).

33 Reserved Char (16) Reserved. Set to zeros.

Integrated file system change audit attribute (B AA) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry type Char (1) The type of entry is as follows:

 D = Changed DLO authority

 O = Changed object authority

2 Object name Char (10) The name of the object for which the auditing

attributes were changed. *N if the object is not in a

library.

12 Library name Char (10) The name of the library for the object. *N if the

object is not in a library.

22 Object type Char (8) The type of object.

30 Auditing value Char (10) The new value specified on the Change Auditing

Value CHGAUD command.

40 Reserved Char (135) Reserved. This field is set to blanks.

175 Object name CCSID Bin (31) The coded character set identifier (CCSID) for the

object name.

179 Reserved Char (8) Reserved. This field is set to blanks.

187 Parent FID Char (16) The file identifier of the parent directory.

203 Object FID Char (16) The file identifier of the object.

Integrated file system change object authority (B OA) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry type Char (1) The type of entry.

 A = Change authorization.

2 Object name Char (10) The object name. *N if the object is not in a library.

12 Library name Char (10) The library name. *N if the object is not in a

library.

22 Object type Char (8) The type of object.

30 User name Char (10) The name of the user profile whose authorization

is being granted or revoked.

40 Authorization list name Char (10) The name of the authorization list.

224 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

50 Object existence authority Char (1)

 Y = User has *OBJEXIST authority to the

object.

 blank = User does not have *OBJEXIST

authority to the object.

51 Object management authority Char (1)

 Y = User has *OBJMGT authority to the object.

 blank = User does not have *OBJMGT

authority to the object.

52 Object operational authority Char (1)

 Y = User has *OBJOPR authority to the object.

 blank = User does not have *OBJOPR

authority to the object.

53 Authorization list

management

Char (1) Blank if user does not authorization list

management to the object.

54 Authorization list *PUBLIC

authority

Char (1)

 Y = User has *PUBLIC authority to the object.

 blank = User does not have *PUBLIC authority

to the object.

55 Read authority Char (1)

 Y = User has *READ authority to the object.

 blank = User does not have *READ authority

to the object.

56 Add authority Char (1)

 Y = User has *ADD authority to the object.

 blank = User does not have *ADD authority to

the object.

57 Update authority Char (1)

 Y = User has *UPD authority to the object.

 blank = User does not have *UPD authority to

the object.

58 Delete authority Char (1)

 Y = User has *DLT authority to the object.

 blank = User does not have *DLT authority to

the object.

59 Exclude authority Char (1)

 Y = User has *EXCLUDE authority to the

object.

 blank = User does not have *EXCLUDE

authority to the object.

60 Execute authority Char (1)

 Y = User has *EXECUTE authority to the

object.

 blank = User does not have *EXECUTE

authority to the object.

61 Object alter authority Char (1)

 Y = User has *OBJALTER authority to the

object.

 blank = User does not have *OBJALTER

authority to the object.

62 Object reference Char (1)

 Y = User has *OBJREF authority to the object.

 blank = User does not have *OBJREF authority

to the object.

63 Reserved Char (4) Reserved. Set to blanks.

Journal management 225

|

|

|

Relative

offset Field Format Description

67 Operation type Char (3) Possible values are:

 GRT = Grant

 RPL = Grant with replace

 RVK = Revoke

70 Reserved Char (149) Reserved. Set to blanks.

19 Object name CCSID Bin (31) The coded character set identifier (CCSID) for the

object name.

223 Reserved Char (8) Reserved. Set to blanks.

231 Parent FID Char (16) The file identifier of the parent directory. This field

is not set or used.

247 Object FID Char (16) The file identifier of the object.

Integrated file system change object owner (B OO) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry type Char (1) The type of entry.

 A = Change owner

2 Object name Char (10) The object name. *N if object is not in a library.

12 Library name Char (10) The library name. *N if object is not in a library.

22 Object type Char (8) The object type.

30 Old owner Char (10) The old owner.

40 New owner Char (10) The new owner.

50 Reserved Char (143) Reserved. Set to blanks.

193 Object name CCSID Bin (31) The coded character set identifier (CCSID) for the

object name.

197 Reserved Char (8) Reserved. Set to blanks.

205 Parent FID Char (16) The file identifier of the parent directory.

221 Object FID Char (16) The file identifier of the object.

Integrated file system change primary group (B OG) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry type Char (1) Type of entry

 A = Change primary group profile

2 Object name Char (10) The object name. *N if object is not in a library.

12 Library name Char (10) The library name. *N if object is not in a library.

22 Object type Char (8) The type of object.

30 Old primary group Char (10) The old primary group.

40 New primary group Char (10) The new primary group.

226 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

50 Object existence authority Char (1)

 Y = New primary group has *OBJEXIST

authority to the object.

 blank = New primary group does not have

*OBJEXIST authority to the object.

51 Object management authority Char (1)

 Y = New primary group has *OBJMGT

authority to the object.

 blank = New primary group does not have

*OBJMGT authority to the object.

52 Object operational authority Char (1)

 Y = New primary group has *OBJOPR

authority to the object.

 blank = New primary group does not have

*OBJOPR authority to the object.

53 Object alter authority Char (1)

 Y = New primary group has *OBJALTER

authority to the object.

 blank = New primary group does not have

*OBJALTER authority to the object.

54 Object reference authority Char (1)

 Y = New primary group has *OBJREF

authority to the object.

 blank = New primary group does not have

*OBJREF authority to the object.

55 Reserved Char (10) Reserved. Set to blanks.

65 Authorization list

management

Char (1) Blank if new primary group does not

authorization list management to the object.

66 Read authority Char (1)

 Y = New primary group has *READ authority

to the object.

 blank = New primary group does not have

*READ authority to the object.

67 Add authority Char (1)

 Y = New primary group has *ADD authority

to the object.

 blank = New primary group does not have

*ADD authority to the object.

68 Update authority Char (1)

 Y = New primary group has *UPD authority to

the object.

 blank = New primary group does not have

*UPD authority to the object.

69 Delete authority Char (1)

 Y = New primary group has *DLT authority to

the object.

 blank = New primary group does not have

*DLT authority to the object.

70 Execute authority Char (1)

 Y = New primary group has *EXECUTE

authority to the object.

 blank = New primary group does not have

*EXECUTE authority to the object.

71 Reserved Char (10) Reserved. Set to blanks.

Journal management 227

|

|

|

Relative

offset Field Format Description

81 Exclude authority Char (1)

 Y = New primary group has *EXCLUDE

authority to the object.

 blank = New primary group does not have

*EXCLUDE authority to the object.

82 Revoke previous primary

group authority

Char (1)

 Y = The previous primary group authority to

the object was revoked.

 blank = The previous primary group authority

to the object was not revoked.

83 Reserved Char 143 Reserved. Set to blanks.

226 Object name CCSID Bin (31) The coded character set identifier (CCSID) for the

object name.

230 Reserved Char (8) Reserved. Set to blanks.

238 Parent FID Char (16) The file identifier of the parent directory.

254 Object FID Char (16) The file identifier of the object.

Integrated file system created object authority (B B7) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the created object.

17 Number of authorities Bin (32) The number of private authorities in this entry.

21 Offset to object name Bin (32) The offset from the beginning of the entry-specific

data to the beginning of the Object name field.

25 Offset to path name Bin (32) The offset from the beginning of the entry-specific

data to the beginning of the Path name field.

29 Offset to authority

information

Bin (32) The offset from the beginning of the entry-specific

data to the beginning of the Authority information

field.

33 Format indicator Char (1) The format indicator is set to the following:

 0 = The original layout of this journal entry

(FORMAT1)

34 Reserved Char (15) Reserved. Set to zeros.

* Object name Char (*) See “Object name” on page 273 for the layout of

this field.

* Path name Char (*) See “Path name” on page 273 for the layout of this

field.

* Authority information Char (*) The array of private authority information that has

been set for the created object. See “Private

authority information” on page 274 for the layout

of one array element in this field. If the incomplete

data indicator is off, the information is a character

string. Otherwise, it is a pointer to the actual data.

See “Work with pointers in journal entries” on

page 286 for more information.

228 IBM Systems - iSeries: Journal Management

|

||
||||

|

||||

||||

||||
|

||||
|

||
|
||
|
|

||||

|
|

||||

||||
|

||||
|

||||
|
|
|
|
|
|
|
|

Integrated file system create-summary (B B1) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Offset to name Bin (32) The offset from the beginning of the entry-specific

data to the beginning of the Object name field.

5 Offset to path name Bin (32) The offset from the beginning of the entry-specific

data to the beginning of the Path name field.

9 Offset to symbolic link

contents field.

Bin (32) The offset from the beginning of the entry-specific

data to the beginning of the Symbolic link

contents field.

13 Object type Char (7) The object type that was created.

20 Scan attribute Char (1) If the new object is a stream file (*STMF), this field

is the scan (QP0L_ATTR_SCAN) attribute as

described in the Set Attributes (Qp0lSetAttr()) API.

If the new object is a directory (*DIR), this field is

the create object scanning

(QP0L_ATTR_CRTOBJSCAN) attribute of the

Qp0lSetAttr()) API.

21 File ID of object Char (16) The new object file identifier.

37 Owner name Char (10) The user profile name of the owner.

47 Group name Char (10) The primary group profile name.

57 Auditing value Char (10) The auditing value of the new object.

67 Object CCSID Bin (31) The coded character set identifier (CCSID) for the

object.

71 Owner private authority Char (12) Private authorities assigned to the owner. See

“Private authorities for specified profile” on page

274.

83 Primary group private

authority

Char (12) Private authorities assigned to the primary group.

See “Private authorities for specified profile” on

page 274.

95 *PUBLIC private authority Char (12) Private authorities assigned to the *PUBLIC. See

“Private authorities for specified profile” on page

274.

107 Authorization list name Char (10) The authorization list name for the new object.

117 Authorization list *PUBLIC Char (1) The authorization List *PUBLIC authority. Possible

values are Y or blank.

Journal management 229

||||
|
|

||
|
||
|
|

||||
|
|

Relative

offset Field Format Description

118 Format indicator Char (1) The format indicator is set to one of the following

values:

v 0 = The original layout of this journal entry

(FORMAT1)

v 1 = The layout of FORMAT1 plus the Device id

field is set appropriately (FORMAT2)

v 2 = The layout for all of FORMAT2 plus the

following fields are set appropriately

(FORMAT3)

– Scan attribute

– Create object auditing

– S_ISVTX value

– S_ISUID value

– S_ISGID valuemy first point

For information about the values in this field see

the Get Attributes (Qp0lGetAttr()) API.

119 PC read-only Char (1) The PC read Only flag. For information about the

values in this field see the Get Attributes

(Qp0lGetAttr()) API.

120 PC hidden Char (1) The PC hidden flag. For information about the

values in this field see the Get Attributes

(Qp0lGetAttr()) API.

121 PC system Char (1) The PC System file flag. For information about the

values in this field see the Get Attributes

(Qp0lGetAttr()) API.

122 PC changed Char (1) The PC changed flag. For information about the

values in this field see the Get Attributes

(Qp0lGetAttr()) API..

123 Journal information Char (36) The journaling information for the new object.

This field indicates if journaling is now active on

the new object. If so, it also contains the

information the information used to start

journaling. See “Journal information” on page 273

for the layout of this field.

159 Device ID Bin (64) This field is only valid when the object type is

*CHRSF.

167 Create object auditing Char (10) The create object auditing value. This value only

applies to directories (*DIR).

177 S_ISVTX value Char (1) The restricted rename and unlink (S_ISVTX) mode

bit. For information about the values in this field

see the Get Attributes (Qp0lGetAttr()) API.

178 S_ISUID value Char (1) The S_ISUID mode bit. For information about the

values in this field see the Get Attributes

(Qp0lGetAttr()) API.

179 S_ISGID value Char (1) The S_ISGID mode bit. For information about the

values in this field see the Get Attributes

(Qp0lGetAttr()) API.

180 Object name Char (*) See “Object name” on page 273 for the layout of

this field.

230 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

* Path name Char (*) See “Path name” on page 273 for the layout of this

field.

* Symbolic link contents Char (*) See “Symbolic link contents” on page 276 for the

layout of this field.

Integrated file system end journaling for object (B ET) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

Integrated file system link to existing object (B B2) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the existing object.

17 Link offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of the Link name field.

21 Path offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of the Path name field.

25 Start journaling Char (1) The start journaling indicator.

 Y = Journaling starts on the existing object as a

result of this operation. The Journal

information field has start journaling

information.

 blank = Journaling is not started on the

existing object as a result of this operation. The

Journal information field contains all hex zeros.

26 Summary Char (1) The summary record indicator.

 Y = This journal entry was deposited after the

actual operation was completed. If the Start

journaling field is Y, then the Journal

information field contains the actual

information related to starting journaling on

the target object. If the Start journaling field is

blank, then the Journal information field

contains all hex zeros.

 blank = This journal entry was deposited

before the actual operation was attempted. If

the Start journaling field is Y, then the

Journal information field contains the journal

information inherited from its new parent. This

information is used to attempt a start

journaling operation. If the Start journaling

field is blank, then the Journal information

field contains all hex zeros.

27 Reserved Char (2) Reserved. Set to zero.

Journal management 231

Relative

offset Field Format Description

29 Journal information Char (36) The journaling information for the new object.

This field is defined in “Journal information” on

page 273.

65 Link name Char (*) The name of the new link to the object. See

“Object name” on page 273 for the layout of this

field.

* Path name Char (*) The existing object path name. If this B2 journal

entry was deposited as a result of a rollback of a

B5 entry, then this will actually be the path to the

parent directory to which the link is being added.

See “Path name” on page 273 for the layout of this

field.

Integrated file system object attribute changed (B FA) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

17 Parent FID Char (16) The file identifier of the parent directory.

33 Object type Char (7) The type of object.

40 Reserved Char (9) Reserved. This field is set to hex zeros.

49 Next attribute offset Bin (32) The offset to the next attribute. All of the offsets

49, 53, 57, 61, and 65 will repeat for each attribute

set for this entry.

53 Attribute identifier Bin (32) The attribute identifier. See the Set Attributes

(Qp0lSetAttr()) API for information about the

structure and content of this field. All of the

offsets 49, 53, 57, 61, and 65 will repeat for each

attribute set for this entry.

57 Attribute data size Char (32) Size of attribute data in bytes. All of the offsets 49,

53, 57, 61, and 65 will repeat for each attribute set

for this entry.

61 Reserved Char (4) Reserved. All of the offsets 49, 53, 57, 61, and 65

will repeat for each attribute set for this entry.

65 Changed data Char (*) The data that was changed. All of the offsets 49,

53, 57, 61, and 65 will repeat for each attribute set

for this entry.

Integrated file system object closed (B CS) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Open flags Bin (31) Open flags. See the Open API for a description of

these flags.

232 IBM Systems - iSeries: Journal Management

|
|
|

|
|
|

||||
|
|

|
|

|
|
|

Integrated file system object deleted (B BD) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

Integrated file system object forced (B FC) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

Integrated file system object opened (B OF) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Open flags Bin (31) Open flags. See the Open API for a description of

these flags.

Integrated file system object truncated (B TR) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

17 Old size Bin (64) The size of the object in bytes before it was

truncated.

25 New size Bin (64) The size of the object in bytes after it was

truncated.

Integrated file system remove link (link) (B B5) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the existing object.

17 Parent FID Char (16) The file identifier of the object parent directory.

33 Link offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of the Link name field.

37 Parent path offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of the Parent path field.

41 Parent directory JID Char (10) The journal identifier of parent directory.

51 Object type Char (7) The type of the object.

Journal management 233

Relative

offset Field Format Description

58 Reserved Char (3) Reserved. Set to zero.

61 Internal data offset Bin (32) The offset from beginning of this field to the

beginning of Internal data field.

65 Link name Char (*) The name of link. See “Object name” on page 273

for the layout of this field.

* Parent path Char (*) The path to the parent that used to contain this

link. See “Path name” on page 273 for the layout

of this field.

* Internal data Char (*) Internal data.

Integrated file system remove link (parent directory) (B B4) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the existing object.

17 Parent FID Char (16) The parent directory of the link file identifier.

33 Link offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of the Link name field.

37 Object JID Char (10) The journal identifier of the object.

47 Object type Char (7) The type of the object.

54 Reserved Char (7) Reserved. Set to zero.

61 System offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of Internal data.

65 Link name Char (*) The name of link. See “Object name” on page 273

for the layout of this field.

* Internal data Char (*) Internal data.

Integrated file system rename file identifier (B RN) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Old FID Char (16) The file identifier of the object before the rename

operation.

17 Reserved Char (14) Reserved. Set to blanks.

31 New FID Char (16) The file identifier of the object after the rename

operation.

47 Reserved Char (14) Reserved. Set to blanks.

Integrated file system rename, move object (B B3) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

234 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

1 Object FID Char (16) The file identifier of the object for the renamed

link.

17 Source parent FID Char (16) The file identifier of the source object directory.

33 Target parent FID Char (16) The file identifier of the target object directory.

49 Replaced object FID Char (16) The file identifier of the object that was replaced

by this operation. This field contains all hex zeros

if no object was replaced.

65 Source offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of the Source name field.

69 Target offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of the Target name field.

73 Source parent offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of the Source parent path

field.

77 Target parent offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of the Target parent path

field.

81 Start journaling Char (1) The start journaling indicator:

 Y = Journaling starts on the existing object as a

result of this operation. The Journal

information field contains the information

used to start journaling.

 blank = Journaling does not start on the

existing object as a result of this operation. The

Journal information field contains all hex

zeros.

82 Summary Char (1) The summary record indicator:

 Y = This journal entry was deposited after the

actual operation was completed. If the Start

journaling field is also Y, then the Journal

information field contains the actual

information related to starting journaling on

the target object. If the Start journaling field is

blank, then the Journal information record will

contain all hex zeros.

 blank = This journal entry was deposited

before the actual operation was attempted. If

Start journaling is Y, then the Journal

information field contains the journal

information inherited from its new parent. That

information is used to attempt a start

journaling operation. If the Start journaling

field is blank, then the Journal information

field contains all hex zeros.

83 Replace Char (1) The replace indicator. Indicates if the target was

replaced as a result of this operation.

 Y = Indicates that the target was replaced.

 blank = Indicates that the target did not exist

before this operation.

Journal management 235

Relative

offset Field Format Description

84 Journal entry flags Bin (32) The fields for journal entry flags are as follows:

Both journaled

Bit(0)--1 = Indicates that this entry is one

of a pair of B3 entries sent for this move

operation. This occurs when both the

source and target parent directories are

journaled at the time of the move

operation.

Source entry

Bit(1)--1 = Indicates that this entry was

deposited because the source parent was

journaled.

Reserved

Bits(2-7)--Reserved. Set to zero.

88 Reserved Char (4) Reserved field.

92 Journal information Char (37) The journaling information for the new object.

This field is defined in “Journal information” on

page 273.

129 System offset Bin (32) The offset from beginning of this entry-specific

data to the beginning of Internal data field.

133 Source name Char (*) The name of object being renamed or moved. See

“Object name” on page 273 for the layout of this

field.

* Target name Char (*) The new name of object after being renamed or

moved. See “Object name” on page 273 for the

layout of this field.

* Source parent path Char (*) The path to the parent directory from which the

object previously belonged. See “Path name” on

page 273 for the layout of this field.

* Target parent path Char (*) The path to the parent directory to which the

object now belongs. See “Path name” on page 273

for the layout of this field.

* Internal data Char (*) Internal data.

Integrated file system storage for object freed (B FF) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

17 Old size Bin (64) The old size of the object.

Integrated file system write, after-image (B WA) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

236 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

17 Data length Bin (64) Length of the data.

25 Offset Bin (64) The offset to begin write.

33 Reserved Char (16) Reserved.

49 Data Char (*) The actual data that was written. If the incomplete

data indicator is off, the information is a character

string. Otherwise, it is a pointer to the actual data.

See Work with pointers in journal entries for more

information.

Identity Value (F IT) journal entries

 Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Version Bin(15) Version number

3 Identity Value DECIMAL(31,0) The last identity value

allocated in the current

CACHE

INZPFM (F IZ) journal entry

 Relative

offset Field Format Description

Specific values for this entry type:

Count or relative record

number (JOCTRR)

Zoned (10,0) Contains the number of records specified on the

TOTRCDS parameter of the Initialize Physical File

Member (INZPFM) command.

Flag (JOFLAG) Char (1) Indicates the type of record initialization that was

done:

 0 = *DFT (default)

 1 = *DLT (delete)

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry-specific data If the member is initialized with default records,

this field contains the default record image.

IPL (J IA, J IN) and in-use (B OI, C BA, D ID, E EI, F IU, I DA, J JI, Q QI) journal

entries

 Relative

offset Field Format Description

Specific values for this entry type:

Time stamp (JOTIME) Zoned (6,0) The timestamp created at IPL is read from the

battery-powered clock. If the battery-powered

clock cannot be read, the time is that of the system

power down, not the time of the IPL, because the

system time has not yet been updated at the time

the journal entry is written.

Journal management 237

Relative

offset Field Format Description

Flag (JOFLAG) Char (1) For in-use entries, indicates whether the object

was synchronized with the journal:

 0 = Object was synchronized with journal

 1 = Object was not synchronized with journal

Journal code R, all journal entry types except IL

 Relative

offset Field Format Description

Specific values for this entry type:

Flag (JOFLAG) Char (1) Whether a before-image is present1:

 0 = Before-image is not present. If

before-images are being journaled, this

indicates that an update operation or delete

operation is being requested for a record that

has already been deleted.

 1 = Before-image is present.

Journal identifier (JOJID) Char (10) The JID is not provided with the *TYPE1, *TYPE2,

and *TYPE3 formats. It can be used with the

QJORJIDI API.

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry-specific data Char (*) After-image of the record for entry types PT, PX,

UP, or UR. Before-image of the record for entry

types UB, DL, BR, or DR if before-images are

being journaled and the record was not previously

deleted.

Note:

1The flag does not apply to these entry types: PT, PX, UP, and UR.

Removed anchor point TBLENTLKLicense key not valid (L LK) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Product ID Char (7) The ID of the product whose license key was not

valid.

8 License term Char (6) The term of the license.

14 Feature Char (4) The product feature code.

18 Usage limit Zoned (6,0) The usage limit for the product.

24 License key Char (18) The license key for the product.

42 Expiration date Char (7) The expiration date for the license key.

49 Vendor data Char (8) Data placed in the entry by the product vendor.

57 Processor group Char (3) The processor group for the license key.

238 IBM Systems - iSeries: Journal Management

Logical unit of work (C LW) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 LUW header portion 416 The header portion of the entry-specific data

contains general information about the logical unit

of work (LUW). The layout for the “Logical unit of

work (C LW) journal entry-header record” on page

247 describes the contents of the header portion.

After the

header

portion

LUW local portion 80 Information about local resources that participated

in the LUW. The entry might have 0 to n records

for local locations. Each local record is 48

characters long. The layout for the “Logical unit of

work (C LW) journal entry - local record” on page

256 describes the local record.

After the

local

portion

LUW API portion 112 Information about API resources that participated

in the LUW. The entry might have 0 to n records

for API resources. Each API resource record is 80

characters long. The layout for the 0 “Logical unit

of work (C LW) journal entry - API record”

describes the API record.

After the

API

portion

LUW DDL portion 96 Information about DDL resources that participated

in the LUW. The entry might have 0 to n records

for DDL resources. Each DDL resource record is 80

characters long. The layout for the “Logical unit of

work (C LW) journal entry - DDL record” on page

242 describes the DDL record.

After the

DDL

portion

LUW remote portion 128 Information about remote locations that

participated in the LUW. The entry might have 0

to n records for remote locations. Each remote

location record is 128 characters long. The layout

for the “Logical unit of work (C LW) journal entry

- RMT record” on page 258 describes the remote

record.

After the

remote

portion

LUW DDM portion 96 Information about DDM resources that

participated in the LUW. The entry might have 0

to n records for DDM resources. Each DDM

resource record is 96 characters long. The layout

for the “Logical unit of work (C LW) journal entry

- DDM record” on page 245 describes the DDM

record.

Logical unit of work (C LW) journal entry - API record

 Relative

offset Field Format Description

1 Record type Char (4) Type of record:

 API = API Commitment resource record

5 Record length Bin (15) Length of record. Currently 80 for API record.

Journal management 239

Relative

offset Field Format Description

7 Record position (4)

1 This identifies the position in the LUW journal

entry where this record starts. It is made up of

two numbers:

v Bin (15): The relative number of the journal

entry that contains this record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains this record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where this record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where this

record starts. For example, 0 means the first

byte in the entry.

11 Resource location position (4)1 This identifies the position in the LUW journal

entry where the LCL record starts for this API

resource’s location. It is made up of two numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

15 Next resource position (4)1 This identifies the position in the LUW journal

entry where the next API or DDL record starts for

this API resource’s location. It is made up of two

numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

Position 0 0 indicates that this is the last resource

for this API resource’s location.

19 API resource Char (10) Name of API resource.

240 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

29 API program Char (20) Name of the exit program for the API resource:

v Char (10): exit program name

v Char (10): exit program library

49 Journal Char (20) Journal related to the location for this resource:

v Char (10): Journal name (blank if this resource

belongs to the location with no journal)

v Char (10): Journal library (blank if this resource

belongs to the location with no journal)

69 Commit cycle ID Bin (31) The commit cycle identifier for the journal. This is

0 if this resource belongs to the location with no

journal. This is -1 if the actual commit cycle

identifier value is larger than 2 147 483 647. The

Commit cycle ID Long field always contains the

correct value.

73 Commit protocol Char (1) The commit protocol for this resource:

 2 = This is a two-phase resource (API resources

are always two-phase resources).

74 Resource usage Char (2) The currently allowed access for this resource. The

allowed access for some resources can change

from one LUW to another depending on whether

one-phase resources are registered:

 RO = This resource is currently read-only.

Updates were not made during the LUW.

 UP = This resource is currently able to be

updated. Updates might or might not have

been made during the LUW.

76 API state Char (2) Indicates whether the API resource was committed

or rolled back successfully:

 CS = This resource was committed successfully.

 RS = This resource was rolled back

successfully.

 CF = An attempt to commit this resource

failed.

 RF = An attempt to rollback this resource

failed.

78 API last agent flag Char (1) Whether this resource is to be selected as the last

agent during all commit requests:

 Y = This resource is to be selected as the last

agent.

 N = This resource is not to be selected as the

last agent.

79 Allow remote resources Char (1) Whether remote resources are allowed to

participate in a LUW with this resource:

 Y = Remote resources are allowed with this

resource.

 N = Remote resources are not allowed with

this resource.

Journal management 241

Relative

offset Field Format Description

80 Save while active flag Char (1) Whether this resource will hold out a

save-while-active request until a commitment

boundary is reached:

 Y = This resource will hold save-while-active

requests.

 N = This resource will not hold

save-while-active requests.

81 Commit cycle ID long Zoned (20,0) The commit cycle identifier for the journal. This is

0 if this resource belongs to the location with no

journal.

101 Reserved Char (12) Reserved for future use.

Note:

1The format for this field is in the description.

Logical unit of work (C LW) journal entry - DDL record

 Relative

offset Field Format Description

1 Record type Char (4) Type of record:

 DDL = SQL Object Change record.

5 Record length Bin (15) Length of record. Currently 624 for DDL record.

7 Record position (4)1 This identifies the position in the LUW journal

entry where this record starts. It is made up of

two numbers:

v Bin (15): The relative number of the journal

entry that contains this record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains this record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where this record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where this

record starts. For example, 0 means the first

byte in the entry.

11 Resource location position (4)1 This identifies the position in the LUW journal

entry where the LCL record starts for this DDL

resource’s location. It is made up of two numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

242 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

15 Next resource position (4)1 This identifies the position in the LUW journal

entry where the next API or DDL record starts for

this DDL resource’s location. It is made up of two

numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

Position 0 0 indicates that this is the last resource

for this DDL resource’s location.

Journal management 243

Relative

offset Field Format Description

19 DDL resource information Char (29) Object identification and operation performed on

object:

v Char (10): First 10 characters of object name.

The object name field always contains the full

object name.

v Char (10): Object library name

v Char (7): Object type (*FILE, *LIB or *SQLPKG)

v Char (2): Object operation

The possible object operations and their meanings

are the following:

 AC = Add PF Constraint

 CC = Create Collection

 CF = Create File

 CG = Create Program

 CM = Create Member

 CP = Create SQL Package

 CS = Create Service Program

 CT = Create User Defined Type

 DC = Delete Collection

 DF = Delete File

 DG = Drop Program

 DP = Delete SQL Package

 DS = Drop Service Program

 DT = Drop User Defined Type

 FC = Change File

 FR = Rename File

 GF = Grant Files

 GG = Grant Program

 GP = Grant to SQL Package

 GR = Grant Java™ Routine

 GS = Grant Service Program

 GT = Grant User Defined Type

 OP = COMMENT ON SQL Package

 OT = COMMENT User Defined Type

 RC = Remove PF Constraint

 RG = Revoke Program

 RF = Revoke Files

 RP = Revoke from SQL Package

 RR = Revoke Java Routine

 RS = Revoke Service Program

 RT = Revoke User Defined Type

 TA = Add PF Trigger

 TR = Remove PF Trigger

 UL = Unlink Datalink

 XF = Transfer Files

48 Reserved Char (1) Reserved for future use.

49 Journal Char (20) Journal related to the location for this resource:

v Char (10): Journal name (blank if this resource

belongs to the location with no journal)

v Char (10): Journal library (blank if this resource

belongs to the location with no journal)

244 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

69 Commit cycle ID Bin (31) The commit cycle identifier for the journal. This is

0 if this resource belongs to the location with no

journal. This is -1 if the actual commit cycle

identifier value is larger than 2 147 483 647. The

Commit cycle ID Long field always contains the

correct value.

73 Commit protocol Char (1) The commit protocol for this resource:

 2 = This is a two-phase resource (DDL

resources are always two-phase resources).

74 DDL state Char (2) Indicates whether the DDL resource was

committed or rolled back successfully:

 CS = This resource was committed successfully.

 RS = This resource was rolled back

successfully.

 CF = An attempt to commit this resource

failed.

 RF = An attempt to rollback this resource

failed.

76 Commit cycle ID long Zoned (20,0) The commit cycle identifier for the journal. This is

0 if this resource belongs to the location with no

journal.

96 Object name Char (288) The full object name.

384 Reserved Char (1) Reserved for future use.

Note:

1The format for this field is in the description.

Logical unit of work (C LW) journal entry - DDM record

 Relative

offset Field Format Description

1 Record type Char (4) Type of record:

 DDM = Remote Database file record.

