
IBM Systems - iSeries

Programming

IBM Developer Kit for Java

Version 5 Release 4

���

IBM Systems - iSeries

Programming

IBM Developer Kit for Java

Version 5 Release 4

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 521.

Tenth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM Developer Kit for Java (product number 5722-JV1)

and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not

run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

IBM Developer Kit for Java 1

What’s new 1

Printable PDF 2

Install and configure IBM Developer Kit for Java . . 2

Install IBM Developer Kit for Java 2

Run your first Hello World Java program 6

Map a network drive to your iSeries server . . . 7

Create a directory on your iSeries server 7

Create, compile, and run a HelloWorld Java

program 8

Create and edit Java source files 9

Customize your iSeries server for the IBM

Developer Kit for Java 10

Java classpath 10

Java system properties 12

Internationalization 21

Release-to-release compatibility 30

Database access with the IBM Developer Kit for

Java 30

Access your iSeries database with the IBM

Developer Kit for Java JDBC driver 30

Access databases using IBM Developer Kit for

Java DB2 SQLJ support 175

Java SQL routines 185

Java with other programming languages 203

Use the Java Native Interface for native

methods 204

IBM i5/OS PASE native methods for Java . . . 214

Teraspace storage model native methods for

Java 220

Comparison of Integrated Language

Environment and Java 221

Use java.lang.Runtime.exec() 222

Interprocess communications 226

Java platform 231

Java applets and applications 232

Java virtual machine 232

Java JAR and class files 234

Java threads 234

Sun Microsystems, Inc. Java Development Kit 235

Advanced topics 236

Java classes, packages, and directories 236

Files in the integrated file system 237

Java file authorities in the integrated file system 237

Run Java in a batch job 238

Run your Java application on a host that does not

have a graphical user interface 239

Native Abstract Windowing Toolkit 239

Java security 251

Java security model 251

Java Cryptography Extension 252

Java Secure Socket Extension 254

Java Authentication and Authorization Service 281

IBM Java Generic Security Service (JGSS) . . . 315

Tune Java program performance with IBM

Developer Kit for Java 349

Java event trace performance tools 349

Java performance considerations 350

Java garbage collection 357

Java Native Method Invocation performance

considerations 357

Java method inlining performance

considerations 358

Java exception performance considerations . . 358

Java call trace performance tools 358

Java profiling performance tools 358

Collect Java performance data 359

Commands and tools for the IBM Developer Kit

for Java 362

Java tools that are supported by the IBM

Developer Kit for Java 362

CL commands that are supported by Java . . . 370

iSeries Navigator commands that are supported

by Java 371

Debug Java programs that run on your server . . 372

Debug Java programs from an i5/OS command

line 372

Code examples for the IBM Developer Kit for Java 383

Example: Internationalization of dates using the

java.util.DateFormat class 385

Example: Internationalization of numeric

display using the java.util.NumberFormat class . 386

Example: Internationalization of locale-specific

data using the java.util.ResourceBundle class . . 386

Example: Access property 387

Example: BLOB 390

Example: CallableStatement interface for IBM

Developer Kit for Java 391

Example: Remove values from a table through

another statement’s cursor 392

Example: CLOB 394

Example: Create a UDBDataSource and bind it

with JNDI 396

Example: Create a UDBDataSource, and obtain a

user ID and password 396

Example: Create a UDBDataSourceBind and set

DataSource properties 397

Example: DatabaseMetaData interface for IBM

Developer Kit for Java - Return a list of tables . 398

Example: Datalink 398

Example: Distinct types 399

Example: Embed SQL Statements in your Java

application 400

Example: End a transaction 403

Example: Invalid user ID and password . . . 405

Example: JDBC 406

Example: Multiple connections that work on a

transaction 410

Example: Obtain an initial context before

binding UDBDataSource 412

Example: ParameterMetaData 413

© Copyright IBM Corp. 1998, 2006 iii

Example: Change values with a statement

through another statement’s cursor 414

Example: ResultSet interface for IBM Developer

Kit for Java 416

Example: ResultSet sensitivity 417

Example: Sensitive and insensitive ResultSets 420

Example: Set up connection pooling with

UDBDataSource and

UDBConnectionPoolDataSource 422

Example: SQLException 422

Example: Suspend and resume a transaction . . 423

Example: Suspended ResultSets 425

Example: Test the performance of connection

pooling 427

Example: Test the performance of two

DataSources 428

Example: Update BLOBs 429

Example: Update CLOBs 430

Example: Use a connection with multiple

transactions 431

Example: Use BLOBs 433

Example: Use CLOBs 434

Example: Use JTA to handle a transaction . . . 435

Example: Use metadata ResultSets that have

more than one column 437

Example: Use native JDBC and IBM Toolbox for

Java JDBC concurrently 438

Example: Use PreparedStatement to obtain a

ResultSet 440

Example: Use the Statement object’s

executeUpdate method 442

Examples: JAAS HelloWorld 443

Example: JAAS SampleThreadSubjectLogin . . 453

Sample: IBM JGSS non-JAAS client program . . 463

Sample: IBM JGSS non-JAAS server program 471

Sample: IBM JGSS JAAS-enabled client program 482

Sample: IBM JGSS JAAS-enabled server

program 484

Examples: IBM Java Secure Sockets Extension 486

Example: Call a CL program with

java.lang.Runtime.exec() 486

Example: Call a CL command with

java.lang.Runtime.exec() 487

Example: Call another Java program with

java.lang.Runtime.exec() 488

Example: Call Java from C 489

Example: Call Java from RPG 489

Example: Use input and output streams for

interprocess communication 489

Example: Java Invocation API 491

Example: IBM i5/OS PASE native method for

Java 493

Examples: Use the Java Native Interface for

native methods 497

Example: Use sockets for interprocess

communication 502

Example: Run the Java Performance Data

Converter 505

Example: Embed SQL Statements in your Java

application 506

Examples: Change your Java code to use client

socket factories 508

Examples: Change your Java code to use server

socket factories 510

Examples: Change your Java client to use secure

sockets layer 512

Examples: Change your Java server to use

secure sockets layer 513

Troubleshoot IBM Developer Kit for Java 515

Limitations 515

Find job logs for Java problem analysis 515

Collect data for Java problem analysis 516

Apply program temporary fixes 517

Get support for the IBM Developer Kit for Java 517

Related information for IBM Developer Kit for Java 518

Java Naming and Directory Interface 518

JavaMail 518

Java Print Service 519

Code license and disclaimer information . . . 519

Appendix. Notices 521

Programming Interface Information 523

Trademarks 523

Terms and conditions 523

iv IBM Systems - iSeries: Programming IBM Developer Kit for Java

 | |

IBM Developer Kit for Java

IBM Developer Kit for Java™ is optimized for use in an iSeries™ server environment. It uses the

compatibility of Java programming and user interfaces, so you can develop your own applications for the

iSeries server.

IBM® Developer Kit for Java allows you to create and run Java programs on your iSeries server. IBM

Developer Kit for Java is a compatible implementation of the Sun Microsystems, Inc. Java Technology, so

we assume that you are familiar with their Java Development Kit (JDK) documentation. To make it easier

for you to work with their information and ours, we provide links to Sun Microsystems, Inc.’s

information.

If for any reason our links to Sun Microsystems, Inc. Java Development Kit documentation do not work,

refer to their HTML reference documentation for the information that you need. You can find this

information on the World Wide Web at The Source for Java Technology java.sun.com.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

What’s new

This topic highlights changes to the IBM Developer Kit for Java for V5R4.

New debugging interface

The “Java Platform Debugger Architecture” on page 380 and “Java Virtual Machine Profiler Interface” on

page 359 topics describe the Java Virtual Machine Tool Interface (JVMTI).

New CL commands

See the “Apply program temporary fixes” on page 517 and “CL commands that are supported by Java”

on page 370 topics for information about using the Display Java Virtual Machine Jobs (DSPJVMJOB)

command.

New Java Cryptography Extension provider

See the “Java Cryptography Extension” on page 252 topic for information about the IBMJCEFIPS JCE

provider.

New properties

Refer to the “List of Java system properties” on page 13 for updated J2SE version 5.0 properties.

New version options

See the “Support for multiple Java 2 Software Development Kits” on page 3 topic to install J2SE version

5.0 along with other JDK versions.

© Copyright IBM Corp. 1998, 2006 1

http://www.java.sun.com/

New Java tools:

v “Java apt tool” on page 364

v “Java pack200 tool” on page 367

v “Java unpack200 tool” on page 368

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to users.

Printable PDF

Follow these steps to view and download a PDF of this topic.

To view or download the PDF version, select IBM Developer Kit for Java (about 4585 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Install and configure IBM Developer Kit for Java

If you have not yet used IBM Developer Kit for Java, follow these steps to install it, configure it, and

practice running a simple Hello World Java program.

 “What’s new” on page 1

This topic highlights changes to the IBM Developer Kit for Java for V5R4.

 “Customize your iSeries server for the IBM Developer Kit for Java” on page 10

After you install the IBM Developer Kit for Java on your iSeries server, you can customize your

server.

 “Download and install Java packages” on page 5

To download, install, and use Java packages more effectively on an iSeries server, see the following

topics.

 “Release-to-release compatibility” on page 30

Java class files are upward compatible (JDK 1.1.x to 1.2.x to 1.3.x to 1.4.x to 1.5.x) as long as they do

not make use of a feature for which Sun has dropped or changed support.

Install IBM Developer Kit for Java

Installing IBM Developer Kit for Java allows you to create and run Java programs on your iSeries server.

2 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|

|

|

rzaha.pdf
http://www.adobe.com/products/acrobat/readstep.html

Licensed program 5722-JV1 is shipped with the system CDs, so JV1 is preinstalled. Enter the Go Licensed

Program (GO LICPGM) command and select Option 10 (Display). If you do not see this licensed program

listed, then perform the following steps:

1. Enter the GO LICPGM command on the command line.

2. Select option 11 (Install licensed program).

3. Choose option 1 (Install) for licensed program (LP) 5722-JV1 *BASE, and select the option that

matches the Java Development Kit (JDK) that you want to install. If the option that you want to

install is not displayed in the list, you can add it to the list by entering option 1 (Install) in the option

field. Enter 5722JV1 in the licensed program field and your option number in the product option field.

Note: You can install more than one option at once.

Once you have installed the IBM Developer Kit for Java on your iSeries server, you may choose to

customize your system.

See Run your first Hello World Java program for information on getting started with the IBM Developer

Kit for Java.

Install a licensed program with the Restore Licensed Program command

The programs listed in the Install Licensed Programs display are those supported by the LICPGM

installation when your server was new. Occasionally, new programs become available which are not

listed as licensed programs on your server. If this is the case with the program you want to install, you

must use the Restore Licensed Program (RSTLICPGM) command to install it.

To install a licensed program with the Restore Licensed Program (RSTLICPGM) command, follow these

steps:

1. Put the tape or CD-ROM containing the licensed program in the appropriate drive.

2. On the iSeries command line, type:

RSTLICPGM

and press the Enter key.

The Restore Licensed Program (RSTLICPGM) display appears.

3. In the Product field, type the ID number of the licensed program you want to install.

4. In the Device field, specify your install device.

Note: If you are installing from a tape drive, the device ID is usually in the format TAPxx, where xx is

a number, like 01.

5. Keep the default settings for the other parameters in the Restore Licensed Program display. Press the

Enter key.

6. More parameters appear. Keep these default settings also. Press the Enter key. The program begins

installing.

When the licensed program is finished installing, the Restore Licensed Programs display appears again.

Support for multiple Java 2 Software Development Kits

Your iSeries server supports multiple versions of the Java Development Kits (JDKs) and the Java 2

Software Development Kit (J2SDK), Standard Edition.

Note: In this documentation, depending on the context, the term JDK refers to any supported version of

the JDK and J2SDK. Usually, the context in which JDK occurs includes a reference to the specific

version and release number.

Your iSeries server supports using multiple JDKs simultaneously, but only through multiple Java virtual

machines. A single Java virtual machine runs one specified JDK.

IBM Developer Kit for Java 3

Find the JDK that you are using or want to use, and select the coordinating option to install. See “Install

IBM Developer Kit for Java” on page 2 to install more than one JDK at one time. The java.version system

property determines which JDK to run. Once a Java virtual machine is up and running, changing the

java.version system property has no effect.

Note: In V5R3 and later, the following options are no longer available: Option 1 (JDK 1.1.6), Option 2

(JDK 1.1.7), Option 3 (JDK 1.2.2), and Option 4 (JDK 1.1.8). The following table lists the supported J2SDKs

for this release.

 Option JDK java.home java.version

5 1.3 /QIBM/ProdData/Java400/jdk13/ 1.3

6 1.4 /QIBM/ProdData/Java400/jdk14/ 1.4

7 1.5 (also referred to as

J2SE 5.0)

/QIBM/ProdData/Java400/jdk15/ 1.5

The default JDK chosen in this multiple JDK environment depends on which 5722-JV1 Options are

installed. The following table gives some examples.

 Install Enter Result

Option 5 (1.3) java Hello J2SDK, Standard Edition, version 1.3

runs.

Option 6 (1.4) java Hello J2SDK, Standard Edition, version 1.4

runs.

Option 5 (1.3) and Option 6 (1.4) java Hello J2SDK, Standard Edition, version 1.4

runs.

Note: If you install only one JDK, the default JDK is the one you installed. If you install more than one

JDK, the following order of precedence determines the default JDK:

1. Option 6 (1.4)

2. Option 5 (1.3)

3. Option 7 (1.5)

Install extensions for the IBM Developer Kit for Java

Extensions are packages of Java classes that you can use to extend the functionality of the core platform.

Extensions are packaged in one or more ZIP files or JAR files, and are loaded into the Java virtual

machine by an extension class loader.

The extension mechanism allows the Java virtual machine to use the extension classes in the same way

that the virtual machine uses the system classes. The extension mechanism also provides a way for you

to retrieve extensions from specified Uniform Resource Locators (URLs) when they are not already

installed in the J2SDK, version 1.2 or higher or Java 2 Runtime Environment, Standard Edition, version

1.2 and higher.

Some JAR files for extensions are shipped with the iSeries server. If you would like to install one of these

extensions, enter this command:

ADDLNK OBJ(’/QIBM/ProdData/Java400/ext/extensionToInstall.jar’)

 NEWLNK(’/QIBM/UserData/Java400/ext/extensionToInstall.jar’)

 LNKTYPE(*SYMBOLIC)

Where

extensionToInstall.jar

4 IBM Systems - iSeries: Programming IBM Developer Kit for Java

||
|
||

|

is the name of the ZIP or JAR file that contains the extension that you want to install.

Note: JAR files of extensions not provided by IBM may be placed in the /QIBM/UserData/Java400/ext

directory.

When you create a link or add a file to an extension in the /QIBM/UserData/Java400/ext directory, the

list of files that the extension class loader searches changes for every Java virtual machine that is running on

your iSeries server. If you do not want to impact the extension class loaders for other Java virtual machines

on your iSeries server, but you still want to create a link to an extension or install an extension not

shipped by IBM with the iSeries server, follow these steps:

1. Create a directory to install the extensions. Use either the Make Directory (MKDIR) command from

the iSeries command line or the mkdir command from the Qshell Interpreter.

2. Place the extension JAR file in the directory created.

3. Add the new directory to the java.ext.dirs property. You can add the new directory to the java.ext.dirs

property by using the PROP field of the JAVA command from the iSeries command line.

If the name of your new directory is /home/username/ext, the name of your extension file is

extensionToInstall.jar, and the name of your Java program is Hello, then the commands that you enter

should look like this:

MKDIR DIR(’/home/username/ext’)

CPY OBJ(’/productA/extensionToInstall.jar’) TODIR(’/home/username/ext’) or

copy the file to /home/username/ext using FTP (file transfer protocol).

JAVA Hello PROP((java.ext.dirs ’/home/username/ext’))

Download and install Java packages

To download, install, and use Java packages more effectively on an iSeries server, see the following

topics.

Packages with graphical user interfaces

Java programs used with graphical user interface (GUI) require the use of a presentation device with

graphical display capabilities. For example, you can use a personal computer, technical workstation, or

network computer. You can use Native Abstract Windowing Toolkit (NAWT) to provide your Java

applications and servlets with the full capability of the Java 2 Software Development Kit (J2SDK),

Standard Edition Abstract Windowing Toolkit (AWT) graphics functions. For more information, see

Native Abstract Windowing Toolkit (NAWT).

Case sensitivity and integrated file system

Integrated file system provides file systems, which are both case-sensitive and those that are not with

regard to file names. QOpenSys is an example of a case-sensitive file system within the integrated file

system. Root, ’/’, is an example of a case-insensitive file system. For more information, see the Integrated

file system topic.

Even though a JAR or class may be located in a case-insensitive file system, Java is still a case-sensitive

language. While wrklnk ’/home/Hello.class’ and wrklnk ’/home/hello.class’ produce the same results,

JAVA CLASS(Hello) and JAVA CLASS(hello) are calling different classes.

ZIP file handling and JAR file handling

ZIP files and JAR files contain a set of Java classes. When you use the Create Java Program

(CRTJVAPGM) command on one of these files, the classes are verified, converted to an internal machine

form, and if specified, transformed to iSeries machine code. You can treat ZIP files and JAR files like any

other individual class file. When an internal machine form is associated with one of these files, it remains

IBM Developer Kit for Java 5

associated with the file. The internal machine form is used on future runs in place of the class file to

improve performance. If you are unsure whether a current Java program is associated with your class file

or JAR file, use the Display Java Program (DSPJVAPGM) command to display information about your

Java program on your iSeries server.

In previous releases of the IBM Developer Kit for Java, you had to recreate a Java program if you

changed the JAR file or ZIP file in any way, because the attached Java program would become unusable.

This is no longer true. In many cases, if you change a JAR file or ZIP file, the Java program is still valid

and you do not have to recreate it. If partial changes are made, such as when a single class file is

updated within a JAR file, you only need to recreate the affected class files that are within the JAR file.

Java programs remain attached to the JAR file after most typical changes to the JAR file. For example,

these Java programs remain attached to the JAR file when:

v Changing or recreating a JAR file by using the ajar tool.

v Changing or recreating a JAR file by using the jar tool.

v Replacing a JAR file by using the 0S/400 COPY command or the Qshell cp utility.

If you access a JAR file in the integrated file system through iSeries Access for Windows® or from a

mapped drive on a personal computer (PC), these Java programs remain attached to the JAR file when:

v Dragging and dropping another JAR file onto the existing integrated file system JAR file.

v Changing or recreating the integrated file system JAR file by using the jar tool.

v Replacing the integrated file system JAR file by using the PC copy command.

When a JAR file is changed or replaced, the Java program that is attached to it is no longer current.

There is one exception in which Java programs do not remain attached to the JAR file. The attached Java

programs are destroyed if you use file transfer protocol (FTP) to replace the JAR file. For example, this

occurs if you use the FTP put command to replace the JAR file.

See Java runtime performance for more detailed information about the performance characteristics of JAR

files.

Java extensions framework

In J2SDK, extensions are packages of Java classes that you can use to extend the functionality of the core

platform. An extension or application is packaged in one or more JAR files. The extension mechanism

allows the Java virtual machine to use the extension classes in the same way that the virtual machine

uses the system classes. The extension mechanism also provides a way for you to retrieve extensions

from specified URLs when they are not already installed in the J2SDK or Java 2 Runtime Environment,

Standard Edition.

See Install extensions for the IBM Developer Kit for Java for information on installing extensions.

Run your first Hello World Java program

This topic will help you to run your first program.

You can get your Hello World Java program up and running in either of these ways:

1. You can simply run the Hello World Java program that was shipped with the IBM Developer Kit for

Java.

To run the program that is included, perform the following steps:

a. Check that the IBM Developer Kit for Java is installed by entering the Go Licensed Program (GO

LICPGM) command. Then, select option 10 (Displayed installed licensed programs). Verify that

licensed program 5722-JV1 *BASE and at least one of the options are listed as installed.

6 IBM Systems - iSeries: Programming IBM Developer Kit for Java

b. Enter java Hello on the iSeries Main Menu command line. Press Enter to run the Hello World

Java program.

c. If the IBM Developer Kit for Java was installed correctly, Hello World appears in the Java Shell

Display. Press F3 (Exit) or F12 (Exit) to return to the command entry display.

d. If the Hello World class does not run, check to see that the installation was completed successfully,

or see Get support for the IBM Developer Kit for Java for service information.
2. You can also run your own Hello Java program. For more information about how to create your own

Hello Java program, see Create, compile, and run a Hello World Java program.

Map a network drive to your iSeries server

To map a network drive, complete the following steps.

1. Make sure that you have iSeries Access for Windows installed on your server and on your

workstation. For more information on how to install and configure iSeries Access for Windows, see

Installing iSeries Access for Windows. You must have a connection configured for the iSeries server

before you can map a network drive.

2. Open Windows Explorer:

a. Right-click the Start button on your Windows taskbar.

b. Click Explore in the menu.
3. Select Map Network Drive from the Tools menu.

4. Select the drive that you want to use to connect to your iSeries server.

5. Type the path name to your server. For example, \\MYSERVER where MYSERVER is the name of your

iSeries server.

6. Check the Reconnect at logon box if it is blank.

7. Click OK to finish.

Your mapped drive now appears in the All Folders section of Windows Explorer.

Create a directory on your iSeries server

You must create a directory on your iSeries server where you can save your Java applications.

There are two ways to do this:

v “Create a directory using iSeries Navigator”

Choose this option if you have iSeries Access for Windows installed. If you plan to use iSeries

Navigator to compile, optimize, and run your Java program, you must select this option to ensure your

program is saved in the correct location to perform these operations.

v “Create a directory using the command entry line” on page 8

Choose this option if you do not have iSeries Access for Windows installed.

For information about iSeries Navigator, including installation information, see Getting Started with

iSeries Navigator.

Create a directory using iSeries Navigator

To create a directory on your iSeries server, follow these steps:

1. Open iSeries Navigator.

2. Double-click the name of your server in the My Connections window to sign on. If your server is not

listed in the My Connections window, follow these steps to add it:

a. Click File --> Add Connection....

b. Type the name of your server in the System field.

c. Click Next.

IBM Developer Kit for Java 7

d. If it is not already entered, enter your User ID in the Use default user ID, prompt as needed field.

e. Click Next.

f. Click Verify Connection. This confirms that you can connect to the server.

g. Click Finish.
3. Expand the folder under the connection you want to use. Locate a folder named File Systems. If you

do not see this folder, the option to install File Systems during the iSeries Navigator installation was

not selected. You must install the File Systems option of iSeries Navigator by selecting Start -->

Programs --> IBM iSeries Access for Windows --> Selective Setup.

4. Expand the File Systems folder and locate the Integrated File System folder.

5. Expand the Integrated File System folder, then expand the Root folder. By expanding the Root folder,

you see the same structure as performing the WRKLNK (’/’) command on the iSeries command line.

6. Right-click on the folder where you want to add a subdirectory. Select New Folder and enter the

name of the subdirectory you want to create.

Create a directory using the command entry line

To create a directory on your iSeries server, follow these steps:

1. Sign on to your iSeries server.

2. On the command line, type:

 CRTDIR DIR(’/mydir’)

where mydir is the name of the directory you are creating.

Press the Enter key.

A message appears at the bottom of your screen, stating ″Directory created.″

Create, compile, and run a HelloWorld Java program

Creating the simple, Hello World Java program is a great place to start when becoming familiar with the

IBM Developer Kit for Java.

To create, compile, and run your own Hello World Java program, perform the following steps:

1. Map a network drive to your iSeries server.

2. Create a directory on your iSeries server for your Java applications.

3. Create the source file as an American Standard Code for Information Interchange (ASCII) text file in

the integrated file system. You can either use an integrated development environment (IDE) product

or a text-based editor such as Windows Notepad to code your Java application.

a. Name your text file HelloWorld.java. For more information about how you can create and edit

your file, see Create and edit Java source files.

b. Make sure that your file contains this source code:

 class HelloWorld {

 public static void main (String args[]) {

 System.out.println("Hello World");

 }

 }

4. Compile the source file.

a. Enter the Work with Environment Variable (WRKENVVAR) command to check the CLASSPATH

environment variable. If the CLASSPATH variable does not exist, add it and set it to ’.’ (the

current directory). If the CLASSPATH variable does exist, make sure that the ’.’ is at the beginning

of the path name list. For details about the CLASSPATH environment variable, see Java classpath.

b. Enter the Start Qshell (STRQSH) command to start the Qshell Interpreter.

c. Use the change directory (cd) command to change the current directory to the integrated file

system directory that contains the HelloWorld.java file.

8 IBM Systems - iSeries: Programming IBM Developer Kit for Java

d. Enter javac followed by the name of the file as you have it saved on your disk. For example, enter

javac HelloWorld.java.
5. Set the file authorities on the class file in the integrated file system.

6. Optimize the Java application.

a. On the QSH Command Entry line, type:

 system "CRTJVAPGM ’/mydir/myclass.class’ OPTIMIZE(20)"

where mydir is the path name of the directory in which your Java application is saved, and where

myclass is the name of your compiled Java application.

Note: You can specify an optimization level of up to 40. An optimization level of 40 increases the

efficiency of the Java application, but it also limits debug capabilities. In the early stages of

developing a Java application, you may want to set your optimization level at 20 so you can more

easily debug your application. See the CRTJVAPGM command and the OPTIMIZE parameter for

more information.

b. Press the Enter key.

A message appears, stating that a Java program has been created for your class.
7. Run the class file.

a. Ensure that your Java classpath is set up correctly.

b. On the Qshell command line, type java followed by HelloWorld to run your HelloWorld.class

with the Java virtual machine. For example, enter java HelloWorld. You can also use the Run Java

(RUNJVA) command on your iSeries server to run HelloWorld.class.

c. "Hello World" prints to your screen if everything was entered correctly. The shell prompt (by

default, a $) appears, indicating that the Qshell is ready for another command.

d. Press F3 (Exit) or F12 (Disconnect) to return to the command entry display.

You can also easily compile, optimize, and run your Java application using iSeries Navigator, a graphical

user interface for performing tasks on your iSeries server. For instructions, see “iSeries Navigator

commands that are supported by Java” on page 371. For more information on iSeries Navigator,

including installation information, see Getting to know iSeries Navigator.

Create and edit Java source files

You can create and edit Java source files in a number of ways.

With iSeries Access for Windows

Java source files are American Standard Code for Information Interchange (ASCII) text files in the

integrated file system on iSeries servers.

You can create and edit a Java source file with iSeries Access for Windows and a workstation-based

editor.

On a workstation

You can create a Java source file on a workstation. Then, transfer the file to the integrated file system by

using file transfer protocol (FTP).

To create and edit Java source files on a workstation:

1. Create the ASCII file on the workstation by using the editor of your choice.

2. Connect to your iSeries server with FTP.

3. Transfer the source file to your directory in the integrated file system as a binary file, so that the file

remains in ASCII format.

IBM Developer Kit for Java 9

With EDTF

You can edit files from any file system using the EDTF CL command. It is an editor that is similar to the

Source Entry Utility (SEU) for editing stream files or database files. See the EDTF CL command for

information.

With Source Entry Utility

You can create a Java source file as a text file by using source entry utility (SEU).

To create a Java source file as a text file by using SEU, perform the following steps:

1. Create a source file member by using SEU.

2. Use the Copy To Stream File (CPYTOSTMF) command to copy the source file member to an

integrated file system stream file, while converting the data to ASCII.

If you need to make changes to the source code, change the database member by using SEU and copy the

file again.

For information on storing files, see Files in the integrated file system.

Customize your iSeries server for the IBM Developer Kit for Java

After you install the IBM Developer Kit for Java on your iSeries server, you can customize your server.

For more information about possible customizations, see the following information:

Java classpath

The Java(TM) virtual machine uses the Java classpath to find classes during runtime. Java commands and

tools also use the classpath to locate classes. The default system classpath, the CLASSPATH environment

variable, and the classpath command parameter all determine what directories are searched when looking

for a particular class.

In the Java 2 Software Development Kit (J2SDK), Standard Edition, the java.ext.dirs property determines

the classpath for the extensions that are loaded. See Install extensions for the IBM Developer Kit for Java

for more information.

The default bootstrap classpath is system-defined, and you should not change it. On your server, the

default bootstrap classpath specifies where to find the classes that are part of the IBM Developer Kit, the

Native Abstract Window Toolkit (NAWT), and other system classes.

To find any other classes on the system, you must specify the classpath to search by using the

CLASSPATH environment variable or the classpath parameter. The classpath parameter that is used on a

tool or command overrides the value that is specified in the CLASSPATH environment variable.

You can work with the CLASSPATH environment variable using the Work with Environment Variable

(WRKENVVAR) command. From the WRKENVVAR display, you can add or change the CLASSPATH

environment variable. The Add Environment Variable (ADDENVVAR) command and Change

Environment Variable (CHGENVVAR) command either add or change the CLASSPATH environment

variable.

The value of the CLASSPATH environment variable is a list of path names, separated by colons (:), which

are searched to find a particular class. A path name is a sequence of zero or more directory names. These

directory names are followed by the name of the directory, the ZIP file, or the JAR file that is to be

searched in the integrated file system. The components of the path name are separated by the slash (/)

character. Use a period (.) to indicate the current working directory.

10 IBM Systems - iSeries: Programming IBM Developer Kit for Java

You can set the CLASSPATH variable in the Qshell environment by using the export utility that is

available using the Qshell Interpreter.

These commands add the CLASSPATH variable to your Qshell environment and set it to the value "

.:/myclasses.zip:/Product/classes."

v This command sets the CLASSPATH variable in the Qshell environment:

export -s CLASSPATH=.:/myclasses.zip:/Product/classes

v This command sets the CLASSPATH variable from the command line:

ADDENVVAR ENVVAR(CLASSPATH) VALUE(".:/myclasses.zip:/Product/classes")

The J2SDK searches the bootstrap classpath first, then the extension directories, then the classpath. The

search order for J2SDK, using the previous example above, is:

1. The bootstrap classpath, which is in the sun.boot.class.path property,

2. The extension directories, which is in the java.ext.dirs property,

3. The current working directory,

4. The myclasses.zip file that is located in the ″root″ (/) file system,

5. The classes directory in the Product directory in the ″root″ (/) file system.

When entering the Qshell environment, the CLASSPATH variable is set to the environment variable. The

classpath parameter specifies a list of path names. It has the same syntax as the CLASSPATH

environment variable. A classpath parameter is available on these tools and commands:

v java command in Qshell

v javac tool

v javah tool

v javap tool

v javadoc tool

v rmic tool

v Run Java (RUNJVA) command

For more information about these commands, see Commands and tools for the IBM Developer Kit for

Java. If you use the classpath parameter with any of these command or tools, it ignores the CLASSPATH

environment variable.

You can override the CLASSPATH environment variable by using the java.class.path property. You can

change the java.class.path property, as well as other properties, by using the SystemDefault.properties file.

The values in the SystemDefault.properties files override the CLASSPATH environment variable. For

information on the SystemDefault.properties file, see the SystemDefault.properties file.

In J2SDK, the -Xbootclasspath option also affects what directories the system searches when looking for

classes. Using -Xbootclasspath/a:path appends path to the default bootstrap classpath, /p:path prepends

path to the bootstrap classpath, and :path replaces the bootstrap classpath with path.

Note: Be careful when you specify -Xbootclasspath because unpredictable results occur when a system

class cannot be found or is incorrectly replaced by a user-defined class. Therefore, you should

allow the system default classpath to be searched before any user-specified classpath.

See Java system properties for information about how to determine the environment in which Java

programs run.

For more information, see the Program and CL Command APIs or the Integrated file system.

IBM Developer Kit for Java 11

Java system properties

Java system properties determine the environment in which you run your Java programs. They are

similar to system values or environment variables in i5/OS™.

Starting an instance of a Java virtual machine (JVM) sets the values for the system properties that affect

that JVM.

You can choose to use the default values for Java system properties or you can specify values for them by

using the following methods:

v Adding parameters to the command line (or the Java Native Interface (JNI) invocation API) when you

start the Java program

v Using the QIBM_JAVA_PROPERTIES_FILE job-level environment variable to point to a specific

properties file. For example:

 ADDENVVAR ENVVAR(QIBM_JAVA_PROPERTIES_FILE)

 VALUE(/qibm/userdata/java400/mySystem.properties)

v Creating a SystemDefault.properties file that you create in your user.home directory

v Using the /qibm/userdata/java400/SystemDefault.properties file

i5/OS and the JVM determine the values for Java system properties by using the following order of

precedence:

1. Command line or JNI invocation API

2. QIBM_JAVA_PROPERTIES_FILE environment variable

3. user.home SystemDefault.properties file

4. /QIBM/UserData/Java400/SystemDefault.properties

5. Default system property values

SystemDefault.properties file

The SystemDefault.properties file is a standard Java properties file that enables you to specify default

properties of your Java environment.

The SystemDefault.properties file that resides in your home directory takes priority over the

SystemDefault.properties file that resides in the /QIBM/UserData/Java400 directory.

Properties that you set in the /YourUserHome/SystemDefault.properties file affect only the following

specific Java virtual machines:

v JVMs that you start without specifying a different user.home property

v JVMs that others users start by specifying the property user.home = /YourUserHome/

Example: SystemDefault.properties file

The following example sets several Java properties:

 #Comments start with pound sign

 #Use J2SDK 1.4

 java.version=1.4

 #This sets a special property

 myown.propname=6

For more information about system properties, see the following pages:

Java system properties

List of Java system properties

12 IBM Systems - iSeries: Programming IBM Developer Kit for Java

List of Java system properties

Java system properties determine the environment in which the Java programs run. They are similar to

system values or environment variables in i5/OS.

Starting a Java virtual machine (JVM) sets the system properties for that instance of the JVM. For more

information about how to specify values for Java system properties, see the following pages:

Java system properties

SystemDefault.properties file

 For more information on Java system properties, see Java Secure Socket Extension (JSSE) system

properties.

The following table lists the Java system properties for the supported versions of the Java 2 Software

Development Kit (J2SDK), Standard Edition:

v J2SDK, version 1.3

v J2SDK, version 1.4

v J2SE, version 5.0

For each property, the table lists the name of the property and either the default values that apply or a

brief description. The table indicates which system properties have different values in different versions

of the J2SDK. When the column that lists the default values does not indicate different versions of the

J2SDK, all supported versions of the J2SDK use that default value.

 awt.toolkit sun.awt.motif.MToolkit

awt.toolkit will be unset unless os400.awt.native=true or

java.awt.headless=true

file.encoding ISO8859_1 (default value)

Maps the coded character set identifier (CCSID) to the corresponding ISO

ASCII CCSID. Also, sets the file.encoding value to the Java value that

represents the ISO ASCII CCSID. See file.encoding values and iSeries

CCSID for a table that shows the relationship between possible

file.encoding values and the closest matching CCSID.

file.encoding.pkg sun.io

file.separator / (forward slash)

java.awt.headless v J2SDK v1.3: This property is not available when running J2SDK v.1.3.

v J2SDK v1.4: false (default value)

v J2SE 5.0: false

This property specifies whether the Abstract Windowing Toolkit (AWT)

API operates in headless mode or not. The default value of false makes

full AWT function available only when you have enabled AWT by setting

os400.awt.native to true. Setting this property to true supports headless

AWT mode and also explicitly forces os400.awt.native to true.

java.class.path . (period) (default value)

Designates the path that i5/OS uses to locate classes. Defaults to the

user-specified CLASSPATH.

java.class.version v J2SDK v1.3: 47.0

v J2SDK v1.4: 48.0

v J2SE 5.0: 49.0

IBM Developer Kit for Java 13

|

|

java.compiler jitc_de (default value)

Specifies whether you compile code by using the Just-In-Time (JIT)

compiler (jitc) or both the JIT compiler and direct processing (jitc_de).

java.ext.dirs J2SDK v1.3:

v /QIBM/ProdData/Java400/jdk13/lib/ext:

v /QIBM/UserData/Java400/ext

J2SDK v1.4:

v /QIBM/ProdData/OS400/Java400/jdk/lib/ext:

v /QIBM/ProdData/Java400/jdk14/lib/ext:

v /QIBM/UserData/Java400/ext (default value)

J2SE 5.0:

v /QIBM/ProdData/Java400/jdk15/lib/ext:

v /QIBM/UserData/Java400/ext

java.home J2SDK v1.3: /QIBM/Prodata/Java400/jdk13

J2SDK v1.4: /QIBM/ProdData/Java400/jdk14 (default value)

J2SDK v1.5: /QIBM/ProdData/Java400/jdk15

See Support for multiple Java Development Kits (JDKs) for details.

java.library.path v /QSYS.LIB/QSHELL.LIB:/QSYS.LIB/QGPL.LIB:

v /QSYS.LIB/QTEMP.LIB:/QSYS.LIB/QDEVELOP.LIB:

v /QSYS.LIB/QBLDSYS.LIB:/QSYS.LIB/QBLDSYSR.LIB

(default value)

v i5/OS library list

java.net.preferIPv4Stack v true (default value)

v false (no’s)

On dual stack machines, system properties are provided for setting the

preferred protocol stack (IPv4 or IPv6) as well as the preferred address

family types (inet4 or inet6). IPv6 stack is preferred by default, because on

a dual-stack machine IPv6 socket can talk to both IPv4 and IPv6 peers.

This setting can be changed with this property. java.net.preferIPv4Stack is

specific to J2SDK v1.4.

For more information, see IPv6 protocol.

java.net.preferIPv6Addresses v true

v false (no’s) (default value)

Even though IPv6 is available on the operating system, the default

preference is to prefer an IPv4-mapped address over an IPv6 address. This

property controls whether IPv6 (true) or IPv4 (false) addresses are used.

java.net.preferIPv4Stack is specific to J2SDK v1.4.

For more information, see IPv6 protocol.

java.policy J2SDK v1.3: /QIBM/ProdData/ Java400/jdk13/lib/security/java.policy

J2SDK v1.4: /QIBM/ProdData/OS400/

Java400/jdk/lib/security/java.policy (default value)

J2SE v5.0: /QIBM/ProdData/ Java400/jdk15/lib/security/java.policy

14 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|

|

|

|

|

javaapi/guide/net/ipv6_guide/
javaapi/guide/net/ipv6_guide/

java.specification.name v Java Platform API Specification (default value)

v Java Language Specification

java.specification.vendor Sun Microsystems, Inc.

java.specification.version v J2SDK v1.3: 1.3

v J2SDK v1.4: 1.4 (default value)

v J2SE v5.0: 1.5

java.use.policy true

java.vendor IBM Corporation

java.vendor.url http://www.ibm.com

java.version v 1.3.1

v 1.4.2 (default value)

v 1.5.0

Determines which version of the J2SDK that you want to run.

Installing a single version of the J2SDK makes that version the default.

Specifying a version that is not installed results in an error message.

Failing to specify a version uses the most recent version of the J2SDK as

the default.

Note: java.version is ignored if placed in the SystemDefault.properties file

and trying to use the Java Native Inteface (JNI). For more information, see

Support for multiple J2SDKs.

java.vm.name Classic VM

java.vm.specification.name Java Virtual Machine Specification

java.vm.specification.vendor Sun Microsystems, Inc.

java.vm.specification.version 1.0

java.vm.vendor IBM Corporation

java.vm.version v J2SDK v1.3: 1.3

v J2SDK v1.4: 1.4 (default value)

v J2SE v5.0: 1.5

line.separator \n

os.arch PowerPC®

os.name i5/OS

os.version V5R4M0 (default value)

Obtains the i5/OS release level from the Retrieve Product Information

application program interface (API).

os400.awt.native Controls whether the Abstract Windowing Toolkit (AWT) API is supported

or not. Valid values are true and false. The default is false unless

java.awt.headless=true is set, in which case os400.awt.native is implied to

be true.

os400.certificateContainer Directs Java secure sockets layer (SSL) support to use the specified

certificate container for the Java program that was started and the property

that was specified. If you specify the os400.secureApplication system

property, this system property is ignored. For example, enter

-Dos400.certificateContainer=/home/username/ mykeyfile.kdb or any

other keyfile in the integrated file system.

IBM Developer Kit for Java 15

|

|

|

os400.certificateLabel You can specify this system property in conjunction with the

os400.certificateContainer system property. This property lets you select

which certificate in the specified container you want secure sockets layer

(SSL) to use. For example, enter-Dos400.certificateLabel=myCert, where

myCert is the label name that you assign to the certificate through the

Digital Certificate Manager (DCM) when you create or import the

certificate.

os400.child.stdio.convert Controls the data conversion for stdin, stdout, and stderr in Java. Data

conversion between ASCII data and Extended Binary Coded Decimal

Interchange Code (EBCDIC) data occurs by default in the Java virtual

machine. Using this property to turn on and turn off these conversions

also affects any child processes that this process starts by using the

runtime.exec() method. See default values.

os400.class.path.security.check 20 (default value)

Valid values:

v 0

No security check

v 10

Equivalent to RUNJVA CHKPATH(*IGNORE)

v 20

Equivalent to RUNJVA CHKPATH(*WARN)

v 30

equivalent to RUNJVA CHKPATH(*SECURE)

os400.class.path.tools 0 (default value)

Valid values:

v 0

No Sun tools are in the java.class.path property

v 1

Prepends the J2SDK specific tools file to the java.class.path property

For J2SDK v1.3, the path to tools.jar is

/QIBM/ProdData/Java400/jdk13/lib/

For J2SDK v1.4, the path to tools.jar is

/QIBM/ProdData/OS400/Java400/jdk/lib/

For J2SE v5.0, the path to tools.jar is

/QIBM/ProdData/Java400/jdk15/lib/

os400.create.type v interpret (default value)

Equivalent to RUNJVA OPTIMIZE(*INTERPRET) and

INTERPRET(*OPTIMIZE) or INTERPRET(*YES)

v direct

Otherwise

os400.define.class.cache.file default value is /QIBM/ProdData/Java400/QDefineClassCache.jar

Specifies the name of a JAR or ZIP file. See ″Using cache for user class

loaders″ in Java performance considerations.

os400.define.class.cache.hour v default value = 768

v maximum decimal value = 9999

Specifies a decimal value. See ″Using cache for user class loaders″ in Java

performance considerations/

16 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|
|

os400.define.class.cache.maxpgms v default value = 5000

v maximum decimal value = 40000

Specifies a decimal value. See ″Using cache for user class loaders″ in Java

performance considerations/

os400.defineClass.optLevel 0

os400.display.properties If this value is set to ’true’, then all of the Java Virtual Machine properties

are printed to standard out. No other values are recognized.

os400.enbpfrcol v 0 (default value)

equivalent to CRTJVAPGM ENBPFRCOL(*NONE)

v 1

equivalent to CRTJVAPGM ENBPFRCOL(*ENTRYEXIT)

v 7

equivalent to CRTJVAPGM ENBPFRCOL(*FULL)

For a nonzero value, the JIT generates *JVAENTRY, *JVAEXIT,

*JVAPRECALL and *JVAPOSTCALL events.

os400.exception.trace This property is used for debugging. Specifying this property causes the

most recent exceptions to be sent to standard output when the JVM exits.

os400.file.create.auth,

os400.dir.create.auth

These properties specify authorities assigned to files and directories.

Specifying the properties without any values or with unsupported values

results in a public authority of *NONE.

You can specify os400.file.create.auth=RWX or os400.dir.create.auth=RWX,

where R=read, W=write, and X=execute. Any combination of these

authorities is valid.

os400.file.io.mode Converts the CCSID of the file if it is different than the file.encoding value

when you specify TEXT, rather than the default, which is BINARY.

os400.gc.heap.size.init An alternative to using -Xms (setting initial GC size). It is strongly

recommended that you to continue to use -Xms unless you have no other

choice as this property is specific to i5/OS. This property was introduced

mainly so that you can specify initial GC size in the

SystemDefault.properties file.

Note: Use this property carefully; it will override -Xms if specified. The

value must be an integer in size of kilobytes and without commas.

os400.gc.heap.size.max An alternative to using -Xmx (setting maximum GC size). It is strongly

recommended that you continue to use -Xmx unless you have no other

choice as this property is specific to i5/OS. This property allows you to

maximum GC size in the SystemDefault.properties file.

Note: Use this property carefully; it will override -Xmx if specified. The

value must be an integer in size of kilobytes and without commas.

os400.interpret v 0 (default value)

equivalent to CRTJVAPGM INTERPRET(*NO)

v 1

equivalent to CRTJVAPGM INTERPRET(*YES)

IBM Developer Kit for Java 17

os400.jit.mmi.threshold Sets the number of times that a method runs by using the Mixed-Mode

Interpreter (MMI) before i5/OS uses the JIT compiler to compile the

method into native machine instructions. Usually, you should not change

the default value, which is 2000.

v A value of zero disables MMI and compiles methods when they are first

called.

v Values lower than the default tend to both lengthen the startup time and

degrade ultimate performance.

v Values higher than the default initially degrade performance until

reaching the threshold, then tend to improve ultimate runtime

performance.

os400.job.file.encoding This property is used for output only. It lists the file encoding of the i5/OS

job that the JVM is in.

os400.optimization v 0 (default value)

equivalent to CRTJVAPGM OPTIMIZE(*INTERPRET)

v 10

equivalent to CRTJVAPGM OPTIMIZE(10)

v 20

equivalent to CRTJVAPGM OPTIMIZE(20)

v 30

equivalent to CRTJVAPGM OPTIMIZE(30)

v 40

equivalent to CRTJVAPGM OPTIMIZE(40)

os400.pool.size Defines how much space (in kilobytes) to make available for each heap

pool in the thread local heap.

os400.run.mode v interpret

equivalent to RUNJVA OPTIMIZE(*INTERPRET) and

INTERPRET(*OPTIMIZE), or INTERPRET(*YES)

v program_create_type

v jitc_de (default value)

Otherwise

os400.run.verbose If this value is set to ’true’, then verbose classloading is printed to

standard out. No other values are recognized. Accomplishes the same

thing as specifying -verbose in QSHELL or OPTION(*VERBOSE) on the CL

commands, except this property works in the SystemDefault.properties file.

os400.runtime.exec v EXEC (default value)

Invoke functions through runtime.exec() by using the EXEC interface.

v QSHELL

Invoke functions through runtime.exec() by using the Qshell interpreter.

For more information, see Use java.lang.Runtime.exec()

os400.secureApplication Associates the Java program that starts when using this system property

(os400.secureApplication) with the registered secure application name. You

can view registered secure application names by using the Digital

Certificate Manager (DCM).

os400.security.properties Allows full control over which java.security file you use. When you specify

this property, J2SDK does not use any other java.security files, including

the J2SDK specific java.security default.

os400.stderr Allows mapping stderr to a file or socket. See default values.

os400.stdin Allows mapping stdin to a file or socket. See default values.

18 IBM Systems - iSeries: Programming IBM Developer Kit for Java

||
|

os400.stdin.allowed 1 (default value)

Specifies whether stdin is allowed (1) or not allowed (0). If the caller is

running a batch job, stdin should not be allowed.

os400.stdio.convert Allows control of the data conversion for stdin, stdout, and stderr in Java.

Data conversion occurs by default in the Java virtual machine to convert

ASCII data to or from EBCDIC. You can turn these conversions on or off

with this property, which affects the current Java program. See default

values.

os400.stdout Allows mapping stdout to a file or socket. See default values.

os400.xrun.option This system property allows the Qshell -Xrun option to be used by

specifying a property. You can use it to specify an agent program to run

during JVM startup.

os400.verify.checks.disable 65535 (default value)

This system property value is a string that represents the sum of one or

more numeric values. For a list of these values, see

os400.verify.checks.disable numeric values.

os400.vm.inputargs This property is used for output only. It will display the arguments that

the JVM received as inputs. This property can be useful for debugging

what was specified on JVM startup.

path.separator : (colon)

sun.boot.class.path Lists all of the files required by the default boot classloader. Do not change

this value.

user.dir Current working directory using the getcwd API.

user.home Retrieves the initial working directory by using the Get API (getpwnam).

You can place a SystemDefault.properties file in your user.home path to

override the default properties in

/QIBM/UserData/Java400/SystemDefault.properties. You can customize

the iSeries server to specify your own set of default property values.

user.language The Java virtual machine uses this system property to read the job

LANGID value and uses this value to find the corresponding language.

user.name The Java virtual machine uses this system property to retrieve the effective

user profile name from the Security section (Security.UserName) of the

Trusted Computing Base (TCB).

user.region The Java virtual machine uses this system property to read the job

CNTRYID value and uses this value to determine the user region.

user.timezone Universal Time Coordinate (UTC) (default value) The Java virtual machine

uses this system property to obtain the time zone name by using the

QlgRetrieveLocalInformation API. The JVM looks to the system QLOCALE

object first. If not found, the JVM then looks at the QTIMZON system

value. If the QTIMZON system value contains a non-recognized

QTIMZON object, the JVM defaults the user.timezone to UTC.

For more information, see Supported user.timezone property values for the

Development Kit for Java in the WebSphere Software Information Center.

Values for os400.stdio.convert and os400.child.stdio.convert system properties:

The following table shows the system values for both the os400.stdio.convert and

os400.child.stdio.convert system properties.

IBM Developer Kit for Java 19

||
|
|

http://publib.boulder.ibm.com/infocenter/wsdoc400/index.jsp?topic=/com.ibm.websphere.iseries.doc/info/ae/ae/adrtzval.htm
http://publib.boulder.ibm.com/infocenter/wsdoc400/index.jsp?topic=/com.ibm.websphere.iseries.doc/info/ae/ae/adrtzval.htm

Value Description

N (default) No stdio conversion is performed during read or write.

Y All stdio converts to or from the file.encoding value to

job CCSID during read or write.

1 Only stdin data converts from job CCSID to file.encoding

during read.

2 Only stdout data converts from file.encoding to job

CCSID during write.

3 Both stdin and stdout conversions are performed.

4 Only stderr data converts from file.encoding to job

CCSID during write.

5 Both stdin and stderr conversions are performed.

6 Both stdout and stderr conversions are performed.

7 All stdio conversions are performed.

os400.stdin, os400.stdout, and os400.stderr system property values:

The following table shows the system values for os400.stdin, os400.stdout, and os400.stderr system

properties.

 Value Example name Description Example

File SomeFileName SomeFileName is an absolute

path or a path relative to the

current directory.

file:/QIBM/UserData/

Java400/Output.file

Port HostName Port address port:myhost:2000

Port TCPAddress Port address port:1.1.11.111:2000

Values for os400.verify.checks.disable system property: The os400.verify.checks.disable system property

value is a string that represents the sum of one or more numeric values from the following list:

 Value Description

1 Bypass access checks for local classes: Indicates that you

want the Java(TM) virtual machine to bypass access

checks on private and protected fields and methods for

classes that are loaded from the local file system. It is

helpful when transferring applications, which contain

inner classes that refer to private and protected methods

and fields of their enclosing classes.

2 Suppress NoClassDefFoundError during early load:

Indicates that you want the Java virtual machine to

ignore NoClassDefFoundErrors, which occur during

early verification checks for typecasting and field or

method access.

4 Allow LocalVariableTable checking to be bypassed:

Indicates that if you encounter an error in the

LocalVariableTable of a class, the class operates as if the

LocalVariableTable does not exist. Otherwise errors in the

LocaleVariableTable result in a ClassFormatError.

7 Value used at runtime.

20 IBM Systems - iSeries: Programming IBM Developer Kit for Java

You can indicate the value in decimal, hexadecimal, or octal format. It ignores values that are less than

zero. For example, to select the first two values from the list, use this iSeries command syntax:

JAVA CLASS(Hello) PROP((os400.verify.checks.disable 3))

Internationalization

You can customize your Java programs for a specific region of the world by creating internationalized

Java program. By using time zones, locales, and character encoding, you can ensure that your Java

program reflects the correct time, place, and language.

For more information, see the following:

Time zones Learn how to configure the time zone on your server so that your Java programs that

are sensitive to time zones use the correct time.

Java locales Use the list of Java locales to help ensure that your Java programs provide support for

the language, cultural data, or specific characters of a geographic region.

Character encoding Read about how your Java programs can convert data in different formats,

enabling your applications to transfer and use information from many kinds of international

character sets.

Examples Review examples that can help you use time zones, locales, and character encoding to

create an internationalized Java program.

 For more information about internationalization, see the following:

v i5/OS globalization

v Internationalization by Sun Microsystems, Inc.

Time zone configuration

When you have Java programs that are sensitive to time zones, you should configure the time zone on

your server so that your Java programs use the correct time.

To determine the local time correctly, the Java virtual machine (JVM) requires that you set both the

QUTCOFFSET i5/OS system value and the time of day information in the LOCALE user parameter for

the current user or job:

v The JVM determines the correct Coordinated Universal Time (UTC) by comparing the QUTCOFFSET

value to the local time for the system

v The JVM returns the correct local time to the system by using the Java system property user.timezone.

Note: An alternative to setting QUTCOFFSET and LOCALE is to use the QTIMZON system value. The

JVM looks to the system QLOCALE object first. If not found, the JVM will then look at the

QTIMZON system value. If the QTIMZON system value contains a non-recognized QTIMZON

object, the JVM defaults user.timezone to UTC.

QUTCOFFSET and user.timezone

The QUTCOFFSET i5/OS system value represents the Coordinated Universal Time (UTC) Offset for your

system. QUTCOFFSET specifies the difference in time between UTC (or Greenwich mean time) and the

current system time. The default value for QUTCOFFSET is zero (+00:00).

The QUTCOFFSET value allows the JVM to determine the correct value for the local time. For example,

the value for QUTCOFFSET to specify central standard time (CST) is -6:00. To specify central daylight

time (CDT), QUTCOFFSET has a value of -5:00.

IBM Developer Kit for Java 21

javaapi/guide/intl/locale.doc.html
javaapi/guide/intl/index.html

The user.timezone Java system property uses UTC time as the default value. Unless you specify a

different value, the JVM recognizes UTC time as the current time.

For more information about QUTCOFFSET and Java system properties, see the following topics:

i5/OS system value: QUTCOFFSET

Java system properties

LOCALE

The LOCALE parameter on a user profile specifies the *LOCALE object to use for the LANG

environment variable. Do not confuse the *LOCALE object with Java locales.

Correctly setting the locale information allows the JVM to set the user.timezone property to the correct

time zone. You can set the user.timezone property to override the default setting provided by the

*LOCALE object.

For more information about using locales and setting Java system properties, see the following pages:

Locales

Java system properties

The LC_TOD category defines rules for daylight savings time and time zone information for a locale.

Note: To use daylight savings time, you must adjust the QUTCOFFSET system value to have the correct

offset.

The following example shows the LC_TOD category information that you must include in the locale

object in order to configure the correct time zone for Java:

 LC_TOD

 % TZDIFF is number of minutes difference from UTC (or GMT)

 tzdiff 360

 % Timezone name (this is the value that you would have

 % passed to the JVM as the user.timezone property.)

 tname "<C><S><T>"

 % Remember to adjust the value of QUTCOFFSET when using

 % daylight savings time (DST)

 % Name used for DST.

 dstname "<C><D><T>"

 % DST start in this part of the US is the first Sunday in

 % April at 2am

 dststart 4,1,1,7200

 % DST End in this area of US is Last Sunday in October.

 dstend 10,-1,1,7200

 % shift in seconds

 dstshift 3600

 END LC_TOD

The LC_TOD category of the locale contains the tname field, which you must set to the same value as

your time zone. For valid time zone strings, refer to the Javadoc reference information for the

java.util.TimeZone class. For more information about working with locales, see the following pages:

Work with locales

TimeZone Javadoc reference information

22 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/api/java/util/TimeZone.html

Java character encodings

Java programs can convert data in different formats, enabling your applications to transfer and use

information from many kinds of international character sets.

Internally, the Java virtual machine (JVM) always operates with data in Unicode. However, all data

transferred into or out of the JVM is in a format matching the file.encoding property. Data read into the

JVM is converted from file.encoding to Unicode and data sent out of the JVM is converted from Unicode

to file.encoding.

Data files for Java programs are stored in the integrated file system. Files in the integrated file system are

tagged with a coded character set identifier (CCSID) that identifies the character encoding of the data

contained in the file. See the File.encoding values and iSeries CCSID table for description of how

file.encoding is correlated to CCSID on the iSeries server.

When data is read by a Java program, it is expected to be in the character encoding matching

file.encoding. When data is written to a file by a Java program, it is written in a character encoding

matching file.encoding. This also applies to Java source code files (.java files) processed by the javac

command and to data sent and received through Transmission Control Protocol/Internet Protocol

(TCP/IP) sockets using the .net package.

Data read from or written to System.in, System.out, and System.err are handled differently than data read

from or written to other sources when they are assigned to stdin, stdout, and stderr. Since stdin, stdout,

and stderr are normally attached to EBCDIC devices on the iSeries server, a conversion is performed by

the JVM on the data to convert from the normal character encoding of file.encoding to a CCSID matching

the iSeries job CCSID. When System.in, System.out, or System.err are redirected to a file or socket and are

not directed to stdin, stdout, or stderr, this additional data conversion is not performed and the data

remains in a character encoding matching file.encoding.

When data must be read into or written from a Java program in a character encoding other than

file.encoding, the program can use the Java IO classes java.io.InputStreamReader, java.io.FileReader,

java.io.OutputStreamReader, and java.io.FileWriter. These Java classes allow specifying a file.encoding

value that takes precedence over the default file.encoding property currently in use by the JVM.

Data to or from the DB2/400 database, through the JDBC APIs, converts to or from the CCSID of the

iSeries database.

Data that is transferred to or from other programs through Java Native Interface does not get converted.

For more information about internationalization, see i5/OS globalization.

You can also see Internationalization by Sun Microsystems, Inc. for more information.

File.encoding values and iSeries CCSID:

This table shows the relation between possible file.encoding values and the closest matching iSeries coded

character set identifier (CCSID).

 For more information regarding file.encoding support, see Supported encodings by Sun Microsystems,

Inc.

 file.encoding CCSID Description

ASCII 367 American Standard Code for Information Interchange

Big5 950 8-bit ASCII T-Chinese BIG-5

Big5_HKSCS 950 Big5_HKSCS

IBM Developer Kit for Java 23

javaapi/guide/intl/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

file.encoding CCSID Description

Big5_Solaris 950 Big5 with seven additional Hanzi ideograph character mappings for the Solaris

zh_TW.BIG5 locale

CNS11643 964 Chinese National Character Set for traditional Chinese

Cp037 037 IBM EBCDIC US, Canada, Netherlands

Cp273 273 IBM EBCDIC Germany, Austria

Cp277 277 IBM EBCDIC Denmark, Norway

Cp278 278 IBM EBCDIC Finland, Sweden

Cp280 280 IBM EBCDIC Italy

Cp284 284 IBM EBCDIC Spanish, Latin America

Cp285 285 IBM EBCDIC UK

Cp297 297 IBM EBCDIC France

Cp420 420 IBM EBCDIC Arabic

Cp424 424 IBM EBCDIC Hebrew

Cp437 437 8-bit ASCII US PC

Cp500 500 IBM EBCDIC International

Cp737 737 8-bit ASCII Greek MS-DOS

Cp775 775 8-bit ASCII Baltic MS-DOS

Cp838 838 IBM EBCDIC Thailand

Cp850 850 8-bit ASCII Latin-1 Multinational

Cp852 852 8-bit ASCII Latin-2

Cp855 855 8-bit ASCII Cyrillic

Cp856 0 8-bit ASCII Hebrew

Cp857 857 8-bit ASCII Latin-5

Cp860 860 8-bit ASCII Portugal

Cp861 861 8-bit ASCII Iceland

Cp862 862 8-bit ASCII Hebrew

Cp863 863 8-bit ASCII Canada

Cp864 864 8-bit ASCII Arabic

Cp865 865 8-bit ASCII Denmark, Norway

Cp866 866 8-bit ASCII Cyrillic

Cp868 868 8-bit ASCII Urdu

Cp869 869 8-bit ASCII Greek

Cp870 870 IBM EBCDIC Latin-2

Cp871 871 IBM EBCDIC Iceland

Cp874 874 8-bit ASCII Thailand

Cp875 875 IBM EBCDIC Greek

Cp918 918 IBM EBCDIC Urdu

Cp921 921 8-bit ASCII Baltic

Cp922 922 8-bit ASCII Estonia

Cp930 930 IBM EBCDIC Japanese Extended Katakana

Cp933 933 IBM EBCDIC Korean

24 IBM Systems - iSeries: Programming IBM Developer Kit for Java

file.encoding CCSID Description

Cp935 935 IBM EBCDIC Simplified Chinese

Cp937 937 IBM EBCDIC Traditional Chinese

Cp939 939 IBM EBCDIC Japanese Extended Latin

Cp942 942 8-bit ASCII Japanese

Cp942C 942 Variant of Cp942

Cp943 943 Japanese PC data mixed for open env

Cp943C 943 Japanese PC data mixed for open env

Cp948 948 8-bit ASCII IBM Traditional Chinese

Cp949 944 8-bit ASCII Korean KSC5601

Cp949C 949 Variant of Cp949

Cp950 950 8-bit ASCII T-Chinese BIG-5

Cp964 964 EUC Traditional Chinese

Cp970 970 EUC Korean

Cp1006 1006 ISO 8-bit Urdu

Cp1025 1025 IBM EBCDIC Cyrillic

Cp1026 1026 IBM EBCDIC Turkey

Cp1046 1046 8-bit ASCII Arabic

Cp1097 1097 IBM EBCDIC Farsi

Cp1098 1098 8-bit ASCII Farsi

Cp1112 1112 IBM EBCDIC Baltic

Cp1122 1122 IBM EBCDIC Estonia

Cp1123 1123 IBM EBCDIC Ukraine

Cp1124 0 ISO 8-bit Ukraine

Cp1140 1140 Variant of Cp037 with Euro character

Cp1141 1141 Variant of Cp273 with Euro character

Cp1142 1142 Variant of Cp277 with Euro character

Cp1143 1143 Variant of Cp278 with Euro character

Cp1144 1144 Variant of Cp280 with Euro character

Cp1145 1145 Variant of Cp284 with Euro character

Cp1146 1146 Variant of Cp285 with Euro character

Cp1147 1147 Variant of Cp297 with Euro character

Cp1148 1148 Variant of Cp500 with Euro character

Cp1149 1149 Variant of Cp871 with Euro character

Cp1250 1250 MS-Win Latin-2

Cp1251 1251 MS-Win Cyrillic

Cp1252 1252 MS-Win Latin-1

Cp1253 1253 MS-Win Greek

Cp1254 1254 MS-Win Turkish

Cp1255 1255 MS-Win Hebrew

Cp1256 1256 MS-Win Arabic

Cp1257 1257 MS-Win Baltic

IBM Developer Kit for Java 25

file.encoding CCSID Description

Cp1258 1251 MS-Win Russian

Cp1381 1381 8-bit ASCII S-Chinese GB

Cp1383 1383 EUC Simplified Chinese

Cp33722 33722 EUC Japanese

EUC_CN 1383 EUC for Simplified Chinese

EUC_JP 5050 EUC for Japanese

EUC_JP_LINUX 0 JISX 0201, 0208 , EUC encoding Japanese

EUC_KR 970 EUC for Korean

EUC_TW 964 EUC for Traditional Chinese

GB2312 1381 8-bit ASCII S-Chinese GB

GB18030 1392 Simplified Chinese, PRC standard

GBK 1386 New simplified Chinese 8-bit ASCII 9

ISCII91 806 ISCII91 encoding of Indic scripts

ISO2022CN 965 ISO 2022 CN, Chinese (conversion to Unicode only)

ISO2022_CN_CNS 965 CNS11643 in ISO 2022 CN form, Traditional Chinese (conversion from Unicode

only)

ISO2022_CN_GB 1383 GB2312 in ISO 2022 CN form, Simplified Chinese (conversion from Unicode

only)

ISO2022CN_CNS 965 7-bit ASCII for Traditional Chinese

ISO2022CN_GB 1383 7-bit ASCII for Simplified Chinese

ISO2022JP 5054 7-bit ASCII for Japanese

ISO2022KR 25546 7-bit ASCII for Korean

ISO8859_1 819 ISO 8859-1 Latin Alphabet No. 1

ISO8859_2 912 ISO 8859-2 ISO Latin-2

ISO8859_3 0 ISO 8859-3 ISO Latin-3

ISO8859_4 914 ISO 8859-4 ISO Latin-4

ISO8859_5 915 ISO 8859-5 ISO Latin-5

ISO8859_6 1089 ISO 8859-6 ISO Latin-6 (Arabic)

ISO8859_7 813 ISO 8859-7 ISO Latin-7 (Greek/Latin)

ISO8859_8 916 ISO 8859-8 ISO Latin-8 (Hebrew)

ISO8859_9 920 ISO 8859-9 ISO Latin-9 (ECMA-128, Turkey)

ISO8859_13 0 Latin Alphabet No. 7

ISO8859_15 923 ISO8859_15

ISO8859_15_FDIS 923 ISO 8859-15, Latin alphabet No. 9

ISO-8859-15 923 ISO 8859-15, Latin Alphabet No. 9

JIS0201 897 Japanese industry standard X0201

JIS0208 5052 Japanese industry standard X0208

JIS0212 0 Japanese industry standard X0212

JISAutoDetect 0 Detects and converts from Shift-JIS, EUC-JP, ISO 2022 JP (conversion to

Unicode only)

Johab 0 Korean composition Hangul encoding (full)

K018_R 878 Cyrillic

26 IBM Systems - iSeries: Programming IBM Developer Kit for Java

file.encoding CCSID Description

KSC5601 949 8-bit ASCII Korean

MacArabic 1256 Macintosh Arabic

MacCentralEurope 1282 Macintosh Latin-2

MacCroatian 1284 Macintosh Croatian

MacCyrillic 1283 Macintosh Cyrillic

MacDingbat 0 Macintosh Dingbat

MacGreek 1280 Macintosh Greek

MacHebrew 1255 Macintosh Hebrew

MacIceland 1286 Macintosh Iceland

MacRoman 0 Macintosh Roman

MacRomania 1285 Macintosh Romania

MacSymbol 0 Macintosh Symbol

MacThai 0 Macintosh Thai

MacTurkish 1281 Macintosh Turkish

MacUkraine 1283 Macintosh Ukraine

MS874 874 MS-Win Thailand

MS932 943 Windows Japanese

MS936 936 Windows Simplified Chinese

MS949 949 Windows Korean

MS950 950 Windows Traditional Chinese

MS950_HKSCS NA Windows Traditional Chinese with Hong Kong S.A.R. of China extensions

SJIS 932 8-bit ASCII Japanese

TIS620 874 Thai industry standard 620

US-ASCII 367 American Standard Code for Information Interchange

UTF8 1208 UTF-8 (IBM CCSID 1208, which is not yet available on the iSeries server)

UTF-16 1200 Sixteen-bit UCS Transformation Format, byte order identified by an optional

byte-order mark

UTF-16BE 1200 Sixteen-bit Unicode Transformation Format, big-endian byte order

UTF-16LE 1200 Sixteen-bit Unicode Transformation Format, little-endian byte order

UTF-8 1208 Eight-bit UCS Transformation Format

Unicode 13488 UNICODE, UCS-2

UnicodeBig 13488 Same as Unicode

UnicodeBigUnmarked Unicode with no byte-order mark

UnicodeLittle Unicode with little-endian byte order

UnicodeLittleUnmarked UnicodeLittle with no byte-order mark

For default values, see Default file.encoding values.

Default file.encoding values:

This table shows how the file.encoding value is set based on the iSeries coded character set identifier

(CCSID) when the Java virtual machine starts.

IBM Developer Kit for Java 27

iSeries CCSID Default file.encoding Description

37 ISO8859_1 English for USA, Canada, New

Zealand, and Australia; Portuguese

for Portugal and Brazil; and Dutch

for Netherlands

256 ISO8859_1 International #1

273 ISO8859_1 German/Germany, German/Austria

277 ISO8859_1 Danish/Denmark,

Norwegian/Norway,

Norwegian/Norway, NY

278 ISO8859_1 Finnish/Finland

280 ISO8859_1 Italian/Italy

284 ISO8859_1 Catalan/Spain, Spanish/Spain

285 ISO8859_1 English/Great Britain,

English/Ireland

290 Cp943C SBCS portion of Japanese EBCDIC

mixed (CCSID 5026)

297 ISO8859_1 French/France

420 Cp1046 Arabic/Egypt

423 ISO8859_7 Greece

424 ISO8859_8 Hebrew/Israel

500 ISO8859_1 German/Switzerland,

French/Belgium, French/Canada,

French/Switzerland

833 Cp970 SBCS portion of Korean EBCDIC

mixed (CCSID 933)

836 Cp1383 SBCS portion of S-Chinese EBCDIC

mixed (CCSID 935).

838 TIS620 Thai

870 ISO8859_2 Czech/Czech Republic,

Croatian/Croatia,

Hungarian/Hungary, Polish/Poland

871 ISO8859_1 Icelandic/Iceland

875 ISO8859_7 Greek/Greece

880 ISO8859_5 Bulgaria (ISO 8859_5)

905 ISO8859_9 Turkey extended

918 Cp868 Urdu

930 Cp943C Japanese EBCDIC mixed (similar to

CCSID 5026)

933 Cp970 Korean/Korea

935 Cp1383 Simplified Chinese

937 Cp950 Traditional Chinese

939 Cp943C Japanese EBCDIC Mixed (similar to

CCSID 5035)

28 IBM Systems - iSeries: Programming IBM Developer Kit for Java

iSeries CCSID Default file.encoding Description

1025 ISO8859_5 Belorussian/Belarus,

Bulgarian/Bulgaria,

Macedonian/Macedonia,

Russian/Russia

1026 ISO8859_9 Turkish/Turkey

1027 Cp943C SBCS portion of Japanese EBCDIC

mixed (CCSID 5035)

1097 Cp1098 Farsi

1112 Cp921 Lithuanian/Lithuania,

Latvian/Latvia, Baltic

1388 GBK Simplified Chinese EBCDIC mixed

(GBK is included)

5026 Cp943C Japanese EBCDIC mixed CCSID

(Extended Katakana)

5035 Cp943C Japanese EBCDIC mixed CCSID

(Extended Latin)

8612 Cp1046 Arabic (base shapes only) (or ASCII

420 and 8859_6)

9030 Cp874 Thai (host extended SBCS)

13124 GBK SBCS portion of Simplified Chinese

EBCDIC mixed (GBK is included)

28709 Cp948 SBCS portion of Traditional Chinese

EBCDIC mixed (CCSID 937)

Examples: Creating an internationalized Java program

If you need to customize a Java program for a specific region of the world, you can create an

internationalized Java program with Java locales.

Java locales.

Creating an internationalized Java program involves several tasks:

1. Isolate the locale-sensitive code and data. For example, strings, dates, and numbers in your program.

2. Set or get the locale using the Locale class.

3. Format dates and numbers to specify a locale if you do not want to use the default locale.

4. Create resource bundles to handle strings and other locale-sensitive data.

Review the following examples, which offer ways to help you complete the tasks required to create an

internationalized Java program:

v Example: Internationalization of dates using the java.util.DateFormat class

v Example: Internationalization of numeric display using the java.util.NumberFormat class

v Example: Internationalization of locale-specific data using the java.util.ResourceBundle class

For more information about internationalization, see the following:

v i5/OS globalization

v Internationalization by Sun Microsystems, Inc.

IBM Developer Kit for Java 29

javaapi/guide/intl/locale.doc.html
javaapi/guide/intl/index.html

Release-to-release compatibility

Java class files are upward compatible (JDK 1.1.x to 1.2.x to 1.3.x to 1.4.x to 1.5.x) as long as they do not

make use of a feature for which Sun has dropped or changed support.

See The Source for Java Technology java.sun.com for information on release-to-release availability.

When Java programs on an iSeries server are optimized using Create Java Program (CRTJVAPGM)

command, a Java Program (JVAPGM) is attached to the class file. The internal structure of these

JVAPGMs changed on V4R4. This means that JVAPGMs created before V4R4 are not valid on V4R4 and

later releases. You must recreate the JVAPGMs or the system automatically creates a JVAPGM at the same

optimization level as before. It is, however, recommended that you manually perform a CRTJVAPGM,

especially with JAR or ZIP files. This produces the best optimization with the smallest program size.

For best performance at optimization level 40, it is recommended to preform CRTJVAPGM on each i5/OS

release or JDK version change. This is especially true if the JDKVER facility is used on CRTJVAPGM, as

this results in methods from the Sun JDK being inlined into your JVAPGM. This can be a great advantage

to performance. If, however, changes are made in the JDK on subsequent releases that invalidate those

inlines, the programs may actually run slower than at lower optimizations. This is because special case

code must be run to get proper operation.

See Java runtime performance for more detailed performance information.

Database access with the IBM Developer Kit for Java

With the IBM Developer Kit for Java, your Java programs can access your database files in three ways.

v JDBC driver explains how the IBM Developer Kit for Java JDBC driver allows Java programs to access

database files.

v SQLJ support explains how the IBM Developer Kit for Java allows you to use SQL statements that are

embedded in your Java application.

v Java SQL routines explains how you can use Java stored procedures and Java user-defined functions to

access Java programs.

Access your iSeries database with the IBM Developer Kit for Java

JDBC driver

The IBM Developer Kit for Java JDBC driver, also known as the ″native″ driver, provides programmatic

access to iSeries database files. Using the Java Database Connectivity (JDBC) API, applications written in

the Java language can access JDBC database functions with embedded Structured Query Language (SQL),

run SQL statements, retrieve results, and propagate changes back to the database. The JDBC API can also

be used to interact with multiple data sources in a distributed, heterogeneous environment.

The SQL99 Command Language Interface (CLI), on which the JDBC API is based, is the basis for ODBC.

JDBC provides a natural and easy-to-use mapping from the Java programming language to the

abstractions and concepts defined in the SQL standard.

To use the JDBC driver, see the following:

Get started with JDBC You can follow the tutorial of writing a JDBC program and running it on

your iSeries server.

Connections An application program can have multiple connections at one time. You can represent

a connection to a data source in JDBC by using a Connection object. It is through Connection objects

that Statement objects are created for processing SQL statements against the database.

30 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://www.java.sun.com/

JVM properties Some settings used by the native JDBC driver cannot be set using a connection

property. These settings must be set for the JVM in which the native JDBC driver is running.

DatabaseMetaData The DatabaseMetaData interface is used by application servers and tools to

determine how to interact with a given data source. Applications may also use DatabaseMetaData

methods to obtain information about a specific data source.

Exceptions The Java language uses exceptions to provide error-handling capabilities for its

programs. An exception is an event that occurs when you run your program that disrupts the

normal flow of instructions.

Transactions A transaction is a logical unit of work. Transactions are used to provide data integrity,

correct application semantics, and a consistent view of data during concurrent access. All

JDBC-compliant drivers must support transactions.

Statement types The Statement interface and its PreparedStatement and CallableStatement

subclasses are used to process SQL commands against the database. SQL statements cause the

generation of ResultSet objects.

ResultSets The ResultSet interface provides access to the results generated by running queries. Data

of a ResultSet can be thought of as a table with a specific number of columns and a specific number

of rows. By default, the table rows are retrieved in sequence. Within a row, column values can be

accessed in any order.

JDBC object pooling Since many objects used in JDBC are expensive to create such as Connection,

Statement, and ResultSet objects, significant performance benefits can be achieved by using JDBC

object pooling. With object pooling, you can reuse these objects instead of creating them every time

you need them.

Batch updates Batch update support allows many updates to the database to be passed as a single

transaction between the user program and the database. Batch updates can significantly improve

performance when many updates must be performed at once.

Advanced data types There are several new data types called SQL3 data types that are provided in

the iSeries database. The SQL3 data types give you a tremendous amount of flexibility. They are

ideal for storing serialized Java objects, Extensible Markup Language (XML) documents, and

multimedia data such as songs, product pictures, employee photographs, and movie clips. The SQL3

data types include the following:

v Distinct types

v Large objects such as Binary Large Objects, Character Large Objects, and Double Byte Character

Large Objects

v Datalinks

RowSets The RowSet specification is designed to be more of a framework than an actual

implementation. The RowSet interfaces define a set of core functionality that all RowSets have.

Distributed transactions The Java Transaction API (JTA) has support for complex transactions. It

also provides support for decoupling transactions from Connection objects. JTA and JDBC work

together to decouple transactions from Connection objects and allows you to have a single

connection work on multiple transactions concurrently. Conversely, it allows you to have multiple

connections work on a single transaction.

Performance tips You can obtain the best possible performance from your JDBC applications with

these performance tips.

IBM Developer Kit for Java 31

For more information about JDBC, see the JDBC documentation by Sun Microsystems, Inc.

For more information about iSeries native JDBC driver, see iSeries native JDBC Driver FAQS .

Get started with JDBC

The Java Database Connectivity (JDBC) driver shipped with the Developer Kit for Java is called the

Developer Kit for Java JDBC driver. This driver is also commonly known as the native JDBC driver.

To select which JDBC driver suits your needs, consider the following suggestions:

v Programs running directly on a server where the database resides should use the native JDBC driver

for performance. This includes most servlet and JavaServer Pages (JSP) solutions, and applications

written to run locally on an iSeries server.

v Programs that must connect to a remote iSeries server use the IBM Toolbox for Java JDBC driver. The

IBM Toolbox for Java JDBC driver is a robust implementation of JDBC and is provided as part of IBM

Toolbox for Java. Being pure Java, the IBM Toolbox for Java JDBC driver is trivial to set up for clients

and requires little server setup.

v Programs that run on an iSeries server and need to connect to a remote, non-iSeries database use the

native JDBC driver and set up a Distributed Relational Database Architecture™ (DRDA®) connection to

that remote server.

To get started with JDBC, see the following:

Types of JDBC drivers This topic defines the JDBC driver types. Driver types are defined to

categorize the technology used to connect to the database.

Requirements This topic indicates the requirements you need to access the following:

v Core JDBC

v JDBC 2.0 optional package

v Java Transaction API (JTA)

JDBC tutorial This is an important first step towards writing a JDBC program and having it run on

an iSeries server with the native JDBC driver.

Types of JDBC drivers:

This topic defines the Java Database Connectivity (JDBC) driver types. Driver types are used to categorize

the technology used to connect to the database. A JDBC driver vendor uses these types to describe how

their product operates. Some JDBC driver types are better suited for some applications than others.

 Type 1

Type 1 drivers are ″bridge″ drivers. They use another technology such as Open Database Connectivity

(ODBC) to communicate with a database. This is an advantage because ODBC drivers exist for many

Relational Database Management System (RDBMS) platforms. The Java Native Interface (JNI) is used to

call ODBC functions from the JDBC driver.

A Type 1 driver needs to have the bridge driver installed and configured before JDBC can be used with

it. This can be a serious drawback for a production application. Type 1 drivers cannot be used in an

applet since applets cannot load native code.

Type 2

Type 2 drivers use a native API to communicate with a database system. Java native methods are used to

invoke the API functions that perform database operations. Type 2 drivers are generally faster than Type

1 drivers.

32 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://www.java.sun.com/products/jdbc
http://www-1.ibm.com/servers/enable/site/java/jdbc/jdbcfaq.html

Type 2 drivers need native binary code installed and configured to work. A Type 2 driver also uses the

JNI. You cannot use a Type 2 driver in an applet since applets cannot load native code. A Type 2 JDBC

driver may require some Database Management System (DBMS) networking software to be installed.

The Developer Kit for Java JDBC driver is a Type 2 JDBC driver.

Type 3

These drivers use a networking protocol and middleware to communicate with a server. The server then

translates the protocol to DBMS function calls specific to DBMS.

Type 3 JDBC drivers are the most flexible JDBC solution because they do not require any native binary

code on the client. A Type 3 driver does not need any client installation.

Type 4

A Type 4 driver uses Java to implement a DBMS vendor networking protocol. Since the protocols are

usually proprietary, DBMS vendors are generally the only companies providing a Type 4 JDBC driver.

Type 4 drivers are all Java drivers. This means that there is no client installation or configuration.

However, a Type 4 driver may not be suitable for some applications if the underlying protocol does not

handle issues such as security and network connectivity well.

The IBM Toolbox for Java JDBC driver is a Type 4 JDBC driver, indicating that the API is a pure Java

networking protocol driver.

JDBC requirements:

Before you write and deploy your JDBC applications, you may need to include specific jar files in your

classpath.

 Core JDBC

For core Java Database Connectivity (JDBC) access to the local database, there are no requirements. All

support is built in, preinstalled, and configured.

JDBC 2.0 optional package

If you need to use the classes of the JDBC 2.0 optional package, you must include the jdbc2_0-stdext.jar

file in your classpath. This Java ARchive (JAR) file contains all the standard interfaces that you need to

write your application to use the JDBC 2.0 optional package. To add the JAR file to your extensions

classpath, create a symbolic link from the UserData extensions directory to the location of the JAR file.

You only need to perform this once; the JAR file in the JDBC 2.0 optional package is always available to

your applications at runtime. Use the following command to add the optional package to the extensions

classpath:

 ADDLNK OBJ(’/QIBM/ProdData/OS400/Java400/ext/jdbc2_0-stdext.jar’)

 NEWLNK(’/QIBM/UserData/Java400/ext/jdbc2_0-stdext.jar’)

Note: This requirement is only for J2SDK 1.3. Since J2SDK 1.4 is the first release with JDBC 3.0 support,

all of JDBC (that is, the core JDBC and the optional package) moves into the base J2SDK runtime JAR file

that your program always finds.

Java Transaction API

If you need to use the Java Transaction API (JTA) in your application, you must include the

jta-spec1_0_1.jar file in your classpath. This JAR file contains all the standard interfaces that you need to

IBM Developer Kit for Java 33

write your application to use JTA. To add the JAR file to your extensions classpath, create a symbolic link

from the UserData extensions directory to the location of the JAR file. This is a one-time operation and

once completed, the JTA JAR file is always available to your application at runtime. Use the following

command to add JTA to the extensions classpath:

 ADDLNK OBJ(’/QIBM/ProdData/OS400/Java400/ext/jta-spec1_0_1.jar’)

 NEWLNK(’/QIBM/UserData/Java400/ext/jta-spec1_0_1.jar’)

JDBC compliance

The native JDBC driver is compliant with all relevant JDBC specifications. The compliance level of the

JDBC driver is not dependent on the i5/OS release, but on the JDK release you use. The native JDBC

driver’s compliance level for the various JDKs is listed as follows:

 J2SDK release JDBC driver’s compliance level

JDK 1.1 This JDK is compliant with JDBC 1.0.

JDK 1.2 This JDK is compliant with JDBC 2.0 and supports JDBC 2.1 optional package.

JDK 1.3 This JDK is compliant with JDBC 2.0 and supports JDBC 2.1 optional package (there were

no JDBC-related changes for JDK 1.3).

JDK 1.4 and

subsequent versions

These JDK versions are compliant with JDBC 3.0, but the JDBC optional package no longer

exists (support for it is now part of the core JDK).

JDBC tutorial:

The following is a tutorial on writing a Java Database Connectivity (JDBC) program and having it run on

the an iSeries server with the native JDBC driver. It is designed to show you the basic steps required for

your program to run JDBC.

 “Example: JDBC” on page 35 creates a table and populates it with some data. The program processes a

query to get that data out of the database and to display it on the screen.

Run the example program

To run the example program, perform the following steps:

1. Copy the program to your workstation.

a. Copy “Example: JDBC” on page 35 and paste it into a file on your workstation.

b. Save the file with the same name as the public class provided and with the .java extension. In this

case, you must name the file BasicJDBC.java on your local workstation.
2. Transfer the file from your workstation to your iSeries server. From a command prompt, enter the

following commands:

 ftp <iSeries server name>

 <Enter your user ID>

 <Enter your password>

 cd /home/cujo

 put BasicJDBC.java

 quit

For these commands to work, you must have a directory in which to put the file. In the example,

/home/cujo is the location, but you can use any location you want.

Note: It is possible that the FTP commands mentioned previously may be different for you based on

how your server is set up, but they should be similar. It does not matter how you transfer the

file to your iSeries server as long as you transfer it into the integrated file system. Tools such as

VisualAge® for Java can fully automate this process for you.

34 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|
|
|
|

3. Make sure you set your classpath to the directory where you put the file in so that your Java

commands find the file when you run them. From a CL command line, you can use WRKENVVAR to

see what environment variables are set for your user profile.

v If you see an environment variable named CLASSPATH, you must ensure that the location where

you put the .java file in is in the string of directories listed there or add it if the location has not

been specified.

v If there is no CLASSPATH environment variable, you must add one. This can be accomplished with

the following command:

 ADDENVVAR ENVVAR(CLASSPATH)

 VALUE(’/home/cujo:/QIBM/ProdData/Java400/jdk13/lib/tools.jar’)

Note: To compile Java code from the CL command, you must include the tools.jar file. This JAR file

includes the javac command.

4. Compile the Java file into a class file. Enter the following command from the CL command line:

 java class(com.sun.tools.javac.Main) prop(BasicJDBC)

 java BasicJDBC

You can also compile the Java file from QSH:

 cd /home/cujo

 javac BasicJDBC.java

QSH automatically ensures that the tools.jar file can be found. As a result, you do not have to add it

to your classpath. The current directory is also in the classpath. By issuing the change directory (cd)

command, the BasicJDBC.java file is also found.

Note: You can also compile the file on your workstation and use FTP to send the class file to your

iSeries server in binary mode. This is an example of Java’s ability to run on any platform.

Run the program by using the following command from either the CL command line or from QSH:

 java BasicJDBC

The output is as follows:

 | 1 | Frank Johnson |

 | |

 | 2 | Neil Schwartz |

 | |

 | 3 | Ben Rodman |

 | |

 | 4 | Dan Gloore |

 There were 4 rows returned.

 Output is complete.

 Java program completed.

For more information on Java and JDBC, consult the following resources:

v IBM Toolbox for Java JDBC driver external web site

v Sun’s JDBC page

v Java/JDBC forum for iSeries and iSeries users

v IBM JDBC e-mail address

Example: JDBC:

This is an example of how to use the BasicJDBC program.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

IBM Developer Kit for Java 35

http://www-1.ibm.com/servers/eserver/iseries/toolbox/
http://java.sun.com/products/jdbc/
mailto:JAVA400-L-SUB@midrange.com
mailto:rchjdbc@us.ibm.com

//

//

// BasicJDBC example. This program uses the native JDBC driver for the

// Developer Kit for Java to build a simple table and process a query

// that displays the data in that table.

//

// Command syntax:

// BasicJDBC

//

//

//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

// Include any Java classes that are to be used. In this application,

// many classes from the java.sql package are used and the

// java.util.Properties class is also used as part of obtaining

// a connection to the database.

import java.sql.*;

import java.util.Properties;

// Create a public class to encapsulate the program.

public class BasicJDBC {

 // The connection is a private variable of the object.

 private Connection connection = null;

 // Any class that is to be an ’entry point’ for running

 // a program must have a main method. The main method

 // is where processing begins when the program is called.

 public static void main(java.lang.String[] args) {

 // Create an object of type BasicJDBC. This

 // is fundamental to object-oriented programming. Once

 // an object is created, call various methods on

 // that object to accomplish work.

 // In this case, calling the constructor for the object

 // creates a database connection that the other

 // methods use to do work against the database.

 BasicJDBC test = new BasicJDBC();

 // Call the rebuildTable method. This method ensures that

 // the table used in this program exists and looks

 // correct. The return value is a boolean for

 // whether or not rebuilding the table completed

 // successfully. If it did no, display a message

36 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// and exit the program.

 if (!test.rebuildTable()) {

 System.out.println("Failure occurred while setting up " +

 " for running the test.");

 System.out.println("Test will not continue.");

 System.exit(0);

 }

 // The run query method is called next. This method

 // processes an SQL select statement against the table that

 // was created in the rebuildTable method. The output of

 // that query is output to standard out for you to view.

 test.runQuery();

 // Finally, the cleanup method is called. This method

 // ensures that the database connection that the object has

 // been hanging on to is closed.

 test.cleanup();

 }

 /**

 This is the constructor for the basic JDBC test. It creates a database

 connection that is stored in an instance variable to be used in later

 method calls.

 **/

 public BasicJDBC() {

 // One way to create a database connection is to pass a URL

 // and a java Properties object to the DriverManager. The following

 // code constructs a Properties object that has your user ID and

 // password. These pieces of information are used for connecting

 // to the database.

 Properties properties = new Properties ();

 properties.put("user", "cujo");

 properties.put("user", "newtiger");

 // Use a try/catch block to catch all exceptions that can come out of the

 // following code.

 try {

 // The DriverManager must be aware that there is a JDBC driver available

 // to handle a user connection request. The following line causes the

 // native JDBC driver to be loaded and registered with the DriverManager.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 // Create the database Connection object that this program uses in all

 // the other method calls that are made. The following code specifies

 // that a connection is to be established to the local database and that

 // that connection should conform to the properties that were set up

 // previously (that is, it should use the user ID and password specified).

 connection = DriverManager.getConnection("jdbc:db2:*local", properties);

 } catch (Exception e) {

 // If any of the lines in the try/catch block fail, control transfers to

 // the following line of code. A robust application tries to handle the

 // problem or provide more details to you. In this program, the error

 // message from the exception is displayed and the application allows

 // the program to return.

 System.out.println("Caught exception: " + e.getMessage());

 }

 }

 /**

 Ensures that the qgpl.basicjdbc table looks you want it to at the start of

 the test.

IBM Developer Kit for Java 37

@returns boolean Returns true if the table was rebuild successfully;

 returns false if any failure occurred.

 **/

 public boolean rebuildTable() {

 // Wrap all the functionality in a try/catch block so an attempt is

 // made to handle any errors that may happen within this method.

 try {

 // Statement objects are used to process SQL statements against the

 // database. The Connection object is used to create a Statement

 // object.

 Statement s = connection.createStatement();

 try {

 // Build the test table from scratch. Process an update statement

 // that attempts to delete the table if it currently exists.

 s.executeUpdate("drop table qgpl.basicjdbc");

 } catch (SQLException e) {

 // Do not perform anything if an exception occurred. Assume

 // that the problem is that the table that was dropped does not

 // exist and that it can be created next.

 }

 // Use the statement object to create our table.

 s.executeUpdate("create table qgpl.basicjdbc(id int, name char(15))");

 // Use the statement object to populate our table with some data.

 s.executeUpdate("insert into qgpl.basicjdbc values(1, ’Frank Johnson’)");

 s.executeUpdate("insert into qgpl.basicjdbc values(2, ’Neil Schwartz’)");

 s.executeUpdate("insert into qgpl.basicjdbc values(3, ’Ben Rodman’)");

 s.executeUpdate("insert into qgpl.basicjdbc values(4, ’Dan Gloore’)");

 // Close the SQL statement to tell the database that it is no longer

 // needed.

 s.close();

 // If the entire method processed successfully, return true. At this point,

 // the table has been created or refreshed correctly.

 return true;

 } catch (SQLException sqle) {

 // If any of our SQL statements failed (other than the drop of the table

 // that was handled in the inner try/catch block), the error message is

 // displayed and false is returned to the caller, indicating that the table

 // may not be complete.

 System.out.println("Error in rebuildTable: " + sqle.getMessage());

 return false;

 }

 }

 /**

 Runs a query against the demonstration table and the results are displayed to

 standard out.

 **/

 public void runQuery() {

 // Wrap all the functionality in a try/catch block so an attempts is

 // made to handle any errors that might happen within this

 // method.

 try {

 // Create a Statement object.

 Statement s = connection.createStatement();

 // Use the statement object to run an SQL query. Queries return

 // ResultSet objects that are used to look at the data the query

 // provides.

38 IBM Systems - iSeries: Programming IBM Developer Kit for Java

ResultSet rs = s.executeQuery("select * from qgpl.basicjdbc");

 // Display the top of our ’table’ and initialize the counter for the

 // number of rows returned.

 System.out.println("--------------------");

 int i = 0;

 // The ResultSet next method is used to process the rows of a

 // ResultSet. The next method must be called once before the

 // first data is available for viewing. As long as next returns

 // true, there is another row of data that can be used.

 while (rs.next()) {

 // Obtain both columns in the table for each row and write a row to

 // our on-screen table with the data. Then, increment the count

 // of rows that have been processed.

 System.out.println("| " + rs.getInt(1) + " | " + rs.getString(2) + "|");

 i++;

 }

 // Place a border at the bottom on the table and display the number of rows

 // as output.

 System.out.println("--------------------");

 System.out.println("There were " + i + " rows returned.");

 System.out.println("Output is complete.");

 } catch (SQLException e) {

 // Display more information about any SQL exceptions that are

 // generated as output.

 System.out.println("SQLException exception: ");

 System.out.println("Message:....." + e.getMessage());

 System.out.println("SQLState:...." + e.getSQLState());

 System.out.println("Vendor Code:." + e.getErrorCode());

 e.printStackTrace();

 }

 }

 /**

 The following method ensures that any JDBC resources that are still

 allocated are freed.

 **/

 public void cleanup() {

 try {

 if (connection != null)

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

}

Use JNDI for the examples:

DataSources work hand-in-hand with the Java Naming and Directory Interface (JNDI). JNDI is a Java

abstraction layer for directory services just as Java Database Connectivity (JDBC) is an abstraction layer

for databases.

 JNDI is used most often with the Lightweight Directory Access Protocol (LDAP), but it may also be used

with the CORBA Object Services (COS), the Java Remote Method Invocation (RMI) registry, or the

underlying file system. This varied use is accomplished by means of the various directory service

providers that turn common JNDI requests into specific directory service requests. Java 2 SDK, v 1.3

includes three service providers: the LDAP service provider, the COS naming service provider, and the

RMI registry service provider.

IBM Developer Kit for Java 39

Note: Keep in mind that using RMI can be a complex undertaking. Before you choose RMI as a solution,

be sure that you understand the ramifications of doing so. A good place to begin assessing RMI is

Java Remote Method Invocation (RMI).

The DataSource samples were designed using the JNDI file system service provider. If you want to run

the examples provided, there must be a JNDI service provider in place.

Follow these directions to set up the environment for the file system service provider:

1. Download the file system JNDI support from Sun Microsystems JNDI site.

2. Transfer (using FTP or another mechanism) fscontext.jar and providerutil.jar to your system and put

them in /QIBM/UserData/Java400/ext. This is the extensions directory and the JAR files that you

place here are found automatically when you run your application (that is, you do not need them in

your classpath).

Once you have support for a service provider for JNDI, you must set up the context information for your

applications. This can be accomplished by putting the required information in a SystemDefault.properties

file. There are several places on the system where you can specify default properties, but the best way is

to create a text file called SystemDefault.properties in your home directory (that is, at /home/).

To create a file, use the following lines or add them to your existing file:

Needed env settings for JNDI.

java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory

java.naming.provider.url=file:/DataSources/jdbc

These lines specify that the file system service provider handles JNDI requests and that

/DataSources/jdbc is the root for tasks that use JNDI. You can change this location, but the directory that

you specify must exist. The location that you specify is where the example DataSources are bound and

deployed.

Connections

The Connection object represents a connection to a data source in Java Database Connectivity (JDBC). It is

through Connection objects that Statement objects are created for processing SQL statements against the

database. An application program can have multiple connections at one time. These Connection objects

can all connect to the same database or connect to different databases.

Obtaining a connection in JDBC can be accomplished in two ways:

v Through the DriverManager class.

v By using DataSources.

Using DataSources to obtain a connection is preferred because it enhances application portability and

maintainability. It also allows an application to transparently use connection and statement pooling, and

distributed transactions.

For details on obtaining connections, see the following sections:

DriverManager The DriverManager is a static class that manages the set of available JDBC drivers

for an application to use.

Connection properties The table lists valid JDBC driver connection properties, their values, and

their descriptions.

Use DataSources with UDBDataSource You can deploy a DataSource with the UDBDataSource

class by setting it up to have specific properties and then binding it into some directory service

through the use of the Java Naming and Directory Interface (JNDI).

40 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/guide/rmi/index.html
http://java.sun.com/products/jndi

DataSource properties The table lists valid DataSource properties, their values, and their

descriptions.

Other DataSource implementations There are other implementations of the DataSource interface

provided with the native JDBC driver. They exist only to serve as a bridge until the UDBDataSource

and its related functions are adopted.

 Once a connection is obtained, it can be used to accomplish the following JDBC tasks:

v Create various types of Statement objects for interacting with the database.

v Control transactions against the database.

v Retrieve metadata about the database.

DriverManager:

DriverManager is a static class in the Java 2 Software Development Kit (J2SDK). DriverManager manages

the set of Java Database Connectivity (JDBC) drivers that are available for an application to use.

 Applications can use multiple JDBC drivers concurrently if necessary. Each application specifies a JDBC

driver by using a Uniform Resource Locator (URL). By passing a URL for a specific JDBC driver to the

DriverManager, the application informs the DriverManager about which type of JDBC connection should

be returned to the application.

Before this can be done, the DriverManager must be made aware of the available JDBC drivers so it can

hand out connections. By making a call to the Class.forName method, it loads a class into the running

Java virtual machine (JVM) based on its string name that is passed into the method. The following is an

example of the class.forName method being used to load the native JDBC driver:

Example: Load the native JDBC driver

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Load the native JDBC driver into the DriverManager to make it

// available for getConnection requests.

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 JDBC drivers are designed to tell the DriverManager about themselves automatically when their driver

implementation class loads. Once the line of code previously mentioned has been processed, the native

JDBC driver is available for the DriverManager with which to work. The following line of code requests a

Connection object using the native JDBC URL:

Example: Request a Connection object

Note: Read the Code example disclaimer for important legal information.

// Get a connection that uses the native JDBC driver.

Connection c = DriverManager.getConnection("jdbc:db2:*local");

 The simplest form of JDBC URL is a list of three values that are separated by colons. The first value in

the list represents the protocol which is always jdbc for JDBC URLs. The second value is the subprotocol

and db2 or db2iSeries is used to specifiy the native JDBC driver. The third value is the system name to

establish the connection to a specific system. There are two special values that can be used to connect to

the local database. They are *LOCAL and localhost (both are case insensitive). A specific system name can

also be provided as follows:

Connection c =

 DriverManager.getConnection("jdbc:db2:rchasmop");

IBM Developer Kit for Java 41

This creates a connection to the rchasmop system. If the system to which you are trying to connect is a

remote system (for example, through the Distributed Relational Database Architecture), the system name

from the relational database directory must be used.

Note: When not specified, the user ID and password currently used to sign in are also used to establish

the connection to the database.

Note: The IBM DB2® JDBC Universal driver also uses the db2 subprotocol. To assure that the native

JDBC driver will handle the URL, applications need to use the jdbc:db2iSeries:xxxx URL instead of

the jdbc:db2:xxxx URL. If the application does not want the native driver to accept URLS with the

db2 subprotocol, then the application should load the class com.ibm.db2.jdbc.app.DB2iSeriesDriver,

instead of com.ibm.db2.jdbc.app.DB2Driver. When this class is loaded, the native driver no longer

handles URLs containing the db2 subprotocol.

Properties

The DriverManager.getConnection method takes a single string URL indicated previously and is only one

of the methods on DriverManager to obtain a Connection object. There is also another version of the

DriverManager.getConnection method that takes a user ID and password. The following is an example of

this version:

Example: DriverManager.getConnection method taking a user ID and password

Note: Read the Code example disclaimer for important legal information.

// Get a connection that uses the native JDBC driver.

Connection c = DriverManager.getConnection("jdbc:db2:*local", "cujo", "newtiger");

The line of code attempts to connect to the local database as user cujo with password newtiger no matter

who is running the application. There is also a version of the DriverManager.getConnection method that

takes a java.util.Properties object to allow further customization. The following is an example:

Example: DriverManager.getConnection method taking a java.util.Properties object

// Get a connection that uses the native JDBC driver.

Properties prop = new java.util.Properties();

prop.put("user", "cujo");

prop.put("password","newtiger");

Connection c = DriverManager.getConnection("jdbc:db2:*local", prop);

The code is functionally equivalent to the version previously mentioned that passed the user ID and

password as parameters.

Refer to Connection properties for a complete list of connection properties for the native JDBC driver.

URL properties

Another way to specify properties is to place them in a list on the URL object itself. Each property in the

list is separated by a semi-colon and the list must be of the form property name=property value. This is

just a shortcut and does not significantly change the way processing is performed as the following

example shows:

Example: Specify URL properties

// Get a connection that uses the native JDBC driver.

Connection c = DriverManager.getConnection("jdbc:db2:*local;user=cujo;password=newtiger");

42 IBM Systems - iSeries: Programming IBM Developer Kit for Java

The code is again functionally equivalent to the examples mentioned previously.

If a property value is specified in both a properties object and on the URL object, the URL version takes

precedence over the version in the properties object. The following is an example:

Example: URL properties

Note: Read the Code example disclaimer for important legal information.

// Get a connection that uses the native JDBC driver.

Properties prop = new java.util.Properties();

prop.put("user", "someone");

prop.put("password","something");

Connection c = DriverManager.getConnection("jdbc:db2:*local;user=cujo;password=newtiger",

prop);

The example uses the user ID and password from the URL string instead of the version in the Properties

object. This ends up being functionally equivalent to the code previously mentioned.

See the following examples for more information:

v Use native JDBC and IBM Toolbox for Java JDBC concurrently

v Access property

v Invalid user ID and password

Example: Use native JDBC and IBM Toolbox for Java JDBC concurrently:

This is an example of how to use the native JDBC connection and the IBM Toolbox for Java JDBC

connection in a program.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// GetConnections example.

//

// This program demonstrates being able to use both JDBC drivers at

// once in a program. Two Connection objects are created in this

// program. One is a native JDBC connection and one is a IBM Toolbox for Java

// JDBC connection.

//

// This technique is convenient because it allows you to use different

// JDBC drivers for different tasks concurrently. For example, the

// IBM Toolbox for Java JDBC driver is ideal for connecting to remote iSeries servers

// and the native JDBC driver is faster for local connections.

// You can use the strengths of each driver concurrently in your

// application by writing code similar to this example.

//

//

//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

IBM Developer Kit for Java 43

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

import java.sql.*;

import java.util.*;

public class GetConnections {

 public static void main(java.lang.String[] args)

 {

 // Verify input.

 if (args.length != 2) {

 System.out.println("Usage (CL command line): java GetConnections PARM(<user> <password>)");

 System.out.println(" where <user> is a valid iSeries user ID");

 System.out.println(" and <password> is the password for that user ID");

 System.exit(0);

 }

 // Register both drivers.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 Class.forName("com.ibm.as400.access.AS400JDBCDriver");

 } catch (ClassNotFoundException cnf) {

 System.out.println("ERROR: One of the JDBC drivers did not load.");

 System.exit(0);

 }

 try {

 // Obtain a connection with each driver.

 Connection conn1 = DriverManager.getConnection("jdbc:db2://localhost", args[0], args[1]);

 Connection conn2 = DriverManager.getConnection("jdbc:as400://localhost", args[0], args[1]);

 // Verify that they are different.

 if (conn1 instanceof com.ibm.db2.jdbc.app.DB2Connection)

 System.out.println("conn1 is running under the native JDBC driver.");

 else

 System.out.println("There is something wrong with conn1.");

 if (conn2 instanceof com.ibm.as400.access.AS400JDBCConnection)

 System.out.println("conn2 is running under the IBM Toolbox for Java JDBC driver.");

 else

 System.out.println("There is something wrong with conn2.");

 conn1.close();

 conn2.close();

 } catch (SQLException e) {

 System.out.println("ERROR: " + e.getMessage());

 }

 }

}

 Collected links

 Code example disclaimer

Example: Access property:

This is an example of how to use the Access property.

44 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Note: This program assumes directory cujosql exists.

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

public class AccessPropertyTest {

 public String url = "jdbc:db2:*local";

 public Connection connection = null;

 public static void main(java.lang.String[] args)

 throws Exception

 {

 AccessPropertyTest test = new AccessPropertyTest();

 test.setup();

 test.run();

 test.cleanup();

 }

/**

Set up the DataSource used in the testing.

**/

 public void setup()

 throws Exception

 {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection(url);

 Statement s = connection.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.TEMP");

 } catch (SQLException e) { // Ignore it - it doesn’t exist

 }

 try {

 String sql = "CREATE PROCEDURE CUJOSQL.TEMP "

 + " LANGUAGE SQL SPECIFIC CUJOSQL.TEMP "

 + " MYPROC: BEGIN"

 + " RETURN 11;"

 + " END MYPROC";

 s.executeUpdate(sql);

 } catch (SQLException e) {

 // Ignore it - it exists.

 }

 s.executeUpdate("create table cujosql.temp (col1 char(10))");

 s.executeUpdate("insert into cujosql.temp values (’compare’)");

 s.close();

 }

 public void resetConnection(String property)

 throws SQLException

 {

 if (connection != null)

 connection.close();

 connection = DriverManager.getConnection(url + ";access=" + property);

 }

 public boolean canQuery() {

 Statement s = null;

IBM Developer Kit for Java 45

try {

 s = connection.createStatement();

 ResultSet rs = s.executeQuery("SELECT * FROM cujosql.temp");

 if (rs == null)

 return false;

 rs.next();

 if (rs.getString(1).equals("compare "))

 return true;

 return false;

 } catch (SQLException e) {

 // System.out.println("Exception: SQLState(" +

 // e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");

 return false;

 } finally {

 if (s != null) {

 try {

 s.close();

 } catch (Exception e) {

 // Ignore it.

 }

 }

 }

 }

 public boolean canUpdate() {

 Statement s = null;

 try {

 s = connection.createStatement();

 int count = s.executeUpdate("INSERT INTO CUJOSQL.TEMP VALUES(’x’)");

 if (count != 1)

 return false;

 return true;

 } catch (SQLException e) {

 //System.out.println("Exception: SQLState(" +

 // e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");

 return false;

 } finally {

 if (s != null) {

 try {

 s.close();

 } catch (Exception e) {

 // Ignore it.

 }

 }

 }

 }

 public boolean canCall() {

 CallableStatement s = null;

 try {

 s = connection.prepareCall("? = CALL CUJOSQL.TEMP()");

 s.registerOutParameter(1, Types.INTEGER);

 s.execute();

 if (s.getInt(1) != 11)

 return false;

 return true;

 } catch (SQLException e) {

46 IBM Systems - iSeries: Programming IBM Developer Kit for Java

//System.out.println("Exception: SQLState(" +

 // e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");

 return false;

 } finally {

 if (s != null) {

 try {

 s.close();

 } catch (Exception e) {

 // Ignore it.

 }

 }

 }

 }

 public void run()

 throws SQLException

 {

 System.out.println("Set the connection access property to read only");

 resetConnection("read only");

 System.out.println("Can run queries -->" + canQuery());

 System.out.println("Can run updates -->" + canUpdate());

 System.out.println("Can run sp calls -->" + canCall());

 System.out.println("Set the connection access property to read call");

 resetConnection("read call");

 System.out.println("Can run queries -->" + canQuery());

 System.out.println("Can run updates -->" + canUpdate());

 System.out.println("Can run sp calls -->" + canCall());

 System.out.println("Set the connection access property to all");

 resetConnection("all");

 System.out.println("Can run queries -->" + canQuery());

 System.out.println("Can run updates -->" + canUpdate());

 System.out.println("Can run sp calls -->" + canCall());

 }

 public void cleanup() {

 try {

 connection.close();

 } catch (Exception e) {

 // Ignore it.

 }

 }

}

Example: Invalid user ID and password:

This is an example of how to use the Connection property in SQL naming mode.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// InvalidConnect example.

//

// This program uses the Connection property in SQL naming mode.

//

//

//

IBM Developer Kit for Java 47

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

import java.sql.*;

import java.util.*;

public class InvalidConnect {

 public static void main(java.lang.String[] args)

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (ClassNotFoundException cnf) {

 System.out.println("ERROR: JDBC driver did not load.");

 System.exit(0);

 }

 // Attempt to obtain a connection without specifying any user or

 // password. The attempt works and the connection uses the

 // same user profile under which the job is running.

 try {

 Connection c1 = DriverManager.getConnection("jdbc:db2:*local");

 c1.close();

 } catch (SQLException e) {

 System.out.println("This test should not get into this exception path.");

 e.printStackTrace();

 System.exit(1);

 }

 try {

 Connection c2 = DriverManager.getConnection("jdbc:db2:*local",

 "notvalid", "notvalid");

 } catch (SQLException e) {

 System.out.println("This is an expected error.");

 System.out.println("Message is " + e.getMessage());

 System.out.println("SQLSTATE is " + e.getSQLState());

 }

 }

}

Connection properties:

This table contains valid JDBC driver connection properties, their values, and their descriptions.

48 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Property Values Meaning

access all, read call, read only This value can be used to restrict the

type of operations that can be done

with a specific connection. The

default value is all and basically

means that the connection has full

access to the JDBC API. The read call

value allows the connection to do

only queries and call stored

procedures. An attempt to update the

database through an SQL statement is

stopped. The read only value can be

used to restrict a connection to only

queries. Stored procedure calls and

update statements are stopped.

auto commit true, false This value is used to set the auto

commit setting of the connection. The

default value is true unless the

transaction isolation property has

been set to a value other than none.

In that case, the default value is false.

batch style 2.0, 2.1 The JDBC 2.1 specification defines a

second method for how exceptions in

a batch update can be handled. The

driver can comply with either of

these. The default is to work as

defined in the JDBC 2.0 specification.

block size 0, 8, 16, 32, 64, 128, 256, 512 This is the number of rows that are

fetched at a time for a result set. For

typical forward-only processing of a

result set, a block of this size is

obtained. Then the database is not

accessed because each row is

processed by your application. The

database requests another block of

data only when the end of the block

is reached.

This value is only used if the

blocking enabled property is set to

true.

Setting the block size property to 0

has the same effect as setting the

blocking enabled property to false.

The default is to use blocking with a

block size of 32. This is a fairly

arbitrary decision and the default

could change in the future.

Blocking is not used on scrollable

result sets.

IBM Developer Kit for Java 49

Property Values Meaning

blocking enabled true, false This value is used to determine

whether or not the connection uses

blocking on result set row retrieval.

Blocking can significantly improve

the performance of processing result

sets.

By default, this property is set to

true.

cursor hold true, false This value specifies whether or not

result sets remain open when a

transaction is committed. A value of

true means that an application is able

to access its open result sets after

commit is called. A value of false

means that commit closes any open

cursors under the connection.

By default, this property is set to

true.

This value property serves as a

default value for all result sets made

for the connection. With cursor

holdability support added in JDBC

3.0, this default is simply replaced if

an application specifies a different

holdability later.

If you are migrating to JDBC 3.0 from

an earlier version, be aware that

cursor holdability support was not

added until JDBC 3.0. In earlier

versions, the default value of ″true″

was sent at connect time, but it was

not yet recognized by the JVM.

Therefore, the cursor hold property

will not impact database functionality

until JDBC 3.0.

data truncation true, false This value specifies whether

truncation of character data should

cause warnings and exceptions to be

generated (true) or if the data should

just be silently truncated (false). If the

default is true, data truncation of

character fields are honored.

date format julian, mdy, dmy, ymd, usa, iso, eur,

jis

This property allows you to change

how dates are formatted.

date separator /(slash), -(dash), .(period), ,(comma),

b

This property allows you to change

what the date separator is. This is

only valid in combination with some

of the dateFormat values (according

to system rules).

decimal separator .(period),,(comma) This property allows you to change

what the decimal separator is.

50 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Property Values Meaning

do escape processing true, false This property sets a flag for whether

or not statements under the

connection must do escape

processing. Using escape processing

is a way to code your SQL statements

so that they are generic and similar

for all platforms, but then the

database reads the escape clauses and

substitutes the proper system specific

version for the user.

This is good, except that it forces

extra work on the system. In the case

where you know you are only using

SQL statements that already contain

valid iSeries SQL syntax, it is

recommended that this value be set

to false to increase performance.

The default value for this property is

true, as it must be compliant with the

JDBC specification (that is, escape

processing is active by default).

This value is added due to a

shortcoming of the JDBC

specification. You can only set escape

processing to off in the Statement

class. That works well if you are

dealing with simple statements. You

create your statement, turn off escape

processing, and start processing

statements. However, in the case of

prepared statements and callable

statements, this scheme does not

work. You supply the SQL statement

at the time that the prepared or

callable statement is constructed and

it does not change after that. So the

statement is prepared up front and

changing the escape processing after

that is meaningless. Having this

connection property allows a way to

get around the extra overhead.

errors basic, full This property allows the full system

second-level error text to be returned

in SQLException object messages.

The default is basic which returns

only the standard message text.

IBM Developer Kit for Java 51

Property Values Meaning

libraries A space-separated list of libraries. (A

list of libraries can also be separated

by colons or commas.)

This property allows a list of libraries

to be placed into the server job’s

library list or a specific default

library to be set.

The naming property affects how this

property works. In the default case,

where naming is set to sql, JDBC

works like ODBC. The library list has

no effect on how the connection

processes. There is a default library

for all unqualified tables. By default,

that library has the same name as the

user profile that is connected. If the

libraries property is specified, the

first library in the list becomes the

default library. If a default library is

specified on the connection URL (as

in jdbc:db2:*local/mylibrary), that

overrides any value in this property.

In the case where naming is set

system, each of the libraries specified

for this property is added to the user

portion of the library list and the

library list is searched to resolve

unqualified table references.

lob threshold Any value under 500000 This property tells the driver to place

the actual values into the result set

storage instead of locators for lob

columns if the lob column is smaller

than the threshold size. This property

acts against the column size, not the

lob data size itself. For example, if

the lob column is defined to hold up

to 1 MB for each lob, but all the

column values are under 500 KB,

locators are still used.

Note that the size limit is set as it is

to allow blocks of data to be fetched

without danger of not always

growing data blocks larger than the

16 MB maximum allocation size.

With large result sets, it is still easy

to exceed this limit, which causes

fetches to fail. Care must be taken in

how the block size property and this

property interact with the size of a

data block.

The default is 0. Locators are always

used for lob data.

maximum precision 31, 63 This value specifies the maximum

precision (length) that is returned for

result data types. The default value is

31.

52 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Property Values Meaning

maximum scale 0-63 This value specifies the maximum

scale (number of decimal positions to

the right of the decimal point) that is

returned for result data types. The

value can range from 0 to the

maximum precision. The default

value is 31.

minimum divide scale 0-9 This value specifies the minimum

divide scale (number of decimal

positions to the right of the decimal

point) that is returned for both

intermediary and result data types.

The value can range from 0 to 9, not

to exceed the maximum scale. If 0 is

specified, minimum divide scale is

not used. The default value is 0.

naming sql, system This property allows you to use

either the traditional iSeries naming

syntax or the standard SQL naming

syntax. System naming means that

you use a /(slash) character to

separate collection and table values,

and SQL naming means that you use

a .(period) character to separate the

values.

The setting of this value has

ramifications for what the default

library is also. See the libraries

property above for further

information on this.

The default is to use SQL naming.

password anything This property allows for a password

to be specified for the connection.

This property does not work

correctly without also specifying the

user property. These properties allow

for connections to be made to the

database as a user other than the one

that is running the iSeries job.

Specifying the user and password

properties have the same effect as

using the connection method with

the signature getConnection(String

url, String userId, String password).

IBM Developer Kit for Java 53

Property Values Meaning

prefetch true, false This property specifies whether or

not the driver fetches the first data

for a result set immediately after

processing or wait until the data is

requested. If the default is true, data

is prefetched.

For applications using the Native

JDBC driver, this is rarely an issue.

The property exists primarily for

internal use with Java stored

procedures and user-defined

functions where it is important that

the database engine does not fetch

any data from result sets on your

behalf before you request it.

reuse objects true, false This property specifies whether or

not the driver attempts to reuse some

types of objects after you close them.

This is a performance enhancement.

The default is true.

server trace A string representation of an integer This property enables tracing of the

JDBC server job. If server tracing is

enabled, tracing starts when the

client connects to the server, and

ends when the connection is

disconnected.

Trace data is collected in spooled files

on the server. Multiple levels of

server tracing can be turned on in

combination by adding the constants

and passing that sum on the set

method.

Note: This property is typically used

by support personnel and its values

are not discussed further.

time format hms, usa, iso, eur, jis This property allows you to change

how time values are formatted.

time separator :(colon), .(period), ,(comma), b This property allows you to change

what the time separator is. This is

only valid in combination with some

of the timeFormat values (according

to system rules).

trace true, false This property allows for turning on

tracing of the connection. It can be

used as a simple debugging aide.

The default value is false, which does

not use tracing.

54 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Property Values Meaning

transaction isolation none, read committed, read

uncommitted, repeatable read,

serializable

This property allows you to set the

transaction isolation level for the

connection. There is no difference

between setting this property to a

specific level and specifying a level

on the setTransactionIsolation method

in the Connection interface.

