
IBM Systems - iSeries

Database

DB2 Universal Database for iSeries Embedded SQL

programming

Version 5 Release 4

���

IBM Systems - iSeries

Database

DB2 Universal Database for iSeries Embedded SQL

programming

Version 5 Release 4

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 179.

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722–SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Embedded SQL programming 1

What’s new for V5R4 1

Printable PDF 1

Common concepts and rules for using embedded

SQL 1

Write applications that use SQL 2

Use host variables in SQL statements 2

Handle SQL error return codes using the SQLCA 8

Use the SQL diagnostics area 9

Handle exception conditions with the

WHENEVER Statement 11

Code SQL statements in C and C++ applications . . 13

Define the SQL communications area in C and

C++ applications that use SQL 13

Define SQL descriptor areas in C and C++

applications that use SQL 14

Embed SQL statements in C and C++

applications that use SQL 16

Use host variables in C and C++ applications

that use SQL 18

Use host structures in C and C++ applications

that use SQL 29

Use arrays of host structures in C and C++

applications that use SQL 32

Use pointer data types in C and C++ applications

that use SQL 35

Use typedef in C and C++ applications that use

SQL 36

Use ILE C compiler external file descriptions in C

and C++ applications that use SQL 37

Determine equivalent SQL and C or C++ data

types 37

Use indicator variables in C and C++

applications that use SQL 40

Code SQL statements in COBOL applications . . . 41

Define the SQL communications area in COBOL

applications that use SQL 41

Define SQL descriptor areas in COBOL

applications that use SQL 42

Embed SQL statements in COBOL applications

that use SQL 43

Use host variables in COBOL applications that

use SQL 45

Use host structures in COBOL applications that

use SQL 53

Use external file descriptions in COBOL

applications that use SQL 62

Determine equivalent SQL and COBOL data

types 63

Use indicator variables in COBOL applications

that use SQL 65

Code SQL statements in PL/I applications 66

Define the SQL communications area in PL/I

applications that use SQL 66

Define SQL descriptor areas in PL/I applications

that use SQL 67

Embed SQL statements in PL/I applications that

use SQL 68

Use host variables in PL/I applications that use

SQL 69

Use host structures in PL/I applications that use

SQL 73

Use host structure arrays in PL/I applications

that use SQL 75

Use external file descriptions in PL/I applications

that use SQL 78

Determine equivalent SQL and PL/I data types 78

Use indicator variables in PL/I applications that

use SQL 80

Differences in PL/I because of structure

parameter passing techniques 81

Code SQL statements in RPG/400 applications . . 81

Define the SQL communications area in RPG/400

applications that use SQL 81

Define SQL descriptor areas in RPG/400

applications that use SQL 82

Embed SQL statements in RPG/400 applications

that use SQL 83

Use host variables in RPG/400 applications that

use SQL 84

Use host structures in RPG/400 applications that

use SQL 85

Use host structure arrays in RPG/400

applications that use SQL 85

Use external file descriptions in RPG/400

applications that use SQL 86

Determine equivalent SQL and RPG/400 data

types 87

Use indicator variables in RPG/400 applications

that use SQL 90

Differences in RPG/400 because of structure

parameter passing techniques 91

Correctly end a called RPG/400 program that

uses SQL 91

Code SQL statements in ILE RPG applications . . . 91

Define the SQL communications area in ILE RPG

applications that use SQL 92

Define SQL descriptor areas in ILE RPG

applications that use SQL 93

Embed SQL statements in ILE RPG applications

that use SQL 94

Use host variables in ILE RPG applications that

use SQL 97

Use host structures in ILE RPG applications that

use SQL 101

Use host structure arrays in ILE RPG

applications that use SQL 103

Use external file descriptions in ILE RPG

applications that use SQL 104

Determine equivalent SQL and ILE RPG data

types 105

© Copyright IBM Corp. 1998, 2006 iii

Use indicator variables in ILE RPG applications

that use SQL 111

Example of the SQLDA for a multiple row-area

fetch in ILE RPG applications that use SQL . . 112

Example of dynamic SQL in an ILE RPG

application that uses SQL 113

Code SQL statements in REXX applications . . . 114

Use the SQL communications area in REXX

applications 114

Use SQL descriptor areas in REXX applications 115

Embed SQL statements in REXX applications 117

Use host variables in REXX applications that use

SQL 119

Use indicator variables in REXX applications

that use SQL 122

Prepare and run a program with SQL statements 122

Basic processes of the SQL precompiler 122

Non-ILE SQL precompiler commands 129

ILE SQL precompiler commands 130

Set compiler options using the precompiler

commands 132

Interpret compile errors in applications that use

SQL 132

Bind an application that uses SQL 133

Display SQL precompiler options 134

Run a program with embedded SQL 135

Sample programs using DB2 UDB for iSeries

statements 136

Example: SQL statements in ILE C and C++

programs 137

Example: SQL statements in COBOL and ILE

COBOL programs 143

Example: SQL statements in PL/I programs . . 152

Example: SQL statements in RPG/400 programs 157

Example: SQL statements in ILE RPG programs 163

Example: SQL statements in REXX programs 169

Report produced by sample programs that use

SQL 173

DB2 UDB for iSeries CL command descriptions for

host language precompilers 174

CRTSQLCBL (Create Structured Query

Language COBOL) command 174

CRTSQLCBLI (Create SQL ILE COBOL Object)

command 175

CRTSQLCI (Create Structured Query Language

ILE C Object) command 175

CRTSQLCPPI (Create Structured Query

Language C++ Object) command 175

CRTSQLPLI (Create Structured Query Language

PL/I) command 175

CRTSQLRPG (Create Structured Query

Language RPG) command 175

CRTSQLRPGI (Create SQL ILE RPG Object)

command 175

Related information for Embedded SQL

programming 176

Code license and disclaimer information 176

Appendix. Notices 179

Programming Interface Information 180

Trademarks 181

Terms and conditions 181

iv IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Embedded SQL programming

This topic collection explains how to create database applications in host languages that use DB2

Universal Database™ for iSeries™ SQL statements and functions.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

What’s new for V5R4

This topic highlights the changes made to this topic collection for V5R4.

v Support for embedded SQL in RPG free format was added to “Embed SQL statements in ILE RPG

applications that use SQL” on page 94 and some topics within it.

v The rules for “Names in ILE RPG applications that use SQL” on page 96 were updated.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to users.

Printable PDF

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select Embedded SQL programming (about 1750

KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Common concepts and rules for using embedded SQL

This topic describes some concepts and rules that are common to using SQL statements in a host

language.

© Copyright IBM Corp. 1998, 2006 1

|
|

|

|

|

rzajp.pdf
http://www.adobe.com/products/acrobat/readstep.html

Write applications that use SQL

You can create database applications in host languages that use DB2® UDB for iSeries SQL statements

and functions.

To use embedded SQL, you must have the DB2 Query Manager and SQL Development Kit installed.

Additionally, you must have the compilers for the host languages you want to use installed.

 Related concepts

 “Code SQL statements in C and C++ applications” on page 13

This topic describes the unique application and coding requirements for embedding SQL statements in

a C or C++ program.

 “Code SQL statements in COBOL applications” on page 41

This topic describes the unique application and coding requirements for embedding SQL statements in

a COBOL program. Requirements for host structures and host variables are defined.

 “Code SQL statements in PL/I applications” on page 66
This topic describes the unique application and coding requirements for embedding SQL statements in

an iSeries PL/I program. Requirements for host structures and host variables are defined.

 “Code SQL statements in RPG/400 applications” on page 81
The RPG/400® licensed program supports both RPG II and RPG III programs.

 “Code SQL statements in ILE RPG applications” on page 91

This topic describes the unique application and coding requirements for embedding SQL statements in

an ILE RPG program. The coding requirements for host variables are defined.

 “Code SQL statements in REXX applications” on page 114

REXX procedures do not have to be preprocessed. At run time, the REXX interpreter passes statements

that it does not understand to the current active command environment for processing.

 “Prepare and run a program with SQL statements” on page 122

This topic describes some of the tasks for preparing and running an application program.
 Related information

 IBM Developer Kit for Java

Use host variables in SQL statements

When your program retrieves data, the values are put into data items defined by your program and

specified with the INTO clause of a SELECT INTO or FETCH statement. The data items are called host

variables.

A host variable is a field in your program that is specified in an SQL statement, usually as the source or

target for the value of a column. The host variable and column must be data type compatible. Host

variables may not be used to identify SQL objects, such as tables or views, except in the DESCRIBE

TABLE statement.

A host structure is a group of host variables used as the source or target for a set of selected values (for

example, the set of values for the columns of a row). A host structure array is an array of host structures

used in the multiple-row FETCH and blocked INSERT statements.

Note: By using a host variable instead of a literal value in an SQL statement, you give the application

program the flexibility it needs to process different rows in a table or view.

For example, instead of coding an actual department number in a WHERE clause, you can use a host

variable set to the department number you are currently interested in.

Host variables are commonly used in SQL statements in these ways:

2 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

v In a WHERE clause: You can use a host variable to specify a value in the predicate of a search

condition, or to replace a literal value in an expression. For example, if you have defined a field called

EMPID that contains an employee number, you can retrieve the name of the employee whose number

is 000110 with:

 MOVE ’000110’ TO EMPID.

 EXEC SQL

 SELECT LASTNAME

 INTO :PGM-LASTNAME

 FROM CORPDATA.EMPLOYEE

 WHERE EMPNO = :EMPID

 END-EXEC.

v As a receiving area for column values (named in an INTO clause): You can use a host variable to

specify a program data area that is to contain the column values of a retrieved row. The INTO clause

names one or more host variables that you want to contain column values returned by SQL. For

example, suppose you are retrieving the EMPNO, LASTNAME, and WORKDEPT column values from

rows in the CORPDATA.EMPLOYEE table. You could define a host variable in your program to hold

each column, then name the host variables with an INTO clause. For example:

 EXEC SQL

 SELECT EMPNO, LASTNAME, WORKDEPT

 INTO :CBLEMPNO, :CBLNAME, :CBLDEPT

 FROM CORPDATA.EMPLOYEE

 WHERE EMPNO = :EMPID

 END-EXEC.

In this example, the host variable CBLEMPNO receives the value from EMPNO, CBLNAME receives

the value from LASTNAME, and CBLDEPT receives the value from WORKDEPT.

v As a value in a SELECT clause: When specifying a list of items in the SELECT clause, you are not

restricted to the column names of tables and views. Your program can return a set of column values

intermixed with host variable values and literal constants. For example:

 MOVE ’000220’ TO PERSON.

 EXEC SQL

 SELECT "A", LASTNAME, SALARY, :RAISE,

 SALARY + :RAISE

 INTO :PROCESS, :PERSON-NAME, :EMP-SAL,

 :EMP-RAISE, :EMP-TTL

 FROM CORPDATA.EMPLOYEE

 WHERE EMPNO = :PERSON

 END-EXEC.

The results are:

 PROCESS PERSON-NAME EMP-SAL EMP-RAISE EMP-TTL

A LUTZ 29840 4476 34316

v As a value in other clauses of an SQL statement:

– The SET clause in an UPDATE statement

– The VALUES clause in an INSERT statement

– The CALL statement
 Related information

 SQL reference

Assignment rules for host variables in SQL statements

SQL values are assigned to host variables during the running of FETCH, SELECT INTO, SET, and

VALUES INTO statements. SQL values are assigned from host variables during the running of INSERT,

UPDATE, and CALL statements.

All assignment operations observe the following rules:

v Numbers and strings are compatible:

Embedded SQL programming 3

– Numbers can be assigned to character or graphic string columns or host variables.

– Character and graphic strings can be assigned to numeric columns or numeric host variables.
v All character and DBCS graphic strings are compatible with UCS-2 and UTF-16 graphic columns if

conversion is supported between the CCSIDs. All graphic strings are compatible if the CCSIDs are

compatible. All numeric values are compatible. Conversions are performed by SQL whenever

necessary. All character and DBCS graphic strings are compatible with UCS-2 and UTF-16 graphic

columns for assignment operations, if conversion is supported between the CCSIDs. For the CALL

statement, character and DBCS graphic parameters are compatible with UCS-2 and UTF-16 parameters

if conversion is supported.

v Binary strings are only compatible with binary strings.

v A null value cannot be assigned to a host variable that does not have an associated indicator variable.

v Different types of date/time values are not compatible. Dates are only compatible with dates or string

representations of dates; times are only compatible with times or string representations of times; and

timestamps are only compatible with timestamps or string representations of timestamps.

A date can be assigned only to a date column, a character column, a DBCS-open or DBCS-either

column or variable, or a character variable. The insert or update value of a date column must be a date

or a string representation of a date. A DBCS-open or DBCS-either variable is a variable that was

declared in the host language by including the definition of an externally described file. DBCS-open

variables are also declared if the job CCSID indicates MIXED data, or the DECLARE VARIABLE

statement is used and a MIXED CCSID or the FOR MIXED DATA clause is specified.

A time can be assigned only to a time column, a character column, a DBCS-open or DBCS-either

column or variable, or a character variable. The insert or update value of a time column must be a time

or a string representation of a time.

A timestamp can be assigned only to a timestamp column, a character column, a DBCS-open or

DBCS-either column or variable, or a character variable. The insert or update value of a timestamp

column must be a timestamp or a string representation of a timestamp.
 Related information

 DECLARE VARIABLE

Rules for string assignment of host variables in SQL statements:

This topic introduces rules regarding character string assignment.

 The rules are as follows:

v When a character or graphic string is assigned to a column, the length of the string value must not be

greater than the length attribute of the column. (Trailing blanks are normally included in the length of

the string. However, for string assignment, trailing blanks are not included in the length of the string.)

v When a binary string is assigned to a column, the length of the string value must not be greater than

the length attribute of the column. (Hexadecimal zeros are normally included in the length of the

string. However, for string assignment, hexadecimal zeros are not included in the length of the string.)

v When a MIXED character result column is assigned to a MIXED column, the value of the MIXED

character result column must be a valid MIXED character string.

v When the value of a result column is assigned to a host variable and the string value of the result

column is longer than the length attribute of the host variable, the string is truncated on the right by

the necessary number of characters. If this occurs, SQLWARN0 and SQLWARN1 (in the SQL

communication area (SQLCA)) are set to W.

v When the value of a result column is assigned to a fixed-length character or graphic host variable or

when the value of a host variable is assigned to a fixed-length character or graphic result column and

the length of the string value is less than the length attribute of the target, the string is padded on the

right with the necessary number of blanks.

4 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

v When the value of a result column is assigned to a fixed-length binary host variable or when the value

of a host variable is assigned to a fixed-length binary result column and the length of the string value

is less than the length attribute of the target, the string is padded on the right with the necessary

number of hexadecimal zeros.

v When a MIXED character result column is truncated because the length of the host variable into which

it was being assigned was less than the length of the string, the shift-in character at the end of the

string is preserved. The result, therefore, is still a valid MIXED character string.

Rules for CCSIDs of host variables in SQL statements:

CCSIDs must be considered when you assign one character or graphic value to another. This includes the

assignment of host variables. The database manager uses a common set of system services for converting

SBCS data, DBCS data, MIXED data, and graphic data.

 The rules for CCSIDs are as follows:

v If the CCSID of the source matches the CCSID of the target, the value is assigned without conversion.

v If the sub-type for the source or target is BIT, the value is assigned without conversion.

v If the value is either null or an empty string, the value is assigned without conversion.

v If conversion is not defined between specific CCSIDs, the value is not assigned and an error message is

issued.

v If conversion is defined and needed, the source value is converted to the CCSID of the target before

the assignment is performed.
 Related information

 Globalization

Rules for numeric assignment of host variables in SQL statements:

Rules regarding numeric assignment are as follows.

 v The whole part of a number may be altered when converting it to floating-point. A single-precision

floating-point field can only contain seven decimal digits. Any whole part of a number that contains

more than seven digits is altered due to rounding. A double-precision floating point field can only

contain 16 decimal digits. Any whole part of a number that contains more than 16 digits is altered due

to rounding.

v The whole part of a number is never truncated. If necessary, the fractional part of a number is

truncated. If the number, as converted, does not fit into the target host variable or column, a negative

SQLCODE is returned.

v Whenever a decimal, numeric, or integer number is assigned to a decimal, numeric, or integer column

or host variable, the number is converted, if necessary, to the precision and scale of the target. The

necessary number of leading zeros is added or deleted; in the fractional part of the number, the

necessary number of trailing zeros is added, or the necessary number of trailing digits is eliminated.

v When an integer or floating-point number is assigned to a decimal or numeric column or host

variable, the number is first converted to a temporary decimal or numeric number and then converted,

if necessary, to the precision and scale of the target.

– When a halfword binary integer (SMALLINT) with 0 scale is converted to decimal or numeric, the

temporary result has a precision of 5 and a scale of 0.

– When a fullword binary integer (INTEGER) is converted to decimal or numeric, the temporary

result has a precision of 11 and a scale of 0.

– When a double fullword binary integer (BIGINT) is converted to a decimal or numeric, the

temporary result has a precision of 19 and a scale of 0.

– When a floating-point number is converted to decimal or numeric, the temporary result has a

precision of 31 and the maximum scale that allows the whole part of the number to be represented

without loss of either significance or accuracy.

Embedded SQL programming 5

Rules for date, time, and timestamp assignment of host variables in SQL statements:

When a date is assigned to a host variable, the date is converted to the string representation specified by

the DATFMT and DATSEP parameters of the CRTSQLxxx command.

 Leading zeros are not omitted from any part of the date representation. The host variable must be a fixed

or variable-length character string variable with a length of at least 10 bytes for *USA, *EUR, *JIS, or *ISO

date formats, 8 bytes for *MDY, *DMY, or *YMD date formats, or 6 bytes for the *JUL date format. If the

length is greater than 10, the string is padded on the right with blanks. In ILE RPG and ILE COBOL, the

host variable can also be a date variable.

When a time is assigned to a host variable, the time is converted to the string representation by the

TIMFMT and TIMSEP parameters of the CRTSQLxxx command. Leading zeros are not omitted. The host

variable must be a fixed or variable-length character string variable. If the length of the host variable is

greater than the string representation of the time, the string is padded on the right with blanks. In ILE

RPG and ILE COBOL, the host variable can also be a time variable.

v If the *USA format is used, the length of the host variable must not be less than 8.

v If the *HMS, *ISO, *EUR, or *JIS format is used, the length of the host variable must be at least 8 bytes

if seconds are to be included, and 5 bytes if only hours and minutes are needed. In this case,

SQLWARN0 and SQLWARN1 (in the SQLCA) are set to W, and if an indicator variable is specified, it is

set to the actual number of seconds truncated.

When a timestamp is assigned to a host variable, the timestamp is converted to its string representation.

Leading zeros are not omitted from any part. The host variable must be a fixed or variable-length

character string variable with a length of at least 19 bytes. If the length is less than 26, the host variable

does not include all the digits of the microseconds. If the length is greater than 26, the host variable is

padded on the right with blanks. In ILE RPG and ILE COBOL, the host variable can also be a timestamp

variable.

Indicator variables in applications that use SQL

An indicator variable is a halfword integer variable used to indicate whether its associated host variable

has been assigned a null value.

v If the value for the result column is null, SQL puts a -1 in the indicator variable.

v If you do not use an indicator variable and the result column is a null value, a negative SQLCODE is

returned.

v If the value for the result column causes a data mapping error. SQL sets the indicator variable to -2.

You can also use an indicator variable to verify that a retrieved string value has not been truncated. If

truncation occurs, the indicator variable contains a positive integer that specifies the original length of the

string. If the string represents a large object (LOB), and the original length of the string is greater than

32767, the value that is stored in the indicator variable is 32767, since no larger value can be stored in a

halfword integer.

When the database manager returns a value from a result column, you can test the indicator variable. If

the value of the indicator variable is less than zero, you know the value of the results column is null.

When the database manager returns a null value, the host variable will be set to the default value for the

result column.

You specify an indicator variable (preceded by a colon) immediately after the host variable or

immediately after the keyword INDICATOR. For example:

6 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

EXEC SQL

 SELECT COUNT(*), AVG(SALARY)

 INTO :PLICNT, :PLISAL:INDNULL

 FROM CORPDATA.EMPLOYEE

 WHERE EDLEVEL < 18

END-EXEC.

You can then test INDNULL to see if it contains a negative value. If it does, you know SQL returned a

null value.

Always test for NULL in a column by using the IS NULL predicate. For example:

WHERE expression IS NULL

Do not test for NULL in this way:

MOVE -1 TO HUIND.

EXEC SQL...WHERE column-name = :HUI :HUIND

The EQUAL predicate will always be evaluated as false when it compares a null value. The result of this

example will select no rows.

The DISTINCT predicate can be used to perform comparisons when null values may exist.

 Related information

 Predicates

Indicator variables used with host structures:

You can also specify an indicator structure (defined as an array of halfword integer variables) to support a

host structure.

 If the results column values returned to a host structure can be null, you can add an indicator structure

name to the host structure name. This allows SQL to notify your program about each null value returned

to a host variable in the host structure.

For example, in COBOL:

01 SAL-REC.

 10 MIN-SAL PIC S9(6)V99 USAGE COMP-3.

 10 AVG-SAL PIC S9(6)V99 USAGE COMP-3.

 10 MAX-SAL PIC S9(6)V99 USAGE COMP-3.

01 SALTABLE.

02 SALIND PIC S9999 USAGE COMP-4 OCCURS 3 TIMES.

01 EDUC-LEVEL PIC S9999 COMP-4.

 ...

 MOVE 20 TO EDUC-LEVEL.

 ...

 EXEC SQL

 SELECT MIN(SALARY), AVG(SALARY), MAX(SALARY)

 INTO :SAL-REC:SALIND

 FROM CORPDATA.EMPLOYEE

 WHERE EDLEVEL>:EDUC-LEVEL

 END-EXEC.

In this example, SALIND is an array containing three values, each of which can be tested for a negative

value. If, for example, SALIND(1) contains a negative value, then the corresponding host variable in the

host structure (that is, MIN-SAL) is not changed for the selected row.

In the above example, SQL selects the column values of the row into a host structure. Therefore, you

must use a corresponding structure for the indicator variables to determine which (if any) selected

column values are null.

Embedded SQL programming 7

Indicator variables used to set null values:

You can use an indicator variable to set a null value in a column.

 When processing UPDATE or INSERT statements, SQL checks the indicator variable (if it exists). If it

contains a negative value, the column value is set to null. If it contains a value greater than -1, the

associated host variable contains a value for the column.

For example, you can specify that a value be put in a column (using an INSERT or UPDATE statement),

but you may not be sure that the value was specified with the input data. To provide the capability to set

a column to a null value, you can write the following statement:

EXEC SQL

 UPDATE CORPDATA.EMPLOYEE

 SET PHONENO = :NEWPHONE:PHONEIND

 WHERE EMPNO = :EMPID

END-EXEC.

When NEWPHONE contains other than a null value, set PHONEIND to zero by preceding the statement

with:

MOVE 0 to PHONEIND.

Otherwise, to tell SQL that NEWPHONE contains a null value, set PHONEIND to a negative value, as

follows:

MOVE -1 TO PHONEIND.

Handle SQL error return codes using the SQLCA

When an SQL statement is processed in your program, SQL places a return code in the SQLCODE and

SQLSTATE fields. The return codes indicate the success or failure of the running of your statement.

If SQL encounters an error while processing the statement, the SQLCODE is a negative number and

SUBSTR(SQLSTATE,1,2) is not ’00’, ’01’, or ’02’. If SQL encounters an exception but valid condition while

processing your statement, the SQLCODE is a positive number and SUBSTR(SQLSTATE,1,2) is ’01’ or ’02’.

If your SQL statement is processed without encountering an error or warning condition, the SQLCODE is

zero and the SQLSTATE is ’00000’.

Note: There are situations when a zero SQLCODE is returned to your program and the result might not

be satisfactory. For example, if a value was truncated as a result of running your program, the

SQLCODE returned to your program is zero. However, one of the SQL warning flags

(SQLWARN1) indicates truncation. In this case, the SQLSTATE is not ’00000’.

Attention: If you do not test for negative SQLCODEs or specify a WHENEVER SQLERROR statement,

your program will continue to the next statement. Continuing to run after an error can produce

unpredictable results.

The main purpose for SQLSTATE is to provide common return codes for common return conditions

among the different IBM® relational database systems. SQLSTATEs are particularly useful when handling

problems with distributed database operations.

Because the SQLCA is a valuable problem-diagnosis tool, it is a good idea to include in your application

programs the instructions necessary to display some of the information contained in the SQLCA.

Especially important are the following SQLCA fields:

SQLCODE

Return code.

SQLSTATE

Return code.

8 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

SQLERRD(3)

The number of rows updated, inserted, or deleted by SQL.

SQLWARN0

If set to W, at least one of the SQL warning flags (SQLWARN1 through SQLWARNA) is set.
 Related information

 SQL reference

 SQL messages and codes

Use the SQL diagnostics area

The SQL diagnostics area is used to keep the returned information for an SQL statement that has been

run in a program. It contains all the information that is available to you as an application programmer

through the SQLCA.

There are additional values available to provide more detailed information about your SQL statement

including connection information. More than one condition can be returned from a single SQL statement.

The information in the SQL diagnostics area is available for the previous SQL statement until the next

SQL statement is run.

To access the information from the diagnostics area, use the GET DIAGNOSTICS statement. In this

statement, you can request multiple pieces of information at one time about the previously run SQL

statement. Each item is returned in a host variable. You can also request to get a string that contains all

the diagnostic information that is available. Running the GET DIAGNOSTICS statement does not clear

the diagnostics area.

 Related information

 GET DIAGNOSTICS

Update applications to use the SQL diagnostics area

You might consider changing your applications to use the SQL diagnostics area instead of the SQL

communications area (SQLCA), because the SQL diagnostics area provides some significant advantages

over the SQLCA.

One of the best reasons is that the SQLERRM field in the SQLCA is only 70 bytes in length. This is often

insufficient for returning meaningful error information to the calling application. Additional reasons for

considering the SQL diagnostics area are multiple row operations, and long column and object names.

Reporting even simple warnings is sometimes difficult within the restrictions of the 136 byte SQLCA.

Quite often, the returned tokens are truncated to fit the restrictions of the SQLCA.

Current applications include the SQLCA definition by using the following:

EXEC SQL INCLUDE SQLCA; /* Existing SQLCA */

With the conversion to using the SQL diagnostics area, the application would first declare a stand-alone

SQLSTATE variable:

char SQLSTATE[6]; /* Stand-alone sqlstate */

And possibly a stand-alone SQLCODE variable:

 long int SQLCODE; /* Stand-alone sqlcode */

The completion status of the SQL statement is verified by checking the stand-alone SQLSTATE variable. If

upon the completion of the current SQL statement, the application chooses to retrieve diagnostics, the

application would run the SQL GET DIAGNOSTICS statement:

Embedded SQL programming 9

char hv1[256];

long int hv2;

EXEC SQL GET DIAGNOSTICS :hv1 = COMMAND_FUNCTION,

 :hv2 = COMMAND_FUNCTION_CODE;

iSeries server programming model

In the iSeries Integrated Language Environment® (ILE), the SQL diagnostics area is scoped to a thread

and an activation group. This means that for each activation group in which a thread runs SQL

statements, a separate diagnostics area exists for the activation.

Additional notes on using the SQL diagnostics area

In an application program, the SQLCA is replaced with an implicit or stand-alone SQLSTATE variable,

which must be declared in the program.

With multiple condition areas existing in the SQL diagnostics area, the most severe error or warning is

returned in the first diagnostics area. There is no specific ordering of the multiple conditions, except that

the first diagnostics area will contain the information for the SQLSTATE that is also returned in the

SQLSTATE variable.

With the SQLCA, the application program provides the storage for the SQLCA that is used to

communicate the results of the run of an SQL statement. With the SQL diagnostics area, the database

manager manages the storage for the diagnostics, and the GET DIAGNOSTICS statement is provided to

retrieve the contents of the diagnostics area.

Note that the SQLCA will continue to be supported for application programs. Also, the GET

DIAGNOSTICS statement can be used in an application program that uses the SQLCA.

Example: SQL routine exception

In this application example, a stored procedure signals an error when an input value is out of range.

EXEC SQL CREATE PROCEDURE check_input (IN p1 INT)

LANGUAGE SQL READS SQL DATA

test: BEGIN

 IF p1< 0 THEN

 SIGNAL SQLSTATE VALUE ’99999’

 SET MESSAGE_TEXT = ’Bad input value’;

 END IF

END test;

The calling application checks for a failure and retrieves the information about the failure from the SQL

diagnostics area:

char SQLSTATE[6]; /* Stand-alone sqlstate */

long int SQLCODE; /* Stand-alone sqlcode */

long int hv1;

char hv2[6];

char hv3[256];

hv1 = -1;

EXEC SQL CALL check_input(:hv1);

if (strncmp(SQLSTATE, "99999", 5) == 0)

{

 EXEC SQL GET DIAGNOSTICS CONDITION 1

 :hv2 = RETURNED_SQLSTATE,

 :hv3 = MESSAGE_TEXT;

}

else

{

}

10 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Example: Logging items from the SQL diagnostics area

In this example, an application needs to log all errors for security reasons. The log could be used to

monitor the health of a system or to monitor for inappropriate use of a database.

For each SQL error that occurs, an entry is placed in the log. The entry includes when the error occurred,

what user was using the application, what type of SQL statement was run, the returned SQLSTATE value,

and the message number and corresponding complete message text.

char stmt_command[256];

long int error_count;

long int condition_number;

char auth_id[256];

char error_state[6];

char msgid[128];

char msgtext[1024];

EXEC SQL WHENEVER SQLERROR GOTO error;

(application code)

error:

EXEC SQL GET DIAGNOSTICS :stmt_command = COMMAND_FUNCTION,

 :error_count = NUMBER;

for (condition_number=1;i<=error_count;++condition_number)

{

 EXEC SQL GET DIAGNOSTICS CONDITION :condition_number

 :auth_id = DB2_AUTHORIZATION_ID,

 :error_state = RETURNED_SQLSTATE,

 :msgid = DB2_MESSAGE_ID,

 :msgtext = DB2_MESSAGE_TEXT;

 EXEC SQL INSERT INTO error_log VALUES(CURRENT_TIMESTAMP,

 :stmt_command,

 :condition_number,

 :auth_id,

 :error_state,

 :msgid,

 :msgtext);

}

 Related information

 GET DIAGNOSTICS

Handle exception conditions with the WHENEVER Statement

The WHENEVER statement causes SQL to check the SQLSTATE and SQLCODE and continue processing

your program, or branch to another area in your program if an error, exception, or warning exists as a

result of running an SQL statement.

An exception condition handling subroutine (part of your program) can then examine the SQLCODE or

SQLSTATE field to take an action specific to the error or exception situation.

Note: The WHENEVER statement is not allowed in REXX procedures.

The WHENEVER statement allows you to specify what you want to do whenever a general condition is

true. You can specify more than one WHENEVER statement for the same condition. When you do this,

the first WHENEVER statement applies to all subsequent SQL statements in the source program until

another WHENEVER statement is specified.

The WHENEVER statement looks like this:

Embedded SQL programming 11

EXEC SQL

WHENEVER condition action

END-EXEC.

There are three conditions you can specify:

SQLWARNING

Specify SQLWARNING to indicate what you want done when SQLWARN0 = W or SQLCODE

contains a positive value other than 100 (SUBSTR(SQLSTATE,1,2) =’01’).

Note: SQLWARN0 could be set for several different reasons. For example, if the value of a

column was truncated when it was moved into a host variable, your program might not

regard this as an error.

SQLERROR

Specify SQLERROR to indicate what you want done when an error code is returned as the result

of an SQL statement (SQLCODE < 0) (SUBSTR(SQLSTATE,1,2) > ’02’).

NOT FOUND

Specify NOT FOUND to indicate what you want done when an SQLCODE of +100 and a

SQLSTATE of ’02000’ is returned because:

v After a single-row SELECT is issued or after the first FETCH is issued for a cursor, the data the

program specifies does not exist.

v After a subsequent FETCH, no more rows satisfying the cursor select-statement are left to

retrieve.

v After an UPDATE, a DELETE, or an INSERT, no row meets the search condition.

You can also specify the action you want taken:

CONTINUE

This causes your program to continue to the next statement.

GO TO label

This causes your program to branch to an area in the program. The label for that area may be

preceded with a colon. The WHENEVER ... GO TO statement:

v Must be a section name or an unqualified paragraph name in COBOL

v Is a label in PL/I and C

v Is the label of a TAG in RPG

For example, if you are retrieving rows using a cursor, you expect that SQL will eventually be unable to

find another row when the FETCH statement is issued. To prepare for this situation, specify a

WHENEVER NOT FOUND GO TO ... statement to cause SQL to branch to a place in the program where

you issue a CLOSE statement in order to close the cursor properly.

Note: A WHENEVER statement affects all subsequent source SQL statements until another WHENEVER

is encountered.

In other words, all SQL statements coded between two WHENEVER statements (or following the first, if

there is only one) are governed by the first WHENEVER statement, regardless of the path the program

takes.

Because of this, the WHENEVER statement must precede the first SQL statement it is to affect. If the

WHENEVER follows the SQL statement, the branch is not taken on the basis of the value of the

SQLCODE and SQLSTATE set by that SQL statement. However, if your program checks the SQLCODE or

SQLSTATE directly, the check must be done after the SQL statement is run.

12 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

The WHENEVER statement does not provide a CALL to a subroutine option. For this reason, you might

want to examine the SQLCODE or SQLSTATE value after each SQL statement is run and call a

subroutine, rather than use a WHENEVER statement.

 Related concepts

 “Code SQL statements in REXX applications” on page 114

REXX procedures do not have to be preprocessed. At run time, the REXX interpreter passes statements

that it does not understand to the current active command environment for processing.

Code SQL statements in C and C++ applications

This topic describes the unique application and coding requirements for embedding SQL statements in a

C or C++ program.

C program refers to ILE C for iSeries programs. C++ program refers to ILE C++ programs. This topic also

defines the requirements for host structures and host variables. For more details, see the following

sections:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

 Related concepts

 “Write applications that use SQL” on page 2
You can create database applications in host languages that use DB2 UDB for iSeries SQL statements

and functions.

 “Error and warning messages during a compile of application programs that use SQL” on page 132

The conditions described in the following topics could produce an error or warning message during

an attempted compile process.
 Related reference

 “Sample programs using DB2 UDB for iSeries statements” on page 136
This topic contains a sample application showing how to code SQL statements in each of the

languages supported by the DB2 UDB for iSeries system.

Define the SQL communications area in C and C++ applications that

use SQL

A C or C++ program can be written to use the SQLCA to check return status for embedded SQL

statements, or the program can use the SQL diagnostics area to check return status.

When using the SQLCA, a C or C++ program that contains SQL statements must include one or both of

the following:

v An SQLCODE variable declared as long SQLCODE

v An SQLSTATE variable declared as char SQLSTATE[6]

Or,

v An SQLCA (which contains an SQLCODE and SQLSTATE variable).

The SQLCODE and SQLSTATE values are set by the database manager after each SQL statement is run.

An application can check the SQLCODE or SQLSTATE value to determine whether the last SQL

statement was successful.

You can code the SQLCA in a C or C++ program directly or by using the SQL INCLUDE statement.

When coding it directly, initialize the SQLCA using the following statement:

struct sqlca sqlca = {0x0000000000000000};

Embedded SQL programming 13

|
|

|

Using the SQL INCLUDE statement requests the inclusion of a standard declaration:

 EXEC SQL INCLUDE SQLCA ;

A standard declaration includes a structure definition and a data area that are named sqlca.

The SQLCODE, SQLSTATE, and SQLCA variables must appear before any executable statements. The

scope of the declaration must include the scope of all SQL statements in the program.

The included C and C++ source statements for the SQLCA are:

 #ifndef SQLCODE

 struct sqlca {

 unsigned char sqlcaid[8];

 long sqlcabc;

 long sqlcode;

 short sqlerrml;

 unsigned char sqlerrmc[70];

 unsigned char sqlerrp[8];

 long sqlerrd[6];

 unsigned char sqlwarn[11];

 unsigned char sqlstate[5];

 };

 #define SQLCODE sqlca.sqlcode

 #define SQLWARN0 sqlca.sqlwarn[0]

 #define SQLWARN1 sqlca.sqlwarn[1]

 #define SQLWARN2 sqlca.sqlwarn[2]

 #define SQLWARN3 sqlca.sqlwarn[3]

 #define SQLWARN4 sqlca.sqlwarn[4]

 #define SQLWARN5 sqlca.sqlwarn[5]

 #define SQLWARN6 sqlca.sqlwarn[6]

 #define SQLWARN7 sqlca.sqlwarn[7]

 #define SQLWARN8 sqlca.sqlwarn[8]

 #define SQLWARN9 sqlca.sqlwarn[9]

 #define SQLWARNA sqlca.sqlwarn[10]

 #define SQLSTATE sqlca.sqlstate

 #endif

 struct sqlca sqlca = {0x0000000000000000};

When a declare for SQLCODE is found in the program and the precompiler provides the SQLCA,

SQLCADE replaces SQLCODE. When a declare for SQLSTATE is found in the program and the

precompiler provides the SQLCA, SQLSTOTE replaces SQLSTATE.

Note: Many SQL error messages contain message data that is of varying length. The lengths of these data

fields are embedded in the value of the SQLCA sqlerrmc field. Because of these lengths, printing

the value of sqlerrmc from a C or C++ program might give unpredictable results.

 Related concepts

 “Use the SQL diagnostics area” on page 9

The SQL diagnostics area is used to keep the returned information for an SQL statement that has been

run in a program. It contains all the information that is available to you as an application programmer

through the SQLCA.
 Related information

 SQL Communication Area

 GET DIAGNOSTICS

Define SQL descriptor areas in C and C++ applications that use SQL

There are two types of SQL descriptor areas. One is defined with the ALLOCATE DESCRIPTOR

statement. The other is defined using the SQL descriptor area (SQLDA) structure. In this topic, only the

SQLDA form is discussed.

14 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|

|
|
|

The following statements can use an SQLDA:

v EXECUTE...USING DESCRIPTOR descriptor-name

v FETCH...USING DESCRIPTOR descriptor-name

v OPEN...USING DESCRIPTOR descriptor-name

v DESCRIBE statement-name INTO descriptor-name

v DESCRIBE INPUT statement-name INTO descriptor-name

v DESCRIBE TABLE host-variable INTO descriptor-name

v PREPARE statement-name INTO descriptor-name

v CALL...USING DESCRIPTOR descriptor-name

Unlike the SQLCA, more than one SQLDA can be in the program, and an SQLDA can have any valid

name. The following list includes the statements that require a SQLDA. You can code an SQLDA in a C

or C++ program either directly or by using the SQL INCLUDE statement. Using the SQL INCLUDE

statement requests the inclusion of a standard SQLDA declaration:

 EXEC SQL INCLUDE SQLDA;

A standard declaration includes only a structure definition with the name ’sqlda’.

C and C++ declarations that are included for the SQLDA are:

 #ifndef SQLDASIZE

 struct sqlda {

 unsigned char sqldaid[8];

 long sqldabc;

 short sqln;

 short sqld;

 struct sqlvar {

 short sqltype;

 short sqllen;

 unsigned char *sqldata;

 short *sqlind;

 struct sqlname {

 short length;

 unsigned char data[30];

 } sqlname;

 } sqlvar[1];

 };

 #define SQLDASIZE(n) (sizeof(struct sqlda) + (n-1)* sizeof(struct sqlvar))

 #endif

One benefit from using the INCLUDE SQLDA SQL statement is that you also get the following macro

definition:

#define SQLDASIZE(n) (sizeof(struct sqlda) + (n-1)* sizeof(struc sqlvar))

This macro makes it easy to allocate storage for an SQLDA with a specified number of SQLVAR elements.

In the following example, the SQLDASIZE macro is used to allocate storage for an SQLDA with 20

SQLVAR elements.

 #include <stdlib.h>

 EXEC SQL INCLUDE SQLDA;

 struct sqlda *mydaptr;

 short numvars = 20;

 .

 .

 mydaptr = (struct sqlda *) malloc(SQLDASIZE(numvars));

 mydaptr->sqln = 20;

Here are other macro definitions that are included with the INCLUDE SQLDA statement:

Embedded SQL programming 15

|

|

GETSQLDOUBLED(daptr)

Returns 1 if the SQLDA pointed to by daptr has been doubled, or 0 if it has not been doubled.

The SQLDA is doubled if the seventh byte in the SQLDAID field is set to ’2’.

SETSQLDOUBLED(daptr, newvalue)

Sets the seventh byte of SQLDAID to a newvalue.

GETSQLDALONGLEN(daptr,n)

Returns the length attribute of the nth entry in the SQLDA to which daptr points. Use this only if

the SQLDA was doubled and the nth SQLVAR entry has a LOB data type.

SETSQLDALONGLEN(daptr,n,len)

Sets the SQLLONGLEN field of the SQLDA to which daptr points to len for the nth entry. Use

this only if the SQLDA was doubled and the nth SQLVAR entry has a LOB datatype.

GETSQLDALENPTR(daptr,n)

Returns a pointer to the actual length of the data for the nth entry in the SQLDA to which daptr

points. The SQLDATALEN pointer field returns a pointer to a long (4 byte) integer. If the

SQLDATALEN pointer is zero, a NULL pointer is returned. Use this only if the SQLDA has been

doubled.

SETSQLDALENPTR(daptr,n,ptr)

Sets a pointer to the actual length of the data for the nth entry in the SQLDA to which daptr

points. Use this only if the SQLDA has been doubled.

When you have declared an SQLDA as a pointer, you must reference it exactly as declared when you use

it in an SQL statement, just as you would for a host variable that was declared as a pointer. To avoid

compiler errors, the type of the value that is assigned to the sqldata field of the SQLDA must be a pointer

of unsigned character. This helps avoid compiler errors. The type casting is only necessary for the

EXECUTE, OPEN, CALL, and FETCH statements where the application program is passing the address

of the host variables in the program. For example, if you declared a pointer to an SQLDA called mydaptr,

you would use it in a PREPARE statement as:

 EXEC SQL PREPARE mysname INTO :*mydaptr FROM :mysqlstring;

SQLDA declarations can appear wherever a structure definition is allowed. Normal C scope rules apply.

Dynamic SQL is an advanced programming technique. With dynamic SQL, your program can develop

and then run SQL statements while the program is running. A SELECT statement with a variable SELECT

list (that is a list of the data to be returned as part of the query) that runs dynamically requires an SQL

descriptor area (SQLDA). This is because you will not know in advance how many or what type of

variables to allocate in order to receive the results of the SELECT.

 Related information

 Dynamic SQL applications

 SQL descriptor area

Embed SQL statements in C and C++ applications that use SQL

SQL statements can be coded in a C or C++ program wherever executable statements can appear.

Each SQL statement must begin with EXEC SQL and end with a semicolon (;). The EXEC SQL keywords

must be on one line. The remaining part of the SQL statement can be on more than one line.

Example: An UPDATE statement coded in a C or C++ program might be coded in the following way:

 EXEC SQL

 UPDATE DEPARTMENT

 SET MGRNO = :MGR_NUM

 WHERE DEPTNO = :INT_DEPT ;

16 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Comments in C and C++ applications that use SQL

In addition to using SQL comments (--), you can include C comments (/*...*/) within embedded SQL

statements whenever a blank is allowed, except between the keywords EXEC and SQL.

Comments can span any number of lines. You cannot nest comments. You can use single-line comments

(comments that start with //) in C++, but you cannot use them in C.

Continuation for SQL statements in C and C++ applications that use SQL

SQL statements can be contained in one or more lines.

You can split an SQL statement wherever a blank can appear. The backslash (\) can be used to continue a

string constant or delimited identifier. Identifiers that are not delimited cannot be continued.

Constants containing DBCS data may be continued across multiple lines in two ways:

v If the character at the right margin of the continued line is a shift-in and the character at the left

margin of the continuation line is a shift-out, then the shift characters located at the left and right

margin are removed.

This SQL statement has a valid graphic constant of G’<AABBCCDDEEFFGGHHIIJJKK>’. The

redundant shifts at the margin are removed.

...+....1....+....2....+....3....+....4....+....5....+....6....+....7........8

EXEC SQL SELECT * FROM GRAPHTAB WHERE GRAPHCOL = G’<AABBCCDDEEFFGGHH>

<IIJJKK>’;

v It is possible to place the shift characters outside of the margins. For this example, assume the margins

are 5 and 75. This SQL statement has a valid graphic constant of G’<AABBCCDDEEFFGGHHIIJJKK>’.

*...(....1....+....2....+....3....+....4....+....5....+....6....+....7....)....8

 EXEC SQL SELECT * FROM GRAPHTAB WHERE GRAPHCOL = G’<AABBCCDD>

 <EEFFGGHHIIJJKK>’;

Include code in C and C++ applications that use SQL

You can include SQL statements, C, or C++ statements by embedding the following SQL statement in the

source code.

 EXEC SQL INCLUDE member-name;

You cannot use C and C++ #include statements to include SQL statements or declarations of C or C++

host variables that are referred to in SQL statements.

Margins in C and C++ applications that use SQL

You must code SQL statements within the margins that are specified by the MARGINS parameter on the

CRTSQLCI or CRTSQLCPPI command.

If the MARGINS parameter is specified as *SRCFILE, the record length of the source file will be used. If a

value is specified for the right margin and that value is larger than the source record length, the entire

record will be read. The value will also apply to any included members. For example, if a right margin of

200 is specified and the source file has a record length of 80, only 80 columns of data will be read from

the source file. If an included source member in the same precompile has a record length of 200, the

entire 200 from the include will be read.

If EXEC SQL does not start within the specified margins, the SQL precompiler does not recognize the

SQL statement.

 Related concepts

 “DB2 UDB for iSeries CL command descriptions for host language precompilers” on page 174
DB2 UDB for iSeries provides commands for precompiling programs coded in the following

programming languages:

Embedded SQL programming 17

Names in C and C++ applications that use SQL

You can use any valid C or C++ variable name for a host variable. It is subject to the following

restrictions:

Do not use host variable names or external entry names that begin with SQL, RDI, or DSN in any

combination of uppercase or lowercase letters. These names are reserved for the database manager. The

length of host variable names is limited to 128.

If the name SQL in any combination of uppercase or lowercase letters is used, unpredictable results

might occur.

NULLs and NULs in C and C++ applications that use SQL

C, C++, and SQL use the word null, but for different meanings.

The C and C++ languages have a null character (NUL), a null pointer (NULL), and a null statement (just

a semicolon (;)). The C NUL is a single character that compares equal to 0. The C NULL is a special

reserved pointer value that does not point to any valid data object. The SQL null value is a special value

that is distinct from all non-null values and denotes the absence of a (non-null) value.

Statement labels in C and C++ applications that use SQL

Executable SQL statements can be preceded with a label.

Preprocessor sequence for C and C++ applications that use SQL

You must run the SQL preprocessor before the C or C++ preprocessor. You cannot use C or C++

preprocessor directives within SQL statements.

Trigraphs in C and C++ applications that use SQL

Some characters from the C and C++ character set are not available on all keyboards. You can enter these

characters into a C or C++ source program by using a sequence of three characters that is called a

trigraph.

The following trigraph sequences are supported within host variable declarations:

v ??(left bracket

v ??) right bracket

v ??< left brace

v ??> right brace

v ??= pound

v ??/ backslash

WHENEVER Statement in C and C++ applications that use SQL

The target for the GOTO clause in an SQL WHENEVER statement must be within the scope of any SQL

statements affected by the WHENEVER statement.

Use host variables in C and C++ applications that use SQL

All host variables used in SQL statements must be explicitly declared prior to their first use.

In C, the C statements that are used to define the host variables should be preceded by a BEGIN

DECLARE SECTION statement and followed by an END DECLARE SECTION statement. If a BEGIN

DECLARE SECTION and END DECLARE SECTION are specified, all host variable declarations used in

SQL statements must be between the BEGIN DECLARE SECTION and the END DECLARE SECTION

statements. Host variables declared using a typedef identifier also require a BEGIN DECLARE SECTION

and END DECLARE SECTION; however, the typedef declarations do not need to be between these two

sections.

18 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|

In C++, the C++ statements that are used to define the host variables must be preceded by a BEGIN

DECLARE SECTION statement and followed by an END DECLARE SECTION statement. You cannot use

any variable that is not between the BEGIN DECLARE SECTION statement and the END DECLARE

SECTION statement as a host variable.

All host variables within an SQL statement must be preceded by a colon (:).

The names of host variables must be unique within the program, even if the host variables are in

different blocks or procedures.

An SQL statement that uses a host variable must be within the scope of the statement in which the

variable was declared.

Host variables cannot be union elements.

Host variables cannot contain continuation characters within the name.

Declare host variables in C and C++ applications that use SQL

The C and C++ precompilers recognize only a subset of valid C and C++ declarations as valid host

variable declarations.