5 Record length Bin (15) Length of record. Currently 96 for DDM record.

7 Record position (4)

1 This identifies the position in the LUW journal

entry where this record starts. It is made up of

two numbers:

v Bin (15): The relative number of the journal

entry that contains this record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains this record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where this record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where this

record starts. For example, 0 means the first

byte in the entry.

Journal management 245

Relative

offset Field Format Description

11 Resource location position (4)

1 This identifies the position in the LUW journal

entry where the RMT record starts for this DDM

file’s location. It is made up of two numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

15 Next resource position (4)1 This identifies the position in the LUW journal

entry where the next DDM record starts for this

DDM file’s location. It is made up of two

numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

Position 0 0 indicates that this is the last

resource for this DDM file’s location.

19 DDM file Char (20) Name of the DDM file and library for the open

remote file:

v Char (10): DDM file name

v Char (10): DDM file library name

29 Remote position information Char (54) Identification of the remote location and

communication information for this resource’s

location:

v Char (10): Remote position name

v Char (10): Device name

v Char (10): Mode

v Char (8): Remote network ID

v Char (8): Conversation correlator network ID

v Char (8): Transaction program name

93 Open flag Char (1) Whether the DDM file was open or closed when

this LUW ended:

 O = The DDM file was open.

 C = The DDM file was closed.

246 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

94 Commit protocol Char (1) The commit protocol for this resource:

 1 = This is a one-phase resource.

 2 = This is a two-phase resource.

95 Resource usage Char (2) The currently allowed access for this resource. The

allowed access for some resources can change

from one LUW to another depending on whether

one-phase resources are registered:

 RO = This resource is currently read-only.

Updates were not made during the LUW.

 UP = This resource is currently able to be

updated. Updates might or might not have

been made during the LUW.

Note: This does not indicate whether updates

were actually made during the LUW. It only

indicates whether updates are allowed, given the

other resources currently registered.

Note:

1The format for this field is in the description.

Logical unit of work (C LW) journal entry-header record

 Relative

offset Field Format Description

1 Record type Char (4) Type of record:

 HDR = Header record.

5 Record length Bin (15) Length of record. Currently 400 for HDR record.

7 Record position (4)1 This identifies the position in the LUW journal

entry where this record starts. It is made up of

two numbers:

v Bin (15): The relative number of the journal

entry that contains this record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains this record (1 for the

first, 2 for the second, and so forth). Note that

this is not the actual journal entry sequence

number.

v Bin (15): The offset where this record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where this

record starts. For example, 0 means the first

byte in the entry. Because they always start at

the beginning of the journal entry, this offset is

always 0 for HDR records.

11 Number of journal entries Bin (15) The number of actual journal entries sent for this

LUW journal entry. This is 1 unless the LUW

journal entry is greater than 32K-1 bytes.

Journal management 247

Relative

offset Field Format Description

13 position with no journal

position

(4)

1 This identifies the position in the LUW journal

entry where the LCL record starts for the local

location with no journal. It is made up of two

numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so forth). Note that

this is not the actual journal entry sequence

number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

Position 0 0 means that there is no local location

that does not have a journal.

17 First location with journal

position

(4)1 This identifies the position in the LUW journal

entry where the LCL record starts for the first

local location with a journal. It is made up of two

numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

Position 0 0 means that there are no local locations

with a journal.

248 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

21 First remote location position (4)1 This identifies the position in the LUW journal

entry where the RMT record starts for the first

remote location. It is made up of two numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

Position 0 0 means there are no remote locations.

25 LUW operation Char (2) The operation that was performed to end this

LUW:

 CM = A commit operation was performed.

This does not necessarily mean that the

resources were committed. In some cases a

commit operation is changed to a rollback

operation with respect to two-phase commit

rules.

 RB = A rollback operation was performed. An

attempt was made to roll back all resources.

27 Protected logical unit of work

identifier (LUWID)

Char (41) The format for the LUWID is:

v Bin (15): The total length of the LUWID not

including this field

v Char (0 to 8): The network ID

v Char (1): The separator character .

v Char (0 to 8): The local location name

v Char (3): The separator characters .X’

v Char (12): The hex value of the instance number

converted to character

v Char (2): The separator characters ’.

v Char (5): The hex value of the sequence number

converted to decimal

68 Unprotected logical unit of

work identifier

Char (41) The format for the LUWID for unprotected

conversations is the same as for protected

conversations.

109 Default journal commit cycle

ID

Bin (31) The commit cycle identifier for the default journal

for this LUW. This is 0 if no commit cycle was

started for this journal during this LUW. This is -1

if the actual commit cycle identifier value is larger

than 2 147 483 647. The Default Journal Commit

cycle ID Long field always contains the correct

value.

113 Commitment definition name Char (10) The name of the commitment definition for which

this LUW took place.

Journal management 249

Relative

offset Field Format Description

123 Commitment definition

identifier

Char (10) The commitment definition identifier of the

commitment definition. This is not useful to the

user.

133 Qualified job name Char (26) The job that created the commitment definition.

159 Reserved Char (1) Reserved for future use. Currently always blank.

160 Commitment definition scope Char (1) The scope of the commitment definition:

 A = Activation group level commitment

definition.

 E = Explicitly named commitment definition.

 J = JOB commitment definition.

161 Activation group mark Bin (31) The activation group mark for the commitment

definition:

 0 = This is the *JOB or an explicitly named

commitment definition.

 2 = This is the *DFTACTGRP commitment

definition.

 # = The number of the activation group for this

activation group level commitment definition.

165 Notify object Char (37) The notify object for the commitment definition:

v Char (10) - Object name

v Char (10) - Object library

v Char (10) - Object member (blank if object is not

a file)

v Char (7) - Object type (*MSGQ, *DTAARA or

*FILE)

202 Default journal Char (20) The default journal for the commitment definition:

v Char (10): Journal name

v Char (10): Journal library

222 Initiation type Char (1) Whether this commit or rollback operation was

initiated by the user or by the system:

 E = Explicit commit or rollback operation

initiated by the user.

 I = Implicit commit or rollback operation due

to activation group end, job end, or system

end.

If the LUW was finished after a system end, this is

set to I, even if an explicit commit or rollback

operation was running at the time the system

ended.

250 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

223 LUW end status Char (1) Indication of when this LUW ended with respect

to the job that created the commitment definition

for which this LUW took place:

 N = The LUW ended while the job was

running normally.

 E = The LUW ended during job end. This

means that the LUW was still pending when a

request was made to end the job. If the

requested operation is CM, then a commit

request had started before the request to end

the job and was finished during the job-end

phase.

 I = The LUW ended during the IPL following a

system end. If the requested operation is CM,

then a commit request was started before the

system end and was finished during the IPL.

 P = The LUW ended after the IPL following a

system end. In this case, the requested

operation is CM and the LUW was prepared

pending the commit/rollback decision from the

initiator or last agent when the system ended.

During the IPL, local resources were brought

back to a prepared state in a system database

server job. After resynchronization was

performed to learn the commit/rollback

decision, the LUW ended by committing or

rolling back the local resources in that same

system database server job.

224 Sync-point role Char (1) The sync-point role played by this location during

a commit operation:

 I = Initiator: the root of the sync-point tree.

 C = Cascaded initiator: an intermediate

location in the sync-point tree.

 A = Agent: a leaf location in the sync-point

tree.C tree.

 blank = This LUW ended in a rollback request.

225 Partner role Char (1) The partner role played by this location during a

commit:

 I = Initiator: the root of the sync-point tree.

 N = Not-last agent: a prepare request was sent

to this location during the prepare wave.

 L = Last agent: a prepare request was not sent

to this location during the prepare wave.

Instead, a request was made to this location

during the committed wave to attempt a full

commit operation before reporting results back

to its initiator.

 blank = This LUW ended in a rollback request

Journal management 251

Relative

offset Field Format Description

226 LUW disposition Char (2) The overall disposition of the LUW:

 RO = This location and all downstream

locations voted read-only. These resources were

not committed or rolled back because they

were not changed during the LUW. It is not

known whether the other locations in the

sync-point tree committed or rolled back.

 CM = All resources committed. No errors have

been detected to this point. If the Resync In

Progress indicator field is N, the LUW has

completely committed. Otherwise,

resynchronization is still going on to assure

this location that other locations committed

completely.

 CF = An attempt was made to commit all

resources, but one or more errors have

occurred. The job log, QHST, and QSYSOPR

*MSGQ can be checked to determine the errors.

 RB = All resources rolled back successfully.

 RF = An attempt was made to roll back all

resources, but one or more errors have

occurred. The job log, QHST, and QSYSOPR

*MSGQ can be checked to determine the errors.

 HD = Heuristic damage has occurred. This

means one of two things:

1. Some of the resources at this location or

downstream locations committed while others

rolled back because an operator performed a

heuristic commit operation or rollback

operation.

2. An unexpected error occurred while

committing or rolling back resources at this

location or downstream locations due to a

hardware or software problem.

When heuristic damage occurs, the following

LUW journal entry records can be checked to learn

the status of the changes made during the LUW to

individual resources:

 LCL = The Record I/O State field indicates the

status of the record I/O performed on files

journaled to the journal related to that location.

 API = The API State field indicates the status

of that API Commitment resource.

 DDL = The DDL State field indicates the status

of that SQL Object Change.

 RMT = The Resource State field indicates the

status of the resources at the remote location.

252 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

228 Heuristic operation indicator Char (1) Whether a heuristic commit or rollback operation

occurred at this location while a commit request

was being performed for this LUW:

 blank = No heuristic operation occurred.

 C = A heuristic commit operation occurred.

 R = A heuristic rollback operation occurred.

A heuristic commit operation or rollback operation

means that the operator took explicit action (while

this location was waiting for the commit or

rollback decision from the initiator or the last

agent) to commit or to roll back the resources at

this location and all prepared downstream

locations. Heuristic operations can result in some

resources committing while others roll back. The

LUW Disposition field can be checked to see if

this has happened (it would be HD). The Resync

In Progress indicator field can also be checked. If

it is O, heuristic damage might have occurred or it

might still occur because the state of the resources

at the locations where resynchronization is still

going on is unknown. Messages are written to the

history log and to the system database server job

logs when the resynchronization processes

complete to indicate whether damage occurred. If

damage occurs, messages are also sent to the

system operator when it is detected.

229 Resync in progress indicator Char (1) Whether resync to one or more remote locations

was still ongoing when the LUW ended:

 N = Either no resynchronization was required

during this LUW, or it was required and

completed before the LUW ended.

 O = Resynchronization was going on with one

or more of the locations. This can occur only if

the WAIT_FOR_OUTCOME synchronization

point option is NO, or if the LUW was

interrupted by job or system end.

Journal management 253

Relative

offset Field Format Description

230 Wait for outcome Char (1) The value of the Wait for outcome commitment

option. This indicates whether to wait for

resynchronization to complete if a communication

or system failure occurs during a commit or

rollback.

 Y = Wait for outcome.

 L = Wait for outcome during commits initiated

by this commitment definition or during

commits initiated at a system that does not

support presumed abort. Inherit the initiator’s

wait for outcome value during commits

initiated at a system that supports presumed

abort.

 N = Do not wait for outcome.

 U = Do not wait for outcome during commits

initiated by this commitment definition or

during commits initiated at a system that does

not support presumed abort. Inherit the

initiator’s wait for outcome value during

commits initiated at a system that supports

presumed abort.

231 Action if problems Char (1) The value of the Action if problems commitment

option. This indicates whether to commit or

rollback when problems occur during a two-phase

commit.

 R = Rollback if problems occur.

 C = Commit if problems occur.

232 Vote read-only permitted Char (1) The value of the Vote read-only permitted

commitment option. This indicates whether this

commitment definition is allowed to return a

read-only vote to a remote initiator during a

two-phase commit.

 N = Do not allow a read-only vote.

 Y = Allow a read-only vote.

233 Action if ENDJOB Char (1) The value of the Action if ENDJOB commitment

option. This indicates the action to take for

changes associated with the LUW when the job

the LUW is a part of is ended.

 W = Wait to allow normal processing of the

LUW to complete.

 R = Rollback during ENDJOB.

 C = Commit during ENDJOB.

234 OK to leave out Char (1) The value of the OK to leave out commitment

option. This indicates whether this location is

allowed to be left out during the next

commit/rollback if no activity occurred to this

location during the LUW.

 N = Do not leave this location out of the next

commit or rollback operation.

 Y = It is OK to leave this location out of the

next commit or rollback operation.

254 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

235 Last agent permitted Char (1) The value of the Last agent permitted commitment

option. This indicates whether last agent

optimization may be used.

 S = The system is allowed to select a last

agent.

 N = The system is not allowed to select a last

agent.

236 Accept vote reliable Char (1) The value of the Accept vote reliable commitment

option. This indicates whether the vote reliable

indicator received from agents during a commit

operation is accepted by this location. If an agent

votes reliable, and this location accepts it, control

is returned to the application before the committed

wave is completed for that agent. If this location

does not accept vote reliable, control is returned to

the application only after the LUW is completely

committed or rolled back.

 Y = Accept the vote reliable indicator from

agents during commit operations.

 N = Do not accept the vote reliable indicator

from agents during commit operations.

237 Resolved wait for outcome

value

Char (1) This indicates the actual wait for outcome value

that was used during the commit or rollback of

this LUW. If the Wait for outcome commitment

option is L or U, this value might have been

inherited from this location’s initiator.

 Y = Wait for outcome of resynchronization.

 N = Do not wait for outcome of

resynchronization.

238 XA transaction manager Char (10) If this was an X/Open transaction, this is the

name of the XA Transaction Manager that was

specified on the db2xa_open API. This field will

be hex zeros if this was not an XA transaction.

248 XID Char (140) If this was an X/Open Transaction, this is the

X/Open Transaction Identifier associated with this

transaction. This field will be hex zeros if this was

not an X/Open transaction, or if it was an

X/Open local transaction. The format of this field

is as follows:

Bin(31) format identifier

Bin(31) global transaction identifier length

Bin(31) branch qualifier length

Char (128) XID value

388 Default journal commit cycle

ID long

Zoned (20,0) The commit cycle identifier for the default journal

for this LUW. This is 0 if no commit cycle was

started for this journal during this LUW.

408 Reserved Char (9) Reserved for future use.

Note:

1The format for this field is in the description.

Journal management 255

Logical unit of work (C LW) journal entry - local record

 Relative

offset Field Format Description

1 Record type Char (4) Type of record:

 LCL = Local location record.

5 Record length Bin (15) Length of record. Currently 48 for LCL record.

7 Record position (4)1 This identifies the position in the LUW journal

entry where this record starts. It is made up of

two numbers:

v Bin (15): The relative number of the journal

entry that contains this record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains this record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where this record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where this

record starts. For example, 0 means the first

byte in the entry.

11 Next local location position (4)

1 This identifies the position in the LUW journal

entry where the next LCL record starts. It is made

up of two numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

Position 0 0 indicates that this is the last local

location.

256 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

15 First resource position (4)1 This identifies the position in the LUW journal

entry where the first API or DDL record starts for

this location. It is made up of two numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

19 Record I/O state Char (2) Indicates whether the record I/O performed

during this LUW for files journaled to the journal

related to this location was committed or rolled

back successfully:

 CS Record I/O for this location was committed

successfully.

 RS = Record I/O for this location was rolled

back successfully.

 CF = An attempt to commit record I/O for this

location failed.

 RF = An attempt to rollback record I/O for this

location failed.

 blank = This is the location with no journal so

there is no record I/O associated with it.

21 Journal Char (20) Journal related to this location:

v Char (10): Journal name (blank if this is the

location with no journal)

v Char (10): Journal library (blank if this is the

location with no journal)

41 Commit cycle ID Bin (31) The commit cycle identifier for the journal. This is

0 for the location with no journal. It might be 0 for

the location related to the default journal if there

were no resources for that location during this

LUW. This is -1 if the actual commit cycle

identifier value is larger than 2 147 483 647. The

Default Journal Commit cycle ID Long field

always contains the correct value.

45 Default journal flag Char (1) Indicates whether the journal related to this

location is the default journal:

 Y = It is the default journal.

 N = It is not the default journal.

46 Commit cycle ID Long Zoned (20,0) The commit cycle identifier for the journal. This is

0 for the location with no journal. It might be 0 for

the location related to the default journal if there

were no resources for that location during this

LUW.

Journal management 257

Relative

offset Field Format Description

66 Reserved Char (15) Reserved for future use.

Note:

1The format for this field is in the description.

Logical unit of work (C LW) journal entry - RMT record

 Relative

offset Field Format Description

1 Record type Char (4) Remote position (RMT) record.

5 Record length Bin (15) RMT record is currently 128.

7 Record position (4)1 This identifies the position in the LUW journal

entry where this record starts. It is made up of

two numbers:

v Bin (15): The relative number of the journal

entry that contains this record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains this record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where this record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where this

record starts. For example, 0 means the first

byte in the entry.

11 Next Rrmote location position (4)1 This identifies the position in the LUW journal

entry where the next RMT record starts. It is made

up of two numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

Position 0 0 indicates that this is the last remote

location.

258 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

15 First resource position (4)

1 This identifies the position in the LUW journal

entry where the first DDM record starts for this

location. It is made up of two numbers:

v Bin (15): The relative number of the journal

entry that contains the record. If the LUW

journal entry is greater than 32K-1 bytes,

multiple entries are actually sent to the journal.

This number represents which of these actual

journal entries contains the record (1 for the

first, 2 for the second, and so on). Note that this

is not the actual journal entry sequence number.

v Bin (15): The offset where the record starts

within this journal entry. This is the number of

bytes past the beginning of the entry where the

record starts. For example, 0 means the first

byte in the entry.

Position 0 0 indicates that there are no DDM

records for this location.

19 Remote position information Char (54) Identification of the remote location and

communication information for this location:

v Char (10): Remote position name

v Char (10): Device name

v Char (10): Mode

v Char (8): Remote network ID

v Char (8): Conversation correlator network ID

v Char (8): Transaction program name

73 Relational database name Char (18) The name of the relational database opened at this

remote location (blank if no relational database

has been opened).

91 Conversation deallocation flag Char (1) Whether the conversation was deallocated because

of this LUW:

 N = This conversation is still active.

 Y = This conversation was deallocated because

the LUW committed, the system ended, a

resource failed, or an unbind was performed.

92 Commit protocol Char (1) The commit protocol for the resources at this

location:

 1 = The resources are one-phase.

 2 = The resources are two-phase.

Journal management 259

Relative

offset Field Format Description

93 Resource usage Char (2) The currently allowed access for this resource. The

allowed access for some resources can change

from one LUW to another depending on whether

one-phase resources are registered:

 RO = This resource is currently read-only.

Updates were not made during the LUW.

 UP = This resource is currently able to be

updated. Updates might or might not have

been made during the LUW.

Note: This does not indicate whether updates

were actually made during the LUW. It indicates

only whether updates are allowed, given the other

resources currently registered.

95 Resource state Char (2) The state of the resources at this location:

 CS = The resources were committed

successfully.

 CF = An attempt to commit the resources

failed. This value is only used for one-phase

locations.

 RS = The resources were rolled back

successfully.

 RF = An attempt to rollback the resources

failed. This value is only used for one-phase

locations.

 NC = The resources had no changes for the

current transaction.

 FC = A communications failure occurred for

this location. It is not known whether resources

at the location committed or rolled back.

 HC = The resources were heuristically

committed.

 HR = The resources were heuristically rolled

back.

 HM = Heuristic damage was detected at this

location. Some of the resources at the location,

or locations further downstream, committed

while others rolled back.

 ER = An unexpected error occurred while

communicating with this location. This is due

to a hardware or software problem. The state

of the resources is unknown.

 RI = We have not yet learned the state of the

resources because resync is still ongoing.

97 Allocator flag Char (1) Indicates whether this is the allocator location, for

example, the location that called the transaction

program running on this system:

 Y = This location is the allocator.

 N = This location is not the allocator.

260 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

98 Remote last agent flag Char (1) Indicates whether this location was selected as the

last agent if a commit request was performed to

end this LUW:

 Y = This is the last agent.

 N = This is not the last agent.

Note: A last agent will not be selected at this

location unless the Partner Role field in the HDR

record is I or L.

99 Two-phase protocol Char (1) The two-phase commit protocol options supported

at this location.

 0 = Two-phase commit protocols are not

supported.

 1 = Two-phase commit presumed nothing

protocols are supported.

 2 = Two-phase commit presumed abort

protocols are supported.

100 Resync initiator Char (1) If resync with this location is still ongoing (the

Resource State field is RI), this value indicates

whether the local location is initiating the resync

attempts.

 I = The local system is initiating resync with

this remote location.

 N = Resync is not being performed with this

remote location.

 W = The local system is waiting for resync to

be initiated from this remote location.

101 Voted reliable Char (1) Whether this location voted reliable during the

commit of this LUW.

 Y = The location voted reliable.

 N = The location did not vote reliable.

102 OK to leave out Char (1) Whether this location indicated it may be left out

of the next commit or rollback operation if no

communications flows occur to that location

during the next LUW.

 Y = The location indicated it may be left out.

 N = The location indicated it may not be left

out.

103 Left out Char (1) Whether this location was left out of the LUW that

was just committed or rolled back.

 Y = The location was left out.

 N = The location was not left out.

Journal management 261

Relative

offset Field Format Description

104 Initiator flag Char (1) Indicates whether this location is the initiator

location, i.e. the location that sent the commit or

rollback request to this system.

 Y = The location is the initiator.

 N = The location is not the initiator.

Note: The system cannot determine the initiator

location if the initiator does not support two-phase

commit protocols. This field will always be set to

N for locations that do not support two-phase

commit protocols.

105 Reserved Char (24) Reserved for future use.

Note:

1The format for this field is in the description.

Moving and renaming objects (D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN,

Q QM, Q QN) journal entries

 Relative

offset Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) Records for the entries will have a journal

identifier. The JID is not provided with the

*TYPE1, *TYPE2, and *TYPE3 formats. It can be

used with the QJORJIDI API.

Entry-specific data. This data appears as one field in the standard output formats:

1 Object name before Char (10) The name of the object before the object was

moved or renamed.

11 Library name before Char (10) The name of the library before the object was

moved or renamed.

21 Member name before Char (10) The name of the member before it was moved or

renamed. This field is blank if the object is not a

physical database file.

31 Object name after Char (10) The name of the object after the object was moved

or renamed.

41 Library name after Char (10) The name of the library after the object was

moved or renamed.

51 Member name after Char (10) The name of the member after it was moved or

renamed. This field is blank if the object is not a

physical database file.

61 Internal data Char (*) Internal system information.

Note: This field does not apply to E EM, E EN, Q

QM, or Q QN entries.

Object level (D AC, D CG, D CT, D DC, D DT, D GC, D GO, D GT, D RV, D TC, D TD,

D TG, D TQ, F DM, F MC) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

262 IBM Systems - iSeries: Journal Management

|
|

|
|

||
||||

|

Relative

offset Field Format Description

1 Object name Char (10) The name of the object that was operated on.

11 Library name Char (10) The name of the library for the object that was

operated on.

21 Member name Char (10) The name of the member that was operated on, if

applicable. This field is blank if it does not apply.

31 Reserved Char (30) Reserved.

109 Change field type Char (1) The type of Change file operation:

 0 = SQL ALTER TABLE

 1 = CHGPF, CHGLF, or CHGSRCPF CL

command

 2 = Miscellaneous change file operations

 3 = SQL DELETE FROM table (without a

WHERE clause)

The type of Change Trigger operation:

 4 = Disable Trigger

 5 = Enable Trigger

 6 = Miscellaneous change trigger operations

This field is not applicable if the entry type is

not CG or TG.

110 Reserved Char (3) Reserved.

113 Reserved Bin (15) The length of the trigger library name for a

Change Trigger operation. Contains 0 if the

Change Trigger operation includes multiple

triggers. This field is not applicable if the entry

type is not TG.

115 Reserved Bin (31) The offset to the trigger library name for a Change

Trigger operation from the beginning of the

journal entry specific data. Contains hex zeros if

the Change Trigger operation includes multiple

triggers. This field is not applicable if the entry

type is not TG.

119 Reserved Bin (15) Length of the trigger name for a Change Trigger

operation. Contains 0 if the Change Trigger

operation includes multiple triggers. This field is

not applicable if the entry type is not TG.

121 Reserved Bin (31) The offset to the trigger name for a Change

Trigger operation from the beginning of the

journal entry specific data. Contains hex zeros if

the Change Trigger operation includes multiple

triggers. This field is not applicable if the entry

type is not TG.

125 Internal data Char (*) Internal system information

Notes:

1. This data does not apply to integrated file system objects.

2. If the data for these entries exceeds 32 KB, then a pointer is returned to the actual data when the entry is

retrieved using an option to return pointers. If the return pointer option is not used, then *POINTER is returned

for the entry-specific data.

Journal management 263

|
||||

||||

||||
|

||||
|

||||

||||

|

|
|

|

|
|

|

|

|

|
|
|

||||

||||
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|

||||
|
|
|
|
|

||||

|

|

|
|
|
|

Object restored (B FR, D DZ, E EL, F MR, J RR, Q QZ) and receiver saved (J RS)

journal entries

 Relative

offset Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) Records for the entries will have a journal

identifier. The JID is not provided with the

*TYPE1, *TYPE2, and *TYPE3 formats. It can be

used with the QJORJIDI API.

Entry-specific data. This data appears as one field in the standard output formats:

1 Media type Char (3) The type of media used for the save or restore

operation:

 DKT= Diskette

 OPT= Optical

 SAV= Save file

 TAP= Tape

4 First volume ID Char (6) The ID of the first volume used. The optical

volume ID might contain up to 32 characters of

which the first six characters are displayed.

10 Start save or restore date Char (6)1 The date the save or restore operation was started.

The date is in the format of the DATFMT attribute

of the job that performed the save or restore

operation.

16 Start save or restore time Zoned (6,0) The time the save or restore operation was started.

22 Update history Char (1) Whether the save history is updated:

 0 = UPDHST(*NO) specified on save

command.

 1 = UPDHST(*YES) specified on save

command.

23 Save file name Char (10) The name of the save file used for the operation.

This field is blank if a save file was not used.

33 Save file library Char (10) The name of the library for the save file. This field

is blank if a save file was not used.

43 Media file identifier2 Char (16) File identifier for the integrated file system object

on the media. This applies only to B FR entries.

59 Restored file identifier Char (16) File identifier for the restored integrated file

system object. This applies only to B FR entries.

75 Restored over file identifier Char (16) File identifier for the integrated file system object

that was restored over. This applies only to B FR

entries.

Note:

1. See the “Layouts for the fixed-length portion of journal entries” on page 185 of the journal entry for any

information pertaining to the century of this date.

2. In place of the media finder, the Q QZ entry has a 1-byte character (Char (1)) field with the following possible

values to indicate if the contents of the data queue were restored:

 0 = No

 1 = Yes

264 IBM Systems - iSeries: Journal Management

|

Object saved (B FS, D DH, E ES, F MS, Q QY) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Media type Char (3) The type of media used to save the object:

 DKT = Diskette

 OPT = Optical

 SAV = Save file

 TAP = Tape

4 First volume ID Char (6) The ID of the first volume used to save the object.

The optical volume ID might contain up to 32

characters of which the first six characters are

displayed.

10 Start save date Char (6)

1 The date the save operation was started. The date

is in the format of the DATFMT attribute of the

job that saved the object.

16 Start save time Zoned (6,0) The time the save operation was started.

22 Update history Char (1) Whether the save history is updated:

 0 = UPDHST(*NO) specified on save

command.

 1 = UPDHST(*YES) specified on save

command.

23 Save file name Char (10) The name of the save file used for the operation.

This field is blank if a save file was not used.

33 Save file library Char (10) The name of the library for the save file. This field

is blank if a save file was not used.

43 Save active value Char (10) The value specified for the SAVACT parameter on

the SAVOBJ, SAVCHGOBJ, SAV, or SAVLIB

command.

53 Start save active date Char (6)

1 For a save-while-active operation, this is the date

when checkpoint processing was completed for

the object. For a normal save operation, this is the

same as the start date.

59 Start save active time Zoned (6,0) For a save-while-active operation, this is the time

when checkpoint processing was completed for

the object. For a normal save operation, this is the

same as the start time.

65 Primary receiver name Char (10) The name of the first of dual receivers that

contains the start-of-save entry.

75 Primary receiver Library Char (10) The name of the library containing the primary

receiver.

85 Dual receiver name Char (10) The name of the second of dual receivers that

contains the start-of-save entry. This entry is blank

if only a single receiver was used when the

start-of-save entry was added.

95 Dual receiver library Char (10) The name of the library containing the dual

receiver. This entry is blank if only a single

receiver was used when the start-of-save entry

was added.

Journal management 265

Relative

offset Field Format Description

105 Sequence number of matching

start-of-save entry

Zoned (10, 0) For a save-while-active operation, the sequence

number of the corresponding start-of-save entry.

For a normal save operation, this is the sequence

number of the current object saved entry. A -1 is

returned if the sequence number is greater than

9 999 999 999. If -1, see Large sequence number

of matching start-of-save entry.

115 File ID of object or reserved Char (16) The file identifier for the object for B FS entries,

otherwise blank.4

131 Large sequence number of

matching start-of-save entry

Char (20) For a save-while-active operation, the sequence

number of the corresponding start-of-save entry.

For a normal save operation, this is the sequence

number of the current object saved entry.

151 Library ASP device Char (10) The ASP device on which the library that contains

the primary receiver resides.

161 Contents saved Char(1) Whether the contents of the data queue were

saved:

 0 = No

 1 = Yes

Note: This field only applies to Q QY entries.

Notes:

1. See the fixed-length portion of the journal entry for any information pertaining to the century of this date.

2. If an object was saved using the save-while-active function, the saved copy of the object includes all of the

changes found in the journal entries up to the corresponding object start of save-while-active entry. For more

information see the layout for the “Start of save-while-active (B FW, D DW, E EW, F SS, Q QX) journal entries”

on page 269.

3. If an object was NOT saved using the save-while-active function, the saved copy of the object includes all of the

changes found in the journal entries up to the corresponding object saved entry. For more information see the

layout for “Object saved (B FS, D DH, E ES, F MS, Q QY) journal entries” on page 265.

Ownership change (E ZO, Q ZO) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Old owner Char (10) The name of the old owner.

11 New owner Char (10) The name of the new owner.

Received data queue, has key (Q QL) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reserved Char (18) Reserved for future use.

19 Key length Bin (16) The number of characters in the key.

266 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

21 Key order Char (2) The Key order is as follows:

 GT = Greater than

 LT = Less than

 NE = Not equal

 EQ = Equal

 GE = Greater than or equal

 LE = Less than or equal

23 Key Char (*) The data to be used to receive a message from the

data queue.