The default value for this property is

none, as JDBC defaults to

auto-commit mode.

translate binary true, false This property can be used to force

the JDBC driver to treat binary and

varbinary data values as if they were

char and varchar data values.

The default for this property is false,

where binary data is not treated the

same as character data.

translate hex binary, character This value is used to select the data

type used by hex constants in SQL

expression. The binary setting

indicates that hex contants will use

the BINARY data type. The character

setting indicates that hex contants

will use the CHARACTER FOR BIT

DATA data type. The default setting

is character.

use block insert true, false This property allows the native JDBC

driver to go into a block insert mode

for inserting blocks of data into the

database. This is an optimized

version of the batch update. This

optimized mode can only be used in

applications that ensure that they do

not break certain system constraints

or data insert failures and potentially

corrupt data.

Applications that turn on this

property only connect to the local

system when attempting to perform

batched updates. They do use DRDA

to establish remote connections

because blocked insert cannot be

managed over DRDA.

Applications must also ensure that

PreparedStatements with an SQL

insert statement and a values clause

make all the insert values parameters.

No constants are permitted in the

values list. This is a requirement of

the blocked insert engine of the

system.

The default is false.

IBM Developer Kit for Java 55

Property Values Meaning

user anything This property allows for a user ID to

be specified for the connection. This

property does not work correctly

without also specifying the password

property. These properties allow for

connections to be made to the

database as a user other than the one

that is running the iSeries job.

Specifying the user and password

properties has the same effect as

using the connection method with

the signature getConnection(String

url, String userId, String password).

Example: Create a UDBDataSource and bind it with JNDI:

This is an example of how to create a UDBDataSource and get it bound with JNDI.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Import the required packages. At deployment time,

// the JDBC driver-specific class that implements

// DataSource must be imported.

import java.sql.*;

import javax.naming.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

public class UDBDataSourceBind

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Create a new UDBDataSource object and give it

 // a description.

 UDBDataSource ds = new UDBDataSource();

 ds.setDescription("A simple UDBDataSource");

 // Retrieve a JNDI context. The context serves

 // as the root for where objects are bound or

 // found in JNDI.

 Context ctx = new InitialContext();

 // Bind the newly created UDBDataSource object

 // to the JNDI directory service, giving it a name

 // that can be used to look up this object again

 // at a later time.

 ctx.rebind("SimpleDS", ds);

 }

}

Example: Create a UDBDataSourceBind and set DataSource properties:

This is an example of how to create a UDBDataSource, and set the user ID and password as DataSource

properties.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

56 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Import the required packages. At deployment time,

// the JDBC driver-specific class that implements

// DataSource must be imported.

import java.sql.*;

import javax.naming.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

public class UDBDataSourceBind2

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Create a new UDBDataSource object and give it

 // a description.

 UDBDataSource ds = new UDBDataSource();

 ds.setDescription("A simple UDBDataSource " +

 "with cujo as the default " +

 "profile to connect with.");

 // Provide a user ID and password to be used for

 // connection requests.

 ds.setUser("cujo");

 ds.setPassword("newtiger");

 // Retrieve a JNDI context. The context serves

 // as the root for where objects are bound or

 // found in JNDI.

 Context ctx = new InitialContext();

 // Bind the newly created UDBDataSource object

 // to the JNDI directory service, giving it a name

 // that can be used to look up this object again

 // at a later time.

 ctx.rebind("SimpleDS2", ds);

 }

}

Example: Obtain an initial context before binding UDBDataSource:

The following example obtains an initial context before binding the UDBDataSource. The lookup method

is then used on that context to return an object of type DataSource for the application to use.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Import the required packages. There is no

// driver-specific code needed in runtime

// applications.

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

public class UDBDataSourceUse

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Retrieve a JNDI context. The context serves

 // as the root for where objects are bound or

 // found in JNDI.

 Context ctx = new InitialContext();

 // Retrieve the bound UDBDataSource object using the

 // name with which it was previously bound. At runtime,

 // only the DataSource interface is used, so there

 // is no need to convert the object to the UDBDataSource

IBM Developer Kit for Java 57

// implementation class. (There is no need to know what

 // the implementation class is. The logical JNDI name is

 // only required).

 DataSource ds = (DataSource) ctx.lookup("SimpleDS");

 // Once the DataSource is obtained, it can be used to establish

 // a connection. This Connection object is the same type

 // of object that is returned if the DriverManager approach

 // to establishing connection is used. Thus, so everything from

 // this point forward is exactly like any other JDBC

 // application.

 Connection connection = ds.getConnection();

 // The connection can be used to create Statement objects and

 // update the database or process queries as follows.

 Statement statement = connection.createStatement();

 ResultSet rs = statement.executeQuery("select * from qsys2.sysprocs");

 while (rs.next()) {

 System.out.println(rs.getString(1) + "." + rs.getString(2));

 }

 // The connection is closed before the application ends.

 connection.close();

 }

}

Example: Create a UDBDataSource, and obtain a user ID and password:

This is an example of how to create a UDBDataSource, and use the getConnection method to obtain a

user ID and password at runtime.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/// Import the required packages. There is

// no driver-specific code needed in runtime

// applications.

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

public class UDBDataSourceUse2

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Retrieve a JNDI context. The context serves

 // as the root for where objects are bound or

 // found in JNDI.

 Context ctx = new InitialContext();

 // Retrieve the bound UDBDataSource object using the

 // name with which it was previously bound. At runtime,

 // only the DataSource interface is used, so there

 // is no need to convert the object to the UDBDataSource

 // implementation class. (There is no need to know

 // what the implementation class is. The logical JNDI name

 // is only required).

 DataSource ds = (DataSource) ctx.lookup("SimpleDS");

 // Once the DataSource is obtained, it can be used to establish

 // a connection. The user profile cujo and password newtiger

 // used to create the connection instead of any default user

 // ID and password for the DataSource.

58 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Connection connection = ds.getConnection("cujo", "newtiger");

 // The connection can be used to create Statement objects and

 // update the database or process queries as follows.

 Statement statement = connection.createStatement();

 ResultSet rs = statement.executeQuery("select * from qsys2.sysprocs");

 while (rs.next()) {

 System.out.println(rs.getString(1) + "." + rs.getString(2));

 }

 // The connection is closed before the application ends.

 connection.close();

 }

}

Use DataSources with UDBDataSource:

DataSource interfaces were designed to allow additional flexibility in using Java Database Connectivity

(JDBC) drivers.

 The use of DataSources can be split into two phases:

v Deployment

Deployment is a setup phase that occurs before a JDBC application actually runs. Deployment usually

involves setting up a DataSource to have specific properties and then binding it into a directory service

through the use of the Java Naming and Directory Interface (JNDI). The directory service is most

commonly the Lightweight Directory Access Protocol (LDAP), but could be a number of others such as

Common Object Request Broker Architecture (CORBA) Object Services, Java Remote Method

Invocation (RMI), or the underlying file system.

v Use

By decoupling the deployment from the runtime use of the DataSource, the DataSource setup can be

reused by many applications. By changing some aspect of the deployment, all the applications that use

that DataSource automatically pick up the changes.

Note: Keep in mind that using RMI can be a complex undertaking. Before you choose RMI as a solution,

be sure that you understand the ramifications of doing so.

An advantage of DataSources is that they allow JDBC drivers to do work on behalf of the application

without having an impact on the application development process directly. For more information, see the

following:

v Connection pooling

v Statement pooling

v Distributed transactions

UDBDataSourceBind

The UDBDataSourceBind program is an example of creating a UDBDataSource and getting it bound with

JNDI. This program accomplishes all the basic tasks requested. Namely, it instantiates a UDBDataSource

object, sets properties on this object, retrieves a JNDI context, and binds the object to a name within the

JNDI context.

The deployment time code is vendor-specific. The application must import the specific DataSource

implementation that it wants to work with. In the import list, the package-qualified UDBDataSource class

is imported. The most unfamiliar part of this application is the work done with JNDI (for example, the

retrieval of the Context object and the call to bind). For additional information, see JNDI by Sun

Microsystems, Inc.

IBM Developer Kit for Java 59

http://java.sun.com/products/jndi

Once this program has been run and has successfully completed, there is a new entry in a JNDI directory

service called SimpleDS. This entry is at the location specified by the JNDI context. The DataSource

implementation is now deployed. An application program can make use of this DataSource to retrieve

database connections and JDBC-related work.

UDBDataSourceUse

The UDBDataSourceUse program is an example of a JDBC application that uses the previously deployed

application.

The JDBC application obtains an initial context as it did before binding the UDBDataSource in the

previous example. The lookup method is then used on that context to return an object of type DataSource

for the application to use.

Note: The runtime application is only interested in the methods of the DataSource interface, so there is

no need for it to be aware of the implementation class. This makes applications portable.

Suppose that UDBDataSourceUse is a complex application that runs a large operation within your

organization. You have a dozen or more similar large applications within your organization. You have to

change the name of one of the systems in your network. By running a deployment tool and changing a

single UDBDataSource property, you would be able to get this new behavior in all your applications

without changing the code for them. One of the benefits of DataSources is that they allow you to

consolidate system setup information. Another major benefit is that they allow drivers to implement

functionality invisible to the application such as connection pooling, statement pooling and support for

distributed transactions.

After analyzing UDBDataSourceBind and UDBDataSourceUse closely, you may have wondered how the

DataSource object knew what to do. There is no code to specify a system, a user ID, or a password in

either of these programs. The UDBDataSource class has defaults values for all properties; by default, it

connects to the local iSeries server with the user profile and password of the running application. If you

wanted to ensure that the connection was made with the user profile cujo instead, you could have

accomplished this in two ways:

v Set the user ID and password as DataSource properties. See Example: Create a UDBDataSourceBind

and set DataSource properties on how to use this technique.

v Use the DataSource getConnection method that takes a user ID and password at runtime. See Example:

Create a UDBDataSource, and obtain a user ID and password on how to use this technique.

There are a number of properties that can be specified for the UDBDataSource as there are properties that

can be specified for connections created with the DriverManager. Refer to DataSource properties for a list

of supported properties for the native JDBC driver.

While these lists are similar, it is not certain to be similar in future releases. You are encouraged to start

coding to the DataSource interface.

Note: The native JDBC driver also has two other DataSource implementations, but direct use of them is

not recommended.

v DB2DataSource

v DB2StdDataSource

DataSource properties:

This table contains valid data source properties, their values, and their descriptions.

60 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Set method (data type) Values Description

setAccess(String) ″all″, ″read call″, ″read only″ This property can be used to restrict

the type of operations that can be

done with a specific connection. The

default value is ″all″ and basically

means that the connection has full

access to the Java Database

Connectivity (JDBC) API.

The ″read call″ value allows the

connection to only perform queries

and call stored procedures. An

attempt to update the database

through an SQL statement causes an

SQLException.

The ″read only″ value restricts the

connection to only queries. An

attempt to process a stored procedure

call or update statements causes an

SQLException.

setBatchStyle(String) ″2.0″, ″2.1″ The JDBC 2.1 specification defines a

second method for how exceptions in

a batch update can be handled. The

driver can comply with either of

these. The default is to work as

defined in the JDBC 2.0 specification.

setUseBlocking(boolean) ″true″, ″false″ This property is used to determine

whether or not the connection uses

blocking on result set row retrieval.

Blocking can significantly improve

the performance of processing result

sets.

By default, this property is set to

true.

IBM Developer Kit for Java 61

Set method (data type) Values Description

setBlockSize(int) ″0″, ″8″, ″16″, ″32″, ″64″, ″128″, ″256″,

″512″

This property indicates the number

of rows that are fetched at a time for

a result set. For typical forward only

processing of a result set, a block of

this size is obtained if the database

has that many rows that satisfy the

query. Only when the end of the

block is reached in the JDBC driver’s

internal storage, another request for a

block of data is sent to the database.

This value is only used if the

useBlocking property is set to true.

Refer to setUseBlocking above for

more information.

Setting the block size property to ″0″

has the same effect as calling

setUseBlocking(false).

The default is to use blocking with a

block size of ″32″. This is a fairly

arbitrary decision and the default

could change in future releases.

Blocking is not used on scrollable

result sets.

Using blocking affects the degree of

cursor sensitivity the user application

has. A sensitive cursor sees changes

made by other SQL statements.

However, because of data caching,

changes are only detected when data

needs to be fetched from the

database.

setCursorHold(boolean) ″true″, ″false″ This property specifies whether or

not result sets remain open when a

transaction is committed. A value of

true means that an application is able

to access its open result sets after

commit is called. A value of false

means that commit closes any open

cursors under the connection.

By default, this property is set to

true.

This property serves as a default

value for all result sets made for the

connection. With cursor support

added in JDBC 3.0 (see the ResultSet

characteristics section for details), this

default is simply replaced if an

application specifies different cursor

support later.

62 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Set method (data type) Values Description

setDataTruncation(boolean) ″true″, ″false″ This property specifies the following:

v Whether truncation of character

data should cause warnings and

exceptions to be generated (true)

v If the data should just be silently

truncated (false).

See DataTruncation for additional

details.

setDatabaseName(String) Any name This property specifies the database

to which the DataSource attempts to

connect. The default is *LOCAL. The

database name must either exist in

the relational database directory on

the system that runs the application

or be the special value *LOCAL or

localhost to specify the local system.

setDataSourceName(String) Any name This property allows the passing of a

ConnectionPoolDataSource Java

Naming and Directory Interface

(JNDI) name to support connection

pooling.

setDateFormat(String) ″julian″, ″mdy″, ″dmy″, ″ymd″, ″usa″,

″iso″, ″eur″, ″jis″

This property allows you to change

how dates are formatted.

setDateSeparator(String) ″/″, ″-″, ″.″, ″,″, ″b″ This property allows you to change

what the date separator is. This is

only valid in combination with some

of the dateFormat values (according

to system rules).

setDecimalSeparator(String) ″.″, ″,″ This property allows you to change

what the decimal separator should

be.

setDescription(String) Any name This property allows the setting of

this DataSource object’s text

description.

setDoEscapeProcessing(boolean) ″true″, ″false″ This property specifies whether SQL

statements have escaped processing

done on them.

The default value for this property is

true.

setFullErrors(boolean) ″true″, ″false″ This property allows second-level

error text of the full system to be

returned in SQLException object

messages. The default is false.

setLibraries(String) A space-separated list of libraries This property allows a list of libraries

to be placed into the server job’s

library list. This property is only

used when setSystemNaming(true) is

used.

IBM Developer Kit for Java 63

Set method (data type) Values Description

setLobThreshold(int) Any value under 500000 This property tells the driver to place

the actual values instead of Locator

OBject (LOB) locators if the LOB

column is smaller than the threshold

size.

setLoginTimeout(int) Any value This property is currently ignored

and is planned for future use.

setNetworkProtocol(int) Any value This property is currently ignored

and is planned for future use.

setPassword(String) Any string This property allows for a password

to be specified for the connection.

This property is ignored if a user ID

is not set.

setPortNumber(int) Any value This property is currently ignored

and is planned for future use.

setPrefetch(boolean) ″true″, ″false″ This property specifies whether the

driver fetchs the first data for a result

set immediately after processing or

waits until the data is requested. The

default is true.

setReuseObjects(boolean) ″true″, ″false″ This property specifies whether the

driver attempts to reuse some types

of objects after you close them. This

is a performance enhancement. The

default is true.

setServerName(String) Any name This property is currently ignored

and is planned for future use.

setServerTraceCategories(int) A string representation of an integer This property enables tracing of the

JDBC server job. If server tracing is

enabled, tracing starts when the

client connects to the server, and

ends when the connection is

disconnected.

Trace data is collected in spooled files

on the server. Multiple levels of

server tracing can be turned on in

combination by adding the constants

and passing that sum on the set

method.

Note: This property is typically used

by support personnel and its values

are not discussed further.

setSystemNaming(boolean) ″true″, ″false″ This property allows specifying

whether collections and tables are

separated by a period (SQL naming)

or a slash (system naming). This

property also determines whether a

default library is used (SQL naming)

or the library list is used (system

naming). The default is SQL naming.

setTimeFormat(String) ″hms″, ″usa″, ″iso″, ″eur″, ″jis″ This property allows you to change

how time values are formatted.

64 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Set method (data type) Values Description

setTimeSeparator(String) ″:″, ″.″, ″,″, ″b″ This property allows you to change

what the time separator is. This is

only valid in combination with some

of the timeFormat values (according

to system rules).

setTrace(boolean) ″true″, ″false″ This property can enable a simple

trace. The default value is false.

setTransactionIsolationLevel(String) ″none″, ″read committed″, ″read

uncommitted″, ″repeatable read″,

″serializable″

This property allows the specification

of the transaction isolation level. The

default value for this property is

″none″, as JDBC defaults to

auto-commit mode.

setTranslateBinary(Boolean) ″true″, ″false″ This property can be used to force

the JDBC driver to treat binary and

varbinary data values as if they were

char and varchar data values.

The default for this property is false.

setUseBlockInsert(boolean) ″true″, ″false″ This property allows the native JDBC

driver to go into a block insert mode

for inserting blocks of data into the

database. This is an optimized

version of the batch update. This

optimized mode can only be used in

applications that ensure that they do

not break certain system constraints

or data insert failures and potentially

corrupt data.

Applications that turn on this

property only connect to the local

system when attempting to perform

batched updates. They do not use

DRDA to establish remote

connections because a blocked insert

cannot be managed over DRDA.

Applications must also ensure that

PreparedStatements with an SQL

insert statement and a values clause

make all the insert values parameters.

No constants are permitted in the

values list. This is a requirement of

the blocked insert engine of the

system.

The default is false.

setUser(String) anything This property allows the setting of a

user ID for obtaining connections.

This property requires that you also

set the password property.

Other DataSource implementations:

There are two implementations of the DataSource interface that are included with the native JDBC driver.

These DataSource implementations should be considered deprecated. While you can still use them, they

IBM Developer Kit for Java 65

are not enhanced with future improvements; for example, robust connection and statement pooling are

not added to these implementations. These implementations exist until you adopt the UDBDataSource

interface and its related functions.

 DB2DataSource

The DB2DataSource was an early implementation of the DataSource interface and does not comply with

the complete specification (that is, it predates the specification). DB2DataSource exists today only to allow

WebSphere® users to migrate to current releases and should not be used otherwise.

DB2StdDataSource

The DB2StdDataSource is the revised version of the DB2DataSource implementation that became

specification-compliant once the JDBC optional package specification became final. The new version was

provided to not break code already written on the DB2DataSource version.

If you have written applications that make use of these DataSource implementations, migrating to the

UDBDataSource is a trivial task as all the old properties are supported. It is recommended that you

migrate to UDBDataSource to gain the functionality of the new UDBDataSource classes.

JVM Properties for JDBC

Some settings used by the native JDBC driver cannot be set using a connection property. These settings

must be set for the JVM in which the native JDBC driver is running. These settings are used for all

connections created by the native JDBC driver.

The native driver recognizes the following JVM properties:

 Property Values Meaning

jdbc.db2.job.sort.sequence default value = *HEX Setting this property to true causes

the native JDBC driver to use the Job

Sort Sequence of the user that starts

the job instead of using the default

value of *HEX. Setting it to anything

else or leaving it unset will cause

JDBC to continue to use the default

of *HEX. Take careful note of what

this means. When JDBC connections

pass in different user profiles on

connection requests, the sort

sequence of the user profile that

starts the server is used for all of the

connections. This is an environment

attribute that is set at startup time,

not a dynamic connection attribute.

jdbc.db2.trace 1 or error = Trace error information 2

or info = Trace information and error

information 3 or verbose = Trace

verbose, information, and error

information 4 or all or true = Trace

all possible information

This property turns on tracing for the

JDBC driver. It should be used when

reporting a problem.

66 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Property Values Meaning

jdbc.db2.trace.config stdout = Trace information is sent to

stdout (default value) usrtrc = Trace

information is sent to a user trace.

The CL command Dump User Trace

Buffer (DMPUSRTRC) can be used to

obtain the trace information.

file://<pathtofile> = Trace

information is send to a file. If the

file name contains ″%j″, the ″%j″ will

be replaced by the job name. An

example of <pathtofile> is

/tmp/jdbc.%j.trace.txt.

This property is used to specify

where the output of the trace should

go.

DatabaseMetaData interface for IBM Developer Kit for Java

The DatabaseMetaData interface is implemented by the IBM Developer Kit for Java JDBC driver to

provide information about its underlying data sources. It is used primarily by application servers and

tools to determine how to interact with a given data source. Applications may also use

DatabaseMetaData methods to obtain information about a data source, but this is less typical.

The DatabaseMetaData interface includes over 150 methods that can be categorized according to the

types of information they provide. These are described below. The DatabaseMetaData interface also

contains over 40 fields that are constants used as return values for various DatabaseMetaData methods.

See ″Changes in JDBC 3.0″ below for information about changes made to methods in the

DatabaseMetaData interface.

Create a DatabaseMetaData object

A DatabaseMetaData object is created with the Connection method getMetaData. Once the object is

created, it can be used to dynamically find information about the underlying data source. The following

example creates a DatabaseMetaData object and uses it to determine the maximum number of characters

allowed for a table name:

Example: Create a DatabaseMetaData object

Note: Read the Code example disclaimer for important legal information.

// con is a Connection object

DatabaseMetaData dbmd = con.getMetadata();

int maxLen = dbmd.getMaxTableNameLength();

Retrieve general information

Some DatabaseMetaData methods are used to dynamically find general information about a data source

as well as to obtain details about its implementation. Some of these methods include the following:

v getURL

v getUserName

v getDatabaseProductVersion, getDriverMajorVersion, and getDriverMinorVersion

v getSchemaTerm, getCatalogTerm, and getProcedureTerm

v nullsAreSortedHigh, and nullsAreSortedLow

v usesLocalFiles, and usesLocalFilePerTable

v getSQLKeywords

IBM Developer Kit for Java 67

Determine feature support

A large group of DatabaseMetaData methods can be used to determine whether a given feature or set of

features is supported by the driver or underlying data source. Beyond this, there are methods that

describe what level of support is provided. Some of the methods that describe support for individual

features include the following:

v supportsAlterTableWithDropColumn

v supportsBatchUpdates

v supportsTableCorrelationNames

v supportsPositionedDelete

v supportsFullOuterJoins

v supportsStoredProcedures

v supportsMixedCaseQuotedIdentifiers

Methods to describe a level of feature support include the following:

v supportsANSI92EntryLevelSQL

v supportsCoreSQLGrammar

Data source limits

Another group of methods provide the limits imposed by a given data source. Some of the methods in

this category include the following:

v getMaxRowSize

v getMaxStatementLength

v getMaxTablesInSelect

v getMaxConnections

v getMaxCharLiteralLength

v getMaxColumnsInTable

Methods in this group return the limit value as an integer. A return value of zero means that there is

either no limit or the limit is unknown.

SQL objects and their attributes

A number of DatabaseMetaData methods provide information about the SQL objects that populate a

given data source. These methods can determine the attributes of SQL objects. These methods also return

ResultSet objects in which each row describes a particular object. For example, the getUDTs method

returns a ResultSet object in which there is a row for each user-defined table (UDT) that has been defined

in the data source. Examples of this category include the following:

v getSchemas and getCatalogs

v getTables

v getPrimaryKeys

v getProcedures and getProcedureColumns

v getUDTs

Transaction support

A small group of methods provide information about the transaction semantics supported by the data

source. Examples of this category include the following:

v supportsMultipleTransactions

68 IBM Systems - iSeries: Programming IBM Developer Kit for Java

v getDefaultTransactionIsolation

See Example: DatabaseMetaData interface for IBM Developer Kit for Java for an example of how to use

the DatabaseMetaData interface.

Changes in JDBC 3.0

There are changes to the return values for some of the methods in JDBC 3.0. The following methods have

been updated in JDBC 3.0 to add fields to the ResultSets that they return.

v getTables

v getColumns

v getUDTs

v getSchemas

Note: If an application is being developed using Java Development Kit (JDK) 1.4, you may recognize that

there are a certain number of columns being returned when testing. You write your application

and expect to access all of these columns. However, if the application is being designed to also run

on previous releases of the JDK, the application receives an SQLException when it tries to access

these fields that do not exist in earlier JDK releases. SafeGetUDTs is an example of how an

application can be written to work with several JDK releases.

Example: DatabaseMetaData interface for IBM Developer Kit for Java - Return a list of tables:

This example shows how to return a list of tables.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Connect to iSeries server.

Connection c = DriverManager.getConnection("jdbc:db2:mySystem");

// Get the database meta data from the connection.

DatabaseMetaData dbMeta = c.getMetaData();

// Get a list of tables matching this criteria.

String catalog = "myCatalog";

String schema = "mySchema";

String table = "myTable%"; // % indicates search pattern

String types[] = {"TABLE", "VIEW", "SYSTEM TABLE"}:

ResultSet rs = dbMeta.getTables(catalog, schema, table, types);

// ... iterate through the ResultSet to get the values.

// Close the connection.

c.close():

For more information, see DatabaseMetaData interface for IBM Developer Kit for Java.

Example: Use metadata ResultSets that have more than one column:

This is an example of how to use metadata ResultSets that have more than one column.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// SafeGetUDTs example. This program demonstrates one way to deal with

// metadata ResultSets that have more columns in JDK 1.4 than they

// had in previous releases.

IBM Developer Kit for Java 69

//

// Command syntax:

// java SafeGetUDTs

//

//

//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

import java.sql.*;

public class SafeGetUDTs {

 public static int jdbcLevel;

 // Note: Static block runs before main begins.

 // Therefore, there is access to jdbcLevel in

 // main.

 {

 try {

 Class.forName("java.sql.Blob");

 try {

 Class.forName("java.sql.ParameterMetaData");

 // Found a JDBC 3.0 interface. Must support JDBC 3.0.

 jdbcLevel = 3;

 } catch (ClassNotFoundException ez) {

 // Could not find the JDBC 3.0 ParameterMetaData class.

 // Must be running under a JVM with only JDBC 2.0

 // support.

 jdbcLevel = 2;

 }

 } catch (ClassNotFoundException ex) {

 // Could not find the JDBC 2.0 Blob class. Must be

 // running under a JVM with only JDBC 1.0 support.

 jdbcLevel = 1;

 }

 }

 // Program entry point.

 public static void main(java.lang.String[] args)

 {

 Connection c = null;

 try {

70 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Get the driver registered.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 DatabaseMetaData dmd = c.getMetaData();

 if (jdbcLevel == 1) {

 System.out.println("No support is provided for getUDTs. Just return.");

 System.exit(1);

 }

 ResultSet rs = dmd.getUDTs(null, "CUJOSQL", "SSN%", null);

 while (rs.next()) {

 // Fetch all the columns that have been available since the

 // JDBC 2.0 release.

 System.out.println("TYPE_CAT is " + rs.getString("TYPE_CAT"));

 System.out.println("TYPE_SCHEM is " + rs.getString("TYPE_SCHEM"));

 System.out.println("TYPE_NAME is " + rs.getString("TYPE_NAME"));

 System.out.println("CLASS_NAME is " + rs.getString("CLASS_NAME"));

 System.out.println("DATA_TYPE is " + rs.getString("DATA_TYPE"));

 System.out.println("REMARKS is " + rs.getString("REMARKS"));

 // Fetch all the columns that were added in JDBC 3.0.

 if (jdbcLevel > 2) {

 System.out.println("BASE_TYPE is " + rs.getString("BASE_TYPE"));

 }

 }

 } catch (Exception e) {

 System.out.println("Error: " + e.getMessage());

 } finally {

 if (c != null) {

 try {

 c.close();

 } catch (SQLException e) {

 // Ignoring shutdown exception.

 }

 }

 }

 }

}

Exceptions

The Java language uses exceptions to provide error-handling capabilities for its programs. An exception is

an event that occurs when you run your program that disrupts the normal flow of instructions.

The Java runtime system and many classes from Java packages throw exceptions in some circumstances

by using the throw statement. You can use the same mechanism to throw exceptions in your Java

programs.

SQLException:

The SQLException class and its subtypes provide information about errors and warnings that occur while

a data source is being accessed.

 Unlike most of JDBC, which is defined by interfaces, the exception support is provided in classes. The

base class for exceptions that occur while running JDBC applications is SQLException. Every method of

the JDBC API is declared as being able to throw SQLExceptions. SQLException is an extension of

java.lang.Exception and provides additional information related to failures that happen in a database

context. Specifically, the following information is available from an SQLException:

v Text description

v SQLState

IBM Developer Kit for Java 71

v Error code

v A reference to any other exceptions that also occurred

ExceptionExample is a program that properly handles catching an (expected in this case) SQLException

and dumping all the information that it provides.

Note: JDBC provides a mechanism where exceptions can be chained together. This allows the driver or

the database to report multiple errors on a single request. There are currently no instances where

the native JDBC driver would do this. This information is only provided as reference and not a

clear indication that the driver never does this in the future however.

As noted, SQLException objects are thrown when errors occur. This is correct, but is not the complete

picture. In practice, the native JDBC driver rarely throws actual SQLExceptions. It throws instances of its

own SQLException subclasses. This allows you to determine more information about what has actually

failed as is shown below.

DB2Exception.java

DB2Exception objects are not thrown directly either. This base class is used to hold functionality that is

common to all JDBC exceptions. There are two subclasses of this class that are be the standard exceptions

that JDBC throws. These subclasses are DB2DBException.java and DB2JDBCException.java.

DB2DBExceptions are exceptions that are reported to you that have come directly from the database.

DB2JDBCExceptions are thrown when the JDBC driver finds problems on its own. Splitting the exception

class hierarchy in this manner allows you to handle the two types of exceptions differently.

DB2DBException.java

As stated, DB2DBExceptions are exceptions that come directly from the database. These are encountered

when the JDBC driver make a call to the CLI and gets back an SQLERROR return code. The CLI function

SQLError is called to get the message text, SQLState, and vendor code in these cases. The replacement

text for the SQLMessage is also retrieved and returned to you. The DatabaseException class causes an

error that the database recognizes and reports to the JDBC driver to build the exception object for.

DB2JDBCException.java

DB2JDBCExceptions are generated for error conditions that come from the JDBC driver itself. The

functionality of this exception class is fundamentally different; the JDBC driver itself handles message

language translation of exception and other issues that the operating system and database handle for

exceptions originating within the database. Wherever possible, the JDBC driver adheres to the SQLStates

of the database. The vendor code for exceptions that the JDBC driver throws is always -99999.

DB2DBExceptions that are recognized and returned by the CLI layer often also have the -99999 error

code. The JDBCException class causes an error that the JDBC driver recognizes and builds the exception

for itself. When run during development of the release, the following output was created. Notice that the

top of the stack contains DB2JDBCException. This is an indication that the error is being reported from

the JDBC driver prior to ever making the request to the database.

Example: SQLException:

This is an example of catching an SQLException and dumping all the information that it provides.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class ExceptionExample {

72 IBM Systems - iSeries: Programming IBM Developer Kit for Java

public static Connection connection = null;

 public static void main(java.lang.String[] args) {

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 int count = s.executeUpdate("insert into cujofake.cujofake values(1, 2,3)");

 System.out.println("Did not expect that table to exist.");

 } catch (SQLException e) {

 System.out.println("SQLException exception: ");

 System.out.println("Message:....." + e.getMessage());

 System.out.println("SQLState:...." + e.getSQLState());

 System.out.println("Vendor Code:." + e.getErrorCode());

 System.out.println("---");

 e.printStackTrace();

 } catch (Exception ex) {

 System.out.println("An exception other than an SQLException was thrown: ");

 ex.printStackTrace();

 } finally {

 try {

 if (connection != null) {

 connection.close();

 }

 } catch (SQLException e) {

 System.out.println("Exception caught attempting to shutdown...");

 }

 }

 }

}

SQLWarning:

Methods in some interfaces generate an SQLWarning object if the methods cause a database access

warning.

 Methods in the following interfaces can generate an SQLWarning:

v Connection

v Statement and its subtypes, PreparedStatement and CallableStatement

v ResultSet

When a method generates an SQLWarning object, the caller is not informed that a data access warning

has occurred. The getWarnings method must be called on the appropriate object to retrieve the

SQLWarning object. However, the DataTruncation subclass of SQLWarning may be thrown in some

circumstances. It should be noted that the native JDBC driver opts to ignore some database-generated

warnings for increased efficiency. For example, a warning is generated by the system when you attempt

to retrieve data beyond the end of a ResultSet through the ResultSet.next method. In this case, the next

method is defined to return false instead of true, informing you of the error. It is unnecessary to create an

object to restate this, so the warning is simply ignored.

If multiple data access warnings occur, they are chained to the first one and can be retrieved by calling

the SQLWarning.getNextWarning method. If there are no more warnings in the chain, getNextWarning

returns null.

IBM Developer Kit for Java 73

Subsequent SQLWarning objects continue to be added to the chain until the next statement is processed

or, in the case of a ResultSet object, when the cursor is repositioned. As a result, all SQLWarning objects

in the chain are removed.

Using Connection, Statement, and ResultSet objects can cause SQLWarnings to be generated.

SQLWarnings are informational messages indicating that while a particular operation has completed

successfully, there might be other information of which you should be aware. SQLWarnings are an

extension of the SQLException class, but they are not thrown. They are instead attached to the object that

causes their generation. When an SQLWarning is generated, nothing happens to inform the application

that the warning has been generated. Your application must actively request warning information.

Like SQLExceptions, SQLWarnings can be chained to one another. You can call the clearWarnings method

on a Connection, Statement, or ResultSet object to clear the warnings for that object.

Note: Calling the clearWarnings method does not clear all warnings. It only clears the warnings that are

associated with a particular object.

The JDBC driver clears SQLWarning objects at specific times if you do not clear them manually.

SQLWarning objects are cleared when the following actions are taken:

v For the Connection interface, warnings are cleared on the creation of a new Statement,

PreparedStatement, or CallableStatement object.

v For the Statement interface, warnings are cleared when the next statement is processed (or when the

statement is processed again for PreparedStatements and CallableStatements).

v For the ResultSet interface, warnings are cleared when the cursor is repositioned.

DataTruncation and silent truncation:

DataTruncation is a subclass of SQLWarning. While SQLWarnings are not thrown, DataTruncation objects

are sometimes thrown and attached like other SQLWarning objects. Silent truncation occurs when the size

of a column exceeds the size specified by the setMaxFieldSize statement method, but no warning or

exception is reported.

 DataTruncation objects provide additional information beyond what is returned by an SQLWarning. The

available information includes the following:

v The number of bytes of data that have been transferred.

v The column or parameter index that was truncated.

v Whether the index is for a parameter or a ResultSet column.

v Whether the truncation happened when reading from the database or writing to it.

v The amount of data that was actually transferred.

In some instances, the information can be deciphered, but situations arise that are not completely

intuitive. For example, if the PreparedStatement’s setFloat method is used to insert a value into a column

that holds integer values, a DataTruncation may result because the float may be larger than the largest

value that the column can hold. In these situations, the byte counts for truncation do not make sense, but

it is important for the driver to provide the truncation information.

Report set() and update() methods

There is a subtle difference between JDBC drivers. Some drivers such as the native and IBM Toolbox for

Java JDBC drivers catch and report data truncation issues at the time of the parameter setting. This is

done either on the PreparedStatement set method or the ResultSet update method. Other drivers report

the problem at the time of processing the statement and is accomplished by the execute, executeQuery, or

updateRow methods.

74 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Failing to report the problem at the time that you provide incorrect data instead of at the time that

processing cannot continue any further offers a couple of advantages:

v The failure can be addressed in your application when you have a problem instead of addressing the

problem at processing time.

v By checking when setting the parameters, the JDBC driver can ensure that the values that are handed

to the database at statement processing time are valid. This allows the database to optimize its work

and processing can be completed faster.

ResultSet.update() methods throw DataTruncation exceptions

In some past releases, ResultSet.update() methods posted warnings when truncation conditions existed.

This case occurs when the data value is going to be inserted into the database. The specification dictates

that JDBC drivers throw exceptions in these cases. As a result, the JDBC driver works in this manner.

There are no significant difference between handling a ResultSet update function that receives a data

truncation error and handling a prepared statement parameter set for an update or insert statement that

receives an error. In both cases, the problem is identical; you provided data that does not fit where you

wanted it.

NUMERIC and DECIMAL truncate to the right side of a decimal point silently. This is how both JDBC

for UDB NT works and how interactive SQL on an iSeries server works.

Note: No value is rounded when a data truncation occurs. Any fractional portion of a parameter that

does not fit in a NUMERIC or DECIMAL column is simply lost without warning.

The following are examples, assuming that the value in the values clause is actually a parameter being

set on a prepared statement:

create table cujosql.test (col1 numeric(4,2))

a) insert into cujosql.test values(22.22) // works - inserts 22.22

b) insert into cujosql.test values(22.223) // works - inserts 22.22

c) insert into cujosql.test values(22.227) // works - inserts 22.22

d) insert into cujosql.test values(322.22) // fails - Conversion error on assignment to column COL1.

Difference between a data truncation warning and a data truncation exception

The specification states that data truncation on a value to be written to the database throws an exception.

If data truncation is not performed on the value being written to the database, a warning is generated.

This means that the point at which a data truncation situation is identified, you must also be aware of the

statement type that the data truncation is processing. Given this as a requirement, the following lists the

behavior of several SQL statement types:

v In a SELECT statement, query parameters never damage database content. Therefore, data truncation

situations are always handled by posting warnings.

v In VALUES INTO and SET™ statements, the input values are only used to generate output values. As a

result, warnings are issued.

v In a CALL statement, the JDBC driver cannot determine what a stored procedure does with a

parameter. Exceptions are always thrown when a stored procedure parameter truncates.

v All other statement types throw exceptions rather than post warnings.

Data truncation property for Connection and DataSource

There has been a data truncation property available for many releases. The default for that property is

true, meaning that data truncation issues are checked and warnings are posted or exceptions are thrown.

The property is provided for convenience and performance in cases where you are not concerned that a

value does not fit into the database column. You want the driver to put as much of the value as it can

into the column.

IBM Developer Kit for Java 75

Data truncation property only affects character and binary-based data types

A couple releases ago, the data truncation property determined whether data truncation exceptions could

be thrown. The data truncation property was put in place to have JDBC applications not worry about a

value getting truncated when the truncation was not important to them. There are few cases where you

would want either the value 00 or 10 stored in the database when applications attempted to insert 100

into a DECIMAL(2,0). Therefore, the JDBC driver’s data truncation property was changed to only honor

situations where the parameter is for character-based types such as CHAR, VARCHAR, CHAR FOR BIT

DATA, and VARCHAR FOR BIT DATA.

Data truncation property is only applied to parameters

The data truncation property is a setting of the JDBC driver and not of the database. As a result, it has no

effect on statement literals. For example, the following statements that are processed to insert a value into

a CHAR(8) column in the database still fail with the data truncation flag set to false (assume that

connection is a java.sql.Connection object allocated elsewhere).

Statement stmt = connection.createStatement();

Stmt.executeUpdate("create table cujosql.test (col1 char(8))");

Stmt.executeUpdate("insert into cujosql.test values(’dettinger’)");

// Fails as the value does not fit into database column.

Native JDBC driver throws exceptions for insignificant data truncation

The native JDBC driver does not look at the data that you provide for parameters. Doing so only slows

down processing. However, there can be situations where it does not matter to you that a value truncates,

but you have not set the data truncation connection property to false.

For example, ’dettinger ’, a char(10) that is passed, throws an exception even though everything

important about the value fits. This does happen to be how JDBC for UDB NT works; however, it is not

the behavior you would get if you passed the value as a literal in an SQL statement. In this case, the

database engine would throw out the additional spaces quietly.

The problems with the JDBC driver not throwing an exception are the following:

v Performance overhead is extensive on every set method, whether needed or not. For the majority of

cases where there would be no benefit, there is considerable performance overhead on a function as

common as setString().

v Your workaround is trivial, for example, calling the trim function on the string value passed in.

v There are issues with the database column to take into account. A space in CCSID 37 is not at all a

space in CCSID 65535, or 13488.

Silent truncation

The setMaxFieldSize statement method allows a maximum field size to be specified for any column. If

data truncates because its size has exceeded the maximum field size value, no warning or exception is

reported. This method, like the data truncation property previously mentioned, only affects

character-based types such as CHAR, VARCHAR, CHAR FOR BIT DATA, and VARCHAR FOR BIT

DATA.

Transactions

A transaction is a logical unit of work. To complete a logical unit of work, several actions may have to be

taken against a database.

Transactional support allows applications to ensure the following:

v All the steps to complete a logical unit of work are followed.

76 IBM Systems - iSeries: Programming IBM Developer Kit for Java

v When one of the steps to the unit of work files fails, all the work done as part of that logical unit of

work can be undone and the database can return to its previous state before the transaction began.

Transactions are used to provide data integrity, correct application semantics, and a consistent view of

data during concurrent access. All Java Database Connectivity (JDBC) compliant drivers must support

transactions.

Note: This section only discusses local transactions and the standard JDBC concept of transactions. Java

and the native JDBC driver support the Java Transaction API (JTA), distributed transactions, and

the two-phase commit protocol (2PC).

All transactional work is handled at the Connection object level. When the work for a transaction

completes, it can be finalized by calling the commit method. If the application aborts the transaction, the

rollback method is called.

All Statement objects under a connection are a part of the transaction. This means is that if an application

creates three Statement objects and uses each object to make changes to the database, when a commit or

rollback call happens, the work for all three statements either becomes permanent or is discarded.

The commit and rollback SQL statements are used to finalize transactions when working purely with

SQL. These SQL statements cannot be dynamically prepared and you should not attempt to use them in

your JDBC applications to complete transactions.

Auto-commit mode:

By default, JDBC uses an operation mode called auto-commit. This means that every update to the

database is immediately made permanent.

 Any situation where a logical unit of work requires more than one update to the database cannot be done

safely in auto-commit mode. If something happens to the application or the system after one update is

made and before any other updates are made, the first change cannot be undone when running in

auto-commit mode.

Because changes are instantly made permanent in auto-commit mode, there is no need for the application

to call the commit method or the rollback method. This makes applications easier to write.

Auto-commit mode can be enabled and disabled dynamically during a connection’s existence.

Auto-commit is enabled in the following way, assuming that data source already exists:

Connection connection = dataSource.getConnection();

Connection.setAutoCommit(false); // Disables auto-commit.

 If the auto-commit setting is changed in the middle of a transaction, any pending work is automatically

committed. An SQLException is generated if auto-commit is enabled for a connection that is part of a

distributed transaction.

Transaction isolation levels:

Transaction isolation levels specify what data is visible to statements within a transaction. These levels

directly impact the level of concurrent access by defining what interaction is possible between

transactions against the same target data source.

IBM Developer Kit for Java 77

Database anomalies

Database anomalies are generated results that seem incorrect when looked at from the scope of a single

transaction, but are correct when looked at from the scope of all transactions. The different types of

database anomalies are described as follows:

v Dirty reads occur when:

1. Transaction A inserts a row into a table.

2. Transaction B reads the new row.

3. Transaction A rolls back.

Transaction B may have done work to the system based on the row inserted by transaction A, but that

row never became a permanent part of the database.

v Nonrepeatable reads occur when:

1. Transaction A reads a row.

2. Transaction B changes the row.

3. Transaction A reads the same row a second time and gets the new results.
v Phantom reads occur when:

1. Transaction A reads all rows that satisfy a WHERE clause on an SQL query.

2. Transaction B inserts an additional row that satisfies the WHERE clause.

3. Transaction A re-evaluates the WHERE condition and picks up the additional row.

Note: DB2 for iSeries does not always expose the application to the allowable database anomolies at the

prescribed levels due to its locking strategies.

JDBC transaction isolation levels

There are five levels of transaction isolation in the IBM Developer Kit for Java JDBC API. Listed from

least to most restrictive, they are as follows:

JDBC_TRANSACTION_NONE

This is a special constant indicating that the JDBC driver does not support transactions.

JDBC_TRANSACTION_READ_UNCOMMITTED

This level allows transactions to see uncommitted changes to the data. All database anomalies are

possible at this level.

JDBC_TRANSACTION_READ_COMMITTED

This level means that any changes made inside a transaction are not visible outside it until the

transaction is committed. This prevents dirty reads from being possible.

JDBC_TRANSACTION_REPEATABLE_READ

This level means that rows that are read retain locks so that another transaction cannot change

them when the transaction is not completed. This disallows dirty reads and nonrepeatable reads.

Phantom read are still possible.

JDBC_TRANSACTION_SERIALIZABLE

Tables are locked for the transaction so that WHERE conditions cannot be changed by other

transactions that add values to or remove values from a table. This prevents all types of database

anomalies.

The setTransactionIsolation method can be used to change the transaction isolation level for a connection.

Considerations

A common misinterpretation is that the JDBC specification defines the five transactional levels previously

mentioned. It is commonly thought that the TRANSACTION_NONE value represents the concept of

78 IBM Systems - iSeries: Programming IBM Developer Kit for Java

running without commitment control. The JDBC specification does not define TRANSACTION_NONE in

the same manner. TRANSACTION_NONE is defined in the JDBC specification as a level where the

driver does not support transactions and is not a JDBC-compliant driver. The NONE level is never

reported when the getTransactionIsolation method is called.

The issue is marginally complicated by the fact that a JDBC driver’s default transaction isolation level is

defined by the implementation. The default level of transaction isolation for the native JDBC driver

default transaction isolation level is NONE. This allows the driver to work with files that do not have

journals and you are not required to make any specifications such as files in the QGPL library.

The native JDBC driver allows you to pass JDBC_TRANSACTION_NONE to the setTransactionIsolation

method or specify none as a connection property. However, the getTransactionIsolation method always

reports JDBC_TRANSACTION_READ_UNCOMMITTED when the value is none. It is your application’s

responsibility to keep track of what level you are running if it is a requirement in your application.

In past releases, the JDBC driver would handle your specifying true for auto-commit by changing the

transaction isolation level to none because the system did not have a concept of a true auto-commit

mode. This was a close approximation of the functionality, but did not provide the correct results for all

scenarios. This is not done anymore; the database decouples the concept of auto-commit from the concept

of a transaction isolation level. Therefore, it is completely valid to run at the

JDBC_TRANSACTION_SERIALIZABLE level with auto-commit being enabled. The only scenario that is

not valid is to run at the JDBC_TRANSACTION_NONE level and not be in auto-commit mode. Your

application cannot take control over commit boundaries when the system is not running with a

transaction isolation level.

Transaction isolation levels between the JDBC specification and the iSeries

platform

The iSeries platform has common names for its transaction isolation levels that do not match those names

provided by the JDBC specification. The following table matches the names used by the iSeries platform,

but are not equivalent to those used by the JDBC specification:

 JDBC level* iSeries level

JDBC_TRANSACTION_NONE *NONE or *NC

JDBC_TRANSACTION_READ_UNCOMMITTED *CHG or *UR

JDBC_TRANSACTION_READ_COMMITTED *CS

JDBC_TRANSACTION_REPEATABLE_READ *ALL or *RS

JDBC_TRANSACTION_SERIALIZABLE *RR

* In this table, the JDBC_TRANSACTION_NONE value is lined up with the iSeries levels *NONE and

*NC for clarity. This is not a direct specification-to-iSeries level match.

Savepoints:

Savepoints allow the setting of ″staging points″ in a transaction. Savepoints are checkpoints that the

application can roll back to without throwing away the entire transaction. Savepoints are new in JDBC

3.0, meaning that the application must run on Java Development Kit (JDK) 1.4 or a subsequent release to

use them. Moreover, savepoints are new to the Developer Kit for Java, meaning that savepoints are not

supported if JDK 1.4 or a subsequent release is not used with previous releases of the Developer Kit for

Java.

Note: The system provides SQL statements for working with savepoints. It is advised that JDBC

applications do not use these statements directly in an application. Doing so may work, but the

IBM Developer Kit for Java 79

JDBC driver loses its ability to track the your savepoints when this is done. At a minimum, mixing

the two models (that is, using your own savepoint SQL statements and using the JDBC API)

should be avoided.

Set and roll back to savepoints

Savepoints can be set throughout the work of a transaction. The application can then roll back to any of

these savepoints if something goes wrong and continue processing from that point. In the following

example, the application inserts the value FIRST into a database table. After that, a savepoint is set and

another value, SECOND, is inserted into the database. A rollback to the savepoint is issued and undoes

the work of inserting SECOND, but leaves FIRST as part of the pending transaction. Finally, the value

THIRD is inserted and the transaction is committed. The database table contains the values FIRST and

THIRD.

Example: Set and roll back to savepoints

Note: Read the Code example disclaimer for important legal information.
Statement s = Connection.createStatement();

s.executeUpdate("insert into table1 values (’FIRST’)");

Savepoint pt1 = connection.setSavepoint("FIRST SAVEPOINT");

s.executeUpdate("insert into table1 values (’SECOND’)";);

connection.rollback(pt1); // Undoes most recent insert.

s.executeUpdate("insert into table1 values (’THIRD’)");

connection.commit();

Although it is unlikely to cause problems to set savepoints while in auto-commit mode, they cannot be

rolled back as their lives end at the end of a transaction.

Release a savepoint

Savepoints can be released by the application with the releaseSavepoint method on the Connection object.

Once a savepoint has been released, attempting to roll back to it results in an exception. When a

transaction commits or rolls back, all savepoints automatically release. When a savepoint is rolled back,

other savepoints that follow it are also released.

Distributed transactions

Typically, transactions in Java Database Connectivity (JDBC) are local. This means that a single connection

performs all the work of the transaction and that the connection can only work on one transaction at a

time. When all the work for that transaction has been completed or has failed, commit or rollback is

called to make the work permanent, and a new transaction can begin. There is, however, also advanced

support for transactions available in Java that provides functionality beyond local transactions. This

support is fully specified by the Java Transaction API.

The Java Transaction API (JTA) has support for complex transactions. It also provides support for

decoupling transactions from Connection objects. As JDBC is modeled after the Object Database

Connectivity (ODBC) and the X/Open Call Level Interface (CLI) specifications, JTA is modeled after the

X/Open Extended Architecture (XA) specification. JTA and JDBC work together to decouple transactions

from Connection objects. By decoupling transactions from Connection objects, this allows you to have a

single connection work on multiple transactions concurrently. Conversely, it allows you to have multiple

Connections work on a single transaction.

Java Transaction API (JTA) 1.0.1 specification

Note: If you are planning to work with JTA, refer to Get started with JDBC for more information about

required Java Archive (JAR) files in your extensions classpath. You want both the JDBC 2.0

optional package and the JTA JAR files (these files are found automatically by the JDK if you are

running JDK 1.4 or a subsequent version). These are not found by default.

80 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://java.sun.com/products/jta/

Transactions with JTA

When JTA and JDBC are used together, there are a series of steps between them to accomplish

transactional work. Support for XA is provided through the XADataSource class. This class contains

support for setting up connection pooling exactly the same way as its ConnectionPoolDataSource

superclass.

With an XADataSource instance, you can retrieve an XAConnection object. The XAConnection object

serves as a container for both the JDBC Connection object and an XAResource object. The XAResource

object is designed to handle XA transactional support. XAResource handles transactions through objects

called transaction IDs (XIDs).

The XID is an interface that you must implement. It represents a Java mapping of the XID structure of

the X/Open transaction identifier. This object contains three parts:

v A global transaction’s format ID

v A global transaction ID

v A branch qualifier

See the JTA specification for complete details on this interface.

Example: Use JTA to handle a transaction shows how to use JTA to handle a transaction in an application.

Use UDBXADataSource support for pooling and distributed transactions

The Java Transaction API support provides direct support for connection pooling. UDBXADataSource is

an extension of a ConnectionPoolDataSource, allowing application access to pooled XAConnection

objects. Since UDBXADataSource is a ConnectionPoolDataSource, the configuration and use of the

UDBXADataSource is the same as that described in Use DataSource support for object pooling.

XADataSource properties

In addition to the properties provided by the ConnectionPoolDataSource, the XADataSource interface

provides the following properties:

 Set method (data type) Values Description

setLockTimeout (int) 0 or any positive value Any positive value is a valid lock

timeout (in seconds) at the

transaction level.

A lock timeout of 0 means that there

is no lock timeout value enforced at

the transaction level, although there

may be one enforced at other levels

(the job or the table).

The default value is 0.

IBM Developer Kit for Java 81

Set method (data type) Values Description

setTransactionTimeout (int) 0 or any positive value Any positive value is a valid

transaction timeout (in seconds).

A transaction timeout of 0 means that

there is no transaction timeout value

enforced. If the transaction is active

for longer than the timeout value, it

is marked rollback only, and

subsequent attempts to perform work

under it causes an exception to occur.

The default value is 0.

ResultSets and transactions

Besides demarcating the start and end of a transaction as shown in the previous example, transactions

can be suspended for a time and resumed later. This provides a number of scenarios for ResultSet

resources that are created during a transaction.

Simple transaction end

When you end a transaction, all open ResultSets that were created under that transaction automatically

close. It is recommended that you explicitly close your ResultSets when you are finished using them to

ensure maximum parallel processing. However, an exception results if any ResultSets that were opened

during a transaction are accessed after the XAResource.end call is made.

See Example: End a transaction that shows this behavior.

Suspend and resume

While a transaction is suspended, access to a ResultSet created while the transaction was active is not

allowed and results in an exception. However, once the transaction is resumed, the ResultSet is available

again and remains in the same state it was in before the transaction was suspended.

See Example: Suspend and resume a transaction that shows this behavior.

Effecting suspended ResultSets

While a transaction is suspended, the ResultSet cannot be accessed. However, Statement objects can be

reprocessed under another transaction to perform work. Because JDBC Statement objects can have only

one ResultSet at a time (excluding the JDBC 3.0 support for multiple concurrent ResultSets from a stored

procedure call), the ResultSet for the suspended transaction must be closed to fulfill the request of the

new transaction. This is exactly what happens.

See Example: Suspended ResultSets that shows this behavior.

Note: Although JDBC 3.0 allows a Statement to have multiple ResultSets open simultaneously for a

stored procedure call, they are treated as a single unit and all of them close if the Statement is

reprocessed under a new transaction. It is not possible to have ResultSets from two transactions active

simultaneously for a single statement.

82 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Multiplexing

The JTA API is designed to decouple transactions from JDBC connections. This API allows you to have

either multiple connections work on a single transaction or a single connection work on multiple

transactions concurrently. This is called multiplexing and many complex tasks can be performed that

cannot be accomplished with JDBC alone.

This example shows multiple connections working on a single transaction.

This example shows a single connection with multiple transactions taking place at once.

For further information on using JTA, see the JTA specification. The JDBC 3.0 specification also contains

information on how these two technologies work together to support distributed transactions.

Two-phase commit and transaction logging

The JTA APIs externalize the responsibilities of the distributed two-phase commit protocol completely to

the application. As the examples have shown, when using JTA and JDBC to access a database under a

JTA transaction, the application uses the XAResource.prepare() and XAResource.commit() methods or just

the XAResource.commit() method to commit the changes.

In addition, when accessing multiple distinct databases using a single transaction, it is the application’s

responsibility to ensure that the two-phase commit protocol and any associated logging required for

transaction atomicity across those databases are performed. Typically, the two-phase commit processing

across multiple databases (that is, XAResources) and its logging are performed under the control of an

application server or transaction monitor so that the application itself does not actually concern itself

with these issues.

For example, the application may call some commit() method or return from its processing with no

errors. The underlying application server or transaction monitor would then begin processing for each

database (XAResource) that participated in the single distributed transaction.

The application server would use extensive logging during the two-phase commit processing. It would

call the XAResource.prepare() method in turn for each participant database (XAResource), followed by a

call to the XAResource.commit() method for each participant database (XAResource).

If a failure occurs during this processing, the application server’s transaction monitor logs allow the

application server itself to subsequently use the JTA APIs to recover the distributed transaction. This

recovery, under the control of the application server or transaction monitor, allows the application server

to get the transaction to a known state at each participant database (XAResource). This ensures a

well-known state of the entire distributed transaction across all participant databases.

Example: Use JTA to handle a transaction:

This is an example of how to use the Java Transaction API (JTA) to handle a transaction in an application.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTACommit {

IBM Developer Kit for Java 83

public static void main(java.lang.String[] args) {

 JTACommit test = new JTACommit();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... does not exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

 /**

 * This test uses JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 // For XA transactions, a transaction identifier is required.

 // An implementation of the XID interface is not included with the

 // JDBC driver. See Transactions with JTA for a description of

 // this interface to build a class for it.

 Xid xid = new XidImpl();

 // The connection from the XAResource can be used as any other

 // JDBC connection.

 Statement stmt = c.createStatement();

 // The XA resource must be notified before starting any

 // transactional work.

 xaRes.start(xid, XAResource.TMNOFLAGS);

84 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Standard JDBC work is performed.

 int count =

 stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is pretty fun.’)");

 // When the transaction work has completed, the XA resource must

 // again be notified.

 xaRes.end(xid, XAResource.TMSUCCESS);

 // The transaction represented by the transaction ID is prepared

 // to be committed.

 int rc = xaRes.prepare(xid);

 // The transaction is committed through the XAResource.

 // The JDBC Connection object is not used to commit

 // the transaction when using JTA.

 xaRes.commit(xid, false);

 } catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

Example: Multiple connections that work on a transaction:

This is an example of how to use multiple connections working on a single transaction.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTAMultiConn {

 public static void main(java.lang.String[] args) {

 JTAMultiConn test = new JTAMultiConn();

 test.setup();

 test.run();

 }

/**

* Handle the previous cleanup run so that this test can recommence.

*/

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 }

IBM Developer Kit for Java 85

catch (SQLException e) {

 // Ignore... does not exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR

 (50))");

 s.close();

 }

 finally {

 if (c != null) {

 c.close();

 }

 }

 }

/**

* This test uses JTA support to handle transactions.

*/

 public void run() {

 Connection c1 = null;

 Connection c2 = null;

 Connection c3 = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource)

 ctx.lookup("XADataSource");

 // From the DataSource, obtain some XAConnection objects that

 // contain an XAResource and a Connection object.

 XAConnection xaConn1 = ds.getXAConnection();

 XAConnection xaConn2 = ds.getXAConnection();

 XAConnection xaConn3 = ds.getXAConnection();

 XAResource xaRes1 = xaConn1.getXAResource();

 XAResource xaRes2 = xaConn2.getXAResource();

 XAResource xaRes3 = xaConn3.getXAResource();

 c1 = xaConn1.getConnection();

 c2 = xaConn2.getConnection();

 c3 = xaConn3.getConnection();

 Statement stmt1 = c1.createStatement();

 Statement stmt2 = c2.createStatement();

 Statement stmt3 = c3.createStatement();

 // For XA transactions, a transaction identifier is required.

 // Support for creating XIDs is again left to the application

 // program.

 Xid xid = JDXATest.xidFactory();

 // Perform some transactional work under each of the three

 // connections that have been created.

 xaRes1.start(xid, XAResource.TMNOFLAGS);

 int count1 = stmt1.executeUpdate("INSERT INTO " + tableName + "VALUES(’Value 1-A’)");

 xaRes1.end(xid, XAResource.TMNOFLAGS);

 xaRes2.start(xid, XAResource.TMJOIN);

 int count2 = stmt2.executeUpdate("INSERT INTO " + tableName + "VALUES(’Value 1-B’)");

 xaRes2.end(xid, XAResource.TMNOFLAGS);

 xaRes3.start(xid, XAResource.TMJOIN);

 int count3 = stmt3.executeUpdate("INSERT INTO " + tableName + "VALUES(’Value 1-C’)");

 xaRes3.end(xid, XAResource.TMSUCCESS);

 // When completed, commit the transaction as a single unit.

 // A prepare() and commit() or 1 phase commit() is required for

 // each separate database (XAResource) that participated in the

 // transaction. Since the resources accessed (xaRes1, xaRes2, and xaRes3)

 // all refer to the same database, only one prepare or commit is required.

 int rc = xaRes.prepare(xid);

 xaRes.commit(xid, false);

 }

 catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

86 IBM Systems - iSeries: Programming IBM Developer Kit for Java

}

 finally {

 try {

 if (c1 != null) {

 c1.close();

 }

 }

 catch (SQLException e) {

 System.out.println("Note: Cleaup exception " +

 e.getMessage());

 }

 try {

 if (c2 != null) {

 c2.close();

 }

 }

 catch (SQLException e) {

 System.out.println("Note: Cleaup exception " +

 e.getMessage());

 }

 try {

 if (c3 != null) {

 c3.close();

 }

 }

 catch (SQLException e) {

 System.out.println("Note: Cleaup exception " +

 e.getMessage());

 }

 }

 }

}

Example: Use a connection with multiple transactions:

This is an example of how to use a single connection with multiple transactions.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTAMultiTx {

 public static void main(java.lang.String[] args) {

 JTAMultiTx test = new JTAMultiTx();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

IBM Developer Kit for Java 87

c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... does not exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

 /**

 * This test uses JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 Statement stmt = c.createStatement();

 // For XA transactions, a transaction identifier is required.

 // This is not meant to imply that all the XIDs are the same.

 // Each XID must be unique to distinguish the various transactions

 // that occur.

 // Support for creating XIDs is again left to the application

 // program.

 Xid xid1 = JDXATest.xidFactory();

 Xid xid2 = JDXATest.xidFactory();

 Xid xid3 = JDXATest.xidFactory();

 // Do work under three transactions for this connection.

 xaRes.start(xid1, XAResource.TMNOFLAGS);

 int count1 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Value 1-A’)");

 xaRes.end(xid1, XAResource.TMNOFLAGS);

 xaRes.start(xid2, XAResource.TMNOFLAGS);

 int count2 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Value 1-B’)");

 xaRes.end(xid2, XAResource.TMNOFLAGS);

 xaRes.start(xid3, XAResource.TMNOFLAGS);

 int count3 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Value 1-C’)");

 xaRes.end(xid3, XAResource.TMNOFLAGS);

 // Prepare all the transactions

 int rc1 = xaRes.prepare(xid1);

 int rc2 = xaRes.prepare(xid2);

 int rc3 = xaRes.prepare(xid3);

88 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Two of the transactions commit and one rolls back.

 // The attempt to insert the second value into the table is

 // not committed.

 xaRes.commit(xid1, false);

 xaRes.rollback(xid2);

 xaRes.commit(xid3, false);

 } catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

Example: Suspended ResultSets:

This is an example of the how a Statement object is reprocessed under another transaction to perform

work.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTATxEffect {

 public static void main(java.lang.String[] args) {

 JTATxEffect test = new JTATxEffect();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... does not exist

 }

IBM Developer Kit for Java 89

s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Fun with JTA’)");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is fun.)");

 s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

 /**

 * This test uses JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 // For XA transactions, a transaction identifier is required.

 // An implementation of the XID interface is not included with

 // the JDBC driver. See Transactions with JTA

 // for a description of this interface to build a

 // class for it.

 Xid xid = new XidImpl();

 // The connection from the XAResource can be used as any other

 // JDBC connection.

 Statement stmt = c.createStatement();

 // The XA resource must be notified before starting any

 // transactional work.

 xaRes.start(xid, XAResource.TMNOFLAGS);

 // Create a ResultSet during JDBC processing and fetch a row.

 ResultSet rs = stmt.executeUpdate("SELECT * FROM CUJOSQL.JTATABLE");

 rs.next();

 // The end method is called with the suspend option. The

 // ResultSets associated with the current transaction are ’on hold’.

 // They are neither gone nor accessible in this state.

 xaRes.end(xid, XAResource.TMSUSPEND);

 // In the meantime, other work can be done outside the transaction.

 // The ResultSets under the transaction can be closed if the

 // Statement object used to create them is reused.

 ResultSet nonXARS = stmt.executeQuery("SELECT * FROM CUJOSQL.JTATABLE");

 while (nonXARS.next()) {

 // Process here...

 }

 // Attempt to go back to the suspended transaction. The suspended

 // transaction’s ResultSet has disappeared because the statement

90 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// has been processed again.

 xaRes.start(newXid, XAResource.TMRESUME);

 try {

 rs.next();

 } catch (SQLException ex) {

 System.out.println("This exception is expected. " +

 "The ResultSet closed due to another process.");

 }

 // When the transaction had completed, end it

 // and commit any work under it.

 xaRes.end(xid, XAResource.TMNOFLAGS);

 int rc = xaRes.prepare(xid);

 xaRes.commit(xid, false);

 } catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

Example: End a transaction:

This is an example of ending a transaction in your application.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTATxEnd {

 public static void main(java.lang.String[] args) {

 JTATxEnd test = new JTATxEnd();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

IBM Developer Kit for Java 91

s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... does not exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Fun with JTA’)");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is fun.)");

 s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

 /**

 * This test use JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 // For XA transactions, transaction identifier is required.

 // An implementation of the XID interface is not included

 // with the JDBC driver. See Transactions with JTA for a

 // description of this interface to build a class for it.

 Xid xid = new XidImpl();

 // The connection from the XAResource can be used as any other

 // JDBC connection.

 Statement stmt = c.createStatement();

 // The XA resource must be notified before starting any

 // transactional work.

 xaRes.start(xid, XAResource.TMNOFLAGS);

 // Create a ResultSet during JDBC processing and fetch a row.

 ResultSet rs = stmt.executeUpdate("SELECT * FROM CUJOSQL.JTATABLE");

 rs.next();

 // When the end method is called, all ResultSet cursors close.

 // Accessing the ResultSet after this point results in an

 // exception being thrown.

 xaRes.end(xid, XAResource.TMNOFLAGS);

 try {

 String value = rs.getString(1);

 System.out.println("Something failed if you receive this message.");

 } catch (SQLException e) {

 System.out.println("The expected exception was thrown.");

92 IBM Systems - iSeries: Programming IBM Developer Kit for Java

}

 // Commit the transaction to ensure that all locks are

 // released.

 int rc = xaRes.prepare(xid);

 xaRes.commit(xid, false);

 } catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

 Collected links

 Code example disclaimer

 Transactions with JTA

Typically, transactions in Java Database Connectivity (JDBC) are local. This means that a single

connection performs all the work of the transaction and that the connection can only work on one

transaction at a time. When all the work for that transaction has been completed or has failed, commit

or rollback is called to make the work permanent, and a new transaction can begin. There is, however,

also advanced support for transactions available in Java that provides functionality beyond local

transactions. This support is fully specified by the Java Transaction API.

Example: Suspend and resume a transaction:

This is an example of a transaction that is suspended and then is resumed.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTATxSuspend {

 public static void main(java.lang.String[] args) {

 JTATxSuspend test = new JTATxSuspend();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

IBM Developer Kit for Java 93

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... doesn’t exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Fun with JTA’)");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is fun.)");

 s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

 /**

 * This test uses JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 // For XA transactions, a transaction identifier is required.

 // An implementation of the XID interface is not included with

 // the JDBC driver. Transactions with JTA for a

 // description of this interface to build a class for it.

 Xid xid = new XidImpl();

 // The connection from the XAResource can be used as any other

 // JDBC connection.

 Statement stmt = c.createStatement();

 // The XA resource must be notified before starting any

 // transactional work.

 xaRes.start(xid, XAResource.TMNOFLAGS);

 // Create a ResultSet during JDBC processing and fetch a row.

 ResultSet rs = stmt.executeUpdate("SELECT * FROM CUJOSQL.JTATABLE");

 rs.next();

 // The end method is called with the suspend option. The

 // ResultSets associated with the current transaction are ’on hold’.

 // They are neither gone nor accessible in this state.

 xaRes.end(xid, XAResource.TMSUSPEND);

 // Other work can be performed with the transaction.

 // As an example, you can create a statement and process a query.

94 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// This work and any other transactional work that the transaction may

 // perform is separate from the work done previously under the XID.

 Statement nonXAStmt = conn.createStatement();

 ResultSet nonXARS = nonXAStmt.executeQuery("SELECT * FROM CUJOSQL.JTATABLE");

 while (nonXARS.next()) {

 // Process here...

 }

 nonXARS.close();

 nonXAStmt.close();

 // If an attempt is made to use any suspended transactions

 // resources, an exception results.

 try {

 rs.getString(1);

 System.out.println("Value of the first row is " + rs.getString(1));

 } catch (SQLException e) {

 System.out.println("This was an expected exception - " +

 "suspended ResultSet was used.");

 }

 // Resume the suspended transaction and complete the work on it.

 // The ResultSet is exactly as it was before the suspension.

 xaRes.start(newXid, XAResource.TMRESUME);

 rs.next();

 System.out.println("Value of the second row is " + rs.getString(1));

 // When the transaction has completed, end it

 // and commit any work under it.

 xaRes.end(xid, XAResource.TMNOFLAGS);

 int rc = xaRes.prepare(xid);

 xaRes.commit(xid, false);

 } catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

Statement types

The Statement interface and its PreparedStatement and CallableStatement subclasses are used to process

structured query language (SQL) commands against the database. SQL statements cause the generation of

ResultSet objects.

Subclasses of the Statement interface are created with a number of methods on the Connection interface.

A single Connection object can have many Statement objects created under it simultaneously. In past

releases, it was possible to give exact numbers of Statement objects that could be created. It is impossible

to do so in this release because different types of Statement objects take different numbers of ″handles″

within the database engine. Therefore, the types of Statement objects you are using influence the number

of statements that can be active under a connection at a single time.

IBM Developer Kit for Java 95

An application calls the Statement.close method to indicate that the application has finished processing a

statement. All Statement objects are closed when the connection that created them is closed. However,

you should not fully rely on this behavior to close Statement objects. For example, if your application

changes so that a connection pool is used instead of explicitly closing the connections, the application

″leaks″ statement handles because the connections never close. Closing Statement objects as soon as they

are no longer required allows external database resources that the statement is using to be released

immediately.

The native JDBC driver attempts to detect statement leaks and handles them on you behalf. However,

relying on that support results in poorer performance.

Due to the inheritance hierarchy that CallableStatement extends PreparedStatement which extends

Statement, features of each interface are available in the class that extend the interface. For example,

features of the Statement class are also supported in the PreparedStatement and CallableStatement

classes. The main exception is the executeQuery, executeUpdate, and execute methods on the Statement

class. These methods take in an SQL statement to dynamically process and cause exceptions if you

attempt to use them with PreparedStatement or CallableStatement objects.

Statements:

A Statement object is used for processing a static SQL statement and obtaining the results produced by it.

Only one ResultSet for each Statement object can be open at a time. All statement methods that process

an SQL statement implicitly close a statement’s current ResultSet if an open one exists.

 Create statements

Statement objects are created from Connection objects with the createStatement method. For example,

assuming a Connection object named conn already exists, the following line of code creates a Statement

object for passing SQL statements to the database:

Statement stmt = conn.createStatement();

Specify ResultSet characteristics

The characteristics of ResultSets are associated with the statement that eventually creates them. The

Connection.createStatement method allows you to specify these ResultSet characteristics. The following

are some examples of valid calls to the createStatement method:

Example: The createStatement method

Note: Read the Code example disclaimer for important legal information.

// The following is new in JDBC 2.0

Statement stmt2 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATEABLE);

// The following is new in JDBC 3.0

Statement stmt3 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY, ResultSet.HOLD_CURSOR_OVER_COMMIT);

For more information about these characteristics, see ResultSets.

Process statements

Processing SQL statements with a Statement object is accomplished with the executeQuery(),

executeUpdate(), and execute() methods.

96 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Return results from SQL queries

If an SQL query statement returning a ResultSet object is to be processed, the executeQuery() method

should be used. You can refer to the example program that uses a Statement object’s executeQuery

method to obtain a ResultSet.

Note: If an SQL statement processed with executeQuery does not return a ResultSet, an SQLException is

thrown.

Return update counts for SQL Statements

If the SQL is known to be a Data Definition Language (DDL) statement or a Data Manipulation Language

(DML) statement returning an update count, the executeUpdate() method should be used. The

StatementExample program uses a Statement object’s executeUpdate method.

Process SQL statements where the expected return is unknown

If the SQL statement type is not known, the execute method should be used. Once this method has been

processed, the JDBC driver can tell the application what types of results the SQL statement has generated

through API calls. The execute method returns true if the result is at least one ResultSet and false if the

return value is an update count. Given this information, applications can use the statement method’s

getUpdateCount or getResultSet to retrieve the return value from processing the SQL statement. The

StatementExecute program uses the execute method on a Statement object. This program expects a

parameter to be passed that is an SQL statement. Without looking at the text of the SQL that you provide,

the program processes the statement and determines information about what was processed.

Note: Calling the getUpdateCount method when the result is a ResultSet returns -1. Calling the

getResultSet method when the result is an update count returns null.

The cancel method

The methods of the native JDBC driver are synchronized to prevent two threads running against the

same object from corrupting the object. An exception is the cancel method. The cancel method can be

used by one thread to stop a long running SQL statement on another thread for the same object. The

native JDBC driver cannot force the thread to stop doing work; it can only request that it stop whatever

task it was doing. For this reason, it still takes time for a cancelled statement to stop. The cancel method

can be used to halt runaway SQL queries on the system.

Example: Use the Statement object’s executeUpdate method:

This is an example of how to use the Statement object’s executeUpdate method.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import java.util.Properties;

public class StatementExample {

 public static void main(java.lang.String[] args)

 {

 // Suggestion: Load these from a properties object.

 String DRIVER = "com.ibm.db2.jdbc.app.DB2Driver";

 String URL = "jdbc:db2://*local";

 // Register the native JDBC driver. If the driver cannot be

 // registered, the test cannot continue.

IBM Developer Kit for Java 97

try {

 Class.forName(DRIVER);

 } catch (Exception e) {

 System.out.println("Driver failed to register.");

 System.out.println(e.getMessage());

 System.exit(1);

 }

 Connection c = null;

 Statement s = null;

 try {

 // Create the connection properties.

 Properties properties = new Properties ();

 properties.put ("user", "userid");

 properties.put ("password", "password");

 // Connect to the local iSeries database.

 c = DriverManager.getConnection(URL, properties);

 // Create a Statement object.

 s = c.createStatement();

 // Delete the test table if it exists. Note: This

 // example assumes that the collection MYLIBRARY

 // exists on the system.

 try {

 s.executeUpdate("DROP TABLE MYLIBRARY.MYTABLE");

 } catch (SQLException e) {

 // Just continue... the table probably does not exist.

 }

 // Run an SQL statement that creates a table in the database.

 s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

 // Run some SQL statements that insert records into the table.

 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’RICH’, 123)");

 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’FRED’, 456)");

 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’MARK’, 789)");

 // Run an SQL query on the table.

 ResultSet rs = s.executeQuery("SELECT * FROM MYLIBRARY.MYTABLE");

 // Display all the data in the table.

 while (rs.next()) {

 System.out.println("Employee " + rs.getString(1) + " has ID " + rs.getInt(2));

 }

 } catch (SQLException sqle) {

 System.out.println("Database processing has failed.");

 System.out.println("Reason: " + sqle.getMessage());

 } finally {

 // Close database resources

 try {

 if (s != null) {

 s.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Statement.");

 }

 }

 try {

 if (c != null) {

 c.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Connection.");

98 IBM Systems - iSeries: Programming IBM Developer Kit for Java

}

 }

 }

}

PreparedStatements:

PreparedStatements extend the Statement interface and provide support for adding parameters to SQL

statements.

 SQL statements that are passed to the database go through a two-step process in returning results to you.

They are first prepared and then are processed. With Statement objects, these two phases appear to be

one phase to your applications. PreparedStatements allow these two steps to be broken apart. The

preparation step occurs when the object is created and the processing step occurs when the executeQuery,

executeUpdate, or execute method are called on the PreparedStatement object.

Being able to split the SQL processing into separate phases are meaningless without the addition of

parameter markers. Parameter markers are placed in an application so that it can tell the database that it

does not have a specific value at preparation time, but that it provides one before processing time.

Parameter markers are represented in SQL statements by question marks.

Parameter markers make it possible to make general SQL statements that are used for specific requests.

For example, take the following SQL query statement:

 SELECT * FROM EMPLOYEE_TABLE WHERE LASTNAME = ’DETTINGER’

This is a specific SQL statement that returns only one value; that is, information about an employee

named Dettinger. By adding a parameter marker, the statement can become more flexible:

 SELECT * FROM EMPLOYEE_TABLE WHERE LASTNAME = ?

By simply setting the parameter marker to a value, information can be obtained about any employee in

the table.

PreparedStatements provide significant performance improvements over Statements because the previous

Statement example can go through the preparation phase only once and then be processed repeatedly

with different values for the parameter.

Note: Using PreparedStatements is a requirement to support the native JDBC driver’s statement pooling.

For more information about using prepared statements, including creating prepared statements,

specifying result set characteristics, working with auto-generated keys, and setting parameter markers,

see the following pages:

Create and use PreparedStatements:

The prepareStatement method is used to create new PreparedStatement objects. Unlike the

createStatement method, the SQL statement must be supplied when the PreparedStatement object is

created. At that time, the SQL statement is precompiled for use.

 For example, assuming a Connection object named conn already exists, the following example creates a

PreparedStatement object and prepares the SQL statement for processing within the database.

 PreparedStatement ps = conn.prepareStatement("SELECT * FROM EMPLOYEE_TABLE

 WHERE LASTNAME = ?");

IBM Developer Kit for Java 99

Specify ResultSet characteristics and auto-generated key support

As with the createStatement method, the prepareStatement method is overloaded to provide support for

specifying ResultSet characteristics. The prepareStatement method also has variations for working with

auto-generated keys. The following are some examples of valid calls to the prepareStatement method:

Example: The prepareStatement method

Note: Read the Code example disclaimer for important legal information.
 // New in JDBC 2.0

 PreparedStatement ps2 = conn.prepareStatement("SELECT * FROM

 EMPLOYEE_TABLE WHERE LASTNAME = ?",

 ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_UPDATEABLE);

 // New in JDBC 3.0

 PreparedStatement ps3 = conn.prepareStatement("SELECT * FROM

 EMPLOYEE_TABLE WHERE LASTNAME = ?",

 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATEABLE,

 ResultSet.HOLD_CURSOR_OVER_COMMIT);

 PreparedStatement ps4 = conn.prepareStatement("SELECT * FROM

 EMPLOYEE_TABLE WHERE LASTNAME = ?", Statement.RETURN_GENERATED_KEYS);

Handle parameters

Before a PreparedStatement object can be processed, each of the parameter markers must be set to some

value. The PreparedStatement object provides a number of methods for setting parameters. All methods

are of the form set<Type>, where <Type> is a Java data type. Some examples of these methods include

setInt, setLong, setString, setTimestamp, setNull, and setBlob. Nearly all of these methods take two

parameters:

v The first parameter is the index of the parameter within the statement. Parameter markers are

numbered, starting with 1.

v The second parameter is the value to set the parameter to. There are a couple set<Type> methods that

have additional parameters such as the length parameter on setBinaryStream.

Consult the Javadoc for the java.sql package for more information. Given the prepared SQL statement in

the previous examples for the ps object, the following code illustrates how the parameter value is

specified before processing:

ps.setString(1,’Dettinger’);

If an attempt is made to process a PreparedStatement with parameter markers that have not been set, an

SQLException is thrown.

Note: Once set, parameter markers hold the same value between processes unless the following

situations occur:

v The value is changed by another call to a set method.

v The value is removed when the clearParameters method is called.

The clearParameters method flags all parameters as being unset. After the call to clearParameters

has been made, all the parameters must have the set method called again before the next process.

100 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/api/java/sql/package-summary.html

ParameterMetaData support

A new ParameterMetaData interface allows you to retrieve information about a parameter. This support

is the compliment to ResultSetMetaData and is similar. Information such as the precision, scale, data type,

data type name, and whether the parameter allows the null value are all provided.

See Example: ParameterMetaData on how to use this new support in an application program.

Example: ParameterMetaData:

This is an example of using the ParameterMetaData interface to retrieve information about parameters.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// ParameterMetaData example. This program demonstrates

// the new support of JDBC 3.0 for learning information

// about parameters to a PreparedStatement.

//

// Command syntax:

// java PMD

//

//

//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

import java.sql.*;

public class PMD {

 // Program entry point.

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Obtain setup.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.MYTABLE VALUES(?, ?, ?)");

 ParameterMetaData pmd = ps.getParameterMetaData();

 for (int i = 1; i < pmd.getParameterCount(); i++) {

IBM Developer Kit for Java 101

System.out.println("Parameter number " + i);

 System.out.println(" Class name is " + pmd.getParameterClassName(i));

 // Note: Mode relates to input, output or inout

 System.out.println(" Mode is " + pmd.getParameterClassName(i));

 System.out.println(" Type is " + pmd.getParameterType(i));

 System.out.println(" Type name is " + pmd.getParameterTypeName(i));

 System.out.println(" Precision is " + pmd.getPrecision(i));

 System.out.println(" Scale is " + pmd.getScale(i));

 System.out.println(" Nullable? is " + pmd.isNullable(i));

 System.out.println(" Signed? is " + pmd.isSigned(i));

 }

 }

}

Process PreparedStatements:

Processing SQL statements with a PreparedStatement object is accomplished with the executeQuery,

executeUpdate, and execute methods like Statement objects are processed. Unlike Statement versions, no

parameters are passed on these methods because the SQL statement was already provided when the

object was created. Because PreparedStatement extends Statement, applications can attempt to call

versions of executeQuery, executeUpdate, and execute methods that take a SQL statement. Doing so

results in an SQLException being thrown.

 Return results from SQL queries

If an SQL query statement that returns a ResultSet object is to be processed, the executeQuery method

should be used. The PreparedStatementExample program uses a PreparedStatement object’s executeQuery

method to obtain a ResultSet.

Note: If an SQL statement processed with the executeQuery method does not return a ResultSet, an

SQLException is thrown.

Return update counts for SQL statements

If the SQL is known to be a Data Definition Language (DDL) statement or a Data Manipulation Language

(DML) statement that returns an update count, the executeUpdate method should be used. The

PreparedStatementExample sample program uses a PreparedStatement object’s executeUpdate method.

Process SQL statements where the expected return is unknown

If the SQL statement type is not known, the execute method should be used. Once this method has been

processed, the JDBC driver can tell the application what results types the SQL statement generated

through API calls. The execute method returns true if the result is at least one ResultSet and false if the

return value is an update count. Given this information, applications can use the getUpdateCount or

getResultSet statement methods to retrieve the return value from processing the SQL statement.

Note: Calling the getUpdateCount method when the result is a ResultSet returns -1. Calling the

getResultSet method when the result is an update count returns null.

Example: Use PreparedStatement to obtain a ResultSet:

This is an example of using a PreparedStatement object’s executeQuery method to obtain a ResultSet.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import java.util.Properties;

public class PreparedStatementExample {

102 IBM Systems - iSeries: Programming IBM Developer Kit for Java

public static void main(java.lang.String[] args)

 {

 // Load the following from a properties object.

 String DRIVER = "com.ibm.db2.jdbc.app.DB2Driver";

 String URL = "jdbc:db2://*local";

 // Register the native JDBC driver. If the driver cannot

 // be registered, the test cannot continue.

 try {

 Class.forName(DRIVER);

 } catch (Exception e) {

 System.out.println("Driver failed to register.");

 System.out.println(e.getMessage());

 System.exit(1);

 }

 Connection c = null;

 Statement s = null;

 // This program creates a table that is

 // used by prepared statements later.

 try {

 // Create the connection properties.

 Properties properties = new Properties ();

 properties.put ("user", "userid");

 properties.put ("password", "password");

 // Connect to the local iSeries database.

 c = DriverManager.getConnection(URL, properties);

 // Create a Statement object.

 s = c.createStatement();

 // Delete the test table if it exists. Note that

 // this example assumes throughout that the collection

 // MYLIBRARY exists on the system.

 try {

 s.executeUpdate("DROP TABLE MYLIBRARY.MYTABLE");

 } catch (SQLException e) {

 // Just continue... the table probably did not exist.

 }

 // Run an SQL statement that creates a table in the database.

 s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

 } catch (SQLException sqle) {

 System.out.println("Database processing has failed.");

 System.out.println("Reason: " + sqle.getMessage());

 } finally {

 // Close database resources

 try {

 if (s != null) {

 s.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Statement.");

 }

 }

 // This program then uses a prepared statement to insert many

 // rows into the database.

 PreparedStatement ps = null;

 String[] nameArray = {"Rich", "Fred", "Mark", "Scott", "Jason",

 "John", "Jessica", "Blair", "Erica", "Barb"};

 try {

 // Create a PreparedStatement object that is used to insert data into the

IBM Developer Kit for Java 103

// table.

 ps = c.prepareStatement("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (?, ?)");

 for (int i = 0; i < nameArray.length; i++) {

 ps.setString(1, nameArray[i]); // Set the Name from our array.

 ps.setInt(2, i+1); // Set the ID.

 ps.executeUpdate();

 }

 } catch (SQLException sqle) {

 System.out.println("Database processing has failed.");

 System.out.println("Reason: " + sqle.getMessage());

 } finally {

 // Close database resources

 try {

 if (ps != null) {

 ps.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Statement.");

 }

 }

 // Use a prepared statement to query the database

 // table that has been created and return data from it. In

 // this example, the parameter used is arbitrarily set to

 // 5, meaning return all rows where the ID field is less than

 // or equal to 5.

 try {

 ps = c.prepareStatement("SELECT * FROM MYLIBRARY.MYTABLE " +

 "WHERE ID <= ?");

 ps.setInt(1, 5);

 // Run an SQL query on the table.

 ResultSet rs = ps.executeQuery();

 // Display all the data in the table.

 while (rs.next()) {

 System.out.println("Employee " + rs.getString(1) + " has ID " + rs.getInt(2));

 }

 } catch (SQLException sqle) {

 System.out.println("Database processing has failed.");

 System.out.println("Reason: " + sqle.getMessage());

 } finally {

 // Close database resources

 try {

 if (ps != null) {

 ps.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Statement.");

 }

 try {

 if (c != null) {

 c.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Connection.");

 }

 }

 }

}

104 IBM Systems - iSeries: Programming IBM Developer Kit for Java

CallableStatements:

The CallableStatement interface extends PreparedStatement and provides support for output and

input/output parameters. The CallableStatement interface also has support for input parameters that is

provided by the PreparedStatement interface.

 The CallableStatement interface allows the use of SQL statements to call stored procedures. Stored

procedures are programs that have a database interface. These programs possess the following:

v They can have input and output parameters, or parameters that are both input and output.

v They can have a return value.

v They have the ability to return multiple ResultSets.

Conceptually in JDBC, a stored procedure call is a single call to the database, but the program associated

with the stored procedure may process hundreds of database requests. The stored procedure program

may also perform a number of other programmatic tasks not typically done with SQL statements.

Because CallableStatements follow the PreparedStatement model of decoupling the preparation and

processing phases, they have the potential for optimized reuse (see PreparedStatement for details). Since

SQL statements of a stored procedure are bound into a program, they are processed as static SQL and

further performance benefits can be gained that way. Encapsulating a lot of database work in a single,

reusable database call is an example of using stored procedures optimally. Only this call goes over the

network to the other system, but the request can accomplish a lot of work on the remote system.

Create CallableStatements

The prepareCall method is used to create new CallableStatement objects. As with the prepareStatement

method, the SQL statement must be supplied at the time that the CallableStatement object is created. At

that time, the SQL statement is precompiled. For example, assuming a Connection object named conn

already exists, the following creates a CallableStatement object and completes the preparation phase of

getting the SQL statement ready for processing within the database:

PreparedStatement ps = conn.prepareStatement("? = CALL ADDEMPLOYEE(?, ?, ?");

The ADDEMPLOYEE stored procedure takes input parameters for a new employee name, his social

security number, and his manager’s user ID. From this information, multiple company database tables

may be updated with information about the employee such as his start date, division, department, and so

on. Further, a stored procedure is a program that may generate standard user IDs and e-mail addresses

for that employee. The stored procedure may also send an e-mail to the hiring manager with initial

usernames and passwords; the hiring manager can then provide the information to the employee.

The ADDEMPLOYEE stored procedure is set up to have a return value. The return code may be a

success or failure code that the calling program can use when a failure occurs. The return value may also

be defined as the new employee’s company ID number. Finally, the stored procedure program could have

processed queries internally and have left the ResultSets from those queries open and available for the

calling program. Querying all the new employee’s information and making it available to the caller

through a returned ResultSet is reasonable.

How to accomplish each of these types of tasks is covered in the following sections.

Specify ResultSet characteristics and auto-generated key support

As with createStatement and prepareStatement, there are multiple versions of prepareCall that provide

support for specifying ResultSet characteristics. Unlike prepareStatement, the prepareCall method does

not provide variations for working with auto-generated keys from CallableStatements (JDBC 3.0 does not

support this concept.) The following are some examples of valid calls to the prepareCall method:

IBM Developer Kit for Java 105

Example: The prepareCall method

// The following is new in JDBC 2.0

CallableStatement cs2 = conn.prepareCall("? = CALL ADDEMPLOYEE(?, ?, ?)",

 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATEABLE);

// New in JDBC 3.0

CallableStatement cs3 = conn.prepareCall("? = CALL ADDEMPLOYEE(?, ?, ?)",

 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATEABLE,

 ResultSet.HOLD_CURSOR_OVER_COMMIT);

Handle parameters

As stated, CallableStatement objects may take three types of parameters:

v IN

IN parameters are handled in the same manner as PreparedStatements. The various set methods of the

inherited PreparedStatement class are used to set the parameters.

v OUT

OUT parameters are handled with the registerOutParameter method. The most common form of

registerOutParameter takes an index parameter as the first parameter and an SQL type as the second

parameter. This tells the JDBC driver what to expect for data from the parameter when the statement is

processed. There are two other variations on the registerOutParameter method that can be found in the

java.sql package Javadoc.

v INOUT

INOUT parameters require that the work for both IN parameters and OUT parameters be done. For

each INOUT parameter, you must call a set method and the registerOutParameter method before the

statement can be processed. Failing to set or register any parameter results in an SQLException being

thrown when the statement is processed.

Refer to Example: Create a procedure with input and output parameters for more information.

As with PreparedStatements, CallableStatement parameter values remain the same between processes

unless you call a set method again. The clearParameters method does not affect parameters that are

registered for output. After calling clearParameters, all IN parameters must be set to a value again, but all

OUT parameters do not have to be registered again.

Note: The concept of parameters must not be confused with the index of a parameter marker. A stored

procedure call expects a certain number of parameters that are passed to it. A particular SQL

statement has ? characters (parameter markers) in it to represent values that are supplied at

runtime. Consider the following example to see the difference between the two concepts:

CallableStatement cs = con.prepareCall("CALL PROC(?, "SECOND", ?)");

cs.setString(1, "First"); //Parameter marker 1, Stored procedure parm 1

cs.setString(2, "Third"); //Parameter marker 2, Stored procedure parm 3

Access stored procedure parameters by name

Parameters to stored procedures have names associated with them as the following stored procedure

declaration shows:

Example: Stored procedure parameters

Note: Read the Code example disclaimer for important legal information.

106 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/api/java/sql/package-summary.html

CREATE

PROCEDURE MYLIBRARY.APROC

 (IN PARM1 INTEGER)

LANGUAGE SQL SPECIFIC MYLIBRARY.APROC

BODY: BEGIN

 <Perform a task here...>

END BODY

There is a single integer parameter with the name PARM1. In JDBC 3.0, there is support for specifying

stored procedure parameters by name as well as by index. The code to set up a CallableStatement for this

procedure is as follows:

CallableStatement cs = con.prepareCall("CALL APROC(?)");

cs.setString("PARM1", 6); //Sets input parameter at index 1 (PARM1) to 6.

Process CallableStatements:

Processing SQL stored procedure calls with a CallableStatement object is accomplished with the same

methods that are used with a PreparedStatement object.

 Return results for stored procedures

If an SQL query statement is processed within a stored procedure, the query results can be made

available to the program calling the stored procedure. Multiple queries can also be called within the

stored procedure and the calling program can process all the ResultSets that are available.

See Example: Create a procedure with multiple ResultSets for more information.

Note: If a stored procedure is processed with executeQuery and it does not return a ResultSet, an

SQLException is thrown.

Access ResultSets concurrently

Return results for stored procedures deals with ResultSets and stored procedures and provides an

example that works with all Java Development Kit (JDK) releases. In the example, the ResultSets are

processed in order from the first ResultSet that the stored procedure opened to the last ResultSet opened.

One ResultSet is closed before the next is used.

In JDK 1.4 and subsequent versions, there is support for working with ResultSets from stored procedures

concurrently.

Note: This feature was added to the underlying system support through the Command Line Interface

(CLI) in V5R2. As a result, JDK 1.4 or a subsequent version of the JDK running on a system before

V5R2 does not have this support available to it.

Return update counts for stored procedures

Returning update counts for stored procedures is a feature discussed in the JDBC specification, but it is

not currently supported on the iSeries platform. There is no way to return multiple update counts from a

stored procedure call. If an update count is needed from a processed SQL statement within a stored

procedure, there are two ways of returning the value:

v Return the value as an output parameter.

v Pass back the value as the return value from the parameter. This is a special case of an output

parameter. See Process stored procedures that have a return for more information.

IBM Developer Kit for Java 107

Process stored procedures where the expected return is unknown

If the results from a stored procedure call are not known, the execute method should be used. Once this

method has been processed, the JDBC driver can tell the application what types of results the stored

procedure generated through API calls. The execute method returns true if the result is one or more

ResultSets. Updating counts do not come from stored procedure calls.

Process stored procedures that have a return value

The iSeries platform supports stored procedures that have a return value similar to a function’s return

value. The return value from a stored procedure is labeled like other parameters marks and is labeled

such that it is assigned by the stored procedure call. An example of this is as follows:

? = CALL MYPROC(?, ?, ?)

The return value from a stored procedure call is always an integer type and must be registered like any

other output parameter.

See Example: Create a procedure with return values for more information.

Example: Create a procedure with multiple ResultSets:

This example shows how to access a database and then create a procedure with multiple ResultSets.

 Note: Read the Code example disclaimer for important legal information.
import java.sql.*;

import java.util.Properties;

public class CallableStatementExample1 {

 public static void main(java.lang.String[] args) {

 // Register the Native JDBC driver. If we cannot

 // register the driver, the test cannot continue.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 // Create the connection properties

 Properties properties = new Properties ();

 properties.put ("user", "userid");

 properties.put ("password", "password");

 // Connect to the local iSeries database

 Connection c = DriverManager.getConnection("jdbc:db2://*local", properties);

 Statement s = c.createStatement();

 // Create a procedure with multiple ResultSets.

 String sql = "CREATE PROCEDURE MYLIBRARY.SQLSPEX1 " +

 "RESULT SET 2 LANGUAGE SQL READS SQL DATA SPECIFIC MYLIBRARY.SQLSPEX1 " +

 "EX1: BEGIN " +

 " DECLARE C1 CURSOR FOR SELECT * FROM QSYS2.SYSPROCS " +

 " WHERE SPECIFIC_SCHEMA = ’MYLIBRARY’; " +

 " DECLARE C2 CURSOR FOR SELECT * FROM QSYS2.SYSPARMS " +

 " WHERE SPECIFIC_SCHEMA = ’MYLIBRARY’; " +

 " OPEN C1; " +

 " OPEN C2; " +

 " SET RESULT SETS CURSOR C1, CURSOR C2; " +

 "END EX1 ";

 try {

 s.executeUpdate(sql);

 } catch (SQLException e) {

108 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// NOTE: We are ignoring the error here. We are making

 // the assumption that the only reason this fails

 // is because the procedure already exists. Other

 // reasons that it could fail are because the C compiler

 // is not found to compile the procedure or because

 // collection MYLIBRARY does not exist on the system.

 }

 s.close();

 // Now use JDBC to run the procedure and get the results back. In

 // this case we are going to get information about ’MYLIBRARY’s stored

 // procedures (which is also where we created this procedure, thereby

 // ensuring that there is something to get.

 CallableStatement cs = c.prepareCall("CALL MYLIBRARY.SQLSPEX1");

 ResultSet rs = cs.executeQuery();

 // We now have the first ResultSet object that the stored procedure

 // left open. Use it.

 int i = 1;

 while (rs.next()) {

 System.out.println("MYLIBRARY stored procedure

 " + i + " is " + rs.getString(1) + "." +

 rs.getString(2));

 i++;

 }

 System.out.println("");

 // Now get the next ResultSet object from the system - the previous

 // one is automatically closed.

 if (!cs.getMoreResults()) {

 System.out.println("Something went wrong. There should have

 been another ResultSet, exiting.");

 System.exit(0);

 }

 rs = cs.getResultSet();

 // We now have the second ResultSet object that the stored procedure

 // left open. Use that one.

 i = 1;

 while (rs.next()) {

 System.out.println("MYLIBRARY procedure " + rs.getString(1)

 + "." + rs.getString(2) +

 " parameter: " + rs.getInt(3) + " direction:

 " + rs.getString(4) +

 " data type: " + rs.getString(5));

 i++;

 }

 if (i == 1) {

 System.out.println("None of the stored procedures have any parameters.");

 }

 if (cs.getMoreResults()) {

 System.out.println("Something went wrong,

 there should not be another ResultSet.");

 System.exit(0);

 }

 cs.close(); // close the CallableStatement object

 c.close(); // close the Connection object.

 } catch (Exception e) {

IBM Developer Kit for Java 109

System.out.println("Something failed..");

 System.out.println("Reason: " + e.getMessage());

 e.printStackTrace();

 }

 }

}

Example: Create a procedure with input and output parameters:

This example shows how to access a database and then create a procedure with input and output

parameters.

 Note: Read the Code example disclaimer for important legal information.
import java.sql.*;

import java.util.Properties;

public class CallableStatementExample2 {

 public static void main(java.lang.String[] args) {

 // Register the Native JDBC driver. If we cannot

 // register the driver, the test cannot continue.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 // Create the connection properties

 Properties properties = new Properties ();

 properties.put ("user", "userid");

 properties.put ("password", "password");

 // Connect to the local iSeries database

 Connection c = DriverManager.getConnection("jdbc:db2://*local", properties);

 Statement s = c.createStatement();

 // Create a procedure with in, out, and in/out parameters.

 String sql = "CREATE PROCEDURE MYLIBRARY.SQLSPEX2 " +

 "(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER) " +

 "LANGUAGE SQL SPECIFIC MYLIBRARY.SQLSPEX2 " +

 "EX2: BEGIN " +

 " SET P2 = P1 + 1; " +

 " SET P3 = P3 + 1; " +

 "END EX2 ";

 try {

 s.executeUpdate(sql);

 } catch (SQLException e) {

 // NOTE: We are ignoring the error here. We are making

 // the assumption that the only reason this fails

 // is because the procedure already exists. Other

 // reasons that it could fail are because the C compiler

 // is not found to compile the procedure or because

 // collection MYLIBRARY does not exist on the system.

 }

 s.close();

 // Prepare a callable statement used to run the procedure.

 CallableStatement cs = c.prepareCall("CALL MYLIBRARY.SQLSPEX2(?, ?, ?)");

 // All input parameters must be set and all output parameters must

 // be registered. Notice that this means we have two calls to make

 // for an input output parameter.

 cs.setInt(1, 5);

 cs.setInt(3, 10);

 cs.registerOutParameter(2, Types.INTEGER);

110 IBM Systems - iSeries: Programming IBM Developer Kit for Java

cs.registerOutParameter(3, Types.INTEGER);

 // Run the procedure

 cs.executeUpdate();

 // Verify the output parameters have the desired values.

 System.out.println("The value of P2 should be P1 (5) + 1 = 6. --> " + cs.getInt(2));

 System.out.println("The value of P3 should be P3 (10) + 1 = 11. --> " + cs.getInt(3));

 cs.close(); // close the CallableStatement object

 c.close(); // close the Connection object.

 } catch (Exception e) {

 System.out.println("Something failed..");

 System.out.println("Reason: " + e.getMessage());

 e.printStackTrace();

 }

 }

}

Example: Create a procedure with return values:

This example shows how to access a database and then create a procedure with return values.

 Note: Read the Code example disclaimer for important legal information.
import java.sql.*;

import java.util.Properties;

public class CallableStatementExample3 {

 public static void main(java.lang.String[] args) {

 // Register the native JDBC driver. If the driver cannot

 // be registered, the test cannot continue.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 // Create the connection properties

 Properties properties = new Properties ();

 properties.put ("user", "userid");

 properties.put ("password", "password");

 // Connect to the local iSeries database

 Connection c = DriverManager.getConnection("jdbc:db2://*local", properties);

 Statement s = c.createStatement();

 // Create a procedure with a return value.

 String sql = "CREATE PROCEDURE MYLIBRARY.SQLSPEX3 " +

 " LANGUAGE SQL SPECIFIC MYLIBRARY.SQLSPEX3 " +

 " EX3: BEGIN " +

 " RETURN 1976; " +

 " END EX3 ";

 try {

 s.executeUpdate(sql);

 } catch (SQLException e) {

 // NOTE: The error is ignored here. The assumptions is

 // made that the only reason this fails is

 // because the procedure already exists. Other

 // reasons that it could fail are because the C compiler

 // is not found to compile the procedure or because

 // collection MYLIBRARY does not exist on the system.

 }

 s.close();

IBM Developer Kit for Java 111

// Prepare a callable statement used to run the procedure.

 CallableStatement cs = c.prepareCall("? = CALL MYLIBRARY.SQLSPEX3");

 // You still need to register the output parameter.

 cs.registerOutParameter(1, Types.INTEGER);

 // Run the procedure.

 cs.executeUpdate();

 // Show that the correct value is returned.

 System.out.println("The return value

 should always be 1976 for this example:

 --> " + cs.getInt(1));

 cs.close(); // close the CallableStatement object

 c.close(); // close the Connection object.

 } catch (Exception e) {

 System.out.println("Something failed..");

 System.out.println("Reason: " + e.getMessage());

 e.printStackTrace();

 }

 }

}

ResultSets

The ResultSet interface provides access to the results generated by running queries. Conceptually, data of

a ResultSet can be thought of as a table with a specific number of columns and a specific number of

rows. By default, the table rows are retrieved in sequence. Within a row, column values can be accessed

in any order.

ResultSet characteristics:

This topic discusses ResultSet characteristics such ResultSet types, concurrency, ability to close the

ResultSet by committing the connection object, and specification of ResultSet characteristics.

 By default, all created ResultSets have a type of forward only, a concurrency of read only, and cursors are

held over commit boundaries. An exception to this is that WebSphere currently changes the cursor

holdability default so that cursors are implicitly closed when committed. These characteristics are

configurable through methods that are accessible on Statement, PreparedStatement, and CallableStatement

objects.

ResultSet types

The ResultSet type specifies the following about the ResultSet:

v Whether the ResultSet is scrollable.

v The types of Java Database Connectivity (JDBC) ResultSets that are defined by constants on the

ResultSet interface.

Definitions of these ResultSet types are as follows:

TYPE_FORWARD_ONLY

A cursor that can only be used to process from the beginning of a ResultSet to the end of it. This

is the default type.

TYPE_SCROLL_INSENSITIVE

A cursor that can be used to scroll in various ways through a ResultSet. This type of cursor is

insensitive to changes made to the database while it is open. It contains rows that satisfy the

query when the query was processed or when data is fetched.

112 IBM Systems - iSeries: Programming IBM Developer Kit for Java

TYPE_SCROLL_SENSITIVE

A cursor that can be used to scroll in various ways through a ResultSet. This type of cursor is

sensitive to changes made to the database while it is open. Changes to the database have a direct

impact on the ResultSet data.

JDBC 1.0 ResultSets are always forward only. Scrollable cursors were added in JDBC 2.0.

Note: The blocking enabled and block size connection properties affect the degree of sensitivity of a

TYPE_SCROLL_SENSITIVE cursor. Blocking enhances performance by caching data in the JDBC driver

layer itself.

See Example: Sensitive and insensitive ResultSets that shows the difference between sensitive and

insensitive ResultSets when rows are inserted into a table.

See Example: ResultSet sensitivity that shows how a change can affect a where clause of an SQL

statement based on the sensitivity of the ResultSet.

Concurrency

Concurrency determines whether the ResultSet can be updated. The types are again defined by constants

in the ResultSet interface. The available concurrency settings are as follows:

CONCUR_READ_ONLY

A ResultSet that can only be used for reading data out of the database. This is the default setting.

CONCUR_UPDATEABLE

A ResultSet that allows you to make changes to it. These changes can be placed into the

underlying database. See Change ResultSets for more information.

JDBC 1.0 ResultSets are always forward only. Updateable ResultSets were added in JDBC 2.0.

Note: According to the JDBC specification, the JDBC driver is allowed to change the ResultSet type of the

ResultSet concurrency setting if the values cannot be used together. In such cases, the JDBC driver

places a warning on the Connection object.

There is one situation where the application specifies a TYPE_SCROLL_INSENSITIVE,

CONCUR_UPDATEABLE ResultSet. Insensitivity is implemented in the database engine by making a

copy of the data. You are then not allowed to make updates through that copy to the underlying

database. If you specify this combination, the driver changes the sensitivity to

TYPE_SCROLL_SENSITIVE and create the warning indicating that your request has been changed.

Holdability

The holdability characteristic determines whether calling commit on the Connection object closes the

ResultSet. The JDBC API for working with the holdability characteristic is new in version 3.0. However,

the native JDBC driver has provided a connection property for several releases that allows you to specify

that default for all ResultSets created under the connection (see Connection properties and DataSource

properties). The API support overrides any setting for the connection property. Values for the holdability

characteristic are defined by ResultSet constants and are as follows:

HOLD_CURSOR_OVER_COMMIT

All open cursors remain open when the commit clause is called. This is the native JDBC default

value.

CLOSE_CURSORS_ON_COMMIT

All open cursors are closed when commit clause is called.

IBM Developer Kit for Java 113

Note: Calling rollback on a connection always closes all open cursors. This is a little known fact, but a

common way for databases to handle cursors.

According to the JDBC specification, the default for cursor holdability is implementation-defined. Some

platforms choose to use CLOSE_CURSORS_ON_COMMIT as the default. This does not usually become

an issue for most applications, but you must be aware of what the driver you are working with does if

you are working with cursors across commit boundaries. The IBM Toolbox for Java JDBC driver also uses

the HOLD_CURSORS_ON_COMMIT default, but the JDBC driver for UDB for Windows NT® has a

default of CLOSE_CURSORS_ON_COMMIT.

Specify ResultSet characteristics

A ResultSet’s characteristics do not change once the ResultSet object has been created. Therefore, the

characteristics have be specified before creating the object. You can specify these characteristics through

overloaded variations of the createStatement, prepareStatement, and prepareCall methods.

See the following topics to specify ResultSet characteristics:

v Specify ResultSet characteristics for Statements

v Specify ResultSet characteristics and automatically generated key support for PreparedStatement

v Specify ResultSet characteristics and auto-generated key support for CallableStatements

Note: There are ResultSet methods to obtain the ResultSet type and the concurrency of the ResultSet, but

there is no method to obtain the holdability of the ResultSet.

Example: Sensitive and insensitive ResultSets:

The following example shows the difference between sensitive and insensitive ResultSets when rows are

inserted into a table.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class Sensitive {

 public Connection connection = null;

 public static void main(java.lang.String[] args) {

 Sensitive test = new Sensitive();

 test.setup();

 test.run("sensitive");

 test.cleanup();

 test.setup();

 test.run("insensitive");

 test.cleanup();

 }

 public void setup() {

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 try {

114 IBM Systems - iSeries: Programming IBM Developer Kit for Java

s.executeUpdate("drop table cujosql.sensitive");

 } catch (SQLException e) {

 // Ignored.

 }

 s.executeUpdate("create table cujosql.sensitive(col1 int)");

 s.executeUpdate("insert into cujosql.sensitive values(1)");

 s.executeUpdate("insert into cujosql.sensitive values(2)");

 s.executeUpdate("insert into cujosql.sensitive values(3)");

 s.executeUpdate("insert into cujosql.sensitive values(4)");

 s.executeUpdate("insert into cujosql.sensitive values(5)");

 s.close();

 } catch (Exception e) {

 System.out.println("Caught exception: " + e.getMessage());

 if (e instanceof SQLException) {

 SQLException another = ((SQLException) e).getNextException();

 System.out.println("Another: " + another.getMessage());

 }

 }

 }

 public void run(String sensitivity) {

 try {

 Statement s = null;

 if (sensitivity.equalsIgnoreCase("insensitive")) {

 System.out.println("creating a TYPE_SCROLL_INSENSITIVE cursor");

 s = connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 } else {

 System.out.println("creating a TYPE_SCROLL_SENSITIVE cursor");

 s = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 }

 ResultSet rs = s.executeQuery("select * From cujosql.sensitive");

 // Fetch the five values that are there.

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 System.out.println("fetched the five rows...");

 // Note: If you fetch the last row, the ResultSet looks

 // closed and subsequent new rows that are added

 // are not be recognized.

 // Allow another statement to insert a new value.

 Statement s2 = connection.createStatement();

 s2.executeUpdate("insert into cujosql.sensitive values(6)");

 s2.close();

 // Whether a row is recognized is based on the sensitivity setting.

 if (rs.next()) {

 System.out.println("There is a row now: " + rs.getInt(1));

IBM Developer Kit for Java 115

} else {

 System.out.println("No more rows.");

 }

 } catch (SQLException e) {

 System.out.println("SQLException exception: ");

 System.out.println("Message:....." + e.getMessage());

 System.out.println("SQLState:...." + e.getSQLState());

 System.out.println("Vendor Code:." + e.getErrorCode());

 System.out.println("-------------------------------------");

 e.printStackTrace();

 }

 catch (Exception ex) {

 System.out.println("An exception other than an SQLException was thrown: ");

 ex.printStackTrace();

 }

 }

 public void cleanup() {

 try {

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

}

Example: ResultSet sensitivity:

The following example shows how a change can affect a where clause of an SQL statement based on the

sensitivity of the ResultSet.

 Some of the formatting in this example may be incorrect in order to fit this example on a printed page.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class Sensitive2 {

 public Connection connection = null;

 public static void main(java.lang.String[] args) {

 Sensitive2 test = new Sensitive2();

 test.setup();

 test.run("sensitive");

 test.cleanup();

 test.setup();

 test.run("insensitive");

 test.cleanup();

 }

 public void setup() {

116 IBM Systems - iSeries: Programming IBM Developer Kit for Java

try {

 System.out.println("Native JDBC used");

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 try {

 s.executeUpdate("drop table cujosql.sensitive");

 } catch (SQLException e) {

 // Ignored.

 }

 s.executeUpdate("create table cujosql.sensitive(col1 int)");

 s.executeUpdate("insert into cujosql.sensitive values(1)");

 s.executeUpdate("insert into cujosql.sensitive values(2)");

 s.executeUpdate("insert into cujosql.sensitive values(3)");

 s.executeUpdate("insert into cujosql.sensitive values(4)");

 s.executeUpdate("insert into cujosql.sensitive values(5)");

 try {

 s.executeUpdate("drop table cujosql.sensitive2");

 } catch (SQLException e) {

 // Ignored.

 }

 s.executeUpdate("create table cujosql.sensitive2(col2 int)");

 s.executeUpdate("insert into cujosql.sensitive2 values(1)");

 s.executeUpdate("insert into cujosql.sensitive2 values(2)");

 s.executeUpdate("insert into cujosql.sensitive2 values(3)");

 s.executeUpdate("insert into cujosql.sensitive2 values(4)");

 s.executeUpdate("insert into cujosql.sensitive2 values(5)");

 s.close();

 } catch (Exception e) {

 System.out.println("Caught exception: " + e.getMessage());

 if (e instanceof SQLException) {

 SQLException another = ((SQLException) e).getNextException();

 System.out.println("Another: " + another.getMessage());

 }

 }

 }

 public void run(String sensitivity) {

 try {

 Statement s = null;

 if (sensitivity.equalsIgnoreCase("insensitive")) {

 System.out.println("creating a TYPE_SCROLL_INSENSITIVE cursor");

 s = connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 } else {

 System.out.println("creating a TYPE_SCROLL_SENSITIVE cursor");

 s = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 }

 ResultSet rs = s.executeQuery("select col1, col2 From cujosql.sensitive,

 cujosql.sensitive2 where col1 = col2");

 rs.next();

IBM Developer Kit for Java 117

System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 System.out.println("fetched the four rows...");

 // Another statement creates a value that does not fit the where clause.

 Statement s2 =

 connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATEABLE);

 ResultSet rs2 = s2.executeQuery("select *

 from cujosql.sensitive where col1 = 5 FOR UPDATE");

 rs2.next();

 rs2.updateInt(1, -1);

 rs2.updateRow();

 s2.close();

 if (rs.next()) {

 System.out.println("There is still a row: " + rs.getInt(1));

 } else {

 System.out.println("No more rows.");

 }

 } catch (SQLException e) {

 System.out.println("SQLException exception: ");

 System.out.println("Message:....." + e.getMessage());

 System.out.println("SQLState:...." + e.getSQLState());

 System.out.println("Vendor Code:." + e.getErrorCode());

 System.out.println("----------------------------");

 e.printStackTrace();

 }

 catch (Exception ex) {

 System.out.println("An exception other

 than an SQLException was thrown: ");

 ex.printStackTrace();

 }

 }

 public void cleanup() {

 try {

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

}

Cursor movement:

The iSeries Java Database Connectivity (JDBC) drivers support scrollable ResultSets. With a scrollable

ResultSet, you can process rows of data in any order using a number of cursor-positioning methods.

 The ResultSet.next method is used to move through a ResultSet one row at a time. With Java Database

Connectivity (JDBC) 2.0, the iSeries JDBC drivers support scrollable ResultSets. Scrollable ResultSets allow

processing the rows of data in any order by using the previous, absolute, relative, first, and last methods.

118 IBM Systems - iSeries: Programming IBM Developer Kit for Java

By default, JDBC ResultSets are always forward only, meaning that the only valid cursor-positioning

method to call is next(). You have to explicitly request a scrollable ResultSet. See ResultSet types for more

information.

With a scrollable ResultSet, you can use the following cursor-positioning methods:

 Method Description

Next This method moves the cursor forward one row in the ResultSet.

The method returns true if the cursor is positioned on a valid row and false otherwise.

Previous The method moves the cursor backward one row in the ResultSet.

The method returns true if the cursor is positioned on a valid row and false otherwise.

First The method moves the cursor to the first row in the ResultSet.

The method returns true if the cursor is positioned on the first row and false if the ResultSet is

empty.

Last The method moves the cursor to the last row in the ResultSet.

The method returns true if the cursor is positioned on the last row and false if the ResultSet is

empty.

BeforeFirst The method moves the cursor immediately before the first row in the ResultSet.

For an empty ResultSet, this method has no effect. There is no return value from this method.

AfterLast The method moves the cursor immediately after the last row in the ResultSet.

For an empty ResultSet, this method has no effect. There is no return value from this method.

Relative (int rows) The method moves the cursor relative to its current position.

v If rows is 0, this method has no effect.

v If rows is positive, the cursor is moved forward that many rows. If there are fewer rows

between the current position and the end of the ResultSet than specified by the input

parameters, this method operates like afterLast.

v If rows is negative, the cursor is moved backward that many rows. If there are fewer rows

between the current position and the end of the ResultSet than specified by the input

parameter, this method operates like beforeFirst.

The method returns true if the cursor in positioned on a valid row and false otherwise.

Absolute (int row) The method moves the cursor to the row specified by row value.

If row value is positive, the cursor is positioned that many rows from the beginning of the

ResultSet. The first row is numbered 1, the second is 2, and so on. If there are fewer rows in

the ResultSet than specified by the row value, this method operates the same way as afterLast.

If row value is negative, the cursor is positioned that many rows from the end of the ResultSet.

The last row is numbered -1, the second to last is -2, and so on. If there are fewer rows in the

ResultSet than specified by the row value, this method operates the same way beforeFirst.

If row value is 0, this method operates the same way as beforeFirst.

The method returns true if the cursor is positioned on a valid row and false otherwise.

Retrieve ResultSet data:

The ResultSet object provides several methods for obtaining column data for a row. All are of the form

get<Type>, where <Type> is a Java data type. Some examples of these methods include getInt, getLong,

getString, getTimestamp, and getBlob. Nearly all of these methods take a single parameter that is either

the column index within the ResultSet or the column name.

IBM Developer Kit for Java 119

ResultSet columns are numbered, starting with 1. If the column name is used and there is more than one

column in the ResultSet with the same name, the first one is returned. There are some get<Type>

methods that have additional parameters, such as the optional Calendar object, which can be passed to

getTime, getDate, and getTimestamp. Refer to the Javadoc for the java.sql package for full details.