Numeric host variables in C and C++ applications that use SQL:

The topic contains a figure showing the syntax for valid numeric host variable declarations.

 Numeric

��

auto

extern

static

const

volatile

 float

double

decimal (

precision

)

,

scale

int

long long

signed

long

short

sqlint32

sqlint64

 �

�

�

 ,

variable-name

;

=

expression

��

Notes:

1. Precision and scale must be integer constants. Precision may be in the range from 1 to 63.

Scale may be in the range from 0 to the precision.

2. If using the decimal data type, the header file decimal.h must be included.

3. If using sqlint32 or sqlint64, the header file sqlsystm.h must be included.

Character host variables in C and C++ applications that use SQL:

There are three valid forms for character host variables.

 These forms are:

Embedded SQL programming 19

v Single-character form

v NUL-terminated character form

v VARCHAR structured form

In addition, an SQL VARCHAR declare can be used to define a varchar host variable.

All character types are treated as unsigned.

Single-character form

��

auto

extern

static

const

volatile

unsigned

signed

 char �

�

�

 ,

variable-name

;

[

1

]

=

expression

��

NUL-terminated character form

��

auto

extern

static

const

volatile

unsigned

signed

 char �

�

�

 ,

variable-name

[

length

]

;

=

expression

��

Notes:

1. The length must be an integer constant that is greater than 1 and not greater than 32 741.

2. If the *CNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI command, the input

host variables must contain the NUL-terminator. Output host variables are padded with

blanks, and the last character is the NUL-terminator. If the output host variable is too small to

contain both the data and the NUL-terminator, the following actions are taken:

v The data is truncated

v The last character is the NUL-terminator

v SQLWARN1 is set to ’W’
3. If the *NOCNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI command, the

input variables do not need to contain the NUL-terminator.

The following applies to output host variables.

v If the host variable is large enough to contain the data and the NUL-terminator, then the

following actions are taken:

– The data is returned, but the data is not padded with blanks

– The NUL-terminator immediately follows the data

20 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

v If the host variable is large enough to contain the data but not the NUL-terminator, then the

following actions are taken:

– The data is returned

– A NUL-terminator is not returned

– SQLWARN1 is set to ’N’
v If the host variable is not large enough to contain the data, the following actions are taken:

– The data is truncated

– A NUL-terminator is not returned

– SQLWARN1 is set to ’W’

VARCHAR structured form

��

auto

extern

static

const

volatile

 struct {

_Packed

tag
 �

�
 int

short

var-1

;

signed

char

var-2

[

length

]

;

}

unsigned

signed

�

�

�

 ,

variable-name

;

=

{

expression ,

expression

}

��

Notes:

1. length must be an integer constant that is greater than 0 and not greater than 32 740.

2. var-1 and var-2 must be simple variable references and cannot be used individually as integer

and character host variables.

3. The struct tag can be used to define other data areas, but these cannot be used as host

variables.

4. The VARCHAR structured form should be used for bit data that may contain the NULL

character. The VARCHAR structured form will not be ended using the nul-terminator.

5. _Packed must not be used in C++. Instead, specify #pragma pack(1) prior to the declaration

and #pragma pack() after the declaration.

Note: You can use #pragma pack (reset) instead of #pragma pack() because they are the same.

#pragma pack(1)

 struct VARCHAR {

 short len;

 char s[10];

 } vstring;

#pragma pack()

Example:

EXEC SQL BEGIN DECLARE SECTION;

 /* valid declaration of host variable vstring */

Embedded SQL programming 21

struct VARCHAR {

 short len;

 char s[10];

 } vstring;

 /* invalid declaration of host variable wstring */

 struct VARCHAR wstring;

SQL VARCHAR form

��

�

 ,

VARCHAR

variable-name

[

length

]

;

=

″init-data″

��

Notes:

1. VARCHAR can be in mixed case.

2. Length must be an integer constant that is greater than 0 and not greater than 32 740.

3. The SQL VARCHAR form should be used for bit data that may contain the NULL character.

The SQL VARCHAR form will not be ended using the nul-terminator.

Example

The following declaration:

VARCHAR vstring[528]="mydata";

Results in the generation of the following structure:

_Packed struct { short len;

 char data[528];}

 vstring={6, "mydata"};

The following declaration:

VARCHAR vstring1[111],

 vstring2[222]="mydata",

 vstring3[333]="more data";

Results in the generation of the following structures:

_Packed struct { short len;

 char data[111];}

vstring1;

_Packed struct { short len;

 char data[222];}

vstring2={6,"mydata"};

_Packed struct { short len;

 char data[333};}

vstring3={9,"more data"};

Graphic host variables in C and C++ applications that use SQL:

There are three valid forms for graphic host variables.

 v Single-graphic form

v NUL-terminated graphic form

v VARGRAPHIC structured form

22 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Single-graphic form

��

auto

extern

static

const

volatile

wchar_t

�

 ,

variable-name

=

expression

;

��

NUL-Terminated graphic form

��

auto

extern

static

const

volatile

wchar_t

�

 ,

variable-name

[

length

]

;

=

expression

��

Notes:

1. length must be an integer constant that is greater than 1 and not greater than 16371.

2. If the *CNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI command, then

input host variables must contain the graphic NUL-terminator (/0/0). Output host variables

are padded with DBCS blanks, and the last character is the graphic NUL-terminator. If the

output host variable is too small to contain both the data and the NUL-terminator, the

following actions are taken:

v The data is truncated

v The last character is the graphic NUL-terminator

v SQLWARN1 is set to ’W’

If the *NOCNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI command, the

input host variables do not need to contain the graphic NUL-terminator. The following is true

for output host variables.

v If the host variable is large enough to contain the data and the graphic NUL-terminator, the

following actions are taken:

– The data is returned, but is not padded with DBCS blanks

– The graphic NUL-terminator immediately follows the data
v If the host variable is large enough to contain the data but not the graphic NUL-terminator,

the following actions are taken:

– The data is returned

– A graphic NUL-terminator is not returned

– SQLWARN1 is set to ’N’
v If the host variable is not large enough to contain the data, the following actions are taken:

– The data is truncated

– A graphic NUL-terminator is not returned

– SQLWARN1 is set to ’W’

VARGRAPHIC structured form

Embedded SQL programming 23

��

auto

extern

static

const

volatile

 struct {

_Packed

tag
 �

�
 int

short

var-1

;

signed

wchar_t

var-2

[

length

]

;

}

�

�

�

 ,

variable-name

;

=

{

expression ,

expression

}

��

Notes:

1. length must be an integer constant that is greater than 0 and not greater than 16370.

2. var-1 and var-2 must be simple variable references and cannot be used as host variables.

3. The struct tag can be used to define other data areas, but these cannot be used as host

variables.

4. _Packed must not be used in C++. Instead, specify #pragma pack(1) prior to the declaration

and #pragma pack() after the declaration.

#pragma pack(1)

 struct VARGRAPH {

 short len;

 wchar_t s[10];

 } vstring;

#pragma pack()

Example

EXEC SQL BEGIN DECLARE SECTION;

 /* valid declaration of host variable graphic string */

 struct VARGRAPH {

 short len;

 wchar_t s[10];

 } vstring;

 /* invalid declaration of host variable wstring */

 struct VARGRAPH wstring;

Binary host variables in C and C++ applications that use SQL:

C and C++ do not have variables that correspond to the SQL binary data types. To create host variables

that can be used with these data types, use the SQL TYPE IS clause. The SQL precompiler replaces this

declaration with a C language structure in the output source member.

 BINARY

��

auto

extern

static

const

volatile

SQL TYPE IS

BINARY

(length)

�

 ,

variable-name

=

init-data

�

24 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

� ; ��

VARBINARY

��

auto

extern

static

const

volatile

 SQL TYPE IS VARBINARY

BINARY VARYING
 (length) �

�

�

 ,

variable-name

=

{

init-len,″init-data″

}

=

SQL_VARBINARY_INIT(″init-data″)

;

��

Note:

1. For BINARY host variables, the length must be in the range 1 to 32766.

2. For VARBINARY and BINARY VARYING host variables, the length must in the range 1 to

32740.

3. SQL TYPE IS, BINARY, VARBINARY, and BINARY VARYING can be in mixed case.

BINARY Example

The following declaration:

SQL TYPE IS BINARY(4) myBinField;

Results in the generation of the following code:

unsigned char myBinField[4];

VARBINARY Example

The following declaration:

SQL TYPE IS VARBINARY(12) myVarBinField;

Results in the generation of the following structure:

_Packed struct myVarBinField_t {

 short length;

 char data[12]; }

myVarBinField;

LOB host variables in C and C++ applications that use SQL:

C and C++ do not have variables that correspond to the SQL data types for LOBs (large objects). To

create host variables that can be used with these data types, use the SQL TYPE IS clause. The SQL

precompiler replaces this declaration with a C language structure in the output source member.

 LOB Host Variable

Embedded SQL programming 25

��

auto

extern

static

const

volatile

 SQL TYPE IS CLOB

DBCLOB

BLOB

 (length)

K

M

G

 �

�

�

 ,

variable-name

;

=

{

init-len,″init-data″

}

=

SQL_CLOB_INIT(″init-data″)

=

SQL_DBCLOB_INIT(″init-data″)

=

SQL_BLOB_INIT(″init-data″)

��

Notes:

 1. K multiplies length by 1024. M multiplies length by 1 048 576. G multiplies length by

1 073 741 824.

 2. For BLOB and CLOB, 1 ≤ length ≤ 2 147 483 647

 3. For DBCLOB, 1 ≤ length ≤ 1 073 741 823

 4. SQL TYPE IS, BLOB, CLOB, DBCLOB, K, M, G can be in mixed case.

 5. The maximum length allowed for the initialization string is 32 766 bytes.

 6. The initialization length, init-len, must be a numeric constant (that is, it cannot include K, M,

or G).

 7. If the LOB is not initialized within the declaration, then no initialization will be done within

the precompiler generated code.

 8. The precompiler generates a structure tag which can be used to cast to the host variable’s

type.

 9. Pointers to LOB host variables can be declared, with the same rules and restrictions as for

pointers to other host variable types.

10. CCSID processing for LOB host variables will be the same as the processing for other

character and graphic host variable types.

11. If a DBCLOB is initialized, it is the user’s responsibility to prefix the string with an ’L’

(indicating a wide-character string).

CLOB example

The following declaration:

SQL TYPE IS CLOB(128K) var1, var2 = {10, "data2data2"};

The precompiler will generate for C:

_Packed struct var1_t {

 unsigned long length;

 char data[131072];

 } var1,var2={10,"data2data2"};

DBCLOB example

The following declaration:

SQL TYPE IS DBCLOB(128K) my_dbclob;

The precompiler will then generate:

26 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

_Packed struct my_dbclob_t {

 unsigned long length;

 wchar_t data[131072]; } my_dbclob;

BLOB example

The following declaration:

static SQL TYPE IS BLOB(128K)

 my_blob=SQL_BLOB_INIT("mydata");

Results in the generation of the following structure:

static struct my_blob_t {

 unsigned long length;

 char data[131072];

} my_blob=SQL_BLOB_INIT("my_data");

LOB Locator

��

auto

extern

static

const

volatile

 SQL TYPE IS CLOB_LOCATOR

DBCLOB_LOCATOR

BLOB_LOCATOR

 �

�

�

 ,

variable-name

;

=

init-value

��

Notes:

1. SQL TYPE IS, BLOB_LOCATOR, CLOB_LOCATOR, DBCLOB_LOCATOR can be in mixed

case.

2. init-value permits the initialization of pointer locator variables. Other types of initialization will

have no meaning.

3. Pointers to LOB Locators can be declared, with the same rules and restrictions as for pointers

to other host variable types.

CLOB Locator Example

The following declaration:

static SQL TYPE IS CLOB_LOCATOR my_locator;

Results in the following generation:

static long int unsigned my_locator;

BLOB and DBCLOB locators have similar syntax.

LOB file reference variable

��

auto

extern

static

const

volatile

 SQL TYPE IS CLOB_FILE

DBCLOB_FILE

BLOB_FILE

 �

Embedded SQL programming 27

�

�

 ,

variable-name

;

=

init-value

��

Notes:

1. SQL TYPE IS, BLOB_FILE, CLOB_FILE, DBCLOB_FILE can be in mixed case.

2. Pointers to LOB File Reference Variables can be declared, with the same rules and restrictions

as for pointers to other host variable types.

CLOB File Reference Example

The following declaration:

static SQL TYPE IS CLOB_FILE my_file;

Results in the generation of the following structure:

static _Packed struct {

 unsigned long name_length;

 unsigned long data_length;

 unsigned long file_options;

 char name[255];

} my_file;

BLOB and DBCLOB file reference variables have similar syntax.

The precompiler will generate declarations for the following file option constants. You can use these

constants to set the file_options variable when you use File Reference host variables.

v SQL_FILE_READ (2)

v SQL_FILE_CREATE (8)

v SQL_FILE_OVERWRITE (16)

v SQL_FILE_APPEND (32)
 Related information

 LOB file reference variables

ROWID host variables in C and C++ applications that use SQL:

C and C++ do not have a variable that corresponds to the SQL data type ROWID. To create host

variables that can be used with this data type, use the SQL TYPE IS clause. The SQL precompiler replaces

this declaration with a C language structure in the output source member.

 ROWID

��

�

 ,

SQL TYPE IS ROWID

variable-name

;

��

Note: SQL TYPE IS ROWID can be in mixed case.

ROWID Example

The following declaration:

SQL TYPE IS ROWID myrowid, myrowid2;

28 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Results in the generation of the following structure:

_Packed struct { short len;

 char data[40];}

myrowid1, myrowid2;

Use host structures in C and C++ applications that use SQL

In C and C++ programs, you can define a host structure, which is a named set of elementary C or C++

variables.

Host structures have a maximum of two levels, even though the host structure might itself occur within a

multilevel structure. An exception is the declaration of a varying-length string, which requires another

structure.

A host structure name can be a group name whose subordinate levels name elementary C or C++

variables. For example:

 struct {

 struct {

 char c1;

 char c2;

 } b_st;

 } a_st;

In this example, b_st is the name of a host structure consisting of the elementary items c1 and c2.

You can use the structure name as a shorthand notation for a list of scalars, but only for a two-level

structure. You can qualify a host variable with a structure name (for example, structure.field). Host

structures are limited to two levels. (For example, in the above host structure example, the a_st cannot be

referred to in SQL.) A structure cannot contain an intermediate level structure. In the previous example,

a_st could not be used as a host variable or referred to in an SQL statement. A host structure for SQL

data has two levels and can be thought of as a named set of host variables. After the host structure is

defined, you can refer to it in an SQL statement instead of listing the several host variables (that is, the

names of the host variables that make up the host structure).

For example, you can retrieve all column values from selected rows of the table CORPDATA.EMPLOYEE

with:

 struct { char empno[7];

 struct { short int firstname_len;

 char firstname_text[12];

 } firstname;

 char midint,

 struct { short int lastname_len;

 char lastname_text[15];

 } lastname;

 char workdept[4];

 } pemp1;

 strcpy("000220",pemp1.empno);

 exec sql

 SELECT *

 INTO :pemp1

 FROM corpdata.employee

 WHERE empno=:pemp1.empno;

Notice that in the declaration of pemp1, two varying-length string elements are included in the structure:

firstname and lastname.

Host structure declarations in C and C++ applications that use SQL

These figures show the valid syntax for host structure declarations.

Embedded SQL programming 29

Host Structures

��

auto

extern

static

const

volatile

 struct {

_Packed

tag
 �

�

�

�

�

�

,

float

var-1

;

}

double

decimal (

precision

)

,

scale

int

long long

signed

long

short

sqlint32

sqlint64

varchar-structure

vargraphic-structure

lob

SQL-varchar

rowid

binary

,

char

var-2

;

signed

[

length

]

unsigned

,

wchar_t

var-5

;

[

length

]

�

�

�

 ,

variable-name

;

=

expression

��

varchar-structure:

 int

struct

{

short

var-3

;

tag

signed

signed

unsigned

�

� char var-4 [length] ; }

30 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Host Structures (continued)

vargraphic-structure:

 int

struct

{

short

tag

signed

var-6

;

wchar_t

var-7

[

length

]

;

}

lob:

 SQL TYPE IS CLOB (length)

DBCLOB

K

BLOB

M

G

CLOB_LOCATOR

DBCLOB_LOCATOR

BLOB_LOCATOR

CLOB_FILE

DBCLOB_FILE

BLOB_FILE

SQL-varchar:

 VARCHAR variable-name [length]

rowid:

 SQL TYPE IS ROWID

binary:

 SQL TYPE IS BINARY (length)

VARBINARY

BINARY VARYING

Notes:

1. For details on declaring numeric, character, graphic, LOB, ROWID, and binary host variables,

see the notes under numeric, character, graphic, LOB, ROWID, and binary host variables.

2. A structure of a short int followed by either a char or wchar_t array is always interpreted by

the SQL C and C++ precompilers as either a VARCHAR or VARGRAPHIC structure.

3. _Packed must not be used in C++. Instead, specify #pragma pack(1) prior to the declaration

and #pragma pack() after the declaration.

#pragma pack(1)

 struct {

 short myshort;

 long mylong;

 char mychar[5];

 } a_st;

#pragma pack()

4. If using sqlint32 or sqlint64, the header file sqlsystm.h must be included.

Host structure indicator array in C and C++ applications that use SQL

This figure shows the valid syntax for host structure indicator array declarations.

Embedded SQL programming 31

Host Structure Indicator Array

��

auto

extern

static

const

volatile

 int

short

signed

�

�

�

 ,

variable-name

[

dimension

]

;

=

expression

��

Note: Dimension must be an integer constant between 1 and 32767.

Use arrays of host structures in C and C++ applications that use SQL

In C and C++ programs, you can define a host structure array that has the dimension attribute. Host

structure arrays have a maximum of two levels, even though the array might occur within a

multiple-level structure. Another structure is not needed if a varying-length character string or a

varying-length graphic string is not used.

In this C example,

struct {

 _Packed struct{

 char c1_var[20];

 short c2_var;

 } b_array[10];

 } a_struct;

and in this C++ example,

#pragma pack(1)

struct {

 struct{

 char c1_var[20];

 short c2_var;

 } b_array[10];

 } a_struct;

#pragma pack()

the following are true:

v All of the members in b_array must be valid variable declarations.

v The _Packed attribute must be specified for the struct tag.

v b_array is the name of an array of host structures containing the members c1_var and c2_var.

v b_array may only be used on the blocked forms of FETCH statements and INSERT statements.

v c1_var and c2_var are not valid host variables in any SQL statement.

v A structure cannot contain an intermediate level structure.

For example, in C you can retrieve 10 rows from the cursor with:

_Packed struct {char first_initial;

 char middle_initial;

 _Packed struct {short lastname_len;

 char lastname_data[15];

 } lastname;

 double total_salary;

 } employee_rec[10];

32 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

struct { short inds[4];

 } employee_inds[10];

...

EXEC SQL DECLARE C1 CURSOR FOR

 SELECT SUBSTR(FIRSTNME,1,1), MIDINIT, LASTNAME,

 SALARY+BONUS+COMM

 FROM CORPDATA.EMPLOYEE;

EXEC SQL OPEN C1;

EXEC SQL FETCH C1 FOR 10 ROWS INTO :employee_rec:employee_inds;

...

Host structure array in C and C++ applications that use SQL

The following figure shows the valid syntax for host structure array declarations.

��

auto

extern

static

const

volatile

 _Packed struct {

tag
 �

�

�

�

�

�

,

float

var-1

;

}

double

decimal (

precision

)

,

scale

int

long long

signed

long

short

sqlint32

sqlint64

varchar-structure

vargraphic-structure

lob

SQL-varchar

rowid

binary

,

char

var-2

;

signed

[

length

]

unsigned

,

wchar_t

var-5

;

[

length

]

�

�

�

 ,

variable-name

[

dimension

]

;

=

expression

��

Embedded SQL programming 33

varchar-structure:

 int

_Packed

struct

{

short

var-3

;

tag

signed

signed

unsigned

�

� char var-4 [length] ; }

vargraphic-structure:

 int

_Packed

struct

{

short

var-6

;

tag

signed

�

� wchar_t var-7 [length] ; }

lob:

 SQL TYPE IS CLOB (length)

DBCLOB

K

BLOB

M

G

CLOB_LOCATOR

DBCLOB_LOCATOR

BLOB_LOCATOR

CLOB_FILE

DBCLOB_FILE

BLOB_FILE

SQL-varchar:

 VARCHAR variable-name [length]

rowid:

 SQL TYPE IS ROWID

binary:

 SQL TYPE IS BINARY (length)

VARBINARY

BINARY VARYING

Notes:

1. For details on declaring numeric, character, graphic, LOB, ROWID, and binary host variables,

see the notes under numeric-host variables, character-host, graphic-host variables, LOB host

variables, ROWID host variables, and binary host variables.

2. The struct tag can be used to define other data areas, but these cannot be used as host

variables.

34 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

3. Dimension must be an integer constant between 1 and 32767.

4. _Packed must not be used in C++. Instead, specify #pragma pack(1) prior to the declaration

and #pragma pack() after the declaration.

5. If using sqlint32 or sqlint64, the header file sqlsystm.h must be included.

Host structure array indicator structure in C and C++ applications that use SQL

The figure shows the valid syntax for host structure array indicator structure declarations.

Host Structure Array Indicator Structure

��

auto

extern

static

const

volatile

 struct {

_Packed

tag
 �

�
 int

short

var-1

[

dimension-1

]

signed

;

}

�

�

�

 ,

variable-name

[

dimension-2

]

=

expression

;

��

Notes:

1. The struct tag can be used to define other data areas, but they cannot be used as host

variables.

2. dimension-1 and dimension-2 must both be integer constants between 1 and 32767.

3. _Packed must not be used in C++. Instead, specify #pragma pack(1) prior to the declaration

and #pragma pack() after the declaration.

Use pointer data types in C and C++ applications that use SQL

You can also declare host variables that are pointers to the supported C and C++ data types, with the

following restrictions.

v If a host variable is declared as a pointer, then that host variable must be declared with asterisks

followed by a host variable. The following examples are all valid:

short *mynum; /* Ptr to an integer */

long **mynumptr; /* Ptr to a ptr to a long integer */

char *mychar; /* Ptr to a single character */

char(*mychara)[20]; /* Ptr to a char array of 20 bytes */

struct { /* Ptr to a variable char array of 30 */

 short mylen; /* bytes. */

 char mydata[30];

 } *myvarchar;

Note: Parentheses are only allowed when declaring a pointer to a NUL-terminated character array, in

which case they are required. If the parentheses were not used, you would be declaring an array

of pointers rather than the desired pointer to an array. For example:

char (*a)[10]; /* pointer to a null-terminated char array */

char *a[10]; /* pointer to an array of pointers */

v If a host variable is declared as a pointer, then no other host variable can be declared with that same

name within the same source file. For example, the second declaration below would be invalid:

Embedded SQL programming 35

char *mychar; /* This declaration is valid */

char mychar; /* But this one is invalid */

v When a host variable is referenced within an SQL statement, that host variable must be referenced

exactly as declared, with the exception of pointers to NUL-terminated character arrays. For example,

the following declaration required parentheses:

char (*mychara)[20]; /* ptr to char array of 20 bytes */

However, the parentheses are not allowed when the host variable is referenced in an SQL statement,

such as a SELECT:

EXEC SQL SELECT name INTO :*mychara FROM mytable;

v Only the asterisk can be used as an operator over a host variable name.

v The maximum length of a host variable name is affected by the number of asterisks specified, as these

asterisks are considered part of the name.

v Pointers to structures are not usable as host variables except for variable character structures. Also,

pointer fields in structures are not usable as host variables.

v SQL requires that all specified storage for based host variables be allocated. If the storage is not

allocated, unpredictable results can occur.

Use typedef in C and C++ applications that use SQL

You can also use the typedef declarations to define your own identifiers that will be used in place of C

type specifiers such as short, float, and double.

The typedef identifiers used to declare host variables must be unique within the program, even if the

typedef declarations are in different blocks or procedures. If the program contains BEGIN DECLARE

SECTION and END DECLARE SECTION statements, the typedef declarations do not need to be

contained with the BEGIN DECLARE SECTION and END DECLARE SECTION. The typedef identifier

will be recognized by the SQL precompiler within the BEGIN DECLARE SECTION. The C and C++

precompilers recognize only a subset of typedef declarations, the same as with host variable declarations.

Examples of valid typedef statements:

v Declaring a long typedef and then declaring host variables which reference the typedef.

typedef long int LONG_T;

LONG_T I1, *I2;

v The character array length may be specified in either the typedef or on the host variable declaration

but not in both.

typedef char NAME_T[30];

typedef char CHAR_T;

CHAR_T name1[30]; /* Valid */

NAME_T name2; /* Valid */

NAME_T name3[10]; /* Not valid for SQL use */

v The SQL TYPE IS statement may be used in a typedef.

typedef SQL TYPE IS CLOB(5K) CLOB_T;

CLOB_T clob_var1;

v Storage class (auto, extern, static), volatile, or const qualifiers may be specified on the host variable

declaration.

typdef short INT_T;

typdef short INT2_T;

static INT_T i1;

volatile INT2_T i2;

v typedefs of structures are supported.

typedef _Packed struct {char dept[3];

 char deptname[30];

 long Num_employees;} DEPT_T;

DEPT_T dept_rec;

DEPT_T dept_array[20]; /* use for blocked insert or fetch */

36 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Use ILE C compiler external file descriptions in C and C++ applications

that use SQL

You can use the C or C++ #pragma mapinc directive with the #include directive to include external file

descriptions in your program.

When used with SQL, only a particular format of the #pragma mapinc directive is recognized by the SQL

precompiler. If all of the required elements are not specified, the precompiler ignores the directive and

does not generate host variable structures. The required elements are:

v Include name

v Externally described file name

v Format name or a list of format names

v Options

v Conversion options

The library name, union name, conversion options, and prefix name are optional. Although typedef

statements coded by the user are not recognized by the precompiler, those created by the #pragma

mapinc and #include directives are recognized. SQL supports input, output, both, and key values for the

options parameter. For the conversion options, the supported values are D, p, z, _P, and 1BYTE_CHAR.

These options may be specified in any order except that both D and p cannot be specified. Unions

declared using the typedef union created by the #pragma mapinc and #include directive cannot be used

as host variables in SQL statements; the members of the unions can be used. Structures that contain the

typedef structure cannot be used in SQL statements; the structure declared using the typedef can be used.

To retrieve the definition of the sample table DEPARTMENT described in DB2 UDB for iSeries sample

tables in the DB2 UDB for iSeries SQL Programming topic collection, you can code the following:

 #pragma mapinc ("dept","CORPDATA/DEPARTMENT(*ALL)","both")

 #include "dept"

 CORPDATA_DEPARTMENT_DEPARTMENT_both_t Dept_Structure;

A host structure named Dept_Structure is defined with the following elements: DEPTNO, DEPTNAME,

MGRNO, and ADMRDEPT. These field names can be used as host variables in SQL statements.

Note: DATE, TIME, and TIMESTAMP columns generate character host variable definitions. They are

treated by SQL with the same comparison and assignment rules as a DATE, TIME, and

TIMESTAMP column. For example, a date host variable can only compared against a DATE

column or a character string which is a valid representation of a date.

If the GRAPHIC or VARGRAPHIC column has a UCS-2 CCSID, the generated host variable will

have the UCS-2 CCSID assigned to it. If the GRAPHIC or VARGRAPHIC column has a UTF-16

CCSID, the generated host variable will have the UTF-16 CCSID assigned to it.

Although zoned, binary (with non-zero scale fields), and optionally decimal are mapped to

character fields in ILE C for iSeries, SQL will treat these fields as numeric. By using the extended

program model (EPM) routines, you can manipulate these fields to convert zoned and packed

decimal data. For more information, see the ILE C for iSeries Language Reference

topic.

Determine equivalent SQL and C or C++ data types

The precompiler determines the base SQLTYPE and SQLLEN of host variables based on the following

table. If a host variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE plus one.

Embedded SQL programming 37

Table 1. C or C++ declarations mapped to typical SQL data types

C or C++ data type SQLTYPE of host variable SQLLEN of host variable SQL data type

short int 500 2 SMALLINT

long int 496 4 INTEGER

long long int 492 8 BIGINT

decimal(p,s) 484 p in byte 1, s in byte 2 DECIMAL (p,s)

float 480 4 FLOAT (single precision)

double 480 8 FLOAT (double precision)

single-character form 452 1 CHAR(1)

NUL-terminated character

form

460 length VARCHAR (length - 1)

VARCHAR structured form 448 length VARCHAR (length)

single-graphic form 468 1 GRAPHIC(1)

NUL-terminated

single-graphic form

400 length VARGRAPHIC (length - 1)

VARGRAPHIC structured

form

464 length VARGRAPHIC (length)

You can use the following table to determine the C or C++ data type that is equivalent to a given SQL

data type.

 Table 2. SQL data types mapped to typical C or C++ declarations

SQL data type C or C++ data type Notes

SMALLINT short int

INTEGER long int

BIGINT long long int

DECIMAL(p,s) decimal(p,s) p is a positive integer from 1 to 63,

and s is a positive integer from 0 to

63.

NUMERIC(p,s) or nonzero scale

binary

No exact equivalent Use DECIMAL (p,s).

FLOAT (single precision) float

FLOAT (double precision) double

CHAR(1) single-character form

CHAR(n) No exact equivalent If n>1, use NUL-terminated character

form

VARCHAR(n) NUL-terminated character form Allow at least n+1 to accommodate

the NUL-terminator. If data can

contain character NULs (\0), use

VARCHAR structured form or SQL

VARCHAR.

n is a positive integer. The maximum

value of n is 32740.

VARCHAR structured form The maximum value of n is 32740.

The SQL VARCHAR form may also

be used.

38 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Table 2. SQL data types mapped to typical C or C++ declarations (continued)

SQL data type C or C++ data type Notes

CLOB None Use SQL TYPE IS to declare a CLOB

in C or C++.

GRAPHIC (1) single-graphic form

GRAPHIC (n) No exact equivalent

VARGRAPHIC(n) NUL-terminated graphic form If n > 1, use NUL-terminated graphic

form.

VARGRAPHIC structured form If data can contain graphic NUL

values (/0/0), use VARGRAPHIC

structured form. Allow at least n + 1

to accommodate the NUL-terminator.

n is a positive integer. The maximum

value of n is 16370.

DBCLOB None Use SQL TYPE IS to declare a

DBCLOB in C or C++.

BINARY None Use SQL TYPE IS to declare a

BINARY in C or C++.

VARBINARY None Use SQL TYPE IS to declare a

VARBINARY in C or C++.

BLOB None Use SQL TYPE IS to declare a BLOB

in C or C++.

DATE NUL-terminated character form If the format is *USA, *ISO, *JIS, or

*EUR, allow at least 11 characters to

accommodate the NUL-terminator. If

the format is *MDY, *YMD, or *DMY,

allow at least 9 characters to

accommodate the NUL-terminator. If

the format is *JUL, allow at least 7

characters to accommodate the

NUL-terminator.

VARCHAR structured form If the format is *USA, *ISO, *JIS, or

*EUR, allow at least 10 characters. If

the format is *MDY, *YMD, or *DMY,

allow at least 8 characters. If the

format is *JUL, allow at least 6

characters.

TIME NUL-terminated character form Allow at least 7 characters (9 to

include seconds) to accommodate the

NUL-terminator.

VARCHAR structured form Allow at least 6 characters; 8 to

include seconds.

Embedded SQL programming 39

Table 2. SQL data types mapped to typical C or C++ declarations (continued)

SQL data type C or C++ data type Notes

TIMESTAMP NUL-terminated character form Allow at least 20 characters (27 to

include microseconds at full

precision) to accommodate the

NUL-terminator. If n is less than 27,

truncation occurs on the

microseconds part.

VARCHAR structured form Allow at least 19 characters. To

include microseconds at full precision,

allow 26 characters. If the number of

characters is less than 26, truncation

occurs on the microseconds part.

DATALINK Not supported

ROWID None Use SQL TYPE IS to declare a

ROWID in C or C++.

Notes on C and C++ variable declaration and usage

Single quotation marks and quotation marks have different meanings in C, C++, and SQL.

C and C++ use quotation marks to delimit string constants and apostrophes to delimit character

constants. SQL does not have this distinction, but uses quotation marks for delimited identifiers and uses

apostrophes to delimit character string constants. Character data in SQL is distinct from integer data.

Use indicator variables in C and C++ applications that use SQL

An indicator variable is a two-byte integer (short int).

You can also specify an indicator structure (defined as an array of halfword integer variables) to support

a host structure. On retrieval, an indicator variable is used to show if its associated host variable has been

assigned a null value. On assignment to a column, a negative indicator variable is used to indicate that a

null value should be assigned.

Indicator variables are declared in the same way as host variables. The declarations of the two can be

mixed in any way that seems appropriate to you.

Example

Given the statement:

 EXEC SQL FETCH CLS_CURSOR INTO :ClsCd,

 :Day :DayInd,

 :Bgn :BgnInd,

 :End :EndInd;

Variables can be declared as follows:

 EXEC SQL BEGIN DECLARE SECTION;

 char ClsCd[8];

 char Bgn[9];

 char End[9];

 short Day, DayInd, BgnInd, EndInd;

 EXEC SQL END DECLARE SECTION;

 Related reference

 References to variables

40 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Code SQL statements in COBOL applications

This topic describes the unique application and coding requirements for embedding SQL statements in a

COBOL program. Requirements for host structures and host variables are defined.

The iSeries system supports more than one COBOL compiler. The DB2 UDB Query Manager and SQL

Development Kit licensed program only supports the COBOL for iSeries and ILE COBOL for iSeries

languages.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

 Related concepts

 “Write applications that use SQL” on page 2
You can create database applications in host languages that use DB2 UDB for iSeries SQL statements

and functions.

 “Error and warning messages during a compile of application programs that use SQL” on page 132

The conditions described in the following topics could produce an error or warning message during

an attempted compile process.
 Related reference

 “Sample programs using DB2 UDB for iSeries statements” on page 136
This topic contains a sample application showing how to code SQL statements in each of the

languages supported by the DB2 UDB for iSeries system.

Define the SQL communications area in COBOL applications that use

SQL

A COBOL program can be written to use the SQLCA to check return status for embedded SQL

statements, or the program can use the SQL diagnostics area to check return status.

To use the SQL diagnostics area instead of the SQLCA, use the SET OPTION SQL statement with the

option SQLCA = *NO.

When using the SQLCA, a COBOL program that contains SQL statements must include one or both of

the following:

v An SQLCODE variable declared as PICTURE S9(9) BINARY, PICTURE S9(9) COMP-4, or PICTURE

S9(9) COMP.

v An SQLSTATE variable declared as PICTURE X(5)

Or,

v An SQLCA (which contains an SQLCODE and SQLSTATE variable).

The SQLCODE and SQLSTATE values are set by the database manager after each SQL statement is run.

An application can check the SQLCODE or SQLSTATE value to determine whether the last SQL

statement was successful.

The SQLCA can be coded in a COBOL program either directly or by using the SQL INCLUDE statement.

When coding it directly, make sure it is initialized. Using the SQL INCLUDE statement requests the

inclusion of a standard declaration:

 EXEC SQL INCLUDE SQLCA END-EXEC.

The SQLCODE, SQLSTATE, and SQLCA variable declarations must appear in the WORKING-STORAGE

SECTION or LINKAGE SECTION of your program and can be placed wherever a record description

entry can be specified in those sections.

Embedded SQL programming 41

When you use the INCLUDE statement, the SQL COBOL precompiler includes COBOL source statements

for the SQLCA:

01 SQLCA.

 05 SQLCAID PIC X(8). VALUE X"0000000000000000".

 05 SQLCABC PIC S9(9) BINARY.

 05 SQLCODE PIC S9(9) BINARY.

 05 SQLERRM.

 49 SQLERRML PIC S9(4) BINARY.

 49 SQLERRMC PIC X(70).

 05 SQLERRP PIC X(8).

 05 SQLERRD OCCURS 6 TIMES

 PIC S9(9) BINARY.

 05 SQLWARN.

 10 SQLWARN0 PIC X.

 10 SQLWARN1 PIC X.

 10 SQLWARN2 PIC X.

 10 SQLWARN3 PIC X.

 10 SQLWARN4 PIC X.

 10 SQLWARN5 PIC X.

 10 SQLWARN6 PIC X.

 10 SQLWARN7 PIC X.

 10 SQLWARN8 PIC X.

 10 SQLWARN9 PIC X.

 10 SQLWARNA PIC X.

 05 SQLSTATE PIC X(5).

For ILE COBOL for iSeries, the SQLCA is declared using the GLOBAL clause. SQLCODE is replaced with

SQLCADE when a declare for SQLCODE is found in the program and the SQLCA is provided by the

precompiler. SQLSTATE is replaced with SQLSTOTE when a declare for SQLSTATE is found in the

program and the SQLCA is provided by the precompiler.

 Related concepts

 “Use the SQL diagnostics area” on page 9

The SQL diagnostics area is used to keep the returned information for an SQL statement that has been

run in a program. It contains all the information that is available to you as an application programmer

through the SQLCA.
 Related information

 SQL communication area

Define SQL descriptor areas in COBOL applications that use SQL

There are two types of SQL descriptor areas. One is defined with the ALLOCATE DESCRIPTOR

statement. The other is defined using the SQLDA structure. In this topic, only the SQLDA form is

discussed.

The following statements can use an SQLDA:

v EXECUTE...USING DESCRIPTOR descriptor-name

v FETCH...USING DESCRIPTOR descriptor-name

v OPEN...USING DESCRIPTOR descriptor-name

v CALL...USING DESCRIPTOR descriptor-name

v DESCRIBE statement-name INTO descriptor-name

v DESCRIBE INPUT statement-name INTO descriptor-name

v DESCRIBE TABLE host-variable INTO descriptor-name

v PREPARE statement-name INTO descriptor-name

Unlike the SQLCA, there can be more than one SQLDA in a program. The SQLDA can have any valid

name. An SQLDA can be coded in a COBOL program directly or added with the INCLUDE statement.

Using the SQL INCLUDE statement requests the inclusion of a standard SQLDA declaration:

42 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|

|

|

EXEC SQL INCLUDE SQLDA END-EXEC.

The COBOL declarations included for the SQLDA are:

SQLDA declarations must appear in the WORKING-STORAGE SECTION or LINKAGE SECTION of your

program and can be placed wherever a record description entry can be specified in those sections. For

ILE COBOL for iSeries, the SQLDA is declared using the GLOBAL clause.

Dynamic SQL is an advanced programming technique. With dynamic SQL, your program can develop

and then run SQL statements while the program is running. A SELECT statement with a variable SELECT

list (that is, a list of the data to be returned as part of the query) that runs dynamically requires an SQL

descriptor area (SQLDA). This is because you cannot know in advance how many or what type of

variables to allocate in order to receive the results of the SELECT.

 Related information

 Dynamic SQL applications

 SQL descriptor area

Embed SQL statements in COBOL applications that use SQL

SQL statements can be coded in COBOL program sections as in this table.

 SQL Statement Program Section

 BEGIN DECLARE SECTION

 END DECLARE SECTION

 DECLARE VARIABLE

 DECLARE STATEMENT

WORKING-STORAGE SECTION or LINKAGE SECTION

 INCLUDE SQLCA

 INCLUDE SQLDA

WORKING-STORAGE SECTION or LINKAGE SECTION

INCLUDE member-name DATA DIVISION or PROCEDURE DIVISION

Other PROCEDURE DIVISION

1 SQLDA.

 05 SQLDAID PIC X(8).

 05 SQLDABC PIC S9(9) BINARY.

 05 SQLN PIC S9(4) BINARY.

 05 SQLD PIC S9(4) BINARY.

 05 SQLVAR OCCURS 0 TO 409 TIMES DEPENDING ON SQLD.

 10 SQLTYPE PIC S9(4) BINARY.

 10 SQLLEN PIC S9(4) BINARY.

 10 FILLER REDEFINES SQLLEN.

 15 SQLPRECISION PIC X.

 15 SQLSCALE PIC X.

 10 SQLRES PIC X(12).

 10 SQLDATA POINTER.

 10 SQLIND POINTER.

 10 SQLNAME.

 49 SQLNAMEL PIC S9(4) BINARY.

 49 SQLNAMEC PIC X(30).

Figure 1. INCLUDE SQLDA declarations for COBOL

Embedded SQL programming 43

Each SQL statement in a COBOL program must begin with EXEC SQL and end with END-EXEC. If the

SQL statement appears between two COBOL statements, the period is optional and might not be

appropriate. The EXEC SQL keywords must appear all on one line, but the remainder of the statement

can appear on the next and subsequent lines.

Example

An UPDATE statement coded in a COBOL program might be coded as follows:

 EXEC SQL

 UPDATE DEPARTMENT

 SET MGRNO = :MGR-NUM

 WHERE DEPTNO = :INT-DEPT

 END-EXEC.

Comments in COBOL applications that use SQL

In addition to SQL comments (--), you can include COBOL comment lines (* or / in column 7) within

embedded SQL statements except between the keywords EXEC and SQL. COBOL debugging lines (D in

column 7) are treated as comment lines by the precompiler.

Continuation for SQL statements in COBOL applications that use SQL

The line continuation rules for SQL statements are the same as those for other COBOL statements, except

that EXEC SQL must be specified within one line.

If you continue a string constant from one line to the next, the first nonblank character in the next line

must be either an apostrophe or a quotation mark. If you continue a delimited identifier from one line to

the next, the first nonblank character in the next line must be either an apostrophe or a quotation mark.

Constants containing DBCS data can be continued across multiple lines by placing the shift-in character

in column 72 of the continued line and the shift-out after the first string delimiter of the continuation

line.

This SQL statement has a valid graphic constant of G’<AABBCCDDEEFFGGHHIIJJKK>’. The redundant

shifts are removed.

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

EXEC SQL

SELECT * FROM GRAPHTAB WHERE GRAPHCOL = G’<AABB>

- ’<CCDDEEFFGGHHIIJJKK>’

END-EXEC.

Include code in COBOL applications that use SQL

SQL statements or COBOL host variable declaration statements can be included by embedding the

following SQL statement in the source code where the statements are to be embedded.

 EXEC SQL INCLUDE member-name END-EXEC.

COBOL COPY statements cannot be used to include SQL statements or declarations of COBOL host

variables that are referenced in SQL statements.

Margins in COBOL applications that use SQL

Code SQL statements in columns 12 through 72. If EXEC SQL starts before the specified margin (that is,

before column 12), the SQL precompiler will not recognize the statement.

Sequence numbers in COBOL applications that use SQL

The source statements generated by the SQL precompiler are generated with the same sequence number

as the SQL statement.

44 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Names in COBOL applications that use SQL

Any valid COBOL variable name can be used for a host variable and is subject to the following

restrictions:

Do not use host variable names or external entry names that begin with ’SQL’, ’RDI’, or ’DSN’. These

names are reserved for the database manager.

Using structures that contain FILLER may not work as expected in an SQL statement. It is recommended

that all fields within a COBOL structure be named to avoid unexpected results.

COBOL compile-time options in COBOL applications that use SQL

The COBOL PROCESS statement can be used to specify the compile-time options for the COBOL

compiler.

Although the PROCESS statement will be recognized by the COBOL compiler when it is called by the

precompiler to create the program; the SQL precompiler itself does not recognize the PROCESS statement.

Therefore, options that affect the syntax of the COBOL source such as APOST and QUOTE should not be

specified in the PROCESS statement. Instead *APOST and *QUOTE should be specified in the OPTION

parameter of the CRTSQLCBL and CRTSQLCBLI commands.

Statement labels in COBOL applications that use SQL

Executable SQL statements in the PROCEDURE DIVISION can be preceded by a paragraph name.

WHENEVER Statement in COBOL applications that use SQL

The target for the GOTO clause in an SQL WHENEVER statement must be a section name or unqualified

paragraph name in the PROCEDURE DIVISION.

Multiple source COBOL programs and the SQL COBOL precompiler

The SQL COBOL precompiler does not support precompiling multiple source programs separated with

the PROCESS statement.

Use host variables in COBOL applications that use SQL

All host variables used in SQL statements must be explicitly declared prior to their first use.

The COBOL statements that are used to define the host variables should be preceded by a BEGIN

DECLARE SECTION statement and followed by an END DECLARE SECTION statement. If a BEGIN

DECLARE SECTION and END DECLARE SECTION are specified, all host variable declarations used in

SQL statements must be between the BEGIN DECLARE SECTION and the END DECLARE SECTION

statements.

All host variables within an SQL statement must be preceded by a colon (:).

Host variables cannot be records or elements.

To accommodate using dashes within a COBOL host variable name, blanks must precede and follow a

minus sign.

Declare host variables in COBOL applications that use SQL

The COBOL precompiler only recognizes a subset of valid COBOL declarations as valid host variable

declarations.

Numeric host variables in COBOL applications that use SQL:

The following figure shows the syntax for valid integer host variable declarations.

Embedded SQL programming 45

BIGINT and INTEGER and SMALLINT

��

01

77

level-1

variable-name

PICTURE

PIC

IS

picture-string

 IS

USAGE

�

� BINARY

COMPUTATIONAL-4

COMP-4

IS

VALUE

numeric-constant

 . ��

Notes:

1. BINARY, COMPUTATIONAL-4, and COMP-4 are equivalent. A portable application should

code BINARY, because COMPUTATIONAL-4 and COMP-4 are IBM extensions that are not

supported in International Organization for Standardization (ISO)/ANSI COBOL. The

picture-string associated with these types must have the form S9(i)V9(d) (or S9...9V9...9, with i

and d instances of 9). i + d must be less than or equal to 18.

2. level-1 indicates a COBOL level between 2 and 48.

The following figure shows the syntax for valid decimal host variable declarations.

DECIMAL

��

01

77

level-1

variable-name

PICTURE

PIC

IS

picture-string

 IS

USAGE

�

� PACKED-DECIMAL

COMPUTATIONAL-3

COMP-3

COMPUTATIONAL

COMP

IS

VALUE

numeric-constant

 . ��

Notes:

1. PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. A portable

application should code PACKED-DECIMAL, because COMPUTATIONAL-3 and COMP-3 are

IBM extensions that are not supported in ISO/ANS COBOL. The picture-string associated with

these types must have the form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9). i + d

must be less than or equal to 63.

2. COMPUTATIONAL and COMP are equivalent. The picture strings associated with these and

the data types they represent are product specific. Therefore, COMP and COMPUTATIONAL

should not be used in a portable application. In the COBOL for iSeries program, the

picture-string associated with these types must have the form S9(i)V9(d) (or S9...9V9...9, with i

and d instances of 9). i + d must be less than or equal to 63.

3. level-1 indicates a COBOL level between 2 and 48.

The following figure shows the syntax for valid numeric host variable declarations.

46 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Numeric

��

01

77

level-1

variable-name

PICTURE

PIC

 IS

picture-string

�

�
IS

USAGE

DISPLAY

display clause

IS

VALUE

numeric-constant

 . ��

display

 DISPLAY IS CHARACTER

SIGN

LEADING SEPARATE

Notes:

1. The picture-string associated with SIGN LEADING SEPARATE and DISPLAY must have the

form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9). i + d must be less than or equal to

18.

2. level-1 indicates a COBOL level between 2 and 48.

Floating point host variables in COBOL applications that use SQL:

The following figure shows the syntax for valid floating point host variable declarations. Floating point

host variables are only supported for ILE COBOL for iSeries.

 Floating-point

��

01

77

level-1

variable-name

 IS

USAGE

COMPUTATIONAL-1

COMP-1

COMPUTATIONAL-2

COMP-2

�

�
IS

VALUE

numeric-constant

 . ��

Notes:

1. COMPUTATIONAL-1 and COMP-1 are equivalent. COMPUTATIONAL-2 and COMP-2 are

equivalent.

2. level-1 indicates a COBOL level between 2 and 48.

Character host variables in COBOL applications that use SQL:

There are two valid forms of character host variables.

 v Fixed-Length Strings

Embedded SQL programming 47

v Varying-Length Strings

Fixed-length character strings

��

01

77

level-1

variable-name

PICTURE

PIC

 IS

picture-string

IS

USAGE

DISPLAY

�

�
IS

VALUE

string-constant

 . ��

Notes:

1. The picture string associated with these forms must be X(m) (or XXX...X, with m instance of X)

with 1 ≤ m ≤ 32 766.

2. level-1 indicates a COBOL level between 2 and 48.

Varying-length character strings

��

01

level-1

variable-name

.

 IS

49

var-1

PICTURE

picture-string-1

PIC

�

�

 IS

USAGE

BINARY

COMPUTATIONAL-4

COMP-4

IS

VALUE

numeric-constant

.