ROLLBACK (C RB) journal entry

 Relative

offset Field Format Description

Specific values for this entry type:

Job name (JOJOB) Char (10) Blank if the entry was added during an IPL vary

on of an independent disk pool.

Program name (JOPGM) Char (10) Blank if the entry was added during an IPL or

vary on of an independent disk pool.

Flag (JOFLAG) Char (1) How the rollback operation was initiated and

whether it was successful:

 0 = All record-level changes were rolled back

for a rollback operation initiated by a user.

 1 = Not all record-level changes were

successfully rolled back for a rollback operation

initiated by a user.

 2 = All record-level changes were rolled back

for a rollback operation initiated by the

operating system.

 3 = Not all record-level changes were rolled

back for a rollback operation initiated by the

operating system.

Rollback ended early (C CN, F C1) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 User profile Char (10) The user profile that requested to end the rollback.

11 Process Char (26) The process that requested to end the rollback.

RGZPFM (F RG) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

Journal management 267

Relative

offset Field Format Description

1 File name Char (10) The name of the file specified for the KEYFILE

parameter on the RGZPFM command. If

KEYFILE(*NONE) was specified, this field is

blank.

11 Library name Char (10) The name of the library specified in the KEYFILE

parameter of the RGZPFM command. If

KEYFILE(*NONE) was specified, this field is

blank.

21 Member name Char (10) The name of the member specified in the KEYFILE

parameter of the RGZPFM command. If

KEYFILE(*NONE) was specified, this field is

blank.

Savepoint released (C SQ) and savepoint rolled back (C SU) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Sequence number Char (20) The sequence number where the savepoint was

established

Send data queue, has key (Q QK) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Data length Bin (32) The length of the Data field (which is the last field

in the ESD of this journal entry). When replicating

a data queue entry with this journal entry, this

length field should be specified on the

QSNDDTAQ API in association with the Data field

below. See the details in the description of the

Data field.

5 Offset to data Bin (32) Offset to the Data field (which is the last field in

the ESD of this journal entry). The offset is

calculated from the beginning of the entry-specific

data (ESD).

9 Reserved Char (2) Reserved for future use.

11 Key length Bin (16) The number of characters in a key.

13 Reserved Char (4) Reserved for future use.

17 Key Char (*) A prefix added to an entry by its sender.

Reserved Char (*) Padding to align fields.

268 IBM Systems - iSeries: Journal Management

Relative

offset Field Format Description

Offset to

data

Data Char (*) The first 16 bytes of the Data field are API

information required by the Send Data Queue

(QSNDDTAQ) API. When replicating a data queue

entry with this journal entry, this entire Data field

(including the 16 bytes of API information) must

be passed to the QSNDDTAQ API when it is

called with parameter eight (Data is from a journal

entry) set to *YES. These 16 bytes are not placed

on the data queue. The remainder of the Data field

is placed on the data queue.

Send data queue, no key (Q QS) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reserved Char (28) Reserved for future use.

29 Data length Bin (32) The length of the Data field (which is the last field

in the ESD of this journal entry). When replicating

a data queue entry with this journal entry, this

length field should be specified on the

QSNDDTAQ API in association with the Data field

below. See the details in the description of the

Data field.

33 Data Char (*) The first 16 bytes of the Data field are API

information required by the Send Data Queue

(QSNDDTAQ) API. When replicating a data queue

entry with this journal entry, this entire Data field

(including the 16 bytes of API information) must

be passed to the QSNDDTAQ API when it is

called with parameter eight (Data is from a journal

entry) set to *YES. These 16 bytes are not placed

on the data queue. The remainder of the Data field

is placed on the data queue.

Start of save-while-active (B FW, D DW, E EW, F SS, Q QX) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Media type Char (3) The type of media used to save the object:

 DKT = Diskette

 OPT = Optical

 SAV = Save file

 TAP = Tape

4 First volume ID Char (6) The ID of the first volume used to save the object.

The optical volume ID might contain up to 32

characters of which the first six characters are

displayed.

Journal management 269

Relative

offset Field Format Description

10 Start save date Char (6)

1 The date the save operation was started. The date

is in the format of the DATFMT attribute of the

job that saved the object.

16 Start save Time Zoned (6,0) The time the save operation was started.

22 Update history Char (1) Whether the save history is updated:

 0 = UPDHST(*NO) specified on the save

command.

 1 = UPDHST(*YES) specified on the save

command.

23 Save file name Char (10) The name of the save file used for the operation.

This field is blank if a save file was not used.

33 Save file library Char (10) The name of the library for the save file. This field

is blank if a save file was not used.

43 Save active value Char (10) The value specified for the SAVACT parameter on

the SAVOBJ, SAVCHGOBJ, SAV, or SAVLIB

command.

53 Save active date Char (6)1 For a save-while-active operation, this is the date

when checkpoint processing was completed for

the object. For a normal save operation, this is the

same as the start date.

59 Save active Time Char (6) For a save-while-active operation, this is the time

when checkpoint processing was completed for

the object. For a normal save operation, this is the

same as the start time.

65 Object file ID4 Char (16) The file identifier of the integrated file system

object. This applies only to B FW entries.

Notes:

1. See the fixed-length portion of the journal entry for any information pertaining to the century of this date.

2. If an object was saved using the save-while-active function, the saved copy of the object includes all of the

changes found in the journal entries up to the corresponding object start of save-while-active entry. For more

information see the layout for “Start of save-while-active (B FW, D DW, E EW, F SS, Q QX) journal entries” on

page 269.

3. If an object was NOT saved using the save-while-active function, the saved copy of the object includes all of the

changes found in the journal entries up to the corresponding object saved entry. See the entry-specific data for

“Object saved (B FS, D DH, E ES, F MS, Q QY) journal entries” on page 265.

4. In place of the Object file ID, the Q QY entry has a 1-byte character (Char(1)) field with the following possible

values to indicate if the contents of the data queue were saved:

 0 = No

 1 = Yes

Start journal (B JT, D JF, E EG, F JM, Q QB) journal entries

 Relative

offset Field Format Description

Specific values for this entry type:

Flag (JOFLAG) Char (1) Indicates the type of images selected:

 0 = After images are journaled.

 1 = Before and after images are journaled.

Entry-specific data. This data appears as one field in the standard output formats:

270 IBM Systems - iSeries: Journal Management

|

|
|

|

|

Relative

offset Field Format Description

1 Omit journal entry Char (1) Indicates the value of the OMTJRNE parameter on

the Start Journal command.

 0 = No entries are omitted from journaling.

 1 = Open and Close (*FILE), or Open, Close,

and Force (*DIR or *STMF) entries are not

journaled.

2 New object inherit journaling Char (1) Specifies whether journaling starts automatically

for new objects created in the directory.

 0 = No or does not apply

 1 = Yes

3 Reserved Char (6) Reserved field

9 File identifier Char (16) The file identifier for the integrated file system

object. This only applies to B JT entries.

25 Path name Char (*) The path name information optionally follows the

file identifier. This only applies to B JT entries. For

path name information, see “Path name” on page

273.

Usage limit changed (L LL) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Product ID Char (7) The ID of the product whose usage limit was

changed.

8 License term Char (6) The term of the license.

14 Feature Char (4) The product feature code.

18 Previous usage limit Zoned (6,0) The usage limit before the change.

24 Current usage limit Zoned (6,0) The usage limit after the change.

30 Old expiration date Char (7) The expiration date before the change.

37 New expiration date Char (7) The expiration date after the change.

Usage limit exceeded (L LU) journal entry

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Product ID Char (7) The ID of the product whose usage limit was

exceeded.

8 License term Char (6) The term of the license.

14 Feature Char (4) The product feature code.

18 Usage limit Zoned (6,0) The usage limit for the product.

24 Request flag Char (1) Whether the request was successful:

 0 = License request was successful.

 1 = License request was not successful.

Journal management 271

Relative

offset Field Format Description

25 Number of licensed users Zoned (6,0) The number of users currently licensed for the

product.

31 Licensed user name Char (26) x 100 The names of up to 100 users who are licensed for

the product.

Update data area (E EA, E EB) journal entries

 Relative

offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Starting position Bin (32) Starting position of change as specified by the user

(1 for decimal).

5 Length of change Bin (32) Length of change to be applied as specified by the

user.

9 Number Bin (32) Number of decimal positions as specified by the

user.

13 Offset to change Bin (32) Offset to change value field from the beginning of

the entry-specific data (ESD).

17 Type Char (10) Type of data area. Data area types are *CHAR,

*DEC, and *LGL.

Padding for alignment Char (*) Padding to align fields.

Offset to

change

Change value Char (*) Value of the change.

 Related concepts

 “Display and print journal entries” on page 276
Use the Display Journal (DSPJRN) command to display journal entries. The entries are displayed at a

work station, printed, or written to an output file. You cannot directly access the journal entries in the

form in which they are contained in the journal receivers.

 “Considerations for entries which contain minimized entry-specific data” on page 289

Reduce the size of journal receivers by specifying minimized entry-specific data on the Create Journal

(CRTJRN) and Change Journal (CHGJRN) commands.

 “File identifier considerations for working with integrated file system entries” on page 324

If you plan to replay the integrated file system operations in the remote journal to objects on the

target system, and if you primed that target system with objects that were restored from the source

system, then some additional considerations apply to replaying those journal entries.
 Related reference

 Set Attributes (Qp0lSetAttr()) API

 Get Attributes (Qp0lGetAttr()) API

 Send Data Queue (QSNDDTAQ) API

 Path name format

Common fields: The following tables contain fields of entry-specific data that are common to more than

one journal entry layout.

272 IBM Systems - iSeries: Journal Management

Journal information

This table contains entry-specific data for journal information. For an explanation of these fields, see the

Get Attributes (Qp0lGetAttr()) API.

 Relative

offset Field Format Description

1 Journaling status Char (1) Indicates whether the object is journaled.

2 Options Char (1) The journaling options or attributes.

3 JID Char (10) The journal identifier.

13 Journal name Char (10) The journal name.

23 Journal library Char (10) The journal library.

33 Time journaling was last

started

Bin (32) Time journaling was last started.

Object name

This table contains entry-specific data for the name of an integrated file system object. For more

information about the object name see Path name format in the API topic.

 Relative

offset Field Format Description

1 Length Bin (32) The length of the object name field.

5 Path name CCSID Bin (31) The coded character set identifier (CCSID) for the

object name.

9 Object name country ID Char (2) The country identifier for national language

support.

11 Object name language ID Char (3) The language identifier for national language

support.

14 Reserved Char (3) Reserved. This field contains all hex zeros.

17 Object name Char (*) The object name. The field is of variable length.

Path name

This table contains entry-specific data for the path name of an integrated file system object. For more

information about the path name see Path name format in the API topic.

 Relative

offset Field Format Description

1 Path indicator Char (1) The absolute or relative path indicator. This field

uses one of the following values:

 0 = The path contains an absolute path name.

The Relative directory FID field is hex zeros.

 1 = The path contains a relative path name.

The Relative directory FID field is valid and

can be used to form a complete path name.

2 Relative directory FID Char (16) The file identifier for the directory that contains

the object indicated in the path name filed.

18 Path name CCSID Bin (31) The coded character set identifier (CCSID) for the

path name.

Journal management 273

Relative

offset Field Format Description

22 Path name country ID Char (2) The country identifier for national language

support.

24 Path name language ID Char (3) The language identifier for national language

support.

27 Reserved Char (3) Reserved. This field contains all hex zeros.

30 Path name type Bin (32) The path name type uses one of the following

values:

 0 = The path name is a character string with a

one byte delimiter.

 2 = The path name is a character string with a

two byte delimiter.

34 Path length Bin (31) The path length.

38 Path name delimiter Char (2) The path name delimiter.

40 Reserved Char (10) Reserved. Set to blanks.

50 Path name Char (*) The object path name. This field is of variable

length.

Private authority information

This table contains entry-specific data for the private authority information that has been set for an

integrated file system object when an object is created.

 Relative

offset Field Format Description

1 User name Char (10) The name of the user profile whose authority is

being granted.

11 Operation type Char (3) GRT = Grant authority.

14 Reserved Char (7) Reserved. Set to zeros.

21 Private authority Char (12) Private authorities assigned to the given user

profile. See “Private authorities for specified

profile” for more information.

Private authorities for specified profile

 Relative

offset Field Format Description

1 Object existence authority Char (1)

 Y = The specified profile has *OBJEXIST

authority to the object.

 blank = The specified profile does not have

*OBJEXIST authority to the object.

2 Object management authority Char (1)

 Y = The specified profile has *OBJMGT

authority to the object.

 blank = The specified profile does not have

*OBJMGT authority to the object.

274 IBM Systems - iSeries: Journal Management

|

||
||||

||||
|

|
|

||||
|

|
|

Relative

offset Field Format Description

3 Object operational authority Char (1)

 Y = The specified profile has *OBJOPR

authority to the object.

 blank = The specified profile does not have

*OBJOPR authority to the object.

4 Object alter authority Char (1)

 Y = The specified profile has *OBJALTER

authority to the object.

 blank = The specified profile does not have

*OBJALTER authority to the object.

5 Object reference authority Char (1)

 Y = The specified profile has *OBJREF

authority to the object.

 blank = The specified profile does not have

*OBJREF authority to the object.

6 Read authority Char (1)

 Y = The specified profile has *READ authority

to the object.

 blank = The specified profile does not have

*READ authority to the object.

7 Add authority Char (1)

 Y = The specified profile has *ADD authority

to the object.

 blank = The specified profile does not have

*ADD authority to the object.

8 Update authority Char (1)

 Y = The specified profile has *UPD authority to

the object.

 blank = The specified profile does not have

*UPD authority to the object.

9 Delete authority Char (1)

 Y = The specified profile has *DLT authority to

the object.

 blank = The specified profile does not have

*DLT authority to the object.

10 Exclude authority Char (1)

 Y = The specified profile has *EXCLUDE

authority to the object.

 blank = The specified profile does not have

*EXCLUDE authority to the object.

11 Execute authority Char (1)

 Y = The specified profile has *EXECUTE

authority to the object.

 blank = The specified profile does not have

*EXECUTE authority to the object.

12 Reserved Char (1) Reserved. Set to blank.

Journal management 275

|
||||

||||
|

|
|

||||
|

|
|

||||
|

|
|

||||
|

|
|

||||
|

|
|

||||
|

|
|

||||
|

|
|

||||
|

|
|

||||
|

|
|

||||
|

Symbolic link contents

 Relative

offset Field Format Description

1 Contents included Char (1) Indicates if the entire symbolic link contents are

included in the Contents field. The possible values

are:

 0 = The entire symbolic link contents cannot be

included in the Contents field. The symbolic

link contents are truncated in this entry.

 1 = The entire symbolic link contents are

included in the Contents field.

2 Contents CCSID Bin (31) The coded character set identifier (CCSID) for the

symbolic link contents.

6 Contents country ID Char (2) The country identifier for national language

support for the symbolic link contents.

8 Contents language ID Char (3) The language identifier for national language

support for the symbolic link contents.

11 Reserved Char (3) Reserved. This field contains all hex zeros.

14 Contents path type Bin (32) The possible values for the contents path type are:

 0 = The path name is a character string with a

one byte delimiter.

 2 = The path name is a character string with a

two byte delimiter.

18 Contents path length Bin (31) The path length for the symbolic link contents.

22 Contents path name delimiter Char (2) The path name delimiter for the symbolic link

contents.

24 Reserved Char (10) Reserved. This field contains all hex zeros.

34 Symbolic link contents Char (*) The symbolic link contents. This field is of variable

length.

Work with journal entry information

Provides ways that you can display, retrieve, and receive journal entries.

Every journal entry is stored internally in a compressed format and must be converted by the operating

system to an external form before it can be shown to the user. You cannot change or access the journal

entries directly. Not even the security officer can remove or change journal entries in a journal receiver.

You can use these journal entries to help you recover your objects or analyze changes that were made to

the objects.

Following are the various ways that you can retrieve, display, and print journal entry information:

Note: Read the Code example disclaimer for important legal information.

 Related concepts

 “Get information about remote journal entries” on page 324

Working with the journal entries in a remote journal is essentially the same as working with the

journal entries in a local journal.

Display and print journal entries:

276 IBM Systems - iSeries: Journal Management

|

Use the Display Journal (DSPJRN) command to display journal entries. The entries are displayed at a

work station, printed, or written to an output file. You cannot directly access the journal entries in the

form in which they are contained in the journal receivers.

 The Journal entry information finder describes each type of journal entry and the information that it

contains. It also provides links for topics that provide the layouts for the fixed-length portion and the

variable-length portion of the journal entry. See the Display Journal (DSPJRN) Command Description for

complete layouts for the model database output files that are provided by the system.

Often, to prepare for a recovery, you display or print the journal entries first. The Journal code

descriptions provides a description of each code. Use this list to help you analyze the journal entries and

to do the following:

v Prepare for the recovery of a particular object. The list contains the information you need to specify the

starting and ending points for applying and removing journaled changes.

v Determine the functions that have been performed on the objects that are being journaled (such as save

and restore, clear, reorganize).

v Determine the functions that have been performed on the journal (such as attaching new journal

receivers).

v Determine the functions that have been performed on the associated journal receivers (such as save

and restore).

v Review the activity that has occurred on an object.

v Analyze journal entries for debugging or problem analysis.

v Analyze journal entries for an audit trail.

The DSPJRN command can either selectively list journal entries for a particular object or list entries for all

objects within a particular library or directory subtree. You can further identify journal entries by

specifying other selection criteria such as:

v Journal entries for specific entry types or journal codes, such as U (user-created entries)

v Journal entries for a particular job, program, or file

v Commit cycle identifier

v Date and time

v Dependent entries (referential integrity, triggers, and entries that will be ignored during an Apply

Journaled Changes (APYJRNCHG) or Remove Journaled Changes (RMVJRNCHG) operation)

v Any combination of these

The online help describes all the parameters for the DSPJRN command. To view the help, type DSPJRN

on a command line and press F1.

Specify journal codes

You can display entries that have specific journal codes, such as all file-member-level entries (F), all

record-level entries (R), or all security entries (T). You specify journal codes in paired values. The first

value in the pair is the journal code. The second value indicates whether the object selections you have

specified apply when deciding to display entries with the journal code.

Following is an example:

DSPJRN JRN($JRNLIB/JRNA) FILE(CUSTLIB/FILEA)

 JRNCDE((F *ALLSLT) (R *ALLSLT)

 (U *IGNFLSLT))...

In this example, entries for the FILEA file with journal codes F and R are displayed if the entries meet all

other selection criteria, such as date and time. Entries with journal code U are displayed regardless of

Journal management 277

|
|
|

whether they are for file FILEA, because ignore file selection (*IGNFLSLT) is specified for journal code U.

Entries with journal code U must meet all other selection criteria, such as date and time, to be displayed.

Note: You can select similar entries for other object types using the OBJ or OBJPATH parameters and

specifying *IGNOBJSLT for the second value of the journal code.

Specify output

There are several ways to specify output for journal entries:

 Related concepts

 “Layouts for the fixed-length portion of journal entries” on page 185

Use this topic to determine layouts for the fixed-length portion of journal entries.

 “Layouts for variable-length portion of journal entries” on page 212

The following tables contain the variable-length portion of the layouts for journal entries.

 “Journal code descriptions” on page 133

This topic provides a description of all of the journal codes and categories.
 Related reference

 Display Journal (DSPJRN) command
 Related information

 Journal entry information finder

Output for journal entries directed to a workstation:

If you direct the output from the Display Journal (DSPJRN) command to the requesting workstation,

basic information about the journal entries appears. Use the roll key to display the next sequential set of

entries.

 If you specify a receiver range that includes an attached journal receiver, and you specify TOENT(*LAST)

or TOENTLRG(*LAST), the display shows last journal entries in the journal. Press the Page Down key to

see any new journal entries that are added to the attached receiver since the last time you pressed the

Page Down key.

The attached journal receiver in receiver range refers to the journal receiver that was currently attached

when the DSPJRN command was first issued. That journal receiver could be detached while you are

looking at the data online. If that occurs, paging down does not display any entries added after that

receiver was detached.

 Related reference

 Display Journal (DSPJRN) command

Output for journal entries directed to a database output file:

If you direct the output from the Display Journal (DSPJRN) command to a database output file, you can

further restrict the journal entries you want to process by creating logical files over the database output

file.

 Each journal entry occupies one record in the output file. Each has a fixed-length portion for standard

files. Before-images and after-images occupy separate records. The ENTDTALEN parameter controls the

length of the field that is used to contain the record image. The ENTDTALEN parameter also controls

whether the field is a fixed or variable length field. If the journal entry is smaller than the output file

record, the journal entry is padded with blanks. If the journal entry is larger than the output file record,

the remainder of the journal entry is truncated, and the system issues a warning message. To avoid

truncation, specify the maximum record length in your files for the ENTDTALEN parameter on the

DSPJRN command or specify *CALC for the ENTDTALEN parameter to allow the system to calculate the

length of the specific data field so no entry is truncated.

278 IBM Systems - iSeries: Journal Management

|
|

rzakifinder.htm

If you write journal entries to a database output file, you can write application programs that will process

the data to:

v Write your own apply program.

v Correct data that has been incorrectly updated.

v Remove or review all changes that were made by a particular program.

If you remove all changes that were made by a particular program, you could remove some valid

updates. For example, assume that two work station users are using the same program to update an

object, and one user enters some data that is not valid. If you remove all invalid data changes that are

made by that program, you also remove the valid data that is entered by the other work station user.

 Related reference

 Display Journal (DSPJRN) command

Format of database output files:

When you direct the output of the Display Journal (DSPJRN) command to a database file, the system

creates the output file records in a standard format.

 The system creates the database file in one of these standard formats that are determined by the value

that is specified for the OUTFILFMT parameter:

v *TYPE1

v *TYPE2

v *TYPE3

v *TYPE4

v *TYPE5

Fixed-length portion of the journal entry has a complete description of these formats.

You can create an output file to hold the output from the DSPJRN command, but the format has to match

the format of one of the IBM®-supplied output files.

Processing journal entry data

There are many ways to work with the journal entry data, including the entry-specific data, depending

on the command that you use to process the journal entry data.

v Use your high-level language (HLL) to subdivide the fields into subfields.

v Use the Retrieve Journal Entry (RTVJRNE) command and the substring built-in function.

v Use the Receive Journal Entry (RCVJRNE) command and the substring built-in function.

v Use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API and map out the data that is returned.

Analyzing your journal activity

You can use the DSPJRN command to help analyze your journal entries. For example, you could

determine how many of each type of entry (such as add or update) was done for a specific object or by a

specific user.

 Related concepts

 “Layouts for the fixed-length portion of journal entries” on page 185

Use this topic to determine layouts for the fixed-length portion of journal entries.
 Related reference

 Display Journal (DSPJRN) command

 Retrieve Journal Entry (RTVJRNE) command

Journal management 279

Receive Journal Entry (RCVJRNE) command

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Receive journal entries in an exit program:

You can write a program to receive journal entries as they are written to the journal receiver.

 When you use the Receive Journal Entry (RCVJRNE) command, you can specify a user-defined program,

called an exit program, to receive journal entries. The program can, for example, write the entries to tape

or to an i5/OS intersystem communications function (ICF) file that sends them to a backup system. You

can use the received entries to update a backup copy of the primary object on the backup system. You

cannot use these received entries with system-supplied recovery commands (Apply Journaled Changes

(APYJRNCHG) and Remove Journaled Changes (RMVJRNCHG)) to update your objects because the

RCVJRNE command converts the entries to their external form. You must write your own program to

apply the changes that are contained in the entries to the objects.

The RCVJRNE command supports the same selection criteria (database files, data areas, data queues, or

integrated file system objects) as the Display Journal (DSPJRN) command. You can specify which entries

go to the exit program.

For example, you can choose not to receive journal entries that are generated by the action of trigger

programs or referential constraints. If you have a user-written program that updates the files on a second

system with the journal entries, you probably want to specify DEPENT(*NONE). The actions performed

by trigger programs or referential constraints are duplicated automatically on the second system if your

database definitions are the same and you replay the original file operations.

You can specify DELAY(*NEXTENT) to have journal entries sent to your program as soon as they are

written to the journal receiver. You can also specify a time interval. The exit program will be called

sometime within that time interval. Either new entries are sent or an indicator is sent that there are no

new entries.

 Related concepts

 “Retrieve journal entries from a remote journal during the catch-up phase” on page 327

During the catch-up phase, journal entries that have been replicated to the target system can be

retrieved from the remote journal.
 Related reference

 Receive Journal Entry (RCVJRNE) command

 Display Journal (DSPJRN) command

Exit program to receive journal entries:

Use the parameters in this topic to determine how the exit program will receive journal entries.

 You use two parameters to communicate between your exit program and the system when you are

receiving journal entries. The system uses the first parameter for the contents of one or more journal

entries that it is passing to the exit program. The exit program uses the first parameter to indicate the

block length if the exit program requests block mode.

The system and the exit program use the second parameter to communicate about status changes, such as

requesting block mode or ending the RCVJRNE command. The second parameter is a character field that

is three bytes long. Following are the possible values for the first byte of the second parameter:

 Possible values for the first byte of the second parameter

0 This value is passed from the system to the exit program. It indicates that no journal entry is being

passed on this call of the exit program.

280 IBM Systems - iSeries: Journal Management

Possible values for the first byte of the second parameter

1 This value is passed from the system to the exit program. It indicates that a single journal entry is

being passed on this call of the exit program. If the specified entry format is not *TYPEPTR or

*JRNENTFMT, then the figure, First parameter of RCVJRNE command: Single-entry mode shows the

layout of the first parameter. Otherwise, the layout is the same as returned to the Retrieve Journal

Entries (QjoRetrieveJournalEntries) API interface.

2 This value is passed from the system to the exit program. It indicates that block mode is in effect.

One or more journal entries are being passed on this call of the exit program. If the specified entry

format is not *TYPEPTR or *JRNENTFMT, then the figure, First parameter of RCVJRNE command:

Block mode shows the layout of the first parameter. Otherwise, the layout is the same as returned to

the QjoRetrieveJournalEntries API interface.

3 This value is passed from the system to the exit program. It indicates that no journal entry is being

passed on this call of the exit program because the journal receiver that was attached when the

Receive Journal Entry (RCVJRNE) command was started is no longer attached. The system ends the

RCVJRNE command after returning this value to the exit program.

4 No journal entry is passed on this call to the exit program, and no more entries can be passed

unless the local or remote journal is activated.

This value can only be passed to the exit program when receiving journal entries from the attached

receiver of a local or remote journal. The journal state for the journal must be *INACTIVE.

8 This value is passed from the exit program to the system. It indicates that the system must begin

block mode and pass multiple entries to the exit program.

You can also specify block mode by using the BLKLEN parameter of the RCVJRNE command. If

you specify a BLKLEN value other than *NONE, then specifying 8 in the first byte of the second

parameter will have no impact and the first 5 bytes of the first parameter bill be ignored. However

even if BLKLEN(*NONE) is specified, the system will begin block mode if you specify 8 for the first

byte of the second parameter. See Request block mode for more information.

9 This value is passed from the exit program to the system. It indicates that the RCVJRNE command

will be ended.

 Possible Values for the Second Byte of the Second Parameter:

N This value is passed from the system to the exit program. Additional journal entries are not

currently available to be passed after this call of the exit program, or the RCVJRNE command will

end after this call of the exit program.

Y This value is passed from the system to the exit program. Additional journal entries are currently

available to be passed after this call of the exit program.

 Possible values for the third byte of the second parameter:

’00’ x One or more journal entries are being passed to the exit program and the object names in the

fixed-length portion of each journal entry do not necessarily reflect the name of the object at the

time the journal entry was deposited into the journal.

This value is only returned when receiving journal entries from a journal receiver that was attached

to a journal prior to V4R2M0.

0 No journal entries are currently being passed, so the information that is normally returned in this

byte is not applicable.

1 One or more journal entries are being passed to the exit program. The object names in the

fixed-length portion of each journal entry reflect the name of the object at the time the journal entry

was deposited into the journal.

Journal management 281

Possible values for the third byte of the second parameter:

2 One or more journal entries are being passed to the exit program. The object names in the

fixed-length portion of each journal entry do not necessarily reflect the name of the object at the

time the journal entry was deposited into the journal. The object name in the fixed-length portion of

the journal entry may be returned as a known name for the object prior to the journal entry being

deposited into the journal. The object name in the fixed-length portion of the journal entry may also

be returned as *UNKNOWN.

This value will only be returned when receiving journal entries from a remote journal and the

remote journal is currently being caught up from its source journal. A remote journal is being caught

up from its source journal when the Change Journal State (QjoChangeJournalState) API or Change

Remote Journal (CHGRMTJRN) command is invoked and is currently replicating journal entries to

the remote journal. After the call to the QjoChangeJournalState API or CHGRMTJRN command

returns, the remote journal is maintained with a synchronous or asynchronous delivery mode, and

the remote journal is no longer being caught up.

Refer to Retrieve journal entries from a remote journal during the catch-up phase for more

information.

Any information that is passed from the exit program to the system in the second byte or third byte is

ignored.

The second byte of the second exit program parameter is provided whether journal entries are being

processed as a single journal entry per call of the exit program, or as a block of journal entries per call.

When an N is passed to the exit program in the second byte of the second parameter indicated that no

additional journal entries are currently available, it does not necessarily mean that when the exit program

returns, that the RCVJRNE command will have to wait for additional journal entries to be deposited into

the journal. By the time the exit program returns, additional journal entries may already be available and

depending upon what was specified on the DELAY parameter, may or may not be immediately passed to

the exit program. If DELAY(N) was specified the system will wait N seconds before passing the journal

entries to the exit program. If DELAY(*NEXTENT) was specified, the journal entries will immediately be

passed to the exit program.

 Related concepts

 “Request block mode”

Use block mode to specify whether the system will be sending one or more journal entries to the exit

program and specifies the block length of the buffer passed to the exit program.

 “Retrieve journal entries from a remote journal during the catch-up phase” on page 327

During the catch-up phase, journal entries that have been replicated to the target system can be

retrieved from the remote journal.
 Related reference

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

 Receive Journal Entry (RCVJRNE) command

 Change Journal State (QjoChangeJournalState) API

 Change Remote Journal (CHGRMTJRN) command

Request block mode:

Use block mode to specify whether the system will be sending one or more journal entries to the exit

program and specifies the block length of the buffer passed to the exit program.

 When you request block mode, the system sends more than one journal entry to the exit program at a

time. You can request block mode at any time. There are two ways that you can request block mode:

v Specify the BLKLEN parameter on the Receive Journal Entry (RCVJRNE) command

282 IBM Systems - iSeries: Journal Management

v Specify 8 for the value of the first byte of the second parameter of the exit program

BLKLEN parameter of the RCVJRNE command

When you specify the BLKLEN parameter of the RCVJRNE command you can select one of three values:

*NONE

At most one journal entry will be sent to the exit program.