For get methods that return objects, the return value is null when the column in the ResultSet is null. For

primitive types, null cannot be returned. In these cases, the value is 0 or false. If an application must

distinguish between null, and 0 or false, the wasNull method can be used immediately after the call. This

method can then determine whether the value was an actual 0 or false value, or if that value was

returned because the ResultSet value was indeed null.

See Example: ResultSet interface for IBM Developer Kit for Java for an example on how to use the

ResultSet interface.

ResultSetMetaData support

When the getMetaData method is called on a ResultSet object, the method returns a ResultSetMetaData

object describing the columns of that ResultSet object. When the SQL statement being processed is

unknown until runtime, the ResultSetMetaData can be used to determine what get methods should be

used to retrieve the data. The following code example uses ResultSetMetaData to determine each column

type in the result set:

Example: Use ResultSetMetaData to determine each column type in a result set

Note: Read the Code example disclaimer for important legal information.

ResultSet rs = stmt.executeQuery(sqlString);

ResultSetMetaData rsmd = rs.getMetaData();

int colType [] = new int[rsmd.getColumnCount()];

for (int idx = 0, int col = 1; idx < colType.length; idx++, col++)

colType[idx] = rsmd.getColumnType(col);

See “Example: ResultSetMetaData interface for IBM Developer Kit for Java” for an example of how to use

the ResultSetMetaData interface.

Example: ResultSetMetaData interface for IBM Developer Kit for Java:

Note: Read the Code example disclaimer for important legal information.

import java.sql.*;

/**

ResultSetMetaDataExample.java

This program demonstrates using a ResultSetMetaData and

a ResultSet to display all the metadata about a ResultSet

created querying a table. The user passes the value for the

table and library in.

**/

public class ResultSetMetaDataExample {

 public static void main(java.lang.String[] args)

 {

 if (args.length != 2) {

 System.out.println("Usage: java ResultSetMetaDataExample <library> <table>");

 System.out.println("where <library> is the library that contains <table>");

 System.exit(0);

 }

 Connection con = null;

 Statement s = null;

 ResultSet rs = null;

120 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/api/java/sql/package-summary.html

ResultSetMetaData rsmd = null;

 try {

 // Get a database connection and prepare a statement.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 con = DriverManager.getConnection("jdbc:db2:*local");

 s = con.createStatement();

 rs = s.executeQuery("SELECT * FROM " + args[0] + "." + args[1]);

 rsmd = rs.getMetaData();

 int colCount = rsmd.getColumnCount();

 int rowCount = 0;

 for (int i = 1; i <= colCount; i++) {

 System.out.println("Information about column " + i);

 System.out.println(" Name..........: " + rsmd.getColumnName(i));

 System.out.println(" Data Type.....: " + rsmd.getColumnType(i) +

 " (" + rsmd.getColumnTypeName(i) + ")");

 System.out.println(" Precision.....: " + rsmd.getPrecision(i));

 System.out.println(" Scale.........: " + rsmd.getScale(i));

 System.out.print (" Allows Nulls..: ");

 if (rsmd.isNullable(i)==0)

 System.out.println("false");

 else

 System.out.println("true");

 }

 } catch (Exception e) {

 // Handle any errors.

 System.out.println("Oops... we have an error... ");

 e.printStackTrace();

 } finally {

 // Ensure we always clean up. If the connection gets closed, the

 // statement under it closes as well.

 if (con != null) {

 try {

 con.close();

 } catch (SQLException e) {

 System.out.println("Critical error - cannot close connection object");

 }

 }

 }

 }

}

 Collected links

 Code example disclaimer

Change ResultSets:

With the iSeries JDBC drivers, you can change ResultSets by performing several tasks.

 The default setting for ResultSets is read only. However, with Java Database Connectivity (JDBC) 2.0, the

iSeries JDBC drivers provide complete support for updateable ResultSets.

You can refer to ResultSet concurrency on how to update ResultSets.

Update rows

Rows may be updated in a database table through the ResultSet interface. The steps involved in this

process are the following:

IBM Developer Kit for Java 121

1. Change the values for a specific row using various update<Type> methods, where <Type> is a Java

data type. These update<Type> methods correspond to the get<Type> methods available for retrieving

values.

2. Apply the rows to the underlying database.

The database itself is not updated until the second step. Updating columns in a ResultSet without calling

the updateRow method does not make any changes to the database.

Planned updates to a row can be thrown away with the cancelUpdates method. Once the updateRow

method is called, changes to the database are final and cannot be undone.

Note: The rowUpdated method always returns false as the database does not have a way to point out

which rows have been updated. Correspondingly, the updatesAreDetected method returns false.

Delete rows

Rows may be deleted in a database table through the ResultSet interface. The deleteRow method is

provided and deletes the current row.

Insert rows

Rows may be inserted into a database table through the ResultSet interface. This process makes use of an

″insert row″ which applications specifically move the cursor to and build the values they want to insert

into the database. The steps involved in this process are as follows:

1. Position the cursor on the insert row.

2. Set each of the values for the columns in the new row.

3. Insert the row into the database and optionally move the cursor back to the current row within the

ResultSet.

Note: New rows are not inserted into the table where the cursor is positioned. They are typically added

to the end of the table data space. A relational database is not position-dependent by default. For

example, you should not expect to move the cursor to the third row and insert something that

shows up before the forth row when subsequent users fetch the data.

Support for positioned updates

Besides the method for updating the database through a ResultSet, SQL statements can be used to issue

positioned updates. This support relies on using named cursors. JDBC provides the setCursorName

method from Statement and the getCursorName method from ResultSet to provide access to these values.

Two DatabaseMetaData methods, supportsPositionedUpdated and supportsPositionedDelete, both return

true as this feature is supported with the native JDBC driver.

See Example: Change values with a statement through another statement’s cursor for more information.

See Example: Remove values from a table through another statement’s cursor for more information.

Example: Remove values from a table through another statement’s cursor:

This is an example of how to remove values from a table through another statement’s cursor.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

122 IBM Systems - iSeries: Programming IBM Developer Kit for Java

import java.sql.*;

public class UsingPositionedDelete {

 public Connection connection = null;

 public static void main(java.lang.String[] args) {

 UsingPositionedDelete test = new UsingPositionedDelete();

 test.setup();

 test.displayTable();

 test.run();

 test.displayTable();

 test.cleanup();

 }

/**

Handle all the required setup work.

**/

 public void setup() {

 try {

 // Register the JDBC driver.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.WHERECUREX");

 } catch (SQLException e) {

 // Ignore problems here.

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.WHERECUREX (" +

 "COL_IND INT, COL_VALUE CHAR(20)) ");

 for (int i = 1; i <= 10; i++) {

 s.executeUpdate("INSERT INTO CUJOSQL.WHERECUREX VALUES(" + i + ", ’FIRST’)");

 }

 s.close();

 } catch (Exception e) {

 System.out.println("Caught exception: " + e.getMessage());

 e.printStackTrace();

 }

 }

/**

In this section, all the code to perform the testing should

be added. If only one connection to the database is needed,

the global variable ’connection’ can be used.

**/

 public void run() {

 try {

 Statement stmt1 = connection.createStatement();

 // Update each value using next().

 stmt1.setCursorName("CUJO");

 ResultSet rs = stmt1.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX " +

 "FOR UPDATE OF COL_VALUE");

 System.out.println("Cursor name is " + rs.getCursorName());

IBM Developer Kit for Java 123

PreparedStatement stmt2 = connection.prepareStatement

 ("DELETE FROM " + " CUJOSQL.WHERECUREX WHERE CURRENT OF " +

 rs.getCursorName ());

 // Loop through the ResultSet and update every other entry.

 while (rs.next ()) {

 if (rs.next())

 stmt2.execute ();

 }

 // Clean up the resources after they have been used.

 rs.close ();

 stmt2.close ();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

/**

In this section, put all clean-up work for testing.

**/

 public void cleanup() {

 try {

 // Close the global connection opened in setup().

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

/**

Display the contents of the table.

**/

 public void displayTable()

 {

 try {

 Statement s = connection.createStatement();

 ResultSet rs = s.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX");

 while (rs.next ()) {

 System.out.println("Index " + rs.getInt(1) + " value " + rs.getString(2));

 }

 rs.close ();

 s.close();

 System.out.println("---");

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

}

 Collected links

 Code example disclaimer

124 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Example: Change values with a statement through another statement’s cursor:

This is an example of how to change values with a statement through another statement’s cursor.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class UsingPositionedUpdate {

 public Connection connection = null;

 public static void main(java.lang.String[] args) {

 UsingPositionedUpdate test = new UsingPositionedUpdate();

 test.setup();

 test.displayTable();

 test.run();

 test.displayTable();

 test.cleanup();

 }

/**

Handle all the required setup work.

**/

 public void setup() {

 try {

 // Register the JDBC driver.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.WHERECUREX");

 } catch (SQLException e) {

 // Ignore problems here.

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.WHERECUREX (" +

 "COL_IND INT, COL_VALUE CHAR(20)) ");

 for (int i = 1; i <= 10; i++) {

 s.executeUpdate("INSERT INTO CUJOSQL.WHERECUREX VALUES(" + i + ", ’FIRST’)");

 }

 s.close();

 } catch (Exception e) {

 System.out.println("Caught exception: " + e.getMessage());

 e.printStackTrace();

 }

 }

/**

In this section, all the code to perform the testing should

be added. If only one connection to the database is required,

the global variable ’connection’ can be used.

**/

 public void run() {

 try {

 Statement stmt1 = connection.createStatement();

IBM Developer Kit for Java 125

// Update each value using next().

 stmt1.setCursorName("CUJO");

 ResultSet rs = stmt1.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX " +

 "FOR UPDATE OF COL_VALUE");

 System.out.println("Cursor name is " + rs.getCursorName());

 PreparedStatement stmt2 = connection.prepareStatement ("UPDATE "

 + " CUJOSQL.WHERECUREX

 SET COL_VALUE = ’CHANGED’

 WHERE CURRENT OF "

 + rs.getCursorName ());

 // Loop through the ResultSet and update every other entry.

 while (rs.next ()) {

 if (rs.next())

 stmt2.execute ();

 }

 // Clean up the resources after they have been used.

 rs.close ();

 stmt2.close ();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

/**

In this section, put all clean-up work for testing.

**/

 public void cleanup() {

 try {

 // Close the global connection opened in setup().

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

/**

Display the contents of the table.

**/

 public void displayTable()

 {

 try {

 Statement s = connection.createStatement();

 ResultSet rs = s.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX");

 while (rs.next ()) {

 System.out.println("Index " + rs.getInt(1) + " value " + rs.getString(2));

 }

 rs.close ();

 s.close();

 System.out.println("---");

126 IBM Systems - iSeries: Programming IBM Developer Kit for Java

} catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

}

 Collected links

 Code example disclaimer

Create ResultSets:

To create a ResultSet object, you can use executeQuery methods, or other methods. This article describes

options for creating ResultSets.

 These methods are from the Statement, PreparedStatement, or CallableStatement interfaces. There are,

however, other available methods. For example, DatabaseMetaData methods such as getColumns,

getTables, getUDTs, getPrimaryKeys, and so on, return ResultSets. It is also possible to have a single SQL

statement return multiple ResultSets for processing. You can also use the getResultSet method to retrieve

a ResultSet object after calling the execute method provided by the Statement, PreparedStatement, or

CallableStatement interfaces.

See Example: Create a procedure with multiple ResultSets for more information.

Close ResultSets

While a ResultSet object is automatically closed when the Statement object with which it is associated

closes, it is recommended that you close ResultSet objects when you are finished using them. By doing

so, you immediately free internal database resources that can increase application throughput.

It is also important to close ResultSets generated by DatabaseMetaData calls. Because you do not directly

have access to the Statement object that was used to create these ResultSets, you do not call close on the

Statement object directly. These objects are linked together in such a way that the JDBC driver closes the

internal Statement object when you close the external ResultSet object. When these objects are not closed

manually, the system continues to work; however, it uses more resources than is necessary.

Note: The holdability characteristic of ResultSets can also close ResultSets automatically on you behalf.

Calling close multiple times on a ResultSet object is allowed.

Example: ResultSet interface for IBM Developer Kit for Java:

This is an example of how to use the ResultSet interface.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

/**

ResultSetExample.java

This program demonstrates using a ResultSetMetaData and

a ResultSet to display all the data in a table even though

the program that gets the data does not know what the table

is going to look like (the user passes in the values for the

table and library).

**/

public class ResultSetExample {

 public static void main(java.lang.String[] args)

 {

IBM Developer Kit for Java 127

if (args.length != 2) {

 System.out.println("Usage: java ResultSetExample <library> <table>");

 System.out.println(" where <library> is the library that contains <table>");

 System.exit(0);

 }

 Connection con = null;

 Statement s = null;

 ResultSet rs = null;

 ResultSetMetaData rsmd = null;

 try {

 // Get a database connection and prepare a statement.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 con = DriverManager.getConnection("jdbc:db2:*local");

 s = con.createStatement();

 rs = s.executeQuery("SELECT * FROM " + args[0] + "." + args[1]);

 rsmd = rs.getMetaData();

 int colCount = rsmd.getColumnCount();

 int rowCount = 0;

 while (rs.next()) {

 rowCount++;

 System.out.println("Data for row " + rowCount);

 for (int i = 1; i <= colCount; i++)

 System.out.println(" Row " + i + ": " + rs.getString(i));

 }

 } catch (Exception e) {

 // Handle any errors.

 System.out.println("Oops... we have an error... ");

 e.printStackTrace();

 } finally {

 // Ensure we always clean up. If the connection gets closed, the

 // statement under it closes as well.

 if (con != null) {

 try {

 con.close();

 } catch (SQLException e) {

 System.out.println("Critical error - cannot close connection object");

 }

 }

 }

 }

}

JDBC object pooling

Object pooling is the most common topic to come up when discussing Java Database Connectivity (JDBC)

and performance. Since many objects used in JDBC are expensive to create such as Connection,

Statement, and ResultSet objects, significant performance benefits can be achieved by reusing these

objects instead of creating every time you need them.

Many applications already handle object pooling on your behalf. For example, WebSphere has extensive

support for pooling JDBC objects and allows you to control how the pool is managed. Because of this,

you can get the functionality you want without being concerned about your own pooling mechanisms.

However, when the support is not provided, you must find a solution for all but trivial applications.

Use DataSource support for object pooling:

You can use DataSources to have multiple applications share a common configuration for accessing a

database. This is accomplished by having each application reference the same DataSource name.

128 IBM Systems - iSeries: Programming IBM Developer Kit for Java

By using DataSources, many applications can be changed from a central location. For example, if you

change the name of a default library used by all your applications and you have used a single

DataSource to obtain connections for all of them, you can update the name of the collection in that

DataSource. All of your applications then start using the new default library.

When using DataSources to obtain connections for an application, you can use the native JDBC driver’s

built-in support for connection pooling. This support is provided as an implementation of the

ConnectionPoolDataSource interface.

Pooling is accomplished by handing out ″logical″ Connection objects instead of physical Connection

objects. A logical Connection object is a connection object that is returned by a pooled Connection object.

Each logical connection object acts as a temporary handle to the physical connection represented by the

pooled connection object. To the application, when the Connection object is returned, there is no

noticeable difference between the two. The subtle difference comes when you call the close method on

the Connection object. This call invalidates the logical connection and returns the physical connection to

the pool where another application is able to use the physical connection. This technique lets many

logical connection objects reuse a single physical connection.

Set up connection pooling

Connection pooling is accomplished by creating a DataSource object that references a

ConnectionPoolDataSource object. ConnectionPoolDataSource objects have properties that can be set for

handling various aspects of pool maintenance.

Refer to the example on how to set up connection pooling with UDBDataSource and

UDBConnectionPoolDataSource more details. You can also see the Java Naming and Directory Interface

(JNDI) for details about the role JNDI plays in this example.

From the example, the link that binds the two DataSource objects together is the dataSourceName. The

link tells the DataSource object to defer establishing connections to the ConnectionPoolDataSource object

that manages pooling automatically.

Pooling and non-pooling applications

There is no difference between an application that uses Connection pooling and one that does not.

Therefore, pooling support can be added after the application code is complete, without making any

changes to the application code.

Refer to Example: Test the performance of connection pooling for more details.

The following is output from running the previous program locally during development.

Start timing the non-pooling DataSource version... Time spent: 6410

Start timing the pooling version... Time spent: 282

Java program completed.

By default, a UDBConnectionPoolDataSource pools a single connection. If an application needs a

connection several times and only needs one connection at a time, using UDBConnectionPoolDataSource

is a perfect solution. If you need many simultaneous connections, you must configure your

ConnectionPoolDataSource to match your needs and resources.

Example: Set up connection pooling with UDBDataSource and UDBConnectionPoolDataSource:

IBM Developer Kit for Java 129

This is an example of how to use connection pooling with UDBDataSource and

UDBConnectionPoolDataSource.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.naming.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

import com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource;

public class ConnectionPoolingSetup

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Create a ConnectionPoolDataSource implementation

 UDBConnectionPoolDataSource cpds = new UDBConnectionPoolDataSource();

 cpds.setDescription("Connection Pooling DataSource object");

 // Establish a JNDI context and bind the connection pool data source

 Context ctx = new InitialContext();

 ctx.rebind("ConnectionSupport", cpds);

 // Create a standard data source that references it.

 UDBDataSource ds = new UDBDataSource();

 ds.setDescription("DataSource supporting pooling");

 ds.setDataSourceName("ConnectionSupport");

 ctx.rebind("PoolingDataSource", ds);

 }

}

Example: Test the performance of connection pooling:

This is an example of how to test the performance of the pooling example against the performance of the

non-pooling example.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.naming.*;

import java.util.*;

import javax.sql.*;

public class ConnectionPoolingTest

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 Context ctx = new InitialContext();

 // Do the work without a pool:

 DataSource ds = (DataSource) ctx.lookup("BaseDataSource");

 System.out.println("\nStart timing the non-pooling DataSource version...");

 long startTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 Connection c1 = ds.getConnection();

 c1.close();

 }

 long endTime = System.currentTimeMillis();

 System.out.println("Time spent: " + (endTime - startTime));

 // Do the work with pooling:

 ds = (DataSource) ctx.lookup("PoolingDataSource");

 System.out.println("\nStart timing the pooling version...");

130 IBM Systems - iSeries: Programming IBM Developer Kit for Java

startTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 Connection c1 = ds.getConnection();

 c1.close();

 }

 endTime = System.currentTimeMillis();

 System.out.println("Time spent: " + (endTime - startTime));

 }

}

ConnectionPoolDataSource properties:

You can configure the ConnectionPoolDataSource interface by using the set of properties that it provides.

 Descriptions of these properties are provided in the following table.

 Property Description

initialPoolSize When the pool is first instantiated, this property

determines how many connections are placed into the

pool. If this value is specified outside the range of

minPoolSize and maxPoolSize, either minPoolSize or

maxPoolSize is used as the number of initial connections

to create.

maxPoolSize As the pool is used, more connections may be requested

than the pool has in it. This property specifies the

maximum number of connections allowed to be created

in the pool.

Applications do not ″block″ and wait for a connection to

be returned to the pool when the pool is at its maximum

size and all connections are in use. Instead, the JDBC

driver constructs a new connection based on the

DataSource properties and returns the connection.

If a maxPoolSize of 0 is specified, the pool is allowed to

grow unbounded as long as the system has resources

available to hand out.

minPoolSize Spikes in using the pool can cause it to increase the

number of connections in it. If the activity level

diminishes to the point where some Connections are

never pulled out of the pool, the resources are being

taken up for no particular reason.

In such cases, the JDBC driver has the ability to release

some of the connections that it has accumulated. This

property allows you to tell the JDBC to release

connections, ensuring that it always has a certain number

of connections available to use.

If a minPoolSize of 0 is specified, it is possible for the

pool to free all of its connections and for the application

to actually pay for the connection time for each

connection request.

IBM Developer Kit for Java 131

Property Description

maxIdleTime Connections keep track of how long they have been

sitting around without being used. This property

specifies how long an application allows connections to

be unused before they are released (that is, there are

more connections than are needed).

This property is a time in seconds and does not specify

when the actual close occurs. It specifies when enough

time has passed that the connection should be released.

propertyCycle This property represents the number of seconds that are

allowed to pass between the enforcement of these rules.

Note: Setting either the maxIdleTime or the propertyCycle time to 0 means that the JDBC driver does not

check for connections to be removed from the pool on its own. The rules specified for initial, min,

and max size are still enforced.

When maxIdleTime and propertyCycle are not 0, a management thread is used to watch over the

pool. The thread wakes up every propertyCycle second and checks all the connections in the pool

to see which ones have been there without being used for more than maxIdleTime seconds.

Connections fitting this criterion are removed from the pool until the minPoolSize is reached.

DataSource-based statement pooling:

The maxStatements property, available on the UDBConnectionPoolDataSource interface, allows for

statement pooling within the connection pool. Statement pooling only has an effect on

PreparedStatements and CallableStatements. Statement objects are not pooled.

 The implementation of statement pooling is similar to that of connection pooling. When the application

calls Connection.prepareStatement(″select * from tablex″), the pooling module checks if the Statement

object has already been prepared under the connection. If it has, a logical PreparedStatement object is

handed to you instead of the physical object. When you call close, the Connection object is returned to

the pool, the logical Connection object is thrown away, and the Statement object can be reused.

The maxStatements property allows the DataSource to specify how many statements can be pooled under

a connection. A value of 0 indicates that statement pooling should not be used. When the statement pool

is full, a least recently used algorithm is applied to determine which statement is to be thrown out.

Example: Test the performance of two DataSources tests one DataSource that uses connection pooling

only and the other DataSource that uses statement and connection pooling.

The following example is output from running this program locally during development.

Deploying statement pooling data source Start timing the connection pooling only version... Time spent:

26312

Starting timing the statement pooling version... Time spent: 2292 Java program completed

Example: Test the performance of two DataSources:

This is an example of testing one DataSource that uses connection pooling only and the other DataSource

that uses statement and connection pooling.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

132 IBM Systems - iSeries: Programming IBM Developer Kit for Java

import java.sql.*;

import javax.naming.*;

import java.util.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

import com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource;

public class StatementPoolingTest

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 Context ctx = new InitialContext();

 System.out.println("deploying statement pooling data source");

 deployStatementPoolDataSource();

 // Do the work with connection pooling only.

 DataSource ds = (DataSource) ctx.lookup("PoolingDataSource");

 System.out.println("\nStart timing the connection pooling only version...");

 long startTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 Connection c1 = ds.getConnection();

 PreparedStatement ps = c1.prepareStatement("select * from qsys2.sysprocs");

 ResultSet rs = ps.executeQuery();

 c1.close();

 }

 long endTime = System.currentTimeMillis();

 System.out.println("Time spent: " + (endTime - startTime));

 // Do the work with statement pooling added.

 ds = (DataSource) ctx.lookup("StatementPoolingDataSource");

 System.out.println("\nStart timing the statement pooling version...");

 startTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 Connection c1 = ds.getConnection();

 PreparedStatement ps = c1.prepareStatement("select * from qsys2.sysprocs");

 ResultSet rs = ps.executeQuery();

 c1.close();

 }

 endTime = System.currentTimeMillis();

 System.out.println("Time spent: " + (endTime - startTime));

 }

 private static void deployStatementPoolDataSource()

 throws Exception

 {

 // Create a ConnectionPoolDataSource implementation

 UDBConnectionPoolDataSource cpds = new UDBConnectionPoolDataSource();

 cpds.setDescription("Connection Pooling DataSource object with Statement pooling");

 cpds.setMaxStatements(10);

 // Establish a JNDI context and bind the connection pool data source

 Context ctx = new InitialContext();

 ctx.rebind("StatementSupport", cpds);

 // Create a standard datasource that references it.

 UDBDataSource ds = new UDBDataSource();

 ds.setDescription("DataSource supporting statement pooling");

 ds.setDataSourceName("StatementSupport");

IBM Developer Kit for Java 133

ctx.rebind("StatementPoolingDataSource", ds);

 }

}

Build your own connection pooling:

You can develop your own connection and statement pooling without requiring support for DataSources

or relying on another product.

 The pooling techniques are demonstrated on a small Java application, but are equally applicable to

servlets or large n-tiered applications. This example is used to demonstrate the performance issues.

The demonstration application has two functions:

v To insert a new index and name into a database table.

v To read the name for a given index from the table.

The complete code to a connection pooling application can be downloaded from

JDBC tips and trick.

The example application does not perform well. Running 100 calls to the getValue method and 100 calls

to the putValue method through this code took an average of 31.86 seconds on a standard workstation.

The problem is that there is too much database work for every request. That is, you get a connection, get

a statement, process the statement, close the statement, and close the connection. Instead of discarding

everything after each request, there must be a way to reuse portions of this process. Connection pooling

is replacing the create connection code with code to obtain a connection from the pool, and then

replacing the close connection code with code to return the connection to the pool for use.

The connection pool’s constructor creates the connections and places them in the pool. The pool class has

take and put methods for locating a connection to use and for returning the connection to the pool when

done working with the connection. These methods are synchronized because the pool object is a shared

resource, but you do not want multiple threads to simultaneously try to manipulate the pooled resources.

There is a change to the calling code for the getValue method. The putValue method is not shown, but

the exact change is made to it and is available from IBM’s Developer Kit for Java JDBC Web page. The

instantiation of the connection pool object is also not shown. You can call the constructor and pass in the

number of connection objects that you want in the pool. This step should be done when you start up the

application.

Running the previous application (that is, having 100 getValue method and 100 putValue method

requests) with these changes took an average of 13.43 seconds with the connection pooling code in place.

The processing time for the workload is cut by more than half the original processing time without

connection pooling.

Build your own statement pooling

When using connection pooling, time is wasted when creating and closing a statement when each

statement is processed. This is another example of wasting an object that can be reused.

To reuse an object, you can use the prepared statement class. In most applications, the same SQL

statements are reused with minor changes. For example, one iteration through an application might

generate the following query:

SELECT * from employee where salary > 100000

134 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://www.ibm.com/developerworks/wireless/library/wi-tip28.html

The next iteration might generate the following query:

SELECT * from employee where salary > 50000

This is the same query, but it uses a different parameter. Both queries can be accomplished with the

following query:

SELECT * from employee where salary > ?

You can then set the parameter marker (denoted by the question mark) to 100000 when processing the

first query and 50000 when processing the second query. This enhances performance for three reasons

beyond what the connection pool can offer:

v Fewer objects are created. A PreparedStatement object is created and reused instead of creating a

Statement object for every request. Therefore, you run fewer constructors.

v The database work to set up the SQL statement (called the prepare) can be reused. Preparing SQL

statements is reasonably expensive as it involves determining what the SQL statement text says and

how the system should accomplish the task requested.

v When removing the additional object creations, there is a benefit that is not often considered. There is

no need to destroy what was not created. This model is easier on the Java garbage collector and also

benefits performance over time with many users.

The demonstration program can be changed to pool PreparedStatement objects instead of Connections.

Changing the program allows you to reuse more object and improve performance. You can begin by

writing the class that contains the objects to be pooled. This class must encapsulate the various resources

to be used. For the connection pool example, the Connection was the only pooled resource, so there was

no need for an encapsulating class. Each pooled object must contain a Connection and two

PreparedStatements. You can then create a pool class that contains database access objects instead of

connections.

Finally, the application must change to obtain a database access object and specify which resource from

the object it wants to use. Other than specifying the specific resource, the application remains the same.

With this change, the same test run now takes an average of 0.83 seconds. This time is about 38 times

faster than the original version of the program.

Considerations

Performance improves through replication. If an item is not reused, then it is wasting resources to pool it.

Most applications contain critical sections of code. Typically, an application uses 80 to 90 percent of its

processing time on only 10 to 20 percent of the code. If there are 10,000 SQL statements potentially used

in an application, not all of them are pooled. The objective is to identify and pool the SQL statements that

are used in the application’s critical sections of code.

Creating objects in a Java implementation can carry a heavy cost. The pooling solution can be used with

advantage. Objects used in the process are created at the beginning, before other users attempt to use the

system. These objects are reused as often as required. Performance is excellent and it is possible to

fine-tune the application over time to facilitate its use for greater numbers of users. As a result, more

objects are pooled. Moreover, it permits more efficient multithreading of the application’s database access

to gain greater throughput.

Java (using JDBC) is based on dynamic SQL and tends to be slow. Pooling can minimize this problem. By

preparing the statements at startup, access to the database can be rendered static. There is little difference

in performance between dynamic and static SQL after the statement is prepared.

The performance of database access in Java can be efficient and can be accomplished without sacrificing

object-oriented design or code maintainability. Writing code to build statement and connection pooling is

IBM Developer Kit for Java 135

not difficult. Furthermore, the code can be changed and enhanced to support multiple applications and

application types (Web-based, client/server) and so on.

Batch updates

Batch update support allows any updates to the database to be passed as a single transaction between the

user program and the database. This procedure can significantly improve performance when many

updates must be performed at once.

For example, if a large company requires its newly hired employees to start work on a Monday, this

requirement makes it necessary to process many updates (in this case, insertions) to the employee

database at one time. Creating a batch of updates and submitting them to the database as one unit can

save you processing time.

There are two types of batch updates:

v Batch updates that use Statement objects.

v Batch updates that use PreparedStatement objects.

Statement batch update:

To perform a Statement batch update, you must turn off auto-commit. In Java Database Connectivity

(JDBC), auto-commit is on by default. Auto-commit means any updates to the database are committed

after each SQL statement is processed. If you want to treat a group of statements being handed to the

database as one functional group, you do not want the database committing each statement individually.

If you do not turn off auto-commit and a statement in the middle of the batch fails, you cannot roll back

the entire batch and try it again because half of the statements have been made final. Further, the

additional work of committing each statement in a batch creates a lot of overhead.

 See Transactions for more details.

After turning off auto-commit, you can create a standard Statement object. Instead of processing

statements with methods such as executeUpdate, you add them to the batch with the addBatch method.

Once you have added all the statements you want to the batch, you can process all of them with the

executeBatch method. You can empty the batch at anytime with the clearBatch method.

The following example shows how you can use these methods:

Example: Statement batch update

Note: Read the Code example disclaimer for important legal information.

connection.setAutoCommit(false);

Statement statement = connection.createStatement();

statement.addBatch("INSERT INTO TABLEX VALUES(1, ’Cujo’)");

statement.addBatch("INSERT INTO TABLEX VALUES(2, ’Fred’)");

statement.addBatch("INSERT INTO TABLEX VALUES(3, ’Mark’)");

int [] counts = statement.executeBatch();

connection.commit();

In this example, an array of integers is returned from the executeBatch method. This array has one

integer value for each statement that is processed in the batch. If values are being inserted into the

database, the value for each statement is 1 (that is, assuming successful processing). However, some of

the statements may be update statements that affect multiple rows. If you put any statements in the batch

other than INSERT, UPDATE, or DELETE, an exception occurs.

PreparedStatement batch update:

A preparedStatement batch is similar to the Statement batch; however, a preparedStatement batch always

works off the same prepared statement, and you only change the parameters to that statement.

136 IBM Systems - iSeries: Programming IBM Developer Kit for Java

The following is an example that uses a preparedStatement batch.

Note: Read the Code example disclaimer for important legal information.

connection.setAutoCommit(false);

PreparedStatement statement =

 connection.prepareStatement("INSERT INTO TABLEX VALUES(?, ?)");

statement.setInt(1, 1);

statement.setString(2, "Cujo");

statement.addBatch();

statement.setInt(1, 2);

statement.setString(2, "Fred");

statement.addBatch();

statement.setInt(1, 3);

statement.setString(2, "Mark");

statement.addBatch();

int [] counts = statement.executeBatch();

connection.commit();

BatchUpdateException:

An important consideration of batch updates is what action to take when a call to the executeBatch

method fails. In this case, a new type of exception, called BatchUpdateException, is thrown. The

BatchUpdateException is a subclass of SQLException and it allows you to call all the same methods you

have always called to receive the message, the SQLState, and vendor code.

 BatchUpdateException also provides the getUpdateCounts method that returns an integer array. The

integer array contains update counts from all the statements in the batch that were processed up to the

point where the failure occurred. The array length tells you which statement in the batch failed. For

example, if the array returned in the exception has a length of three, the fourth statement in the batch

failed. Therefore, from the single BatchUpdateException object that is returned, you can determine the

update counts for all the statements that were successful, which statement failed, and all the information

about the failure.

The standard performance of processing batched updates is equivalent to the performance of processing

each statement independently. You can refer to Blocked insert support for more information on optimized

support for batch updates. You should still use the new model when coding and take advantage of future

performance optimizations.

Note: In the JDBC 2.1 specification, a different option is provided for how exception conditions for batch

updates are handled. JDBC 2.1 introduces a model where the processing batch continues after a

batch entry fails. A special update count is placed in the array of update count integers that is

returned for each entry that fails. This allows large batches to continue processing even though one

of their entries fails. See the JDBC 2.1 or JDBC 3.0 specification for details on these two modes of

operation. By default, the native JDBC driver uses the JDBC 2.0 definition. The driver provides a

Connection property that is used when using DriverManager to establish connections. The driver

also provides a DataSource property that is used when using DataSources to establish connections.

These properties allow applications to choose how they want batch operations to handle failures.

Blocked insert support:

You can use a blocked insert is an iSeries operation to insert several rows into a database table at a time.

 A blocked insert is a special type of operation on an iSeries server that provides a highly optimized way

to insert several rows into a database table at a time. Blocked inserts can be thought of as a subset of

batched updates. Batched updates can be any form of an update request, but blocked inserts are specific.

However, blocked insert types of batched updates are common; the native JDBC driver has been changed

to take advantage of this feature.

IBM Developer Kit for Java 137

Because of system restrictions when using blocked insert support, the default setting for the native JDBC

driver is to have blocked insert disabled. It can be enabled through a Connection property or a

DataSource property. Most of the restrictions when using a blocked insert can be checked and handled on

your behalf, but a few restrictions cannot; thus, this is the reason for turning off blocked insert support

by default. The list of restrictions is as follows:

v The SQL statement used must be an INSERT statement with a VALUES clause, meaning that it is not

an INSERT statement with SUBSELECT. The JDBC driver recognizes this restriction and takes the

appropriate course of action.

v A PreparedStatement must be used, meaning that there is no optimized support for Statement objects.

The JDBC driver recognizes this restriction and takes the appropriate course of action.

v The SQL statement must specify parameter markers for all the columns in the table. This means that

you cannot either use constant values for a column or allow the database to insert default values for

any of the columns. The JDBC driver does not have a mechanism to handle testing for specific

parameter markers in your SQL statement. If you set the property to perform optimized blocked

insertions and you do not avoid defaults or constants in your SQL statements, the values that end up

in the database table are not correct.

v The connection must be to the local system. This means that a connection using DRDA to access a

remote system cannot be used because DRDA does not support a blocked insert operation. The JDBC

driver does not have a mechanism to handle testing for a connection to a local system. If you set the

property to perform an optimized blocked insertion and you attempt to connect to a remote system,

the processing of the batch update fails.

This code example shows how to enable support for blocked insert processing. The only difference

between this code and a version that does not use blocked insert support is use block insert=true that

is added to the Connection URL.

Example: Blocked insert processing

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Create a database connection

Connection c = DriverManager.getConnection("jdbc:db2:*local;use block insert=true");

BigDecimal bd = new BigDecimal("123456");

// Create a PreparedStatement to insert into a table with 4 columns

PreparedStatement ps =

 c.prepareStatement("insert into cujosql.xxx values(?, ?, ?, ?)");

// Start timing...

for (int i = 1; i <= 10000; i++) {

 ps.setInt(1, i); // Set all the parameters for a row

 ps.setBigDecimal(2, bd);

 ps.setBigDecimal(3, bd);

 ps.setBigDecimal(4, bd);

 ps.addBatch(); //Add the parameters to the batch

}

// Process the batch

int[] counts = ps.executeBatch();

// End timing...

In similar test cases, a blocked insert is several times faster than performing the same operations when a

blocked insert is not used. For example, the test performed on the previous code was nine time faster

using blocked inserts. Cases that only use primitive types instead of objects can be up to sixteen times

faster. In applications where there is a significant amount of work going on, change your expectations

appropriately.

138 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Advanced data types

Advanced SQL3 data types give you a tremendous amount of flexibility. They are ideal for storing

serialized Java objects, Extensible Markup Language (XML) documents, and multimedia data such as

songs, product pictures, employee photographs, and movie clips. Java Database Connectivity (JDBC) 2.0

and higher provide support for working with these data types that are a part of the SQL99 standard.

Distinct types

The distinct type is a user-defined type that is based on a standard database type. For example, you can

define a Social Security Number type, SSN, that is a CHAR(9) internally. The following SQL statement

creates such a DISTINCT type.

CREATE DISTINCT TYPE CUJOSQL.SSN AS CHAR(9)

A distinct type always maps to a built-in data type. For more information on how and when to use

distinct types in the context of SQL, consult the SQL reference manuals.

To use distinct types in JDBC, you access them the same way that you access an underlying type. The

getUDTs method is a new method that allows you to query what distinct types are available on the

system. “Example: Distinct types” on page 149 program shows the following:

v The creation of a distinct type.

v The creation of a table that uses it.

v The use of a PreparedStatement to set a distinct type parameter.

v The use of a ResultSet to return a distinct type.

v The use of the metadata Application Programming Interface (API) call to getUDTs to learn about a

distinct type.

For more information, see the following example that shows various commons tasks you can perform by

using distinct types:

“Example: Distinct types” on page 149

Large Objects

There are three types of Large Objects (LOBs):

v Binary Large Objects (BLOBs)

v Character Large Objects (CLOBs)

v Double Byte Character Large Objects (DBCLOBs)

DBCLOBs are similar to CLOBs except for their internal storage representation of the character data.

Because Java and JDBC externalize all character data as Unicode, there is only support in JDBC for

CLOBs. DBCLOBs work interchangeable with the CLOB support from a JDBC perspective.

Binary Large Objects

In many ways, a Binary Large Object (BLOB) column is similar to a CHAR FOR BIT DATA column that

can be made large. You can store anything in these columns that can be represented as a stream of

nontranslated bytes. Often, BLOB columns are used to store serialized Java objects, pictures, songs, and

other binary data.

You can use BLOBs the same way you can use other standard database types. You can pass them to

stored procedures, use them in prepared statements, and update them in result sets. The

PreparedStatement class has a setBlob method for passing BLOBs to the database, and the ResultSet class

adds a getBlob class for retrieving them from the database. A BLOB is represented in a Java program by a

BLOB object that is a JDBC interface.

IBM Developer Kit for Java 139

Refer to Write code that uses BLOBs for more information about how to use BLOBs.

Character Large Objects

Character Large Objects (CLOBs) are the character data complement to BLOBs. Instead of storing data in

the database without translation, the data is stored in the database as text and is processed the same way

as a CHAR column. As with BLOBs, JDBC 2.0 provides functions for dealing directly with CLOBs. The

PreparedStatement interface contains a setClob method and the ResultSet interface contains a getClob

method.

Refer to Write code that uses CLOBs for more information about how to use CLOBs.

Although BLOB and CLOB columns work like CHAR FOR BIT DATA and CHAR columns, this is

conceptually how they work from an external user’s perspective. Internally, they are different; because of

the potentially enormous size of Large Object (LOB) columns, you typically work indirectly with data.

For example, when a block of rows is fetched from the database, you do not move a block of LOBs to the

ResultSet. You move pointers called LOB locators (that is, four-byte integers) into the ResultSet instead.

However, it is not necessary to know about locators when working with LOBs in JDBC.

Datalinks

Datalinks are encapsulated values that contain a logical reference from the database to a file stored

outside the database. Datalinks are represented and used from a JDBC perspective in two different ways,

depending on whether you are using JDBC 2.0 or earlier, or you are using JDBC 3.0 or later.

Refer to Write code that uses Datalinks for more information about how to use Datalinks.

Unsupported SQL3 data types

There are other SQL3 data types that have been defined and for which the JDBC API provides support.

These are ARRAY, REF, and STRUCT. Presently, iSeries servers do not support these types. Therefore, the

JDBC driver does not provide any form of support for them.

Write code that uses BLOBs:

There are a number of tasks that can be accomplished with database Binary Large Object (BLOB) columns

through the Java Database Connectivity (JDBC) Application Programming Interface (API). The following

topics briefly discuss these tasks and include examples on how to accomplish them.

 Read BLOBs from the database and insert BLOBs into the database

With the JDBC API, there are ways to get BLOBs out of the database and ways to put BLOBs into the

database. However, there is no standardized way to create a Blob object. This is not a problem if your

database is already full of BLOBs, but it poses a problem if you want to work with BLOBs from scratch

through JDBC. Instead of defining a constructor for the Blob and Clob interfaces of the JDBC API,

support is provided for placing BLOBs into the database and getting them out of the database directly as

other types. For example, the setBinaryStream method can work with a database column of type Blob.

“Example: BLOB” on page 141 shows some of the common ways that a BLOB can be put into the

database or retrieved from the database.

Work with the Blob object API

BLOBs are defined in JDBC as an interface of which the various drivers provide implementations. This

interface has a series of methods that can be used to interact with the Blob object. “Example: Use BLOBs”

on page 143 shows some of the common tasks that can be performed using this API. Consult the JDBC

Javadoc for a complete list of available methods on the Blob object.

140 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Use JDBC 3.0 support to update BLOBs

In JDBC 3.0, there is support for making changes to LOB objects. These changes can be stored into BLOB

columns in the database. “Example: Update BLOBs” on page 142 shows some of the tasks that can be

performed with BLOB support in JDBC 3.0.

Example: BLOB:

This is an example of how a BLOB can be put into the database or retrieved from the database.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// PutGetBlobs is an example application

// that shows how to work with the JDBC

// API to obtain and put BLOBs to and from

// database columns.

//

// The results of running this program

// are that there are two BLOB values

// in a new table. Both are identical

// and contain 500k of random byte

// data.

///

import java.sql.*;

import java.util.Random;

public class PutGetBlobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 // Establish a Connection and Statement with which to work.

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 // Clean up any previous run of this application.

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.BLOBTABLE");

 } catch (SQLException e) {

 // Ignore it - assume the table did not exist.

 }

 // Create a table with a BLOB column. The default BLOB column

 // size is 1 MB.

 s.executeUpdate("CREATE TABLE CUJOSQL.BLOBTABLE (COL1 BLOB)");

 // Create a PreparedStatement object that allows you to put

 // a new Blob object into the database.

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.BLOBTABLE VALUES(?)");

 // Create a big BLOB value...

 Random random = new Random ();

 byte [] inByteArray = new byte[500000];

 random.nextBytes (inByteArray);

 // Set the PreparedStatement parameter. Note: This is not

 // portable to all JDBC drivers. JDBC drivers do not have

 // support when using setBytes for BLOB columns. This is used to

IBM Developer Kit for Java 141

// allow you to generate new BLOBs. It also allows JDBC 1.0

 // drivers to work with columns containing BLOB data.

 ps.setBytes(1, inByteArray);

 // Process the statement, inserting the BLOB into the database.

 ps.executeUpdate();

 // Process a query and obtain the BLOB that was just inserted out

 // of the database as a Blob object.

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");

 rs.next();

 Blob blob = rs.getBlob(1);

 // Put that Blob back into the database through

 // the PreparedStatement.

 ps.setBlob(1, blob);

 ps.execute();

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Update BLOBs:

This is an example of how to update BLOBs in your applications.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// UpdateBlobs is an example application

// that shows some of the APIs providing

// support for changing Blob objects

// and reflecting those changes to the

// database.

//

// This program must be run after

// the PutGetBlobs program has completed.

///

import java.sql.*;

public class UpdateBlobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");

 rs.next();

 Blob blob1 = rs.getBlob(1);

 rs.next();

 Blob blob2 = rs.getBlob(1);

 // Truncate a BLOB.

 blob1.truncate((long) 150000);

142 IBM Systems - iSeries: Programming IBM Developer Kit for Java

System.out.println("Blob1’s new length is " + blob1.length());

 // Update part of the BLOB with a new byte array.

 // The following code obtains the bytes that are at

 // positions 4000-4500 and set them to positions 500-1000.

 // Obtain part of the BLOB as a byte array.

 byte[] bytes = blob1.getBytes(4000L, 4500);

 int bytesWritten = blob2.setBytes(500L, bytes);

 System.out.println("Bytes written is " + bytesWritten);

 // The bytes are now found at position 500 in blob2

 long startInBlob2 = blob2.position(bytes, 1);

 System.out.println("pattern found starting at position " + startInBlob2);

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Use BLOBs:

This is an example of how to use BLOBs in your applications.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// UseBlobs is an example application

// that shows some of the APIs associated

// with Blob objects.

//

// This program must be run after

// the PutGetBlobs program has completed.

///

import java.sql.*;

public class UseBlobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");

 rs.next();

 Blob blob1 = rs.getBlob(1);

 rs.next();

 Blob blob2 = rs.getBlob(1);

 // Determine the length of a LOB.

 long end = blob1.length();

 System.out.println("Blob1 length is " + blob1.length());

 // When working with LOBs, all indexing that is related to them

IBM Developer Kit for Java 143

// is 1-based, and is not 0-based like strings and arrays.

 long startingPoint = 450;

 long endingPoint = 500;

 // Obtain part of the BLOB as a byte array.

 byte[] outByteArray = blob1.getBytes(startingPoint, (int)endingPoint);

 // Find where a sub-BLOB or byte array is first found within a

 // BLOB. The setup for this program placed two identical copies of

 // a random BLOB into the database. Thus, the start position of the

 // byte array extracted from blob1 can be found in the starting

 // position in blob2. The exception would be if there were 50

 // identical random bytes in the LOBs previously.

 long startInBlob2 = blob2.position(outByteArray, 1);

 System.out.println("pattern found starting at position " + startInBlob2);

 c.close(); // Connection close closes stmt and rs too.

 }

}

Write code that uses CLOBs:

There are a number of tasks that can be performed with database CLOB and DBCLOB columns through

the Java Database Connectivity (JDBC) Application Programming Interface (API). The following topics

briefly discuss these tasks and include examples on how to accomplish them.

 Read CLOBs from the database and insert CLOBs into the database

With the JDBC API, there are ways to get CLOBs out of the database and ways to put CLOBs into the

database. However, there is no standardized way to create a Clob object. This is not a problem if your

database is already full of CLOBs, but it poses a problem if you want to work with CLOBs from scratch

through JDBC. Instead of defining a constructor for the Blob and Clob interfaces of the JDBC API,

support is provided for placing CLOBs into the database and getting them out of the database directly as

other types. For example, the setCharacterStream method can work with a database column of type Clob.

“Example: CLOB” shows some of the common ways that a CLOB can be put into the database or

retrieved from the database.

Work with the Clob object API

CLOBs are defined in JDBC as an interface of which the various drivers provide implementations. This

interface has a series of methods that can be used to interact with the Clob object. This example shows

some of the common tasks that can be performed using this API. Consult the JDBC Javadoc for a

complete list of available methods on the Clob object.

Use JDBC 3.0 support to update CLOBs

In JDBC 3.0, there is support for making changes to LOB objects. These changes can be stored into CLOB

columns in the database. This example shows some of the tasks that can be performed with CLOB

support in JDBC 3.0.

Example: CLOB:

This is an example of how a CLOB can be put into the database or retrieved from the database.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// PutGetClobs is an example application

// that shows how to work with the JDBC

144 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// API to obtain and put CLOBs to and from

// database columns.

//

// The results of running this program

// are that there are two CLOB values

// in a new table. Both are identical

// and contain about 500k of repeating

// text data.

///

import java.sql.*;

public class PutGetClobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 // Establish a Connection and Statement with which to work.

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 // Clean up any previous run of this application.

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.CLOBTABLE");

 } catch (SQLException e) {

 // Ignore it - assume the table did not exist.

 }

 // Create a table with a CLOB column. The default CLOB column

 // size is 1 MB.

 s.executeUpdate("CREATE TABLE CUJOSQL.CLOBTABLE (COL1 CLOB)");

 // Create a PreparedStatement object that allow you to put

 // a new Clob object into the database.

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.CLOBTABLE VALUES(?)");

 // Create a big CLOB value...

 StringBuffer buffer = new StringBuffer(500000);

 while (buffer.length() < 500000) {

 buffer.append("All work and no play makes Cujo a dull boy.");

 }

 String clobValue = buffer.toString();

 // Set the PreparedStatement parameter. This is not

 // portable to all JDBC drivers. JDBC drivers do not have

 // to support setBytes for CLOB columns. This is done to

 // allow you to generate new CLOBs. It also

 // allows JDBC 1.0 drivers a way to work with columns containing

 // Clob data.

 ps.setString(1, clobValue);

 // Process the statement, inserting the clob into the database.

 ps.executeUpdate();

 // Process a query and get the CLOB that was just inserted out of the

 // database as a Clob object.

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");

 rs.next();

 Clob clob = rs.getClob(1);

 // Put that Clob back into the database through

IBM Developer Kit for Java 145

// the PreparedStatement.

 ps.setClob(1, clob);

 ps.execute();

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Update CLOBs:

This is an example of how to update CLOBs in your applications.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// UpdateClobs is an example application

// that shows some of the APIs providing

// support for changing Clob objects

// and reflecting those changes to the

// database.

//

// This program must be run after

// the PutGetClobs program has completed.

///

import java.sql.*;

public class UpdateClobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");

 rs.next();

 Clob clob1 = rs.getClob(1);

 rs.next();

 Clob clob2 = rs.getClob(1);

 // Truncate a CLOB.

 clob1.truncate((long) 150000);

 System.out.println("Clob1’s new length is " + clob1.length());

 // Update a portion of the CLOB with a new String value.

 String value = "Some new data for once";

 int charsWritten = clob2.setString(500L, value);

 System.out.println("Characters written is " + charsWritten);

 // The bytes can be found at position 500 in clob2

 long startInClob2 = clob2.position(value, 1);

 System.out.println("pattern found starting at position " + startInClob2);

146 IBM Systems - iSeries: Programming IBM Developer Kit for Java

c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Use CLOBs:

This is an example of how to use CLOBs in your applications.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// UpdateClobs is an example application

// that shows some of the APIs providing

// support for changing Clob objects

// and reflecting those changes to the

// database.

//

// This program must be run after

// the PutGetClobs program has completed.

///

import java.sql.*;

public class UseClobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");

 rs.next();

 Clob clob1 = rs.getClob(1);

 rs.next();

 Clob clob2 = rs.getClob(1);

 // Determine the length of a LOB.

 long end = clob1.length();

 System.out.println("Clob1 length is " + clob1.length());

 // When working with LOBs, all indexing that is related to them

 // is 1-based, and not 0-based like strings and arrays.

 long startingPoint = 450;

 long endingPoint = 50;

 // Obtain part of the CLOB as a byte array.

 String outString = clob1.getSubString(startingPoint, (int)endingPoint);

 System.out.println("Clob substring is " + outString);

 // Find where a sub-CLOB or string is first found within a

 // CLOB. The setup for this program placed two identical copies of

 // a repeating CLOB into the database. Thus, the start position of the

 // string extracted from clob1 can be found in the starting

 // position in clob2 if the search begins close to the position where

 // the string starts.

 long startInClob2 = clob2.position(outString, 440);

IBM Developer Kit for Java 147

System.out.println("pattern found starting at position " + startInClob2);

 c.close(); // Connection close also closes stmt and rs.

 }

}

Write code that uses Datalinks:

How you work with Datalinks is dependent on what release you are working with. In JDBC 3.0, there is

support to work directly with Datalink columns using the getURL and putURL methods.

 With previous JDBC versions, you had to work with Datalink columns as if they were String columns.

Presently, the database does not support automatic conversions between Datalink and character data

types. As a result, you need perform some type casting in your SQL statements.

Example: Datalink:

This is an example of how to use datalinks in your applications.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// PutGetDatalinks is an example application

// that shows how to use the JDBC

// API to handle datalink database columns.

///

import java.sql.*;

import java.net.URL;

import java.net.MalformedURLException;

public class PutGetDatalinks {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 // Establish a Connection and Statement with which to work.

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 // Clean up any previous run of this application.

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.DLTABLE");

 } catch (SQLException e) {

 // Ignore it - assume the table did not exist.

 }

 // Create a table with a datalink column.

 s.executeUpdate("CREATE TABLE CUJOSQL.DLTABLE (COL1 DATALINK)");

 // Create a PreparedStatement object that allows you to add

 // a new datalink into the database. Since conversing

 // to a datalink cannot be accomplished directly in the database, you

 // can code the SQL statement to perform the explicit conversion.

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.DLTABLE

 VALUES(DLVALUE(CAST(? AS VARCHAR(100))))");

 // Set the datalink. This URL points you to an article about

148 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// the new features of JDBC 3.0.

 ps.setString (1, "http://www-106.ibm.com/developerworks/java/library/j-jdbcnew/index.html");

 // Process the statement, inserting the CLOB into the database.

 ps.executeUpdate();

 // Process a query and obtain the CLOB that was just inserted out of the

 // database as a Clob object.

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.DLTABLE");

 rs.next();

 String datalink = rs.getString(1);

 // Put that datalink value into the database through

 // the PreparedStatement. Note: This function requires JDBC 3.0

 // support.

 /*

 try {

 URL url = new URL(datalink);

 ps.setURL(1, url);

 ps.execute();

 } catch (MalformedURLException mue) {

 // Handle this issue here.

 }

 rs = s.executeQuery("SELECT * FROM CUJOSQL.DLTABLE");

 rs.next();

 URL url = rs.getURL(1);

 System.out.println("URL value is " + url);

 */

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Distinct types:

This is an example of how to use distinct types.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// This example program shows examples of

// various common tasks that can be done

// with distinct types.

///

import java.sql.*;

public class Distinct {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 // Clean up any old runs.

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.SERIALNOS");

IBM Developer Kit for Java 149

} catch (SQLException e) {

 // Ignore it and assume the table did not exist.

 }

 try {

 s.executeUpdate("DROP DISTINCT TYPE CUJOSQL.SSN");

 } catch (SQLException e) {

 // Ignore it and assume the table did not exist.

 }

 // Create the type, create the table, and insert a value.

 s.executeUpdate("CREATE DISTINCT TYPE CUJOSQL.SSN AS CHAR(9)");

 s.executeUpdate("CREATE TABLE CUJOSQL.SERIALNOS (COL1 CUJOSQL.SSN)");

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.SERIALNOS VALUES(?)");

 ps.setString(1, "399924563");

 ps.executeUpdate();

 ps.close();

 // You can obtain details about the types available with new metadata in

 // JDBC 2.0

 DatabaseMetaData dmd = c.getMetaData();

 int types[] = new int[1];

 types[0] = java.sql.Types.DISTINCT;

 ResultSet rs = dmd.getUDTs(null, "CUJOSQL", "SSN", types);

 rs.next();

 System.out.println("Type name " + rs.getString(3) +

 " has type " + rs.getString(4));

 // Access the data you have inserted.

 rs = s.executeQuery("SELECT COL1 FROM CUJOSQL.SERIALNOS");

 rs.next();

 System.out.println("The SSN is " + rs.getString(1));

 c.close(); // Connection close also closes stmt and rs.

 }

}

RowSets

RowSets were originally added to the Java Database Connectivity (JDBC) 2.0 Optional Package. Unlike

some of the better-known interfaces of the JDBC specification, the RowSet specification is designed to be

more of a framework than an actual implementation. The RowSet interfaces define a set of core

functionality that all RowSets have. RowSet implementation providers have considerable freedom to

define the functionality that is needed to fit their needs in a specific problem space.

RowSet characteristics:

You can request certain properties to be satisfied by the rowsets. Common properties include the set of

interfaces to be supported by the resulting rowset.

 RowSets are ResultSets

The RowSet interface extends the ResultSet interface which means that RowSets have the ability to

perform all the functions that ResultSets can do. For example, RowSets can be scrollable and updateable.

RowSets can be disconnected from the database

There are two categories of RowSets:

150 IBM Systems - iSeries: Programming IBM Developer Kit for Java

v Connected While connected RowSets are populated with data, they always have internal connections

to the underlying database open and serve as wrappers around a ResultSet implementation.

v Disconnected Disconnected RowSets are not required to maintain connections to their data source at

all times. Disconnected RowSets can be detached from the database, be used in a variety of ways, and

then be reconnected to the database to mirror any changes made to them.

RowSets are JavaBeans™ components

RowSets have support for event handling based on the JavaBeans event-handling model. They also have

properties that can be set. These properties can be used by the RowSet to perform the following:

v Establish a connection to the database.

v Process an SQL statement.

v Determine features of the data that the RowSet represents and handle other internal features of the

RowSet object.

RowSets are serializable

RowSets can be serialized and deserialized to allow them to flow over a network connection, be written

out to a flat file (that is, a text document without any word processing or other structure characters), and

so on.

DB2CachedRowSet:

The DB2CachedRowSet object is a disconnected RowSet, meaning that it can be used without being

connected to the database. Its implementation adheres closely to the description of a CachedRowSet. The

DB2CachedRowSet is a container for rows of data from a ResultSet. The DB2CachedRowSet holds all its

own data so it does not need to maintain a connection to the database other than explicitly while reading

or writing data to the database.

Use DB2CachedRowSet:

Because the DB2CachedRowSet object can be disconnected and serialized, it is useful in environments

where it is not always practical to run a full JDBC driver (for example, on Personal Digital Assistants

(PDAs) and Java-enabled cell phones).

 Since the DB2CachedRowSet object is contained in memory and its data is always known, it can serve as

a highly optimized form of a scrollable ResultSet for applications. Whereas DB2ResultSets that are

scrollable typically pay a performance penalty because their random movements interfere with the JDBC

driver’s ability to cache rows of data, RowSets do not have this issue.

Two methods are provided on DB2CachedRowSet that create new RowSets:

v The createCopy method creates a new RowSet that is identical to the copied one.

v The createShared method creates a new RowSet that shares the same underlying data as the original.

You can use the createCopy method to hand out common ResultSets to clients. If the table data is not

changing, creating a copy of a RowSet and passing it to each client is more efficient than running a query

against the database each time.

You can use the createShared method to improve your database’s performance by allowing several people

to use the same data. For example, assume that you have a Web site that shows the top twenty

best-selling products on your home page when a customer connects. You want the information on your

main page to be updated regularly, but running the query to get the most frequently purchased items

every time a customer visits your main page is not practical. Using the createShared method, you can

effectively create ″cursors″ for each customer without having to either process the query again or store an

IBM Developer Kit for Java 151

enormous amount of information in memory. When appropriate, the query to find the most frequently

purchased products can be run again. The new data can populate the RowSet that is used to create the

shared cursors and the servlets can use them.

DB2CachedRowSets provide a delayed processing feature. This feature allows multiple query requests to

be grouped together and processed against the database as a single request. This is an example of using

DB2CachedRowSets to eliminate some of the computational stress that the database would otherwise be

under.

Because the RowSet must keep careful track of any changes that happen to it so that they are reflected

back to the database, there is support for functions that undo changes or allow you to see all changes

have been made. For example, there is a showDeleted method that can be used to tell the RowSet to let

you fetch deleted rows. There are also cancelRowInsert and cancelRowDelete methods to undo row

insertions and deletions, respectfully, after they have been made.

The DB2CachedRowSet object offers better interoperability with other Java APIs because of its event

handling support and its toCollection methods that allow a RowSet or a portion of it to be converted into

a Java collection.

The event handling support of DB2CachedRowSet can be used in graphical user interface (GUI)

applications to control displays, for logging information about changes to the RowSet as they are made,

or to find information about changes to sources other than RowSets. See Example: DB2JdbcRowSet events

for details.

For specific details on working with DB2CachedRowSets, see the following topics:

v Create and populate a DB2CachedRowSet

v Access DB2CachedRowSet data and cursor manipulation

v Change DB2CachedRowSet data and reflect changes back to the data source

v Other DB2CachedRowSet features

For information on the event model and event handling, see DB2JdbcRowSet as this support works

identically for both types of RowSets.

Create and populate a DB2CachedRowSet:

There are several ways to place data into a DB2CachedRowSet.

 Use the populate method

DB2CachedRowSets have a populate method that can be used to put data into the RowSet from a

DB2ResultSet object. The following is an example of this approach.

Example: Use the populate method

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Establish a connection to the database.

Connection conn = DriverManager.getConnection("jdbc:db2:*local");

// Create a statement and use it to perform a query.

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery("select col1 from cujosql.test_table");

// Create and populate a DB2CachedRowSet from it.

DB2CachedRowSet crs = new DB2CachedRowSet();

crs.populate(rs);

152 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Note: Disconnect the ResultSet, Statement,

// and Connection used to create the RowSet.

rs.close();

stmt.close();

conn.close();

// Loop through the data in the RowSet.

while (crs.next()) {

 System.out.println("v1 is " + crs.getString(1));

}

crs.close();

Use DB2CachedRowSet properties and DataSources

DB2CachedRowSets have properties that allow the DB2CachedRowSets to accept an SQL query and a

DataSource name. They then use the SQL query and DataSource name to create data for themselves. The

following is an example of this approach. The reference to the DataSource named BaseDataSource is

assumed to be a valid DataSource that has been previously set up.

Example: Use DB2CachedRowSet properties and DataSources

Note: Read the Code example disclaimer for important legal information.
// Create a new DB2CachedRowSet

DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for

// the RowSet to use a DataSource to populate itself.

crs.setDataSourceName("BaseDataSource");

crs.setCommand("select col1 from cujosql.test_table");

// Call the RowSet execute method. This causes

// the RowSet to use the DataSource and SQL query

// specified to populate itself with data. Once

// the RowSet is populated, it disconnects from the database.

crs.execute();

// Loop through the data in the RowSet.

while (crs.next()) {

 System.out.println("v1 is " + crs.getString(1));

}

// Eventually, close the RowSet.

crs.close();

Use DB2CachedRowSet properties and JDBC URLs

DB2CachedRowSets have properties that allow the DB2CachedRowSets to accept an SQL query and a

JDBC URL. They then use the query and JDBC URL to create data for themselves. The following is an

example of this approach.

Example: Use DB2CachedRowSet properties and JDBC URLs

Note: Read the Code example disclaimer for important legal information.
// Create a new DB2CachedRowSet

DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for

// the RowSet to use a JDBC URL to populate itself.

crs.setUrl("jdbc:db2:*local");

crs.setCommand("select col1 from cujosql.test_table");

IBM Developer Kit for Java 153

// Call the RowSet execute method. This causes

// the RowSet to use the DataSource and SQL query

// specified to populate itself with data. Once

// the RowSet is populated, it disconnects from the database.

crs.execute();

// Loop through the data in the RowSet.

while (crs.next()) {

 System.out.println("v1 is " + crs.getString(1));

}

// Eventually, close the RowSet.

crs.close();

Use the setConnection(Connection) method to use an existing database

connection

To promote the reuse of JDBC Connection objects, the DB2CachedRowSet provides a mechanism for

passing an established Connection object to the DB2CachedRowSet that is used to populate the RowSet. If

a user-supplied Connection object is passed in, the DB2CachedRowSet does not disconnect it after

populating itself.

Example: Use setConnection(Connection) method to use an existing database connection

Note: Read the Code example disclaimer for important legal information.
// Establish a JDBC connection to the database.

Connection conn = DriverManager.getConnection("jdbc:db2:*local");

// Create a new DB2CachedRowSet

DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for the

// RowSet to use an already connected connection

// to populate itself.

crs.setConnection(conn);

crs.setCommand("select col1 from cujosql.test_table");

// Call the RowSet execute method. This causes

// the RowSet to use the connection that it was provided

// with previously. Once the RowSet is populated, it does not

// close the user-supplied connection.

crs.execute();

// Loop through the data in the RowSet.

while (crs.next()) {

 System.out.println("v1 is " + crs.getString(1));

}

// Eventually, close the RowSet.

crs.close();

Use the execute(Connection) method to use an existing database connection

To promote the reuse of JDBC Connection objects, the DB2CachedRowSet provides a mechanism for

passing an established Connection object to the DB2CachedRowSet when the execute method is called. If

a user-supplied Connection object is passed in, the DB2CachedRowSet does not disconnect it after

populating itself.

Example: Use execute(Connection) method to use an existing database connection

Note: Read the Code example disclaimer for important legal information.

154 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Establish a JDBC connection to the database.

Connection conn = DriverManager.getConnection("jdbc:db2:*local");

// Create a new DB2CachedRowSet

DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the SQL statement that is to be used to

// populate the RowSet.

crs.setCommand("select col1 from cujosql.test_table");

// Call the RowSet execute method, passing in the connection

// that should be used. Once the Rowset is populated, it does not

// close the user-supplied connection.

crs.execute(conn);

// Loop through the data in the RowSet.

while (crs.next()) {

 System.out.println("v1 is " + crs.getString(1));

}

// Eventually, close the RowSet.

crs.close();

Use the execute(int) method to group database requests

To reduce the database’s workload, the DB2CachedRowSet provides a mechanism for grouping SQL

statements for several threads into one processing request for the database.

Example: Use execute(int) method to group database requests

Note: Read the Code example disclaimer for important legal information.
// Create a new DB2CachedRowSet

DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for

// the RowSet to use a DataSource to populate itself.

crs.setDataSourceName("BaseDataSource");

crs.setCommand("select col1 from cujosql.test_table");

// Call the RowSet execute method. This causes

// the RowSet to use the DataSource and SQL query

// specified to populate itself with data. Once

// the RowSet is populated, it disconnects from the database.

// This version of the execute method accepts the number of seconds

// that it is willing to wait for its results. By

// allowing a delay, the RowSet can group the requests

// of several users and only process the request against

// the underlying database once.

crs.execute(5);

// Loop through the data in the RowSet.

while (crs.next()) {

 System.out.println("v1 is " + crs.getString(1));

}

// Eventually, close the RowSet.

crs.close();

Access DB2CachedRowSet data and cursor manipulation:

This topic provides information about accessing DB2CachedRowSet data and various cursor manipulation

functions.

IBM Developer Kit for Java 155

RowSets depend on ResultSet methods. For many operations, such as DB2CachedRowSet data access and

cursor movement, there is no difference at the application level between using a ResultSet and using a

RowSet.

Access DB2CachedRowSet data

RowSets and ResultSets access data in the same manner. In the following example, the program creates a

table and populates it with various data types using JDBC. Once the table is ready, a DB2CachedRowSet

is created and populated with the information from the table. The example also uses various get methods

of the RowSet class.

Example: Access DB2CachedRowSet data

Note: Read the Code example disclaimer for important legal information.

import java.sql.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.*;

import java.io.*;

import java.math.*;

public class TestProgram

{

 public static void main(String args[])

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 }

 catch (ClassNotFoundException ex) {

 System.out.println("ClassNotFoundException: " +

 ex.getMessage());

 // No need to go any further.

 System.exit(1);

 }

 try {

 Connection conn = DriverManager.getConnection("jdbc:db2:*local");

 Statement stmt = conn.createStatement();

 // Clean up previous runs

 try {

 stmt.execute("drop table cujosql.test_table");

 }

 catch (SQLException ex) {

 System.out.println("Caught drop table: " + ex.getMessage());

 }

 // Create test table

 stmt.execute("Create table cujosql.test_table (col1 smallint, col2 int, " +

 "col3 bigint, col4 real, col5 float, col6 double, col7 numeric, " +

 "col8 decimal, col9 char(10), col10 varchar(10), col11 date, " +

 "col12 time, col13 timestamp)");

 System.out.println("Table created.");

 // Insert some test rows

 stmt.execute("insert into cujosql.test_table values (1, 1, 1, 1.5, 1.5, 1.5, 1.5, 1.5, ’one’, ’one’,

 {d ’2001-01-01’}, {t ’01:01:01’}, {ts ’1998-05-26 11:41:12.123456’})");

 stmt.execute("insert into cujosql.test_table values (null, null, null, null, null, null, null, null,

 null, null, null, null, null)");

 System.out.println("Rows inserted");

 ResultSet rs = stmt.executeQuery("select * from cujosql.test_table");

156 IBM Systems - iSeries: Programming IBM Developer Kit for Java

System.out.println("Query executed");

 // Create a new rowset and populate it...

 DB2CachedRowSet crs = new DB2CachedRowSet();

 crs.populate(rs);

 System.out.println("RowSet populated.");

 conn.close();

 System.out.println("RowSet is detached...");

 System.out.println("Test with getObject");

 int count = 0;

 while (crs.next()) {

 System.out.println("Row " + (++count));

 for (int i = 1; i <= 13; i++) {

 System.out.println(" Col " + i + " value " + crs.getObject(i));

 }

 }

 System.out.println("Test with getXXX... ");

 crs.first();

 System.out.println("Row 1");

 System.out.println(" Col 1 value " + crs.getShort(1));

 System.out.println(" Col 2 value " + crs.getInt(2));

 System.out.println(" Col 3 value " + crs.getLong(3));

 System.out.println(" Col 4 value " + crs.getFloat(4));

 System.out.println(" Col 5 value " + crs.getDouble(5));

 System.out.println(" Col 6 value " + crs.getDouble(6));

 System.out.println(" Col 7 value " + crs.getBigDecimal(7));

 System.out.println(" Col 8 value " + crs.getBigDecimal(8));

 System.out.println(" Col 9 value " + crs.getString(9));

 System.out.println(" Col 10 value " + crs.getString(10));

 System.out.println(" Col 11 value " + crs.getDate(11));

 System.out.println(" Col 12 value " + crs.getTime(12));

 System.out.println(" Col 13 value " + crs.getTimestamp(13));

 crs.next();

 System.out.println("Row 2");

 System.out.println(" Col 1 value " + crs.getShort(1));

 System.out.println(" Col 2 value " + crs.getInt(2));

 System.out.println(" Col 3 value " + crs.getLong(3));

 System.out.println(" Col 4 value " + crs.getFloat(4));

 System.out.println(" Col 5 value " + crs.getDouble(5));

 System.out.println(" Col 6 value " + crs.getDouble(6));

 System.out.println(" Col 7 value " + crs.getBigDecimal(7));

 System.out.println(" Col 8 value " + crs.getBigDecimal(8));

 System.out.println(" Col 9 value " + crs.getString(9));

 System.out.println(" Col 10 value " + crs.getString(10));

 System.out.println(" Col 11 value " + crs.getDate(11));

 System.out.println(" Col 12 value " + crs.getTime(12));

 System.out.println(" Col 13 value " + crs.getTimestamp(13));

 crs.close();

 }

 catch (Exception ex) {

 System.out.println("SQLException: " + ex.getMessage());

 ex.printStackTrace();

 }

 }

}

Cursor manipulation

RowSets are scrollable and act exactly like a scrollable ResultSet. In the following example, the program

creates a table and populates it with data using JDBC. Once the table is ready, a DB2CachedRowSet object

is created and is populated with the information from the table. The example also uses various cursor

manipulation functions.

IBM Developer Kit for Java 157

Example: Cursor manipulation

import java.sql.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.DB2CachedRowSet;

public class RowSetSample1

{

 public static void main(String args[])

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 }

 catch (ClassNotFoundException ex) {

 System.out.println("ClassNotFoundException: " +

 ex.getMessage());

 // No need to go any further.

 System.exit(1);

 }

 try {

 Connection conn = DriverManager.getConnection("jdbc:db2:*local");

 Statement stmt = conn.createStatement();

 // Clean up previous runs

 try {

 stmt.execute("drop table cujosql.test_table");

 }

 catch (SQLException ex) {

 System.out.println("Caught drop table: " + ex.getMessage());

 }

 // Create a test table

 stmt.execute("Create table cujosql.test_table (col1 smallint)");

 System.out.println("Table created.");

 // Insert some test rows

 for (int i = 0; i < 10; i++) {

 stmt.execute("insert into cujosql.test_table values (" + i + ")");

 }

 System.out.println("Rows inserted");

 ResultSet rs = stmt.executeQuery("select col1 from cujosql.test_table");

 System.out.println("Query executed");

 // Create a new rowset and populate it...

 DB2CachedRowSet crs = new DB2CachedRowSet();

 crs.populate(rs);

 System.out.println("RowSet populated.");

 conn.close();

 System.out.println("RowSet is detached...");

 System.out.println("Use next()");

 while (crs.next()) {

 System.out.println("v1 is " + crs.getShort(1));

 }

 System.out.println("Use previous()");

 while (crs.previous()) {

 System.out.println("value is " + crs.getShort(1));

 }

 System.out.println("Use relative()");

 crs.next();

 crs.relative(9);

158 IBM Systems - iSeries: Programming IBM Developer Kit for Java

System.out.println("value is " + crs.getShort(1));

 crs.relative(-9);

 System.out.println("value is " + crs.getShort(1));

 System.out.println("Use absolute()");

 crs.absolute(10);

 System.out.println("value is " + crs.getShort(1));

 crs.absolute(1);

 System.out.println("value is " + crs.getShort(1));

 crs.absolute(-10);

 System.out.println("value is " + crs.getShort(1));

 crs.absolute(-1);

 System.out.println("value is " + crs.getShort(1));

 System.out.println("Test beforeFirst()");

 crs.beforeFirst();

 System.out.println("isBeforeFirst is " + crs.isBeforeFirst());

 crs.next();

 System.out.println("move one... isFirst is " + crs.isFirst());

 System.out.println("Test afterLast()");

 crs.afterLast();

 System.out.println("isAfterLast is " + crs.isAfterLast());

 crs.previous();

 System.out.println("move one... isLast is " + crs.isLast());

 System.out.println("Test getRow()");

 crs.absolute(7);

 System.out.println("row should be (7) and is " + crs.getRow() +

 " value should be (6) and is " + crs.getShort(1));

 crs.close();

 }

 catch (SQLException ex) {

 System.out.println("SQLException: " + ex.getMessage());

 }

 }

}

Change DB2CachedRowSet data and reflect changes back to the data source:

This topic provides information about making changes to rows in a DB2CachedRowSet and then

updating the underlying database.

 The DB2CachedRowSet uses the same methods as the standard ResultSet interface for making changes to

the data in the RowSet object. There is no difference at the application level between changing the data of

a RowSet and changing the data of a ResultSet. The DB2CachedRowSet provides the acceptChanges

method that is used to reflect changes to the RowSet back to the database where the data came from.

Delete, insert, and update rows in a DB2CachedRowSet

DB2CachedRowSets can be updated. In the following example, the program creates a table and populates

it with data using JDBC. Once the table is ready, a DB2CachedRowSet is created and is populated with

the information from the table. The example also uses various methods that can be used to update the

RowSet and shows how the use of the showDeleted property that allows the application to fetch rows

even after they have been deleted. Further, the cancelRowInsert and cancelRowDelete methods are used

in the example to allow row insertion or deletion to be undone.

Example: Delete, insert, and update rows in a DB2CachedRowSet

Note: Read the Code example disclaimer for important legal information.

IBM Developer Kit for Java 159

import java.sql.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.DB2CachedRowSet;

public class RowSetSample2

{

 public static void main(String args[])

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 }

 catch (ClassNotFoundException ex) {

 System.out.println("ClassNotFoundException: " +

 ex.getMessage());

 // No need to go any further.

 System.exit(1);

 }

 try {

 Connection conn = DriverManager.getConnection("jdbc:db2:*local");

 Statement stmt = conn.createStatement();

 // Clean up previous runs

 try {

 stmt.execute("drop table cujosql.test_table");

 }

 catch (SQLException ex) {

 System.out.println("Caught drop table: " + ex.getMessage());

 }

 // Create test table

 stmt.execute("Create table cujosql.test_table (col1 smallint)");

 System.out.println("Table created.");

 // Insert some test rows

 for (int i = 0; i < 10; i++) {

 stmt.execute("insert into cujosql.test_table values (" + i + ")");

 }

 System.out.println("Rows inserted");

 ResultSet rs = stmt.executeQuery("select col1 from cujosql.test_table");

 System.out.println("Query executed");

 // Create a new rowset and populate it...

 DB2CachedRowSet crs = new DB2CachedRowSet();

 crs.populate(rs);

 System.out.println("RowSet populated.");

 conn.close();

 System.out.println("RowSet is detached...");

 System.out.println("Delete the first three rows");

 crs.next();

 crs.deleteRow();

 crs.next();

 crs.deleteRow();

 crs.next();

 crs.deleteRow();

 crs.beforeFirst();

 System.out.println("Insert the value -10 into the RowSet");

 crs.moveToInsertRow();

 crs.updateShort(1, (short)-10);

160 IBM Systems - iSeries: Programming IBM Developer Kit for Java

crs.insertRow();

 crs.moveToCurrentRow();

 System.out.println("Update the rows to be the negative of what they now are");

 crs.beforeFirst();

 while (crs.next())

 short value = crs.getShort(1);

 value = (short)-value;

 crs.updateShort(1, value);

 crs.updateRow();

 }

 crs.setShowDeleted(true);

 System.out.println("RowSet is now (value - inserted - updated - deleted)");

 crs.beforeFirst();

 while (crs.next()) {

 System.out.println("value is " + crs.getShort(1) + " " +

 crs.rowInserted() + " " +

 crs.rowUpdated() + " " +

 crs.rowDeleted());

 }

 System.out.println("getShowDeleted is " + crs.getShowDeleted());

 System.out.println("Now undo the inserts and deletes");

 crs.beforeFirst();

 crs.next();

 crs.cancelRowDelete();

 crs.next();

 crs.cancelRowDelete();

 crs.next();

 crs.cancelRowDelete();

 while (!crs.isLast()) {

 crs.next();

 }

 crs.cancelRowInsert();

 crs.setShowDeleted(false);

 System.out.println("RowSet is now (value - inserted - updated - deleted)");

 crs.beforeFirst();

 while (crs.next()) {

 System.out.println("value is " + crs.getShort(1) + " " +

 crs.rowInserted() + " " +

 crs.rowUpdated() + " " +

 crs.rowDeleted());

 }

 System.out.println("finally show that calling cancelRowUpdates works");

 crs.first();

 crs.updateShort(1, (short) 1000);

 crs.cancelRowUpdates();

 crs.updateRow();

 System.out.println("value of row is " + crs.getShort(1));

 System.out.println("getShowDeleted is " + crs.getShowDeleted());

 crs.close();

 }

 catch (SQLException ex) {

 System.out.println("SQLException: " + ex.getMessage());

 }

 }

}

IBM Developer Kit for Java 161

Reflect changes to a DB2CachedRowSet back to the underlying database

Once changes have been made to a DB2CachedRowSet, they only exist as long as the RowSet object

exists. That is, making changes to a disconnected RowSet has no effect on the database. To reflect the

changes of a RowSet in the underlying database, the acceptChanges method is used. This method tells

the disconnected RowSet to re-establish a connection to the database and attempt to make the changes

that have been made to the RowSet to the underlying database. If the changes cannot be safely made to

the database due to conflicts with other database changes after the RowSet was created, an exception is

thrown and the transaction is rolled back.

Example: Reflect changes to a DB2CachedRowSet back to the underlying database

Note: Read the Code example disclaimer for important legal information.
import java.sql.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.DB2CachedRowSet;

public class RowSetSample3

{

 public static void main(String args[])

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 }

 catch (ClassNotFoundException ex) {

 System.out.println("ClassNotFoundException: " +

 ex.getMessage());

 // No need to go any further.

 System.exit(1);

 }

 try {

 Connection conn = DriverManager.getConnection("jdbc:db2:*local");

 Statement stmt = conn.createStatement();

 // Clean up previous runs

 try {

 stmt.execute("drop table cujosql.test_table");

 }

 catch (SQLException ex) {

 System.out.println("Caught drop table: " + ex.getMessage());

 }

 // Create test table

 stmt.execute("Create table cujosql.test_table (col1 smallint)");

 System.out.println("Table created.");

 // Insert some test rows

 for (int i = 0; i < 10; i++) {

 stmt.execute("insert into cujosql.test_table values (" + i + ")");

 }

 System.out.println("Rows inserted");

 ResultSet rs = stmt.executeQuery("select col1 from cujosql.test_table");

 System.out.println("Query executed");

 // Create a new rowset and populate it...

 DB2CachedRowSet crs = new DB2CachedRowSet();

 crs.populate(rs);

 System.out.println("RowSet populated.");

 conn.close();

162 IBM Systems - iSeries: Programming IBM Developer Kit for Java

System.out.println("RowSet is detached...");

 System.out.println("Delete the first three rows");

 crs.next();

 crs.deleteRow();

 crs.next();

 crs.deleteRow();

 crs.next();

 crs.deleteRow();

 crs.beforeFirst();

 System.out.println("Insert the value -10 into the RowSet");

 crs.moveToInsertRow();

 crs.updateShort(1, (short)-10);

 crs.insertRow();

 crs.moveToCurrentRow();

 System.out.println("Update the rows to be the negative of what they now are");

 crs.beforeFirst();

 while (crs.next()) {

 short value = crs.getShort(1);

 value = (short)-value;

 crs.updateShort(1, value);

 crs.updateRow();

 }

 System.out.println("Now accept the changes to the database");

 crs.setUrl("jdbc:db2:*local");

 crs.setTableName("cujosql.test_table");

 crs.acceptChanges();

 crs.close();

 System.out.println("And the database table looks like this:");

 conn = DriverManager.getConnection("jdbc:db2:localhost");

 stmt = conn.createStatement();

 rs = stmt.executeQuery("select col1 from cujosql.test_table");

 while (rs.next()) {

 System.out.println("Value from table is " + rs.getShort(1));

 }

 conn.close();

 }

 catch (SQLException ex) {

 System.out.println("SQLException: " + ex.getMessage());

 }

 }

}

Other DB2CachedRowSet features:

In addition to working like a ResultSet as several examples have shown, the DB2CachedRowSet class has

some additional functionality that makes it more flexible to use. Methods are provided for turning either

the entire Java Database Connectivity (JDBC) RowSet or just a portion of it into a Java collection.

Moreover, because of their disconnected nature, DB2CachedRowSets do not have a strict one-to-one

relationship with ResultSets.

 In addition to working like a ResultSet as several examples have shown, the DB2CachedRowSet class has

some additional functionality that makes it more flexible to use. Methods are provided for turning either

the entire Java Database Connectivity (JDBC) RowSet or just a portion of it into a Java collection.

Moreover, because of their disconnected nature, DB2CachedRowSets do not have a strict one-to-one

relationship with ResultSets.

IBM Developer Kit for Java 163

With the methods provided by DB2CachedRowSet, you can perform the following tasks:

Obtain collections from DB2CachedRowSets

There are three methods that return some form of a collection from a DB2CachedRowSet object. They are

the following:

v toCollection returns an ArrayList (that is, one entry for each row) of vectors (that is, one entry for each

column).

v toCollection(int columnIndex) returns a vector containing the value for each row from the given

column.

v getColumn(int columnIndex) returns an array containing the value for each column for a given

column.

The major difference between toCollection(int columnIndex) and getColumn(int columnIndex) is that the

getColumn method can return an array of primitive types. Therefore, if columnIndex represents a column

that has integer data, an integer array is returned and not an array containing java.lang.Integer objects.

The following example shows how you can use these methods.

Example: Obtain collections from DB2CachedRowSets

Note: Read the Code example disclaimer for important legal information.
import java.sql.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.DB2CachedRowSet;

import java.util.*;

public class RowSetSample4

{

 public static void main(String args[])

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 }

 catch (ClassNotFoundException ex) {

 System.out.println("ClassNotFoundException: " +

 ex.getMessage());

 // No need to go any further.

 System.exit(1);

 }

 try {

 Connection conn = DriverManager.getConnection("jdbc:db2:*local");

 Statement stmt = conn.createStatement();

 // Clean up previous runs

 try {

 stmt.execute("drop table cujosql.test_table");

 }

 catch (SQLException ex) {

 System.out.println("Caught drop table: " + ex.getMessage());

 }

 // Create test table

 stmt.execute("Create table cujosql.test_table (col1 smallint, col2 smallint)");

 System.out.println("Table created.");

 // Insert some test rows

 for (int i = 0; i < 10; i++) {

 stmt.execute("insert into cujosql.test_table values (" + i + ", " + (i + 100) + ")");

 }

164 IBM Systems - iSeries: Programming IBM Developer Kit for Java

System.out.println("Rows inserted");

 ResultSet rs = stmt.executeQuery("select * from cujosql.test_table");

 System.out.println("Query executed");

 // Create a new rowset and populate it...

 DB2CachedRowSet crs = new DB2CachedRowSet();

 crs.populate(rs);

 System.out.println("RowSet populated.");

 conn.close();

 System.out.println("RowSet is detached...");

 System.out.println("Test the toCollection() method");

 Collection collection = crs.toCollection();

 ArrayList map = (ArrayList) collection;

 System.out.println("size is " + map.size());

 Iterator iter = map.iterator();

 int row = 1;

 while (iter.hasNext()) {

 System.out.print("row [" + (row++) + "]: \t");

 Vector vector = (Vector)iter.next();

 Iterator innerIter = vector.iterator();

 int i = 1;

 while (innerIter.hasNext()) {

 System.out.print(" [" + (i++) + "]=" + innerIter.next() + "; \t");

 }

 System.out.println();

 }

 System.out.println("Test the toCollection(int) method");

 collection = crs.toCollection(2);

 Vector vector = (Vector) collection;

 iter = vector.iterator();

 while (iter.hasNext()) {

 System.out.println("Iter: Value is " + iter.next());

 }

 System.out.println("Test the getColumn(int) method");

 Object values = crs.getColumn(2);

 short[] shorts = (short [])values;

 for (int i =0; i < shorts.length; i++) {

 System.out.println("Array: Value is " + shorts[i]);

 }

 }

 catch (SQLException ex) {

 System.out.println("SQLException: " + ex.getMessage());

 }

 }

}

Create copies of RowSets

The createCopy method creates a copy of the DB2CachedRowSet. All the data associated with the RowSet

is replicated along with all control structures, properties, and status flags.

The following example shows how you can use this method.

Example: Create copies of RowSets

Note: Read the Code example disclaimer for important legal information.

IBM Developer Kit for Java 165

import java.sql.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.*;

import java.io.*;

public class RowSetSample5

{

 public static void main(String args[])

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 }

 catch (ClassNotFoundException ex) {

 System.out.println("ClassNotFoundException: " +

 ex.getMessage());

 // No need to go any further.

 System.exit(1);

 }

 try {

 Connection conn = DriverManager.getConnection("jdbc:db2:*local");

 Statement stmt = conn.createStatement();

 // Clean up previous runs

 try {

 stmt.execute("drop table cujosql.test_table");

 }

 catch (SQLException ex) {

 System.out.println("Caught drop table: " + ex.getMessage());

 }

 // Create test table

 stmt.execute("Create table cujosql.test_table (col1 smallint)");

 System.out.println("Table created.");

 // Insert some test rows

 for (int i = 0; i < 10; i++) {

 stmt.execute("insert into cujosql.test_table values (" + i + ")");

 }

 System.out.println("Rows inserted");

 ResultSet rs = stmt.executeQuery("select col1 from cujosql.test_table");

 System.out.println("Query executed");

 // Create a new rowset and populate it...

 DB2CachedRowSet crs = new DB2CachedRowSet();

 crs.populate(rs);

 System.out.println("RowSet populated.");

 conn.close();

 System.out.println("RowSet is detached...");

 System.out.println("Now some new RowSets from one.");

 DB2CachedRowSet crs2 = crs.createCopy();

 DB2CachedRowSet crs3 = crs.createCopy();

 System.out.println("Change the second one to be negated values");

 crs2.beforeFirst();

 while (crs2.next()) {

 short value = crs2.getShort(1);

 value = (short)-value;

 crs2.updateShort(1, value);

 crs2.updateRow();

 }

166 IBM Systems - iSeries: Programming IBM Developer Kit for Java

crs.beforeFirst();

 crs2.beforeFirst();

 crs3.beforeFirst();

 System.out.println("Now look at all three of them again");

 while (crs.next()) {

 crs2.next();

 crs3.next();

 System.out.println("Values: crs: " + crs.getShort(1) + ", crs2: " + crs2.getShort(1) +

 ", crs3: " + crs3.getShort(1));

 }

 }

 catch (Exception ex) {

 System.out.println("SQLException: " + ex.getMessage());

 ex.printStackTrace();

 }

 }

}

Create shares for RowSets

The createShared method creates a new RowSet object with high-level status information and allows two

RowSet objects to share the same underlying physical data.

The following example shows how you can use this method.

Example: Create shares of RowSets

Note: Read the Code example disclaimer for important legal information.
import java.sql.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.*;

import java.io.*;

public class RowSetSample5

{

 public static void main(String args[])

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 }

 catch (ClassNotFoundException ex) {

 System.out.println("ClassNotFoundException: " +

 ex.getMessage());

 // No need to go any further.

 System.exit(1);

 }

 try {

 Connection conn = DriverManager.getConnection("jdbc:db2:*local");

 Statement stmt = conn.createStatement();

 // Clean up previous runs

 try {

 stmt.execute("drop table cujosql.test_table");

 }

 catch (SQLException ex) {

 System.out.println("Caught drop table: " + ex.getMessage());

 }

 // Create test table

IBM Developer Kit for Java 167

stmt.execute("Create table cujosql.test_table (col1 smallint)");

 System.out.println("Table created.");

 // Insert some test rows

 for (int i = 0; i < 10; i++) {

 stmt.execute("insert into cujosql.test_table values (" + i + ")");

 }

 System.out.println("Rows inserted");

 ResultSet rs = stmt.executeQuery("select col1 from cujosql.test_table");

 System.out.println("Query executed");

 // Create a new rowset and populate it...

 DB2CachedRowSet crs = new DB2CachedRowSet();

 crs.populate(rs);

 System.out.println("RowSet populated.");

 conn.close();

 System.out.println("RowSet is detached...");

 System.out.println("Test the createShared functionality (create 2 shares)");

 DB2CachedRowSet crs2 = crs.createShared();

 DB2CachedRowSet crs3 = crs.createShared();

 System.out.println("Use the original to update value 5 of the table");

 crs.absolute(5);

 crs.updateShort(1, (short)-5);

 crs.updateRow();

 crs.beforeFirst();

 crs2.afterLast();

 System.out.println("Now move the cursors in opposite directions of the same data.");

 while (crs.next()) {

 crs2.previous();

 crs3.next();

 System.out.println("Values: crs: " + crs.getShort(1) + ", crs2: " + crs2.getShort(1) +

 ", crs3: " + crs3.getShort(1));

 }

 crs.close();

 crs2.close();

 crs3.close();

 }

 catch (Exception ex) {

 System.out.println("SQLException: " + ex.getMessage());

 ex.printStackTrace();

 }

 }

}

DB2JdbcRowSet:

The DB2JdbcRowSet is a connected RowSet, meaning that it can only be used with the support of an

underlying Connection object, PreparedStatement object, or ResultSet object. Its implementation adheres

closely to the description of a JdbcRowSet.

 Use DB2JdbcRowSet

Because the DB2JdbcRowSet object supports events described in the Java Database Connectivity (JDBC)

3.0 specification for all RowSets, it can serve as an intermediate object between a local database and other

objects that must be notified about changes to the database data.

168 IBM Systems - iSeries: Programming IBM Developer Kit for Java

As an example, assume that you are working in an environment where you have a main database and

several Personal Digital Assistants (PDAs) that use a wireless protocol to connect to it. A DB2JdbcRowSet

object can be used to move to a row and update it by using a master application that is running on the

server. The row update causes an event to be generated by the RowSet component. If there is a service

running that is responsible for sending out updates to the PDAs, it can register itself as a ″listener″ of the

RowSet. Each time that it receives a RowSet event, it can generate the appropriate update and send it out

to the wireless devices.

Refer to Example: DB2JdbcRowSet events for more information.

Create JDBCRowSets

There are several methods provided for creating a DB2JDBCRowSet object. Each is outlined as follows.

Use DB2JdbcRowSet properties and DataSources

DB2JdbcRowSets have properties that accept an SQL query and a DataSource name. The DB2JdbcRowSets

are then ready to be used. The following is an example of this approach. The reference to the DataSource

named BaseDataSource is assumed to be a valid DataSource that has been previously set up.

Example: Use DB2JdbcRowSet properties and DataSources

Note: Read the Code example disclaimer for important legal information.

 // Create a new DB2JdbcRowSet

 DB2JdbcRowSet jrs = new DB2JdbcRowSet();

 // Set the properties that are needed for

 // the RowSet to be processed.

 jrs.setDataSourceName("BaseDataSource");

 jrs.setCommand("select col1 from cujosql.test_table");

 // Call the RowSet execute method. This method causes

 // the RowSet to use the DataSource and SQL query

 // specified to prepare itself for data processing.

 jrs.execute();

 // Loop through the data in the RowSet.

 while (jrs.next()) {

 System.out.println("v1 is " + jrs.getString(1));

 }

 // Eventually, close the RowSet.

 jrs.close();

Use DB2JdbcRowSet properties and JDBC URLs

DB2JdbcRowSets have properties that accept an SQL query and a JDBC URL. The DB2JdbcRowSets are

then ready to be used. The following is an example of this approach:

Example: Use DB2JdbcRowSet properties and JDBC URLs

Note: Read the Code example disclaimer for important legal information.
 // Create a new DB2JdbcRowSet

 DB2JdbcRowSet jrs = new DB2JdbcRowSet();

 // Set the properties that are needed for

 // the RowSet to be processed.

 jrs.setUrl("jdbc:db2:*local");

 jrs.setCommand("select col1 from cujosql.test_table");

IBM Developer Kit for Java 169

// Call the RowSet execute method. This causes

 // the RowSet to use the URL and SQL query specified

 // previously to prepare itself for data processing.

 jrs.execute();

 // Loop through the data in the RowSet.

 while (jrs.next()) {

 System.out.println("v1 is " + jrs.getString(1));

 }

 // Eventually, close the RowSet.

 jrs.close();

Use the setConnection(Connection) method to use an existing database connection

To promote the reuse of JDBC Connection objects, the DB2JdbcRowSet allows you to pass an established

connection to the DB2JdbcRowSet. This connection is used by the DB2JdbcRowSet to prepare itself for

usage when the execute method is called.

Example: Use the setConnection method

Note: Read the Code example disclaimer for important legal information.
 // Establish a JDBC Connection to the database.

 Connection conn = DriverManager.getConnection("jdbc:db2:*local");

 // Create a new DB2JdbcRowSet.

 DB2JdbcRowSet jrs = new DB2JdbcRowSet();

 // Set the properties that are needed for

 // the RowSet to use an established connection.

 jrs.setConnection(conn);

 jrs.setCommand("select col1 from cujosql.test_table");

 // Call the RowSet execute method. This causes

 // the RowSet to use the connection that it was provided

 // previously to prepare itself for data processing.

 jrs.execute();

 // Loop through the data in the RowSet.

 while (jrs.next()) {

 System.out.println("v1 is " + jrs.getString(1));

 }

 // Eventually, close the RowSet.

 jrs.close();

Access data and cursor movement

Manipulation of the cursor position and access to the database data through a DB2JdbcRowSet are

handled by the underlying ResultSet object. Tasks that can be done with a ResultSet object also apply to

the DB2JdbcRowSet object.

Change data and reflecting changes to the underlying database

Support for updating the database through a DB2JdbcRowSet is handled completely by the underlying

ResultSet object. Tasks that can be done with a ResultSet object also apply to the DB2JdbcRowSet object.

DB2JdbcRowSet events:

170 IBM Systems - iSeries: Programming IBM Developer Kit for Java

All RowSet implementations support event handling for situations that are of interest to other

components. This support allows application components to ″talk″ to each other when events happen to

them. For example, updating a database row through a RowSet can cause a Graphical User Interface

(GUI) table shown to you to update itself.

 In the following example, the main method does the update to the RowSet and is your core application.

The listener is part of your wireless server used by your disconnected clients in the field. It is possible to

tie these two aspects of a business together without getting the code for the two processes intermingled.

While the event support of RowSets was designed primarily for updating GUIs with database data, it

works perfectly for this type of application problem.

Example: DB2JdbcRowSet events

Note: Read the Code example disclaimer for important legal information.
import java.sql.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.DB2JdbcRowSet;

public class RowSetEvents {

 public static void main(String args[])

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (ClassNotFoundException ex) {

 System.out.println("ClassNotFoundException: " +

 ex.getMessage());

 // No need to go any further.

 System.exit(1);

 }

 try {

 // Obtain the JDBC Connection and Statement needed to set

 // up this example.

 Connection conn = DriverManager.getConnection("jdbc:db2:*local");

 Statement stmt = conn.createStatement();

 // Clean up any previous runs.

 try {

 stmt.execute("drop table cujosql.test_table");

 } catch (SQLException ex) {

 System.out.println("Caught drop table: " + ex.getMessage());

 }

 // Create the test table

 stmt.execute("Create table cujosql.test_table (col1 smallint)");

 System.out.println("Table created.");

 // Populate the table with data.

 for (int i = 0; i < 10; i++) {

 stmt.execute("insert into cujosql.test_table values (" + i + ")");

 }

 System.out.println("Rows inserted");

 // Remove the setup objects.

 stmt.close();

 conn.close();

 // Create a new rowset and set the properties need to

 // process it.

 DB2JdbcRowSet jrs = new DB2JdbcRowSet();

 jrs.setUrl("jdbc:db2:*local");

 jrs.setCommand("select col1 from cujosql.test_table");

IBM Developer Kit for Java 171

jrs.setConcurrency(ResultSet.CONCUR_UPDATEABLE);

 // Give the RowSet object a listener. This object handles

 // special processing when certain actions are done on

 // the RowSet.

 jrs.addRowSetListener(new MyListener());

 // Process the RowSet to provide access to the database data.

 jrs.execute();

 // Cause a few cursor change events. These events cause the cursorMoved

 // method in the listener object to get control.

 jrs.next();

 jrs.next();

 jrs.next();

 // Cause a row change event to occur. This event causes the rowChanged method

 // in the listener object to get control.

 jrs.updateShort(1, (short)6);

 jrs.updateRow();

 // Finally, cause a RowSet change event to occur. This causes the

 // rowSetChanged method in the listener object to get control.

 jrs.execute();

 // When completed, close the RowSet.

 jrs.close();

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 }

}

/**

 * This is an example of a listener. This example prints messages that show

 * how control flow moves through the application and offers some

 * suggestions about what might be done if the application were fully implemented.

 */

class MyListener

implements RowSetListener {

 public void cursorMoved(RowSetEvent rse) {

 System.out.println("Event to do: Cursor position changed.");

 System.out.println(" For the remote system, do nothing ");

 System.out.println(" when this event happened. The remote view of the data");

 System.out.println(" could be controlled separately from the local view.");

 try {

 DB2JdbcRowSet rs = (DB2JdbcRowSet) rse.getSource();

 System.out.println("row is " + rs.getRow() + ". \n\n");

 } catch (SQLException e) {

 System.out.println("To do: Properly handle possible problems.");

 }

 }

 public void rowChanged(RowSetEvent rse) {

 System.out.println("Event to do: Row changed.");

 System.out.println(" Tell the remote system that a row has changed. Then,");

 System.out.println(" pass all the values only for that row to the ");

 System.out.println(" remote system.");

 try {

 DB2JdbcRowSet rs = (DB2JdbcRowSet) rse.getSource();

 System.out.println("new values are " + rs.getShort(1) + ". \n\n");

 } catch (SQLException e) {

 System.out.println("To do: Properly handle possible problems.");

 }

 }

172 IBM Systems - iSeries: Programming IBM Developer Kit for Java

public void rowSetChanged(RowSetEvent rse) {

 System.out.println("Event to do: RowSet changed.");

 System.out.println(" If there is a remote RowSet already established, ");

 System.out.println(" tell the remote system that the values it ");

 System.out.println(" has should be thrown out. Then, pass all ");

 System.out.println(" the current values to it.\n\n");

 }

}

Performance tips for the IBM Developer Kit for Java JDBC driver

The IBM Developer Kit for Java JDBC driver is designed to be a high performance Java interface for

working with the database. However, getting the best possible performance requires that you build your

applications in a way that takes advantage of the strengths the JDBC driver has to offer. The following

tips are considered good JDBC programming practice. Most are not specific to the native JDBC driver.

Therefore, applications written according to these guidelines also perform well if used with JDBC drivers

other than the native JDBC driver.

Avoid SELECT * SQL queries

SELECT * FROM... is a common way to state a query in SQL. Often, however, you do not need to query

all the fields. For each column that is to be returned, the JDBC driver must do the additional work of

binding and returning the row. Even if your application never uses a particular column, the JDBC driver

has to be made aware of it and has to reserve space for its use. If your tables have few columns that are

not used, this is not significant overhead. For a large number of unused columns, however, the overhead

can be significant. A better solution is to list the columns that your application is interested in

individually, like this:

 SELECT COL1, COL2, COL3 FROM...

Use getXXX(int) instead of getXXX(String)

Use the ResultSet getXXX methods that take numeric values instead of the versions that take column

names. While the freedom to use your column names instead of numeric constants seems like an

advantage, the database itself only knows how to deal with column indexes. Therefore, each getXXX

method with a column name you call must be resolved by the JDBC driver before it can be passed to the

database. Because getXXX methods are typically called inside loops that could be run millions of times,

this little bit of overhead can rapidly accumulate.

Avoid getObject calls for Java primitive types

When getting values from the database of primitive types (ints, longs, floats, and so on), it is faster to use

the get method specific to the primitive type (getInt, getLong, getFloat) than to use getObject. The

getObject call does the work of the get for the primitive type, and then creates an object to return to you.

This is typically done in loops, potentially creating millions of objects with short lifespans. Using

getObject for primitive commands has the added drawback of frequently activating the garbage collector,

further degrading performance.

Use PreparedStatement over Statement

If you are writing an SQL statement that is used more than once, it performs better as a

PreparedStatement than as a Statement object. Every time you run a statement, you go through a two

step process: the statement is prepared, and then the statement is processed. When you use a prepared

statement, the statement is prepared only at the time that it is constructed, not each time it is run.

Though it is recognized that a PreparedStatement performs faster than a Statement, this advantage is

often neglected by programmers. Due to the performance boost that PreparedStatements provide, it is

wise to use them in the design of your applications wherever possible (see “Consider using

PreparedStatement pooling” on page 175 below).

IBM Developer Kit for Java 173

Avoid DatabaseMetaData calls

Be aware that some of the DatabaseMetaData calls can be expensive. In particular, the

getBestRowIdentifier, getCrossReference, getExportedKeys, and getImportedKeys methods can be costly.

Some DataBaseMetaData calls involve complex join conditions over system-level tables. Use them only if

you need their information, not just for convenience.

Use the correct commit level for your application

JDBC provides several commit levels which determine how multiple transactions against the system

affect each other (see Transactions for more details). The default is to use the lowest commit level. This

means that transactions can see some of each other’s work through commit boundaries. This introduces

the possibility of certain database anomalies. Some programmers increase the commit level so that they

do not have to worry about these anomalies occurring. Be aware that higher commit levels involve the

database hanging onto more course-grained locks. This limits the amount of concurrency that the system

can have, severely slowing the performance of some applications. Often, the anomaly conditions cannot

occur because of the design of the application in the first place. Take time to understand what you are

trying to accomplish and limit your transaction isolation level to the lowest level you can safely use.

Consider storing data in Unicode

Java requires all character data that it works with (Strings) to be in Unicode. Therefore, any table that

does not have Unicode data requires the JDBC driver to translate the data back and forth as it is put into

the database and retrieved out of the database. If the table is already in Unicode, the JDBC driver does

not need to translate the data and can therefore place the data from the database faster. Take care to

understand that data in Unicode may not work with non-Java applications, which do not know how to

deal with Unicode. Also keep in mind that non-character data does not perform any faster, as there is

never a translation of this data. Another consideration is that data stored in Unicode takes up twice as

much space as single byte data does. If you have many character columns that are read many times,

however, the performance gained by storing your data in Unicode can be significant.

Use stored procedures

The use of stored procedures is supported in Java. Stored procedures can perform faster by allowing the

JDBC driver to run static SQL instead of dynamic SQL. Do not create stored procedures for each

individual SQL statement you run in your program. Where possible, however, create a stored procedure

that runs a group of SQL statements.

Use BigInt instead of Numeric or Decimal

Instead of using Numeric or Decimal fields that have a scale of 0, use the BigInt data type. BigInt

translates directly into the Java primitive type Long whereas Numeric or Decimal data types translate

into String or BigDecimal objects. As noted in “Avoid DatabaseMetaData calls,” using primitive data

types is preferable to using types that require object creation.

Explicitly close your JDBC resources when done with them

ResultSets, Statements, and Connections should be explicitly closed by the application when they are no

longer needed. This allows the resources to be cleaned up in the most efficient way possible and can

increase performance. Further, database resources that are not explicitly closed can cause resource leaks

and database locks to be held longer than necessary. This can lead to application failures or reduced

concurrency in applications.

174 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Use connection pooling

Connection pooling is a strategy by which JDBC Connection objects get reused for multiple users instead

of each user request creating its own Connection object. Connection objects are expensive to create.

Instead of having each user create a new one, a pool of them should be shared in applications where

performance is critical. Many products (such as WebSphere) provide Connection pooling support that can

be used with little additional effort on the user’s part. If you do not want to use a product with

connection pooling support, or prefer to build your own for better control over how the pool works and

performs, it is reasonably easy to do so.

Consider using PreparedStatement pooling

Statement pooling works similarly to Connection pooling. Instead of just putting Connections into a pool,

put an object that contains the Connection and the PreparedStatements a pool. Then, retrieve that object

and access the specific statement you want to use. This can dramatically increase performance.

Use efficient SQL

Because JDBC is built on top of SQL, just about anything that makes for efficient SQL also makes for

efficient JDBC. Hence, JDBC benefits from optimized queries, wisely chosen indices, and other aspects of

good SQL design.

Access databases using IBM Developer Kit for Java DB2 SQLJ support

DB2 Structured Query Language for Java (SQLJ) support is based on the SQLJ ANSI standard. The DB2

SQLJ support is contained in the IBM Developer Kit for Java. DB2 SQLJ support allows you to create,

build, and run embedded SQL for Java applications.

The SQLJ support provided by the IBM Developer Kit for Java includes the SQLJ run-time classes, and is

available in /QIBM/ProdData/Java400/ext/runtime.zip.

SQLJ setup

Before you can use SQLJ in Java applications on your server, you need to prepare your server to use

SQLJ. For more information, see “Setting up your server to use SQLJ” on page 187.

SQLJ tools

The following tools are also included in the SQLJ support provided by the IBM Developer Kit for Java:

v The SQLJ translator, sqlj, replaces embedded SQL statements in the SQLJ program with Java source

statements and generates a serialized profile that contains information about the SQLJ operations that

are found in the SQLJ program.

v The DB2 SQLJ Profile Customizer, db2profc, precompiles the SQL statements stored in the generated

profile and generates a package in the DB2 database.

v The DB2 SQLJ Profile Printer, db2profp, prints the contents of a DB2 customized profile in plain text.

v The SQLJ profile auditor installer, profdb, installs and uninstalls debugging class-auditors into an

existing set of binary profiles.

v The SQLJ profile conversion tool, profconv, converts a serialized profile instance to Java class format.

Note: These tools must be run in the Qshell Interpreter.

DB2 SQLJ restrictions

When you create DB2 applications with SQLJ, you should be aware of the following restrictions:

IBM Developer Kit for Java 175

v DB2 SQLJ support adheres to standard DB2 Universal Database™ restrictions on issuing SQL

statements.

v The DB2 SQLJ profile customizer should only be run on profiles associated with connections to the

local database.

v The SQLJ Reference Implementation requires JDK 1.1, or higher. See Support for multiple Java

Development Kits (JDKs) for more information on running multiple versions of the Java Development

Kit.

For information on using SQL in your Java applications, see Embed SQL Statements in your Java

application and Compile and run SQLJ programs.

Structured Query Language for Java profiles

Profiles are generated by the SQLJ Translator, sqlj, when you translate the SQLJ source file. Profiles are

serialized binary files. That is why these files have a .ser extension. These files contain the SQL

statements from the associated SQLJ source file.

To generate profiles from your SQLJ source code, run the SQLJ translator, sqlj, on your .sqlj file.

For more information, see Compile and run SQLJ programs.

The structured query language for Java (SQLJ) translator (sqlj)

The SQLJ translator, sqlj, generates a serialized profile containing information about the SQL operations

found in the SQLJ program. The SQLJ translator uses the /QIBM/ProdData/Java400/ext/translator.zip

file.

For more information about the profile, follow this link: Profile.

Precompile SQL statements in a profile using the DB2 SQLJ profile customizer,

db2profc

You can use the DB2 SQLJ Profile Customizer, db2profc, to make your Java application work more

efficiently with your database.

The DB2 SQLJ Profile Customizer does the following:

v Precompiles the SQL statements that are stored in a profile and generates a package in the DB2

database.

v Customizes the SQLJ profile by replacing the SQL statements with references to the associated

statement in the package that was created.

To precompile the SQL statements in a profile, type in the following at the Qshell command prompt:

db2profc MyClass_SJProfile0.ser

 Where MyClass_SJProfile0.ser is the name of the profile you want to precompile.

DB2 SQLJ Profile Customizer usage and syntax

db2profc[options] <SQLJ_profile_name>

Where SQLJ_profile_name is the name of the profile to be printed and options is the list of options you

want.

The options available for db2profp are the following:

v -URL=<JDBC_URL>

v -user=<username>

v -password=<password>

176 IBM Systems - iSeries: Programming IBM Developer Kit for Java

v -package=<library_name/package_name>

v -commitctrl=<commitment_control>

v -datefmt=<date_format>

v -datesep=<date_separator>

v -timefmt=<time_format>

v -timesep=<time_separator>

v -decimalpt=<decimal_point>

v -stmtCCSID=<CCSID>

v -sorttbl=<library_name/sort_sequence_table_name>

v -langID=<language_identifier>

The following are the descriptions of these options:

-URL=<JDBC_URL>

Where JDBC_URL is the URL of the JDBC connection. The syntax for the URL is:

 "jdbc:db2:systemName"

For more information, see Access your iSeries database with the IBM Developer Kit for Java JDBC

driver.

-user=<username>

Where username is your username. The default value is the user ID of the current user that is

signed on for local connection.

-password=<password>

Where password is your password. The default value is the password of the current user that is

signed on for local connection.

-package=<library name/package name>

Where library name is the library where the package is placed, and package name is the name of the

package to be generated. The default library name is QUSRSYS. The default package name is

generated from the name of the profile. The maximum length for the package name is 10

characters. Because the SQLJ profile name is always longer than 10 characters, the default

package name that is constructed is different from the profile name. The default package name is

constructed by concatenating the first letters of the profile name with the profile key number. If

the profile key number is greater than 10 characters long, then the last 10 characters of the profile

key number is used for the default package name. For example, the following chart shows some

profile names and their default package names:

 Profile name Default package name

App_SJProfile0 App_SJPro0

App_SJProfile01234 App_S01234

App_SJProfile012345678 A012345678

App_SJProfile01234567891 1234567891

-commitctrl=<commitment_control>

Where commitment_control is the level of commitment control you want. Commitment control can

have any one of the following character values:

 Value Definition

C *CHG. Dirty reads, nonrepeatable reads and phantom

reads are possible.

IBM Developer Kit for Java 177

Value Definition

S *CS. Dirty reads are not possible, but non-repeatable

reads and phantom reads are possible.

A *ALL. Dirty reads and nonrepeatable reads are not

possible, but phantom reads are possible.

N *NONE. Dirty reads, nonrepeatable reads, and phantom

reads are not possible. This is the default.

-datefmt=<date_format>

Where date_format is the type of date formatting you want. Date format can have any one of the

following values:

 Value Definition

USA IBM USA standard (mm.dd.yyyy,hh:mm a.m., hh:mm

p.m.)

ISO International Standards Organization (yyyy-mm-dd,

hh.mm.ss) This is the default.

EUR IBM European Standard (dd.mm.yyyy, hh.mm.ss)

JIS Japanese Industrial Standard Christian Era (yyyy-mm-dd,

hh:mm:ss)

MDY Month/Day/Year (mm/d/yy)

DMY Day/Month/Year (dd/mm/yy)

YMD Year/Month/Day (yy/mm/dd)

JUL Julian (yy/ddd)

Date format is used when accessing date result columns. All output date fields are returned in

the specified format. For input date strings, the specified value is used to determine whether the

date is specified Inc valid format. The default value is ISO.

-datesep=<date_separator>

Where date_separator is the type of separator you want to use. Date separator is used when

accessing date result columns. Date separator can be any of the following values:

 Value Definition

/ A slash is used.

. A period is used.

, A comma is used.

- A dash is used. This is the default.

blank A space is used.

-timefmt=<time_format>

Where time_format is the format you want to use to display time fields. Time format is used when

accessing time result columns. For input time strings, the specified value is used to determine

whether the time is specified in a valid format. Time format can be any one of the following

values:

 Value Definition

USA IBM USA standard (mm.dd.yyyy,hh:mm a.m., hh:mm

p.m.)

ISO International Standards Organization (yyyy-mm-dd,

hh.mm.ss) This is the default.

178 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Value Definition

EUR IBM European Standard (dd.mm.yyyy, hh.mm.ss)

JIS Japanese Industrial Standard Christian Era (yyyy-mm-dd,

hh:mm:ss)

HMS Hour/Minute/Second (hh:mm:ss)

-timesep=<time_separator>

Where time_separator is the character you want to use to access your time result columns. Time

separator can be any one of the following values:

 Value Definition

: A colon is used.

. A period is used. This is the default.

, A comma is used.

blank A space is used.

-decimalpt=<decimal_point>

Where decimal_point is the decimal point you want to use. The decimal point is used for numeric

constants in SQL statements. Decimal point can be any one of the following values:

 Value Definition

. A period is used. This is the default.

, A comma is used.

-stmtCCSID=<CCSID>

Where CCSID is the coded character set identifier for the SQL statements that are prepared into

the package. The value of the job during customization time is the default value.

-sorttbl=<library_name/sort_sequence_table_name>

Where library_name/sort_sequence_table_name is the location and table name of the sort sequence

table you want to use. The sort sequence table is used for string comparisons in SQL statements.

The library name and sort sequence table name each have limits of 10 characters. The default

value is taken from the job during customization time.

-langID=<language_identifier>

Where language identifier is the language identifier you want to use. The default value for the

language identifier is taken from the current job during customization time. The language

identifier is used in conjunction with the sort sequence table.

For a more detailed information on any of these fields, see DB2 for iSeries SQL Programming Concepts,

SC41-5611

.

Print the contents of DB2 SQLJ profiles (db2profp and profp)

The DB2 SQLJ Profile Printer, db2profp, prints the contents of a DB2 customized profile in plain text. The

Profile Printer, profp, prints the contents of profiles generated by the SQLJ translator in plain text.

To print the content of the profiles generated by the SQLJ translator in plain text, use the profp utility as

follows:

 profp MyClass_SJProfile0.ser

Where MyClass_SJProfile0.ser is the name of the profile you want to print.

IBM Developer Kit for Java 179

To print the content of the DB2 customized version of the profile in plain text, use the db2profp utility as

follows:

 db2profp MyClass_SJProfile0.ser

Where MyClass_SJProfile0.ser is the name of the profile you want to print.

Note: If you run db2profp on an uncustomized profile, it tells you that the profile has not been

customized. If you run profp on a customized profile, it displays the contents of the profile without the

customizations.

DB2 SQLJ Profile Printer usage and syntax:

 db2profp [options] <SQLJ_profile_name>

Where SQLJ_profile_name is the name of the profile to be printed and options is the list of options you

want.

The options available for db2profp are the following:

-URL=<JDBC_URL>

Where JDBC_URL is the URL you want to connect to. For more information, see Access your

iSeries database with the IBM Developer Kit for Java JDBC driver.

-user=<username>

Where username is the user name is your user profile.

-password=<password>

Where password is the password of your user profile.

SQLJ profile auditor installer (profdb)

The SQLJ profile auditor installer (profdb) installs and uninstalls debugging class-auditors. The

debugging class-auditors are installed into an existing set of binary profiles. Once the debugging

class-auditors are installed, all RTStatement and RTResultSet calls made during application run time are

logged. They can be logged to a file or standard output. The logs can then be inspected to verify the

behavior and trace errors of the application. Note that only the calls made to the underlying RTStatement

and RTResultSetcall interface at run time are audited.

To install debugging class-auditors, enter the following at the Qshell command prompt:

profdb MyClass_SJProfile0.ser

 Where MyClass_SJProfile0.ser is the name of the profile that was generated by the SQLJ Translator.

To uninstall debugging class-auditors, enter the following at the Qshell command prompt:

profdb -Cuninstall MyClass_SJProfile.ser

 Where MyClass_SJProfile0.ser is the name of the profile that was generated by the SQLJ Translator.