�

�
 IS

49

var-2

PICTURE

picture-string-2

PIC

IS

USAGE

DISPLAY

�

�
IS

VALUE

string-constant

 . ��

Notes:

1. The picture-string-1 associated with these forms must be S9(m) or S9...9 with m instances of 9.

m must be from 1 to 4.

Note that the database manager will use the full size of the S9(m) variable even though

COBOL on the iSeries only recognizes values up to the specified precision. This can cause data

truncation errors when COBOL statements are being run and may effectively limit the

maximum length of variable-length character strings to the specified precision.

2. The picture-string-2 associated with these forms must be either X(m), or XX...X, with m

instances of X, and with 1 ≤ m ≤ 32 740.

48 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

3. var-1 and var-2 cannot be used as host variables.

4. level-1 indicates a COBOL level between 2 and 48.

Graphic host variables in COBOL applications that use SQL:

Graphic host variables are only supported in ILE COBOL for iSeries.

 There are two valid forms of graphic host variables:

v Fixed-Length Graphic Strings

v Varying-Length Graphic Strings

Fixed-length graphic strings

��

01

77

level-1

variable-name

IS

PICTURE

picture-string

PIC

 IS

USAGE

DISPLAY-1

�

�
IS

VALUE

string-constant

 . ��

Notes:

1. The picture string associated with these forms must be G(m) (or GGG...G, with m instance of

G) or N(m) (or NNN...N, with m instance of N) with 1 ≤ m ≤ 16 383.

2. level-1 indicates a COBOL level between 2 and 48.

Varying-length graphic strings

��

01

level-1

variable-name

.

 IS

49

var-1

PICTURE

picture-string-1

PIC

�

�

 IS

USAGE

BINARY

COMPUTATIONAL-4

COMP-4

IS

VALUE

numeric-constant

.

�

�

IS

49

var-2

PICTURE

picture-string-2

PIC

 IS

USAGE

DISPLAY-1

�

�
IS

VALUE

string-constant

 . ��

Notes:

Embedded SQL programming 49

1. The picture-string-1 associated with these forms must be S9(m) or S9...9 with m instances of 9.

m must be from 1 to 4.

Note that the database manager will use the full size of the S9(m) variable even though

COBOL on the iSeries only recognizes values up to the specified precision. This can cause data

truncation errors when COBOL statements are being run and may effectively limit the

maximum length of variable-length graphic strings to the specified precision.

2. The picture-string-2 associated with these forms must be G(m), GG...G with m instances of G,

N(m), or NN...N with m instances of N, and with 1 ≤ m ≤ 16 370.

3. var-1 and var-2 cannot be used as host variables.

4. level-1 indicates a COBOL level between 2 and 48.

Binary host variables in COBOL applications that use SQL:

COBOL does not have variables that correspond to the SQL binary data types. To create host variables

that can be used with these data types, use the SQL TYPE IS clause. The SQL precompiler replaces this

declaration with a COBOL language structure in the output source member.

 BINARY and VARBINARY

��

01

variable-name

 IS

USAGE

SQL TYPE IS

BINARY

(

length

)

VARBINARY

BINARY VARYING

.

��

Notes:

1. For BINARY host variables, the length must be in the range 1 to 32766.

2. For VARBINARY host variables, the length must be in the range 1 to 32740.

3. SQL TYPE IS, BINARY, VARBINARY, and BINARY VARYING can be in mixed case.

BINARY Example

The following declaration:

01 MY-BINARY SQL TYPE IS BINARY(200).

Results in the generation of the following code:

01 MY-BINARY PIC X(200).

VARBINARY Example

The following declaration:

01 MY-VARBINARY SQL TYPE IS VARBINARY(250).

Results in the generation of the following structure:

01 MY-VARBINARY.

 49 MY-VARBINARY-LENGTH PIC 9(5) BINARY.

 49 MY-VARBINARY-DATA PIC X(250).

LOB host variables in COBOL applications that use SQL:

COBOL does not have variables that correspond to the SQL data types for LOBs (large objects). To create

host variables that can be used with these data types, use the SQL TYPE IS clause. The SQL precompiler

replaces this declaration with a COBOL language structure in the output source member.

50 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

LOB host variables are only supported in ILE COBOL for iSeries.

LOB host variables

��

01

variable-name

 IS

USAGE

SQL TYPE IS

CLOB

(

lob-length

)

DBCLOB

K

BLOB

M

.

��

Notes:

1. For BLOB and CLOB, 1 ≤ lob-length ≤ 15,728,640

2. For DBCLOB, 1 ≤ lob-length ≤ 7,864,320

3. SQL TYPE IS, BLOB, CLOB, DBCLOB can be in mixed case.

CLOB Example

The following declaration:

01 MY-CLOB SQL TYPE IS CLOB(16384).

Results in the generation of the following structure:

01 MY-CLOB.

 49 MY-CLOB-LENGTH PIC 9(9) BINARY.

 49 MY-CLOB-DATA PIC X(16384).

DBCLOB Example

The following declaration:

01 MY-DBCLOB SQL TYPE IS DBCLOB(8192).

Results in the generation of the following structure:

01 MY-DBCLOB.

 49 MY-DBCLOB-LENGTH PIC 9(9) BINARY.

 49 MY-DBCLOB-DATA PIC G(8192) DISPLAY-1.

BLOB Example

The following declaration:

01 MY-BLOB SQL TYPE IS BLOB(16384).

Results in the generation of the following structure:

01 MY-BLOB.

 49 MY-BLOB-LENGTH PIC 9(9) BINARY.

 49 MY-BLOB-DATA PIC X(16384).

LOB Locator

��

01

variable-name

 IS

USAGE

SQL TYPE IS

CLOB-LOCATOR

DBCLOB-LOCATOR

BLOB-LOCATOR

.

��

Notes:

Embedded SQL programming 51

1. SQL TYPE IS, BLOB-LOCATOR, CLOB-LOCATOR, DBCLOB-LOCATOR can be in mixed case.

2. LOB Locators cannot be initialized in the SQL TYPE IS statement.

CLOB and DBCLOB locators have similar syntax.

BLOB Locator Example

The following declaration:

01 MY-LOCATOR SQL TYPE IS BLOB_LOCATOR.

Results in the following generation:

01 MY-LOCATOR PIC 9(9) BINARY.

LOB File Reference Variable

��

01

variable-name

 IS

USAGE

SQL TYPE IS

CLOB-FILE

.

DBCLOB-FILE

BLOB-FILE

��

Note: SQL TYPE IS, BLOB-FILE, CLOB-FILE, DBCLOB-FILE can be in mixed case.

BLOB File Reference Example

The following declaration:

01 MY-FILE SQL TYPE IS BLOB-FILE.

Results in the generation of the following structure:

01 MY-FILE.

 49 MY-FILE-NAME-LENGTH PIC S9(9) COMP-5.

 49 MY-FILE-DATA-LENGTH PIC S9(9) COMP-5.

 49 MY-FILE-FILE-OPTIONS PIC S9(9) COMP-5.

 49 MY-FILE-NAME PIC X(255).

CLOB and DBCLOB file reference variables have similar syntax.

The pre-compiler will generate declarations for the following file option constants. You can use these

constants to set the xxx-FILE-OPTIONS variable when you use File Reference host variables.

v SQL_FILE_READ (2)

v SQL_FILE_CREATE (8)

v SQL_FILE_OVERWRITE (16)

v SQL_FILE_APPEND (32)
 Related information

 LOB file reference variables

Datetime host variables in COBOL applications that use SQL:

The following figure shows the syntax for valid date, time, and timestamp host variable declarations.

Datetime host variables are supported only for ILE COBOL for iSeries.

52 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Datetime host variable

��

01

77

level-1

variable-name
 OF IS

FORMAT

DATE

format-options

TIME

TIMESTAMP

��

Notes:

1. level-1 indicates a COBOL level between 2 and 48.

2. format-options indicates valid datetime options that are supported by the COBOL compiler. See

the ILE COBOL Reference manual on the V5R1 Supplemental Manuals

Web site for details.

ROWID host variables in COBOL applications that use SQL:

COBOL does not have a variable that corresponds to the SQL data type ROWID. To create host variables

that can be used with this data type, use the SQL TYPE IS clause. The SQL precompiler replaces this

declaration with a COBOL language structure in the output source member.

 ROWID

�� 01 variable-name SQL TYPE IS ROWID . ��

Note: SQL TYPE IS ROWID can be in mixed case.

ROWID Example

The following declaration:

01 MY-ROWID SQL TYPE IS ROWID.

Results in the generation of the following structure:

01 MY-ROWID.

 49 MY-ROWID-LENGTH PIC 9(2) BINARY.

 49 MY-ROWID-DATA PIC X(40).

Use host structures in COBOL applications that use SQL

A host structure is a named set of host variables that is defined in your program’s DATA DIVISION.

Host structures have a maximum of two levels, even though the host structure might itself occur within a

multilevel structure. An exception is the declaration of a varying-length character string, which requires

another level that must be level 49.

A host structure name can be a group name whose subordinate levels name basic data items. For

example:

01 A

 02 B

 03 C1 PICTURE ...

 03 C2 PICTURE ...

In this example, B is the name of a host structure consisting of the basic items C1 and C2.

When writing an SQL statement using a qualified host variable name (for example, to identify a field

within a structure), use the name of the structure followed by a period and the name of the field. For

Embedded SQL programming 53

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

example, specify B.C1 rather than C1 OF B or C1 IN B. However, this guideline applies only to qualified

names within SQL statements; you cannot use this technique for writing qualified names in COBOL

statements.

A host structure is considered complete if any of the following items are found:

v A COBOL item that must begin in area A

v Any SQL statement (except SQL INCLUDE)

After the host structure is defined, you can refer to it in an SQL statement instead of listing the several

host variables (that is, the names of the data items that comprise the host structure).

For example, you can retrieve all column values from selected rows of the table CORPDATA.EMPLOYEE

with:

01 PEMPL.

 10 EMPNO PIC X(6).

 10 FIRSTNME.

 49 FIRSTNME-LEN PIC S9(4) USAGE BINARY.

 49 FIRSTNME-TEXT PIC X(12).

 10 MIDINIT PIC X(1).

 10 LASTNAME.

 49 LASTNAME-LEN PIC S9(4) USAGE BINARY.

 49 LASTNAME-TEXT PIC X(15).

 10 WORKDEPT PIC X(3).

...

MOVE "000220" TO EMPNO.

...

EXEC SQL

 SELECT *

 INTO :PEMPL

 FROM CORPDATA.EMPLOYEE

 WHERE EMPNO = :EMPNO

END-EXEC.

Notice that in the declaration of PEMPL, two varying-length string elements are included in the structure:

FIRSTNME and LASTNAME.

Host structure in COBOL applications that use SQL

The following figure shows the syntax for the valid host structure.

�� level-1 variable-name . �

�

�

IS

level-2

var-1

PICTURE

picture-string

usage-clause

.

PIC

floating-point

.

.

varchar-string

.

.

vargraphic-string

.

lob

.

datetime

.

rowid

.

binary

.

��

floating-point:

54 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

IS

USAGE

COMPUTATIONAL-1

COMP-1

COMPUTATIONAL-2

COMP-2

IS

VALUE

constant

usage-clause:

IS

USAGE

BINARY

COMPUTATIONAL-4

COMP-4

PACKED-DECIMAL

COMPUTATIONAL-3

COMP-3

COMPUTATIONAL

COMP

DISPLAY

display-clause

DISPLAY-1

IS

VALUE

constant

display-clause:

 DISPLAY IS CHARACTER

SIGN

LEADING

SEPARATE

varchar-string:

 IS

49

var-2

PICTURE

picture-string-1

PIC

�

�

 IS

USAGE

BINARY

COMPUTATIONAL-4

IS

COMP-4

VALUE

numeric-constant

.

�

�
 IS

49

var-3

PICTURE

picture-string-2

PIC

�

�
IS

IS

USAGE

VALUE

constant

DISPLAY

Embedded SQL programming 55

vargraphic-string:

IS

49

var-2

PICTURE

picture-string-1

PIC

 IS

USAGE

BINARY

COMPUTATIONAL-4

COMP-4

�

�
IS

VALUE

numeric-constant

 . �

�

 IS

IS

USAGE

49

var-3

PICTURE

picture-string-2

DISPLAY-1

PIC

�

�
IS

VALUE

constant

lob:

 IS

USAGE

SQL TYPE IS

CLOB

(

lob-length

)

DBCLOB

K

BLOB

M

CLOB-LOCATOR

DBCLOB-LOCATOR

BLOB-LOCATOR

CLOB-FILE

DBCLOB-FILE

BLOB-FILE

datetime:

 OF

variable-name

FORMAT

DATE

TIME

TIMESTAMP

 IS

format-options

rowid:

 SQL TYPE IS ROWID

binary:

56 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

IS

USAGE

SQL TYPE IS

BINARY

(

length

)

VARBINARY

BINARY VARYING

Notes:

1. level-1 indicates a COBOL level between 1 and 47.

2. level-2 indicates a COBOL level between 2 and 48 where level-2 > level-1.

3. Graphic host variables, LOB host variables, and floating-point host variables are only

supported for ILE COBOL for iSeries.

4. For details on declaring numeric, character, graphic, LOB, ROWID, and binary host variables,

see the notes under numeric-host variables, character-host variables, graphic-host variables,

LOB host variables, ROWID, and binary host variables.

5. format-options indicates valid datetime options that are supported by the COBOL compiler. See

the ILE COBOL Reference manual on the V5R1 Supplemental Manuals

Web site for details.

Host structure indicator array in COBOL applications that use SQL

The following figure shows the syntax for valid indicator array declarations.

Host structure indicator array

��

level-1

variable-name

PICTURE

PIC

IS

picture-string

 IS

USAGE

�

�

BINARY

COMPUTATIONAL-4

COMP-4

 TIMES

OCCURS

dimension

IS

VALUE

constant

.

��

Notes:

1. Dimension must be an integer between 1 and 32767.

2. level-1 must be an integer between 2 and 48.

3. BINARY, COMPUTATIONAL-4, and COMP-4 are equivalent. A portable application should

code BINARY because COMPUTATIONAL-4 and COMP-4 are IBM extensions that are not

supported in ISO/ANSI COBOL. The picture-string associated with these types must have the

form S9(i) (or S9...9, with i instances of 9). i must be less than or equal to 4.

Use host structure arrays in COBOL applications that use SQL

A host structure array is a named set of host variables that is defined in the program’s Data Division and

has an OCCURS clause.

Host structure arrays have a maximum of two levels, even though the host structure can occur within a

multiple level structure. A varying-length string requires another level, level 49. A host structure array

name can be a group name whose subordinate levels name basic data items.

In these examples, the following are true:

v All members in B-ARRAY must be valid.

v B-ARRAY cannot be qualified.

Embedded SQL programming 57

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

v B-ARRAY can only be used on the blocked form of the FETCH and INSERT statements.

v B-ARRAY is the name of an array of host structures containing items C1-VAR and C2-VAR.

v The SYNCHRONIZED attribute must not be specified.

v C1-VAR and C2-VAR are not valid host variables in any SQL statement. A structure cannot contain an

intermediate level structure.
01 A-STRUCT.

 02 B-ARRAY OCCURS 10 TIMES.

 03 C1-VAR PIC X(20).

 03 C2-VAR PIC S9(4).

To retrieve 10 rows from the CORPDATA.DEPARTMENT table, use the following example:

01 TABLE-1.

 02 DEPT OCCURS 10 TIMES.

 05 DEPTNO PIC X(3).

 05 DEPTNAME.

 49 DEPTNAME-LEN PIC S9(4) BINARY.

 49 DEPTNAME-TEXT PIC X(29).

 05 MGRNO PIC X(6).

 05 ADMRDEPT PIC X(3).

01 TABLE-2.

 02 IND-ARRAY OCCURS 10 TIMES.

 05 INDS PIC S9(4) BINARY OCCURS 4 TIMES.

....

EXEC SQL

DECLARE C1 CURSOR FOR

 SELECT *

 FROM CORPDATA.DEPARTMENT

END-EXEC.

....

EXEC SQL

 FETCH C1 FOR 10 ROWS INTO :DEPT :IND-ARRAY

END-EXEC.

Host structure array in COBOL applications that use SQL

The following figures show the syntax for valid host structure array declarations.

��
 TIMES

level-1

variable-name

OCCURS

dimension

.

�

�

�

IS

level-2

var-1

PICTURE

picture-string-1

usage-clause

.

PIC

floating-point

.

.

varchar-string

.

.

vargraphic-string

.

lob

.

datetime

.

rowid

.

binary

.

��

floating-point:

58 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

IS

USAGE

COMPUTATIONAL-1

COMP-1

COMPUTATIONAL-2

COMP-2

IS

VALUE

constant

usage-clause:

IS

USAGE

BINARY

COMPUTATIONAL-4

COMP-4

PACKED-DECIMAL

COMPUTATIONAL-3

COMP-3

COMPUTATIONAL

COMP

DISPLAY

display-clause

DISPLAY-1

IS

VALUE

constant

display-clause:

 DISPLAY IS CHARACTER

SIGN

LEADING

SEPARATE

varchar-string:

49

var-2

IS

PICTURE

picture-string-2

PIC

 IS

USAGE

BINARY

COMPUTATIONAL-4

COMP-4

�

�
IS

VALUE

numeric-constant

 . �

�
 IS

49

var-3

PICTURE

picture-string-3

PIC

IS

USAGE

DISPLAY

�

Embedded SQL programming 59

�
IS

VALUE

constant

vargraphic-string:

49

var-2

IS

PICTURE

picture-string-2

PIC

 IS

USAGE

BINARY

COMPUTATIONAL-4

COMP-4

�

�
IS

VALUE

numeric-constant

 . �

�

 IS

IS

USAGE

49

var-3

PICTURE

picture-string-3

DISPLAY-1

PIC

�

�
IS

VALUE

constant

lob:

 IS

USAGE

SQL TYPE IS

CLOB

(

lob-length

)

DBCLOB

K

BLOB

M

CLOB-LOCATOR

DBCLOB-LOCATOR

BLOB-LOCATOR

CLOB-FILE

DBCLOB-FILE

BLOB-FILE

datetime:

 OF

variable-name

FORMAT

DATE

TIME

TIMESTAMP

 IS

format-options

rowid:

60 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

SQL TYPE IS ROWID

binary:

 IS

USAGE

SQL TYPE IS

BINARY

(

length

)

VARBINARY

BINARY VARYING

Notes:

1. level-1 indicates a COBOL level between 2 and 47.

2. level-2 indicates a COBOL level between 3 and 48 where level-2 > level-1.

3. Graphic host variables, LOB host variables, and floating-point host variables are only

supported for ILE COBOL for iSeries.

4. For details on declaring numeric, character, graphic, LOB, ROWID, and binary host variables,

see the notes under numeric-host variables, character-host variables, graphic-host variables,

LOB, ROWID, and binary host variables.

5. Dimension must be an integer constant between 1 and 32767.

6. format-options indicates valid datetime options that are supported by the COBOL compiler. See

the ILE COBOL Reference manual on the V5R1 Supplemental Manuals

Web site for details.

Host array indicator structure in COBOL applications that use SQL

This figure shows the valid syntax for host structure array indicators.

��
 TIMES

level-1

variable-name

OCCURS

dimension

.

�

�

IS

level-2

var-1

PICTURE

picture-string

PIC

 IS

USAGE

BINARY

COMPUTATIONAL-4

COMP-4

�

�
IS

VALUE

constant

 . ��

Notes:

1. level-1 indicates a COBOL level between 2 and 48.

2. level-2 indicates a COBOL level between 3 and 48 where level-2 > level-1.

3. Dimension must be an integer constant between 1 and 32767.

4. BINARY, COMPUTATIONAL-4, and COMP-4 are equivalent. A portable application should

code BINARY, because COMPUTATIONAL-4 and COMP-4 are IBM extensions that are not

supported in ISO/ANSI COBOL. The picture-string associated with these types must have the

form S9(i) (or S9...9, with i instances of 9). i must be less than or equal to 4.

Embedded SQL programming 61

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

Use external file descriptions in COBOL applications that use SQL

SQL uses the COPY DD-format-name, COPY DD-ALL-FORMATS, COPY DDS-format-name, COPY

DDR-format-name, COPY DDR-ALL-FORMATS, COPY DDSR-format-name, COPY DDS-ALL-FORMATS,

and COPY DDSR-ALL-FORMATS to retrieve host variables from the file definitions.

If the REPLACING option is specified, only complete name replacing is done. Var-1 is compared against

the format name and the field name. If they are equal, var-2 is used as the new name.

Note: You cannot retrieve host variables from file definitions that have field names which are COBOL

reserved words. You must place the COPY DDx-format statement within a COBOL host structure.

To retrieve the definition of the sample table DEPARTMENT described in DB2 UDB for iSeries sample

tables in the DB2 UDB for iSeries SQL Programming Concepts topic collection, you can code the

following:

01 DEPARTMENT-STRUCTURE.

 COPY DDS-ALL-FORMATS OF DEPARTMENT.

A host structure named DEPARTMENT-STRUCTURE is defined with an 05 level field named

DEPARTMENT-RECORD that contains four 06 level fields named DEPTNO, DEPTNAME, MGRNO, and

ADMRDEPT. These field names can be used as host variables in SQL statements.

For more information about the COBOL COPY verb, see the COBOL/400® User’s Guide and ILE COBOL

Reference manuals on the V5R1 Supplemental Manuals

Web site.

Use external file descriptions for host structure arrays in COBOL applications that

use SQL

Because COBOL creates an extra level when including externally described data, the OCCURS clause

must be placed on the preceding 04 level. The structure cannot contain any additional declares at the 05

level.

If the file contains fields that are generated as FILLER, the structure cannot be used as a host structure

array.

For device files, if INDARA was not specified and the file contains indicators, the declaration cannot be

used as a host structure array. The indicator area is included in the generated structure and causes the

storage for records to not be contiguous.

For example, the following shows how to use COPY–DDS to generate a host structure array and fetch 10

rows into the host structure array:

01 DEPT.

 04 DEPT-ARRAY OCCURS 10 TIMES.

 COPY DDS-ALL-FORMATS OF DEPARTMENT.

 ...

EXEC SQL DECLARE C1 CURSOR FOR

 SELECT * FROM CORPDATA.DEPARTMENT

END EXEC.

EXEC SQL OPEN C1

END-EXEC.

EXEC SQL FETCH C1 FOR 10 ROWS INTO :DEPARTMENT

END-EXEC.

Note: DATE, TIME, and TIMESTAMP columns will generate character host variable definitions that are

treated by SQL with the same comparison and assignment rules as the DATE, TIME, or

62 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

TIMESTAMP column. For example, a date host variable can only be compared against a DATE

column or a character string which is a valid representation of a date.

Although GRAPHIC and VARGRAPHIC are mapped to character variables in COBOL for iSeries,

SQL considers these GRAPHIC and VARGRAPHIC variables. If the GRAPHIC or VARGRAPHIC

column has a UCS-2 CCSID, the generated host variable will have the UCS-2 CCSID assigned to it.

If the GRAPHIC or VARGRAPHIC column has a UTF-16 CCSID, the generated host variable will

have the UTF-16 CCSID assigned to it.

Determine equivalent SQL and COBOL data types

The precompiler determines the base SQLTYPE and SQLLEN of host variables based on this table. If a

host variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE plus one.

 Table 3. COBOL declarations mapped to typical SQL data types

COBOL data type

SQLTYPE of host

variable

SQLLEN of host

variable SQL data type

S9(i)V9(d) COMP-3 or S9(i)V9(d) COMP

or S9(i)V9(d) PACKED-DECIMAL

484 i+d in byte 1, d in byte

2

DECIMAL(i+d,d)

S9(i)V9(d) DISPLAY SIGN LEADING

SEPARATE

504 i+d in byte 1, d in byte

2

No exact equivalent use

DECIMAL(i+d,d) or

NUMERIC (i+d,d)

S9(i)V9(d)DISPLAY 488 i+d in byte 1, d in byte

2

NUMERIC(i+d,d)

S9(i) BINARY or S9(i) COMP-4 where i

is from 1 to 4

500 2 SMALLINT

S9(i) BINARY or S9(i) COMP-4 where i

is from 5 to 9

496 4 INTEGER

S9(i) BINARY or S9(i) COMP-4 where i

is from 10 to 18.

 Not supported for COBOL for iSeries.

492 8 BIGINT

S9(i)V9(d) BINARY or S9(i)V9(d)

COMP-4 where i+d ≤ 4

500 i+d in byte 1, d in byte

2

No exact equivalent use

DECIMAL(i+d,d) or

NUMERIC (i+d,d)

S9(i)V9(d) BINARY or S9(i)V9(d)

COMP-4 where 4 < i+d ≤ 9

496 i+d in byte 1, d in byte

2

No exact equivalent use

DECIMAL(i+d,d) or

NUMERIC (i+d,d)

COMP-1

 Not supported for COBOL for iSeries.

480 4 FLOAT(single precision)

COMP-2

 Not supported for COBOL for iSeries.

480 8 FLOAT(double

precision)

Fixed-length character data 452 m CHAR(m)

Varying-length character data 448 m VARCHAR(m)

Fixed-length graphic data

 Not supported for COBOL for iSeries.

468 m GRAPHIC(m)

Varying-length graphic data

 Not supported for COBOL for iSeries.

464 m VARGRAPHIC(m)

DATE

 Not supported for COBOL for iSeries.

384 DATE

TIME

 Not supported for COBOL for iSeries.

388 TIME

Embedded SQL programming 63

Table 3. COBOL declarations mapped to typical SQL data types (continued)

COBOL data type

SQLTYPE of host

variable

SQLLEN of host

variable SQL data type

TIMESTAMP

 Not supported for COBOL for iSeries.

392 26 TIMESTAMP

The following table can be used to determine the COBOL data type that is equivalent to a given SQL

data type.

 Table 4. SQL data types mapped to typical COBOL declarations

SQL data type COBOL data type Notes

SMALLINT S9(m) COMP-4 m is from 1 to 4

INTEGER S9(m) COMP-4 m is from 5 to 9

BIGINT S9(m) COMP-4 for ILE COBOL for

iSeries.

 Not supported for COBOL for iSeries.

m is from 10 to 18

DECIMAL(p,s) If p<64: S9(p-s)V9(s)

PACKED-DECIMAL or S9(p-s)V9(s)

COMP or S9(p-s)V9(s) COMP-3 If p>63:

Not supported

p is precision; s is scale. 0<=s<=p<=63.

If s=0, use S9(p) or S9(p)V. If s=p, use

SV9(s).

NUMERIC(p,s) If p<19: S9(p-s)V9(s) DISPLAY If p>18:

Not supported

p is precision; s is scale. 0<=s<=p<=18.

If s=0, use S9(p) or S9(p)V. If s=p, use

SV9(s).

FLOAT(single precision) COMP-1 for ILE COBOL for iSeries.

 Not supported for COBOL for iSeries.

FLOAT(double precision) COMP-2 for ILE COBOL for iSeries.

 Not supported for COBOL for iSeries.

CHAR(n) Fixed-length character string 32766≥n≥1

VARCHAR(n) Varying-length character string 32740≥n≥1

CLOB None Use SQL TYPE IS to declare a CLOB

for ILE COBOL for iSeries.

 Not supported for COBOL for iSeries.

GRAPHIC(n) Fixed-length graphic string for ILE

COBOL for iSeries.

 Not supported for COBOL for iSeries.

16383≥n≥1

VARGRAPHIC(n) Varying-length graphic string for ILE

COBOL for iSeries.

 Not supported for COBOL for iSeries.

16370≥n≥1

DBCLOB None Use SQL TYPE IS to declare a DBCLOB

for ILE COBOL for iSeries.

BINARY None Use SQL TYPE IS to declare a BINARY.

VARBINARY None Use SQL TYPE IS to declare a

VARBINARY.

64 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Table 4. SQL data types mapped to typical COBOL declarations (continued)

SQL data type COBOL data type Notes

BLOB None Use SQL TYPE IS to declare a BLOB.

DATE Fixed-length character string or DATE

for ILE COBOL for iSeries.

If the format is *USA, *JIS, *EUR, or

*ISO, allow at least 10 characters. If the

format is *YMD, *DMY, or *MDY, allow

at least 8 characters. If the format is

*JUL, allow at least 6 characters.

TIME Fixed-length character string or TIME for

ILE COBOL for iSeries.

Allow at least 6 characters; 8 to include

seconds.

TIMESTAMP Fixed-length character string or

TIMESTAMP for ILE COBOL for iSeries.

n must be at least 19. To include

microseconds at full precision, n must

be 26. If n is less than 26, truncation

occurs on the microseconds part.

DATALINK Not supported

ROWID None Use SQL TYPE IS to declare a ROWID.

Notes on COBOL variable declaration and usage

Any level 77 data description entry can be followed by one or more REDEFINES entries. However, the

names in these entries cannot be used in SQL statements.

Unpredictable results may occur when a structure contains levels defined below a FILLER item.

The COBOL declarations for SMALLINT, INTEGER, and BIGINT data types are expressed as a number of

decimal digits. The database manager uses the full size of the integers and can place larger values in the

host variable than would be allowed in the specified number of digits in the COBOL declaration.

However, this can cause data truncation or size errors when COBOL statements are being run. Ensure

that the size of numbers in your application is within the declared number of digits.

Use indicator variables in COBOL applications that use SQL

An indicator variable is a two-byte integer (PIC S9(m) USAGE BINARY, where m is from 1 to 4).

You can also specify an indicator structure (defined as an array of halfword integer variables) to support

a host structure. On retrieval, an indicator variable is used to show whether its associated host variable

has been assigned a null value. On assignment to a column, a negative indicator variable is used to

indicate that a null value should be assigned.

Indicator variables are declared in the same way as host variables, and the declarations of the two can be

mixed in any way that seems appropriate to the programmer.

Example

Given the statement:

 EXEC SQL FETCH CLS_CURSOR INTO :CLS-CD,

 :NUMDAY :NUMDAY-IND,

 :BGN :BGN-IND,

 :ENDCLS :ENDCLS-IND

 END-EXEC.

The variables can be declared as follows:

Embedded SQL programming 65

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 77 CLS-CD PIC X(7).

 77 NUMDAY PIC S9(4) BINARY.

 77 BGN PIC X(8).

 77 ENDCLS PIC X(8).

 77 NUMDAY-IND PIC S9(4) BINARY.

 77 BGN-IND PIC S9(4) BINARY.

 77 ENDCLS-IND PIC S9(4) BINARY.

 EXEC SQL END DECLARE SECTION END-EXEC.

 Related reference

 References to variables

Code SQL statements in PL/I applications

This topic describes the unique application and coding requirements for embedding SQL statements in an

iSeries PL/I program. Requirements for host structures and host variables are defined.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

 Related concepts

 “Write applications that use SQL” on page 2
You can create database applications in host languages that use DB2 UDB for iSeries SQL statements

and functions.

 “Error and warning messages during a compile of application programs that use SQL” on page 132

The conditions described in the following topics could produce an error or warning message during

an attempted compile process.
 Related reference

 “Sample programs using DB2 UDB for iSeries statements” on page 136
This topic contains a sample application showing how to code SQL statements in each of the

languages supported by the DB2 UDB for iSeries system.

Define the SQL communications area in PL/I applications that use SQL

A PL/I program that contains SQL statements must include one or both of the following:

v An SQLCODE variable declared as FIXED BINARY(31)

v An SQLSTATE variable declared as CHAR(5)

Or,

v An SQLCA (which contains an SQLCODE and SQLSTATE variable).

The SQLCODE and SQLSTATE values are set by the database manager after each SQL statement is run.

An application can check the SQLCODE or SQLSTATE value to determine whether the last SQL

statement was successful.

The SQLCA can be coded in a PL/I program either directly or by using the SQL INCLUDE statement.

Using the SQL INCLUDE statement requests the inclusion of a standard SQLCA declaration:

EXEC SQL INCLUDE SQLCA ;

The scope of the SQLCODE, SQLSTATE, and SQLCA variables must include the scope of all SQL

statements in the program.

The included PL/I source statements for the SQLCA are:

DCL 1 SQLCA,

 2 SQLCAID CHAR(8),

 2 SQLCABC FIXED(31) BINARY,

66 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

2 SQLCODE FIXED(31) BINARY,

 2 SQLERRM CHAR(70) VAR,

 2 SQLERRP CHAR(8),

 2 SQLERRD(6) FIXED(31) BINARY,

 2 SQLWARN,

 3 SQLWARN0 CHAR(1),

 3 SQLWARN1 CHAR(1),

 3 SQLWARN2 CHAR(1),

 3 SQLWARN3 CHAR(1),

 3 SQLWARN4 CHAR(1),

 3 SQLWARN5 CHAR(1),

 3 SQLWARN6 CHAR(1),

 3 SQLWARN7 CHAR(1),

 3 SQLWARN8 CHAR(1),

 3 SQLWARN9 CHAR(1),

 3 SQLWARNA CHAR(1),

 2 SQLSTATE CHAR(5);

SQLCODE is replaced with SQLCADE when a declare for SQLCODE is found in the program and the

SQLCA is provided by the precompiler. SQLSTATE is replaced with SQLSTOTE when a declare for

SQLSTATE is found in the program and the SQLCA is provided by the precompiler.

 Related information

 SQL communication area

Define SQL descriptor areas in PL/I applications that use SQL

There are two types of SQL descriptor areas. One is defined with the ALLOCATE DESCRIPTOR

statement. The other is defined using the SQLDA structure. In this section, only the SQLDA form is

discussed.

The following statements can use an SQLDA:

v EXECUTE...USING DESCRIPTOR descriptor-name

v FETCH...USING DESCRIPTOR descriptor-name

v OPEN...USING DESCRIPTOR descriptor-name

v CALL...USING DESCRIPTOR descriptor-name

v DESCRIBE statement-name INTO descriptor-name

v DESCRIBE INPUT statement-name INTO descriptor-name

v DESCRIBE TABLE host-variable INTO descriptor-name

v PREPARE statement-name INTO descriptor-name

Unlike the SQLCA, there can be more than one SQLDA in a program, and an SQLDA can have any valid

name. An SQLDA can be coded in a PL/I program either program directly or by using the SQL

INCLUDE statement. Using the SQL INCLUDE statement requests the inclusion of a standard SQLDA

declaration:

EXEC SQL INCLUDE SQLDA ;

The included PL/I source statements for the SQLDA are:

DCL 1 SQLDA BASED(SQLDAPTR),

 2 SQLDAID CHAR(8),

 2 SQLDABC FIXED(31) BINARY,

 2 SQLN FIXED(15) BINARY,

 2 SQLD FIXED(15) BINARY,

 2 SQLVAR(99),

 3 SQLTYPE FIXED(15) BINARY,

 3 SQLLEN FIXED(15) BINARY,

 3 SQLRES CHAR(12),

Embedded SQL programming 67

|
|
|

|

|

3 SQLDATA PTR,

 3 SQLIND PTR,

 3 SQLNAME CHAR(30) VAR;

DCL SQLDAPTR PTR;

Dynamic SQL is an advanced programming technique. With dynamic SQL, your program can develop

and then run SQL statements while the program is running. A SELECT statement with a variable SELECT

list (that is, a list of the data to be returned as part of the query) that runs dynamically requires an SQL

descriptor area (SQLDA). This is because you cannot know in advance how many or what type of

variables to allocate in order to receive the results of the SELECT.

 Related information

 Dynamic SQL applications

 SQL descriptor area

Embed SQL statements in PL/I applications that use SQL

The first statement of the PL/I program must be a PROCEDURE statement.

SQL statements can be coded in a PL/I program wherever executable statements can appear.

Each SQL statement in a PL/I program must begin with EXEC SQL and end with a semicolon (;). The

key words EXEC SQL must appear all on one line, but the remainder of the statement can appear on the

next and subsequent lines.

Example: Embed SQL statements in PL/I applications that use SQL

An UPDATE statement coded in a PL/I program might be coded as follows.

EXEC SQL UPDATE DEPARTMENT

 SET MGRNO = :MGR_NUM

 WHERE DEPTNO = :INT_DEPT ;

Comments in PL/I applications that use SQL

In addition to SQL comments (--), you can include PL/I comments (/*...*/) in embedded SQL statements

wherever a blank is allowed, except between the keywords EXEC and SQL.

Continuation for SQL statements in PL/I applications that use SQL

The line continuation rules for SQL statements are the same as those for other PL/I statements, except

that EXEC SQL must be specified within one line.

Constants containing DBCS data can be continued across multiple lines by placing the shift-in and

shift-out characters outside of the margins. This example assumes margins of 2 and 72. This SQL

statement has a valid graphic constant of G’<AABBCCDDEEFFGGHHIIJJKK>’.

*(..+....1....+....2....+....3....+....4....+....5....+....6....+....7.)..

 EXEC SQL SELECT * FROM GRAPHTAB WHERE GRAPHCOL = G’<AABBCCDD>

<EEFFGGHHIIJJKK>’;

Include code in PL/I applications that use SQL

SQL statements or PL/I host variable declaration statements can be included by placing the following

SQL statement at the point in the source code where the statements are to be embedded.

EXEC SQL INCLUDE member-name ;

No PL/I preprocessor directives are permitted within SQL statements. PL/I %INCLUDE statements

cannot be used to include SQL statements or declarations of PL/I host variables that are referenced in

SQL statements.

68 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Margins in PL/I applications that use SQL

Code SQL statements within the margins specified by the MARGINS parameter on the CRTSQLPLI

command. If EXEC SQL does not start within the specified margins, the SQL precompiler will not

recognize the SQL statement.

 Related concepts

 “DB2 UDB for iSeries CL command descriptions for host language precompilers” on page 174
DB2 UDB for iSeries provides commands for precompiling programs coded in the following

programming languages:

Names in PL/I applications that use SQL

Any valid PL/I variable name can be used for a host variable and is subject to the following restrictions.

Do not use host variable names or external entry names that begin with ’SQL’, ’RDI’, or ’DSN’. These

names are reserved for the database manager.

Statement labels in PL/I applications that use SQL

All executable SQL statements, like PL/I statements, can have a label prefix.

WHENEVER Statement in PL/I applications that use SQL

The target for the GOTO clause in an SQL WHENEVER statement must be a label in the PL/I source

code and must be within the scope of any SQL statements affected by the WHENEVER statement.

Use host variables in PL/I applications that use SQL

All host variables used in SQL statements must be explicitly declared.

The PL/I statements that are used to define the host variables should be preceded by a BEGIN

DECLARE SECTION statement and followed by an END DECLARE SECTION statement. If a BEGIN

DECLARE SECTION and END DECLARE SECTION are specified, all host variable declarations used in

SQL statements must be between the BEGIN DECLARE SECTION and the END DECLARE SECTION

statements.

All host variables within an SQL statement must be preceded by a colon (:).

The names of host variables must be unique within the program, even if the host variables are in

different blocks or procedures.

An SQL statement that uses a host variable must be within the scope of the statement in which the

variable was declared.

Host variables must be scalar variables. They cannot be elements of an array.

Declare host variables in PL/I applications that use SQL

The PL/I precompilers only recognize a subset of valid PL/I declarations as valid host variable

declarations.

Only the names and data attributes of the variables are used by the precompilers; the alignment, scope,

and storage attributes are ignored. Even though alignment, scope, and storage are ignored, there are some

restrictions on their use that, if ignored, may result in problems when compiling PL/I source code that is

created by the precompiler. These restrictions are:

v A declaration with the EXTERNAL scope attribute and the STATIC storage attribute must also have the

INITIAL storage attribute.

v If the BASED storage attribute is coded, it must be followed by a PL/I element-locator-expression.

Numeric-host variables in PL/I applications that use SQL:

Embedded SQL programming 69

This figure shows the syntax for valid scalar numeric-host variable declarations.

 Numeric

�� DECLARE

DCL

�

 variable-name

,

(

variable-name

)

 �

� BINARY FIXED

BIN

(

precision

)

FLOAT

(

precision

)

DECIMAL

FIXED

DEC

(

precision

)

,scale

FLOAT

(

precision

)

PICTURE

picture-string

 �

� ;

Alignment and/or Scope and/or Storage
 ��

Notes:

1. (BINARY, BIN, DECIMAL, or DEC) and (FIXED or FLOAT) and (precision, scale) can be

specified in any order.

2. A picture-string in the form ’9...9V9...R’ indicates a numeric host variable. The R is required.

The optional V indicates the implied decimal point.

3. A picture-string in the form ’S9...9V9...9’ indicates a sign leading separate host variable. The S

is required. The optional V indicates the implied decimal point.

Character-host variables in PL/I applications that use SQL:

This figure shows the syntax for valid scalar character-host variables.

 Character

�� DECLARE

DCL

�

 variable-name

,

(

variable-name

)

 CHARACTER

CHAR

(

length

)

VARYING

VAR

 �

� ;

Alignment and/or Scope and/or Storage
 ��

Notes:

1. Length must be an integer constant not greater than 32766 if VARYING or VAR is not

specified.

2. If VARYING or VAR is specified, length must be a constant no greater than 32740.

Binary host variables in PL/I applications that use SQL:

PL/I does not have variables that correspond to the SQL binary data types. To create host variables that

can be used with these data types, use the SQL TYPE IS clause. The SQL precompiler replaces this

declaration with a PL/I language structure in the output source member.

70 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

BINARY and VARBINARY

�� DECLARE

DCL

�

 variable-name

,

(

variable-name

)

 SQL TYPE IS BINARY

VARBINARY

BINARY VARYING

 (length) ; ��

Notes:

1. For BINARY host variables, the length must be in the range 1 to 32766.

2. For VARBINARY and BINARY VARYING host variables, the length must be in the range 1 to

32740.

3. SQL TYPE IS, BINARY, VARBINARY, BINARY VARYING can be in mixed case.

BINARY Example

The following declaration:

 DCL MY_BINARY SQL TYPE IS BINARY(100);

Results in the generation of the following code:

DCL MY_BINARY CHARACTER(100);

VARBINARY Example

The following declaration:

 DCL MY_VARBINARY SQL TYPE IS VARBINARY(250);

Results in the generation of the following code:

DCL MY_VARBINARY CHARACTER(250) VARYING;

LOB host variables in PL/I applications that use SQL:

PL/I does not have variables that correspond to the SQL data types for LOBs (large objects). To create

host variables that can be used with these data types, use the SQL TYPE IS clause. The SQL precompiler

replaces this declaration with a PL/I language structure in the output source member.

 The following figure shows the syntax for valid LOB host variables.

LOB

�� DECLARE

DCL

�

 variable-name

,

(

variable-name

)

 SQL TYPE IS CLOB

BLOB
 (lob-length) ;

K
 ��

Notes:

1. For BLOB and CLOB, 1 ≤ lob-length ≤ 32,766

2. SQL TYPE IS, BLOB, CLOB can be in mixed case.

CLOB Example

The following declaration:

DCL MY_CLOB SQL TYPE IS CLOB(16384);

Embedded SQL programming 71

Results in the generation of the following structure:

DCL 1 MY_CLOB,

 3 MY_CLOB_LENGTH BINARY FIXED (31) UNALIGNED,

 3 MY_CLOB_DATA CHARACTER (16384);

BLOB Example

The following declaration:

DCL MY_BLOB SQL TYPE IS BLOB(16384);

Results in the generation of the following structure:

DCL 1 MY_BLOB,

 3 MY_BLOB_LENGTH BINARY FIXED (31) UNALIGNED,

 3 MY_BLOB_DATA CHARACTER (16384);

The following figure shows the syntax for valid LOB locators.

LOB locator

�� DECLARE

DCL

�

 variable-name

,

(

variable-name

)

 SQL TYPE IS CLOB_LOCATOR ;

DBCLOB_LOCATOR

BLOB_LOCATOR

 ��

Note: SQL TYPE IS, BLOB_LOCATOR, CLOB_LOCATOR, DBCLOB_LOCATOR can be in mixed case.

CLOB Locator Example

The following declaration:

DCL MY_LOCATOR SQL TYPE IS CLOB_LOCATOR;

Results in the following generation:

DCL MY_LOCATOR BINARY FIXED(31) UNALIGNED;

BLOB and DBCLOB locators have similar syntax.

The following figure shows the syntax for valid LOB file reference variables.

LOB file reference variable

�� DECLARE

DCL

�

 variable-name

,

(

variable-name

)

 SQL TYPE IS CLOB_FILE ;

DBCLOB_FILE

BLOB_FILE

 ��

Note: SQL TYPE IS, BLOB_FILE, CLOB_FILE, and DBCLOB_FILE can be in mixed case.

CLOB File Reference Example

The following declaration:

DCL MY_FILE SQL TYPE IS CLOB_FILE;

Results in the generation of the following structure:

72 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

DCL 1 MY_FILE,

 3 MY_FILE_NAME_LENGTH BINARY FIXED(31) UNALIGNED,

 3 MY_FILE_DATA_LENGTH BINARY FIXED(31) UNALIGNED,

 3 MY_FILE_FILE_OPTIONS BINARY FIXED(31) UNALIGNED,

 3 MY_FILE_NAME CHAR(255);

BLOB and DBCLOB locators have similar syntax.

The pre-compiler will generate declarations for the following file option constants:

v SQL_FILE_READ (2)

v SQL_FILE_CREATE (8)

v SQL_FILE_OVERWRITE (16)

v SQL_FILE_APPEND (32)
 Related information

 LOB file reference variables

ROWID host variables in PL/I applications that use SQL:

PL/I does not have a variable that corresponds to the SQL data type ROWID. To create host variables

that can be used with this data type, use the SQL TYPE IS clause. The SQL precompiler replaces this

declaration with a PL/I language structure in the output source member.

 ROWID

�� DECLARE

DCL

�

 variable-name

,

(

variable-name

)

 SQL TYPE IS ROWID ��

Note: SQL TYPE IS ROWID can be in mixed case.

ROWID Example

The following declaration:

DCL MY_ROWID SQL TYPE IS ROWID;

Results in the following generation:

DCL MY_ROWID CHARACTER(40) VARYING;

Use host structures in PL/I applications that use SQL

In PL/I programs, you can define a host structure, which is a named set of elementary PL/I variables. A

host structure name can be a group name whose subordinate levels name elementary PL/I variables.

For example:

DCL 1 A,

 2 B,

 3 C1 CHAR(...),

 3 C2 CHAR(...);

In this example, B is the name of a host structure consisting of the elementary items C1 and C2.

You can use the structure name as shorthand notation for a list of scalars. You can qualify a host variable

with a structure name (for example, STRUCTURE.FIELD). Host structures are limited to two levels. (For

example, in the above host structure example, the A cannot be referred to in SQL.) A structure cannot

Embedded SQL programming 73

contain an intermediate level structure. In the previous example, A could not be used as a host variable

or referred to in an SQL statement. However, B is the first level structure. B can be referred to in an SQL

statement. A host structure for SQL data is two levels deep and can be thought of as a named set of host

variables. After the host structure is defined, you can refer to it in an SQL statement instead of listing the

several host variables (that is, the names of the host variables that make up the host structure).

For example, you can retrieve all column values from selected rows of the table CORPDATA.EMPLOYEE

with:

DCL 1 PEMPL,

 5 EMPNO CHAR(6),

 5 FIRSTNME CHAR(12) VAR,

 5 MIDINIT CHAR(1),

 5 LASTNAME CHAR(15) VAR,

 5 WORKDEPT CHAR(3);

 ...

EMPID = ’000220’;

 ...

 EXEC SQL

 SELECT *

 INTO :PEMPL

 FROM CORPDATA.EMPLOYEE

 WHERE EMPNO = :EMPID;

Host structures in PL/I applications that use SQL

This figure shows the syntax for valid host structure declarations.

Host structures

�� DECLARE 1 variable-name ,

DCL

Scope and/or storage

level-1

variable-name

,

 �

�

�

�

 ,

level-2

var-1

data-types

,

(

var-2

)

;

��

data-types:

74 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

BINARY FIXED

BIN

FLOAT

(

precision

)

UNALIGNED

DECIMAL

FIXED

DEC

(

precision

)

,

scale

FLOAT

(

precision

)

UNALIGNED

PICTURE

picture-string

CHARACTER

CHAR

(

length

)

VARYING

VAR

ALIGNED

SQL TYPE IS

CLOB

(

lob-length

)

BLOB

K

CLOB_LOCATOR

DBCLOB_LOCATOR

BLOB_LOCATOR

CLOB_FILE

DBCLOB_FILE

BLOB_FILE

SQL TYPE IS ROWID

SQL TYPE IS

BINARY

(

length

)

VARBINARY

BINARY VARYING

Notes:

1. Level-1 indicates that there is an intermediate level structure.

2. Level-1 must be an integer constant between 1 and 254.

3. Level-2 must be an integer constant between 2 and 255.

4. For details on declaring numeric, character, LOB, ROWID, and binary host variables, see the

notes under numeric-host variables, character-host variables, LOB host variables, ROWID host

variables, and binary host variables.

Host structure indicator arrays in PL/I applications that use SQL

This figure shows the syntax for valid indicator arrays.