*CALC

One or more journal entries will be passed to the exit program in a block. The length of the block

passed (the first parameter passed to the exit program) is determined by the system and will be

optimal.

block-length

Specify the length in kilobytes of the buffer passed to the exit program (EXITPGM parameter).

Valid values range from 32 to 4000

If you specify BLKLEN(*CALC) or BLKLEN(block-length), specifying 8 in the first byte of the second

parameter will have no impact and the first 5 bytes of the first parameter will be ignored.

Specify 8 for the value of the first byte of the second parameter of the exit

program

When you specify 8 for the value of the first byte of the second parameter, you must specify the block

length in the first 5 bytes of the first parameter as a zoned decimal (Zoned (5,0)) field. 99999 bytes is the

maximum block size. After you have requested block mode, the system remains in block mode until the

RCVJRNE processing is ended.

If you request block mode and the system is already using block mode, your request is ignored. You

cannot change the size of the block from the size you specified when you first requested block mode.

Even if BLKLEN(*NONE) is specified, if you specify 8 for the value of the first byte of the second

parameter, the system will use block mode.

Format of the first Parameter

If the specified entry format is not *TYPEPTR or *JRNENTFMT, and if you are using single-entry mode,

the format of the first parameter looks like the following figure:

First parameter of RCVJRNE command: Single-entry mode

The first 5 bytes contains the length of the entry. The last 5 bytes contains all zeroes. The length of the

entry does not include the 5 bytes of zeroes at the end of the record.

Journal management 283

If the specified entry format is not *TYPEPTR or *JRNENTFMT, and if you are using block mode, the

format of the first parameter looks like the following figure:

First parameter of RCVJRNE command: Block mode

The first 5 bytes contains the total length of the block. This length includes the 5 bytes for the total block

length, the 5 bytes of the End of Record field at the end of the block, and all of the length and data fields

in between. If no entry is being passed, this Block Length field contains zeroes. The block always ends

with a 5-byte End of Record field containing zeroes.

If you specify BLKLEN(*NONE), then the system fills the block with as many complete entries as it can

fit within the block size that you specified. The system does not send a partial entry to fill the block size.

If the specified entry format is not *TYPEPTR or *JRNENTFMT, the maximum number of bytes that are

available for the journal entries is 99989 bytes. 10 bytes in each block are reserved for the Block Length

field and for the End of Record field. If the specified entry format is *TYPEPTR or *JRNENTFMT, the

maximum number of bytes that are available is 99999 bytes.

If you specify a block size that is not valid, the system begins block mode but it sends only one journal

entry per block. The system sends message CPD7095 to indicate that you have specified a block size that

is not valid. If you specify a block size that is not valid or too small for a single journal entry, the system

still returns at least one journal entry to the exit program. If the specified entry format is *TYPEPTR or

*JRNENTFMT, the block size must be at least 13 bytes to be considered valid.

When the System Sends a Record

When block mode is in effect, the system uses the following rules to determine when to call the exit

program:

v If the block does not contain any entries but the next entry would exceed the maximum size for the

block, then the entry is placed into the block. The exit program is called. The system always passes at

least one complete journal entry to the exit program.

v If the next entry to be put into the block would exceed the maximum size for the block and the current

block has entries in it, then the current block of entries is passed to the exit program.

284 IBM Systems - iSeries: Journal Management

v If the current block has one or more entries in it and no additional entries in the journal meet the

selection criteria, the current block of entries is passed to the exit program.

When in block mode, the specification for the DELAY parameter is used only when the current block is

empty and no entries are currently available to be returned to the exit program.

Use ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT) with the RCVJRNE command

If the specified entry format is *TYPEPTR or *JRNENTFMT, the layout of the journal entry data is the

same as the layout that is described in the QjoRetrieveJournalEntries API interface. The layout is the same

for both single entry and block entry mode when you specify *TYPEPTR or *JRNENTFMT.

If you specify *TYPEPTR, the format will be the same as the RJNE0100 format of the

QjoRetrieveJournalEntries API.

When you specify *TYPEPTR or *JRNENTFMT, the journal entry data may have pointers that will point

to additional entry-specific data. See Work with pointers in journal entries for more information.

 Related concepts

 “Exit program to receive journal entries” on page 280

Use the parameters in this topic to determine how the exit program will receive journal entries.

 “Work with pointers in journal entries” on page 286

Under certain conditions, not all of the journal entry data will be immediately retrievable from a

journal entry. Instead, part of the journal entry information will include pointers to additional journal

entry-specific data.
 Related reference

 Receive Journal Entry (RCVJRNE) command

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Retrieve journal entries in a program:

Use the Retrieve Journal Entry (RTVJRNE) command or the Retrieve Journal Entries

(QjoRetrieveJournalEntries) API in a program to retrieve a journal entry and place it in a variable in the

program.

 You can also use the QjoRetrieveJournalEntries API to retrieve a journal entry and return data which can

include pointers.

RTVJRNE command

Use the RTVJRNE command in a program to retrieve a journal entry and place it in variables in the

program. You can retrieve the following:

v Sequence number

v Journal code

v Entry type

v Journal receiver name

v Library name for the journal receiver

v Journal entry-specific data

You can use this method to create programs to automate recovery. For layout of the fixed-length portion

and variable-length portion of a journal entry see the Journal entry information finder.

The RTVJRNE command supports the same selection criteria (database files, data areas, data queues, or

integrated file system objects) as the Display Journal (DSPJRN) command. You can specify which entries

Journal management 285

go to the exit program. For the format of the record for the RTVJRNE command, see the Retrieve Journal

Entry (RTVJRNE) Command Description.

The QjoRetrieveJournalEntries API

The QjoRetrieveJournalEntries API allows you to retrieve journal entries into a receiver variable. The

available journal entry information is similar to what is provided by using the Display Journal (DSPJRN),

Receive Journal Entry (RCVJRNE), and Retrieve Journal Entry (RTVJRNE) commands, but it also provides

additional journal entry data that cannot be retrieved with these commands. This additional data is

accessed using pointers. Refer to Working with pointers in journal entries for more information.

 Related concepts

 “Work with pointers in journal entries”

Under certain conditions, not all of the journal entry data will be immediately retrievable from a

journal entry. Instead, part of the journal entry information will include pointers to additional journal

entry-specific data.

 “Replay a database operation from a single journal entry” on page 288
Use the Replay Database Operation (QDBRPLAY) API to replay a database operation from a single

journal entry. You can only use the QDBRPLAY API to replay journal entries for database file objects.

Also, the API does not run under commitment control even if the original journal entry was

performed as part of a committable transaction.
 Related reference

 Retrieve Journal Entry (RTVJRNE) command
 Related information

 Journal entry information finder

Work with pointers in journal entries:

Under certain conditions, not all of the journal entry data will be immediately retrievable from a journal

entry. Instead, part of the journal entry information will include pointers to additional journal

entry-specific data.

 These pointers will only be retrieved if you use following:

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

v The *TYPEPTR format on the Receive Journal Entry (RCVJRNE) command

v The *JRNENTFMT format on the RCVJRNE command (you must also specify the RTNPTR parameter

for the RCVJRNE command)

In all other retrievals of journal entry data, *POINTER would be in the field where a pointer could exist.

An incomplete data indicator has been added to indicate if the journal entry-specific data has data

missing which can only be retrieved through a pointer

If the QjoRetrieveJournalEntries API or the *TYPEPTR or *JRNENTFMT format on RCVJRNE command is

used and the incomplete data indicator field is 1, the journal entry-specific data will contain pointers. For

all other interfaces, if the incomplete data indicator is 1, the journal entry-specific data will have the

character string *POINTER in the field where an actual pointer would be placed if the API or *TYPEPTR

or *JRNENTFMT interfaces were used. The incomplete data indicator field could be set to 1 if the journal

entry-specific data exceeds 32766 bytes, or if the journal entry is associated with a database file which has

one or more fields of data type BLOB (binary large object), CLOB (character large object), or DBCLOB

(double-byte character large object). Use the Journal entry information finder to find which journal entry

types can set the incomplete data indicator on.

These pointers can only be used with the V4R4M0 and later versions of the following languages:

v ILE/COBOL

286 IBM Systems - iSeries: Journal Management

rzakifinder.htm

v ILE/RPG

v ILE/C if the TERASPACE parameter is used when compiling the program. See WebSphere®

Development Studio ILE C/C++ Programmer’s Guide for information about using the TERASPACE

parameter.

There are some considerations you need to be aware of when using the pointer data:

v The pointer can only be used by the process or job which retrieved or received the journal entry which

contained the pointer. The pointer cannot be passed on to another job, nor can it be stored to use at a

later date by a different job or process.

v The pointer will only give you read access to the additional data. Write operations to that pointer are

not allowed.

v The data that is being pointed to actually resides in the journal receiver. Therefore, ensure that you

protect the journal receiver from deletion until you use the data. To prevent a journal receiver from

being deleted before the data is used, you can register an exit point for the Delete Journal Receiver

(DLTJRNRCV) command.

v For files with fields of data type BLOB (binary large object), CLOB (character), or DBCLOB

(double-byte character large object), use SQL to update the files.

If any journal entries are returned with pointers, the journal entry will also contain a pointer handle. This

pointer handle must be used to free up any allocations associated with the pointer data once the pointer

data has been used. The considerations for this pointer handle are as follows:

v Using the pointer data means any of the following:

– Addressing the information and copying the addressed data to another object

– Using the journal entry-specific data directly to modify another object. For example, using the data

to update a database file with the journal entry which represents a database record update for a file

which included LOBs.

– Ignoring the additional data that is pointed to
v If you used the QjoRetrieveJournalEntries API, use the Delete Pointer Handle (QjoDeletePointerHandle)

API to delete the pointer handle when you are done using it.

v If you use the RCVJRNE command with the RTNPTR(*SYSMNG) parameter, you must use the

associated pointer prior to returning control from the exit program. The system will delete all pointer

handles after the return from the exit program call.

v If you use the RCVJRNE command with the RTNPTR(*USRMNG) parameter, then it is your

responsibility to use the Delete Pointer Handle (QjoDeletePointerHandle) API to delete the pointer

handle when you are done using it.

 Related concepts

 “Request block mode” on page 282

Use block mode to specify whether the system will be sending one or more journal entries to the exit

program and specifies the block length of the buffer passed to the exit program.

 “Retrieve journal entries in a program” on page 285

Use the Retrieve Journal Entry (RTVJRNE) command or the Retrieve Journal Entries

(QjoRetrieveJournalEntries) API in a program to retrieve a journal entry and place it in a variable in

the program.
 Related tasks

 “Delete journal receivers” on page 77

Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal

management task is to delete journal receivers after you no longer need them.
 Related reference

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

 Receive Journal Entry (RCVJRNE) command

 Delete Journal Receiver (DLTJRNRCV) command

Journal management 287

Delete Pointer Handle (QjoDeletePointerHandle) API
 Related information

 Journal entry information finder

Replay a database operation from a single journal entry:

Use the Replay Database Operation (QDBRPLAY) API to replay a database operation from a single

journal entry. You can only use the QDBRPLAY API to replay journal entries for database file objects.

Also, the API does not run under commitment control even if the original journal entry was performed as

part of a committable transaction.

 Since these database journal entries can be very large, be sure to retrieve the journal entries using an

interface that supports pointers (either the Retrieve Journal Entries (QjoRetrieveJournalEntries) API or the

Receiver Journal Entry (RCVJRNE) command).

You can use the QDBRPLAY API to replay the following journal entries. You can get more information

about these journal entries in the Journal entry information finder.

 Journal code Entry type Description

D AC Add Constraint

D CG Change File

D CT Create File

D DC Remove Constraint

D DT Delete File

D FM Move File

D FN Rename File

D GC Change Constraint

D GO Change Owner

D GT Grant File

D RV Revoke File

D TC Add Trigger

D TD Remove Trigger

D TG Change Trigger

D TQ Refresh Table

F CB Change Member

F DM Remove Member

F MC Add Member

F MN Rename Member

F RM Reorganize Member

Rename exit program

The QDBRPLAY API has an exit program that can change the names of the objects that are referenced in

the journal entry. If a rename exit program is specified, each name referenced during the replay of the

operation will be passed to the rename exit program. The names passed to the rename exit program

might be short names or long SQL names. The same name might be passed to the exit program more

than once if it is referenced in the internal journal entry specific data more than once. If the names are

288 IBM Systems - iSeries: Journal Management

|

|
|
|
|

|
|
|

|
|

||||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

|
|
|
|
|

rzakifinder.htm

changed by the rename exit program, the names are case sensitive and must conform to any i5/OS and

SQL rules for object names.

 Related concepts

 “Retrieve journal entries in a program” on page 285

Use the Retrieve Journal Entry (RTVJRNE) command or the Retrieve Journal Entries

(QjoRetrieveJournalEntries) API in a program to retrieve a journal entry and place it in a variable in

the program.
 Related reference

 Replay Database Operation (QDBRPLAY) API

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API
 Related information

 Journal entry information finder

Considerations for entries which contain minimized entry-specific data:

Reduce the size of journal receivers by specifying minimized entry-specific data on the Create Journal

(CRTJRN) and Change Journal (CHGJRN) commands.

 If you have selected to use the MINENTDTA parameter for the journal, then some of your journal entries’

entry-specific data will be minimized. The entries will only be minimized if the minimization technique

will deposit a journal entry which is smaller in size than the complete entry would be. Use the Journal

entry information finder to see which specific journal entry types can possibly be minimized. When the

entry is minimized, the fixed-length portion of the journal entry will have the minimized entry-specific

data indicator on. Currently, only data areas and database physical files can have their entry-specific data

minimized.

Data area considerations

The layout of the data area entries which are minimized is exactly the same as the layout if the entry was

not minimized. The only difference is that only the bytes which actually changed are deposited rather

than depositing all the bytes on the change request. See Update data area journal entries for the entry

layout of the change data area entries.

Database physical file considerations

The layout of the minimized record changes entries is completely different than the layout when the

entry is not minimized. If MINENTDTA(*FILE) is used, the data is not readable because sophisticated

hash techniques are used in addition to only operating on actual changed bytes. Additionally, the

Null-value-indicators field will be used, even if the file is not null capable, to provide additional

information that can be used by database operations. Therefore, if you want to use the journal as an audit

mechanism, you may not want to choose the MINENTDTA(*FILE) option for database physical files since

you will not be able to read the actual change made.

If minimized journal entries are collected on field boundaries using the MINENTDTA(*FLDBDY) option,

the data within the journal entries may be displayed in the recognizable record layout of the file. When

this option is used, fields that were not collected will display default data and the null value indicator

table will use a new value to indicate which fields are showing the actual data versus which ones are

showing default data because the fields were not collected. A ‘9’ in the null value field will indicate the

data is not actual data and that it was filled in with default data.

Even if the file is not null capable, the Null value indicators field is used to provide additional

information that can be used by database operations. Therefore, if you want to use the journal for

auditing purposes, you may want to use the *FLDBDY value on the Minimized entry specific data

(MINENTDTA) parameter for the CRTJRN and CHGJRN commands discussed below.

Journal management 289

|
|

|

|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

rzakifinder.htm

View minimized entry-specific data

The *FLDBDY value indicates that minimizing of record level changes should be done on field/column

boundaries for all files journaled to the specified journal. Using the Display Journal (DSPJRN) command,

entries are viewable to the screen, an outfile, or printed output. If a journal entry has been minimized on

field boundaries, the value of 2 is returned in the Minimized entry specific data field of the *OUTFILE

and in the Min field of the printed output. The RCVJRNE and RTVJRNE commands can also be used to

view entries that were minimized on field boundaries by specifying *YES on the Format minimized data

(FMTMINDTA) parameter. The QjoRetrieveJournalEntries API can be used to view entries that were

minimized on field boundaries by specifying *YES for the Format minimized data (FMTMINDTA) key.

 Related concepts

 “Minimized entry-specific data for journal entries” on page 49

On the Create Journal (CRTJRN) and Change Journal (CHGJRN) commands, you can specify to allow

for the deposit of minimized journal entries. This will decrease the size of your journal entries.

 “Layouts for variable-length portion of journal entries” on page 212

The following tables contain the variable-length portion of the layouts for journal entries.
 Related reference

 Create Journal (CRTJRN) command

 Change Journal (CHGJRN) command
 Related information

 Journal entry information finder

Remote journal management

Use remote journal management to establish journals and journal receivers on a remote system that are

associated with specific journals and journal receivers on a local system. Remote journal management

replicates journal entries from the local system to the journals and journal receivers that are located on

the remote system after they have been established.

Remote journal management allows you to establish journals and journal receivers on a remote system or

to establish journal and receivers on independent disk pools that are associated with specific journals and

journal receivers on a local system. The remote journaling function can replicate journal entries from the

local system to the journals and journal receivers that are located on the remote system or independent

disk pools after they have been established.

Use the following information to set up remote journal management:

 Related concepts

 “How journal management works” on page 12
Use journal management to create an object called a journal. Use a journal to define which objects

you want to protect. You can have more than one journal on your system. A journal can define

protection for more than one object.

 “Plan for journal management” on page 18

This topic provides you with the information you need to ensure you have enough disk space, to plan

what objects to journal, and to plan which journaling options to use.

Remote journal concepts

Remote journal management helps to efficiently replicate journal entries to one or more systems. You can

use remote journal management with application programs to maintain a data replica. A data replica is a

copy of the original data that resides on another iSeries server or independent disk pool. The original

data resides on a primary system. Applications make changes to the original data during normal

operations.

290 IBM Systems - iSeries: Journal Management

|

|
|
|
|
|
|
|
|

rzakifinder.htm

Prior to V4R2M0, you could have accomplished a similar function by using the Receive Journal Entry

(RCVJRNE) command. In that environment, the RCVJRNE exit program receives journal entries from a

journal, and then sends the journal entries to the remote system by using whatever communications

method is available. All of this processing occurs asynchronously to the operation that is causing the

journal entry deposit and takes place at an application layer of the system.

The remote journal function, however, replicates journal entries to the remote system at the Licensed

Internal Code layer. Moving the replication to this lower layer provides the following:

v The remote system handles more of the replication overhead

v Overall system performance and journal entry replication performance is improved

v Replication can (optionally) occur synchronously to the operation that is causing the journal entry

deposit

v Journal receiver save operations can be moved to the remote system.

The figures below illustrate a comparison of a hot-backup environment with and without remote journal

management. Hot-backup is the function of replicating an application’s dependent data from a primary

system to a backup system. The primary system is the system where the original data resides. The

backup system is the system where a replica of the original data is being maintained. In the event of a

primary system failure, you can perform a switch-over to the backup system.

Hot-backup environment without remote journal function, and application-code based apply

This figure above illustrates that processing with the RCVJRNE command occurs asynchronously to the

operation that is causing the journal entry deposit. This processing requires more overhead than the

remote journal function.

Hot-backup environment with remote journal function, and application-code based apply

Journal management 291

|
|
|

This figure above illustrates that processing with the remote journal function occurs synchronously to the

operation that is causing the journal entry deposit. This processing requires less overhead than the

RCVJRNE command.

The following topics provide more information about remote journaling:

 Related reference

 Receive Journal Entry (RCVJRNE) command

Network configurations for remote journals

This topic describes various network configuration for remote journals.

The following figure shows the two basic remote journal function configurations.

292 IBM Systems - iSeries: Journal Management

|
|
|

A broadcast configuration is a journal that replicates its journal entries to one or more remote journals. A

cascade configuration is a remote journal that replicates its journal entries to an additional remote journal.

The additional remote journal can replicate the entries to yet another remote journal, and so on. The

remote journal function configurations can stand alone or can be combined with one another. For

example, one or more of the remote journals in the broadcast configuration could cascade down to

several additional remote journals. Likewise, one or more remote journals in the cascade configuration

could broadcast out to one or more remote journals.

A local journal is populated by applications that are depositing journal entries. A remote journal is

populated by receiving its journal entries from either a local or another remote journal. The journals are

paired, as depicted in the preceding figure where (S) represents a journal on a source system, and (T)

represents a journal on a target system. In the cascade configuration, a remote journal can be a recipient

of journal entries (a target), and a replicator of journal entries (a source) at the same time.

A source system is a system where a journal resides and is having its journal entries replicated to a

remote journal on a target system.

Note: A source system is not necessarily the primary system. For example, a remote journal that is

cascading its journal entries to another remote journal is said to reside on a source system.

Journal management 293

A target system is a system where a remote journal resides and is receiving journal entries from a journal

on a source system.

A remote journal network includes the local journal and all of the remote journals that are downstream

from that local journal. You can set up the remote journal network in broadcast configuration, cascade

configuration, or a combination of the two configurations.

In many environments, users attempt to minimize the amount of processing that the local or primary

system performs by shifting as much of the processing as possible to other systems in the network. A

combination of the broadcast and cascade configurations allows for this when replicating the journal

entries from a single system to multiple other systems. For example, replicating a local journal to a single

remote journal on a target system will minimize the replication cost on the primary system. Then, from

the target system, the replicated journal can be asynchronously replicated by either a broadcast or cascade

configuration to other remote journals on other systems. This allows all of the journal entries to be

known to all desired systems, while requiring a minimal amount of processing on the primary system.

The following characteristics apply to local journals and to any journal receivers that were attached to

local journals:

v Objects can be journaled to local journals.

v Journal entries can be directly deposited to local journals. For example, the Send Journal Entry

(SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API can be used to send journal entries

directly to a local journal.

The following characteristics apply to remote journals and to any journal receivers that were attached to

remote journals:

v Objects cannot be journaled to remote journals.

v Journal entries cannot be directly deposited to remote journals. For example, the Send Journal Entry

(SNDJRNE) command or API (QJOSJRNE) cannot be used to send journal entries directly to a remote

journal.

v Journal entries are only replicated to remote journals from an associated source journal. A source

journal is the journal on the source system to which a remote journal has been added. A source journal

can be either a local or a remote journal.

v The information in the journal entries such as time stamps, system name, and qualified journal receiver

names reflect information as deposited in the local journal for this remote journal network.

v The information in the journal receiver such as attach time and detach time reflect the information as it

is for the local journal for the remote journal network.

v Certain attributes of the remote journal are fixed and determined based on the source journal, such as

the values for the journal receiver, manage receiver, manage receiver delay, receiver size options,

journal cache, fix length data, threshold, journal object limit, and journal recovery count. These

attributes cannot be changed because either they do not apply for a remote journal or they can only be

changed by changing the attributes of the source journal.

 Related concepts

 “Add remote journal process” on page 300

Adding a remote journal creates a remote journal on a target system or independent disk pool and

associates that remote journal with the journal on the source system. This occurs if this is the first time

the remote journal is being established for a journal. The journal on the source system can be either a

local or remote journal.

Types of remote journals

The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational

characteristics of a remote journal and its associated journal receivers. The following table is an overview

of the different remote journal types and their characteristics. There are no performance differences

between the types of remote journals.

294 IBM Systems - iSeries: Journal Management

|
|
|
|
|

Local journal *TYPE1 remote journal *TYPE2 remote journal

Remote journal types that

can be added

*TYPE1 *TYPE2 *TYPE1 *TYPE2 *TYPE2

Remote journal name N/A Journal name must be the

same as the local journal.

Journal name may be

different from the source

journal.

Journal library redirection N/A Journal library name may

be redirected to a single

different library from that

of the local journal.

Subsequent adds of *TYPE1

remote journals must

specify the same library

redirection that was

specified on the previously

added *TYPE1 remote

journal.

A given redirected library

may be specified when

adding a remote journal.

Subsequent adds of *TYPE2

remote journals may

specify a different library

redirection than was

specified on any previously

added remote journal.

Journal receiver library

redirection

N/A Receiver library name may

be redirected to a single

different library from that

of the receivers associated

with the local journal.

Subsequent adds of *TYPE1

remote journals must

specify the same library

redirection that was

specified on the previously

added *TYPE1 remote

journal.

A given redirected library

may be specified when

adding a remote journal.

Subsequent adds of *TYPE2

remote journals may

specify a different library

redirection than was

specified on any previously

added remote journal.

Journal receiver library

redirection used on activate

N/A The target library used

when replicating a receiver

from the source journal to

this remote journal will

reflect the library

redirection that was in

place for the receiver, if

any, at the time the receiver

was attached to the source

journal.1

The target library used

when replicating a receiver

from the source journal to

this remote journal will

reflect the library

redirection that is currently

defined for the target

journal.

Receiver restore

characteristics2, 3

Receivers associated with

the local journal can be

saved and restored to the

local system or to any of

the systems for the *TYPE1

remote journals and be

linked into the correct

receiver chain of the local

journal or the *TYPE1

remote journal.

Receivers associated with

the local journal or any of

the *TYPE1 remote journals

can be saved and restored

to the local system or to

any of the systems where

the *TYPE1 remote journals

reside and be linked into

the correct receiver chain of

the journal.

Receivers associated with a

given *TYPE2 remote

journal can be saved and

restored to the local system

or to the same system

where the *TYPE2 remote

journal resides and be

linked into the correct

receiver chain of the

journal.

Journal management 295

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Local journal *TYPE1 remote journal *TYPE2 remote journal

Notes:

1If the journal receiver was attached to a journal when no remote journals were added, then no library redirection is

assumed for that journal receiver if that receiver is specified during activation. Therefore, the journal receiver will be

created in the same library on the target system as it is on the local system.

2A journal receiver from any system in the remote journal network may always be restored to any system if the

receiver is being restored into the original or redirected receiver library. Otherwise, receivers can always be restored

to any system and associated with a local journal if a local journal by the same name as the original local journal is

found residing in the same named original local journal library.

3If a journal receiver’s original or redirected library exists in an independent disk pool, then the ASP group name

for the independent disk pool is used in place of the system name when making restore decisions.

See Considerations for save and restore operations with remote journals for more information.

 Related concepts

 “Considerations for save and restore operations with remote journals” on page 331

The following information describes general considerations for save and restore operations with

remote journals:

 “Add remote journal process” on page 300

Adding a remote journal creates a remote journal on a target system or independent disk pool and

associates that remote journal with the journal on the source system. This occurs if this is the first time

the remote journal is being established for a journal. The journal on the source system can be either a

local or remote journal.

 “Library redirection with remote journals” on page 302
Library redirection provides a means for remote journals and any of their associated journal receivers

to optionally reside in differently named libraries on the target system from the corresponding local

journal and journal receivers on the local system.
 Related tasks

 “Rules for saving and restoring journal receivers” on page 332

The restore relationships for journal receivers associated with remote journals are described in this

topic.

Journal state and delivery mode

The journal state describes an attribute for a journal. The attribute value can be *ACTIVE, *INACTIVE

(remote journal only), or *STANDBY (local journal only). For a local journal, *ACTIVE indicates that

journal entries are currently allowed to be deposited into the journal. *STANDBY indicates that most

journal entries are not deposited.

You can view the journal state for a remote journal on a target system that is associated with a journal on

a source system in one of two ways:

v When viewing the remote journal information of the local journal from the source, *ACTIVE indicates

that journal entries are currently being replicated to that remote journal on the target system.

*INACTIVE indicates that journal entries are not currently being replicated.

v When viewing the journal attributes of the remote journal from the target, *ACTIVE indicates that

journal entries are currently being received from the journal on the source system. *INACTIVE

indicates that the target journal is not ready to receive journal entries from the source journal.

296 IBM Systems - iSeries: Journal Management

|
|
|

|
|
|

The following table provides a summary of the journal type, delivery mode and journal state interactions.

 Journal type Delivery mode Journal state Comments

*LOCAL Not applicable *ACTIVE Objects journaled to the

local journal can be

changed, and entries can

also be deposited into the

local journal using the Send

Journal Entry (SNDJRNE)

command or the Send

Journal Entry (QJOSJRNE)

API interfaces. The

currently attached journal

receiver may or may not be

currently replicated to one

or more remote journals.

This depends upon

whether any remote

journals have been added

to the local journal’s

definition, and if so, the

current journal state for

each of those remote

journals.

*LOCAL Not applicable *STANDBY This is the state of a local

journal after the Change

Journal (CHGJRN)

command specifying

JRNSTATE(*STANDBY) is

used to not allow deposits

into the local journal. The

local can journal can also

be in *STANDBY state after

an IPL if the local journal is

in *STANDBY state when

the system ends.

Objects journaled to the

local journal can be

restored or changed, but

most journal entries are not

deposited until the journal

state for the local journal is

again changed to *ACTIVE.

This can be performed by

using the Change Journal

(CHGJRN) command

specifying

JRNSTATE(*ACTIVE).

Journal management 297

Journal type Delivery mode Journal state Comments

*REMOTE *SYNCPEND *ACTIVE This is the state after a

remote journal has been

activated using the Change

Journal State

(QjoChangeJournalState)

API or CHGRMTJRN

command and the

processing is still in the

catch-up phase of remote

journal activation.

Synchronous delivery mode

was requested on the API

invocation.

*REMOTE *SYNC *ACTIVE This is the state after a

remote journal has been

activated using the Change

Journal State

(QjoChangeJournalState)

API or CHGRMTJRN

command, after catch-up

has completed, and changes

to the currently attached

journal receiver for the

journal on the source

system are being replicated

synchronously to the

remote journal on the target

system.

*REMOTE *ASYNCPEND *ACTIVE This is the state after a

remote journal has been

activated using the Change

Journal State

(QjoChangeJournalState)

API or CHGRMTJRN

command and the

processing is still in the

catch-up phase of remote

journal activation.

Asynchronous delivery

mode was requested on the

API invocation.

*REMOTE *ASYNC *ACTIVE This is the state after a

remote journal has been

activated using the Change

Journal State

(QjoChangeJournalState)

API or CHGRMTJRN

command, after catch-up

has completed, and changes

to the currently attached

journal receiver for the

journal on the source

system are being replicated

asynchronously to the

remote journal on the target

system.

298 IBM Systems - iSeries: Journal Management

Journal type Delivery mode Journal state Comments

*REMOTE *SYNC *INACTPEND This is the state of a remote

journal, viewed from the

target system where some

failure has occurred and

either the system is in the

process of inactivating the

remote journal, or

unconfirmed journal entries

exist in the remote journal.

See Confirmed and

unconfirmed journal entries

for more information.

*REMOTE *ASYNC *INACTPEND This is the state of a remote

journal, viewed from the

target system where some

failure has occurred and the

system is in the process of

inactivating the remote

journal.

*REMOTE *ASYNC *CTLINACT This is the state after a

remote journal has been

made inactive using the

Change Journal State

(QjoChangeJournalState)

API or CHGRMTJRN

command, a controlled

deactivate was requested

on that call and that

controlled deactive has not

yet completed.