Convert a serialized profile instance to Java class format using the SQLJ profile

conversion tool (profconv)

The SQLJ profile conversion tool (profconv) converts a serialized profile instance to Java class format. The

profconv tool is needed because some browsers do not support loading a serialized object from a

resource file that is associated with an applet. Run the profconv utility to perform the conversion.

To run the profconv utility, type the following on the Qshell command line:

 profconv MyApp_SJProfile0.ser

where MyApp_SJProfile0.ser is the name of profile instance you want to convert.

The profconv tool invokes sqlj -ser2class. See sqlj for command line options.

180 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Embed SQL statements in your Java application

Static SQL statements in SQLJ are in SQLJ clauses. SQLJ clauses begin with #sql and end with a

semicolon (;) character.

Before you create any SQLJ clauses in your Java application, import the following packages:

v import java.sql.*;

v import sqlj.runtime.*;

v import sqlj.runtime.ref.*;

The simplest SQLJ clauses are clauses that can be processed and consist of the token #sql followed by an

SQL statement enclosed in braces. For example, the following SQLJ clause may appear wherever a Java

statement may legally appear:

#sql { DELETE FROM TAB };

 The previous example deletes all the rows in the table named TAB.

Note: For information on compiling and running SQLJ applications, see Compile and run SQLJ programs

In an SQLJ process clause, the tokens that appear inside the braces are either SQL tokens or host

variables. All host variables are distinguished by the colon (:) character. SQL tokens never occur outside

the braces of an SQLJ process clause. For example, the following Java method inserts its arguments into

an SQL table:

public void insertIntoTAB1 (int x, String y, float z) throws SQLException

{

 #sql { INSERT INTO TAB1 VALUES (:x, :y, :z) };

}

 The method body consists of an SQLJ process clause containing the host variables x, y, and z. For more

information on host variables, see Host variables in SQLJ.

In general, SQL tokens are case insensitive (except for identifiers delimited by double quotation marks),

and can be written in upper, lower, or mixed case. Java tokens, however, are case sensitive. For clarity in

examples, case insensitive SQL tokens are uppercase, and Java tokens are lowercase or mixed case.

Throughout this topic, the lowercase null is used to represent the Java ″null″ value, and the uppercase

 NULL is used to represent the SQL ″null″ value.

The following types of SQL constructs may appear in SQLJ programs:

v Queries For example, SELECT statements and expressions.

v SQL Data Change statements (DML) For example, INSERT, UPDATE, DELETE.

v Data statements For example, FETCH, SELECT..INTO.

v Transaction Control statements For example, COMMIT, ROLLBACK, etc.

v Data Definition Language (DDL, also known as Schema Manipulation Language) statements For

example, CREATE, DROP, ALTER.

v Calls to stored procedures For example, CALL MYPROC(:x, :y, :z)

v Invocations of stored functions For example, VALUES(MYFUN(:x))

Host variables in Structured Query Language for Java:

Arguments to embedded SQL statements are passed through host variables. Host variables are variables

of the host language, and they can appear in SQL statements.

 Host variables have up to three parts:

v A colon (:) prefix.

IBM Developer Kit for Java 181

v A Java host variable that is a Java identifier for a parameter, variable, or field.

v An optional parameter mode identifier.

This mode identifier can be one of the following:

IN, OUT, or INOUT.

The evaluation of a Java identifier does not have side effects in a Java program, so it may appear

multiple times in the Java code generated to replace an SQLJ clause.

The following query contains the host variable, :x. This host variable is the Java variable, field, or

parameter x that is visible in the scope containing the query.

SELECT COL1, COL2 FROM TABLE1 WHERE :x > COL3

Example: Embed SQL Statements in your Java application:

The following example SQLJ application, App.sqlj, uses static SQL to retrieve and update data from the

EMPLOYEE table of the DB2 sample database.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import sqlj.runtime.*;

import sqlj.runtime.ref.*;

#sql iterator App_Cursor1 (String empno, String firstnme) ; //

1

#sql iterator App_Cursor2 (String) ;

class App

{

 /**********************

 ** Register Driver **

 **********************/

 static

 {

 try

 {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver").newInstance();

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 /********************

 ** Main **

 ********************/

 public static void main(String argv[])

 {

 try

 {

 App_Cursor1 cursor1;

 App_Cursor2 cursor2;

 String str1 = null;

 String str2 = null;

 long count1;

 // URL is jdbc:db2:dbname

 String url = "jdbc:db2:sample";

182 IBM Systems - iSeries: Programming IBM Developer Kit for Java

DefaultContext ctx = DefaultContext.getDefaultContext();

 if (ctx == null)

 {

 try

 {

 // connect with default id/password

 Connection con = DriverManager.getConnection(url);

 con.setAutoCommit(false);

 ctx = new DefaultContext(con);

 }

 catch (SQLException e)

 {

 System.out.println("Error: could not get a default context");

 System.err.println(e) ;

 System.exit(1);

 }

 DefaultContext.setDefaultContext(ctx);

 }

 // retrieve data from the database

 System.out.println("Retrieve some data from the database.");

 #sql cursor1 = {SELECT empno, firstnme FROM employee}; //

2

 // display the result set

 // cursor1.next() returns false when there are no more rows

 System.out.println("Received results:");

 while (cursor1.next()) //

3

 {

 str1 = cursor1.empno(); //

4

 str2 = cursor1.firstnme();

 System.out.print (" empno= " + str1);

 System.out.print (" firstname= " + str2);

 System.out.println("");

 }

 cursor1.close(); //

9

 // retrieve number of employee from the database

 #sql { SELECT count(*) into :count1 FROM employee }; //

5

 if (1 == count1)

 System.out.println ("There is 1 row in employee table");

 else

 System.out.println ("There are " + count1

 + " rows in employee table");

 // update the database

 System.out.println("Update the database.");

 #sql { UPDATE employee SET firstnme = ’SHILI’ WHERE empno = ’000010’ };

 // retrieve the updated data from the database

 System.out.println("Retrieve the updated data from the database.");

 str1 = "000010";

 #sql cursor2 = {SELECT firstnme FROM employee WHERE empno = :str1}; //

6

 // display the result set

 // cursor2.next() returns false when there are no more rows

 System.out.println("Received results:");

 while (true)

 {

 #sql { FETCH :cursor2 INTO :str2 }; //

7

 if (cursor2.endFetch()) break; //

8

 System.out.print (" empno= " + str1);

 System.out.print (" firstname= " + str2);

 System.out.println("");

 }

IBM Developer Kit for Java 183

cursor2.close(); //

9

 // rollback the update

 System.out.println("Rollback the update.");

 #sql { ROLLBACK work };

 System.out.println("Rollback done.");

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

}

1Declare iterators. This section declares two types of iterators:

v App_Cursor1: Declares column data types and names, and returns the values of the columns according

to column name (Named binding to columns).

v App_Cursor2: Declares column data types, and returns the values of the columns by column position

(Positional binding to columns).

2Initialize the iterator. The iterator object cursor1 is initialized using the result of a query. The query

stores the result in cursor1.

3Advance the iterator to the next row. The cursor1.next() method returns a Boolean false if there are no

more rows to retrieve.

4Move the data. The named accessor method empno() returns the value of the column named empno on

the current row. The named accessor method firstnme() returns the value of the column named firstnme

on the current row.

5SELECT data into a host variable. The SELECT statement passes the number of rows in the table into the

host variable count1.

6 Initialize the iterator. The iterator object cursor2 is initialized using the result of a query. The query

stores the result in cursor2.

7Retrieve the data. The FETCH statement returns the current value of the first column declared in the

ByPos cursor from the result table into the host variable str2.

8Check the success of a FETCH.INTO statement. The endFetch() method returns a Boolean true if the

iterator is not positioned on a row, that is, if the last attempt to fetch a row failed. The endFetch() method

returns false if the last attempt to fetch a row was successful. DB2 attempts to fetch a row when the

next() method is called. A FETCH...INTO statement implicitly calls the next() method.

9Close the iterators. The close() method releases any resources held by the iterators. You should explicitly

close iterators to ensure that system resources are released in a timely fashion.

For background information on this example, see Embed SQL Statements in your Java application.

Compile and run SQLJ programs

If you Java program has embedded SQLJ statements, you need to follow a special procedure to compile

and run it.

If your Java program has embedded SQLJ statements, you need to follow a special procedure to compile

and run it.

1. Set up your server to use SQLJ.

184 IBM Systems - iSeries: Programming IBM Developer Kit for Java

2. Use the SQLJ translator, sqlj, on your Java source code with embedded SQL to generate Java source

code and associated profiles. There is one profile generated for each connection.

For example, type in the following command:

 sqlj MyClass.sqlj

where MyClass.sqlj is the name of your SQLJ file.

In this example, the SQLJ translator generates a MyClass.java source code file and any associated

profiles. The associated profiles are named MyClass_SJProfile0.ser, MyClass_SJProfile1.ser,

MyClass_SJProfile2.ser, and so on.

Note: The SQLJ translator automatically compiles the translated Java source code into a class file

unless you explicitly turn off the compile option with the -compile=false clause.

3. Use the SQLJ Profile Customizer tool, db2profc, to install DB2 SQLJ Customizers on generated

profiles and create the DB2 packages on the local system.

For example, type in the command:

 db2profc MyClass_SJProfile0.ser

where MyClass_SJProfile0.ser is the name of the profile on which the DB2 SQLJ Customizer is run.

Note: This step is optional but is recommended to increase runtime performance.

4. Run the Java class file just like any other Java class file.

For example, type in the command:

 java MyClass

where MyClass is the name of your Java class file.

 Related concepts

 “Embed SQL statements in your Java application” on page 181

Static SQL statements in SQLJ are in SQLJ clauses. SQLJ clauses begin with #sql and end with a

semicolon (;) character.

Java SQL routines

Your iSeries server provides the ability to access Java programs from SQL statements and programs. This

can be done using Java stored procedures and Java user-defined functions (UDFs). The iSeries server

supports both the DB2 and SQLJ conventions for calling Java stored procedures and Java UDFs. Both Java

stored procedures and Java UDFs can use Java classes that are stored in JAR files. The iSeries server uses

stored procedures defined by the SQLJ Part 1 standard to register JAR files with the database.

Use Java SQL routines

You can access Java programs from SQL statements and programs. This can be done using Java stored

procedures and Java user-defined functions (UDFs).

To use Java SQL routines, complete the following tasks:

1. Enable SQLJ

Because any Java SQL routine may use SQLJ, make SQLJ runtime support always available when

running Java 2 Software Development Kit (J2SDK). To enable runtime support for SQLJ in J2SDK, add

a link to the SQLJ runtime.zip file from your extensions directory. For more information, see “Setting

up your server to use SQLJ” on page 187.

2. Write the Java methods for the routines

A Java SQL routine processes a Java method from SQL. This method must be written using either the

DB2 or SQLJ parameter passing conventions. See Java stored procedures, Java user-defined functions,

and Java user-defined table functions for more information about coding a method used by a Java

SQL routine.

IBM Developer Kit for Java 185

3. Compile the Java classes

Java SQL routines written using the Java parameter style may be compiled without any addition

setup. However, Java SQL routines using the DB2GENERAL parameter style must extend either the

com.ibm.db2.app.UDF class or com.ibm.db2.app.StoredProc class. These classes are contained in the

JAR file, /QIBM/ProdData/Java400/ext/db2routines_classes.jar. When using javac to compile these

routines, this JAR file must exist in the CLASSPATH. For example, the following command compiles a

Java source file containing a routine which uses the DB2GENERAL parameter style:

 javac -DCLASSPATH=/QIBM/ProdData/Java400/ext/db2routines_classes.jar

 source.java

4. Make the compiled classes accessible to the Java virtual machine (JVM) used by the database

The user-defined classes used by the database JVM can either reside in the

/QIBM/UserData/OS400/SQLLib/Function directory or in a JAR file registered to the database.

The /QIBM/UserData/OS400/SQLLib/Function is the iSeries equivalent of /sqllib/function, the

directory where DB2 UDB stores Java stored procedures and Java UDFs on other platforms. If the

class is part of a Java package, it must reside in the appropriate subdirectory. For example, if the runit

class is created as part of the foo.bar package, the file runnit.class should be in the integrated file

system directory, /QIBM/ProdData/OS400/SQLLib/Function/foo/bar.

The class file may also be placed in a JAR file that is registered to the database. The JAR file is

registered using the SQLJ.INSTALL_JAR stored procedure. This stored procedure is used to assign a

JAR ID to a JAR file. This JAR ID is used to identify the JAR file in which the class file resides. See

SQLJ procedures that manipulate JAR files for more information on SQLJ.INSTALL_JAR as well as

other stored procedures to manipulate JAR files.

5. Register the routine with the database.

Java SQL routines is registered with the database using the CREATE PROCEDURE and CREATE

FUNCTION SQL statements. These statements contain the following elements:

CREATE keywords

The SQL statements to create a Java SQL routine begin with either CREATE PROCEDURE or

CREATE STATEMENT.

Name of routine

The SQL statement then identifies the name of the routine that is known to the database. This

is the name that is used to access the Java routine from SQL.

Parameters and return value

The SQL statement then identifies the parameters and return values, if applicable, for the Java

routine.

LANGUAGE JAVA

The SQL statement uses the keywords LANGUAGE JAVA to indicate that the routine was

written in Java.

PARAMETER STYLE KEYWORDS

The SQL statement then identifies the parameter style using the keywords PARAMETER

STYLE JAVA or PARAMETER STYLE DB2GENERAL.

External name

The SQL statement then identifies the Java method to be processed as Java SQL routines. The

external name has one of two formats:

v If the method is in a class file that is located under the

/QIBM/UserData/OS400/SQLLib/Function directory, then the method is identified using

the format classname.methodname, where classname is the fully qualified name of the class

and methodname is the name of the method.

v If the method is in a JAR file registered to the database, then the method is identified using

the format jarid:classname.methodname, where jarid is the JAR ID of the registered JAR file,

classname is the name of the class, and methodname is the name of the method.

186 IBM Systems - iSeries: Programming IBM Developer Kit for Java

The iSeries Navigator may be used to create a stored procedure or user-defined function that uses the

Java parameter style.

6. Use the Java procedure

A Java stored procedure is called using the SQL CALL statement. A Java UDF is a function that is

called as part of another SQL statement.

Setting up your server to use SQLJ:

Before running a Java program that contains embedded SQLJ statements, ensure that you set up your

server to support SQLJ. SQLJ support requires that you modify the CLASSPATH environment variable for

your server.

 For more information about working with Java classpaths, see the following page:

Java classpath

Using SQLJ and J2SDK

To set up SQLJ on a server running any supported version of J2SDK, complete the following steps:

1. Add the following files to the CLASSPATH environment variable for your server:

v /QIBM/ProdData/Os400/Java400/ext/sqlj_classes.jar

v /QIBM/ProdData/Os400/Java400/ext/translator.zip

Note: You need to add translator.zip only when you want to run the SQLJ translator (sqlj command).

You do not need to add translator.zip if you only want to run compiled Java programs that use SQLJ.

for more information, see the following page:

The SQLJ translator (sqlj)

2. At an iSeries command prompt, use the following command to add a link to runtime.zip from your

extensions directory. Type the command on one line, then press Enter.

 ADDLNK OBJ(’/QIBM/ProdData/Os400/Java400/ext/runtime.zip’)

 NEWLNK(’/QIBM/UserData/Java400/ext/runtime.zip’)

For more information about installing extensions, see the following page:

Install extensions for the IBM Developer Kit for Java

 Collected links

 Java classpath

The Java(TM) virtual machine uses the Java classpath to find classes during runtime. Java commands

and tools also use the classpath to locate classes. The default system classpath, the CLASSPATH

environment variable, and the classpath command parameter all determine what directories are

searched when looking for a particular class.

 The SQLJ translator (sqlj)

The SQLJ translator, sqlj, generates a serialized profile containing information about the SQL

operations found in the SQLJ program. The SQLJ translator uses the

/QIBM/ProdData/Java400/ext/translator.zip file.

 Install extensions for the IBM Developer Kit for Java

Extensions are packages of Java classes that you can use to extend the functionality of the core

platform. Extensions are packaged in one or more ZIP files or JAR files, and are loaded into the Java

virtual machine by an extension class loader.

Java stored procedures

When using Java to write stored procedures, you can use two possible parameter passing styles.

IBM Developer Kit for Java 187

The recommended style is the JAVA parameter style, which matches the parameter style specified in the

SQLj: SQL routines standard. The second style, DB2GENERAL, is a parameter style defined by DB2 UDB.

The parameter style also determines the conventions that you must use when coding a Java stored

procedure.

Additionally, you should also be aware of some restrictions that are placed on Java stored procedures.

JAVA parameter style: When you code a Java stored procedure that uses the JAVA parameter style, you

must use the following conventions:

v The Java method must be a public void static (not instance) method.

v The parameters of the Java method must be SQL-compatible types.

v A Java method may test for an SQL NULL value when the parameter is a null-capable type (like

String).

v Output parameters are returned by using single element arrays.

v The Java method may access the current database using the getConnection method.

Java stored procedures using the JAVA parameter style are public static methods. Within the classes, the

stored procedures are identified by their method name and signature. When you call a stored procedure,

its signature is generated dynamically, based on the variable types defined by the CREATE PROCEDURE

statement.

If a parameter is passed in a Java type that permits the null value, a Java method can compare the

parameter to null to determine if an input parameter is an SQL NULL.

The following Java types do not support the null value:

v short

v int

v long

v float

v double

If a null value is passed to a Java type that does not support the null value, an SQL Exception with an

error code of -20205 will be returned.

Output parameters are passed as arrays that contain one element. The Java stored procedure can set the

first element of the array to set the output parameter.

A connection to the embedding application context is accessed using the following Java Database

Connectivity (JDBC) call:

connection=DriverManager.getConnection("jdbc:default:connection");

 This connection then runs SQL statements with JDBC APIs.

The following is a small stored procedure with one input and two outputs. It runs the given SQL query,

and returns both the number of rows in the result and the SQLSTATE.

Example: Stored procedure with one input and two outputs

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
 package mystuff;

 import java.sql.*;

 public class sample2 {

188 IBM Systems - iSeries: Programming IBM Developer Kit for Java

public static void donut(String query, int[] rowCount,

 String[] sqlstate) throws Exception {

 try {

 Connection c=DriverManager.getConnection("jdbc:default:connection");

 Statement s=c.createStatement();

 ResultSet r=s.executeQuery(query);

 int counter=0;

 while(r.next()){

 counter++;

 }

 r.close(); s.close();

 rowCount[0] = counter;

 }catch(SQLException x){

 sqlstate[0]= x.getSQLState();

 }

 }

 }

In the SQLj standard, to return a result set in routines that use the JAVA parameter style, the result set

must be set explicitly. When a procedure is created that returns result sets, additional result set

parameters are added to the end of the parameter list. For example, the statement

CREATE PROCEDURE RETURNTWO()

DYNAMIC RESULT SETS 2

LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME ’javaClass!returnTwoResultSets’

 would call a Java method with the signature public static void returnTwoResultSets(ResultSet[] rs1,

ResultSet[] rs2).

The output parameters of the result sets must be explicitly set as illustrated in the following example. As

in the DB2GENERAL style, the result sets and corresponding statements should not be closed.

Example: Stored procedure that returns two result sets

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class javaClass {

 /**

 * Java stored procedure, with JAVA style parameters,

 * that processes two predefined sentences

 * and returns two result sets

 *

 * @param ResultSet[] rs1 first ResultSet

 * @param ResultSet[] rs2 second ResultSet

 */

public static void returnTwoResultSets (ResultSet[] rs1, ResultSet[] rs2) throws Exception

{

 //get caller’s connection to the database; inherited from StoredProc

 Connection con = DriverManager.getConnection("jdbc:default:connection");

 //define and process the first select statement

 Statement stmt1 = con.createStatement();

 String sql1 = "select value from table01 where index=1";

 rs1[0] = stmt1.executeQuery(sql1);

 //define and process the second select statement

 Statement stmt2 = con.createStatement();

 Stringsql2 = "select value from table01 where index=2";

 rs2[0] = stmt2.executeQuery(sql2);

 }

}

IBM Developer Kit for Java 189

On the server, the additional result set parameters are not examined to determine the ordering of the

results sets. The results sets on the server are returned in the order in which they were opened. To ensure

compatibility with the SQLj standard, the result should be assigned in the order that they are opened, as

previously shown.

DB2GENERAL parameter style:

When coding a Java stored procedure that uses the DB2GENERAL parameter style, you must use these

conventions.

v The class that defines a Java stored procedure must extend, or be a subclass of, the Java

com.ibm.db2.app.StoredProc class.

v The Java method must be a public void instance method.

v The parameters of the Java method must be SQL-compatible types.

v A Java method may test for a SQL NULL value using the isNull method.

v The Java method must explicitly set the return parameters using the set method.

v The Java method may access the current database using the getConnection method.

A class that includes a Java stored procedure must extend the class, com.ibm.db2.app.StoredProc. Java

stored procedures are public instance methods. Within the classes, the stored procedures are identified by

their method name and signature. When you call a stored procedure, its signature is generated

dynamically, based on the variable types defined by the CREATE PROCEDURE statement.

The com.ibm.db2.app.StoredProc class provides the isNull method, which permits a Java method to

determine if an input parameter is an SQL NULL. The com.ibm.db2.app.StoredProc class also provides

set...() methods that set output parameters. You must use these methods to set output parameters. If you

do not set an output parameter, then the output parameter returns the SQL NULL value.

The com.ibm.db2.app.StoredProc class provides the following routine to fetch a JDBC connection to the

embedding application context. A connection to the embedding application context is accessed using the

following JDBC call:

public Java.sql.Connection getConnection()

 This connection then runs SQL statements with JDBC APIs.

The following is a small stored procedure with one input and two outputs. It processes the given SQL

query, and returns both the number of rows in the result and the SQLSTATE.

Example: Stored procedure with one input and two outputs

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
package mystuff;

import com.ibm.db2.app.*;

import java.sql.*;

public class sample2 extends StoredProc {

 public void donut(String query, int rowCount,

 String sqlstate) throws Exception {

 try {

 Statement s=getConnection().createStatement();

 ResultSet r=s.executeQuery(query);

 int counter=0;

 while(r.next()){

 counter++;

 }

 r.close(); s.close();

 set(2, counter);

190 IBM Systems - iSeries: Programming IBM Developer Kit for Java

}catch(SQLException x){

 set(3, x.getSQLState());

 }

 }

}

 To return a result set in procedures that use the DB2GENERAL parameter style, the result set and the

responding statement must be left open at the end of the procedure. The result set that is returned must

be closed by the client application. If multiple results sets are returned, they are returned in the order in

which they were opened. For example, the following stored procedure returns two results sets.

Example: Stored procedure that returns two results sets

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
public void returnTwoResultSets() throws Exception

{

 // get caller’s connection to the database; inherited from StoredProc

 Connection con = getConnection ();

 Statement stmt1 = con.createStatement ();

 String sql1 = "select value from table01 where index=1";

 ResultSet rs1 = stmt1.executeQuery(sql1);

 Statement stmt2 = con.createStatement();

 String sql2 = "select value from table01 where index=2";

 ResultSet rs2 = stmt2.executeQuery(sql2);

}

Restrictions on Java stored procedures:

These restrictions apply to Java stored procedures.

v A Java stored procedure should not create additional threads. An additional thread may be created in a

job only if the job is multithread capable. Because there is no guarantee that a job that calls an SQL

stored procedure is multithread capable, a Java stored procedure should not create additional threads.

v You cannot use adopted authority to access Java class files.

v A Java stored procedure always uses the latest version of the Java Development Kit that is installed on

the system.

v Since Blob and Clob classes reside in both the java.sql and com.ibm.db2.app packages, the programmer

must use the entire name of these classes if both classes are used in the same program. The program

must ensure that the Blob and Clob classes from the com.ibm.db2.app are used as the parameters

passed to the stored procedure.

v When a Java stored procedure is created, the system generates a program in the library. This program

is used to store the procedure definition. The program has a name that is generated by the system. This

name can be obtained by examining the job log of the job that created the stored procedure. If the

program object is saved and then restored, then the procedure definition is restored. If a Java stored

procedure is to be moved from one system to another, you are responsible for moving the program

that contains the procedure definition as well as the integrated file system file, which contains the Java

class.

v A Java stored procedure cannot set the properties (for example, system naming) of the JDBC

connection that is used to connect to the database. The default JDBC connection properties are always

used, except when prefetching is disabled.

Java user-defined scalar functions

A Java scalar function returns one value from a Java program to the database. For example, a scalar

function could be created that returns the sum of two numbers.

IBM Developer Kit for Java 191

Like Java stored procedures, Java scalar functions use one of two parameter styles, Java and

DB2GENERAL. When coding a Java user-defined function (UDF), you must be aware of restrictions

placed on creating Java scalar functions.

Parameter style Java

The Java parameter style is the style specified by the SQLJ Part 1: SQL Routines standard. When coding a

Java UDF, use the following conventions.

v The Java method must be a public static method.

v The Java method must return an SQL compatible type. The return value is the result of the method.

v The parameters of the Java method must be SQL compatible types.

v The Java method may test for a SQL NULL for Java types that permit the null value.

For example, given a UDF called sample!test3 that returns INTEGER and takes arguments of type

CHAR(5), BLOB(10K), and DATE, DB2 expects the Java implementation of the UDF to have the following

signature:

import com.ibm.db2.app.*;

public class sample {

 public static int test3(String arg1, Blob arg2, Date arg3) { ... }

}

The parameters of a Java method must be SQL compatible types. For example, if a UDF is declared as

taking arguments of SQL types t1, t2, and t3, and returning type t4, it is called as a Java method with the

expected Java signature:

 public static T4 name (T1 a, T2 b, T3 c) {}

where:

v name is the method name

v T1 through T4 are the Java types that correspond to SQL types t1 through t4.

v a, b, and c are arbitrary variable names for the input arguments.

The correlation between SQL types and Java types is found in Parameter passing conventions for stored

procedures and UDFs.

SQL NULL values are represented by Java variables that are not initialized. These variables have a Java

null value if they are object types. If an SQL NULL is passed to a Java scalar data type, such as int, then

an exception condition is raised.

To return a result from a Java UDF when using the JAVA parameter style, simply return the result from

the method.

{

 return value;

}

Like C modules used in UDFs and stored procedures, you cannot use the Java standard I/O streams

(System.in, System.out, and System.err) in Java UDFs.

Parameter style DB2GENERAL

Parameter style DB2GENERAL is used by Java UDFs. In this parameter style, the return value is passed

as the last parameter of the function and must be set using a set method of the com.ibm.db2.app.UDF

class.

When coding a Java UDF, the following conventions must be followed:

192 IBM Systems - iSeries: Programming IBM Developer Kit for Java

v The class, which includes the Java UDF, must extend, or be a subclass of, the Java

com.ibm.db2.app.UDF class.

v For the DB2GENERAL parameter style, the Java method must be a public void instance method.

v The parameters of the Java method must be SQL-compatible types.

v The Java method may test for an SQL NULL value using the isNull method.

v For the DB2GENERAL parameter style, the Java method must explicitly set the return parameter using

the set() method.

A class that includes a Java UDF must extend the Java class, com.ibm.db2.app.UDF. A Java UDF that uses

the DB2GENERAL parameter style must be a void instance method of the Java class. For example, for a

UDF called sample!test3 that returns INTEGER and takes arguments of type CHAR(5), BLOB(10K), and

DATE, DB2 expects the Java implementation of the UDF to have the following signature:

import com.ibm.db2.app.*;

public class sample extends UDF {

 public void test3(String arg1, Blob arg2, String arg3, int result) { ... }

}

The parameters of a Java method must be SQL types. For example, if a UDF is declared as taking

arguments of SQL types t1, t2, and t3, returning type t4, it is called as a Java method with the expected

Java signature:

public void name (T1 a, T2 b, T3 c, T4 d) {}

where:

v name is the method name

v T1 through T4 are the Java types that correspond to SQL types t1 through t4.

v a, b, and c are arbitrary variable names for the input arguments.

v d is an arbitrary variable name that represents the UDF result being computed.

The correlation between SQL types and Java types is given in the section, Parameter passing conventions

for stored procedures and UDFs.

SQL NULL values are represented by Java variables that are not initialized. These variables have a value

of zero if they are primitive types, and Java null if they are object types, in accordance with Java rules. To

tell an SQL NULL apart from an ordinary zero, the isNull method can be called for any input argument:

 {

 if (isNull(1)) { /* argument #1 was a SQL NULL */ }

 else { /* not NULL */ }

 }

In the previous example, the argument numbers start at one. The isNull() function, like the other

functions that follow, are inherited from the com.ibm.db2.app.UDF class. To return a result from a Java

UDF when using the DB2GENERAL parameter style, use the set() method in the UDF, as follows:

 {

 set(2, value);

 }

Where 2 is the index of an output argument, and value is a literal or variable of a compatible type. The

argument number is the index in the argument list of the selected output. In the first example in this

section, the int result variable has an index of 4. An output argument that is not set before the UDF

returns has a NULL value.

Like C modules used in UDFs and stored procedures, you cannot use the Java standard I/O streams

(System.in, System.out, and System.err) in Java UDFs.

IBM Developer Kit for Java 193

Typically, DB2 calls a UDF many times, once for each row of an input or result set in a query. If

SCRATCHPAD is specified in the CREATE FUNCTION statement of the UDF, DB2 recognizes that some

″continuity″ is needed between successive invocations of the UDF, and therefore, for DB2GENERAL

parameter style functions, the implementing Java class is not instantiated for each call, but generally

speaking once per UDF reference per statement. If, however, NO SCRATCHPAD is specified for a UDF,

then a clean instance is instantiated for each call to the UDF, by means of a call to the class constructor.

A scratchpad may be useful for saving information across calls to a UDF. Java UDFs can either use

instance variables or set the scratchpad to achieve continuity between calls. Java UDFs access the

scratchpad with the getScratchPad and setScratchPad methods available in com.ibm.db2.app.UDF. At the

end of a query, if you specify the FINAL CALL option on the CREATE FUNCTION statement, the

object’s public void close() method is called (for DB2GENERAL parameter style functions). If you do not

define this method, a stub function takes over and the event is ignored. The com.ibm.db2.app.UDF class

contains useful variables and methods that you can use within a DB2GENERAL parameter style UDF.

These variables and methods are explained in the following table.

 Variables and Methods Description

v public static final int SQLUDF_FIRST_CALL = -1;

v public static final int SQLUDF_NORMAL_CALL = 0;

v public static final int SQLUDF_TF_FIRST = -2;

v public static final int SQLUDF_TF_OPEN = -1;

v public static final int SQLUDF_TF_FETCH = 0;

v public static final int SQLUDF_TF_CLOSE = 1;

v public static final int SQLUDF_TF_FINAL = 2;

For scalar UDFs, these are constants to determine if the

call is a first call or a normal call. For table UDFs, these

are constants to determine if the call is a first call, open

call, fetch call, close call, or final call.

public Connection getConnection(); The method obtains the JDBC connection handle for this

stored procedure call and returns a JDBC object that

represents the calling application’s connection to the

database. It is analogous to the result of a null

SQLConnect() call in a C stored procedure.

public void close(); This method is called by the database at the end of a

UDF evaluation, if the UDF was created with the FINAL

CALL option. It is analogous to the final call for a C

UDF. If a Java UDF class does not implement this

method, this event is ignored.

public boolean isNull(int i) This method tests whether an input argument with the

given index is an SQL NULL.

v public void set(int i, short s);

v public void set(int i, int j);

v public void set(int i, long j);

v public void set(int i, double d);

v public void set(int i, float f);

v public void set(int i, BigDecimal bigDecimal);

v public void set(int i, String string);

v public void set(int i, Blob blob);

v public void set(int i, Clob clob);

v public boolean needToSet(int i);

These methods set an output argument to the given

value. An exception is thrown if anything goes wrong,

including the following:

v UDF call is not in progress

v Index does not refer to valid output argument

v Data type does not match

v Data length does not match

v Code page conversion error occurs

194 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Variables and Methods Description

public void setSQLstate(String string); This method may be called from a UDF to set the

SQLSTATE to be returned from this call. If the string is

not acceptable as an SQLSTATE, an exception is thrown.

The user may set the SQLSTATE in the external program

to return an error or warning from the function. In this

case, the SQLSTATE must contain one of the following:

v ’00000’ to indicate success

v ’01Hxx’, where xx is any two digits or uppercase

letters, to indicate a warning

v ’38yxx’, where y is an uppercase letter between ’I’ and

’Z’ and xx is any two digits or uppercase letters, to

indicate an error

public void setSQLmessage(String string); This method is similar to the setSQLstate method. It sets

the SQL message result. If the string is not acceptable

(for example, longer than 70 characters), an exception is

thrown.

public String getFunctionName(); This method returns the name of the processing UDF.

public String getSpecificName(); This method returns the specific name of the processing

UDF.

public byte[] getDBinfo(); This method returns a raw, unprocessed DBINFO

structure for the processing UDF, as a byte array. The

UDF must have been registered (using CREATE

FUNCTION) with the DBINFO option.

v public String getDBname();

v public String getDBauthid();

v public String getDBver_rel();

v public String getDBplatform();

v public String getDBapplid();

v public String getDBapplid();

v public String getDBtbschema();

v public String getDBtbname();

v public String getDBcolname();

These methods return the value of the appropriate field

from the DBINFO structure of the processing UDF. The

UDF must have been registered (using CREATE

FUNCTION) with the DBINFO option. The

getDBtbschema(), getDBtbname(), and getDBcolname()

methods only return meaningful information if a

user-defined function is specified on the right side of a

SET clause in an UPDATE statement.

public int getCCSID(); This method returns the CCSID of the job.

public byte[] getScratchpad(); This method returns a copy of the scratchpad of the

currently processing UDF. You must first declare the

UDF with the SCRATCHPAD option.

public void setScratchpad(byte ab[]); This method overwrites the scratchpad of the currently

processing UDF with the contents of the given byte

array. You must first declare the UDF with the

SCRATCHPAD option. The byte array must have the

same size as getScratchpad() returns.

IBM Developer Kit for Java 195

Variables and Methods Description

public int getCallType(); This method returns the type of call that is currently

being made. These values correspond to the C values

defined in sqludf.h. Possible return values include the

following:

v SQLUDF_FIRST_CALL

v SQLUDF_NORMAL_CALL

v SQLUDF_TF_FIRST

v SQLUDF_TF_OPEN

v SQLUDF_TF_FETCH

v SQLUDF_TF_CLOSE

v SQLUDF_TF_FINAL

Restrictions on Java user-defined functions:

These restrictions apply to Java user-defined functions (UDFs).

 v A Java UDF should not create additional threads. An additional thread may be created in a job only if

the job is multithread capable. Since it cannot be guaranteed that a job that calls an SQL stored

procedure is multithread capable, a Java stored procedure should not create additional threads.

v The complete name of the Java stored procedure defined to the database is limited to 279 characters.

This limit is a consequence of the EXTERNAL_NAME column, which has a maximum width of 279

characters.

v Adopted authority cannot be used to access Java class files.

v A Java UDF always uses the latest version of the JDK that is installed on the system.

v Since Blob and Clob classes reside in both the java.sql and com.ibm.db2.app packages, the programmer

must use the entire name of these classes if both classes are used in the same program. The program

must ensure that the Blob and Clob classes from the com.ibm.db2.app are used as the parameters

passed to the stored procedure.

v Like sourced functions, when a Java UDF is created, a service program in the library is used to store

the function definition. The name of the service program is generated by the system and can be found

in the job log of the job that created the function. If this object is saved and then restored to another

system, then the function definition is restored. If a Java UDF is to be moved from one system to

another, you are responsible for moving the service program that contains the function definition as

well as the integrated file system file that contains the Java class.

v A Java UDF cannot set the properties (for example, system naming) of the JDBC connection that is

used to connect to the database. The default JDBC connection properties are always used, except when

prefetching is disabled.

Java user-defined table functions:

DB2 provides the ability for a function to return a table. This is useful for exposing information from

outside the database to the database in table form. For example, a table can be created that exposes the

properties set in the Java virtual machine (JVM) used for Java stored procedures and Java UDFs (both

table and scalar).

 The SQLJ Part 1: SQL Routines standard does support table functions. Consequently, table functions are

only available using parameter style DB2GENERAL.

Five different types of calls are made to a table function. The following table explains these calls. These

assume that scratchpad has been specified on the create function SQL statement.

196 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Point in scan time

NO FINAL CALL LANGUAGE

JAVA SCRATCHPAD

FINAL CALL LANGUAGE JAVA

SCRATCHPAD

Before the first OPEN of the table

function

No calls Class constructor is called (means

new scratchpad). UDF method is

called with FIRST call.

At each OPEN of the table function. Class constructor is called (means

new scratchpad). UDF method is

called with OPEN all.

UDF method is called with OPEN

call.

At each FETCH for a new row of

table function data.

UDF method is called with FETCH

call.

UDF method is called with FETCH

call.

At each CLOSE of the table function UDF method is called with CLOSE

call. The close() method, if it exists, is

also called.

UDF method is called with CLOSE

call.

After the last CLOSE of the table

function.

No calls UDF method is called with FINAL

call. The close() method, if it exists, is

also called.

Example: Java table function

The following is an example of a Java table function that determines the properties set in the JVM used

to run the Java user-defined table function.

Note: Read the Code example disclaimer for important legal information.
 import com.ibm.db2.app.*;

 import java.util.*;

 public class JVMProperties extends UDF {

 Enumeration propertyNames;

 Properties properties ;

 public void dump (String property, String value) throws Exception

 {

 int callType = getCallType();

 switch(callType) {

 case SQLUDF_TF_FIRST:

 break;

 case SQLUDF_TF_OPEN:

 properties = System.getProperties();

 propertyNames = properties.propertyNames();

 break;

 case SQLUDF_TF_FETCH:

 if (propertyNames.hasMoreElements()) {

 property = (String) propertyNames.nextElement();

 value = properties.getProperty(property);

 set(1, property);

 set(2, value);

 } else {

 setSQLstate("02000");

 }

 break;

 case SQLUDF_TF_CLOSE:

 break;

 case SQLUDF_TF_FINAL:

 break;

 default:

 throw new Exception("UNEXPECT call type of "+callType);

 }

 }

 }

IBM Developer Kit for Java 197

After the table function is compiled, and its class file copied to

/QIBM/UserData/OS400/SQLLib/Function, the function can be registered to the database by using the

following SQL statement.

 create function properties()

 returns table (property varchar(500), value varchar(500))

 external name ’JVMProperties.dump’ language java

 parameter style db2general fenced no sql

 disallow parallel scratchpad

After the function has been registered, it can be used as part of an SQL statement. For example, the

following SELECT statement returns the table generated by the table function.

 SELECT * FROM TABLE(PROPERTIES())

SQLJ procedures that manipulate JAR files

Both Java stored procedures and Java UDFs can use Java classes that are stored in Java JAR files.

To use a JAR file, a jar-id must be associated with the JAR file. The system provides stored procedures in

the SQLJ schema that allow jar-ids and JAR files to be manipulated. These procedures allow JAR files to

be installed, replaced, and removed. They also provide the ability to use and update the SQL catalogs

associated with JAR files.

SQLJ.INSTALL_JAR:

The SQLJ.INSTALL_JAR stored procedure installs a JAR file into the database system. This JAR file can

be used in subsequent CREATE FUNCTION and CREATE PROCEDURE statements.

 Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the

following for the SYSJAROBJECTS and SYSJARCONTENTS catalog tables:

v The following system authorities:

– The INSERT and SELECT privileges on the table

– The system authority *EXECUTE on library QSYS2
v Administrative authority

The privilege held by the authorization ID of the CALL statement must also have the following

authorities:

v Read (*R) access to the JAR file specified in the jar-url parameter being installed.

v Write, Execute, and Read (*RWX) access to the directory where the JAR file is installed. This directory

is /QIBM/UserData/OS400/SQLLib/Function/jar/schema, where schema is the schema of the jar-id.

Adopted authority cannot be used for these authorities.

SQL syntax

 >>-CALL--SQLJ.INSTALL_JAR-- (--’jar-url’--,--’jar-id’--,--deploy--)-->

 >--><

Description

jar-url The URL containing the JAR file to be installed or replaced. The only URL scheme supported is

’file:’.

jar-id The JAR identifier in the database to be associated with the file specified by the jar-url. The jar-id

uses SQL naming and the JAR file is installed in the schema or library specified by the implicit or

explicit qualifier.

198 IBM Systems - iSeries: Programming IBM Developer Kit for Java

deploy Value used to describe the install_action of the deployment descriptor file. If this integer is a

nonzero value, then the install_actions of a deployment descriptor file should be run at the end of

the install_jar procedure. The current version of DB2 UDB for iSeries only supports a value of

zero.

Usage notes

When a JAR file is installed, DB2 UDB for iSeries registers the JAR file in the SYSJAROBJECTS system

catalog. It also extracts the names of the Java(TM) class files from the JAR file and registers each class in

the SYSJARCONTENTS system catalog. DB2 UDB for iSeries copies the JAR file to a jar/schema

subdirectory of the /QIBM/UserData/OS400/SQLLib/Function directory. DB2 UDB for iSeries gives the

new copy of the JAR file the name given in the jar-id clause. A JAR file that has been installed by DB2

UDB for iSeries into a subdirectory of /QIBM/UserData/OS400/SQLLib/Function/jar should not be

changed. Instead, the CALL SQLJ.REMOVE_JAR and CALL SQLJ.REPLACE_JAR SQL commands should

be used to remove or replace an installed JAR file.

Example

The following command is issued from an SQL interactive session.

 CALL SQLJ.INSTALL_JAR(’file:/home/db2inst/classes/Proc.jar’ , ’myproc_jar’, 0)

The Proc.jar file located in the file:/home/db2inst/classes/ directory is installed into DB2 UDB for iSeries

with the name myproc_jar. Subsequent SQL commands that use the Procedure.jar file refer to it with the

name myproc_jar.

SQLJ.REMOVE_JAR:

The SQLJ.REMOVE_JAR stored procedure removes a JAR file from the database system.

 Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the

following for the SYSJARCONTENTS and SYSJAROBJECTS catalog tables:

v The following system authorities:

– The SELECT and DELETE privileges on the table

– The system authority *EXECUTE on library QSYS2
v Administrative authority

The privilege held by the authorization ID of the CALL statement must also have the following authority.

v *OBJMGT authority to the JAR file being removed. The JAR file is named

/QIBM/UserData/OS400/SQLLib/Function/jar/schema/jarfile.

Adopted authority cannot be used for this authority.

Syntax

 >>-CALL--SQLJ.REMOVE_JAR--(--’jar-id’--,--undeploy--)----------><

Description

jar-id The JAR identifier of the JAR file that is to be removed from the database.

undeploy

The value used to describe the remove_action of the deployment descriptor file. If this integer is a

IBM Developer Kit for Java 199

non-zero value, then the remove_actions of a deployment descriptor file should be run at the end

of the install_jar procedure. The current version of DB2 UDB for iSeries only supports a value of

zero.

Example

The following command is issued from an SQL interactive session:

 CALL SQLJ.REMOVE_JAR(’myProc_jar’, 0)

The JAR file myProc_jar is removed from the database.

SQLJ.REPLACE_JAR:

 The SQLJ.REPLACE_JAR stored procedure replaces a JAR file into the database system.

Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the

following for the SYSJAROBJECTS and SYSJARCONTENTS catalog tables:

v The following system authorities:

– The SELECT, INSERT, and DELETE privileges on the table

– The system authority *EXECUTE on library QSYS2
v Administrative authority

The privilege held by the authorization ID of the CALL statement must also have the following

authorities:

v Read (*R) access to the JAR file specified by the jar-url parameter being installed.

v *OBJMGT authority to the JAR file being removed. The JAR file is named

/QIBM/UserData/OS400/SQLLib/Function/jar/schema/jarfile.

Adopted authority cannot be used for these authorities.

Syntax

 >>-CALL--SQLJ.REPLACE_JAR--(--’jar-url’--,--’jar-id’--)--------><

Description

jar-url The URL containing the JAR file to be replaced. The only URL scheme supported is ’file:’.

jar-id The JAR identifier in the database to be associated with the file specified by the jar-url. The jar-id

uses SQL naming and the JAR file is installed in the schema or library specified by the implicit or

explicit qualifier.

Usage notes

The SQLJ.REPLACE_JAR stored procedure replaces a JAR file that was previously installed in the

database using SQLJ.INSTALL_JAR.

Example

The following command is issued from an SQL interactive session:

 CALL SQLJ.REPLACE_JAR(’file:/home/db2inst/classes/Proc.jar’ , ’myproc_jar’)

The current JAR file referred to by the jar-id myproc_jar is replaced with the Proc.jar file located in the

file:/home/db2inst/classes/ directory.

200 IBM Systems - iSeries: Programming IBM Developer Kit for Java

SQLJ.UPDATEJARINFO:

The SQLJ.UPDATEJARINFO updates the CLASS_SOURCE column of the SYSJARCONTENTS catalog

table. This procedure is not part of the SQLJ standard but is used by the DB2 UDB for iSeries stored

procedure builder.

 Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the

following for the SYSJARCONTENTS catalog table:

v The following system authorities:

– The SELECT and UPDATEINSERT privileges on the table

– The system authority *EXECUTE on library QSYS2
v Administrative authority

The user running the CALL statement must also have the following authorities:

v Read (*R) access to the JAR file specified in the jar-url parameter. Read (*R) access to the JAR file being

installed.

v Write, Execute, and Read (*RWX) access to the directory where the JAR file is installed. This directory

is /QIBM/UserData/OS400/SQLLib/Function/jar/schema, where schema is the schema of the jar-id.

Adopted authority cannot be used for these authorities.

Syntax

 >>-CALL--SQLJ.UPDATEJARINFO--(--’jar-id’--,--’class-id’--,--’jar-url’--)-->

 >--><

Description

jar-id The JAR identifier in the database that is to be updated.

class-id

The package qualified class name of the class to be updated.

jar-url The URL containing the classfile to update the JAR file with. The only URL scheme supported is

’file:’.

Example

The following command is issued from an SQL interactive session:

 CALL SQLJ.UPDATEJARINFO(’myproc_jar’, ’mypackage.myclass’,

 ’file:/home/user/mypackage/myclass.class’)

The JAR file associated with the jar-id myproc_jar, is updated with a new version of the

mypackage.myclass class. The new version of the class is obtained from the file

/home/user/mypackage/myclass.class.

SQLJ.RECOVERJAR:

The SQLJ.RECOVERJAR procedure takes the JAR file that is stored in the SYSJAROBJECTS catalog and

restores it to the /QIBM/UserData/OS400/SQLLib/Function/jar/jarschema/jar_id.jar file.

IBM Developer Kit for Java 201

Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the

following for the SYSJAROBJECTS catalog table:

v The following system authorities:

– The SELECT and UPDATEINSERT privileges on the table

– The system authority *EXECUTE on library QSYS2
v Administrative authority

The user running the CALL statement must also have the following authorities:

v Write, Execute, and Read (*RWX) access to the directory where the JAR file is installed. This directory

is /QIBM/UserData/OS400/SQLLib/Function/jar/schema, where schema is the schema of the jar-id.

v *OBJMGT authority to the JAR file being removed. The JAR file is named

/QIBM/UserData/OS400/SQLLib/Function/jar/schema/jarfile.

Syntax

 >>-CALL--SQLJ.RECOVERJAR--(--’jar-id’--)-----------------------><

Description

jar-id The JAR identifier in the database that is to be recovered.

Example

The following command is issued from a SQL interactive session:

 CALL SQLJ.UPDATEJARINFO(’myproc_jar’)

The JAR file associated with the myproc_jar is updated with the contents from SYSJARCONTENT table.

The file is copied to /QIBM/UserData/OS400/SQLLib/Function/jar/jar_schema myproc_jar.jar.

SQLJ.REFRESH_CLASSES:

The SQLJ.REFRESH_CLASSES stored procedure causes the reloading of user defined classes used by Java

stored procedures or Java UDFs in the current database connection. This stored procedure must be called

by existing database connections to obtain changes made by a call to the SQLJ.REPLACE_JAR stored

procedure.

 Authorization

NONE

Syntax

 >>-CALL--SQLJ.REFRESH_CLASSES-- ()-->

 >--><

Example

Call a Java stored procedure, MYPROCEDURE, that uses a class in a jar file registered with the MYJAR

jarid:

 CALL MYPROCEDURE()

Replace the jar file using the following call:

 CALL SQLJ.REPLACE_JAR(’MYJAR’, ’/tmp/newjarfile.jar’)

202 IBM Systems - iSeries: Programming IBM Developer Kit for Java

In order for subsequence calls to the MYPROCEDURE stored procedure to use the updated jar file,

SQLJ.REFRESH_CLASSES must be called:

 CALL SQLJ.REFRESH_CLASSES()

Call the stored procedure again. The updated class files are used when the procedure is called.

 CALL MYPROCEDURE()

Parameter passing conventions for Java stored procedures and UDFs

The following table lists how SQL data types are represented in Java stored procedures and UDFs.

 SQL data type Java parameter style JAVA Java parameter style DB2GENERAL

SMALLINT short short

INTEGER int int

BIGINT long long

DECIMAL(p,s) BigDecimal BigDecimal

NUMERIC(p,s) BigDecimal BigDecimal

REAL or FLOAT(p) float float

DOUBLE PRECISION or FLOAT or

FLOAT(p)

double double

CHARACTER(n) String String

CHARACTER(n) FOR BIT DATA byte[] com.ibm.db2.app.Blob

VARCHAR(n) String String

VARCHAR(n) FOR BIT DATA byte[] com.ibm.db2.app.Blob

GRAPHIC(n) String String

VARGRAPHIC(n) String String

DATE Date String

TIME Time String

TIMESTAMP Timestamp String

Indicator Variable - -

CLOB - com.ibm.db2.app.Clob

BLOB - com.ibm.db2.app.Blob

DBCLOB - com.ibm.db2.app.Clob

DataLink - -

Java with other programming languages

With Java, you have multiple ways to call code that was written in languages other than Java.

Java Native Interface

One of the ways you can call code written in another language is to implement selected Java methods as

’native methods.’ Native methods are procedures, written in another language, that provide the actual

implementation of a Java method. Native methods can access the Java virtual machine using the Java

Native Interface (JNI). These native methods run under the Java thread, which is a kernel thread, so they

must be thread safe. A function is thread safe if you can start it simultaneously in multiple threads within

the same process. A function is thread safe if and only if all the functions it calls are also thread safe.

IBM Developer Kit for Java 203

Native methods are a ″bridge″ to access system functions that are not directly supported in Java, or to

interface to existing user code. Use caution when using native methods, because the code that is being

called may not be thread safe. ee Use the Java Native Interface for native methods for more information

about JNI and ILE native methods.

Java Invocation API

Using the Java Invocation API, which is also a part of the Java Native Interface (JNI) specification, allows

a non-Java application to use the Java virtual machine. It also allows the use of Java code as an extension

of the application.

i5/OS PASE native methods

The iSeries Java virtual machine (JVM) now supports the use of native methods running in the i5/OS

PASE environment. i5/OS PASE native methods for Java enables you to easily port your Java applications

that run in AIX® to your iSeries server. You can copy the class files and AIX native method libraries to

the integrated file system on the iSeries nd run them from any of the control language (CL), Qshell or

i5/OS PASE terminal session command prompts.

Teraspace native methods

The iSeries Java virtual machine (JVM) now supports the use of teraspace storage model native methods.

The teraspace storage model provides a large process, local-address environment for ILE programs. Using

teraspace allows you to port native method code from other operating systems to i5/OS with little or no

changes to your source code.

java.lang.Runtime.exec()

You can use java.lang.Runtime.exec() to call programs or commands from within a Java program. The

exec() method starts another process in which any iSeries program or command can run. In this model,

you can use standard in, standard out, and standard err of the child process for interprocess

communication.

Interprocess communication

One option is to use sockets for interprocess communication between the parent and child processes.

You can also use stream files for communication between programs. Or see interprocess communication

examples for an overview of your options when communicating with programs that are running in

another process.

To call Java from other languages, see Example: Call Java from C or Example: Call Java from RPG for

more information.

You can also use the IBM Toolbox for Java to call existing programs and commands on the iSeries server.

Data queues and iSeries messages are usually used for interprocess communication with the IBM Toolbox

for Java.

Note: By using Runtime.exec(), IBM Toolbox for Java, or JNI, you may compromise the portability of the

Java program. You should avoid using these methods in a ″pure″ Java environment.

Use the Java Native Interface for native methods

You should only use native methods in cases where pure Java cannot meet your programming needs.

Limit the use of native methods by only using them under these circumstances:

204 IBM Systems - iSeries: Programming IBM Developer Kit for Java

v To access system functions that are not available using pure Java.

v To implement extremely performance-sensitive methods that can benefit significantly from a native

implementation.

v To interface to existing application program interfaces (API) that allow Java to call other APIs.

The following instructions apply to using the Java Native Interface (JNI) with the C language. For

information about using JNI with the RPG language, see the following documentation:

Chapter 11 of the WebSphere Development Studio: ILE RPG Programmer’s Guide, SC09-2507.

To use the Java Native Interface (JNI) for native methods, do these steps:

 1. Design the class by specifying which methods are native methods with the standard Java language

syntax.

 2. Decide on a library and program name for the service program (*SRVPGM) that contains native

method implementations. When coding the System.loadLibrary() method call in the static initializer

for the class, specify the name of the service program.

 3. Use the javac tool to compile the Java source into a class file.

 4. Use the javah tool to create the header file (.h). This header file contains the exact prototypes for

creating the native method implementations. The -d option specifies the directory where you should

create the header file.

 5. Copy the header file from the integrated file system into a member in a source file by using the

Copy From Stream File (CPYFRMSTMF) command. You must copy the header file into a source file

member for the C compiler to use it. Use the new stream file support for the Create Bound ILE

C/400® Program (CRTCMOD) command to leave your C source and C header files in the integrated

file system.For more information on the CRTCMOD command and the use of stream files, see the

WebSphere Development Studio: ILE C/C++ Programmer’s Guide, SC09-2712.

 6. Write the native method code. See Java native methods and threads considerations for details about

the languages and functions that are used for native methods.

a. Include the header file that was created in the previous steps.

b. Match the prototypes in the header file exactly.

c. Convert strings to American Standard Code for Information Interchange (ASCII) if the strings are

to pass to the Java virtual machine. For more information, see Java character encodings.
 7. If your native method must interact with the Java virtual machine, use the functions that are

provided with JNI.

 8. Compile your C source code, using the CRTCMOD command, into a module (*MODULE) object.

 9. Bind one or more module objects into a service program (*SRVPGM) by using the Create Service

Program (CRTSRVPGM) command. The name of this service program must match the name that you

supplied in your Java code that is in the System.load() or System.loadLibrary() function calls.

10. If you used the System.loadLibrary() call in your Java code, perform one the following task that is

appropriate for the J2SDK you are running:

v Include the list of the libraries that you need in the LIBPATH environment variable. You can

change the LIBPATH environment variable in QShell and from the iSeries command line.

– From the Qshell command prompt, type in:

export LIBPATH=/QSYS.LIB/MYLIB.LIB

java -Djava.version=1.5 myclass

– Or, from the command line:

ADDENVVAR LIBPATH ’/QSYS.LIB/MYLIB.LIB’

JAVA PROP((java.version 1.5)) myclass

IBM Developer Kit for Java 205

|
|

|

|
|

|

|
|

v Or, supply the list in the java.library.path property. You can change the java.library.path property

in QShell and from the iSeries command line.

– From the Qshell command prompt, enter:

java -Djava.library.path=/QSYS.LIB/MYLIB.LIB -Djava.version=1.5 myclass

– Or, from the iSeries command line, type in:

JAVA PROP((java.library.path ’/QSYS.LIB/MYLIB.LIB’) (java.version ’1.5’)) myclass

Where /QSYS.LIB/MYLIB.LIB is the library that you want to load using the System.loadLibrary() call,

and myclass is the name of your Java application.

11. The path syntax for System.load(String path) can be any of these:

v /qsys.lib/sysNMsp.srvpgm (for *SRVPGM QSYS/SYSNMSP)

v /qsys.lib/mylib.lib/myNMsp.srvpgm (for *SRVPGM MYLIB/MYNMSP)

v a symbolic link, such as /home/mydir/myNMsp.srvpgm which links to

/qsys.lib/mylib.lib/myNMsp.srvpgm

Note: This is equivalent to using the System.loadLibrary(″myNMsp″) method.

Note: The pathname is typically a string literal enclosed in quotation marks. For example, you could

use the following code:

 System.load("/qsys.lib/mylib.lib/myNMsp.srvpgm")

12. The libname parameter for System.loadLibrary(String libname) is typically a string literal in

quotation marks that identifies the native method library. The system uses the current library list and

LIBPATH and PASE_LIBPATH environment variables to search for a service program or i5/OS PASE

executable that matches the library name. For example, loadLibrary("myNMsp") results in a search for

a *SRVPGM named MYNMSP or an i5/OS PASE executable named libmyNMsp.a or libmyMNsp.so.

For a complete description of the JNI, refer to the Java Native Interface by Sun Microsystems, Inc., and

The Source for Java Technology java.sun.com.

See Examples: Use the Java Native Interface for native methods for an example of how to use the JNI for

native methods.

Java Invocation API

The Invocation API, which is part of the Java Native Interface (JNI), allows non-Java code to create a Java

virtual machine, and load and use Java classes. This function lets a multithreaded program make use of

Java classes that are running in a single Java virtual machine in multiple threads.

The IBM Developer Kit for Java supports the Java Invocation API for the following types of callers:

v An ILE program or service program created for STGMDL(*SNGLVL) and DTAMDL(*P128)

v An ILE program or service program created for STGMDL(*TERASPACE) and DTAMDL(*LLP64)

v An i5/OS PASE executable created for either 32-bit or 64-bit AIX

The application controls the Java virtual machine. The application can create the Java virtual machine,

call Java methods (similar to the way in which an application calls subroutines), and destroy the Java

virtual machine. Once you create the Java virtual machine, it remains ready to run within the process

until the application explicitly destroys it. While being destroyed, the Java virtual machine performs

clean-up, such as running finalizers, ending Java virtual machine threads, and releasing Java virtual

machine resources.

With a Java virtual machine that is ready to run, an application written in ILE languages, such as C and

RPG, can call into the Java virtual machine to perform any function. It also can return from the Java

206 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|
|

|

|

|

|

|

javaapi/guide/jni/index.html
http://www.java.sun.com/

virtual machine to the C application, call into the Java virtual machine again, and so on. The Java virtual

machine is created once and does not have to be re-created before calling into the Java virtual machine to

run a little or a lot of Java code.

When using the Invocation API to run Java programs, the destination for STDOUT and STDERR is

controlled by the use of an environment variable called QIBM_USE_DESCRIPTOR_STDIO. If this

environment variable is set to Y or I (for example, QIBM_USE_DESCRIPTOR_STDIO=Y), the Java virtual

machine uses file descriptors for STDIN (fd 0), STDOUT (fd 1), and STDERR (fd 2). In this case, the

program must set these file descriptors to valid values by opening them as the first three files or pipes in

this job. The first file opened in the job is given fd of 0, the second fd of 1, and third is fd of 2. For jobs

initiated with the spawn API, these descriptors can be preassigned using a file descriptor map (see

documentation on Spawn API). If the environment variable QIBM_USE_DESCRIPTOR_STDIO is not set

or is set to any other value, file descriptors are not used for STDIN, STDOUT, or STDERR. Instead,

STDOUT and STDERR are routed to a spooled file that is owned by the current job, and use of STDIN

results in an IO exception.

For an example that uses the Invocation API, see Example: Java Invocation API. See Invocation API

functions for details about the Invocation API functions that are supported by the IBM Developer Kit for

Java.

Invocation API functions:

The IBM Developer Kit for Java supports these Invocation API functions.

 Note: Before using this API, you must ensure that you are in a multithread-capable job. See

Multithreaded applications for more information about multithread-capable jobs.

v JNI_GetCreatedJavaVMs

Returns information about all Java virtual machines that were created. Even though this API is

designed to return information for multiple Java virtual machines (JVMs), only one JVM can exist for a

process. Therefore, this API will return a maximum of one JVM.

Signature:

 jint JNI_GetCreatedJavaVMs(JavaVM **vmBuf,

 jsize bufLen,

 jsize *nVMs);

vmBuf is an output area whose size is determined by bufLen, which is the number of pointers. Each

Java virtual machine has an associated JavaVM structure that is defined in java.h. This API stores a

pointer to the JavaVM structure that is associated with each created Java virtual machine into vmBuf,

unless vmBuf is 0. Pointers to JavaVM structures are stored in the order of the corresponding Java

virtual machines that are created. nVMs returns the number of virtual machines that are currently

created. Your iSeries server supports the creation of more than one Java virtual machine, so you may

expect a value higher than one. This information, along with the size of the vmBuf, determines

whether pointers to JavaVM structures for each created Java virtual machine are returned.

v JNI_CreateJavaVM

Allows you to create a Java virtual machine and subsequently use it in an application.

Signature:

jint JNI_CreateJavaVM(JavaVM **p_vm,

 void **p_env,

 void *vm_args);

p_vm is the address of a JavaVM pointer for the newly created Java virtual machine. Several other JNI

Invocation APIs use p_vm to identify the Java virtual machine. p_env is the address of a JNI

Environment pointer for the newly created Java virtual machine. It points to a table of JNI functions

that start those functions. vm_args is a structure that contains Java virtual machine initialization

parameters.

IBM Developer Kit for Java 207

If you start a Run Java (RUNJVA) command or JAVA command and specify a property that has an

equivalent command parameter, then the command parameter takes precedence. The property is

ignored. For example, the os400.optimization parameter is ignored in this command:

JAVA CLASS(Hello) PROP((os400.optimization 0))

For a list of 0S/400 unique properties that are supported by the JNI_CreateJavaVM API, see Java

system properties.

Note: Java on the iSeries server supports creating only one Java virtual machine (JVM) within a single

job or process. For more information, see Support for multiple Java virtual machines

v DestroyJavaVM

Destroys the Java virtual machine.

Signature:

jint DestroyJavaVM(JavaVM *vm)

When the Java virtual machine is created, vm is the JavaVM pointer that is returned.

v AttachCurrentThread

Attaches a thread to a Java virtual machine, so it can use Java virtual machine services.

Signature:

jint AttachCurrentThread(JavaVM *vm,

 void **p_env,

 void *thr_args);

The JavaVM pointer, vm, identifies the Java virtual machine to which the thread is being attached.

p_env is the pointer to the location where the JNI Interface pointer of the current thread is placed.

thr_args contains VM specific thread attachment arguments.

v DetachCurrentThread

Signature:

jint DetachCurrentThread(JavaVM *vm);

vm identifies the Java virtual machine from which the thread is being detached.

For a complete description of the Invocation API functions, refer to the Java Native Interface Specification

by Sun Microsystems, Inc., or The Source for Java Technology java.sun.com.

Support for multiple Java virtual machines:

Java on the iSeries server no longer supports creating more than one Java virtual machine (JVM) within a

single job or process. This restriction affects only those users who create JVMs by using the Java Native

Interface Invocation (JNI) API. This change in support does not affect how you use the java command to

run your Java programs.

 You cannot successfully call JNI_CreateJavaVM() more than once in a job, and JNI_GetCreatedJavaVMs()

cannot return more than one JVM in a list of results.

Support for creating only a single JVM within a single job or process follows the standards of the Sun

Microsystems, Inc. reference implementation of Java.

Example: Java Invocation API:

This example follows the standard Invocation API paradigm.

 It does the following:

v Creates a Java virtual machine by using JNI_CreateJavaVM.

v Uses the Java virtual machine to find the class file that you want to run.

v Finds the methodID for the main method of the class.

208 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/guide/jni/index.html
javaapi/guide/jni/index.html
http://www.java.sun.com/

v Calls the main method of the class.

v Reports errors if an exception occurs.

When you create the program, the QJVAJNI or QJVAJNI64 service program provides the

JNI_CreateJavaVM Invocation API function. JNI_CreateJavaVM creates the Java virtual machine.

Note: QJVAJNI64 is a new service program for teraspace/LLP64 native method and Invocation API

support.

These service programs reside in the system binding directory and you do not need to explicitly identify

them on a control language (CL) create command. For example, you would not explicitly identify the

previously mentioned service programs when using the Create Program (CRTPGM) command or the

Create Service Program (CRTSRVPGM) command.

One way to run this program is to use the following control language command:

 SBMJOB CMD(CALL PGM(YOURLIB/PGMNAME)) ALWMLTTHD(*YES)

Any job that creates a Java virtual machine must be multithread-capable. The output from the main

program, as well as any output from the program, ends up in QPRINT spooled files. These spooled files

are visible when you use the Work with Submitted Jobs (WRKSBMJOB) control language (CL) command

and view the job that you started by using the Submit Job (SBMJOB) CL command.

Example: Using the Java Invocation API

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
#define OS400_JVM_12

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

#include <string.h>

#include <jni.h>

/* Specify the pragma that causes all literal strings in the

 * source code to be stored in ASCII (which, for the strings

 * used, is equivalent to UTF-8)

 */

#pragma convert(819)

/* Procedure: Oops

 *

 * Description: Helper routine that is called when a JNI function

 * returns a zero value, indicating a serious error.

 * This routine reports the exception to stderr and

 * ends the JVM abruptly with a call to FatalError.

 *

 * Parameters: env -- JNIEnv* to use for JNI calls

 * msg -- char* pointing to error description in UTF-8

 *

 * Note: Control does not return after the call to FatalError

 * and it does not return from this procedure.

 */

void Oops(JNIEnv* env, char *msg) {

 if ((*env)->ExceptionOccurred(env)) {

 (*env)->ExceptionDescribe(env);

 }

 (*env)->FatalError(env, msg);

}

IBM Developer Kit for Java 209

/* This is the program’s "main" routine. */

int main (int argc, char *argv[])

{

 JavaVMInitArgs initArgs; /* Virtual Machine (VM) initialization structure, passed by

 * reference to JNI_CreateJavaVM(). See jni.h for details

 */

 JavaVM* myJVM; /* JavaVM pointer set by call to JNI_CreateJavaVM */

 JNIEnv* myEnv; /* JNIEnv pointer set by call to JNI_CreateJavaVM */

 char* myClasspath; /* Changeable classpath ’string’ */

 jclass myClass; /* The class to call, ’NativeHello’. */

 jmethodID mainID; /* The method ID of its ’main’ routine. */

 jclass stringClass; /* Needed to create the String[] arg for main */

 jobjectArray args; /* The String[] itself */

 JavaVMOption options[1]; /* Options array -- use options to set classpath */

 int fd0, fd1, fd2; /* file descriptors for IO */

 /* Open the file descriptors so that IO works. */

 fd0 = open("/dev/null1", O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IROTH);

 fd1 = open("/dev/null2", O_CREAT|O_TRUNC|O_WRONLY, S_IWUSR|S_IWOTH);

 fd2 = open("/dev/null3", O_CREAT|O_TRUNC|O_WRONLY, S_IWUSR|S_IWOTH);

 /* Set the version field of the initialization arguments for J2SDK v1.3. */

 initArgs.version = 0x00010002;

 /* To use J2SDK v1.4, set initArgs.version = 0x00010004; */

 /* To use J2SDK v1.5, set initArgs.version = 0x00010005; */

 /* Now, you want to specify the directory for the class to run in the classpath.

 * with Java2, classpath is passed in as an option.

 * Note: You must specify the directory name in UTF-8 format. So, you wrap

 * blocks of code in #pragma convert statements.

 */

 options[0].optionString="-Djava.class.path=/CrtJvmExample";

 /*To use J2SDK v1.4 or v1.5, replace the ’1.3’ with ’1.4’ or ’1.5’.

 options[1].optionString="-Djava.version=1.3" */

 initArgs.options=options; /* Pass in the classpath that has been set up. */

 initArgs.nOptions = 2; /* Pass in classpath and version options */

 /* Create the JVM -- a nonzero return code indicates there was

 * an error. Drop back into EBCDIC and write a message to stderr

 * before exiting the program.

 */

 if (JNI_CreateJavaVM("myJVM, (void **)"myEnv, (void *)"initArgs)) {

 #pragma convert(0)

 fprintf(stderr, "Failed to create the JVM\n");

 #pragma convert(819)

 exit(1);

 }

 /* Use the newly created JVM to find the example class,

 * called ’NativeHello’.

 */

 myClass = (*myEnv)->FindClass(myEnv, "NativeHello");

 if (! myClass) {

 Oops(myEnv, "Failed to find class ’NativeHello’");

 }

 /* Now, get the method identifier for the ’main’ entry point

 * of the class.

 * Note: The signature of ’main’ is always the same for any

 * class called by the following java command:

 * "main" , "([Ljava/lang/String;)V"

 */

 mainID = (*myEnv)->GetStaticMethodID(myEnv,myClass,"main",

 "([Ljava/lang/String;)V");

210 IBM Systems - iSeries: Programming IBM Developer Kit for Java

if (! mainID) {

 Oops(myEnv, "Failed to find jmethodID of ’main’");

 }

 /* Get the jclass for String to create the array

 * of String to pass to ’main’.

 */

 stringClass = (*myEnv)->FindClass(myEnv, "java/lang/String");

 if (! stringClass) {

 Oops(myEnv, "Failed to find java/lang/String");

 }

 /* Now, you need to create an empty array of strings,

 * since main requires such an array as a parameter.

 */

 args = (*myEnv)->NewObjectArray(myEnv,0,stringClass,0);

 if (! args) {

 Oops(myEnv, "Failed to create args array");

 }

 /* Now, you have the methodID of main and the class, so you can

 * call the main method.

 */

 (*myEnv)->CallStaticVoidMethod(myEnv,myClass,mainID,args);

 /* Check for errors. */

 if ((*myEnv)->ExceptionOccurred(myEnv)) {

 (*myEnv)->ExceptionDescribe(myEnv);

 }

 /* Finally, destroy the JavaVM that you created. */

 (*myJVM)->DestroyJavaVM(myJVM);

 /* All done. */

 return 0;

}

For more information, see Java Invocation API.

Java native methods and threads considerations

You can use native methods to access functions that are not available in Java. To better use Java with

native methods, you need to understand these concepts.

v A Java thread, whether created by Java or an attached native thread, has all floating point exceptions

disabled. If the thread runs a native method that reenables floating point exceptions, Java does not turn

them off a second time. If the user application does not disable them before returning to run Java code,

then the Java code may not behave correctly if a floating point exception occurs. When a native thread

detaches from the Java virtual machine, its floating point exception mask is restored to the value that

was in effect when it was attached.

v When a native thread attaches to the Java virtual machine, the Java virtual machine changes the

threads priority, if necessary, to conform to the one to ten priority schemes that Java defines. When the

thread detaches, the priority is restored. After attaching, the thread can change the thread priority by

using a native method interface (for example, a POSIX API). Java does not change the thread priority

on transitions back to the Java virtual machine.

v The Invocation API component of the Java Native Interface (JNI) permits a user to embed a Java

virtual machine within their application. If an application creates a Java virtual machine and the Java

virtual machine ends abnormally, the MCH74A5 ″Java Virtual Machine Terminated″ iSeries exception is

signalled to the initial thread of the process if that thread was attached to the Java virtual machine

when the Java virtual machine ended. The Java virtual machine could end abnormally for any of these

reasons:

– The user calls the java.lang.System.exit() method.

– A thread that the Java virtual machine requires ends.

IBM Developer Kit for Java 211

– An internal error occurs in the Java virtual machine.

This behavior differs from most other Java platforms. On most other platforms, the process that

automatically creates the Java virtual machine ends abruptly as soon as the Java virtual machine ends.

If the application monitors and handles a signalled MCH74A5 exception, it may continue to run.

Otherwise, the process ends when the exception goes unhandled. By adding the code that deals with

the iSeries server-specific MCH74A5 exception, you can make the application less portable to other

platforms.

Because native methods always run in a multithreaded process, the code that they contain must be thread

safe. This places these restrictions on the languages and functions that are used for native methods:

v You should not use ILE CL for native methods, because this language is not thread safe. To run thread

safe CL commands, you can use the C language system() function or the java.lang.Runtime.exec()

method.

– Use the C language system() function to run thread safe CL commands from within a C or C++

native method.

– Use the java.lang.Runtime.exec() method to run thread safe CL commands directly from Java.
v You can use ILE C, ILE C++, ILE COBOL, and ILE RPG to write a native method, but all of the

functions that are called from within the native method must be thread safe.

Note: Compile-time support for writing native methods is currently only supplied for the C, C++, and

RPG languages. While possible, writing native methods in other languages may be much more

complicated.

Caution: Not all standard C, C++, COBOL, or RPG functions are thread safe.

v The C and C++ exit() and abort() functions should never be used within a native method. These

functions cause the entire process that runs the Java virtual machine to stop. This includes all of the

threads in the process, regardless of if they were originated by Java or not.

Note: The exit() function referred to is the C and C++ function, and is not the same as the

java.lang.Runtime.exit() method.

For more information about threads on the iSeries server, see Multithreaded applications.

Native methods and the Java Native Interface

Native methods are Java methods that start in a language other than Java. Native methods can access

system-specific functions and APIs that are not available directly in Java.

The use of native methods limits the portability of an application, because it involves system-specific

code. Native methods can either be new native code statements or native code statements that call

existing native code.

Once you decide that a native method is required, it may have to interoperate with the Java virtual

machine where it runs. The Java Native Interface (JNI) facilitates this interoperability in a

platform-neutral way.

The JNI is a set of interfaces that permit a native method to interoperate with the Java virtual machine in

numerous ways. For example, the JNI includes interfaces that create new objects and call methods, get

fields and set fields, process exceptions, and manipulate strings and arrays.

For a complete description of the JNI, refer to the Java Native Interface by Sun Microsystems, Inc., or The

Source for Java Technology java.sun.com .

212 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/guide/jni/index.html
http://www.java.sun.com/
http://www.java.sun.com/

Strings in native methods

Many Java Native Interface (JNI) functions accept C language-style strings as parameters. For example,

the FindClass() JNI function accepts a string parameter that specifies the fully-qualified name of a

classfile. If the classfile is found, it is loaded by FindClass, and a reference to it is returned to the caller of

FindClass.

All JNI functions expect their string parameters to be encoded in UTF-8. For details on UTF-8, you can

refer to the JNI Specification, but in most cases it is enough to observe that 7-bit American Standard Code

for Information Interchange (ASCII) characters are equivalent to their UTF-8 representation. 7-bit ASCII

characters are actually 8-bit characters but their first bit is always 0. So, most ASCII C strings are actually

already in UTF-8.

The C compiler on the iSeries server operates in extended binary-coded decimal interchange code

(EBCDIC) by default, so you can provide strings to the JNI functions in UTF-8. There are two ways to do

this. You can use literal strings, or you can use dynamic strings. Literal strings are strings whose value is

known when the source code is compiled. Dynamic strings are strings whose value is not known at

compile time, but is actually computed at run time.

Literal strings in native methods:

It is easier to encode literal strings in UTF-8 if the string is composed of characters with a 7-bit American

Standard Code for Information Interchange (ASCII) representation.

 If the string can be represented in ASCII, as most are, then the string can be bracketed by ’pragma’

statements that change the current codepage of the compiler. Then, the compiler stores the string

internally in the UTF-8 form that is required by the JNI. If the string cannot be represented in ASCII, it is

easier to treat the original extended binary-coded decimal interchange code (EBCDIC) string as a dynamic

string, and process it using iconv() before passing it to the JNI. For more information on dynamic strings,

see dynamic strings.

For example, to find the class named java/lang/String, the code looks like this:

 #pragma convert(819)

 myClass = (*env)->FindClass(env,"java/lang/String");

 #pragma convert(0)

The first pragma, with the number 819, informs the compiler to store all subsequent double-quoted

strings (literal strings) in ASCII. The second pragma, with the number 0, tells the compiler to revert to the

default code page of the compiler for double-quoted strings, which is usually the EBCDIC code page 37.

So, by bracketing this call with these pragmas, we satisfy the JNI requirement that string parameters are

encoded in UTF-8.

Caution: Be careful with text substitutions. For example, if your code looks like this:

 #pragma convert(819)

 #define MyString "java/lang/String"

 #pragma convert(0)

 myClass = (*env)->FindClass(env,MyString);

Then, the resulting string is EBCDIC, because the value of MyString is substituted into the FindClass call

during compilation. At the time of this substitution, the pragma, number 819, is not in effect. Thus, literal

strings are not stored in ASCII.

Convert dynamic strings to and from EBCDIC, Unicode, and UTF-8:

To manipulate string variables that are computed at run time, it may be necessary to convert strings to

and from extended binary-coded decimal interchange (EBCDIC), Unicode, and UTF-8.

IBM Developer Kit for Java 213

The system API that provides for code page conversion function is iconv(). To use iconv(), follow these

steps:

1. Create a conversion descriptor with QtqIconvOpen().

2. Call iconv() to use the descriptor to convert to a string.

3. Close the descriptor by using iconv_close.

In Example 3 of the using the Java Native Interface for native methods examples, the routine creates,

uses, and then destroys the iconv conversion descriptor within the routine. This scheme avoids the

problems with multithreaded use of an iconv_t descriptor, but for performance sensitive code it is better

to create a conversion descriptor in static storage, and moderate multiple access to it using a mutual

exclusion (mutex) or other synchronization facility.

IBM i5/OS PASE native methods for Java

The iSeries Java virtual machine (JVM) supports the use of native methods running in the i5/OS PASE

environment. Prior to V5R2, the native iSeries JVM used only ILE native methods.

Support for i5/OS PASE native methods includes:

v Full use of the native iSeries Java Native Interface (JNI) from i5/OS PASE native methods

v The ability to call i5/OS PASE native methods from the native iSeries JVM

This new support enables you to easily port your Java applications that run in AIX to your iSeries server.

You can copy the class files and AIX native method libraries to the integrated file system on the iSeries

and run them from any of the control language (CL), Qshell or i5/OS PASE terminal session command

prompts.

 Related information

 i5/OS PASE

This information assumes you are already familiar with i5/OS PASE. If you are not yet familiar with

PASE, see this topic to learn more using IBM i5/OS PASE native methods with Java.

Java i5/OS PASE environment variables

The Java virtual machine (JVM) uses the following variables to start i5/OS PASE environments. You need

to set the QIBM_JAVA_PASE_STARTUP variable in order to run the IBM i5/OS PASE native method for

Java example.

For information about setting environment variables for the example, see the following topic:

Environment variables for the IBM i5/OS PASE example.

QIBM_JAVA_PASE_STARTUP

You need to set this environment variable when both of the following conditions occur:

v You are using i5/OS PASE native methods

v You are starting Java from an iSeries command prompt or Qshell command prompt

The JVM uses this environment variable to start a PASE environment. The value of the variable

identifies an i5/OS PASE startup program. Your iSeries server includes two i5/OS PASE startup

programs:

v /usr/lib/start32: Starts a 32-bit i5/OS PASE environment

v /usr/lib/start64: Starts a 64-bit i5/OS PASE environment

The bit format of all shared library objects used by an i5/OS PASE environment must match the

bit format of the i5/OS PASE environment.

214 IBM Systems - iSeries: Programming IBM Developer Kit for Java

You cannot use this variable when starting Java from an i5/OS PASE terminal session. An i5/OS

PASE terminal session always uses a 32-bit i5/OS PASE environment. Any JVMs started from an

i5/OS PASE terminal session use the same type of PASE environment as the terminal session.

QIBM_JAVA_PASE_CHILD_STARTUP

Set this optional environment variable when the i5/OS PASE environment for a secondary JVM

must be different than the i5/OS PASE environment the primary JVM. A call to Runtime.exec() in

Java starts a secondary (or child) JVM.

 For more information, see Using QIBM_JAVA_PASE_CHILD_STARTUP.

QIBM_JAVA_PASE_ALLOW_PREV

Set this optional environment variable when you want to use the current i5/OS PASE

environment, if one exists. In certain situations, it is difficult to determine whether an i5/OS

PASE environment already exists. Using QIBM_JAVA_PASE_ALLOW_PREV and

QIBM_JAVA_PASE_STARTUP in combination enables the JVM to either use an existing i5/OS

PASE environment or start a new i5/OS PASE environment.

 For more information, see Using QIBM_JAVA_PASE_ALLOW_PREV.

Examples: Environment variables for the IBM i5/OS PASE example:

To use the IBM i5/OS PASE native methods for Java example, you need to set environment variables.

 PASE_LIBPATH

Your iSeries server uses this i5/OS PASE environment variable to identify the location of i5/OS

PASE native method libraries. You can set the path to a single directory or to multiple directories.

For multiple directories, use a colon (:) to separate entries. Your server can also use the LIBPATH

environment variable.

 For more information about using Java, native method libraries, and PASE_LIBPATH with this

example, see Using Java, i5/OS PASE, and native method libraries.

PASE_THREAD_ATTACH

Setting this i5/OS PASE environment variable to Y causes an ILE thread that was not started by

i5/OS PASE to be attached automatically to i5/OS PASE when it calls an i5/OS PASE procedure.

 For more information about i5/OS PASE environment variables, see the appropriate entries in

Work with i5/OS PASE environment variables.

QIBM_JAVA_PASE_STARTUP

The JVM uses this environment variable to start an i5/OS PASE environment. The value of the

variable identifies an i5/OS PASE startup program.

 For more information, see Java i5/OS PASE variables.

Using QIBM_JAVA_PASE_CHILD_STARTUP:

The QIBM_JAVA_PASE_CHILD_STARTUP environment variable indicates the i5/OS PASE startup

program for any secondary JVMs.

 Use QIBM_JAVA_PASE_CHILD_STARTUP when all of the following conditions are true:

v The Java application that you want to run creates Java virtual machines (JVMs) through Java calls to

Runtime.exec()

v Both the primary and secondary JVMs use i5/OS PASE native methods

v The i5/OS PASE environment of the secondary JVMs must be different than the i5/OS PASE

environment of the primary JVM

When all of the previously listed conditions are true, perform the following actions:

IBM Developer Kit for Java 215

v Set the QIBM_JAVA_PASE_CHILD_STARTUP environment variable to the i5/OS PASE startup

program of the secondary JVMs.

v When starting the primary JVM from an iSeries command prompt or Qshell command prompt, set the

QIBM_JAVA_PASE_STARTUP environment variable to the i5/OS PASE startup program of the primary

JVM.

Note: When starting the primary JVM from an i5/OS PASE terminal session, do not set

QIBM_JAVA_PASE_STARTUP.

The process of the secondary JVM inherits the QIBM_JAVA_PASE_CHILD_STARTUP environment

variable. In addition, i5/OS sets the QIBM_JAVA_PASE_STARTUP environment variable of the secondary

JVM process to the value of the QIBM_JAVA_PASE_CHILD_STARTUP environment variable from the

parent process.

The following table identifies the resulting i5/OS PASE environments (if any) for the various

combinations of command environments and definitions of QIBM_JAVA_PASE_STARTUP and

QIBM_JAVA_PASE_CHILD_STARTUP:

 Table 1. Resulting PASE environments for QIBM_JAVA_PASE_STARTUP and QIBM_JAVA_PASE_CHILD_STARTUP

Starting environment Resulting behavior

Command

environment

QIBM_JAVA

_PASE_STARTUP

Primary JVM i5/OS

PASE Startup

Primary JVM i5/OS

PASE Startup

Secondary JVM

i5/OS PASE Startup

CL or QSH Defined startX Defined startY Use startX Use startY

CL or QSH Defined startX Not defined Use startX Use startX

CL or QSH Not defined Defined startY

No i5/OS PASE

environment

Use startY

CL or QSH Not defined Not defined

No i5/OS PASE

environment

No i5/OS PASE

environment

i5/OS PASE terminal

session

Defined startX Defined startY Not allowed* Not allowed*

i5/OS PASE terminal

session

Defined startX Not defined Not allowed* Not allowed*

i5/OS PASE terminal

session

Not defined Defined startY

Use i5/OS PASE

terminal session

environment

Use startY

i5/OS PASE terminal

session

Not defined Not defined

Use i5/OS PASE

terminal session

environment

No i5/OS PASE

environment

* The rows marked ″Not allowed″ indicate situations where the QIBM_JAVA_PASE_STARTUP

environment variable could conflict with the i5/OS PASE terminal session. Because of the potential

conflict, using QIBM_JAVA_PASE_STARTUP is not allowed from an i5/OS PASE terminal session.

Using QIBM_JAVA_PASE_ALLOW_PREV:

Sometimes it is difficult to determine whether an i5/OS PASE environment already exists. Using the

optional environment variable QIBM_JAVA_PASE_ALLOW_PREV in combination with

QIBM_JAVA_PASE_STARTUP enables the JVM to determine whether to use the current i5/OS PASE

environment (if one exists) or start a new i5/OS PASE environment.

 To use these two environment variables in combination, set them to the following values:

v Set QIBM_JAVA_PASE_STARTUP to the default startup program

216 IBM Systems - iSeries: Programming IBM Developer Kit for Java

v Set QIBM_JAVA_PASE_ALLOW_PREV to 1

For example, an application that optionally starts an i5/OS PASE environment calls the program that

starts the JVM. In this case, by using the previous settings, the program is able to use the current i5/OS

PASE environment, if one exists, or start a new i5/OS PASE environment.

The following table identifies any i5/OS PASE environments that result from the various combinations of

i5/OS PASE environment and definitions of QIBM_JAVA_PASE_STARTUP and

QIBM_JAVA_PASE_ALLOW_PREV:

 Table 2. i5/OS PASE environments resulting from combinations of i5/OS PASE environment and definitions of

QIBM_JAVA_PASE_STARTUP and QIBM_JAVA_PASE_ALLOW_PREV

Starting environment Resulting behavior

i5/OS PASE environment

QIBM_JAVA

_PASE_STARTUP

QIBM_JAVA_PASE

_ALLOW_PREV JVM i5/OS PASE Startup

None Not defined Not defined* No i5/OS PASE environment

None Not defined Defined ’1’ No i5/OS PASE environment

None Defined startX Not defined* Use startX

None Defined startX Defined ’1’ Use startX

Started Not defined Not defined*

Use existing i5/OS PASE

environment

Started Not defined Defined ’1’

Use existing i5/OS PASE

environment

Started Defined startX Not defined*

Not allowed: JVM error

during startup

Started Defined startX Defined ’1’

Use existing i5/OS PASE

environment

* ″Not defined″ means that QIBM_JAVA_PASE_ALLOW_PREV is either not included or has a value other

than 1.

The last two rows in the previous table indicate situations where it is useful to set

QIBM_JAVA_PASE_ALLOW_PREV. The JVM checks QIBM_JAVA_PASE_ALLOW_PREV when an i5/OS

PASE environment already exists and you have defined QIBM_JAVA_PASE_STARTUP. Otherwise, the

JVM ignores QIBM_JAVA_PASE_ALLOW_PREV.

The QIBM_JAVA_PASE_ALLOW_PREV and QIBM_JAVA_PASE_CHILD_STARTUP environment variables

are independent of each other.

Java i5/OS PASE error codes

To help you troubleshoot i5/OS PASE native methods, this topic describes error conditions that are

indicated by i5/OS job log messages and Java runtime exceptions. The following lists describe errors that

you may encounter at start up or at run time when using i5/OS PASE native methods for Java.

Startup Errors

For startup errors, examine the messages in the appropriate job log.

Runtime errors

In addition to startup errors, PaseInternalError or PaseExit Java exceptions may appear in the Qshell

output of the JVM:

IBM Developer Kit for Java 217

v PaseInternalError - indicates internal system error. Check for Licensed Internal Code Log entries.

For more information on the PaseInternalError error code, see Qp2CallPase.

v PaseExit - either the i5/OS PASE application called the exit() function or the i5/OS PASE environment

ended abnormally. Check the Job Log and Licensed Internal Code Log for additional information.

Managing native method libraries

To use native method libraries, especially when you want to manage multiple versions of a native

method library on your iSeries server, you need to understand both the Java library naming conventions

and the library search algorithm.

i5/OS uses the first native method library that matches the name of the library that the Java virtual

machine (JVM) loads. In order to ensure that i5/OS finds the correct native methods, you must avoid

library name clashes and confusion about which native method library the JVM uses.

i5/OS PASE and AIX Java Library Naming Conventions

If the Java code loads a library named Sample, the corresponding executable file must be named either

libSample.a or libSample.so.

Java library search order

When you enable i5/OS PASE native methods for the JVM, your server uses three different lists (in the

following order) to create a single native method library search path:

1. i5/OS library list

2. LIBPATH environment variable

3. PASE_LIBPATH environment variable

In order to perform the search, i5/OS converts the library list to the integrated file system format. QSYS

file system objects have equivalent names in the integrated file system, but some integrated file system

objects do not have equivalent QSYS file system names. Because the library loader looks for objects in

both the QSYS file system and in the integrated file system, i5/OS uses the integrated file system format

to search for native method libraries.

The following table shows how i5/OS converts entries in the library list to the integrated file system

format:

 Library list entry Integrated file system format

QSYS /qsys.lib

QSYS2 /qsys.lib/qsys2.lib

QGPL /qsys.lib/qgpl.lib

QTEMP /qsys.lib/qtemp.lib

Example: Searching for the Sample2 library

In the following example, LIBPATH is set to /home/user1/lib32:/samples/lib32 and PASE_LIBPATH is

set to /QOpenSys/samples/lib.

The following table, when read from top to bottom, indicates the full search path:

218 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Source Integrated file system directories

Library list /qsys.lib

/qsys.lib/qsys2.lib

/qsys.lib/qgpl.lib

/qsys.lib/qtemp.lib

LIBPATH /home/user1/lib32

/samples/lib32

PASE_LIBPATH /QOpenSys/samples/lib

Note: Uppercase and lowercase characters are significant only in the /QOpenSys path.

In order to search for library Sample2, the Java library loader searches for file candidates in the following

order:

 1. /qsys.lib/sample2.srvpgm

 2. /qsys.lib/libSample2.a

 3. /qsys.lib/libSample2.so

 4. /qsys.lib/qsys2.lib/sample2.srvpgm

 5. /qsys.lib/qsys2.lib/libSample2.a

 6. /qsys.lib/qsys2.lib/libSample2.so

 7. /qsys.lib/qgpl.lib/sample2.srvpgm

 8. /qsys.lib/qgpl.lib/libSample2.a

 9. /qsys.lib/qgpl.lib/libSample2.so

10. /qsys.lib/qtemp.lib/sample2.srvpgm

11. /qsys.lib/qtemp.lib/libSample2.a

12. /qsys.lib/qtemp.lib/libSample2.so

13. /home/user1/lib32/sample2.srvpgm

14. /home/user1/lib32/libSample2.a

15. /home/user1/lib32/libSample2.so

16. /samples/lib32/sample2.srvpgm

17. /samples/lib32/libSample2.a

18. /samples/lib32/libSample2.so

19. /QOpenSys/samples/lib/SAMPLE2.srvpgm

20. /QOpenSys/samples/lib/libSample2.a

21. /QOpenSys/samples/lib/libSample2.so

i5/OS loads the first candidate in the list that actually exists into the JVM as a native method library.

Even though candidates like ’/qsys.lib/libSample2.a’ and ’/qsys.lib/libSample2.so’ occur in the search, it

is not possible to create integrated file system files or symbolic links in the /qsys.lib directories.

Therefore, even though i5/OS checks for these candidate files, it will never find them in integrated file

system directories that begin with /qsys.lib.

However, you can create arbitrary symbolic links from other integrated file system directories to i5/OS

objects in the QSYS file system. As a result, valid file candidates include files such as

/home/user1/lib32/sample2.srvpgm.

IBM Developer Kit for Java 219

Example: IBM i5/OS PASE native method for Java

The IBM i5/OS PASE native method for Java example calls an instance of a native C method that then

uses Java Native Interface (JNI) to call back into Java code. Rather than accessing the string directly from

Java code, the example calls a native method that then calls back into Java through JNI to get the string

value.

To see HTML versions of the example source files, use the following links:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

v PaseExample1.java

v PaseExample1.c

Before you can run the i5/OS PASE native method example, you must complete the following tasks:

1. Download the example source code to your AIX workstation

2. Prepare the example source code

3. Prepare your iSeries server

Run the i5/OS PASE native method for Java example

After you complete the previous tasks, you can run the example. Use either of the following commands

to run the example program:

v From an iSeries server command prompt:

 JAVA CLASS(PaseExample1) CLASSPATH(’/home/example’)

v From a Qshell command prompt or i5/OS PASE terminal session:

 cd /home/example

 java PaseExample1

Teraspace storage model native methods for Java

The iSeries Java virtual machine (JVM) now supports the use of teraspace storage model native methods.

The teraspace storage model provides a large process-local address environment for ILE programs. Using

teraspace allows you to port native method code from other operating systems to i5/OS with little or no

source code changes.

For details about programming with the teraspace storage model, see the following information:

Chapter 4 of ILE Concepts

Chapter 17 of WebSphere Development Studio ILE C/C++ Programmer’s Guide

 The concept for Java native methods created for the teraspace storage model is very similar to that of

native methods that use single-level storage. The JVM passes the teraspace native methods a pointer to

the Java Native Interface (JNI) environment that the methods can use to call JNI functions.

For teraspace storage model native methods, the JVM provides JNI function implementations that utilize

teraspace storage model and 8-byte pointers.

Creating teraspace native methods

To successfully create a teraspace storage model native method, your teraspace module creation

command needs to use the following options:

 TERASPACE(*YES) STGMDL(*TERASPACE) DTAMDL(*LLP64)

220 IBM Systems - iSeries: Programming IBM Developer Kit for Java

The following option (*TSIFC), to use teraspace storage functions, is optional:

 TERASPACE(*YES *TSIFC)

Note: If you do not use DTAMDL(*LLP64) when using teraspace storage model Java native methods, calling

a native method throws a runtime exception.

Creating teraspace service programs that use native methods

In order to create a teraspace storage model service program, use the following option on the Create

Service Program (CRTSRVPGM) control language (CL) command:

 CRTSRVPGM STGMDL(*TERASPACE)

In addition, you should use the ACTGRP(*CALLER) option, which allows the JVM to activate all teraspace

storage model native method service programs into the same teraspace activation group. Using a

teraspace activation group this way can be important for native methods to efficiently handle exceptions.

For additional details on program activation and activation groups, see the following information:

Chapter 3 of ILE Concepts

Using Java Invocation APIs with teraspace native methods

Use the Invocation API GetEnv function when the JNI environment pointer does not match the storage

model of the service program. The Invocation API GetEnv function always returns the correct JNI

environment pointer. For more information, see the following pages:

Java Invocation API

JNI Enhancements

The JVM supports both single-level and teraspace storage model native methods, but the two storage

models use different JNI environments. Because the two storage models use different JNI environments,

do not pass the JNI environment pointer as a parameter between native methods in the two storage

models.

Comparison of Integrated Language Environment® and Java

The Java environment on an iSeries server is separate from the integrated language environment (ILE).

Java is not an ILE language, and it cannot bind to ILE object modules to create programs or service

programs on an iSeries server.

 ILE Java

Members that are part of the library or file structure on

an iSeries server store source codes.

Stream files in the integrated file system contain source

code.

Source entry utility (SEU) edits extended binary-coded

decimal interchange code (EBCDIC) source files.

American Standard Code for Information Interchange

(ASCII) source files are usually edited using a

workstation editor.

Source files compile into object code modules, which are

stored in libraries on an iSeries server.

Source code compiles into class files, which the

integrated file system stores.

Object modules are statically bound together in programs

or service programs.

Classes are dynamically loaded, as needed, at runtime.

You can directly call to functions that are written in other

ILE programming languages.

Java Native Interface must be used to call other

languages from Java.

ILE languages are always compiled and run as machine

instructions.

Java programs can be interpreted or compiled.

IBM Developer Kit for Java 221

javaapi/guide/jni/jni-12.html

Use java.lang.Runtime.exec()

Use the java.lang.Runtime.exec method to call programs or commands from within your Java program.

Using java.lang.Runtime.exec() method creates one or more additional thread-enabled jobs. The additional

jobs process the command string that you pass on the method.

Note: The java.lang.Runtime.exec method runs programs in a separate job, which is different than the C

system() function. The C system function runs programs in the same job.

The actual processing that occurs depends on the following items:

v The kind of command that you pass in on java.lang.Runtime.exec()

v The value of the os400.runtime.exec system property

Processing different types of commands

The following table indicates how java.lang.Runtime.exec() processes different kinds of commands and

shows the effects of the os400.runtime.exec system property.

Type of command

Value of os400.runtime.exec system property

EXEC (default value) QSHELL

java command Starts a second job that runs the JVM.

The JVM starts a third job that runs

the Java application.

Starts a second job that runs Qshell,

the shell interpreter. Qshell starts a

third job to run the Java application,

program, or command. program Starts a second job that runs an

executable program (i5/OS program

or i5/OS PASE program).

CL command Starts a second job that runs an

i5/OS program. The i5/OS program

runs the CL command in the second

job.

Note: When calling a CL command or CL program, make sure that the job CCSID contains the characters

that you pass as parameters to the called command.

The processing in the second or third job runs concurrently with any Java virtual machine (JVM) in the

original job. Any exit or shutdown processing in those jobs does not affect the original JVM.

os400.runtime.exec system property

You can set the value of the os400.runtime.exec system property to EXEC (the default value) or QSHELL.

The value of os400.runtime.exec determines whether java.lang.Runtime.exec() uses the EXEC interface or

Qshell.

Using a value of EXEC instead of QSHELL has the following advantages:

v Your Java program that calls java.lang.Runtime.exec() is more portable

v Using java.lang.Runtime.exec() to call a CL command uses fewer system resources

You should use java.lang.Runtime.exec() to run Qshell only when backward compatibility requires it.

Using java.lang.Runtime.exec() to run Qshell requires that you set os400.runtime.exec to QSHELL.

222 IBM Systems - iSeries: Programming IBM Developer Kit for Java

The following illustration shows how using a value of QSHELL launches a third job, which consumes

additional system resources. Remember that using a value of QSHELL decreases the portability of your

Java program.

Figure 1. Using a value of QSHELL for the os400.runtime.exec system property

Also, when you use a value of QSHELL, passing a CL command to java.lang.Runtime.exec() requires

specific syntax. For more information, see the following example for calling a CL command.

For information about setting os400.runtime.exec, see List of Java system properties.

Example: Call another Java program with java.lang.Runtime.exec()

This example shows how to call another Java program with java.lang.Runtime.exec(). This class calls the

Hello program that is shipped as part of the IBM Developer Kit for Java. When the Hello class writes to

System.out, this program gets a handle to the stream and can read from it.

Note: You use the Qshell Interpreter to call the program.

Example 1: CallHelloPgm class

IBM Developer Kit for Java 223

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.io.*;

public class CallHelloPgm

{

 public static void main(String args[])

 {

 Process theProcess = null;

 BufferedReader inStream = null;

 System.out.println("CallHelloPgm.main() invoked");

 // call the Hello class

 try

 {

 theProcess = Runtime.getRuntime().exec("java com.ibm.as400.system.Hello");

 }

 catch(IOException e)

 {

 System.err.println("Error on exec() method");

 e.printStackTrace();

 }

 // read from the called program’s standard output stream

 try

 {

 inStream = new BufferedReader(

 new InputStreamReader(theProcess.getInputStream()));

 System.out.println(inStream.readLine());

 }

 catch(IOException e)

 {

 System.err.println("Error on inStream.readLine()");

 e.printStackTrace();

 }

 } // end method

} // end class

For background information, see Use java.lang.Runtime.exec().

Example: Call a CL program with java.lang.Runtime.exec()

This example shows how to run CL programs from within a Java program. In this example, the Java class

CallCLPgm runs a CL program.

The CL program uses the Display Java Program (DSPJVAPGM) command to display the program that is

associated with the Hello class file. This example assumes that the CL program has been compiled and

exists in a library that is called JAVSAMPLIB. The output from the CL program is in the QSYSPRT

spooled file.

See call a CL command for an example of how to call a CL command from within a Java program.

Note: The JAVSAMPLIB is not created as part of the IBM Developer Kit licensed program (LP) number

5722-JV1 installation process. You must explicitly create the library.

Example 1: CallCLPgm class

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

224 IBM Systems - iSeries: Programming IBM Developer Kit for Java

import java.io.*;

public class CallCLPgm

{

 public static void main(String[] args)

 {

 try

 {

 Process theProcess =

 Runtime.getRuntime().exec("/QSYS.LIB/JAVSAMPLIB.LIB/DSPJVA.PGM");

 }

 catch(IOException e)

 {

 System.err.println("Error on exec() method");

 e.printStackTrace();

 }

 } // end main() method

} // end class

Example 2: Display Java CL program

PGM

DSPJVAPGM CLSF(’/QIBM/ProdData/Java400/com/ibm/as400/system/Hello.class’) +

 OUTPUT(*PRINT)

ENDPGM

For background information, see Use java.lang.Runtime.exec().

Example: Call a CL command with java.lang.Runtime.exec()

This example shows how to run a control language (CL) command from within a Java program.

In this example, the Java class runs a CL command. The CL command uses the Display Java Program

(DSPJVAPGM) CL command to display the program that is associated with the Hello class file. The

output from the CL command is in the QSYSPRT spooled file.

When you set the os400.runtime.exec system property to EXEC (which is the default), commands that

you pass into the Runtime.getRuntime().exec() function use the following format:

 Runtime.getRuntime()Exec("system CLCOMMAND");

where CLCOMMAND is the CL command you want to run.

Note: When you set os400.runtime.exec to QSHELL, you have to add slash and quotation marks (\″). For

example, the previous command looks like this:

 Runtime.getRuntime()Exec("system \"CLCOMMAND\"");

For more information, about os400.runtime.exec and the effect it has on using java.lang.Runtime.exec(),

see the following pages:

Use java.lang.Runtime.exec()

List of Java system properties

Example: Class for calling a CL command

The following code assumes that you use the default value of EXEC for the os400.runtime.exec system

property.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

IBM Developer Kit for Java 225

import java.io.*;

public class CallCLCom

{

 public static void main(String[] args)

 {

 try

 {

 Process theProcess =

 Runtime.getRuntime().exec("system DSPJVAPGM CLSF(’/com/ibm/as400/system/Hello.class’)

 OUTPUT(*PRINT)");

 }

 catch(IOException e)

 {

 System.err.println("Error on exec() method");

 e.printStackTrace();

 }

 } // end main() method

} // end class

For background information, see Use java.lang.Runtime.exec().

Interprocess communications

When communicating with programs that are running in another process, there are a number of options.

One option is to use sockets for interprocess communication. One program can act as the server program

that listens on a socket connection for input from the client program. The client program connects to the

server with a socket. Once the socket connection is established, either program can send or receive

information.

Another option is to use stream files for communication between programs. To do this, use the System.in,

System.out, and System.err classes.

A third option is to use the IBM Toolbox for Java which provides data queues and iSeries message

objects.

You can also call Java from other languages. See Example: Call Java from C and Example: Call Java from

RPG for more information.

Use sockets for interprocess communication

Sockets streams communicate between programs that are running in separate processes.

The programs can either start separately or start by using the java.lang.Runtime.exec() method from

within the main Java program. If a program is written in a language other than Java, you must ensure

that any American Standard Code for Information Interchange (ASCII) or extended binary-coded decimal

interchange code (EBCDIC) conversion takes place. See Java character encodings for more details.

For an example that uses sockets, see Example: Use sockets for interprocess communication.

Example: Use sockets for interprocess communication:

This example uses sockets to communicate between a Java program and a C program.

 You should start the C program first, which listens on a socket. Once the Java program connects to the

socket, the C program sends it a string by using that socket connection. The string that is sent from the C

program is an American Standard Code for Information Interchange (ASCII) string in codepage 819.

The Java program should be started using this command, java TalkToC xxxxx nnnn on the Qshell

Interpreter command line or on another Java platform. Or, enter JAVA TALKTOC PARM(xxxxx nnnn) on the

226 IBM Systems - iSeries: Programming IBM Developer Kit for Java

iSeries command line to start the Java program. xxxxx is the domain name or Internet Protocol (IP)

address of the system on which the C program is running. nnnn is the port number of the socket that the

C program is using. You should also use this port number as the first parameter on the call to the C

program.

Example 1: TalkToC client class

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.net.*;

import java.io.*;

class TalkToC

{

 private String host = null;

 private int port = -999;

 private Socket socket = null;

 private BufferedReader inStream = null;

 public static void main(String[] args)

 {

 TalkToC caller = new TalkToC();

 caller.host = args[0];

 caller.port = new Integer(args[1]).intValue();

 caller.setUp();

 caller.converse();

 caller.cleanUp();

 } // end main() method

 public void setUp()

 {

 System.out.println("TalkToC.setUp() invoked");

 try

 {

 socket = new Socket(host, port);

 inStream = new BufferedReader(new InputStreamReader(

 socket.getInputStream()));

 }

 catch(UnknownHostException e)

 {

 System.err.println("Cannot find host called: " + host);

 e.printStackTrace();

 System.exit(-1);

 }

 catch(IOException e)

 {

 System.err.println("Could not establish connection for " + host);

 e.printStackTrace();

 System.exit(-1);

 }

 } // end setUp() method

 public void converse()

 {

 System.out.println("TalkToC.converse() invoked");

 if (socket != null && inStream != null)

 {

 try

 {

 System.out.println(inStream.readLine());

 }

IBM Developer Kit for Java 227

catch(IOException e)

 {

 System.err.println("Conversation error with host " + host);

 e.printStackTrace();

 }

 } // end if

 } // end converse() method

 public void cleanUp()

 {

 try

 {

 if(inStream != null)

 {

 inStream.close();

 }

 if(socket != null)

 {

 socket.close();

 }

 } // end try

 catch(IOException e)

 {

 System.err.println("Error in cleanup");

 e.printStackTrace();

 System.exit(-1);

 }

 } // end cleanUp() method

} // end TalkToC class

SockServ.C starts by passing in a parameter for the port number. For example, CALL SockServ ’2001’.

Example 2: SockServ.C server program

Note: Read the Code example disclaimer for important legal information.
#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/tcp.h>

#include <unistd.h>

#include <sys/time.h>

void main(int argc, char* argv[])

{

 int portNum = atoi(argv[1]);

 int server;

 int client;

 int address_len;

 int sendrc;

 int bndrc;

 char* greeting;

 struct sockaddr_in local_Address;

 address_len = sizeof(local_Address);

 memset(&local_Address,0x00,sizeof(local_Address));

 local_Address.sin_family = AF_INET;

 local_Address.sin_port = htons(portNum);

 local_Address.sin_addr.s_addr = htonl(INADDR_ANY);

228 IBM Systems - iSeries: Programming IBM Developer Kit for Java

#pragma convert (819)

 greeting = "This is a message from the C socket server.";

 #pragma convert (0)

 /* allocate socket */

 if((server = socket(AF_INET, SOCK_STREAM, 0))<0)

 {

 printf("failure on socket allocation\n");

 perror(NULL);

 exit(-1);

 }

 /* do bind */

 if((bndrc=bind(server,(struct sockaddr*)&local_Address, address_len))<0)

 {

 printf("Bind failed\n");

 perror(NULL);

 exit(-1);

 }

 /* invoke listen */

 listen(server, 1);

 /* wait for client request */

 if((client = accept(server,(struct sockaddr*)NULL, 0))<0)

 {

 printf("accept failed\n");

 perror(NULL);

 exit(-1);

 }

 /* send greeting to client */

 if((sendrc = send(client, greeting, strlen(greeting),0))<0)

 {

 printf("Send failed\n");

 perror(NULL);

 exit(-1);

 }

 close(client);

 close(server);

}

For more information, see Use sockets for interprocess communication.

Use input and output streams for interprocess communication

Input and output streams communicate between programs that are running in separate processes.

The java.lang.Runtime.exec() method runs a program. The parent program can get handles to the child

process input and output streams and can write to or read from those streams. If the child program is

written in a language other than Java, you must ensure that any American Standard Code for

Information Interchange (ASCII) or extended binary-coded decimal interchange code (EBCDIC)

conversion takes place. See Java character encodings for more details.

For an example that uses input and output streams, see Example: Use input and output streams for

interprocess communication.

Example: Use input and output streams for interprocess communication:

This example shows how to call a C program from Java and use input and output streams for

interprocess communication.

IBM Developer Kit for Java 229

In this example, the C program writes a string to its standard output stream, and the Java program reads

this string and displays it. This example assumes that a library, which is named JAVSAMPLIB, has been

created and that the CSAMP1 program has been created in it.

Note: The JAVSAMPLIB is not created as part of the IBM Developer Kit licensed program (LP) number

5722-JV1 installation process. You must explicitly create it.

Example 1: CallPgm class

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.io.*;

public class CallPgm

{

 public static void main(String args[])

 {

 Process theProcess = null;

 BufferedReader inStream = null;

 System.out.println("CallPgm.main() invoked");

 // call the CSAMP1 program

 try

 {

 theProcess = Runtime.getRuntime().exec(

 "/QSYS.LIB/JAVSAMPLIB.LIB/CSAMP1.PGM");

 }

 catch(IOException e)

 {

 System.err.println("Error on exec() method");

 e.printStackTrace();

 }

 // read from the called program’s standard output stream

 try

 {

 inStream = new BufferedReader(new InputStreamReader

 (theProcess.getInputStream()));

 System.out.println(inStream.readLine());

 }

 catch(IOException e)

 {

 System.err.println("Error on inStream.readLine()");

 e.printStackTrace();

 }

 } // end method

 } // end class

Example 2: CSAMP1 C Program

Note: Read the Code example disclaimer for important legal information.
#include <stdio.h>

#include <stdlib.h>

void main(int argc, char* args[])

{

 /* Convert the string to ASCII at compile time */

#pragma convert(819)

 printf("Program JAVSAMPLIB/CSAMP1 was invoked\n");

#pragma convert(0)

230 IBM Systems - iSeries: Programming IBM Developer Kit for Java

/* Stdout may be buffered, so flush the buffer */

 fflush(stdout);

}

For more information, see Use input and output streams for interprocess communication.

Example: Call Java from C

This is an example of a C program that uses the system() function to call the Java Hello program.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
#include <stdlib.h>

 int main(void)

 {

 int result;

 /* The system function passes the given string to the CL command processor

 for processing. */

 result = system("JAVA CLASS(’com.ibm.as400.system.Hello’)");

 }

Example: Call Java from RPG

This is an example of an RPG program that uses the QCMDEXC API to call the Java Hello program.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
 D* DEFINE THE PARAMETERS FOR THE QCMDEXC API

 D*

 DCMDSTRING S 25 INZ(’JAVA CLASS(’’com.ibm.as400.system.Hello’’)’)

 DCMDLENGTH S 15P 5 INZ(25)

 D* NOW THE CALL TO QCMDEXC WITH THE ’JAVA’ CL COMMAND

 C CALL ’QCMDEXC’

 C PARM CMDSTRING

 C PARM CMDLENGTH

 C* This next line displays ’DID IT’ after you exit the

 C* Java Shell via F3 or F12.

 C ’DID IT’ DSPLY

 C* Set On LR to exit the RPG program

 C SETON LR

 C

Java platform

The Java platform is the environment for developing and managing Java applets and applications. It

consists of three primary components: the Java language, the Java packages, and the Java virtual

machine.

The Java language and packages are similar to C++ and its class libraries. The Java packages contain

classes, which are available in any compliant Java implementation. The application programming

interface (API) should be the same on any system that supports Java.

Java differs from a traditional language, like C++, in the way it compiles and runs. In a traditional

programming environment, you write and compile source code of a program into object code for a

specific hardware and operating system. The object code binds to other object code modules to create a

IBM Developer Kit for Java 231

running program. The code is specific for a particular set of computer hardware and does not run on

other systems without being changed. This figure illustrates the traditional language deployment

environment.

Java applets and applications

An applet is a Java program designed to be included in an HTML Web document. You can write your

Java applet and include it in an HTML page, much in the same way an image is included. When you use

a Java-enabled browser to view an HTML page that contains an applet, the applet’s code is transferred to

your system and is run by the browser’s Java virtual machine.

The HTML document contains tags, which specify the name of the Java applet and its Uniform Resource

Locator (URL). The URL is the location at which the applet bytecodes reside on the Internet. When an

HTML document containing a Java applet tag is displayed, a Java-enabled Web browser downloads the

Java bytecodes from the Internet and uses the Java virtual machine to process the code from within the

Web document. These Java applets are what enable Web pages to contain animated graphics or

interactive content.

You can also write a Java application that does not require the use of a Web browser.

For more information, see Writing Applets, Sun Microsystems’ tutorial for Java applets. It includes an

overview of applets, directions for writing applets, and some common applet problems.

Applications are stand-alone programs that do not require the use of a browser. Java applications run by

starting the Java interpreter from the command line and by specifying the file that contains the compiled

application. Applications usually reside on the system on which they are deployed. Applications access

resources on the system, and are restricted by the Java security model.

Java virtual machine

The Java virtual machine is a runtime environment that you can add into a web browser or any

operating system, such as IBM i5/OS. The Java virtual machine runs instructions that a Java compiler

generates. It consists of a bytecode interpreter and runtime that allow Java class files to run on any

platform, regardless of the platform on which they were originally developed.

The class loader and security manager, which is part of the Java runtime, insulate code that comes from

another platform. They also can restrict which system resources each class that is loaded accesses.

Note: Java applications are not restricted; only applets are restricted. Applications can freely access

system resources and use native methods. Most IBM Developer Kit for Java programs are

applications.

You can use the Create Java Program (CRTJVAPGM) command to ensure that the code meets the safety

requirements that the Java runtime imposes to verify the bytecodes. This includes enforcing type

restrictions, checking data conversions, ensuring that parameter stack overflows or underflows do not

occur, and checking for access violations. However, you do not need to explicitly verify the bytecodes. If

you do not use the CRTJVAPGM command in advance, then the checks occur during the first use of a

class. Once the bytecodes are verified, the interpreter decodes the bytecodes and runs the machine

instructions that are needed to carry out the desired operations.

Note: The “Java interpreter” on page 234 is only used if you specify OPTIMIZE(*INTERPRET) or

INTERPRET(*YES).

In addition to loading and running the bytecodes, the Java virtual machine includes a garbage collector

that manages memory. Garbage collection runs at the same time as the loading and interpretation of the

bytecodes.

232 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://java.sun.com/docs/books/tutorial/applet/index.html

Java runtime environment

The Java runtime environment starts whenever you enter the Run Java (RUNJVA) command or JAVA

command on the iSeries command line. Because the Java environment is multithreaded, it is necessary to

run the Java virtual machine in a job that supports threads, such as a batch immediate (BCI) job. As

illustrated in the following figure, after the Java virtual machine starts, additional threads may start in the

job in which the garbage collector runs.

Figure 1: The typical Java environment when using the RUNJVA or JAVA CL command

It is also possible to start the Java runtime environment by using the java command in Qshell from the

Qshell Interpreter. In this environment, the Qshell Interpreter is running in a BCI job that is associated

with an interactive job. The Java runtime environment starts in the job that is running the Qshell

Interpreter.

Figure 2: The Java environment when using the java command in Qshell

IBM Developer Kit for Java 233

When the Java runtime environment starts from an interactive job, the Java Shell Display is shown. This

display provides an input line for entering data into the System.in stream, as well as displaying data that

is written to the System.out stream and System.err stream.

Java interpreter

The Java interpreter is the part of the Java virtual machine that interprets Java class files for a particular

hardware platform. The Java interpreter decodes each bytecode and runs a series of machine instructions

for that bytecode.

Related topics:

v Java class files

v

Java JAR and class files

A Java ARchive (JAR) file is a file format that combines many files into one. The Java environment differs

from other programming environments in that the Java compiler does not generate machine code for a

hardware-specific instruction set. Instead, the Java compiler converts Java source code into Java virtual

machine instructions, which Java class files store. You can use JAR files to store class files. The class file

does not target a specific hardware platform, but instead targets the Java virtual machine architecture.

You can use JAR as a general archiving tool and also to distribute Java programs of all types, including

applets. Java applets download into a browser in a single Hypertext Transfer Protocol (HTTP) transaction

rather than by opening a new connection for each piece. This method of downloading improves the

speed at which an applet loads on a Web page and begins functioning.

JAR is the only archive format that is cross-platform. JAR is also the only format that handles audio files

and image files, as well as class files. JAR is an open standard, fully extendable format that is written in

Java.

The JAR format also supports compression, which reduces the size of the file and decreases download

time. Additionally, an applet author may digitally sign individual entries in a JAR file to authenticate

their origin.

To update classes in JAR files, see the Java jar tool.