Host structure indicator array

�� DECLARE

DCL

�

 variable-name (dimension)

,

(

variable-name

(

dimension

)

)

 BINARY

BIN
 FIXED �

�
(

precision

)
 ;

Alignment and/or scope and/or storage
 ��

Note: Dimension must be an integer constant between 1 and 32766.

Use host structure arrays in PL/I applications that use SQL

In PL/I programs, you can define a host structure array.

In these examples, the following are true:

v B_ARRAY is the name of a host structure array that contains the items C1_VAR and C2_VAR.

v B_ARRAY cannot be qualified.

v B_ARRAY can only be used with the blocked forms of the FETCH and INSERT statements.

Embedded SQL programming 75

v All items in B_ARRAY must be valid host variables.

v C1_VAR and C2_VAR are not valid host variables in any SQL statement. A structure cannot contain an

intermediate level structure. A_STRUCT cannot contain the dimension attribute.
DCL 1 A_STRUCT,

 2 B_ARRAY(10),

 3 C1_VAR CHAR(20),

 3 C2_FIXED BIN(15) UNALIGNED;

To retrieve 10 rows from the CORPDATA.DEPARTMENT table, do the following:

DCL 1 DEPT(10),

 5 DEPTPNO CHAR(3),

 5 DEPTNAME CHAR(29) VAR,

 5 MGRNO CHAR(6),

 5 ADMRDEPT CHAR (3);

DCL 1 IND_ARRAY(10),

 5 INDS(4) FIXED BIN(15);

EXEC SQL

 DECLARE C1 CURSOR FOR

 SELECT *

 FROM CORPDATA.DEPARTMENT;

EXEC SQL

 FETCH C1 FOR 10 ROWS INTO :DEPT :IND_ARRAY;

Host structure array in PL/I applications that use SQL

The following syntax diagram shows the syntax for valid structure array declarations.

Host structure array

�� DECLARE 1 variable-name (dimension) ,

DCL

Scope and/or storage

level-1

variable-name

,

 �

�

�

�

 ,

level-2

var-1

data-types

,

(

var-2

)

;

��

data-types:

76 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

BINARY FIXED UNALIGNED

BIN

FLOAT

(

precision

)

DECIMAL

FIXED

DEC

(

precision

)

,

scale

FLOAT

UNALIGNED

(

precision

)

PICTURE

picture-string

CHARACTER

CHAR

(

length

)

VARYING

VAR

SQL TYPE IS

CLOB

(

lob-length

)

BLOB

K

CLOB_LOCATOR

DBCLOB_LOCATOR

BLOB_LOCATOR

CLOB_FILE

DBCLOB_FILE

BLOB_FILE

SQL TYPE IS ROWID

SQL TYPE IS

BINARY

(

length

)

VARBINARY

BINARY VARYING

Notes:

1. Level-1 indicates that there is an intermediate level structure.

2. Level-1 must be an integer constant between 1 and 254.

3. Level-2 must be an integer constant between 2 and 255.

4. For details on declaring numeric, character, LOB, ROWID, and binary host variables, see the

notes under numeric-host variables, character-host variables, LOB host variables, ROWID, and

binary host variables.

5. Dimension must be an integer constant between 1 and 32767.

Host structure array indicator in PL/I applications that use SQL:

The following figure shows the syntax diagram for valid host structure array indicator structure

declarations.

 �� DECLARE 1 variable-name (dimension) ,

DCL

Scope and/or storage

level-1

variable-name

,

 �

� level-2 identifier (dimension-2) BINARY FIXED

BIN

(

precision

)
 ; ��

Notes:

1. Level-1 indicates that there is an intermediate level structure.

2. Level-1 must be an integer constant between 1 and 254.

3. Level-2 must be an integer constant between 2 and 255.

4. Dimension-1 and dimension-2 must be integer constants between 1 and 32767.

Embedded SQL programming 77

Use external file descriptions in PL/I applications that use SQL

You can use the PL/I %INCLUDE directive to include the definitions of externally described files in a

source program.

When used with SQL, only a particular format of the %INCLUDE directive is recognized by the SQL

precompiler. That directive format must have the following three elements or parameter values, otherwise

the precompiler ignores the directive. The required elements are file name, format name, and element type.

There are two optional elements supported by the SQL precompiler: prefix name and COMMA.

The structure is ended normally by the last data element of the record or key structure. However, if in

the %INCLUDE directive the COMMA element is specified, then the structure is not ended.

To include the definition of the sample table DEPARTMENT described in DB2 UDB for iSeries sample

tables in the DB2 UDB for iSeries SQL Programming topic collection, you can code:

 DCL 1 TDEPT_STRUCTURE,

 %INCLUDE DEPARTMENT(DEPARTMENT,RECORD);

In the above example, a host structure named TDEPT_STRUCTURE would be defined having four fields.

The fields would be DEPTNO, DEPTNAME, MGRNO, and ADMRDEPT.

For device files, if INDARA was not specified and the file contains indicators, the declaration cannot be

used as a host structure array. The indicator area is included in the generated structure and causes the

storage to not be contiguous.

DCL 1 DEPT_REC(10),

 %INCLUDE DEPARTMENT(DEPARTMENT,RECORD);

EXEC SQL DECLARE C1 CURSOR FOR

 SELECT * FROM CORPDATA.DEPARTMENT;

EXEC SQL OPEN C1;

EXEC SQL FETCH C1 FOR 10 ROWS INTO :DEPT_REC;

Note: DATE, TIME, and TIMESTAMP columns will generate host variable definitions that are treated by

SQL with the same comparison and assignment rules as a DATE, TIME, and TIMESTAMP column.

For example, a date host variable can only be compared with a DATE column or a character string

that is a valid representation of a date.

Although decimal and zoned fields with precision greater than 15 and binary with nonzero scale fields

are mapped to character field variables in PL/I, SQL considers these fields to be numeric.

Although GRAPHIC and VARGRAPHIC are mapped to character variables in PL/I, SQL considers these

to be GRAPHIC and VARGRAPHIC host variables. If the GRAPHIC or VARGRAPHIC column has a

UCS-2 CCSID, the generated host variable will have the UCS-2 CCSID assigned to it. If the GRAPHIC or

VARGRAPHIC column has a UTF-16 CCSID, the generated host variable will have the UTF-16 CCSID

assigned to it.

Determine equivalent SQL and PL/I data types

The precompiler determines the base SQLTYPE and SQLLEN of host variables based on the following

table.

78 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

If a host variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE plus one.

 Table 5. PL/I declarations mapped to typical SQL data types

PL/I data type

SQLTYPE of host

variable

SQLLEN of host

variable SQL data type

BIN FIXED(p) where p is in the range 1 to 15 500 2 SMALLINT

BIN FIXED(p) where p is in the range 16 to

31

496 4 INTEGER

DEC FIXED(p,s) 484 p in byte 1, s in byte 2 DECIMAL(p,s)

BIN FLOAT(p) p is in the range 1 to 24 480 4 FLOAT (single

precision)

BIN FLOAT(p) p is in the range 25 to 53 480 8 FLOAT (double

precision)

DEC FLOAT(m) m is in the range 1 to 7 480 4 FLOAT (single

precision)

DEC FLOAT(m) m is in the range 8 to 16 480 8 FLOAT (double

precision)

PICTURE picture string (numeric) 488 p in byte 1, s in byte 2 NUMERIC (p,s)

PICTURE picture string (sign leading

separate)

504 p in byte 1, s in byte 2 No exact equivalent,

use NUMERIC(p,s).

CHAR(n) 452 n CHAR(n)

CHAR(n) VARYING 448 n VARCHAR(n)

The following table can be used to determine the PL/I data type that is equivalent to a given SQL data

type.

 Table 6. SQL data types mapped to typical PL/I declarations

SQL data type PL/I equivalent Notes

SMALLINT BIN FIXED(p) p is a positive integer from 1 to 15.

INTEGER BIN FIXED(p) p is a positive integer from 16 to 31.

BIGINT No exact equivalent Use DEC FIXED(18).

DECIMAL(p,s) or NUMERIC(p,s) DEC FIXED(p) or DEC FIXED(p,s) or

PICTURE picture-string

s (the scale factor) and p (the

precision) are positive integers. p is a

positive integer from 1 to 31. s is a

positive integer from 0 to p.

FLOAT (single precision) BIN FLOAT(p) or DEC FLOAT(m) p is a positive integer from 1 to 24.

m is a positive integer from 1 to 7.

FLOAT (double precision) BIN FLOAT(p) or DEC FLOAT(m) p is a positive integer from 25 to 53.

m is a positive integer from 8 to 16.

CHAR(n) CHAR(n) n is a positive integer from 1 to 32766.

VARCHAR(n) CHAR(n) VARYING n is a positive integer from 1 to 32740.

CLOB None Use SQL TYPE IS to declare a CLOB.

GRAPHIC(n) Not supported Not supported.

VARGRAPHIC(n) Not supported Not supported.

DBCLOB Not supported Not supported

Embedded SQL programming 79

Table 6. SQL data types mapped to typical PL/I declarations (continued)

SQL data type PL/I equivalent Notes

BINARY None Use SQL TYPE IS to declare a

BINARY.

VARBINARY None Use SQL TYPE IS to declare a

VARBINARY.

BLOB None Use SQL TYPE IS to declare a BLOB.

DATE CHAR(n) If the format is *USA, *JIS, *EUR, or

*ISO, n must be at least 10 characters.

If the format is *YMD, *DMY, or

*MDY, n must be at least 8 characters.

If the format is *JUL, n must be at

least 6 characters.

TIME CHAR(n) n must be at least 6; to include

seconds, n must be at least 8.

TIMESTAMP CHAR(n) n must be at least 19. To include

microseconds at full precision, n must

be 26; if n is less than 26, truncation

occurs on the microseconds part.

DATALINK Not supported Not supported

ROWID None Use SQL TYPE IS to declare a

ROWID.

Use indicator variables in PL/I applications that use SQL

An indicator variable is a two-byte integer (BIN FIXED(p), where p is 1 to 15).

You can also specify an indicator structure (defined as an array of halfword integer variables) to support

a host structure. On retrieval, an indicator variable is used to show whether its associated host variable

has been assigned a null value. On assignment to a column, a negative indicator variable is used to

indicate that a null value should be assigned.

Indicator variables are declared in the same way as host variables and the declarations of the two can be

mixed in any way that seems appropriate to the programmer.

Example

Given the statement:

EXEC SQL FETCH CLS_CURSOR INTO :CLS_CD,

 :DAY :DAY_IND,

 :BGN :BGN_IND,

 :END :END_IND;

Variables can be declared as follows:

 EXEC SQL BEGIN DECLARE SECTION;

 DCL CLS_CD CHAR(7);

 DCL DAY BIN FIXED(15);

 DCL BGN CHAR(8);

 DCL END CHAR(8);

 DCL (DAY_IND, BGN_IND, END_IND) BIN FIXED(15);

 EXEC SQL END DECLARE SECTION;

 Related reference

 References to variables

80 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Differences in PL/I because of structure parameter passing techniques

The PL/I precompiler attempts to use the structure parameter passing technique, if possible. This

structure parameter passing technique provides better performance for most PL/I programs using SQL.

The precompiler generates code where each host variable is a separate parameter when the following

conditions are true:

v A PL/I %INCLUDE compiler directive is found that copies external text into the source program.

v The data length of the host variables referred to in the statement is greater than 32703. Because SQL

uses 64 bytes of the structure, 32703 + 64 = 32767, the maximum length of a data structure.

v The PL/I precompiler estimates that it could possibly exceed the PL/I limit for user-defined names.

v A sign leading separate host variable is found in the host variable list for the SQL statement.
 Related information

 Database application design tips: Use structured parameter passing techniques

Code SQL statements in RPG/400 applications

The RPG/400 licensed program supports both RPG II and RPG III programs.

SQL statements can only be used in RPG III programs. RPG II and AutoReport are NOT supported. All

referrals to RPG in this guide apply to RPG III or ILE RPG only.

This topic describes the unique application and coding requirements for embedding SQL statements in a

RPG/400 program. Requirements for host variables are defined.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

For more information about programming using RPG, see the RPG/400 User’s Guide and RPG/400

Reference manuals on the V5R1 Supplemental Manuals

Web site.

 Related concepts

 “Write applications that use SQL” on page 2
You can create database applications in host languages that use DB2 UDB for iSeries SQL statements

and functions.

 “Error and warning messages during a compile of application programs that use SQL” on page 132

The conditions described in the following topics could produce an error or warning message during

an attempted compile process.
 Related reference

 “Sample programs using DB2 UDB for iSeries statements” on page 136
This topic contains a sample application showing how to code SQL statements in each of the

languages supported by the DB2 UDB for iSeries system.

Define the SQL communications area in RPG/400 applications that use

SQL

The SQL precompiler automatically places the SQLCA in the input specifications of the RPG/400

program prior to the first calculation specification.

INCLUDE SQLCA should not be coded in the source program. If the source program specifies INCLUDE

SQLCA, the statement will be accepted, but it is redundant. The SQLCA, as defined for RPG/400:

ISQLCA DS SQL

I* SQL Communications area SQL

I 1 8 SQLAID SQL

I B 9 120SQLABC SQL

Embedded SQL programming 81

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

I B 13 160SQLCOD SQL

I B 17 180SQLERL SQL

I 19 88 SQLERM SQL

I 89 96 SQLERP SQL

I 97 120 SQLERR SQL

I B 97 1000SQLER1 SQL

I B 101 1040SQLER2 SQL

I B 105 1080SQLER3 SQL

I B 109 1120SQLER4 SQL

I B 113 1160SQLER5 SQL

I B 117 1200SQLER6 SQL

I 121 131 SQLWRN SQL

I 121 121 SQLWN0 SQL

I 122 122 SQLWN1 SQL

I 123 123 SQLWN2 SQL

I 124 124 SQLWN3 SQL

I 125 125 SQLWN4 SQL

I 126 126 SQLWN5 SQL

I 127 127 SQLWN6 SQL

I 128 128 SQLWN7 SQL

I 129 129 SQLWN8 SQL

I 130 130 SQLWN9 SQL

I 131 131 SQLWNA SQL

I 132 136 SQLSTT SQL

I* End of SQLCA SQL

Note: Variable names in RPG/400 are limited to 6 characters. The standard SQLCA names have been

changed to a length of 6. RPG/400 does not have a way of defining arrays in a data structure

without also defining them in the extension specification. SQLERR is defined as character with

SQLER1 through 6 used as the names of the elements.

 Related information

 SQL communication area

Define SQL descriptor areas in RPG/400 applications that use SQL

There are two types of SQL descriptor areas. One is defined with the ALLOCATE DESCRIPTOR

statement. The other is defined using the SQLDA structure. In this topic, only the SQLDA form is

discussed.

The following statements can use an SQLDA:

v EXECUTE...USING DESCRIPTOR descriptor-name

v FETCH...USING DESCRIPTOR descriptor-name

v OPEN...USING DESCRIPTOR descriptor-name

v CALL...USING DESCRIPTOR descriptor-name

v DESCRIBE statement-name INTO descriptor-name

v DESCRIBE INPUT statement-name INTO descriptor-name

v DESCRIBE TABLE host-variable INTO descriptor-name

v PREPARE statement-name INTO descriptor-name

Unlike the SQLCA, there can be more than one SQLDA in a program and an SQLDA can have any valid

name.

Dynamic SQL is an advanced programming technique. With dynamic SQL, your program can develop

and then run SQL statements while the program is running. A SELECT statement with a variable SELECT

list (that is, a list of the data to be returned as part of the query) that runs dynamically requires an SQL

descriptor area (SQLDA). This is because you cannot know in advance how many or what type of

variables to allocate in order to receive the results of the SELECT.

82 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|

|

|

|
|

Because the SQLDA uses pointer variables which are not supported by RPG/400, an INCLUDE SQLDA

statement cannot be specified in an RPG/400 program. An SQLDA must be set up by a C, COBOL, PL/I,

or ILE RPG program and passed to the RPG program in order to use it.

 Related information

 Dynamic SQL applications

 SQL descriptor area

Embed SQL statements in RPG/400 applications that use SQL

SQL statements coded in an RPG/400 program must be placed in the calculation section.

This requires that a C be placed in position 6. SQL statements can be placed in detail calculations, in total

calculations, or in an RPG/400 subroutine. The SQL statements are run based on the logic of the

RPG/400 statements.

The keywords EXEC SQL indicate the beginning of an SQL statement. EXEC SQL must occupy positions

8 through 16 of the source statement, preceded by a / in position 7. The SQL statement may start in

position 17 and continue through position 74.

The keyword END-EXEC ends the SQL statement. END-EXEC must occupy positions 8 through 16 of the

source statement, preceded by a slash (/) in position 7. Positions 17 through 74 must be blank.

Both uppercase and lowercase letters are acceptable in SQL statements.

Example: Embed SQL statements in RPG/400 applications that use SQL

An UPDATE statement coded in an RPG/400 program might be coded as this example shows.

...1....+....2....+....3....+....4....+....5....+....6....+....7...

C/EXEC SQL UPDATE DEPARTMENT

C+ SET MANAGER = :MGRNUM

C+ WHERE DEPTNO = :INTDEP

C/END-EXEC

Comments in RPG/400 applications that use SQL

In addition to SQL comments (--), RPG/400 comments can be included within SQL statements wherever a

blank is allowed, except between the keywords EXEC and SQL.

To embed an RPG/400 comment within the SQL statement, place an asterisk (*) in position 7.

Continuation for SQL statements in RPG/400 applications that use SQL

When additional records are needed to contain the SQL statement, positions 9 through 74 can be used.

Position 7 must be a + (plus sign), and position 8 must be blank.

Constants containing DBCS data can be continued across multiple lines by placing the shift-in character

in position 75 of the continued line and placing the shift-out character in position 8 of the continuation

line. This SQL statement has a valid graphic constant of G’<AABBCCDDEEFFGGHHIIJJKK>’.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

C/EXEC SQL SELECT * FROM GRAPHTAB WHERE GRAPHCOL = G’<AABB>

C+<CCDDEEFFGGHHIIJJKK>’

C/END-EXEC

Include code in RPG/400 applications that use SQL

SQL statements and RPG/400 calculation specifications can be included by embedding the SQL

statement.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

C/EXEC SQL INCLUDE member-name

C/END-EXEC

Embedded SQL programming 83

The /COPY statement can be used to include SQL statements or RPG/400 specifications.

Sequence numbers in RPG/400 applications that use SQL

The sequence numbers of the source statements generated by the SQL precompiler are based on the

*NOSEQSRC/*SEQSRC keywords of the OPTION parameter on the CRTSQLRPG command.

When *NOSEQSRC is specified, the sequence number from the input source member is used. For

*SEQSRC, the sequence numbers start at 000001 and are incremented by 1.

Names in RPG/400 applications that use SQL

Any valid RPG variable name can be used for a host variable and is subject to the following restrictions.

Do not use host variable names or external entry names that begin with ’SQ’, ’SQL’, ’RDI’, or ’DSN’.

These names are reserved for the database manager.

Statement labels in RPG/400 applications that use SQL

A TAG statement can precede any SQL statement. Code the TAG statement on the line preceding EXEC

SQL.

WHENEVER statement in RPG/400 applications that use SQL

The target for the GOTO clause must be the label of the TAG statement. The scope rules for the

GOTO/TAG must be observed.

Use host variables in RPG/400 applications that use SQL

All host variables used in SQL statements must be explicitly declared. LOB, ROWID, and binary host

variables are not supported in RPG/400.

SQL embedded in RPG/400 does not use the SQL BEGIN DECLARE SECTION and END DECLARE

SECTION statements to identify host variables. Do not put these statements in the source program.

All host variables within an SQL statement must be preceded by a colon (:).

The names of host variables must be unique within the program.

Declare host variables in RPG/400 applications that use SQL

The SQL RPG/400 precompiler only recognizes a subset of RPG/400 declarations as valid host variable

declarations.

Most variables defined in RPG/400 can be used in SQL statements. A partial listing of variables that are

not supported includes the following:

v Indicator field names (*INxx)

v Tables

v UDATE

v UDAY

v UMONTH

v UYEAR

v Look-ahead fields

v Named constants

Fields used as host variables are passed to SQL, using the CALL/PARM functions of RPG/400. If a field

cannot be used in the result field of the PARM, it cannot be used as a host variable.

84 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Use host structures in RPG/400 applications that use SQL

The RPG/400 data structure name can be used as a host structure name if subfields exist in the data

structure. The use of the data structure name in an SQL statement implies the list of subfield names

making up the data structure.

When subfields are not present for the data structure, then the data structure name is a host variable of

character type. This allows character variables larger than 256, because data structures can be up to 9999.

In the following example, BIGCHR is an RPG/400 data structure without subfields. SQL treats any

referrals to BIGCHR as a character string with a length of 642.

...1....+....2....+....3....+....4....+....5....+....6....+....7...

IBIGCHR DS 642

In the next example, PEMPL is the name of the host structure consisting of the subfields EMPNO,

FIRSTN, MIDINT, LASTNAME, and DEPTNO. The referral to PEMPL uses the subfields. For example,

the first column of EMPLOYEE is placed in EMPNO, the second column is placed in FIRSTN, and so on.

 ...1....+....2....+....3....+....4....+....5....+....6....+....7. ..

 IPEMPL DS

 I 01 06 EMPNO

 I 07 18 FIRSTN

 I 19 19 MIDINT

 I 20 34 LASTNA

 I 35 37 DEPTNO

...

 C MOVE ’000220’ EMPNO

...

 C/EXEC SQL

 C+ SELECT * INTO :PEMPL

 C+ FROM CORPDATA.EMPLOYEE

 C+ WHERE EMPNO = :EMPNO

 C/END-EXEC

When writing an SQL statement, referrals to subfields can be qualified. Use the name of the data

structure, followed by a period and the name of the subfield. For example, PEMPL.MIDINT is the same

as specifying only MIDINT.

Use host structure arrays in RPG/400 applications that use SQL

A host structure array is defined as an occurrence data structure. An occurrence data structure can be

used on the SQL FETCH statement when fetching multiple rows.

In these examples, the following are true:

v All items in BARRAY must be valid host variables.

v All items in BARRAY must be contiguous. The first FROM position must be 1 and there cannot be

overlaps in the TO and FROM positions.

v For all statements other than the multiple-row FETCH and blocked INSERT, if an occurrence data

structure is used, the current occurrence is used. For the multiple-row FETCH and blocked INSERT, the

occurrence is set to 1.
...1....+....2....+....3....+....4....+....5....+....6....+....7. ..

IBARRAY DS 10

I 01 20 C1VAR

I B 21 220C2VAR

The following example uses a host structure array called DEPT and a multiple-row FETCH statement to

retrieve 10 rows from the DEPARTMENT table.

Embedded SQL programming 85

...1....+....2....+....3....+....4....+....5....+....6....+....7...

 E INDS 4 4 0

 IDEPT DS 10

 I 01 03 DEPTNO

 I 04 32 DEPTNM

 I 33 38 MGRNO

 I 39 41 ADMRD

 IINDARR DS 10

 I B 1 80INDS

...

 C/EXEC SQL

 C+ DECLARE C1 CURSOR FOR

 C+ SELECT *

 C+ FROM CORPDATA.DEPARTMENT

 C/END-EXEC

 C/EXEC SQL

 C+ OPEN C1

 C/END-EXEC

 C/EXEC SQL

 C+ FETCH C1 FOR 10 ROWS INTO :DEPT:INDARR

 C/END-EXEC

Use external file descriptions in RPG/400 applications that use SQL

The SQL precompiler processes the RPG/400 source in much the same manner as the ILE RPG compiler.

This means that the precompiler processes the /COPY statement for definitions of host variables.

Field definitions for externally described files are obtained and renamed, if different names are specified.

The external definition form of the data structure can be used to obtain a copy of the column names to be

used as host variables.

In the following example, the sample table DEPARTMENT is used as a file in an RPG/400 program. The

SQL precompiler retrieves the field (column) definitions for DEPARTMENT for use as host variables.

...1....+....2....+....3....+....4....+....5....+....6....+....7....

FTDEPT IP E DISK

F TDEPT KRENAMEDEPTREC

IDEPTREC

I DEPTNAME DEPTN

I ADMRDEPT ADMRD

Note: Code an F-spec for a file in your RPG program only if you use RPG/400 statements to do I/O

operations to the file. If you use only SQL statements to do I/O operations to the file, you can

include the external definition by using an external data structure.

In the following example, the sample table is specified as an external data structure. The SQL precompiler

retrieves the field (column) definitions as subfields of the data structure. Subfield names can be used as

host variable names, and the data structure name TDEPT can be used as a host structure name. The field

names must be changed because they are greater than six characters.

...1....+....2....+....3....+....4....+....5....+....6....+....7....

ITDEPT E DSDEPARTMENT

I DEPTNAME DEPTN

I ADMRDEPT ADMRD

Note: DATE, TIME, and TIMESTAMP columns will generate host variable definitions which are treated

by SQL with the same comparison and assignment rules as a DATE, TIME, and TIMESTAMP

column. For example, a date host variable can only be compared against a DATE column or a

character string which is a valid representation of a date.

Although varying-length columns generate fixed-length character-host variable definitions, to SQL they

are varying-length character variables.

86 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Although GRAPHIC and VARGRAPHIC columns are mapped to character variables in RPG/400, SQL

considers these GRAPHIC and VARGRAPHIC variables. If the GRAPHIC or VARGRAPHIC column has a

UCS-2 CCSID, the generated host variable will have the UCS-2 CCSID assigned to it. If the GRAPHIC or

VARGRAPHIC column has a UTF-16 CCSID, the generated host variable will have the UTF-16 CCSID

assigned to it.

External file description considerations for host structure arrays in RPG/400

applications that use SQL

Field definitions for externally described files, including renaming of fields, are recognized by the SQL

precompiler.

The external definition form of the data structure can be used to obtain a copy of the column names to be

used as host variables.

In the following example, the DEPARTMENT table is included in the RPG/400 program and is used to

declare a host structure array. A multiple-row FETCH statement is then used to retrieve 10 rows into the

host structure array.

...1....+....2....+....3....+....4....+....5....+....6....

ITDEPT E DSDEPARTMENT 10

I DEPARTMENT DEPTN

I ADMRDEPT ADMRD

...

C/EXEC SQL

C+ DECLARE C1 CURSOR FOR

C+ SELECT *

C+ FROM CORPDATA.DEPARTMENT

C/END-EXEC

...

C/EXEC SQL

C+ FETCH C1 FOR 10 ROWS INTO :TDEPT

C/END-EXEC

Determine equivalent SQL and RPG/400 data types

The precompiler determines the base SQLTYPE and SQLLEN of host variables based on the following

table. If a host variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE plus one.

 Table 7. RPG/400 declarations mapped to typical SQL data types

RPG/400 data

type Col 43 Col 52

Other RPG/400

coding

SQLTYPE of

host variable

SQLLEN of

host variable SQL data type

Data Structure

subfield

blank blank Length = n where n ≤

256

452 n CHAR(n)

Data structure

(without

subfields)

n/a n/a Length = n where n ≤

9999

452 n CHAR(n)

Input field blank blank Length = n where n ≤

256

452 n CHAR(n)

Calculation

result field

n/a blank Length = n where n ≤

256

452 n CHAR(n)

Data Structure

subfield

B 0 Length = 2 500 2 SMALLINT

Data Structure

subfield

B 0 Length = 4 496 4 INTEGER

Embedded SQL programming 87

Table 7. RPG/400 declarations mapped to typical SQL data types (continued)

RPG/400 data

type Col 43 Col 52

Other RPG/400

coding

SQLTYPE of

host variable

SQLLEN of

host variable SQL data type

Data Structure

subfield

B 1-4 Length = 2 500 2 DECIMAL(4,s)

where

s=column 52

Data Structure

subfield

B 1-9 Length = 4 496 4 DECIMAL(9,s)

where

s=column 52

Data Structure

subfield

P 0 to 9 Length = n where n is

1 to 16

484 p in byte 1, s in

byte 2

DECIMAL(p,s)

where p =

n*2-1 and s =

column 52

Input field P 0 to 9 Length = n where n is

1 to 16

484 p in byte 1, s in

byte 2

DECIMAL(p,s)

where p =

n*2-1 and s =

column 52

Input field blank 0 to 9 Length = n where n is

1 to 30

484 p in byte 1, s in

byte 2

DECIMAL(p,s)

where p = n

and s = column

52

Input field B 0 to 4 if n

= 2; 0 to 9

if n = 4

Length = 2 or 4 484 p in byte 1, s in

byte 2

DECIMAL(p,s)

where p=4 if

n=2 or 9 if n=4

and s = column

52

Calculation

result field

n/a 0 to 9 Length = n where n is

1 to 30

484 p in byte 1, s in

byte 2

DECIMAL(p,s)

where p = n

and s = column

52

Data Structure

subfield

blank 0 to 9 Length = n where n is

1 to 30

488 p in byte 1, s in

byte 2

NUMERIC(p,s)

where p = n

and s = column

52

Use the information in the following table to determine the RPG/400 data type that is equivalent to a

given SQL data type.

 Table 8. SQL data types mapped to typical RPG/400 declarations

SQL data type RPG/400 data type Notes

SMALLINT Subfield of a data structure. B in position 43,

length must be 2 and 0 in position 52 of the

subfield specification.

INTEGER Subfield of a data structure. B in position 43,

length must be 4 and 0 in position 52 of the

subfield specification.

BIGINT No exact equivalent Use P in position 43 and 0 in position 52 of

the subfield specification.

88 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Table 8. SQL data types mapped to typical RPG/400 declarations (continued)

SQL data type RPG/400 data type Notes

DECIMAL Subfield of a data structure. P in position 43

and 0 through 9 in position 52 of the subfield

specification.

OR

Defined as numeric and not a subfield of a

data structure.

Maximum length of 16 (precision 30) and

maximum scale of 9.

NUMERIC Subfield of the data structure. Blank in

position 43 and 0 through 9 in position 52 of

the subfield

Maximum length of 30 (precision 30) and

maximum scale of 9.

FLOAT (single

precision)

No exact equivalent Use one of the alternative numeric data types

described above.

FLOAT (double

precision)

No exact equivalent Use one of the alternative numeric data types

described above.

CHAR(n) Subfield of a data structure or input field.

Blank in positions 43 and 52 of the

specification.

OR

Calculation result field defined without

decimal places.

n can be from 1 to 256.

CHAR(n) Data structure name with no subfields in the

data structure.

n can be from 1 to 9999.

VARCHAR(n) No exact equivalent Use a character host variable large enough to

contain the largest expected VARCHAR

value.

CLOB Not supported Not supported

GRAPHIC(n) Not supported Not supported

VARGRAPHIC(n) Not supported Not supported

DBCLOB Not supported Not supported

BINARY Not supported Not supported

VARBINARY Not supported Not supported

BLOB Not supported Not supported

DATE Subfield of a data structure. Blank in position

52 of the subfield specification.

OR

Field defined without decimal places.

If the format is *USA, *JIS, *EUR, or *ISO, the

length must be at least 10. If the format is

*YMD, *DMY, or *MDY, the length must be at

least 8. If the format is *JUL, the length must

be at least 6.

TIME Subfield of a data structure. Blank in position

52 of the subfield specification.

OR

Field defined without decimal places.

Length must be at least 6; to include seconds,

length must be at least 8.

Embedded SQL programming 89

Table 8. SQL data types mapped to typical RPG/400 declarations (continued)

SQL data type RPG/400 data type Notes

TIMESTAMP Subfield of a data structure. Blank in position

52 of the subfield specification.

OR

Field defined without decimal places.

Length must be at least 19. To include

microseconds at full precision, length must be

26. If length is less than 26, truncation occurs

on the microseconds part.

DATALINK Not supported Not supported

ROWID Not supported Not supported

Assignment rules in RPG/400 applications that use SQL

RPG/400 associates precision and scale with all numeric types.

RPG/400 defines numeric operations, assuming the data is in packed format. This means that operations

involving binary variables include an implicit conversion to packed format before the operation is

performed (and back to binary, if necessary). Data is aligned to the implied decimal point when SQL

operations are performed.

Use indicator variables in RPG/400 applications that use SQL

An indicator variable is a two-byte integer.

See the entry for the SMALLINT SQL data type in Table 7 on page 87.

An indicator structure can be defined by declaring the variable as an array with an element length of 4,0

and declaring the array name as a subfield of a data structure with B in position 43. On retrieval, an

indicator variable is used to show whether its associated host variable has been assigned a null value. On

assignment to a column, a negative indicator variable is used to indicate that a null value should be

assigned.

Indicator variables are declared in the same way as host variables and the declarations of the two can be

mixed in any way that seems appropriate to the programmer.

 Related reference

 References to variables

Example: Use indicator variables in RPG/400 applications that use SQL

The following example shows declaring indicator variables in RPG.

Given the statement:

...1....+....2....+....3....+....4....+....5....+....6....+....7...

C/EXEC SQL FETCH CLS_CURSOR INTO :CLSCD,

C+ :DAY :DAYIND,

C+ :BGN :BGNIND,

C+ :END :ENDIND

C/END-EXEC

variables can be declared as follows:

...1....+....2....+....3....+....4....+....5....+....6....+....7...

I DS

I 1 7 CLSCD

I B 8 90DAY

I B 10 110DAYIND

90 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

I 12 19 BGN

I B 20 210BGNIND

I 22 29 END

I B 30 310ENDIND

Differences in RPG/400 because of structure parameter passing

techniques

The SQL RPG/400 precompiler attempts to use the structure parameter passing technique, if possible.

The precompiler generates code where each host variable is a separate parameter when the following

conditions are true:

v The data length of the host variables, referred to in the statement, is greater than 9935. Because SQL

uses 64 bytes of the structure, 9935 + 64 = 9999, the maximum length of a data structure.

v An indicator is specified on the statement where the length of the indexed indicator name plus the

required index value is greater than six characters. The precompiler must generate an assignment

statement for the indicator with the indicator name in the result field that is limited to six characters

(″INDIC,1″ requires seven characters).

v The length of a host variable is greater than 256. This can happen when a data structure without

subfields is used as a host variable, and its length exceeds 256. Subfields cannot be defined with a

length greater than 256.
 Related information

 Database application design tips: Use structured parameter passing techniques

Correctly end a called RPG/400 program that uses SQL

SQL run time builds and maintains data areas (internal SQLDAs) for each SQL statement which contains

host variables.

These internal SQLDAs are built the first time the statement is run and then reused on subsequent

executions of the statement to increase performance. The internal SQLDAs can be reused as long as there

is at least one SQL program active. The SQL precompiler allocates static storage used by SQL run time to

manage the internal SQLDAs properly.

If an RPG/400 program containing SQL is called from another program which also contains SQL, the

RPG/400 program should not set the Last Record (LR) indicator on. Setting the LR indicator on causes

the static storage to be re-initialized the next time the RPG/400 program is run. Re-initializing the static

storage causes the internal SQLDAs to be rebuilt, thus causing a performance degradation.

An RPG/400 program containing SQL statements that is called by a program that also contains SQL

statements, should be ended one of two ways:

v By the RETRN statement

v By setting the RT indicator on.

This allows the internal SQLDAs to be used again and reduces the total run time.

Code SQL statements in ILE RPG applications

This topic describes the unique application and coding requirements for embedding SQL statements in an

ILE RPG program. The coding requirements for host variables are defined.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

Embedded SQL programming 91

For more information about programming using ILE RPG, see the ILE RPG Programmer’s Guide

topic and the ILE RPG Reference

topic.

 Related concepts

 “Write applications that use SQL” on page 2
You can create database applications in host languages that use DB2 UDB for iSeries SQL statements

and functions.

 “Error and warning messages during a compile of application programs that use SQL” on page 132

The conditions described in the following topics could produce an error or warning message during

an attempted compile process.
 Related reference

 “Example: SQL statements in ILE RPG programs” on page 163

This sample program is written in the ILE RPG programming language.

Define the SQL communications area in ILE RPG applications that use

SQL

The SQL precompiler automatically places the SQLCA in the definition specifications of the ILE RPG

program prior to the first calculation specification, unless a SET OPTION SQLCA = *NO statement is

found.

INCLUDE SQLCA should not be coded in the source program. If the source program specifies INCLUDE

SQLCA, the statement will be accepted, but it is redundant. The SQLCA source statements for ILE RPG

are:

 D* SQL Communications area

 D SQLCA DS

 D SQLCAID 8A INZ(X’0000000000000000’)

 D SQLAID 8A OVERLAY(SQLCAID)

 D SQLCABC 10I 0

 D SQLABC 9B 0 OVERLAY(SQLCABC)

 D SQLCODE 10I 0

 D SQLCOD 9B 0 OVERLAY(SQLCODE)

 D SQLERRML 5I 0

 D SQLERL 4B 0 OVERLAY(SQLERRML)

 D SQLERRMC 70A

 D SQLERM 70A OVERLAY(SQLERRMC)

 D SQLERRP 8A

 D SQLERP 8A OVERLAY(SQLERRP)

 D SQLERR 24A

 D SQLER1 9B 0 OVERLAY(SQLERR:*NEXT)

 D SQLER2 9B 0 OVERLAY(SQLERR:*NEXT)

 D SQLER3 9B 0 OVERLAY(SQLERR:*NEXT)

 D SQLER4 9B 0 OVERLAY(SQLERR:*NEXT)

 D SQLER5 9B 0 OVERLAY(SQLERR:*NEXT)

 D SQLER6 9B 0 OVERLAY(SQLERR:*NEXT)

 D SQLERRD 10I 0 DIM(6) OVERLAY(SQLERR)

 D SQLWRN 11A

 D SQLWN0 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWN1 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWN2 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWN3 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWN4 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWN5 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWN6 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWN7 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWN8 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWN9 1A OVERLAY(SQLWRN:*NEXT)

 D SQLWNA 1A OVERLAY(SQLWRN:*NEXT)

92 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

D SQLWARN 1A DIM(11) OVERLAY(SQLWRN)

 D SQLSTATE 5A

 D SQLSTT 5A OVERLAY(SQLSTATE)

 D* End of SQLCA

If a SET OPTION SQLCA = *NO statement is found, the SQL precompiler automatically places

SQLCODE and SQLSTATE variables in the definition specification. They are defined as follows when the

SQLCA is not included:

D SQLCODE S 10I 0

D SQLSTATE S 5A

 Related information

 SQL communication area

Define SQL descriptor areas in ILE RPG applications that use SQL

There are two types of SQL descriptor areas. One is defined with the ALLOCATE DESCRIPTOR

statement. The other is defined using the SQLDA structure. In this section, only the SQLDA form is

discussed.

The following statements can use an SQLDA:

v EXECUTE...USING DESCRIPTOR descriptor-name

v FETCH...USING DESCRIPTOR descriptor-name

v OPEN...USING DESCRIPTOR descriptor-name

v CALL...USING DESCRIPTOR descriptor-name

v DESCRIBE statement-name INTO descriptor-name

v DESCRIBE INPUT statement-name INTO descriptor-name

v DESCRIBE TABLE host-variable INTO descriptor-name

v PREPARE statement-name INTO descriptor-name

Unlike the SQLCA, there can be more than one SQLDA in a program and an SQLDA can have any valid

name.

Dynamic SQL is a programming technique.With dynamic SQL, your program can develop and then run

SQL statements while the program is running. A SELECT statement with a variable SELECT list (that is, a

list of columns to be returned as part of the query) that runs dynamically requires an SQL descriptor area

(SQLDA). This is because you cannot know in advance how many or what type of variables to allocate in

order to receive the results of the SELECT.

You can specify an INCLUDE SQLDA statement in an ILE RPG program; however, it is not allowed in

free format. The format of the statement is:

C/EXEC SQL INCLUDE SQLDA

C/END-EXEC

The INCLUDE SQLDA generates the following data structure.

D* SQL Descriptor area

D SQLDA DS

D SQLDAID 1 8A

D SQLDABC 9 12B 0

D SQLN 13 14B 0

D SQLD 15 16B 0

D SQL_VAR 80A DIM(SQL_NUM)

D 17 18B 0

D 19 20B 0

D 21 32A

D 33 48*

D 49 64*

Embedded SQL programming 93

|
|
|

|

|

|
|

|
|

D 65 66B 0

D 67 96A

D*

D SQLVAR DS

D SQLTYPE 1 2B 0

D SQLLEN 3 4B 0

D SQLRES 5 16A

D SQLDATA 17 32*

D SQLIND 33 48*

D SQLNAMELEN 49 50B 0

D SQLNAME 51 80A

D* End of SQLDA

The user is responsible for the definition of SQL_NUM. SQL_NUM must be defined as a numeric

constant with the dimension required for SQL_VAR.

The INCLUDE SQLDA generates two data structures. The second data structure is used to setup and

reference the part of the SQLDA that contains the field descriptions.

To set the field descriptions of the SQLDA the program sets up the field description in the subfields of

SQLVAR and then assigns SQLVAR to SQL_VAR(n), where n is the number of the field in the SQLDA.

This is repeated until all the field descriptions are set.

When the SQLDA field descriptions are to be referenced the user assigns SQLVAR(n) to SQL_VAR where

n is the number of the field description to be processed.

 Related information

 Dynamic SQL applications

 SQL descriptor area

Embed SQL statements in ILE RPG applications that use SQL

SQL statements coded in an ILE RPG program must be placed in the calculation section.

This requires that a C be placed in position 6. SQL statements can be placed in detail calculations, in total

calculations, or in a RPG subroutines. The SQL statements are run based on the logic of the RPG

statements.

Both uppercase and lowercase letters are acceptable in SQL statements.

Fixed-form RPG

The keywords EXEC SQL indicate the beginning of an SQL statement. EXEC SQL must occupy positions

8 through 16 of the source statement, preceded by a / in position 7. The SQL statement may start in

position 17 and continue through position 80.

The keyword END-EXEC ends the SQL statement. END-EXEC must occupy positions 8 through 16 of the

source statement, preceded by a slash (/) in position 7. Positions 17 through 80 must be blank.

An UPDATE statement coded in an ILE RPG program might be coded as follows:

C/EXEC SQL UPDATE DEPARTMENT

C+ SET MANAGER = :MGRNUM

C+ WHERE DEPTNO = :INTDEP

C/END-EXEC

Free-form RPG

Each SQL statement must begin with EXEC SQL and end with a semicolon (;). The EXEC SQL keywords

must be on one line. The remaining part of the SQL statement can be on more than one line.

94 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|

|
|

Example: An UPDATE statement coded in free form might be coded in the following way:

EXEC SQL UPDATE DEPARTMENT

 SET MGRNO = :MGR_NUM

 WHERE DEPTNO = :INT_DEP;

Comments in ILE RPG applications that use SQL

In addition to SQL comments (--), ILE RPG comments can be included within SQL statements wherever

SQL allows a blank character.

Fixed-form RPG

To embed an ILE RPG comment within the SQL statement, place an asterisk (*) in position 7.

Free-form RPG

Bracketed comments (/*...*/) are allowed within embedded SQL statements between positions 8 through

80 and whenever a blank is allowed, except between the keywords EXEC and SQL. Comments can span

any number of lines. Single-line comments (//) can also be used.

Continuation for SQL statements in ILE RPG applications that use SQL

This topic introduces the continuation for SQL statements in two types of RPG format.

Fixed-form RPG

When additional records are needed to contain the SQL statement, positions 9 through 80 can be used.

Position 7 must be a + (plus sign), and position 8 must be blank. Position 80 of the continued line is

concatenated with position 9 of the continuation line.

Constants containing DBCS data can be continued across multiple lines by placing the shift-in character

in position 81 of the continued line and placing the shift-out character in position 8 of the continuation

line.

In this example the SQL statement has a valid graphic constant of G’<AABBCCDDEEFFGGHHIIJJKK>’.

C/EXEC SQL SELECT * FROM GRAPHTAB WHERE GRAPHCOL = G’<AABBCCDDEE>

C+<FFGGHHIIJJKK>’

C/END-EXEC

Free-form RPG

SQL statements can be contained on one or more lines. To continue an SQL statement across multiple

lines, the SQL statement can be split wherever a blank is allowed. The plus sign (+) can be used to

indicate a continuation of a string constant. The literal continues with the first nonblank character on the

next line.

Include code in ILE RPG applications that use SQL

SQL statements and RPG specifications can be included by using the following SQL statement.

C/EXEC SQL INCLUDE member-name

C/END-EXEC

RPG directives are handled by the SQL precompiler according to the value of the RPG preprocessor

options parameter (RPGPPOPT).

 Related reference

Embedded SQL programming 95

|

|
|
|

|

|

|
|
|

|

|

|
|
|
|

“Use directives in ILE RPG applications that use SQL”

RPG directives are handled by the SQL precompiler according to the value of the RPG preprocessor

options parameter (RPGPPOPT). If the RPG preprocessor is used, the SQL precompile will run using

the expanded preprocessed source.

Use directives in ILE RPG applications that use SQL

RPG directives are handled by the SQL precompiler according to the value of the RPG preprocessor

options parameter (RPGPPOPT). If the RPG preprocessor is used, the SQL precompile will run using the

expanded preprocessed source.

v When the value is *NONE, the RPG preprocessor is not called to preprocess the RPG source. The only

directive handled by the SQL precompiler is /COPY. Nested /COPY statements will not be handled.

All other directives will be ignored until the RPG compiler is called. This means that all RPG and SQL

statements within conditional logic blocks will be processed unconditionally by the SQL precompiler.

v When the value is *LVL1, the RPG preprocessor will be called to preprocess the RPG source. All

/COPY statements are expanded, even nested /COPY statements, and the conditional compilation

directives will be handled.

v When the value is *LVL2, the RPG preprocessor will be called to preprocess the RPG source. All

/COPY and /INCLUDE statements are expanded and the conditional compilation directives will be

handled.

v When *LVL1 or *LVL2 is used, there is a possibility that the expanded source generated by the RPG

preprocessor will become very large and reach a resource limit due to the expansion of the /COPY and

/INCLUDE statements. If this happens you must either break up your source into smaller pieces, or

not use the RPG preprocessor.
 Related reference

 “Include code in ILE RPG applications that use SQL” on page 95

SQL statements and RPG specifications can be included by using the following SQL statement.

Sequence numbers in ILE RPG applications that use SQL

The sequence numbers of the source statements generated by the SQL precompiler are based on the

*NOSEQSRC/*SEQSRC keywords of the OPTION parameter on the CRTSQLRPGI command.

When *NOSEQSRC is specified, the sequence number from the input source member is used. For

*SEQSRC, the sequence numbers start at 000001 and are incremented by 1.

Names in ILE RPG applications that use SQL

Any valid ILE RPG variable name can be used for a host variable with the following restrictions.

v Do not use host variable names or external entry names that begin with the characters SQ, SQL, RDI,

or DSN. These names are reserved for the database manager.

v The length of host variable names is limited to 64.

v The names of host variables must be unique within the program. The one exception is that if a

stand-alone field, parameter, or both, are defined exactly the same as another stand-alone field,

parameter, or both, the duplicated name is accepted.

v If a host variable is a duplicated name and does not belong to the exceptional category mentioned in

the previous item, but does have the same type, the precompiler issues SQL0314 as a severity 11 error

instead of its normal severity of 35. If you want to ignore these severity 11 errors, change the GENLVL

parameter value on the CRTSQLRPGI command to be 11 or higher.

Statement labels in ILE RPG applications that use SQL

A TAG statement can precede any SQL statement. Code the TAG statement on the line preceding EXEC

SQL.

WHENEVER statement in ILE RPG applications that use SQL

The target for the GOTO clause must be the label of the TAG statement. The scope rules for the

GOTO/TAG must be observed.

96 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|

|
|
|
|

Use host variables in ILE RPG applications that use SQL

All host variables used in SQL statements must be explicitly declared.

SQL embedded in ILE RPG does not use the SQL BEGIN DECLARE SECTION and END DECLARE

SECTION statements to identify host variables. Do not put these statements in the source program.

All host variables within an SQL statement must be preceded by a colon (:).

The names of host variables must be unique within the program, even if the host variables are in

different procedures. However, if a data structure has the QUALIFIED keyword, then the subfields of that

data structure can have the same name as a subfield in a different data structure or as a stand-alone

variable. The subfield of a data structure with the QUALIFIED keyword must be referenced using the

data structure name to qualify the subfield name.

An SQL statement that uses a host variable must be within the scope of the statement in which the

variable was declared.

If an error stating that a host variable is not defined or not usable is issued, look at the cross-reference in

the precompiler listing to see how the precompiler defined the variable. To generate a cross-reference in

the listing, run the precompile command with *XREF specified on the OPTIONS parameter.

Declare host variables in ILE RPG applications that use SQL

The SQL ILE RPG precompiler only recognizes a subset of valid ILE RPG declarations as valid host

variable declarations.