*REMOTE Not applicable *INACTIVE This is the state after a

remote journal has been

added and associated with

a journal on a source

system. However, the

journal state for the added

remote journal has yet to be

activated or has been made

inactive using the Change

Journal State

(QjoChangeJournalState)

API, CHGRMTJRN

command, or by an IPL. No

delivery mode is in effect

for an inactive remote

journal.

 Related concepts

 “Confirmed and unconfirmed journal entries” on page 326

For a local journal, all entries are confirmed entries. There is no concept of unconfirmed entries.

Journal receivers associated with a remote journal

Journal receivers that are associated with a remote journal are exact replicas of the corresponding journal

receivers that are associated with the journal on the source system.

Journal management 299

The receiver directory for a remote journal is maintained in the same way as the receiver directory is

maintained for the related source journal. Consecutive receivers associated with a remote journal are

linked together to form a receiver chain. Receiver chain breaks are forced and maintained in a similar

manner for local and remote journals.

However, the following are some other differences for remote journals and the journal receivers that were

attached to remote journals:

v A remote journal does not have to have a currently attached journal receiver. However, if the remote

journal is ready to receive journal entries, then it must have an attached receiver; all the journal entries

will be replicated to that attached receiver.

v The receiver that is currently attached to a remote journal that is in the catch-up phase can be a

different journal receiver than is currently attached to the source journal.

v The receiver that is currently attached to an asynchronously maintained remote journal can be a

different journal receiver than is currently attached to the source journal.

v The receiver that is currently attached to a synchronously maintained remote journal is the same

journal receiver as is currently attached to the source journal.

v You can delete the journal receiver that is attached to a remote journal if the journal state of that

journal is not *ACTIVE.

v You can delete the journal receivers that are associated with a remote journal in any order, regardless

of their position within the receiver directory chain.

v The creation date and time stamps for remote journals are always those of the system on which the

journals were created by the remote journal function. This is also true for journal receivers that were

attached to remote journals.

v The save and restore date and time stamps for remote journals are always those of the system on

which the save or restore operation took place. This is also true for the journal receivers that are

associated with the remote journals.

v The attach and detach time stamps for a journal receiver that was attached to a remote journal are

always those of the attach and detach time stamps of the local journal receiver.

v When a journal receiver that is associated with a remote journal is saved, deleted or restored, the

following journal entries are not deposited:

– J RD - Journal receiver deleted

– J RF - Journal receiver saved, storage freed

– J RR - Journal receiver restored

– J RS - Journal receiver saved

For more information about journal receiver directory chains, see Keep track of journal receiver chains.

 Related concepts

 “Keep track of journal receiver chains” on page 73
Journal receivers that are associated with a journal (that is presently or previously attached to the

journal) are linked in one or more receiver chains. Each journal receiver, except the first one, has a

previous receiver that was detached when the current receiver was attached. Each journal receiver,

except the one that is currently attached, also has a next receiver.

Add remote journal process

Adding a remote journal creates a remote journal on a target system or independent disk pool and

associates that remote journal with the journal on the source system. This occurs if this is the first time

the remote journal is being established for a journal. The journal on the source system can be either a

local or remote journal.

If a remote journal environment has previously been established, adding a remote journal re-associates

the remote journal on the target system with the journal on the source system.

300 IBM Systems - iSeries: Journal Management

You can establish and associate a remote journal on a target system with a journal on the source system

by one of the following methods:

v iSeries Navigator.

v Add Remote Journal (QjoAddRemoteJournal) API on the source system.

v Add Remote Journal (ADDRMTJRN) command on the source system.

What happens during add remote journal processing

Some of the processing which takes place as part of adding a remote journal is as follows:

v A check is performed on the target system to verify that the user profile adding the remote journal

exists. A user profile with the same name as the user profile which is adding a remote journal must

exist on the target system. If the profile does not exist on the target system, then an exception is

signaled, and the processing ends.

v A check is performed to verify that the target system has a library by the same name as the library for

the journal on the source system. If the library does not exist on the target system, then an exception is

signaled, and the processing ends.

v A check is performed on the target system to determine if a journal by the same qualified name as the

journal on the source system already exists. If a journal already exists, it can be used for the remainder

of the add remote journal processing if it meets the following conditions:

1. It is a remote journal.

2. It was previously associated with this same source journal or part of the same remote journal

network.

3. The type of the remote journal matches the specified remote journal type.
v If a journal was found, but does not meet the above criteria, then an exception is signaled, and the

processing ends. Otherwise, the remote journal is used for the rest of the add remote journal

processing.

v If no journal is found on the specified target system, then a remote journal is created on the target

system. The new remote journal has the same configuration, authority, and audit characteristics of the

source journal. The journal that is created has a journal type of *REMOTE.

The creation of the journal on the target system is performed as though the journal was being saved and

restored to the target system. Therefore, the ownership of the journal on a target system will follow the

same rules as with the existing save and restore functions. If the user profile which owns the journal on

the source system is on the target system, then that profile will own the created journal on the target

system. If the user profile does not exist on the target system, then the profile QDFTOWN will own the

journal on the target system.

Additionally, if the remote journal is created, the values for the journal attributes of text, journal message

queue, delete receivers value, and delete receiver delay time will be taken from what is specified on the

API invocation. After the remote journal has been created, these values can be changed by using the

Change Journal (CHGJRN) command for the remote journal on the remote system. After the remote

journal is created, any changes to these attributes on the source journal will not cause equivalent changes

to the remote journal. See Remote journal attributes for more information.

When adding the remote journal, you must specify the type of remote journal to add. The remote journal

type influences the library redirection rules and other operational characteristics for the journal. See Types

of remote journals for more information.

Guidelines for adding a remote journal

The following are guidelines for adding a remote journal:

v You can only associate a remote journal with a single source journal.

Journal management 301

Note: The same remote journal can then have additional remote journals that are associated with it

that are located on other target systems. This is the cascade configuration that is shown in

Network configurations for remote journals.

v The remote journal will only have its attached receiver populated with journal entries that are

replicated from the corresponding journal receiver on the source system. No journal entries can be

directly deposited to a remote journal.

v A maximum of 255 remote journals can be associated with a single journal on a source system. This

can be any combination of asynchronously maintained or synchronously maintained remote journals.

Synchronous and asynchronous delivery mode has more information. Library redirection with remote

journals and Remote journal attributes provide more concepts about the add remote journal process. Add

remote journals provides the steps for adding a remote journal.

 Related concepts

 “Types of remote journals” on page 294

The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational

characteristics of a remote journal and its associated journal receivers. The following table is an

overview of the different remote journal types and their characteristics. There are no performance

differences between the types of remote journals.

 “Network configurations for remote journals” on page 292

This topic describes various network configuration for remote journals.

 “Synchronous and asynchronous delivery mode for remote journals” on page 306
The terms asynchronously maintained and synchronously maintained both describe a remote journal

function delivery mode for journal entry replication.
 Related tasks

 “Add remote journals” on page 315

This topic provides instructions for adding a remote journal.

Library redirection with remote journals:

Library redirection provides a means for remote journals and any of their associated journal receivers to

optionally reside in differently named libraries on the target system from the corresponding local journal

and journal receivers on the local system.

 You can specify library redirection by using one of the following:

v iSeries Navigator

v Add Remote Journal (QjoAddRemoteJournal) API

v Add Remote Journal (ADDRMTJRN) command

When using the QjoAddRemoteJournal API, specify a different name in the Remote Journal Library name

field or the Remote Journal Receiver Library field. When using the ADDRMTJRN command, specify a

different name for the Target Journal Library parameter or the Remote Receiver Library parameter. When

a remote journal is added, its journal type specification influences how much redirection you can specify.

Types of remote journals describes the various types of remote journals that can be added, as well as a

description of their redirection characteristics.

If redirection is not specified, then the remote journal will reside in a library that has the same name as

the library that contains the source journal.

Note: Library redirection for the journal object must be specified when replicating the journal entries to a

target system for any journal starting with the letter Q in a library starting with Q. This does not

302 IBM Systems - iSeries: Journal Management

apply to the QGPL library. This restriction prevents collisions between local and remote journals

that are used for system functions. One example of this is journal QAUDJRN in library QSYS

which is used for security auditing.

If no redirection is specified for the journal receiver, then the remote journal receiver will reside in a

library whose name is the same as the library for the source journal receiver. For example, the source

journal has two receivers that are associated with it, receiver RCV0001 in library LIBA, and receiver

RCV0002 in library LIBB. If no journal receiver library redirection is specified, then the journal entries in

RCV0001 in library LIBA on the source will be replicated to RCV0001 in library LIBA on the target

system. The journal entries in RCV0002 in library LIBB on the source will be replicated to RCV0002 in

library LIBB on the target system. Therefore, both libraries, LIBA and LIBB, will need to exist on the

target system prior to the invocation of the remote journal function. If journal receiver library redirection

is specified with a redirected receiver library specification of RMTLIB, then both RCV0001 and RCV0002

would be in library RMTLIB on the target system.

For *TYPE1 remote journals, the library redirection or the selection of no library redirection for the

journal and journal receivers can only be modified by doing the following:

v Remove all *TYPE1 remote journals.

v Change the local journal and attach a new journal receiver.

v Delete the remote journal from the target system.

v Add the *TYPE1 remote journal, specifying the new library redirection, if any.

For *TYPE2 remote journals, the library redirection or the selection of no library redirection for the

journal and journal receivers can only be modified by doing the following:

v Remove the *TYPE2 remote journal.

v Delete the remote journal from the target system.

v Add the *TYPE2 remote journal, specifying the new library redirection, if any.

Independent disk pools and library redirection

If you want the remote journal on an independent disk pool on the target system, specify a library on the

target system that is on an independent disk pool for that system and specify an RDB entry for the

independent disk pool.

If you place your remote journal on an independent disk pool on the target system, the following rules

apply:

v The independent disk pool on the target system must be varied on.

v The independent disk pool must be a library capable disk pool.

v The remote journal, the remote journal receiver, and the message queue must be in the same

independent disk pool group.

v When TCP communications are being used to connect to an independent disk pool, the Relational

Database (RDB) entry to the independent disk pool must have the Relational database value set to the

target system’s local RDB entry and the relational database alias value set to the independent disk

pool’s name.
 Related concepts

 “Types of remote journals” on page 294

The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational

characteristics of a remote journal and its associated journal receivers. The following table is an

overview of the different remote journal types and their characteristics. There are no performance

differences between the types of remote journals.

Journal management 303

|
|
|
|

“Journal management and independent disk pools” on page 33

Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file

system (UDFS) independent disk pools or library-capable independent disk pools.
 Related tasks

 “Prepare to use remote journals” on page 314

This topic outlines the basic steps for preparing to use remote journals.

Remote journal attributes:

When a remote journal is created by the add remote journal processing, the remote journal’s initial

attributes are defined by the add request and the source journal.

 Various journal attributes for a remote journal are treated as follows:

Disk pool

If the library for the remote journal resides in a disk pool, the remote journal will be created in

that disk pool.

Journal message queue

Defined on add request. Once the remote journal is created, the journal message queue, can be

modified by using the Change Journal (CHGJRN) command on the remote journal on the remote

system.

Delete receivers

Defined on add request. Once the remote journal is created, the delete receivers attribute can be

modified by using the CHGJRN command on the remote journal on the remote system.

Manage receivers

Does not apply. The managing of the receivers for the remote journal is driven by the

management of the source journal.

Minimize entry-specific data options

Does not apply. The minimize entry-specific data options in effect for the remote journal are

driven by the minimize entry-specific data options in effect for the local journal.

Receiver size options

Does not apply. The receiver size options in effect for the remote journal are driven by the

receiver size options in effect for the source journal.

Text Defined on add request. Once the remote journal is created, the text can be modified by using the

CHGJRN command on the remote journal on the remote system.

Manage receiver delay

The managing of the receivers for the remote journal is determined by the management of the

source journal.

Delete receiver delay

Defined on add request. Once the remote journal is created, the delete receiver delay attribute can

be modified by using the CHGJRN command on the remote journal on the remote system.

Fixed-length data

Does not apply. The fixed-length data options in effect for the remote journal are driven by the

fixed-length data options in effect for the local journal.

Journal cache

Does not apply.

Journal object limit

Does not apply.

Journal recovery count

Does not apply.

304 IBM Systems - iSeries: Journal Management

|

|

Related tasks

 “Factors that affect remote journal performance” on page 310

There are two main performance objectives for the remote journal function. To provide a timely

delivery of journal entries to a target system and to minimize impacts to the journaling throughput on

the source system.
 Related reference

 Change Journal (CHGJRN) command

Supported communications protocols for remote journals

The remote journal function supports the following communications protocols for replicating the journal

entries to the remote systems:

v OptiConnect for i5/OS. If you want to use the OptiConnect for i5/OS support, you must purchase and

install the required hardware and software for that support. Refer to OptiConnect for i5/OS for more

information.

v Systems Network Architecture (SNA). If you want to use SNA for the transport, there are no

additional software considerations. The software support is in the base operating system. You must

purchase whatever hardware is appropriate for your configuration. For more information see SNA

Distribution Services on the V5R1 Supplemental Manuals Web site.

v Transmission Control Protocol/Internet Protocol(TCP/IP). If you want to use TCP/IP for the transport,

there are no additional software considerations. The software support is in the base operating system.

You must purchase whatever hardware is appropriate for your configuration. Refer to TCP/IP

Configuration and Reference for more information.

Note: All remote journal TCP connections use the TCP local port of 3777.

Specifying a relational database (RDB) directory entry will identify the communications protocol that the

remote journal function will use. The RDB that is specified must meet the following rules:

v The communications protocol must be one of the remote journal function supported protocols.

v The remote location name in the RDB cannot refer to the *LOCAL database.

v The RDB cannot use an application requester driver program (*ARDPGM) to locate the target system.

v When TCP communications are being used to connect to an independent disk pool, the Relational

Database (RDB) entry to the independent disk pool must have the Relational database value set to the

target system’s local RDB entry and the relational database alias value set to the independent disk

pool’s name.

For more information about creating relational databases, refer to the Distributed Database Programming.

Security of the remote journal function is dependent on the communications protocol security. The remote

journal function does not alter the security characteristics that are available.

The communications function that is identified by the RDB can be shared by other activity. However, you

may consider isolating the remote journal function activity in order to have the best performance.

 Related tasks

 “Prepare to use remote journals” on page 314

This topic outlines the basic steps for preparing to use remote journals.

Release-to-release considerations for remote journals

Release-to-release considerations for remote journals are discussed in this topic.

The release-to-release considerations for remote journals are:

v Information APAR II12556 contains a list of program temporary fixes (PTF) to apply for V5R1 support

of remote journaling.

Journal management 305

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

|
|

|

|

|

|
|
|
|

|

|
|

|
|

|

|
|

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

v If you specify RCVSIZOPT(*MAXOPT2) on the journal that you attach a journal receiver to, you cannot

replicate the journal receivers to any remote journals on any systems at a release prior to V5R1M0.

v If you specify minimized-entry specific data (MINENTDTA) for either *FILE or *DTAARA on the

journal to which you attached a journal receiver, you cannot replicate the journal receivers to any

remote journals on any systems at a release before V5R1M0.

v If you specify minimized-entry specific data (MINENTDTA) for *FLDBDY on the journal to which you

attached a journal receiver, you cannot replicate the journal receivers to any remote journals on any

systems at a release before V5R4M0.

v If you specify RCVSIZOPT(*MAXOPT3) on the journal that you attach a journal receiver to, you

cannot replicate the journal receivers to any remote journals on any systems at a release prior to

V5R3M0.

v If JRNOBJLMT(*MAX10M) is specified for a local journal, the remote journal must exist on a system at

a release of V5R4M0 or later.

Plan for remote journals

The following topics provide detailed information for planning to set up remote journals:

 Related tasks

 “Prepare to use remote journals” on page 314

This topic outlines the basic steps for preparing to use remote journals.

Journals that are good candidates for remote journal management

Journals that you are currently replicating, or that you plan to replicate, in their entirety to one or more

systems, are excellent candidates for the remote journal function.

Journals with high activity that require frequent saves and deletes of the associated journal receivers

during the day are also good candidates for the remote journal function. If you use remote journaling,

you can specify that the backup system takes over the journal receiver save processing. Then the primary

system can specify system journal-receiver management and automatic deletion of journal receivers. This

frees up disk space on the primary system as quickly as possible. The backup system is the system where

a replica of the original data is being maintained. The primary system is the system where the original

data resides.

Also, you might have applications that are so critical to your business that any downtime will impact

your operations. The application dependent data is a good candidate to protect with the remote journal

function. Application dependent data is any data that a particular application depends on if that

application is interrupted and has to be restarted.

For example, you may have a database that has a lot of query activity that impacts your system

performance. That local database is a good candidate to replicate to another system so that the query

activity moves from the local system to that remote system. The remote journal function can assist this

process of replicating the database.

 Related concepts

 “Manual versus system journal-receiver management” on page 41

When you create a journal with iSeries Navigator or the Create Journal (CRTJRN) command, you can

select to have either system managed or user managed journal receivers.

 “Automatic deletion of journal receivers” on page 43

If you choose system journal receiver management, you can also have the system delete journal

receivers that are no longer needed for recovery. You can only specify this if you are using system

journal receiver management.

Synchronous and asynchronous delivery mode for remote journals

The terms asynchronously maintained and synchronously maintained both describe a remote journal

function delivery mode for journal entry replication.

306 IBM Systems - iSeries: Journal Management

|
|
|

|
|

If a journal is asynchronously maintained, control is returned to the application generating the journal

entry on the source system without waiting for the journal entry to be replicated to the remote journal.

An asynchronously maintained remote journal might lag several journal entries behind the total number

of journal entries in the journal on the source system. If a journal is synchronously maintained, control is

not returned to the application generating the journal entry on the local system until the journal entry is

replicated to the remote journal.

Synchronous delivery mode

Synchronous delivery means that the journal entry is replicated to the target system concurrently with

the entry being written to the local receiver on the source system. The entry is known on the target

system, in main storage, prior to returning control to the user application that deposited the journal entry

on the source system. Therefore, the target system knows of all journal entries as they are being made in

real-time on the source system. Using this mode allows for recovery without losing journal entries on the

target system if the source system fails. Providing journal entries synchronously to a target system will

have some affect to the journaling throughput on the local system.

Synchronous delivery mode is only supported when a remote journal is associated with a local journal.

There are certain circumstances, when using synchronous mode, when some journal entries are not

immediately sent to the target system. These entries are either not necessary for recovery or the user did

not specify that they be forced to disk. Journal entries are sent to the remote journal at the same time that

they are forced to disk for the source journal. Since these entries are not forced to disk at deposit time,

they are not sent to the remote system.

v Some entries that are not required for data recovery might not be immediately sent to the target

system. For example, journal entries for a file close (journal code ’F’, entry type ’CL’) or a stream file

open, (journal code ’B’, entry type ’OF’).

v User-generated journal entries that use the Send Journal Entry (SNDJRNE) command or the Send

Journal Entry API (QJOSJRNE) might not be sent to the target system. If either you, or your

application, do not request to force these user-generated entries they will only be replicated to the

remote journal when some other action forces them. Therefore, periodically specify FORCE(*YES) when

using the send journal entry functions.

v Journal entries that are associated with commitment control transactions might not be immediately sent

to the remote system. These entries will be retrievable after the following journal entries have been

deposited into the source journal:

– Journal code ’C’, journal entry type ’CM’ (Commit)

– Journal code ’C’, journal entry type ’RB’ (Rollback)
v See Remote journal considerations for retrieving journal entries when using commitment control for

more information.

When journal caching is being used (JRNCACHE(*YES) on the CHGJRN command), entries that exist

only in the cache are not available on the target system. With journal caching, entries are not sent to

the target system until they are written from the cache to disk on the source system.

v If the local journal is using journal caching, then journal entries will be bundled up before they are sent

to the target.

Asynchronous delivery mode

Replicating a journal entry asynchronously means that the journal entry is replicated to the target system

after control is returned to the application depositing the journal entry on the source system. Using this

mode allows for recovery that might lose some journal entries if the source system fails. However, this

mode has less affect to the journal throughput on the local system in comparison with the synchronous

mode.

Journal management 307

Journal entry latency might occur when remote journals are asynchronously maintained. Journal entry

latency is the difference between the journal entries that exist in the remote journal on the target system

from those residing in the journal on the source system. From a recovery standpoint, the source system

might be some number of journal entries ahead of what journal entries are known on the target system.

 Related concepts

 “Add remote journal process” on page 300

Adding a remote journal creates a remote journal on a target system or independent disk pool and

associates that remote journal with the journal on the source system. This occurs if this is the first time

the remote journal is being established for a journal. The journal on the source system can be either a

local or remote journal.

 “Remote journal considerations for retrieving journal entries when using commitment control” on

page 328

Special performance related processing is done by the system when depositing entries that are

associated with commitment control transactions to a local journal.

 “Confirmed and unconfirmed journal entries” on page 326

For a local journal, all entries are confirmed entries. There is no concept of unconfirmed entries.
 Related tasks

 “Activate the replication of journal entries to a remote journal” on page 318

In order to activate the replication of journal entries to a given remote journal, the following must be

true:

Communications protocol and delivery mode for remote journals

The greater the volume of traffic, that is the higher the rate of journal entry deposits, the faster

communications method you must choose. If your traffic is minimal, then a slower communications

method can be adequate.

The delivery mode defines how journal entries are replicated to a remote journal. The delivery mode

only applies when actively replicating the journal entries from a journal on a source system to a remote

journal on a target system. The delivery mode can be either synchronous or asynchronous.

If the application dependent data is critical and the loss of journal entries can impact your business, then

use the synchronous delivery mode. Synchronous delivery mode is only valid when activating a remote

journal that is associated with a local journal.

It may be acceptable that the remote system does not have all the journal entries as they are being

deposited or replicated into the source journal. If this is true, the asynchronous delivery mode is a good

choice to minimize the impact to the source journaling throughput.

The choice of delivery mode and communications protocol are closely linked. Since the synchronous

delivery mode will affect the interactive users response time, the faster the communications protocol the

better. This again will be dependent on the journal entry deposit rate.

Where the replication of journal entries start

When you specify a journal receiver for remote journaling, you are specifying where the replication of

journal entries will start.

You can choose from the following options:

Attached receiver on target system

The replication of journal entries starts with the journal receiver that is currently attached to the remote

journal on the target system. The journal entries are replicated from the corresponding journal receiver

that is associated with the journal on the source system. The replication starts with the journal entries

that follow the last journal entry that currently exists in the attached journal receiver on the target system.

308 IBM Systems - iSeries: Journal Management

The remote journal on the target system might not have an attached journal receiver. If this occurs, the

journal receiver that is currently attached to the journal on the source system is created on the target

system. That journal receiver is then attached to the remote journal on the target system. Then journal

entries are replicated starting with the first journal entry in the journal receiver that is currently attached

to the journal on the source system.

If the journal on the source system does not have an attached journal receiver, no journal entries can be

replicated, and an error is returned. This is only possible in the case of a remote journal that is associated

with another remote journal.

To use this option specify one of the following:

v Use the *ATTACHED special value for the Starting journal receiver (STRJRNRCV) parameter on the

Change Remote Journal (CHGRMTJRN) command.

v Use the *ATTACHED special value for the Starting journal receiver (STRJRNRCV)parameter on the

Change Remote Journal (CHGRMTJRN) command.

Attached receiver on source system only

The replication of journal entries starts with the journal receiver that is currently attached to the journal

on the source system.

If the corresponding journal receiver exists and is attached to the remote journal on the target system,

journal entries are replicated. Replication starts with the journal entries that follow the last journal entry

that currently exists in the attached journal receiver on the target system. Otherwise, if the corresponding

journal receiver exists but is not attached to the remote journal on the target system, no journal entries

can be replicated. The system returns an error.

If the corresponding journal receiver does not exist on the target system, the journal receiver is created

and attached to the remote journal on the target system. Journal entries then are replicated starting with

the first journal entry in the journal receiver that is currently attached to the journal on the source system.

If the journal on the source system does not have an attached journal receiver, journal entries cannot be

replicated, and the system returns an error. This is only possible in the case of a remote journal that is

associated with another remote journal.

To use this option specify one of the following:

v Use the *SRCSYS special value for the Starting journal receiver (STRJRNRCV) parameter on the Change

Remote Journal (CHGRMTJRN) command.

v Use attached receiver on source system only in the Activate dialog in iSeries Navigator.

Qualified journal receiver name

The replication of journal entries starts with the specified journal receiver name for the journal on the

source system.

If the corresponding journal receiver exists and is attached to the remote journal on the target system,

journal entries are replicated. Replication starts with the journal entries that follow the last journal entry

that currently exists in the attached journal receiver on the target system. Otherwise, if the corresponding

journal receiver exists but is not attached to the remote journal on the target system, no journal entries

can be replicated. The system returns an error.

If the corresponding journal receiver does not exist on the target system, the journal receiver is created

and attached to the remote journal on the target system. Journal entries then are replicated starting with

the first journal entry in the specified journal receiver.

Journal management 309

|
|

|
|

If the journal on the source system is not associated with the specified journal receiver, no journal entries

can be replicated, and an error is returned.

The creation of any receiver on the target system by the change journal state processing is performed as

though the receiver was being saved and restored to the target system. Therefore, the ownership of the

receiver on a target system will follow the same rules as with the existing save and restore functions. If

the user profile which owns the receiver on the source system is on the target system, then that profile

will own the created receiver on the target system. If the user profile does not exist on the target system,

then the profile QDFTOWN will own the receiver on the target system.

Additionally, information such as the audit attributes, public authority, and primary group of the source

journal receiver at the time it was attached to the source journal will be incorporated into the created

journal receiver on the target system. If the owner, owner’s authority, public authority, primary group, or

audit attributes of the source system’s receiver are changed, those changes will be propagated to the

target system when the next receiver is attached to the target journal. Changes made to other private

authorities of the source system’s receiver must be maintained separately on the target system.

If the library for the journal receiver resides in an ASP, the journal receiver will be created in that ASP.

The remote journal function does not support nonlibrary ASPs for the ASP of the remote journal receiver.

See Journal receiver disk pool considerations for more information.

 Related concepts

 “Journal receiver disk pool considerations” on page 313
The receiver configuration is the disk pool the receiver resides in, and how the data for the receiver is

spread across the disk arms within that disk pool.
 Related tasks

 “Activate the replication of journal entries to a remote journal” on page 318

In order to activate the replication of journal entries to a given remote journal, the following must be

true:

 “Catch-up phase for remote journals” on page 319
Catch-up refers to the process of replicating journal entries that existed in the journal receivers of the

source journal before the remote journal was activated.
 Related information

 “Scenario: Data replication environment for remote journals” on page 339

In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only.

Factors that affect remote journal performance

There are two main performance objectives for the remote journal function. To provide a timely delivery

of journal entries to a target system and to minimize impacts to the journaling throughput on the source

system.

Even though both aspects are very important for both synchronous and asynchronous delivery modes,

each mode prioritizes the two in a different order. The top priority for synchronous delivery is to

guarantee that the remote journal is always up to date with the source journal. For asynchronous delivery

mode, the top priority is to minimize impacts to journaling throughput.

All performance considerations that are currently used for a local journal still apply and must continue to

be employed. The following are additional factors that may affect the performance of the remote journal

function. The factors are listed in the order of importance.

1. Transport method

Your choice of transport depends on the rate of the journal activity in your environment. Make special

consideration for using a fast transport method when you use synchronous delivery mode. Weigh the

response time impacts of the synchronous delivery mode in your environment against the

communications overhead of the transport method you choose.

310 IBM Systems - iSeries: Journal Management

|
|
|
|
|
|

When replicating journal entries over a long distance, the most important performance factors

regarding a communications transport method are the overall rated speed of the communications

resource and any existing traffic already using the communications resource.

For more information about transport methods, see the Networking topic.

2. Number of remote journals that are being maintained

With respect to the job performing the journal entry deposit, the impact of the remote journal function

for asynchronously maintained journals is not noticeable. For synchronously maintained journals, the

impact depends on the slowest connection rather than number of remote journals.

The impact to the job performing the journal entry deposit for an asynchronously maintained journal

is significantly less than that for a synchronously maintained journal. Also, it is recommended that

only one synchronous remote journal be maintained for a given local journal.

With respect to the system performance impacts, the processor use typically increases by less than an

equal factor for each additional remote journal.

3. Arrival rate of journal entries that are being deposited on the local system

The higher the arrival rate of journal entries being deposited on the local system, the greater the

chance journaling throughput will increase for synchronous or asynchronous delivery. A high arrival

rate might cause asynchronous journaling to fall further behind.

4. Batch versus interactive

In general, higher local and remote journal throughput can be maintained when many interactive jobs

generate the journal throughput rather than a single-threaded batch job. Journal caching can also

increase this throughput for batch processing regardless of the number of jobs.

5. Processor utilization on the source system

The higher the processor utilization of the source system, the greater the chance of affecting journaling

throughput for synchronous or asynchronous delivery. This may cause asynchronous journaling to fall

further behind.

6. Processor utilization on the target system

The higher the processor utilization of the target system, the greater the chance of affecting journaling

throughput for synchronous or asynchronous delivery. This may cause asynchronous journaling to fall

further behind.

7. The value set for the sending task priority when using the asynchronous delivery mode

The larger the value, the smaller effect the remote journal function will have on the system, but the

further the target system may lag behind the source system.

 Related concepts

 “Journal management and system performance” on page 16

Journal management prevents transactions from being lost if your system ends abnormally or has to

be recovered. To do this, journal management writes changes to journaled objects immediately to the

journal receiver in auxiliary storage. This increases the disk activity on your system and can have a

noticeable affect on system performance. Journaling also increases the overhead associated with

opening objects and closing objects.

 “Methods to reduce the storage that journal receivers use” on page 30
Reduce the size of journal entries by methods such as journaling after-images only, or specifying

certain journaling options including the Fixed Length Data (FIXLENDTA) option on the Create Journal

(CRTJRN) and Change Journal (CHGJRN) commands.

 “Remote journal attributes” on page 304

When a remote journal is created by the add remote journal processing, the remote journal’s initial

attributes are defined by the add request and the source journal.

 “Remote journals and auxiliary storage” on page 312

Auxiliary storage will be required on both the source and target systems. The amount that is required

will be about the same on both systems.
 Related information

Journal management 311

Networking

 AS/400 Remote Journal Function for High Availability and Data Replication

Performance considerations regarding the catch-up phase:

Performance considerations regarding the catch-up phase when activating the remote journal function

include the following in order of importance:

Note: The catch-up processing that is performed by the remote journal function is the most efficient

method of replicating the journal entries with the remote journal function.

1. Total number of bytes for all of the journal entries that need to be caught up

The larger the total size, the longer the catch-up phase will run.

2. Transport method

Select a transport method that is appropriate for your remote journaling environment.