Java class files are stream files that are produced when a source file is compiled by the Java compiler.

The class file contains tables that describe each field and method of the class. The file also contains the

bytecodes for each method, static data, and descriptions that are used to represent Java objects.

Java threads

A thread is a single independent stream that runs within a program. Java is a multithreaded

programming language, so more than one thread may be running within the Java virtual machine at one

time. Java threads provide a way for a Java program to perform multiple tasks at the same time. A thread

is essentially a flow of control in a program.

Threads are a modern programming construct that are used to support concurrent programs and to

improve the performance and scalability of applications. Most programming languages support threads

through the use of add-in programming libraries. Java supports threads as built-in application program

interfaces (APIs).

Note: The use of threads provides the support to increase the interactivity, meaning a shorter wait at the

keyboard because more tasks are running in parallel. But, the program is not necessarily more

interactive just because it has threads.

234 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/tooldocs/windows/jar.html

Threads are the mechanism for waiting on long running interactions, while still allowing the program to

handle other work. Threads have the ability to support multiple flows through the same code stream.

They are sometimes called lightweight processes. The Java language includes direct support for threads.

But, by design, it does not support asynchronous non-blocking input and output with interrupts or

multiple wait.

Threads allow the development of parallel programs that scale well in an environment where a machine

has multiple processors. If properly constructed, they also provide a model for handling multiple

transactions and users.

You can use threads in a Java program for a number of situations. Some programs must be able to

engage in multiple activities and still be able to respond to additional input from the user. For example, a

Web browser should be able to respond to user input while playing a sound.

Threads can also use asynchronous methods. When you call a second method, you do not have to wait

for the first method to complete before the second method continues with its own activity.

There are also many reasons not to use threads. If a program uses inherently sequential logic, one thread

can accomplish the entire sequence. Using multiple threads in such a case results in a complex program

with no benefits. There is considerable work in creating and starting a thread. If an operation involves

only a few statements, it is faster to handle it in a single thread. This can be true even when the

operation is conceptually asynchronous. When multiple threads share objects, the objects must

synchronize to coordinate thread access and maintain consistency. Synchronization adds complexity to a

program, is difficult to tune for optimal performance, and can be a source of programming errors.

For more threads information, see Developing multithreaded applications.

Sun Microsystems, Inc. Java Development Kit

The Java Development Kit (JDK) is software that is distributed by Sun Microsystems, Inc. for Java

developers. It includes the Java interpreter, Java classes, and Java development tools: compiler, debugger,

disassembler, appletviewer, stub file generator, and documentation generator.

The JDK enables you to write applications that are developed once and run anywhere on any Java virtual

machine. Java applications that are developed with the JDK on one system can be used on another

system without changing or recompiling the code. The Java class files are portable to any standard Java

virtual machine.

To find more information about the current JDK, check the version of the IBM Developer Kit for Java on

your iSeries server.

You can check the version of the default IBM Developer Kit for Java Java virtual machine on your iSeries

server by entering either of the following commands:

v java -version on the Qshell command prompt.

v RUNJVA CLASS(*VERSION) on the CL command line.

Then, look for the same version of Sun Microsystems, Inc. JDK at The Source for Java Technology

java.sun.com for specific documentation. The IBM Developer Kit for Java is a compatible implementation

of the Sun Microsystems, Inc. Java Technology, so you should be familiar with their JDK documentation.

See the following topics for more information:

v Support for multiple Java Development Kits (JDKs) provides information about using different Java

virtual machines.

v Native methods and the Java Native Interface defines what a native method is and what they do. This

topic also briefly explains the Java Native Interface.

IBM Developer Kit for Java 235

http://www.java.sun.com/
http://www.java.sun.com/

Java packages

A Java package is a way of grouping related classes and interfaces in Java. Java packages are similar to

class libraries that are available in other languages.

The Java packages, which provide the Java APIs, are available as part of Sun Microsystems, Inc. Java

Development Kit (JDK). For a complete list of Java packages and information on Java APIs, see Java 2

Platform Packages.

Java tools

For a complete list of tools that Sun Microsystems, Inc. Java Development Kit supplies, see Tools

Reference by Sun Microsystems, Inc. For more information about each individual tool that the IBM

Developer Kit for Java supports, see Java tools that are supported by the IBM Developer Kit for Java.

Advanced topics

This topic provides instructions on how to run Java in a batch job and describes the Java file authorities

required in the integrated file system to display, run, or debug a Java program.

Java classes, packages, and directories

Each Java class is part of a package. The first statement in a Java source file indicates which class is in

what package. If the source file does not contain a package statement, the class is part of an unnamed

default package.

The package name relates to the directory structure in which the class resides. The integrated file system

supports Java classes in a hierarchical file structure that is similar to what you find on most PC and

UNIX® systems. You must store a Java class in a directory with a relative directory path that matches the

package name for that class. For example, consider the following Java class:

 package classes.geometry;

 import java.awt.Dimension;

 public class Shape {

 Dimension metrics;

 // The implementation for the Shape class would be coded here ...

 }

The package statement in the previous code indicates that the Shape class is part of the classes.geometry

package. For the Java runtime to find the Shape class, store the Shape class in the relative directory

structure classes/geometry.

Note: The package name corresponds to the relative directory name in which the class resides. The Java

virtual machine class loader finds the class by appending the relative path name to each directory

that you specify in the classpath. The Java virtual machine class loader can also find the class by

searching the ZIP files or JAR files that you specify in the classpath.

For example, when you store the Shape class in the /Product/classes/geometry directory in the ″root″ (/)

file system, you need to specify /Product in the classpath.

Figure 1: Example directory structure for Java classes of the same name in different packages

236 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/api/overview-summary.html
javaapi/api/overview-summary.html
javaapi/tooldocs/tools.html
javaapi/tooldocs/tools.html

Note: Multiple versions of the Shape class can exist in the directory structure. To use the Beta version of

the Shape class, place /Beta/myclasses in the classpath before any other directories or ZIP files

that contain the Shape class.

The Java compiler uses the Java classpath, package name, and directory structure to find packages and

classes when compiling Java source code. For more information, see Java classpath.

Files in the integrated file system

The integrated file system stores Java-related class, source, ZIP, and JAR files in a hierarchical file

structure. IBM Developer Kit for Java supports using the threadsafe file systems in the integrated file

system to store and work with your Java-related class files, source files, ZIP files, and JAR files.

For more information about threadsafe file systems and a comparison of file systems, see the following:

File system considerations for multithreaded programming

File system comparison

Java file authorities in the integrated file system

To run or debug a Java program, the class file, JAR file, or ZIP file needs to have read authority (*R). Any

directories need read and execute authorities (*RX).

IBM Developer Kit for Java 237

To use the Create Java Program (CRTJVAPGM) command to optimize a program, the class file, JAR file,

or ZIP file must have read authority (*R), and the directory must have execute authority (*X). If you use a

pattern in the class file name, the directory must have read and execute authority (*RX).

To delete a Java program by using the Delete Java Program (DLTJVAPGM) command, you must have

read and write authority (*RW) to the class file, and the directory must have execute authority (*X). If

you use a pattern in the class file name, the directory must have read and execute authority (*RX).

To display a Java program by using the Display Java Program (DSPJVAPGM) command, you must have

read authority (*R) to the class file, and the directory must have execute authority (*X).

Note: Files and directories that do not have execute authority (*X) always appear to have execute

authority (*X) to a user with QSECOFR authority. Different users can get different results in certain

situations, even though both users appear to have the same access to the same files. This is

important to know when running shell scripts using the Qshell Interpreter or java.Runtime.exec().

For example, one user writes a Java program that uses java.Runtime.exec() to call a shell script, then tests

it using a user ID with QSECOFR authority. If the file mode of the shell script has read and write

authority (*RW), the integrated file system allows the user ID with QSECOFR authority to run it.

However, a non-QSECOFR authority user could try to run the same Java program, and the integrated file

system would tell the java.Runtime.exec() code that the shell script cannot be run, because *X is missing.

In this case, java.Runtime.exec() throws an input and output exception.

You can also assign authorities to new files created by Java programs in an integrated file system. By

using the os400.file.create.auth system property for files and os400.dir.create.auth for directories, any

combination of read, write, and execute authorities may be used.

For more information, see the Program and CL Command APIs or the Integrated file system.

Run Java in a batch job

Java programs run in a batch job by using the Submit Job (SBMJOB) command. In this mode, the Java

Qshell Command Entry display is not available to handle the System.in, System.out, nor System.err

streams.

You may redirect these streams to other files. Default handling sends the System.out and System.err

streams to a spooled file. The batch job, which results in an input and output exception for read requests

from System.in, owns the spooled file. You can redirect System.in, System.out, and System.err within

your Java program. You can also use the os400.stdin, os400.stdout, and os400.stderr system properties to

redirect System.in, System.out, and System.err.

Note: SBMJOB sets the current working directory (CWD) to the HOME directory that is specified in the

user profile.

Example: Running Java in a Batch Job

SBMJOB CMD(JAVA Hello OPTION(*VERBOSE)) CPYENVVAR(*YES)

Running the JAVA command in the previous example spawns a second job. Therefore, the subsystem that

the batch job runs in must be capable of running more than one job.

You can verify that your batch job is capable of running more than one job by following these steps:

1. On the CL command line, enter DSPSBSD(MYSBSD), where MYSBSD is the subsystem description of your

batch job.

2. Choose option 6, Job queue entries.

3. Look at the Max Active field for your job queue.

238 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Run your Java application on a host that does not have a graphical

user interface

If you want to run your Java application on a host that does not have a graphical user interface (GUI),

such as an iSeries server, you can use the Native Abstract Windowing Toolkit (NAWT).

Use NAWT to provide your Java applications and servlets with the full capability of the Java 2 Software

Development Kit’s (J2SDK), Standard Edition AWT graphics functionality.

Native Abstract Windowing Toolkit

The Native Abstract Windowing Toolkit (NAWT) provides Java applications and servlets with the

capability to use the Abstract Windowing Toolkit (AWT) graphics function offered by the Java 2 Software

Development Kit (J2SDK), Standard Edition.

Note: NAWT currently does not support locale- and language-specific fonts and character sets. When

using NAWT, make sure that you comply with the following requirements:

v Use only characters that are defined in the ISO8859-1 character set.

v Use the font.properties file. The font.properties file resides in the

/QIBM/ProdData/Java400/jdknn/lib directory, where nn is the version number of the J2SDK

that you are using. Specifically, do not use any of the font.properties.xxx files, where xxx is a

language or another qualifier.

Usually, NAWT uses the X Window System as its underlying graphics engine. To use the X Window

System, you need an X server. An X server is a standalone application that accepts connections and

requests from X client programs. In this case, the underlying NAWT infrastructure is the X client

program.

The recommended X server is the AT®&T Virtual Network Computing (VNC) server. The VNC server is

well-suited to iSeries servers because it does not require a dedicated mouse, keyboard, and

graphics-capable monitor. IBM provides a version of the VNC server that runs in the i5/OS Portable

Application Solutions Environment (i5/OS PASE). i5/OS PASE is a UNIX-like environment that enables

you to run most binary executables compiled for the IBM AIX operating system. i5/OS PASE is installed

as part of i5/OS.

When you run the VNC server in i5/OS PASE, the iSeries server performs all the NAWT graphics

computations and so does not require an external graphics server. The following NAWT and J2SDK

information describes how to obtain and set up the VNC server in i5/OS PASE.

For more information about installing and using NAWT, see the following:

Because running NAWT requires using i5/OS PASE and VNC, you may want to learn more about these

applications. For more information, see the following:

i5/OS PASE

Virtual Network Computing

Levels of NAWT support

The version of the Java 2 Software Development Kit (J2SDK), Standard Edition that you use affects the

available choices for Native Abstract Windowing Toolkit (NAWT) support. Before you install NAWT, you

need to understand which type of support meets your requirements. Use this information to help you

assess your graphical requirements and select the version of J2SDK that you need to run. Use this

information to help you assess your graphical requirements and select the version of J2SDK that you

need to run.

IBM Developer Kit for Java 239

http://www.uk.research.att.com/vnc/

NAWT and J2SDK, version 1.3

For J2SDK version 1.3, NAWT supports only graphical Java applications that do not require direct user

interaction. This level of support is appropriate for Java applications, servlets, and graphics packages that

generate image data (encoded as JPEGs, GIFs, and so on) on your iSeries servers.

NAWT and J2SDK, version 1.4 and above

For J2SDK version 1.4 and subsequent versions, NAWT supports all Java Abstract Windowing Toolkit

(AWT) functionality, including interactive graphical user interfaces (GUIs) and the Java headless AWT

environment.

For more information about the NAWT support available when running J2SDK, version 1.4 and above,

see the following:

Installing and using NAWT with J2SDK, version 1.3:

To install Native Abstract Windowing Toolkit (NAWT) for Java 2 Software Development Kit (J2SDK),

version 1.3, complete the following tasks.

1. Install NAWT software fixes

2. Install iSeries Tools for Developers PRPQ

Before you can begin using NAWT or test your NAWT install, you need to create a password file for the

Virtual Network Computing (VNC) server. The following information lists additional required and

optional steps:

Create a VNC password file

Start the VNC server (typically after each IPL)

Configure environment variables (every time before you run Java)

Configure Java system properties (every time before you run Java)

Verify your NAWT install (optional)

 Collected links

 Install NAWT software fixes

To install NAWT, you need to ensure that you install the software fix that includes the appropriate

NAWT support for the version of Java 2 Software Development Kit (J2SDK), Standard Edition that

you want to use.

 Install iSeries Tools for Developers PRPQ

To run Native Abstract Windowing Toolkit (NAWT), you need to install the iSeries Tools for

Developers PRPQ (5799PTL). If you do not have the PRPQ, you must order it.

 Create a VNC password file

To install and run Native Abstract Windowing Toolkit (NAWT), you need to create a Virtual Network

Computing (VNC) server password file. The VNC server default setting requires a password file that

it uses to protect the VNC display against unauthorized user access. You must create the VNC

password file under the profile that starts the VNC server.

 Start the VNC server

 Configure environment variables

Any time that you run Java with NAWT, you must set environment variables that tell Java the system

name, the display number, and where to find each X server and the associated .Xauthority file.

 Configure Java system properties

 Verify your NAWT install

240 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Install NAWT software fixes:

To install NAWT, you need to ensure that you install the software fix that includes the appropriate

NAWT support for the version of Java 2 Software Development Kit (J2SDK), Standard Edition that you

want to use.

 Before installing any software fixes (PTFs), make sure that your server software includes the option for

licensed program 5722JV1 that corresponds to the J2SDK version you want to use. To verify the option

for your server software, complete the following steps:

1. At an i5/OS command line, type the Go Licensed Program (GO LICPGM) and press ENTER.

2. Select option 10 (Displayed installed licensed program) and verify that you have installed the licensed

program 5722JV1 option that corresponds to the version of the JDK that you intend to use.

Be sure to apply the latest Java group software fix to pick up any recent NAWT fixes.

The following table lists the required options and software fix requirements for running NAWT:

 J2SDK Version 5722JV1 Option Java Software Fix ID PTF Date

1.3 5 PTF Group 5722-JV1 SF99269 Latest

1.4 6 PTF Group 5722-JV1 SF99269 Latest

1.5 7 PTF Group 5722-JV1 SF99269 Latest

For more information about software fixes, see Use software fixes.

Installing iSeries Tools for Developers PRPQ:

To run Native Abstract Windowing Toolkit (NAWT), you need to install the iSeries Tools for Developers

PRPQ (5799PTL). If you do not have the PRPQ, you must order it.

 Newer versions of the PRPQ include a pre-compiled i5/OS PASE-enabled version of Virtual Network

Computing (VNC). Older versions do not include VNC. How you install the PRPQ depends on which

version you have:

v For versions of the PRPQ ordered on or after 14 June 2002: Complete this task by using the installation

instructions available at the iSeries Virtual Innovation Center Web site.

Note: To install the VNC support available in the PRPQ, follow only the installation instructions at the

Web site. You do not need to follow the setup instructions.

v For versions of the PRPQ ordered before 14 June 2002, refer to Installing older versions of iSeries Tools

for Developers PRPQ to complete this task.

Installing older versions of iSeries Tools for Developers:

Versions of iSeries Tools for Developers PRPQ (5799PTL) ordered before 14 June 2002, PRPQ do not

include a pre-compiled i5/OS PASE-enabled version of Virtual Network Computing (VNC).

Use the following instructions to determine if you have the enhanced PRPQ and to install VNC if you

have an older version of the PRPQ.

Determine whether you have the enhanced PRPQ

If you own PRPQ 5799-PTL but are not sure whether you have the enhanced version that contains VNC,

check for the existence of the following file:

 /QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver_java

IBM Developer Kit for Java 241

||||

http://www-03.ibm.com/servers/enable/site/porting/tools/

The enhanced version of the PRPQ includes the vncserver_java file, but older versions do not. If

vncserver_java is not present on your iSeries server, you can either order and install the latest version of

the PRPQ or use the following instructions to complete the VNC installation.

Install VNC

To install VNC on an older version of iSeries Tools for Developers PRPQ, complete the following steps.

1. Create the save files on your iSeries server by running the following commands:

 crtlib vncsavf

 crtsavf vncsavf/vncpasswd

 crtsavf vncsavf/vnc

 crtsavf vncsavf/fonts

 crtsavf vncsavf/icewm

2. Download the save files to your workstation from the iSeries Virtual Innovation Center Web site.

3. Use FTP to transfer the save files from your workstation to the iSeries server by running the following

commands on your workstation:

 ftp youriseriesserver

 bin

 cd /qsys.lib/vncsavf.lib

 put vnc.savf

 put vncpasswd.savf

 put fonts.savf

 put icewm.savf

 quit

4. Restore the save files by running the following commands on your iSeries server:

 RSTOBJ OBJ(*ALL) SAVLIB(VNCSAVF) DEV(*SAVF) SAVF(VNCSAVF/VNCPASSWD)

 RST DEV(’/Qsys.lib/vncsavf.lib/vnc.file’) OBJ((’/QOpenSys/QIBM/ProdData/DeveloperTools/vnc*’))

 RST DEV(’/Qsys.lib/vncsavf.lib/fonts.file’) OBJ((’/QOpenSys/QIBM/ProdData/DeveloperTools/fonts*’))

 RST DEV(’/Qsys.lib/vncsavf.lib/icewm.file’) OBJ((’/QOpenSys/QIBM/ProdData/DeveloperTools/icewm*’))

5. Continue installing NAWT.

Starting the Virtual Network Computing server:

To start the Virtual Network Computing (VNC) server, type the following command at the command line

and press ENTER:

 CALL PGM(QSYS/QP2SHELL) PARM(’/QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver_java’ ’:n’)

where n is the display number that you want to use. Display numbers can be any integer in the range

1-99.

Note: Starting the VNC server displays a message that identifies the iSeries system name and display

number, for example, ″New ’X’desktop is systemname:1.″ Remember or write down the display number,

because you use that value to configure environment variables.

When you have more than one VNC server running at the same time, each VNC server requires a unique

display number. Explicitly specifying the display value when you start the VNC server makes it easy to

configure the DISPLAY environment variable later. You must configure environment variables every time

you want to run Java with NAWT.

However, when you do not want to specify the display number, simply remove ’:n’ from the previous

command and the vncserver_java program finds an available display.

The .Xauthority file

The process of starting the VNC server either creates a new .Xauthority file or modifies an existing

.Xauthority file. VNC server authorization uses the .Xauthority file, which contains encrypted key

242 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://www-03.ibm.com/servers/enable/site/porting/tools/

information, to prevent applications of other users from intercepting your X server requests. Secure

communications between the Java virtual machine (JVM) and VNC REQUIRES that both the JVM and

VNC have access to the encrypted key information in the .Xauthority file.

The .Xauthority file belongs to the profile that started VNC. The simplest way to allow both the JVM and

the VNC server to share access to the .Xauthority file is to run the VNC server and the JVM under the

same user profile. If you cannot run both the VNC server and the JVM under the same user profile, you

can configure the XAUTHORITY environment variable to point to the correct .Xauthority file. For more

information about secure communications with NAWT, see the following pages:

v “Configuring NAWT environment variables”

v Tips for using NAWT with WebSphere Application Server

Configuring NAWT environment variables:

Any time that you run Java with NAWT, you must set environment variables that tell Java the system

name, the display number, and where to find each X server and the associated .Xauthority file.

 Note: Starting the Virtual Network Computing (VNC) server determines the location of the .Xauthority

file and the values for the system name and display number. You need to use these values to successfully

configure the NAWT environment variables. For more information, see Starting the Virtual Network

Computing server.

Configuring DISPLAY

In the session where you want to run Java programs, set the DISPLAY environment variable to your

system name and display number. To configure the DISPLAY environment variable, at an i5/OS

command line, type the following control language (CL) command and press ENTER:

 ADDENVVAR ENVVAR(DISPLAY) VALUE(’systemname:n’)

where systemname is the host name or IP address of your iSeries system and n is the display number of

the VNC server.

Configuring XAUTHORITY

Also, set the XAUTHORITY environment variable to /home/VNCprofile/.Xauthority, where VNCprofile is

the profile that started the VNC server.

For example, at the iSeries command prompt, type the following commands:

 ADDENVVAR ENVVAR(DISPLAY) VALUE(’systemname:n’)

 ADDENVVAR ENVVAR(XAUTHORITY) VALUE(’/home/VNCprofile/.Xauthority’)

Where:

v systemname is the host name or IP address of your iSeries system.

v n is the display number of the VNC server.

Notes:

v You need to set these environment variables only in the environment where you will run the Java

virtual machine (JVM).

v When you cannot run the VNC server and the Java virtual machine under the same user profile, you

can configure XAUTHORITY to point to the appropriate .Xauthority file. You must ensure that the

other profiles under which the JVM runs can access the .Xauthority file. For more information, see The

.Xauthority file.

IBM Developer Kit for Java 243

v The XAUTHORITY security mechanism is different from the VNCPASSWD security mechanism. Both

protection schemes are necessary for secure graphics rendering. For more information about

VNCPASSWD, see Creating a VNC password file.

Configuring Java system properties:

In order to run Native Abstract Windowing Toolkit (NAWT), you must always set certain Java system

properties before running Java. In each of the following examples, the first line configures Java for the

desired Java 2 Software Development Kit (J2SDK) and the second line enables NAWT.

J2SDK, version 1.3

When running NAWT under J2SDK, version 1.3, set the following Java system properties:

 java.version=1.3

 os400.awt.native=true

J2SDK, version 1.4, full GUI support

When running NAWT with full GUI support under J2SDK, version 1.4, set the following Java system

properties:

 java.version=1.4

 os400.awt.native=true

J2SDK, version 1.4, headless AWT support

When running NAWT in headless mode under J2SDK, version 1.4, set the following Java system

properties:

 java.version=1.4

 java.awt.headless=true

J2SDK, version 1.5, full GUI support

When running NAWT with full GUI support under J2SDK, version 1.5, set the following Java system

properties:

 java.version=1.5

 os400.awt.native=true

J2SDK, version 1.5, headless AWT support

When running NAWT in headless mode under J2SDK, version 1.5, set the following Java system

properties:

 java.version=1.5

 java.awt.headless=true

For more information about setting Java system properties, see Customize your iSeries server for the IBM

Developer Kit for Java.

Verifying your NAWT installation:

After completing the NAWT install and setup procedures, you can verify your NAWT installation by

running a Java test program. To run the test program from an i5/OS command line, type the following

command and press ENTER:

 JAVA CLASS(NAWTtest) CLASSPATH(’/QIBM/ProdData/Java400’) PROP((os400.awt.native true))

The test program creates a JPEG-encoded image and saves it to the following path in the integrated file

system:

244 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|

|

/tmp/NAWTtest.jpg

After you run the test program, check to ensure that the test program created the file and produced no

Java exceptions. To display the image, use binary mode to upload the image file to a graphics-capable

system.

Configuring the iceWM window manager:

Configure the iceWM window manager (iceWM), as an optional step during NAWT set up, when you

want to interactively use the Virtual Network Computing (VNC) server. For example, you may want to

run a Java application that features a graphical user interface (GUI).

iceWM is a small but powerful window manager included in the iSeries Tools For Developers PRPQ. For

information about installing the PRPQ, see the following page:

Install iSeries Tools for Developers PRPQ

Running in the background, iceWM controls the look and feel of windows running within the X Window

environment of the VNC server. iceWM provides an interface and a set of features that are similar to

many popular window managers. The default behavior of the included vncserver_java script starts the

VNC server and runs iceWM.

Completing this step creates several configuration files that iceWM requires. If you want, you can also

disable iceWM.

Configuring iceWM

To configure the iceWM window manager, complete the following steps at an i5/OS command prompt.

Be sure to perform these steps under the profile that you use to start the VNC server.

1. Type the following command and press ENTER to start the installation. :

 STRPTL CLIENT(IGNORE)

The IGNORE value functions as a placeholder that ensures the command activates only the

configuration features of STRPTL that NAWT requires.

2. Type the following command and press ENTER to sign off:

 SIGNOFF

Signing off ensures that any session-specific results of the STRPTL command do not affect subsequent

actions that you perform to use or configure NAWT.

Note: Run the STRPTL command only once for each profile that starts a VNC server. NAWT does not

require any of the available optional arguments for the command. These statements override any setup

instructions for STRPTL associated with the 5799-PTL iSeries Tools For Developers PRPQ.

Disabling iceWM

Starting the VNC server creates or modifies an existing script file called xstartup_java that contains the

command to run iceWM. The xstartup_java script file resides in the following integrated file system

directory:

 /home/VNCprofile/.vnc/

where VNCprofile is the name of the profile that started the VNC server.

To completely disable iceWM, use a text editor to either comment out or remove the line in the script that

starts iceWM. To comment out the line, insert a pound sign character (#) at the beginning of the line.

IBM Developer Kit for Java 245

Using a VNCviewer or Web browser:

To run an application that features a graphical user interface (GUI) on an iSeries server, you must use

either a VNCviewer or a Web browser to connect to the Virtual Network Computing (VNC) server. Of

course, you must run the VNCviewer or Web browser on a graphics-capable platform, such as a personal

computer.

Note: The following steps require you to know your display number and VNC password. Starting the

Virtual Network Computing (VNC) server determines the value for the display number. Creating a VNC

password file sets the VNC password. For more information, see the following pages:

v Starting the Virtual Network Computing server

v Creating a VNC password file

Using a VNCviewer to access the VNC server

To use a VNCviewer to connect to the VNC server, complete the following steps:

1. Download and install the VNCviewer application:

v VNC viewers are available for most platforms from the AT&T Research VNC Web site
2. Start the VNCviewer that you downloaded. At the prompt, enter the system name and display

number and click OK.

3. At the password prompt, type the VNC password to gain access to the VNC server display.

Using a Web browser to access the VNC server

To use a Web browser to connect to the VNC server, complete the following steps:

1. Start the browser and access the following URL:

 http://systemname:58nn

where:

v systemname is the name or IP address of the system that is running the VNC server

v nn is the 2-digit representation of the VNC server display number

For example, when the system name is system_one and the display number is 2, the URL is:

 http://system_one:5802

2. Successfully accessing the URL displays a prompt for the VNC server password. At the password

prompt, type the VNC password to gain access to the VNC server display.

Installing and using NAWT with full GUI support with J2SDK, version 1.4 and subsequent versions:

To install Native Abstract Windowing Toolkit (NAWT) with full GUI support with Java 2 Software

Development Kit (J2SDK), version 1.4 and above, complete the following tasks.

1. Install NAWT software fixes

2. Install iSeries Tools for Developers PRPQ

Using NAWT

Before you can begin using NAWT or test your NAWT install, you need to create a password file for the

Virtual Network Computing (VNC) server. The following information lists additional required and

optional steps:

Create a VNC password file

Start the VNC server (typically after each IPL)

246 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://www.uk.research.att.com/archive/vnc/index.html

Configure environment variables (every time before you run Java)

Configure Java system properties (every time before you run Java)

Configure the iceWM window manager (optional - for interactive use)

Use a VNCviewer or Web browser to interact with a GUI application

Verify your NAWT install (optional)

Installing and using NAWT in headless AWT mode with J2SDK, version 1.4 and subsequent

versions: To install Native Abstract Windowing Toolkit (NAWT) in headless AWT mode with Java 2

Software Development Kit (J2SDK), version 1.4 and subsequent versions, complete the following task:

Install NAWT software fixes

 Using NAWT

The following information lists any additional required and optional steps that you must perform before

using NAWT or testing your NAWT install:

Configure Java system properties (every time before you run Java)

Verify your NAWT install (optional)

 Collected links

 Install NAWT software fixes

To install NAWT, you need to ensure that you install the software fix that includes the appropriate

NAWT support for the version of Java 2 Software Development Kit (J2SDK), Standard Edition that

you want to use.

 Configure Java system properties

 Verify your NAWT install

Installing and using Native Abstract Windowing Toolkit

Use these step-by-step instructions to install NAWT and VNC. Before using NAWT, you must complete

some required steps.

For more information, see Levels of NAWT support.

Installing and using NAWT

After you assess your graphical needs and determine which version of J2SDK you want to run, use the

following instructions to install and use NAWT:

“Installing and using NAWT with J2SDK, version 1.3” on page 240

“Installing and using NAWT with full GUI support with J2SDK, version 1.4 and subsequent

versions” on page 246

“Installing and using NAWT in headless AWT mode with J2SDK, version 1.4 and subsequent

versions”

NAWT and i5/OS PASE

NAWT starts the i5/OS PASE environment automatically but starts in 32-bit mode by default. If you

require i5/OS PASE to run in 64-bit mode, then you need to set the QIBM_JAVA_PASE_STARTUP

IBM Developer Kit for Java 247

environment variable prior to starting the JVM. For more information, see Java i5/OS PASE environment

variables.

Tips on using VNC

Use i5/OS control language (CL) commands to start and stop a Virtual Network Computing (VNC)

server, and to display information about the currently running VNC servers.

Starting a VNC display server from a CL program

The following example is one way to set the DISPLAY environment variable and start VNC automatically

by using control language (CL) commands:

 CALL QP2SHELL PARM(’/QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver_java’ ’:n’)

 ADDENVVAR ENVVAR(DISPLAY) VALUE(’systemname:n’)

where:

v systemname is the host name or IP address of the iSeries system where VNC is running

v n is the numeric value that represents the display number that you want to start

Note: The example assumes that you are not already running display :n and that you have successfully

created the required VNC password file. For more information about creating a password file, see

Creating a VNC password file.

Stopping a VNC display server from a CL program

The following code shows one way to stop a VNC server from a CL program:

 CALL QP2SHELL PARM(’/QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver_java’ ’-kill’ ’:n’)

where n is the numeric value that represents the display number that you want to terminate.

Checking for running VNC display servers

To determine what (if any) VNC servers are currently running on an iSeries system, complete the

following steps:

1. From an i5/OS command line, start a PASE shell:

 CALL QP2TERM

2. From the PASE shell prompt, use the PASE ps command to list the VNC servers:

 ps gaxuw | grep Xvnc

The resulting output from this command will reveal running VNC servers in the following format:

 john 418 0.9 0.0 5020 0 - A Jan 31 222:26

 /QOpenSys/QIBM/ProdData/DeveloperTools/vnc/Xvnc :1 -desktop X -httpd

 jane 96 0.2 0.0 384 0 - A Jan 30 83:54

 /QOpenSys/QIBM/ProdData/DeveloperTools/vnc/Xvnc :2 -desktop X -httpd

Where:

v The first column is the profile which started the server.

v The second column is the PASE process ID of the server.

v The information starting with /QOpensys/ is the command that started the VNC server (including

arguments). The display number typically is the first item in the argument list for the Xvnc command.

Note: The Xvnc process, shown in the previous example output, is the name of the actual VNC server

program. You start Xvnc when you run the vncserver_java script, which prepares the environment and

parameters for Xvnc and then starts Xvnc.

248 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Creating a VNC password file:

To install and run Native Abstract Windowing Toolkit (NAWT), you need to create a Virtual Network

Computing (VNC) server password file. The VNC server default setting requires a password file that it

uses to protect the VNC display against unauthorized user access. You must create the VNC password

file under the profile that starts the VNC server.

 How you create an encrypted password depends on which version of the PRPQ you are using:

v For versions of the PRPQ ordered on or after 14 June 2002, use the following commands at the iSeries

command prompt:

 MKDIR DIR(’/home/VNCprofile/.vnc’)

 QAPTL/VNCPASSWD USEHOME(*NO) PWDFILE(’/home/VNCprofile/.vnc/passwd’)

where VNCprofile is the profile that started the VNC server.

v For versions of the PRPQ ordered before 14 June 2002, use the following commands at the iSeries

command prompt:

 MKDIR DIR(’/home/VNCprofile/.vnc’)

 VNCSAVF/VNCPASSWD USEHOME(*NO) PWDFILE(’/home/VNCprofile/.vnc/passwd’)

where VNCprofile is the profile that started the VNC server.

Notes:

When using NAWT with any version of J2SDK

v Only the profile that starts the VNC server needs to have a VNC password file.

v To successfully start the VNC server, you must have a password file.

When using NAWT with J2SDK, version 1.4 or a subsequent version

v To gain interactive access to VNC server by using a VNCviewer or Web browser, users must use the

password that you specify in this step.

Tips for using NAWT with WebSphere Application Server

Set up NAWT for use by graphical Java programs running under WebSphere Application Server. When

you use WebSphere Application Server and NAWT, you need to enable secure communications between

the Virtual Network Computing (VNC) server and WebSphere Application Server.

Before reading the following information, make sure that you understand how to install and use the

Native Abstract Windowing Toolkit (NAWT) on your iSeries server. In particular, you need to know how

to use NAWT with the version of the Java 2 Software Development Kit (J2SDK) and i5/OS release that

you use.

Ensuring secure communications

A method called X authority checking ensures secure communications between WebSphere Application

Server and the VNC server.

The process of starting the VNC server creates an .Xauthority file that contains encrypted key

information. Secure communications between WebSphere Application Server and VNC REQUIRES that

both WebSphere Application Server and VNC have access to the encrypted key information in the

.Xauthority file.

IBM Developer Kit for Java 249

Using X authority checking

Use one of the following methods to use X authority checking:

Run WebSphere Application Server and VNC using the same profile

One way that you can ensure secure communications between WebSphere Application Server and the

VNC server is by running WebSphere Application Server from the same profile that you use to start the

VNC server. To run WebSphere Application Server and VNC the with same profile, you must change the

user profile under which the application server runs.

To switch the user profile for the application server from the default user (QEJBSVR) to a different

profile, you must perform the following actions:

1. Use the WebSphere Application Server administrative console to change the application server

configuration

2. Use iSeries Navigator to enable the new profile

For information about using the WebSphere Application Server administrative console and iSeries

Navigator, see the following documentation:

WebSphere Application Server

Manage users and groups with Management Central

Run WebSphere Application Server and VNC using different profiles

When you want WebSphere Application Server and VNC to use different profiles, you can ensure secure

communications by having WebSphere Application Server use the .Xauthority file.

To enable WebSphere Application Server to use the .Xauthority file, complete the following steps:

1. Create a new .Xauthority file (or update an existing .Xauthority file) by starting the VNC server from

your user profile. From an i5/OS control language (CL) command line, type the following command

and press ENTER:

 CALL QP2SHELL PARM(’/QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver_java’ ’:n’)

where n is the display number (a numeric value in the range of 1-99).

Note: The .Xauthority file resides in the directory for the profile under which you are running the

VNC server.

2. Use the following CL commands to grant the profile under which you run WebSphere Application

Server the authority to read the .Xauthority file:

 CHGAUT OBJ(’/home’) USER(WASprofile) DTAAUT(*RX)

 CHGAUT OBJ(’/home/VNCprofile’) USER(WASprofile) DTAAUT(*RX)

 CHGAUT OBJ(’/home/VNCprofile/.Xauthority’) USER(WASprofile) DTAAUT(*R)

where VNCprofile and WASprofile are the appropriate profiles under which you are running the VNC

server and WebSphere Application Server.

Note: You should only follow these steps when the VNCprofile and WASprofile are different profiles.

Following these steps when VNCprofile and WASprofile are the same profile can cause VNC to

not function correctly.

3. From the WebSphere Application Server administrative console, define the DISPLAY and

XAUTHORITY environment variables for your application:

v For DISPLAY, use either: system:n or localhost:n

where system is the name or IP address of your iSeries system and n is the display number that you

used to start the VNC server.

250 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|
|
|

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/docs/doc.htm

v For XAUTHORITY, use: /home/VNCprofile/.Xauthority

where VNCprofile is the profile that started the VNC server.
4. Pick up the configuration changes by restarting WebSphere Application Server.

For information about using the WebSphere Application Server administrative console, see the following

documentation:

WebSphere Application Server

Java security

This topic provides details on adopted authority and explains how you can use SSL to make socket

streams secure in your Java application.

Java applications are subject to the same security restrictions as any other program on an iSeries server.

To run a Java program on an iSeries server, you must have authority to the class file in the integrated file

system. Once the program starts, it runs under the user’s authority.

You can use adopted authority to access objects with the authority of the user that is running the

program, and the program owner’s authority. Adopted authority temporarily gives a user authority to

objects that they would not have originally had authority to access. See the Create Java Program

(CRTJVAPGM) command information for details on the two new adopted authority parameters, which

are USRPRF and USEADPAUT.

The majority of the Java programs that run on an iSeries server are applications, not applets, so the

″sandbox″ security model does not restrict them.

Note: For J2SDK, version 1.4 and subsequent releases, JAAS, JCE, JGSS, and JSSE are part of the base

JDK and are not considered to be extensions. For previous JDK versions, these security items are

extensions.

Java security model

You can download Java applets from any system; thus, security mechanisms exist within the Java virtual

machine to protect against malicious applets. The Java runtime system verifies the bytecodes as the Java

virtual machine loads them. This ensures that they are valid bytecodes and that the code does not violate

any of the restrictions that the Java virtual machine places on Java applets.

Just as with applets, the byte code loader and verifier check that the byte codes are valid and data types

are used properly. They also check that registers and memory are accessed correctly, and that the stack

does not overflow or underflow. These checks ensure that the Java virtual machine can safely run the

class without compromising the integrity of the system.

Java applets are restricted in what operations they can perform, how they access memory, and how they

use the Java virtual machine. The restrictions are in place to prevent a Java applet from gaining access to

underlying operating system or data on the system. This is the ″sandbox″ security model, because the

Java applet can only ″play″ in its own sandbox.

The ″sandbox″ security model is a combination of the class loader, class file verifier, and the

java.lang.SecurityManager class.

For more information about security, see the Security by Sun Microsystems, Inc. documentation and

Secure applications with SSL.

IBM Developer Kit for Java 251

|
|
|

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/docs/doc.htm
javaapi/guide/security/index.html

Java Cryptography Extension

The Java Cryptography Extension (JCE) 1.2 is a standard extension to the Java 2 Software Development

Kit (J2SDK), Standard Edition. The JCE implementation on an iSeries server is compatible with the

implementation of Sun Microsystems, Inc. This documentation covers the unique aspects of the iSeries

implementation.

In order to understand this information, you should be familiar with the general documentation for the

JCE extensions. Seethe Sun JCE documentation for more information about JCE extensions.

The IBM JCE Provider supports the following algorithms:

 Table 3. Supported algorithms in JDK 1.3 and JDK 1.4.2

JDK version Signature algorithms Cipher algorithms

1.3

SHA1withDSA

SHA1withRSA

MD5withRSA

MD2withRSA

Blowfish

AES

DES

Triple DES

PBEWithMD2AndDES

PBEWithMD2AndTripleDES

PBEWithMD2AndRC2

PBEWithMD5AndDES

PBEWithMD5AndTripleDES

PBEWithMD5AndRC2

PBEWithSHA1AndDES

PBEWithSHA1AndTripleDES

PBEWithSHA1AndRC2

PBEWithSHAAnd40BitRC2

PBEWithSHAAnd128BitRC2

PBEWithSHAAnd40BitRC4

PBEWithSHAAnd128BitRC4

PBEWithSHAAnd2KeyTripleDES

PBEWithSHAAnd3KeyTripleDES

Mars

RC2

RC4

RSA

Seal

252 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|

http://java.sun.com/products/jce/index-12.html

Table 3. Supported algorithms in JDK 1.3 and JDK 1.4.2 (continued)

JDK version Signature algorithms Cipher algorithms

1.4.2

SHA1withDSA

SHA1withRSA

MD5withRSA

MD2withRSA

Blowfish

AES

DES

Triple DES

PBEWithMD2AndDES

PBEWithMD2AndTripleDES

PBEWithMD2AndRC2

PBEWithMD5AndDES

PBEWithMD5AndTripleDES

PBEWithMD5AndRC2

PBEWithSHA1AndDES

PBEWithSHA1AndTripleDES

PBEWithSHA1AndRC2

PBEWithSHAAnd40BitRC2

PBEWithSHAAnd128BitRC2

PBEWithSHAAnd40BitRC4

PBEWithSHAAnd128BitRC4

PBEWithSHAAnd2KeyTripleDES

PBEWithSHAAnd3KeyTripleDES

Mars

RC2

RC4

RSA

Seal

 Table 4. Supported algorithms in JDK 1.3 and JDK 1.4.2, continued

JDK version

Message authentication

codes (MACs) Message digests Key agreement algorithms

1.3

HmacSHA1

HmacMD2

HmacMD5

MD2

MD5

SHA-1

DiffieHellman

1.4.2

HmacSHA1

HmacMD2

HmacMD5

MD2

MD5

SHA-1

SHA-256

SHA-384

SHA-512

DiffieHellman

In addition, IBM JCE Provider also provides a random number generator.

If you want to use IBM JCE with Java 1.3, edit the

/QIBM/ProdData/OS400/Java400/jdk/lib/security/java.security file. The section of the file that needs to

be changed is shown as follows.

To use the IBMJCE security provider, you need to:

1) Install an IBM Cryptographic Access Provider Product

2) Uncomment the third provider entry that follows.

List of providers and their preference orders:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.sun.rsajca.Provider

#security.provider.3=com.ibm.crypto.provider.IBMJCE

IBM Developer Kit for Java 253

|
|
|
|
|
|

There is also a IBMJCEFIPS JCE provider. This provider has been validated and found to be compliant

with Federal Information Processing standard (FIPS) 140-2, ″Security Requirements for Cryptographic

Modules.″

The IBMJCEFIPS JCE provider supports the following algorithms:

 Table 5. Algorithms supported by the IBMJCEFIPS JCE provider

Signature algorithms Cipher algorithms

Message authentication

codes Message digests

SHA1withDSA

SHA1withRSA

AES

TripleDES

RSA

HmacSHA1 MD5

SHA-1

SHA-256

SHA-384

SHA-512

The IBMJCEFIPS JCE provider also supports the IBMSecureRandom algorithm for random number

generation.

To use IBMJCEFIPS, you will need to add a symbolic link to your extension directory by issuing the

following command:

ADDLNK OBJ(’/QIBM/ProdData/OS400/Java400/ext/ibmjcefips.jar’)

NEWLNK(< your extension directory >)

You will also have to add the provider to the list of providers by either adding an entry in the

java.security file (for example, security.provider.4=com.ibm.crypto.fips.provider.IBMJCEFIPS), or by

using the Security.addProvider() method.

Java Secure Socket Extension

The Java Secure Socket Extension (JSSE) is the Java implementation of the Secure Sockets Layer (SSL)

protocol. JSSE uses SSL and the Transport Layer Security (TLS) protocol to enable clients and servers to

conduct secure communications over TCP/IP.

JSSE provides the following functions:

v Encrypts data

v Authenticates remote user IDs

v Authenticates remote system names

v Performs client/server authentication

v Ensures message integrity

Integrated into the Java 2 Software Development Kit, Standard Edition (J2SDK), version 1.4 and

subsequent releases, JSSE provides more functionality than does SSL alone.

Note: This information concerns the version of JSSE that now comes bundled in the J2SDK, version 1.4

and subsequent releases. For previous versions of JSSE, see Java Secure Socket Extension on the

Sun Java Web site.

Using SSL (JSSE, version 1.0.8)

SSL provides a means of authenticating a server and a client to provide privacy and data integrity. All

SSL communications begin with a ″handshake″ between the server and the client. During the handshake,

SSL negotiates the cipher suite that the client and server use to communicate with each other. This cipher

suite is a combination of the various security features available through SSL. You can only use SSL with

J2SDK, version 1.3. You can use the Java Secure Socket Extension (JSSE, version 1.0.8), which is the Java

implementation of secure sockets layer (SSL), to make your Java application more secure.

254 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|
|
|

|

||

||
|
||

|
|
|
|
|

||
|
|
|
|
|

|
|

|
|

|
|

|
|
|

http://java.sun.com/products/jsse

SSL does the following to improve the security of your application:

v Protects communication data through encryption.

v Authenticates remote user IDs.

v Authenticates remote system names.

Note: SSL uses a digital certificate to encrypt the socket communication of your Java application. Digital

certificates are an Internet standard for identifying secure systems, users, and applications. You can

control digital certificates using the IBM Digital Certificate Manager. For more information, see

IBM Digital Certificate Manager.

To make your Java application more secure by using SSL:

v Prepare the iSeries server to support SSL.

v Design your Java application to use SSL by:

– Changing your Java socket code to use socket factories if you do not use socket factories already.

– Changing your Java code to use SSL.
v Use a digital certificate to make your Java application more secure by:

1. Selecting a type of digital certificate to use.

2. Using the digital certificate when you run your application.

You can also register your Java application as a secure application by using the

QsyRegisterAppForCertUse API. For more information, see QsyRegisterAppForCertUse.

For more information on the Java version of SSL, see Java Secure Socket Extension

Prepare iSeries server for secure sockets layer support:

To prepare your system to use secure sockets layer (SSL), you need to install Licensed Programs. the

Digital Certificate Manager LP:

 You need to install the Digital Certificate Manager LP:

v 5722-SS1 i5/OS - Digital Certificate Manager

You also need to make sure you can access or create a digital certificate on your system. For more

information on iSeries digital certificate management and the Internet, see

Getting started with IBM Digital Certificate Manager

.

Change your Java code to use socket factories:

To use secure sockets layer (SSL) with your existing code, you must first change your code to use socket

factories.

 To change your code to use socket factories, perform the following steps:

1. Add this line to your program to import the SocketFactory class:

import javax.net.*;

2. Add a line that declares an instance of a SocketFactory object. For example:

SocketFactory socketFactory

3. Initialize the SocketFactory instance by setting it equal to the method SocketFactory.getDefault(). For

example:

socketFactory = SocketFactory.getDefault();

IBM Developer Kit for Java 255

http://java.sun.com/products/jsse

The whole declaration of the SocketFactory should look like this:

SocketFactory socketFactory = SocketFactory.getDefault();

4. Initialize your existing sockets. Call the SocketFactory method createSocket(host,port) on your socket

factory for each socket you declare.

Your socket declarations should now look like this:

Socket s = socketFactory.createSocket(host,port);

Where:

v s is the socket that is being created.

v socketFactory is the SocketFactory that was created in step 2.

v host is a string variable that represents the name of a host server.

v port is an integer variable that represents the port number of the socket connection.

When you have completed all of these steps, your code uses socket factories. You do not need to make

any other changes to your code. All of the methods that you call and all the syntax with your sockets still

work.

See Examples: Change your Java code to use server socket factories for an example of a client program

being converted to use socket factories.

See Example: Change your Java code to use client socket factories for an example of a client program

being converted to use socket factories.

Examples: Change your Java code to use server socket factories:

These examples show you how to change a simple socket class, named simpleSocketServer, so that it uses

socket factories to create all of the sockets. The first example shows you the simpleSocketServer class

without socket factories. The second example shows you the simpleSocketServer class with socket

factories. In the second example, simpleSocketServer is renamed to factorySocketServer.

 Example 1: Socket server program without socket factories

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/* File simpleSocketServer.java*/

import java.net.*;

import java.io.*;

public class simpleSocketServer {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketServer serverPort");

 System.out.println("Defaulting to port 3000 since serverPort not specified.");

 }

 else

 serverPort = new Integer(args[0]).intValue();

 System.out.println("Establishing server socket at port " + serverPort);

 ServerSocket serverSocket =

 new ServerSocket(serverPort);

 // a real server would handle more than just one client like this...

256 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Socket s = serverSocket.accept();

 BufferedInputStream is = new BufferedInputStream(s.getInputStream());

 BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());

 // This server just echoes back what you send it...

 byte buffer[] = new byte[4096];

 int bytesRead;

 // read until "eof" returned

 while ((bytesRead = is.read(buffer)) > 0) {

 os.write(buffer, 0, bytesRead); // write it back

 os.flush(); // flush the output buffer

 }

 s.close();

 serverSocket.close();

 } // end main()

} // end class definition

Example 2: Simple socket server program with socket factories

Note: Read the Code example disclaimer for important legal information.
/* File factorySocketServer.java */

// need to import javax.net to pick up the ServerSocketFactory class

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySocketServer {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketServer serverPort");

 System.out.println("Defaulting to port 3000 since serverPort not specified.");

 }

 else

 serverPort = new Integer(args[0]).intValue();

 System.out.println("Establishing server socket at port " + serverPort);

 // Change the original simpleSocketServer to use a

 // ServerSocketFactory to create server sockets.

 ServerSocketFactory serverSocketFactory =

 ServerSocketFactory.getDefault();

 // Now have the factory create the server socket. This is the last

 // change from the original program.

 ServerSocket serverSocket =

 serverSocketFactory.createServerSocket(serverPort);

 // a real server would handle more than just one client like this...

 Socket s = serverSocket.accept();

 BufferedInputStream is = new BufferedInputStream(s.getInputStream());

 BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());

 // This server just echoes back what you send it...

 byte buffer[] = new byte[4096];

IBM Developer Kit for Java 257

int bytesRead;

 while ((bytesRead = is.read(buffer)) > 0) {

 os.write(buffer, 0, bytesRead);

 os.flush();

 }

 s.close();

 serverSocket.close();

 }

}

For background information, see Change your Java code to use socket factories.

Examples: Change your Java code to use client socket factories:

These examples show you how to change a simple socket class, named simpleSocketClient, so that it uses

socket factories to create all of the sockets. The first example shows you the simpleSocketClient class

without socket factories. The second example shows you the simpleSocketClient class with socket

factories. In the second example, simpleSocketClient is renamed to factorySocketClient.

 Example 1: Socket client program without socket factories

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/* Simple Socket Client Program */

import java.net.*;

import java.io.*;

public class simpleSocketClient {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketClient serverHost serverPort");

 System.out.println("serverPort defaults to 3000 if not specified.");

 return;

 }

 if (args.length == 2)

 serverPort = new Integer(args[1]).intValue();

 System.out.println("Connecting to host " + args[0] + " at port " +

 serverPort);

 // Create the socket and connect to the server.

 Socket s = new Socket(args[0], serverPort);

 .

 .

 .

 // The rest of the program continues on from here.

Example 2: Simple socket client program with socket factories

Note: Read the Code example disclaimer for important legal information.
/* Simple Socket Factory Client Program */

// Notice that javax.net.* is imported to pick up the SocketFactory class.

import javax.net.*;

258 IBM Systems - iSeries: Programming IBM Developer Kit for Java

import java.net.*;

import java.io.*;

public class factorySocketClient {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java factorySocketClient serverHost serverPort");

 System.out.println("serverPort defaults to 3000 if not specified.");

 return;

 }

 if (args.length == 2)

 serverPort = new Integer(args[1]).intValue();

 System.out.println("Connecting to host " + args[0] + " at port " +

 serverPort);

 // Change the original simpleSocketClient program to create a

 // SocketFactory and then use the socket factory to create sockets.

 SocketFactory socketFactory = SocketFactory.getDefault();

 // Now the factory creates the socket. This is the last change

 // to the original simpleSocketClient program.

 Socket s = socketFactory.createSocket(args[0], serverPort);

 .

 .

 .

 // The rest of the program continues on from here.

For background information, see Change your Java code to use socket factories.

Change your Java code to use secure sockets layer:

If your code already uses socket factories to create its sockets, then you can add secure socket layer (SSL)

support to your program. If your code does not already use socket factories, see Change your Java code

to use socket factories.

To change your code to use SSL, perform the following steps:

1. Import javax.net.ssl.* to add SSL support:

import javax.net.ssl.*;

2. Declare a SocketFactory by using SSLSocketFactory to initialize it:

SocketFactory newSF = SSLSocketFactory.getDefault();

3. Use your new SocketFactory to initialize your sockets the same way that you used your old

SocketFactory:

Socket s = newSF.createSocket(args[0], serverPort);

Your code now uses SSL support. You do not need to make any other changes to your code.

See Examples: Change your Java client to use secure sockets layer and Examples: Change your Java

server to use secure sockets layer for example code.

Examples: Change your Java server to use secure sockets layer:

These examples show you how to change one class, named factorySocketServer, to use secure sockets

layer (SSL).

IBM Developer Kit for Java 259

The first example shows you the factorySocketServer class not using SSL. The second example shows you

the same class, renamed factorySSLSocketServer, using SSL.

Example 1: Simple factorySocketServer class without SSL support

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/* File factorySocketServer.java */

// need to import javax.net to pick up the ServerSocketFactory class

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySocketServer {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketServer serverPort");

 System.out.println("Defaulting to port 3000 since serverPort not specified.");

 }

 else

 serverPort = new Integer(args[0]).intValue();

 System.out.println("Establishing server socket at port " + serverPort);

 // Change the original simpleSocketServer to use a

 // ServerSocketFactory to create server sockets.

 ServerSocketFactory serverSocketFactory =

 ServerSocketFactory.getDefault();

 // Now have the factory create the server socket. This is the last

 // change from the original program.

 ServerSocket serverSocket =

 serverSocketFactory.createServerSocket(serverPort);

 // a real server would handle more than just one client like this...

 Socket s = serverSocket.accept();

 BufferedInputStream is = new BufferedInputStream(s.getInputStream());

 BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());

 // This server just echoes back what you send it.

 byte buffer[] = new byte[4096];

 int bytesRead;

 while ((bytesRead = is.read(buffer)) > 0) {

 os.write(buffer, 0, bytesRead);

 os.flush();

 }

 s.close();

 serverSocket.close();

 }

}

Example 2: Simple factorySocketServer class with SSL support

Note: Read the Code example disclaimer for important legal information.
/* File factorySocketServer.java */

// need to import javax.net to pick up the ServerSocketFactory class

260 IBM Systems - iSeries: Programming IBM Developer Kit for Java

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySocketServer {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketServer serverPort");

 System.out.println("Defaulting to port 3000 since serverPort not specified.");

 }

 else

 serverPort = new Integer(args[0]).intValue();

 System.out.println("Establishing server socket at port " + serverPort);

 // Change the original simpleSocketServer to use a

 // ServerSocketFactory to create server sockets.

 ServerSocketFactory serverSocketFactory =

 ServerSocketFactory.getDefault();

 // Now have the factory create the server socket. This is the last

 // change from the original program.

 ServerSocket serverSocket =

 serverSocketFactory.createServerSocket(serverPort);

 // a real server would handle more than just one client like this...

 Socket s = serverSocket.accept();

 BufferedInputStream is = new BufferedInputStream(s.getInputStream());

 BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());

 // This server just echoes back what you send it.

 byte buffer[] = new byte[4096];

 int bytesRead;

 while ((bytesRead = is.read(buffer)) > 0) {

 os.write(buffer, 0, bytesRead);

 os.flush();

 }

 s.close();

 serverSocket.close();

 }

}

For background information, see Change your Java code to use secure sockets layer.

Examples: Change your Java client to use secure sockets layer:

These examples show you how to change one class, named factorySocketClient, to use secure sockets

layer (SSL). The first example shows you the factorySocketClient class not using SSL. The second example

shows you the same class, renamed factorySSLSocketClient, using SSL.

 Example 1: Simple factorySocketClient class without SSL support

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/* Simple Socket Factory Client Program */

import javax.net.*;

IBM Developer Kit for Java 261

import java.net.*;

import java.io.*;

public class factorySocketClient {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java factorySocketClient serverHost serverPort");

 System.out.println("serverPort defaults to 3000 if not specified.");

 return;

 }

 if (args.length == 2)

 serverPort = new Integer(args[1]).intValue();

 System.out.println("Connecting to host " + args[0] + " at port " +

 serverPort);

 SocketFactory socketFactory = SocketFactory.getDefault();

 Socket s = socketFactory.createSocket(args[0], serverPort);

 .

 .

 .

 // The rest of the program continues on from here.

Example 2: Simple factorySocketClient class with SSL support

Note: Read the Code example disclaimer for important legal information.
// Notice that we import javax.net.ssl.* to pick up SSL support

import javax.net.ssl.*;

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySSLSocketClient {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java factorySSLSocketClient serverHost serverPort");

 System.out.println("serverPort defaults to 3000 if not specified.");

 return;

 }

 if (args.length == 2)

 serverPort = new Integer(args[1]).intValue();

 System.out.println("Connecting to host " + args[0] + " at port " +

 serverPort);

 // Change this to create an SSLSocketFactory instead of a SocketFactory.

 SocketFactory socketFactory = SSLSocketFactory.getDefault();

 // We do not need to change anything else.

 // That’s the beauty of using factories!

 Socket s = socketFactory.createSocket(args[0], serverPort);

 .

 .

 .

 // The rest of the program continues on from here.

For background information, see Change your Java code to use secure sockets layer.

262 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Select a digital certificate to use:

You should consider several factors when deciding which digital certificate to use. You can use your

system’s default certificate or you can specify another certificate to use.

 You want to use your system’s default certificate if:

v You do not have any specific security requirements for your Java application.

v You do not know what kind of security you need for your Java application.

v Your system’s default certificate meets the security requirements for your Java application.

Note: If you decide that you want to use your system’s default certificate, check with your system

administrator to make sure that a default system certificate has been created. For more information

on digital certificate management, see Getting started with IBM Digital Certificate Manager.

If you do not want to use your system’s default certificate, you need to choose a different certificate to

use. You can choose from two types of certificates:

v User certificate that identifies the user of the application.

v System certificate that identifies the system on which the application is running.

You should use a user certificate if:

v your application runs as a client application.

v you want the certificate to identify the user who is working with the application.

You should use a system certificate if:

v your application runs as a server application.

v you want the certificate to identify on which system the application is running.

Once you know what kind of certificate you need, you can choose from any of the digital certificates in

any of the certificate containers that you are able to access.

Use the digital certificate when you run your Java application:

To use secure sockets layer (SSL), you must run your Java application using a digital certificate.

 To specify which digital certificate to use, use the following properties:

v os400.certificateContainer

v os400.certificateLabel

For example, if you want run the Java application MyClass.class using the digital certificate

MYCERTIFICATE, and MYCERTIFICATE was in the digital certificate container YOURDCC, then the

java command would look like this:

java -Dos400.certificateContainer=YOURDCC

 -Dos400.certificateLabel=MYCERTIFICATE MyClass

 If you have not already decided which digital certificate to use, see Select a digital certificate to use. You

may also decide to use your system’s default certificate, which is stored in the system’s default certificate

container.

To use your system’s default digital certificate, you do not need to specify a certificate or a certificate

container anywhere. Your Java application uses your system’s default digital certificate automatically.

For more information on iSeries digital certificate management and the Internet, see Getting started with

IBM Digital Certificate Manager.

IBM Developer Kit for Java 263

Digital certificates and the -os400.certificateLabel property

Digital certificates are an Internet standard for identifying secure systems, users, and applications. Digital

certificates are stored in digital certificate containers. If you want to use a digital certificate container’s

default certificate, you do not need to specify a certificate label. If you want to use a specific digital

certificate, you must specify that certificate’s label in the java command using this property:

os400.certificateLabel=

For example, if the name of the certificate you want to use is MYCERTIFICATE, then the java command

you enter would look like this:

java -Dos400.certificateLabel=MYCERTIFICATE MyClass

In this example, the Java application MyClass would use the certificate MYCERTIFICATE.

MYCERTIFICATE would need to be in the system’s default certificate container to be used by MyClass.

Digital certificate containers and the -os400.certificateContainer property

Digital certificate containers store digital certificates. If you want to use the iSeries system default

certificate container, you do not need to specify a certificate container. To use a specific digital certificate

container, you need to specify that digital certificate container in the java command using this property:

os400.certificateContainer=

For example, if the name of the certificate container that contains the digital certificate you want to use is

named MYDCC, then the java command you enter would look like this:

java -Dos400.certificateContainer=MYDCC MyClass

In this example, the Java application, named MyClass.class, would run on the system by using the

default digital certificate that is in the digital certificate container named MYDCC. Any sockets that you

create in the application use the default certificate that is in MYDCC to identify themselves and make all

of their communications secure.

If you wanted to use the digital certificate MYCERTIFICATE in the digital certificate container, then the

java command that you would enter would look like this:

java -Dos400.certificateContainer=MYDCC

 -Dos400.certificateLabel=MYCERTIFICATE MyClass

Using Java Secure Socket Extension

JSSE is like a framework that abstracts the underlying mechanisms of both SSL and TLS. By abstracting

the complexity and peculiarities of the underlying protocols, JSSE enables programmers to use secure,

encrypted communications while at the same time minimizing possible security vulnerabilities. This

information applies only to using JSSE on iSeries servers that run J2SDK, version 1.4 and subsequent

releases. Java Secure Socket Extension (JSSE) uses both the Secure Sockets Layer (SSL) protocol and the

Transport Layer Security (TLS) protocol to provide secure, encrypted communications between your

clients and servers.

The IBM implementation of JSSE is called IBM JSSE. IBM JSSE includes a native iSeries JSSE provider and

a pure Java JSSE provider.

Configuring your iSeries server to support JSSE:

Configure your iSeries server to use IBM JSSE. This topic includes software requirements, how to change

JSSE providers, and the necessary security properties and system properties.

 When you use the Java 2 Software Development Kit (J2SDK), version 1.4 or a subsequent version on your

iSeries server, JSSE is already configured. The default configuration uses the native iSeries JSSE provider.

264 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Changing JSSE providers

You can configure JSSE to use the pure Java JSSE provider instead of the native iSeries JSSE provider. By

changing some specific JSSE security properties and Java system properties, you can switch between the

two providers. For more information, see the following topics:

v JSSE providers

v JSSE security properties

v Java system properties

Security managers

If you are running your JSSE application with a Java security manager enabled, you may need to set the

available network permissions. For more information, see SSL Permission in Permissions in the Java 2

SDK.

JSSE providers:

IBM JSSE includes a native iSeries JSSE provider, and two pure Java JSSE providers. The provider that

you choose to use depends on the needs of your application.

 All three providers adhere to the JSSE interface specification. They can communicate with each other and

with any other SSL or TLS implementation, even non-Java implementations.

Pure Java JSSE provider

The pure Java JSSE provider offers the following features:

v Works with any type of KeyStore object to control and configure digital certificates (for example, JKS,

PKCS12, and so on).

v Allows you to use any combination of JSSE components from multiple implementations together.

IBMJSSE is the provider name for the pure Java implementation. You need to pass this provider name,

using the proper case, to the java.security.Security.getProvider() method or the various getInstance()

methods for several of the JSSE classes.

Pure Java JSSE FIPS 140-2 provider

The pure Java JSSE FIPS 140-2 provider offers the following features:

v Complies with Federal Information Processing Standards (FIPS) 140-2 for Cryptographic Modules.

v Works with any type of KeyStore object to control and configure digital certificates.

Note: The pure Java JSSE FIPS 140-2 provider does not allow components from any other

implementation to be plugged in to its implementation.

IBMJSSEFIPS is the provider name for the pure Java JSSE FIPS 140-2 implementation. You need to pass

this provider name, using the proper case, to the java.security.Securirty.getProvider() method or the

various getInstance() methods for several of the JSSE classes.

Native iSeries JSSE provider

The native iSeries JSSE provider offers the following features:

v Uses the native iSeries SSL support.

v Allows the use of the Digital Certificate Manager to configure and control digital certificates. This is

provided via a unique iSeries type of KeyStore (IbmISeriesKeyStore).

v Offers best performance.

IBM Developer Kit for Java 265

http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html#sslpermission
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html#sslpermission

v Allows you to use any combination of JSSE components from multiple implementations together.

However, to achieve the best possible performance use only JSSE native iSeries components.

IbmISeriesSslProvider is the name for the native iSeries implementation. You need to pass this provider

name, using the proper case, to the java.security.Security.getProvider() method or the various

getInstance() methods for several of the JSSE classes.

Changing the default JSSE provider

You can change the default JSSE provider by making the appropriate changes to your security properties.

For more information, see the following topic:

v JSSE security properties

After changing the JSSE provider, ensure that your system properties specify the proper configuration for

digital certificate information (keystore) required by the new provider. For more information, see the

following topic:

v Java system properties

JSSE security properties:

A Java virtual machine (JVM) uses many important security properties that you set by editing the Java

master security properties file.

 This file, named java.security, usually resides in the /QIBM/ProdData/Java400/jdk15/lib/security

directory on your iSeries server.

The following list describes several relevant security properties for using JSSE. Use the descriptions as a

guide for editing the java.security file.

security.provider.<integer>

The JSSE provider that you want to use. Also statically registers cryptographic provider classes.

Specify the different JSSE providers exactly like the following example:

 security.provider.5=com.ibm.as400.ibmonly.net.ssl.Provider

 security.provider.6=com.ibm.jsse.IBMJSSEProvider

 security.provider.7=com.ibm.fips.jsse.IBMJSSEFIPSProvider

 ssl.KeyManagerFactory.algorithm

Specifies the default KeyManagerFactory algorithm. For the native iSeries JSSE provider, use the

following:

 ssl.KeyManagerFactory.algorithm=IbmISeriesX509

For the pure Java JSSE provider, use the following:

 ssl.KeyManagerFactory.algorithm=IbmX509

For more information, see the javadoc for javax.net.ssl.KeyManagerFactory.

 ssl.TrustManagerFactory.algorithm

Specifies the default TrustManagerFactory algorithm. For the native iSeries JSSE provider, use the

following:

 ssl.TrustManagerFactory.algorithm=IbmISeriesX509

266 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|
|

For the pure Java JSSE provider, use the following:

 ssl.TrustManagerFactory.algorithm=IbmX509

For more information, see the javadoc for javax.net.ssl.TrustManagerFactory.

 ssl.SocketFactory.provider

Specifies the default SSL socket factory. For the native iSeries JSSE provider, use the following:

 ssl.SocketFactory.provider=com.ibm.as400.ibmonly.net.ssl.SSLSocketFactoryImpl

For the pure Java JSSE provider, use the following:

 ssl.SocketFactory.provider=com.ibm.jsse.JSSESocketFactory

For more information, see the javadoc for javax.net.ssl.SSLSocketFactory.

 ssl.ServerSocketFactory.provider

Specifies the default SSL server socket factory. For the native iSeries JSSE provider, use the

following:

 ssl.ServerSocketFactory.provider=com.ibm.as400.ibmonly.net.ssl.SSLServerSocketFactoryImpl

For the pure Java JSSE provider, use the following:

 ssl.ServerSocketFactory.provider=com.ibm.jsse.JSSEServerSocketFactory

For more information, see the javadoc for javax.net.ssl.SSLServerSocketFactory.

JSSE Java system properties:

To use JSSE in your applications, you need to specify several system properties that the default

SSLContext objects needs in order to provide confirmation of the configuration. Some of the properties

apply to both providers, while others apply to only the native iSeries provider.

 When using the native iSeries JSSE provider, when you specify none of the properties, the

os400.certificateContainer defaults to *SYSTEM, which means that JSSE uses the default entry in the

system certificate store.

Properties that work for both providers

The following properties apply to both JSSE providers. Each description includes the default property, if

applicable.

javax.net.ssl.trustStore

The name of the file that contains the KeyStore object that you want the default TrustManager to

use. The default value is jssecacerts, or cacerts (if jssecacerets does not exist).

javax.net.ssl.trustStoreType

The type of KeyStore object that you want the default TrustManager to use. The default value is the

value returned by the KeyStore.getDefaultType method.

javax.net.ssl.trustStorePassword

The password for the KeyStore object that you want the default TrustManager to use.

IBM Developer Kit for Java 267

javax.net.ssl.keyStore

The name of the file that contains the KeyStore object that you want the default KeyManager to use.

javax.net.ssl.keyStoreType

The type of KeyStore object that you want the default KeyManager to use. The default value is the

value returned by the KeyStore.getDefaultType method.

javax.net.ssl.keyStorePassword

The password for the KeyStore object that you want the default KeyManager to use.

Properties that work for the iSeries native JSSE provider only

The following properties apply to the native iSeries JSSE provider only.

os400.secureApplication

The application identifier. JSSE uses this property only when you do not specify any of the

following properties:

v javax.net.ssl.keyStore

v javax.net.ssl.keyStorePassword

v javax.net.ssl.keyStoreType

v javax.net.ssl.trustStore

v javax.net.ssl.trustStorePassword

v javax.ssl.net.trustStoreType

os400.certificateContainer

The name of the keyring that you want to use. JSSE uses this property only when you do not

specify any of the following properties:

v javax.net.ssl.keyStore

v javax.net.ssl.keyStorePassword

v javax.net.ssl.keyStoreType

v javax.net.ssl.trustStore

v javax.net.ssl.trustStorePassword

v javax.ssl.net.trustStoreType

v os400.secureApplication

os400.certificateLabel

The keyring label that you want to use. JSSE uses this property only when you do not specify any

of the following properties:

v javax.net.ssl.keyStore

v javax.net.ssl.keyStorePassword

v javax.net.ssl.trustStore

v javax.net.ssl.trustStorePassword

v javax.ssl.net.trustStoreType

v os400.secureApplication

268 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Additional information

For more information about system properties, see the following topics:

v “List of Java system properties” on page 13

v System Properties on the Sun Java Web site.

Using the native iSeries JSSE provider:

The native iSeries JSSE provider offers the full suite of JSSE classes and interfaces including

implementations of the JSSE KeyStore class and the SSLConfiguration class.

 To use the native iSeries provider effectively, use the information in this topic, and also see

“SSLConfiguration Javadoc information” on page 270.

Protocol values for the SSLContext.getInstance method

The following table identifies and describes the protocol values for the SSLContext.getInstance method of

the native iSeries JSSE provider.

 Protocol value Supported SSL protocols

SSL SSL version 2, SSL version 3, and TLS version 1

SSLv2 SSL version 2

SSLv3 SSL version 3

TLS SSL version 2, SSL version 3, and TLS version 1

TLSv1 TLS version 1

SSL_TLS SSL version 2, SSL version 3, and TLS version 1

Native iSeries KeyStore implementation

The native iSeries provider offers an implementation of the KeyStore class of type IbmISeriesKeyStore.

This keystore implementation provides a wrapper around the Digital Certificate Manager support. The

contents of the keystore are based on a particular application identifier or keyring file, password, and

label. JSSE loads the keystore entries from the Digital Certificate Manager. To load the entries, JSSE uses

the appropriate application identifier or keyring information when your application makes the first

attempt to access keystore entries or keystore information. You cannot modify the keystore, and you must

make all configuration changes by using the Digital Certificate Manager.

For more information about using the Digital Certificate Manager, see the following topic:

Digital Certificate Manager

Recommendations when using the native iSeries provider

The following are recommendations to make the native iSeries provider run as efficient as possible.

v For the native iSeries JSSE provider to work, your JSSE application must use only components from the

native implementation. For example, your native iSeries JSSE-enabled application cannot use an

X509KeyManager object created by using the pure Java JSSE provider to successfully initialize an

SSLContext object created by using the native iSeries JSSE provider.

v Additionally, you have to initialize the implementations of X509KeyManager and X509TrustManager in

the native iSeries provider by using either an IbmISeriesKeyStore object or a

com.ibm.as400.SSLConfiguration object.

IBM Developer Kit for Java 269

http://java.sun.com/docs/books/tutorial/essential/system/properties.html

Note: The recommendations mentioned may change in future releases, so that the native iSeries JSSE

provider could allow you to plug in non-native components (for example, JKS KeyStore or

IbmX509 TrustManagerFactory).

SSLConfiguration Javadoc information:

com.ibm.as400

Class SSLConfiguration

java.lang.Object

 |

 +--com.ibm.as400.SSLConfiguration

All Implemented Interfaces:

java.lang.Cloneable, javax.net.ssl.ManagerFactoryParameters

public final class SSLConfiguration

extends java.lang.Object

implements javax.net.ssl.ManagerFactoryParameters, java.lang.Cloneable

This class provides for the specification of the configuration needed by the native iSeries JSSE

implementation.

The native iSeries JSSE implementation works the most efficiently using a KeyStore object of type

″IbmISeriesKeyStore″. This type of KeyStore object contains key entries and trusted certificate entries

based either on an application identifier registered with the Digital Certificate Manager (DCM) or on a

keyring file (digital certificate container). A KeyStore object of this type can then be used to initialize an

X509KeyManger and an X509TrustManager object from the ″IbmISeriesSslProvider″ Provider. The

X509KeyManager and X509TrustManager objects can then be used to initialize an SSLContext object from the

″IbmISeriesSslProvider″. The SSLContext object then provides access to the native iSeries JSSE

implementation based on the configuration information specified for the KeyStore object. Each time a

load is performed for an ″IbmISeriesKeyStore″ KeyStore, the KeyStore is initialized based on the current

configuration specified by the application identifier or keyring file.

This class can also be used to generate a KeyStore object of any valid type. The KeyStore is initialized

based on the current configuration specified by the application identifier or keyring file. Any change

made to the configuration specified by an application identifier or keyring file would require the

KeyStore object to be regenerated to pick up the change. Note that a keyring password must be specified

(for the *SYSTEM certificate store when using an application ID) to be able to successfully create a

KeyStore of a type other than ″IbmISeriesKeyStore″. The keyring password must be specified to

successfully gain access to any private key for any KeyStore of type ″IbmISeriesKeyStore″ which is

created.

Since: SDK 1.4

See Also:

KeyStore, X509KeyManager, X509TrustManager, SSLContext

Constructor Summary

SSLConfiguration() Creates a new SSLConfiguration. See “Constructor detail ” on page 271 for more

information.

270 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Table 6. Method Summary

void

“clear” on page 275() Clears all information in the object so that all of the get

methods return null.

java.lang.Object “clone” on page 276() Generates a new copy of this SSL configuration.

boolean “equals” on page 275(java.lang.Objectobj) Indicates whether some other object

is ″equal to″ this one.

protected void “finalize” on page 274() Called by the garbage collector on an object when

garbage collection determines that there are no more references to the object.

java.lang.String “getApplicationId” on page 274() Returns the application ID.

java.lang.String “getKeyringLabel” on page 274() Returns the keyring label.

java.lang.String “getKeyringName” on page 274() Returns the keyring name.

char[] “getKeyringPassword” on page 274() Returns the keyring password.

java.security.KeyStore “getKeyStore” on page 276(char[]password) Returns a keystore of type

″IbmISeriesKeyStore″ using the given password.

java.security.KeyStore “ getKeyStore” on page 276(java.lang.Stringtype, char[]password) Returns a

keystore of the requested type using the given password.

int “hashCode” on page 276() Returns a hash code value for the object.

staticvoid (java.lang.String[]args) Executes SSLConfiguration functions.

void (java.lang.String[]args, java.io.PrintStreamout) Executes SSLConfiguration

functions.

void “setApplicationId” on page 275(java.lang.StringapplicationId) Sets the

application ID.

void “setApplicationId” on page 275(java.lang.StringapplicationId, char[]password)

Sets the application ID and the keyring password.

void “setKeyring” on page 275(java.lang.Stringname,java.lang.Stringlabel,

char[]password) Sets the keyring information.

 Methods inherited from class java.lang.Object

getClass, notify, notifyAll, toString, wait, wait, wait

Constructor detail

SSLConfiguration

public SSLConfiguration()

Creates a new SSLConfiguration. The application identifier and keyring information is initialized to

default values.

The default value for the application identifier is the value specified for the ″os400.secureApplication″

property.

The default values for the keyring information is null if the ″os400.secureApplication″ property is

specified. If the ″os400.secureApplication″ property is not specified, then the default value for the keyring

name is the value specified for the″os400.certificateContainer″ property. If the ″os400.secureApplication″

IBM Developer Kit for Java 271

property is not specified, then the keyring label is initialized to the value of the ″os400.certificateLabel″

property. If neither of the ″os400.secureApplication″ or ″os400.certificateContainer″ properties are set, then

the keyring name will be initialized to ″*SYSTEM″.

Method detail

main

public static void main(java.lang.String[]args)

Executes SSLConfiguration functions. There are four commands that can be performed: -help, -create,

-display, and -update. The command must be the first parameter specified.

The following are the options which may be specified (in any order):

-keystore keystore-file-name

Specifies the name of the keystore file to be created, updated or displayed. This option is required

for all commands.

-storepass keystore-file-password

Specifies the password associated with the keystore file to be created, updated, or displayed. This

option is required for all commands.

-storetype keystore-type

Specifies the type of keystore file to be created, updated, or displayed. This option may be

specified for any command. If this option is not specified, then a value of ″IbmISeriesKeyStore″ is

used.

-appid application-identifier

Specifies the application identifier to be used to initialize a keystore file being created or updated.

This option is optional for the -create and -update commands. Only one of the -appid, keyring, and

-systemdefault options may be specified.

-keyring keyring-file-name

Specifies the keyring file name to be used to initialize a keystore file being created or updated.

This option is optional for the -create and -update commands. Only one of the -appid, keyring, and

-systemdefault options may be specified.

-keyringpass keyring-file-password

Specifies the keyring file password to be used to initialize a keystore file being created or

updated. This option may be specified for the -create and -update commands and is required when

a keystore type other than ″IbmISeriesKeyStore″ is specified. If this option is not specified, then

the stashed keyring password is used.

-keyringlabel keyring-file-label

Specifies the keyring file label to be used to initialize a keystore file being created or updated.

This option may only be specified when the -keyring option is also specified. If this option is not

specified when the keyring option is specified, then the default label in the keyring is used.

-systemdefault

Specifies the system default value is to be used to initialize a keystore file being created or

updated. This option is optional for the -create and -update commands. Only one of the -appid,

keyring, and -systemdefault options may be specified.

-v Specifies that verbose output is to be produced. This option may be specified for any command.

272 IBM Systems - iSeries: Programming IBM Developer Kit for Java

The help command displays usage information for specifying the paramters to this method. The

parameters to invoke the help function is specified as follows:

 -help

The create command creates a new keystore file. There are three variations of the create command. One

variation to create a keystore based on a particular application identifier, another variation to create a

keystore based on a keyring name, label, and password, and a third variation to create a keystore based

on the system default configuration.

To create a keystore based on a particular application identifier, the -appid option must be specified. The

following parameters would create a keystore file of type ″IbmISeriesKeyStore″ named ″keystore.file″

with a password of ″keypass″ which is initialized based on the application identifier ″APPID″:

 -create -keystore keystore.file -storepass keypass -storetype IbmISeriesKeyStore

 -appid APPID

To create a keystore based on a particular keyring file, the -keyring option must be specified. The

-keyringpass and keyringlabel options may also be specified. The following parameters would create a

keystore file of type ″IbmISeriesKeyStore″ named ″keystore.file″ with a password of ″keypass″ which is

initialized based on the keyring file named ″keyring.file″, keyring password ″ringpass″, and keyring label

″keylabel″:

 -create -keystore keystore.file -storepass keypass -storetype IbmISeriesKeyStore

 -keyring keyring.file -keyringpass ringpass -keyringlabel keylabel

To create a keystore based on the system default configuration, the -systemdefault option must be

specified. The following parameters would create a keystore file of type ″IbmISeriesKeyStore″ named

″keystore.file″ with a password of ″keypass″ which is initialized based on the system default

configuration:

 -create -keystore keystore.file -storepass keypass -systemdefault

The update command updates an existing keystore file of type ″IbmISeriesKeyStore″. There are three

variations of the update command which are identical to the variations of the create command. The

options for the update command are identical to the options used for the create command. The display

command displays the configuration specified for an existing keystore file. The following parameters

would display the configuration specified by a keystore file of type ″IbmISeriesKeyStore″ named

″keystore.file″ with a password of ″keypass″:

 -display -keystore keystore.file -storepass keypass -storetype IbmISeriesKeyStore

Parameters:

args - the command line arguments

run

public void run(java.lang.String[]args,

 java.io.PrintStreamout)

Executes SSLConfiguration functions. The parameters and functionality of this method are identical to the

main() method.

Parameters:

args - the command arguments

 out - output stream to which results are to be written

See Also:com.ibm.as400.SSLConfiguration.main()

IBM Developer Kit for Java 273

getApplicationId

public java.lang.String getApplicationId()

Returns the application ID.

Returns:

the application ID.

getKeyringName

public java.lang.String getKeyringName()

Returns the keyring name.

Returns:

the keyring name.

getKeyringLabel

public java.lang.String getKeyringLabel()

Returns the keyring label.

Returns:

the keyring label.

getKeyringPassword

public final char[] getKeyringPassword()

Returns the keyring password.

Returns:

the keyring password.

finalize

protected void finalize()

 throws java.lang.Throwable

Called by the garbage collector on an object when garbage collection determines that there are no more

references to the object.

Overrides:

finalize in class java.lang.Object

Throws:

java.lang.Throwable - the exception raised by this method.

274 IBM Systems - iSeries: Programming IBM Developer Kit for Java

clear

public void clear()

Clears all information in the object so that all of the get methods return null.

setKeyring

public void setKeyring(java.lang.Stringname,

 java.lang.Stringlabel,

 char[]password)

Sets the keyring information.

Parameters:

name - the keyring name

 label - the keyring label, or null if the default keyring entry is to be used.

 password - the keyring password, or null if the stashed password is to be used.

setApplicationId

public void setApplicationId(java.lang.StringapplicationId)

Sets the application ID.

Parameters:

applicationId - the application ID.

setApplicationId

public void setApplicationId(java.lang.StringapplicationId,

 char[]password)

Sets the application ID and the keyring password. Specifying the keyring password allows any keystore

which is created to allow access to the private key.

Parameters:

applicationId - the application ID.

 password - the keyring password.

equals

public boolean equals(java.lang.Objectobj)

Indicates whether some other object is ″equal to″ this one.

Overrides:

equals in class java.lang.Object

Parameters:

obj - object to be compared

Returns:

indicator of whether the objects specify the same configuration information

IBM Developer Kit for Java 275

hashCode

public int hashCode()

Returns a hash code value for the object.

Overrides:

hashCode in class java.lang.Object

Returns:

a hash code value for this object.

clone

public java.lang.Object clone()

Generate a new copy of this SSL configuration. Subsequent changes to the components of this SSL

configuration will not affect the new copy, and vice versa.

Overrides:

clone in class java.lang.Object

Returns:

a copy of this SSL configuration

getKeyStore

public java.security.KeyStore getKeyStore(char[]password)

 throws java.security.KeyStoreException

Returns a keystore of type ″IbmISeriesKeyStore″ using the given password. The keystore is intialized

based on the configuration information currently stored in the object.

Parameters:

password - used to initialize the keystore

Returns:

KeyStore keystore initialized based on the configuration information currently stored in the object

Throws:

java.security.KeyStoreException - if the keystore could not be created

getKeyStore

public java.security.KeyStore getKeyStore(java.lang.Stringtype,

 char[]password)

 throws java.security.KeyStoreException

Returns a keystore of the requested type using the given password. The keystore is initialized based on

the configuration information currently stored in the object.

Parameters:

type - type of keystore to be returned

 password - used to initialize the keystore

276 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Returns:

KeyStore keystore initialized based on the configuration information currently stored in the object

Throws:

java.security.KeyStoreException - if the keystore could not be created

Examples: IBM Java Secure Sockets Extension:

The JSSE examples show how a client and a server can use the native iSeries JSSE provider to create a

context that enables secure communications.

 Note: Both examples use the native iSeries JSSE provider, regardless of the properties specified by the

java.security file.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

“Example: SSL client using an SSLContext object”

This example client program utilizes an SSLContext object, which it initializes to use the

″MY_CLIENT_APP″ application ID. This program will use the native iSeries implementation regardless of

what is specified in the java.security file.

“Example: SSL server using an SSLContext object” on page 279

The following server program utilizes an SSLContext object that it initializes with a previously created

keystore file. The keystore file has a name of /home/keystore.file and a keystore password of password.

The example program needs the keystore file in order to create an IbmISeriesKeyStore object. The

KeyStore object must specify MY_SERVER_APP as the application identifier.

To create the keystore file, you can use the either of the following commands:

v From a Qshell command prompt:

 java com.ibm.as400.SSLConfiguration -create -keystore /home/keystore.file

 -storepass password -appid MY_SERVER_APP

For more information about using Java commands with Qshell, see Qshell in the iSeries Information

Center.

v From an iSeries command prompt:

 RUNJVA CLASS(com.ibm.as400.SSLConfiguration) PARM(’-create’ ’-keystore’

 ’/home/keystore.file’ ’-storepass’ ’password’ ’-appid’ ’MY_SERVER_APP’)

Example: SSL client using an SSLContext object:

Note: Read the Code example disclaimer for important legal information.

//

//

// This example client program utilizes an SSLContext object, which it initializes

// to use the "MY_CLIENT_APP" application ID.

//

// The example uses the native iSeries JSSE provider, regardless of the

// properties specified by the java.security file.

//

// Command syntax:

// java -Djava.version=1.4 SslClient

//

// Note that "-Djava.version=1.4" is unnecessary when you have configured

// J2SDK version 1. to be used by default.

//

IBM Developer Kit for Java 277

//

import java.io.*;

import javax.net.ssl.*;

/**

 * SSL Client Program.

 */

public class SslClient {

 /**

 * SslClient main method.

 *

 * @param args the command line arguments (not used)

 */

 public static void main(String args[]) {

 /*

 * Set up to catch any exceptions thrown.

 */

 try {

 /*

 * Initialize an SSLConfiguration object to specify an application

 * ID. "MY_CLIENT_APP" must be registered and configured

 * correctly with the Digital Certificate Manager (DCM).

 */

 SSLConfiguration config = new SSLConfiguration();

 config.setApplicationId("MY_CLIENT_APP"

 /*

 * Get a KeyStore object from the SSLConfiguration object.

 */

 Char[] password = "password".toCharArray();

 KeyStore ks = config.getKeyStore(password);

 /*

 * Allocate and initialize a KeyManagerFactory.

 */

 KeyManagerFactory kmf =

 KeyManagerFactory.getInstance("IbmISeriesX509");

 Kmf.init(ks, password);

 /*

 * Allocate and initialize a TrustManagerFactory.

 */

 TrustManagerFactory tmf =

 TrustManagerFactory.getInstance("IbmISeriesX509");

 tmf.init(ks);

 /*

 * Allocate and initialize an SSLContext.

 */

 SSLContext c =

 SSLContext.getInstance("SSL", "quot;);

 C.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

 /*

 * Get the an SSLSocketFactory from the SSLContext.

 */

 SSLSocketFactory sf = c.getSocketFactory();

 /*

 * Create an SSLSocket.

 *

 * Change the hard-coded IP address to the IP address or host name

 * of the server.

 */

 SSLSocket s = (SSLSocket) sf.createSocket("1.1.1.1", 13333);

 /*

 * Send a message to the server using the secure session.

 */

 String sent = "Test of java SSL write";

 OutputStream os = s.getOutputStream();

 os.write(sent.getBytes());

278 IBM Systems - iSeries: Programming IBM Developer Kit for Java

/*

 * Write results to screen.

 */

 System.out.println("Wrote " + sent.length() + " bytes...");

 System.out.println(sent);

 /*

 * Receive a message from the server using the secure session.

 */

 InputStream is = s.getInputStream();

 byte[] buffer = new byte[1024];

 int bytesRead = is.read(buffer);

 if (bytesRead == -1)

 throw new IOException("Unexpected End-of-file Received");

 String received = new String(buffer, 0, bytesRead);

 /*

 * Write results to screen.

 */

 System.out.println("Read " + received.length() + " bytes...");

 System.out.println(received);

 } catch (Exception e) {

 System.out.println("Unexpected exception caught: " +

 e.getMessage());

 e.printStackTrace();

 }

 }

}

 Collected links

 Code example disclaimer

Example: SSL server using an SSLContext object:

Note: Read the Code example disclaimer for important legal information.

//

//

// The following server program utilizes an SSLContext object that it

// initializes with a previously created keystore file.

//

// The keystore file has the following name and keystore password:

// File name: /home/keystore.file

// Password: password

//

// The example program needs the keystore file in order to create an

// IbmISeriesKeyStore object. The KeyStore object must specify MY_SERVER_APP as

// the application identifier.

//

// To create the keystore file, you can use the following Qshell command:

//

// java com.ibm.as400.SSLConfiguration -create -keystore /home/keystore.file

// -storepass password -appid MY_SERVER_APP

//

// Command syntax:

// java -Djava.version=1.4 JavaSslServer

//

// Note that "-Djava.version=1.4" is unnecessary when you have configured

// J2SDK version 1. to be used by default.

//

//

import java.io.*;

import javax.net.ssl.*;

/**

* Java SSL Server Program using Application ID.

*/

IBM Developer Kit for Java 279

public class JavaSslServer {

 /**

 * JavaSslServer main method.

 *

 * @param args the command line arguments (not used)

 */

 public static void main(String args[]) {

 /*

 * Set up to catch any exceptions thrown.

 */

 try {

 /*

 * Allocate and initialize a KeyStore object.

 */

 Char[] password = "password".toCharArray();

 KeyStore ks = KeyStore.getInstance("IbmISeriesKeyStore");

 FileInputStream fis = new FileInputStream("/home/keystore.file"

 Ks.load(fis, password);

 /*

 * Allocate and initialize a KeyManagerFactory.

 */

 KeyManagerFactory kmf =

 KeyManagerFactory.getInstance("IbmISeriesX509");

 Kmf.init(ks, password);

 /*

 * Allocate and initialize a TrustManagerFactory.

 */

 TrustManagerFactory tmf =

 TrustManagerFactory.getInstance("IbmISeriesX509");

 tmf.init(ks);

 /*

 * Allocate and initialize an SSLContext.

 */

 SSLContext c =

 SSLContext.getInstance("SSL", "IbmISeriesSslProvider");

 C.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

 /*

 * Get the an SSLServerSocketFactory from the SSLContext.

 */

 SSLServerSocketFactory sf = c.getSSLServerSocketFactory();

 /*

 * Create an SSLServerSocket.

 */

 SSLServerSocket ss =

 (SSLServerSocket) sf.createServerSocket(13333);

 /*

 * Perform an accept() to create an SSLSocket.

 */

 SSLSocket s = (SSLSocket) ss.accept();

 /*

 * Receive a message from the client using the secure session.

 */

 InputStream is = s.getInputStream();

 byte[] buffer = new byte[1024];

 int bytesRead = is.read(buffer);

 if (bytesRead == -1)

 throw new IOException("Unexpected End-of-file Received");

 String received = new String(buffer, 0, bytesRead);

 /*

 * Write results to screen.

 */

 System.out.println("Read " + received.length() + " bytes...");

 System.out.println(received);

 /*

 * Echo the message back to the client using the secure session.

 */

280 IBM Systems - iSeries: Programming IBM Developer Kit for Java

OutputStream os = s.getOutputStream();

 os.write(received.getBytes());

 /*

 * Write results to screen.

 */

 System.out.println("Wrote " + received.length() + " bytes...");

 System.out.println(received);

 } catch (Exception e) {

 System.out.println("Unexpected exception caught: " +

 e.getMessage());

 e.printStackTrace();

 }

 }

}

 Collected links

 Code example disclaimer

Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) is a standard extension to the Java 2 Software

Development Kit (J2SDK), Standard Edition. J2SDK provides access controls that are based on where the

code originated and who signed the code (code source-based access controls). It lacks, however, the

ability to enforce additional access controls based on who runs the code. JAAS provides a framework that

adds this support to the Java 2 security model.

The JAAS API is used by IBM and Sun Microsystems, Inc. as an extension to the J2SDK, version 1.3. IBM

and Sun are introducing this extension to allow the association of a specific user or identity to the current

Java thread. This is done by using javax.security.auth.Subject methods and, optionally, with the

underlying operating system thread using com.ibm.security.auth.ThreadSubject methods.

Note: For J2SDK, version 1.4 and subsequent versions, JAAS is no longer an extension, but is part of the

base SDK.

The JAAS implementation on the iSeries server is compatible with the implementation of Sun

Microsystems, Inc. This documentation covers the unique aspects of the iSeries implementation. We

assume that you are familiar with the general documentation for the JAAS extensions. To make it easier

for you to work with that and our iSeries information, we provide the following links.

v “Java Authentication and Authorization Service (JAAS) 1.0” on page 283 provides information on using

the JAAS API in software development.

v JAAS LoginModule Developer’s Guide focuses on the authentication aspects of JAAS.

v JAAS API Specification contains the Javadoc information on JAAS.

 Related information

 iSeries-server specific JAAS Javadoc

Prepare and configure an iSeries server for Java Authentication and Authorization

Service

You must meet software requirements and configure your iSeries server to use Java Authentication and

Authorization Service (JAAS).

Software requirements to run JAAS 1.0 on an iSeries server

Install the following licensed programs:

v Java 2 SDK, version 1.4 (J2SDK) or above

v The IBM Toolbox for Java (mod 4) Licensed Program (5722-JC1) is required to change the OS thread

identity. It contains the ProfileTokenCredential classes needed to support the changing of iSeries OS

thread identity and the native implementation classes.

IBM Developer Kit for Java 281

javaapi/guide/security/jaas/JAASLMDevGuide.html
apidocs/index.html
ptfdocs/index.html

Configure the system

To configure the system to use JAAS, follow these steps:

1. For J2SDK 1.3, add a symbolic link to the extension directory for the jaas13.jar file. The extension class

loader should load the JAR file. Run this command (all one line) on the iSeries command line to add

the link:

 ADDLNK OBJ(’/QIBM/ProdData/OS400/Java400/ext/jaas13.jar’)

 NEWLNK(’/QIBM/ProdData/Java400/jdk13/lib/ext/jaas13.jar’)

Note: For J2SDK 1.4 and above, you do not need to add a symbolic link to the extension directory.

JAAS is part of the base SDK for this version.

2. A default login.config file is provided in ${java.home}/lib/security which invokes

com.ibm.as400.security.auth.login.BasicAuthenticationLoginModule. This login.config file attaches a

single use ProfileTokenCredential to the authenticated subject. If you want to use your own

login.config file with different options, you may include the following system property when invoking

your application:

 -Djava.security.auth.login.config=your login.config file

3. Add a symbolic link to the extension directory for the jt400Native.jar file. This allows the extension

class loader to load this file. The jaas13.jar file requires this JAR file for the credential implementation

classes that are part of the IBM Toolbox for Java. The application class loader can also load this file by

including it in the CLASSPATH. If this file is loaded from the class path directory, do not add the

symbolic link to the extension directory.

Symbolically linking the jt400Native.jar file to the /QIBM/ProdData/Java400/jdk14/lib/ext directory

forces all J2SDK 1.4 users on the server to run with this version of jt400Native.jar. This may not be

desirable if various users require different versions of the IBM Toolbox for Java classes. Other options

include putting jt400Native.jar in the application CLASSPATH as described previously. Another option

is to add the symbolic link to your own directory and then include that directory in the extension

directory classpath by specifying the java.ext.dirs system property when invoking the application.

To link the jt400Native.jar file to the /QIBM/ProdData/Java400/jdk13/lib/ext directory, run this

command on the iSeries command line to add the link:

ADDLNK OBJ(’/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar’)

 NEWLNK(’/QIBM/ProdData/Java400/jdk13/lib/ext/jt400Native.jar’)

To link the jt400Native.jar file to the /QIBM/ProdData/Java400/jdk14/lib/ext directory, run this

command on the iSeries command line to add the link:

ADDLNK OBJ(’/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar’)

 NEWLNK(’/QIBM/ProdData/Java400/jdk14/lib/ext/jt400Native.jar’)

To link the jt400Native.jar file to your own directory, do the following:

a. Run this command on the iSeries command line to add the link:

ADDLNK OBJ(’/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar’)

 NEWLNK(’your extension directory/jt400Native.jar’)

b. When calling your java program, use the following pattern:

java -Djava.ext.dirs=your extension directory:default

extension directories

Note: See the IBM Toolbox for Java for information on the iSeries credential classes. Click on

Security classes. Click on Authentication Services. Click on ProfileTokenCredential class.

Click on Package.
4. Update the Java 2 policy files to grant the appropriate permissions to the actual locations of the IBM

Toolbox for Java JAR files. Even though these files may be symbolically linked to the extension

directories and those directories are granted java.security.AllPermission in the

${java.home}/lib/security/java.policy file, authorization is based on the actual location of the JAR

files.

282 IBM Systems - iSeries: Programming IBM Developer Kit for Java

To successfully use the credential classes in the IBM Toolbox for Java, add the following to the Java 2

policy file of your application:

grant codeBase "file:/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar"

 {

 permission javax.security.auth.AuthPermission "modifyThreadIdentity";

 permission java.lang.RuntimePermission "loadLibrary.*";

 permission java.lang.RuntimePermission "writeFileDescriptor";

 permission java.lang.RuntimePermission "readFileDescriptor";

 }

You also need to add these permissions for the codeBase of your application since the operations

performed by the IBM Toolbox for Java JAR files do not run in privileged mode.

See the “Java Authentication and Authorization Service (JAAS) 1.0” for information on the Java 2

policy files.

5. Make sure the iSeries Host Servers are started and running. The ProfileTokenCredential classes that

reside in the Toolbox, for example, jt400Native.jar, are used as the credentials that are attached to the

authenticated subject. The credential classes require access to the Host Servers. You can verify that the

servers are started and running by typing the following on the iSeries command prompt:

StrHostSVR *all

StrTcpSvr *DDM

If the servers have already been started, these steps do nothing. If the servers are not started, they are

started by these steps.

Java Authentication and Authorization Service (JAAS) 1.0

This document was last updated March 17, 2000.

Developer’s Guide

v Overview

v Who Should Read This Document

v Related Documentation

v Introduction

v Core Classes

v Common Classes

– Subject

– Principals

– Credentials

v Authentication Classes

v LoginContext

v LoginModule

v CallbackHandler

v Callback

v Authorization Classes

v Policy

v AuthPermission

v PrivateCredentialPermission

References

v Implementation

v ″Hello World″, JAAS style!

v Appendix A: JAAS Settings in the java.security Security Properties File

IBM Developer Kit for Java 283

v Appendix B: Login Configuration File

v Appendix C: Authorization Policy File

Overview

The Java Authentication and Authorization Service (JAAS) is a standard extension to the Java 2 Software

Development Kit, version 1.3. Currently, Java 2 provides codesource-based access controls (access controls

based on where the code originated from and who signed the code). It lacks, however, the ability to

additionally enforce access controls based on who runs the code. JAAS provides a framework that

augments the Java 2 security model with such support.

Who Should Read This Document

This document is intended for experienced programmers wanting to create applications constrained by a

codesource-based and Subject-based security model.

Related Documentation

This document assumes you have already read the following documentation:

v Java 2 Software Development Kit API Specification

v JAAS API Specification

v Security and the Java platform

A supplement to this guide is the LoginModule Developer’s Guide that is supplied by Sun Microsystems,

Inc.

Introduction

The JAAS infrastructure can be divided into two main components: an authentication component and an

authorization component. The JAAS authentication component provides the ability to reliably and

securely determine who is currently processing Java code, regardless of whether the code is running as

an application, an applet, a bean, or a servlet. The JAAS authorization component supplements the

existing Java 2 security framework by providing the means to restrict the processing Java code from

performing sensitive tasks, depending on its codesource (as is done in Java 2) and depending on who

was authenticated.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to remain

independent from underlying authentication technologies. Therefore new or updated authentication

technologies can be plugged under an application without requiring modifications to the application

itself. Applications enable the authentication process by instantiating a

LoginContext

object, which in turn references a

Configuration

to determine the authentication technology, or

LoginModule

, to be used in performing the authentication. Typical LoginModules may prompt for and verify a

username and password. Others may read and verify a voice or fingerprint sample.

Once the user processing the code has been authenticated, the JAAS authorization component works in

conjunction with the existing Java 2 access control model to protect access to sensitive resources. Unlike

in Java 2, where access control decisions are based solely on code location and code signers (a

284 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://java.sun.com/reference/api/index.html
apidocs/index.html
http://java.sun.com/security/
http://java.sun.com/security/jaas/doc/module.html

CodeSource

), in JAAS access control decisions are based both on the processing code’s

CodeSource

, as well as on the user running the code, or the

Subject

. Note that the JAAS policy merely extends the Java 2 policy with the relevant Subject-based information.

Therefore permissions recognized and understood in Java 2 (

java.io.FilePermission

and

java.net.SocketPermission

, for example) are also understood and recognized by JAAS. Furthermore, although the JAAS security

policy is physically separate from the existing Java 2 security policy, the two policies, together, form one

logical policy.

Core Classes

The JAAS core classes can be broken into 3 categories: Common, Authentication, and Authorization.

v Common Classes

– Subject, Principals, Credentials
v Authentication Classes

– LoginContext, LoginModule, CallbackHandler, Callback
v Authorization Classes

– Policy, AuthPermission, PrivateCredentialPermission

Common Classes

Common classes are shared within both the JAAS authentication and authorization components.

The key JAAS class is

Subject

, which represents a grouping of related information for a single entity such as a person. It encompasses

the entity’s Principals, public credentials, and private credentials.

Note that JAAS uses the existing Java 2

java.security.Principal

interface to represent a Principal. Also note that JAAS does not introduce a separate credential interface

or class. A credential, as defined by JAAS, may be any Object.

Subject

To authorize access to resources, applications first need to authenticate the source of the request. The

JAAS framework defines the term, Subject, to represent the source of a request. A Subject may be any

entity, such as a person or service. Once authenticated, a Subject is populated with associated identities,

or Principals. A Subject may have many Principals. For example, a person may have a name Principal

(″John Doe″) and a SSN Principal (″123-45-6789″) which distinguishes it from other Subjects.

A

IBM Developer Kit for Java 285

Subject

may also own security-related attributes, which are referred to as credentials. Sensitive credentials that

require special protection, such as private cryptographic keys, are stored within a private credential

Set

. Credentials intended to be shared, such as public key certificates or Kerberos tickets are stored within a

public credential

Set

. Different permissions are required to access and modify the different credential Sets.

Subjects are created using these constructors:

 public Subject();

 public Subject(boolean readOnly, Set principals,

 Set pubCredentials, Set privCredentials);

The first constructor creates a Subject with empty (non-null) Sets of Principals and credentials. The

second constructor creates a Subject with the specified Sets of Principals and credentials. It also has a

boolean argument which can create a read-only Subject (immutable Principal and credential Sets).

An alternative way to obtain a reference to an authenticated Subject without using these constructors will

be shown in the LoginContext section.

If a Subject was not instantiated to be in a read-only state, it can be set to a read-only state by calling this

method:

 public void setReadOnly();

An

AuthPermission("setReadOnly")

is required to invoke this method. Once in a read-only state, any attempt to add or remove Principals or

credentials will result in an

IllegalStateException

being thrown.

This method may be called to test a Subject’s read-only state:

 public boolean isReadOnly();

To retrieve the Principals associated with a Subject, two methods are available:

 public Set getPrincipals();

 public Set getPrincipals(Class c);

The first method returns all Principals contained in the Subject, while the second method only returns

those Principals that are an instance of the specified Class c, or an instance of a subclass of Class c. An

empty set will be returned if the Subject does not have any associated Principals.

To retrieve the public credentials associated with a Subject, these methods are available:

 public Set getPublicCredentials();

 public Set getPublicCredentials(Class c);

The observed behavior of these methods is identical to that for the

getPrincipals

286 IBM Systems - iSeries: Programming IBM Developer Kit for Java

method.

To access private credentials associated with a Subject, the following methods are available:

 public Set getPrivateCredentials();

 public Set getPrivateCredentials(Class c);

The observed behavior of these methods is identical to that for the

getPrincipals

and

getPublicCredentials

methods.

To modify or operate upon a Subject’s Principal Set, public credential Set, or private credential Set, callers

use the methods defined in the

java.util.Set

class. The following example demonstrates this:

 Subject subject;

 Principal principal;

 Object credential;

 // add a Principal and credential to the Subject

 subject.getPrincipals().add(principal);

 subject.getPublicCredentials().add(credential);

Note that an

AuthPermission("modifyPrincipals")

,

AuthPermission("modifyPublicCredentials")

, or

AuthPermission("modifyPrivateCredentials")

is required to modify the respective Sets. Also note that only the sets returned via the

getPrincipals

,

getPublicCredentials

, and

getPrivateCredentials

methods are backed by the Subject’s respective internal sets. Therefore any modification to the returned

set affects the internal sets as well. The sets returned via the

getPrincipals(Class c)

,

getPublicCredentials(Class c)

, and

getPrivateCredentials(Class c)

IBM Developer Kit for Java 287

methods are not backed by the Subject’s respective internal sets. A new set is created and returned for

each method invocation. Modifications to these sets will not affect the Subject’s internal sets. The

following method returns the Subject associated with the specified

AccessControlContext

, or null if no Subject is associated with the specified

AccessControlContext

.

 public static Subject getSubject(final AccessControlContext acc);

An

AuthPermission("getSubject")

is required to call

Subject.getSubject

.

The Subject class also includes these methods inherited from

java.lang.Object

:

 public boolean equals(Object o);

 public String toString();

 public int hashCode();

The following static methods may be called to perform work as a particular Subject:

 public static Object doAs(final Subject subject,

 final java.security.PrivilegedAction action);

 public static Object doAs(final Subject subject,

 final java.security.PrivilegedExceptionAction action)

 throws java.security.PrivilegedActionException;

Both methods first associate the specified subject with the current Thread’s

AccessControlContext

, and then process the action. This achieves the effect of having the action run as the subject. The first

method can throw runtime exceptions but normal processing has it returning an Object from the run()

method of its action argument. The second method behaves similarly except that it can throw a checked

exception from its

PrivilegedExceptionAction

run() method. An

AuthPermission("doAs")

is required to call the

doAs

methods.

Here are two examples utilizing the first

doAs

288 IBM Systems - iSeries: Programming IBM Developer Kit for Java

method. Assume that a

Subject

with a Principal of class

com.ibm.security.Principal

named ″BOB″ has been authenticated by a

LoginContext

″lc″. Also, assume that a SecurityManager has been installed, and the following exists in the JAAS access

control policy (see the Policy section for more details on the JAAS policy file):

 // Grant "BOB" permission to read the file "foo.txt"

 grant Principal com.ibm.security.Principal "BOB" {

 permission java.io.FilePermission "foo.txt", "read";

};

Subject.doAs Example 1

 class ExampleAction implements java.security.PrivilegedAction {

 public Object run() {

 java.io.File f = new java.io.File("foo.txt");

 // exists() invokes a security check

 if (f.exists()) {

 System.out.println("File foo.txt exists.");

 }

 return null;

 }

 }

 public class Example1 {

 public static void main(String[] args) {

 // Authenticate the subject, "BOB".

 // This process is described in the

 // LoginContext section.

 Subject bob;

 ...

 // perform "ExampleAction" as "BOB":

 Subject.doAs(bob, new ExampleAction());

 }

 }

During processing,

ExampleAction

will encounter a security check when it makes a call to,

f.exists()

. However, since

ExampleAction

is running as ″BOB″, and because the JAAS policy (above) grants the necessary

FilePermission

to ″BOB″, the

ExampleAction

IBM Developer Kit for Java 289

will pass the security check.

Example 2 has the same scenario as Example 1.

Subject.doAs Example 2

 public class Example2 {

 // Example of using an anonymous action class.

 public static void main(String[] args) {

 // Authenticate the subject, "BOB".

 // This process is described in the

 // LoginContext section.

 Subject bob;

 ...

 // perform "ExampleAction" as "BOB":

 Subject.doAs(bob, new ExampleAction() {

 public Object run() {

 java.io.File f = new java.io.File("foo.txt");

 if (f.exists()) {

 System.out.println("File foo.txt exists.");

 }

 return null;

 }

 });

 }

 }

Both examples throw a

SecurityException

if the example permission grant statement is altered correctly, such as adding an incorrect CodeBase or

changing the Principal to ″MOE″. Removing the Principal field from the grant block and then moving it

to a Java 2 policy file will not cause a

SecurityException

to be thrown because the permission is more general now (available to all Principals).

Since both examples perform the same function, there must be a reason to write code one way over the

other. Example 1 may be easier to read for some programmers unfamiliar with anonymous classes. Also,

the action class could be placed in a separate file with a unique CodeBase and then the permission grant

could utilize this information. Example 2 is more compact and the action to be performed is easier to

find since it is right there in the

doAs

call.

The following methods also perform work as a particular Subject. However, the

doAsPrivileged

methods will have security checks based on the supplied action and subject. The supplied context will be

tied to the specified subject and action. A null context object will disregard the current

AccessControlContext

altogether.

 public static Object doAsPrivileged(final Subject subject,

 final java.security.PrivilegedAction action,

 final java.security.AccessControlContext acc);

290 IBM Systems - iSeries: Programming IBM Developer Kit for Java

public static Object doAsPrivileged(final Subject subject,

 final java.security.PrivilegedExceptionAction action,

 final java.security.AccessControlContext acc)

 throws java.security.PrivilegedActionException;

The

doAsPrivileged

methods behave similarly to the

doAs

methods: the subject is associated with the context acc, an action is performed, and runtime exceptions

or checked exceptions may be thrown. However, the

doAsPrivileged

methods first empties the existing Thread’s

AccessControlContext

before associating the subject with the supplied context, and before invoking the action. A null acc

argument has the effect of causing access control decisions (invoked while the action processes) to be

based solely upon the subject and action. An

AuthPermission("doAsPrivileged")

is required when calling the

doAsPrivileged

methods.

Principals

As mentioned previously, Principals may be associated with a Subject. Principals represent Subject

identities, and must implement the

java.security.Principal

and

java.io.Serializable

interfaces. The Subject section describes ways to update the Principals associated with a Subject.

Credentials

Public and private credential classes are not part of the core JAAS class library. Any java class, therefore,

can represent a credential. However, developers may elect to have their credential classes implement two

interfaces related to credentials: Refreshable and Destroyable.

Refreshable

This interface provides the capability for a credential to refresh itself. For example, a credential with a

particular time-restricted lifespan may implement this interface to allow callers to refresh the time period

for which it is valid. The interface has two abstract methods:

 boolean isCurrent();

Determines if the credential is current or valid.

 void refresh() throws RefreshFailedException;

IBM Developer Kit for Java 291

Updates or extends the validity of the credential. This method implementation performs an

AuthPermission("refreshCredential")

security check to ensure the caller has permission to refresh the credential.

Destroyable

This interface provides the capability of destroying the contents within a credential. The interface has

two abstract methods:

 boolean isDestroyed();

Determines if the credential has been destroyed.

 void destroy() throws DestroyFailedException;

Destroys and clears the information associated with this credential. Subsequent calls to certain methods

on this credential will result in an

IllegalStateException

being thrown. This method implementation performs an

AuthPermission("destroyCredential")

security check to ensure the caller has permission to destroy the credential.

Authentication Classes

To authenticate a

Subject

, the following steps are performed:

1. An application instantiates a

LoginContext

.

2. The

LoginContext

consults a configuration to load all of the LoginModules configured for that application.

3. The application invokes the LoginContext’s login method.

4. The login method invokes all of the loaded LoginModules. Each

LoginModule

attempts to authenticate the

Subject

. Upon success, LoginModules associate relevant Principals and credentials with the

Subject

.

5. The

LoginContext

returns the authentication status to the application.

292 IBM Systems - iSeries: Programming IBM Developer Kit for Java

6. If authentication succeeded, the application retrieves the authenticated

Subject

from the

LoginContext

.

LoginContext

The

LoginContext

class provides the basic methods used to authenticate Subjects, and provides a way to develop an

application independent of the underlying authentication technology. The

LoginContext

consults a configuration

Configuration

to determine the authentication services, or LoginModules, configured for a particular application.

Therefore, different LoginModules can be plugged in under an application without requiring any

modifications to the application itself.

LoginContext

offers four constructors to choose from:

 public LoginContext(String name) throws LoginException;

 public LoginContext(String name, Subject subject) throws LoginException;

 public LoginContext(String name, CallbackHandler callbackHandler)

 throws LoginException

 public LoginContext(String name, Subject subject,

 CallbackHandler callbackHandler) throws LoginException

All of the constructors share a common parameter: name. This argument is used by the

LoginContext

to index the login Configuration. Constructors that do not take a

Subject

as an input parameter instantiate a new

Subject

. Null inputs are disallowed for all constructors. Callers require an

AuthPermission("createLoginContext")

to instantiate a

LoginContext

.

Actual authentication occurs with a call to the following method:

 public void login() throws LoginException;

IBM Developer Kit for Java 293

When login is invoked, all of the configured LoginModules’ respective login methods are invoked to

perform the authentication. If the authentication succeeded, the authenticated

Subject

(which may now hold Principals, public credentials, and private credentials) can be retrieved by using the

following method:

 public Subject getSubject();

To logout a

Subject

and remove its authenticated Principals and credentials, the following method is provided:

 public void logout() throws LoginException;

The following snippet of code in an application will authenticate a Subject called ″bob″ after accessing a

configuration file with a configuration entry named ″moduleFoo″:

 Subject bob = new Subject();

 LoginContext lc = new LoginContext("moduleFoo", bob);

 try {

 lc.login();

 System.out.println("authentication successful");

 } catch (LoginException le) {

 System.out.println("authentication unsuccessful"+le.printStackTrace());

 }

This snippet of code in an application will authenticate a ″nameless″ Subject and then use the getSubject

method to retrieve it:

 LoginContext lc = new LoginContext("moduleFoo");

 try {

 lc.login();

 System.out.println("authentication successful");

 } catch (LoginException le) {

 System.out.println("authentication unsuccessful"+le.printStackTrace());

 }

 Subject subject = lc.getSubject();

If the authentication failed, then getSubject returns null. Also, there isn’t an

AuthPermission("getSubject")

required to do this as is the case for

Subject.getSubject

LoginModule

The LoginModule interface gives developers the ability to implement different kinds of authentication

technologies that can be plugged under an application. For example, one type of

LoginModule

may perform a username/password-based form of authentication.

The LoginModule Developer’s Guide is a detailed document that gives developers step-by-step

instructions for implementing LoginModules.

To instantiate a

LoginModule

, a

294 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://java.sun.com/security/jaas/doc/module.html

LoginContext

expects each

LoginModule

to provide a public constructor that takes no arguments. Then, to initialize a

LoginModule

with the relevant information, a

LoginContext

calls the LoginModule’s

initialize

method. The provided subject is guaranteed to be non-null.

 void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options);

This following method begins the authentication process:

 boolean login() throws LoginException;

An example method implementation may prompt the user for a username and password, and then verify

the information against the data stored in a naming service such as NIS or LDAP. Alternative

implementations might interface smart cards and biometric devices, or may simply extract user

information from the underlying operating system. This is considered phase 1 of the JAAS authentication

process.

The following method completes and finalizes the authentication process:

 boolean commit() throws LoginException;

If phase 1 of the authentication process was successful, then this method continues with phase 2:

associating Principals, public credentials, and private credentials with the Subject. If phase 1 failed, then

the commit method removes any previously stored authentication state, such as usernames and

passwords.

The following method halts the authentication process if phase 1 was unsuccessful:

 boolean abort() throws LoginException;

Typical implementations of this method clean up previously stored authentication state, such as

usernames or passwords. The following method logs out a Subject:

 boolean logout() throws LoginException;

This method removes the Principals and credentials originally associated with the

Subject

during the

commit

operation. Credentials are destroyed upon removal.

CallbackHandler

In some cases a LoginModule must communicate with the user to obtain authentication information.

LoginModules use a CallbackHandler for this purpose. Applications implement the CallbackHandler

IBM Developer Kit for Java 295

interface and pass it to the LoginContext, which forwards it directly to the underlying LoginModules.

LoginModules use the CallbackHandler both to gather input from users (such as a password or smart

card pin number) or to supply information to users (such as status information). By allowing the

application to specify the CallbackHandler, underlying LoginModules can remain independent of the

different ways applications interact with users. For example, the implementation of a CallbackHandler for

a GUI application might display a Window to solicit input from a user. On the other hand, the

implementation of a CallbackHandler for a non-GUI tool might prompt the user for input directly from

the command line.

CallbackHandler

is an interface with one method to implement:

 void handle(Callback[] callbacks)

 throws java.io.IOException, UnsupportedCallbackException;

Callback

The javax.security.auth.callback package contains the Callback interface as well as several

implementations. LoginModules may pass an array of Callbacks directly to the handle method of a

CallbackHandler.