Most variables defined in ILE RPG can be used in SQL statements. A partial listing of variables that are

not supported includes the following:

v Unsigned integers

v Pointer

v Tables

v UDATE

v UDAY

v UMONTH

v UYEAR

v Look-ahead fields

v Named constants

v Multiple dimension arrays

v Definitions requiring the resolution of %SIZE or %ELEM

v Definitions requiring the resolution of constants unless the constant is used in OCCURS or DIM.

Fields used as host variables are passed to SQL using the CALL/PARM functions of ILE RPG. If a field

cannot be used in the result field of the PARM, it cannot be used as a host variable.

Date and time host variables are always assigned to corresponding date and time subfields in the

structures generated by the SQL precompiler. The generated date and time subfields are declared using

the format and separator specified by the DATFMT, DATSEP, TIMFMT, and TIMSEP parameters on the

CRTSQLRPGI command or with the SET OPTION statement. Conversion from the user declared host

variable format to the precompile specified format occurs on assignment to and from the SQL generated

structure. If the DATFMT parameter value is a system format (*MDY, *YMD, *DMY, or *JUL), then all

input and output host variables must contain date values within the range 1940-2039. If any date value is

outside of this range, then the DATFMT on the precompile must be specified as one of the IBM SQL

formats of *ISO, *USA, *EUR, or *JIS.

Embedded SQL programming 97

Graphic host variables will use the RPG CCSID value if one is specified. An SQL DECLARE VARIABLE

statement cannot be used to change the CCSID of a host variable whose CCSID has been defined in RPG,

or a host variable that is defined as UCS-2 or UTF-16.

The precompiler will generate an RPG logical (indicator) variable as a character of length 1. This type can

be used wherever SQL allows a character host variable. It cannot be used as an SQL indicator variable. It

is up to the user to make sure that only values of 1 or 0 are assigned to it.

The precompiler supports EXTNAME(filename : fmtname), but does not support EXTNAME(filename :

fmtname : fieldtype), where fieldtype is *ALL, *INPUT, *OUTPUT, or *KEY.

The precompiler supports LIKEREC(intrecname), but does not support the optional second parameter.

If there is an unnamed subfield, the precompiler will not allow the data structure containing the subfield

to be used in the blocked fetch and blocked insert statements. For all other SQL statements where the

data structure containing the subfield is used, only the subfields that are named will be used.

If the PREFIX keyword has a prefix that contains a period, the precompiler will not recognize the

externally described file.

Declare binary host variables in ILE RPG applications that use SQL:

ILE RPG does not have variables that correspond to the SQL binary data types.

 To create host variables that can be used with these data types, use the SQLTYPE keyword. The SQL

precompiler replaces this declaration with an ILE RPG language declaration in the output source member.

Binary declarations can be either standalone or within a data structure.

BINARY example

The following declaration:

D MYBINARY S SQLTYPE(BINARY:50)

results in the generation of the following code:

D MYBINARY S 50A

VARBINARY example

The following declaration:

D MYVARBINARY S SQLTYPE(VARBINARY:100)

results in the generation of the following code:

D MYVARBINARY S 100A VARYING

Notes:

1. For BINARY host variables, the length must be in the range 1 to 32766.

2. For VARBINARY host variables, the length must be in the range 1 to 32740.

3. BINARY and VARBINARY host variables are allowed to be declared in host structures.

4. SQLTYPE, BINARY, and VARBINARY can be in mixed case.

5. SQLTYPE must be between positions 44 to 80.

6. When a BINARY or VARBINARY is declared as a standalone host variable, position 24 must

contain the character S and position 25 must be blank.

7. The standalone field indicator S in position 24 should be omitted when a BINARY or

VARBINARY host variable is declared in a host structure.

98 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Declare LOB host variables in ILE RPG applications that use SQL:

ILE RPG does not have variables that correspond to the SQL data types for LOBs (large objects).

 To create host variables that can be used with these data types, use the SQLTYPE keyword. The SQL

precompiler replaces this declaration with an ILE RPG language structure in the output source member.

LOB declarations can be either standalone or within a data structure.

LOB host variables in ILE RPG applications that use SQL:

The following are examples of LOB host variables in ILE RPG.

 CLOB example

The following declaration:

D MYCLOB S SQLTYPE(CLOB:1000)

results in the generation of the following structure:

D MYCLOB DS

D MYCLOB_LEN 10U

D MYCLOB_DATA 1000A

DBCLOB example

The following declaration:

D MYDBCLOB S SQLTYPE(DBCLOB:400)

results in the generation of the following structure:

D MYDBCLOB DS

D MYDBCLOB_LEN 10U

D MYDBCLOB_DATA 400G

BLOB example

The following declaration:

D MYBLOB S SQLTYPE(BLOB:500)

results in the generation of the following structure:

D MYBLOB DS

D MYBLOB_LEN 10U

D MYBLOB_DATA 500A

Notes:

 1. For BLOB and CLOB, 1 ≤ lob-length ≤ 65 531

 2. For DBCLOB, 1≤ lob-length ≤ 16 383

 3. LOB host variables are allowed to be declared in host structures.

 4. LOB host variables are not allowed in host structure arrays. LOB locators should be used

instead.

 5. LOB host variables declared in structure arrays cannot be used as standalone host variables.

 6. SQLTYPE, BLOB, CLOB, DBCLOB can be in mixed case.

 7. SQLTYPE must be between positions 44 to 80.

 8. When a LOB is declared as a stand-alone host variable, position 24 must contain the

character ’S’ and position 25 must be blank.

Embedded SQL programming 99

|

9. The stand-alone field indicator S in position 24 should be omitted when a LOB is declared in

a host structure.

10. LOB host variables cannot be initialized.

LOB locators in ILE RPG applications that use SQL:

The following are examples of LOB locators in ILE RPG.

 BLOB locator example

The following declaration:

D MYBLOB S SQLTYPE(BLOB_LOCATOR)

results in the following generation:

D MYBLOB S 10U

CLOB and DBCLOB locators have similar syntax.

Notes:

1. LOB locators are allowed to be declared in host structures.

2. SQLTYPE, BLOB_LOCATOR, CLOB_LOCATOR, DBCLOB_LOCATOR can be in mixed case.

3. SQLTYPE must be between positions 44 to 80.

4. When a LOB locator is declared as a standalone host variable, position 24 must contain the

character ’S’ and position 25 must be blank.

5. The standalone field indicator S in position 24 should be omitted when a LOB locator is

declared in a host structure.

6. LOB locators cannot be initialized.

LOB file reference variables in ILE RPG applications that use SQL:

The following are examples of LOB file reference variables in ILE RPG.

 CLOB file reference example

The following declaration:

D MY_FILE S SQLTYPE(CLOB_FILE)

results in the generation of the following structure:

D MY_FILE DS

D MY_FILE_NL 10U

D MY_FILE_DL 10U

D MY_FILE_FO 10U

D MY_FILE_NAME 255A

BLOB and DBCLOB locators have similar syntax.

Notes:

1. LOB file reference variables are allowed to be declared in host structures.

2. SQLTYPE, BLOB_FILE, CLOB_FILE, DBCLOB_FILE can be in mixed case.

3. SQLTYPE must be between positions 44 to 80.

4. When a LOB file reference is declared as a standalone host variable, position 24 must contain

the character ’S’ and position 25 must be blank.

100 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

5. The standalone field indicator ’S’ in position 24 should be omitted when a LOB file reference

variable is declared in a host structure.

6. LOB file reference variables cannot be initialized.

The pre-compiler will generate declarations for the following file option constants. You can use these

constants to set the xxx_FO variable when you use file reference host variables.

v SQFRD (2)

v SQFCRT (8)

v SQFOVR (16)

v SQFAPP (32)
 Related information

 LOB file reference variables

Declare ROWID variables in ILE RPG applications that use SQL:

ILE RPG does not have a variable that corresponds to the SQL data type ROWID.

 To create host variables that can be used with this data type, use the SQLTYPE keyword. The SQL

precompiler replaces this declaration with an ILE RPG language declaration in the output source member.

ROWID declarations can be either standalone or within a data structure.

ROWID example

The following declaration:

D MY_ROWID S SQLTYPE(ROWID)

results in the following generation:

D MYROWID S 40A VARYING

Notes:

1. SQLTYPE, ROWID can be in mixed case.

2. ROWID host variables are allowed to be declared in host structures.

3. SQLTYPE must be between positions 44 and 80.

4. When a ROWID is declared as a standalone host variable, position 24 must contain the

character ’S’ and position 25 must be blank.

5. The standalone field indicator ’S’ in position 24 should be omitted when a ROWID is declared

in a host structure.

6. ROWID host variables cannot be initialized.

Use host structures in ILE RPG applications that use SQL

The ILE RPG data structure name can be used as a host structure name if subfields exist in the data

structure. The use of the data structure name in an SQL statement implies the list of subfield names

making up the data structure.

When a data structure contains one or more unnamed subfields, the data structure name cannot be used

as a host structure in an SQL statement. The named subfields can be used as host variables.

In the following example, BIGCHR is an ILE data structure without subfields. SQL treats any references

to BIGCHR as a character string with a length of 642.

DBIGCHR DS 642

Embedded SQL programming 101

In the next example, PEMPL is the name of the host structure consisting of the subfields EMPNO,

FIRSTN, MIDINT, LASTNAME, and DEPTNO. A reference to PEMPL uses the subfields. For example, the

first column of CORPDATA.EMPLOYEE is placed in EMPNO, the second column is placed in FIRSTN,

and so on.

DPEMPL DS

D EMPNO 01 06A

D FIRSTN 07 18A

D MIDINT 19 19A

D LASTNA 20 34A

D DEPTNO 35 37A

...

C MOVE ’000220’ EMPNO

...

C/EXEC SQL

C+ SELECT * INTO :PEMPL

C+ FROM CORPDATA.EMPLOYEE

C+ WHERE EMPNO = :EMPNO

C/END-EXEC

When writing an SQL statement, references to subfields that are not in a QUALIFIED data structure can

be qualified. Use the name of the data structure, followed by a period and the name of the subfield. For

example, PEMPL.MIDINT is the same as specifying only MIDINT. If the data structure has the

QUALIFIED keyword, then the subfield must be referenced using the data structure name to qualify the

subfield name.

In this example, we have two data structures, one QUALIFIED and one not QUALIFIED, that contain the

same subfield names:

Dfststruct DS

D sub1 4B 0

D sub2 9B 0

D sub3 20I 0

D sub4 9B 0

Dsecstruct DS QUALIFIED

D sub1 4A

D sub2 12A

D sub3 20I 0

D myvar 5A

D sub5 20A

D myvar S 10I 0

Referencing secstruct.sub1 as a host variable will be a character variable with a length of 4.

sub2 as a host variable will have an SQL data type of small integer. It picks up its attributes from the data

structure that is not QUALIFIED.

A host variable reference to myvar will use the standalone declaration to pick up the data type of integer.

If you use secstruct.myvar, the character variable in the QUALIFIED structure will be used.

You cannot refer to sub5 without qualifying it with secstruct because it is in a QUALIFIED data structure.

The precompiler will recognize a host structure defined using the LIKEDS keyword. However, the SQL

syntax for a host variable only allows using a single level of qualification in an SQL statement. This

means that if a data structure DS has a subfield S1 which is defined like a data structure with a subfield

S2, an SQL statement cannot refer to S2 using the fully qualified host variable name of DS.S1.S2. If you

use S1.S2 as the host variable reference, the precompiler will recognize it as DS.S1.S2. The following

additional restrictions apply:

102 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

v The top level structure, DS, cannot be an array.

v S1.S2 must be unique. That is, there must be no other valid names in the program ending with S1.S2,

such as a structure S1 with a subfield S1.S2, or a structure DS3 with a subfield DS3.S0.S1.S2.

Example

D CustomerInfo DS QUALIFIED

D Name 20A

D Address 50A

D ProductInfo DS QUALIFIED

D Number 5A

D Description 20A

D Cost 9P 2

D SalesTransaction...

D DS QUALIFIED

D Buyer LIKEDS(CustomerInfo)

D Seller LIKEDS(CustomerInfo)

D NumProducts 10I 0

D Product LIKEDS(ProductInfo)

D DIM(10)

C/EXEC SQL

C+ SELECT * INTO :CustomerInfo.Name, :Buyer.Name FROM MYTABLE

C/END-EXEC

CustomerInfo.Name will be recognized as a reference to the QUALIFIED structure’s variable. Buyer.Name

will be defined as SalesTransaction.Buyer.Name.

You cannot use SalesTransaction.Buyer.Name in an SQL statement because only one level of qualification is

allowed in SQL syntax. You cannot use Product.Cost in an SQL statement because COST is in a

dimensioned array.

If there is a SalesTransaction2 defined like SalesTransaction, then the subfields that are structures cannot be

used in SQL statements. Because only one level of qualification is supported by SQL, a reference to

Buyer.Name is ambiguous.

Use host structure arrays in ILE RPG applications that use SQL

A host structure array is defined as an occurrence data structure or a data structure with the keyword

DIM coded. Both types of data structures can be used on the SQL FETCH or INSERT statement when

processing multiple rows.

The following list of items must be considered when using a data structure with multiple row blocking

support.

v All subfields must be valid host variables.

v All subfields must be contiguous. The first FROM position must be 1 and there cannot be overlaps in

the TO and FROM positions.

v If the date and time format and separator of date and time subfields within the host structure are not

the same as the DATFMT, DATSEP, TIMFMT, and TIMSEP parameters on the CRTSQLRPGI command

(or in the SET OPTION statement), then the host structure array is not usable.

For all statements, other than the blocked FETCH and blocked INSERT, if an occurrence data structure is

used, the current occurrence is used. For the blocked FETCH and blocked INSERT, the occurrence is set

to 1.

The following example uses a host structure array called DEPARTMENT and a blocked FETCH statement

to retrieve 10 rows from the DEPARTMENT table.

Embedded SQL programming 103

DDEPARTMENT DS OCCURS(10)

D DEPTNO 01 03A

D DEPTNM 04 32A

D MGRNO 33 38A

D ADMRD 39 41A

DIND_ARRAY DS OCCURS(10)

D INDS 4B 0 DIM(4)

...

C/EXEC SQL

C+ DECLARE C1 CURSOR FOR

C+ SELECT *

C+ FROM CORPDATA.DEPARTMENT

C/END-EXEC

...

C/EXEC SQL

C+ FETCH C1 FOR 10 ROWS

C+ INTO :DEPARTMENT:IND_ARRAY

C/END-EXEC

Blocked FETCH and blocked INSERT are the only SQL statements that allow a data structure with the

DIM keyword. A host variable reference with a subscript like MyStructure(index).Mysubfield is not

supported by SQL.

Example

Dfststruct DS DIM(10) QUALIFIED

D sub1 4B 0

D sub2 9B 0

D sub3 20I 0

D sub4 9B 0

C/EXEC SQL

C+ FETCH C1 FOR 10 ROWS INTO :fststruct

C/END-EXEC

Use external file descriptions in ILE RPG applications that use SQL

Field definitions for externally described files, including renaming of fields, are recognized by the SQL

precompiler. The external definition form of the data structure can be used to obtain a copy of the

column names to be used as host variables.

How date and time field definition are retrieved and processed by the SQL precompiler depends on

whether *NOCVTDT or *CVTDT is specified on the OPTION parameter of the CRTSQLRPGI command.

If *NOCVTDT is specified, then date and time field definitions are retrieved including the format and

separator. If *CVTDT is specified, then the format and separator is ignored when date and time field

definitions are retrieved, and the precompiler assumes that the variable declarations are date/time host

variables in character format. *CVTDT is a compatibility option for the ILE RPG precompiler.

If the GRAPHIC or VARGRAPHIC column has a UCS-2 CCSID, the generated host variable will have the

UCS-2 CCSID assigned to it. If the GRAPHIC or VARGRAPHIC column has a UTF-16 CCSID, the

generated host variable will have the UTF-16 CCSID assigned to it.

In the following example, the sample table DEPARTMENT is used as a file in an ILE RPG program. The

SQL precompiler retrieves the field (column) definitions for DEPARTMENT for use as host variables.

FDEPARTMENTIP E DISK RENAME(ORIGREC:DEPTREC)

Note: Code an F-spec for a file in your ILE RPG program only if you use ILE RPG statements to do I/O

operations to the file. If you use only SQL statements to do I/O operations to the file, you can

include the external definition of the file (table) by using an external data structure.

104 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

In the following example, the sample table is specified as an external data structure. The SQL precompiler

retrieves the field (column) definitions as subfields of the data structure. Subfield names can be used as

host variable names, and the data structure name TDEPT can be used as a host structure name. The

example shows that the field names can be renamed if required by the program.

DTDEPT E DS EXTNAME(DEPARTMENT)

D DEPTN E EXTFLD(DEPTNAME)

D ADMRD E EXTFLD(ADMRDEPT)

External file description considerations for host structure arrays in ILE RPG

applications that use SQL

For device files, if INDARA was not specified and the file contains indicators, the declaration is not used

as a host structure array. The indicator area is included in the structure that is generated and would cause

the storage to be separated.

If OPTION(*NOCVTDT) is specified and the date and time format and separator of date and time field

definitions within the file are not the same as the DATFMT, DATSEP, TIMFMT, and TIMSEP parameters

on the CRTSQLRPGI command, then the host structure array is not usable.

In the following example, the DEPARTMENT table is included in the ILE RPG program and used to

declare a host structure array. A blocked FETCH statement is then used to retrieve 10 rows into the host

structure array.

DDEPARTMENT E DS OCCURS(10)

C/EXEC SQL

C+ DECLARE C1 CURSOR FOR

C+ SELECT *

C+ FROM CORPDATA.DEPARTMENT

C/END-EXEC

...

C/EXEC SQL

C+ FETCH C1 FOR 10 ROWS

C+ INTO :DEPARTMENT

C/END-EXEC

Determine equivalent SQL and ILE RPG data types

The precompiler determines the base SQLTYPE and SQLLEN of host variables according to the following

table. If a host variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE plus one.

 Table 9. ILE RPG declarations mapped to typical SQL data types

RPG data type RPG coding

SQLTYPE of

host variable

SQLLEN of host

variable SQL data type

Data structure

(without subfields)

Length = n where n ≤ 32766. 452 n CHAR(n)

Zoned data v Defined on Definition

specification as subfield

with data type S or blank.

v Defined on Definition

specification with data

type S.

v Defined on Input

specification with data

type S or blank.

488 p in byte 1, s in

byte 2

NUMERIC(p, s) where p

is the number of digits

and s is the number of

decimal places

Embedded SQL programming 105

Table 9. ILE RPG declarations mapped to typical SQL data types (continued)

RPG data type RPG coding

SQLTYPE of

host variable

SQLLEN of host

variable SQL data type

Packed data v Defined on Definition

specification with decimal

positions (pos 69-70) not

blank.

v Defined on Definition

specification subfield with

data type P.

v Defined on Definition

specification with data

type P or blank.

v Defined on Input

specification with data

type P.

484 p in byte 1, s in

byte 2

DECIMAL(p, s) where p is

the number of digits and s

is the number of decimal

places

2-byte binary with

zero decimal

positions

v Defined on Definition

specification as subfield

with from and to positions

and data type B and byte

length 2.

v Defined on Definition

specification with data

type B and digits from 1

to 4.

v Defined on Input

specification with data

type B and byte length 2

500 2 SMALLINT

4-byte binary with

zero decimal

positions

v Defined on Definition

specification as subfield

with from and to positions

and data type B and byte

length 4.

v Defined on Definition

specification with data

type B and digits from 5

to 9.

v Defined on Input

specification with data

type B and byte length 4.

496 4 INTEGER

2-byte integer v Defined on Definition

specification as subfield

with from and to positions

and data type I and byte

length 2.

v Defined on Definition

specification with data

type I and digits 5.

v Defined on Input

specification with data

type I and byte length 2.

500 2 SMALLINT

106 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Table 9. ILE RPG declarations mapped to typical SQL data types (continued)

RPG data type RPG coding

SQLTYPE of

host variable

SQLLEN of host

variable SQL data type

4-byte integer v Defined on Definition

specification as subfield

with from and to positions

and data type I and byte

length 4.

v Defined on Definition

specification with data

type I and digits 10.

v Defined on Input

specification with data

type I and byte length 4.

496 4 INTEGER

8-byte integer v Defined on Definition

specification as subfield

with from and to positions

and data type I and byte

length 8.

v Defined on Definition

specification with data

type I and digits 20.

v Defined on Input

specification with data

type I and byte length 8.

492 8 BIGINT

short float Data type = F, length = 4. 480 4 FLOAT (single precision)

long float Data type = F, length = 8. 480 8 FLOAT (double precision)

Character Data type = A or blank,

decimal positions blank,

length between 1 and 32766.

452 n CHAR (n) where n is the

length

Character varying

length greater than

254

Data type = A or blank,

decimal positions blank,

VARYING keyword on

Definition specification or

format *VAR on Input

specification.

448 n VARCHAR (n) where n is

the length

Character varying

length between 1

and 254

Data type = A or blank,

decimal positions blank,

VARYING keyword on

Definition specification or

format *VAR on Input

specification.

456 n VARCHAR (n) where n is

the length

graphic v Defined on Definition

specification as subfield

with from and to positions

and data type G and

byte-length b.

v Defined on Definition

specification with data

type G and length n.

v Defined on Input

specification with data

type G and byte-length b

468 m GRAPHIC(m) where m =

n or m = b/2

Embedded SQL programming 107

Table 9. ILE RPG declarations mapped to typical SQL data types (continued)

RPG data type RPG coding

SQLTYPE of

host variable

SQLLEN of host

variable SQL data type

varying graphic v Defined on Definition

specification as subfield

with from and to positions

and data type G and

byte-length b and

VARYING keyword.

v Defined on Definition

specification with data

type G and length n and

VARYING keyword.

v Defined on Input

specification with data

type G and byte-length b

and format *VAR.

464 m VARGRAPHIC(m) where

m = n or m = (b-2)/2

UCS-2 v Defined on Definition

specification as subfield

with from and to positions

and data type C and

byte-length b.

v Defined on Definition

specification with data

type C and length n.

v Defined on Input

specification with data

type C and byte-length b.

468 m GRAPHIC(m) with CCSID

13488 where m = n or m =

b/2

varying UCS-2 v Defined on Definition

specification as subfield

with from and to positions

and data type C and

byte-length b and

VARYING keyword.

v Defined on Definition

specification with data

type C and length n and

VARYING keyword.

v Defined on Input

specification with data

type C and byte-length b

and format *VAR.

464 m VARGRAPHIC(m) with

CCSID 13488 where m = n

or m = b/2

Date v Defined on Definition

specification with data

type D, format f and

separator s from DATFMT

keyword.

v Defined on Input

specification with data

type D and format in pos

31-34, separator in pos 35.

384 n DATE DATFMT(f)

DATSEP(s)1

108 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Table 9. ILE RPG declarations mapped to typical SQL data types (continued)

RPG data type RPG coding

SQLTYPE of

host variable

SQLLEN of host

variable SQL data type

Time v Defined on Definition

specification with data

type T, format f and

separator s from TIMFMT

keyword.

v Defined on Input

specification with data

type T and format in pos

31-34, separator in pos 35.

388 n TIME TIMFMT(f)

TIMSEP(s)1

Timestamp Data type Z. 392 n TIMESTAMP

1SQL creates the date/time subfield using the DATE/TIME format specified on the CRTSQLRPGI command. The

conversion to the host variable DATE/TIME format occurs when the mapping is done between the host variables

and the SQL-generated subfields.

The following table can be used to determine the RPG data type that is equivalent to a given SQL data

type.

 Table 10. SQL data types mapped to typical RPG declarations

SQL data type RPG data type Notes

SMALLINT Definition specification. I in position

40, length must be 5 and 0 in position

42.

 OR

Definition specification. B in position

40, length must be ≤ 4 and 0 in

position 42.

INTEGER Definition specification. I in position

40, length must be 10 and 0 in

position 42.

 OR

Definition specification. B in position

40, length must be ≤ 9 and ≥ 5 and 0

in position 42.

BIGINT Definition specification. I in position

40, length must be 20 and 0 in

position 42.

DECIMAL Definition specification. P in position

40 or blank in position 40 for a

non-subfield, 0 through 30 in position

41,42.

 OR

Defined as numeric on non-definition

specification.

Maximum length of 16 (precision 30)

and maximum scale of 30.

Embedded SQL programming 109

Table 10. SQL data types mapped to typical RPG declarations (continued)

SQL data type RPG data type Notes

NUMERIC Definition specification. S in position

40 or blank in position 40 for a

subfield, 0 through 30 in position

41,42.

Maximum length of 30 (precision 30)

and maximum scale of 30.

FLOAT (single precision) Definition specification. F in position

40, length must be 4.

FLOAT (double precision) Definition specification. F in position

40, length must be 8.

CHAR(n) Definition specification. A or blank in

positions 40 and blanks in position

41,42.

 OR

Input field defined without decimal

places.

 OR

Calculation result field defined

without decimal places.

n can be from 1 to 32766.

CHAR(n) Data structure name with no

subfields in the data structure.

n can be from 1 to 32766.

VARCHAR(n) Definition specification. A or blank in

position 40 and VARYING in

positions 44-80.

n can be from 1 to 32740.

CLOB Not supported Use SQLTYPE keyword to declare a

CLOB.

GRAPHIC(n) Definition specification. G in position

40.

 OR

Input field defined with G in position

36.

n can be 1 to 16383.

VARGRAPHIC(n) Definition specification. G in position

40 and VARYING in positions 44-80.

n can be from 1 to 16370.

DBCLOB Not supported Use SQLTYPE keyword to declare a

DBCLOB.

BINARY Not supported Use SQLTYPE keyword to declare a

BINARY.

VARBINARY Not supported Use SQLTYPE keyword to declare a

VARBINARY.

BLOB Not supported Use SQLTYPE keyword to declare a

BLOB.

110 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Table 10. SQL data types mapped to typical RPG declarations (continued)

SQL data type RPG data type Notes

DATE A character field

 OR

Definition specification with a D in

position 40.

 OR

Input field defined with D in position

36.

If the format is *USA, *JIS, *EUR, or

*ISO, the length must be at least 10. If

the format is *YMD, *DMY, or *MDY,

the length must be at least 8. If the

format is *JUL, the length must be at

least 6.

TIME A character field

 OR

Definition specification with a T in

position 40.

 OR

Input field defined with T in position

36.

Length must be at least 6; to include

seconds, length must be at least 8.

TIMESTAMP A character field

 OR

Definition specification with a Z in

position 40.

 OR

Input field defined with Z in position

36.

Length must be at least 19; to include

microseconds, length must be at least

26. If length is less than 26, truncation

occurs on the microsecond part.

DATALINK Not supported

ROWID Not supported Use SQLTYPE keyword to declare a

ROWID.

Notes on ILE RPG variable declaration and usage

ILE RPG associates precision and scale with all numeric types.

ILE RPG defines numeric operations, assuming the data is in packed format. This means that operations

involving binary variables include an implicit conversion to packed format before the operation is

performed (and back to binary, if necessary). Data is aligned to the implied decimal point when SQL

operations are performed.

Use indicator variables in ILE RPG applications that use SQL

An indicator variable is a binary field with length less than 5 (2 bytes).

An indicator array can be defined by declaring the variable element length of 4,0 and specifying the DIM

on the definition specification.

On retrieval, an indicator variable is used to show if its associated host variable has been assigned a null

value. On assignment to a column, a negative indicator variable is used to indicate that a null value

should be assigned.

Embedded SQL programming 111

Indicator variables are declared in the same way as host variables and the declarations of the two can be

mixed in any way that seems appropriate to the programmer.

 Related reference

 References to variables

Example: Use indicator variables in ILE RPG applications that use SQL

The following is an example of declaring indicator variables in ILE RPG.

Given the statement:

C/EXEC SQL FETCH CLS_CURSOR INTO :CLSCD,

C+ :DAY :DAYIND,

C+ :BGN :BGNIND,

C+ :END :ENDIND

C/END-EXEC

variables can be declared as follows:

D CLSCD S 7

D DAY S 2B 0

D DAYIND S 2B 0

D BGN S 8A

D BGNIND S 2B 0

D END S 8

D ENDIND S 2B 0

Example of the SQLDA for a multiple row-area fetch in ILE RPG

applications that use SQL

The following is an example of the SQLDA for a multiple row-area fetch in ILE RPG.

C/EXEC SQL INCLUDE SQLDA

C/END-EXEC

DDEPARTMENT DS OCCURS(10)

D DEPTNO 01 03A

D DEPTNM 04 32A

D MGRNO 33 38A

D ADMRD 39 41A

...

DIND_ARRAY DS OCCURS(10)

D INDS 4B 0 DIM(4)

...

C* setup number of sqlda entries and length of the sqlda

C eval sqld = 4

C eval sqln = 4

C eval sqldabc = 336

C*

C* setup the first entry in the sqlda

C*

C eval sqltype = 453

C eval sqllen = 3

C eval sql_var(1) = sqlvar

C*

C* setup the second entry in the sqlda

C*

C eval sqltype = 453

C eval sqllen = 29

C eval sql_var(2) = sqlvar

...

C*

C* setup the forth entry in the sqlda

C*

C eval sqltype = 453

C eval sqllen = 3

C eval sql_var(4) = sqlvar

112 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

...

C/EXEC SQL

C+ DECLARE C1 FOR

C+ SELECT *

C+ FROM CORPDATA.DEPARTMENT

C/END-EXEC

...

C/EXEC SQL

C+ FETCH C1 FOR 10 ROWS

C+ USING DESCRIPTOR :SQLDA

C+ INTO :DEPARTMENT:IND_ARRAY

C/END-EXEC

Example of dynamic SQL in an ILE RPG application that uses SQL

The following is an example of using dynamic SQL in ILE RPG.

D**

D* Declare program variables. *

D* STMT initialized to the *

D* listed SQL statement. *

D**

D EMPNUM S 6A

D NAME S 15A

D STMT S 500A INZ(’SELECT LASTNAME -

D FROM CORPDATA.EMPLOYEE WHERE -

D EMPNO = ?’)

...

C***

C* Prepare STMT as initialized in declare section *

C***

C/EXEC SQL

C+ PREPARE S1 FROM :STMT

C/END-EXEC

C*

C*************************************

C* Declare Cursor for STMT *

C*************************************

C/EXEC SQL

C+ DECLARE C1 CURSOR FOR S1

C/END-EXEC

C*

C***

C* Assign employee number to use in select statement *

C***

C eval EMPNUM = ’000110’

C**********************

C* Open Cursor *

C**********************

C/EXEC SQL

C+ OPEN C1 USING :EMPNUM

C/END-EXEC

C*

C***

C* Fetch record and put value of *

C* LASTNAME into NAME *

C***

C/EXEC SQL

C+ FETCH C1 INTO :NAME

C/END-EXEC

...

Embedded SQL programming 113

C********************************

C* Program processes NAME here *

C********************************

...

C******************

C* Close cursor *

C******************

C/EXEC SQL

C+ CLOSE C1

C/END-EXEC

Code SQL statements in REXX applications

REXX procedures do not have to be preprocessed. At run time, the REXX interpreter passes statements

that it does not understand to the current active command environment for processing.

The command environment can be changed to *EXECSQL to send all unknown statements to the

database manager in two ways:

1. CMDENV parameter on the STRREXPRC CL command

2. address positional parameter on the ADDRESS REXX command

For more information about the STRREXPRC CL command or the ADDRESS REXX command, see the

REXX/400 Programmer’s Guide

topic and the REXX/400 Reference

topic.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

 Related concepts

 “Write applications that use SQL” on page 2
You can create database applications in host languages that use DB2 UDB for iSeries SQL statements

and functions.

 “Error and warning messages during a compile of application programs that use SQL” on page 132

The conditions described in the following topics could produce an error or warning message during

an attempted compile process.
 Related reference

 “Handle exception conditions with the WHENEVER Statement” on page 11

The WHENEVER statement causes SQL to check the SQLSTATE and SQLCODE and continue

processing your program, or branch to another area in your program if an error, exception, or warning

exists as a result of running an SQL statement.

 “Example: SQL statements in REXX programs” on page 169

This sample program is written in the REXX programming language.

Use the SQL communications area in REXX applications

The fields that make up the SQL Communications Area (SQLCA) are automatically included by the

SQL/REXX interface.

An INCLUDE SQLCA statement is not required and is not allowed. The SQLCODE and SQLSTATE fields

of the SQLCA contain SQL return codes. These values are set by the database manager after each SQL

statement is run. An application can check the SQLCODE or SQLSTATE value to determine whether the

last SQL statement was successful.

The SQL/REXX interface uses the SQLCA in a manner consistent with the typical SQL usage. However,

the SQL/REXX interface maintains the fields of the SQLCA in separate variables rather than in a

contiguous data area. The variables that the SQL/REXX interface maintains for the SQLCA are defined as

follows:

114 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

SQLCODE

The primary SQL return code.

SQLERRMC

Error and warning message tokens.

SQLERRP

Product code and, if there is an error, the name of the module that returned the error.

SQLERRD.n

Six variables (n is a number between 1 and 6) containing diagnostic information.

SQLWARN.n

Eleven variables (n is a number between 0 and 10) containing warning flags.

SQLSTATE

The alternate SQL return code.
 Related information

 SQL communication area

Use SQL descriptor areas in REXX applications

There are two types of SQL descriptor areas. One is defined with the ALLOCATE DESCRIPTOR

statement. The other is defined using the SQL descriptor area (SQLDA) structure. Only the SQLDA form

is discussed here. Allocated descriptors are not supported in REXX.

The following statements can use an SQLDA:

v EXECUTE...USING DESCRIPTOR descriptor-name

v FETCH...USING DESCRIPTOR descriptor-name

v OPEN...USING DESCRIPTOR descriptor-name

v CALL...USING DESCRIPTOR descriptor-name

v DESCRIBE statement-name INTO descriptor-name

v DESCRIBE TABLE host-variable INTO descriptor-name

Unlike the SQLCA, more than one SQLDA can be in a procedure, and an SQLDA can have any valid

name.

Each SQLDA consists of a set of REXX variables with a common stem, where the name of the stem is the

descriptor-name from the appropriate SQL statements. This must be a simple stem; that is, the stem itself

must not contain any periods. The SQL/REXX interface automatically provides the fields of the SQLDA

for each unique descriptor name. An INCLUDE SQLDA statement is not required and is not allowed.

The SQL/REXX interface uses the SQLDA in a manner consistent with the typical SQL usage. However,

the SQL/REXX interface maintains the fields of the SQLDA in separate variables rather than in a

contiguous data area.

The following variables are returned to the application after a DESCRIBE, a DESCRIBE TABLE, or a

PREPARE INTO statement:

stem.n.SQLNAME

The name of the nth column in the result table.

 The following variables must be provided by the application before an EXECUTE...USING

DESCRIPTOR, an OPEN...USING DESCRIPTOR, a CALL...USING DESCRIPTOR, or a

FETCH...USING DESCRIPTOR statement. They are returned to the application after a DESCRIBE,

a DESCRIBE TABLE, or a PREPARE INTO statement:

Embedded SQL programming 115

|
|
|

|

|
|

stem.SQLD

Number of variable elements that the SQLDA actually contains.

stem.n.SQLTYPE

An integer representing the data type of the nth element (for example, the first element is in

stem.1.SQLTYPE).

 The following data types are not allowed:

400/401

NUL-terminated graphic string

404/405

BLOB host variable

408/409

CLOB host variable

412/413

DBCLOB host variable

460/461

NUL-terminated character string

476/477

PASCAL L-string

496/497

Large integer (where scale is greater than 0)

500/501

Small integer (where scale is greater than 0)

504/505

DISPLAY SIGN LEADING SEPARATE

904/905

ROWID

908/909

VARBINARY host variable

912/913

BINARY host variable

916/917

BLOB file reference variable

920/921

CLOB file reference variable

924/925

DBCLOB file reference variable

960/961

BLOB locator

964/965

CLOB locator

968/969

DBCLOB locator

stem.n.SQLLEN

If SQLTYPE does not indicate a DECIMAL or NUMERIC data type, the maximum length of the

data contained in stem.n.SQLDATA.

116 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

stem.n.SQLLEN.SQLPRECISION

If the data type is DECIMAL or NUMERIC, this contains the precision of the number.

stem.n.SQLLEN.SQLSCALE

If the type is DECIMAL or NUMERIC, this contains the scale of the number.

stem.n.SQLCCSID

The CCSID of the nth column of the data.

 The following variables must be provided by the application before an EXECUTE...USING

DESCRIPTOR or an OPEN...USING DESCRIPTOR statement, and they are returned to the

application after a FETCH...USING DESCRIPTOR statement. They are not used after a

DESCRIBE, a DESCRIBE TABLE, or a PREPARE INTO statement:

stem.n.SQLDATA

This contains the input value supplied by the application, or the output value fetched by SQL.

 This value is converted to the attributes specified in SQLTYPE, SQLLEN, SQLPRECISION, and

SQLSCALE.

stem.n.SQLIND

If the input or output value is null, this is a negative number.
 Related information

 SQL descriptor area

Embed SQL statements in REXX applications

An SQL statement can be placed anywhere a REXX command can be placed.

Each SQL statement in a REXX procedure must begin with EXECSQL (in any combination of uppercase

and lowercase letters), followed by either:

v The SQL statement enclosed in single or double quotation marks, or

v A REXX variable containing the statement. Note that a colon must not precede a REXX variable when

it contains an SQL statement.

For example:

EXECSQL “COMMIT”

is equivalent to:

rexxvar = “COMMIT”

EXECSQL rexxvar

The command follows normal REXX rules. For example, it can optionally be followed by a semicolon (;)

to allow a single line to contain more than one REXX statement. REXX also permits command names to

be included within single quotation marks, for example:

’EXECSQL COMMIT’

Embedded SQL programming 117

The SQL/REXX interface supports the following SQL statements:

 ALTER SEQUENCE

ALTER TABLE

CALL

2

CLOSE

COMMENT ON

COMMIT

CREATE ALIAS

CREATE DISTINCT TYPE

CREATE FUNCTION

CREATE INDEX

CREATE PROCEDURE

CREATE SCHEMA

CREATE SEQUENCE

CREATE TABLE

CREATE TRIGGER

CREATE VIEW

DECLARE CURSOR

2

DECLARE GLOBAL TEMPORARY TABLE

DELETE

2

DESCRIBE

DESCRIBE TABLE

DROP

EXECUTE

EXECUTE IMMEDIATE

FETCH

1

GRANT

INSERT

1

LABEL ON

LOCK TABLE

OPEN

PREPARE

REFRESH

RELEASE SAVEPOINT

RENAME

REVOKE

ROLLBACK

SAVEPOINT

SET ENCRYPTION PASSWORD

SET OPTION

3

SET PATH

SET SCHEMA

SET TRANSACTION

SET variable

2

UPDATE

2

VALUES INTO

2

The following SQL statements are not supported by the SQL/REXX interface:

 ALLOCATE DESCRIPTOR

BEGIN DECLARE SECTION

CONNECT

DEALLOCATE DESCRIPTOR

DECLARE PROCEDURE

DECLARE STATEMENT

DECLARE VARIABLE

DESCRIBE INPUT

DISCONNECT

END DECLARE SECTION

FREE LOCATOR

GET DESCRIPTOR

GET DIAGNOSTICS

HOLD LOCATOR

INCLUDE

RELEASE

SELECT INTO

SET CONNECTION

SET CURRENT DEGREE

SET DESCRIPTOR

SET RESULT SETS

SET SESSION AUTHORIZATION

SIGNAL

WHENEVER1

123

Comments in REXX applications that use SQL

Neither SQL comments (--) nor REXX comments are allowed in strings representing SQL statements.

Continuation of SQL statements in REXX applications that use SQL

The string containing an SQL statement can be split into several strings on several lines, separated by

commas or concatenation operators, according to standard REXX usage.

1. The blocked form of this statement is not supported.

2. These statements cannot be run directly if they contain host variables; they must be the object of a PREPARE and then an

EXECUTE.

3. The SET OPTION statement can be used in a REXX procedure to change some of the processing options used for running SQL

statements. These options include the commitment control level and date format. See the SQL Reference topic for more

information about the SET OPTION statement.

118 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Include code in REXX applications that use SQL

Unlike the other host languages, support is not provided for including externally defined statements.

Margins in REXX applications that use SQL

There are no special margin rules for the SQL/REXX interface.

Names in REXX applications that use SQL

Any valid REXX name not ending in a period (.) can be used for a host variable. The name must be 64

characters or less.

Variable names should not begin with the characters ’SQL’, ’RDI’, ’DSN’, ’RXSQL’, or ’QRW’.

Nulls in REXX applications that use SQL

Although the term null is used in both REXX and SQL, the term has different meanings in the two

languages.

REXX has a null string (a string of length zero) and a null clause (a clause consisting only of blanks and

comments). The SQL null value is a special value that is distinct from all non-null values and denotes the

absence of a (non-null) value.

Statement labels in REXX applications that use SQL

REXX command statements can be labeled as usual.

Handle errors and warnings in REXX applications that use SQL

The WHENEVER statement is not supported by the SQL/REXX interface. You can use one of several

substitutes, however.

Any of the following may be used instead:

v A test of the REXX SQLCODE or SQLSTATE variables after each SQL statement to detect error and

warning conditions issued by the database manager, but not for those issued by the SQL/REXX

interface.

v A test of the REXX RC variable after each SQL statement to detect error and warning conditions. Each

use of the EXECSQL command sets the RC variable to:

0 Statement completed successfully.

+10 A SQL warning occurred.

-10 An SQL error occurred

-100 An SQL/REXX interface error occurred.
This can be used to detect errors and warnings issued by either the database manager or by the

SQL/REXX interface.

v The SIGNAL ON ERROR and SIGNAL ON FAILURE facilities can be used to detect errors (negative

RC values), but not warnings.

Use host variables in REXX applications that use SQL

REXX does not provide for variable declarations.

LOB, ROWID, and binary host variables are not supported in REXX. New variables are recognized by

their appearance in assignment statements. Therefore, there is no declare section, and the BEGIN

DECLARE SECTION and END DECLARE SECTION statements are not supported.

All host variables within an SQL statement must be preceded by a colon (:).

The SQL/REXX interface performs substitution in compound variables before passing statements to the

database manager. For example:

Embedded SQL programming 119

a = 1

b = 2

EXECSQL ’OPEN c1 USING :x.a.b’

causes the contents of x.1.2 to be passed to SQL.

Determine data types of input host variables in REXX applications that use SQL

All data in REXX is in the form of strings.

The data type of input host variables (that is, host variables used in a ’USING host variable’ clause in an

EXECUTE or OPEN statement) is inferred by the database manager at run time from the contents of the

variable according to the table below.

These rules define either numeric, character, or graphic values. A numeric value can be used as input to a

numeric column of any type. A character value can be used as input to a character column of any type,

or to a date, time, or timestamp column. A graphic value can be used as input to a graphic column of

any type.

 Table 11. Determine data types of host variables in REXX

Host variable contents Assumed data type

SQL type

code SQL type description

A number with neither decimal point nor

exponent. It can have a leading plus or minus

sign.

Signed integers 496/497 INTEGER

A number that includes a decimal point, but no

exponent,

or a number that does not include a decimal

point or an exponent and is greater than

2147483647 or smaller than -2147483647.

It can have a leading plus or minus sign. m is

the total number of digits in the number. n is

the number of digits to the left of the decimal

point (if any).

Packed decimal 484/485 DECIMAL(m,n)

A number that is in scientific or engineering

notation (that is, followed immediately by an

’E’ or ’e’, an optional plus or minus sign, and a

series of digits). It can have a leading plus or

minus sign.

Floating point 480/481 DOUBLE PRECISION

A string with leading and trailing apostrophes

(’) or quotation marks (″), which has length n

after removing the two delimiters,

or a string with a leading X or x followed by a

single quotation mark (’) or quotation mark (″),

and a trailing apostrophe (’) or quotation mark

(″). The string has a length of 2n after removing

the X or x and the two delimiters. Each

remaining pair of characters is the hexadecimal

representation of a single character.

or a string of length n, which cannot be

recognized as character, numeric, or graphic

through other rules in this table

Varying-length character

string

448/449 VARCHAR(n)

120 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Table 11. Determine data types of host variables in REXX (continued)

Host variable contents Assumed data type

SQL type

code SQL type description

A string with a leading and trailing apostrophe

(’) or quotation marks (″) preceded by:

1

v A string that starts with a G, g, N or n. This

is followed by a single quotation mark or

quotation mark and a shift-out (x’0E’). This is

followed by n graphic characters, each 2

characters long. The string must end with a

shift-in (X’0F’) and a single quotation mark

or quotation mark (whichever the string

started with).

v A string with a leading GX, Gx, gX, or gx,

followed by a single quotation mark or

quotation mark and a shift-out (x’0E’). This is

followed by n graphic characters, each 2

characters long. The string must end with a

shift-in (X’0F’) and a single quotation mark

or quotation mark (whichever the string

started with). The string has a length of 4n

after removing the GX and the delimiters.

Each remaining group of 4 characters is the

hexadecimal representation of a single

graphic character.

Varying-length graphic

string

464/465 VARGRAPHIC(n)

Undefined Variable Variable for which a

value has not been

assigned

None Data that is not valid

was detected.

Note: The byte immediately following the leading apostrophe is a X’0E’ shift-out, and the byte

immediately preceding the trailing apostrophe is a X’0F’ shift-in.

The format of output host variables in REXX applications that use SQL

It is not necessary to determine the data type of an output host variable (that is, a host variable used in an

’INTO host variable’ clause in a FETCH statement).

Output values are assigned to host variables as follows:

v Character values are assigned without leading and trailing apostrophes.

v Graphic values are assigned without a leading G or apostrophe, without a trailing apostrophe, and

without shift-out and shift-in characters.

v Numeric values are translated into strings.

v Integer values do not retain any leading zeros. Negative values have a leading minus sign.

v Decimal values retain leading and trailing zeros according to their precision and scale. Negative values

have a leading minus sign. Positive values do not have a leading plus sign.

v Floating-point values are in scientific notation, with one digit to the left of the decimal place. The ’E’ is

in uppercase.

Avoid REXX conversion in REXX applications that use SQL

To guarantee that a string is not converted to a number or assumed to be of graphic type, strings should

be enclosed in the following: ″’″. Simply enclosing the string in single quotation marks does not work.

For example:

stringvar = ’100’

Embedded SQL programming 121

causes REXX to set the variable stringvar to the string of characters 100 (without the single quotation

marks). This is evaluated by the SQL/REXX interface as the number 100, and it is passed to SQL as such.

On the other hand,

stringvar = “’“100”’”

causes REXX to set the variable stringvar to the string of characters ’100’ (with the single quotation

marks). This is evaluated by the SQL/REXX interface as the string 100, and it is passed to SQL as such.

Use indicator variables in REXX applications that use SQL

An indicator variable is an integer.

On retrieval, an indicator variable is used to show if its associated host variable was assigned a null

value. On assignment to a column, a negative indicator variable is used to indicate that a null value

should be assigned.

Unlike other languages, a valid value must be specified in the host variable even if its associated

indicator variable contains a negative value.

 Related reference

 References to variables

Prepare and run a program with SQL statements

This topic describes some of the tasks for preparing and running an application program.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

 Related concepts

 “Write applications that use SQL” on page 2
You can create database applications in host languages that use DB2 UDB for iSeries SQL statements

and functions.

Basic processes of the SQL precompiler

You must precompile and compile an application program containing embedded SQL statements before

you can run it.

Note: SQL statements in a REXX procedure are not precompiled and compiled.

Precompiling of such programs is done by the SQL precompiler. The SQL precompiler scans each

statement of the application program source and does the following:

v Looks for SQL statements and for the definition of host variable names. The variable names and

definitions are used to verify the SQL statements. You can examine the listing after the SQL

precompiler completes processing to see if any errors occurred.

v Verifies that each SQL statement is valid and free of syntax errors. The validation procedure supplies

error messages in the output listing that help you correct any errors that occur.

v Validates the SQL statements using the description in the database. During the precompile, the SQL

statements are checked for valid table, view, and column names. If a specified table or view does not

exist, or you are not authorized to the table or view at the time of the precompile or compile, the

validation is done at run time. If the table or view does not exist at run time, an error occurs.

Notes:

1. Overrides are processed when retrieving external definitions.

122 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

2. You need some authority (at least *OBJOPR) to any tables or views referred to in the SQL

statements in order to validate the SQL statements. The actual authority required to process

any SQL statement is checked at run time.

3. When the RDB parameter is specified on the CRTSQLxxx commands, the precompiler

accesses the specified relational database to obtain the table and view descriptions.
v Prepares each SQL statement for compilation in the host language. For most SQL statements, the SQL

precompiler inserts a comment and a CALL statement to one of the SQL interface modules. For some

SQL statements (for example, DECLARE statements), the SQL precompiler produces no host language

statement except a comment.

v Produces information about each precompiled SQL statement. The information is stored internally in

a temporary source file member, where it is available for use during the bind process.