3. Disk protection on the target system

At high data transfer rates, disk units with device parity protection in the ASP on the target system

can limit the performance of the catch-up phase, unless the target system has sufficient write cache

configured in the I/O adaptors servicing the disk units that house the journal receiver. One example

of this is when you use the OptiConnect for i5/OS bus transport method. Having mirrored or

unprotected disk units in the ASP on the target system would eliminate this effect.

4. Processor utilization on the source system

The higher the processor utilization of the source system, the greater the chance of affecting the

performance for the catch-up phase.

5. Processor utilization on the target system

The higher the processor utilization of the target system, the greater the chance of affecting the

performance for the catch-up phase.

6. Delivery mode

The performance of the catch-up phase does not depend on the delivery mode that was specified,

synchronous or asynchronous.

How the journal attributes affect the remote journal performance:

Reducing the size of the journal receivers on the source system will reduce the communications overhead

of the remote journal function. Therefore, you may want to consider journaling *AFTER images and not

journaling open, close, or force entries.

Some of the most common attributes you may want to use for auditing journal entries are the following:

v Maximum receiver size - RCVSIZOPT(*MAXOPT1, *MAXOPT2, or *MAXOPT3)

v Remove internal entries - RCVSIZOPT(*RMVINTENT)

v Minimized entry specific data - MINENTDTA(*FILE) or *FLDBDY

Attributes such as the FIXLENDTA can also cause minimal performance improvements.

Refer to the Remote journal attributes and Remote journals and auxiliary storage links below for more

details about remote journal performance.

Remote journals and auxiliary storage

Auxiliary storage will be required on both the source and target systems. The amount that is required

will be about the same on both systems.

Anything that is done to minimize the amount of auxiliary storage required on the source system will

reduce the amount of auxiliary storage required on the target system. Additionally, the less auxiliary

312 IBM Systems - iSeries: Journal Management

|

|
|
|

http://www.redbooks.ibm.com/abstracts/sg245189.html?Open

storage used, or smaller the journal receivers are, the less data is transmitted on the communications

links. Therefore, the communications overhead will be reduced.

If the target system is not working for any extended period of time, enough auxiliary storage on the

source system is needed to keep the journal receivers online. This will be required until the target system

becomes available at which time the journal receivers can be replicated to the target and deleted from the

source.

See Methods to reduce the storage that journal receivers use for more information about ways to reduce

the auxiliary storage usage.

 Related concepts

 “Methods to reduce the storage that journal receivers use” on page 30
Reduce the size of journal entries by methods such as journaling after-images only, or specifying

certain journaling options including the Fixed Length Data (FIXLENDTA) option on the Create Journal

(CRTJRN) and Change Journal (CHGJRN) commands.
 Related tasks

 “Factors that affect remote journal performance” on page 310

There are two main performance objectives for the remote journal function. To provide a timely

delivery of journal entries to a target system and to minimize impacts to the journaling throughput on

the source system.

Journal receiver disk pool considerations

The receiver configuration is the disk pool the receiver resides in, and how the data for the receiver is

spread across the disk arms within that disk pool.

A remote journal receiver will have the same receiver configuration as its corresponding source receiver.

If the source receiver is in a disk pool that is spread across multiple disk units, then the remote journal

receiver will also be configured to use the same number of disk units. The remote journal receiver may be

in a disk pool that has fewer disk units than the disk pool that contains the journal receiver on the source

system. If this occurs, the remote journal receiver will still be configured as if it still had that same

number of disk units as the source journal receiver. However, the data may physically be going to a

fewer number of disk units.

Note: If the remote journal receiver is in a disk pool with fewer disk arms than the source journal

receiver, then performance may be impacted. This is because the disk arms for the remote receiver

will be moving considerably more than the disk arms will be moving for the source receiver.

Therefore, we recommend that the number of disk arms is the same on the source and remote

journal receivers disk pools.

Likewise, the journal receiver on the source system may be in a disk pool that has fewer disk units than

the disk pool that contains the remote journal receiver. If this occurs, the remote journal receiver will not

take advantage of all possible disk units on the target system.

Independent disk pool considerations

The following considerations apply if the remote journal receiver is on an independent disk pool:

v If the local system has the journaling environment in a basic, system disk pool, or independent disk

pool, the remote journal can be in a independent disk pool. Likewise, if the local system has the

journaling environment in an independent disk pool, the remote journal can be in a basic, system disk

pool, or independent disk pool.

v The independent disk pool on the remote system must be varied on.

v The independent disk pool must be a library capable independent disk pool.

v The remote journal and remote journal receiver must be in the same disk pool group.

Journal management 313

Determine the type of disk pool in which to place journal receivers has more information about journal

receivers and disk pools. The Independent disk pools topic has detailed information about independent

disk pools.

 Related concepts

 “Where the replication of journal entries start” on page 308

When you specify a journal receiver for remote journaling, you are specifying where the replication of

journal entries will start.

 “Determine the type of disk pool in which to place journal receivers” on page 32

Use disk pools (auxiliary storage pool) to control which objects are allocated to which groups of disk

units. If you are journaling many active objects to the same journal, the journal receiver can become a

performance bottleneck. One way to minimize the performance impact of journaling is to put the

journal receiver in a separate disk pool. This also provides additional protection because your objects

are on different disk units from the journal receiver, which contains a copy of changes to the objects.

 Independent disk pools

Remote journals and main storage

Providing greater amounts of main storage in the *BASE main storage pool on the source system might

improve remote journal performance. Improvements are most likely in environments with one or more

asynchronously maintained remote journals.

Providing greater amounts of main storage in the *BASE main storage pool on the target system will

improve remote journal performance. This is especially true in a remote journal network with a high

volume of activity. The additional storage will keep the number of page faults to a minimum, and reduce

the impacts to the target system.

Set up remote journals

These topics describe the steps you would use to create and work with a remote journal network or

environment. They discuss how to establish and maintain one remote journal that is associated with one

local journal.

If you want to make a more complicated broadcast or cascade configuration, use the following steps for

each of the remote journals in the configuration.

See the following topics to set up remote journals:

Prepare to use remote journals

This topic outlines the basic steps for preparing to use remote journals.

Before establishing the remote journal environment, complete the following steps:

1. Determine the extent of your remote journal network or environment.

See Plan for remote journals.

2. Determine what library redirection, if any, you will be using for the remote journals and associated

journal receivers. Library redirection is the ability to allow the remote journal and associated journal

receivers to reside in different libraries on the target system from the corresponding source journal

and its associated journal receivers.

See Library redirection with remote journals.

3. Ensure that all selected libraries exist on the target systems. You will need to consider whether or not

library redirection will be used when adding the remote journal.

4. Create the appropriate local journal if it does not already exist.

See Set up journaling for more information about creating local journals.

5. Configure and activate the communications protocol you have chosen to use.

See the Supported communications protocols for remote journals link below for more information.

314 IBM Systems - iSeries: Journal Management

|

After you have configured the communications protocol, it must be active while you are using the

remote journal function. For example, if you are using the OptiConnect for i5/OS bus transport

method, then the OptiConnect for i5/OS subsystem, QSOC, must be active. QSOC must be active for

both the source system and the target system, and the appropriate controllers and devices must be

varied on. If you are using a SNA communications transport, vary on the appropriate line, controller,

and devices and ensure subsystem QCMN is active on both systems. If you are using TCP/IP, you

must start TCP/IP by using the Start TCP/IP (STRTCP) command, including the distributed data

management (DDM) servers.

See the Networking topic and OptiConnect for i5/OS for more detailed information.

6. If one does not already exist, create the appropriate relational database (RDB) directory entry that will

be used to define the communications protocol for the remote journal environment. When TCP

communications are being used to connect to an independant disk pool, the Relational Database

(RDB) entry to the independant disk pool must have the Relational database value set to the target

system’s local RDB entry and the relational database alias value set to the independant disk pool’s

name.

 Related concepts

 “Plan for remote journals” on page 306

The following topics provide detailed information for planning to set up remote journals:

 “Library redirection with remote journals” on page 302
Library redirection provides a means for remote journals and any of their associated journal receivers

to optionally reside in differently named libraries on the target system from the corresponding local

journal and journal receivers on the local system.

 “Supported communications protocols for remote journals” on page 305

The remote journal function supports the following communications protocols for replicating the

journal entries to the remote systems:
 Related tasks

 “Set up journaling” on page 56

Provides instructions on how to set up journals and journal receivers.
 Related information

 Networking

 OptiConnect for i5/OS

Add remote journals

This topic provides instructions for adding a remote journal.

The following is the input that you must provide to add a remote journal to a source journal:

v The journal name and library on the source system to which the remote journal is being added.

v The remote journal name and library on the target system that is being added.

v A relational database directory entry, which identifies the target system and other necessary

communications information.

v The type of remote journal to be added.

v Optionally, the journal or journal receiver library redirection.

v Optionally, the values for the journal message queue, text, delete receivers, and delete receiver delay

attributes to be applied to any newly created remote journal.

If a different target journal library or remote receiver library is specified, then those libraries will be used

to hold the remote journal and receivers on the target system. This is what is referred to as library

redirection.

 Related concepts

 “Add remote journal process” on page 300

Adding a remote journal creates a remote journal on a target system or independent disk pool and

Journal management 315

|
|
|
|
|
|

|
|

|

|

|

|
|

|

|

|
|

|
|
|

|

|
|

associates that remote journal with the journal on the source system. This occurs if this is the first time

the remote journal is being established for a journal. The journal on the source system can be either a

local or remote journal.
 Related tasks

 “Recover a damaged journal” on page 98

If a journal becomes damaged, the system sends message CPF8135 to the system operator and to the

job log.

 “Recover a damaged journal with the WRKJRN command” on page 100
The Work with Journal (WRKJRN) command can be used to recover a damaged journal.

 “Activate the replication of journal entries to a remote journal” on page 318

In order to activate the replication of journal entries to a given remote journal, the following must be

true:

 “Remove remote journals”

You must be aware whether library redirection is in effect for the remote journal when you remove a

remote journal. If it is in effect, any library name processing will substitute the redirected library name

for the library name that is used for the operation on the target system.
 Related reference

 Add Remote Journal (ADDRMTJRN) command

 Add Remote Journal (QjoAddRemoteJournal) API
 Related information

 “Scenario: Data replication environment for remote journals” on page 339

In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only.

Add a remote journal:

Proceed as follows to add a remote journal:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database you want to use.

4. Expand Schemas.

5. Click the schema that contains the journal that you want to add a remote journal to.

6. Right-click the journal you want to add a remote journal to and select Properties.

7. On the Journal Properties dialog, click Remote Journals.

8. To add (associate) a remote journal to this journal, click Add.

Alternatively, you can use the Add Remote Journal (ADDRMTJRN) Command or the Add Remote

Journal (QjoAddRemoteJournal) API to add a remote journal.

The remote journal does not have an attached journal receiver after the add remote journal processing

completes. In addition, the journal state for the remote journal is set to *INACTIVE. A journal state of

*INACTIVE means that the remote journal is not ready to receive any journal entries from the journal on

the source system. During this time, journal entries can continue to be deposited or replicated into the

journal on the source system. However, no entries are replicated to the newly added remote journal until

you activate that remote journal. Refer to Activate the replication of journal entries to a remote journal for

information about activating a remote journal.

Remove remote journals

You must be aware whether library redirection is in effect for the remote journal when you remove a

remote journal. If it is in effect, any library name processing will substitute the redirected library name

for the library name that is used for the operation on the target system.

316 IBM Systems - iSeries: Journal Management

|
|
|

|

|
|
|

|
|

|
|
|

|
|
|
|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|

You can also use one of the following to remove a remote journal:

v iSeries Navigator

v Remove Remote Journal (QjoRemoveRemoteJournal) API

v Remove Remote Journal (RMVRMTJRN) command

You must start iSeries Navigator, the QjoRemoveRemoteJournal API, or the RMVRMTJRN command on

the source system for the journal on the source system identifying which remote journal to remove.

When using any of these methods, the replication of journal entries to the remote journal to be removed

cannot be currently active. If the remote journal state is *ACTIVE, you must inactivate the replication of

journal entries to the remote journal.

The remote journal, and any associated journal receivers, are not deleted from the target system when

you remove a remote journal. Removing a remote journal does not initiate any processing on the target

system. Once the remote journal is removed from the journal on the source system, you are responsible

for deleting the remote journal and associated journal receivers, if desired.

You can add this remote journal back to the remote journal function definition for the journal on the

source system.

Once a remote journal is removed, the journal receivers are no longer protected from deletion.

The following is the input that you must provide to remove a remote journal on a target system:

1. The journal name and library on the source system from which the remote journal is being removed.

2. The remote journal name and library on the target system that is being removed.

3. A relational database directory entry, which identifies the target system and other necessary

communications information.

 Related tasks

 “Inactivate the replication of journal entries to a remote journal” on page 321

When you end replication of journal entries to a remote journal, it is recommended that the replication

of entries be ended from the source system whenever possible, rather than from the target system.

Usually, ending replication from the target system for a remote journal is only necessary when the

source system has failed, and the system has not ended the remote journal function.

 “Add remote journals” on page 315

This topic provides instructions for adding a remote journal.
 Related reference

 Remove Remote Journal (QjoRemoveRemoteJournal) API

 Remove Remote Journal (RMVRMTJRN) command

Disassociate a remote journal

Disassociate a remote journal on a target system from a journal on a source system with iSeries Navigator

by doing the following steps:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database you want to use.

4. Expand Schemas.

5. Click the schema that contains the journal from which you want to remove a remote journal.

6. Right-click the journal from which you want to remove a remote journal and select Properties.

7. On the Journal Properties dialog, click Remote Journals.

8. To remove a remote journal from this journal, click Remove.

Journal management 317

|
|
|
|

Activate and inactivate remote journals

Activating a remote journal means starting and then maintaining the replication of journal entries from a

source journal to a remote journal. Activating a remote journal always occurs from the source system.

Inactivating a remote journal means ending the replication of journal entries from the source journal to

the remote journal. Inactivating a remote journal can be performed from the source or target systems.

However, the preferred method is to inactivate from the source system.

If this is the first time the remote journal is being activated, activating a remote journal creates one or

more journal receivers on the target system. Activating the remote journal also establishes the connection

between the source and remote journal so that journal entry replication can begin.

If the remote journal has previously been activated, the system may or may not create additional

receivers on the target system. This would occur prior to establishing the connection between the source

and remote journal so that journal entry replication can resume.

You must be aware if library redirection is in effect for the remote journal when you activate or inactivate

a remote journal. If it is in effect, any library name processing will substitute the redirected library name

for the library name that is used for the operation on the target system.

See the following for instructions on activating and inactivating remote journals:

 Related concepts

 “Retrieve journal entries from a remote journal during the catch-up phase” on page 327

During the catch-up phase, journal entries that have been replicated to the target system can be

retrieved from the remote journal.
 Related information

 “Scenario: Data replication environment for remote journals” on page 339

In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only.

Activate the replication of journal entries to a remote journal

In order to activate the replication of journal entries to a given remote journal, the following must be

true:

v The remote journal that you wish to activate must not have a journal state of *ACTIVE. For instance,

this might seem to be a reasonable request if you wanted to simply change the delivery mode from

synchronous to asynchronous. However, the remote journal must be inactive before you can activate it.

v The remote journal that you wish to activate must not be actively replicating journal entries to other

remote journals, as in a cascade configuration. You must inactivate the remote journals that are

immediately downstream before activating the remote journal.

You need to provide the following input in order to activate the replication of journal entries to a remote

journal on a target system:

v The journal name and library on the source system from which journal entries will be replicated.

v The remote journal name and library on the target system to which journal entries will be replicated.

v A relational database directory entry, which identifies the target system and other necessary

communications information.

v The delivery mode to be used. Specify either synchronous or asynchronous delivery mode.

v The journal receiver from which to start journal entry replication which defines the starting point for

journal entry replication.

v If an asynchronous delivery mode was specified, then the sending task priority may also be specified.

If a value is not specified, the system selects a default priority, which is higher than what the user can

specify for this value. Setting this value too large may cause a greater journal entry latency or lag.

To activate the remote journal, proceed as follows:

318 IBM Systems - iSeries: Journal Management

|
|
|

|
|
|

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that contains the journal.

4. Expand Schemas.

5. Click the schema that contains the journal that has the associated remote journal that you want to

activate.

6. Right-click the journal, and select Properties.

7. On the Journal Properties dialog, click Remote Journals.

8. On the Remote Journals dialog, select the remote journal in the list of remote journals, and then click

Activate to activate the selected remote journal.

You can also activate the replication of journal entries from a journal on a source system to a remote

journal on a target system by using one of the following methods:

v The Change Journal State (QjoChangeJournalState) API

v The Change Remote Journal (CHGRMTJRN) command

Both the QjoChangeJournalState API and the CHGRMTJRN command must be issued from the source

system.

The activation of the remote journal can be a long running process. This may occur if there are a large

number of journal receivers and entries that initially must be caught-up in the remote journal.

Catch-up phase for remote journals has more detailed information about the catch-up phase.

 Related concepts

 “Synchronous and asynchronous delivery mode for remote journals” on page 306
The terms asynchronously maintained and synchronously maintained both describe a remote journal

function delivery mode for journal entry replication.

 “Where the replication of journal entries start” on page 308

When you specify a journal receiver for remote journaling, you are specifying where the replication of

journal entries will start.

 “Remote journal considerations when restarting the server” on page 336

This topic discusses the considerations for remote journaling when you restart the server.
 Related tasks

 “Add remote journals” on page 315

This topic provides instructions for adding a remote journal.

 “Details: Recovery for remote journaling scenario” on page 346

A description of the recovery process for remote journaling.
 Related reference

 Change Journal State (QjoChangeJournalState) API

 Change Remote Journal (CHGRMTJRN) command
 Related information

 “Scenario: Data replication environment for remote journals” on page 339

In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only.

Catch-up phase for remote journals:

Catch-up refers to the process of replicating journal entries that existed in the journal receivers of the

source journal before the remote journal was activated.

Journal management 319

|
|

The catch-up phase is the most efficient method of replicating journal entries to a remote journal. Control

does not return to the requester of the activation of the remote journal until this catch-up processing has

completed. You will want to consider this when deciding the starting point for journal entry replication.

Catch-up phase is initiated after the following actions occur:

v A request has been issued on the source system to activate a remote journal.

v The system has determined which journal receivers and journal entries to replicate to the target system.

There is a difference between the catch-up phase processing and the run-time synchronous or

asynchronous processing. Catch-up processing replicates the following to the target system:

v Those journal entries that already exist in the journal on the source system.

v Those journal entries that are deposited or replicated to the source journal during the catch-up

processing.

Run-time synchronous or asynchronous processing occurs as part of the actual deposit or replication of

journal entries into the currently attached receiver on the source system. While in the catch-up phase, the

journal delivery mode will be either asynchronous pending (*ASYNCPEND) or synchronous pending

(*SYNCPEND), depending on the delivery mode that was specified.

The catch-up phase is the most efficient method of transporting journal entries to a remote journal in

bulk.

The following is a high-level overview of the catch-up phase and related processing:

1. The starting point in the journal receiver on the source system is determined.

2. If necessary, the system creates a receiver on the target system and attaches it to the remote journal.

3. The system replicates or completes replication for all of the journal entries that are contained in the

receiver on the source system to the corresponding receiver on the target system.

4. If the receiver on the source system is the currently attached receiver, the system completes the

catch-up processing by transitioning into synchronous or asynchronous remote journal delivery mode.

Catch-up phase is complete, and control returns to the requester of the remote journal activation.

The remote journal will now be maintained synchronously or asynchronously as additional journal

entries are deposited, or replicated, into the attached receiver on the source system.

5. If the receiver on the source system is not the currently attached receiver for the journal on the source

system, one of the following steps are performed:

v If there is a next receiver within the source journal’s chain of receivers, go back to step 2. The

system replicates journal entries by starting with the first entry in the next receiver.

For more information about receiver directory chains, see Keep track of journal receiver chains.

v If there is no next receiver, (which indicates that a receiver chain break exists), the catch-up phase is

complete. Processing does not transition into synchronous or asynchronous mode and the change

journal state processing ends. A final escape message is sent indicating that processing has ended.

After the system transitions a given remote journal to either the synchronous or asynchronous remote

journal delivery mode, the system continues to maintain that mode. This continues until the remote

journal function is inactivated for that remote journal by using the Change Journal State

(QjoChangeJournalState) API or Change Remote Journal (CHGRMTJRN) command, or a failure occurs.

The replication of journal entries to an individual remote journal is performed independently from the

replication of journal entries to any other defined remote journal. This is important if a given target

system fails or if communications to a target system fails from a particular source system. If either one

occurs, the remote journal function will end to those affected remote journals that reside on that target

system and are maintained from the source system. All other remote journals that are being maintained

from the source system will continue to function normally. For example, a source journal could have two

remote journals on two different systems. In this situation, if the replication of entries from the source

320 IBM Systems - iSeries: Journal Management

journal to the second remote journal ended, the replication of entries from the source journal to the first

remote journal would not necessarily end. If a given remote journal has any type of failure, the system

ends the remote journal function. Appropriate messages are signaled to either system or both systems

involved, but the remote journal function for other remote journals would not be affected. Likewise, the

communications line speed for a given asynchronously maintained remote journal will not affect the

speed for another asynchronously maintained remote journal using a different physical transport.

See the following links for more information about inactivating remote journals possible failure

conditions.

 Related concepts

 “Where the replication of journal entries start” on page 308

When you specify a journal receiver for remote journaling, you are specifying where the replication of

journal entries will start.

 “Keep track of journal receiver chains” on page 73
Journal receivers that are associated with a journal (that is presently or previously attached to the

journal) are linked in one or more receiver chains. Each journal receiver, except the first one, has a

previous receiver that was detached when the current receiver was attached. Each journal receiver,

except the one that is currently attached, also has a next receiver.

 “Work with remote journal error messages” on page 338

Several different error conditions can occur when the remote journal function is active.
 Related tasks

 “Inactivate the replication of journal entries to a remote journal”

When you end replication of journal entries to a remote journal, it is recommended that the replication

of entries be ended from the source system whenever possible, rather than from the target system.

Usually, ending replication from the target system for a remote journal is only necessary when the

source system has failed, and the system has not ended the remote journal function.

Relational database considerations for remote journal state

Once a remote journal is activated, the remote journal function will work with the communications

configuration defined by the specified relational database (RDB) entry as long as the remote journal is

active. However, the information will be taken from the RDB at the point in time when the remote

journal was activated. Therefore, even if the definition of the RDB entry is changed while a remote

journal has a journal state of *ACTIVE, none of those changes will take effect immediately.

If the remote journal is inactivated, and then activated again, the new RDB entry definition will take

effect. When you view the remote journal information, the RDB entry information that is displayed

represents the state of the RDB entry information when the remote journal was last activated. See Display

remote journal function information.

 Related concepts

 “Display remote journal function information” on page 323

When you are working with the remote journal function, you will want to be able to view the remote

journal network. You may also want to view the various attributes, journal states, or delivery modes.

Inactivate the replication of journal entries to a remote journal

When you end replication of journal entries to a remote journal, it is recommended that the replication of

entries be ended from the source system whenever possible, rather than from the target system. Usually,

ending replication from the target system for a remote journal is only necessary when the source system

has failed, and the system has not ended the remote journal function.

If you are inactivating an asynchronously maintained remote journal, you can request that the remote

journal function be ended immediately or in a controlled fashion. For an immediate end, any journal

entries which have already been queued for replication will not be sent to the remote journal. For a

controlled end, any journal entries which have already been queued for replication will be sent to the

remote journal. When all queued entries have been sent to the target system, the system sends message

Journal management 321

CPF70D3 to the journal message queue. The message indicates that the remote journal function has been

ended. If you are inactivating a synchronously maintained journal, the remote journal function is ended

immediately, regardless of whether an immediate or controlled end was requested. Similarly, if the remote

journal is in the catch-up phase of processing, the remote journal function is ended immediately. This is

also regardless of whether an immediate or controlled end was requested.

To inactivate the replication of journal entries proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that contains the journal.

4. Expand Schemas.

5. Click the schema that contains the journal that has the associated remote journal that you want to

activate.

6. Right-click the journal, and select Properties.

7. On the Journal Properties dialog, click Remote Journals.

8. On the Remote Journals for dialog, select the remote journal in the list of remote journals, and then

click Deactivate to inactivate the selected remote journal.

You can also use the Change Journal State (QjoChangeJournalState) API and Change Remote Journal

(CHGRMTJRN) command to inactivate the replication of journal entries to a remote journal. For this

purpose, the API can be initiated from either the source system or the target system. The CHGRMTJRN

command can only be initiated from the source system. You can also use the Change Journal (CHGJRN)

command on the target system to inactivate the remote journal.

 Related concepts

 “Remote journal considerations when restarting the server” on page 336

This topic discusses the considerations for remote journaling when you restart the server.
 Related tasks

 “Delete journal receivers” on page 77

Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal

management task is to delete journal receivers after you no longer need them.

 “Delete journals” on page 79

Each journal on the system causes additional time and resource to be used when you restart the

system or vary on an independent disk pool after an abnormal end. If you no longer need a journal,

you can delete it.

 “Remove remote journals” on page 316

You must be aware whether library redirection is in effect for the remote journal when you remove a

remote journal. If it is in effect, any library name processing will substitute the redirected library name

for the library name that is used for the operation on the target system.

 “Catch-up phase for remote journals” on page 319
Catch-up refers to the process of replicating journal entries that existed in the journal receivers of the

source journal before the remote journal was activated.

 “Details: Recovery for remote journaling scenario” on page 346

A description of the recovery process for remote journaling.
 Related reference

 Change Journal State (QjoChangeJournalState) API

 Change Remote Journal (CHGRMTJRN) command

 Change Journal (CHGJRN) command

322 IBM Systems - iSeries: Journal Management

Manage remote journals

Managing the remote journal function requires basic tasks such as:

v Keeping records of your remote journal network.

v Evaluating the impact on the remote journal network as new applications are added or the system

workload grows.

v Considering the ramifications of journal receivers on two systems which require regular save and

delete processing.

v Considering the save and restore implications of the remote journal network.

The following information describes the management tasks for remote journals:

Keep records of your remote journal network

Always have a current list of the remote journals that are associated with local journals, and their

associated communications information.

For each journal which has remote journals associated with it, use the following command: WRKJRNA

JRN(library-name/journal-name) OUTPUT(*PRINT).

To get only the remote journal information of a journal, use WRKJNA with DETAIL(*RMTJRN) as an

added parameter. The information can also be sent to an OUTFILE.

Alternatively, you can use the Retrieve Journal Information (QjoRetrieveJournalInformation) API to

retrieve the information and place it in a file.

To get the related relational database information, use the following command: WRKRDBDIRE RDB(*ALL)

OUTPUT(*PRINT).

Remember to do this for all cascaded remote journals as well, not just the local (or primary) system.

 Related reference

 Retrieve Journal Information (QjoRetrieveJournalInformation) API

Display remote journal function information

When you are working with the remote journal function, you will want to be able to view the remote

journal network. You may also want to view the various attributes, journal states, or delivery modes.

The Work with Journal Attributes (WRKJRNA) display includes the list of all remote journals that are

associated with a given journal. When looking at a specific journal, you can see information about the

journal’s source journal, if any. Additionally, you can see all remote journals which are immediately

downstream from the specified journal. If those remote journals are cascaded to other remote journals,

you will not be able to see any cascaded remote journal information. To see that information, you must

invoke the WRKJRNA command for that remote journal on its own system. This information is also

available through the Retrieve Journal Information (QjoRetrieveJournalInformation) API.

Additionally, the Display Journal Receiver Attributes (DSPJRNRCVA) displays provide additional

information about the remote journal characteristics of the journal receivers. The DSPJRNRCVA command

also has an API counterpart to allow program retrieval of the journal receiver information, the Retrieve

Journal Receiver Information (QjoRtvJrnReceiverInformation) API.

 Related concepts

 “Relational database considerations for remote journal state” on page 321

Once a remote journal is activated, the remote journal function will work with the communications

configuration defined by the specified relational database (RDB) entry as long as the remote journal is

active. However, the information will be taken from the RDB at the point in time when the remote

journal was activated. Therefore, even if the definition of the RDB entry is changed while a remote

journal has a journal state of *ACTIVE, none of those changes will take effect immediately.

Journal management 323

Evaluate how system changes affect your remote journal network

After you have initially established your remote journal network, you need to keep up with changes that

occur on the system.

If the amount of work that is going to the journals which you are replicating increases, you may need to

consider upgrading the communications method.

The traffic rate for work other than the remote journal function may increase on a communications

method that is shared. If this occurs, you may need to consider separating the various pieces of

communications traffic so that the remote journal function is not impaired. This is especially important if

you are using the synchronous delivery mode.

An application that is being protected may become more critical to your business, where any time that

the system is not working is considered disastrous. If this occurs, you may need to consider upgrading

that application’s remote journal to using the synchronous delivery mode so that no journal entries are

lost.

Get information about remote journal entries

Working with the journal entries in a remote journal is essentially the same as working with the journal

entries in a local journal.

The exceptions are explained in the following topics:

Notes:

v In addition, the system name, date, and time stamp in the journal entries are based on the

original local journal. They are not based on the system of the remote journal where the entries

are viewed.

v See Display information for journaled objects, journals, and receivers and Work with journal

entry information for more information.
 Related concepts

 “Work with journal entry information” on page 276

Provides ways that you can display, retrieve, and receive journal entries.
 Related tasks

 “Display information for journaled objects, journals, and receivers” on page 85
iSeries Navigator, Control Language commands, and APIs provide several ways you can display

information about journaled objects, journals, and journal receivers.

File identifier considerations for working with integrated file system entries:

If you plan to replay the integrated file system operations in the remote journal to objects on the target

system, and if you primed that target system with objects that were restored from the source system, then

some additional considerations apply to replaying those journal entries.

 Integrated file system journal entries on remote journals are only identified by the file identifier in the

object name field. They are not identified by path name. When you restore an integrated file system

object on a remote system, the remote system does not maintain the same file identifier that was used on

the source system. It assigns that object a new file ID. However, the journal entries in the remote journal

receiver refer to that object’s original file ID. Therefore when you replay the journal entries you cannot

use the file ID on the remote journal to find the path of the object. That file ID will either not exist or be

the file ID for the wrong object.

To prevent potential problems, it is recommended that you create a table that maps the old and new file

IDs with the object’s path. The map can be something like the following table:

324 IBM Systems - iSeries: Journal Management

Object path Source file ID Target file ID

/myFolder/subFolder/MyObject 123456... 789123...

/myNextFolder/anotherFolder/MyObject2 654321... 321987...