Consult the various Callback APIs for more information on their use.

Authorization Classes

Upon successful authentication of a

Subject

, fine-grained access controls can be placed upon that

Subject

by invoking the Subject.doAs or Subject.doAsPrivileged methods. The permissions granted to that

Subject

are configured in a JAAS

Policy

.

Policy

This is an abstract class for representing the system-wide JAAS access control. As a default, JAAS

provides a file-based subclass implementation, PolicyFile. Each

Policy

subclass must implement the following methods:

 public abstract java.security.PermissionCollection getPermissions

 (Subject subject,

 java.security.CodeSource cs);

 public abstract void refresh();

The

getPermissions

method returns the permissions granted to the specified

Subject

296 IBM Systems - iSeries: Programming IBM Developer Kit for Java

and

CodeSource

. The

refresh

method updates the runtime

Policy

with any modifications made since the last time it was loaded from its permanent store (a file or

database, for example). The

refresh

method requires an

AuthPermission("refreshPolicy")

.

The following method retrieves the current runtime

Policy

object, and is protected with a security check that requires the caller to have an

AuthPermission("getPolicy")

.

 public static Policy getPolicy();

The following example code demonstrates how a

Policy

object can be queried for the set of permissions granted to the specified

Subject

and

CodeSource

:

 policy = Policy.getPolicy();

 PermissionCollection perms = policy.getPermissions(subject, codeSource);

To set a new

Policy

object for the Java runtime, the

Policy.setPolicy

method may be used. This method requires the caller to have an

AuthPermission("setPolicy")

.

 public static void setPolicy(Policy policy);

Policy File Sample Entries:

IBM Developer Kit for Java 297

These examples are relevant only for the default PolicyFile implementation.

Each entry in the

Policy

is represented as a grant entry. Each grant entry specifies a codebase/code-signers/Principals triplet, as

well as the Permissions granted to that triplet. Specifically, the permissions will be granted to any code

downloaded from the specified codebase and signed by the specified code signers, so long as the

Subject

running that code has all of the specified Principals in its

Principal

set. Refer to the Subject.doAs examples to see how a

Subject

becomes associated with running code.

 grant CodeBase ["URL"],

 Signedby ["signers"],

 Principal [Principal_Class] "Principal_Name",

 Principal ... {

 permission Permission_Class ["Target_Name"]

 [, "Permission_Actions"]

 [, signedBy "SignerName"];

 };

 // example grant entry

 grant CodeBase "http://griffin.ibm.com", Signedby "davis",

 Principal com.ibm.security.auth.NTUserPrincipal "kent" {

 permission java.io.FilePermission "c:/kent/files/*", "read, write";

 };

If no Principal information is specified in the JAAS

Policy

grant entry, a parsing exception will be thrown. However, grant entries that already exist in the regular

Java 2 codesource-based policy file (and therefore have no Principal information) are still valid. In those

cases, the Principal information is implied to be ’*’ (the grant entries applies to all Principals).

The CodeBase and Signedby components of the grant entry are optional in the JAAS

Policy

. If they are not present, then any codebase will match, and any signer (including unsigned code) will

match.

In the example above, the grant entry specifies that code downloaded from ″http://griffin.ibm.com″,

signed by ″davis″, and running as the NT user ″kent″, has one

Permission

. This

Permission

permits the processing code to read and write files in the directory ″c:\kent\files″.

Multiple Principals may be listed within one grant entry. The current

Subject

298 IBM Systems - iSeries: Programming IBM Developer Kit for Java

running the code must have all of the specified Principals in its

Principal

set to be granted the entry’s Permissions.

 grant Principal com.ibm.security.auth.NTUserPrincipal "kent",

 Principal com.ibm.security.auth.NTSidGroupPrincipal "S-1-1-0" {

 permission java.io.FilePermission "c:/user/kent/", "read, write";

 permission java.net.SocketPermission "griffin.ibm.com", "connect";

 };

This entry grants any code running as both the NT user ″kent″ with the NT group identification number

″S-1-1-0″, permission to read and write files in ″c:\user\kent″, as well as permission to make socket

connections to ″griffin.ibm.com″.

AuthPermission

This class encapsulates the basic permissions required for JAAS. An AuthPermission contains a name

(also referred to as a ″target name″) but no actions list; you either have the named permission or you

don’t. In addition to inherited methods (from the

Permission

class), an

AuthPermission

has two public constructors:

 public AuthPermission(String name);

 public AuthPermission(String name, String actions);

The first constructor creates a new AuthPermission with the specified name. The second constructor also

creates a new AuthPermission object with the specified name, but has an additional actions argument

which is currently unused and are null. This constructor exists solely for the

Policy

object to instantiate new Permission objects. For most code, the first constructor is appropriate.

The AuthPermission object is used to guard access to the Policy, Subject, LoginContext, and Configuration

objects. Refer to the AuthPermission Javadoc for the list of valid names that are supported.

PrivateCredentialPermission

This class protects access to a Subject’s private credentials and provides one public constructor:

 public PrivateCredentialPermission(String name, String actions);

Refer to the PrivateCredentialPermission Javadoc for more detailed information on this class.

Implementation

Note: Appendix A contains a sample java.security file that includes the static properties mentioned here.

Because there exists default values for JAAS providers and policy files, users need not statically (in the

java.security file) nor dynamically (command line -D option) list their values in order to implement

JAAS. Also, the default configuration and policy file providers may be replaced by a user-developed

provider. Therefore this section is an attempt to explain the JAAS default providers and policy files as

well as the properties that enable alternative providers.

IBM Developer Kit for Java 299

Read the Default Policy File API and Default Configuration File API for more information than is

summarized here.

Authentication Provider

The authentication provider, or configuration class, is statically set with

login.configuration.provider=[class]

in the java.security file. This provider creates the

Configuration

object.

For example:

 login.configuration.provider=com.foo.Config

If the Security property

login.configuration.provider

is not found in java.security, then JAAS will set it to the default value:

com.ibm.security.auth.login.ConfigFile

.

If a security manager is set before the

Configuration

is created, then an

AuthPermission("getLoginConfiguration")

will be required to be granted.

There isn’t a way to dynamically set the configuration provider on the command line.

Authentication Configuration File

The authentication configuration files may be statically set in java.security with

login.config.url.n=[URL]

, where n is a consecutively number integer starting with 1. The format is identical to the format for Java

security policy files (policy.url.n=[URL]).

If the Security property

policy.allowSystemProperty

is set to ″true″ in java.security, then users can dynamically set policy files on the command line utilizing

the -D option with this property:

java.security.auth.login.config

. The value may be a path or URL. For example (on NT):

 ... -Djava.security.auth.login.config=c:\config_policy\login.config ...

 or

 ... -Djava.security.auth.login.config=file:c:/config_policy/login.config ...

300 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Note: using double equal signs (==) on the command line allows a user to override all other policy files

found.

If no configuration files can be found statically or dynamically, JAAS will try to load the configuration

file from this default location:

${user.home}\.java.login.config

where ${user.home} is a system dependent location.

Authorization Provider

The authorization provider, or JAAS Policy class, is statically set with

auth.policy.provider=[class]

in the java.security file. This provider creates the JAAS Subject-based

Policy

object.

For example:

 auth.policy.provider=com.foo.Policy

If the Security property

auth.policy.provider

is not found in java.security, then JAAS will set it to the default value:

com.ibm.security.auth.PolicyFile

.

If a security manager is set before the

Configuration

is created, then an

AuthPermission("getPolicy")

will be required to be granted.

There isn’t a way to dynamically set the authorization provider on the command line.

Authorization Policy File

The authorization policy files may be statically set in java.security with

auth.policy.url.n=[URL]

, where n is a consecutively number integer starting with 1. The format is identical to the format for Java

security policy files (policy.url.n=[URL]).

If the Security property

policy.allowSystemProperty

is set to ″true″ in java.security, then users can dynamically set policy files on the command line utilizing

the -D option with this property:

java.security.auth.policy

IBM Developer Kit for Java 301

. The value may be a path or URL. For example (on NT):

 ... -Djava.security.auth.policy=c:\auth_policy\java.auth.policy ...

 or

 ... -Djava.security.auth.policy=file:c:/auth_policy/java.auth.policy ...

Note: using double equal signs (==) on the command line allows a user to override all other policy files

found.

There is not a default location to load an authorization policy from.

"Hello World", JAAS style!

Put on your dark sunglasses and favorite fedora hat, then grab an alto sax ... it’s time to get JAAS-y! Yes,

another ″Hello World!″ program. In this section, a program will be made available to test your JAAS

installation.

Installation It is assumed that JAAS has been installed. For example, the JAAS JAR files have been

copied to your Development Kit’s extensions directory.

Retrieve Files Download theHelloWorld.tar to your test directory. Expand it using ″jar xvf

HelloWorld.tar″.

Verify the contents of your test directory.

source files:

v HWLoginModule.java

v HWPrincipal.java

v HelloWorld.java

class files

v The source files have been precompiled for you into the classes directory.

policy files

v jaas.config

v java2.policy

v jaas.policy

Compile Source Files The three source files, HWLoginModule.java, HWPrincipal.java and

HelloWorld.java, are already compiled and therefore do not need to be compiled.

If any of the source files are modified, then change to the test directory that they were saved to and

enter:

javac -d .\classes *.java

The classpath needs the classes directory (.\classes) added to it in order to compile the classes.

Note:

HWLoginModule

and

HWPrincipal

are in the

com.ibm.security

302 IBM Systems - iSeries: Programming IBM Developer Kit for Java

package and will be created in the appropriate directory during compilation

(>test_dir<\classes\com\ibm\security).

Examine Policy Files The configuration file, jaas.config, contains one entry:

helloWorld {

 com.ibm.security.HWLoginModule required debug=true;

};

Only one

LoginModule

is supplied with the test case. When processing the HelloWorld application, experiment by changing the

LoginModuleControlFlag

(required, requisite, sufficient, optional) and deleting the debug flag. If more LoginModules are available

for testing, then feel free to alter this configuration and experiment with multiple LoginModules.

HWLoginModule

will be discussed shortly.

The Java 2 policy file, java2.policy, contains one permission block:

grant {

 permission javax.security.auth.AuthPermission "createLoginContext";

 permission javax.security.auth.AuthPermission "modifyPrincipals";

 permission javax.security.auth.AuthPermission "doAsPrivileged";

};

The three permissions are required because the HelloWorld application (1) creates a LoginContext object,

(2) modifies the Principals of the the authenticated

Subject

and (3) calls the doAsPrivileged method of the

Subject

class.

The JAAS policy file, jaas.policy, also contains one permission block:

grant Principal com.ibm.security.HWPrincipal "bob" {

 permission java.util.PropertyPermission "java.home", "read";

 permission java.util.PropertyPermission "user.home", "read";

 permission java.io.FilePermission "foo.txt", "read";

};

The three permissions are initially granted to an

HWPrincipal

named bob. The actual Principal added to the authenticated

Subject

is the username used during the login process (more later).

Here’s the action code from HelloWorld with the three system calls (the reason for the required

permissions) in bold:

Subject.doAsPrivileged(lc.getSubject(), new PrivilegedAction() {

 public Object run() {

 System.out.println("\nYour java.home property: "

IBM Developer Kit for Java 303

+System.getProperty("java.home"));

 System.out.println("\nYour user.home property: "

 +System.getProperty("user.home"));

 File f = new File("foo.txt");

 System.out.print("\nfoo.txt does ");

 if (!f.exists()) System.out.print("not ");

 System.out.println("exist in your current directory");

 System.out.println("\nOh, by the way ...");

 try {

 Thread.currentThread().sleep(2000);

 } catch (Exception e) {

 // ignore

 }

 System.out.println("\n\nHello World!\n");

 return null;

 }

}, null);

When running the HelloWorld program, use various usernames and alter jaas.policy accordingly. There

is no need to alter java2.policy. Also, create a file called foo.txt in the test directory to test the last system

call.

Examine Source Files The LoginModule,

HWLoginModule

, authenticates any user who enters the correct password (case sensitive): Go JAAS.

The HelloWorld application permits users three attempts to do so. When Go JAAS is correctly entered,

an

HWPrincipal

with a name equal the the username is added to the authenticated

Subject

.

The Principal class,

HWPrincipal

, represents a Principal based on the username entered. It is this name that is important when granting

permissions to authenticated Subjects.

The main application,

HelloWorld

, first creates a

LoginContext

based on a configuration entry with the name helloWorld. The configuration file has already been

discussed. Callbacks are used to retrieve user input. Look at the

MyCallbackHandler

class located in the HelloWorld.java file to see this process.

304 IBM Systems - iSeries: Programming IBM Developer Kit for Java

LoginContext lc = null;

 try {

 lc = new LoginContext("helloWorld", new MyCallbackHandler());

 } catch (LoginException le) {

 le.printStackTrace();

 System.exit(-1);

 }

The user enters a username/password (up to three times) and if Go JAAS is entered as the password,

then the Subject is authenticated (

HWLoginModule

adds a

HWPrincipal

to the Subject).

As mentioned previously, work is then performed as the authenticated Subject.

Run HelloWorld Test

To run the HelloWorld program, first change to the test directory. The configuration and policy files will

need to be loaded. See Implementation for the correct properties to set either in java.security or on the

command line. The latter method will be discussed here.

The following command has been broken up into several lines for clarity. Enter as one continuous

command.

java -Djava.security.manager=

 -Djava.security.auth.login.config=.\jaas.config

 -Djava.security.policy=.\java2.policy

 -Djava.security.auth.policy=.\jaas.policy

 HelloWorld

Note: the use of ″.\filename″ for the policy files is necessary because each user’s test directory canonical

path will vary. If desired, substitute ″.″ with the path to the test directory. For example, if the test

directory is ″c:\test\hello″, then the first file is changed to:

 -Djava.security.auth.login.config=c:\test\hello\jaas.config

If the policy files are not found, a

SecurityException

will be thrown. Otherwise, information concerning your java.home and user.home properties will be

displayed. Also, the existence of a file called foo.txt in your test directory will be checked. Finally, the

ubiquitous ″Hello World″ message is displayed.

Having Fun With HelloWorld

Rerun HelloWorld as many times as you like. It has already been suggested to vary the

username/passwords entered, change the configuration file entries, change the policy file permissions,

and to even add (stack) additional LoginModules to the helloWorld configuration entry. You could add

codebase fields to the policy files too.

Finally, try running the program without a SecurityManager to see how it works if you run into

problems.

IBM Developer Kit for Java 305

Appendix A: JAAS Settings in the java.security Security Properties File

Below is a copy of the

java.security

file that appears in every Java 2 installation. This file appears in the

lib/security

(

lib\security

on Windows) directory of the Java 2 runtime. Thus, if the Java 2 runtime is installed in a directory called

jdk1.3

, the file is

v jdk1.3/lib/security/java.security

(Unix)

v jdk1.3\lib\security\java.security

(Windows)

JAAS adds four new properties to

java.security

:

v Authentication Properties

– login.configuration.provider

– login.policy.url.n

v Authorization Properties

– auth.policy.provider

– auth.policy.url.n

The new JAAS properties are located at the end of this file:

This is the "master security properties file".

In this file, various security properties are set for use by

java.security classes. This is where users can statically register

Cryptography Package Providers ("providers" for short). The term

"provider" refers to a package or set of packages that supply a

concrete implementation of a subset of the cryptography aspects of

the Java Security API. A provider may, for example, implement one or

more digital signature algorithms or message digest algorithms.

Each provider must implement a subclass of the Provider class.

To register a provider in this master security properties file,

specify the Provider subclass name and priority in the format

security.provider.n=className

This declares a provider, and specifies its preference

order n. The preference order is the order in which providers are

searched for requested algorithms (when no specific provider is

requested). The order is 1-based; 1 is the most preferred, followed

by 2, and so on.

className must specify the subclass of the Provider class whose

306 IBM Systems - iSeries: Programming IBM Developer Kit for Java

constructor sets the values of various properties that are required

for the Java Security API to look up the algorithms or other

facilities implemented by the provider.

There must be at least one provider specification in java.security.

There is a default provider that comes standard with the JDK. It

is called the "SUN" provider, and its Provider subclass

named Sun appears in the sun.security.provider package. Thus, the

"SUN" provider is registered via the following:

security.provider.1=sun.security.provider.Sun

(The number 1 is used for the default provider.)

Note: Statically registered Provider subclasses are instantiated

when the system is initialized. Providers can be dynamically

registered instead by calls to either the addProvider or

insertProviderAt method in the Security class.

List of providers and their preference orders (see above):

security.provider.1=sun.security.provider.Sun

Class to instantiate as the system Policy. This is the name of the class

that will be used as the Policy object.

policy.provider=sun.security.provider.PolicyFile

The default is to have a single system-wide policy file,

and a policy file in the user’s home directory.

policy.url.1=file:${java.home}/lib/security/java.policy

policy.url.2=file:${user.home}/.java.policy

whether or not we expand properties in the policy file

if this is set to false, properties (${...}) will not be expanded in policy

files.

policy.expandProperties=true

whether or not we allow an extra policy to be passed on the command line

with -Djava.security.policy=somefile. Comment out this line to disable

this feature.

policy.allowSystemProperty=true

whether or not we look into the IdentityScope for trusted Identities

when encountering a 1.1 signed JAR file. If the identity is found

and is trusted, we grant it AllPermission.

policy.ignoreIdentityScope=false

Default keystore type.

keystore.type=jks

Class to instantiate as the system scope:

system.scope=sun.security.provider.IdentityDatabase

Java Authentication and Authorization Service (JAAS)

properties and policy files:

Class to instantiate as the system Configuration for authentication.

IBM Developer Kit for Java 307

This is the name of the class that will be used as the Authentication

Configuration object.

login.configuration.provider=com.ibm.security.auth.login.ConfigFile

The default is to have a system-wide login configuration file found in

the user’s home directory. For multiple files, the format is similar to

that of CodeSource-base policy files above, that is policy.url.n

login.config.url.1=file:${user.home}/.java.login.config

Class to instantiate as the system Principal-based Authorization Policy.

This is the name of the class that will be used as the Authorization

Policy object.

auth.policy.provider=com.ibm.security.auth.PolicyFile

The default is to have a system-wide Principal-based policy file found in

the user’s home directory. For multiple files, the format is similar to

that of CodeSource-base policy files above, that is policy.url.n and

auth.policy.url.n

auth.policy.url.1=file:${user.home}/.java.auth.policy

Appendix B: Login Configuration Files

A login configuration file contains one or more

LoginContext

application names which have the following form:

Application {

 LoginModule Flag ModuleOptions;

 > more LoginModule entries <

 LoginModule Flag ModuleOptions;

};

Login configuration files are located using the

login.config.url.n

security property found in the

java.security

file. For more information about this property and the location of the

java.security

file, see Appendix A.

The Flag value controls the overall behavior as authentication proceeds down the stack. The following

represents a description of the valid values for Flag and their respective semantics:

1. Required The

LoginModule

is required to succeed. If it succeeds or fails, authentication still continues to proceed down the

LoginModule

list.

2. Requisite The

LoginModule

is required to succeed. If it succeeds, authentication continues down the

308 IBM Systems - iSeries: Programming IBM Developer Kit for Java

LoginModule

list. If it fails, control immediately returns to the application (authentication does not proceed down

the

LoginModule

list).

3. Sufficient The

LoginModule

is not required to succeed. If it does succeed, control immediately returns to the application

(authentication does not proceed down the

LoginModule

list). If it fails, authentication continues down the

LoginModule

list.

4. Optional The

LoginModule

is not required to succeed. If it succeeds or fails, authentication still continues to proceed down the

LoginModule

list.

The overall authentication succeeds only if all Required and Requisite LoginModules succeed. If a Sufficient

LoginModule

is configured and succeeds, then only the Required and Requisite LoginModules prior to that Sufficient

LoginModule

need to have succeeded for the overall authentication to succeed. If no Required or Requisite LoginModules

are configured for an application, then at least one Sufficient or Optional

LoginModule

must succeed.

Sample Configuration File:

/* Sample Configuration File */

Login1 {

 com.ibm.security.auth.module.SampleLoginModule required debug=true;

};

Login2 {

 com.ibm.security.auth.module.SampleLoginModule required;

 com.ibm.security.auth.module.NTLoginModule sufficient;

 ibm.loginModules.SmartCard requisite debug=true;

 ibm.loginModules.Kerberos optional debug=true;

};

Note: the Flags are not case sensitive. REQUISITE = requisite = Requisite.

Login1 only has one LoginModule which is an instance of the class

com.ibm.security.auth.module.SampleLoginModule

IBM Developer Kit for Java 309

. Therefore, a

LoginContext

associated with Login1 will have a successful authentication if and only if its lone module successfully

authenticates. The Required flag is trivial in this example; flag values have a relevant effect on

authentication when two or more modules are present.

Login2 is easier to explain with a table.

 Login2 Authentication Status

Sample

Login

Module

required pass pass pass pass fail fail fail fail

NT Login

Module

sufficient pass fail fail fail pass fail fail fail

Smart

Card

requisite * pass pass fail * pass pass fail

Kerberos optional * pass fail * * pass fail *

Overall

Authentication

pass pass pass fail fail fail fail fail

* = trivial value due to control returning to the application because a previous REQUISITE module failed

or a previous SUFFICIENT module succeeded.

Appendix C: Authorization Policy File

In case there weren’t enough examples of Principal-based JAAS Policy grant blocks above, here are some

more.

// SAMPLE JAAS POLICY FILE: java.auth.policy

// The following permissions are granted to Principal ’Pooh’ and all codesource:

grant Principal com.ibm.security.Principal "Pooh" {

 permission javax.security.auth.AuthPermission "setPolicy";

 permission java.util.PropertyPermission "java.home", "read";

 permission java.util.PropertyPermission "user.home", "read";

 permission java.io.FilePermission "c:/foo/jaas.txt", "read";

};

// The following permissions are granted to Principal ’Pooh’ AND ’Eyeore’

// and CodeSource signedBy "DrSecure":

grant signedBy "DrSecure"

 Principal com.ibm.security.Principal "Pooh",

 Principal com.ibm.security.Principal "Eyeore" {

 permission javax.security.auth.AuthPermission "modifyPublicCredentials";

 permission javax.security.auth.AuthPermission "modifyPrivateCredentials";

 permission java.net.SocketPermission "us.ibm.com", "connect,accept,resolve";

 permission java.net.SocketPermission "griffin.ibm.com", "accept";

};

// The following permissions are granted to Principal ’Pooh’ AND ’Eyeore’ AND

// ’Piglet’ and CodeSource from the c:\jaas directory signed by "kent" and "bruce":

grant codeBase "file:c:/jaas/*",

 signedBy "kent, bruce",

 Principal com.ibm.security.Principal "Pooh",

 Principal com.ibm.security.Principal "Eyeore",

 Principal com.ibm.security.Principal "Piglet" {

310 IBM Systems - iSeries: Programming IBM Developer Kit for Java

permission javax.security.auth.AuthPermission "getSubject";

 permission java.security.SecurityPermission "printIdentity";

 permission java.net.SocketPermission "guapo.ibm.com", "accept";

};

Java Authentication and Authorization Service samples

This topic contains samples of Java Authentication and Authorization Service (JAAS) on an iSeries server.

There are two JAAS samples, HelloWorld and SampleThreadSubjectLogin. Click on these links for

instructions and source code.

Compile and run HelloWorld with Java Authentication and Authorization Service on an iSeries

server:

This information looks at how HelloWorld for Java Authentication and Authorization Service (JAAS) is

compiled and run on an iSeries server.

 This information should be considered a replacement for the HelloWorld section of the API Developers

Guide. The source code, policy, and configuration files are the same as those in the API Developers

Guide. There are, however, some aspects that are unique to the iSeries server.

1.

You should put the following source files in your own test directory:

v HWLoginModule.java

v HWPrincipal.java

v HelloWorld.java
These source files need to be compiled into your ./classes directory.

To look at the source code for these files formatted for your HTML browser, see HelloWorld in

HTML.

2.

The three source files, HWLoginModule.java, HWPrincipal.java and HelloWorld.java, need to be

compiled. Run the following commands (each on one line) on an iSeries command line:

a.

strqsh

b.

cd yourTestDir

c.

javac -J-Djava.version=1.3

 -classpath /qibm/proddata/os400/java400/ext/jaas13.jar:.

 -d ./classes *.java

Where yourTestDir is directory you created to hold the sample files. The classpath needs the classes

directory (.\classes) added to it to compile the classes.

Note: HWLoginModule and HWPrincipal are in the com.ibm.security package and are created in the

appropriate directory during compilation (\classes\com\ibm\security).

3.

Run the following commands (each on one line) on the iSeries command line:

a.

strqsh

b. cd yourTestDir

Where yourTestDir is the directory that you created to hold the sample files. The classpath needs

the classes directory (.\classes) added to it to compile the classes.

c. You should put the following source files in your own test directory:

IBM Developer Kit for Java 311

HWLoginModule.java
HWPrincipal.java
HelloWorld.java

v jaas.config

v java2.policy

v jaas.policy
d.

java -Djava.security.manager=

 -Djava.security.auth.login.config=./jaas.config

 -Djava.security.policy=./java2.policy

 -Djava.security.auth.policy=./jaas.policy

 -Djava.version=1.3

 -classpath ./classes

 HelloWorld

e. When prompted for the user name, enter bob. If running with a security manager, user bob must

be entered for all of the access permissions to succeed. When prompted for a password, enter Go

JAAS, case sensitive with a space.

Details: How HelloWorld for Java Authentication and Authorization Service works: This document takes a

closer look at how HelloWorld for Java Authentication and Authorization Service (JAAS) works. This

information should be considered a replacement for the HelloWorld section of the API Developers Guide.

The source code, policy, and configuration files are the same as those in the API Developers Guide. There

are, however, some aspects that are unique to the iSeries server.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

Configuration and policy files

The configuration file, jaas.config, contains one entry:

helloWorld {

 com.ibm.security.HWLoginModule required debug=true;

};

The test case includes only one LoginModule. When running the HelloWorld application, you can

experiment by changing the LoginModuleControlFlag (required, requisite, sufficient, optional) and

deleting the debug flag. If more LoginModules are available for testing, then you can alter this

configuration and experiment with multiple LoginModules.

The Java 2 policy file, java2.policy, contains one permission block:

 grant {

 permission javax.security.auth.AuthPermission "createLoginContext";

 permission javax.security.auth.AuthPermission "modifyPrincipals";

 permission javax.security.auth.AuthPermission "doAsPrivileged";

 };

The three permissions are required because the HelloWorld application does the following:

1. Creates a LoginContext object.

2. Changes the Principals of the the authenticated Subject.

3. Calls the doAsPrivileged method of the Subject class.

The JAAS policy file, jaas.policy, also contains one permission block:

 grant Principal com.ibm.security.HWPrincipal "bob" {

 permission java.util.PropertyPermission "java.home", "read";

 permission java.util.PropertyPermission "user.home", "read";

 permission java.io.FilePermission "foo.txt", "read";

 };

312 IBM Systems - iSeries: Programming IBM Developer Kit for Java

jaas.config
java2.policy
jaas.policy

The three permissions are initially granted to an HWPrincipal named ″bob″. The actual Principal added

to the authenticated Subject is the user name used during the login process.

Here is the action code from HelloWorld with the three system calls (the reason for the required

permissions) in bold:

 Subject.doAsPrivileged(lc.getSubject(), new PrivilegedAction() {

 public Object run() {

 System.out.println("\nYour java.home property: "

 +System.getProperty("java.home"));

 System.out.println("\nYour user.home property: "

 +System.getProperty("user.home"));

 File f = new File("foo.txt");

 System.out.print("\nfoo.txt does ");

 if (!f.exists()) System.out.print("not ");

 System.out.println("exist in your current directory");

 System.out.println("\nOh, by the way ...");

 try {

 Thread.currentThread().sleep(2000);

 } catch (Exception e) {

 // ignore

 }

 System.out.println("\n\nHello World!\n");

 return null;

 }

 }, null);

When running the HelloWorld program, use various user names and alter jaas.policy accordingly. There

should not be a need to alter java2.policy. Also, create a file called foo.txt in the test directory to test the

last system call and confirm that the correct level of access is granted to that file.

Examine HelloWorld source files

The LoginModule class, HWLoginModule, simply authenticates any user who enters the correct

password (case sensitive with space):

v Go JAAS

If running with a security manager, you must enter user ’bob’ for all of the access permissions to succeed.

The HelloWorld application permits users three attempts to do so. When Go JAAS is correctly entered, an

HWPrincipal object with a name equal the the user name is added to the authenticated Subject.

The Principal class, HWPrincipal, represents a Principal based on the user name that is entered. This

name is important when granting permissions to authenticated Subjects.

The main application, HelloWorld, first creates a LoginContext based on a configuration entry with the

name helloWorld. Callbacks are used to retrieve user input. Look at the MyCallbackHandler class located

in the HelloWorld.java file to see this process. Here is an excerpt from the source code:

 LoginContext lc = null;

 try {

 lc = new LoginContext("helloWorld", new MyCallbackHandler());

 } catch (LoginException le) {

 le.printStackTrace();

 System.exit(-1);

 }

IBM Developer Kit for Java 313

The user enters a user name and password (up to three times) and if Go JAAS is entered as the

password, then the Subject is authenticated (HWLoginModule adds a HWPrincipal to the Subject). Work

is then performed as the authenticated Subject.

If the policy files are not found, a SecurityException is thrown. Otherwise, information concerning your

java.home and user.home properties is displayed. Also, the existence of a file called foo.txt in your test

directory is checked. Finally, the ubiquitous ″Hello World″ message is displayed.

Having fun with HelloWorld

Rerun HelloWorld as many times as you like. Here is a list of some of the things that you might want to

try:

v Vary the user name and passwords entered

v Change the configuration file entries

v Change the policy file permissions

v Add additional LoginModules to the helloWorld configuration entry

v Add code base fields to the policy files

v Run the program without a SecurityManager to see how it works if you run into problems.

Java Authentication and Authorization Service SampleThreadSubjectLogin instructions:

Source files

Put the SampleThreadSubjectLogin.java source file in your own test directory: This source file needs to be

compiled into your ./classes directory.

To look at the source code to this file that has been formatted for your HTML browser, see Example:

JAAS SampleThreadSubjectLogin.

Policy files

See the API Developers Guide for general information on the JAAS policy files. Here are policy files that

are specific to the SampleThreadSubjectLogin sample:

v threadLogin.config

v threadJava2.policy

v threadJaas.policy

See the comments at the beginning of SampleThreadSubjectLogin.java for information on compiling and

running this example.

 Collected links

 SampleThreadSubjectLogin.java

 Example: JAAS SampleThreadSubjectLogin

 API Developers Guide

This document was last updated March 17, 2000.

 threadLogin.config

 threadJava2.policy

 threadJaas.policy

 SampleThreadSubjectLogin.java

314 IBM Systems - iSeries: Programming IBM Developer Kit for Java

SampleThreadSubjectLogin.java
threadLogin.config
threadJava2.policy
threadJaas.policy
SampleThreadSubjectLogin.java
SampleThreadSubjectLogin.java
threadLogin.config
threadJava2.policy
threadJaas.policy
SampleThreadSubjectLogin.java

IBM Java Generic Security Service (JGSS)

The Java Generic Security Service (JGSS) provides a generic interface for authentication and secure

messaging. Under this interface you can plug a variety of security mechanisms based on secret-key,

public-key, or other security technologies.

By abstracting the complexity and peculiarities of the underlying security mechanisms to a standardized

interface, JGSS provides the following benefits to the development of secure networking applications:

v You can develop the application to a single abstract interface

v You can use the application with different security mechanisms without any changes

JGSS defines the Java bindings for the Generic Security Service Application Programming Interface

(GSS-API), which is a cryptographic API that has been standardized by the Internet Engineering Task

Force (IETF) and adopted by the X/Open Group.

The IBM implementation of JGSS is called IBM JGSS. IBM JGSS is an implementation of the GSS-API

framework that uses Kerberos V5 as the default underlying security system. It also features a Java

Authentication and Authorization Service (JAAS) login module for creating and using Kerberos

credentials. In addition, you can have JGSS perform JAAS authorization checks when you use those

credentials.

IBM JGSS includes a native iSeries JGSS provider, a Java JGSS provider, and Java versions of the Kerberos

credential managerment tools (kinit, ktab, and klist).

Note: The native iSeries JGSS provider uses the native iSeries Network Authentication Services (NAS)

library. When you use the native provider, you must use the native iSeries Kerberos utilities. For

more information, see JGSS providers .

 J2SDK Security enhancement from Sun Microsystems, Inc.

 Internet Engineering Task Force (IETF) RFC 2743 Generic Security Services Application Programming

Interface Version 2, Update 1

 IETF RFC 2853 Generic Security Service API Version 2: Java Bindings

 The X/Open Group GSS-API Extensions for DCE

JGSS concepts

JGSS operations consist of four distinct stages, as standardized by the Generic Security Service

Application Programming Interface (GSS-API).

The stages are as follows:

1. Gathering of credentials for principals.

2. Creating and establishing a security context between the communicating peer principals.

3. Exchanging secure messages between the peers.

4. Cleaning up and releasing resources.

Additionally, JGSS leverages the Java Cryptographic Architecture to offer seamless pluggability of

different security mechanisms.

Use the following links to read high-level descriptions of these important JGSS concepts.

v Principals and credentials

v Context establishment

v Message protection and exchange

v Resource cleanup and release

v Security mechanisms

IBM Developer Kit for Java 315

http://java.sun.com/j2se/1.4/docs/guide/security/
http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2853.txt
http://www.opengroup.org/tech/rfc/rfc5.2.html

Principals and credentials:

The identity under which an application engages in JGSS secure communication with a peer is called a

principal. A principal may be a real user or an unattended service. A principal acquires security

mechanism-specific credentials as proof of identity under that mechanism.

 For example, when using the Kerberos mechanism, a principal’s credential is in the form of a

ticket-granting ticket (TGT) issued by a Kerberos key distribution center (KDC). In a multi-mechanism

environment, a GSS-API credential can contain multiple credential elements, each element representing an

underlying mechanism credential.

The GSS-API standard does not prescribe how a principal acquires credentials, and GSS-API

implementations typically do not provide a means for credential acquisition. A principal obtains

credentials before using GSS-API; GSS-API merely queries the security mechanism for credentials on

behalf of the principal.

IBM JGSS includes Java versions of Kerberos credential management tools

“com.ibm.security.krb5.internal.tools Class Kinit” on page 317, “com.ibm.security.krb5.internal.tools Class

Ktab” on page 319, and “com.ibm.security.krb5.internal.tools Class Klist.” Additionally, IBM JGSS

enhances the standard GSS-API by providing an optional Kerberos login interface that uses JAAS. The

pure Java JGSS provider supports the optional login interface; the native iSeries provider does not. For

more information, see the following topics:

v Obtaining Kerberos credentials

v JGSS providers

com.ibm.security.krb5.internal.tools Class Klist:

This class can execute as a command-line tool to list entries in credential cache and key tab.

 java.lang.Object

|

+--com.ibm.security.krb5.internal.tools.Klist

public class Klist

extends java.lang.Object

This class can execute as a command-line tool to list entries in credential cache and key tab.

Constructor summary

Klist()

Method summary

 static void main(java.lang.String[] args)

The main program that can be invoked at command line.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

316 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Constructor detail

Klist

public Klist()

Method detail

main

public static void main(java.lang.String[] args)

The main program that can be invoked at command line.

Usage: java com.ibm.security.krb5.tools.Klist [[-c] [-f] [-e] [-a]] [-k [-t] [-K]] [name]

Available options for credential caches:

v -f shows credentials flags

v -e shows the encryption type

v -a displays the address list

Available options for keytabs:

v -t shows keytab entry timestamps

v -K shows keytab entry DES keys

com.ibm.security.krb5.internal.tools Class Kinit:

Kinit tool for obtaining Kerberos v5 tickets.

 java.lang.Object

|

+--com.ibm.security.krb5.internal.tools.Kinit

public class Kinit

extends java.lang.Object

Kinit tool for obtaining Kerberos v5 tickets.

Constructor summary

Kinit(java.lang.String[] args)

Constructs a new Kinit object.

Method summary

 static void main(java.lang.String[] args)

The main method is used to accept user command line input for ticket request.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

IBM Developer Kit for Java 317

Constructor detail

Kinit

public Kinit(java.lang.String[] args)

 throws java.io.IOException,

 RealmException,

 KrbException

Constructs a new Kinit object.

Parameters:

args - array of ticket request options. Available options are: -f, -F, -p, -P, -c, -k, principal,

password.

Throws:

 java.io.IOException - if an I/O error occurs.

 RealmException - if the Realm could not be instantiated.

 KrbException - if error occurs during Kerberos operation.

Method detail

main

public static void main(java.lang.String[] args)

The main method is used to accept user command line input for ticket request.

Usage: java com.ibm.security.krb5.tools.Kinit [-f] [-F] [-p] [-P] [-k] [-c cache name] [principal] [password]

v -f forwardable

v -F not forwardable

v -p proxiable

v -P not proxiable

v -c cache name (i.e., FILE:d:\temp\mykrb5cc)

v -k use keytab

v -t keytab file name

v principal the principal name (i.e., qwedf qwedf@IBM.COM)

v password the principal’s Kerberos password

Use java com.ibm.security.krb5.tools.Kinit -help to bring up help menu.

We currently only support file-based credentials cache. By default, a cache file named krb5cc_{user.name}

would be generated at {user.home} directory to store the ticket obtained from KDC. For instance, on

Windows NT, it could be c:\winnt\profiles\qwedf\krb5cc_qwedf, in which qwedf is the {user.name}, and

c:\winnt\profile\qwedf is the {user.home}. {user.home} is obtained by Kerberos from Java system

property ″user.home″. If in some case {user.home} is null (which barely happens), the cache file would be

stored in the current directory that the program is running from. {user.name} is operating system’s login

username. It could be different from user’s principal name. One user could have multiple principal

names, but the primary principal of the credentials cache could only be one, which means one cache file

could only store tickets for one specific user principal. If the user switches the principal name at the next

Kinit, the cache file generated for the new ticket would overwrite the old cache file by default. To avoid

overwriting, you need to specify a different directory or different cache file name when you request a

new ticket.

Cache file location

318 IBM Systems - iSeries: Programming IBM Developer Kit for Java

There are several ways to define user specific cache file name and location, they are listed as follows in

the order that Kerberos searches for:

1. -c option. Use java com.ibm.security.krb5.tools.Kinit -c FILE:<user specific directory and file name>.

″FILE:″ is the prefix to identify the credentials cache type. The default is file-based type.

2. Set Java system property ″KRB5CCNAME″ by using -DKRB5CCNAME=FILE:<user specific directory

and file name> during runtime.

3. Set environment variable ″KRB5CCNAME″ at command prompt before the runtime. Different

operating system has different way to set environment variables. For example, Windows uses set

KRB5CCNAME=FILE:<user specific directory and file name>, while UNIX uses export

KRB5CCNAME=FILE:<user specific directory and file name>. Note that Kerberos relies on system

specific command to retrieve environment variable. The command used on UNIX is ″/usr/bin/env″.

KRB5CCNAME is case sensitive and is all upper case.

If KRB5CCNAME is not set as described above, a default cache file is used. The default cache is located

in the following order:

1. /tmp/krb5cc_<uid> on Unix platforms, where <uid> is the user id of the user running the Kinit JVM

2. <user.home>/krb5cc_<user.name>, where <user.home> and <user.name> are the Java user.home and

user.name properties, respectively

3. <user.home>/krb5cc (if <user.name> cannot be obtained from the JVM)

KDC Communication Timeout

Kinit communicates with the Key Distribution Center (KDC) to acquire a ticket-granting ticket, that is, the

credential. This communication can be set to timeout if the KDC does not respond within a certain

period. The timeout period can be set (in milliseconds) in the Kerberos configuration file in the

libdefaults stanza (to be applicable to all KDCs) or in individual KDC stanzas. The default timeout value

is 30 seconds.

com.ibm.security.krb5.internal.tools Class Ktab:

This class can execute as a command-line tool to help the user manage entires in the key table. Available

functions include list/add/update/delete service key(s).

 java.lang.Object

|

+--com.ibm.security.krb5.internal.tools.Ktab

public class Ktab

extends java.lang.Object

This class can execute as a command-line tool to help the user manage entires in the key table. Available

functions include list/add/update/delete service key(s).

Constructor summary

Ktab()

Method summary

 static void main(java.lang.String[] args)

The main program that can be invoked at command line.

IBM Developer Kit for Java 319

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor detail

Ktab

public Ktab()

Method detail

main

public static void main(java.lang.String[] args)

The main program that can be invoked at command line.

Usage: java com.ibm.security.krb5.tools.Ktab <options>

Available options to Ktab:

v -l list the keytab name and entries

v -a <principal name>(<password>) add an entry to the keytab

v -d <principal name> delete an entry from the keytab

v -k <keytab name> specify keytab name and path with prefix FILE:

v -help display instructions

Context establishment:

Having acquired security credentials, the two communicating peers establish a security context using

their credentials. Although the peers establish a single joint context, each peer maintains its own local

copy of the context. Context establishment involves the initiating peer authenticating itself to the

accepting peer. The initiator optionally may request mutual authentication, in which case the acceptor

authenticates itself to the initiator.

 When context establishment is complete, the established context embodies state information (such as

shared cryptographic keys) that enable subsequent secure message exchange between the two peers.

Message protection and exchange:

Following context establishment, the two peers are ready to engage in secure message exchanges. The

originator of the message calls on its local GSS-API implementation to encode the message, which

ensures message integrity and, optionally, message confidentiality. The application then transports the

resulting token to the peer.

 The local GSS-API implementation of the peer uses information from the established context in the

following ways:

v Verifies the integrity of the message

v Deciphers the message, if the message was encrypted

Resource cleanup and release:

320 IBM Systems - iSeries: Programming IBM Developer Kit for Java

In order to free up resources, a JGSS application deletes a context that is no longer needed. Although a

JGSS application can access a deleted context, any attempt to use it for message exchange results in an

exception.

 Security mechanisms:

The GSS-API consists of an abstract framework over one or more underlying security mechanisms. How

the framework interacts with the underlying security mechanisms is implementation specific.

 Such implementations exist in two general categories:

v At one extreme, a monolithic implementation tightly binds the framework to a single mechanism. This

kind of implementation precludes the use of other mechanisms or even different implementations of

the same mechanism.

v At the other end of the spectrum, a highly modular implementation offers ease of use and flexibility.

This kind of implementation offers the ability to seamlessly and easily plug different security

mechanisms and their implementations into the framework.

IBM JGSS falls into the latter category. As a modular implementation, IBM JGSS leverages the provider

framework defined by the Java Cryptographic Architecture (JCA) and treats any underlying mechanism

as a (JCA) provider. A JGSS provider supplies a concrete implementation of a JGSS security mechanism.

An application can instantiate and use multiple mechanisms.

It is possible for a provider to support multiple mechanisms, and JGSS makes it easy to use different

security mechanisms. However, the GSS-API does not provide a means for two communicating peers to

choose a mechanism when multiple mechanisms are available. One way to choose a mechanism is to start

with the Simple And Protected GSS-API Negotiating Mechanism (SPNEGO), a pseudo-mechanism that

negotiates an actual mechanism between the two peers. IBM JGSS does not include a SPNEGO

mechanism.

For more information about SPNEGO, see Internet Engineering Task Force (IETF) RFC 2478 The Simple

and Protected GSS-API Negotiation Mechanism

Configuring your iSeries server to use IBM JGSS

How you configure your iSeries server to use JGSS depends on which version of the Java 2 Software

Development Kit (J2SDK) that you run on your server.

Configuring your iSeries server to use JGSS with J2SDK, version 1.3:

When you use the Java 2 Software Development Kit (J2SDK), version 1.3 on your iSeries server, you need

to prepare and configure your server to use JGSS. The default configuration uses the pure Java JGSS

provider.

 Software requirements

To use JGSS with J2SDK, version 1.3, your server must have Java Authentication and Authorization

Service (JAAS) 1.3 installed.

Configuring your server to use JGSS

To configure your server to use JGSS with J2SDK, version 1.3, add a symbolic link to the extension

directory for the ibmjgssprovider.jar file. The ibmjgssprovider.jar file contains the JGSS classes and the

pure Java JGSS provider. Adding the symbolic link enables the extension class loader to load the

ibmjgssprovider.jar file.

Adding the symbolic link

IBM Developer Kit for Java 321

http://www.ietf.org/rfc/rfc2478.txt
http://www.ietf.org/rfc/rfc2478.txt

To add the symbolic link, on an iSeries command line, type the following command (on a single line) and

press ENTER:

 ADDLNK OBJ(’/QIBM/ProdData/OS400/Java400/ext/ibmjgssprovider.jar’)

 NEWLNK(’/QIBM/ProdData/Java400/jdk13/lib/ext/ibmjgssprovider.jar’)

Note: The default Java 1.3 policy on the iSeries server grants the appropriate permissions to JGSS. If you

plan to create your own java.policy file, see JVM permissions for a list of permissions to grant

ibmjgssprovider.jar.

Changing JGSS providers

After configuring your server to use JGSS, which uses the pure Java provider as the default, you can

configure JGSS to use the native iSeries JGSS provider. Then, after you configure JGSS to use the native

provider, you can easily switch between the two providers. For more information, see the following

topics:

v JGSS providers

v Configuring JGSS to use the native iSeries JGSS provider

Security managers

If you are running your IBM JGSS application with a Java security manager enabled, see Using a security

manager.

Configuring JGSS to use the native iSeries JGSS provider:

IBM JGSS uses the pure Java provider by default. You also have the option to use the native iSeries JGSS

provider.

 For more information about the different providers, see JGSS providers.

Software requirements

The native iSeries JGSS provider must be able to access classes in IBM Toolbox for Java. For instructions

about how to access IBM Toolbox for Java, see “Enabling the native iSeries JGSS provider to access IBM

Toolbox for Java” on page 323.

Make sure that you have configured the network authentication service. For more information, see

Network authentication service.

Specifying the native iSeries JGSS provider

Before you use the native iSeries JGSS provider with J2SDK, version 1.3, ensure that you have configured

your server to use JGSS. For more information, see Configuring your iSeries server to use JGSS with

J2SDK, version 1.3. If you are using J2SDK, version 1.4 or subsequent versions, JGSS is already

configured.

Note: In the following instructions, ${java.home} denotes the path to the location of the version of Java

that you are using on your server. For example, if you are using J2SDK, version 1.4, ${java.home} is

/QIBM/ProdData/Java400/jdk14. Remember to replace ${java.home}in the commands with the

actual path to the Java home directory.

To configure JGSS to use the native iSeries JGSS provider, complete the following tasks:

Adding a symbolic link

322 IBM Systems - iSeries: Programming IBM Developer Kit for Java

To add a symbolic link to the extension directory for the ibmjgssiseriesprovider.jar file, on an iSeries

command line, type the following command (on a single line) and press ENTER:

 ADDLNK OBJ(’/QIBM/ProdData/OS400/Java400/ext/ibmjgssiseriesprovider.jar’)

 NEWLNK(’${java.home}/lib/ext/ibmjgssiseriesprovider.jar’)

After you add a symbolic link to the extension directory for the ibmjgssiseriesprovider.jar file, the

extension class loader will load the JAR file.

Adding the provider to the security provider list

Add the native provider to the security provider list in the java.security file.

1. Open ${java.home}/lib/security/java.security for editing.

2. Find the security provider list. It should be near the top of the java.security file and should look

something like:

 security.provider.1=sun.security.provider.Sun

 security.provider.2=com.sun.rsajca.Provider

 security.provider.3=com.ibm.crypto.provider.IBMJCE

 security.provider.4=com.ibm.security.jgss.IBMJGSSProvider

3. Add the native iSeries JGSS provider to the security provider list before the original Java provider. In

other words, add com.ibm.iseries.security.jgss.IBMJGSSiSeriesProvider to the list with a lower number

than com.ibm.jgss.IBMJGSSProvider, then update the position of IBMJGSSProvider. For example:

 security.provider.1=sun.security.provider.Sun

 security.provider.2=com.sun.rsajca.Provider

 security.provider.3=com.ibm.crypto.provider.IBMJCE

 security.provider.4=com.ibm.iseries.security.jgss.IBMJGSSiSeriesProvider

 security.provider.5=com.ibm.security.jgss.IBMJGSSProvider

Notice that the IBMJGSSiSeriesProvider became the fourth entry in the list and IBMJGSSProvider

became the fifth entry. Also, check that entry numbers in the security provider list are sequential and

that each entry increments the entry number by only one.

4. Save and close the java.security file.

Enabling the native iSeries JGSS provider to access IBM Toolbox for Java: The native iSeries JGSS provider

must be able to access classes in IBM Toolbox for Java. Use one of the following options to enable IBM

JGSS to access the Toolbox for Java jt400Native.jar file:

v Place a symbolic link to jt400Native.jar in the Java extension directory

v Place a symbolic link to jt400Native.jar in yourown extension directory and then include that directory

in the extension directory list

Notes:

v Placing a symbolic link to jt400Native.jar in the Java extension directory forces all users of the J2SDK to

run with this version of jt400Native.jar. This may not be desirable if various users require different

versions of the IBM Toolbox for Java classes.

v In the following instructions, ${java.home} denotes the path to the location of the version of Java that

you are using on your server. For example, if you are using J2SDK, version 1.4, ${java.home} is

/QIBM/ProdData/Java400/jdk14. Remember to replace ${java.home}in the commands with the actual

path to the Java home directory.

Placing a symbolic link in the Java extension directory

To place a link to the jt400Native.jar file in the Java extenstion directory, on an iSeries command line, type

the following command (on a single line) and press ENTER:

 ADDLNK OBJ(’/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar’)

 NEWLNK(’${java.home}/lib/ext/jt400Native.jar’)

IBM Developer Kit for Java 323

Placing a symbolic link in your own extension directory

To link the jt400Native.jar file to your own directory, on an iSeries command line, type the following

command (on a single line) and press ENTER:

 ADDLNK OBJ(’/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar’)

 NEWLNK(’<your extension directory>/jt400Native.jar’)

When calling your program, use the following format for the Java command:

 java -Djava.ext.dirs=<your extension directory>:${java.home}/lib/ext:/QIBM/UserData/Java400/ext

Configuring your iSeries server to use JGSS with J2SDK, version 1.4 or a subsequent version:

When you use the Java 2 Software Development Kit (J2SDK), version 1.4 or above on your iSeries server,

JGSS is already configured. The default configuration uses the pure Java JGSS provider.

 Changing JGSS providers

You can configure JGSS to use the native iSeries JGSS provider instead of the pure Java JGSS provider.

Then, after you configure JGSS to use the native provider, you can easily switch between the two

providers. For more information, see the following topics:

v JGSS providers

v Configuring JGSS to use the native iSeries JGSS provider

Security managers

If you are running your JGSS application with a Java security manager enabled, see Using a security

manager.

JGSS providers:

IBM JGSS includes a native iSeries JGSS provider and a pure Java JGSS provider. The provider that you

choose to use depends on the needs of your application.

 The pure Java JGSS provider offers the following features:

v Ensures the greatest level of portability for your application.

v Works with the optional JAAS Kerberos login interface.

v Compatible with the Java Kerberos credential management tools.

The native iSeries JGSS provider offers the following features:

v Uses the native iSeries Kerberos libraries.

v Compatible with Qshell Kerberos credential management tools.

v JGSS applications run faster.

Note: Both JGSS providers adhere to the GSS-API specification and so are compatible with each other. In

other words, an application that uses the pure Java JGSS provider can interoperate with an

application that uses the native iSeries JGSS provider.

Changing the JGSS provider

Note: If your server is running J2SDK, version 1.3, before changing to the native iSeries JGSS provider,

make sure that you have configured your server to use JGSS. For more information, see the following

topics:

v Configuring your iSeries server to use JGSS with J2SDK, version 1.3

324 IBM Systems - iSeries: Programming IBM Developer Kit for Java

v Configuring JGSS to use the Native JGSS Provider

You can easily change the JGSS provider by using one of the following options:

v Edit the security provider list in ${java.home}/lib/security/java.security

Note: ${java.home} denotes the path to the location of the version of Java that you are using on your

server. For example, if you are using J2SDK, version 1.3, ${java.home} is

/QIBM/ProdData/Java400/jdk13.

v Specify the provider name in your JGSS application by using either GSSManager.addProviderAtFront()

or GSSManager.addProviderAtEnd(). For more information, see theGSSManager javadoc.

Using a security manager:

If you are running your JGSS application with a Java security manager enabled, you need to ensure that

your application and JGSS have the necessary permissions.

JVM permissions: In addition to the access control checks performed by JGSS, the Java virtual machine

(JVM) performs authorization checks when accessing a variety of resources, including files, Java

properties, packages, and sockets.

For more information about using JVM permissions, see Permissions in the Java 2 SDK.

The following list identifies the permissions required when you use the JAAS features of JGSS or use

JGSS with a security manager:

v javax.security.auth.AuthPermission ″modifyPrincipals″

v javax.security.auth.AuthPermission ″modifyPrivateCredentials″

v javax.security.auth.AuthPermission ″getSubject″
v javax.security.auth.PrivateCredentialPermission ″javax.security.auth.kerberos.KerberosKey

javax.security.auth.kerberos.KerberosPrincipal \″*\″″, ″read″

v javax.security.auth.PrivateCredentialPermission ″javax.security.auth.kerberos.KerberosTicket

javax.security.auth.kerberos.KerberosPrincipal \″*\″″, ″read″

v java.util.PropertyPermission ″com.ibm.security.jgss.debug″, ″read″

v java.util.PropertyPermission ″DEBUG″, ″read″

v java.util.PropertyPermission ″java.home″, ″read″

v java.util.PropertyPermission ″java.security.krb5.conf″, ″read″

v java.util.PropertyPermission ″java.security.krb5.kdc″, ″read″

v java.util.PropertyPermission ″java.security.krb5.realm″, ″read″

v java.util.PropertyPermission ″javax.security.auth.useSubjectCredsOnly″, ″read″

v java.util.PropertyPermission ″user.dir″, ″read″

v java.util.PropertyPermission ″user.home″, ″read″

v java.lang.RuntimePermission ″accessClassInPackage.sun.security.action″

v java.security.SecurityPermission ″putProviderProperty.IBMJGSSProvider″

JAAS permission checks:

IBM JGSS performs runtime permission checks at the time the JAAS-enabled program uses credentials

and accesses services. You can disable this optional JAAS feature by setting the Java property

avax.security.auth.useSubjectCredsOnly to false. Moreover, JGSS performs permission checks only when

the application runs with a security manager.

 JGSS performs permission checks against the Java policy that is in effect for the current access control

context. JGSS performs the following specific permission checks:

IBM Developer Kit for Java 325

jgssapi/org/ietf/jgss/GSSManager.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

v javax.security.auth.kerberos.DelegationPermission

v javax.security.auth.kerberos.ServicePermission

DelegationPermission check

The DelegationPermission allows the security policy to control the use of the ticket forwarding and

proxying features of Kerberos. Using these features, a client can allow a service to act on behalf of the

client.

DelegationPermission takes two arguments, in the following order:

1. The subordinate principal, which is the name of the service principal that acts on behalf of, and under

the authority of, the client.

2. The name of the service that the client wants to allow the subordinate principal to use.

Example: Using the DelegationPermission check

In the following example, superSecureServer is the subordinate principal and

krbtgt/REALM.IBM.COM@REALM.IBM.COM is the service that we want to allow superSecureServer to

use on behalf of the client. In this case, the service is the ticket-granting ticket for the client, which means

that superSecureServer can get a ticket for any service on behalf of the client.

 permission javax.security.auth.kerberos.DelegationPermission

 "\"superSecureServer/host.ibm.com@REALM.IBM.COM\"

 \"krbtgt/REALM.IBM.COM@REALM.IBM.COM\"";

In the previous example, DelegationPermission grants the client permission to get a new ticket-granting

ticket from the Key Distribution Center (KDC) that only superSecureServer can use. After the client has

sent the new ticket-granting ticket to superSecureServer, superSecureServer has the ability to act on behalf

of the client.

The following example enables the client to get a new ticket that allows superSecureServer to access only

the ftp service on behalf of the client:

 permission javax.security.auth.kerberos.DelegationPermission

 "\"superSecureServer/host.ibm.com@REALM.IBM.COM\"

 \"ftp/ftp.ibm.com@REALM.IBM.COM\"";

For more information, see the javax.security.auth.kerberos.DelegationPermission class in the J2SDK

documentation on the Sun Web site.

ServicePermission check

ServicePermission checks restrict the use of credentials for context initiation and acceptance. A context

initiator must have permission to initiate a context. Likewise, a context acceptor must have permission to

accept a context.

Example: Using the ServicePermission check

The following example allows the client side to initiate a context with the tp service by granting

permission to the client:

 permission javax.security.auth.kerberos.ServicePermission

 "ftp/host.ibm.com@REALM.IBM.COM", "initiate";

The following example allows the server side to access and use the secret key or the ftp service by

granting permission to the server:

 permission javax.security.auth.kerberos.ServicePermission

 "ftp/host.ibm.com@REALM.IBM.COM", "accept";

326 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://java.sun.com/j2se/1.4/docs/index.html
http://java.sun.com/j2se/1.4/docs/index.html

For more information, see the javax.security.auth.kerberos.ServicePermission class in the J2SDK

documentation on the Sun Web site.

Running IBM JGSS applications

The IBM Java Generic Security Service (JGSS) API 1.0 shields secure applications from the complexities

and peculiarities of the different underlying security mechanisms. JGSS uses features provided by Java

Authentication and Authorization Service (JAAS) and IBM Java Cryptography Extension (JCE).

JGSS features include:

v Identity authentication

v Message integrity and confidentiality

v Optional JAAS Kerberos login interface and authorization checks

Obtaining Kerberos credentials and creating secret keys:

The GSS-API does not define a way to get credentials. For this reason, the IBM JGSS Kerberos mechanism

requires that the user obtain Kerberos credentials. This topic instructs you on how to obtain Kerberos

credentials and create secret keys, and about using JAAS to perform Kerberos logins and authorization

checks and review a list of JAAS permissions required by the Java virtual machine (JVM).

 You can obtain credentials by using one of the following methods:

v Kinit and Ktab tools

v Optional JAAS Kerberos login interface

The Kinit and Ktab tools:

Your choice of a JGSS provider determines which tools that you use to obtain Kerberos credentials and

secret keys.

 Using the pure Java JGSS provider

If you are using the pure Java JGSS provider, use the IBM JGSS Kinit and Ktab tools to obtain credentials

and secret keys. The Kinit and Ktab tools use command-line interfaces and provide options similar to

those offered by other versions.

v You can obtain Kerberos credentials by using the Kinit tool. This tool contacts the Kerberos

Distribution Center (KDC) and obtains a ticket-granting ticket (TGT). The TGT allows you to access

other Kerberos-enabled services, including those that use the GSS-API.

v A server can obtain a secret key by using the Ktab tool. JGSS stores the secret key in the key table file

on the server. See the Ktab Java documentation for more information.

Alternatively, your application can use the JAAS Login interface to obtain TGTs and secret keys. For more

information, see the following:

v “com.ibm.security.krb5.internal.tools Class Kinit” on page 317

v “com.ibm.security.krb5.internal.tools Class Ktab” on page 319

v JAAS login interface.

Using the native iSeries JGSS provider

If you are using the native iSeries JGSS provider, use the Qshell kinit and klist utilities. For more

information, see Utilities for Kerberos credentials and key tables.

JAAS Kerberos login interface:

IBM Developer Kit for Java 327

http://java.sun.com/j2se/1.4/docs/index.html
http://java.sun.com/j2se/1.4/docs/index.html

IBM JGSS features a Java Authentication and Authorizaiton Service (JAAS) Kerberos login interface. You

can disable this feature by setting the Java property javax.security.auth.useSubjectCredsOnly to false.

Note: Although the pure Java JGSS provider can use the login interface, the native iSeries JGSS provider

cannot.

For more information about JAAS, see Java Authentication and Authorization Service.

JAAS and JVM permissions

If you are using a security manager, you need to ensure that your application and JGSS have the

necessary JVM and JAAS permissions. For more information, see Using a security manager.

JAAS configuration file options

The login interface requires a JAAS configuration file that specifies

com.ibm.security.auth.module.Krb5LoginModule as the login module to be used. The following table lists

the options that Krb5LoginModule supports. Note that the options are not case-sensitive.

 Option name Value Default Explanation

principal <string> None; prompted for. Kerberos principal name

credsType initiator | acceptor |

both

initiator The JGSS credential type

forwardable true|false false Whether to acquire a forwardable ticket-granting ticket

(TGT)

proxiable true|false false Whether to acquire a proxiable TGT

useCcache <URL> Don’t use ccache Retrieve TGT from the specified credential cache

useKeytab <URL> Don’t use key table Retrieve secret key from the specified key table

useDefaultCcache true|false Don’t use default ccache Retrieve TGT from default credential cache

useDefaultKeytab true|false Don’t use default key

table

Retrieve secret key from the specified key table

For a simple example of using Krb5LoginModule, see the Sample JAAS login configuration file.

Option incompatabilities

Some Krb5LoginModule options, excluding principal name, are incompatible with each other, meaning

that you cannot specify them together. The following table represents compatible and incompatible login

module options.

Indicators in the table describe the relationship between the two associated options:

v X = Incompatible

v N/A = Inapplicable combination

v Blank = Compatible

Krb5LoginModule option

credsType

initiator

credsType

acceptor

credsType

both forward proxy use Ccache

use

Keytab

useDefault

Ccache

useDefault

Keytab

credsType=initiator N/A N/A X X

credsType=acceptor N/A N/A X X X X

credsType=both N/A N/A

forwardable X X X X X

proxiable X X X X X

useCcache X X X X X X

useKeytab X X X X X X

328 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Krb5LoginModule option

credsType

initiator

credsType

acceptor

credsType

both forward proxy use Ccache

use

Keytab

useDefault

Ccache

useDefault

Keytab

useDefaultCcache X X X X X X

useDefaultKeytab X X X X X X

Principal name option

You can specify a principal name in combination with any other option. If you do not specify a principal

name, the Krb5LoginModule may prompt the user for a principal name. Whether or not

Krb5LoginModule prompts the user depends on the other options that you specify.

Service principal name format

You must use one of the following formats to specify a service principal name:

v <service_name> (for example, superSecureServer)

v <service_name>@<host> (for example, superSecureServer@myhost)

In the latter format, <host> is the hostname of the machine on which the service resides. You can (but do

not have to) use a fully qualified hostname.

Note: JAAS recognizes certain characters as delimiters. When you use any of the following characters in

a JAAS string (such as a principal name), enclose the character in quotes:

 _ (underscore)

 : (colon)

 / (forward slash)

 \ (back slash)

Prompting for the principal name and password

The options that you specify in the JAAS configuration file determine whether the Krb5LoginModule

login is noninteractive or interactive.

v A noninteractive login does not prompt for any information whatsoever

v An interactive login prompts for principal name, password, or both

Noninteractive logins

The login proceeds noninteractively when you specify the credential type as initiator

(credsType=initiator) and you perform one of the following actions:

v Specify the useCcache option

v Set the useDefaultCcache option to true

The login also proceeds noninteractively when you specify the credential type as acceptor or both

(credsType=acceptor or credsType=both) and you perform one of the following actions:

v Specify the useKeytab option

v Set the useDefaultKeytab option to true

Interactive logins

Other configurations result in the login module prompting for a principal name and password so that it

may obtain a TGT from a Kerberos KDC. The login module prompts for only a password when you

specify the principal option.

IBM Developer Kit for Java 329

Interactive logins require that the application specify com.ibm.security.auth.callback.Krb5CallbackHandler

as the callback handler when creating the login context. The callback handler is responsible for prompting

for input.

Credential type option

When you require the credential type to be both initiator and acceptor (credsType=both),

Krb5LoginModule obtains both a TGT and a secret key. The login module uses the TGT to initiate

contexts and the secret key to accept contexts. The JAAS configuration file must contain sufficient

information to enable the login module to acquire the two types of credentials.

For credential types acceptor and both, the login module assumes a service principal.

Configuration and policy files:

JGSS and JAAS depend on several configuration and policy files. You need to edit these files to conform

to your environment and application. If you do not use JAAS with JGSS, you can safely ignore the JAAS

configuration and policy files.

Note: In the following instructions, ${java.home} denotes the path to the location of the version of Java

that you are using on your server. For example, if you are using J2SDK, version 1.4, ${java.home} is

/QIBM/ProdData/Java400/jdk14. Remember to replace ${java.home}in the property settings with

the actual path to the Java home directory.

Kerberos configuration file

IBM JGSS requires a Kerberos configuration file. The default name and location of the Kerberos

configuration file depends on the operating system being used. JGSS uses the following order to search

for the default configuration file:

1. The file referenced by the Java property java.security.krb5.conf

2. ${java.home}/lib/security/krb5.conf

3. c:\winnt\krb5.ini on Microsoft® Windows platforms

4. /etc/krb5/krb5.conf on Solaris platforms

5. /etc/krb5.conf on other Unix platforms

JAAS configuration file

The use of the JAAS login feature requires a JAAS configuration file. You can specify the JAAS

configuration file by setting one of the following properties:

v The Java system property java.security.auth.login.config

v The security property login.config.url.<integer> in the ${java.home}/lib/security/java.security file

For more information, see the Sun Java Authentication and Authorization Service (JAAS) Web site.

JAAS policy file

When using the default policy implementation, JGSS grants JAAS permissions to entities by recording the

permissions in a policy file. You can specify the JAAS policy file by setting one of the following

properties:

v The Java system property java.security.policy

v The security property policy.url.<integer> in the ${java.home}/lib/security/java.security file

330 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://java.sun.com/products/jaas/

If you are using J2SDK, version 1.4 or a subsequent release, specifying a separate policy file for JAAS is

optional. The default policy provider in J2SDK, version 1.4 and above supports the policy file entries that

JAAS requires.

For more information, see the Sun Java Authentication and Authorization Service (JAAS) Web site.

Java master security properties file

A Java virtual machine (JVM) uses many important security properties that you set by editing the Java

master security properties file. This file, named java.security, usually resides in the

${java.home}/lib/security directory on your iSeries server.

The following list describes several relevant security properties for using JGSS. Use the descriptions as a

guide for editing the java.security file.

Note: When applicable, the descriptions include appropriate values required to run the JGSS samples.

security.provider.<integer>: The JGSS provider that you want to use. Also statically registers

cryptographic provider classes. IBM JGSS uses cryptographic and other security services provided by the

IBM JCE Provider. Specify the sun.security.provider.Sun and com.ibm.crypto.provider.IBMJCE packages

exactly like the following example:

 security.provider.1=sun.security.provider.Sun

 security.provider.2=com.ibm.crypto.provider.IBMJCE

policy.provider: System policy handler class. For example:

 policy.provider=sun.security.provider.PolicyFile

policy.url.<integer>: URLs of policy files. To use the sample policy file, include an entry such as:

 policy.url.1=file:/home/user/jgss/config/java.policy

login.configuration.provider: JAAS login configuration handler class, for example:

 login.configuration.provider=com.ibm.security.auth.login.ConfigFile

auth.policy.provider: JAAS principal-based access control policy handler class, for example:

 auth.policy.provider=com.ibm.security.auth.PolicyFile

login.config.url.<integer>: URLs for JAAS login configuration files. To use the sample configuration file,

include an entry similar to:

 login.config.url.1=file:/home/user/jgss/config/jaas.conf

auth.policy.url.<integer>: URLs for JAAS policy files. You can include both principal-based and

CodeSource-based constructs in the JAAS policy file. To use the sample policy file, include an entry such

as:

 auth.policy.url.1=file:/home/user/jgss/config/jaas.policy

Credentials cache and server key table

A user principal keeps its Kerberos credentials in a credentials cache. A service principal keeps its secret

key in a key table. At runtime, IBM JGSS locates these caches in the following ways:

User credentials cache

JGSS uses the following order to locate the user credentials cache:

1. The file referenced by the Java property KRB5CCNAME

IBM Developer Kit for Java 331

http://java.sun.com/products/jaas/

2. The file referenced by the environment variable KRB5CCNAME

3. /tmp/krb5cc_<uid> on Unix systems

4. ${user.home}/krb5cc_${user.name}

5. ${user.home}/krb5cc (if ${user.name} cannot be obtained)

Server key table

JGSS uses the following order to locate the server key table file:

1. The value of the Java property KRB5_KTNAME

2. default_keytab_name entry in the libdefaults stanza of the Kerberos configuration file

3. ${user.home}/krb5_keytab

Developing IBM JGSS applications

Use JGSS to develop secure applications. Learn about generating transport tokens, creating JGSS objects,

establishing context, and more.

To develop JGSS applications, you need to be familiar with the high-level GSS-API specification and the

Java bindings specification. IBM JGSS 1.0 is primarily based on and conforms to these specifications. See

the following links for more information.

v RFC 2743: Generic Security Service Application Programming Interface Version 2, Update 1

v RFC 2853: Generic Security Service API Version 2: Java Bindings

IBM JGSS application programming steps:

There are multiple steps required to develop a JGSS application, including using transport tokens,

creating the necessary JGSS objects, establishing and deleting context, and using per-message services.

 Operations in a JGSS application follow the Generic Security Service Application Programming Interface

(GSS-API) operational model. For information about concepts important to JGSS operations, see JGSS

concepts.

JGSS transport tokens

Some of the important JGSS operations generate tokens in the form of Java byte arrays. It is the

responsibility of the application to forward the tokens from one JGSS peer to the other. JGSS does not

constrain in any way the protocol that the application uses for transporting tokens. Applications may

transport JGSS tokens together with other application (that is, non-JGSS) data. However, JGSS operations

accept and use only JGSS-specific tokens.

Sequence of operations in a JGSS application

JGSS operations require certain programming constructs that you must use in the order listed below. Each

of the steps applies to both the initiator and the acceptor.

Note: The information includes snippets of example code that illustrate using the high-level JGSS APIs

and assume that your application imports the org.ietf.jgss package. Although many of the

high-level APIs are overloaded, the snippets show only the most commonly used forms of those

methods. Of course, use the API mehods that best suit your needs.

1. Creating a GSSManager

An instance of GSSManager acts as a factory for creating other JGSS object instances.

2. Creating a GSSName

A GSSName represents the identity of a JGSS principal. Some JGSS operations can locate and use a

default principal when you specify a null GSSName.

332 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2853.txt

3. Creating a GSSCredential

A GSSCredential embodies the mechanism-specific credentials of the principal.

4. Creating a GSSContext

A GSSContext is used for context establishment and subsequent per-message services.

5. Selecting optional services on the context

Your application must explicitly request optional services, such as mutual authentication.

6. Establishing context

The initiator authenticates itself to the acceptor. However, when requesting mutual authentication, the

acceptor in turn authenticates itself to the initiator.

7. Using per-message services

The initiator and the acceptor exchange secure messages over the established context.

8. Deleting context

The application deletes a context that is no longer needed.

Creating a GSSManager:

The GSSManager abstract class serves as a factory for creating JGSS objects.

 GSSManager abstract class creates the following:

v GSSName

v GSSCredential

v GSSContext

GSSManager also has methods for determining the supported security mechanisms and name types and

for specifying JGSS providers. Use the GSSManager getInstance static method to create an instance of the

default GSSManager:

 GSSManager manager = GSSManager.getInstance();

Creating a GSSName:

GSSName represents the identity of a GSS-API principal. A GSSName may contain many representations

of the principal, one for each supported underlying mechanism. A GSSName that contains only one name

representation is called a Mechanism Name (MN).

 GSSManager has several overloaded methods for creating a GSSName from a string or a contiguous

array of bytes. The methods interpret the string or byte array according to a specified name type.

Typically, you use the GSSName byte-array methods to reconstitute an exported name. The exported

name is usually a mechanism name of type GSSName.NT_EXPORT_NAME. Some of these methods

allow you to specify a security mechanism with which to create the name.

Example: Using GSSName

The following basic code snippet shows how to use GSSName.

Note: Specify Kerberos service name strings as either <service> or <service@host> where <service> is the

name of the service and <host> is the hostname of the machine on which the service runs. You can

(but do not have to) use a fully qualified hostname. When you omit the @<host> portion of the

string, GSSName uses the local hostname.
 // Create GSSName for user foo.

 GSSName fooName = manager.createName("foo", GSSName.NT_USER_NAME);

 // Create a Kerberos V5 mechanism name for user foo.

 Oid krb5Mech = new Oid("1.2.840.113554.1.2.2");

IBM Developer Kit for Java 333

GSSName fooName = manager.createName("foo", GSSName.NT_USER_NAME, krb5Mech);

 // Create a mechanism name from a non-mechanism name by using the GSSName

 // canonicalize method.

 GSSName fooName = manager.createName("foo", GSSName.NT_USER_NAME);

 GSSName fooKrb5Name = fooName.canonicalize(krb5Mech);

Creating a GSSCredential:

A GSSCredential contains all the cryptographic information necessary to create a context on behalf of a

principal and can contain credential information for multiple mechanisms.

 GSSManager has three credential creation methods. Two of the methods take for parameters a GSSName,

the lifetime of the credential, one or more mechanisms from which to get credentials, and the credential

usage type. The third method takes only a usage type and uses the default values for other parameters.

Specifying a null mechanism also uses the default mechanism. Specifying a null array of mechanisms

causes the method to return credentials for the default set of mechanisms.

Note: Because IBM JGSS supports only the Kerberos V5 mechanism, that is the default mechanism.

Your application can create only one of the three credentials types (initiate, accept, or initiate and accept) at

a time.

v A context initiator creates initiate credentials

v An acceptor creates accept credentials

v An acceptor that also behaves as an initiator creates initiate and accept credentials.

Examples: Obtaining credentials

The following example obtains the default credentials for an initiator:

GSSCredentials fooCreds = manager.createCredentials(GSSCredential.INITIATE)

The following example obtains Kerberos V5 credentials for the initiator foo that have the default validity

period:

GSSCredential fooCreds = manager.createCredential(fooName, GSSCredential.DEFAULT_LIFETIME,

 krb5Mech,GSSCredential.INITIATE);

The following example obtains an all-default acceptor credential:

GSSCredential serverCreds = manager.createCredential(null, GSSCredential.DEFAULT_LIFETIME,

 (Oid)null, GSSCredential.ACCEPT);

Creating GSSContext:

IBM JGSS supports two methods provided by GSSManager for creating a context.

 These methods are:

v A method used by the context initiator

v A method used by the acceptor

Note: GSSManager provides a third method for creating a context that involves recreating previously

exported contexts. However, because IBM JGSS Kerberos V5 mechanism does not support the use

of exported contexts, IBM JGSS does not support this method.

Your application cannot use an initiator context for context acceptance, nor can it use an acceptor context

for context initiation. Both supported methods for creating a context require a credential as input. When

the value of the credential is null, JGSS uses the default credential.

334 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Examples: Using GSSContext

The following example creates a context with which the principal (foo) can initiate a context with the

peer (superSecureServer) on the host (securityCentral). The example specifies the peer as

superSecureServer@securityCentral. The created context is valid for the default period:

GSSName serverName = manager.createName("superSecureServer@securityCentral",

 GSSName.NT_HOSTBASED_SERVICE, krb5Mech);

GSSContext fooContext = manager.createContext(serverName, krb5Mech, fooCreds,

 GSSCredential.DEFAULT_LIFETIME);

The following example creates a context for superSecureServer in order to accept contexts initiated by any

peer:

GSSContext serverAcceptorContext = manager.createContext(serverCreds);

Note that your application can create and simultaneously use both types of contexts.

Requesting optional security services:

Your application can request any of several optional security services. IBM JGSS supports several services.

 The supported optional services are:

v Delegation

v Mutual authentication

v Replay detection

v Out-of-sequence detection

v Available per-message confidentiality

v Available per-message integrity

To request an optional service, your application must explicitly request it by using the appropriate

request method on the context. Only an initiator can request these optional services. The initiator must

make the request before context establishment begins.

For more information about optional services, see Optional Service Support in Internet Engineering Task

Force (IETF) RFC 2743 Generic Security Services Application Programming Interface Version 2, Update 1 .

Example: Requesting optional services

In the following example, a context (fooContext) makes requests to enable mutual authentication and

delegation services:

 fooContext.requestMutualAuth(true);

 fooContext.requestCredDeleg(true);

Establishing context:

The two communicating peers must establish a security context over which they can use per-message

services.

 The initiator calls initSecContext() on its context, which returns a token to the initiator application. The

initiator application transports the context token to the acceptor application. The acceptor calls

acceptSecContext() on its context, specifying the context token received from the initiator. Depending on

the underlying mechanism and the optional services that the initiator selected, acceptSecContext() might

produce a token that the acceptor application has to forward to the initiator application. The initiator

application then uses the received token to call initSecContext() one more time.

IBM Developer Kit for Java 335

http://www.ietf.org/rfc/rfc2743.txt

An application can make multiple calls to GSSContext.initSecContext() and

GSSContext.acceptSecContext(). An application can also exchange multiple tokens with a peer during

context establishment. Hence, the typical method of establishing context uses a loop to call

GSSContext.initSecContext() or GSSContext.acceptSecContext() until the applications establish context.

Example: Establishing context

The following example illustrates the initiator (foo) side of context establishment:

 byte array[] inToken = null; // The input token is null for the first call

 int inTokenLen = 0;

 do {

 byte[] outToken = fooContext.initSecContext(inToken, 0, inTokenLen);

 if (outToken != null) {

 send(outToken); // transport token to acceptor

 }

 if(!fooContext.isEstablished()) {

 inToken = receive(); // receive token from acceptor

 inTokenLen = inToken.length;

 }

 } while (!fooContext.isEstablished());

The following example illustrates the acceptor side of context establishment:

 // The acceptor code for establishing context may be the following:

 do {

 byte[] inToken = receive(); // receive token from initiator

 byte[] outToken =

 serverAcceptorContext.acceptSecContext(inToken, 0, inToken.length);

 if (outToken != null) {

 send(outToken); // transport token to initiator

 }

 } while (!serverAcceptorContext.isEstablished());

Using per-message services:

After establishing a security context, two communicating peers can exchange secure messages over the

established context.

 Either peer can originate a secure message, regardless of whether it served as initiator or acceptor when

establishing context. To make the message secure, IBM JGSS computes a cryptographic message integrity

code (MIC) over the message. Optionally, IBM JGSS can have the Kerberos V5 mechanism encrypt the

message to help ensure privacy.

Sending messages

IBM JGSS provides two sets of methods for securing messages: wrap() and getMIC().

Using wrap()

The wrap method performs the following actions:

v Computes an MIC

v Encrypts the message (optional)

v Returns a token

The calling application uses the MessageProp class in conjunction with GSSContext to specify whether to

apply encryption to the message.

336 IBM Systems - iSeries: Programming IBM Developer Kit for Java

The returned token contains both the MIC and text of the message. The text of the message is either

ciphertext (for an encrypted message) or the original plaintext (for messages that are not encrypted).

Using getMIC()

The getMIC method performs the following actions but cannot encrypt the message:

v Computes an MIC

v Returns a token

The returned token contains only the computed MIC and does not include the original message. So, in

addition to transporting the MIC token to the peer, the peer must somehow be made aware of the

original message so that it can verify the MIC.

Example: Using per-message services to send a message

The following example shows how one peer (foo) can wrap a message for delivery to another peer

(superSecureServer):

 byte[] message = "Ready to roll!".getBytes();

 MessageProp mprop = new MessageProp(true); // foo wants the message encrypted

 byte[] wrappedMessage =

 fooContext.wrap(message, 0, message.length, mprop);

 send(wrappedMessage); // transfer the wrapped message to superSecureServer

 // This is how superSecureServer may obtain a MIC for delivery to foo:

 byte[] message = "You bet!".getBytes();

 MessageProp mprop = null; // superSecureServer is content with

 // the default quality of protection

 byte[] mic =

 serverAcceptorContext.getMIC(message, 0, message.length, mprop);

 send(mic);

 // send the MIC to foo. foo also needs the original message to verify the MIC

Receiving messages

The receiver of a wrapped message uses unwrap() to decode the message. The unwrap method performs

the following actions:

v Verifies the cryptographic MIC embedded in the message

v Returns the original message over which the sender computed the MIC

If the sender encrypted the message, unwrap() decrypts the message before verifying the MIC and then

returns the original plaintext message. The receiver of an MIC token uses verifyMIC() to verify the MIC

over a given a message.

The peer applications use their own protocol to deliver JGSS context and message tokens to each other.

Peer applications also need to define a protocol for determining whether the token is an MIC or a

wrapped message. For example, part of such a protocol may be as simple (and rigid) as that used by

Simple Authentication and Security Layer (SASL) applications. The SASL protocol specifies that the

context acceptor is always the first peer to send a per-message (wrapped) token following context

establishment.

For more information, see Simple Authentication and Security Layer (SASL).

Example: Using per-message services to receive a message

The following examples shows how a peer (superSecureServer) unwraps the wrapped token that it

received from another peer (foo):

IBM Developer Kit for Java 337

http://www.ietf.org/rfc/rfc2222.txt

MessageProp mprop = new MessageProp(false);

 byte[] plaintextFromFoo =

 serverAcceptorContext.unwrap(wrappedTokenFromFoo, 0,

 wrappedTokenFromFoo.length, mprop);

 // superSecureServer can now examine mprop to determine the message properties

 // (such as whether the message was encrypted) applied by foo.

 // foo verifies the MIC received from superSecureServer:

 MessageProp mprop = new MessageProp(false);

 fooContext.verifyMIC(micFromFoo, 0, micFromFoo.length, messageFromFoo, 0,

 messageFromFoo.length, mprop);

 // foo can now examine mprop to determine the message properties applied by

 // superSecureServer. In particular, it can assert that the message was not

 // encrypted since getMIC should never encrypt a message.

Deleting context:

A peer deletes a context when the context is no longer needed. In JGSS operations, each peer unilaterally

decides when to delete a context and does not need to inform its peer.

 JGSS does not define a delete context token. To delete a context, the peer calls the dispose method of the

GSSContext object to free up any resources used by the context. A disposed GSSContext object may still

be accessible, unless the application sets the object to null. However, any attempt to use a disposed (but

still accessible) context throws an exception.

Using JAAS with your JGSS application:

The IBM JGSS includes an optional JAAS login facility that allows the application to use JAAS to obtain

credentials. After the JAAS login facility saves principal credentials and secret keys in the subject object of

a JAAS login context, JGSS can retrieve the credentials from that subject.

 The default behavior of JGSS is to retrieve credentials and secret keys from the subject. You can disable

this feature by setting the Java property javax.security.auth.useSubjectCredsOnly to false.

Note: Although the pure Java JGSS provider can use the login interface, the native iSeries JGSS provider

cannot.

For more information about JAAS features, see Obtaining Kerberos credentials and secret keys.

To use the JAAS login facility, your application must follow the JAAS programming model in the

following ways:

v Create a JAAS login context

v Operate within the confines of a JAAS Subject.doAs construct

The following code snippet illustrates the concept of operating within the confines of a JAAS

Subject.doAs construction:

 static class JGSSOperations implements PrivilegedExceptionAction {

 public JGSSOperations() {}

 public Object run () throws GSSException {

 // JGSS application code goes/runs here

 }

 }

 public static void main(String args[]) throws Exception {

338 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Create a login context that will use the Kerberos

 // callback handler

 // com.ibm.security.auth.callback.Krb5CallbackHandler

 // There must be a JAAS configuration for "JGSSClient"

 LoginContext loginContext =

 new LoginContext("JGSSClient", new Krb5CallabackHandler());

 loginContext.login();

 // Run the entire JGSS application in JAAS privileged mode

 Subject.doAsPrivileged(loginContext.getSubject(),

 new JGSSOperations(), null);

 }

Debugging

When you are trying to identify JGSS problems, use the JGSS debugging capability to produce helpful

categorized messages.

You can turn on one or more categories by setting the appropriate values for the Java property

com.ibm.security.jgss.debug. Activate multiple categories by using a comma to separate the category

names.

Debugging categories include the following:

 Category Description

help List debug catgories

all Turn on debugging for all categories

off Turn off debugging completely

app Application debugging (default)

ctx Context operations debugging

cred Credentials (including name) operations

marsh Marshaling of tokens

mic MIC operations

prov Provider operations

qop QOP operations

unmarsh Unmarshaling of tokens

unwrap Unwrap operations

wrap Wrap operations

JGSS Debug class

To debug your JGSS application programmatically, use the debug class in the IBM JGSS framework. Your

application can use the debug class to turn on and off debug categories and display debugging

information for the active categories.

The default debugging constructor reads the Java property com.ibm.security.jgss.debug to determine

which categories to activate (turn on).

Example: Debugging for the application category

The following example shows how to request debug information for the application category:

IBM Developer Kit for Java 339

import com.ibm.security.jgss.debug;

 Debug debug = new Debug(); // Gets categories from Java property

 // Lots of work required to set up someBuffer. Test that the

 // category is on before setting up for debugging.

 if (debug.on(Debug.OPTS_CAT_APPLICATION)) {

 // Fill someBuffer with data.

 debug.out(Debug.OPTS_CAT_APPLICATION, someBuffer);

 // someBuffer may be a byte array or a String.

Samples: IBM Java Generic Security Service (JGSS)

The IBM Java Generic Security Service (JGSS) sample files include client and server programs,

configuration files, policy files, and javadoc reference information. Use the sample programs to test and

verify your JGSS setup.

You can view HTML versions of the samples or download the javadoc information and source code for

the sample programs. Downloading the samples enables you to view the javadoc reference information,

examine the code, edit the configuration and policy files, and compile and run the sample programs:

v View HTML versions of the samples

v Download and view the sample javadoc information

v Download and run the sample programs

Description of the sample programs

The JGSS samples include four programs:

v non-JAAS server

v non-JAAS client

v JAAS-enabled server

v JAAS-enabled client

The JAAS-enabled versions are fully interoperable with their non-JAAS counterparts. So, you can run a

JAAS-enabled client against a non-JAAS server and you can run a non-JAAS client against a

JAAS-enabled server.

Note: When you run a sample, you can specify one or more optional Java properties, including the

names of the configuration and policy files, JGSS debug options, and the security manager. You can

also turn on and turn off the JAAS features.

You can run the samples in either a one-server or a two-server configuration. The one server

configuration consists of a client communicating with a primary server. The two-server configuration

consists of a primary and a secondary server, where the primary server acts as an initiator, or client, to

the secondary server.

When using a two-server configuration, the client first initiates a context and exchanges secure messages

with the primary server. Next, the client delegates its credentials to the primary server. Then, on behalf of

the client, the primary server uses these credentials to initiate a context and exchange secure messages

with the secondary server. You can also use a two-server configuration in which the primary server acts

as a client on its own behalf. In this case, the primary server uses its own credentials to initiate a context

and exchange messages with the secondary server.

You can simultaneously run any number of clients against the primary server. Although you can run a

client directly against the secondary server, the secondary server cannot use delegated credentials or run

as an initiator using its own credentials.

340 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Viewing the IBM JGSS samples:

The IBM Java Generic Security Service (JGSS) sample files include client and server programs,

configuration files, policy files, and javadoc reference information. Use the following links to view HTML

versions of the JGSS samples.

 Viewing the sample programs

View the HTML versions of the JGSS sample programs by using the following links:

v Sample non-JAAS client program

v Sample non-JAAS server program

v Sample JAAS-enabled client program

v Sample JAAS-enabled server program

Viewing the sample configuration and policy files

View the HTML versions of the JGSS configuration and policy files by using the following links:

v Kerberos configuration file

v JAAS configuration file

v JAAS policy file

v Java policy file

For additional information, see the following topics:

v Description of the sample programs

v Downloading and running the sample programs

Sample: Kerberos configuration file:

For more information about using the sample configuration file, see Downloading and running the IBM

JGSS samples.

Note: Read the Code example disclaimer for important legal information.

Kerberos configuration file for running the JGSS sample applications.

Modify the entries to suit your environment.

#--

[libdefaults]

 default_keytab_name = /QIBM/UserData/OS400/NetworkAuthentication/keytab/krb5.keytab

 default_realm = REALM.IBM.COM

 default_tkt_enctypes = des-cbc-crc

 default_tgs_enctypes = des-cbc-crc

 default_checksum = rsa-md5

 kdc_timesync = 0

 kdc_default_options = 0x40000010

 clockskew = 300

 check_delegate = 1

 ccache_type = 3

 kdc_timeout = 60000

[realms]

 REALM.IBM.COM = {

 kdc = kdc.ibm.com:88

 }

[domain_realm]

 .ibm.com = REALM.IBM.COM

IBM Developer Kit for Java 341

Collected links

 Downloading and running the IBM JGSS samples

This topic contains instructions for downloading and running the sample javadoc information.

 Code example disclaimer

Sample: JAAS login configuration file:

For more information about using the sample configuration file, see Downloading and running the IBM

JGSS samples.

Note: Read the Code example disclaimer for important legal information.

/**

 * ---

 * JAAS Login Configuration for the JGSS samples.

 * ---

 *

 * Code example disclaimer

 * IBM grants you a nonexclusive copyright license to use all programming code

 * examples from which you can generate similar function tailored to your own

 * specific needs.

 * All sample code is provided by IBM for illustrative purposes only.

 * These examples have not been thoroughly tested under all conditions.

 * IBM, therefore, cannot guarantee or imply reliability, serviceability, or

 * function of these programs.

 * All programs contained herein are provided to you "AS IS" without any

 * warranties of any kind.

 * The implied warranties of non-infringement, merchantability and fitness

 * for a particular purpose are expressly disclaimed.

 *

 *

 * Supported options:

 * principal=<string>

 * credsType=initiator|acceptor|both (default=initiator)

 * forwardable=true|false (default=false)

 * proxiable=true|false (default=false)

 * useCcache=<URL_string>

 * useKeytab=<URL_string>

 * useDefaultCcache=true|false (default=false)

 * useDefaultKeytab=true|false (default=false)

 * noAddress=true|false (default=false)

 *

 * Default realm (which is obtained from the Kerberos config file) is

 * used if the principal specified does not include a realm component.

 */

JAASClient {

 com.ibm.security.auth.module.Krb5LoginModule required

 useDefaultCcache=true;

};

JAASServer {

 com.ibm.security.auth.module.Krb5LoginModule required

 credsType=acceptor useDefaultKeytab=true

 principal=gss_service/myhost.ibm.com@REALM.IBM.COM;

};

 Collected links

 Downloading and running the IBM JGSS samples

This topic contains instructions for downloading and running the sample javadoc information.

 Code example disclaimer

Sample: JAAS policy file:

342 IBM Systems - iSeries: Programming IBM Developer Kit for Java

For more information about using the sample policy file, see Downloading and running the IBM JGSS

samples.

Note: Read the Code example disclaimer for important legal information.

// --

// JAAS policy file for running the JGSS sample applications.

// Modify these permissions to suit your environment.

// Not recommended for use for any purpose other than that stated above.

// In particular, do not use this policy file or its

// contents to protect resources in a production environment.

//

// Code example disclaimer

// IBM grants you a nonexclusive copyright license to use all programming code

// examples from which you can generate similar function tailored to your own

// specific needs.

// All sample code is provided by IBM for illustrative purposes only.

// These examples have not been thoroughly tested under all conditions.

// IBM, therefore, cannot guarantee or imply reliability, serviceability, or

// function of these programs.

// All programs contained herein are provided to you "AS IS" without any

// warranties of any kind.

// The implied warranties of non-infringement, merchantability and fitness

// for a particular purpose are expressly disclaimed.

//

// --

//---

// Permissions for client only

//---

grant CodeBase "file:ibmjgsssample.jar",

 Principal javax.security.auth.kerberos.KerberosPrincipal

 "bob@REALM.IBM.COM"

{

 // foo needs to be able to initiate a context with the server

 permission javax.security.auth.kerberos.ServicePermission

 "gss_service/myhost.ibm.com@REALM.IBM.COM", "initiate";

 // So that foo can delegate his creds to the server

 permission javax.security.auth.kerberos.DelegationPermission

 "\"gss_service/myhost.ibm.com@REALM.IBM.COM\" \"krbtgt/REALM.IBM.COM@REALM.IBM.COM\"";

};

//---

// Permissions for the server only

//---

grant CodeBase "file:ibmjgsssample.jar",

 Principal javax.security.auth.kerberos.KerberosPrincipal

 "gss_service/myhost.ibm.com@REALM.IBM.COM"

{

 // Permission for the server to accept network connections on its host

 permission java.net.SocketPermission "myhost.ibm.com", "accept";

 // Permission for the server to accept JGSS contexts

 permission javax.security.auth.kerberos.ServicePermission

 "gss_service/myhost.ibm.com@REALM.IBM.COM", "accept";

 // The server acts as a client when communicating with the secondary (backup) server

 // This permission allows the server to initiate a context with the secondary server

 permission javax.security.auth.kerberos.ServicePermission

 "gss_service2/myhost.ibm.com@REALM.IBM.COM", "initiate";

};

//---

// Permissions for the secondary server

IBM Developer Kit for Java 343

//---

grant CodeBase "file:ibmjgsssample.jar",

 Principal javax.security.auth.kerberos.KerberosPrincipal

 "gss_service2/myhost.ibm.com@REALM.IBM.COM"

{

 // Permission for the secondary server to accept network connections on its host

 permission java.net.SocketPermission "myhost.ibm.com", "accept";

 // Permission for the server to accept JGSS contexts

 permission javax.security.auth.kerberos.ServicePermission

 "gss_service2/myhost.ibm.com@REALM.IBM.COM", "accept";

};

 Collected links

 Downloading and running the IBM JGSS samples

This topic contains instructions for downloading and running the sample javadoc information.

 Code example disclaimer

Sample: Java policy file:

For more information about using the sample policy file, see Downloading and running the IBM JGSS

samples.

Note: Read the Code example disclaimer for important legal information.

// ---

// Java policy file for running the JGSS sample applications on

// the iSeries server.

// Modify these permissions to suit your environment.

// Not recommended for use for any purpose other than that stated above.

// In particular, do not use this policy file or its

// contents to protect resources in a production environment.

//

// Code example disclaimer

// IBM grants you a nonexclusive copyright license to use all programming code

// examples from which you can generate similar function tailored to your own

// specific needs.

// All sample code is provided by IBM for illustrative purposes only.

// These examples have not been thoroughly tested under all conditions.

// IBM, therefore, cannot guarantee or imply reliability, serviceability, or

// function of these programs.

// All programs contained herein are provided to you "AS IS" without any

// warranties of any kind.

// The implied warranties of non-infringement, merchantability and fitness

// for a particular purpose are expressly disclaimed.

//

//---

grant CodeBase "file:ibmjgsssample.jar" {

 // For Java 1.3

 permission javax.security.auth.AuthPermission "createLoginContext";

 // For Java 1.4

 permission javax.security.auth.AuthPermission "createLoginContext.JAASClient";

 permission javax.security.auth.AuthPermission "createLoginContext.JAASServer";

 permission javax.security.auth.AuthPermission "doAsPrivileged";

 // Permission to request a ticket from the KDC

 permission javax.security.auth.kerberos.ServicePermission

 "krbtgt/REALM.IBM.COM@REALM.IBM.COM", "initiate";

 // Permission to access sun.security.action classes

 permission java.lang.RuntimePermission "accessClassInPackage.sun.security.action";

344 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// A whole bunch of Java properties are accessed

 permission java.util.PropertyPermission "java.net.preferIPv4Stack", "read";

 permission java.util.PropertyPermission "java.version", "read";

 permission java.util.PropertyPermission "java.home", "read";

 permission java.util.PropertyPermission "user.home", "read";

 permission java.util.PropertyPermission "DEBUG", "read";

 permission java.util.PropertyPermission "com.ibm.security.jgss.debug", "read";

 permission java.util.PropertyPermission "java.security.krb5.kdc", "read";

 permission java.util.PropertyPermission "java.security.krb5.realm", "read";

 permission java.util.PropertyPermission "java.security.krb5.conf", "read";

 permission java.util.PropertyPermission "javax.security.auth.useSubjectCredsOnly",

 "read,write";

 // Permission to communicate with the Kerberos KDC host

 permission java.net.SocketPermission "kdc.ibm.com", "connect,accept,resolve";

 // I run the samples from my localhost

 permission java.net.SocketPermission "myhost.ibm.com", "accept,connect,resolve";

 permission java.net.SocketPermission "localhost", "listen,accept,connect,resolve";

 // Access to some possible Kerberos config locations

 // Modify the file paths as applicable to your environment

 permission java.io.FilePermission "${user.home}/krb5.ini", "read";

 permission java.io.FilePermission "${java.home}/lib/security/krb5.conf", "read";

 // Access to the Kerberos key table so we can get our server key.

 permission java.io.FilePermission

 "/QIBM/UserData/OS400/NetworkAuthentication/keytab/krb5.keytab", "read";

 // Access to the user’s Kerberos credentials cache.

 permission java.io.FilePermission "${user.home}/krb5cc_${user.name}",

 "read";

};

Samples: Downloading and viewing javadoc information for the IBM JGSS samples:

To download and view the documentation for the IBM JGSS sample programs, complete the following

steps.

1. Choose an existing directory (or create a new one) where you want to store the javadoc information.

2. Download the javadoc information (jgsssampledoc.zip) into the directory.

3. Extract the files from jgsssampledoc.zip into the directory.

4. Use your browser to access the index.htm file.

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The

implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

Samples: Downloading and running the sample programs:

This topic contains instructions for downloading and running the sample javadoc information.

 Before modifying or running the samples, read the description of the sample programs.

IBM Developer Kit for Java 345

jgsssampledoc.zip

To run the sample programs, perform the following tasks:

1. Download the sample files to your iSeries server

2. Prepare to run the sample files

3. Run the sample programs

For more information about how to run a sample, see “Example: Running the non-JAAS sample” on page

348.

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The

implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

Samples: Downloading the IBM JGSS samples:

This topic contains instructions for downloading the sample javadoc information to your iSeries server.

 Before modifying or running the samples, read the description of the sample programs.

To download the sample files and store them on your iSeries server, complete the following steps:

1. On your iSeries server, choose an existing directory (or create a new one) where you want to store the

sample programs, configuration files, and policy files.

2. Download the sample programs (ibmjgsssample.zip).

3. Extract the files from ibmjgsssample.zip into the directory on the server.

Extracting the contents of ibmjgsssample.jar performs the following actions:

v Places ibmgjsssample.jar, which contains the sample .class files, into the selected directory

v Creates a subdirectory (named config) that contains the configuration and policy files

v Creates a subdirectory (named src) that contains the sample .java source files

Related information

You may want to read about related tasks or look at an example:

v “Samples: Preparing to run the sample programs”

v “Samples: Running the sample programs” on page 347

v “Example: Running the non-JAAS sample” on page 348

Samples: Preparing to run the sample programs:

After you download the source code, you need to perform some prepatory tasks before running the

sample programs.

 Before modifying or running the samples, read the description of the sample programs.

346 IBM Systems - iSeries: Programming IBM Developer Kit for Java

ibmjgsssample.zip

After you download the source code, you need to perform the following tasks before you can run the

sample programs:

v Edit the configuration and policy files to suit your environment. For more information, refer to the

comments in each configuration and policy file.

v Ensure that the java.security file contains the correct settings for your iSeries server. For more

information, see Java master security properties file.

v Place the modified Kerberos configuration file (krb5.conf) into the directory on your iSeries server that

is appropriate for the version of the J2SDK that you are using:

– For Version 1.3 of the J2SDK: /QIBM/ProdData/Java400/jdk13/lib/security

– For Version 1.4 of the J2SDK: /QIBM/ProdData/Java400/jdk14/lib/security

– For Version 1.5 of the J2SDK: /QIBM/ProdData/Java400/jdk15/lib/security

Related information

You may want to read about related tasks or look at an example:

v “Samples: Downloading the IBM JGSS samples” on page 346

v “Samples: Running the sample programs”

v “Example: Running the non-JAAS sample” on page 348

Samples: Running the sample programs:

After you download and modify the source code, you can run one of the samples.

 Before modifying or running the samples, read the description of the sample programs.

To run a sample, you must start the server program first. The server program must be running and ready

to receive connections before you start the client program. The server is ready to receive connections

when you see listening on port <server_port>. Make sure to remember or write down the

<server_port >, which is the port number that you need to specify when you start the client.

Use the following command to start a sample program:

 java [-Dproperty1=value1 ... -DpropertyN=valueN] com.ibm.security.jgss.test.<program> [options]

where

v [-DpropertyN=valueN] is one or more optional Java properties, including the names of the

configuration and policy files, JGSS debug options, and the security manager. For more information,

see the following example and Running JGSS applications.

v <program> is a required parameter that specifies the sample program that you want to run (either

Client, Server, JAASClient, or JAASServer).

v [options] is an optional parameter for the sample program that you want to run. To display a list of

supported options, use the following command:

 java com.ibm.security.jgss.test.<program> -?

Note: Turn off the JAAS features in a JGSS-enabled sample by setting the Java property

javax.security.auth.useSubjectCredsOnly to false. Of course, the default value of the JAAS-enabled

samples is to turn on JAAS, meaning that the property value is true. The non-JAAS client and

server programs set the property to false, unless you have explicitly set the property value.

Related information

You may want to read about related tasks or look at an example:

v “Samples: Preparing to run the sample programs” on page 346

IBM Developer Kit for Java 347

|

v “Samples: Downloading the IBM JGSS samples” on page 346

v “Example: Running the non-JAAS sample”

Example: Running the non-JAAS sample:

To run a sample, you need to download and modify the sample source code. For more information, see

Downloading and running the sample programs.

Starting the primary server

Use the following command to start a non-JAAS server that listens on port 4444. The server runs as the

principal (superSecureServer) and uses a secondary server (backupServer). The server also displays

application and credential debugging information.

 java -classpath ibmjgsssample.jar

 -Dcom.ibm.security.jgss.debug="app, cred"

 com.ibm.security.jgss.test.Server -p 4444

 -n superSecureServer -s backupServer

Successfully running this example displays the following message:

 listening on port 4444

Starting the secondary server

Use the following command to start a non-JAAS secondary server that listens on port 3333 and runs as

principal backupServer:

 java -classpath ibmjgsssample.jar

 com.ibm.security.jgss.test.Server -p 3333

 -n backupServer

Starting the client

Use the following command (typed on a single line) to run JAAS-enabled client (myClient). The client

communicates with the primary server on the host (securityCentral). The client runs with the default

security manager enabled, uses the JAAS configuration and policy files and the Java policy file from the

config directory. For more information about the config directory, see Downloading the IBM JGSS

samples.

 java -classpath ibmjgsssample.jar

 -Djava.security.manager

 -Djava.security.auth.login.config=config/jaas.conf

 -Djava.security.policy=config/java.policy

 -Djava.security.auth.policy=config/jaas.policy

 com.ibm.security.jgss.test.JAASClient -n myClient

 -s superSecureServer -h securityCentral:4444

 Collected links

 Downloading and running the sample programs

This topic contains instructions for downloading and running the sample javadoc information.

 Downloading the IBM JGSS samples

This topic contains instructions for downloading the sample javadoc information to your iSeries

server.

IBM JGSS javadoc reference information

The javadoc reference information for IBM JGSS includes classes and methods in the org.ietf.jgss api

package and the Java versions of some Kerberos credential management tools.

348 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Although JGSS includes several publicly accessible packages (for example, com.ibm.security.jgss and

com.ibm.security.jgss.spi), you should use only APIs from the standardized org.ietf.jgss package. Using

only this package ensures that your application conforms to the GSS-API specifications and ensures

optimum interoperability and portability.

v org.ietf.jgss

v “com.ibm.security.krb5.internal.tools Class Kinit” on page 317

v “com.ibm.security.krb5.internal.tools Class Ktab” on page 319

v “com.ibm.security.krb5.internal.tools Class Klist” on page 316

Tune Java program performance with IBM Developer Kit for Java

You should take several aspects of Java application performance into consideration when building a Java

application for your iSeries server.

Here are some links to details and hints on how you can get better performance:

v Improve performance of your Java code by using the Create Java Program (CRTJVAPGM) command,

the Just-In-Time compiler, or Using cache for user class loaders.

v Change your optimization levels to achieve the best static compilation performance.

v Carefully set your values for optimal garbage collection performance.

v Only use native methods to start system functions that are relatively long running and are not

available directly in Java.

v Use the javac -o option at compilation time to perform method inlining and significantly improve your

method call performance.

v Use Java exceptions in cases that are not the normal flow through your application.

Use these tools with the Performance Explorer (PEX) to locate performance problems in your Java

programs:

v You can collect “Java event trace performance tools” using the iSeries Java virtual machine.

v To determine the time that is spent in each Java method, use Java call traces.

v Java profiling locates the relative amount of CPU time that is spent in each Java method and all system

functions that are in use by your Java program.

v Use the Java Performance Data Collector to provide profile information about the programs that run on

the iSeries server.

Any job session can start and end PEX. Normally, the data that is collected is system wide and pertains

to all jobs on the system, including your Java programs. At times, it may be necessary to start and stop

the performance collection from inside a Java application. This reduces the collection time and may

reduce the large volume of data that is usually produced by a call or return trace. PEX cannot run from

within a Java thread. To start and stop a collection, you need to write a native method that communicates

to an independent job though a queue or shared memory. Then, the second job starts and stops the

collection at the appropriate time.

In addition to application-level performance data, you can use existing iSeries system level performance

tools. These tools report statistics on a Java thread basis.

 Related information

 Performance Tools for iSeries, SC41-5340

This manual contains examples of PEX reports.

Java event trace performance tools

The iSeries Java virtual machine enables the trace of certain Java events.

IBM Developer Kit for Java 349

jgssapi/index.html

These events can be collected without any instrumentation in the Java code. These events include

activities, such as garbage collection, thread creation, class loading, and locking. The Run Java (RUNJVA)

command does not specify these events. Instead, you create a Performance Explorer (PEX) definition and

use the Start Performance Explorer (STRPEX) command to collect the events. Each event contains useful

performance information, such as time stamp and central processing unit (CPU) cycles. You can trace

both Java events and other system activities, such as disk input and output, with the same trace

definition.

For a complete description of the Java events, see Performance Tools for iSeries, SC41-5340.

Java performance considerations

Understanding the following considerations can help you improve the performance of your Java

applications.

Creating optimized Java programs

To greatly improve the startup performance of your Java code, use the Create Java Program

(CRTJVAPGM) control language command before running Java class files, JAR files, or ZIP files. The

CRTJVAPGM command uses the bytecodes to create a Java program object, which contains optimized

native instructions for the iSeries server, and associates the Java program object with the class file, JAR

file, or ZIP file.

Subsequent runs are much faster because the Java program is saved and remains associated with the class

file or JAR file. Running the bytecodes interpretively may provide acceptable performance during

application development, but you may want to use the CRTJVAPGM command before running the Java

code in a production environment.

When you do not use CRTJVAPGM before running a Java class file, JAR file, or ZIP file, i5/OS uses the

Just-In-Time compiler (with the Mixed-Mode Interpreter) instead.

Selecting the optimization level

When creating your Java program object, use the following guidelines to help you select the best

optimization level for the run mode that you want to use:

v When you want to use direct processing, create the optimized Java program object at optimization

level 30 or 40.

v When you want to run only with the JIT compiler, create the optimized Java program by using the

*Interpret optimization parameter. A Java program created by using the *Interpret parameter is

smaller than one created by using optimization level 40.

v When you want to use the default run mode, which is a mix of direct processing and the JIT compiler,

use the following settings to create your Java program objects:

– For classes that you want to run with direct processing, use either optimization level 30 or 40

– For classes that you want to run with the JIT compiler, use the *Interpret optimization parameter

For more information, see the following pages:

Create Java Program (CRTJVAPGM) control language command

Select which mode to use when running a Java program

Using the Just-In-Time compiler

Using the Just-In-Time (JIT) compiler with the Mixed-Mode Interpreter (MMI) results in startup

performance that almost equals that of compiled code. MMI interprets your Java code until reaching the

350 IBM Systems - iSeries: Programming IBM Developer Kit for Java

threshold specified by the os400.jit.mmi.threshold Java system property. After reaching the threshold,

i5/OS spends the time and resources required to use the JIT compiler to compile a method on the most

frequently used methods. Using the JIT compiler results in highly optimized code that improves runtime

performance when compared to precompiled code. When you require improved startup performance

with the JIT compiler, you can use CRTJVAPGM to create an optimized Java program object.

If your program is running slowly, enter the Display Java Program (DSPJVAPGM) control language

command to view the attributes of a Java program object. Make sure that the Java program object uses

the best run mode for your purposes. If you want to change the run mode, you may want to delete the

Java program object and create a new one using different optimization parameters.

For more information, see the following:

Display Java Program (DSPJVAPGM) Control Language command

Using caches for user class loaders

Using the i5/OS Java virtual machine (JVM) cache for user class loaders improves startup performance

for classes that you load from a user class loader. The cache stores the optimized Java program objects,

which enables the JVM to reuse them. Reusing stored Java programs improves performance by avoiding

both recreating the cached Java program objects and verifying the bytecode.

Use the following properties to control caches for user class loaders:

os400.define.class.cache.file

The value of this property specifies the name (with the full path) of a valid Java ARchive (JAR)

file. At a minimum, the specified JAR file must contain a valid JAR directory (as built by the jar

QSH command) and the single member required for the jar command to function. Do not

include the specified JAR file in any Java CLASSPATH. The default value of this property is

/QIBM/ProdData/Java400/QDefineClassCache.jar. To disable caching, specify this property with

no value.

os400.define.class.cache.hours

The value of this property specifies how long (in hours) that you want a Java program object to

persist in the cache. When the JVM does not use a cached Java program object by the specified

length of time, i5/OS removes the Java program object from the cache. The default value of this

property is 768 hours (33 days). The maximum value is 9999 (about 59 weeks). When you specify

either a value of 0 or a value that i5/OS does not recognize as a valid decimal number, i5/OS

uses the default value.

os400.define.class.cache.maxpgms

The value of this property specifies the maximum number of Java program objects that the cache

can hold. When the cache exceeds this limit, i5/OS removes the oldest Java program object from

the cache. i5/OS determines which cached program is oldest by comparing times when the JVM

last referenced the Java program objects. The default value is 5000, and the maximum value is

40000. When you specify either a value of 0 or a value that i5/OS does not recognize as a valid

decimal number, i5/OS uses the default value.

Use DSPJVAPGM on the JAR file, which you specify in the os400.define.class.cache.file property, to

determine the number of cached Java program objects.

v The Java programs field of the DSPJVAPGM display indicates the number of cached Java program

objects.

v The Java program size field indicates the amount of storage used by the cached Java program objects.

v Other fields of the DSPJVAPGM display are meaningless when you use the command on a JAR file

that you are using for caching.

Cache performance

IBM Developer Kit for Java 351

Running some Java applications can cache a large number of Java program objects. Use DSPJVAPGM to

determine if the number of cached Java programs approaches the maximum value before the application

finishes running. Application performance can degrade when the cache gets full because i5/OS may

remove from the cache some programs that the application requires.

You can prevent performance degradation that results when the cache becomes full. For example, you can

set up applications to use separate caches for applications that run frequently but load different programs

into the cache. Using separate caches can prevent the cache from getting full and thus prevent i5/OS

from removing Java programs from the cache. Alternatively, you can increase the number that you

specify for the os400.define.class.cache.maxpgms property.

You can use Change Java Program (CHGJVAPGM) control language command on the JAR file to change

the optimization of the classes in the cache. CHGJVAPGM affects only programs that the cache currently

holds. After you make changes to the optimization levels, the os400.defineClass.optLevel property

specifies how to optimize any classes that are added to the cache.

For example, to use the shipped cache JAR with a maximum of 10000 Java program objects, where each

Java program has a maximum life of 1 year, set the following values for the cache properties:

os400.define.class.cache.file /QIBM/ProdData/Java400/QDefineClassCache.jar

os400.define.class.cache.hours 8760

os400.define.class.cache.maxpgms 10000

Select which mode to use when running a Java program

When you run a Java program, you can select which mode you would like to use. All modes verify the

code and create a Java program object to hold the preverified form of the program.

You can use any of the following modes:

v Interpreted

v Direct processing

v Just-In-Time (JIT) compile

v Just-In-Time (JIT) compile and direct processing

 Selection mode Details

Interpreted

Each bytecode is interpreted at runtime.

For information on running your Java program in the

interpreted mode, see the Run Java (RUNJVA) command.

Direct Processing

Machine instructions for a method are generated during

the first call to that method, and saved for use the next

time that the program runs. One copy is also shared for

the entire system.

For information on running your Java program using

direct processing, see the Run Java (RUNJVA) command.

352 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Selection mode Details

Just-In-Time (JIT) compile

i5/OS interprets Java methods until reaching the

threshold specified by the os400.jit.mmi.threshold Java

system property. After reaching the threshold, i5/OS uses

the JIT compiler to compile methods into native machine

instructions.

To use the Just-In-Time compiler, you need to set the

compiler value to jitc. You can set the value by adding

an environment variable or setting the java.compiler

system property. Select one method from the list below

to set the compiler value:

v From a command line prompt on your iSeries server,

add the environment variable by using the Add

Environment Variable (ADDENVVAR) command.

Then, run your Java program using the Run Java

(RUNJVA) command or JAVA command. For example,

use:

ADDENVVAR ENVVAR (JAVA_COMPILER) VALUE(jitc)

JAVA CLASS(Test)

v Set the java.compiler system property on the iSeries

command line. For example, enter JAVA CLASS(Test)

PROP((java.compiler jitc))

v Set the java.compiler system property on the Qshell

Interpreter command line. For example, enter java

-Djava.compiler=jitc Test

Once you set this value, the JIT compiler optimizes all of

the Java code before running it.

IBM Developer Kit for Java 353

Selection mode Details

Just-In-Time (JIT) compile and Direct Processing

The most common way to use the Just-In-Time (JIT)

compiler is with the jit_de option. When running with

this option, programs that have already been optimized

with direct processing run in direct processing mode.

Programs that have not been optimized for direct

optimization run in JIT mode.

To use JIT and direct processing together, you need to set

the compiler value to jitc_de. You can set the value by

adding an environment variable or setting the

java.compiler system property. Select one method from

the following list to set the compiler value:

v Add the environment variable by entering the Add

Environment Variable (ADDENVVAR) command on

the iSeries command line. Then, run your Java

program using the Run Java (RUNJVA) command or

JAVA command. For example, enter

ADDENVVAR ENVVAR (JAVA_COMPILER) VALUE(jitc_de)

JAVA CLASS(Test)

v Set the java.compiler system property on the iSeries

command line. For example, enter JAVA CLASS(Test)

PROP((java.compiler jitc_de))

v Set the java.compiler system property on the Qshell

Interpreter command line. For example, enter java

-Djava.compiler=jitc_de Test

Once this value is set, the Java program for the class file

that was created as direct processing is used. If the Java

program was not created as direct processing, the class

file is optimized by the JIT prior to running. For more

information, see Comparison of Just-In-Time compiler

and direct processing

There are three ways that you can run a Java program (CL, QSH, and JNI). Each has a unique way to

specify the mode. This table shows how that is done.

 Mode CL Command QShell Command JNI Invocation API

Interpret INTERPRET(*YES) -Djava.compiler=NONE

-interpret

os400.run.mode=interpret

DE INTERPRET(*NO) -Djava.compiler=NONE v os400.run.mode=

program_created=pc

v os400.create.type= direct

JIT INTERPRET(*JIT) -Djava.compiler=jitc os400.run.mode=jitc

JIT_DE(default) INTERPRET(*OPTIMIZE)

OPTIMIZE(*JIT)

-Djava.compiler=jitc_de os400.run.mode=jitc_de

Java interpreter

The Java interpreter is the part of the Java virtual machine that interprets Java class files for a particular

hardware platform. The Java interpreter decodes each bytecode and runs a series of machine instructions

for that bytecode.

Java virtual machine

354 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Static compilation

The Java transformer is an IBM i5/OS component that preprocesses class files to prepare them to run

using the iSeries Java virtual machine. The Java transformer creates an optimized program object that is

persistent and is associated with the class file.

In the default case, the program object contains a compiled, 64-bit RISC machine instruction version of

the class. The Java interpreter does not interpret the optimized program object at runtime. Instead, it

directly runs when the class file is loaded.

Java programs are optimized using the JIT by default. To use the Java transformer, you either do

CRTJVAPGM, or specify the use of the transformer on the RUNJVA or JAVA command.