To get complete diagnostic information when you precompile, specify either of the following:

v OPTION(*SOURCE *XREF) for CRTSQLxxx (where xxx=CBL, PLI, or RPG)

v OPTION(*XREF) OUTPUT(*PRINT) for CRTSQLxxx (where xxx=CI, CPPI, CBLI, or RPGI)

 Related information

 Database programming

 Database file management

 SQL reference

Input to the SQL precompiler

Application programming statements and embedded SQL statements are the primary input to the SQL

precompiler.

In PL/I, C, and C++ programs, the SQL statements must use the margins that are specified in the

MARGINS parameter of the CRTSQLPLI, CRTSQLCI, and CRTSQLCPPI commands.

The SQL precompiler assumes that the host language statements are syntactically correct. If the host

language statements are not syntactically correct, the precompiler may not correctly identify SQL

statements and host variable declarations. There are limits on the forms of source statements that can be

passed through the precompiler. Literals and comments that are not accepted by the application language

compiler, can interfere with the precompiler source scanning process and cause errors.

You can use the SQL INCLUDE statement to get secondary input from the file that is specified by the

INCFILE parameter of the CRTSQLxxx. The xxx in this command refers to the host language indicators:

CBL for the COBOL for iSeries language, CBLI for the ILE COBOL for iSeries language, PLI for the

iSeries PL/I language, CI for the ILE C for iSeries language, RPG for the RPG/400 language, RPGI for the

ILE RPG language, CPPI for the ILE C++/400 language. The SQL INCLUDE statement causes input to be

read from the specified member until it reaches the end of the member. The included member may not

contain other precompiler INCLUDE statements, but can contain both application program and SQL

statements.

If mixed DBCS constants are specified in the application program source, the source file must be a mixed

CCSID.

You can specify many of the precompiler options in the input source member by using the SQL SET

OPTION statement.

The RPG preprocessor options (RPGPPORT) parameter of the CRTSQLRPGI command has two options to

call the RPG preprocessor. If *LVL1 or *LVL2 is specified, the RPG compiler will be called to preprocess

the source member before the SQL precompile is run. Preprocessing the SQL source member will allow

many compiler directives to be handled before the SQL precompile. The preprocessed source will be

placed in file QSQLPRE in QTEMP. This source will be used as the input for the SQL precompile. The

CCSID used by the SQL precompile is the CCSID of QSQLPRE.

Embedded SQL programming 123

Related information

 SET OPTION

 CRTSQLRPGI command

Source file CCSIDs in the SQL precompiler

The SQL precompiler reads the source records by using the CCSID of the source file.

When processing SQL INCLUDE statements, the include source is converted to the CCSID of the original

source file if necessary. If the include source cannot be converted to the CCSID of the original source file,

an error occurs.

The SQL precompiler processes SQL statements using the source CCSID. This affects variant characters

the most. For example, the not sign (¬) is located at ’BA’X in CCSID 500. This means that if the CCSID of

your source file is 500, SQL expects the not sign (¬) to be located at ’BA’X.

If the source file CCSID is 65535, SQL processes variant characters as if they had a CCSID of 37. This

means that SQL looks for the not sign (¬) at ’5F’X.

Output from the SQL precompiler

The following sections describe the various kinds of output supplied by the precompiler.

Listing:

The output listing is sent to the printer file that is specified by the PRTFILE parameter of the CRTSQLxxx

command.

 The following items are written to the printer file:

v Precompiler options

Options specified in the CRTSQLxxx command.

v Precompiler source

This output supplies precompiler source statements with the record numbers that are assigned by the

precompiler, if the listing option is in effect.

v Precompiler cross-reference

If *XREF was specified in the OPTION parameter, this output supplies a cross-reference listing. The

listing shows the precompiler record numbers of SQL statements that contain the referred to host

names and column names.

v Precompiler diagnostics

This output supplies diagnostic messages, showing the precompiler record numbers of statements in

error.

The output to the printer file will use a CCSID value of 65535. The data will not be converted when it

is written to the printer file.

Temporary source file members created by the SQL precompiler:

Source statements processed by the precompiler are written to an output source file.

 In the precompiler-changed source code, SQL statements have been converted to comments and calls to

the SQL runtime. Includes that are processed by SQL are expanded.

The output source file is specified on the CRTSQLxxx command in the TOSRCFILE parameter. For

languages other than C and C++, the default file is QSQLTEMP (QSQLTEMP1 for ILE RPG) in the

QTEMP library. For C and C++ when *CALC is specified as the output source file, QSQLTEMP will be

used if the source file’s record length is 92 or less. For a C or C++ source file where the record length is

greater than 92, the output source file name will be generated as QSQLTxxxxx, where xxxxx is the record

124 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

length. The name of the output source file member is the same as the name specified in the PGM or OBJ

parameter of the CRTSQLxxx command. This member cannot be changed before being used as input to

the compiler. When SQL creates the output source file, it uses the CCSID value of the source file as the

CCSID value for the new file.

If the precompile generates output in a source file in QTEMP, the file can be moved to a permanent

library after the precompile if you want to compile at a later time. You cannot change the records of the

source member, or the attempted compile fails.

The source member that is generated by SQL as the result of the precompile should never be edited and

reused as an input member to another precompile step. The additional SQL information that is saved

with the source member during the first precompile will cause the second precompile to work incorrectly.

Once this information is attached to a source member, it stays with the member until the member is

deleted.

The SQL precompiler uses the CRTSRCPF command to create the output source file. If the defaults for

this command have changed, then the results may be unpredictable. If the source file is created by the

user, not the SQL precompiler, the file’s attributes may be different as well. It is recommended that the

user allow SQL to create the output source file. Once it has been created by SQL, it can be reused on later

precompiles.

Sample SQL precompiler output:

The precompiler output can provide information about your program source.

 To generate the listing:

v For non-ILE precompilers, specify the *SOURCE (*SRC) and *XREF options on the OPTION parameter

of the CRTSQLxxx command.

v For ILE precompilers, specify OPTION(*XREF) and OUTPUT(*PRINT) on the CRTSQLxxx command.

The format of the precompiler output is:

Embedded SQL programming 125

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLTEST1 08/06/02 11:14:21 Page 1

Source type...............COBOL

Program name..............CORPDATA/CBLTEST1

Source file...............CORPDATA/SRC

Member....................CBLTEST1

To source file............QTEMP/QSQLTEMP

(1)Options...................*SRC *XREF *SQL

Target release............V5R4M0

INCLUDE file..............*SRCFILE

Commit....................*CHG

Allow copy of data........*YES

Close SQL cursor..........*ENDPGM

Allow blocking............*READ

Delay PREPARE.............*NO

Generation level..........10

Printer file..............*LIBL/QSYSPRT

Date format...............*JOB

Date separator............*JOB

Time format...............*HMS

Time separator*JOB

Replace...................*YES

Relational database.......*LOCAL

User*CURRENT

RDB connect method........*DUW

Default Collection........*NONE

Dynamic default

 collection..............*NO

Package name..............*PGMLIB/*PGM

Path......................*NAMING

SQL rules.................*DB2

User profile..............*NAMING

Dynamic User Profile......*USER

Sort Sequence.............*JOB

Language ID...............*JOB

IBM SQL flagging..........*NOFLAG

ANS flagging..............*NONE

Text......................*SRCMBRTXT

Source file CCSID.........65535

Job CCSID.................65535

Decimal result options:

 Maximum precision.......31

 Maximum scale...........31

 Minimum divide scale....0

Compiler options..........*NONE

(2) Source member changed on 06/06/00 10:16:44

1 A list of the options you specified when the SQL precompiler was called.

2 The date the source member was last changed.

Figure 2. Sample COBOL precompiler output format

126 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLTEST1 08/06/02 11:14:21 Page 2

(1)Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 (2)SEQNBR (3)Last Change

 1 IDENTIFICATION DIVISION. 100

 2 PROGRAM-ID. CBLTEST1. 200

 3 ENVIRONMENT DIVISION. 300

 4 CONFIGURATION SECTION. 400

 5 SOURCE-COMPUTER. IBM-AS400. 500

 6 OBJECT-COMPUTER. IBM-AS400. 600

 7 INPUT-OUTPUT SECTION. 700

 8 FILE-CONTROL. 800

 9 SELECT OUTFILE, ASSIGN TO PRINTER-QPRINT, 900

 10 FILE STATUS IS FSTAT. 1000

 11 DATA DIVISION. 1100

 12 FILE SECTION. 1200

 13 FD OUTFILE 1300

 14 DATA RECORD IS REC-1, 1400

 15 LABEL RECORDS ARE OMITTED. 1500

 16 01 REC-1. 1600

 17 05 CC PIC X. 1700

 18 05 DEPT-NO PIC X(3). 1800

 19 05 FILLER PIC X(5). 1900

 20 05 AVERAGE-EDUCATION-LEVEL PIC ZZZ. 2000

 21 05 FILLER PIC X(5). 2100

 22 05 AVERAGE-SALARY PIC ZZZZ9.99. 2200

 23 01 ERROR-RECORD. 2300

 24 05 CC PIC X. 2400

 25 05 ERROR-CODE PIC S9(5). 2500

 26 05 ERROR-MESSAGE PIC X(70). 2600

 27 WORKING-STORAGE SECTION. 2700

 28 EXEC SQL 2800

 29 INCLUDE SQLCA 2900

 30 END-EXEC. 3000

 31 77 FSTAT PIC XX. 3100

 32 01 AVG-RECORD. 3200

 33 05 WORKDEPT PIC X(3). 3300

 34 05 AVG-EDUC PIC S9(4) USAGE COMP-4. 3400

 35 05 AVG-SALARY PIC S9(6)V99 COMP-3. 3500

 36 PROCEDURE DIVISION. 3600

 37 *** 3700

 38 * This program will get the average education level and the * 3800

 39 * average salary by department. * 3900

 40 *** 4000

 41 A000-MAIN-PROCEDURE. 4100

 42 OPEN OUTPUT OUTFILE. 4200

 43 *** 4300

 44 * Set-up WHENEVER statement to handle SQL errors. * 4400

 45 *** 4500

 46 EXEC SQL 4600

 47 WHENEVER SQLERROR GO TO B000-SQL-ERROR 4700

 48 END-EXEC. 4800

1 Record number assigned by the precompiler when it reads the source record. Record numbers are used to identify the source record in

error messages and SQL run-time processing.

2 Sequence number taken from the source record. The sequence number is the number seen when you use the source entry utility (SEU)

to edit the source member.

3 Date when the source record was last changed. If Last Change is blank, it indicates that the record has not been changed since it was

created.

Embedded SQL programming 127

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLTEST1 08/06/02 11:14:21 Page 3

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 49 *** 4900

 50 * Declare cursor * 5000

 51 *** 5100

 52 EXEC SQL 5200

 53 DECLARE CURS CURSOR FOR 5300

 54 SELECT WORKDEPT, AVG(EDLEVEL), AVG(SALARY) 5400

 55 FROM CORPDATA.EMPLOYEE 5500

 56 GROUP BY WORKDEPT 5600

 57 END-EXEC. 5700

 58 *** 5800

 59 * Open cursor * 5900

 60 *** 6000

 61 EXEC SQL 6100

 62 OPEN CURS 6200

 63 END-EXEC. 6300

 64 *** 6400

 65 * Fetch all result rows * 6500

 66 *** 6600

 67 PERFORM A010-FETCH-PROCEDURE THROUGH A010-FETCH-EXIT 6700

 68 UNTIL SQLCODE IS = 100. 6800

 69 *** 6900

 70 * Close cursor * 7000

 71 *** 7100

 72 EXEC SQL 7200

 73 CLOSE CURS 7300

 74 END-EXEC. 7400

 75 CLOSE OUTFILE. 7500

 76 STOP RUN. 7600

 77 *** 7700

 78 * Fetch a row and move the information to the output record. * 7800

 79 *** 7900

 80 A010-FETCH-PROCEDURE. 8000

 81 MOVE SPACES TO REC-1. 8100

 82 EXEC SQL 8200

 83 FETCH CURS INTO :AVG-RECORD 8300

 84 END-EXEC. 8400

 85 IF SQLCODE IS = 0 8500

 86 MOVE WORKDEPT TO DEPT-NO 8600

 87 MOVE AVG-SALARY TO AVERAGE-SALARY 8700

 88 MOVE AVG-EDUC TO AVERAGE-EDUCATION-LEVEL 8800

 89 WRITE REC-1 AFTER ADVANCING 1 LINE. 8900

 90 A010-FETCH-EXIT. 9000

 91 EXIT. 9100

 92 *** 9200

 93 * An SQL error occurred. Move the error number to the error * 9300

 94 * record and stop running. * 9400

 95 *** 9500

 96 B000-SQL-ERROR. 9600

 97 MOVE SPACES TO ERROR-RECORD. 9700

 98 MOVE SQLCODE TO ERROR-CODE. 9800

 99 MOVE "AN SQL ERROR HAS OCCURRED" TO ERROR-MESSAGE. 9900

 100 WRITE ERROR-RECORD AFTER ADVANCING 1 LINE. 10000

 101 CLOSE OUTFILE. 10100

 102 STOP RUN. 10200

* * * * * E N D O F S O U R C E * * * * *

128 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

1 Data names are the symbolic names used in source statements.

2 The define column specifies the line number at which the name is defined. The line number is

generated by the SQL precompiler. **** means that the object was not defined or the precompiler

did not recognize the declarations.

3 The reference column contains two types of information:

v What the symbolic name is defined as 4

v The line numbers where the symbolic name occurs 5

If the symbolic name refers to a valid host variable, the data-type 6 or data-structure 7 is also

noted.

Non-ILE SQL precompiler commands

DB2 UDB Query Manager and SQL Development Kit includes non-ILE precompiler commands for the

following host languages: CRTSQLCBL (for COBOL for iSeries), CRTSQLPLI (for iSeries PL/I), and

CRTSQLRPG (for RPG III, which is part of RPG/400).

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLTEST1 08/06/02 11:14:21 Page 4

CROSS REFERENCE

1 2 3

Data Names Define Reference

AVERAGE-EDUCATION-LEVEL 20 IN REC-1

AVERAGE-SALARY 22 IN REC-1

AVG-EDUC 34 SMALL INTEGER PRECISION(4,0) IN AVG-RECORD

AVG-RECORD 32 STRUCTURE

 83

AVG-SALARY 35 DECIMAL(8,2) IN AVG-RECORD

BIRTHDATE 55 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

BONUS 55 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

B000-SQL-ERROR **** LABEL

 47

CC 17 CHARACTER(1) IN REC-1

CC 24 CHARACTER(1) IN ERROR-RECORD

COMM 55 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

CORPDATA **** (4) COLLECTION

 (5) 55

CURS 53 CURSOR

 62 73 83

DEPT-NO 18 CHARACTER(3) IN REC-1

EDLEVEL **** COLUMN

 54

 (6)

EDLEVEL 55 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMPLOYEE **** TABLE IN CORPDATA (7)

 55

EMPNO 55 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

ERROR-CODE 25 NUMERIC(5,0) IN ERROR-RECORD

ERROR-MESSAGE 26 CHARACTER(70) IN ERROR-RECORD

ERROR-RECORD 23 STRUCTURE

FIRSTNME 55 VARCHAR(12) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

FSTAT 31 CHARACTER(2)

HIREDATE 55 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

JOB 55 CHARACTER(8) COLUMN IN CORPDATA.EMPLOYEE

LASTNAME 55 VARCHAR(15) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

MIDINIT 55 CHARACTER(1) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

PHONENO 55 CHARACTER(4) COLUMN IN CORPDATA.EMPLOYEE

REC-1 16

SALARY **** COLUMN

 54

SALARY 55 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

SEX 55 CHARACTER(1) COLUMN IN CORPDATA.EMPLOYEE

WORKDEPT 33 CHARACTER(3) IN AVG-RECORD

WORKDEPT **** COLUMN

 54 56

WORKDEPT 55 CHARACTER(3) COLUMN IN CORPDATA.EMPLOYEE

No errors found in source

102 Source records processed

* * * * * E N D O F L I S T I N G * * * * *

Embedded SQL programming 129

Some options only apply to certain languages. For example, the options *APOST and *QUOTE are unique

to COBOL. They are not included in the commands for the other languages.

 Related concepts

 “DB2 UDB for iSeries CL command descriptions for host language precompilers” on page 174
DB2 UDB for iSeries provides commands for precompiling programs coded in the following

programming languages:

Compile a non-ILE application program that uses SQL

The SQL precompiler automatically calls the host language compiler after the successful completion of a

precompile, unless *NOGEN is specified.

The CRTxxxPGM command is run specifying the program name, source file name, precompiler created

source member name, text, and USRPRF.

Within these languages, the following parameters are passed:

v For COBOL, the *QUOTE or *APOST is passed on the CRTCBLPGM command.

v For RPG and COBOL, SAAFLAG (*FLAG) is passed on the CRTxxxPGM command.

v For RPG and COBOL, the SRTSEQ and LANGID parameter from the CRTSQLxxx command is

specified on the CRTxxxPGM command.

v For RPG and COBOL, the CVTOPT (*DATETIME *VARCHAR) is always specified on the CRTxxxPGM

command.

v For COBOL and RPG, the TGTRLS parameter value from the CRTSQLxxx command is specified on the

CRTxxxPGM command. TGTRLS is not specified on the CRTPLIPGM command. The program can be

saved or restored to the level specified on the TGTRLS parameter of the CRTSQLPLI command.

v For PL/I, the MARGINS are set in the temporary source file.

v For all languages, the REPLACE parameter from the CRTSQLxxx command is specified on the

CRTxxxPGM command.

If a package is created as part of the precompile process, the REPLACE parameter value from the

CRTSQLxxx command is specified on the CRTSQLPKG command.

v For all languages, if USRPRF(*USER) or system naming (*SYS) with USRPRF(*NAMING) is specified,

then USRPRF(*USER) is specified on the CRTxxxPGM command. If USRPRF(*OWNER) or SQL naming

(*SQL) with USRPRF(*NAMING) is specified, then USRPRF(*OWNER) is specified on the CRTxxxPGM

command.

Defaults are used for all other parameters with CRTxxxPGM commands.

You can interrupt the call to the host language compiler by specifying *NOGEN on the OPTION

parameter of the precompiler command. *NOGEN specifies that the host language compiler will not be

called. Using the object name in the CRTSQLxxx command as the member name, the precompiler created

the source member in the output source file (specified as the TOSRCFILE parameter on the CRTSQLxxx

command). You now can explicitly call the host language compilers, specify the source member in the

output source file, and change the defaults. If the precompile and compile were done as separate steps,

the CRTSQLPKG command can be used to create the SQL package for a distributed program.

Note: You must not change the source member in QTEMP/QSQLTEMP prior to issuing the CRTxxxPGM

command or the compile will fail.

ILE SQL precompiler commands

In the DB2 UDB Query Manager and SQL Development Kit, the following ILE precompiler commands

exist: CRTSQLCI, CRTSQLCPPI, CRTSQLCBLI, and CRTSQLRPGI.

There is a precompiler command for each of the host languages: ILE C for iSeries, ILE C++ for iSeries,

ILE COBOL for iSeries, and ILE RPG. Separate commands, by language, let you specify the required

130 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

parameters and take the default for the remaining parameters. The defaults are applicable only to the

language you are using. For example, the options *APOST and *QUOTE are unique to COBOL. They are

not included in the commands for the other languages.

 Related concepts

 “DB2 UDB for iSeries CL command descriptions for host language precompilers” on page 174
DB2 UDB for iSeries provides commands for precompiling programs coded in the following

programming languages:

Compile an ILE application program that uses SQL

The SQL precompiler automatically calls the host language compiler after the successful completion of a

precompile for the CRTSQLxxx commands, unless *NOGEN is specified.

If the *MODULE option is specified, the SQL precompiler issues the CRTxxxMOD command to create the

module. If the *PGM option is specified, the SQL precompiler issues the CRTBNDxxx command to create

the program. If the *SRVPGM option is specified, the SQL precompiler issues the CRTxxxMOD command

to create the module, followed by the Create Service Program (CRTSRVPGM) command to create the

service program. The CRTSQLCPPI command only creates *MODULE objects.

Within these languages, the following parameters are passed:

v If DBGVIEW(*SOURCE) is specified on the CRTSQLxxx command, then DBGVIEW(*ALL) is specified

on both the CRTxxxMOD and CRTBNDxxx commands.

v If OUTPUT(*PRINT) is specified on the CRTSQLxxx command, it is passed on both the CRTxxxMOD

and CRTBNDxxx commands.

If OUTPUT(*NONE) is specified on the CRTSQLxxx command, it is not specified on either the

CRTxxxMOD command or the CRTBNDxxx command.

v The TGTRLS parameter value from the CRTSQLxxx command is specified on the CRTxxxMOD,

CRTBNDxxx, and Create Service Program (CRTSRVPGM) commands.

v The REPLACE parameter value from the CRTSQLxxx command is specified on the CRTxxxMOD,

CRTBNDxxx, and CRTSRVPGM commands.

If a package is created as part of the precompile process, the REPLACE parameter value from the

CRTSQLxxx command is specified on the CRTSQLPKG command.

v If OBJTYPE is either *PGM or *SRVPGM, and USRPRF(*USER) or system naming (*SYS) with

USRPRF(*NAMING) is specified, USRPRF(*USER) is specified on the CRTBNDxxx or the CRTSRVPGM

commands.

If OBJTYPE is either *PGM or *SRVPGM, and USRPRF(*OWNER) or SQL naming (*SQL) with

USRPRF(*NAMING) is specified, USRPRF(*OWNER) is specified on the CRTBNDxxx or the

CRTSRVPGM commands.

v For C and C++, the MARGINS are set in the temporary source file.

If the precompiler calculates that the total length of the LOB host variables is close to 15M, the

TERASPACE(*YES *TSIFC) option is specified on the CRTCMOD, CRTBNDC, or CRTCPPMOD

commands.

v For COBOL, the *QUOTE or *APOST is passed on the CRTBNDCBL or the CRTCBLMOD commands.

v FOR RPG and COBOL, the SRTSEQ and LANGID parameter from the CRTSQLxxx command is

specified on the CRTxxxMOD and CRTBNDxxx commands.

v For COBOL, CVTOPT(*VARCHAR *DATETIME *PICGGRAPHIC *FLOAT) is always specified on the

CRTCBLMOD and CRTBNDCBL commands. If OPTION(*NOCVTDT) is specified (the shipped

command default), the additional options *DATE *TIME *TIMESTAMP are also specified for the

CVTOPT.

v For RPG, if OPTION(*CVTDT) is specified, then CVTOPT(*DATETIME) is specified on the

CRTRPGMOD and CRTBNDRPG commands.

Embedded SQL programming 131

You can interrupt the call to the host language compiler by specifying *NOGEN on the OPTION

parameter of the precompiler command. *NOGEN specifies that the host language compiler is not called.

Using the specified program name in the CRTSQLxxx command as the member name, the precompiler

creates the source member in the output source file (TOSRCFILE parameter). You can now explicitly call

the host language compiler, specify the source member in the output source file, and change the defaults.

If the precompile and compile were done as separate steps, the CRTSQLPKG command can be used to

create the SQL package for a distributed program.

If the program or service program is created later, the USRPRF parameter may not be set correctly on the

CRTBNDxxx, Create Program (CRTPGM), or Create Service Program (CRTSRVPGM) command. The SQL

program runs predictably only after the USRPRF parameter is corrected. If system naming is used, then

the USRPRF parameter must be set to *USER. If SQL naming is used, then the USRPRF parameter must

be set to *OWNER.

Set compiler options using the precompiler commands

The COMPILEOPT string is available on the precompiler command and on the SET OPTION statement to

allow additional parameters to be used on the compiler command.

The COMPILEOPT string is added to the compiler command built by the precompiler. This allows

specifying compiler parameters without requiring a two step process of precompiling and then compiling.

Do not specify parameters in the COMPILEOPT string that the SQL precompiler passes. Doing so will

cause the compiler command to fail with a duplicate parameter error. It is possible that the SQL

precompiler will pass additional parameters to the compiler in the future. This could lead to a duplicate

parameter error, requiring your COMPILEOPT string to be changed at that time.

If ″INCDIR(″ is anywhere in the COMPILEOPT string, the precompiler will call the compiler using the

SRCSTMF parameter.

EXEC SQL SET OPTION COMPILEOPT =’OPTION(*SHOWINC *EXPMAC)

 INCDIR(’’/QSYS.LIB/MYLIB.LIB/MYFILE.MBR ’’)’;

Interpret compile errors in applications that use SQL

Sometimes you will encounter compile errors. Use the following information to interpret these errors.

Attention: If you separate precompile and compile steps, and the source program refers to externally

described files, the referred to files must not be changed between precompile and compile. Otherwise,

results that are not predictable may occur because the changes to the field definitions are not changed in

the temporary source member.

Examples of externally described files are:

v COPY DDS in COBOL

v %INCLUDE in PL/I

v #pragma mapinc and #include in C or C++

v Externally-described files and externally-described data structures in RPG

When the SQL precompiler does not recognize host variables, try compiling the source. The compiler will

not recognize the EXEC SQL statements, ignore these errors. Verify that the compiler interprets the host

variable declaration as defined by the SQL precompiler for that language.

Error and warning messages during a compile of application programs that use

SQL

The conditions described in the following topics could produce an error or warning message during an

attempted compile process.

 Related concepts

132 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

“Code SQL statements in C and C++ applications” on page 13

This topic describes the unique application and coding requirements for embedding SQL statements in

a C or C++ program.

 “Code SQL statements in COBOL applications” on page 41

This topic describes the unique application and coding requirements for embedding SQL statements in

a COBOL program. Requirements for host structures and host variables are defined.

 “Code SQL statements in PL/I applications” on page 66
This topic describes the unique application and coding requirements for embedding SQL statements in

an iSeries PL/I program. Requirements for host structures and host variables are defined.

 “Code SQL statements in RPG/400 applications” on page 81
The RPG/400 licensed program supports both RPG II and RPG III programs.

 “Code SQL statements in ILE RPG applications” on page 91

This topic describes the unique application and coding requirements for embedding SQL statements in

an ILE RPG program. The coding requirements for host variables are defined.

 “Code SQL statements in REXX applications” on page 114

REXX procedures do not have to be preprocessed. At run time, the REXX interpreter passes statements

that it does not understand to the current active command environment for processing.

Error and warning messages during a PL/I, C, or C++ Compile:

If EXEC SQL starts before the left margin (as specified with the MARGINS parameter, the default), the

SQL precompiler will not recognize the statement as an SQL statement. Consequently, it will be passed as

is to the compiler.

Error and warning messages during a COBOL compile:

If EXEC SQL starts before column 12, the SQL precompiler will not recognize the statement as an SQL

statement. Consequently, it will be passed as is to the compiler.

Error and warning messages during a RPG compile:

If EXEC SQL is not coded in positions 8 through 16, and preceded with the ’/’ character in position 7, the

SQL precompiler will not recognize the statement as an SQL statement. Consequently, it will be passed as

is to the compiler.

 For more information, see the specific programming examples in the language sections.

Bind an application that uses SQL

Before you can run your application program, a relationship between the program and any specified

tables and views must be established. This process is called binding. The result of binding is an access

plan.

The access plan is a control structure that describes the actions necessary to satisfy each SQL request. An

access plan contains information about the program and about the data the program intends to use.

For a nondistributed SQL program, the access plan is stored in the program. For a distributed SQL

program (where the RDB parameter was specified on the CRTSQLxxx command), the access plan is

stored in the SQL package at the specified relational database.

SQL automatically attempts to bind and create access plans when the program object is created. For

non-ILE compiles, this occurs as the result of a successful CRTxxxPGM. For ILE compiles, this occurs as

the result of a successful CRTBNDxxx, CRTPGM, or CRTSRVPGM command. If DB2 UDB for iSeries

detects at run time that an access plan is not valid (for example, the referenced tables are in a different

Embedded SQL programming 133

library) or detects that changes have occurred to the database that may improve performance (for

example, the addition of indexes), a new access plan is automatically created. Binding does three things:

1. It revalidates the SQL statements using the description in the database. During the bind process,

the SQL statements are checked for valid table, view, and column names. If a specified table or view

does not exist at the time of the precompile or compile, the validation is done at run time. If the table

or view does not exist at run time, a negative SQLCODE is returned.

2. It selects the index needed to access the data your program wants to process. In selecting an index,

table sizes, and other factors are considered, when it builds an access plan. It considers all indexes

available to access the data and decides which ones (if any) to use when selecting a path to the data.

3. It attempts to build access plans. If all the SQL statements are valid, the bind process then builds and

stores access plans in the program.

If the characteristics of a table or view your program accesses have changed, the access plan may no

longer be valid. When you attempt to run a program that contains an access plan that is not valid, the

system automatically attempts to rebuild the access plan. If the access plan cannot be rebuilt, a negative

SQLCODE is returned. In this case, you might have to change the program’s SQL statements and reissue

the CRTSQLxxx command to correct the situation.

For example, if a program contains an SQL statement that refers to COLUMNA in TABLEA and the user

deletes and recreates TABLEA so that COLUMNA no longer exists, when you call the program, the

automatic rebind will be unsuccessful because COLUMNA no longer exists. In this case you must change

the program source and reissue the CRTSQLxxx command.

Program references in applications that use SQL

All schemas, tables, views, SQL packages, and indexes referenced in SQL statements in an SQL program

are placed in the object information repository (OIR) of the library when the program is created.

You can use the CL command Display Program References (DSPPGMREF) to display all object references

in the program. If the SQL naming convention is used, the library name is stored in the OIR in one of

three ways:

1. If the SQL name is fully qualified, the collection name is stored as the name qualifier.

2. If the SQL name is not fully qualified and the DFTRDBCOL parameter is not specified, the

authorization ID of the statement is stored as the name qualifier.

3. If the SQL name is not fully qualified and the DFTRDBCOL parameter is specified, the schema name

specified on the DFTRDBCOL parameter is stored as the name qualifier.

If the system naming convention is used, the library name is stored in the OIR in one of three ways:

1. If the object name is fully qualified, the library name is stored as the name qualifier.

2. If the object is not fully qualified and the DFTRDBCOL parameter is not specified, *LIBL is stored.

3. If the SQL name is not fully qualified and the DFTRDBCOL parameter is specified, the schema name

specified on the DFTRDBCOL parameter is stored as the name qualifier.

Display SQL precompiler options

When the SQL application program is successfully compiled, the Display Module (DSPMOD), the Display

Program (DSPPGM), or the Display Service Program (DSPSRVPGM) command can be used to determine

some of the options that were specified on the SQL precompile.

This information may be needed when the source of the program has to be changed. These same SQL

precompiler options can then be specified on the CRTSQLxxx command when the program is compiled

again.

The Print SQL Information (PRTSQLINF) command can also be used to determine some of the options

that were specified on the SQL precompile.

134 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Run a program with embedded SQL

Running a host language program with embedded SQL statements, after the precompile and compile

have been successfully done, is the same as running any host program.

Enter the following CALL statement:

CALL pgm-name

on the system command line.

Note: After installing a new release, users may encounter message CPF2218 in QHST using any

Structured Query Language (SQL) program if the user does not have *CHANGE authority to the

program. Once a user with *CHANGE authority calls the program, the access plan is updated and

the message will be issued.

 Related information

 CL programming

Run a program with embedded SQL: i5/OS™ DDM considerations

SQL does not support remote file access through DDM (distributed data management) files. SQL does

support remote access through DRDA® (Distributed Relational Database Architecture™).

Run a program with embedded SQL: Override considerations

You can use overrides (specified by the OVRDBF command) to direct a reference to a different table or

view or to change certain operational characteristics of the program or SQL Package.

The following parameters are processed if an override is specified:

v TOFILE

v MBR

v SEQONLY

v INHWRT

v WAITRCD

All other override parameters are ignored. Overrides of statements in SQL packages are accomplished by

doing both of the following:

1. Specifying the OVRSCOPE(*JOB) parameter on the OVRDBF command

2. Sending the command to the application server by using the Submit Remote Command

(SBMRMTCMD) command

To override tables and views that are created with long names, you can create an override using the

system name that is associated with the table or view. When the long name is specified in an SQL

statement, the override is found using the corresponding system name.

An alias is actually created as a DDM file. You can create an override that refers to an alias name (DDM

file). In this case, an SQL statement that refers to the file that has the override actually uses the file to

which the alias refers.

 Related information

 Database programming

 Database file management

Run a program with embedded SQL: SQL return codes

An SQL return code is sent by the database manager after the completion of each SQL statement.

 Related information

 SQL messages and codes

Embedded SQL programming 135

Sample programs using DB2 UDB for iSeries statements

This topic contains a sample application showing how to code SQL statements in each of the languages

supported by the DB2 UDB for iSeries system.

The sample application gives raises based on commission.

Each sample program produces the same report, which is shown at the end of this topic. The first part of

the report shows, by project, all employees working on the project who received a raise. The second part

of the report shows the new salary expense for each project.

Notes about the sample programs

The following notes apply to all the sample programs:

 SQL statements can be entered in uppercase or lowercase.

1 This host language statement retrieves the external definitions for the SQL table PROJECT. These

definitions can be used as host variables or as a host structure.

Notes:

1. In RPG/400, field names in an externally described structure that are longer than 6

characters must be renamed.

2. REXX does not support the retrieval of external definitions.

2 The SQL INCLUDE SQLCA statement is used to include the SQLCA for PL/I, C, and COBOL

programs. For RPG programs, the SQL precompiler automatically places the SQLCA data

structure into the source at the end of the Input specification section. For REXX, the SQLCA fields

are maintained in separate variables rather than in a contiguous data area mapped by the

SQLCA.

3 This SQL WHENEVER statement defines the host language label to which control is passed if an

SQLERROR (SQLCODE < 0) occurs in an SQL statement. This WHENEVER SQLERROR

statement applies to all the following SQL statements until the next WHENEVER SQLERROR

statement is encountered. REXX does not support the WHENEVER statement. Instead, REXX uses

the SIGNAL ON ERROR facility.

4 This SQL UPDATE statement updates the SALARY column, which contains the employee salary

by the percentage in the host variable PERCENTAGE (PERCNT for RPG). The updated rows are

those that have employee commissions greater than 2000. For REXX, this is PREPARE and

EXECUTE since UPDATE cannot be run directly if there is a host variable.

5 This SQL COMMIT statement commits the changes made by the SQL UPDATE statement. Record

locks on all changed rows are released.

Note: The program was precompiled using COMMIT(*CHG). (For REXX, *CHG is the default.)

6 This SQL DECLARE CURSOR statement defines cursor C1, which joins two tables, EMPLOYEE

and EMPPROJACT, and returns rows for employees who received a raise (commission > 2000).

Rows are returned in ascending order by project number and employee number (PROJNO and

EMPNO columns). For REXX, this is a PREPARE and DECLARE CURSOR since the DECLARE

CURSOR statement cannot be specified directly with a statement string if it has host variables.

7 This SQL OPEN statement opens cursor C1 so that the rows can be fetched.

8 This SQL WHENEVER statement defines the host language label to which control is passed when

all rows are fetched (SQLCODE = 100). For REXX, the SQLCODE must be explicitly checked.

9 This SQL FETCH statement returns all columns for cursor C1 and places the returned values into

the corresponding elements of the host structure.

136 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

10 After all rows are fetched, control is passed to this label. The SQL CLOSE statement closes cursor

C1.

11 This SQL DECLARE CURSOR statement defines cursor C2, which joins the three tables,

EMPPROJACT, PROJECT, and EMPLOYEE. The results are grouped by columns PROJNO and

PROJNAME. The COUNT function returns the number of rows in each group. The SUM function

calculates the new salary cost for each project. The ORDER BY 1 clause specifies that rows are

retrieved based on the contents of the final results column (EMPPROJACT.PROJNO). For REXX,

this is a PREPARE and DECLARE CURSOR since the DECLARE CURSOR statement cannot be

specified directly with a statement string if it has host variables.

12 This SQL FETCH statement returns the results columns for cursor C2 and places the returned

values into the corresponding elements of the host structure described by the program.

13 This SQL WHENEVER statement with the CONTINUE option causes processing to continue to

the next statement regardless if an error occurs on the SQL ROLLBACK statement. Errors are not

expected on the SQL ROLLBACK statement; however, this prevents the program from going into

a loop if an error does occur. SQL statements until the next WHENEVER SQLERROR statement is

encountered. REXX does not support the WHENEVER statement. Instead, REXX uses the

SIGNAL OFF ERROR facility.

14 This SQL ROLLBACK statement restores the table to its original condition if an error occurred

during the update.
 Related concepts

 “Code SQL statements in C and C++ applications” on page 13

This topic describes the unique application and coding requirements for embedding SQL statements in

a C or C++ program.

 “Code SQL statements in COBOL applications” on page 41

This topic describes the unique application and coding requirements for embedding SQL statements in

a COBOL program. Requirements for host structures and host variables are defined.

 “Code SQL statements in PL/I applications” on page 66
This topic describes the unique application and coding requirements for embedding SQL statements in

an iSeries PL/I program. Requirements for host structures and host variables are defined.

 “Code SQL statements in RPG/400 applications” on page 81
The RPG/400 licensed program supports both RPG II and RPG III programs.

Example: SQL statements in ILE C and C++ programs

This sample program is written in the C programming language.

The same program would work in C++ if the following conditions are true:

v An SQL BEGIN DECLARE SECTION statement was added before line 18

v An SQL END DECLARE SECTION statement was added after line 42

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

Embedded SQL programming 137

5722ST1 V5R4M0 060210 Create SQL ILE C Object CEX 08/06/02 15:52:26 Page 1

Source type...............C

Object name...............CORPDATA/CEX

Source file...............CORPDATA/SRC

Member....................CEX

To source file............QTEMP/QSQLTEMP

Options...................*XREF

Listing option............*PRINT

Target release............v5r4m0

INCLUDE file..............*SRCFILE

Commit....................*CHG

Allow copy of data........*YES

Close SQL cursor..........*ENDACTGRP

Allow blocking............*READ

Delay PREPARE.............*NO

Generation level..........10

Margins...................*SRCFILE

Printer file..............*LIBL/QSYSPRT

Date format...............*JOB

Date separator............*JOB

Time format...............*HMS

Time separator*JOB

Replace...................*YES

Relational database.......*LOCAL

User*CURRENT

RDB connect method........*DUW

Default collection........*NONE

Dynamic default

 collection..............*NO

Package name..............*OBJLIB/*OBJ

Path......................*NAMING

SQL rules.................*DB2

Created object type.......*PGM

Debugging view............*NONE

User profile..............*NAMING

Dynamic user profile......*USER

Sort Sequence.............*JOB

Language ID...............*JOB

IBM SQL flagging..........*NOFLAG

ANS flagging..............*NONE

Text......................*SRCMBRTXT

Source file CCSID.........65535

Job CCSID.................65535

Decimal result options:

 Maximum precision.......31

 Maximum scale...........31

 Minimum divide scale....0

Compiler options..........*NONE

Source member changed on 06/06/00 17:15:17

Figure 3. Sample C program using SQL statements

138 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL ILE C Object CEX 08/06/02 15:52:26 Page 2

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 1 #include "string.h" 100

 2 #include "stdlib.h" 200

 3 #include "stdio.h" 300

 4 400

 5 main() 500

 6 { 600

 7 /* A sample program which updates the salaries for those employees */ 700

 8 /* whose current commission total is greater than or equal to the */ 800

 9 /* value of ’commission’. The salaries of those who qualify are */ 900

 10 /* increased by the value of ’percentage’ retroactive to ’raise_date’*/ 1000

 11 /* A report is generated showing the projects which these employees */ 1100

 12 /* have contributed to ordered by project number and employee ID. */ 1200

 13 /* A second report shows each project having an end date occurring */ 1300

 14 /* after ’raise_date’ (is potentially affected by the retroactive */ 1400

 15 /* raises) with its total salary expenses and a count of employees */ 1500

 16 /* who contributed to the project. */ 1600

 17 1700

 18 short work_days = 253; /* work days during in one year */ 1800

 19 float commission = 2000.00; /* cutoff to qualify for raise */ 1900

 20 float percentage = 1.04; /* raised salary as percentage */ 2000

 21 char raise_date??(12??) = "1982-06-01"; /* effective raise date */ 2100

 22 2200

 23 /* File declaration for qprint */ 2300

 24 FILE *qprint; 2400

 25 2500

 26 /* Structure for report 1 */ 2600

 27 1 #pragma mapinc ("project","CORPDATA/PROJECT(PROJECT)","both","p z") 2700

 28 #include "project" 2800

 29 struct { 2900

 30 CORPDATA_PROJECT_PROJECT_both_t Proj_struct; 3000

 31 char empno??(7??); 3100

 32 char name??(30??); 3200

 33 float salary; 3300

 34 } rpt1; 3400

 35 3500

 36 /* Structure for report 2 */ 3600

 37 struct { 3700

 38 char projno??(7??); 3800

 39 char project_name??(37??); 3900

 40 short employee_count; 4000

 41 double total_proj_cost; 4100

 42 } rpt2; 4200

 43 4300

 44 2 exec sql include SQLCA; 4400

 45 4500

 46 qprint=fopen("QPRINT","w"); 4600

 47 4700

 48 /* Update the selected projects by the new percentage. If an error */ 4800

 49 /* occurs during the update, ROLLBACK the changes. */ 4900

 50 3 EXEC SQL WHENEVER SQLERROR GO TO update_error; 5000

 51 4 EXEC SQL 5100

 52 UPDATE CORPDATA/EMPLOYEE 5200

 53 SET SALARY = SALARY * :percentage 5300

 54 WHERE COMM >= :commission ; 5400

 55 5500

 56 /* Commit changes */ 5600

 57 5 EXEC SQL 5700

 58 COMMIT; 5800

 59 EXEC SQL WHENEVER SQLERROR GO TO report_error; 5900

 60 6000

Embedded SQL programming 139

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL ILE C Object CEX 08/06/02 15:52:26 Page 3

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 61 /* Report the updated statistics for each employee assigned to the */ 6100

 62 /* selected projects. */ 6200

 63 6300

 64 /* Write out the header for Report 1 */ 6400

 65 fprintf(qprint," REPORT OF PROJECTS AFFECTED \ 6500

 66 BY RAISES"); 6600

 67 fprintf(qprint,"\n\nPROJECT EMPID EMPLOYEE NAME "); 6700

 68 fprintf(qprint, " SALARY\n"); 6800

 69 6900

 70 6 exec sql 7000

 71 declare c1 cursor for 7100

 72 select distinct projno, empprojact.empno, 7200

 73 lastname||’, ’||firstnme, salary 7300

 74 from corpdata/empprojact, corpdata/employee 7400

 75 where empprojact.empno = employee.empno and comm >= :commission 7500

 76 order by projno, empno; 7600

 77 7 EXEC SQL 7700

 78 OPEN C1; 7800

 79 7900

 80 /* Fetch and write the rows to QPRINT */ 8000

 81 8 EXEC SQL WHENEVER NOT FOUND GO TO done1; 8100

 82 8200

 83 do { 8300

 84 10 EXEC SQL 8400

 85 FETCH C1 INTO :Proj_struct.PROJNO, :rpt1.empno, 8500

 86 :rpt1.name,:rpt1.salary; 8600

 87 fprintf(qprint,"\n%6s %6s %-30s %8.2f", 8700

 88 rpt1.Proj_struct.PROJNO,rpt1.empno, 8800

 89 rpt1.name,rpt1.salary); 8900

 90 } 9000

 91 while (SQLCODE==0); 9100

 92 9200

 93 done1: 9300

 94 EXEC SQL 9400

 95 CLOSE C1; 9500

 96 9600

 97 /* For all projects ending at a date later than the ’raise_date’ * / 9700

 98 /* (i.e. those projects potentially affected by the salary raises) */ 9800

 99 /* generate a report containing the project number, project name */ 9900

 100 /* the count of employees participating in the project and the */ 10000

 101 /* total salary cost of the project. */ 10100

 102 10200

 103 /* Write out the header for Report 2 */ 10300

 104 fprintf(qprint,"\n\n\n ACCUMULATED STATISTICS\ 10400

 105 BY PROJECT"); 10500

 106 fprintf(qprint, "\n\nPROJECT \ 10600

 107 NUMBER OF TOTAL"); 10700

 108 fprintf(qprint, "\nNUMBER PROJECT NAME \ 10800

 109 EMPLOYEES COST\n"); 10900

 110 11000

 111 11 EXEC SQL 11100

 112 DECLARE C2 CURSOR FOR 11200

 113 SELECT EMPPROJACT.PROJNO, PROJNAME, COUNT(*), 11300

 114 SUM ((DAYS(EMENDATE) - DAYS(EMSTDATE)) * EMPTIME * 11400

 115 (DECIMAL(SALARY / :work_days ,8,2))) 11500

 116 FROM CORPDATA/EMPPROJACT, CORPDATA/PROJECT, CORPDATA/EMPLOYEE 11600

 117 WHERE EMPPROJACT.PROJNO=PROJECT.PROJNO AND 11700

 118 EMPPROJACT.EMPNO =EMPLOYEE.EMPNO AND 11800

 119 PRENDATE > :raise_date 11900

 120 GROUP BY EMPPROJACT.PROJNO, PROJNAME 12000

 121 ORDER BY 1; 12100

 122 EXEC SQL 12200

 123 OPEN C2; 12300

140 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL ILE C Object CEX 08/06/02 15:52:26 Page 4

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 124 12400

 125 /* Fetch and write the rows to QPRINT */ 12500

 126 EXEC SQL WHENEVER NOT FOUND GO TO done2; 12600

 127 12700

 128 do { 12800

 129 12 EXEC SQL 12900

 130 FETCH C2 INTO :rpt2; 13000

 131 fprintf(qprint,"\n%6s %-36s %6d %9.2f", 13100

 132 rpt2.projno,rpt2.project_name,rpt2.employee_count, 13200

 133 rpt2.total_proj_cost); 13300

 134 } 13400

 135 while (SQLCODE==0); 13500

 136 13600

 137 done2: 13700

 138 EXEC SQL 13800

 139 CLOSE C2; 13900

 140 goto finished; 14000

 141 14100

 142 /* Error occurred while updating table. Inform user and rollback */ 14200

 143 /* changes. */ 14300

 144 update_error: 14400

 145 13 EXEC SQL WHENEVER SQLERROR CONTINUE; 14500

 146 fprintf(qprint,"*** ERROR Occurred while updating table. SQLCODE=" 14600

 147 "%5d\n",SQLCODE); 14700

 148 14 EXEC SQL 14800

 149 ROLLBACK; 14900

 150 goto finished; 15000

 151 15100

 152 /* Error occurred while generating reports. Inform user and exit. */ 15200

 153 report_error: 15300

 154 fprintf(qprint,"*** ERROR Occurred while generating reports. " 15400

 155 "SQLCODE=%5d\n",SQLCODE); 15500

 156 goto finished; 15600

 157 15700

 158 /* All done */ 15800

 159 finished: 15900

 160 fclose(qprint); 16000

 161 exit(0); 16100

 162 16200

 163 } 16300

* * * * * E N D O F S O U R C E * * * * *

Embedded SQL programming 141

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL ILE C Object CEX 08/06/02 15:52:26 Page 5

CROSS REFERENCE

Data Names Define Reference

commission 19 FLOAT(24)

 54 75

done1 **** LABEL

 81

done2 **** LABEL

 126

employee_count 40 SMALL INTEGER PRECISION(4,0) IN rpt2

empno 31 VARCHAR(7) IN rpt1

 85

name 32 VARCHAR(30) IN rpt1

 86

percentage 20 FLOAT(24)

 53

project_name 39 VARCHAR(37) IN rpt2

projno 38 VARCHAR(7) IN rpt2

raise_date 21 VARCHAR(12)

 119

report_error **** LABEL

 59

rpt1 34

rpt2 42 STRUCTURE

 130

salary 33 FLOAT(24) IN rpt1

 86

total_proj_cost 41 FLOAT(53) IN rpt2

update_error **** LABEL

 50

work_days 18 SMALL INTEGER PRECISION(4,0)

 115

ACTNO 74 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

BIRTHDATE 74 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

BONUS 74 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

COMM **** COLUMN

 54 75

COMM 74 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

CORPDATA **** COLLECTION

 52 74 74 116 116 116

C1 71 CURSOR

 78 85 95

C2 112 CURSOR

 123 130 139

DEPTNO 27 VARCHAR(3) IN Proj_struct

DEPTNO 116 CHARACTER(3) COLUMN (NOT NULL) IN CORPDATA.PROJECT

EDLEVEL 74 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMENDATE 74 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMENDATE **** COLUMN

 114

EMPLOYEE **** TABLE IN CORPDATA

 52 74 116

EMPLOYEE **** TABLE

 75 118

EMPNO **** COLUMN IN EMPPROJACT

 72 75 76 118

EMPNO **** COLUMN IN EMPLOYEE

 75 118

EMPNO 74 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

EMPNO 74 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMPPROJACT **** TABLE

 72 75 113 117 118 120

EMPPROJACT **** TABLE IN CORPDATA

 74 116

142 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example: SQL statements in COBOL and ILE COBOL programs

This sample program is written in the COBOL programming language.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

5722ST1 V5R4M0 060210 Create SQL ILE C Object CEX 08/06/02 15:52:26 Page 6

CROSS REFERENCE

EMPTIME 74 DECIMAL(5,2) COLUMN IN CORPDATA.EMPPROJACT

EMPTIME **** COLUMN

 114

EMSTDATE 74 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMSTDATE **** COLUMN

 114

FIRSTNME **** COLUMN

 73

FIRSTNME 74 VARCHAR(12) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

HIREDATE 74 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

JOB 74 CHARACTER(8) COLUMN IN CORPDATA.EMPLOYEE

LASTNAME **** COLUMN

 73

LASTNAME 74 VARCHAR(15) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

MAJPROJ 27 VARCHAR(6) IN Proj_struct

MAJPROJ 116 CHARACTER(6) COLUMN IN CORPDATA.PROJECT

MIDINIT 74 CHARACTER(1) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

Proj_struct 30 STRUCTURE IN rpt1

PHONENO 74 CHARACTER(4) COLUMN IN CORPDATA.EMPLOYEE

PRENDATE 27 DATE(10) IN Proj_struct

PRENDATE **** COLUMN

 119

PRENDATE 116 DATE(10) COLUMN IN CORPDATA.PROJECT

PROJECT **** TABLE IN CORPDATA

 116

PROJECT **** TABLE

 117

PROJNAME 27 VARCHAR(24) IN Proj_struct

PROJNAME **** COLUMN

 113 120

PROJNAME 116 VARCHAR(24) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PROJNO 27 VARCHAR(6) IN Proj_struct

 85

PROJNO **** COLUMN

 72 76

PROJNO 74 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

PROJNO **** COLUMN IN EMPPROJACT

 113 117 120

PROJNO **** COLUMN IN PROJECT

 117

PROJNO 116 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PRSTAFF 27 DECIMAL(5,2) IN Proj_struct

PRSTAFF 116 DECIMAL(5,2) COLUMN IN CORPDATA.PROJECT

PRSTDATE 27 DATE(10) IN Proj_struct

PRSTDATE 116 DATE(10) COLUMN IN CORPDATA.PROJECT

RESPEMP 27 VARCHAR(6) IN Proj_struct

RESPEMP 116 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

SALARY **** COLUMN

 53 53 73 115

SALARY 74 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

SEX 74 CHARACTER(1) COLUMN IN CORPDATA.EMPLOYEE

WORKDEPT 74 CHARACTER(3) COLUMN IN CORPDATA.EMPLOYEE

No errors found in source

163 Source records processed

* * * * * E N D O F L I S T I N G * * * * *

Embedded SQL programming 143

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLEX 08/06/02 11:09:13 Page 1

Source type...............COBOL

Program name..............CORPDATA/CBLEX

Source file...............CORPDATA/SRC

Member....................CBLEX

To source file............QTEMP/QSQLTEMP

Options...................*SRC *XREF

Target release............v5r4m0

INCLUDE file..............*SRCFILE

Commit....................*CHG

Allow copy of data........*YES

Close SQL cursor..........*ENDPGM

Allow blocking............*READ

Delay PREPARE.............*NO

Generation level..........10

Printer file..............*LIBL/QSYSPRT

Date format...............*JOB

Date separator............*JOB

Time format...............*HMS

Time separator*JOB

Replace...................*YES

Relational database.......*LOCAL

User*CURRENT

RDB connect method........*DUW

Default collection........*NONE

Dynamic default

 collection..............*NO

Package name..............*PGMLIB/*PGM

Path......................*NAMING

Created object type.......*PGM

SQL rules.................*DB2

User profile..............*NAMING

Dynamic user profile......*USER

Sort Sequence.............*JOB

Language ID...............*JOB

IBM SQL flagging..........*NOFLAG

ANS flagging..............*NONE

Text......................*SRCMBRTXT

Source file CCSID.........65535

Job CCSID.................65535

Decimal result options:

 Maximum precision.......31

 Maximum scale...........31

 Minimum divide scale....0

Compiler options..........*NONE

Source member changed on 07/01/96 09:44:58

Figure 4. Sample COBOL program using SQL statements

144 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLEX 08/06/02 11:09:13 Page 2

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 1

 2 **

 3 * A sample program which updates the salaries for those *

 4 * employees whose current commission total is greater than or *

 5 * equal to the value of COMMISSION. The salaries of those who *

 6 * qualify are increased by the value of PERCENTAGE retroactive *

 7 * to RAISE-DATE. A report is generated showing the projects *

 8 * which these employees have contributed to ordered by the *

 9 * project number and employee ID. A second report shows each *

 10 * project having an end date occurring after RAISE-DATE *

 11 * (i.e. potentially affected by the retroactive raises) with *

 12 * its total salary expenses and a count of employees who *

 13 * contributed to the project. *

 14 **

 15

 16

 17 IDENTIFICATION DIVISION.

 18

 19 PROGRAM-ID. CBLEX.

 20 ENVIRONMENT DIVISION.

 21 CONFIGURATION SECTION.

 22 SOURCE-COMPUTER. IBM-AS400.

 23 OBJECT-COMPUTER. IBM-AS400.

 24 INPUT-OUTPUT SECTION.

 25

 26 FILE-CONTROL.

 27 SELECT PRINTFILE ASSIGN TO PRINTER-QPRINT

 28 ORGANIZATION IS SEQUENTIAL.

 29

 30 DATA DIVISION.

 31

 32 FILE SECTION.

 33

 34 FD PRINTFILE

 35 BLOCK CONTAINS 1 RECORDS

 36 LABEL RECORDS ARE OMITTED.

 37 01 PRINT-RECORD PIC X(132).