Collect the information for mapping file IDs

You can use different methods to determine the file IDs:

v Use local journaling on the target system where you restore the object.

v Use the object’s path to find its file ID with the Get Attributes (Qp0lGetAttr()) API on the source

system.

v Use the object’s file ID to find its path with the Get Path Name of Object from Its File ID

(Qp0lGetPathFromFileID()) API on the source system.

Use local journaling on the target system

If an object is journaled when you restore it to the target system, a B FR journal entry is deposited on the

target system’s local journal receiver. The entry-specific data of the B FR journal entry contains the

following:

v Media file identifier--the file ID of the object on the media. This file ID is the same as the object’s file

ID on the source system.

v Restored file identifier--the object’s new file ID after it is restored to the target system.

v Restored over file identifier--the file ID of the object that was restored over.

If you are concerned about the demand that journaling puts on the remote system’s resources and storage

space, you can put the journal in *STANDBY state. Even though the journal is in standby state, the

system still deposits B FR entries.

Use the object’s path to find its file ID with the Qp0lGetAttr() API

On the source side, if you know the object’s path but do not know its file ID, you can use the

Qp0lGetAttr() API to get the file ID. This is especially helpful if you do not want to use journaling on the

remote system. You then need to send that information over to the target system to update the table

which must exist on the target system.

Use the object’s file ID to find its path with the Qp0lGetPathFromFileID() API

On the source side, if you know the object’s file ID, but do not know it’s path, you can find it using the

Qp0lGetPathFromFileID() API. You can then use this path to replay the journal entries on the target

system, assuming that the path on the target system is the same as the path on the source system. This

API will only return an absolute path name of the object. If the object has more than one path name, the

API only returns one path. You then need to send that information over to the target system to build the

table which must exist on the target system.

Maintain the table as the replicator job applies journal entries

Once you have the table created, you must keep it updated. One way to keep the table updated is to

update the table as the replicator job applies journal entries. On the target system, when the replicator job

applies entries to do operations such as creating objects, adding links, or removing links, the journal

entry information in these entries has the path name and file ID in it at that time. As the operation is

replayed you can use this information to build the table on the target system.

 Related concepts

Journal management 325

“Layouts for variable-length portion of journal entries” on page 212

The following tables contain the variable-length portion of the layouts for journal entries.

 “Considerations for save and restore operations with remote journals” on page 331

The following information describes general considerations for save and restore operations with

remote journals:
 Related tasks

 “Change the state of local journals” on page 90

Local journals can be in one of two states, active or standby. When the journal state of a local journal

is active, journal entries are allowed to be deposited to the journal receiver.
 Related reference

 Get Attributes (Qp0lGetAttr()) API

 Get Path Name of Object from Its File ID (Qp0lGetPathFromFileID()) API

Confirmed and unconfirmed journal entries:

For a local journal, all entries are confirmed entries. There is no concept of unconfirmed entries.

 For a remote journal that is maintained asynchronously, all entries are confirmed entries. For a remote

journal that is maintained synchronously, there are both confirmed and unconfirmed entries.

Unconfirmed entries will only become important if you are using the remote journal support for a

hot-backup or data replication environment, and the source system has a failure such that the target

system will take over processing.

Confirmed journal entries are journal entries replicated to a target system, and the state of the I/O to

auxiliary storage for the same journal entries on the primary system is known to have completed.

Unconfirmed journal entries are entries replicated to a target system, but the state of the I/O to auxiliary

storage for the same journal entries on the primary system is not known. Unconfirmed entries only

pertain to remote journals that are maintained synchronously. The remote I/O to the remote journal is

overlapped with the local I/O to the local journal for better performance. Such journal entries on the

target system are held in the data portion of the journal receiver. However, the journal entries are not

officially included with the remainder of the journal entries until the confirmation of the I/O for the same

entries is received from the primary system. For performance reasons, confirmation of these entries is not

typically sent to the target system until some later delivery of journal data to the target system.

While the journal entries are unconfirmed on a target system, the entries typically cannot be retrieved

from the remote journal. You can retrieve the journal entries by using the INCENT(*ALL) parameter on

the following commands:

v Display Journal (DSPJRN)

v Retrieve Journal Entry (RTVJRNE)

v Receive Journal Entry (RCVJRNE)

You can also retrieve the journal entries by specifying *ALL for the include entries key for the Retrieve

Journal Entries (QjoRetrieveJournalEntries) API. The INCENT(*ALL) parameter, or include entries key

specification of *ALL, requests that all confirmed and unconfirmed entries are included. This means that

for synchronous remote journal function, the last few journal entries are not immediately retrievable from

the remote journal by using the default command invocations. This is true even though all journal entries

physically reside in both the local journal and the remote journal. This is done so that application

programs do not make decisions on the target system by using journal entries that may not end up being

deposited into the local journal. This is because those journal entries would not cause a change to the

original data.

With respect to a hot-backup application apply, in most circumstances only the confirmed journal entries

in the remote journal are of interest. In the data replication environment, a hot-backup application apply

326 IBM Systems - iSeries: Journal Management

would probably never want to apply any unconfirmed journal changes. This is because any subsequent

activation of the remote journal will ensure that the journal entries in the remote journal will match the

journal entries in the source journal. However, as described in Scenario: Recovery for remote journaling,

knowledge of the unconfirmed journal entries is essential during the switch-over and switch-back

processing for a hot-backup environment.

When a remote journal is inactivated, all unconfirmed entries are removed from the remote journal. It is

important that those entries are retrieved prior to the remote journal being inactivated, if those entries are

desired for additional processing on the backup system. The message that is sent to the journal message

queue when the remote journal is inactivated by the system will indicate if the remote journal has any

unconfirmed journal entries. See Work with remote journal error messages.

 Related concepts

 “Journal state and delivery mode” on page 296
The journal state describes an attribute for a journal. The attribute value can be *ACTIVE, *INACTIVE

(remote journal only), or *STANDBY (local journal only). For a local journal, *ACTIVE indicates that

journal entries are currently allowed to be deposited into the journal. *STANDBY indicates that most

journal entries are not deposited.

 “Synchronous and asynchronous delivery mode for remote journals” on page 306
The terms asynchronously maintained and synchronously maintained both describe a remote journal

function delivery mode for journal entry replication.

 “Work with remote journal error messages” on page 338

Several different error conditions can occur when the remote journal function is active.
 Related reference

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API
 Related information

 “Scenario: Recovery for remote journaling” on page 344

This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is

necessary to restore the local system, and synchronize it with the remote system, JKLINT2.

Journal entries from a remote journal with library redirection:

All journal entries that are retrieved from a remote journal will have the object names as they exist on the

local system.

 The following journal entries will show the name of the journal receiver as it was on the local system

even if the entry is displayed on a remote system. This is because these entries really apply to the version

of the journal receiver that existed on the local system.

v J PR - Previous Receiver entry

v J NR - Next Receiver entry

v J RD - Receiver Deleted

v J RR - Receiver Restored

v J RS - Receiver Saved

v J RF - Receiver Saved with storage Freed

v Object saved entries - See the Journal entry information finder for a list of the possible entry types.

v Journal changes applied entries - See the Journal code finder for a list of the possible entry types.

v Journal changes removed entries - See the Journal code finder for a list of the possible entry types.

 Related information

 Journal entry information finder

Retrieve journal entries from a remote journal during the catch-up phase:

Journal management 327

rzakifinder.htm

During the catch-up phase, journal entries that have been replicated to the target system can be retrieved

from the remote journal.

 You can activate and inactivate the remote journal function while concurrently running the following

commands to view journal entries on the target system:

v Display Journal (DSPJRN)

v Retrieve Journal Entry (RTVJRNE)

v Receive Journal Entry (RCVJRNE)

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

When the remote journal is in the process of being caught-up from the attached journal receiver on the

source system, two things can happen with respect to objects and their names in the journal entries.

v If journaling is started for any objects on the source system, the object name that is given on the target

system in the start journal entry may be *UNKNOWN.

v If any move or rename operations take place, the last object name that was known before the catch-up

phase started is what will be given. The actual new name may not be available until the catch-up

phase is complete.

If you are using the DSPJRN or RTVJRNE command, additional informational messages will indicate that

this situation occurred. If you are using the RCVJRNE command, additional information is provided on

the exit program interface to help distinguish these situations as well. If you are using the

QjoRetrieveJournalEntries API, additional information is provided in the returned data to help distinguish

these situations. When necessary, the system attempts to minimize the possibility of showing these

inconsistencies by temporarily delaying the processing performed by these commands.

Once the catch-up phase is completed, these inconsistencies will be resolved, and complete information

will again be available.

 Related concepts

 “Exit program to receive journal entries” on page 280

Use the parameters in this topic to determine how the exit program will receive journal entries.

 “Activate and inactivate remote journals” on page 318

Activating a remote journal means starting and then maintaining the replication of journal entries

from a source journal to a remote journal. Activating a remote journal always occurs from the source

system.

 “Receive journal entries in an exit program” on page 280

You can write a program to receive journal entries as they are written to the journal receiver.
 Related reference

 Display Journal (DSPJRN) command

 Retrieve Journal Entry (RTVJRNE) command

 Receive Journal Entry (RCVJRNE) command

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Remote journal considerations for retrieving journal entries when using commitment control:

Special performance related processing is done by the system when depositing entries that are associated

with commitment control transactions to a local journal.

 When a job deposits a journal entry that is not associated with a commitment control transaction, that job

waits for the local journal I/O to auxiliary storage to complete. After completion, control is given back to

the application. A different technique is used for those journal entries that are associated with a

328 IBM Systems - iSeries: Journal Management

commitment control transaction which results in the application being given control back before the local

journal I/O is complete. This special processing has some ramifications when you retrieve journal entries

from a remote journal.

For journal entries deposited related to a commitment control transaction, a job only waits for the local

journal I/O to complete when the following journal entries are being deposited into the local journal:

v Journal code C, journal entry type CM (Commit)

v Journal code C, journal entry type RB (Rollback)

For remote journals, those journal entries that the job that is making the deposit does not wait for are not

immediately replicated or scheduled to be replicated to the remote journal. Prior to the CM (Commit) or

RB (Rollback) entry being deposited, there is no guarantee as to when the journal entries for open

commitment control transactions will be retrievable from the remote journal.

After the commit or rollback operation is complete for a particular commitment control transaction, all

journal entries associated with that transaction are immediately retrievable from an asynchronously

maintained remote journal. However, there may be some journal entry delivery latency due to the

transport method that is being used.

For a synchronously maintained remote journal, all journal entries associated with the commitment

control transaction are assured to be retrievable after the CM (Commit) or RB (Rollback) entry is

deposited.

Interspersed local journal I/O, for journal entries not associated with a commitment control transaction,

can also affect when the journal entries associated with a commitment control transaction can be retrieved

from the remote journal. In this I/O a job actually waits for the local journal I/O to complete. This

interspersed local journal I/O will also cause the journal entries related to the commitment control

transaction to be replicated to the remote journal. Once in the remote journal, and when later remote

journal I/O makes them confirmed, the journal entries that are related to the commitment control

transaction are retrievable.

Note: These considerations also apply if you generated entries that use the Send Journal Entry

(SNDJRNE) command or Send Journal Entry (QJOSJRNE) API. If the application or user never

requests to force these user generated entries, they will only be replicated to the remote journal

when some other action forces the journal entries. Therefore, you will wish to periodically specify

FORCE(*YES) when using these send journal entry functions.

These considerations also apply to any database physical file open or close journal entries; or directory or

stream file open, close, or force entries.

 Related concepts

 “Synchronous and asynchronous delivery mode for remote journals” on page 306
The terms asynchronously maintained and synchronously maintained both describe a remote journal

function delivery mode for journal entry replication.

 Commitment control
 Related reference

 Send Journal Entry (SNDJRNE) command

 Send Journal Entry (QJOSJRNE) API

Remote journal considerations for retrieving journal entries when using journal caching:

When you use journal caching for the local journal, the system performs special performance-related

processing when it deposits journal entries.

Journal management 329

With journal caching, the system waits longer to write journal entries to disk, leading to fewer but larger

disk writes. This action helps performance, but also delays the journal entries from being sent to the

target system, even if you are using synchronous remote journaling.

Journal receiver management with remote journals

As with local journals, regularly save and delete your journal receivers to minimize the amount of online

auxiliary storage which is used by the journal receivers.

The swapping of journal receivers for a remote journal is driven by the swapping of journal receivers on

the source journal.

If you plan to move the responsibility for storing journal receiver data from the primary system to the

remote system, you can elect to quickly delete journal receivers from the primary system after they have

been replicated to the backup system with automatic deletion of journal receivers. On your backup

system, you can then select to not use the automatic deletion of journal receivers on the remote journal,

and manage the receiver save processing as you did before. Remember that once you add a remote

journal, you cannot delete the source journal receiver until it has been replicated to all associated remote

journals. Any journal receivers that are attached subsequently are also protected. The protection is

eliminated when you remove the remote journal. If you have cascaded remote journals, consider using

automatic deletion of journal receivers on the local journal, and on the lowest level remote journal. You

would then not use automatic deletion of journal receivers on the cascaded remote journal since you plan

to do your save processing on that system.

The Delete Journal Receiver exit point, QIBM_QJO_DLT_JRNRCV can be of assistance as well. For

example, you might want to add an exit program to QIBM_QJO_DLT_JRNRCV which verifies that the

journal receiver is no longer needed for any hot-backup application apply processing before it can be

deleted. Refer to Delete journal receivers for information about this exit program.

 Related concepts

 “Swap journal receiver operations with remote journals”

To swap journal receivers on a remote journal, perform a swap journal receiver operation on the

source system to attach a new receiver to a local journal. When this happens, the remote journal

function automatically attaches a new receiver to the remote journals that are currently being

maintained synchronously or asynchronously.

 “Automatic deletion of journal receivers” on page 43

If you choose system journal receiver management, you can also have the system delete journal

receivers that are no longer needed for recovery. You can only specify this if you are using system

journal receiver management.
 Related tasks

 “Delete journal receivers” on page 77

Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal

management task is to delete journal receivers after you no longer need them.

Swap journal receiver operations with remote journals

To swap journal receivers on a remote journal, perform a swap journal receiver operation on the source

system to attach a new receiver to a local journal. When this happens, the remote journal function

automatically attaches a new receiver to the remote journals that are currently being maintained

synchronously or asynchronously.

If the journal sequence numbers were reset as part of the swap journal receiver operation performed for

the local journal, the remote journal function will also reset the journal sequence number for each remote

journal. This keeps the journal sequence numbers synchronized between the local journal and the remote

journal. For remote journals that are being synchronously maintained, a coordinated swap journal

receiver operation is performed for the local journal on the source system and the remote journals on the

target systems. For asynchronously maintained remote journals, the new receiver is attached when the

target system receives the journal entry with journal code ’J’ and entry type ’PR’ (previous receiver).

330 IBM Systems - iSeries: Journal Management

|
|
|
|
|

|
|
|
|
|
|
|

If the swap journal receiver operation fails on the target system, the remote journal function ends for that

remote journal, and processing continues on the source system. The system sends a message to the

journal message queue that indicates that the remote journal function failed. When applicable, the system

sends remote journal failure type messages to the related journal message queues on both the affected

source and target systems. See Work with remote journal error messages for more information.

You cannot initiate a swap journal receiver operation to attach a new receiver directly for a remote

journal. New journal receivers are always attached to the remote journal by the remote journal function

as new receivers are attached to the local journal. However, you can perform a change journal operation

on a remote journal to change several other attributes for the remote journal such as the journal message

queue or delete receivers value.

A swap journal receiver operation to attach a new receiver to a local journal that has an associated remote

journal in the catch-up phase can be performed. This is regardless of whether the remote journal is

currently being caught-up from a detached or the currently attached receiver on the local system. The

catch-up phase of processing will not transition into synchronous or asynchronous delivery mode until

the end of the currently attached receiver for the local journal is reached.

 Related concepts

 “Journal receiver management with remote journals” on page 330

As with local journals, regularly save and delete your journal receivers to minimize the amount of

online auxiliary storage which is used by the journal receivers.

 “Work with remote journal error messages” on page 338

Several different error conditions can occur when the remote journal function is active.
 Related tasks

 “Swap journal receivers” on page 71
An important task for journal management is to swap (or change) journal receivers. You typically

swap journal receivers when they reach their storage threshold. You can swap journal receivers either

with iSeries Navigator or with the Change Journal (CHGJRN) command. If you use system

journal-receiver management, the system changes journal receivers for you.

Considerations for save and restore operations with remote journals

The following information describes general considerations for save and restore operations with remote

journals:

v Rules for saving and restoring journals

v Rules for saving and restoring journal receivers

v File identifier considerations for working with integrated file system entries

v Considerations for restoring journaled objects

v Considerations for restoring objects saved with SAVSTG

 Related concepts

 “Types of remote journals” on page 294

The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational

characteristics of a remote journal and its associated journal receivers. The following table is an

overview of the different remote journal types and their characteristics. There are no performance

differences between the types of remote journals.

 “File identifier considerations for working with integrated file system entries” on page 324

If you plan to replay the integrated file system operations in the remote journal to objects on the

target system, and if you primed that target system with objects that were restored from the source

system, then some additional considerations apply to replaying those journal entries.

Rules for saving and restoring journals:

Journal management 331

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

|

|
|
|
|
|

It is recommended that you save the remote journal network after the addition of any and all remote

journals that will be associated with the journal. This includes saving the local journal and any associated

remote journals, as well as the journal receivers that are associated with the local journal.

 Follow the basic save and restore rules for journals that are listed here:

v A saved local journal is always restored as a local journal.

v A saved remote journal is always restored as a remote journal.

v As with all prior save and restore support for journals, the support will not allow a restore-over

operation for a journal. This is true for both local and remote journals.

v When restored, a local or remote journal is always restored to the library from which it was saved. For

a local journal, this library is referred to as the original journal library. For a remote journal, this library

is referred to as the redirected journal library.

For a remote journal, library redirection may not have been specified when adding the remote journal

to the local journal’s definition. If this occurs, then the redirected journal library name is the same

name as the original journal library name.

Note: This is always true except in the case where the journal was saved from library QRCL. (The

journal could reside in library QRCL due to prior Reclaim Storage processing.) In that case, the

RSTLIB parameter must be specified on the restore request, and you must specify the library

where the journal originally resided. For a local journal, this is existing support and is not new.

For a local journal, the library that must be explicitly specified is the original library.

This support logically extends to remote journals. For a remote journal, the redirected library must be

explicitly specified on the RSTLIB parameter of the restore request.

v If remote journals are associated with a journal when a journal is saved, the information that is related

to the added remote journals is also saved.

When the journal is restored, the information that is saved about its remote journals is also restored.

This information is included as part of that journal’s definition. This is true whether the journal being

saved is a local or a remote journal. When restored, the restored journal’s definition will only include

the saved, immediately downstream remote journal definitions.

Note: None of the actual downstream remote journals are actually verified as part of the restore

operation. Any necessary validation of the remote journal information occurs when you activate

that particular remote journal by using the Change Journal State (QjoChangeJournalState) API or

Change Remote Journal (CHGRMTJRN) command.

v Local journals are restored to the same state in which they are saved.

 Related reference

 Change Journal State (QjoChangeJournalState) API

 Change Remote Journal (CHGRMTJRN) command

Rules for saving and restoring journal receivers:

The restore relationships for journal receivers associated with remote journals are described in this topic.

 The following figure illustrates the restore relationships for journal receivers that are associated with

remote journals, based on the remote journal type.

332 IBM Systems - iSeries: Journal Management

There are several unique rules which govern where the journal receivers that are associated with a remote

journal can be restored. The rules also discuss the placement of the journal receivers in the receiver

directory chain of a local or remote journal. These rules are influenced by the remote journal type of the

journal to which the journal receiver was attached. These rules are also influenced by the library

redirection that was in effect when that receiver was attached. See Types of remote journals.

Note: You can always save receivers from a journal, and then restore the receivers to another local

journal of the same name. However, they will be placed in their own separate receiver chain.

Journal management 333

The following items describe the rules that the system uses when restoring journal receivers:

1. The system first attempts to find an appropriate remote journal. When searching for a remote journal,

the system follows the following rules:

a. If the saved receiver was originally associated with a local or *TYPE1 remote journal, then the

system searches for a *TYPE1 remote journal.

1) If a *TYPE1 remote journal was defined at the time this receiver was attached, then use the

journal and receiver library redirection that was in effect and saved with the receiver. If no

*TYPE1 remote journal was defined at the time this receiver was attached, then the original

journal library and receiver library names will be used when searching for the *TYPE1 remote

journal.

2) If a *TYPE1 remote journal is found, and the current receiver library redirection for the found

*TYPE1 remote journal matches the library name where the receiver is being restored, the

journal receiver will be associated with the found *TYPE1 remote journal.
b. If the receiver was originally associated with a *TYPE2 remote journal, then the system searches

for a *TYPE2 remote journal. When searching for the *TYPE2 remote journal, a journal with the

same name as the name that was saved with the receiver will be used.

1) The journal receiver will be associated with a found *TYPE2 remote journal if the following

conditions are met:

v A *TYPE2 remote journal is found with the correct name in the correct library.

v The found journal is in the exact same remote journal network as that of the saved receiver.

v The receiver is being restored to the same named system or same named ASP group as the

name of the system or ASP group at the time the receiver was saved.
2. If a remote journal was not found, then the system searches for a local journal. When searching for a

local journal, the original journal and journal library names are used.

The journal receiver will be associated with a found local journal if the following conditions are met:

v A local journal is found by the correct name in the correct library.

v The original journal receiver library name for the found journal matches the library name where the

receiver is being restored.
3. If a local journal cannot be found, the restore operation will be allowed to proceed. The journal

receiver will not be associated with any journal, if the receiver is being restored to the original or

redirected receiver library.

4. Still honoring the previous receiver restore rules, the following must also be true if the receiver is

being restored over an existing receiver:

a. If the receiver is not being associated with any journal (as previously determined from the prior

receiver restored rules), then following items apply:

1) The receiver creation time stamps must match.

2) If the saved receiver was ever associated with a journal, then it must have been previously

associated with a journal of the same type as that of the existing receiver.

3) If the saved receiver was ever associated with a remote journal network, then it must have

been previously associated with the same remote journal network as that of the existing

receiver.

4) The saved receiver must have at least as many entries as the existing receiver.
b. If the receiver is being associated with a local journal, then the following items apply:

1) If the saved receiver was originally associated with a local journal, then the receiver creation

time stamps must match.

2) If the saved receiver was not originally associated with a local journal, then the saved receiver

must have been originally associated with the same remote journal network as that of the

existing receiver.

3) The saved receiver must have at least as many entries as the existing receiver.
c. If the receiver is being associated with a *TYPE1 remote journal, then the following items apply:

334 IBM Systems - iSeries: Journal Management

1) The receiver creation time stamps must match, and the saved receiver must have been

originally associated with a local or *TYPE1 remote journal.
d. If the receiver is being associated with a *TYPE2 remote journal, then the following items apply:

1) The receiver creation time stamps must match, and the saved receiver must have been

originally associated with the same *TYPE2 remote journal.

When receivers are saved from or restored to a target system and associated with a remote journal, no

journal entries are deposited to indicate that the save or restore occurred. However, the object save and

restored date and time stamps are updated accordingly.

 Related concepts

 “Types of remote journals” on page 294

The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational

characteristics of a remote journal and its associated journal receivers. The following table is an

overview of the different remote journal types and their characteristics. There are no performance

differences between the types of remote journals.

 “Considerations for restoring objects saved with SAVSTG” on page 336

If you restore a system from Save Storage (SAVSTG) media, the primary remote journal function

concerns have to do with configuration changes involving additionally defined remote journals.

Save and restore considerations:

Considerations for remote journal receivers

Do not save the receiver while it is attached to the remote journal. If it is a long running save it

can inhibit a change journal operation that was initiated by the source and the remote journaling

environment can time out and fail.

Nonreplicated journal receiver protection considerations

The protection provided, which prevents journal receivers that are not fully replicated to all

associated remote journals from being deleted, is removed when the journal receiver is restored.

Unconfirmed journal entries save considerations

When a journal receiver that is associated with a remote journal is saved, only those journal

entries which have been confirmed are saved to the media. Therefore, no unconfirmed journal

entries, nor any journal entries that would not survive any IPL journal recovery processing, will

be saved.

Journal receivers saved with STG(*FREE) considerations

Even if a journal receiver has not been fully sent to all known remote journals, such a journal

receiver can be saved with STG(*FREE). However, a diagnostic message is left in the job log

indicating the freeing of the journal receiver storage without the journal receiver first being fully

replicated to all downstream remote journals. This is in contrast to the default action taken when

attempting to delete a receiver that has not been fully replicated to all downstream remote

journals.

Considerations for restoring journaled objects:

For an object that is restored and associated with a local journal in standby state, journaling starts for that

object, but no restore entry is deposited in the journal receiver. If the object is being restored-over and is

currently journaled to a local journal in standby state, the restore is not prevented, and no restore entry is

deposited in the journal receiver.

 The system will send a diagnostic message for any object in which the ’object restored’ journal entry

cannot be sent due to a problem with the journal or attached journal receiver, unless the journal is in

standby state. The system always attempts to start journaling for an object that was journaled at save

time to the same named journal, in the same named library, during a restore operation. This is still true,

and there are no processing changes to note if a local journal is found by the restore processing.

However, if a remote journal is found by the restore processing, the restore is completed successfully, but

Journal management 335

journaling is not started for the restored object. A diagnostic message is sent that indicates that a remote

journal was found by the restore processing. This message is followed by the message that is already sent

that indicates journaling was not started.

In a hot-backup configuration, a local journal is used on the backup system to capture the changes that

are made to the objects on the remote system. This occurs when the remote system is logically promoted

to assume the role of the primary system. The local journal that is being used on a backup system might

not be in the exact same-named library as the journal that is being used for the object at save time. If this

occurs, you are responsible for starting journaling for the restored objects. This is a fundamental reason to

use library redirection for all defined remote journals.

Considerations for restoring objects saved with SAVSTG:

If you restore a system from Save Storage (SAVSTG) media, the primary remote journal function concerns

have to do with configuration changes involving additionally defined remote journals.

 These remote journals were established after the SAVSTG media was produced. If a primary system is

restored from SAVSTG media, journal receivers can be restored back to the primary system from versions

saved from any of the associated remote journals in the remote journal environment. If a backup system

is restored from SAVSTG media, then the catch-up phase for activating the remote journal can replicate

all necessary journal receivers that are still online from the primary system to the restored backup system.

Those journal receivers that are not online, and were attached to a *TYPE1 remote journal, can be restored

back to the backup system. They can be restored from any saved versions of the journal receivers that

were previously taken from one of the following:

v The primary system

v Any of the associated remote journals in the remote journal environment

See the Rules for saving and restoring journal receivers link below for the journal receiver restore rules

which is typically used for this type of restore.

Another consideration occurs as part of the processing that is performed by the system when restoring

journal receivers. Before associating a journal receiver with a local journal and retaining any remote

journal information, the journal library name, and the system name or the independent disk pool name

must be correct. This allows the system to differentiate between a local journal that was originally created

and one that was restored to a different physical system using SAVSTG media. This case assumes that the

user assigns a new system name as part of the SAVSTG procedure.

In one example case, the system was restored using SAVSTG media but was not restored to the same

physical system. However, the restored system still had the same name as the system from where the

media was produced. This situation can cause problems and should be avoided.

 Related tasks

 “Rules for saving and restoring journal receivers” on page 332

The restore relationships for journal receivers associated with remote journals are described in this

topic.
 Related reference

 Save Storage (SAVSTG) command

Remote journal considerations when restarting the server

This topic discusses the considerations for remote journaling when you restart the server.

Considerations for restarting replication of journal entries

The replication of journal entries to each of the associated remote journals ends implicitly when the local

system ends. To begin replicating journal entries to the remote journal, you must restart the remote

journal on the target system. After an IPL or vary on operation, you are not required to reassociate the

336 IBM Systems - iSeries: Journal Management

|
|
|

|
|
|

remote journals with the journal on the source system.

Considerations for main storage preservation

In addition to unconfirmed I/O for journal entries, you also need to consider the preservation of main

storage for a failed system during recovery processing. Given certain system failures, main storage might

or might not be preserved during the following IPL to recover from the system failure. Therefore, it is

possible for journal entries to survive in a local journal after a system failure, even if the local or remote

I/O was never performed for those journal entries.

Therefore, IPL recovery on a primary system might preserve changes that are not yet replicated to any of

the remote journals, even the remote journals that are synchronously maintained. Scenario: Recovery for

remote journaling demonstrates that you can use the remote journal function to account for journal

entries that survive a system failure in this manner. These journal entries do not cause a total re-priming

of the original data when switching back from a backup system which took over the role of the primary

system.

In the scenario, when the system ends, the system does not return control to the application programs

that are in the process of generating these surviving journal entries. Therefore, the application does not

know whether or not any of operations completed when the system ends. Also, the application does not

make dependencies or decisions on these operations. This includes dependencies or decisions by the

application performing the operation or any other application that could be possibly dependent upon the

data affected by the operation.

Because of this consideration, it is recommended that you journal both the before-images and

after-images for any objects, if possible. With the before-images, the work can then be backed out after

the IPL or vary on operation. If the data activity is not backed out after the IPL or vary on operation, the

alternative is to re-prime the primary system data completely from the backup data which had assumed

the role of the primary.

Considerations for when the target system ends

When remote journaling is active, neither a normal end nor an abnormal end of the target system affects

journaling on the source system. The local system continues to deposit entries into the local journal

without an error. The system sends a message to the local journal’s message queue to alert the operator

that remote journaling ended. When the target is again available, you can reactivate remote journaling

from the source system. When you activate remote journaling, the default is for the local system to start

sending journal entries starting with the first entry the target system is missing.

Considerations for commitment control

Commitment control, especially two-phase commitment control, can cause some additional considerations

and potential complications. For example, if any of the entries that were preserved but not yet confirmed

were a commit or a rollback operation, then the transaction will have to be reconciled accordingly

between the primary system, and the backup system.

Considerations for journal caching

Journal caching affects remote journaling. Since journal entries are not sent to the target system right

away, the number of journal entries that are not confirmed in a synchronous remote journal environment

are always greater than if you are not using journal caching.

 Related tasks

 “Inactivate the replication of journal entries to a remote journal” on page 321

When you end replication of journal entries to a remote journal, it is recommended that the replication

of entries be ended from the source system whenever possible, rather than from the target system.

Journal management 337

|

|
|
|

Usually, ending replication from the target system for a remote journal is only necessary when the

source system has failed, and the system has not ended the remote journal function.

 “Activate the replication of journal entries to a remote journal” on page 318

In order to activate the replication of journal entries to a given remote journal, the following must be

true:
 Related information

 “Scenario: Recovery for remote journaling” on page 344

This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is

necessary to restore the local system, and synchronize it with the remote system, JKLINT2.