You can use the Create Java Program (CRTJVAPGM) command to explicitly start the Java transformer.

The CRTJVAPGM command optimizes the class file or JAR file while the command runs, so nothing

needs to be done while the program is running. This improves the speed of the program the first time

that it runs. Using the CRTJVAPGM command, instead of relying on default optimization, ensures the

best optimization possible and also improves the use of space for the Java programs that are associated

with the class file or JAR file.

Using the CRTJVAPGM command on a class file, JAR file, or ZIP file causes all the classes in the file to

be optimized, and the resulting Java program object are persistent. This results in better runtime

performance. You can also change the optimization level or select an optimization level other than the

default of 10 by using the CRTJVAPGM command or the Change Java Program (CHGJVAPGM)

command. At optimization level 40, interclass binding is performed between the classes within a JAR file,

and in some cases, the classes are inlined. Interclass binding improves the call speed. Inlining removes

the overhead of a method call entirely. In some cases, you can inline methods between classes within the

JAR file or ZIP file. Specifying OPTIMIZE(*INTERPRET) on the CRTJVAPGM command causes any classes

that are specified on the command to be verified and prepared to run in interpreted mode.

The Run Java (RUNJVA) command can also specify OPTIMIZE(*INTERPRET). This parameter specifies

that any classes running under the Java virtual machine are interpreted, regardless of the optimization

level of the associated program object. This is useful when debugging a class that was transformed with

an optimization level of 40. To force interpretation, use INTERPRET(*YES).

See ″Using cache for user class loaders″ in Java performance considerations for information on reusing

your Java programs created by class loaders.

Java static compilation performance considerations:

You can determine the speed of transformation by the optimization level that you set.

 Optimization level 10 transforms the fastest, but the resulting program is generally slower than one set at

a higher optimization level. Optimization level 40 takes longer to transform, but is likely to run faster.

A small number of Java programs may not optimize to level 40. Thus, a few programs that do not run at

level 40, may run at level 30 instead. You can run programs that do not run at optimization level 40 by

using licensed internal code optimization LICOPT parameter strings. However, performance at level 30

may be sufficient for your program.

If you are having problems running Java code that seemed to work on another Java virtual machine, try

using optimization level 30 instead of level 40. If this works, and your performance is acceptable, you do

not need to do anything else. If you need better performance, see LICOPT parameter strings for

information on how to enable and disable various forms of optimization. For example, you could first try

creating the program using OPTIMIZE(40) LICOPT(NoPreresolveExtRef). If your application contains

dead calls to classes that are not available, this LICOPT value allows your program to run without

problems.

IBM Developer Kit for Java 355

To determine what level of optimization your Java programs were created at, you can use the Display

Java Program (DSPJVAPGM) command. To change the optimization level of your Java program, use the

Create Java Program (CRTJVAPGM) command.

Just-In-Time compiler

A Just-In-Time (JIT) compiler is a platform-specific compiler that generates machine instructions for each

method as needed.

For more information about using the JIT compiler, and about the difference between the JIT compiler

and direct processing, see the following pages:

Java runtime performance considerations.

Comparison of the JIT compiler and direct processing.

Note: The default setting for i5/OS is to interpret (not compile) Java methods by using the Mixed-Mode

Interpreter (MMI). MMI profiles each Java method as it interprets it. After reaching the threshold

specified by the os400.jit.mmi.threshold property, MMI then specifies that i5/OS use the JIT

compiler to compile the method.

For more information, see the entries for the java.compiler property and the os400.jit.mmi.threshold

property in the appropriate list of Java system properties:

Java system properties for Java 2 SDK (J2SDK), Standard Edition

Comparison of Just-In-Time compiler and direct processing:

If you are trying to decide whether to use the Just-In-Time compiler or direct processing mode to run

your Java program, this table provides additional information to help you make the best choice for your

situation.

 Just-In-Time compiler or direct processing mode

 Just-In-Time compiler Direct processing

Provides an automatic compilation of any method when

needed. The JIT compiler can compile a method much

faster than direct processing.

Allows you to compile an entire class or JAR file by

using the Create Java Program (CRTJVAPGM) control

language (CL) command. If you do not compile the files,

direct processing compiles the files automatically at run

time.

Enables you to avoid using the CRTJVAPGM CL

command during program development. You can also

use the JIT compiler with highly dynamic applications

that generate or discover code at run time.

Most ready-to-deploy server applications use direct

processing at optimization level 40 because they are

likely to be in use by multiple users at any given time.

Multiple user jobs share the same code space in memory,

which reduces the memory footprint.

Rapidly performs complex optimizations and Java

specific optimizations at run time.

Enables complex optimizations, because direct processing

does not perform optimization at run time. However,

direct processing cannot always perform Java-specific

optimizations (like inlining methods) because Java

program objects must be independent.

Offers better code performance when compared to direct

processing. In most cases, the performance of

JIT-generated code is better than direct processing

optimization level 40.

Offers the only way your Java program can adopt owner

authority.

356 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Java garbage collection

Garbage collection is the process of freeing storage that is used by objects that are no longer referred to

by a program. With garbage collection, programmers no longer have to write error prone code to

explicitly ″free″ or ″delete″ their objects. This code frequently results in ″memory leak″ program errors.

The garbage collector automatically detects an object or group of objects that the user program can no

longer reach. It does this because there are no references to that object in any program structure. Once the

object has been collected, you can allocate the space for other uses.

The Java runtime environment includes a garbage collector that frees memory that is no longer in use.

The garbage collector runs automatically, as needed.

The garbage collector can also be started explicitly under the control of the Java program using the

java.lang.Runtime.gc() method.

IBM Developer Kit for Java advanced garbage collection

The IBM Developer Kit for Java implements an advanced garbage collector algorithm. This algorithm

allows the discovery and collection of unreachable objects without significant pauses in the operation of

the Java program. A concurrent collector cooperatively discovers the references to objects under the

running threads, instead of a single thread.

Many garbage collectors are ″stop-the-world″. This means that at the point where a collection cycle

occurs, all threads, except the thread that does garbage collection, stop while the garbage collector does

its work. When this happens, Java programs experience a pause, and any multiple processor capability of

the platform is wasted relative to Java, while the collector does its work. The iSeries algorithm does not

stop all program threads simultaneously. It allows those threads to continue operation while the garbage

collector completes its task. This prevents the pauses, and allows all processors to be used during garbage

collection.

Garbage collection occurs automatically based on parameters that you specify when you start the Java

virtual machine. Garbage collection can also be started explicitly under the control of the Java program

by using the java.lang.Runtime.gc() method.

For a basic definition, see Java garbage collection.

Java garbage collection performance considerations

Garbage collection on the iSeries Java virtual machine operates in a continuous asynchronous mode. The

garbage collection-initial size (GCHINL) parameter on the Run Java (RUNJVA) command may affect

application performance.

The GCHINL parameter specifies the amount of new object space that is allowed between garbage

collections. A small value may cause too much garbage collection overhead. A large value may limit

garbage collection and cause out of memory errors. However, for most applications, the default values

should be correct.

Garbage collection determines that an object is no longer needed by evaluating whether there are any

valid references to that object.

Java Native Method Invocation performance considerations

Native method invocation on an iSeries server may not perform as well as native method invocation on

other platforms.

Java on the iSeries server has been optimized by moving the Java virtual machine below the machine

interface (MI). Native method invocation requires a call to above MI code and may require expensive

Java Native Interface (JNI) calls back into the Java virtual machine. Native methods should not carry out

IBM Developer Kit for Java 357

small routines, which you can easily write in Java. Only use native methods to start system functions that

are relatively long running and are not available directly in Java.

Java method inlining performance considerations

Method inlining can significantly improve method call performance. Any method that is final is a

potential candidate for inlining.

The inline feature is available on the iSeries server through the javac -o option at compilation time. The

size of your class files and transformed Java program increases if you use the javac -o option. You should

consider both the space and performance characteristics of your application when using the -o option.

Note: In general, it is best to not use the -o option of javac but instead leave inlining to later phases.

The Java transformer enables inlining for optimization level 30 and optimization level 40. Optimization

level 30 enables some inlining of final methods within a single class. Optimization level 40 enables

inlining of final methods within a ZIP file or JAR file. You can control method inlining with the

AllowInlining and NoAllowInlining LICOPT parameter strings. The iSeries interpreter does not perform

method inlining.

The Just-In-Time (JIT) compiler also performs inlining of most final methods. This is done automatically

whenever the JIT compiler is active and it determines that inlining will be beneficial.

Java exception performance considerations

The iSeries exception architecture allows versatile interrupt and retry capabilities. It also allows mixed

language interaction. Throwing Java exceptions on an iSeries server may be more expensive than on other

platforms. This should not affect overall application performance unless Java exceptions are routinely

used in the normal application path.

Java call trace performance tools

Java method call traces provide significant performance information about the time that is spent in each

Java method.

On other Java virtual machines, you may have used the -prof (profiling) option on the java command. To

enable method call tracing on an iSeries server, you must specify the Enable Performance Collection

(ENBPFRCOL) command on the Create Java Program (CRTJVAPGM) command line. After creating your

Java program with this keyword, you can start the collection of method call traces by using a

Performance Explorer (PEX) definition that includes the call/return trace type.

Call/return trace output produced with the Print Performance Explorer Report (PRTPEXRPT) command

shows the central processing unit (CPU) time for each call for every Java method that is traced. In some

cases, you may not be able to enable all of the class files for call return tracing. Or, you may be calling

native methods and system functions that are not enabled for tracing. In this situation, all of the CPU

time that is spent in these methods or system functions accumulates. Then, it is reported to the last Java

method that is called and has been enabled.

Java profiling performance tools

System wide central processing unit (CPU) profiling calculates the relative amount of CPU time that is

spent in each Java method and all system functions in use by your Java program.

Use a Performance Explorer (PEX) definition that traces performance monitor counter overflow (*PMCO)

run cycle events. Samples are typically specified in intervals of one millisecond. To collect a valid trace

profile, you should run your Java application until it accumulates two to three minutes of CPU time. This

should produce over 100,000 samples. The Print Performance Explorer Report (PRTPEXRPT) command

produces a histogram of CPU time that is spent across the entire application. This includes every Java

358 IBM Systems - iSeries: Programming IBM Developer Kit for Java

method and all system-level activity. The Performance Data Collector (PDC) tool also provides profile

information about the programs that run on the iSeries server.

Note: CPU profiling does not show relative CPU usage for Java programs that are interpreted.

 Collected links

 Performance Data Collector (PDC) tool

The Performance Data Collector (PDC) tool provides profile information about the programs that run

on the iSeries server.

Java Virtual Machine Profiler Interface

The Java Virtual Machine Profiler Interface (JVMPI) is an experimental interface for profiling the Java

virtual machine (JVM), which was first disclosed and implemented in Sun’s Java 2 SDK, Standard Edition

(J2SDK), version 1.2.

JVMTI is the superceder of JVMPI and the Java Virtual Machine Debugger Interface (JVMDI). JVMTI

contains all the functionality of both JVMDI and JVMPI, plus new functions. JVMTI was added as part of

J2SE 5.0. In future releases, the JVMDI and JVMPI interfaces will no longer be offered, and JVMTI will be

the only option available.

For more information about implementing JVMTI, see the JVMTI Reference page at the Sun

Microsystems, Inc. Web site.

JVMPI/JVMTI support places hooks in the JVM and the Just-in-time (JIT) compiler, which when

activated, provide event information to a profiling agent. The profiling agent is implemented as an

integrated language environment (ILE) service program. The profiler sends control information to the

JVM for enabling and disabling JVMPI/JVMTI events. For example, the profiler may not be interested in

method Entry or Exit hooks and could tell the JVM that it does not want to receive these event

notifications. The JVM and JIT have JVMPI/JVMTI event hooks embedded that send event notifications

to the profiling agent if the event is enabled. The profiler tells the JVM which events are of interest and

the JVM sends notifications of the events to the profiler when they occur.

The service program QSYS/QJVAJVMPI provides the JVMPI functions.

A service program, called QJVAJVMTI, which resides in the QSYS library, supports the JVMTI functions.

For more information, see JVMPI by Sun Microsystems, Inc.

Collect Java performance data

To collect Java performance data on an iSeries server, follow these steps.

1. Create a Performance Explorer (PEX) definition that specifies:

v A user-defined name

v Type of data collection

v Job name

v Series of system events that you would like to collect system information about

Note: A PEX definition of *STATS is preferable to a *TRACE definition if the output that you want is

the java_g -prof type, and you know the specific job name of the Java program.

Here is an example of a *STATS definition:

 ADDPEXDFN DFN(YOURDFN) JOB(*ALL/YOURID/QJVACMDSRV) DTAORG(*HIER)

 TEXT(’your stats definition’)

This *STATS definition does not get all Java events running. Only the Java events that are in your

own Java session are profiled. This mode of operation may increase the time that it takes to run the

Java program.

IBM Developer Kit for Java 359

|
|
|
|

|
|

|

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html
http://java.sun.com/j2se/1.3/docs/guide/jvmpi/jvmpi.html

Here is an example of a *TRACE definition:

 ADDPEXDFN DFN(YOURDFN) TYPE(*TRACE) JOB(*ALL) TRCTYPE(*SLTEVT)

 SLTEVT(*YES) PGMEVT(*JVAENTRY *JVAEXIT)

This *TRACE definition collects any Java entry event and exit event from any Java program in the

system that you create with ENBPFRCOL(*ENTRYEXIT). This causes the analysis of this type of

collection to be slower than a *STATS trace, depending on how many Java program events you have

and the duration of the PEX data collection.

2. Enable the *JVAENTRY and *JVAEXIT, under the program events category on the PEX definition, so

that PEX recognizes the Java entry and exits.

Note: If you are running the Java code using the Just-in-time (JIT) compiler, you do not enable entry

and exit as you would if you were using the CRTJVAPGM command for direct processing.

Instead, JIT generates code with entry and exit hooks when you use the os400.enbprfcol system

property.

3. Prepare the Java program to report program events to the iSeries Performance Data Collector.

You can do this by using the Create Java Program (CRTJVAPGM) command on any Java program that

you want to report performance data on. You must create the Java program by using the

ENBPFRCOL(*ENTRYEXIT) parameter.

Note: You must repeat this step for every Java program that you want to collect performance data on.

If you do not perform this step, no performance data is collected by the PEX and no output is

produced by running the Java Performance Data Converter (JPDC) tool.

4. Start the PEX data collection by using the Start Performance Explorer (STRPEX) command.

5. Run the program that you would like to analyze.

This program should not be in a production environment. It generates a large amount of data in a

small amount of time. You should limit the collection time to five minutes. A Java program that runs

for this amount of time generates a lot of PEX system data. If too much data is collected, an

unreasonable amount of time is required to process it.

6. End the PEX data collection by using the End Performance Explorer (ENDPEX) command.

Note: If this is not the first time that you have ended PEX data collection, you must specify a replace

file of *YES or it does not save your data.

7. Run the JPDC tool.

8. Connect the integrated file system directory to the system with the viewer of your choice: java_g -prof

viewer or Jinsight viewer.

You can copy this file from you iSeries server and use it as input to any suitable profiling tool.

Performance Data Collector tool

The Performance Data Collector (PDC) tool provides profile information about the programs that run on

the iSeries server.

The industry-standard profile option on many Java virtual machines depends on the implementation of

the java_g feature. This is a special debug version of the Java virtual machine, which offers the -prof

option. You specify this option on a call to a Java program. When you specify this option, the Java virtual

machine produces a record file that contains information about which parts of the Java program were

operating during the duration of the program. The Java virtual machine generates this information in real

time.

On the iSeries server, the Performance Explorer (PEX) feature analyzes programs and record-specific

system events. A DB2 database stores this information and retrieves it using SQL functions. PEX

information is the repository for specific program information that produces Java profile data. This profile

360 IBM Systems - iSeries: Programming IBM Developer Kit for Java

data is compatible with java_g -prof program profile information. The Java Performance Data Converter

(JPDC) tool provides java_g -prof program output and program profile information for a specific IBM

tool, which is known as Jinsight.

For information on how collect Java performance data, see Collect Java performance data.

Java Performance Data Converter tool

The Java Performance Data Converter (JDPC) tool provides a way for you to create Java performance

data about the Java programs that are running on your iSeries server. This performance data is

compatible with the performance data output of Sun Microsystems, Inc.’s Java virtual machine java_g

-prof option and IBM Jinsight output.

Note: The JDPC tool does not produce readable output. Use a Java profiling tool that accepts java_g

-prof or Jinsight data to analyze your data.

The JDPC tool accesses the iSeries Performance Explorer (PEX) data that DB2/400 (using JDBC) stores. It

converts the data to either Jinsight or general performance types. Then, JDPC stores the output file in the

integrated file system at a user-specified location.

Note: You must follow appropriate iSeries PEX data collection procedures to collect PEX data while

running your specified Java application on an iSeries server. You must set a PEX definition with

defines the entrance and exit of a program or a collect and store procedure. For details on how

collect PEX data and set a PEX definition, see Performance Tools for iSeries, SC41-5340.

For information on how to run JPDC, see Run the Java Performance Data Converter.

You can start the JPDC program by using either the Qshell command line interface or Run Java

(RUNJVA) command.

Run the Java Performance Data Converter

To run the Java Performance Data Converter (JPDC) for performance data collection, follow these steps.

1. Enter the first input argument, which is either general for the java_g -prof or jinsight for Jinsight

output.

2. Enter the second input argument, which is the name of the Performance Explorer (PEX) definition

that was used to collect the data.

Note: You should restrict this name to four or five characters, because of the internal use of

connections of this name.

3. Enter the third input argument, which is the name of the file that the JPDC tool generates.

This generated file writes to your current integrated file system directory. Use the cd (PF4) command

to specify an integrated file system current directory.

4. Enter the fourth input argument, which is the name of the iSeries host relational database directory

entry.

Use the Work with Relational Database Directory Entry (WRKRDBDIRE) command to see what the

name is. It is the only relational database where the *LOCAL is indicated.

To operate this code the /QIBM/ProdData/Java400/ext/JPDC.jar file must be in the Java classpath on

the iSeries server. When the program is done running, a text output file can be found in the current

directory.

You can run JPDC by using the iSeries command line or Qshell environment. See Example: Run the Java

Performance Data Converter for details.

Example: Run the Java Performance Data Converter:

IBM Developer Kit for Java 361

You can either use the iSeries command line or the Qshell environment to run the Java Performance Data

Converter (JPDC).

 Using the iSeries command line:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

1. Enter the Run Java (RUNJVA) command or JAVA command on the iSeries command line.

2. Enter com.ibm.as400.jpdc.JPDC on the class parameter line.

3. Enter general pexdfn mydir/myfile myrdbdire on the parameter line.

4. Enter ’/QIBM/ProdData/Java400/ext/JPDC.jar’ on the classpath parameter line.

Note: You can omit the classpath if the ’/QIBM/ProdData/Java400/ext/JPDC.jar’ string is in the

CLASSPATH environment variable. You can use either the Add Environment Variable

(ADDENVVAR) command, Change Environment Variable (CHGENVVAR) command, or Work

with Environment Variable (WRKENVVAR) command to add this string to the CLASSPATH

environment variable.

Using the Qshell environment:

1. Enter the Start Qshell (STRQSH) command to start the Qshell Interpreter.

2. Enter this on the command line:

java -classpath /QIBM/ProdData/Java400/ext/JPDC.jar com.ibm.as400/jpdc/JPDC

jinsight pexdfn mydir/myfile myrdbdire

Note: You can omit the classpath if the ’/QIBM/ProdData/Java400/ext/JPDC.jar’ string is added to

your current environment. You can use either the ADDENVVAR command, CHGENVVAR, or

WRKENVVAR command to add this string to your current environment.

For background information, see Run the Java Performance Data Converter.

Commands and tools for the IBM Developer Kit for Java

When using the IBM Developer Kit for Java, you can either use Java tools with the Qshell Interpreter or

CL commands.

If you have prior Java programming experience, you may be more comfortable using the Qshell

Interpreter Java tools, because they are similar to the tools that you would use with Sun Microsystems,

Inc. Java Development Kit. See Qshell Interpreter for information about using the Qshell environment.

If you are an iSeries programmer, you may want to use the CL commands for Java that are typical to the

iSeries server environment. Read on for more information about using CL commands and iSeries

Navigator commands.

You can use any of these commands and tools with the IBM Developer Kit for Java:

v The Qshell environment includes the Java development tools that are typically required for program

development.

v The CL environment contains the CL commands for optimizing and managing Java programs.

v The “iSeries Navigator commands that are supported by Java” on page 371 also create and run

optimized Java programs.

Java tools that are supported by the IBM Developer Kit for Java

The IBM Developer Kit for Java supports these tools.

362 IBM Systems - iSeries: Programming IBM Developer Kit for Java

With a few exceptions, the Java tools, except the ajar tool, support the syntax and options that are

documented by Sun Microsystems, Inc. They must all run by using the Qshell Interpreter.

You can start the Qshell Interpreter by using the Start Qshell (STRQSH or QSH) command. When the

Qshell Interpreter is running, a QSH Command Entry display appears. All output and messages from

Java tools and programs that run under Qshell appear in this display. Any input to a Java program is

also read from this display. See Java command in Qshell for more details.

Note: Functions of iSeries command entry are not available directly from within the Qshell. To get a

command line, press F21 (CL command entry).

Java tools

See the topics here for descriptions of Java tools.

Java ajar tool:

The ajar tool is an alternative interface to the jar tool that you use to create and manipulate Java

ARchive (JAR) files. You can use the ajar tool to manipulate both JAR files and ZIP files.

 The ajar tool lists the contents of JAR files, extracts from JAR files, creates new JAR files, and supports

many of the ZIP formats just as the jar tool does. Additionally, the ajar tool supports adding and

deleting files in existing JAR files.

The ajar tool is available using the Qshell Interpreter. For more details, see ajar - Alternative Java

archive.

Java appletviewer tool:

The Java appletviewer tool allows you to run applets without a web browser. It is compatible with the

appletviewer tool that is supplied by Sun Microsystems, Inc.

 To run the appletviewer tool, you need to use Native Abstract Window Toolkit (NAWT), and use either

the sun.applet.AppletViewer class or run the appletviewer tool in the Qshell Interpreter.

The following is an example of using the sun.applet.AppletViewer class and running the TicTacToe demo

example. For information about how to load the demo examples, see How to extract sample files.

From the command line, enter:

 cd ’/home/MyUserID/demo/applets/TicTacToe’

For JDK 1.3, issue the command:

 JAVA CLASS(sun.applet.AppletViewer) PARM(’example1.html’)

 PROP((os400.class.path.rawt 2)(java.version 1.3))

For JDK 1.4, issue the command:

 JAVA CLASS(sun.applet.AppletViewer) PARM(’example1.html’)

 prop((os400.awt.native true)(java.version 1.4))

For JDK 1.5, issue the command:

 JAVA CLASS(sun.applet.AppletViewer) PARM(’example1.html’)

 prop((os400.awt.native true)(java.version 1.5))

The following is an example of using the appletviewer tool in the Qshell Interpreter and running the

TicTacToe demo example. For information about how to load the demo examples, see How to extract

sample files.

IBM Developer Kit for Java 363

|

The corresponding commands would be:

 cd /home/MyUserID/demo/applets/TicTacToe

For JDK 1.3, issue the command:

 Appletviewer -J-Dos400.class.path.rawt=2 -J-Djava.version=1.3 example1.html

For JDK 1.4, issue the command:

 Appletviewer -J-Dos400.awt.native=true -J-Djava.version=1.4 example1.html

For JDK 1.5, issue the command:

 Appletviewer -J-Dos400.awt.native=true -J-Djava.version=1.5 example1.html

Note: -J are runtime flags for Appletviewer. -D are properties.

For more information about the appletviewer tool, see the appletviewer tool by Sun Microsystems, Inc.

How to extract sample files:

The following procedure shows one way to extract the sample files before you run the Java appletviewer

tool. The procedure assumes you want to extract the sample files into your home directory.

1. Enter the Start Qshell (QSH) command on the command line.

2. If it does not already exist, create a home level integrated file system (IFS) directory for your user ID:

mkdir /home/MyUserID

3. Create a demo directory within the IFS directory:

mkdir /home/MyUserID/demo

4. Change directories to the demo directory:

cd /home/myUserId/demo

5. For JDK 1.3, enter the following on the command line to extract the demo files:

jar xf /QIBM/ProdData/Java400/jdk13/demo.zip

For JDK 1.4, use this command:

jar xf /QIBM/ProdData/Java400/jdk14/demo.jar

For JDK 1.5, use this command:

jar xf /QIBM/ProdData/Java400/jdk15/demo.jar

Java apt tool:

The Java apt tool processes program annotations.

 The apt tool is available only with JDK 1.5 and subsequent versions. The apt tool is available using the

Qshell Interpreter.

For more information about the apt tool, see the apt tool by Sun Microsystems, Inc.

Java extcheck tool:

In Java 2 SDK (J2SDK), Standard Edition, version 1.2 and higher, the extcheck tool detects version

conflicts between a target JAR file and currently installed extension JAR files. It is compatible with the

keytool that is supplied by Sun Microsystems, Inc.

 The extcheck tool is available using the Qshell Interpreter.

364 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|

|

|

|

|

|
|

|

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/appletviewer.html
http://java.sun.com/j2se/1.5.0/docs/guide/apt/index.html

For more information about the extcheck tool, see the extcheck tool by Sun Microsystems, Inc.

Java idlj tool:

The idlj tool generates Java bindings from a given Interface Definition Language (IDL) file.

 The idlj tool is also known as the IDL-to-Java compiler. It is compatible with the idlj tool that is

supplied by Sun Microsystems, Inc. This tool only works for Java Development Kit 1.3 and subsequent

versions.

For more information about the idlj tool, see the idlj tool by Sun Microsystems, Inc.

Java jar tool:

The jar tool combines multiple files into a single Java ARchive (JAR) file. It is compatible with the jar

tool that is supplied by Sun Microsystems, Inc

 The jar tool is available using the Qshell Interpreter.

For an alternative interface to the jar tool, see the ajar tool for creating and manipulating JAR files.

For more information about iSeries file systems, see the Integrated file system or Files in the integrated

file system.

For more information about the jar tool, see the jar tool by Sun Microsystems, Inc.

Java jarsigner tool:

In Java 2 SDK (J2SDK), Standard Edition, version 1.2 and higher, the jarsigner tool signs JAR files and

verifies signatures on signed JAR files.

 The jarsigner tool accesses the keystore, which the keytool creates and manages, when it needs to find

the private key for signing a JAR file. In J2SDK, the jarsigner and keytool tools replace the javakey tool.

It is compatible with the jarsigner tool that is supplied by Sun Microsystems, Inc.

The jarsigner tool is available using the Qshell Interpreter.

For more information about the jarsigner tool, see the jarsigner tool by Sun Microsystems, Inc.

Java javac tool:

The javac tool compiles Java programs. It is compatible with the javac tool that is supplied by Sun

Microsystems, Inc. with one exception.

-classpath

Does not override the default classpath. Instead, it is appended to the system default classpath.

The -classpath option does override the CLASSPATH environment variable.

 The javac tool is available using the Qshell Interpreter.

If you have JDK 1.1.x installed on your iSeries server as your default, but you need to run the java

command from version 1.2 or higher, enter this command:

javac -djava.version=1.2 <my_dir> MyProgram.java

 For more information about the javac tool, see the javac tool by Sun Microsystems, Inc.

IBM Developer Kit for Java 365

|
|
|

javaapi/tooldocs/windows/extcheck.html
javaapi/guide/rmi-iiop/toJavaPortableUG.html
javaapi/tooldocs/windows/jar.html
javaapi/tooldocs/windows/jarsigner.html
javaapi/tooldocs/windows/javac.html

Java javadoc tool:

The javadoc tool generates API documentation. It is compatible with the javadoc tool that is supplied by

Sun Microsystems, Inc.

 The javadoc tool is available using the Qshell Interpreter.

For more information about the javadoc tool, see the javadoc tool by Sun Microsystems, Inc.

Java javah tool:

The javah tool facilitates the implementation of Java native methods. It is compatible with the javah tool

that is supplied by Sun Microsystems, Inc. with a few exceptions.

Note: Writing native methods means that your application is not 100% pure Java. It also means that your

application is not directly portable across platforms. Native methods are, by nature, platform or

system-specific. Using native methods may increase your development and maintenance costs for

your applications.

The javah tool is available using the Qshell Interpreter. It reads a Java class file and creates a C-language

header file in the current working directory. The header file that is written is an iSeries Stream File

(STMF). It must be copied to a file member before it can be included in a C program on the iSeries server.

The javah tool is compatible with the tool that is provided by Sun Microsystems, Inc. If these options are

specified, however, the iSeries server ignores them.

-td The javah tool on the iSeries server does not require a temporary directory.

-stubs Java on the iSeries server only supports the Java Native Interface (JNI) form of native methods.

Stubs were only required for the pre-JNI form of native methods.

-trace Relates to the .c stub file output, which Java on the iSeries server does not support.

-v Not supported.

Note: The -jni option must always be specified. The iSeries server does not support native method

implementations prior to JNI.

For more information about the javah tool, see the javah tool by Sun Microsystems, Inc.

Java javap tool:

The javap tool disassembles compiled Java files and prints out a representation of the Java program. This

may be helpful when the original source code is no longer available on a system.

-b This option is ignored. Backward compatibility is not required, because Java on the iSeries server

only supports Java Development Kit (JDK) 1.1.4 and later.

-p On the iSeries server, -p is not a valid option. You must spell out -private.

-verify

This option is ignored. The javap tool does not do verification on the iSeries server.

 The javap tool is available using the Qshell Interpreter.

Note: The use of the javap tool to disassemble classes may violate the license agreement for those

classes. Consult the license agreement for the classes before using the javap tool.

For more information about the javap tool, see the javap tool by Sun Microsystems, Inc.

366 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javaapi/tooldocs/windows/javadoc.html
javaapi/tooldocs/windows/javah.html
javaapi/tooldocs/windows/javap.html

Java keytool:

In Java 2 SDK (J2SDK), Standard Edition, version 1.2 or higher, the keytool creates public and private key

pairs, self-signed certificates, and manage keystores. In J2SDK, the jarsigner and keytool tools replace

the javakey tool. It is compatible with the keytool that is supplied by Sun Microsystems, Inc.

 The keytool is available using the Qshell Interpreter.

For more information about the keytool, see the keytool by Sun Microsystems, Inc.

Java native2ascii tool:

The native2ascii tool converts a file with native-encoded characters (characters which are non-Latin 1

and non-Unicode) to one with Unicode-encoded characters. It is compatible with the native2ascii tool

that is supplied by Sun Microsystems, Inc.

 The native2ascii tool is available using the Qshell Interpreter.

For more information about the native2ascii tool, see the native2ascii tool by Sun Microsystems, Inc.

Java orbd tool:

The orbd tool provides support for clients to transparently locate and invoke persistent objects on servers

in the CORBA environment.

 ORBD is used instead of the Transient Naming Service (tnameserv) because it includes both a Transient

Naming Service and a Persistent Naming Service. The orbd tool incorporates the functionality of a Server

Manager, an Interoperable Naming Service, and a Bootstrap Name Server. When used in conjunction with

the servertool, the Server Manager locates, registers, and activates a server when a client wants to access

the server.

For more information about the orbd tool, see the orbd tool by Sun Microsystems, Inc.

Java pack200 tool:

The pack200 tool is a Java application that compresses a JAR file into a pack200 file.

 The pack200 tool is available only with JDK 1.5 and subsequent versions. The pack200 tool is available

using the Qshell Interpreter.

For more information, see the pack200 tool by Sun Microsystems, Inc.

 Related concepts

 “Java unpack200 tool” on page 368

The Java unpack200 tool decompresses a pack200 file into a JAR file.

Java policytool:

In Java 2 SDK, Standard Edition, the policytool creates and changes the external policy configuration

files that define the Java security policy of your installation. It is compatible with the policytool that is

supplied by Sun Microsystems, Inc.

 The policytool is a graphical user interface (GUI) tool available using the Qshell Interpreter and the

Native Abstract Window Toolkit (NAWT). See IBM Developer Kit for Java Native Abstract Window

Toolkit for more information.

IBM Developer Kit for Java 367

|

|

|

|
|

|

|

|
|

javaapi/tooldocs/windows/keytool.html
javaapi/tooldocs/windows/native2ascii.html
javaapi/guide/idl/orbd.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/pack200.html

For more information about the policytool, see the policytool by Sun Microsystems, Inc.

Java rmic tool:

The rmic tool generates stub files and class files for Java objects. It is compatible with the rmic tool that is

supplied by Sun Microsystems, Inc.

 The rmic tool is available using the Qshell Interpreter.

For more information about the rmic tool, see the rmic tool by Sun Microsystems, Inc.

Java rmid tool:

In Java 2 SDK (J2SDK), Standard Edition, the rmid tool starts the activation system daemon, so objects

can be registered and activated in a Java virtual machine. It is compatible with the rmid tool that is

supplied by Sun Microsystems, Inc.

 The rmid tool is available using the Qshell Interpreter.

For more information about the rmid tool, see the rmid tool by Sun Microsystems, Inc.

Java rmiregistry tool:

The rmiregistry tool starts a remote object registry on a specified port. It is compatible with the

rmiregistry tool that is supplied by Sun Microsystems, Inc.

 The rmiregistry tool is available using the Qshell Interpreter.

For more information about the rmiregistry tool, see the rmiregistry tool by Sun Microsystems, Inc.

Java serialver tool:

The serialver tool returns the version number or serialization-unique identifier for one or more classes.

It is compatible with the serialver tool that is supplied by Sun Microsystems, Inc.

 The serialver tool is available using the Qshell Interpreter.

For more information about the serialver tool, see the serialver tool by Sun Microsystems, Inc.

Java servertool:

The servertool provides a command-line interface for application programmers to register, unregister,

start up, and shut down a persistent server.

 For more information about the servertool, see the servertool by Sun Microsystems, Inc.

Java tnameserv tool:

In Java 2 SDK (J2SDK), Standard Edition, version 1.3 or higher , the tnameserv (Transient Naming

Service) tool provides access to the naming service. It is compatible with the tnameserv tool that is

supplied by Sun Microsystems, Inc.

 The tnameserv tool is available using the Qshell Interpreter.

Java unpack200 tool:

The Java unpack200 tool decompresses a pack200 file into a JAR file.

368 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|

|

|

javaapi/tooldocs/windows/policytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/rmic.html
javaapi/tooldocs/windows/rmid.html
javaapi/tooldocs/windows/rmiregistry.html
javaapi/tooldocs/windows/serialver.html
javaapi/guide/idl/servertool.html

The unpack200 tool is available only with JDK 1.5 and subsequent versions. The unpack200 tool is

available using the Qshell Interpreter.

For more information, see the unpack200 tool by Sun Microsystems, Inc.

 Related concepts

 “Java pack200 tool” on page 367

The pack200 tool is a Java application that compresses a JAR file into a pack200 file.

Java command in Qshell

The java command in Qshell runs Java programs. It is compatible with the java tool that is supplied by

Sun Microsystems, Inc. with a few exceptions.

The IBM Developer Kit for Java ignores these options of the java command in Qshell.

 Option Description

-cs This option is not supported.

-checksource This option is not supported.

-debug This option is supported by the iSeries internal debugger.

-noasyncgc Garbage collection is always running with the IBM

Developer Kit for Java.

-noclassgc Garbage collection is always running with the IBM

Developer Kit for Java.

-prof The iSeries server has its own performance tools.

-ss This option is not applicable on the iSeries server.

-oss This option is not applicable on the iSeries server.

-t The iSeries server uses its own trace function.

-verify Always verify on the iSeries server.

-verifyremote Always verify on the iSeries server.

-noverify Always verify on the iSeries server.

On the iSeries server, the -classpath option does not override the default classpath. Instead, it is

appended to the system default classpath. The -classpath option does override the CLASSPATH

environment variable.

The java command in Qshell supports new options for the iSeries server. These are the new options that

are supported.

 Option Description

-chkpath This option checks for public write access to directories

in the CLASSPATH.

-opt This option specifies the optimization level.

-Xrun[:] A message is displayed, indicating that a service

program and an optional parameter string for the

JVM_OnLoad function during JVM startup.

-agentlib: Indicates an i5/OS service program containing a VM

agent. The VM attempts to load the service program

from an i5/OS library included in the library list during

start up.

IBM Developer Kit for Java 369

|
|

|

|

|
|

http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/unpack200.html

Option Description

-agentpath: Load the library from the absolute path that follows this

option. Library name expansion does not occur and the

options pass to the agent on start-up.

-javaagent:<jarpath>[=<options>] Loads Java programming language agents for use with

the java.lang.instrument package.

jarpath is the path to the agent JAR file. options is the

agent options. You can use

-javaagent:<jarpath>[=<options>] more than once on the

same command line to create multiple agents. More than

one agent may use the same jarpath.

The Run Java (RUNJVA) command in the CL command reference information describes these new

options in detail. The CL command reference information for the Create Java Program (CRTJVAPGM)

command, Delete Java Program (DLTJVAPGM) command, and Display Java Program (DSPJVAPGM)

command contains information about managing Java programs.

The java command in Qshell is available using the Qshell Interpreter.

For more information about the java command in Qshell, see the java tool by Sun Microsystems, Inc.

CL commands that are supported by Java

The IBM Developer Kit for Java supports these CL commands.

v Analyze Java Program (ANZJVAPGM) command analyzes a Java program, lists its classes and shows

the current status of each class.

v Analyze Java Virtual Machine (ANZJVM) command retrieves and sets information into a Java virtual

machine (JVM). This command helps you debug Java programs by returning information about active

classes.

v Change Java Program (CHGJVAPGM) command changes the attributes of a Java program.

v Create Java Program (CRTJVAPGM) command creates a Java program on an iSeries server from a Java

class file, ZIP file, or JAR file.

v Delete Java Program (DLTJVAPGM) command deletes an iSeries Java program that is associated with a

Java class file, ZIP file, or JAR file.

v Display Java Program (DSPJVAPGM) command displays information about a Java program on iSeries.

v Display Java Virtual Machine Jobs (DSPJVMJOB) command displays information about active JVM jobs

to help you manage the application of program temporary fixes (PTFs). You can also find more details

about DSPJVMJOB in “Apply program temporary fixes” on page 517.

v Dump Java Virtual Machine (DMPJVM) command dumps information about the Java virtual machine

for a specified job to a spooled printer file.

v JAVA command and Run Java (RUNJVA) command run iSeries Java programs.

For more information, see the following pages:

Considerations for using the ANZJVM command

Licensed Internal Code option parameter strings

Program and CL Command APIs

370 IBM Systems - iSeries: Programming IBM Developer Kit for Java

||
|

|
|
|
|
|

|
|
|

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/java.html

Considerations for using the ANZJVM command

Due to the length of time ANZJVM can run, it is highly possible that a JVM ends before ANZJVM is able

to finish. In the event that the JVM ends, ANZJVM returns the JVAB606 message (that is, JVM ended

while processing ANZJVM) along with the data that it was able to obtain.

There is also no upper limit on the number of classes a JVM can handle. If there are more classes than

can be handled, ANZJVM should return the data that can be handled along with a message letting you

know there was additional information not reported. When the data requires truncating, ANZJVM

returns as much information as possible.

The internal parameter is restricted to 3600 seconds (one hour) in length. The number of classes that

ANZJVM can return information about is limited by the amount of storage on your system.

iSeries Navigator commands that are supported by Java

The iSeries Navigator is a graphical interface for your Windows desktop. It is part of iSeries Access for

Windows and covers many iSeries functions that administrators or users need to accomplish their daily

work.

iSeries Navigator supports Java as a plugin contained in the File Systems option of iSeries Access for

Windows. To use the iSeries Navigator Java plugin, you need to install the IBM Developer Kit for Java on

your iSeries server. Then, to install the Java plugin on your personal computer, select File Systems

through Selective Setup in the Client Access folder.

Class, JAR, ZIP, and Java files reside in the integrated file system. iSeries Navigator allows you to see

these files in the right pane. Right-click the class, JAR, ZIP, or java file that you want to use. This brings

up a context menu.

Selecting Associated Java Program --> New... from the context menu starts the Java transformer, which

creates iSeries Java programs that are associated with your class, JAR, or ZIP file. A dialog box allows

you to specify details on how to create the program. You can create the programs for either Java

transformation or Java interpretation.

Note: If you select transformation, the bytecodes in your class file transform into RISC instructions that

result in better performance than if you used interpretation.

Selecting Associated Java Program --> Edit... from the context menu changes attributes of Java programs

that are attached to Java class files, ZIP files, or JAR files.

Selecting Associated Java Program --> Run... from the context menu runs your class file on your iSeries

server. You may also select a JAR or ZIP file and run a class file located within that JAR or ZIP file. A

dialog appears to allow you to specify details on how to run the program. If you have already selected

Associated Java Program --> New..., the iSeries Java program that is associated with your class file is

used when running the program. If an iSeries Java program is not already associated with your class file,

then the iSeries Java program is created before the program runs.

Selecting Associated Java Program --> Delete... from the context menu deletes the iSeries Java programs

that are associated with your class, JAR, or ZIP file.

Selecting Properties from the context menu displays a properties dialog box which contains the Java

Programs and Java Options tabs. These tabs allow you to see the details on how the associated iSeries

Java programs were created for your class, JAR, or ZIP file.

Note: These panels are the Display Java Program information.

IBM Developer Kit for Java 371

Selecting Compile Java file from the context menu converts any java files that you have selected into

their class file bytecodes.

See the help information, included with iSeries Navigator, for the parameters and options of the New

Java Program, Edit Java Program, Run Java Program, Java Programs, Java Options, Compile Java file,

and Delete Java Program iSeries Navigator dialogs.

Debug Java programs that run on your server

You have several options for debugging and troubleshooting Java programs that run on your server,

including IBM iSeries System Debugger, the server interactive display, Java Debug Wire Protocol-enabled

debuggers, and Java Watcher.

The following information is not a comprehensive assessment of the possibilities but does list several

options. One of the easiest ways to debug Java programs that run on your iSeries server is to use the IBM

iSeries System Debugger. IBM iSeries System Debugger provides a graphical user interface (GUI) that

enables you to more easily use the debugging capabilities of your iSeries server.

You can use the interactive display of your server to debug Java programs, although the iSeries System

Debugger provides a more easily usable GUI that enables you to perform the same functions.

Additionally, the iSeries Java virtual machine (JVM) supports the Java Debug Wire Protocol (JDWP),

which is part of the Java Platform Debugger Architecture. JDWP-enabled debuggers allow you to perform

remote debugging from clients that run different operating systems. (The IBM iSeries Debugger also

enables you to perform remote debugging in a similar way, although it does not use JDWP.) One such

JDWP-enabled program is the Java debugger in the Eclipse project universal tool platform.

If the performance of your program degrades as it runs for a longer period of time, you may have

erroneously coded a memory leak. You can use Java Watcher to help you debug your program and locate

memory leaks by performing Java application heap analysis and object create profiling over time.

 IBM iSeries System Debugger

 “Java Platform Debugger Architecture” on page 380

The Java Platform Debugger Architecture (JPDA) consists of the JVM Debug Interface/JVM Tool

Interface, the Java Debug Wire Protocol, and the Java Debug Interface. All these parts of the JPDA

enable any front end of a debugger that uses the JDWP to perform debugging operations. The

debugger front end can either run remotely or run as an iSeries application.

 Java development tool debug

 Eclipse project Web site

 JavaWatcher

Debug Java programs from an i5/OS command line

To debug Java programs from the i5/OS command line, select one of the options listed here.

v Debug a Java program

v Debug Java and native method programs

v Debug a Java program from another display

v Debug Java classes loaded through a custom class loader

v Debug servlets

When you debug a Java program, your Java program is actually running in the Java virtual machine in a

batch immediate (BCI) job. Your source code displays in the interactive display, but the Java program is

not running there. It is running in the other job, which is a serviced job. When your Java program ends,

the serviced job ends, and a message displays, stating that Job being serviced ended.

372 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/jdt-debug-home/main.html
http://www.eclipse.org/eclipse/index.html
http://www.ibm.com/eserver/iseries/support/i_dir/idoctor.nsf/jv.html

It is not possible to debug Java programs running with the Just-In-Time (JIT) compiler. If a file does not

have an associated Java program, the default is to run the JIT. This can be disabled in several ways to

allow debugging:

v Specify the property java.compiler=NONE when starting the Java virtual machine.

v Specify OPTION(*DEBUG) on the Run Java (RUNJVA) command.

v Specify INTERPRET(*YES) on the Run Java (RUNJVA) command.

v Use CRTJVAPGM OPTIMIZATION(10) to create an associated Java program before the Java virtual

machine is started.

Note: None of these solutions affect a running Java virtual machine. If a Java virtual machine was not

started with one of these alternatives, it must be stopped and restarted to be debugged.

The interface between the two jobs is established when you specify the *DEBUG option on the Run Java

(RUNJVA) command.

For more information about the system debugger, see WebSphere Development Studio: ILE C/C++

Programmer’s Guide, SC09-2712-04 and online help information.

Debug a Java program

The easiest way to debug Java programs that run on your iSeries server is to use the IBM iSeries System

Debugger. IBM iSeries System Debugger provides a graphical user interface that enables you to more

easily use the debugging capabilities of your iSeries server.

For more information about using the iSeries System Debugger to debug and test Java programs that run

on your iSeries server, see IBM iSeries System Debugger.

If you want, you can use the interactive display of your server to use the *DEBUG option to view the

source code before running the program. Then, you can set breakpoints, or step over or into a program to

analyze errors while the program is running.

To debug Java programs, follow these steps:

1. Compile the Java program by using the DEBUG option, which is the -g option on the javac tool. See

Debug Java programs by using the *DEBUG option for more details.

2. Insert the class file (.class) and source file (.java) in the same directory on your iSeries server.

3. Run the Java program by using the Run Java (RUNJVA) command on the iSeries command line.

Specify OPTION(*DEBUG) on the Run Java (RUNJVA) command.

Only a class may be debugged. If a JAR file name is entered for the CLASS keyword,

OPTION(*DEBUG) is not supported.

4. The Java program source is displayed.

5. Press F6 (Add/Clear breakpoint) to set breakpoints, or press F10 (Step) to step through the program.

For more information about setting breakpoints, see Set breakpoints. For details on stepping, see Step

through Java programs to debug.

Tips:

1. While using breakpoints and steps, check the logical flow of the Java program, then view and change

variables, as necessary.

2. Using OPTION(*DEBUG) on the RUNJVA command disables the Just-In-Time (JIT) compiler. Files that

do not have an associated Java program run in interpreted mode.

Debug Java programs by using the *DEBUG option:

Use the *DEBUG option to view the source code before running the program. The *DEBUG option allows

you to set breakpoints within the code.

IBM Developer Kit for Java 373

To use the *DEBUG option, enter the Run Java (RUNJVA) command that is followed by the name of your

classfile and OPTION(*DEBUG) on the command line. For example, the iSeries command line should

look like this:

RUNJVA CLASS(classname) OPTION(*DEBUG)

Note: If you are not authorized to use the Start Service Job (STRSRVJOB) command, OPTION(*DEBUG)

is ignored.

To view the debugging displays, see Initial debugging displays for Java programs.

The easiest way to debug Java programs that run on your iSeries server is to use the IBM iSeries System

Debugger. The IBM iSeries System Debugger provides a graphical user interface that enables you to more

easily use the debugging capabilities of your iSeries server.

For more information about using the iSeries System Debugger to debug and test Java programs that run

on your iSeries server, see IBM iSeries System Debugger.

Initial debugging displays for Java programs:

As you debug your Java programs, follow these example displays for your programs. These displays

show an example program, named Hellod.

 v Enter ADDENVVAR ENVVAR(CLASSPATH) VALUE (’/MYDIR’).

v Enter this command: RUNJVA CLASS(HELLOD) OPTION(*DEBUG). Insert the name of your Java program in

place of HELLOD.

v Wait for the Display Module Source display to appear. This is the source for the HELLOD Java

program.

+--+

| Display Module Source |

| |

| Class file name: HELLOD |

| 1 import java.lang.*; |

| 2 |

| 3 public class Hellod extends Object |

| 4 { |

| 5 int k; |

| 6 int l; |

| 7 int m; |

| 8 int n; |

| 9 int o; |

| 10 int p; |

| 11 String myString; |

| 12 Hellod myHellod; |

| 13 int myArray[]; |

| 14 |

| 15 public Hellod() |

| More... |

| Debug . . . |

| |

| F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable |

| F12=Resume F17=Watch variable F18=Work with watch F24=More keys |

| |

+--+

v Press F14 (Work with Module List).

v The Work with Module List display is shown. You can add other classes and programs to debug by

entering option 1 (Add program). Display their source with option 5 (Display module source).

+--+

| Work with Module List |

| System: AS400 |

| Type options, press enter. |

374 IBM Systems - iSeries: Programming IBM Developer Kit for Java

| 1=Add program 4=Remove program 5=Display module source |

| 8=Work with module breakpoints |

| |

| Opt Program/module Library Type |

| *LIBL *SRVPGM |

| HELLOD *CLASS Selected |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| Bottom |

| Command |

| ===> |

| F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel |

| F22=Display class file name |

| |

+--+

v When adding a class to debug, you may need to enter a package-qualified class name that is longer

than the Program/module input field. To enter a longer name, follow these steps:

1. Enter Option 1 (Add program).

2. Leave the Program/module field blank.

3. Leave the library field as *LIBL.

4. Enter *CLASS for Type.

5. Press Enter.

6. A pop up window is displayed where you have more room to enter the package-qualified class file

name.

Set breakpoints:

The running of a program can be controlled with breakpoints. Breakpoints stop a running program at a

specific statement.

 To set breakpoints, perform the following steps:

1. Place the cursor on the line of code where you would like to set a breakpoint.

2. Press F6 (Add/Clear breakpoint) to set the breakpoint.

3. Press F12 (Resume) to run the program.

Note: Just before the line of code runs, where the breakpoint is set, the program source is displayed

indicating that the breakpoint was hit.
+--+

| Display Module Source |

| |

|Current thread: 00000019 Stopped thread: 00000019 |

|Class file name: Hellod |

|35 public static void main(String[] args) |

|36 { |

|37 int i,j,h,B[],D[][]; |

|38 Hellod A=new Hellod(); |

|39 A.myHellod = A; |

|40 Hellod C[]; |

|41 C = new Hellod[5]; |

|42 for (int counter=0; counter<2; counter++) { |

|43 C[counter] = new Hellod(); |

|44 C[counter].myHellod = C[counter]; |

IBM Developer Kit for Java 375

|45 } |

|46 C[2] = A; |

|47 C[0].myString = null; |

|48 C[0].myHellod = null; |

| |

|49 A.method1(); |

|Debug . . . |

| |

|F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable |

|F12=Resume F17=Watch variable F18=Work with watch F24=More key |

|Breakpoint added to line 41. |

+--+

When you hit a breakpoint, if you want to set breakpoints that are only hit within the current thread, use

the TBREAK command.

For more information about system debugger commands, see WebSphere Development Studio: ILE

C/C++ Programmer’s Guide, SC09-2712

and online help information.

For information about evaluating variables when a program stops running at a breakpoint, see Evaluate

variables in Java programs.

Step through Java programs to debug:

You can step through your program while debugging. You can either step over or step into other

functions. Java programs and native methods can use the step function.

 When the program source first displays, you can start stepping. The program stops before running the

first statement. Press F10 (Step). Continue to press F10 (Step) to step through the program. Press F22

(Step into) to step into any function that your program calls. You can also start stepping anytime a

breakpoint is hit. For information about setting breakpoints, see Set breakpoints.

+--+

| Display Module Source |

| |

|Current thread: 00000019 Stopped thread: 00000019 |

|Class file name: Hellod |

|35 public static void main(String[] args) |

|36 { |

|37 int i,j,h,B[],D[][]; |

|38 Hellod A=new Hellod(); |

|39 A.myHellod = A; |

|40 Hellod C[]; |

|41 C = new Hellod[5]; |

|42 for (int counter=0; counter<2; counter++) { |

|43 C[counter] = new Hellod(); |

|44 C[counter].myHellod = C[counter]; |

|45 } |

|46 C[2] = A; |

|47 C[0].myString = null; |

|48 C[0].myHellod = null; |

|49 A.method1(); |

|Debug . . . |

| |

|F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable |

|F12=Resume F17=Watch variable F18=Work with watch F24=More key |

|Step completed at line 42 in thread 00000019 |

+--+

To stop stepping and continue running the program, press F12 (Resume).

376 IBM Systems - iSeries: Programming IBM Developer Kit for Java

For more information about stepping, see WebSphere Development Studio: ILE C/C++ Programmer’s

Guide, SC09-2712

and online help information.

For information about evaluating variables when a program stops running at a step, see Evaluate

variables in Java programs.

Evaluate variables in Java programs:

There are two ways to evaluate a variable when a program stops running at a breakpoint or step.

 v Option 1: Enter EVAL VariableName on the debug command line.

v Option 2: Put the cursor on the variable name in the displayed source code and press F11 (Display

variable).

Use the EVAL command for evaluating variables in a Java program.

Note: You can also change the contents of a variable by using the EVAL command. For more information

about the variations of the EVAL command, see WebSphere Development Studio: ILE C/C++

Programmer’s Guide, SC09-2712 and online help information.

When looking at variables in a Java program, note the following:

v If you evaluate a variable that is an instance of a Java class, the first line of the display shows what

kind of object it is. It also shows an identifier for the object. Following the first display line, the

contents of each field in the object displays. If the variable is null, the first line of the display indicates

that it is null. Asterisks show the contents of each field (of a null object).

v If you evaluate a variable that is a Java string object, the contents of that string displays. If the string is

null, then null displays.

v You cannot change a variable that is a string.

v If you evaluate a variable that is an array, ’ARR’ displays followed by an identifier for that array. You

can evaluate elements of the array by using a subscript of the variable name. If the array is null, then

null displays.

v You cannot change a variable that is an array. You can change an element of an array if it is not an

array of strings or objects.

v For variables that are arrays, you can specify arrayname.length to see how many elements are in the

array.

v If you want to see the contents of a variable that is a field of a class, you can specify

classvariable.fieldname.

v If you try to evaluate a variable before it has been initialized, one of two things can happen. Either a

Variable not available to display message is shown, or the uninitialized contents of the variable are

shown, which could be a strange value.

Debug Java and native method programs

You can debug Java programs and native method programs at the same time. While you are debugging

your source on the interactive display, you can debug a native method that is programmed in C, which is

within a service program (*SRVPGM). The *SRVPGM must be compiled and created with debug data.

The easiest way to debug Java programs and native method programs (or service programs) is to use the

IBM iSeries System Debugger. The IBM iSeries System Debugger provides a graphical user debugging

environment on your iSeries server. For more information about using the iSeries System Debugger to

debug and test programs that run on your iSeries server, see IBM iSeries System Debugger.

To use the interactive display of the server to debug Java programs and native method programs at the

same time, complete the following steps:

IBM Developer Kit for Java 377

1. Press F14 (Work with module list) when your Java program source is displayed to show the Work

with Module List (WRKMODLST) display.

2. Select option 1 (Add program) to add your service program.

3. Select option 5 (Display module source) to display the *MODULE that you want to debug and the

source.

4. Press F6 (Add/Clear breakpoint) to set breakpoints in the service program. For more information

about setting breakpoints, see Set breakpoints.

5. Press F12 (Resume) to run the program.

Note: When the breakpoint is hit in your service program, the program stops running, and the source for

the service program displays.

Debug a Java program from another display

The easiest way to debug Java programs that run on your iSeries server is to use the IBM iSeries System

Debugger. The IBM iSeries System Debugger provides a graphical user interface that enables you to more

easily use the debugging capabilities of your iSeries server.

For more information about using the iSeries System Debugger to debug and test Java programs that run

on your iSeries server, see IBM iSeries System Debugger.

When debugging a Java program by using the interactive display of your server, the program source

displays whenever it encounters a breakpoint. This may interfere with the display output of the Java

program. To avoid this, debug the Java program from another display. The output from the Java program

displays where the Java command is running and the program source shows on the other display.

It is also possible to debug an already running Java program in this manner as long as it is not using the

Just-In-Time (JIT) compiler.

To debug Java from another display, do the following:

1. The Java program must be held, while you start setting up to debug.

You can hold the Java program by making the program:

v Wait for input from the keyboard.

v Wait for a time interval.

v Loop to test a variable, which requires that you set a value to eventually get the Java program out

of the loop.
2. Once the Java program is held, go to another display to perform these steps:

a. Enter the Work with Active Jobs (WRKACTJOB) command on the command line.

b. Find the batch immediate (BCI) job where your Java program is running. Look under the

Subsystem/Job listing for QJVACMDSRV. Look under the User listing for your User ID. Look

under Type for BCI.

c. Enter option 5 to work with that job.

d. At the top of the Work with Job display, the Number, User, and Job are displayed. Enter STRSRVJOB

Number/User/Job.

e. Enter STRDBG CLASS(classname). Classname is the name of the Java class that you want to debug.

It can either be the class name that you specified on the Java command, or it can be another class.

f. The source for that class appears in the Display Module Source display.

g. Set breakpoints, by pressing F6 (Add/Clear breakpoint), whenever you would like to stop in that

Java class. Press F14 to add other classes, programs, or service programs to debug. For more

information about setting breakpoints, see Set breakpoints.

h. Press F12 (Resume) to continue running the program.

378 IBM Systems - iSeries: Programming IBM Developer Kit for Java

3. Stop holding your original Java program. When the breakpoints are hit, the Display Module Source

display appears on the display where the Start Service Job (STRSRVJOB) command and the Start

Debug (STRDBG) command were entered. When the Java program ends, a Job being serviced ended

message appears.

4. Enter the End Debug (ENDDBG) command.

5. Enter the End Service Job (ENDSRVJOB) command.

Note: Ensure that you disable the Just-In-Time (JIT) when starting the Java virtual machine in the

original job. This can be done with the java.compiler=NONE property. If the JIT runs while

debugging, unexpected results may occur.

See QIBM_CHILD_JOB_SNDINQMSG environment variable for more information about this variable that

controls whether the BCI job waits before calling the Java virtual machine.

QIBM_CHILD_JOB_SNDINQMSG environment variable:

The QIBM_CHILD_JOB_SNDINQMSG environment variable is the variable that controls whether the

batch immediate (BCI) job, where the Java virtual machine runs, waits before starting the Java virtual

machine.

 If you set the environment variable to 1 when the Run Java (RUNJVA) command runs, a message is sent

to the user’s message queue. The message is sent before the Java virtual machine starts in the BCI job.

The message looks like this:

Spawned (child) process 023173/JOB/QJVACMDSRV is stopped (G C)

 To view this message, enter SYSREQ and select option 4.

The BCI job waits until you enter a reply to this message. A reply of (G) starts the Java virtual machine.

You can set breakpoints in a *SRVPGM or *PGM, which the BCI job calls, before replying to the message.

Note: You cannot set breakpoints in a Java class, because at this point, the Java virtual machine has not

been started.

Debug Java classes loaded through a custom class loader

The easiest way to debug Java programs that run on your iSeries server is to use the IBM iSeries System

Debugger. The IBM iSeries System Debugger provides a graphical user interface that enables you to more

easily use the debugging capabilities of your iSeries server.

For more information about using the iSeries System Debugger to debug and test Java programs that run

on your iSeries server, see IBM iSeries System Debugger.

To use the interactive display of your server to debug a class loaded through a custom class loader,

complete the following steps:

1. Set the DEBUGSOURCEPATH environment variable to the directory containing the source code, or in

the case of a package-qualified class, the starting directory of the package names.

For example, if the custom class loader loads classes located under the directory /MYDIR, perform

the following:

 ADDENVVAR ENVVAR(DEBUGSOURCEPATH) VALUE(’/MYDIR’)

2. Add the class to the debug view from the Display Module Source screen.

If the class has already been loaded into the Java virtual machine (JVM), just add the *CLASS as usual

and display the source code to debug.

For example, to view the source for pkg1/test14.class, enter the following:

IBM Developer Kit for Java 379

Opt Program/module Library Type

 1 pkg1.test14_ *LIBL *CLASS

If the class has not been loaded into the JVM, perform the same steps to add the *CLASS as

previously indicated. The Java class file not available message then displays. At this point, you may

resume program processing. The JVM automatically stops when any method of the class matching the

given name is entered. The source code for the class is displayed and can be debugged.

Debug servlets

Debugging servlets is a special case of debugging classes loaded through a custom class loader. Servlets

run in the Java runtime of the IBM HTTP Server. You have several options to debug servlets.

The easiest way to debug Java programs and servlets that run on your iSeries server is to use the IBM

iSeries System Debugger. The IBM iSeries System Debugger provides a graphical user interface that

enables you to more easily use the debugging capabilities of your iSeries server.

For more information about using the iSeries System Debugger to debug and test Java programs and

servlets that run on your iSeries server, see IBM iSeries System Debugger.

Another way to debug servlets is by following the instructions for classes loaded through a custom class

loader.

You can also use the interactive display of your server to debug a servlet by completing the following

steps:

1. Use the javac -gcommand in the Qshell Interpreter to compile your servlet.

2. Copy the source code (.java file) and compiled code (.class file) to /QIBM/ProdData/Java400.

3. Run the Create Java Program (CRTJVAPGM) command against the .class file using optimization level

10, OPTIMIZE(10).

4. Start the server.

5. Run the Start Service Job (STRSRVJOB) command on the job where the servlet runs.

6. Enter STRDBG CLASS(myServlet), where myServlet is the name of your servlet. The source should be

displayed.

7. Set a breakpoint in the servlet and press F12.

8. Run your servlet. When the servlet hits the breakpoint, you can continue debugging.

Java Platform Debugger Architecture

The Java Platform Debugger Architecture (JPDA) consists of the JVM Debug Interface/JVM Tool Interface,

the Java Debug Wire Protocol, and the Java Debug Interface. All these parts of the JPDA enable any front

end of a debugger that uses the JDWP to perform debugging operations. The debugger front end can

either run remotely or run as an iSeries application.

Java Virtual Machine Tool Interface (JVMTI)

JVMTI is the superceder of JVMDI and the Java Virtual Machine Profiler Interface (JVMPI). JVMTI

contains all the functionality of both JVMDI and JVMPI, plus new functions. JVMTI was added as part of

J2SE 5.0. In future releases, the JVMDI and JVMPI interfaces will no longer be offered, and JVMTI will be

the only option available.

A service program, called QJVAJVMTI, which resides in the QSYS library, supports the JVMTI functions.

For more information about implementing JVMTI, see the JVMTI Reference page at the Sun

Microsystems, Inc. Web site.

380 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|

|
|
|
|

|

|
|

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html

Java Virtual Machine Debug Interface

In Java 2 SDK (J2SDK), Standard Edition, version 1.2 or higher, the Java Virtual Machine Debug Interface

(JVMDI) is part of Sun Microsystems, Inc. platform application program interfaces (APIs). JVMDI allows

anyone to write a Java debugger for an iSeries server in iSeries C code. The debugger does not need to

know the internal structure of the Java virtual machine since it uses JVMDI interfaces. JVMDI is the

lowest-level interface in JPDA that is closest to the Java virtual machine.

The debugger runs in the same multi-thread capable job as the Java virtual machine. The debugger uses

Java Native Interface (JNI) Invocation APIs to create a Java virtual machine. It then places a hook at the

beginning of a user class main method and calls the main method. When the main method begins, the

hook is hit and debugging begins. Typical debug facilities are available, such as setting breakpoints,

stepping, displaying variables, and changing variables.

The debugger handles communication between the job where the Java virtual machine is running and a

job handling the user interface. This user interface is either on your iSeries server or another system.

A service program, called QJVAJVMDI that resides in the QSYS library, supports the JVMDI functions.

Java Debug Wire Protocol

The Java Debug Wire Protocol (JDWP) is a defined communication protocol between a debugger process

and the JVMDI/JVMTI. JDWP can be used from either a remote system or over a local socket. It is one

layer removed from the JVMDI/JVMTI, but is a more complex interface.

Start JDWP in QShell

To start JDWP and run the Java class SomeClass, enter the following command in QShell:

java -interpret -agentlib:jdwp=transport=dt_socket,

address=8000,server=y,suspend=n SomeClass

In this example, JDWP listens for connections from remote debuggers on TCP/IP port 8000, but you can

use any port number you want; dt_socket is the name of the SRVPGM that handles the JDWP transport

and does not change.

For additional options that you can use with -Xrunjdwp, see Sun VM Invocation Options by Sun

Microsystems, Inc. These options are available for both JDK 1.4 and 1.5 on i5/OS.

Start JDWP from a CL command line

To start JDWP with the CL command, two new options have been added: AGTPGM and AGTOPTIONS.

The value of AGTPGM is JDWP and the value of AGTOPTIONS can be defined to be the same string that

you would have used on the QShell command line.

To start JDWP and run the Java class SomeClass, enter the following command:

JAVA CLASS(SomeClass) INTERPRET(*YES) AGTPGM(JDWP)

AGTOPTIONS(’transport=dt_socket,address=8000,server=y,suspend=n’)

Using JVMDI/JVMTI is not recommended for Direct Execution code. You should run your application

with the interpreter, or use the Just-In_Time (JIT) Compiler with full-speed debugging.

IBM Developer Kit for Java 381

|

|
|

|

|

|
|

|

|
|

|
|

http://java.sun.com/j2se/1.5.0/docs/guide/jpda/conninv.html

Java Debug Interface

Java Debug Interface (JDI) is a high-level Java language interface provided for tool development. JDI

hides the complexity of JVMDI/JVMTI and JDWP behind some Java class definitions. JDI is included in

the rt.jar file, so the front end of the debugger exists on any platform that has Java installed.

If you want to write debuggers for Java, you should use JDI because it is the simplest interface and your

code is platform-independent.

For more information on JDPA, see Java Platform Debugger Architecture Overview by Sun Microsystems,

Inc.

Full-Speed Debug:

The iSeries Java Virtual Machine (JVM) now supports ″full-speed debugging″. Prior to V5R3, enabling

debugging meant disabling the Just-In-Time (JIT) compiler. Application performance suffered because

many methods had to be run with the slow interpreter. This significant performance degradation was

especially difficult for applications that could run for days before getting to the point where you wished

to begin debugging.

 Full-speed debug allows you to run your application with all the performance benefits of JIT compiled

code without losing the ability to perform some of the most common debugging activities, such as setting

breakpoints, stepping through code, and viewing local variables.

Since full-speed debug allows methods to be JIT compiled, there are a couple of limitations on

debugging:

v Step operations on return statements do not work if the caller is compiled code.

v Watchpoints only trigger in non-compiled methods that modify the watched field.

Note: This feature is only supported for debuggers that use the Java Debug Wire Protocol (JDWP) to

perform debugging operations. The system debugger currently does not support full-speed debug.

Find memory leaks

If the performance of your program degrades as it runs for a longer period of time, you may have

erroneously coded a memory leak. You can use the Java Watcher to help you debug your program and

locate memory leaks by performing Java application heap analysis and object create profiling over time.

For more details, see JavaWatcher.

You can also use the Analyze Java Virtual Machine (ANZJVM) control language command to find object

leaks. ANZJVM finds object leaks by taking two copies of the garbage collection heap that are separated

by a specified time interval. To find object leaks, you would look at the number of instances of each class

in the heap. Classes that have an unusually high number of instances should be noted as possibly

leaking.

You should also note the change in number of instances of each class between the two copies of the

garbage collection heap. If the number of instances of a class continually increases, that class should be

noted as possibly leaking. The longer the time interval between the two copies, the more certainty you

have that objects are actually leaking. By running ANZJVM a series of times with a larger time interval,

you should be able to diagnose with a high degree of certainty what is leaking.

382 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://java.sun.com/j2se/1.3/docs/guide/jpda/architecture.html
http://www.ibm.com/eserver/iseries/support/i_dir/idoctor.nsf/jw.html

Code examples for the IBM Developer Kit for Java

The following is a list of code examples for the IBM Developer Kit for Java.

Internationalization

v DateFormat

v NumberFormat

v ResourceBundle

JDBC

v Access property

v Blob

v CallableStatement interface

v Change values with a statement through another statement’s cursor

v Clob

v Create a UDBDataSource and bind it with JNDI

v Create a UDBDataSource, and obtain a user ID and password

v Create a UDBDataSourceBind and set DataSource properties

v DatabaseMetaData interface

v Create a UDBDataSource and bind it with JNDI

v Datalink

v Distinct types

v Embed SQL Statements

v End a transaction

v Invalid user ID and password

v JDBC

v Multiple connections that work on a transaction

v Obtain an initial context before binding UDBDataSource

v ParameterMetaData

v Remove values from a table through another statement’s cursor

v ResultSet interface

v ResultSet sensitivity

v Sensitive and insensitive ResultSets

v Set up connection pooling with UDBDataSource and UDBConnectionPoolDataSource

v SQLException

v Suspend and resume a transaction

v Suspended ResultSets

v Test the performance of connection pooling

v Test the performance of two DataSources

v Update BLOBs

v Update CLOBs

v Use a connection with multiple transactions

v Use BLOBs

v Use CLOBs

v Use DB2CachedRowSet properties and DataSources

v Use DB2CachedRowSet properties and JDBC URLs

IBM Developer Kit for Java 383

v Use JTA to handle a transaction

v Use metadata ResultSets that have more than one column

v Use native JDBC and IBM Toolbox for Java JDBC concurrently

v Use PreparedStatement to obtain a ResultSet

v Use the execute(Connection) method to use an existing database connection

v Use the execute(int) method to batch database requests together

v Use the populate method

v Use the setConnection(Connection) method to use an existing database connection

v Use the Statement object’s executeUpdate method

Java Authentication and Authorization Service

v JAAS HelloWorld example

v JAAS SampleThreadSubjectLogin example

Java Generic Security Service

v Sample non-JAAS client program

v Sample non-JAAS server program

v Sample JAAS-enabled client program

v Sample JAAS-enabled server program

Java Secure Sockets Extension

v SSL client and server using an SSLContext object

Java with other programming languages

v Call a CL program

v Call a CL command

v Call another Java program

v Call Java from C

v Call Java from RPG

v Input and output streams

v Invocation API

v i5/OS PASE native method for Java

v Sockets

v Use the Java Native Interface for native methods

Performance tools

v Java Performance Data Converter

SQLJ

v Embed SQL Statements in your Java application

Secure sockets layer

v Socket factories

v Server socket factories

v Secure sockets layer

v Secure sockets layer server

384 IBM Systems - iSeries: Programming IBM Developer Kit for Java

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

Example: Internationalization of dates using the java.util.DateFormat

class

This example shows how you can use locales to format dates.

Example 1: Demonstrates use of java.util.DateFormat class for internationalization of dates

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//************************

// File: DateExample.java

//************************

import java.text.*;

import java.util.*;

import java.util.Date;

public class DateExample {

 public static void main(String args[]) {

 // Get the Date

 Date now = new Date();

 // Get date formatters for default, German, and French locales

 DateFormat theDate = DateFormat.getDateInstance(DateFormat.LONG);

 DateFormat germanDate = DateFormat.getDateInstance(DateFormat.LONG, Locale.GERMANY);

 DateFormat frenchDate = DateFormat.getDateInstance(DateFormat.LONG, Locale.FRANCE);

 // Format and print the dates

 System.out.println("Date in the default locale: " + theDate.format(now));

 System.out.println("Date in the German locale : " + germanDate.format(now));

 System.out.println("Date in the French locale : " + frenchDate.format(now));

 }

}

For more information, see Create an internationalized Java program.

 Collected links

 Code example disclaimer

IBM Developer Kit for Java 385

|
|
|
|
|

|
|

|

|
|

|

|
|
|

Create an internationalized Java(TM) program

If you need to customize a Java program for a specific region of the world, you can create an

internationalized Java program with Java locales.

Example: Internationalization of numeric display using the

java.util.NumberFormat class

This example shows how you can use locales to format numbers.

Example 1: Demonstrates use of java.util.NumberFormat class for internationalization of numeric output

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//**************************

// File: NumberExample.java

//**************************

 import java.lang.*;

 import java.text.*;

 import java.util.*;

 public class NumberExample {

 public static void main(String args[]) throws NumberFormatException {

 // The number to format

 double number = 12345.678;

 // Get formatters for default, Spanish, and Japanese locales

 NumberFormat defaultFormat = NumberFormat.getInstance();

 NumberFormat spanishFormat = NumberFormat.getInstance(new

 Locale("es", "ES"));

 NumberFormat japaneseFormat = NumberFormat.getInstance(Locale.JAPAN);

 // Print out number in the default, Spanish, and Japanese formats

 // (Note: NumberFormat is not necessary for the default format)

 System.out.println("The number formatted for the default locale; " +

 defaultFormat.format(number));

 System.out.println("The number formatted for the Spanish locale; " +

 spanishFormat.format(number));

 System.out.println("The number formatted for the Japanese locale; " +

 japaneseFormat.format(number));

 }

 }

For more information, see Create an internationalized Java program.

 Collected links

 Code example disclaimer

 Create an internationalized Java program

If you need to customize a Java program for a specific region of the world, you can create an

internationalized Java program with Java locales.

Example: Internationalization of locale-specific data using the

java.util.ResourceBundle class

This example shows how you can use locales with resource bundles to internationalize program strings.

These property files are required for the ResourceBundleExample program to work as intended:

Contents of RBExample.properties

Hello.text=Hello

386 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Contents of RBExample_de.properties

Hello.text=Guten Tag

Contents of RBExample_fr_FR.properties

Hello.text=Bonjour

Example 1: Demonstrates use of java.util.ResourceBundle class for internationalization of locale-specific

data

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//*********************************

// File: ResourceBundleExample.java

//*********************************

import java.util.*;

public class ResourceBundleExample {

 public static void main(String args[]) throws MissingResourceException {

 String resourceName = "RBExample";

 ResourceBundle rb;

 // Default locale

 rb = ResourceBundle.getBundle(resourceName);

 System.out.println("Default : " + rb.getString("Hello" + ".text"));

 // Request a resource bundle with explicitly specified locale

 rb = ResourceBundle.getBundle(resourceName, Locale.GERMANY);

 System.out.println("German : " + rb.getString("Hello" + ".text"));

 // No property file for China in this example... use default

 rb = ResourceBundle.getBundle(resourceName, Locale.CHINA);

 System.out.println("Chinese : " + rb.getString("Hello" + ".text"));

 // Here is another way to do it...

 Locale.setDefault(Locale.FRANCE);

 rb = ResourceBundle.getBundle(resourceName);

 System.out.println("French : " + rb.getString("Hello" + ".text"));

 // No property file for China in this example... use default, which is now fr_FR.

 rb = ResourceBundle.getBundle(resourceName, Locale.CHINA);

 System.out.println("Chinese : " + rb.getString("Hello" + ".text"));

 }

}

For more information, see Create an internationalized Java(TM) program.

 Collected links

 Code example disclaimer

 Create an internationalized Java(TM) program

If you need to customize a Java program for a specific region of the world, you can create an

internationalized Java program with Java locales.

Example: Access property

This is an example of how to use the Access property.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Note: This program assumes directory cujosql exists.

import java.sql.*;

import javax.sql.*;

IBM Developer Kit for Java 387

import javax.naming.*;

public class AccessPropertyTest {

 public String url = "jdbc:db2:*local";

 public Connection connection = null;

 public static void main(java.lang.String[] args)

 throws Exception

 {

 AccessPropertyTest test = new AccessPropertyTest();

 test.setup();

 test.run();

 test.cleanup();

 }

/**

Set up the DataSource used in the testing.

**/

 public void setup()

 throws Exception

 {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection(url);

 Statement s = connection.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.TEMP");

 } catch (SQLException e) { // Ignore it - it doesn’t exist

 }

 try {

 String sql = "CREATE PROCEDURE CUJOSQL.TEMP "

 + " LANGUAGE SQL SPECIFIC CUJOSQL.TEMP "

 + " MYPROC: BEGIN"

 + " RETURN 11;"

 + " END MYPROC";

 s.executeUpdate(sql);

 } catch (SQLException e) {

 // Ignore it - it exists.

 }

 s.executeUpdate("create table cujosql.temp (col1 char(10))");

 s.executeUpdate("insert into cujosql.temp values (’compare’)");

 s.close();

 }

 public void resetConnection(String property)

 throws SQLException

 {

 if (connection != null)

 connection.close();

 connection = DriverManager.getConnection(url + ";access=" + property);

 }

 public boolean canQuery() {

 Statement s = null;

 try {

 s = connection.createStatement();

 ResultSet rs = s.executeQuery("SELECT * FROM cujosql.temp");

 if (rs == null)

 return false;

388 IBM Systems - iSeries: Programming IBM Developer Kit for Java

rs.next();

 if (rs.getString(1).equals("compare "))

 return true;

 return false;

 } catch (SQLException e) {

 // System.out.println("Exception: SQLState(" +

 // e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");

 return false;

 } finally {

 if (s != null) {

 try {

 s.close();

 } catch (Exception e) {

 // Ignore it.

 }

 }

 }

 }

 public boolean canUpdate() {

 Statement s = null;

 try {

 s = connection.createStatement();

 int count = s.executeUpdate("INSERT INTO CUJOSQL.TEMP VALUES(’x’)");

 if (count != 1)

 return false;

 return true;

 } catch (SQLException e) {

 //System.out.println("Exception: SQLState(" +

 // e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");

 return false;

 } finally {

 if (s != null) {

 try {

 s.close();

 } catch (Exception e) {

 // Ignore it.

 }

 }

 }

 }

 public boolean canCall() {

 CallableStatement s = null;

 try {

 s = connection.prepareCall("? = CALL CUJOSQL.TEMP()");

 s.registerOutParameter(1, Types.INTEGER);

 s.execute();

 if (s.getInt(1) != 11)

 return false;

 return true;

 } catch (SQLException e) {

 //System.out.println("Exception: SQLState(" +

 // e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");

 return false;

 } finally {

 if (s != null) {

 try {

IBM Developer Kit for Java 389

s.close();

 } catch (Exception e) {

 // Ignore it.

 }

 }

 }

 }

 public void run()

 throws SQLException

 {

 System.out.println("Set the connection access property to read only");

 resetConnection("read only");

 System.out.println("Can run queries -->" + canQuery());

 System.out.println("Can run updates -->" + canUpdate());

 System.out.println("Can run sp calls -->" + canCall());

 System.out.println("Set the connection access property to read call");

 resetConnection("read call");

 System.out.println("Can run queries -->" + canQuery());

 System.out.println("Can run updates -->" + canUpdate());

 System.out.println("Can run sp calls -->" + canCall());

 System.out.println("Set the connection access property to all");

 resetConnection("all");

 System.out.println("Can run queries -->" + canQuery());

 System.out.println("Can run updates -->" + canUpdate());

 System.out.println("Can run sp calls -->" + canCall());

 }

 public void cleanup() {

 try {

 connection.close();

 } catch (Exception e) {

 // Ignore it.

 }

 }

}

Example: BLOB

This is an example of how a BLOB can be put into the database or retrieved from the database.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// PutGetBlobs is an example application

// that shows how to work with the JDBC

// API to obtain and put BLOBs to and from

// database columns.

//

// The results of running this program

// are that there are two BLOB values

// in a new table. Both are identical

// and contain 500k of random byte

// data.

///

import java.sql.*;

import java.util.Random;

390 IBM Systems - iSeries: Programming IBM Developer Kit for Java

public class PutGetBlobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 // Establish a Connection and Statement with which to work.

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 // Clean up any previous run of this application.

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.BLOBTABLE");

 } catch (SQLException e) {

 // Ignore it - assume the table did not exist.

 }

 // Create a table with a BLOB column. The default BLOB column

 // size is 1 MB.

 s.executeUpdate("CREATE TABLE CUJOSQL.BLOBTABLE (COL1 BLOB)");

 // Create a PreparedStatement object that allows you to put

 // a new Blob object into the database.

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.BLOBTABLE VALUES(?)");

 // Create a big BLOB value...

 Random random = new Random ();

 byte [] inByteArray = new byte[500000];

 random.nextBytes (inByteArray);

 // Set the PreparedStatement parameter. Note: This is not

 // portable to all JDBC drivers. JDBC drivers do not have

 // support when using setBytes for BLOB columns. This is used to

 // allow you to generate new BLOBs. It also allows JDBC 1.0

 // drivers to work with columns containing BLOB data.

 ps.setBytes(1, inByteArray);

 // Process the statement, inserting the BLOB into the database.

 ps.executeUpdate();

 // Process a query and obtain the BLOB that was just inserted out

 // of the database as a Blob object.

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");

 rs.next();

 Blob blob = rs.getBlob(1);

 // Put that Blob back into the database through

 // the PreparedStatement.

 ps.setBlob(1, blob);

 ps.execute();

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: CallableStatement interface for IBM Developer Kit for Java

This is an example of how to use the CallableStatement interface.

Example: CallableStatement interface

IBM Developer Kit for Java 391

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Connect to iSeries server.

Connection c = DriverManager.getConnection("jdbc:db2://mySystem");

// Create the CallableStatement object.

// It precompiles the specified call to a stored procedure.

// The question marks indicate where input parameters must be set and

// where output parameters can be retrieved.

// The first two parameters are input parameters, and the third parameter is an output parameter.

CallableStatement cs = c.prepareCall("CALL MYLIBRARY.ADD (?, ?, ?)");

// Set input parameters.

cs.setInt (1, 123);

cs.setInt (2, 234);

// Register the type of the output parameter.

cs.registerOutParameter (3, Types.INTEGER);

// Run the stored procedure.

cs.execute ();

// Get the value of the output parameter.

int sum = cs.getInt (3);

// Close the CallableStatement and the Connection.

cs.close();

c.close();

For more information, see CallableStatements.

 Collected links

 Code example disclaimer

 CallableStatements

The CallableStatement interface extends PreparedStatement and provides support for output and

input/output parameters. The CallableStatement interface also has support for input parameters that

is provided by the PreparedStatement interface.

Example: Remove values from a table through another statement’s

cursor

This is an example of how to remove values from a table through another statement’s cursor.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class UsingPositionedDelete {

 public Connection connection = null;

 public static void main(java.lang.String[] args) {

 UsingPositionedDelete test = new UsingPositionedDelete();

 test.setup();

 test.displayTable();

 test.run();

 test.displayTable();

 test.cleanup();

 }

392 IBM Systems - iSeries: Programming IBM Developer Kit for Java

/**

Handle all the required setup work.

**/

 public void setup() {

 try {

 // Register the JDBC driver.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.WHERECUREX");

 } catch (SQLException e) {

 // Ignore problems here.

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.WHERECUREX (" +

 "COL_IND INT, COL_VALUE CHAR(20)) ");

 for (int i = 1; i <= 10; i++) {

 s.executeUpdate("INSERT INTO CUJOSQL.WHERECUREX VALUES(" + i + ", ’FIRST’)");

 }

 s.close();

 } catch (Exception e) {

 System.out.println("Caught exception: " + e.getMessage());

 e.printStackTrace();

 }

 }

/**

In this section, all the code to perform the testing should

be added. If only one connection to the database is needed,

the global variable ’connection’ can be used.

**/

 public void run() {

 try {

 Statement stmt1 = connection.createStatement();

 // Update each value using next().

 stmt1.setCursorName("CUJO");

 ResultSet rs = stmt1.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX " +

 "FOR UPDATE OF COL_VALUE");

 System.out.println("Cursor name is " + rs.getCursorName());

 PreparedStatement stmt2 = connection.prepareStatement

 ("DELETE FROM " + " CUJOSQL.WHERECUREX WHERE CURRENT OF " +

 rs.getCursorName ());

 // Loop through the ResultSet and update every other entry.

 while (rs.next ()) {

 if (rs.next())

 stmt2.execute ();

 }

 // Clean up the resources after they have been used.

 rs.close ();

 stmt2.close ();

 } catch (Exception e) {

IBM Developer Kit for Java 393

System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

/**

In this section, put all clean-up work for testing.

**/

 public void cleanup() {

 try {

 // Close the global connection opened in setup().

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

/**

Display the contents of the table.

**/

 public void displayTable()

 {

 try {

 Statement s = connection.createStatement();

 ResultSet rs = s.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX");

 while (rs.next ()) {

 System.out.println("Index " + rs.getInt(1) + " value " + rs.getString(2));

 }

 rs.close ();

 s.close();

 System.out.println("---");

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

}

 Collected links

 Code example disclaimer

Example: CLOB

This is an example of how a CLOB can be put into the database or retrieved from the database.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// PutGetClobs is an example application

// that shows how to work with the JDBC

// API to obtain and put CLOBs to and from

// database columns.

//

// The results of running this program

// are that there are two CLOB values

// in a new table. Both are identical

// and contain about 500k of repeating

// text data.

394 IBM Systems - iSeries: Programming IBM Developer Kit for Java

///

import java.sql.*;

public class PutGetClobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 // Establish a Connection and Statement with which to work.

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 // Clean up any previous run of this application.

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.CLOBTABLE");

 } catch (SQLException e) {

 // Ignore it - assume the table did not exist.

 }

 // Create a table with a CLOB column. The default CLOB column

 // size is 1 MB.

 s.executeUpdate("CREATE TABLE CUJOSQL.CLOBTABLE (COL1 CLOB)");

 // Create a PreparedStatement object that allow you to put

 // a new Clob object into the database.

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.CLOBTABLE VALUES(?)");

 // Create a big CLOB value...

 StringBuffer buffer = new StringBuffer(500000);

 while (buffer.length() < 500000) {

 buffer.append("All work and no play makes Cujo a dull boy.");

 }

 String clobValue = buffer.toString();

 // Set the PreparedStatement parameter. This is not

 // portable to all JDBC drivers. JDBC drivers do not have

 // to support setBytes for CLOB columns. This is done to

 // allow you to generate new CLOBs. It also

 // allows JDBC 1.0 drivers a way to work with columns containing

 // Clob data.

 ps.setString(1, clobValue);

 // Process the statement, inserting the clob into the database.

 ps.executeUpdate();

 // Process a query and get the CLOB that was just inserted out of the

 // database as a Clob object.

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");

 rs.next();

 Clob clob = rs.getClob(1);

 // Put that Clob back into the database through

 // the PreparedStatement.

 ps.setClob(1, clob);

 ps.execute();

 c.close(); // Connection close also closes stmt and rs.

 }

}

IBM Developer Kit for Java 395

Example: Create a UDBDataSource and bind it with JNDI

This is an example of how to create a UDBDataSource and get it bound with JNDI.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Import the required packages. At deployment time,

// the JDBC driver-specific class that implements

// DataSource must be imported.

import java.sql.*;

import javax.naming.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

public class UDBDataSourceBind

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Create a new UDBDataSource object and give it

 // a description.

 UDBDataSource ds = new UDBDataSource();

 ds.setDescription("A simple UDBDataSource");

 // Retrieve a JNDI context. The context serves

 // as the root for where objects are bound or

 // found in JNDI.

 Context ctx = new InitialContext();

 // Bind the newly created UDBDataSource object

 // to the JNDI directory service, giving it a name

 // that can be used to look up this object again

 // at a later time.

 ctx.rebind("SimpleDS", ds);

 }

}

Example: Create a UDBDataSource, and obtain a user ID and

password

This is an example of how to create a UDBDataSource, and use the getConnection method to obtain a

user ID and password at runtime.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/// Import the required packages. There is

// no driver-specific code needed in runtime

// applications.

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

public class UDBDataSourceUse2

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Retrieve a JNDI context. The context serves

 // as the root for where objects are bound or

 // found in JNDI.

 Context ctx = new InitialContext();

 // Retrieve the bound UDBDataSource object using the

 // name with which it was previously bound. At runtime,

 // only the DataSource interface is used, so there

396 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// is no need to convert the object to the UDBDataSource

 // implementation class. (There is no need to know

 // what the implementation class is. The logical JNDI name

 // is only required).

 DataSource ds = (DataSource) ctx.lookup("SimpleDS");

 // Once the DataSource is obtained, it can be used to establish

 // a connection. The user profile cujo and password newtiger

 // used to create the connection instead of any default user

 // ID and password for the DataSource.

 Connection connection = ds.getConnection("cujo", "newtiger");

 // The connection can be used to create Statement objects and

 // update the database or process queries as follows.

 Statement statement = connection.createStatement();

 ResultSet rs = statement.executeQuery("select * from qsys2.sysprocs");

 while (rs.next()) {

 System.out.println(rs.getString(1) + "." + rs.getString(2));

 }

 // The connection is closed before the application ends.

 connection.close();

 }

}

Example: Create a UDBDataSourceBind and set DataSource properties

This is an example of how to create a UDBDataSource, and set the user ID and password as DataSource

properties.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Import the required packages. At deployment time,

// the JDBC driver-specific class that implements

// DataSource must be imported.

import java.sql.*;

import javax.naming.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

public class UDBDataSourceBind2

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Create a new UDBDataSource object and give it

 // a description.

 UDBDataSource ds = new UDBDataSource();

 ds.setDescription("A simple UDBDataSource " +

 "with cujo as the default " +

 "profile to connect with.");

 // Provide a user ID and password to be used for

 // connection requests.

 ds.setUser("cujo");

 ds.setPassword("newtiger");

 // Retrieve a JNDI context. The context serves

 // as the root for where objects are bound or

 // found in JNDI.

 Context ctx = new InitialContext();

 // Bind the newly created UDBDataSource object

 // to the JNDI directory service, giving it a name

 // that can be used to look up this object again

IBM Developer Kit for Java 397

// at a later time.

 ctx.rebind("SimpleDS2", ds);

 }

}

Example: DatabaseMetaData interface for IBM Developer Kit for Java -

Return a list of tables

This example shows how to return a list of tables.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Connect to iSeries server.

Connection c = DriverManager.getConnection("jdbc:db2:mySystem");

// Get the database meta data from the connection.

DatabaseMetaData dbMeta = c.getMetaData();

// Get a list of tables matching this criteria.

String catalog = "myCatalog";

String schema = "mySchema";

String table = "myTable%"; // % indicates search pattern

String types[] = {"TABLE", "VIEW", "SYSTEM TABLE"}:

ResultSet rs = dbMeta.getTables(catalog, schema, table, types);

// ... iterate through the ResultSet to get the values.

// Close the connection.

c.close():

For more information, see DatabaseMetaData interface for IBM Developer Kit for Java.

Example: Datalink

This is an example of how to use datalinks in your applications.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// PutGetDatalinks is an example application

// that shows how to use the JDBC

// API to handle datalink database columns.

///

import java.sql.*;

import java.net.URL;

import java.net.MalformedURLException;

public class PutGetDatalinks {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 // Establish a Connection and Statement with which to work.

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 // Clean up any previous run of this application.

 try {

398 IBM Systems - iSeries: Programming IBM Developer Kit for Java

s.executeUpdate("DROP TABLE CUJOSQL.DLTABLE");

 } catch (SQLException e) {

 // Ignore it - assume the table did not exist.

 }

 // Create a table with a datalink column.

 s.executeUpdate("CREATE TABLE CUJOSQL.DLTABLE (COL1 DATALINK)");

 // Create a PreparedStatement object that allows you to add

 // a new datalink into the database. Since conversing

 // to a datalink cannot be accomplished directly in the database, you

 // can code the SQL statement to perform the explicit conversion.

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.DLTABLE

 VALUES(DLVALUE(CAST(? AS VARCHAR(100))))");

 // Set the datalink. This URL points you to an article about

 // the new features of JDBC 3.0.

 ps.setString (1, "http://www-106.ibm.com/developerworks/java/library/j-jdbcnew/index.html");

 // Process the statement, inserting the CLOB into the database.

 ps.executeUpdate();

 // Process a query and obtain the CLOB that was just inserted out of the

 // database as a Clob object.

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.DLTABLE");

 rs.next();

 String datalink = rs.getString(1);

 // Put that datalink value into the database through

 // the PreparedStatement. Note: This function requires JDBC 3.0

 // support.

 /*

 try {

 URL url = new URL(datalink);

 ps.setURL(1, url);

 ps.execute();

 } catch (MalformedURLException mue) {

 // Handle this issue here.

 }

 rs = s.executeQuery("SELECT * FROM CUJOSQL.DLTABLE");

 rs.next();

 URL url = rs.getURL(1);

 System.out.println("URL value is " + url);

 */

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Distinct types

This is an example of how to use distinct types.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// This example program shows examples of

// various common tasks that can be done

// with distinct types.

///

import java.sql.*;

public class Distinct {

 public static void main(String[] args)

IBM Developer Kit for Java 399

throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 // Clean up any old runs.

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.SERIALNOS");

 } catch (SQLException e) {

 // Ignore it and assume the table did not exist.

 }

 try {

 s.executeUpdate("DROP DISTINCT TYPE CUJOSQL.SSN");

 } catch (SQLException e) {

 // Ignore it and assume the table did not exist.

 }

 // Create the type, create the table, and insert a value.

 s.executeUpdate("CREATE DISTINCT TYPE CUJOSQL.SSN AS CHAR(9)");

 s.executeUpdate("CREATE TABLE CUJOSQL.SERIALNOS (COL1 CUJOSQL.SSN)");

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.SERIALNOS VALUES(?)");

 ps.setString(1, "399924563");

 ps.executeUpdate();

 ps.close();

 // You can obtain details about the types available with new metadata in

 // JDBC 2.0

 DatabaseMetaData dmd = c.getMetaData();

 int types[] = new int[1];

 types[0] = java.sql.Types.DISTINCT;

 ResultSet rs = dmd.getUDTs(null, "CUJOSQL", "SSN", types);

 rs.next();

 System.out.println("Type name " + rs.getString(3) +

 " has type " + rs.getString(4));

 // Access the data you have inserted.

 rs = s.executeQuery("SELECT COL1 FROM CUJOSQL.SERIALNOS");

 rs.next();

 System.out.println("The SSN is " + rs.getString(1));

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Embed SQL Statements in your Java application

The following example SQLJ application, App.sqlj, uses static SQL to retrieve and update data from the

EMPLOYEE table of the DB2 sample database.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import sqlj.runtime.*;

import sqlj.runtime.ref.*;

400 IBM Systems - iSeries: Programming IBM Developer Kit for Java

#sql iterator App_Cursor1 (String empno, String firstnme) ; //

1

#sql iterator App_Cursor2 (String) ;

class App

{

 /**********************

 ** Register Driver **

 **********************/

 static

 {

 try

 {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver").newInstance();

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 /********************

 ** Main **

 ********************/

 public static void main(String argv[])

 {

 try

 {

 App_Cursor1 cursor1;

 App_Cursor2 cursor2;

 String str1 = null;

 String str2 = null;

 long count1;

 // URL is jdbc:db2:dbname

 String url = "jdbc:db2:sample";

 DefaultContext ctx = DefaultContext.getDefaultContext();

 if (ctx == null)

 {

 try

 {

 // connect with default id/password

 Connection con = DriverManager.getConnection(url);

 con.setAutoCommit(false);

 ctx = new DefaultContext(con);

 }

 catch (SQLException e)

 {

 System.out.println("Error: could not get a default context");

 System.err.println(e) ;

 System.exit(1);

 }

 DefaultContext.setDefaultContext(ctx);

 }

 // retrieve data from the database

 System.out.println("Retrieve some data from the database.");

 #sql cursor1 = {SELECT empno, firstnme FROM employee}; //

2

 // display the result set

 // cursor1.next() returns false when there are no more rows

 System.out.println("Received results:");

IBM Developer Kit for Java 401

while (cursor1.next()) //

3

 {

 str1 = cursor1.empno(); //

4

 str2 = cursor1.firstnme();

 System.out.print (" empno= " + str1);

 System.out.print (" firstname= " + str2);

 System.out.println("");

 }

 cursor1.close(); //

9

 // retrieve number of employee from the database

 #sql { SELECT count(*) into :count1 FROM employee }; //

5

 if (1 == count1)

 System.out.println ("There is 1 row in employee table");

 else

 System.out.println ("There are " + count1

 + " rows in employee table");

 // update the database

 System.out.println("Update the database.");

 #sql { UPDATE employee SET firstnme = ’SHILI’ WHERE empno = ’000010’ };

 // retrieve the updated data from the database

 System.out.println("Retrieve the updated data from the database.");

 str1 = "000010";

 #sql cursor2 = {SELECT firstnme FROM employee WHERE empno = :str1}; //

6

 // display the result set

 // cursor2.next() returns false when there are no more rows

 System.out.println("Received results:");

 while (true)

 {

 #sql { FETCH :cursor2 INTO :str2 }; //

7

 if (cursor2.endFetch()) break; //

8

 System.out.print (" empno= " + str1);

 System.out.print (" firstname= " + str2);

 System.out.println("");

 }

 cursor2.close(); //

9

 // rollback the update

 System.out.println("Rollback the update.");

 #sql { ROLLBACK work };

 System.out.println("Rollback done.");

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

}

1Declare iterators. This section declares two types of iterators:

v App_Cursor1: Declares column data types and names, and returns the values of the columns according

to column name (Named binding to columns).

v App_Cursor2: Declares column data types, and returns the values of the columns by column position

(Positional binding to columns).

2Initialize the iterator. The iterator object cursor1 is initialized using the result of a query. The query

stores the result in cursor1.

402 IBM Systems - iSeries: Programming IBM Developer Kit for Java

3Advance the iterator to the next row. The cursor1.next() method returns a Boolean false if there are no

more rows to retrieve.

4Move the data. The named accessor method empno() returns the value of the column named empno on

the current row. The named accessor method firstnme() returns the value of the column named firstnme

on the current row.

5SELECT data into a host variable. The SELECT statement passes the number of rows in the table into the

host variable count1.

6 Initialize the iterator. The iterator object cursor2 is initialized using the result of a query. The query

stores the result in cursor2.

7Retrieve the data. The FETCH statement returns the current value of the first column declared in the

ByPos cursor from the result table into the host variable str2.

8Check the success of a FETCH.INTO statement. The endFetch() method returns a Boolean true if the

iterator is not positioned on a row, that is, if the last attempt to fetch a row failed. The endFetch() method

returns false if the last attempt to fetch a row was successful. DB2 attempts to fetch a row when the

next() method is called. A FETCH...INTO statement implicitly calls the next() method.

9Close the iterators. The close() method releases any resources held by the iterators. You should explicitly

close iterators to ensure that system resources are released in a timely fashion.

For background information on this example, see Embed SQL Statements in your Java application.

Example: End a transaction

This is an example of ending a transaction in your application.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTATxEnd {

 public static void main(java.lang.String[] args) {

 JTATxEnd test = new JTATxEnd();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

IBM Developer Kit for Java 403

try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... does not exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Fun with JTA’)");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is fun.)");

 s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

 /**

 * This test use JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 // For XA transactions, transaction identifier is required.

 // An implementation of the XID interface is not included

 // with the JDBC driver. See Transactions with JTA for a

 // description of this interface to build a class for it.

 Xid xid = new XidImpl();

 // The connection from the XAResource can be used as any other

 // JDBC connection.

 Statement stmt = c.createStatement();

 // The XA resource must be notified before starting any

 // transactional work.

 xaRes.start(xid, XAResource.TMNOFLAGS);

 // Create a ResultSet during JDBC processing and fetch a row.

 ResultSet rs = stmt.executeUpdate("SELECT * FROM CUJOSQL.JTATABLE");

 rs.next();

 // When the end method is called, all ResultSet cursors close.

 // Accessing the ResultSet after this point results in an

 // exception being thrown.

 xaRes.end(xid, XAResource.TMNOFLAGS);

 try {

 String value = rs.getString(1);

 System.out.println("Something failed if you receive this message.");

 } catch (SQLException e) {

 System.out.println("The expected exception was thrown.");

 }

404 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Commit the transaction to ensure that all locks are

 // released.

 int rc = xaRes.prepare(xid);

 xaRes.commit(xid, false);

 } catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

 Collected links

 Code example disclaimer

 Transactions with JTA

Typically, transactions in Java Database Connectivity (JDBC) are local. This means that a single

connection performs all the work of the transaction and that the connection can only work on one

transaction at a time. When all the work for that transaction has been completed or has failed, commit

or rollback is called to make the work permanent, and a new transaction can begin. There is, however,

also advanced support for transactions available in Java that provides functionality beyond local

transactions. This support is fully specified by the Java Transaction API.

Example: Invalid user ID and password

This is an example of how to use the Connection property in SQL naming mode.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// InvalidConnect example.

//

// This program uses the Connection property in SQL naming mode.

//

//

//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

IBM Developer Kit for Java 405

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

import java.sql.*;

import java.util.*;

public class InvalidConnect {

 public static void main(java.lang.String[] args)

 {

 // Register the driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (ClassNotFoundException cnf) {

 System.out.println("ERROR: JDBC driver did not load.");

 System.exit(0);

 }

 // Attempt to obtain a connection without specifying any user or

 // password. The attempt works and the connection uses the

 // same user profile under which the job is running.

 try {

 Connection c1 = DriverManager.getConnection("jdbc:db2:*local");

 c1.close();

 } catch (SQLException e) {

 System.out.println("This test should not get into this exception path.");

 e.printStackTrace();

 System.exit(1);

 }

 try {

 Connection c2 = DriverManager.getConnection("jdbc:db2:*local",

 "notvalid", "notvalid");

 } catch (SQLException e) {

 System.out.println("This is an expected error.");

 System.out.println("Message is " + e.getMessage());

 System.out.println("SQLSTATE is " + e.getSQLState());

 }

 }

}

Example: JDBC

This is an example of how to use the BasicJDBC program.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// BasicJDBC example. This program uses the native JDBC driver for the

// Developer Kit for Java to build a simple table and process a query

// that displays the data in that table.

//

// Command syntax:

// BasicJDBC

//

//

//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

406 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

// Include any Java classes that are to be used. In this application,

// many classes from the java.sql package are used and the

// java.util.Properties class is also used as part of obtaining

// a connection to the database.

import java.sql.*;

import java.util.Properties;

// Create a public class to encapsulate the program.

public class BasicJDBC {

 // The connection is a private variable of the object.

 private Connection connection = null;

 // Any class that is to be an ’entry point’ for running

 // a program must have a main method. The main method

 // is where processing begins when the program is called.

 public static void main(java.lang.String[] args) {

 // Create an object of type BasicJDBC. This

 // is fundamental to object-oriented programming. Once

 // an object is created, call various methods on

 // that object to accomplish work.

 // In this case, calling the constructor for the object

 // creates a database connection that the other

 // methods use to do work against the database.

 BasicJDBC test = new BasicJDBC();

 // Call the rebuildTable method. This method ensures that

 // the table used in this program exists and looks

 // correct. The return value is a boolean for

 // whether or not rebuilding the table completed

 // successfully. If it did no, display a message

 // and exit the program.

 if (!test.rebuildTable()) {

 System.out.println("Failure occurred while setting up " +

 " for running the test.");

 System.out.println("Test will not continue.");

 System.exit(0);

 }

 // The run query method is called next. This method

 // processes an SQL select statement against the table that

 // was created in the rebuildTable method. The output of

 // that query is output to standard out for you to view.

 test.runQuery();

 // Finally, the cleanup method is called. This method

 // ensures that the database connection that the object has

 // been hanging on to is closed.

IBM Developer Kit for Java 407

test.cleanup();

 }

 /**

 This is the constructor for the basic JDBC test. It creates a database

 connection that is stored in an instance variable to be used in later

 method calls.

 **/

 public BasicJDBC() {

 // One way to create a database connection is to pass a URL

 // and a java Properties object to the DriverManager. The following

 // code constructs a Properties object that has your user ID and

 // password. These pieces of information are used for connecting

 // to the database.

 Properties properties = new Properties ();

 properties.put("user", "cujo");

 properties.put("user", "newtiger");

 // Use a try/catch block to catch all exceptions that can come out of the

 // following code.

 try {

 // The DriverManager must be aware that there is a JDBC driver available

 // to handle a user connection request. The following line causes the

 // native JDBC driver to be loaded and registered with the DriverManager.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 // Create the database Connection object that this program uses in all

 // the other method calls that are made. The following code specifies

 // that a connection is to be established to the local database and that

 // that connection should conform to the properties that were set up

 // previously (that is, it should use the user ID and password specified).

 connection = DriverManager.getConnection("jdbc:db2:*local", properties);

 } catch (Exception e) {

 // If any of the lines in the try/catch block fail, control transfers to

 // the following line of code. A robust application tries to handle the

 // problem or provide more details to you. In this program, the error

 // message from the exception is displayed and the application allows

 // the program to return.

 System.out.println("Caught exception: " + e.getMessage());

 }

 }

 /**

 Ensures that the qgpl.basicjdbc table looks you want it to at the start of

 the test.

 @returns boolean Returns true if the table was rebuild successfully;

 returns false if any failure occurred.

 **/

 public boolean rebuildTable() {

 // Wrap all the functionality in a try/catch block so an attempt is

 // made to handle any errors that may happen within this method.

 try {

 // Statement objects are used to process SQL statements against the

 // database. The Connection object is used to create a Statement

 // object.

 Statement s = connection.createStatement();

 try {

 // Build the test table from scratch. Process an update statement

 // that attempts to delete the table if it currently exists.

 s.executeUpdate("drop table qgpl.basicjdbc");

408 IBM Systems - iSeries: Programming IBM Developer Kit for Java

} catch (SQLException e) {

 // Do not perform anything if an exception occurred. Assume

 // that the problem is that the table that was dropped does not

 // exist and that it can be created next.

 }

 // Use the statement object to create our table.

 s.executeUpdate("create table qgpl.basicjdbc(id int, name char(15))");

 // Use the statement object to populate our table with some data.

 s.executeUpdate("insert into qgpl.basicjdbc values(1, ’Frank Johnson’)");

 s.executeUpdate("insert into qgpl.basicjdbc values(2, ’Neil Schwartz’)");

 s.executeUpdate("insert into qgpl.basicjdbc values(3, ’Ben Rodman’)");

 s.executeUpdate("insert into qgpl.basicjdbc values(4, ’Dan Gloore’)");

 // Close the SQL statement to tell the database that it is no longer

 // needed.

 s.close();

 // If the entire method processed successfully, return true. At this point,

 // the table has been created or refreshed correctly.

 return true;

 } catch (SQLException sqle) {

 // If any of our SQL statements failed (other than the drop of the table

 // that was handled in the inner try/catch block), the error message is

 // displayed and false is returned to the caller, indicating that the table

 // may not be complete.

 System.out.println("Error in rebuildTable: " + sqle.getMessage());

 return false;

 }

 }

 /**

 Runs a query against the demonstration table and the results are displayed to

 standard out.

 **/

 public void runQuery() {

 // Wrap all the functionality in a try/catch block so an attempts is

 // made to handle any errors that might happen within this

 // method.

 try {

 // Create a Statement object.

 Statement s = connection.createStatement();

 // Use the statement object to run an SQL query. Queries return

 // ResultSet objects that are used to look at the data the query

 // provides.

 ResultSet rs = s.executeQuery("select * from qgpl.basicjdbc");

 // Display the top of our ’table’ and initialize the counter for the

 // number of rows returned.

 System.out.println("--------------------");

 int i = 0;

 // The ResultSet next method is used to process the rows of a

 // ResultSet. The next method must be called once before the

 // first data is available for viewing. As long as next returns

 // true, there is another row of data that can be used.

 while (rs.next()) {

 // Obtain both columns in the table for each row and write a row to

 // our on-screen table with the data. Then, increment the count

 // of rows that have been processed.

 System.out.println("| " + rs.getInt(1) + " | " + rs.getString(2) + "|");

IBM Developer Kit for Java 409

i++;

 }

 // Place a border at the bottom on the table and display the number of rows

 // as output.

 System.out.println("--------------------");

 System.out.println("There were " + i + " rows returned.");

 System.out.println("Output is complete.");

 } catch (SQLException e) {

 // Display more information about any SQL exceptions that are

 // generated as output.

 System.out.println("SQLException exception: ");

 System.out.println("Message:....." + e.getMessage());

 System.out.println("SQLState:...." + e.getSQLState());

 System.out.println("Vendor Code:." + e.getErrorCode());

 e.printStackTrace();

 }

 }

 /**

 The following method ensures that any JDBC resources that are still

 allocated are freed.

 **/

 public void cleanup() {

 try {

 if (connection != null)

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

}

Example: Multiple connections that work on a transaction

This is an example of how to use multiple connections working on a single transaction.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTAMultiConn {

 public static void main(java.lang.String[] args) {

 JTAMultiConn test = new JTAMultiConn();

 test.setup();

 test.run();

 }

/**

* Handle the previous cleanup run so that this test can recommence.

*/

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

410 IBM Systems - iSeries: Programming IBM Developer Kit for Java

}

 catch (SQLException e) {

 // Ignore... does not exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR

 (50))");

 s.close();

 }

 finally {

 if (c != null) {

 c.close();

 }

 }

 }

/**

* This test uses JTA support to handle transactions.

*/

 public void run() {

 Connection c1 = null;

 Connection c2 = null;

 Connection c3 = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource)

 ctx.lookup("XADataSource");

 // From the DataSource, obtain some XAConnection objects that

 // contain an XAResource and a Connection object.

 XAConnection xaConn1 = ds.getXAConnection();

 XAConnection xaConn2 = ds.getXAConnection();

 XAConnection xaConn3 = ds.getXAConnection();

 XAResource xaRes1 = xaConn1.getXAResource();

 XAResource xaRes2 = xaConn2.getXAResource();

 XAResource xaRes3 = xaConn3.getXAResource();

 c1 = xaConn1.getConnection();

 c2 = xaConn2.getConnection();

 c3 = xaConn3.getConnection();

 Statement stmt1 = c1.createStatement();

 Statement stmt2 = c2.createStatement();

 Statement stmt3 = c3.createStatement();

 // For XA transactions, a transaction identifier is required.

 // Support for creating XIDs is again left to the application

 // program.

 Xid xid = JDXATest.xidFactory();

 // Perform some transactional work under each of the three

 // connections that have been created.

 xaRes1.start(xid, XAResource.TMNOFLAGS);

 int count1 = stmt1.executeUpdate("INSERT INTO " + tableName + "VALUES(’Value 1-A’)");

 xaRes1.end(xid, XAResource.TMNOFLAGS);

 xaRes2.start(xid, XAResource.TMJOIN);

 int count2 = stmt2.executeUpdate("INSERT INTO " + tableName + "VALUES(’Value 1-B’)");

 xaRes2.end(xid, XAResource.TMNOFLAGS);

 xaRes3.start(xid, XAResource.TMJOIN);

 int count3 = stmt3.executeUpdate("INSERT INTO " + tableName + "VALUES(’Value 1-C’)");

 xaRes3.end(xid, XAResource.TMSUCCESS);

 // When completed, commit the transaction as a single unit.

 // A prepare() and commit() or 1 phase commit() is required for

 // each separate database (XAResource) that participated in the

 // transaction. Since the resources accessed (xaRes1, xaRes2, and xaRes3)

 // all refer to the same database, only one prepare or commit is required.

 int rc = xaRes.prepare(xid);

 xaRes.commit(xid, false);

 }

 catch (Exception e) {

 System.out.println("Something has gone wrong.");

IBM Developer Kit for Java 411

e.printStackTrace();

 }

 finally {

 try {

 if (c1 != null) {

 c1.close();

 }

 }

 catch (SQLException e) {

 System.out.println("Note: Cleaup exception " +

 e.getMessage());

 }

 try {

 if (c2 != null) {

 c2.close();

 }

 }

 catch (SQLException e) {

 System.out.println("Note: Cleaup exception " +

 e.getMessage());

 }

 try {

 if (c3 != null) {

 c3.close();

 }

 }

 catch (SQLException e) {

 System.out.println("Note: Cleaup exception " +

 e.getMessage());

 }

 }

 }

}

Example: Obtain an initial context before binding UDBDataSource

The following example obtains an initial context before binding the UDBDataSource. The lookup method

is then used on that context to return an object of type DataSource for the application to use.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// Import the required packages. There is no

// driver-specific code needed in runtime

// applications.

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

public class UDBDataSourceUse

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Retrieve a JNDI context. The context serves

 // as the root for where objects are bound or

 // found in JNDI.

 Context ctx = new InitialContext();

 // Retrieve the bound UDBDataSource object using the

 // name with which it was previously bound. At runtime,

 // only the DataSource interface is used, so there

 // is no need to convert the object to the UDBDataSource

 // implementation class. (There is no need to know what

 // the implementation class is. The logical JNDI name is

 // only required).

 DataSource ds = (DataSource) ctx.lookup("SimpleDS");

412 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Once the DataSource is obtained, it can be used to establish

 // a connection. This Connection object is the same type

 // of object that is returned if the DriverManager approach

 // to establishing connection is used. Thus, so everything from

 // this point forward is exactly like any other JDBC

 // application.

 Connection connection = ds.getConnection();

 // The connection can be used to create Statement objects and

 // update the database or process queries as follows.

 Statement statement = connection.createStatement();

 ResultSet rs = statement.executeQuery("select * from qsys2.sysprocs");

 while (rs.next()) {

 System.out.println(rs.getString(1) + "." + rs.getString(2));

 }

 // The connection is closed before the application ends.

 connection.close();

 }

}

Example: ParameterMetaData

This is an example of using the ParameterMetaData interface to retrieve information about parameters.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// ParameterMetaData example. This program demonstrates

// the new support of JDBC 3.0 for learning information

// about parameters to a PreparedStatement.

//

// Command syntax:

// java PMD

//

//

//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

import java.sql.*;

IBM Developer Kit for Java 413

public class PMD {

 // Program entry point.

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Obtain setup.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.MYTABLE VALUES(?, ?, ?)");

 ParameterMetaData pmd = ps.getParameterMetaData();

 for (int i = 1; i < pmd.getParameterCount(); i++) {

 System.out.println("Parameter number " + i);

 System.out.println(" Class name is " + pmd.getParameterClassName(i));

 // Note: Mode relates to input, output or inout

 System.out.println(" Mode is " + pmd.getParameterClassName(i));

 System.out.println(" Type is " + pmd.getParameterType(i));

 System.out.println(" Type name is " + pmd.getParameterTypeName(i));

 System.out.println(" Precision is " + pmd.getPrecision(i));

 System.out.println(" Scale is " + pmd.getScale(i));

 System.out.println(" Nullable? is " + pmd.isNullable(i));

 System.out.println(" Signed? is " + pmd.isSigned(i));

 }

 }

}

Example: Change values with a statement through another statement’s

cursor

This is an example of how to change values with a statement through another statement’s cursor.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class UsingPositionedUpdate {

 public Connection connection = null;

 public static void main(java.lang.String[] args) {

 UsingPositionedUpdate test = new UsingPositionedUpdate();

 test.setup();

 test.displayTable();

 test.run();

 test.displayTable();

 test.cleanup();

 }

/**

Handle all the required setup work.

**/

 public void setup() {

 try {

 // Register the JDBC driver.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 try {

414 IBM Systems - iSeries: Programming IBM Developer Kit for Java

s.executeUpdate("DROP TABLE CUJOSQL.WHERECUREX");

 } catch (SQLException e) {

 // Ignore problems here.

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.WHERECUREX (" +

 "COL_IND INT, COL_VALUE CHAR(20)) ");

 for (int i = 1; i <= 10; i++) {

 s.executeUpdate("INSERT INTO CUJOSQL.WHERECUREX VALUES(" + i + ", ’FIRST’)");

 }

 s.close();

 } catch (Exception e) {

 System.out.println("Caught exception: " + e.getMessage());

 e.printStackTrace();

 }

 }

/**

In this section, all the code to perform the testing should

be added. If only one connection to the database is required,

the global variable ’connection’ can be used.

**/

 public void run() {

 try {

 Statement stmt1 = connection.createStatement();

 // Update each value using next().

 stmt1.setCursorName("CUJO");

 ResultSet rs = stmt1.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX " +

 "FOR UPDATE OF COL_VALUE");

 System.out.println("Cursor name is " + rs.getCursorName());

 PreparedStatement stmt2 = connection.prepareStatement ("UPDATE "

 + " CUJOSQL.WHERECUREX

 SET COL_VALUE = ’CHANGED’

 WHERE CURRENT OF "

 + rs.getCursorName ());

 // Loop through the ResultSet and update every other entry.

 while (rs.next ()) {

 if (rs.next())

 stmt2.execute ();

 }

 // Clean up the resources after they have been used.

 rs.close ();

 stmt2.close ();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

/**

In this section, put all clean-up work for testing.

**/

IBM Developer Kit for Java 415

public void cleanup() {

 try {

 // Close the global connection opened in setup().

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

/**

Display the contents of the table.