 38

 39 WORKING-STORAGE SECTION.

 40 77 WORK-DAYS PIC S9(4) BINARY VALUE 253.

 41 77 RAISE-DATE PIC X(11) VALUE "1982-06-01".

 42 77 PERCENTAGE PIC S999V99 PACKED-DECIMAL.

 43 77 COMMISSION PIC S99999V99 PACKED-DECIMAL VALUE 2000.00.

 44

 45 ***

 46 * Structure for report 1. *

 47 ***

 48

 49 1 01 RPT1.

 50 COPY DDS-PROJECT OF CORPDATA-PROJECT.

 51 05 EMPNO PIC X(6).

 52 05 NAME PIC X(30).

 53 05 SALARY PIC S9(6)V99 PACKED-DECIMAL.

 54

 55

Embedded SQL programming 145

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLEX 08/06/02 11:09:13 Page 3

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 56 ***

 57 * Structure for report 2. *

 58 ***

 59

 60 01 RPT2.

 61 15 PROJNO PIC X(6).

 62 15 PROJECT-NAME PIC X(36).

 63 15 EMPLOYEE-COUNT PIC S9(4) BINARY.

 64 15 TOTAL-PROJ-COST PIC S9(10)V99 PACKED-DECIMAL.

 65

 66 2 EXEC SQL

 67 INCLUDE SQLCA

 68 END-EXEC.

 69 77 CODE-EDIT PIC ---99.

 70

 71 ***

 72 * Headers for reports. *

 73 ***

 74

 75 01 RPT1-HEADERS.

 76 05 RPT1-HEADER1.

 77 10 FILLER PIC X(21) VALUE SPACES.

 78 10 FILLER PIC X(111)

 79 VALUE "REPORT OF PROJECTS AFFECTED BY RAISES".

 80 05 RPT1-HEADER2.

 81 10 FILLER PIC X(9) VALUE "PROJECT".

 82 10 FILLER PIC X(10) VALUE "EMPID".

 83 10 FILLER PIC X(35) VALUE "EMPLOYEE NAME".

 84 10 FILLER PIC X(40) VALUE "SALARY".

 85 01 RPT2-HEADERS.

 86 05 RPT2-HEADER1.

 87 10 FILLER PIC X(21) VALUE SPACES.

 88 10 FILLER PIC X(111)

 89 VALUE "ACCUMULATED STATISTICS BY PROJECT".

 90 05 RPT2-HEADER2.

 91 10 FILLER PIC X(9) VALUE "PROJECT".

 92 10 FILLER PIC X(38) VALUE SPACES.

 93 10 FILLER PIC X(16) VALUE "NUMBER OF".

 94 10 FILLER PIC X(10) VALUE "TOTAL".

 95 05 RPT2-HEADER3.

 96 10 FILLER PIC X(9) VALUE "NUMBER".

 97 10 FILLER PIC X(38) VALUE "PROJECT NAME".

 98 10 FILLER PIC X(16) VALUE "EMPLOYEES".

 99 10 FILLER PIC X(65) VALUE "COST".

 100 01 RPT1-DATA.

 101 05 PROJNO PIC X(6).

 102 05 FILLER PIC XXX VALUE SPACES.

 103 05 EMPNO PIC X(6).

 104 05 FILLER PIC X(4) VALUE SPACES.

 105 05 NAME PIC X(30).

 106 05 FILLER PIC X(3) VALUE SPACES.

 107 05 SALARY PIC ZZZZZ9.99.

 108 05 FILLER PIC X(96) VALUE SPACES.

 109 01 RPT2-DATA.

 110 05 PROJNO PIC X(6).

 111 05 FILLER PIC XXX VALUE SPACES.

 112 05 PROJECT-NAME PIC X(36).

 113 05 FILLER PIC X(4) VALUE SPACES.

 114 05 EMPLOYEE-COUNT PIC ZZZ9.

 115 05 FILLER PIC X(5) VALUE SPACES.

 116 05 TOTAL-PROJ-COST PIC ZZZZZZZZ9.99.

 117 05 FILLER PIC X(56) VALUE SPACES.

 118

146 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLEX 08/06/02 11:09:13 Page 4

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 119 PROCEDURE DIVISION.

 120

 121 A000-MAIN.

 122 MOVE 1.04 TO PERCENTAGE.

 123 OPEN OUTPUT PRINTFILE.

 124

 125 ***

 126 * Update the selected employees by the new percentage. If an *

 127 * error occurs during the update, ROLLBACK the changes, *

 128 ***

 129

 130 3 EXEC SQL

 131 WHENEVER SQLERROR GO TO E010-UPDATE-ERROR

 132 END-EXEC.

 133 4 EXEC SQL

 134 UPDATE CORPDATA/EMPLOYEE

 135 SET SALARY = SALARY * :PERCENTAGE

 136 WHERE COMM >= :COMMISSION

 137 END-EXEC.

 138

 139 ***

 140 * Commit changes. *

 141 ***

 142

 143 5 EXEC SQL

 144 COMMIT

 145 END-EXEC.

 146

 147 EXEC SQL

 148 WHENEVER SQLERROR GO TO E020-REPORT-ERROR

 149 END-EXEC.

 150

 151 ***

 152 * Report the updated statistics for each employee receiving *

 153 * a raise and the projects that s/he participates in *

 154 ***

 155

 156 ***

 157 * Write out the header for Report 1. *

 158 ***

 159

 160 write print-record from rpt1-header1

 161 before advancing 2 lines.

 162 write print-record from rpt1-header2

 163 before advancing 1 line.

 164 6 exec sql

 165 declare c1 cursor for

 166 SELECT DISTINCT projno, empprojact.empno,

 167 lastname||", "||firstnme ,salary

 168 from corpdata/empprojact, corpdata/employee

 169 where empprojact.empno =employee.empno and

 170 comm >= :commission

 171 order by projno, empno

 172 end-exec.

 173 7 EXEC SQL

 174 OPEN C1

 175 END-EXEC.

 176

 177 PERFORM B000-GENERATE-REPORT1 THRU B010-GENERATE-REPORT1-EXIT

 178 UNTIL SQLCODE NOT EQUAL TO ZERO.

 179

Note: 8 and 9 are located on Part 5 of this figure.

Embedded SQL programming 147

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLEX 08/06/02 11:09:13 Page 5

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 180 10 A100-DONE1.

 181 EXEC SQL

 182 CLOSE C1

 183 END-EXEC.

 184

 185 ***

 186 * For all projects ending at a date later than the RAISE- *

 187 * DATE (i.e. those projects potentially affected by the *

 188 * salary raises generate a report containing the project *

 189 * project number, project name, the count of employees *

 190 * participating in the project and the total salary cost *

 191 * for the project *

 192 ***

 193

 194

 195 ***

 196 * Write out the header for Report 2. *

 197 ***

 198

 199 MOVE SPACES TO PRINT-RECORD.

 200 WRITE PRINT-RECORD BEFORE ADVANCING 2 LINES.

 201 WRITE PRINT-RECORD FROM RPT2-HEADER1

 202 BEFORE ADVANCING 2 LINES.

 203 WRITE PRINT-RECORD FROM RPT2-HEADER2

 204 BEFORE ADVANCING 1 LINE.

 205 WRITE PRINT-RECORD FROM RPT2-HEADER3

 206 BEFORE ADVANCING 2 LINES.

 207

 208 EXEC SQL

 209 11 DECLARE C2 CURSOR FOR

 210 SELECT EMPPROJACT.PROJNO, PROJNAME, COUNT(*),

 211 SUM ((DAYS(EMENDATE)-DAYS(EMSTDATE)) *

 212 EMPTIME * DECIMAL((SALARY / :WORK-DAYS),8,2))

 213 FROM CORPDATA/EMPPROJACT, CORPDATA/PROJECT,

 214 CORPDATA/EMPLOYEE

 215 WHERE EMPPROJACT.PROJNO=PROJECT.PROJNO AND

 216 EMPPROJACT.EMPNO =EMPLOYEE.EMPNO AND

 217 PRENDATE > :RAISE-DATE

 218 GROUP BY EMPPROJACT.PROJNO, PROJNAME

 219 ORDER BY 1

 220 END-EXEC.

 221 EXEC SQL

 222 OPEN C2

 223 END-EXEC.

 224

 225 PERFORM C000-GENERATE-REPORT2 THRU C010-GENERATE-REPORT2-EXIT

 226 UNTIL SQLCODE NOT EQUAL TO ZERO.

 227

 228 A200-DONE2.

 229 EXEC SQL

 230 CLOSE C2

 231 END-EXEC

 232

 233 ***

 234 * All done. *

 235 ***

 236

 237 A900-MAIN-EXIT.

 238 CLOSE PRINTFILE.

 239 STOP RUN.

 240

148 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLEX 08/06/02 11:09:13 Page 6

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 241 ***

 242 * Fetch and write the rows to PRINTFILE. *

 243 ***

 244

 245 B000-GENERATE-REPORT1.

 246 8 EXEC SQL

 247 WHENEVER NOT FOUND GO TO A100-DONE1

 248 END-EXEC.

 249 9 EXEC SQL

 250 FETCH C1 INTO :PROJECT.PROJNO, :RPT1.EMPNO,

 251 :RPT1.NAME, :RPT1.SALARY

 252 END-EXEC.

 253 MOVE CORRESPONDING RPT1 TO RPT1-DATA.

 254 MOVE PROJNO OF RPT1 TO PROJNO OF RPT1-DATA.

 255 WRITE PRINT-RECORD FROM RPT1-DATA

 256 BEFORE ADVANCING 1 LINE.

 257

 258 B010-GENERATE-REPORT1-EXIT.

 259 EXIT.

 260

 261 ***

 262 * Fetch and write the rows to PRINTFILE. *

 263 ***

 264

 265 C000-GENERATE-REPORT2.

 266 EXEC SQL

 267 WHENEVER NOT FOUND GO TO A200-DONE2

 268 END-EXEC.

 269 12 EXEC SQL

 270 FETCH C2 INTO :RPT2

 271 END-EXEC.

 272 MOVE CORRESPONDING RPT2 TO RPT2-DATA.

 273 WRITE PRINT-RECORD FROM RPT2-DATA

 274 BEFORE ADVANCING 1 LINE.

 275

 276 C010-GENERATE-REPORT2-EXIT.

 277 EXIT.

 278

 279 ***

 280 * Error occurred while updating table. Inform user and *

 281 * rollback changes. *

 282 ***

 283

 284 E010-UPDATE-ERROR.

 285 13 EXEC SQL

 286 WHENEVER SQLERROR CONTINUE

 287 END-EXEC.

 288 MOVE SQLCODE TO CODE-EDIT.

 289 STRING "*** ERROR Occurred while updating table. SQLCODE="

 290 CODE-EDIT DELIMITED BY SIZE INTO PRINT-RECORD.

 291 WRITE PRINT-RECORD.

 292 14 EXEC SQL

 293 ROLLBACK

 294 END-EXEC.

 295 STOP RUN.

 296

 297 ***

 298 * Error occurred while generating reports. Inform user and *

 299 * exit. *

 300 ***

 301

 302 E020-REPORT-ERROR.

 303 MOVE SQLCODE TO CODE-EDIT.

 304 STRING "*** ERROR Occurred while generating reports. SQLCODE

 305 - "=" CODE-EDIT DELIMITED BY SIZE INTO PRINT-RECORD.

 306 WRITE PRINT-RECORD.

 307 STOP RUN.

 * * * * * E N D O F S O U R C E * * * * *

Embedded SQL programming 149

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLEX 08/06/02 11:09:13 Page 7

CROSS REFERENCE

Data Names Define Reference

ACTNO 168 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

A100-DONE1 **** LABEL

 247

A200-DONE2 **** LABEL

 267

BIRTHDATE 134 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

BONUS 134 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

CODE-EDIT 69

COMM **** COLUMN

 136 170

COMM 134 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

COMMISSION 43 DECIMAL(7,2)

 136 170

CORPDATA **** COLLECTION

 134 168 168 213 213 214

C1 165 CURSOR

 174 182 250

C2 209 CURSOR

 222 230 270

DEPTNO 50 CHARACTER(3) IN PROJECT

DEPTNO 213 CHARACTER(3) COLUMN (NOT NULL) IN CORPDATA.PROJECT

EDLEVEL 134 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMENDATE 168 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMENDATE **** COLUMN

 211

EMPLOYEE **** TABLE IN CORPDATA

 134 168 214

EMPLOYEE **** TABLE

 169 216

EMPLOYEE-COUNT 63 SMALL INTEGER PRECISION(4,0) IN RPT2

EMPLOYEE-COUNT 114 IN RPT2-DATA

EMPNO 51 CHARACTER(6) IN RPT1

 250

EMPNO 103 CHARACTER(6) IN RPT1-DATA

EMPNO 134 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMPNO **** COLUMN IN EMPPROJACT

 166 169 171 216

EMPNO **** COLUMN IN EMPLOYEE

 169 216

EMPNO 168 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

EMPPROJACT **** TABLE

 166 169 210 215 216 218

EMPPROJACT **** TABLE IN CORPDATA

 168 213

EMPTIME 168 DECIMAL(5,2) COLUMN IN CORPDATA.EMPPROJACT

EMPTIME **** COLUMN

 212

EMSTDATE 168 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMSTDATE **** COLUMN

 211

E010-UPDATE-ERROR **** LABEL

 131

E020-REPORT-ERROR **** LABEL

 148

FIRSTNME 134 VARCHAR(12) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

FIRSTNME **** COLUMN

 167

HIREDATE 134 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

JOB 134 CHARACTER(8) COLUMN IN CORPDATA.EMPLOYEE

LASTNAME 134 VARCHAR(15) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

LASTNAME **** COLUMN

 167

MAJPROJ 50 CHARACTER(6) IN PROJECT

MAJPROJ 213 CHARACTER(6) COLUMN IN CORPDATA.PROJECT

MIDINIT 134 CHARACTER(1) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

NAME 52 CHARACTER(30) IN RPT1

 251

NAME 105 CHARACTER(30) IN RPT1-DATA

150 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL COBOL Program CBLEX 08/06/02 11:09:13 Page 8

CROSS REFERENCE

PERCENTAGE 42 DECIMAL(5,2)

 135

PHONENO 134 CHARACTER(4) COLUMN IN CORPDATA.EMPLOYEE

PRENDATE 50 DATE(10) IN PROJECT

PRENDATE **** COLUMN

 217

PRENDATE 213 DATE(10) COLUMN IN CORPDATA.PROJECT

PRINT-RECORD 37 CHARACTER(132)

PROJECT 50 STRUCTURE IN RPT1

PROJECT **** TABLE IN CORPDATA

 213

PROJECT **** TABLE

 215

PROJECT-NAME 62 CHARACTER(36) IN RPT2

PROJECT-NAME 112 CHARACTER(36) IN RPT2-DATA

PROJNAME 50 VARCHAR(24) IN PROJECT

PROJNAME **** COLUMN

 210 218

PROJNAME 213 VARCHAR(24) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PROJNO 50 CHARACTER(6) IN PROJECT

 250

PROJNO 61 CHARACTER(6) IN RPT2

PROJNO 101 CHARACTER(6) IN RPT1-DATA

PROJNO 110 CHARACTER(6) IN RPT2-DATA

PROJNO **** COLUMN

 166 171

PROJNO 168 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

PROJNO **** COLUMN IN EMPPROJACT

 210 215 218

PROJNO **** COLUMN IN PROJECT

 215

PROJNO 213 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PRSTAFF 50 DECIMAL(5,2) IN PROJECT

PRSTAFF 213 DECIMAL(5,2) COLUMN IN CORPDATA.PROJECT

PRSTDATE 50 DATE(10) IN PROJECT

PRSTDATE 213 DATE(10) COLUMN IN CORPDATA.PROJECT

RAISE-DATE 41 CHARACTER(11)

 217

RESPEMP 50 CHARACTER(6) IN PROJECT

RESPEMP 213 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

RPT1 49

RPT1-DATA 100

RPT1-HEADERS 75

RPT1-HEADER1 76 IN RPT1-HEADERS

RPT1-HEADER2 80 IN RPT1-HEADERS

RPT2 60 STRUCTURE

 270

RPT2-DATA 109

SS REFERENCE

RPT2-HEADERS 85

RPT2-HEADER1 86 IN RPT2-HEADERS

RPT2-HEADER2 90 IN RPT2-HEADERS

RPT2-HEADER3 95 IN RPT2-HEADERS

SALARY 53 DECIMAL(8,2) IN RPT1

 251

SALARY 107 IN RPT1-DATA

SALARY **** COLUMN

 135 135 167 212

SALARY 134 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

SEX 134 CHARACTER(1) COLUMN IN CORPDATA.EMPLOYEE

TOTAL-PROJ-COST 64 DECIMAL(12,2) IN RPT2

TOTAL-PROJ-COST 116 IN RPT2-DATA

WORK-DAYS 40 SMALL INTEGER PRECISION(4,0)

 212

WORKDEPT 134 CHARACTER(3) COLUMN IN CORPDATA.EMPLOYEE

No errors found in source

 307 Source records processed

 * * * * * E N D O F L I S T I N G * * * * *

Embedded SQL programming 151

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example: SQL statements in PL/I programs

This sample program is written in the PL/I programming language.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

5722ST1 V5R4M0 060210 Create SQL PL/I Program PLIEX 08/06/02 12:53:36 Page 1

Source type...............PLI

Program name..............CORPDATA/PLIEX

Source file...............CORPDATA/SRC

Member....................PLIEX

To source file............QTEMP/QSQLTEMP

Options...................*SRC *XREF

Target release............V5R4M0

INCLUDE file..............*SRCFILE

Commit....................*CHG

Allow copy of data........*YES

Close SQL cursor..........*ENDPGM

Allow blocking............*READ

Delay PREPARE.............*NO

Generation level..........10

Margins...................*SRCFILE

Printer file..............*LIBL/QSYSPRT

Date format...............*JOB

Date separator............*JOB

Time format...............*HMS

Time separator*JOB

Replace...................*YES

Relational database.......*LOCAL

User*CURRENT

RDB connect method........*DUW

Default collection........*NONE

Dynamic default

 collection..............*NO

Package name..............*PGMLIB/*PGM

Path......................*NAMING

SQL rules.................*DB2

User profile..............*NAMING

Dynamic user profile......*USER

Sort sequence.............*JOB

Language ID...............*JOB

IBM SQL flagging..........*NOFLAG

ANS flagging..............*NONE

Text......................*SRCMBRTXT

Source file CCSID.........65535

Job CCSID.................65535

Decimal result options:

 Maximum precision.......31

 Maximum scale...........31

 Minimum divide scale....0

Compiler options..........*NONE

Source member changed on 07/01/96 12:53:08

Figure 5. Sample PL/I program using SQL statements

152 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL PL/I Program PLIEX 08/06/02 12:53:36 Page 2

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 1 /* A sample program which updates the salaries for those employees */ 100

 2 /* whose current commission total is greater than or equal to the */ 200

 3 /* value of COMMISSION. The salaries of those who qualify are */ 300

 4 /* increased by the value of PERCENTAGE, retroactive to RAISE_DATE. */ 400

 5 /* A report is generated showing the projects which these employees */ 500

 6 /* have contributed to, ordered by project number and employee ID. */ 600

 7 /* A second report shows each project having an end date occurring */ 700

 8 /* after RAISE_DATE (i.e. is potentially affected by the retroactive */ 800

 9 /* raises) with its total salary expenses and a count of employees */ 900

 10 /* who contributed to the project. */ 1000

 11 /***/ 1100

 12 1200

 13 1300

 14 PLIEX: PROC; 1400

 15 1500

 16 DCL RAISE_DATE CHAR(10); 1600

 17 DCL WORK_DAYS FIXED BIN(15); 1700

 18 DCL COMMISSION FIXED DECIMAL(8,2); 1800

 19 DCL PERCENTAGE FIXED DECIMAL(5,2); 1900

 20 2000

 21 /* File declaration for sysprint */ 2100

 22 DCL SYSPRINT FILE EXTERNAL OUTPUT STREAM PRINT; 2200

 23 2300

 24 /* Structure for report 1 */ 2400

 25 DCL 1 RPT1, 2500

 26 1%INCLUDE PROJECT (PROJECT, RECORD,,COMMA); 2600

 27 15 EMPNO CHAR(6), 2700

 28 15 NAME CHAR(30), 2800

 29 15 SALARY FIXED DECIMAL(8,2); 2900

 30 3000

 31 /* Structure for report 2 */ 3100

 32 DCL 1 RPT2, 3200

 33 15 PROJNO CHAR(6), 3300

 34 15 PROJECT_NAME CHAR(36), 3400

 35 15 EMPLOYEE_COUNT FIXED BIN(15), 3500

 36 15 TOTL_PROJ_COST FIXED DECIMAL(10,2); 3600

 37 3700

 38 2 EXEC SQL INCLUDE SQLCA; 3800

 39 3900

 40 COMMISSION = 2000.00; 4000

 41 PERCENTAGE = 1.04; 4100

 42 RAISE_DATE = ’1982-06-01’; 4200

 43 WORK_DAYS = 253; 4300

 44 OPEN FILE(SYSPRINT); 4400

 45 4500

 46 /* Update the selected employee’s salaries by the new percentage. */ 4600

 47 /* If an error occurs during the update, ROLLBACK the changes. */ 4700

 48 3 EXEC SQL WHENEVER SQLERROR GO TO UPDATE_ERROR; 4800

 49 4 EXEC SQL 4900

 50 UPDATE CORPDATA/EMPLOYEE 5000

 51 SET SALARY = SALARY * :PERCENTAGE 5100

 52 WHERE COMM >= :COMMISSION ; 5200

 53 5300

 54 /* Commit changes */ 5400

 55 5 EXEC SQL 5500

 56 COMMIT; 5600

 57 EXEC SQL WHENEVER SQLERROR GO TO REPORT_ERROR; 5700

 58 5800

Embedded SQL programming 153

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL PL/I Program PLIEX 08/06/02 12:53:36 Page 3

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 59 /* Report the updated statistics for each project supported by one */ 5900

 60 /* of the selected employees. */ 6000

 61 6100

 62 /* Write out the header for Report 1 */ 6200

 63 put file(sysprint) 6300

 64 edit(’REPORT OF PROJECTS AFFECTED BY EMPLOYEE RAISES’) 6400

 65 (col(22),a); 6500

 66 put file(sysprint) 6600

 67 edit(’PROJECT’,’EMPID’,’EMPLOYEE NAME’,’SALARY’) 6700

 68 (skip(2),col(1),a,col(10),a,col(20),a,col(55),a); 6800

 69 6900

 70 6 exec sql 7000

 71 declare c1 cursor for 7100

 72 select DISTINCT projno, EMPPROJACT.empno, 7200

 73 lastname||’, ’||firstnme, salary 7300

 74 from CORPDATA/EMPPROJACT, CORPDATA/EMPLOYEE 7400

 75 where EMPPROJACT.empno = EMPLOYEE.empno and 7500

 76 comm >= :COMMISSION 7600

 77 order by projno, empno; 7700

 78 7 EXEC SQL 7800

 79 OPEN C1; 7900

 80 8000

 81 /* Fetch and write the rows to SYSPRINT */ 8100

 82 8 EXEC SQL WHENEVER NOT FOUND GO TO DONE1; 8200

 83 8300

 84 DO UNTIL (SQLCODE ^= 0); 8400

 85 9 EXEC SQL 8500

 86 FETCH C1 INTO :RPT1.PROJNO, :rpt1.EMPNO, :RPT1.NAME, 8600

 87 :RPT1.SALARY; 8700

 88 PUT FILE(SYSPRINT) 8800

 89 EDIT(RPT1.PROJNO,RPT1.EMPNO,RPT1.NAME,RPT1.SALARY) 8900

 90 (SKIP,COL(1),A,COL(10),A,COL(20),A,COL(54),F(8,2)); 9000

 91 END; 9100

 92 9200

 93 DONE1: 9300

 94 10 EXEC SQL 9400

 95 CLOSE C1; 9500

 96 9600

 97 /* For all projects ending at a date later than ’raise_date’ */ 9700

 98 /* (i.e. those projects potentially affected by the salary raises) */ 9800

 99 /* generate a report containing the project number, project name */ 9900

 100 /* the count of employees participating in the project and the */ 10000

 101 /* total salary cost of the project. */ 10100

 102 10200

 103 /* Write out the header for Report 2 */ 10300

 104 PUT FILE(SYSPRINT) EDIT(’ACCUMULATED STATISTICS BY PROJECT’) 10400

 105 (SKIP(3),COL(22),A); 10500

 106 PUT FILE(SYSPRINT) 10600

 107 EDIT(’PROJECT’,’NUMBER OF’,’TOTAL’) 10700

 108 (SKIP(2),COL(1),A,COL(48),A,COL(63),A); 10800

 109 PUT FILE(SYSPRINT) 10900

 110 EDIT(’NUMBER’,’PROJECT NAME’,’EMPLOYEES’,’COST’) 11000

 111 (SKIP,COL(1),A,COL(10),A,COL(48),A,COL(63),A,SKIP); 11100

 112 11200

154 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL PL/I Program PLIEX 08/06/02 12:53:36 Page 4

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 113 11 EXEC SQL 11300

 114 DECLARE C2 CURSOR FOR 11400

 115 SELECT EMPPROJACT.PROJNO, PROJNAME, COUNT(*), 11500

 116 SUM((DAYS(EMENDATE) - DAYS(EMSTDATE)) * EMPTIME * 11600

 117 DECIMAL((SALARY / :WORK_DAYS),8,2)) 11700

 118 FROM CORPDATA/EMPPROJACT, CORPDATA/PROJECT, CORPDATA/EMPLOYEE 11800

 119 WHERE EMPPROJACT.PROJNO=PROJECT.PROJNO AND 11900

 120 EMPPROJACT.EMPNO =EMPLOYEE.EMPNO AND 12000

 121 PRENDATE > :RAISE_DATE 12100

 122 GROUP BY EMPPROJACT.PROJNO, PROJNAME 12200

 123 ORDER BY 1; 12300

 124 EXEC SQL 12400

 125 OPEN C2; 12500

 126 12600

 127 /* Fetch and write the rows to SYSPRINT */ 12700

 128 EXEC SQL WHENEVER NOT FOUND GO TO DONE2; 12800

 129 12900

 130 DO UNTIL (SQLCODE ^= 0); 13000

 131 12 EXEC SQL 13100

 132 FETCH C2 INTO :RPT2; 13200

 133 PUT FILE(SYSPRINT) 13300

 134 EDIT(RPT2.PROJNO,RPT2.PROJECT_NAME,EMPLOYEE_COUNT, 13400

 135 TOTL_PROJ_COST) 13500

 136 (SKIP,COL(1),A,COL(10),A,COL(50),F(4),COL(62),F(8,2)); 13600

 137 END; 13700

 138 13800

 139 DONE2: 13900

 140 EXEC SQL 14000

 141 CLOSE C2; 14100

 142 GO TO FINISHED; 14200

 143 14300

 144 /* Error occurred while updating table. Inform user and rollback */ 14400

 145 /* changes. */ 14500

 146 UPDATE_ERROR: 14600

 147 13 EXEC SQL WHENEVER SQLERROR CONTINUE; 14700

 148 PUT FILE(SYSPRINT) EDIT(’*** ERROR Occurred while updating table.’|| 14800

 149 ’ SQLCODE=’,SQLCODE)(A,F(5)); 14900

 150 14 EXEC SQL 15000

 151 ROLLBACK; 15100

 152 GO TO FINISHED; 15200

 153 15300

 154 /* Error occurred while generating reports. Inform user and exit. */ 15400

 155 REPORT_ERROR: 15500

 156 PUT FILE(SYSPRINT) EDIT(’*** ERROR Occurred while generating ’|| 15600

 157 ’reports. SQLCODE=’,SQLCODE)(A,F(5)); 15700

 158 GO TO FINISHED; 15800

 159 15900

 160 /* All done */ 16000

 161 FINISHED: 16100

 162 CLOSE FILE(SYSPRINT); 16200

 163 RETURN; 16300

 164 16400

 165 END PLIEX; 16500

 * * * * * E N D O F S O U R C E * * * * *

Embedded SQL programming 155

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL PL/I Program PLIEX 08/06/02 12:53:36 Page 5

CROSS REFERENCE

Data Names Define Reference

ACTNO 74 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

BIRTHDATE 74 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

BONUS 74 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

COMM **** COLUMN

 52 76

COMM 74 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

COMMISSION 18 DECIMAL(8,2)

 52 76

CORPDATA **** COLLECTION

 50 74 74 118 118 118

C1 71 CURSOR

 79 86 95

C2 114 CURSOR

 125 132 141

DEPTNO 26 CHARACTER(3) IN RPT1

DEPTNO 118 CHARACTER(3) COLUMN (NOT NULL) IN CORPDATA.PROJECT

DONE1 **** LABEL

 82

DONE2 **** LABEL

 128

EDLEVEL 74 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMENDATE 74 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMENDATE **** COLUMN

 116

EMPLOYEE **** TABLE IN CORPDATA

 50 74 118

EMPLOYEE **** TABLE

 75 120

EMPLOYEE_COUNT 35 SMALL INTEGER PRECISION(4,0) IN RPT2

EMPNO 27 CHARACTER(6) IN RPT1

 86

EMPNO **** COLUMN IN EMPPROJACT

 72 75 77 120

EMPNO **** COLUMN IN EMPLOYEE

 75 120

EMPNO 74 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

EMPNO 74 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMPPROJACT **** TABLE

 72 75 115 119 120 122

EMPPROJACT **** TABLE IN CORPDATA

 74 118

EMPTIME 74 DECIMAL(5,2) COLUMN IN CORPDATA.EMPPROJACT

EMPTIME **** COLUMN

 116

EMSTDATE 74 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMSTDATE **** COLUMN

 116

FIRSTNME **** COLUMN

 73

FIRSTNME 74 VARCHAR(12) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

HIREDATE 74 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

JOB 74 CHARACTER(8) COLUMN IN CORPDATA.EMPLOYEE

LASTNAME **** COLUMN

 73

LASTNAME 74 VARCHAR(15) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

MAJPROJ 26 CHARACTER(6) IN RPT1

MAJPROJ 118 CHARACTER(6) COLUMN IN CORPDATA.PROJECT

MIDINIT 74 CHARACTER(1) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

NAME 28 CHARACTER(30) IN RPT1

 86

PERCENTAGE 19 DECIMAL(5,2)

 51

PHONENO 74 CHARACTER(4) COLUMN IN CORPDATA.EMPLOYEE

156 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example: SQL statements in RPG/400 programs

This sample program is written in the RPG programming language.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

5722ST1 V5R4M0 060210 Create SQL PL/I Program PLIEX 08/06/02 12:53:36 Page 6

CROSS REFERENCE

PRENDATE 26 DATE(10) IN RPT1

PRENDATE **** COLUMN

 121

PRENDATE 118 DATE(10) COLUMN IN CORPDATA.PROJECT

PROJECT **** TABLE IN CORPDATA

 118

PROJECT **** TABLE

 119

PROJECT_NAME 34 CHARACTER(36) IN RPT2

PROJNAME 26 VARCHAR(24) IN RPT1

PROJNAME **** COLUMN

 115 122

PROJNAME 118 VARCHAR(24) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PROJNO 26 CHARACTER(6) IN RPT1

 86

PROJNO 33 CHARACTER(6) IN RPT2

PROJNO **** COLUMN

 72 77

PROJNO 74 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

PROJNO **** COLUMN IN EMPPROJACT

 115 119 122

PROJNO **** COLUMN IN PROJECT

 119

PROJNO 118 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PRSTAFF 26 DECIMAL(5,2) IN RPT1

PRSTAFF 118 DECIMAL(5,2) COLUMN IN CORPDATA.PROJECT

PRSTDATE 26 DATE(10) IN RPT1

PRSTDATE 118 DATE(10) COLUMN IN CORPDATA.PROJECT

RAISE_DATE 16 CHARACTER(10)

 121

REPORT_ERROR **** LABEL

 57

RESPEMP 26 CHARACTER(6) IN RPT1

RESPEMP 118 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

RPT1 25 STRUCTURE

RPT2 32 STRUCTURE

 132

SALARY 29 DECIMAL(8,2) IN RPT1

 87

SALARY **** COLUMN

 51 51 73 117

SALARY 74 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

SEX 74 CHARACTER(1) COLUMN IN CORPDATA.EMPLOYEE

SYSPRINT 22

TOTL_PROJ_COST 36 DECIMAL(10,2) IN RPT2

UPDATE_ERROR **** LABEL

 48

WORK_DAYS 17 SMALL INTEGER PRECISION(4,0)

 117

WORKDEPT 74 CHARACTER(3) COLUMN IN CORPDATA.EMPLOYEE

No errors found in source

 165 Source records processed

 * * * * * E N D O F L I S T I N G * * * * *

Embedded SQL programming 157

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL RPG Program RPGEX 08/06/02 12:55:22 Page 1

Source type...............RPG

Program name..............CORPDATA/RPGEX

Source file...............CORPDATA/SRC

Member....................RPGEX

To source file............QTEMP/QSQLTEMP

Options...................*SRC *XREF

Target release............V5R4M0

INCLUDE file..............*SRCFILE

Commit....................*CHG

Allow copy of data........*YES

Close SQL cursor..........*ENDPGM

Allow blocking............*READ

Delay PREPARE.............*NO

Generation level..........10

Printer file..............*LIBL/QSYSPRT

Date format...............*JOB

Date separator............*JOB

Time format...............*HMS

Time separator*JOB

Replace...................*YES

Relational database.......*LOCAL

User*CURRENT

RDB connect method........*DUW

Default collection........*NONE

Dynamic default

 collection..............*NO

Package name..............*PGMLIB/*PGM

Path......................*NAMING

SQL rules.................*DB2

User profile..............*NAMING

Dynamic user profile......*USER

Sort sequence.............*JOB

Language ID...............*JOB

IBM SQL flagging..........*NOFLAG

ANS flagging..............*NONE

Text......................*SRCMBRTXT

Source file CCSID.........65535

Job CCSID.................65535

Decimal result options:

 Maximum precision.......31

 Maximum scale...........31

 Minimum divide scale....0

Compiler options..........*NONE

Source member changed on 07/01/96 17:06:17

Figure 6. Sample RPG/400 program using SQL statements

158 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL RPG Program RPGEX 08/06/02 12:55:22 Page 2

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 1 H 100

 2 F* File declaration for QPRINT 200

 3 F* 300

 4 FQPRINT O F 132 PRINTER 400

 5 I* 500

 6 I* Structure for report 1. 600

 7 I* 700

 8 1 IRPT1 E DSPROJECT 800

 9 I PROJNAME PROJNM 900

 10 I RESPEMP RESEM 1000

 11 I PRSTAFF STAFF 1100

 12 I PRSTDATE PRSTD 1200

 13 I PRENDATE PREND 1300

 14 I MAJPROJ MAJPRJ 1400

 15 I* 1500

 16 I DS 1600

 17 I 1 6 EMPNO 1700

 18 I 7 36 NAME 1800

 19 I P 37 412SALARY 1900

 20 I* 2000

 21 I* Structure for report 2. 2100

 22 I* 2200

 23 IRPT2 DS 2300

 24 I 1 6 PRJNUM 2400

 25 I 7 42 PNAME 2500

 26 I B 43 440EMPCNT 2600

 27 I P 45 492PRCOST 2700

 28 I* 2800

 29 I DS 2900

 30 I B 1 20WRKDAY 3000

 31 I P 3 62COMMI 3100

 32 I 7 16 RDATE 3200

 33 I P 17 202PERCNT 3300

 34 2 C* 3400

 35 C Z-ADD253 WRKDAY 3500

 36 C Z-ADD2000.00 COMMI 3600

 37 C Z-ADD1.04 PERCNT 3700

 38 C MOVEL’1982-06-’RDATE 3800

 39 C MOVE ’01’ RDATE 3900

 40 C SETON LR 3901

 41 C* 4000

 42 C* Update the selected projects by the new percentage. If an 4100

 43 C* error occurs during the update, ROLLBACK the changes. 4200

 44 C* 4300

 45 3 C/EXEC SQL WHENEVER SQLERROR GOTO UPDERR 4400

 46 C/END-EXEC 4500

 47 C* 4600

 48 4 C/EXEC SQL 4700

 49 C+ UPDATE CORPDATA/EMPLOYEE 4800

 50 C+ SET SALARY = SALARY * :PERCNT 4900

 51 C+ WHERE COMM >= :COMMI 5000

 52 C/END-EXEC 5100

 53 C* 5200

 54 C* Commit changes. 5300

 55 C* 5400

 56 5 C/EXEC SQL COMMIT 5500

 57 C/END-EXEC 5600

 58 C* 5700

 59 C/EXEC SQL WHENEVER SQLERROR GO TO RPTERR 5800

 60 C/END-EXEC 5900

Embedded SQL programming 159

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL RPG Program RPGEX 08/06/02 12:55:22 Page 3

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 61 C* 6000

 62 C* Report the updated statistics for each employee assigned to 6100

 63 C* selected projects. 6200

 64 C* 6300

 65 C* Write out the header for report 1. 6400

 66 C* 6500

 67 C EXCPTRECA 6600

 68 6 C/EXEC SQL DECLARE C1 CURSOR FOR 6700

 69 C+ SELECT DISTINCT PROJNO, EMPPROJACT.EMPNO, 6800

 70 C+ LASTNAME||’, ’||FIRSTNME, SALARY 6900

 71 C+ FROM CORPDATA/EMPPROJACT, CORPDATA/EMPLOYEE 7000

 72 C+ WHERE EMPPROJACT.EMPNO = EMPLOYEE.EMPNO AND 7100

 73 C+ COMM >= :COMMI 7200

 74 C+ ORDER BY PROJNO, EMPNO 7300

 75 C/END-EXEC 7400

 76 C* 7500

 77 7 C/EXEC SQL 7600

 78 C+ OPEN C1 7700

 79 C/END-EXEC 7800

 80 C* 7900

 81 C* Fetch and write the rows to QPRINT. 8000

 82 C* 8100

 83 8 C/EXEC SQL WHENEVER NOT FOUND GO TO DONE1 8200

 84 C/END-EXEC 8300

 85 C SQLCOD DOUNE0 8400

 86 C/EXEC SQL 8500

 87 9 C+ FETCH C1 INTO :PROJNO, :EMPNO, :NAME, :SALARY 8600

 88 C/END-EXEC 8700

 89 C EXCPTRECB 8800

 90 C END 8900

 91 C DONE1 TAG 9000

 92 C/EXEC SQL 9100

 93 10 C+ CLOSE C1 9200

 94 C/END-EXEC 9300

 95 C* 9400

 96 C* For all project ending at a date later than the raise date 9500

 97 C* (i.e. those projects potentially affected by the salary raises) 9600

 98 C* generate a report containing the project number, project name, 9700

 99 C* the count of employees participating in the project and the 9800

 100 C* total salary cost of the project. 9900

 101 C* 10000

 102 C* Write out the header for report 2. 10100

 103 C* 10200

 104 C EXCPTRECC 10300

 105 11 C/EXEC SQL 10400

 106 C+ DECLARE C2 CURSOR FOR 10500

 107 C+ SELECT EMPPROJACT.PROJNO, PROJNAME, COUNT(*), 10600

 108 C+ SUM((DAYS(EMENDATE) - DAYS(EMSTDATE)) * EMPTIME * 10700

 109 C+ DECIMAL((SALARY/:WRKDAY),8,2)) 10800

 110 C+ FROM CORPDATA/EMPPROJACT, CORPDATA/PROJECT, CORPDATA/EMPLOYEE 10900

 111 C+ WHERE EMPPROJACT.PROJNO = PROJECT.PROJNO AND 11000

 112 C+ EMPPROJACT.EMPNO = EMPLOYEE.EMPNO AND 11100

 113 C+ PRENDATE > :RDATE 11200

 114 C+ GROUP BY EMPPROJACT.PROJNO, PROJNAME 11300

 115 C+ ORDER BY 1 11400

 116 C/END-EXEC 11500

 117 C* 11600

 118 C/EXEC SQL OPEN C2 11700

 119 C/END-EXEC 11800

 120 C* 11900

 121 C* Fetch and write the rows to QPRINT. 12000

 122 C* 12100

 123 C/EXEC SQL WHENEVER NOT FOUND GO TO DONE2 12200

 124 C/END-EXEC 12300

160 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL RPG Program RPGEX 08/06/02 12:55:22 Page 4

 125 C SQLCOD DOUNE0 12400

 126 C/EXEC SQL 12500

 127 12 C+ FETCH C2 INTO :RPT2 12600

 128 C/END-EXEC 12700

 129 C EXCPTRECD 12800

 130 C END 12900

 131 C DONE2 TAG 13000

 132 C/EXEC SQL CLOSE C2 13100

 133 C/END-EXEC 13200

 134 C RETRN 13300

 135 C* 13400

 136 C* Error occurred while updating table. Inform user and rollback 13500

 137 C* changes. 13600

 138 C* 13700

 139 C UPDERR TAG 13800

 140 C EXCPTRECE 13900

 141 13 C/EXEC SQL WHENEVER SQLERROR CONTINUE 14000

 142 C/END-EXEC 14100

 143 C* 14200

 144 14 C/EXEC SQL 14300

 145 C+ ROLLBACK 14400

 146 C/END-EXEC 14500

 147 C RETRN 14600

 148 C* 14700

 149 C* Error occurred while generating reports. Inform user and exit. 14800

 150 C* 14900

 151 C RPTERR TAG 15000

 152 C EXCPTRECF 15100

 153 C* 15200

 154 C* All done. 15300

 155 C* 15400

 156 C FINISH TAG 15500

 157 OQPRINT E 0201 RECA 15700

 158 O 45 ’REPORT OF PROJECTS AFFEC’ 15800

 159 O 64 ’TED BY EMPLOYEE RAISES’ 15900

 160 O E 01 RECA 16000

 161 O 7 ’PROJECT’ 16100

 162 O 17 ’EMPLOYEE’ 16200

 163 O 32 ’EMPLOYEE NAME’ 16300

 164 O 60 ’SALARY’ 16400

 165 O E 01 RECB 16500

 166 O PROJNO 6 16600

 167 O EMPNO 15 16700

 168 O NAME 50 16800

 169 O SALARYL 61 16900

 170 O E 22 RECC 17000

 171 O 42 ’ACCUMULATED STATISTIC’ 17100

 172 O 54 ’S BY PROJECT’ 17200

 173 O E 01 RECC 17300

 174 O 7 ’PROJECT’ 17400

 175 O 56 ’NUMBER OF’ 17500

 176 O 67 ’TOTAL’ 17600

 177 O E 02 RECC 17700

 178 O 6 ’NUMBER’ 17800

 179 O 21 ’PROJECT NAME’ 17900

 180 O 56 ’EMPLOYEES’ 18000

 181 O 66 ’COST’ 18100

 182 O E 01 RECD 18200

 183 O PRJNUM 6 18300

 184 O PNAME 45 18400

 185 O EMPCNTL 54 18500

 186 O PRCOSTL 70 18600

 187 O E 01 RECE 18700

 188 O 28 ’*** ERROR Occurred while’ 18800

 189 O 52 ’ updating table. SQLCODE’ 18900

 190 O 53 ’=’ 19000

 191 O SQLCODL 62 19100

 192 O E 01 RECF 19200

 193 O 28 ’*** ERROR Occurred while’ 19300

 194 O 52 ’ generating reports. SQL’ 19400

 195 O 57 ’CODE=’ 19500

 196 O SQLCODL 67 19600

 * * * * * E N D O F S O U R C E * * * * *

Embedded SQL programming 161

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL RPG Program RPGEX 08/06/02 12:55:22 Page 5