Work with remote journal error messages

Several different error conditions can occur when the remote journal function is active.

When an error condition is encountered, the system automatically ends the remote journal function on

the source system to that remote journal. The system notifies you that a failure occurred. Failure

notification is made on both the source system and the target system. Notification is made by sending a

message to the journal message queues associated with the source and target journals as appropriate.

Additional messages can be sent to the journal message queue for normal remote journal processing. For

example, if you requested a controlled inactivate of the remote journal, a message will be sent to the

message queue when the inactivate processing has completed.

Even though the remote journal function has been ended, the local journal is not automatically

inactivated. Therefore the local system journal entry deposits will continue normally.

The remote journal function messages that are sent to the journal message queue are listed as follows:

CPF70D3

A controlled inactivate of a remote journal has completed.

CPF70D4

The remote journal function is no longer active due to various reasons. For a synchronously

maintained remote journal, there may be unconfirmed entries which may need to be processed

prior to the remote journal being inactivated.

CPF70D5

The remote journal function is no longer active and has been ended due to various reasons. There

are no unconfirmed entries.

CPF70D6

The remote journal function was ended due to storage constraints.

CPF70D7

There was a problem on the target system while attempting to execute a change journal.

CPF70DB

A severe error has occurred with the remote journal function, and service must be notified.

CPF70DC

There was a timeout on the target system while attempting to attach a new journal receiver to the

remote journal.

 Display the messages on your system for more information.

 Related concepts

 “Confirmed and unconfirmed journal entries” on page 326

For a local journal, all entries are confirmed entries. There is no concept of unconfirmed entries.

 “Swap journal receiver operations with remote journals” on page 330

To swap journal receivers on a remote journal, perform a swap journal receiver operation on the

338 IBM Systems - iSeries: Journal Management

|
|
|
|

source system to attach a new receiver to a local journal. When this happens, the remote journal

function automatically attaches a new receiver to the remote journals that are currently being

maintained synchronously or asynchronously.
 Related tasks

 “Catch-up phase for remote journals” on page 319
Catch-up refers to the process of replicating journal entries that existed in the journal receivers of the

source journal before the remote journal was activated.
 Related reference

 Change Journal State (QjoChangeJournalState) API

 Change Journal (CHGJRN) command

Scenarios: Remote journal management and recovery

These scenarios describe the possible ways that JKL Toy Company can use remote journal management.

JKL Toy Company uses the server JKLINT as their web server.

They need 24x7 availability for the critical data on this server, and they accomplish that by having a

second server, JKLINT2, that shadows JKLINT. They use a high availability replication solution to copy

the data from JKLINT to JKLINT2. Then, if JKLINT goes down, they can switch to JKLINT2.

The following scenarios describe two possible environments in which they can use remote journaling. The

first scenario describes how JKL Toy Company can set up a data replication environment. The second

scenario describes how they set up a hot-backup environment. The third scenario describes recovery steps

if one of the servers fails.

Note: Scenario: Journal management contains a complete description of JKL Toy Company’s network and

their overall strategy for journaling.

 Related concepts

 “JKLINT” on page 93

JKLINT is the system that JKL uses for their Web site and e-mail. While this data is critical to their

business, it is fairly static.
 Related information

 “Scenario: Journal management” on page 92
Provides the steps that a fictitious company, JKL Toy company, takes as it implements journal

management on its iSeries server.

Scenario: Data replication environment for remote journals

In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only.

The following figure illustrates this remote journaling environment. Data replication is the function of

maintaining a separate copy of data from an original copy, keeping the two copies consistent with each

other.

Typical data replication environment with remote journal function

Journal management 339

How the data replication environment works

Local objects, F1, F2, and F3, on JKLINT are journaled to local journal JRN in library JLB1. A remote

journal is defined on JKLINT2, where JRN has been redirected to library JLB2. This remote journal

receives journal entries from the local journal on JKLINT. A hot-backup application apply replays the

changes to the data replica on system JKLINT2.

The data replica is journaled to a local journal, JRN in library JLB1, for system recovery purposes only, so

this journal must be in active state. If system JKLINT2 fails, the system performs recovery for the objects

by using this local journal.

A hot-backup application assists in replicating data from one system to another. The hot-backup

application apply is only performing the replay of operations to the data replica on the target system.

Since this scenario is for a data replication environment, the hot-backup application does not perform a

switch-over to the backup system. See Scenario: Hot-backup environment for more details about

hot-backup applications applies and hot-backup switch-overs.

How to establish the data replication environment for JKLINT and JKLINT2

The objects and local journal on JKLINT are already assumed to exist. The journal state for the local

journal is also assumed to be active. The communications environment and associated RDB entries

already exist and are established.

Establishing the data replication environment for JKLINT and JKLINT2 requires the following:

1. Create the remote journal on JKLINT2, and specify library redirection. Library redirection indicates

that the journal’s library, JLB1 on JKLINT, is redirected to library JLB2 on JKLINT2. The journal

receiver’s library, RLB1 on JKLINT, is redirected to library RLB2 on JKLINT2.

After this step, the remote journal exists, but no receiver is currently attached.

340 IBM Systems - iSeries: Journal Management

2. To establish a clean breakpoint, perform a change journal operation to attach a new journal receiver at

this time.

Note: The next step restores local journal JRN in library JLB1 and attaches receiver X1002 in library

RLB1. It then restores the objects, and starts journaling for the objects to the restored local

journal.

3. Save the local journal and objects from JKLINT and restore them to JKLINT2. This primes the data

replica and establishes the local journaling environment on JKLINT2.

4. Activate the remote journal on system JKLINT2. Specify that the remote journal must start with the

attached receiver. Since no receiver is attached to the remote journal, the receiver that is currently

attached to the local journal on JKLINT (X2) is created on JKLINT2. This receiver is then attached to

the remote journal. Journal entries are replicated, starting with the first journal entry in receiver X2.

An additional parameter on the Change Journal State (QjoChangeJournalState) API and Change

Remote Journal (CHGRMTJRN) command indicates whether the remote journal function is to be

maintained synchronously or asynchronously. Depending on how the remote journal is maintained,

other parameters may also apply.

5. The hot-backup application apply process receives or retrieves journal entries from the remote journal,

starting with the entries that were deposited after the data was saved and primed into the data

replica. The process then starts replaying the changes that are contained in these journal entries to the

data replica.

Normal run-time environment for the data replication environment

You can activate and inactivate the replication of journal entries to the remote journal as needed. Each

time you activate the remote journal, *ATTACHED is specified as the point in the receiver chain to start

receiving journal entries. The system checks the currently attached remote journal receiver for journal

entries and replicates the next journal entry in sequence.

You must specify the delivery mode when activating the remote journal. If needed, the delivery mode can

be different on each activation of the remote journal.

Change journal operations that attach a new receiver to the local journal on system JKLINT are

performed by the remote journal function as required on the target system. The remote journal function

attaches the associated receivers to the remote journal automatically. If the remote journal is being

maintained synchronously, the change journal operation to attach a new receiver is essentially a

coordinated operation between the source and target systems. If the remote journal is being maintained

asynchronously, the change journal operation to attach a new receiver on the target system is performed

differently. In this case, it is triggered when the journal entry with journal code ’J’ and entry type ’PR’ is

received by the remote journal on the target system.

The hot-backup application apply continues to replay changes to the data replica as received or retrieved

from the receivers associated with the remote journal.

If needed, you can delete the receivers that are associated with the local journal on JKLINT when each

receiver is replicated to JKLINT2. Sharon can accomplish this by specifying automatic deletion of journal

receivers or manually deleting the receivers on JKLINT.

You can save the receivers from JKLINT2. If necessary, you can use the receivers for recovery of the

original data on system JKLINT at a later time.

See Delete journal receivers for more information.

Journal management 341

|
|
|

Data replication recovery if JKLINT fails

Recovery for JKLINT and JKLINT2 is simpler than environments that involve hot-backup because the

hot-backup application does not switch-over to the backup system. What prevents the complications is an

assumption that the hot-backup application apply logic will not receive and replay unconfirmed journal

entries to the data replica if system JKLINT2 loses communications with system JKLINT. Therefore, the

data replica on system JKLINT2 can never get ahead of the data on system JKLINT. This greatly

simplifies data synchronization.

 Related concepts

 “Where the replication of journal entries start” on page 308

When you specify a journal receiver for remote journaling, you are specifying where the replication of

journal entries will start.

 “Activate and inactivate remote journals” on page 318

Activating a remote journal means starting and then maintaining the replication of journal entries

from a source journal to a remote journal. Activating a remote journal always occurs from the source

system.

 “Automatic deletion of journal receivers” on page 43

If you choose system journal receiver management, you can also have the system delete journal

receivers that are no longer needed for recovery. You can only specify this if you are using system

journal receiver management.
 Related tasks

 “Add remote journals” on page 315

This topic provides instructions for adding a remote journal.

 “Activate the replication of journal entries to a remote journal” on page 318

In order to activate the replication of journal entries to a given remote journal, the following must be

true:
 Related reference

 Change Journal State (QjoChangeJournalState) API

 Change Remote Journal (CHGRMTJRN) command
 Related information

 “Scenario: Hot-backup environment”

In this scenario, the remote journaling environment uses a hot-backup application that causes

JKLINT2 to replace JKLINT in the case that JKLINT has a failure.

Scenario: Hot-backup environment

In this scenario, the remote journaling environment uses a hot-backup application that causes JKLINT2 to

replace JKLINT in the case that JKLINT has a failure.

A hot-backup application typically performs the following:

1. If the primary system fails, it performs a switch-over to the backup system. This function then

logically promotes the backup system to assume the role of the primary system.

2. After the failed primary system is restarted, it performs a switch-back operation so that the primary

system can again assume the role of the primary system.

A hot-backup application apply defines the part of a hot-backup application that actually performs the

replay operations to the data replica. This usually occurs on the backup system when maintaining a data

replica.

The following figure describes a typical remote journal environment that is used for hot-backup purposes.

The following occurs in this illustration:

v Server JKLINT is the primary server while JKLINT2 is the backup server.

v Server JKLINT journals objects to local journal JKLB1/JRN.

342 IBM Systems - iSeries: Journal Management

v Changes to those journaled objects are also journaled to remote journal JLB2/JRN on server JKLINT2.

v On JKLINT2 a hot backup-apply replays changes to the data replica. When the hot backup-apply

replays these changes, JKLINT2 journals the changes to its own local journal, JLB1/JRN.

v If JKLINT fails, JKLINT2 assumes the role of primary server and all local journaling of changes to the

data replica (now acting as the original data) continue on JKLINT2’s local journal, JLB1/JRN.

v When it is time to switch the role of primary server back to JKLINT, JKLINT2 sends changes from its

local journal, JLB1/JRN, to remote journal JLB2/JRN on server JKLINT (the transport from JKLINT2 to

JKLINT is only used for this purpose).

v JKLINT then uses its remote journal, JLB2/JRN, to replay changes to the original data.

Typical hot-backup environment with remote journal function

How to establish the hot-backup environment

The steps to establish a hot-backup environment the are the same as establishing data replication

environment except for this additional last step:

Sharon also establishes a remote journal JKLINT that is associated with the local journal that she creates

on JKLINT2. This remote journal receives or retrieves the journaled changes that are made when JKLINT2

assumes the role of the primary system. This local journal and remote journal pair will only be used

when replicating changes back to the original data. During normal run-time processing, the remote

journal, JLB2/JRN, that is defined on JKLINT is not active. When it is not active, it is not receiving or

retrieving journal entries from the local journal, JLB1/JRN, on JKLINT2.

Normal run-time environment for the hot-backup environment

The details for run-time environment for the hot-backup environment is the same as the data replication

environment.

Journal management 343

Hot-backup recovery if JKLINT fails

If you use a hot-backup application where the logical ownership of the data is given to JKLINT2,

recovery is more complicated. In this case, the hot-backup application logically promotes JKLINT to

assume the role of the primary system. Recovery is more complicated because after JKLINT has

completed its IPL, the remote journal function catch-up phase from the local journal on system JKLINT to

the remote journal on system JKLINT2 will always allow a resynchronization of the two sets of data.

Data resynchronization is recovery processing that is performed during switch-back processing by a

hot-backup application apply. This processing ensures that the original data is consistent with the data

replica, and contains all the correct changes. The main objective of this, besides assuring data consistency,

is to eliminate re-priming the original data from the data replica.

For details on recovering a hot-backup environment see Scenario: Recovery for remote journaling.

 Related information

 “Scenario: Data replication environment for remote journals” on page 339

In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only.

 “Scenario: Recovery for remote journaling”

This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is

necessary to restore the local system, and synchronize it with the remote system, JKLINT2.

Scenario: Recovery for remote journaling

This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is necessary

to restore the local system, and synchronize it with the remote system, JKLINT2.

Details: Recovery for remote journaling scenario has step-by-step instructions for recovering from this

failure this scenario describes.

This scenario, and the details for this scenario, only discuss database physical files. All the concepts,

however, apply to any journaled object type.

Example remote journal environment for hot-backup recovery

The following figure illustrates the hot-backup environment for JKLINT and JKLINT2. The following

items list considerations for this environment:

v The remote journal BJ2 is only active after JKLINT fails. JKLINT2 assumes the role of primary system

and JKLINT is running again (as the secondary system).

v Journal receivers are not specifically called out in the figure. They have been omitted in an attempt to

simplify the scenario and to focus on the recovery steps for the database. Where necessary, processing

specific to journal receivers is referred to in the scenario.

v Likewise, library redirection for the journals and journal receivers is not specifically called out in the

figure. Again, this is omitted in an attempt to simplify the scenario. In the scenario, the libraries for

any of the journals or journal receivers could be redirected to a library that is different from that being

used for the corresponding objects on the other system.

v The figure simply refers to the original data in the figure as DB on the primary system JKLINT and

DB’ as the data replica on the backup system JKLINT2. DB can be one or more journaled objects, and

DB’ contains a replica for each of the journaled objects in DB.

344 IBM Systems - iSeries: Journal Management

For simplicity, the scenario below treats DB as a single database file and DB’ as its replica.

The following items describe the scenario at the time JKLINT fails:

v System JKLINT is the primary system.

v The original data that is denoted by DB is journaled to an active local journal PJ1.

v Remote journal BJ1 on backup system JKLINT2 is active, and unless otherwise noted, is synchronously

receiving journal entries from journal PJ1.

v A hot-backup application apply, not shown in the diagram, is asynchronously replaying, or applying,

the changes to the data replica, DB’.

v The data replica DB’ is journaled to local journal PJ2 on system JKLINT2.

The journal state for journal PJ2 is *STANDBY.

v Remote journal BJ2 has a journal state of *INACTIVE (journal entries are not replicated to it). Remote

journal BJ2 is only active when accepting the data changes back from system JKLINT2. This occurs

after system JKLINT2 had been promoted to assume the role of the primary system due to a planned

or unplanned outage of system JKLINT, and after system JKLINT has resumed operations.

v The primary system, JKLINT, has failed.

v The decision has been made to switch-over to the backup system, JKLINT2.
 Related concepts

 “Confirmed and unconfirmed journal entries” on page 326

For a local journal, all entries are confirmed entries. There is no concept of unconfirmed entries.

 “Remote journal considerations when restarting the server” on page 336

This topic discusses the considerations for remote journaling when you restart the server.
 Related tasks

 “Details: Recovery for remote journaling scenario” on page 346

A description of the recovery process for remote journaling.
 Related information

Journal management 345

“Scenario: Hot-backup environment” on page 342

In this scenario, the remote journaling environment uses a hot-backup application that causes

JKLINT2 to replace JKLINT in the case that JKLINT has a failure.

Details: Recovery for remote journaling scenario

A description of the recovery process for remote journaling.

These details provide a step-by-step description of the process that occurs in Scenario: Recovery for

remote journaling.

 Related tasks

 “Swap journal receivers” on page 71
An important task for journal management is to swap (or change) journal receivers. You typically

swap journal receivers when they reach their storage threshold. You can swap journal receivers either

with iSeries Navigator or with the Change Journal (CHGJRN) command. If you use system

journal-receiver management, the system changes journal receivers for you.

 “Activate the replication of journal entries to a remote journal” on page 318

In order to activate the replication of journal entries to a given remote journal, the following must be

true:

 “Inactivate the replication of journal entries to a remote journal” on page 321

When you end replication of journal entries to a remote journal, it is recommended that the replication

of entries be ended from the source system whenever possible, rather than from the target system.

Usually, ending replication from the target system for a remote journal is only necessary when the

source system has failed, and the system has not ended the remote journal function.
 Related reference

 Receive Journal Entry (RCVJRNE) command

 Retrieve Journal Entries (QjoRetrieveJournalEntries) API
 Related information

 “Scenario: Recovery for remote journaling” on page 344

This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is

necessary to restore the local system, and synchronize it with the remote system, JKLINT2.

Current state of JKLINT and JKLINT2:

At the time of the system failure, the state of JKL and JKLINT is as follows:

v Journal entries 12-19 are already deposited into PJ1 and confirmed in BJ1.

v The corresponding data changes are also already reflected in the data replica, DB’, on system JKLINT2.

v Journal entries 20-25 are built and validated in main storage on JKLINT and sent to BJ1, and then

system JKLINT fails.

v Main storage is not preserved when JKLINT fails, so at the time of the failure, the last known

confirmed sequence number in BJ1 is 19. Sequence numbers 20 through 25 are all unconfirmed.

v The last known sequence number in PJ1 will be 19 when system JKLINT restarts.

The hot-backup recovery strategy in these details does not require that both before-images and

after-images are journaled to the local journal. However, the strategy would require before-images if,

during the resynchronization process of the switch-back to the primary system, the strategy requires that

the hot-backup application remove journaled changes. See step 3c on page 351.

Steps required for recovery:

To recover system JKLINT, the following steps are required:

1. Update DB’ by using the hot-backup application to replay the unconfirmed journal entries.

346 IBM Systems - iSeries: Journal Management

|

a. On system JKLINT2, allow the hot-backup application apply processing to complete the replay of

confirmed operations as identified in journal BJ1. This is the first step of the switch-over

processing. The apply processing includes replaying all journal entries up through and including

sequence number 19.

b. The hot-backup application does not replay sequence numbers 20-25 because the I/O for those

journal entries is not yet confirmed from the local journal PJ1. The Receive Journal Entry

(RCVJRNE) command or Retrieve Journal Entries (QjoRetrieveJournalEntries) API that is being

used to retrieve the entries from the remote journal will not return sequence numbers 20-25 to the

exit program, unless specifically requested to do so. To specify that sequence numbers 20 - 25 are

returned to the exit program, use the INCENT(*ALL) parameter on the command. You can also

request this by specifying *ALL for the include entries key on the API.

c. After the hot-backup application replays all confirmed journal entries, perform a change journal

operation to attach a new journal receiver to local journal PJ2 on system JKLINT2 and change the

state of journal PJ2 in *ACTIVE state. The change journal operation establishes a clean recovery

point. It also makes clear what information needs to be sent back to system JKLINT later to replay

back to the original data. Performing the change journal operation also prevents the remote journal

function from having to re-replicate all of the journal entries that were previously generated into

the currently attached journal receiver of PJ2. (The journal entries were generated into the receiver

as part of replaying the database changes to the data replica on system JKLINT2.)
The following figure shows that more unconfirmed journal entries are present in BJ1 than are known

in PJ1.

Journal management 347

2. Perform switch-over processing and prepare JKLINT2 to run applications

a. The hot-backup application reads unconfirmed journal entries from BJ1 and replays them to the

data replica. They are retrieved from BJ1 by using the Receive Journal Entry (RCVJRNE) command

or QjoRetrieveJournalEntries API, specifically requesting that unconfirmed journal entries be

returned. Journal entries 140-145 are generated into journal PJ2 when replaying these changes to

the data replica.

b. The QjoChangeJournalState API or CHGJRN command inactivates the remote journal BJ1. During

this operation, the system physically removes the unconfirmed journal entries from BJ1. The last

known sequence number in BJ1 is now 19.

c. The replay processing on JKLINT2 sends a user entry that indicates the point in time when the

database was switched-over. The user entry in the following figure is sequence number 146,

journal code ’U’, entry type ’SW’.

348 IBM Systems - iSeries: Journal Management

d. After these steps are performed on system JKLINT2, applications can now be started on JKLINT2

and use DB’ as the database to be updated. Applications continue to work and deposit journal

entries 147-200.

e. System JKLINT restarts and normal IPL recovery finds the end of the journal for PJ1 to be

sequence number 19. IPL recovery ensures that all changes up to sequence number 19 are reflected

in the original data. The IPL for JKLINT completes with journal PJ1 being left in the *ACTIVE

state, as this was the state of the journal when the system failed.
The following figure shows the state of BJ1, PJ2, and DB’ when system JKLINT2 is ready to assume

the role of the primary system.

Journal management 349

350 IBM Systems - iSeries: Journal Management

3. Activate remote journal PJ2 and transport journal to JKLINT

a. After JKLINT restarts, activate the remote journal BJ2. Specify that the process will start with the

attached journal receiver on JKLINT2. This starts the transport of journal entries representing the

changes made on JKLINT2 as part of replaying the unconfirmed journal entries plus all changes

made to DB’ while JKLINT was unavailable. While this transfer is progressing (during catch-up

processing, which then transitions into synchronous or asynchronous remote journal function

mode), changes are still being made by applications to DB’.

b. Either before or during the transport of journal entries to BJ2, send and make known the last

known sequence number in BJ1 (19) to the hot-backup application apply. This can be included as

information in the SW user journal entry. See step 2c on page 348.

c. The hot-backup application backs-out changes that are known to PJ1 (after the last known

sequence number in BJ1) from the original data DB on system JKLINT. For this particular scenario,

no changes need to be backed out of the original data.

Note: For scenarios which require this back-out processing, both before-image and after-image

journal entries are required.
The following figure shows the state of both systems after system JKLINT has completed its IPL. This

is after system JKLINT2 has been running as the primary system, but before database DB is

resynchronized with DB’. (The database changes represented in PJ2 by journal sequence numbers

147-200 are not shown in DB’ for simplicity.)

Journal management 351

4. Replay changes to DB on JKLINT

352 IBM Systems - iSeries: Journal Management

a. The hot-backup application replays the changes back to the original data on system JKLINT. The

changes that are replayed include those changes that were made to DB’ as part of the switch-over

processing. The switch-over processing replayed the data changes for the unconfirmed journal

entries (sequence numbers 140-145)). Additional changes include those data changes that were

deposited while system JKLINT2 had assumed the role of the primary system (sequence numbers

147-300). Note that changes are still being made to DB’ on system JKLINT2 and journal entries are

still being generated into local journal PJ2 on system JKLINT2.

b. When you decide that JKLINT must again assume the role of the primary system, end the

applications on JKLINT2. The following figure shows the state of both systems just before system

JKLINT is going to assume the role of the primary system.

c. Allow the remaining changes to be replicated to BJ2. After all changes have been sent to BJ2, you

can inactivate BJ2.

d. After all of the journal entries have been replayed to the original data on JKLINT, attach a new

journal receiver to PJ1 to clearly denote a new recovery point.

The change journal operation is not absolutely essential. However, attaching a new journal receiver

to PJ1 at this time makes clear where to start replaying changes back to the data replica on system

JKLINT2. Performing the change journal operation also prevents the remote journal function from

having to send back all of the journal entries that were previously generated into the currently

attached journal receiver of PJ1. (The journal entries were generated in the receiver as part of

replaying the data changes back to the original data on system JKLINT.)
The following figure shows the state of the journals and data just before starting to replay the changes

back to the original data DB.

Journal management 353

|
|

5. Allow JKLINT to again assume role of the primary system

a. Application programs can now make changes to the original data DB on system JKLINT.

354 IBM Systems - iSeries: Journal Management

b. When you determine that it is time to start replicating the changes made on the primary system to

the backup system, you can activate the remote journal BJ1.

When activating the remote journal, you can indicate to send journal entries starting with the

attached journal receiver on the source system. If this occurs, then only those journal entries that

are required to be replayed to the data replica will be sent to system JKLINT2.

Note: You can start with the attached receiver, only if you did the change journal to attach a new

receiver that was mentioned in step 4d on page 353.

c. If you want the complete chain of journal receivers from system JKLINT on JKLINT2, when you

activate the remote journal, indicate to start with the attached journal receiver as known to the

remote journal, BJ1. This will complete the sending of the journal receiver that contains the IPL

entry (sequence number 20). The process will then move on to the next journal receiver that

contains the journal entries where the hot-backup application apply will start replaying changes to

the data replica. An alternative to that approach is to save and restore the detached journal

receiver to system JKLINT2.

d. You change the state of local journal PJ2 on system JKLINT2 to *STANDBY state.

e. After local journal PJ2 has put in *STANDBY state, perform a change journal operation to attach a

new journal receiver to PJ2.

The change journal operation is not absolutely essential. However, attaching a new journal receiver

to PJ2 at this time makes clear where the replaying of changes back to the data replica started on

system JKLINT2. Performing the change journal operation also avoids the remote journal function

from having to later send all of these hot-backup application apply generated journal entries back

to system JKLINT.

The newly attached journal receiver contains journal entries that will not have to be sent back to

system JKLINT.

f. After the operation is performed, the hot-backup application apply can be started on system

JKLINT2 to start replaying changes to the data replica. The hot-backup application apply starts

with the source system sending the newly attached journal receiver.
The following figure shows that JKLINT is preparing again assume the role of the primary system.

Journal management 355

356 IBM Systems - iSeries: Journal Management

Related information for journal management

Listed below are the iSeries manuals and IBM Redbooks™ (in PDF format) and Web sites that relate to

the Journal management. You can view or print any of the PDFs.

Manuals

v AnyMail/400 Mail Server Framework Support

(623 KB)

v iSeries Security Reference

(6 MB)

v OptiConnect for i5/OS

(868 KB)

v Performance Tools for iSeries

(1.9 MB)

v Simple Network Management Protocol (SNMP) Support

(391 KB)

v SNA Distribution Services

(2.2 MB) on the V5R1 Supplemental Manuals Web site.

v TCP/IP Configuration and Reference

(592 KB)

v WebSphere Development Studio: ILE C/C++ Programmer’s Guide

(2.1 MB)

IBM Redbooks

v Striving for Optimal Journal Performance on DB2 Universal Database for iSeries

(3.1 MB)

v AS/400® Remote Journal Function for High Availability and Data Replication

(1 MB)

Web sites

DB2 UDB for iSeries Coding examples

Other information

v Backup and recovery

v CL programming

v Work management

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As if you are using Internet Explorer. Click Save Link As if you are using Netscape

Communicator.

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

Downloading Adobe Acrobat Reader

You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the Adobe

Web site (www.adobe.com/products/acrobat/readstep.html)

.

Journal management 357

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg245189.html?Open
http://www.ibm.com/eserver/iseries/db2/db2code.htm
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

358 IBM Systems - iSeries: Journal Management

|
|
|
|
|

|
|

|

|
|

|

|
|
|

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2004, 2006 359

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

360 IBM Systems - iSeries: Journal Management

|
|
|

Programming Interface Information

This Journal Management publication documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of IBM i5/OS.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

i5/OS

IBM

IBM (logo)

 iSeries

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,

other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

Appendix. Notices 361

|
|
|
|

|
|

|

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

362 IBM Systems - iSeries: Journal Management

����

Printed in USA

	Contents
	Journal management
	What's new for V5R4
	Printable PDFs
	System-managed access-path protection
	Benefits of SMAPP
	How SMAPP works
	How the system chooses access paths to protect
	Effects of SMAPP on performance and storage
	How SMAPP handles changes in disk pool configuration
	SMAPP and access path journaling
	SMAPP and independent disk pools
	Start SMAPP or change SMAPP values
	Display SMAPP status

	Local journal management
	Journal management concepts
	Benefits of journal management
	How journal management works
	Journal entries
	Journal management and system performance
	Journal management with the save-while-active function

	Plan for journal management
	iSeries Navigator versus the character-based interface for journaling objects
	Plan which objects to journal
	Plan for journal use of auxiliary storage
	Plan setup for journal receivers
	Plan setup for journals

	Set up journaling
	Information you need to set up journaling
	Information to create the journal receiver
	Information to create the journal
	Set up journaling with the character-based interface
	Set up journaling with iSeries Navigator
	Example: Set up journaling

	Start and end journaling and change journaling attributes
	Why you must save objects after you start journaling
	Start journaling
	Change journaling attributes of journaled objects without ending journaling
	End journaling

	Manage journals
	Swap, delete, and save journals and receivers
	Evaluate how system changes affect journal management
	Keep records of journaled objects
	Manage security for journals
	Display information for journaled objects, journals, and receivers
	Work with inoperable journal receivers
	Compare journal images
	Work with IBM-supplied journals
	Send your own journal entries
	Change the state of local journals

	Scenario: Journal management
	JKLPROD
	JKLINT
	JKLDEV

	Recovery operations for journal management
	Determine recovery needs using journal status
	Recovery for journal management after abnormal system end
	Recover a damaged journal receiver
	Recover a damaged journal
	Recover journaled objects

	Journal entry information
	Journal code descriptions
	Journal entries by code and type
	Fixed-length portion of the journal entry
	Layouts for the fixed-length portion of journal entries
	Variable-length portion of the journal entry
	Layouts for variable-length portion of journal entries
	Work with journal entry information

	Remote journal management
	Remote journal concepts
	Network configurations for remote journals
	Types of remote journals
	Journal state and delivery mode
	Journal receivers associated with a remote journal
	Add remote journal process
	Supported communications protocols for remote journals
	Release-to-release considerations for remote journals

	Plan for remote journals
	Journals that are good candidates for remote journal management
	Synchronous and asynchronous delivery mode for remote journals
	Communications protocol and delivery mode for remote journals
	Where the replication of journal entries start
	Factors that affect remote journal performance
	Remote journals and auxiliary storage
	Journal receiver disk pool considerations
	Remote journals and main storage

	Set up remote journals
	Prepare to use remote journals
	Add remote journals

	Remove remote journals
	Disassociate a remote journal

	Activate and inactivate remote journals
	Activate the replication of journal entries to a remote journal
	Relational database considerations for remote journal state
	Inactivate the replication of journal entries to a remote journal

	Manage remote journals
	Keep records of your remote journal network
	Display remote journal function information
	Evaluate how system changes affect your remote journal network
	Get information about remote journal entries
	Journal receiver management with remote journals
	Swap journal receiver operations with remote journals
	Considerations for save and restore operations with remote journals
	Remote journal considerations when restarting the server
	Work with remote journal error messages

	Scenarios: Remote journal management and recovery
	Scenario: Data replication environment for remote journals
	Scenario: Hot-backup environment
	Scenario: Recovery for remote journaling
	Details: Recovery for remote journaling scenario

	Related information for journal management
	Code license and disclaimer information

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