CROSS REFERENCE

Data Names Define Reference

ACTNO 68 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

BIRTHDATE 48 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

BONUS 48 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

COMM **** COLUMN

 48 68

COMM 48 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

COMMI 31 DECIMAL(7,2)

 48 68

CORPDATA **** COLLECTION

 48 68 68 105 105 105

C1 68 CURSOR

 77 86 92

C2 105 CURSOR

 118 126 132

DEPTNO 8 CHARACTER(3) IN RPT1

DEPTNO 105 CHARACTER(3) COLUMN (NOT NULL) IN CORPDATA.PROJECT

DONE1 91 LABEL

 83

DONE2 131 LABEL

 123

EDLEVEL 48 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMENDATE 68 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMENDATE **** COLUMN

 105

EMPCNT 26 SMALL INTEGER PRECISION(4,0) IN RPT2

EMPLOYEE **** TABLE IN CORPDATA

 48 68 105

EMPLOYEE **** TABLE

 68 105

EMPNO 17 CHARACTER(6)

 86

EMPNO 48 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMPNO **** COLUMN IN EMPPROJACT

 68 68 68 105

EMPNO **** COLUMN IN EMPLOYEE

 68 105

EMPNO 68 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

EMPPROJACT **** TABLE

 68 68 105 105 105 105

EMPPROJACT **** TABLE IN CORPDATA

 68 105

EMPTIME 68 DECIMAL(5,2) COLUMN IN CORPDATA.EMPPROJACT

EMPTIME **** COLUMN

 105

EMSTDATE 68 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMSTDATE **** COLUMN

 105

FINISH 156 LABEL

FIRSTNME 48 VARCHAR(12) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

FIRSTNME **** COLUMN

 68

HIREDATE 48 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

JOB 48 CHARACTER(8) COLUMN IN CORPDATA.EMPLOYEE

LASTNAME 48 VARCHAR(15) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

LASTNAME **** COLUMN

 68

MAJPRJ 8 CHARACTER(6) IN RPT1

MAJPROJ 105 CHARACTER(6) COLUMN IN CORPDATA.PROJECT

MIDINIT 48 CHARACTER(1) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

NAME 18 CHARACTER(30)

 86

PERCNT 33 DECIMAL(7,2)

 48

PHONENO 48 CHARACTER(4) COLUMN IN CORPDATA.EMPLOYEE

PNAME 25 CHARACTER(36) IN RPT2

PRCOST 27 DECIMAL(9,2) IN RPT2

PREND 8 DATE(10) IN RPT1

PRENDATE **** COLUMN

 105

162 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example: SQL statements in ILE RPG programs

This sample program is written in the ILE RPG programming language.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

5722ST1 V5R4M0 060210 Create SQL RPG Program RPGEX 08/06/02 12:55:22 Page 6

PRENDATE 105 DATE(10) COLUMN IN CORPDATA.PROJECT

PRJNUM 24 CHARACTER(6) IN RPT2

CROSS REFERENCE

PROJECT **** TABLE IN CORPDATA

 105

PROJECT **** TABLE

 105

PROJNAME **** COLUMN

 105 105

PROJNAME 105 VARCHAR(24) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PROJNM 8 VARCHAR(24) IN RPT1

PROJNO 8 CHARACTER(6) IN RPT1

 86

PROJNO **** COLUMN

 68 68

PROJNO 68 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

PROJNO **** COLUMN IN EMPPROJACT

 105 105 105

PROJNO **** COLUMN IN PROJECT

 105

PROJNO 105 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PRSTAFF 105 DECIMAL(5,2) COLUMN IN CORPDATA.PROJECT

PRSTD 8 DATE(10) IN RPT1

PRSTDATE 105 DATE(10) COLUMN IN CORPDATA.PROJECT

RDATE 32 CHARACTER(10)

 105

RESEM 8 CHARACTER(6) IN RPT1

RESPEMP 105 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

RPTERR 151 LABEL

 59

RPT1 8 STRUCTURE

RPT2 23 STRUCTURE

 126

SALARY 19 DECIMAL(9,2)

 86

SALARY **** COLUMN

 48 48 68 105

SALARY 48 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

SEX 48 CHARACTER(1) COLUMN IN CORPDATA.EMPLOYEE

STAFF 8 DECIMAL(5,2) IN RPT1

UPDERR 139 LABEL

 45

WORKDEPT 48 CHARACTER(3) COLUMN IN CORPDATA.EMPLOYEE

WRKDAY 30 SMALL INTEGER PRECISION(4,0)

 105

No errors found in source

 196 Source records processed

 * * * * * E N D O F L I S T I N G * * * * *

Embedded SQL programming 163

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL ILE RPG Object RPGLEEX 08/06/02 16:03:02 Page 1

Source type...............RPG

Object name...............CORPDATA/RPGLEEX

Source file...............CORPDATA/SRC

Member....................*OBJ

To source file............QTEMP/QSQLTEMP1

Options...................*XREF

RPG preprocessor options..*NONE

Listing option............*PRINT

Target release............V5R4M0

INCLUDE file..............*SRCFILE

Commit....................*CHG

Allow copy of data........*YES

Close SQL cursor..........*ENDMOD

Allow blocking............*READ

Delay PREPARE.............*NO

Generation level..........10

Printer file..............*LIBL/QSYSPRT

Date format...............*JOB

Date separator............*JOB

Time format...............*HMS

Time separator*JOB

Replace...................*YES

Relational database.......*LOCAL

User*CURRENT

RDB connect method........*DUW

Default collection........*NONE

Dynamic default

 collection..............*NO

Package name..............*OBJLIB/*OBJ

Path......................*NAMING

SQL rules.................*DB2

Created object type.......*PGM

Debugging view............*NONE

User profile..............*NAMING

Dynamic user profile......*USER

Sort sequence.............*JOB

Language ID...............*JOB

IBM SQL flagging..........*NOFLAG

ANS flagging..............*NONE

Text......................*SRCMBRTXT

Source file CCSID.........65535

Job CCSID.................65535

Decimal result options:

 Maximum precision.......31

 Maximum scale...........31

 Minimum divide scale....0

Compiler options..........*NONE

Source member changed on 07/01/96 15:55:32

Figure 7. Sample ILE RPG program using SQL statements

164 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL ILE RPG Object RPGLEEX 08/06/02 16:03:02 Page 2

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change Comments

 1 H 100

 2 F* File declaration for QPRINT 200

 3 F* 300

 4 FQPRINT O F 132 PRINTER 400

 5 D* 500

 6 D* Structure for report 1. 600

 7 D* 700

 8 1 DRPT1 E DS EXTNAME(PROJECT) 800

 9 D* 900

 10 D DS 1000

 11 D EMPNO 1 6 1100

 12 D NAME 7 36 1200

 13 D SALARY 37 41P 2 1300

 14 D* 1400

 15 D* Structure for report 2. 1500

 16 D* 1600

 17 DRPT2 DS 1700

 18 D PRJNUM 1 6 1800

 19 D PNAME 7 42 1900

 20 D EMPCNT 43 44B 0 2000

 21 D PRCOST 45 49P 2 2100

 22 D* 2200

 23 D DS 2300

 24 D WRKDAY 1 2B 0 2400

 25 D COMMI 3 6P 2 2500

 26 D RDATE 7 16 2600

 27 D PERCNT 17 20P 2 2700

 28 * 2800

 29 2 C Z-ADD 253 WRKDAY 2900

 30 C Z-ADD 2000.00 COMMI 3000

 31 C Z-ADD 1.04 PERCNT 3100

 32 C MOVEL ’1982-06-’ RDATE 3200

 33 C MOVE ’01’ RDATE 3300

 34 C SETON LR 3400

 35 C* 3500

 36 C* Update the selected projects by the new percentage. If an 3600

 37 C* error occurs during the update, ROLLBACK the changes. 3700

 38 C* 3800

 39 3 C/EXEC SQL WHENEVER SQLERROR GOTO UPDERR 3900

 40 C/END-EXEC 4000

 41 C* 4100

 42 C/EXEC SQL 4200

 43 4 C+ UPDATE CORPDATA/EMPLOYEE 4300

 44 C+ SET SALARY = SALARY * :PERCNT 4400

 45 C+ WHERE COMM >= :COMMI 4500

 46 C/END-EXEC 4600

 47 C* 4700

 48 C* Commit changes. 4800

 49 C* 4900

 50 5 C/EXEC SQL COMMIT 5000

 51 C/END-EXEC 5100

 52 C* 5200

 53 C/EXEC SQL WHENEVER SQLERROR GO TO RPTERR 5300

 54 C/END-EXEC 5400

 55 C* 5500

 56 C* Report the updated statistics for each employee assigned to 5600

 57 C* selected projects. 5700

 58 C* 5800

 12000

Embedded SQL programming 165

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL ILE RPG Object RPGLEEX 08/06/02 16:03:02 Page 3

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change Comments

 59 C* Write out the header for report 1. 5900

 60 C* 6000

 61 C EXCEPT RECA 6100

 62 6 C/EXEC SQL DECLARE C1 CURSOR FOR 6200

 63 C+ SELECT DISTINCT PROJNO, EMPPROJACT.EMPNO, 6300

 64 C+ LASTNAME||’, ’||FIRSTNME, SALARY 6400

 65 C+ FROM CORPDATA/EMPPROJACT, CORPDATA/EMPLOYEE 6500

 66 C+ WHERE EMPPROJACT.EMPNO = EMPLOYEE.EMPNO AND 6600

 67 C+ COMM >= :COMMI 6700

 68 C+ ORDER BY PROJNO, EMPNO 6800

 69 C/END-EXEC 6900

 70 C* 7000

 71 7 C/EXEC SQL 7100

 72 C+ OPEN C1 7200

 73 C/END-EXEC 7300

 74 C* 7400

 75 C* Fetch and write the rows to QPRINT. 7500

 76 C* 7600

 77 8 C/EXEC SQL WHENEVER NOT FOUND GO TO DONE1 7700

 78 C/END-EXEC 7800

 79 C SQLCOD DOUNE 0 7900

 80 C/EXEC SQL 8000

 81 9 C+ FETCH C1 INTO :PROJNO, :EMPNO, :NAME, :SALARY 8100

 82 C/END-EXEC 8200

 83 C EXCEPT RECB 8300

 84 C END 8400

 85 C DONE1 TAG 8500

 86 C/EXEC SQL 8600

 87 10 C+ CLOSE C1 8700

 88 C/END-EXEC 8800

 89 C* 8900

 90 C* For all project ending at a date later than the raise date 9000

 91 C* (i.e. those projects potentially affected by the salary raises) 9100

 92 C* generate a report containing the project number, project name, 9200

 93 C* the count of employees participating in the project and the 9300

 94 C* total salary cost of the project. 9400

 95 C* 9500

 96 C* Write out the header for report 2. 9600

 97 C* 9700

 98 C EXCEPT RECC 9800

 99 C/EXEC SQL 9900

 100 11 C+ DECLARE C2 CURSOR FOR 10000

 101 C+ SELECT EMPPROJACT.PROJNO, PROJNAME, COUNT(*), 10100

 102 C+ SUM((DAYS(EMENDATE) - DAYS(EMSTDATE)) * EMPTIME * 10200

 103 C+ DECIMAL((SALARY/:WRKDAY),8,2)) 10300

 104 C+ FROM CORPDATA/EMPPROJACT, CORPDATA/PROJECT, CORPDATA/EMPLOYEE 10400

 105 C+ WHERE EMPPROJACT.PROJNO = PROJECT.PROJNO AND 10500

 106 C+ EMPPROJACT.EMPNO = EMPLOYEE.EMPNO AND 10600

 107 C+ PRENDATE > :RDATE 10700

 108 C+ GROUP BY EMPPROJACT.PROJNO, PROJNAME 10800

 109 C+ ORDER BY 1 10900

 110 C/END-EXEC 11000

 111 C* 11100

 112 C/EXEC SQL OPEN C2 11200

 113 C/END-EXEC 11300

 114 C* 11400

 115 C* Fetch and write the rows to QPRINT. 11500

 116 C* 11600

 117 C/EXEC SQL WHENEVER NOT FOUND GO TO DONE2 11700

 118 C/END-EXEC 11800

 119 C SQLCOD DOUNE 0 11900

 120 C/EXEC SQL

 121 12 C+ FETCH C2 INTO :RPT2 12100

 122 C/END-EXEC 12200

 123 C EXCEPT RECD 12300

166 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL ILE RPG Object RPGLEEX 08/06/02 16:03:02 Page 4

 124 C END 12400

 125 C DONE2 TAG 12500

 126 C/EXEC SQL CLOSE C2 12600

 127 C/END-EXEC 12700

 128 C RETURN 12800

 129 C* 12900

 130 C* Error occurred while updating table. Inform user and rollback 13000

 131 C* changes. 13100

 132 C* 13200

 133 C UPDERR TAG 13300

 134 C EXCEPT RECE 13400

 135 13 C/EXEC SQL WHENEVER SQLERROR CONTINUE 13500

 136 C/END-EXEC 13600

 137 C* 13700

 138 14 C/EXEC SQL 13800

 139 C+ ROLLBACK 13900

 140 C/END-EXEC 14000

 141 C RETURN 14100

 142 C* 14200

 143 C* Error occurred while generating reports. Inform user and exit. 14300

 144 C* 14400

 145 C RPTERR TAG 14500

 146 C EXCEPT RECF 14600

 147 C* 14700

 148 C* All done. 14800

 149 C* 14900

 150 C FINISH TAG 15000

 151 OQPRINT E RECA 0 2 01 15100

 152 O 42 ’REPORT OF PROJECTS AFFEC’ 15200

 153 O 64 ’TED BY EMPLOYEE RAISES’ 15300

 154 O E RECA 0 1 15400

 155 O 7 ’PROJECT’ 15500

 156 O 17 ’EMPLOYEE’ 15600

 157 O 32 ’EMPLOYEE NAME’ 15700

 158 O 60 ’SALARY’ 15800

 159 O E RECB 0 1 15900

 160 O PROJNO 6 16000

 161 O EMPNO 15 16100

 162 O NAME 50 16200

 163 O SALARY L 61 16300

 164 O E RECC 2 2 16400

 165 O 42 ’ACCUMULATED STATISTIC’ 16500

 166 O 54 ’S BY PROJECT’ 16600

 167 O E RECC 0 1 16700

 168 O 7 ’PROJECT’ 16800

 169 O 56 ’NUMBER OF’ 16900

 170 O 67 ’TOTAL’ 17000

 171 O E RECC 0 2 17100

 172 O 6 ’NUMBER’ 17200

 173 O 21 ’PROJECT NAME’ 17300

 174 O 56 ’EMPLOYEES’ 17400

 175 O 66 ’COST’ 17500

 176 O E RECD 0 1 17600

 177 O PRJNUM 6 17700

 178 O PNAME 45 17800

 179 O EMPCNT L 54 17900

 180 O PRCOST L 70 18000

 181 O E RECE 0 1 18100

 182 O 28 ’*** ERROR Occurred while’ 18200

 183 O 52 ’ updating table. SQLCODE’ 18300

 184 O 53 ’=’ 18400

 185 O SQLCOD L 62 18500

 186 O E RECF 0 1 18600

 187 O 28 ’*** ERROR Occurred while’ 18700

 188 O 52 ’ generating reports. SQL’ 18800

 189 O 57 ’CODE=’ 18900

 190 O SQLCOD L 67 19000

 * * * * * E N D O F S O U R C E * * * * *

Embedded SQL programming 167

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5722ST1 V5R4M0 060210 Create SQL ILE RPG Object RPGLEEX 08/06/02 16:03:02 Page 5

CROSS REFERENCE

Data Names Define Reference

ACTNO 62 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

BIRTHDATE 42 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

BONUS 42 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

COMM **** COLUMN

 42 62

COMM 42 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

COMMI 25 DECIMAL(7,2)

 42 62

CORPDATA **** COLLECTION

 42 62 62 99 99 99

C1 62 CURSOR

 71 80 86

C2 99 CURSOR

 112 120 126

DEPTNO 8 CHARACTER(3) IN RPT1

DEPTNO 99 CHARACTER(3) COLUMN (NOT NULL) IN CORPDATA.PROJECT

DONE1 85

DONE1 **** LABEL

 77

DONE2 125

DONE2 **** LABEL

 117

EDLEVEL 42 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMENDATE 62 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMENDATE **** COLUMN

 99

EMPCNT 20 SMALL INTEGER PRECISION(4,0) IN RPT2

EMPLOYEE **** TABLE IN CORPDATA

 42 62 99

EMPLOYEE **** TABLE

 62 99

EMPNO 11 CHARACTER(6) DBCS-open

 80

EMPNO 42 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

EMPNO **** COLUMN IN EMPPROJACT

 62 62 62 99

EMPNO **** COLUMN IN EMPLOYEE

 62 99

EMPNO 62 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

EMPPROJACT **** TABLE

 62 62 99 99 99 99

EMPPROJACT **** TABLE IN CORPDATA

 62 99

EMPTIME 62 DECIMAL(5,2) COLUMN IN CORPDATA.EMPPROJACT

EMPTIME **** COLUMN

 99

EMSTDATE 62 DATE(10) COLUMN IN CORPDATA.EMPPROJACT

EMSTDATE **** COLUMN

 99

FINISH 150

FIRSTNME 42 VARCHAR(12) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

FIRSTNME **** COLUMN

 62

HIREDATE 42 DATE(10) COLUMN IN CORPDATA.EMPLOYEE

JOB 42 CHARACTER(8) COLUMN IN CORPDATA.EMPLOYEE

LASTNAME 42 VARCHAR(15) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

LASTNAME **** COLUMN

 62

MAJPROJ 8 CHARACTER(6) IN RPT1

MAJPROJ 99 CHARACTER(6) COLUMN IN CORPDATA.PROJECT

MIDINIT 42 CHARACTER(1) COLUMN (NOT NULL) IN CORPDATA.EMPLOYEE

NAME 12 CHARACTER(30) DBCS-open

 80

PERCNT 27 DECIMAL(7,2)

 42

PHONENO 42 CHARACTER(4) COLUMN IN CORPDATA.EMPLOYEE

PNAME 19 CHARACTER(36) DBCS-open IN RPT2

PRCOST 21 DECIMAL(9,2) IN RPT2

PRENDATE 8 DATE(8) IN RPT1

168 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related concepts

 “Code SQL statements in ILE RPG applications” on page 91

This topic describes the unique application and coding requirements for embedding SQL statements in

an ILE RPG program. The coding requirements for host variables are defined.

Example: SQL statements in REXX programs

This sample program is written in the REXX programming language.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 176.

5722ST1 V5R4M0 060210 Create SQL ILE RPG Object RPGLEEX 08/06/02 16:03:02 Page 6

PRENDATE **** COLUMN

 99

PRENDATE 99 DATE(10) COLUMN IN CORPDATA.PROJECT

PRJNUM 18 CHARACTER(6) DBCS-open IN RPT2

CROSS REFERENCE

PROJECT **** TABLE IN CORPDATA

 99

PROJECT **** TABLE

 99

PROJNAME 8 VARCHAR(24) IN RPT1

PROJNAME **** COLUMN

 99 99

PROJNAME 99 VARCHAR(24) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PROJNO 8 CHARACTER(6) IN RPT1

 80

PROJNO **** COLUMN

 62 62

PROJNO 62 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.EMPPROJACT

PROJNO **** COLUMN IN EMPPROJACT

 99 99 99

PROJNO **** COLUMN IN PROJECT

 99

PROJNO 99 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

PRSTAFF 8 DECIMAL(5,2) IN RPT1

PRSTAFF 99 DECIMAL(5,2) COLUMN IN CORPDATA.PROJECT

PRSTDATE 8 DATE(8) IN RPT1

PRSTDATE 99 DATE(10) COLUMN IN CORPDATA.PROJECT

RDATE 26 CHARACTER(10) DBCS-open

 99

RESPEMP 8 CHARACTER(6) IN RPT1

RESPEMP 99 CHARACTER(6) COLUMN (NOT NULL) IN CORPDATA.PROJECT

RPTERR 145

RPTERR **** LABEL

 53

RPT1 8 STRUCTURE

RPT2 17 STRUCTURE

 120

SALARY 13 DECIMAL(9,2)

 80

SALARY **** COLUMN

 42 42 62 99

SALARY 42 DECIMAL(9,2) COLUMN IN CORPDATA.EMPLOYEE

SEX 42 CHARACTER(1) COLUMN IN CORPDATA.EMPLOYEE

UPDERR 133

UPDERR **** LABEL

 39

WORKDEPT 42 CHARACTER(3) COLUMN IN CORPDATA.EMPLOYEE

WRKDAY 24 SMALL INTEGER PRECISION(4,0)

 99

No errors found in source

 190 Source records processed

 * * * * * E N D O F L I S T I N G * * * * *

Embedded SQL programming 169

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

 1 /***/

 2 /* A sample program which updates the salaries for those employees */

 3 /* whose current commission total is greater than or equal to the */

 4 /* value of COMMISSION. The salaries of those who qualify are */

 5 /* increased by the value of PERCENTAGE, retroactive to RAISE_DATE. */

 6 /* A report is generated and dumped to the display which shows the */

 7 /* projects which these employees have contributed to, ordered by */

 8 /* project number and employee ID. A second report shows each */

 9 /* project having an end date occurring after RAISE DATE (i.e. is */

 10 /* potentially affected by the retroactive raises) with its total */

 11 /* salary expenses and a count of employees who contributed to the */

 12 /* project. */

 13 /***/

 14

 15

 16 /* Initialize RC variable */

 17 RC = 0

 18

 19 /* Initialize HV for program usage */

 20 COMMISSION = 2000.00;

 21 PERCENTAGE = 1.04;

 22 RAISE_DATE = ’1982-06-01’;

 23 WORK_DAYS = 253;

 24

 25 /* Create the output file to dump the 2 reports. Perform an OVRDBF */

 26 /* to allow us to use the SAY REXX command to write to the output */

 27 /* file. */

 28 ADDRESS ’*COMMAND’,

 29 ’DLTF FILE(CORPDATA/REPORTFILE)’

 30 ADDRESS ’*COMMAND’,

 31 ’CRTPF FILE(CORPDATA/REPORTFILE) RCDLEN(80)’

 32 ADDRESS ’*COMMAND’,

 33 ’OVRDBF FILE(STDOUT) TOFILE(CORPDATA/REPORTFILE) MBR(REPORTFILE)’

 34

 35 /* Update the selected employee’s salaries by the new percentage. */

 36 /* If an error occurs during the update, ROLLBACK the changes. */

 37 3SIGNAL ON ERROR

 38 ERRLOC = ’UPDATE_ERROR’

 39 UPDATE_STMT = ’UPDATE CORPDATA/EMPLOYEE ’,

 40 ’SET SALARY = SALARY * ? ’,

 41 ’WHERE COMM >= ? ’

 42 EXECSQL,

 43 ’PREPARE S1 FROM :UPDATE_STMT’

 44 4EXECSQL,

 45 ’EXECUTE S1 USING :PERCENTAGE,’,

 46 ’ :COMMISSION ’

 47 /* Commit changes */

 48 5EXECSQL,

 49 ’COMMIT’

 50 ERRLOC = ’REPORT_ERROR’

 51

Figure 8. Sample REXX Procedure Using SQL Statements

170 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

 52 /* Report the updated statistics for each project supported by one */

 53 /* of the selected employees. */

 54

 55 /* Write out the header for Report 1 */

 56 SAY ’ ’

 57 SAY ’ ’

 58 SAY ’ ’

 59 SAY ’ REPORT OF PROJECTS AFFECTED BY EMPLOYEE RAISES’

 60 SAY ’ ’

 61 SAY ’PROJECT EMPID EMPLOYEE NAME SALARY’

 62 SAY ’------- ----- ------------- ------’

 63 SAY ’ ’

 64

 65 SELECT_STMT = ’SELECT DISTINCT PROJNO, EMPPROJACT.EMPNO, ’,

 66 ’ LASTNAME||’’, ’’||FIRSTNME, SALARY ’,

 67 ’FROM CORPDATA/EMPPROJACT, CORPDATA/EMPLOYEE ’,

 68 ’WHERE EMPPROJACT.EMPNO = EMPLOYEE.EMPNO AND ’,

 69 ’ COMM >= ? ’,

 70 ’ORDER BY PROJNO, EMPNO ’

 71 EXECSQL,

 72 ’PREPARE S2 FROM :SELECT_STMT’

 73 6EXECSQL,

 74 ’DECLARE C1 CURSOR FOR S2’

 75 7EXECSQL,

 76 ’OPEN C1 USING :COMMISSION’

 77

 78 /* Handle the FETCH errors and warnings inline */

 79 SIGNAL OFF ERROR

 80

 81 /* Fetch all of the rows */

 82 DO UNTIL (SQLCODE <> 0)

 83 9EXECSQL,

 84 ’FETCH C1 INTO :RPT1.PROJNO, :RPT1.EMPNO,’,

 85 ’ :RPT1.NAME, :RPT1.SALARY ’

 86

 87 /* Process any errors that may have occurred. Continue so that */

 88 /* we close the cursor for any warnings. */

 89 IF SQLCODE < 0 THEN

 90 SIGNAL ERROR

 91

 92 /* Stop the loop when we hit the EOF. Don’t try to print out the */

 93 /* fetched values. */

 94 8IF SQLCODE = 100 THEN

 95 LEAVE

 96

 97 /* Print out the fetched row */

 98 SAY RPT1.PROJNO ’ ’ RPT1.EMPNO ’ ’ RPT1.NAME ’ ’ RPT1.SALARY

 99 END;

 100

 101 10EXECSQL,

 102 ’CLOSE C1’

 103

..+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

 104 /* For all projects ending at a date later than ’raise_date’ */

 105 /* (i.e. those projects potentially affected by the salary raises) */

 106 /* generate a report containing the project number, project name */

 107 /* the count of employees participating in the project and the */

 108 /* total salary cost of the project. */

 109

Embedded SQL programming 171

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

 110 /* Write out the header for Report 2 */

 111 SAY ’ ’

 112 SAY ’ ’

 113 SAY ’ ’

 114 SAY ’ ACCUMULATED STATISTICS BY PROJECT’

 115 SAY ’ ’

 116 SAY ’PROJECT PROJECT NAME NUMBER OF TOTAL’

 117 SAY ’NUMBER EMPLOYEES COST’

 118 SAY ’------- ------------ --------- -----’

 119 SAY ’ ’

 120

 121

 122 /* Go to the common error handler */

 123 SIGNAL ON ERROR

 124

 125 SELECT_STMT = ’SELECT EMPPROJACT.PROJNO, PROJNAME, COUNT(*), ’,

 126 ’ SUM((DAYS(EMENDATE) - DAYS(EMSTDATE)) * EMPTIME * ’,

 127 ’ DECIMAL((SALARY / ?),8,2)) ’,

 128 ’FROM CORPDATA/EMPPROJACT, CORPDATA/PROJECT, CORPDATA/EMPLOYEE’,

 129 ’WHERE EMPPROJACT.PROJNO = PROJECT.PROJNO AND ’,

 130 ’ EMPPROJACT.EMPNO = EMPLOYEE.EMPNO AND ’,

 131 ’ PRENDATE > ? ’,

 132 ’GROUP BY EMPPROJACT.PROJNO, PROJNAME ’,

 133 ’ORDER BY 1 ’

 134 EXECSQL,

 135 ’PREPARE S3 FROM :SELECT_STMT’

 136 11EXECSQL,

 137 ’DECLARE C2 CURSOR FOR S3’

 138 EXECSQL,

 139 ’OPEN C2 USING :WORK_DAYS, :RAISE_DATE’

 140

 141 /* Handle the FETCH errors and warnings inline */

 142 SIGNAL OFF ERROR

 143

 144 /* Fetch all of the rows */

 145 DO UNTIL (SQLCODE <> 0)

 146 12EXECSQL,

 147 ’FETCH C2 INTO :RPT2.PROJNO, :RPT2.PROJNAME, ’,

 148 ’ :RPT2.EMPCOUNT, :RPT2.TOTAL_COST ’

 149

 150 /* Process any errors that may have occurred. Continue so that */

 151 /* we close the cursor for any warnings. */

 152 IF SQLCODE < 0 THEN

 153 SIGNAL ERROR

 154

 155 /* Stop the loop when we hit the EOF. Don’t try to print out the */

 156 /* fetched values. */

 157 IF SQLCODE = 100 THEN

 158 LEAVE

 159

 160 /* Print out the fetched row */

 161 SAY RPT2.PROJNO ’ ’ RPT2.PROJNAME ’ ’ ,

 162 RPT2.EMPCOUNT ’ ’ RPT2.TOTAL_COST

 163 END;

 164

 165 EXECSQL,

 166 ’CLOSE C2’

 167

172 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Related concepts

 “Code SQL statements in REXX applications” on page 114

REXX procedures do not have to be preprocessed. At run time, the REXX interpreter passes statements

that it does not understand to the current active command environment for processing.

Report produced by sample programs that use SQL

This report is produced by each of the sample programs.

 REPORT OF PROJECTS AFFECTED BY RAISES

PROJECT EMPID EMPLOYEE NAME SALARY

AD3100 000010 HAAS, CHRISTINE 54860.00

AD3110 000070 PULASKI, EVA 37616.80

AD3111 000240 MARINO, SALVATORE 29910.40

AD3113 000270 PEREZ, MARIA 28475.20

IF1000 000030 KWAN, SALLY 39780.00

IF1000 000140 NICHOLLS, HEATHER 29556.80

IF2000 000030 KWAN, SALLY 39780.00

IF2000 000140 NICHOLLS, HEATHER 29556.80

MA2100 000010 HAAS, CHRISTINE 54860.00

MA2100 000110 LUCCHESSI, VICENZO 48360.00

MA2110 000010 HAAS, CHRISTINE 54860.00

MA2111 000200 BROWN, DAVID 28849.60

MA2111 000220 LUTZ, JENNIFER 31033.60

MA2112 000150 ADAMSON, BRUCE 26291.20

 168 /* Delete the OVRDBF so that we will continue writing to the output */

 169 /* display. */

 170 ADDRESS ’*COMMAND’,

 171 ’DLTOVR FILE(STDOUT)’

 172

 173 /* Leave procedure with a successful or warning RC */

 174 EXIT RC

 175

 176

 177 /* Error occurred while updating the table or generating the */

 178 /* reports. If the error occurred on the UPDATE, rollback all of */

 179 /* the changes. If it occurred on the report generation, display the */

 180 /* REXX RC variable and the SQLCODE and exit the procedure. */

 181 ERROR:

 182

 183 13SIGNAL OFF ERROR

 184

 185 /* Determine the error location */

 186 SELECT

 187 /* When the error occurred on the UPDATE statement */

 188 WHEN ERRLOC = ’UPDATE_ERROR’ THEN

 190 DO

 191 SAY ’*** ERROR Occurred while updating table.’,

 192 ’SQLCODE = ’ SQLCODE

 193 14EXECSQL,

 194 ’ROLLBACK’

 195 END

 196 /* When the error occurred during the report generation */

 197 WHEN ERRLOC = ’REPORT_ERROR’ THEN

 198 SAY ’*** ERROR Occurred while generating reports. ’,

 199 ’SQLCODE = ’ SQLCODE

 200 OTHERWISE

 201 SAY ’*** Application procedure logic error occurred ’

 202 END

 203

 204 /* Delete the OVRDBF so that we will continue writing to the */

 205 /* output display. */

 206 ADDRESS ’*COMMAND’,

 207 ’DLTOVR FILE(STDOUT)’

 208

 209 /* Return the error RC received from SQL. */

 210 EXIT RC

 211 * * * * * E N D O F S O U R C E * * * * *

Embedded SQL programming 173

OP1000 000050 GEYER, JOHN 41782.00

OP1010 000090 HENDERSON, EILEEN 30940.00

OP1010 000280 SCHNEIDER, ETHEL 27300.00

OP2010 000050 GEYER, JOHN 41782.00

OP2010 000100 SPENSER, THEODORE 27196.00

OP2012 000330 LEE, WING 26384.80

PL2100 000020 THOMPSON, MICHAEL 42900.00

 ACCUMULATED STATISTICS BY PROJECT

PROJECT NUMBER OF TOTAL

NUMBER PROJECT NAME EMPLOYEES COST

AD3100 ADMIN SERVICES 1 19623.11

AD3110 GENERAL ADMIN SYSTEMS 1 58877.28

AD3111 PAYROLL PROGRAMMING 7 66407.56

AD3112 PERSONNEL PROGRAMMING 9 28845.70

AD3113 ACCOUNT PROGRAMMING 14 72114.52

IF1000 QUERY SERVICES 4 35178.99

IF2000 USER EDUCATION 5 55212.61

MA2100 WELD LINE AUTOMATION 2 114001.52

MA2110 W L PROGRAMMING 1 85864.68

MA2111 W L PROGRAM DESIGN 3 93729.24

MA2112 W L ROBOT DESIGN 6 166945.84

MA2113 W L PROD CONT PROGS 5 71509.11

OP1000 OPERATION SUPPORT 1 16348.86

OP1010 OPERATION 5 167828.76

OP2010 SYSTEMS SUPPORT 2 91612.62

OP2011 SCP SYSTEMS SUPPORT 2 31224.60

OP2012 APPLICATIONS SUPPORT 2 41294.88

OP2013 DB/DC SUPPORT 2 37311.12

PL2100 WELD LINE PLANNING 1 43576.92

DB2 UDB for iSeries CL command descriptions for host language

precompilers

DB2 UDB for iSeries provides commands for precompiling programs coded in the following

programming languages:

 Related concepts

 “Non-ILE SQL precompiler commands” on page 129
DB2 UDB Query Manager and SQL Development Kit includes non-ILE precompiler commands for the

following host languages: CRTSQLCBL (for COBOL for iSeries), CRTSQLPLI (for iSeries PL/I), and

CRTSQLRPG (for RPG III, which is part of RPG/400).
 Related reference

 “ILE SQL precompiler commands” on page 130
In the DB2 UDB Query Manager and SQL Development Kit, the following ILE precompiler commands

exist: CRTSQLCI, CRTSQLCPPI, CRTSQLCBLI, and CRTSQLRPGI.

CRTSQLCBL (Create Structured Query Language COBOL) command

The Create Structured Query Language COBOL (CRTSQLCBL) command calls the Structured Query

Language (SQL) precompiler.

It precompiles COBOL source containing SQL statements, produces a temporary source member, and then

optionally calls the COBOL compiler to compile the program.

 Related information

 Create Structured Query Language COBOL (CRTSQLCBL) command

174 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

CRTSQLCBLI (Create SQL ILE COBOL Object) command

The Create Structured Query Language ILE COBOL Object (CRTSQLCBLI) command calls the Structured

Query Language (SQL) precompiler, which precompiles COBOL source containing SQL statements,

produces a temporary source member, and then optionally calls the ILE COBOL compiler to create a

module, a program, or a service program.

 Related information

 Create Structured Query Language ILE COBOL Object (CRTSQLCBLI) command

CRTSQLCI (Create Structured Query Language ILE C Object)

command

The Create Structured Query Language ILE C Object (CRTSQLCI) command calls the Structured Query

Language (SQL) precompiler, which precompiles C source containing SQL statements, produces a

temporary source member, and then optionally calls the ILE C compiler to create a module, create a

program, or create a service program.

 Related information

 Create Structured Query Language ILE C Object (CRTSQLCI) command

CRTSQLCPPI (Create Structured Query Language C++ Object)

command

The Create Structured Query Language C++ Object (CRTSQLCPPI) command calls the Structured Query

Language (SQL) precompiler, which precompiles C++ source containing SQL statements, produces a

temporary source member, and then optionally calls the C++ compiler to create a module.

 Related information

 Create Structured Query Language C++ Object (CRTSQLCPPI) command

CRTSQLPLI (Create Structured Query Language PL/I) command

The Create Structured Query Language PL/I (CRTSQLPLI) command calls a Structured Query Language

(SQL) precompiler, which precompiles PL/I source containing SQL statements, produces a temporary

source member, and optionally calls the PL/I compiler to compile the program.

 Related information

 Create Structured Query Language PL/I (CRTSQLPLI) command

CRTSQLRPG (Create Structured Query Language RPG) command

The Create Structured Query Language RPG (CRTSQLRPG) command calls the Structured Query

Language (SQL) precompiler, which precompiles the RPG source containing the SQL statements,

produces a temporary source member, and then optionally calls the RPG compiler to compile the

program.

 Related information

 Create Structured Query Language RPG (CRTSQLRPG) command

CRTSQLRPGI (Create SQL ILE RPG Object) command

The Create Structured Query Language ILE RPG Object (CRTSQLRPGI) command calls the Structured

Query Language (SQL) precompiler, which precompiles RPG source containing SQL statements, produces

a temporary source member, and then optionally calls the ILE RPG compiler to create a module, create a

program, or create a service program.

 Related information

 Create Structured Query Language ILE RPG Object (CRTSQLRPGI) command

Embedded SQL programming 175

Related information for Embedded SQL programming

Listed here are the product manuals and information center topics that relate to the Embedded SQL

programming topic. You can view or print any of the PDFs.

Manuals

v COBOL/400 User’s Guide manual on the V5R1 Supplemental Manuals

Web site

v COBOL/400 Reference manual on the V5R1 Supplemental Manuals

Web site

v RPG/400 User’s Guide manual on the V5R1 Supplemental Manuals

Web site

v RPG/400 Reference manual on the V5R1 Supplemental Manuals

Web site

v ILE RPG Programmer’s Guide manual on the V5R1 Supplemental Manuals

Web site

v ILE RPG Reference manual on the V5R1 Supplemental Manuals

Web site

v ILE COBOL Programmer’s Guide manual on the V5R1 Supplemental Manuals

Web site

v ILE COBOL Reference manual on the V5R1 Supplemental Manuals

Web site

v REXX/400 Programmer’s Guide manual on the V5R1 Supplemental Manuals

Web site

v REXX/400 Reference manual on the V5R1 Supplemental Manuals

Web site

v SQL reference PDF (13 343 KB)

Other information

You can view or download these related topics:

v SQL programming

v Database performance and query optimization

v SQL call level interface

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

176 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|

|

|

|
|

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://www.adobe.com/products/acrobat/readstep.html

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

Embedded SQL programming 177

|
|
|

|
|

|

|
|

|

|
|
|

178 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998, 2006 179

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Embedded SQL programming publication documents intended Programming Interfaces that allow

the customer to write programs to obtain the services of IBM i5/OS.

180 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

|
|
|

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

COBOL/400

DB2

Distributed Relational Database Architecture

DRDA

e(logo)server

eServer

i5/OS

IBM

IBM (logo)

Integrated Language Environment

iSeries

RPG/400

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 181

|
|
|
|
|
|
|
|
|
|
|
|

182 IBM Systems - iSeries: Database DB2 Universal Database for iSeries Embedded SQL programming

����

Printed in USA

	Contents
	Embedded SQL programming
	What's new for V5R4
	Printable PDF
	Common concepts and rules for using embedded SQL
	Write applications that use SQL
	Use host variables in SQL statements
	Assignment rules for host variables in SQL statements
	Indicator variables in applications that use SQL

	Handle SQL error return codes using the SQLCA
	Use the SQL diagnostics area
	Update applications to use the SQL diagnostics area
	iSeries server programming model
	Additional notes on using the SQL diagnostics area
	Example: SQL routine exception
	Example: Logging items from the SQL diagnostics area

	Handle exception conditions with the WHENEVER Statement

	Code SQL statements in C and C++ applications
	Define the SQL communications area in C and C++ applications that use SQL
	Define SQL descriptor areas in C and C++ applications that use SQL
	Embed SQL statements in C and C++ applications that use SQL
	Comments in C and C++ applications that use SQL
	Continuation for SQL statements in C and C++ applications that use SQL
	Include code in C and C++ applications that use SQL
	Margins in C and C++ applications that use SQL
	Names in C and C++ applications that use SQL
	NULLs and NULs in C and C++ applications that use SQL
	Statement labels in C and C++ applications that use SQL
	Preprocessor sequence for C and C++ applications that use SQL
	Trigraphs in C and C++ applications that use SQL
	WHENEVER Statement in C and C++ applications that use SQL

	Use host variables in C and C++ applications that use SQL
	Declare host variables in C and C++ applications that use SQL

	Use host structures in C and C++ applications that use SQL
	Host structure declarations in C and C++ applications that use SQL
	Host structure indicator array in C and C++ applications that use SQL

	Use arrays of host structures in C and C++ applications that use SQL
	Host structure array in C and C++ applications that use SQL
	Host structure array indicator structure in C and C++ applications that use SQL

	Use pointer data types in C and C++ applications that use SQL
	Use typedef in C and C++ applications that use SQL
	Use ILE C compiler external file descriptions in C and C++ applications that use SQL
	Determine equivalent SQL and C or C++ data types
	Notes on C and C++ variable declaration and usage

	Use indicator variables in C and C++ applications that use SQL

	Code SQL statements in COBOL applications
	Define the SQL communications area in COBOL applications that use SQL
	Define SQL descriptor areas in COBOL applications that use SQL
	Embed SQL statements in COBOL applications that use SQL
	Comments in COBOL applications that use SQL
	Continuation for SQL statements in COBOL applications that use SQL
	Include code in COBOL applications that use SQL
	Margins in COBOL applications that use SQL
	Sequence numbers in COBOL applications that use SQL
	Names in COBOL applications that use SQL
	COBOL compile-time options in COBOL applications that use SQL
	Statement labels in COBOL applications that use SQL
	WHENEVER Statement in COBOL applications that use SQL
	Multiple source COBOL programs and the SQL COBOL precompiler

	Use host variables in COBOL applications that use SQL
	Declare host variables in COBOL applications that use SQL

	Use host structures in COBOL applications that use SQL
	Host structure in COBOL applications that use SQL
	Host structure indicator array in COBOL applications that use SQL
	Use host structure arrays in COBOL applications that use SQL
	Host structure array in COBOL applications that use SQL
	Host array indicator structure in COBOL applications that use SQL

	Use external file descriptions in COBOL applications that use SQL
	Use external file descriptions for host structure arrays in COBOL applications that use SQL

	Determine equivalent SQL and COBOL data types
	Notes on COBOL variable declaration and usage

	Use indicator variables in COBOL applications that use SQL

	Code SQL statements in PL/I applications
	Define the SQL communications area in PL/I applications that use SQL
	Define SQL descriptor areas in PL/I applications that use SQL
	Embed SQL statements in PL/I applications that use SQL
	Example: Embed SQL statements in PL/I applications that use SQL
	Comments in PL/I applications that use SQL
	Continuation for SQL statements in PL/I applications that use SQL
	Include code in PL/I applications that use SQL
	Margins in PL/I applications that use SQL
	Names in PL/I applications that use SQL
	Statement labels in PL/I applications that use SQL
	WHENEVER Statement in PL/I applications that use SQL

	Use host variables in PL/I applications that use SQL
	Declare host variables in PL/I applications that use SQL

	Use host structures in PL/I applications that use SQL
	Host structures in PL/I applications that use SQL
	Host structure indicator arrays in PL/I applications that use SQL

	Use host structure arrays in PL/I applications that use SQL
	Host structure array in PL/I applications that use SQL

	Use external file descriptions in PL/I applications that use SQL
	Determine equivalent SQL and PL/I data types
	Use indicator variables in PL/I applications that use SQL
	Differences in PL/I because of structure parameter passing techniques

	Code SQL statements in RPG/400 applications
	Define the SQL communications area in RPG/400 applications that use SQL
	Define SQL descriptor areas in RPG/400 applications that use SQL
	Embed SQL statements in RPG/400 applications that use SQL
	Example: Embed SQL statements in RPG/400 applications that use SQL
	Comments in RPG/400 applications that use SQL
	Continuation for SQL statements in RPG/400 applications that use SQL
	Include code in RPG/400 applications that use SQL
	Sequence numbers in RPG/400 applications that use SQL
	Names in RPG/400 applications that use SQL
	Statement labels in RPG/400 applications that use SQL
	WHENEVER statement in RPG/400 applications that use SQL

	Use host variables in RPG/400 applications that use SQL
	Declare host variables in RPG/400 applications that use SQL

	Use host structures in RPG/400 applications that use SQL
	Use host structure arrays in RPG/400 applications that use SQL
	Use external file descriptions in RPG/400 applications that use SQL
	External file description considerations for host structure arrays in RPG/400 applications that use SQL

	Determine equivalent SQL and RPG/400 data types
	Assignment rules in RPG/400 applications that use SQL

	Use indicator variables in RPG/400 applications that use SQL
	Example: Use indicator variables in RPG/400 applications that use SQL

	Differences in RPG/400 because of structure parameter passing techniques
	Correctly end a called RPG/400 program that uses SQL

	Code SQL statements in ILE RPG applications
	Define the SQL communications area in ILE RPG applications that use SQL
	Define SQL descriptor areas in ILE RPG applications that use SQL
	Embed SQL statements in ILE RPG applications that use SQL
	Comments in ILE RPG applications that use SQL
	Continuation for SQL statements in ILE RPG applications that use SQL
	Include code in ILE RPG applications that use SQL
	Use directives in ILE RPG applications that use SQL
	Sequence numbers in ILE RPG applications that use SQL
	Names in ILE RPG applications that use SQL
	Statement labels in ILE RPG applications that use SQL
	WHENEVER statement in ILE RPG applications that use SQL

	Use host variables in ILE RPG applications that use SQL
	Declare host variables in ILE RPG applications that use SQL

	Use host structures in ILE RPG applications that use SQL
	Use host structure arrays in ILE RPG applications that use SQL
	Use external file descriptions in ILE RPG applications that use SQL
	External file description considerations for host structure arrays in ILE RPG applications that use SQL

	Determine equivalent SQL and ILE RPG data types
	Notes on ILE RPG variable declaration and usage

	Use indicator variables in ILE RPG applications that use SQL
	Example: Use indicator variables in ILE RPG applications that use SQL

	Example of the SQLDA for a multiple row-area fetch in ILE RPG applications that use SQL
	Example of dynamic SQL in an ILE RPG application that uses SQL

	Code SQL statements in REXX applications
	Use the SQL communications area in REXX applications
	Use SQL descriptor areas in REXX applications
	Embed SQL statements in REXX applications
	Comments in REXX applications that use SQL
	Continuation of SQL statements in REXX applications that use SQL
	Include code in REXX applications that use SQL
	Margins in REXX applications that use SQL
	Names in REXX applications that use SQL
	Nulls in REXX applications that use SQL
	Statement labels in REXX applications that use SQL
	Handle errors and warnings in REXX applications that use SQL

	Use host variables in REXX applications that use SQL
	Determine data types of input host variables in REXX applications that use SQL
	The format of output host variables in REXX applications that use SQL
	Avoid REXX conversion in REXX applications that use SQL

	Use indicator variables in REXX applications that use SQL

	Prepare and run a program with SQL statements
	Basic processes of the SQL precompiler
	Input to the SQL precompiler
	Source file CCSIDs in the SQL precompiler
	Output from the SQL precompiler

	Non-ILE SQL precompiler commands
	Compile a non-ILE application program that uses SQL

	ILE SQL precompiler commands
	Compile an ILE application program that uses SQL

	Set compiler options using the precompiler commands
	Interpret compile errors in applications that use SQL
	Error and warning messages during a compile of application programs that use SQL

	Bind an application that uses SQL
	Program references in applications that use SQL

	Display SQL precompiler options
	Run a program with embedded SQL
	Run a program with embedded SQL: i5/OS™ DDM considerations
	Run a program with embedded SQL: Override considerations
	Run a program with embedded SQL: SQL return codes

	Sample programs using DB2 UDB for iSeries statements
	Example: SQL statements in ILE C and C++ programs
	Example: SQL statements in COBOL and ILE COBOL programs
	Example: SQL statements in PL/I programs
	Example: SQL statements in RPG/400 programs
	Example: SQL statements in ILE RPG programs
	Example: SQL statements in REXX programs
	Report produced by sample programs that use SQL

	DB2 UDB for iSeries CL command descriptions for host language precompilers
	CRTSQLCBL (Create Structured Query Language COBOL) command
	CRTSQLCBLI (Create SQL ILE COBOL Object) command
	CRTSQLCI (Create Structured Query Language ILE C Object) command
	CRTSQLCPPI (Create Structured Query Language C++ Object) command
	CRTSQLPLI (Create Structured Query Language PL/I) command
	CRTSQLRPG (Create Structured Query Language RPG) command
	CRTSQLRPGI (Create SQL ILE RPG Object) command

	Related information for Embedded SQL programming
	Code license and disclaimer information

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