**/

 public void displayTable()

 {

 try {

 Statement s = connection.createStatement();

 ResultSet rs = s.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX");

 while (rs.next ()) {

 System.out.println("Index " + rs.getInt(1) + " value " + rs.getString(2));

 }

 rs.close ();

 s.close();

 System.out.println("---");

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

}

 Collected links

 Code example disclaimer

Example: ResultSet interface for IBM Developer Kit for Java

This is an example of how to use the ResultSet interface.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

/**

ResultSetExample.java

This program demonstrates using a ResultSetMetaData and

a ResultSet to display all the data in a table even though

the program that gets the data does not know what the table

is going to look like (the user passes in the values for the

table and library).

**/

public class ResultSetExample {

 public static void main(java.lang.String[] args)

 {

 if (args.length != 2) {

 System.out.println("Usage: java ResultSetExample <library> <table>");

 System.out.println(" where <library> is the library that contains <table>");

 System.exit(0);

 }

416 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Connection con = null;

 Statement s = null;

 ResultSet rs = null;

 ResultSetMetaData rsmd = null;

 try {

 // Get a database connection and prepare a statement.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 con = DriverManager.getConnection("jdbc:db2:*local");

 s = con.createStatement();

 rs = s.executeQuery("SELECT * FROM " + args[0] + "." + args[1]);

 rsmd = rs.getMetaData();

 int colCount = rsmd.getColumnCount();

 int rowCount = 0;

 while (rs.next()) {

 rowCount++;

 System.out.println("Data for row " + rowCount);

 for (int i = 1; i <= colCount; i++)

 System.out.println(" Row " + i + ": " + rs.getString(i));

 }

 } catch (Exception e) {

 // Handle any errors.

 System.out.println("Oops... we have an error... ");

 e.printStackTrace();

 } finally {

 // Ensure we always clean up. If the connection gets closed, the

 // statement under it closes as well.

 if (con != null) {

 try {

 con.close();

 } catch (SQLException e) {

 System.out.println("Critical error - cannot close connection object");

 }

 }

 }

 }

}

Example: ResultSet sensitivity

The following example shows how a change can affect a where clause of an SQL statement based on the

sensitivity of the ResultSet.

Some of the formatting in this example may be incorrect in order to fit this example on a printed page.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class Sensitive2 {

 public Connection connection = null;

 public static void main(java.lang.String[] args) {

 Sensitive2 test = new Sensitive2();

 test.setup();

 test.run("sensitive");

 test.cleanup();

IBM Developer Kit for Java 417

test.setup();

 test.run("insensitive");

 test.cleanup();

 }

 public void setup() {

 try {

 System.out.println("Native JDBC used");

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 try {

 s.executeUpdate("drop table cujosql.sensitive");

 } catch (SQLException e) {

 // Ignored.

 }

 s.executeUpdate("create table cujosql.sensitive(col1 int)");

 s.executeUpdate("insert into cujosql.sensitive values(1)");

 s.executeUpdate("insert into cujosql.sensitive values(2)");

 s.executeUpdate("insert into cujosql.sensitive values(3)");

 s.executeUpdate("insert into cujosql.sensitive values(4)");

 s.executeUpdate("insert into cujosql.sensitive values(5)");

 try {

 s.executeUpdate("drop table cujosql.sensitive2");

 } catch (SQLException e) {

 // Ignored.

 }

 s.executeUpdate("create table cujosql.sensitive2(col2 int)");

 s.executeUpdate("insert into cujosql.sensitive2 values(1)");

 s.executeUpdate("insert into cujosql.sensitive2 values(2)");

 s.executeUpdate("insert into cujosql.sensitive2 values(3)");

 s.executeUpdate("insert into cujosql.sensitive2 values(4)");

 s.executeUpdate("insert into cujosql.sensitive2 values(5)");

 s.close();

 } catch (Exception e) {

 System.out.println("Caught exception: " + e.getMessage());

 if (e instanceof SQLException) {

 SQLException another = ((SQLException) e).getNextException();

 System.out.println("Another: " + another.getMessage());

 }

 }

 }

 public void run(String sensitivity) {

 try {

 Statement s = null;

 if (sensitivity.equalsIgnoreCase("insensitive")) {

 System.out.println("creating a TYPE_SCROLL_INSENSITIVE cursor");

 s = connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 } else {

 System.out.println("creating a TYPE_SCROLL_SENSITIVE cursor");

418 IBM Systems - iSeries: Programming IBM Developer Kit for Java

s = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 }

 ResultSet rs = s.executeQuery("select col1, col2 From cujosql.sensitive,

 cujosql.sensitive2 where col1 = col2");

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 System.out.println("fetched the four rows...");

 // Another statement creates a value that does not fit the where clause.

 Statement s2 =

 connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATEABLE);

 ResultSet rs2 = s2.executeQuery("select *

 from cujosql.sensitive where col1 = 5 FOR UPDATE");

 rs2.next();

 rs2.updateInt(1, -1);

 rs2.updateRow();

 s2.close();

 if (rs.next()) {

 System.out.println("There is still a row: " + rs.getInt(1));

 } else {

 System.out.println("No more rows.");

 }

 } catch (SQLException e) {

 System.out.println("SQLException exception: ");

 System.out.println("Message:....." + e.getMessage());

 System.out.println("SQLState:...." + e.getSQLState());

 System.out.println("Vendor Code:." + e.getErrorCode());

 System.out.println("----------------------------");

 e.printStackTrace();

 }

 catch (Exception ex) {

 System.out.println("An exception other

 than an SQLException was thrown: ");

 ex.printStackTrace();

 }

 }

 public void cleanup() {

 try {

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

 e.printStackTrace();

 }

 }

}

IBM Developer Kit for Java 419

Example: Sensitive and insensitive ResultSets

The following example shows the difference between sensitive and insensitive ResultSets when rows are

inserted into a table.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class Sensitive {

 public Connection connection = null;

 public static void main(java.lang.String[] args) {

 Sensitive test = new Sensitive();

 test.setup();

 test.run("sensitive");

 test.cleanup();

 test.setup();

 test.run("insensitive");

 test.cleanup();

 }

 public void setup() {

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 try {

 s.executeUpdate("drop table cujosql.sensitive");

 } catch (SQLException e) {

 // Ignored.

 }

 s.executeUpdate("create table cujosql.sensitive(col1 int)");

 s.executeUpdate("insert into cujosql.sensitive values(1)");

 s.executeUpdate("insert into cujosql.sensitive values(2)");

 s.executeUpdate("insert into cujosql.sensitive values(3)");

 s.executeUpdate("insert into cujosql.sensitive values(4)");

 s.executeUpdate("insert into cujosql.sensitive values(5)");

 s.close();

 } catch (Exception e) {

 System.out.println("Caught exception: " + e.getMessage());

 if (e instanceof SQLException) {

 SQLException another = ((SQLException) e).getNextException();

 System.out.println("Another: " + another.getMessage());

 }

 }

 }

 public void run(String sensitivity) {

 try {

 Statement s = null;

 if (sensitivity.equalsIgnoreCase("insensitive")) {

 System.out.println("creating a TYPE_SCROLL_INSENSITIVE cursor");

420 IBM Systems - iSeries: Programming IBM Developer Kit for Java

s = connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 } else {

 System.out.println("creating a TYPE_SCROLL_SENSITIVE cursor");

 s = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 }

 ResultSet rs = s.executeQuery("select * From cujosql.sensitive");

 // Fetch the five values that are there.

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 rs.next();

 System.out.println("value is " + rs.getInt(1));

 System.out.println("fetched the five rows...");

 // Note: If you fetch the last row, the ResultSet looks

 // closed and subsequent new rows that are added

 // are not be recognized.

 // Allow another statement to insert a new value.

 Statement s2 = connection.createStatement();

 s2.executeUpdate("insert into cujosql.sensitive values(6)");

 s2.close();

 // Whether a row is recognized is based on the sensitivity setting.

 if (rs.next()) {

 System.out.println("There is a row now: " + rs.getInt(1));

 } else {

 System.out.println("No more rows.");

 }

 } catch (SQLException e) {

 System.out.println("SQLException exception: ");

 System.out.println("Message:....." + e.getMessage());

 System.out.println("SQLState:...." + e.getSQLState());

 System.out.println("Vendor Code:." + e.getErrorCode());

 System.out.println("-------------------------------------");

 e.printStackTrace();

 }

 catch (Exception ex) {

 System.out.println("An exception other than an SQLException was thrown: ");

 ex.printStackTrace();

 }

 }

 public void cleanup() {

 try {

 connection.close();

 } catch (Exception e) {

 System.out.println("Caught exception: ");

IBM Developer Kit for Java 421

e.printStackTrace();

 }

 }

}

Example: Set up connection pooling with UDBDataSource and

UDBConnectionPoolDataSource

This is an example of how to use connection pooling with UDBDataSource and

UDBConnectionPoolDataSource.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.naming.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

import com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource;

public class ConnectionPoolingSetup

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 // Create a ConnectionPoolDataSource implementation

 UDBConnectionPoolDataSource cpds = new UDBConnectionPoolDataSource();

 cpds.setDescription("Connection Pooling DataSource object");

 // Establish a JNDI context and bind the connection pool data source

 Context ctx = new InitialContext();

 ctx.rebind("ConnectionSupport", cpds);

 // Create a standard data source that references it.

 UDBDataSource ds = new UDBDataSource();

 ds.setDescription("DataSource supporting pooling");

 ds.setDataSourceName("ConnectionSupport");

 ctx.rebind("PoolingDataSource", ds);

 }

}

Example: SQLException

This is an example of catching an SQLException and dumping all the information that it provides.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

public class ExceptionExample {

 public static Connection connection = null;

 public static void main(java.lang.String[] args) {

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 connection = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = connection.createStatement();

 int count = s.executeUpdate("insert into cujofake.cujofake values(1, 2,3)");

 System.out.println("Did not expect that table to exist.");

 } catch (SQLException e) {

422 IBM Systems - iSeries: Programming IBM Developer Kit for Java

System.out.println("SQLException exception: ");

 System.out.println("Message:....." + e.getMessage());

 System.out.println("SQLState:...." + e.getSQLState());

 System.out.println("Vendor Code:." + e.getErrorCode());

 System.out.println("---");

 e.printStackTrace();

 } catch (Exception ex) {

 System.out.println("An exception other than an SQLException was thrown: ");

 ex.printStackTrace();

 } finally {

 try {

 if (connection != null) {

 connection.close();

 }

 } catch (SQLException e) {

 System.out.println("Exception caught attempting to shutdown...");

 }

 }

 }

}

Example: Suspend and resume a transaction

This is an example of a transaction that is suspended and then is resumed.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTATxSuspend {

 public static void main(java.lang.String[] args) {

 JTATxSuspend test = new JTATxSuspend();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... doesn’t exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Fun with JTA’)");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is fun.)");

IBM Developer Kit for Java 423

s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

 /**

 * This test uses JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 // For XA transactions, a transaction identifier is required.

 // An implementation of the XID interface is not included with

 // the JDBC driver. Transactions with JTA for a

 // description of this interface to build a class for it.

 Xid xid = new XidImpl();

 // The connection from the XAResource can be used as any other

 // JDBC connection.

 Statement stmt = c.createStatement();

 // The XA resource must be notified before starting any

 // transactional work.

 xaRes.start(xid, XAResource.TMNOFLAGS);

 // Create a ResultSet during JDBC processing and fetch a row.

 ResultSet rs = stmt.executeUpdate("SELECT * FROM CUJOSQL.JTATABLE");

 rs.next();

 // The end method is called with the suspend option. The

 // ResultSets associated with the current transaction are ’on hold’.

 // They are neither gone nor accessible in this state.

 xaRes.end(xid, XAResource.TMSUSPEND);

 // Other work can be performed with the transaction.

 // As an example, you can create a statement and process a query.

 // This work and any other transactional work that the transaction may

 // perform is separate from the work done previously under the XID.

 Statement nonXAStmt = conn.createStatement();

 ResultSet nonXARS = nonXAStmt.executeQuery("SELECT * FROM CUJOSQL.JTATABLE");

 while (nonXARS.next()) {

 // Process here...

 }

 nonXARS.close();

 nonXAStmt.close();

 // If an attempt is made to use any suspended transactions

 // resources, an exception results.

 try {

424 IBM Systems - iSeries: Programming IBM Developer Kit for Java

rs.getString(1);

 System.out.println("Value of the first row is " + rs.getString(1));

 } catch (SQLException e) {

 System.out.println("This was an expected exception - " +

 "suspended ResultSet was used.");

 }

 // Resume the suspended transaction and complete the work on it.

 // The ResultSet is exactly as it was before the suspension.

 xaRes.start(newXid, XAResource.TMRESUME);

 rs.next();

 System.out.println("Value of the second row is " + rs.getString(1));

 // When the transaction has completed, end it

 // and commit any work under it.

 xaRes.end(xid, XAResource.TMNOFLAGS);

 int rc = xaRes.prepare(xid);

 xaRes.commit(xid, false);

 } catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

Example: Suspended ResultSets

This is an example of the how a Statement object is reprocessed under another transaction to perform

work.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTATxEffect {

 public static void main(java.lang.String[] args) {

 JTATxEffect test = new JTATxEffect();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

IBM Developer Kit for Java 425

Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... does not exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Fun with JTA’)");

 s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is fun.)");

 s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

 /**

 * This test uses JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 // For XA transactions, a transaction identifier is required.

 // An implementation of the XID interface is not included with

 // the JDBC driver. See Transactions with JTA

 // for a description of this interface to build a

 // class for it.

 Xid xid = new XidImpl();

 // The connection from the XAResource can be used as any other

 // JDBC connection.

 Statement stmt = c.createStatement();

 // The XA resource must be notified before starting any

 // transactional work.

 xaRes.start(xid, XAResource.TMNOFLAGS);

 // Create a ResultSet during JDBC processing and fetch a row.

 ResultSet rs = stmt.executeUpdate("SELECT * FROM CUJOSQL.JTATABLE");

 rs.next();

 // The end method is called with the suspend option. The

 // ResultSets associated with the current transaction are ’on hold’.

 // They are neither gone nor accessible in this state.

 xaRes.end(xid, XAResource.TMSUSPEND);

426 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// In the meantime, other work can be done outside the transaction.

 // The ResultSets under the transaction can be closed if the

 // Statement object used to create them is reused.

 ResultSet nonXARS = stmt.executeQuery("SELECT * FROM CUJOSQL.JTATABLE");

 while (nonXARS.next()) {

 // Process here...

 }

 // Attempt to go back to the suspended transaction. The suspended

 // transaction’s ResultSet has disappeared because the statement

 // has been processed again.

 xaRes.start(newXid, XAResource.TMRESUME);

 try {

 rs.next();

 } catch (SQLException ex) {

 System.out.println("This exception is expected. " +

 "The ResultSet closed due to another process.");

 }

 // When the transaction had completed, end it

 // and commit any work under it.

 xaRes.end(xid, XAResource.TMNOFLAGS);

 int rc = xaRes.prepare(xid);

 xaRes.commit(xid, false);

 } catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

Example: Test the performance of connection pooling

This is an example of how to test the performance of the pooling example against the performance of the

non-pooling example.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.naming.*;

import java.util.*;

import javax.sql.*;

public class ConnectionPoolingTest

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 Context ctx = new InitialContext();

 // Do the work without a pool:

 DataSource ds = (DataSource) ctx.lookup("BaseDataSource");

 System.out.println("\nStart timing the non-pooling DataSource version...");

IBM Developer Kit for Java 427

long startTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 Connection c1 = ds.getConnection();

 c1.close();

 }

 long endTime = System.currentTimeMillis();

 System.out.println("Time spent: " + (endTime - startTime));

 // Do the work with pooling:

 ds = (DataSource) ctx.lookup("PoolingDataSource");

 System.out.println("\nStart timing the pooling version...");

 startTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 Connection c1 = ds.getConnection();

 c1.close();

 }

 endTime = System.currentTimeMillis();

 System.out.println("Time spent: " + (endTime - startTime));

 }

}

Example: Test the performance of two DataSources

This is an example of testing one DataSource that uses connection pooling only and the other DataSource

that uses statement and connection pooling.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.naming.*;

import java.util.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

import com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource;

public class StatementPoolingTest

{

 public static void main(java.lang.String[] args)

 throws Exception

 {

 Context ctx = new InitialContext();

 System.out.println("deploying statement pooling data source");

 deployStatementPoolDataSource();

 // Do the work with connection pooling only.

 DataSource ds = (DataSource) ctx.lookup("PoolingDataSource");

 System.out.println("\nStart timing the connection pooling only version...");

 long startTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 Connection c1 = ds.getConnection();

 PreparedStatement ps = c1.prepareStatement("select * from qsys2.sysprocs");

 ResultSet rs = ps.executeQuery();

 c1.close();

 }

 long endTime = System.currentTimeMillis();

 System.out.println("Time spent: " + (endTime - startTime));

 // Do the work with statement pooling added.

 ds = (DataSource) ctx.lookup("StatementPoolingDataSource");

 System.out.println("\nStart timing the statement pooling version...");

428 IBM Systems - iSeries: Programming IBM Developer Kit for Java

startTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 Connection c1 = ds.getConnection();

 PreparedStatement ps = c1.prepareStatement("select * from qsys2.sysprocs");

 ResultSet rs = ps.executeQuery();

 c1.close();

 }

 endTime = System.currentTimeMillis();

 System.out.println("Time spent: " + (endTime - startTime));

 }

 private static void deployStatementPoolDataSource()

 throws Exception

 {

 // Create a ConnectionPoolDataSource implementation

 UDBConnectionPoolDataSource cpds = new UDBConnectionPoolDataSource();

 cpds.setDescription("Connection Pooling DataSource object with Statement pooling");

 cpds.setMaxStatements(10);

 // Establish a JNDI context and bind the connection pool data source

 Context ctx = new InitialContext();

 ctx.rebind("StatementSupport", cpds);

 // Create a standard datasource that references it.

 UDBDataSource ds = new UDBDataSource();

 ds.setDescription("DataSource supporting statement pooling");

 ds.setDataSourceName("StatementSupport");

 ctx.rebind("StatementPoolingDataSource", ds);

 }

}

Example: Update BLOBs

This is an example of how to update BLOBs in your applications.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// UpdateBlobs is an example application

// that shows some of the APIs providing

// support for changing Blob objects

// and reflecting those changes to the

// database.

//

// This program must be run after

// the PutGetBlobs program has completed.

///

import java.sql.*;

public class UpdateBlobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

IBM Developer Kit for Java 429

Statement s = c.createStatement();

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");

 rs.next();

 Blob blob1 = rs.getBlob(1);

 rs.next();

 Blob blob2 = rs.getBlob(1);

 // Truncate a BLOB.

 blob1.truncate((long) 150000);

 System.out.println("Blob1’s new length is " + blob1.length());

 // Update part of the BLOB with a new byte array.

 // The following code obtains the bytes that are at

 // positions 4000-4500 and set them to positions 500-1000.

 // Obtain part of the BLOB as a byte array.

 byte[] bytes = blob1.getBytes(4000L, 4500);

 int bytesWritten = blob2.setBytes(500L, bytes);

 System.out.println("Bytes written is " + bytesWritten);

 // The bytes are now found at position 500 in blob2

 long startInBlob2 = blob2.position(bytes, 1);

 System.out.println("pattern found starting at position " + startInBlob2);

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Update CLOBs

This is an example of how to update CLOBs in your applications.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// UpdateClobs is an example application

// that shows some of the APIs providing

// support for changing Clob objects

// and reflecting those changes to the

// database.

//

// This program must be run after

// the PutGetClobs program has completed.

///

import java.sql.*;

public class UpdateClobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

430 IBM Systems - iSeries: Programming IBM Developer Kit for Java

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");

 rs.next();

 Clob clob1 = rs.getClob(1);

 rs.next();

 Clob clob2 = rs.getClob(1);

 // Truncate a CLOB.

 clob1.truncate((long) 150000);

 System.out.println("Clob1’s new length is " + clob1.length());

 // Update a portion of the CLOB with a new String value.

 String value = "Some new data for once";

 int charsWritten = clob2.setString(500L, value);

 System.out.println("Characters written is " + charsWritten);

 // The bytes can be found at position 500 in clob2

 long startInClob2 = clob2.position(value, 1);

 System.out.println("pattern found starting at position " + startInClob2);

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Use a connection with multiple transactions

This is an example of how to use a single connection with multiple transactions.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTAMultiTx {

 public static void main(java.lang.String[] args) {

 JTAMultiTx test = new JTAMultiTx();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... does not exist

IBM Developer Kit for Java 431

}

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

 /**

 * This test uses JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 Statement stmt = c.createStatement();

 // For XA transactions, a transaction identifier is required.

 // This is not meant to imply that all the XIDs are the same.

 // Each XID must be unique to distinguish the various transactions

 // that occur.

 // Support for creating XIDs is again left to the application

 // program.

 Xid xid1 = JDXATest.xidFactory();

 Xid xid2 = JDXATest.xidFactory();

 Xid xid3 = JDXATest.xidFactory();

 // Do work under three transactions for this connection.

 xaRes.start(xid1, XAResource.TMNOFLAGS);

 int count1 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Value 1-A’)");

 xaRes.end(xid1, XAResource.TMNOFLAGS);

 xaRes.start(xid2, XAResource.TMNOFLAGS);

 int count2 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Value 1-B’)");

 xaRes.end(xid2, XAResource.TMNOFLAGS);

 xaRes.start(xid3, XAResource.TMNOFLAGS);

 int count3 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Value 1-C’)");

 xaRes.end(xid3, XAResource.TMNOFLAGS);

 // Prepare all the transactions

 int rc1 = xaRes.prepare(xid1);

 int rc2 = xaRes.prepare(xid2);

 int rc3 = xaRes.prepare(xid3);

 // Two of the transactions commit and one rolls back.

 // The attempt to insert the second value into the table is

 // not committed.

 xaRes.commit(xid1, false);

 xaRes.rollback(xid2);

 xaRes.commit(xid3, false);

432 IBM Systems - iSeries: Programming IBM Developer Kit for Java

} catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

Example: Use BLOBs

This is an example of how to use BLOBs in your applications.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// UseBlobs is an example application

// that shows some of the APIs associated

// with Blob objects.

//

// This program must be run after

// the PutGetBlobs program has completed.

///

import java.sql.*;

public class UseBlobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");

 rs.next();

 Blob blob1 = rs.getBlob(1);

 rs.next();

 Blob blob2 = rs.getBlob(1);

 // Determine the length of a LOB.

 long end = blob1.length();

 System.out.println("Blob1 length is " + blob1.length());

 // When working with LOBs, all indexing that is related to them

 // is 1-based, and is not 0-based like strings and arrays.

 long startingPoint = 450;

 long endingPoint = 500;

 // Obtain part of the BLOB as a byte array.

 byte[] outByteArray = blob1.getBytes(startingPoint, (int)endingPoint);

IBM Developer Kit for Java 433

// Find where a sub-BLOB or byte array is first found within a

 // BLOB. The setup for this program placed two identical copies of

 // a random BLOB into the database. Thus, the start position of the

 // byte array extracted from blob1 can be found in the starting

 // position in blob2. The exception would be if there were 50

 // identical random bytes in the LOBs previously.

 long startInBlob2 = blob2.position(outByteArray, 1);

 System.out.println("pattern found starting at position " + startInBlob2);

 c.close(); // Connection close closes stmt and rs too.

 }

}

Example: Use CLOBs

This is an example of how to use CLOBs in your applications.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
///

// UpdateClobs is an example application

// that shows some of the APIs providing

// support for changing Clob objects

// and reflecting those changes to the

// database.

//

// This program must be run after

// the PutGetClobs program has completed.

///

import java.sql.*;

public class UseClobs {

 public static void main(String[] args)

 throws SQLException

 {

 // Register the native JDBC driver.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 } catch (Exception e) {

 System.exit(1); // Setup error.

 }

 Connection c = DriverManager.getConnection("jdbc:db2:*local");

 Statement s = c.createStatement();

 ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");

 rs.next();

 Clob clob1 = rs.getClob(1);

 rs.next();

 Clob clob2 = rs.getClob(1);

 // Determine the length of a LOB.

 long end = clob1.length();

 System.out.println("Clob1 length is " + clob1.length());

 // When working with LOBs, all indexing that is related to them

 // is 1-based, and not 0-based like strings and arrays.

 long startingPoint = 450;

 long endingPoint = 50;

 // Obtain part of the CLOB as a byte array.

 String outString = clob1.getSubString(startingPoint, (int)endingPoint);

 System.out.println("Clob substring is " + outString);

434 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Find where a sub-CLOB or string is first found within a

 // CLOB. The setup for this program placed two identical copies of

 // a repeating CLOB into the database. Thus, the start position of the

 // string extracted from clob1 can be found in the starting

 // position in clob2 if the search begins close to the position where

 // the string starts.

 long startInClob2 = clob2.position(outString, 440);

 System.out.println("pattern found starting at position " + startInClob2);

 c.close(); // Connection close also closes stmt and rs.

 }

}

Example: Use JTA to handle a transaction

This is an example of how to use the Java Transaction API (JTA) to handle a transaction in an application.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;

import javax.transaction.xa.*;

import com.ibm.db2.jdbc.app.*;

public class JTACommit {

 public static void main(java.lang.String[] args) {

 JTACommit test = new JTACommit();

 test.setup();

 test.run();

 }

 /**

 * Handle the previous cleanup run so that this test can recommence.

 */

 public void setup() {

 Connection c = null;

 Statement s = null;

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 s = c.createStatement();

 try {

 s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

 } catch (SQLException e) {

 // Ignore... does not exist

 }

 s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

 s.close();

 } finally {

 if (c != null) {

 c.close();

 }

 }

 }

IBM Developer Kit for Java 435

/**

 * This test uses JTA support to handle transactions.

 */

 public void run() {

 Connection c = null;

 try {

 Context ctx = new InitialContext();

 // Assume the data source is backed by a UDBXADataSource.

 UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

 // From the DataSource, obtain an XAConnection object that

 // contains an XAResource and a Connection object.

 XAConnection xaConn = ds.getXAConnection();

 XAResource xaRes = xaConn.getXAResource();

 Connection c = xaConn.getConnection();

 // For XA transactions, a transaction identifier is required.

 // An implementation of the XID interface is not included with the

 // JDBC driver. See Transactions with JTA for a description of

 // this interface to build a class for it.

 Xid xid = new XidImpl();

 // The connection from the XAResource can be used as any other

 // JDBC connection.

 Statement stmt = c.createStatement();

 // The XA resource must be notified before starting any

 // transactional work.

 xaRes.start(xid, XAResource.TMNOFLAGS);

 // Standard JDBC work is performed.

 int count =

 stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is pretty fun.’)");

 // When the transaction work has completed, the XA resource must

 // again be notified.

 xaRes.end(xid, XAResource.TMSUCCESS);

 // The transaction represented by the transaction ID is prepared

 // to be committed.

 int rc = xaRes.prepare(xid);

 // The transaction is committed through the XAResource.

 // The JDBC Connection object is not used to commit

 // the transaction when using JTA.

 xaRes.commit(xid, false);

 } catch (Exception e) {

 System.out.println("Something has gone wrong.");

 e.printStackTrace();

 } finally {

 try {

 if (c != null)

 c.close();

 } catch (SQLException e) {

 System.out.println("Note: Cleaup exception.");

 e.printStackTrace();

 }

 }

 }

}

436 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Example: Use metadata ResultSets that have more than one column

This is an example of how to use metadata ResultSets that have more than one column.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// SafeGetUDTs example. This program demonstrates one way to deal with

// metadata ResultSets that have more columns in JDK 1.4 than they

// had in previous releases.

//

// Command syntax:

// java SafeGetUDTs

//

//

//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

import java.sql.*;

public class SafeGetUDTs {

 public static int jdbcLevel;

 // Note: Static block runs before main begins.

 // Therefore, there is access to jdbcLevel in

 // main.

 {

 try {

 Class.forName("java.sql.Blob");

 try {

 Class.forName("java.sql.ParameterMetaData");

 // Found a JDBC 3.0 interface. Must support JDBC 3.0.

 jdbcLevel = 3;

 } catch (ClassNotFoundException ez) {

 // Could not find the JDBC 3.0 ParameterMetaData class.

 // Must be running under a JVM with only JDBC 2.0

 // support.

 jdbcLevel = 2;

 }

 } catch (ClassNotFoundException ex) {

IBM Developer Kit for Java 437

// Could not find the JDBC 2.0 Blob class. Must be

 // running under a JVM with only JDBC 1.0 support.

 jdbcLevel = 1;

 }

 }

 // Program entry point.

 public static void main(java.lang.String[] args)

 {

 Connection c = null;

 try {

 // Get the driver registered.

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 c = DriverManager.getConnection("jdbc:db2:*local");

 DatabaseMetaData dmd = c.getMetaData();

 if (jdbcLevel == 1) {

 System.out.println("No support is provided for getUDTs. Just return.");

 System.exit(1);

 }

 ResultSet rs = dmd.getUDTs(null, "CUJOSQL", "SSN%", null);

 while (rs.next()) {

 // Fetch all the columns that have been available since the

 // JDBC 2.0 release.

 System.out.println("TYPE_CAT is " + rs.getString("TYPE_CAT"));

 System.out.println("TYPE_SCHEM is " + rs.getString("TYPE_SCHEM"));

 System.out.println("TYPE_NAME is " + rs.getString("TYPE_NAME"));

 System.out.println("CLASS_NAME is " + rs.getString("CLASS_NAME"));

 System.out.println("DATA_TYPE is " + rs.getString("DATA_TYPE"));

 System.out.println("REMARKS is " + rs.getString("REMARKS"));

 // Fetch all the columns that were added in JDBC 3.0.

 if (jdbcLevel > 2) {

 System.out.println("BASE_TYPE is " + rs.getString("BASE_TYPE"));

 }

 }

 } catch (Exception e) {

 System.out.println("Error: " + e.getMessage());

 } finally {

 if (c != null) {

 try {

 c.close();

 } catch (SQLException e) {

 // Ignoring shutdown exception.

 }

 }

 }

 }

}

Example: Use native JDBC and IBM Toolbox for Java JDBC

concurrently

This is an example of how to use the native JDBC connection and the IBM Toolbox for Java JDBC

connection in a program.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// GetConnections example.

438 IBM Systems - iSeries: Programming IBM Developer Kit for Java

//

// This program demonstrates being able to use both JDBC drivers at

// once in a program. Two Connection objects are created in this

// program. One is a native JDBC connection and one is a IBM Toolbox for Java

// JDBC connection.

//

// This technique is convenient because it allows you to use different

// JDBC drivers for different tasks concurrently. For example, the

// IBM Toolbox for Java JDBC driver is ideal for connecting to remote iSeries servers

// and the native JDBC driver is faster for local connections.

// You can use the strengths of each driver concurrently in your

// application by writing code similar to this example.

//

//

//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// All programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// All rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

//

import java.sql.*;

import java.util.*;

public class GetConnections {

 public static void main(java.lang.String[] args)

 {

 // Verify input.

 if (args.length != 2) {

 System.out.println("Usage (CL command line): java GetConnections PARM(<user> <password>)");

 System.out.println(" where <user> is a valid iSeries user ID");

 System.out.println(" and <password> is the password for that user ID");

 System.exit(0);

 }

 // Register both drivers.

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 Class.forName("com.ibm.as400.access.AS400JDBCDriver");

 } catch (ClassNotFoundException cnf) {

 System.out.println("ERROR: One of the JDBC drivers did not load.");

 System.exit(0);

 }

 try {

 // Obtain a connection with each driver.

 Connection conn1 = DriverManager.getConnection("jdbc:db2://localhost", args[0], args[1]);

 Connection conn2 = DriverManager.getConnection("jdbc:as400://localhost", args[0], args[1]);

IBM Developer Kit for Java 439

// Verify that they are different.

 if (conn1 instanceof com.ibm.db2.jdbc.app.DB2Connection)

 System.out.println("conn1 is running under the native JDBC driver.");

 else

 System.out.println("There is something wrong with conn1.");

 if (conn2 instanceof com.ibm.as400.access.AS400JDBCConnection)

 System.out.println("conn2 is running under the IBM Toolbox for Java JDBC driver.");

 else

 System.out.println("There is something wrong with conn2.");

 conn1.close();

 conn2.close();

 } catch (SQLException e) {

 System.out.println("ERROR: " + e.getMessage());

 }

 }

}

 Collected links

 Code example disclaimer

Example: Use PreparedStatement to obtain a ResultSet

This is an example of using a PreparedStatement object’s executeQuery method to obtain a ResultSet.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import java.util.Properties;

public class PreparedStatementExample {

 public static void main(java.lang.String[] args)

 {

 // Load the following from a properties object.

 String DRIVER = "com.ibm.db2.jdbc.app.DB2Driver";

 String URL = "jdbc:db2://*local";

 // Register the native JDBC driver. If the driver cannot

 // be registered, the test cannot continue.

 try {

 Class.forName(DRIVER);

 } catch (Exception e) {

 System.out.println("Driver failed to register.");

 System.out.println(e.getMessage());

 System.exit(1);

 }

 Connection c = null;

 Statement s = null;

 // This program creates a table that is

 // used by prepared statements later.

 try {

 // Create the connection properties.

 Properties properties = new Properties ();

 properties.put ("user", "userid");

 properties.put ("password", "password");

 // Connect to the local iSeries database.

 c = DriverManager.getConnection(URL, properties);

 // Create a Statement object.

 s = c.createStatement();

 // Delete the test table if it exists. Note that

440 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// this example assumes throughout that the collection

 // MYLIBRARY exists on the system.

 try {

 s.executeUpdate("DROP TABLE MYLIBRARY.MYTABLE");

 } catch (SQLException e) {

 // Just continue... the table probably did not exist.

 }

 // Run an SQL statement that creates a table in the database.

 s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

 } catch (SQLException sqle) {

 System.out.println("Database processing has failed.");

 System.out.println("Reason: " + sqle.getMessage());

 } finally {

 // Close database resources

 try {

 if (s != null) {

 s.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Statement.");

 }

 }

 // This program then uses a prepared statement to insert many

 // rows into the database.

 PreparedStatement ps = null;

 String[] nameArray = {"Rich", "Fred", "Mark", "Scott", "Jason",

 "John", "Jessica", "Blair", "Erica", "Barb"};

 try {

 // Create a PreparedStatement object that is used to insert data into the

 // table.

 ps = c.prepareStatement("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (?, ?)");

 for (int i = 0; i < nameArray.length; i++) {

 ps.setString(1, nameArray[i]); // Set the Name from our array.

 ps.setInt(2, i+1); // Set the ID.

 ps.executeUpdate();

 }

 } catch (SQLException sqle) {

 System.out.println("Database processing has failed.");

 System.out.println("Reason: " + sqle.getMessage());

 } finally {

 // Close database resources

 try {

 if (ps != null) {

 ps.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Statement.");

 }

 }

 // Use a prepared statement to query the database

 // table that has been created and return data from it. In

 // this example, the parameter used is arbitrarily set to

 // 5, meaning return all rows where the ID field is less than

 // or equal to 5.

 try {

 ps = c.prepareStatement("SELECT * FROM MYLIBRARY.MYTABLE " +

 "WHERE ID <= ?");

 ps.setInt(1, 5);

IBM Developer Kit for Java 441

// Run an SQL query on the table.

 ResultSet rs = ps.executeQuery();

 // Display all the data in the table.

 while (rs.next()) {

 System.out.println("Employee " + rs.getString(1) + " has ID " + rs.getInt(2));

 }

 } catch (SQLException sqle) {

 System.out.println("Database processing has failed.");

 System.out.println("Reason: " + sqle.getMessage());

 } finally {

 // Close database resources

 try {

 if (ps != null) {

 ps.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Statement.");

 }

 try {

 if (c != null) {

 c.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Connection.");

 }

 }

 }

}

Example: Use the Statement object’s executeUpdate method

This is an example of how to use the Statement object’s executeUpdate method.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import java.util.Properties;

public class StatementExample {

 public static void main(java.lang.String[] args)

 {

 // Suggestion: Load these from a properties object.

 String DRIVER = "com.ibm.db2.jdbc.app.DB2Driver";

 String URL = "jdbc:db2://*local";

 // Register the native JDBC driver. If the driver cannot be

 // registered, the test cannot continue.

 try {

 Class.forName(DRIVER);

 } catch (Exception e) {

 System.out.println("Driver failed to register.");

 System.out.println(e.getMessage());

 System.exit(1);

 }

 Connection c = null;

 Statement s = null;

 try {

 // Create the connection properties.

442 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Properties properties = new Properties ();

 properties.put ("user", "userid");

 properties.put ("password", "password");

 // Connect to the local iSeries database.

 c = DriverManager.getConnection(URL, properties);

 // Create a Statement object.

 s = c.createStatement();

 // Delete the test table if it exists. Note: This

 // example assumes that the collection MYLIBRARY

 // exists on the system.

 try {

 s.executeUpdate("DROP TABLE MYLIBRARY.MYTABLE");

 } catch (SQLException e) {

 // Just continue... the table probably does not exist.

 }

 // Run an SQL statement that creates a table in the database.

 s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

 // Run some SQL statements that insert records into the table.

 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’RICH’, 123)");

 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’FRED’, 456)");

 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (’MARK’, 789)");

 // Run an SQL query on the table.

 ResultSet rs = s.executeQuery("SELECT * FROM MYLIBRARY.MYTABLE");

 // Display all the data in the table.

 while (rs.next()) {

 System.out.println("Employee " + rs.getString(1) + " has ID " + rs.getInt(2));

 }

 } catch (SQLException sqle) {

 System.out.println("Database processing has failed.");

 System.out.println("Reason: " + sqle.getMessage());

 } finally {

 // Close database resources

 try {

 if (s != null) {

 s.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Statement.");

 }

 }

 try {

 if (c != null) {

 c.close();

 }

 } catch (SQLException e) {

 System.out.println("Cleanup failed to close Connection.");

 }

 }

 }

}

Examples: JAAS HelloWorld

These examples show you the three files that are needed to compile and run HelloWorld for JAAS.

HelloWorld.java

Here is the source for the file HelloWorld.java.

IBM Developer Kit for Java 443

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/*

 * ===

 * Licensed Materials - Property of IBM

 *

 * (C) Copyright IBM Corp. 2000 All Rights Reserved.

 *

 * US Government Users Restricted Rights - Use, duplication or

 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 * ===

 *

 * File: HelloWorld.java

 */

import java.io.*;

import java.util.*;

import java.security.Principal;

import java.security.PrivilegedAction;

import javax.security.auth.*;

import javax.security.auth.callback.*;

import javax.security.auth.login.*;

import javax.security.auth.spi.*;

/**

 * This SampleLogin application attempts to authenticate a user.

 *

 * If the user successfully authenticates itself,

 * the user name and number of Credentials is displayed.

 *

 * @version 1.1, 09/14/99

 */

public class HelloWorld {

 /**

 * Attempt to authenticate the user.

 */

 public static void main(String[] args) {

 // use the configured LoginModules for the "helloWorld" entry

 LoginContext lc = null;

 try {

 lc = new LoginContext("helloWorld", new MyCallbackHandler());

 } catch (LoginException le) {

 le.printStackTrace();

 System.exit(-1);

 }

 // the user has 3 attempts to authenticate successfully

 int i;

 for (i = 0; i < 3; i++) {

 try {

 // attempt authentication

 lc.login();

 // if we return with no exception, authentication succeeded

 break;

 } catch (AccountExpiredException aee) {

 System.out.println("Your account has expired");

 System.exit(-1);

 } catch (CredentialExpiredException cee) {

 System.out.println("Your credentials have expired.");

444 IBM Systems - iSeries: Programming IBM Developer Kit for Java

System.exit(-1);

 } catch (FailedLoginException fle) {

 System.out.println("Authentication Failed");

 try {

 Thread.currentThread().sleep(3000);

 } catch (Exception e) {

 // ignore

 }

 } catch (Exception e) {

 System.out.println("Unexpected Exception - unable to continue");

 e.printStackTrace();

 System.exit(-1);

 }

 }

 // did they fail three times?

 if (i == 3) {

 System.out.println("Sorry");

 System.exit(-1);

 }

 // Look at what Principals we have:

 Iterator principalIterator = lc.getSubject().getPrincipals().iterator();

 System.out.println("\n\nAuthenticated user has the following Principals:");

 while (principalIterator.hasNext()) {

 Principal p = (Principal)principalIterator.next();

 System.out.println("\t" + p.toString());

 }

 // Look at some Principal-based work:

 Subject.doAsPrivileged(lc.getSubject(), new PrivilegedAction() {

 public Object run() {

 System.out.println("\nYour java.home property: "

 +System.getProperty("java.home"));

 System.out.println("\nYour user.home property: "

 +System.getProperty("user.home"));

 File f = new File("foo.txt");

 System.out.print("\nfoo.txt does ");

 if (!f.exists()) System.out.print("not ");

 System.out.println("exist in your current directory");

 System.out.println("\nOh, by the way ...");

 try {

 Thread.currentThread().sleep(2000);

 } catch (Exception e) {

 // ignore

 }

 System.out.println("\n\nHello World!\n");

 return null;

 }

 }, null);

 System.exit(0);

 }

}

/**

 * The application must implement the CallbackHandler.

 *

 * This application is text-based. Therefore it displays information

IBM Developer Kit for Java 445

* to the user using the OutputStreams System.out and System.err,

 * and gathers input from the user using the InputStream, System.in.

 */

class MyCallbackHandler implements CallbackHandler {

 /**

 * Invoke an array of Callbacks.

 *

 *

 * @param callbacks an array of Callback objects which contain

 * the information requested by an underlying security

 * service to be retrieved or displayed.

 *

 * @exception java.io.IOException if an input or output error occurs.

 *

 * @exception UnsupportedCallbackException if the implementation of this

 * method does not support one or more of the Callbacks

 * specified in the callbacks parameter.

 */

 public void handle(Callback[] callbacks)

 throws IOException, UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof TextOutputCallback) {

 // display the message according to the specified type

 TextOutputCallback toc = (TextOutputCallback)callbacks[i];

 switch (toc.getMessageType()) {

 case TextOutputCallback.INFORMATION:

 System.out.println(toc.getMessage());

 break;

 case TextOutputCallback.ERROR:

 System.out.println("ERROR: " + toc.getMessage());

 break;

 case TextOutputCallback.WARNING:

 System.out.println("WARNING: " + toc.getMessage());

 break;

 default:

 throw new IOException("Unsupported message type: " +

 toc.getMessageType());

 }

 } else if (callbacks[i] instanceof NameCallback) {

 // prompt the user for a user name

 NameCallback nc = (NameCallback)callbacks[i];

 // ignore the provided defaultName

 System.err.print(nc.getPrompt());

 System.err.flush();

 nc.setName((new BufferedReader

 (new InputStreamReader(System.in))).readLine());

 } else if (callbacks[i] instanceof PasswordCallback) {

 // prompt the user for sensitive information

 PasswordCallback pc = (PasswordCallback)callbacks[i];

 System.err.print(pc.getPrompt());

 System.err.flush();

 pc.setPassword(readPassword(System.in));

 } else {

 throw new UnsupportedCallbackException

 (callbacks[i], "Unrecognized Callback");

 }

 }

 }

446 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Reads user password from given input stream.

 private char[] readPassword(InputStream in) throws IOException {

 char[] lineBuffer;

 char[] buf;

 int i;

 buf = lineBuffer = new char[128];

 int room = buf.length;

 int offset = 0;

 int c;

 loop: while (true) {

 switch (c = in.read()) {

 case -1:

 case ’\n’:

 break loop;

 case ’\r’:

 int c2 = in.read();

 if ((c2 != ’\n’) && (c2 != -1)) {

 if (!(in instanceof PushbackInputStream)) {

 in = new PushbackInputStream(in);

 }

 ((PushbackInputStream)in).unread(c2);

 } else

 break loop;

 default:

 if (--room < 0) {

 buf = new char[offset + 128];

 room = buf.length - offset - 1;

 System.arraycopy(lineBuffer, 0, buf, 0, offset);

 Arrays.fill(lineBuffer, ’ ’);

 lineBuffer = buf;

 }

 buf[offset++] = (char) c;

 break;

 }

 }

 if (offset == 0) {

 return null;

 }

 char[] ret = new char[offset];

 System.arraycopy(buf, 0, ret, 0, offset);

 Arrays.fill(buf, ’ ’);

 return ret;

 }

}

HWLoginModule.java

Here is the source for HWLoginModule.java.

Note: Read the Code example disclaimer for important legal information.
/*

 * ===

 * Licensed Materials - Property of IBM

 *

 * (C) Copyright IBM Corp. 2000 All Rights Reserved.

 *

IBM Developer Kit for Java 447

* US Government Users Restricted Rights - Use, duplication or

 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 * ===

 *

 * File: HWLoginModule.java

 */

package com.ibm.security;

import java.util.*;

import java.io.IOException;

import javax.security.auth.*;

import javax.security.auth.callback.*;

import javax.security.auth.login.*;

import javax.security.auth.spi.*;

import com.ibm.security.HWPrincipal;

/**

 * This LoginModule authenticates users with a password.

 *

 * This LoginModule only recognizes any user who enters

 * the required password: Go JAAS

 *

 * If the user successfully authenticates itself,

 * a HWPrincipal with the user name

 * is added to the Subject.

 *

 * This LoginModule recognizes the debug option.

 * If set to true in the login Configuration,

 * debug messages are sent to the output stream, System.out.

 *

 * @version 1.1, 09/10/99

 */

public class HWLoginModule implements LoginModule {

 // initial state

 private Subject subject;

 private CallbackHandler callbackHandler;

 private Map sharedState;

 private Map options;

 // configurable option

 private boolean debug = false;

 // the authentication status

 private boolean succeeded = false;

 private boolean commitSucceeded = false;

 // user name and password

 private String user name;

 private char[] password;

 private HWPrincipal userPrincipal;

 /**

 * Initialize this LoginModule.

 *

 * @param subject the Subject to be authenticated.

 *

 * @param callbackHandler a CallbackHandler for communicating

 * with the end user (prompting for user names and

 * passwords, for example).

 *

 * @param sharedState shared LoginModule state.

 *

 * @param options options specified in the login

 * Configuration for this particular

448 IBM Systems - iSeries: Programming IBM Developer Kit for Java

* LoginModule.

 */

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options) {

 this.subject = subject;

 this.callbackHandler = callbackHandler;

 this.sharedState = sharedState;

 this.options = options;

 // initialize any configured options

 debug = "true".equalsIgnoreCase((String)options.get("debug"));

 }

 /**

 * Authenticate the user by prompting for a user name and password.

 *

 *

 * @return true in all cases since this LoginModule

 * should not be ignored.

 *

 * @exception FailedLoginException if the authentication fails.

 *

 * @exception LoginException if this LoginModule

 * is unable to perform the authentication.

 */

 public boolean login() throws LoginException {

 // prompt for a user name and password

 if (callbackHandler == null)

 throw new LoginException("Error: no CallbackHandler available " +

 "to garner authentication information from the user");

 Callback[] callbacks = new Callback[2];

 callbacks[0] = new NameCallback("\n\nHWModule user name: ");

 callbacks[1] = new PasswordCallback("HWModule password: ", false);

 try {

 callbackHandler.handle(callbacks);

 user name = ((NameCallback)callbacks[0]).getName();

 char[] tmpPassword = ((PasswordCallback)callbacks[1]).getPassword();

 if (tmpPassword == null) {

 // treat a NULL password as an empty password

 tmpPassword = new char[0];

 }

 password = new char[tmpPassword.length];

 System.arraycopy(tmpPassword, 0,

 password, 0, tmpPassword.length);

 ((PasswordCallback)callbacks[1]).clearPassword();

 } catch (java.io.IOException ioe) {

 throw new LoginException(ioe.toString());

 } catch (UnsupportedCallbackException uce) {

 throw new LoginException("Error: " + uce.getCallback().toString() +

 " not available to garner authentication information " +

 "from the user");

 }

 // print debugging information

 if (debug) {

 System.out.println("\n\n\t[HWLoginModule] " +

 "user entered user name: " +

 user name);

 System.out.print("\t[HWLoginModule] " +

 "user entered password: ");

 for (int i = 0; i > password.length; i++)

 System.out.print(password[i]);

IBM Developer Kit for Java 449

System.out.println();

 }

 // verify the password

 if (password.length == 7 &&

 password[0] == ’G’ &&

 password[1] == ’o’ &&

 password[2] == ’ ’ &&

 password[3] == ’J’ &&

 password[4] == ’A’ &&

 password[5] == ’A’ &&

 password[6] == ’S’) {

 // authentication succeeded!!!

 if (debug)

 System.out.println("\n\t[HWLoginModule] " +

 "authentication succeeded");

 succeeded = true;

 return true;

 } else {

 // authentication failed -- clean out state

 if (debug)

 System.out.println("\n\t[HWLoginModule] " +

 "authentication failed");

 succeeded = false;

 user name = null;

 for (int i = 0; i < password.length; i++)

 password[i] = ’ ’;

 password = null;

 throw new FailedLoginException("Password Incorrect");

 }

 }

 /**

 * This method is called if the overall authentication of LoginContext

 * succeeded

 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules

 * succeeded).

 *

 * If this LoginModule authentication attempt

 * succeeded (checked by retrieving the private state saved by the

 * login method), then this method associates a

 * SolarisPrincipal

 * with the Subject located in the

 * LoginModule. If this LoginModule

 * authentication attempt failed, then this method removes

 * any state that was originally saved.

 *

 * @exception LoginException if the commit fails.

 *

 * @return true if the login and commit LoginModule

 * attempts succeeded, or false otherwise.

 */

 public boolean commit() throws LoginException {

 if (succeeded == false) {

 return false;

 } else {

 // add a Principal (authenticated identity)

 // to the Subject

 // assume the user we authenticated is the HWPrincipal

 userPrincipal = new HWPrincipal(user name);

 final Subject s = subject;

 final HWPrincipal sp = userPrincipal;

 java.security.AccessController.doPrivileged

 (new java.security.PrivilegedAction() {

450 IBM Systems - iSeries: Programming IBM Developer Kit for Java

public Object run() {

 if (!s.getPrincipals().contains(sp))

 s.getPrincipals().add(sp);

 return null;

 }

 });

 if (debug) {

 System.out.println("\t[HWLoginModule] " +

 "added HWPrincipal to Subject");

 }

 // in any case, clean out state

 user name = null;

 for (int i = 0; i > password.length; i++)

 password[i] = ’ ’;

 password = null;

 commitSucceeded = true;

 return true;

 }

 }

 /**

 * This method is called if the overall authentication of LoginContext

 * failed.

 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules

 * did not succeed).

 *

 * If this authentication attempt of LoginModule

 * succeeded (checked by retrieving the private state saved by the

 * login and commit methods),

 * then this method cleans up any state that was originally saved.

 *

 * @exception LoginException if the abort fails.

 *

 * @return false if this login or commit attempt for LoginModule

 * failed, and true otherwise.

 */

 public boolean abort() throws LoginException {

 if (succeeded == false) {

 return false;

 } else if (succeeded == true && commitSucceeded == false) {

 // login succeeded but overall authentication failed

 succeeded = false;

 user name = null;

 if (password != null) {

 for (int i = 0; i > password.length; i++)

 password[i] = ’ ’;

 password = null;

 }

 userPrincipal = null;

 } else {

 // overall authentication succeeded and commit succeeded,

 // but another commit failed

 logout();

 }

 return true;

 }

 /**

 * Logout the user.

 *

 * This method removes the HWPrincipal

 * that was added by the commit method.

 *

 * @exception LoginException if the logout fails.

IBM Developer Kit for Java 451

*

 * @return true in all cases since this LoginModule

 * should not be ignored.

 */

 public boolean logout() throws LoginException {

 final Subject s = subject;

 final HWPrincipal sp = userPrincipal;

 java.security.AccessController.doPrivileged

 (new java.security.PrivilegedAction() {

 public Object run() {

 s.getPrincipals().remove(sp);

 return null;

 }

 });

 succeeded = false;

 succeeded = commitSucceeded;

 user name = null;

 if (password != null) {

 for (int i = 0; i > password.length; i++)

 password[i] = ’ ’;

 password = null;

 }

 userPrincipal = null;

 return true;

 }

}

HWPrincipal.java

Here is the source for HWPrincipal.java.

Note: Read the Code example disclaimer for important legal information.
/*

 * ===

 * Licensed Materials - Property of IBM

 *

 * (C) Copyright IBM Corp. 2000 All Rights Reserved.

 *

 * US Government Users Restricted Rights - Use, duplication or

 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 * ===

 *

 * File: HWPrincipal.java

 */

package com.ibm.security;

import java.security.Principal;

/**

 * This class implements the Principal interface

 * and represents a HelloWorld tester.

 *

 * @version 1.1, 09/10/99

 * @author D. Kent Soper

 */

public class HWPrincipal implements Principal, java.io.Serializable {

 private String name;

 /*

 * Create a HWPrincipal with the supplied name.

 */

 public HWPrincipal(String name) {

452 IBM Systems - iSeries: Programming IBM Developer Kit for Java

if (name == null)

 throw new NullPointerException("illegal null input");

 this.name = name;

 }

 /*

 * Return the name for the HWPrincipal.

 */

 public String getName() {

 return name;

 }

 /*

 * Return a string representation of the HWPrincipal.

 */

 public String toString() {

 return("HWPrincipal: " + name);

 }

 /*

 * Compares the specified Object with the HWPrincipal for equality.

 * Returns true if the given object is also a HWPrincipal and the

 * two HWPrincipals have the same user name.

 */

 public boolean equals(Object o) {

 if (o == null)

 return false;

 if (this == o)

 return true;

 if (!(o instanceof HWPrincipal))

 return false;

 HWPrincipal that = (HWPrincipal)o;

 if (this.getName().equals(that.getName()))

 return true;

 return false;

 }

 /*

 * Return a hash code for the HWPrincipal.

 */

 public int hashCode() {

 return name.hashCode();

 }

}

 Collected links

 Code example disclaimer

 Code example disclaimer

 Code example disclaimer

Example: JAAS SampleThreadSubjectLogin

This example shows you the implementation of the SampleThreadSubjectLogin class.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
//

//

// 5722-JV1

// (C) Copyright IBM Corp. 2000

IBM Developer Kit for Java 453

//

//

//

// File Name: SampleThreadSubjectLogin.java

//

// Class: SampleThreadSubjectLogin

//

///

//

// CHANGE ACTIVITY:

//

//

// END CHANGE ACTIVITY

//

//

import com.ibm.security.auth.ThreadSubject;

import com.ibm.as400.access.*;

import java.io.*;

import java.util.*;

import java.security.Principal;

import javax.security.auth.*;

import javax.security.auth.callback.*;

import javax.security.auth.login.*;

/**

 * This SampleThreadSubjectLogin application authenticates a single

 * user, swaps the OS thread identity to the authenticated user,

 * and then writes "Hello World" into a privately authorized

 * file, thread.txt, in the user’s test directory.

 *

 * The user is requested to enter the user id and password to

 * authenticate.

 *

 * If successful, the user name and number of Credentials

 * are displayed.

 *

 *

 Setup and run instructions:

 1) Create a new user, JAAS13, by invoking

 "CRTUSRPRF USRPRF(JAAS13) PASSWORD() TEXT(’JAAS sample user id’)"

 with *USER class authority.

 2) Allocate a dummy test file, "yourTestDir/thread.txt", and

 privately grant JAAS13 *RWX authority to it for write access.

 3) Copy SampleThreadSubjectLogin.java into your test directory.

 4) Change the current directory to your test directory and compile the

 java source code.

 Enter -

 strqsh

 cd ’yourTestDir’

454 IBM Systems - iSeries: Programming IBM Developer Kit for Java

javac -J-Djava.version=1.3

 -classpath /qibm/proddata/os400/java400/ext/jaas13.jar:

 /QIBM/ProdData/HTTP/Public/jt400/lib/jt400.jar:.

 -d ./classes

 *.java

 5) Copy threadLogin.config, threadJaas.policy, and threadJava2.policy

 into your test directory.

 6) If not already done, add the symbolic link to the extension

 directory for the jaas13.jar file.

 The extension class loader should normally load the JAR file.

 ADDLNK OBJ(’/QIBM/ProdData/OS400/Java400/ext/jaas13.jar’)

 NEWLNK(’/QIBM/ProdData/Java400/jdk13/lib/ext/jaas13.jar’)

 7) If not already done to run this sample, add the symbolic link to the extension

 directory for the jt400.jar and jt400ntv.jar files. This causes these

 files to be loaded by the extension class loader. The application class loader

 can also load these files by including them in the CLASSPATH.

 If these files are loaded from the class path directory,

 do not add the symbolic link to the extension directory.

 The jaas13.jar file requires these JAR files for the credential

 implementation classes which are part of the IBM Toolbox

 for Java (5722-JC1) Licensed Program Product.

 (See the IBM Toolbox for Java topic for documentation

 on the credential classes found in the left frame

 under Security Classes => Authentication. Select the link to the

 ProfileTokenCredential class. At the top select ’This Package’ for the

 entire com/ibm/as400/security/auth Java package. Javadoc for the

 authentication classes can also be found by selecting ’Javadoc’ =>

 ’Access Classes’ on the left frame. Select ’All Packages’ at the top

 and look for the com.ibm.as400.security.* packages)

 ADDLNK OBJ(’/QIBM/ProdData/HTTP/Public/jt400/lib/jt400.jar’)

 NEWLNK(’/QIBM/ProdData/Java400/jdk13/lib/ext/jt400.jar’)

 ADDLNK OBJ(’/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar’)

 NEWLNK(’/QIBM/ProdData/Java400/jdk13/lib/ext/jt400Native.jar’)

/////////////////////////////////////

 IMPORTANT NOTES -

/////////////////////////////////////

 When updating the Java2 policy files

 for a real application remember to grant the

 appropriate permissions to the actual locations of the IBM Toolbox

 for Java JAR files. Even though they are symbolically linked to

 the extension directories previously listed which are granted

 java.security.AllPermission in the

 ${java.home}/lib/security/java.policy file, authorization is based on

 the actual location of the JAR files.

 For example, to successfully use the credential classes

 in IBM Toolbox for Java, you would add the below to your application’s

 Java2 policy file -

 grant codeBase "file:/QIBM/ProdData/HTTP/Public/jt400/lib/jt400.jar"

 {

 permission javax.security.auth.AuthPermission "modifyThreadIdentity";

 permission java.lang.RuntimePermission "loadLibrary.*";

 permission java.lang.RuntimePermission "writeFileDescriptor";

 permission java.lang.RuntimePermission "readFileDescriptor";

 }

IBM Developer Kit for Java 455

You also need to add these permissions for the application’s

 codeBase since the operations performed by the IBM Toolbox

 for Java JAR files do not run in privileged mode.

 This sample already grants these permissions to all java classes by

 omitting the codeBase parameter in the threadJava2.policy file.

 8) Make sure the Host Servers are started and running.

 The ProfileTokenCredential classes which reside in IBM Toolbox for Java,

 i.e. jt400.jar, are used as the credentials that are attached

 to the authenticated subject by the SampleThreadSubjectLogin.java

 program. The IBM Toolbox for Java credential classes require access

 to the Host Servers.

 9) Invoke SampleThreadSubjectLogin while signed on as a user that

 does not have access to ’yourTestDir/thread.txt’.

 10) Start the sample by entering the following CL commands =>

 CHGCURDIR DIR(’yourTestDir’)

 JAVA CLASS(SampleThreadSubjectLogin)

 CLASSPATH(’yourTestDir/classes’)

 PROP((java.version ’1.3’)

 (java.security.manager)

 (java.security.auth.login.config

 ’yourTestDir/threadLogin.config’)

 (java.security.policy

 ’yourTestDir/threadJava2.policy’)

 (java.security.auth.policy

 ’yourTestDir/threadJaas.policy’))

 Enter the user id and password when prompted from step 1.

 11) Check yourTestDir/thread.txt for the "Hello World" entry.

 *

 **/

public class SampleThreadSubjectLogin {

/**

 * Attempt to authenticate the user.

 *

 * @param args

 * Input arguments for this application (ignored).

 *

 */

 public static void main(String[] args) {

 // use the configured LoginModules for the "AS400ToolboxApp" entry

 LoginContext lc = null;

 try {

 // if provided, the same subject is used for multiple login attempts

 lc = new LoginContext("AS400ToolboxApp",

 new Subject(),

 new SampleCBHandler());

 } catch (LoginException le) {

 le.printStackTrace();

 System.exit(-1);

 }

 // the user has 3 attempts to authenticate successfully

 int i;

 for (i = 0; i < 3; i++) {

 try {

456 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// attempt authentication

 lc.login();

 // if we return with no exception, authentication succeeded

 break;

 } catch (AccountExpiredException aee) {

 System.out.println("Your account has expired");

 System.exit(-1);

 } catch (CredentialExpiredException cee) {

 System.out.println("Your credentials have expired.");

 System.exit(-1);

 } catch (FailedLoginException fle) {

 System.out.println("Authentication Failed");

 try {

 Thread.currentThread().sleep(3000);

 } catch (Exception e) {

 // ignore

 }

 } catch (Exception e) {

 System.out.println("Unexpected Exception - unable to continue");

 e.printStackTrace();

 System.exit(-1);

 }

 }

 // did they fail three times?

 if (i == 3) {

 System.out.println("Sorry authentication failed");

 System.exit(-1);

 }

 // display authenticated principals & credentials

 System.out.println("Authentication Succeeded");

 System.out.println("Principals:");

 Iterator itr = lc.getSubject().getPrincipals().iterator();

 while (itr.hasNext())

 System.out.println(itr.next());

 itr = lc.getSubject().getPrivateCredentials().iterator();

 while (itr.hasNext())

 System.out.println(itr.next());

 itr = lc.getSubject().getPublicCredentials().iterator();

 while (itr.hasNext())

 System.out.println(itr.next());

 // let’s do some Principal-based work:

 ThreadSubject.doAsPrivileged(lc.getSubject(), new java.security.PrivilegedAction() {

 public Object run() {

 System.out.println("\nYour java.home property: "

 +System.getProperty("java.home"));

 System.out.println("\nYour user.home property: "

IBM Developer Kit for Java 457

+System.getProperty("user.home"));

 File f = new File("thread.txt");

 System.out.print("\nthread.txt does ");

 if (!f.exists()) System.out.print("not ");

 System.out.println("exist in your current directory");

 try {

 // write "Hello World number x" into thread.txt

 PrintStream ps = new PrintStream(new FileOutputStream("thread.txt", true), true);

 long flen = f.length();

 ps.println("Hello World number " +

 Long.toString(flen/22) +

 "\n");

 ps.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 System.out.println("\nOh, by the way, " + SampleThreadSubjectLogin.getCurrentUser());

 try {

 Thread.currentThread().sleep(2000);

 } catch (Exception e) {

 // ignore

 }

 System.out.println("\n\nHello World!\n");

 return null;

 }

 }, null);

 System.exit(0);

 }// end main()

// Returns the current OS identity for the main thread of the application.

// (This routine uses classes from IBM Toolbox for Java)

// Note - Applications running on a secondary thread cannot use this API to determine the current user.

 static public String getCurrentUser() {

 try {

 AS400 localSys = new AS400("localhost", "*CURRENT", "*CURRENT");

 int ccsid = localSys.getCcsid();

 ProgramCall qusrjobi = new ProgramCall(localSys);

 ProgramParameter[] parms = new ProgramParameter[6];

 int rLength = 100;

 parms[0] = new ProgramParameter(rLength);

 parms[1] = new ProgramParameter(new AS400Bin4().toBytes(rLength));

 parms[2] = new ProgramParameter(new AS400Text(8, ccsid, localSys).toBytes("JOBI0600"));

 parms[3] = new ProgramParameter(new AS400Text(26,ccsid, localSys).toBytes("*"));

 parms[4] = new ProgramParameter(new AS400Text(16,ccsid, localSys).toBytes(""));

 parms[5] = new ProgramParameter(new AS400Bin4().toBytes(0));

 qusrjobi.setProgram(QSYSObjectPathName.toPath("QSYS", "QUSRJOBI", "PGM"), parms);

 AS400Text uidText = new AS400Text(10, ccsid, localSys);

 // Invoke the QUSRJOBI API

 qusrjobi.run();

 byte[] uidBytes = new byte[10];

 System.arraycopy((qusrjobi.getParameterList())[0].getOutputData(), 90, uidBytes, 0, 10);

 return ((String)(uidText.toObject(uidBytes))).trim();

 }

458 IBM Systems - iSeries: Programming IBM Developer Kit for Java

catch (Exception e) {

 e.printStackTrace();

 }

 return "";

 }

} //end SampleThreadSubjectLogin class

/**

 * A CallbackHandler is passed to underlying security

 * services so that they may interact with the application

 * to retrieve specific authentication data,

 * such as user names and passwords, or to display certain

 * information, such as error and warning messages.

 *

 * CallbackHandlers are implemented in an application

 * and platform-dependent fashion. The implementation decides

 * how to retrieve and display information depending on the

 * Callbacks passed to it.

 *

 * This class provides a sample CallbackHandler for applications

 * running in an i5/OS environment. However, it is not intended

 * to fulfill the requirements of production applications.

 * As indicated, the CallbackHandler is ultimately considered to

 * be application-dependent, as individual applications have

 * unique error checking, data handling, and user

 * interface requirements.

 *

 * The following callbacks are handled:

 *

v *

v NameCallback *

v PasswordCallback *

v TextOutputCallback *
 *

 * For simplicity, prompting is handled interactively through

 * standard input and output. However, it is worth noting

 * that when standard input is provided by the console, this

 * approach allows passwords to be viewed as they are

 * typed. This should be avoided in production

 * applications.

 *

 * This CallbackHandler also allows a name and password

 * to be acquired through an alternative mechanism

 * and set directly on the handler to bypass the need for

 * user interaction on the respective Callbacks.

 *

 */

class SampleCBHandler implements CallbackHandler {

 private String name_ = null;

 private String password_ = null;

/**

 * Constructs a new SampleCBHandler.

 *

 */

public SampleCBHandler() {

 this(null, null);

}

/**

 * Constructs a new SampleCBHandler.

 *

IBM Developer Kit for Java 459

* A name and password can optionally be specified in

 * order to bypass the need to prompt for information

 * on the respective Callbacks.

 *

 * @param name

 * The default value for name callbacks. A null

 * value indicates that the user should be

 * prompted for this information. A non-null value

 * cannot be zero length or exceed 10 characters.

 *

 * @param password

 * The default value for password callbacks. A null

 * value indicates that the user should be

 * prompted for this information. A non-null value

 * cannot be zero length or exceed 10 characters.

 */

public SampleCBHandler(String name, String password) {

 if (name != null)

 if ((name.length()==0) || (name.length()>10))

 throw new IllegalArgumentException("name");

 name_ = name;

 if (password != null)

 if ((password.length()==0) || (password.length()>10))

 throw new IllegalArgumentException("password");

 password_ = password;

}

/**

 * Handle the given name callback.

 *

 * First check to see if a name has been passed in

 * on the constructor. If so, assign it to the

 * callback and bypass the prompt.

 *

 * If a value has not been preset, attempt to prompt

 * for the name using standard input and output.

 *

 * @param c

 * The NameCallback.

 *

 * @exception java.io.IOException

 * If an input or output error occurs.

 *

 */

private void handleNameCallback(NameCallback c) throws IOException {

 // Check for cached value

 if (name_ != null) {

 c.setName(name_);

 return;

 }

 // No preset value; attempt stdin/out

 c.setName(

 stdIOReadName(c.getPrompt(), 10));

}

/**

 * Handle the given name callback.

 *

 * First check to see if a password has been passed

 * in on the constructor. If so, assign it to the

 * callback and bypass the prompt.

 *

 * If a value has not been preset, attempt to prompt

 * for the password using standard input and output.

 *

 * @param c

 * The PasswordCallback.

 *

460 IBM Systems - iSeries: Programming IBM Developer Kit for Java

* @exception java.io.IOException

 * If an input or output error occurs.

 *

 */

private void handlePasswordCallback(PasswordCallback c) throws IOException {

 // Check for cached value

 if (password_ != null) {

 c.setPassword(password_.toCharArray());

 return;

 }

 // No preset value; attempt stdin/out

 // Note - Not for production use.

 // Password is not concealed by standard console I/O

 if (c.isEchoOn())

 c.setPassword(

 stdIOReadName(c.getPrompt(), 10).toCharArray());

 else

 {

 // Note - Password is not concealed by standard console I/O

 c.setPassword(stdIOReadName(c.getPrompt(), 10).toCharArray());

 }

}

/**

 * Handle the given text output callback.

 *

 * If the text is informational or a warning,

 * text is written to standard output. If the

 * callback defines an error message, text is

 * written to standard error.

 *

 * @param c

 * The TextOutputCallback.

 *

 * @exception java.io.IOException

 * If an input or output error occurs.

 *

 */

private void handleTextOutputCallback(TextOutputCallback c) throws IOException {

 if (c.getMessageType() == TextOutputCallback.ERROR)

 System.err.println(c.getMessage());

 else

 System.out.println(c.getMessage());

}

/**

 * Retrieve or display the information requested in the

 * provided Callbacks.

 *

 * The handle method implementation

 * checks the instance(s) of the Callback

 * object(s) passed in to retrieve or display the

 * requested information.

 *

 * @param callbacks

 * An array of Callback objects provided

 * by an underlying security service which contains

 * the information requested to be retrieved or displayed.

 *

 * @exception java.io.IOException

 * If an input or output error occurs.

 *

 * @exception UnsupportedCallbackException

 * If the implementation of this method does not support

 * one or more of the Callbacks specified in the

 * callbacks parameter.

IBM Developer Kit for Java 461

*

 */

public void handle(Callback[] callbacks)

 throws IOException, UnsupportedCallbackException

{

 for (int i=0; i<callbacks.length; i++) {

 Callback c = callbacks[i];

 if (c instanceof NameCallback)

 handleNameCallback((NameCallback)c);

 else if (c instanceof PasswordCallback)

 handlePasswordCallback((PasswordCallback)c);

 else if (c instanceof TextOutputCallback)

 handleTextOutputCallback((TextOutputCallback)c);

 else

 throw new UnsupportedCallbackException

 (callbacks[i]);

 }

}

/**

 * Displays the given string using standard output,

 * followed by a space to separate from subsequent

 * input.

 *

 * @param prompt

 * The text to display.

 *

 * @exception IOException

 * If an input or output error occurs.

 *

 */

private void stdIOPrompt(String prompt) throws IOException {

 System.out.print(prompt + ’ ’);

 System.out.flush();

}

/**

 * Reads a String from standard input, stopped at

 * maxLength or by a newline.

 *

 * @param prompt

 * The text to display to standard output immediately

 * prior to reading the requested value.

 *

 * @param maxLength

 * Maximum length of the String to return.

 *

 * @return

 * The entered string. The value returned does

 * not contain leading or trailing whitespace

 * and is converted to uppercase.

 *

 * @exception IOException

 * If an input or output error occurs.

 *

 */

private String stdIOReadName(String prompt, int maxLength) throws IOException {

 stdIOPrompt(prompt);

 String s =

 (new BufferedReader

 (new InputStreamReader(System.in))).readLine().trim();

 if (s.length() < maxLength)

 s = s.substring(0,maxLength);

 return s.toUpperCase();

}

}//end SampleCBHandler class

 Collected links

462 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Code example disclaimer

Sample: IBM JGSS non-JAAS client program

For more information about using the sample client program, see Downloading and running the sample

programs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// IBM JGSS 1.0 Sample Client Program

package com.ibm.security.jgss.test;

import org.ietf.jgss.*;

import com.ibm.security.jgss.Debug;

import java.io.*;

import java.net.*;

import java.util.*;

/**

 * A JGSS sample client;

 * to be used in conjunction with the JGSS sample server.

 * The client first establishes a context with the server

 * and then sends wrapped message followed by a MIC to the server.

 * The MIC is calculated over the plain text that was wrapped.

 * The client requires to server to authenticate itself

 * (mutual authentication) during context establishment.

 * It also delegates its credentials to the server.

 *

 * It sets the JAVA variable

 * javax.security.auth.useSubjectCredsOnly to false

 * so that JGSS will not acquire credentials through JAAS.

 *

 * The client takes input parameters, and complements it

 * with information from the jgss.ini file; any required input not

 * supplied on the command line is taking from the jgss.ini file.

 *

 * Usage: Client [options]

 *

 * The -? option produces a help message including supported options.

 *

 * This sample client does not use JAAS.

 * The client can be run against the JAAS sample client and server.

 * See {@link JAASClient JAASClient} for a sample client that uses JAAS.

 */

class Client

{

 private Util testUtil = null;

 private String myName = null;

 private GSSName gssName = null;

 private String serverName = null;

 private int servicePort = 0;

 private GSSManager mgr = GSSManager.getInstance();

 private GSSName service = null;

 private GSSContext context = null;

 private String program = "Client";

 private String debugPrefix = "Client: ";

 private TCPComms tcp = null;

 private String data = null;

 private byte[] dataBytes = null;

 private String serviceHostname= null;

 private GSSCredential gssCred = null;

 private static Debug debug = new Debug();

IBM Developer Kit for Java 463

private static final String usageString =

 "\t[-?] [-d | -n name] [-s serverName]"

 + "\n\t[-h serverHost [:port]] [-p port] [-m msg]"

 + "\n"

 + "\n -?\t\t\thelp; produces this message"

 + "\n -n name\t\tthe client’s principal name (without realm)"

 + "\n -s serverName\t\tthe server’s principal name (without realm)"

 + "\n -h serverHost[:port]\tthe server’s hostname"

 + " (and optional port number)"

 + "\n -p port\t\tthe port on which the server will be listening"

 + "\n -m msg\t\tmessage to send to the server";

 // Caller must call initialize (may need to call processArgs first).

 public Client (String programName) throws Exception

 {

 testUtil = new Util();

 if (programName != null)

 {

 program = programName;

 debugPrefix = programName + ": ";

 }

 }

 // Caller must call initialize (may need to call processArgs first).

 Client (String programName, boolean useSubjectCredsOnly) throws Exception

 {

 this(programName);

 setUseSubjectCredsOnly(useSubjectCredsOnly);

 }

 public Client(GSSCredential myCred,

 String serverNameWithoutRealm,

 String serverHostname,

 int serverPort,

 String message)

 throws Exception

 {

 testUtil = new Util();

 if (myCred != null)

 {

 gssCred = myCred;

 }

 else

 {

 throw new GSSException(GSSException.NO_CRED, 0,

 "Null input credential");

 }

 init(serverNameWithoutRealm, serverHostname, serverPort, message);

 }

 void setUseSubjectCredsOnly(boolean useSubjectCredsOnly)

 {

 final String subjectOnly = useSubjectCredsOnly ? "true" : "false";

 final String property = "javax.security.auth.useSubjectCredsOnly";

 String temp = (String)java.security.AccessController.doPrivileged(

 new sun.security.action.GetPropertyAction(property));

 if (temp == null)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "setting useSubjectCredsOnly property to "

 + useSubjectCredsOnly);

464 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Property not set. Set it to the specified value.

 java.security.AccessController.doPrivileged(

 new java.security.PrivilegedAction() {

 public Object run() {

 System.setProperty(property, subjectOnly);

 return null;

 }

 });

 }

 else

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "useSubjectCredsOnly property already set "

 + "in JVM to " + temp);

 }

 }

 private void init(String myNameWithoutRealm,

 String serverNameWithoutRealm,

 String serverHostname,

 int serverPort,

 String message) throws Exception

 {

 myName = myNameWithoutRealm;

 init(serverNameWithoutRealm, serverHostname, serverPort, message);

 }

 private void init(String serverNameWithoutRealm,

 String serverHostname,

 int serverPort,

 String message) throws Exception

 {

 // peer’s name

 if (serverNameWithoutRealm != null)

 {

 this.serverName = serverNameWithoutRealm;

 }

 else

 {

 this.serverName = testUtil.getDefaultServicePrincipalWithoutRealm();

 }

 // peer’s host

 if (serverHostname != null)

 {

 this.serviceHostname = serverHostname;

 }

 else

 {

 this.serviceHostname = testUtil.getDefaultServiceHostname();

 }

 // peer’s port

 if (serverPort > 0)

 {

 this.servicePort = serverPort;

 }

 else

 {

 this.servicePort = testUtil.getDefaultServicePort();

 }

 // message for peer

 if (message != null)

 {

IBM Developer Kit for Java 465

this.data = message;

 }

 else

 {

 this.data = "The quick brown fox jumps over the lazy dog";

 }

 this.dataBytes = this.data.getBytes();

 tcp = new TCPComms(serviceHostname, servicePort);

 }

 void initialize() throws Exception

 {

 Oid krb5MechanismOid = new Oid("1.2.840.113554.1.2.2");

 if (gssCred == null)

 {

 if (myName != null)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "creating GSSName USER_NAME for "

 + myName);

 gssName = mgr.createName(

 myName,

 GSSName.NT_USER_NAME,

 krb5MechanismOid);

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "Canonicalized GSSName=" + gssName);

 }

 else

 gssName = null; // for default credentials

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "creating"

 + ((gssName == null)? " default " : " ")

 + "credential");

 gssCred = mgr.createCredential(

 gssName,

 GSSCredential.DEFAULT_LIFETIME,

 (Oid)null,

 GSSCredential.INITIATE_ONLY);

 if (gssName == null)

 {

 gssName = gssCred.getName();

 myName = gssName.toString();

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "default credential principal=" + myName);

 }

 }

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + gssCred);

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "creating canonicalized GSSName for serverName " + serverName);

 service = mgr.createName(serverName,

 GSSName.NT_HOSTBASED_SERVICE,

 krb5MechanismOid);

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

466 IBM Systems - iSeries: Programming IBM Developer Kit for Java

+ "Canonicalized server name = " + service);

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "Raw data=" + data);

 }

 void establishContext(BitSet flags) throws Exception

 {

 try {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "creating GSScontext");

 Oid defaultMech = null;

 context = mgr.createContext(service, defaultMech, gssCred,

 GSSContext.INDEFINITE_LIFETIME);

 if (flags != null)

 {

 if (flags.get(Util.CONTEXT_OPTS_MUTUAL))

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "requesting mutualAuthn");

 context.requestMutualAuth(true);

 }

 if (flags.get(Util.CONTEXT_OPTS_INTEG))

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "requesting integrity");

 context.requestInteg(true);

 }

 if (flags.get(Util.CONTEXT_OPTS_CONF))

 {

 context.requestConf(true);

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "requesting confidentiality");

 }

 if (flags.get(Util.CONTEXT_OPTS_DELEG))

 {

 context.requestCredDeleg(true);

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "requesting delegation");

 }

 if (flags.get(Util.CONTEXT_OPTS_REPLAY))

 {

 context.requestReplayDet(true);

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "requesting replay detection");

 }

 if (flags.get(Util.CONTEXT_OPTS_SEQ))

 {

 context.requestSequenceDet(true);

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "requesting out-of-sequence detection");

 }

 // Add more later!

 }

 byte[] response = null;

IBM Developer Kit for Java 467

byte[] request = null;

 int len = 0;

 boolean done = false;

 do {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "Calling initSecContext");

 request = context.initSecContext(response, 0, len);

 if (request != null)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "Sending initial context token");

 tcp.send(request);

 }

 done = context.isEstablished();

 if (!done)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "Receiving response token");

 byte[] temp = tcp.receive();

 response = temp;

 len = response.length;

 }

 } while(!done);

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "context established with acceptor");

 } catch (Exception exc) {

 exc.printStackTrace();

 throw exc;

 }

 }

 void doMIC() throws Exception

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "generating MIC");

 byte[] mic = context.getMIC(dataBytes, 0, dataBytes.length, null);

 if (mic != null)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "sending MIC");

 tcp.send(mic);

 }

 else

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "getMIC Failed");

 }

 void doWrap() throws Exception

 {

 MessageProp mp = new MessageProp(true);

 mp.setPrivacy(context.getConfState());

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "wrapping message");

 byte[] wrapped = context.wrap(dataBytes, 0, dataBytes.length, mp);

 if (wrapped != null)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "sending wrapped message");

468 IBM Systems - iSeries: Programming IBM Developer Kit for Java

tcp.send(wrapped);

 }

 else

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "wrap Failed");

 }

 void printUsage()

 {

 System.out.println(program + usageString);

 }

 void processArgs(String[] args) throws Exception

 {

 String port = null;

 String myName = null;

 int servicePort = 0;

 String serviceHostname = null;

 String sHost = null;

 String msg = null;

 GetOptions options = new GetOptions(args, "?h:p:m:n:s:");

 int ch = -1;

 while ((ch = options.getopt()) != options.optEOF)

 {

 switch(ch)

 {

 case ’?’:

 printUsage();

 System.exit(1);

 case ’h’:

 if (sHost == null)

 {

 sHost = options.optArgGet();

 int p = sHost.indexOf(’:’);

 if (p != -1)

 {

 String temp1 = sHost.substring(0, p);

 if (port == null)

 port = sHost.substring(p+1, sHost.length()).trim();

 sHost = temp1;

 }

 }

 continue;

 case ’p’:

 if (port == null)

 port = options.optArgGet();

 continue;

 case ’m’:

 if (msg == null)

 msg = options.optArgGet();

 continue;

 case ’n’:

 if (myName == null)

 myName = options.optArgGet();

 continue;

 case ’s’:

 if (serverName == null)

 serverName = options.optArgGet();

 continue;

 }

 }

IBM Developer Kit for Java 469

if ((port != null) && (port.length() > 0))

 {

 int p = -1;

 try {

 p = Integer.parseInt(port);

 } catch (Exception exc) {

 System.out.println("Bad port input: "+port);

 }

 if (p != -1)

 servicePort = p;

 }

 if ((sHost != null) && (sHost.length() > 0)) {

 serviceHostname = sHost;

 }

 init(myName, serverName, serviceHostname, servicePort, msg);

 }

 void interactWithAcceptor(BitSet flags) throws Exception

 {

 establishContext(flags);

 doWrap();

 doMIC();

 }

 void interactWithAcceptor() throws Exception

 {

 BitSet flags = new BitSet();

 flags.set(Util.CONTEXT_OPTS_MUTUAL);

 flags.set(Util.CONTEXT_OPTS_CONF);

 flags.set(Util.CONTEXT_OPTS_INTEG);

 flags.set(Util.CONTEXT_OPTS_DELEG);

 interactWithAcceptor(flags);

 }

 void dispose() throws Exception

 {

 if (tcp != null)

 {

 tcp.close();

 }

 }

 public static void main(String args[]) throws Exception

 {

 System.out.println(debug.toString()); // XXXXXXX

 String programName = "Client";

 Client client = null;

 try {

 client = new Client(programName,

 false); // don’t use Subject creds.

 client.processArgs(args);

 client.initialize();

 client.interactWithAcceptor();

 } catch (Exception exc) {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 programName + " Exception: " + exc.toString());

 exc.printStackTrace();

 throw exc;

 } finally {

 try {

 if (client != null)

 client.dispose();

 } catch (Exception exc) {}

470 IBM Systems - iSeries: Programming IBM Developer Kit for Java

}

 debug.out(Debug.OPTS_CAT_APPLICATION, programName + ": done");

 }

}

 Collected links

 Downloading and running the sample programs

This topic contains instructions for downloading and running the sample javadoc information.

 Code example disclaimer

Sample: IBM JGSS non-JAAS server program

For more information about using the sample server program, see Downloading and running the IBM

JGSS samples.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// IBM JGSS 1.0 Sample Server Program

package com.ibm.security.jgss.test;

import org.ietf.jgss.*;

import com.ibm.security.jgss.Debug;

import java.io.*;

import java.net.*;

import java.util.*;

/**

 * A JGSS sample server; to be used in conjunction with a JGSS sample client.

 *

 * It continuously listens for client connections,

 * spawning a thread to service an incoming connection.

 * It is capable of running multiple threads concurrently.

 * In other words, it can service multiple clients concurrently.

 *

 * Each thread first establishes a context with the client

 * and then waits for a wrapped message followed by a MIC.

 * It assumes that the client calculated the MIC over the plain

 * text wrapped by the client.

 *

 * If the client delegates its credential to the server, the delegated

 * credential is used to communicate with a secondary server.

 *

 * Also, the server can be started to act as a client as well as

 * a server (using the -b option). In this case, the first

 * thread spawned by the server uses the server principal’s own credential

 * to communicate with the secondary server.

 *

 * The secondary server must have been started prior to the (primary) server

 * initiating contact with it (the scondary server).

 * In communicating with the secondary server, the primary server acts as

 * a JGSS initiator (i.e., client), establishing a context and engaging in

 * wrap and MIC per-message exchanges with the secondary server.

 *

 * The server takes input parameters, and complements it

 * with information from the jgss.ini file; any required input not

 * supplied on the command line is taking from the jgss.ini file.

 * Built-in defaults are used if there is no jgss.ini file or if a particular

 * variable is not specified in the ini file.

 *

 * Usage: Server [options]

 *

 * The -? option produces a help message including supported options.

IBM Developer Kit for Java 471

*

 * This sample server does not use JAAS.

 * It sets the JAVA variable

 * javax.security.auth.useSubjectCredsOnly to false

 * so that JGSS will not acquire credentials through JAAS.

 * The server can be run against the JAAS sample clients and servers.

 * See {@link JAASServer JAASServer} for a sample server that uses JAAS.

 */

class Server implements Runnable

{

 /*

 * NOTES:

 * This class, Server, is expected to be run in concurrent

 * multiple threads. The static variables consist of variables

 * set from command-line arguments and variables (such as

 * the server’s own credentials, gssCred) that are set once during

 * during initialization. These variables do not change

 * once set and are shared between all running threads.

 *

 * The only static variable that is changed after being set initially

 * is the variable ’beenInitiator’ which is set ’true’

 * by the first thread to run the server as initiator using

 * the server’s own creds. This ensures the server is run as an initiator

 * once only. Querying and modifying ’beenInitiator’ is synchronized

 * between the threads.

 *

 * The variable ’tcp’ is non-static and is set per thread

 * to represent the socket on which the client being serviced

 * by the thread connected.

 */

 private static Util testUtil = null;

 private static int myPort = 0;

 private static Debug debug = new Debug();

 private static String myName = null;

 private static GSSCredential gssCred = null;

 private static String serviceNameNoRealm = null;

 private static String serviceHost = null;

 private static int servicePort = 0;

 private static String serviceMsg = null;

 private static GSSManager mgr = null;

 private static GSSName gssName = null;

 private static String program = "Server";

 private static boolean clientServer = false;

 private static boolean primaryServer = true;

 private static boolean beenInitiator = false;

 private static final String usageString =

 "\t[-?] [-# number] [-d | -n name] [-p port]"

 + "\n\t[-s serverName] [-h serverHost [:port]] [-P serverPort] [- msg]"

 + "\n"

 + "\n -?\t\t\thelp; produces this message"

 + "\n -# number\t\tWhether primary or secondary server"

 + " \n\t\t\t(1 = primary, 2 = secondary; default = first)"

 + "\n -n name\t\tthe server’s principal name (without realm)"

 + "\n -p port\t\tthe port on which the server will be listening"

 + "\n -s serverName\t\tsecondary server’s principal name"

 + " (without realm)"

 + "\n -h serverHost[:port]\tsecondary server’s hostname"

 + " (and optional port number)"

 + "\n -P port\t\tsecondary server’s port number"

 + "\n -m msg\t\tmessage to send to secondary server"

 + "\n -b \t\trun as both client and server"

 + " using the server’s owns credentials";

472 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Non-static variables are thread-specific

 // since each thread runs a separate instance of this class.

 private String debugPrefix = null;

 private TCPComms tcp = null;

 static {

 try {

 testUtil = new Util();

 } catch (Exception exc) {

 exc.printStackTrace();

 System.exit(1);

 }

 }

 Server (Socket socket) throws Exception

 {

 debugPrefix = program + ": ";

 tcp = new TCPComms(socket);

 }

 Server (String program) throws Exception

 {

 debugPrefix = program + ": ";

 this.program = program;

 }

 Server (String program, boolean useSubjectCredsOnly) throws Exception

 {

 this(program);

 setUseSubjectCredsOnly(useSubjectCredsOnly);

 }

 void setUseSubjectCredsOnly(boolean useSubjectCredsOnly)

 {

 final String subjectOnly = useSubjectCredsOnly ? "true" : "false";

 final String property = "javax.security.auth.useSubjectCredsOnly";

 String temp = (String)java.security.AccessController.doPrivileged(

 new sun.security.action.GetPropertyAction(property));

 if (temp == null)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "setting useSubjectCredsOnly property to "

 + (useSubjectCredsOnly ? "true" : "false"));

 // Property not set. Set it to the specified value.

 java.security.AccessController.doPrivileged(

 new java.security.PrivilegedAction() {

 public Object run() {

 System.setProperty(property, subjectOnly);

 return null;

 }

 });

 }

 else

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "useSubjectCredsOnly property already set "

 + "in JVM to " + temp);

 }

 }

 private void init(boolean primary,

 String myNameWithoutRealm,

IBM Developer Kit for Java 473

int port,

 String serverNameWithoutRealm,

 String serverHostname,

 int serverPort,

 String message,

 boolean clientServer)

 throws Exception

 {

 primaryServer = primary;

 this.clientServer = clientServer;

 myName = myNameWithoutRealm;

 // my port

 if (port > 0)

 {

 myPort = port;

 }

 else if (primary)

 {

 myPort = testUtil.getDefaultServicePort();

 }

 else

 {

 myPort = testUtil.getDefaultService2Port();

 }

 if (primary)

 {

 ///// peer’s name

 if (serverNameWithoutRealm != null)

 {

 serviceNameNoRealm = serverNameWithoutRealm;

 }

 else

 {

 serviceNameNoRealm =

 testUtil.getDefaultService2PrincipalWithoutRealm();

 }

 // peer’s host

 if (serverHostname != null)

 {

 if (serverHostname.equalsIgnoreCase("localHost"))

 {

 serverHostname = InetAddress.getLocalHost().getHostName();

 }

 serviceHost = serverHostname;

 }

 else

 {

 serviceHost = testUtil.getDefaultService2Hostname();

 }

 // peer’s port

 if (serverPort > 0)

 {

 servicePort = serverPort;

 }

 else

 {

 servicePort = testUtil.getDefaultService2Port();

 }

 // message for peer

 if (message != null)

474 IBM Systems - iSeries: Programming IBM Developer Kit for Java

{

 serviceMsg = message;

 }

 else

 {

 serviceMsg = "Hi there! I am a server."

 + "But I can be a client, too";

 }

 }

 String temp = debugPrefix + "details"

 + "\n\tPrimary:\t" + primary

 + "\n\tName:\t\t" + myName

 + "\n\tPort:\t\t" + myPort

 + "\n\tClient+server:\t" + clientServer;

 if (primary)

 {

 temp += "\n\tOther Server:"

 + "\n\t\tName:\t" + serviceNameNoRealm

 + "\n\t\tHost:\t" + serviceHost

 + "\n\t\tPort:\t" + servicePort

 + "\n\t\tMsg:\t" + serviceMsg;

 }

 debug.out(Debug.OPTS_CAT_APPLICATION, temp);

 }

 void initialize() throws GSSException

 {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "creating GSSManager");

 mgr = GSSManager.getInstance();

 int usage = clientServer ? GSSCredential.INITIATE_AND_ACCEPT

 : GSSCredential.ACCEPT_ONLY;

 if (myName != null)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "creating GSSName for " + myName);

 gssName = mgr.createName(myName,

 GSSName.NT_HOSTBASED_SERVICE);

 Oid krb5MechanismOid = new Oid("1.2.840.113554.1.2.2");

 gssName.canonicalize(krb5MechanismOid);

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "Canonicalized GSSName=" + gssName);

 }

 else

 gssName = null;

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "creating"

 + ((gssName == null)? " default " : " ")

 + "credential");

 gssCred = mgr.createCredential(

 gssName, GSSCredential.DEFAULT_LIFETIME,

 (Oid)null, usage);

 if (gssName == null)

 {

 gssName = gssCred.getName();

 myName = gssName.toString();

IBM Developer Kit for Java 475

debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "default credential principal=" + myName);

 }

 }

 void processArgs(String[] args) throws Exception

 {

 String port = null;

 String name = null;

 int iport = 0;

 String sport = null;

 int isport = 0;

 String sname = null;

 String shost = null;

 String smessage = null;

 boolean primary = true;

 String status = null;

 boolean defaultPrinc = false;

 boolean clientServer = false;

 GetOptions options = new GetOptions(args, "?#:p:n:P:s:h:m:b");

 int ch = -1;

 while ((ch = options.getopt()) != options.optEOF)

 {

 switch(ch)

 {

 case ’?’:

 printUsage();

 System.exit(1);

 case ’#’:

 if (status == null)

 status = options.optArgGet();

 continue;

 case ’p’:

 if (port == null)

 port = options.optArgGet();

 continue;

 case ’n’:

 if (name == null)

 name = options.optArgGet();

 continue;

 case ’b’:

 clientServer = true;

 continue;

 ////// The other server

 case ’P’:

 if (sport == null)

 sport = options.optArgGet();

 continue;

 case ’m’:

 if (smessage == null)

 smessage = options.optArgGet();

 continue;

 case ’s’:

476 IBM Systems - iSeries: Programming IBM Developer Kit for Java

if (sname == null)

 sname = options.optArgGet();

 continue;

 case ’h’:

 if (shost == null)

 {

 shost = options.optArgGet();

 int p = shost.indexOf(’:’);

 if (p != -1)

 {

 String temp1 = shost.substring(0, p);

 if (sport == null)

 sport = shost.substring

 (p+1, shost.length()).trim();

 shost = temp1;

 }

 }

 continue;

 }

 }

 if (defaultPrinc && (name != null))

 {

 System.out.println(

 "ERROR: ’-d’ and ’-n ’ options are mutually exclusive");

 printUsage();

 System.exit(1);

 }

 if (status != null)

 {

 int p = -1;

 try {

 p = Integer.parseInt(status);

 } catch (Exception exc) {

 System.out.println("Bad status input: "+status);

 }

 if (p != -1)

 {

 primary = (p == 1);

 }

 }

 if (port != null)

 {

 int p = -1;

 try {

 p = Integer.parseInt(port);

 } catch (Exception exc) {

 System.out.println("Bad port input: "+port);

 }

 if (p != -1)

 iport = p;

 }

 if (sport != null)

 {

 int p = -1;

 try {

 p = Integer.parseInt(sport);

 } catch (Exception exc) {

 System.out.println("Bad server port input: "+port);

 }

 if (p != -1)

 isport = p;

IBM Developer Kit for Java 477

}

 init(primary, // first or second server

 name, // my name

 iport, // my port

 sname, // other server’s name

 shost, // other server’s hostname

 isport, // other server’s port

 smessage, // msg for other server

 clientServer); // whether to run as initiator with own creds

 }

 void processRequests() throws Exception

 {

 ServerSocket ssocket = null;

 Server server = null;

 try {

 ssocket = new ServerSocket(myPort);

 do {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "listening on port " + myPort + " ...");

 Socket csocket = ssocket.accept();

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "incoming connection on " + csocket);

 server = new Server(csocket); // set client socket per thread

 Thread thread = new Thread(server);

 thread.start();

 if (!thread.isAlive())

 server.dispose(); // close the client socket

 } while(true);

 } catch (Exception exc) {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "*** ERROR processing requests ***");

 exc.printStackTrace();

 } finally {

 try {

 if (ssocket != null)

 ssocket.close(); // close the server socket

 if (server != null)

 server.dispose(); // close the client socket

 } catch (Exception exc) {}

 }

 }

 void dispose()

 {

 try {

 if (tcp != null)

 {

 tcp.close();

 tcp = null;

 }

 } catch (Exception exc) {}

 }

 boolean establishContext(GSSContext context) throws Exception

 {

 byte[] response = null;

 byte[] request = null;

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "establishing context");

 do {

 request = tcp.receive();

478 IBM Systems - iSeries: Programming IBM Developer Kit for Java

if (request == null || request.length == 0)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "Received no data; perhaps client disconnected");

 return false;

 }

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "accepting");

 if ((response = context.acceptSecContext

 (request, 0, request.length)) != null)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "sending response");

 tcp.send(response);

 }

 } while(!context.isEstablished());

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "context established - " + context);

 return true;

 }

 byte[] unwrap(GSSContext context, byte[] msg) throws Exception

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "unwrapping");

 MessageProp mp = new MessageProp(true);

 byte[] unwrappedMsg = context.unwrap(msg, 0, msg.length, mp);

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "unwrapped msg is:");

 debug.out(Debug.OPTS_CAT_APPLICATION, unwrappedMsg);

 return unwrappedMsg;

 }

 void verifyMIC (GSSContext context, byte[] mic, byte[] raw) throws Exception

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "verifying MIC");

 MessageProp mp = new MessageProp(true);

 context.verifyMIC(mic, 0, mic.length, raw, 0, raw.length, mp);

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "successfully verified MIC");

 }

 void useDelegatedCred(GSSContext context) throws Exception

 {

 GSSCredential delCred = context.getDelegCred();

 if (delCred != null)

 {

 if (primaryServer)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix +

 "Primary server received delegated cred; using it");

 runAsInitiator(delCred); // using delegated creds

 }

 else

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix +

 "Non-primary server received delegated cred; "

 + "ignoring it");

 }

IBM Developer Kit for Java 479

}

 else

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix +

 "ERROR: null delegated cred");

 }

 }

 public void run()

 {

 byte[] response = null;

 byte[] request = null;

 boolean unwrapped = false;

 GSSContext context = null;

 try {

 Thread currentThread = Thread.currentThread();

 String threadName = currentThread.getName();

 debugPrefix = program + " " + threadName + ": ";

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "servicing client ...");

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "creating GSSContext");

 context = mgr.createContext(gssCred);

 // First establish context with the initiator.

 if (!establishContext(context))

 return;

 // Then process messages from the initiator.

 // We expect to receive a wrapped message followed by a MIC.

 // The MIC should have been calculated over the plain

 // text that we received wrapped.

 // Use delegated creds if any.

 // Then run as initiator using own creds if necessary; only

 // the first thread does this.

 do {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "receiving per-message request");

 request = tcp.receive();

 if (request == null || request.length == 0)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "Received no data; perhaps client disconnected");

 return;

 }

 // Expect wrapped message first.

 if (!unwrapped)

 {

 response = unwrap(context, request);

 unwrapped = true;

 continue; // get next request

 }

 // Followed by a MIC.

 verifyMIC(context, request, response);

 // Impersonate the initiator if it delegated its creds to us.

 if (context.getCredDelegState())

480 IBM Systems - iSeries: Programming IBM Developer Kit for Java

useDelegatedCred(context);

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "clientServer=" + clientServer

 + ", beenInitiator=" + beenInitiator);

 // If necessary, run as initiator using our own creds.

 if (clientServer)

 runAsInitiatorOnce(currentThread);

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "done");

 return;

 } while(true);

 } catch (Exception exc) {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix + "ERROR");

 exc.printStackTrace();

 // Squelch per-thread exceptions so we don’t bring

 // the server down because of exceptions in

 // individual threads.

 return;

 } finally {

 if (context != null)

 {

 try {

 context.dispose();

 } catch (Exception exc) {}

 }

 }

 }

 synchronized void runAsInitiatorOnce(Thread thread)

 throws InterruptedException

 {

 if (!beenInitiator)

 {

 // set flag true early to prevent subsequent threads

 // from attempting to runAsInitiator.

 beenInitiator = true;

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix +

 "About to run as initiator with own creds ...");

 //thread.sleep(30*1000, 0);

 runAsInitiator();

 }

 }

 void runAsInitiator(GSSCredential cred)

 {

 Client client = null;

 try {

 client = new Client(cred,

 serviceNameNoRealm,

 serviceHost,

 servicePort,

 serviceMsg);

 client.initialize();

 BitSet flags = new BitSet();

 flags.set(Util.CONTEXT_OPTS_MUTUAL);

 flags.set(Util.CONTEXT_OPTS_CONF);

 flags.set(Util.CONTEXT_OPTS_INTEG);

IBM Developer Kit for Java 481

client.interactWithAcceptor(flags);

 } catch (Exception exc) {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "Exception running as initiator");

 exc.printStackTrace();

 } finally {

 try {

 client.dispose();

 } catch (Exception exc) {}

 }

 }

 void runAsInitiator()

 {

 if (clientServer)

 {

 debug.out(Debug.OPTS_CAT_APPLICATION,

 debugPrefix + "running as initiator with own creds");

 runAsInitiator(gssCred); // use own creds;

 }

 else

 {

 debug.out(Debug.OPTS_CAT_APPLICATION, debugPrefix

 + "Cannot run as initiator with own creds "

 + "\nbecause not running as both initiator and acceptor.");

 }

 }

 void printUsage()

 {

 System.out.println(program + usageString);

 }

 public static void main(String[] args) throws Exception

 {

 System.out.println(debug.toString()); // XXXXXXX

 String programName = "Server";

 try {

 Server server = new Server(programName,

 false); // don’t use creds from Subject

 server.processArgs(args);

 server.initialize();

 server.processRequests();

 } catch (Exception exc) {

 debug.out(Debug.OPTS_CAT_APPLICATION, programName + ": EXCEPTION");

 exc.printStackTrace();

 throw exc;

 }

 }

}

 Collected links

 Downloading and running the IBM JGSS samples

This topic contains instructions for downloading and running the sample javadoc information.

 Code example disclaimer

Sample: IBM JGSS JAAS-enabled client program

For more information about using the sample client program, see Downloading and running the IBM

JGSS samples.

482 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// IBM Java GSS 1.0 sample JAAS-enabled client program

package com.ibm.security.jgss.test;

import com.ibm.security.jgss.Debug;

import com.ibm.security.auth.callback.Krb5CallbackHandler;

import javax.security.auth.Subject;

import javax.security.auth.login.LoginContext;

import java.security.PrivilegedExceptionAction;

/**

 * A Java GSS sample client that uses JAAS.

 *

 * It does a JAAS login and operates within the JAAS login context so created.

 *

 * It does not set the JAVA variable

 * javax.security.auth.useSubjectCredsOnly, leaving

 * the variable to default to true

 * so that Java GSS acquires credentials from the JAAS Subject

 * associated with login context (created by the client).

 *

 * The JAASClient is equivalent to its superclass {@link Client Client}

 * in all other respects, and it

 * can be run against the non-JAAS sample clients and servers.

 */

class JAASClient extends Client

{

 JAASClient(String programName) throws Exception

 {

 // Do not set useSubjectCredsOnly. Set only the program name.

 // useSubjectCredsOnly default to "true" if not set.

 super(programName);

 }

 static class JAASClientAction implements PrivilegedExceptionAction

 {

 private JAASClient client;

 public JAASClientAction(JAASClient client)

 {

 this.client = client;

 }

 public Object run () throws Exception

 {

 client.initialize();

 client.interactWithAcceptor();

 return null;

 }

 }

 public static void main(String args[]) throws Exception

 {

 String programName = "JAASClient";

 JAASClient client = null;

 Debug dbg = new Debug();

 System.out.println(dbg.toString()); // XXXXXXX

 try {

 client = new JAASClient(programName);//use Subject creds

 client.processArgs(args);

 LoginContext loginCtxt = new LoginContext("JAASClient",

IBM Developer Kit for Java 483

new Krb5CallbackHandler());

 loginCtxt.login();

 dbg.out(Debug.OPTS_CAT_APPLICATION,

 programName + ": Kerberos login OK");

 Subject subject = loginCtxt.getSubject();

 PrivilegedExceptionAction jaasClientAction

 = new JAASClientAction(client);

 Subject.doAsPrivileged(subject, jaasClientAction, null);

 } catch (Exception exc) {

 dbg.out(Debug.OPTS_CAT_APPLICATION,

 programName + " Exception: " + exc.toString());

 exc.printStackTrace();

 throw exc;

 } finally {

 try {

 if (client != null)

 client.dispose();

 } catch (Exception exc) {}

 }

 dbg.out(Debug.OPTS_CAT_APPLICATION,

 programName + ": Done ...");

 }

}

 Collected links

 Downloading and running the IBM JGSS samples

This topic contains instructions for downloading and running the sample javadoc information.

 Code example disclaimer

Sample: IBM JGSS JAAS-enabled server program

For more information about using the sample server program, see Downloading and running the IBM

JGSS samples.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
// IBM Java GSS 1.0 sample JAAS-enabled server program

package com.ibm.security.jgss.test;

import com.ibm.security.jgss.Debug;

import com.ibm.security.auth.callback.Krb5CallbackHandler;

import javax.security.auth.Subject;

import javax.security.auth.login.LoginContext;

import java.security.PrivilegedExceptionAction;

/**

 * A Java GSS sample server that uses JAAS.

 *

 * It does a JAAS login and operates within the JAAS login context so created.

 *

 * It does not set the JAVA variable

 * javax.security.auth.useSubjectCredsOnly, leaving

 * the variable to default to true

 * so that Java GSS acquires credentials from the JAAS Subject

 * associated with login context (created by the server).

 *

 * The JAASServer is equivalent to its superclass {@link Server Server}

484 IBM Systems - iSeries: Programming IBM Developer Kit for Java

* in all other respects, and it

 * can be run against the non-JAAS sample clients and servers.

 */

class JAASServer extends Server

{

 JAASServer(String programName) throws Exception

 {

 super(programName);

 }

 static class JAASServerAction implements PrivilegedExceptionAction

 {

 private JAASServer server = null;

 JAASServerAction(JAASServer server)

 {

 this.server = server;

 }

 public Object run() throws Exception

 {

 server.initialize();

 server.processRequests();

 return null;

 }

 }

 public static void main(String[] args) throws Exception

 {

 String programName = "JAASServer";

 Debug dbg = new Debug();

 System.out.println(dbg.toString()); // XXXXXXX

 try {

 // Do not set useSubjectCredsOnly.

 // useSubjectCredsOnly defaults to "true" if not set.

 JAASServer server = new JAASServer(programName);

 server.processArgs(args);

 LoginContext loginCtxt = new LoginContext(programName,

 new Krb5CallbackHandler());

 dbg.out(Debug.OPTS_CAT_APPLICATION, programName + ": Login in ...");

 loginCtxt.login();

 dbg.out(Debug.OPTS_CAT_APPLICATION, programName +

 ": Login successful");

 Subject subject = loginCtxt.getSubject();

 JAASServerAction serverAction = new JAASServerAction(server);

 Subject.doAsPrivileged(subject, serverAction, null);

 } catch (Exception exc) {

 dbg.out(Debug.OPTS_CAT_APPLICATION, programName + " EXCEPTION");

 exc.printStackTrace();

 throw exc;

 }

 }

}

 Collected links

IBM Developer Kit for Java 485

Downloading and running the IBM JGSS samples

This topic contains instructions for downloading and running the sample javadoc information.

 Code example disclaimer

Examples: IBM Java Secure Sockets Extension

The JSSE examples show how a client and a server can use the native iSeries JSSE provider to create a

context that enables secure communications.

Note: Both examples use the native iSeries JSSE provider, regardless of the properties specified by the

java.security file.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

“Example: SSL client using an SSLContext object” on page 277

This example client program utilizes an SSLContext object, which it initializes to use the

″MY_CLIENT_APP″ application ID. This program will use the native iSeries implementation regardless of

what is specified in the java.security file.

“Example: SSL server using an SSLContext object” on page 279

The following server program utilizes an SSLContext object that it initializes with a previously created

keystore file. The keystore file has a name of /home/keystore.file and a keystore password of password.

The example program needs the keystore file in order to create an IbmISeriesKeyStore object. The

KeyStore object must specify MY_SERVER_APP as the application identifier.

To create the keystore file, you can use the either of the following commands:

v From a Qshell command prompt:

 java com.ibm.as400.SSLConfiguration -create -keystore /home/keystore.file

 -storepass password -appid MY_SERVER_APP

For more information about using Java commands with Qshell, see Qshell in the iSeries Information

Center.

v From an iSeries command prompt:

 RUNJVA CLASS(com.ibm.as400.SSLConfiguration) PARM(’-create’ ’-keystore’

 ’/home/keystore.file’ ’-storepass’ ’password’ ’-appid’ ’MY_SERVER_APP’)

Example: Call a CL program with java.lang.Runtime.exec()

This example shows how to run CL programs from within a Java program. In this example, the Java class

CallCLPgm runs a CL program.

The CL program uses the Display Java Program (DSPJVAPGM) command to display the program that is

associated with the Hello class file. This example assumes that the CL program has been compiled and

exists in a library that is called JAVSAMPLIB. The output from the CL program is in the QSYSPRT

spooled file.

See call a CL command for an example of how to call a CL command from within a Java program.

Note: The JAVSAMPLIB is not created as part of the IBM Developer Kit licensed program (LP) number

5722-JV1 installation process. You must explicitly create the library.

Example 1: CallCLPgm class

486 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.io.*;

public class CallCLPgm

{

 public static void main(String[] args)

 {

 try

 {

 Process theProcess =

 Runtime.getRuntime().exec("/QSYS.LIB/JAVSAMPLIB.LIB/DSPJVA.PGM");

 }

 catch(IOException e)

 {

 System.err.println("Error on exec() method");

 e.printStackTrace();

 }

 } // end main() method

} // end class

Example 2: Display Java CL program

PGM

DSPJVAPGM CLSF(’/QIBM/ProdData/Java400/com/ibm/as400/system/Hello.class’) +

 OUTPUT(*PRINT)

ENDPGM

For background information, see Use java.lang.Runtime.exec().

Example: Call a CL command with java.lang.Runtime.exec()

This example shows how to run a control language (CL) command from within a Java program.

In this example, the Java class runs a CL command. The CL command uses the Display Java Program

(DSPJVAPGM) CL command to display the program that is associated with the Hello class file. The

output from the CL command is in the QSYSPRT spooled file.

When you set the os400.runtime.exec system property to EXEC (which is the default), commands that

you pass into the Runtime.getRuntime().exec() function use the following format:

 Runtime.getRuntime()Exec("system CLCOMMAND");

where CLCOMMAND is the CL command you want to run.

Note: When you set os400.runtime.exec to QSHELL, you have to add slash and quotation marks (\″). For

example, the previous command looks like this:

 Runtime.getRuntime()Exec("system \"CLCOMMAND\"");

For more information, about os400.runtime.exec and the effect it has on using java.lang.Runtime.exec(),

see the following pages:

Use java.lang.Runtime.exec()

List of Java system properties

Example: Class for calling a CL command

The following code assumes that you use the default value of EXEC for the os400.runtime.exec system

property.

IBM Developer Kit for Java 487

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.io.*;

public class CallCLCom

{

 public static void main(String[] args)

 {

 try

 {

 Process theProcess =

 Runtime.getRuntime().exec("system DSPJVAPGM CLSF(’/com/ibm/as400/system/Hello.class’)

 OUTPUT(*PRINT)");

 }

 catch(IOException e)

 {

 System.err.println("Error on exec() method");

 e.printStackTrace();

 }

 } // end main() method

} // end class

For background information, see Use java.lang.Runtime.exec().

Example: Call another Java program with java.lang.Runtime.exec()

This example shows how to call another Java program with java.lang.Runtime.exec(). This class calls the

Hello program that is shipped as part of the IBM Developer Kit for Java. When the Hello class writes to

System.out, this program gets a handle to the stream and can read from it.

Note: You use the Qshell Interpreter to call the program.

Example 1: CallHelloPgm class

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.io.*;

public class CallHelloPgm

{

 public static void main(String args[])

 {

 Process theProcess = null;

 BufferedReader inStream = null;

 System.out.println("CallHelloPgm.main() invoked");

 // call the Hello class

 try

 {

 theProcess = Runtime.getRuntime().exec("java com.ibm.as400.system.Hello");

 }

 catch(IOException e)

 {

 System.err.println("Error on exec() method");

 e.printStackTrace();

 }

 // read from the called program’s standard output stream

 try

 {

 inStream = new BufferedReader(

 new InputStreamReader(theProcess.getInputStream()));

 System.out.println(inStream.readLine());

488 IBM Systems - iSeries: Programming IBM Developer Kit for Java

}

 catch(IOException e)

 {

 System.err.println("Error on inStream.readLine()");

 e.printStackTrace();

 }

 } // end method

} // end class

For background information, see Use java.lang.Runtime.exec().

Example: Call Java from C

This is an example of a C program that uses the system() function to call the Java Hello program.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
#include <stdlib.h>

 int main(void)

 {

 int result;

 /* The system function passes the given string to the CL command processor

 for processing. */

 result = system("JAVA CLASS(’com.ibm.as400.system.Hello’)");

 }

Example: Call Java from RPG

This is an example of an RPG program that uses the QCMDEXC API to call the Java Hello program.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
 D* DEFINE THE PARAMETERS FOR THE QCMDEXC API

 D*

 DCMDSTRING S 25 INZ(’JAVA CLASS(’’com.ibm.as400.system.Hello’’)’)

 DCMDLENGTH S 15P 5 INZ(25)

 D* NOW THE CALL TO QCMDEXC WITH THE ’JAVA’ CL COMMAND

 C CALL ’QCMDEXC’

 C PARM CMDSTRING

 C PARM CMDLENGTH

 C* This next line displays ’DID IT’ after you exit the

 C* Java Shell via F3 or F12.

 C ’DID IT’ DSPLY

 C* Set On LR to exit the RPG program

 C SETON LR

 C

Example: Use input and output streams for interprocess

communication

This example shows how to call a C program from Java and use input and output streams for

interprocess communication.

In this example, the C program writes a string to its standard output stream, and the Java program reads

this string and displays it. This example assumes that a library, which is named JAVSAMPLIB, has been

created and that the CSAMP1 program has been created in it.

IBM Developer Kit for Java 489

Note: The JAVSAMPLIB is not created as part of the IBM Developer Kit licensed program (LP) number

5722-JV1 installation process. You must explicitly create it.

Example 1: CallPgm class

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.io.*;

public class CallPgm

{

 public static void main(String args[])

 {

 Process theProcess = null;

 BufferedReader inStream = null;

 System.out.println("CallPgm.main() invoked");

 // call the CSAMP1 program

 try

 {

 theProcess = Runtime.getRuntime().exec(

 "/QSYS.LIB/JAVSAMPLIB.LIB/CSAMP1.PGM");

 }

 catch(IOException e)

 {

 System.err.println("Error on exec() method");

 e.printStackTrace();

 }

 // read from the called program’s standard output stream

 try

 {

 inStream = new BufferedReader(new InputStreamReader

 (theProcess.getInputStream()));

 System.out.println(inStream.readLine());

 }

 catch(IOException e)

 {

 System.err.println("Error on inStream.readLine()");

 e.printStackTrace();

 }

 } // end method

 } // end class

Example 2: CSAMP1 C Program

Note: Read the Code example disclaimer for important legal information.
#include <stdio.h>

#include <stdlib.h>

void main(int argc, char* args[])

{

 /* Convert the string to ASCII at compile time */

#pragma convert(819)

 printf("Program JAVSAMPLIB/CSAMP1 was invoked\n");

#pragma convert(0)

 /* Stdout may be buffered, so flush the buffer */

 fflush(stdout);

}

490 IBM Systems - iSeries: Programming IBM Developer Kit for Java

For more information, see Use input and output streams for interprocess communication.

Example: Java Invocation API

This example follows the standard Invocation API paradigm.

It does the following:

v Creates a Java virtual machine by using JNI_CreateJavaVM.

v Uses the Java virtual machine to find the class file that you want to run.

v Finds the methodID for the main method of the class.

v Calls the main method of the class.

v Reports errors if an exception occurs.

When you create the program, the QJVAJNI or QJVAJNI64 service program provides the

JNI_CreateJavaVM Invocation API function. JNI_CreateJavaVM creates the Java virtual machine.

Note: QJVAJNI64 is a new service program for teraspace/LLP64 native method and Invocation API

support.

These service programs reside in the system binding directory and you do not need to explicitly identify

them on a control language (CL) create command. For example, you would not explicitly identify the

previously mentioned service programs when using the Create Program (CRTPGM) command or the

Create Service Program (CRTSRVPGM) command.

One way to run this program is to use the following control language command:

 SBMJOB CMD(CALL PGM(YOURLIB/PGMNAME)) ALWMLTTHD(*YES)

Any job that creates a Java virtual machine must be multithread-capable. The output from the main

program, as well as any output from the program, ends up in QPRINT spooled files. These spooled files

are visible when you use the Work with Submitted Jobs (WRKSBMJOB) control language (CL) command

and view the job that you started by using the Submit Job (SBMJOB) CL command.

Example: Using the Java Invocation API

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
#define OS400_JVM_12

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

#include <string.h>

#include <jni.h>

/* Specify the pragma that causes all literal strings in the

 * source code to be stored in ASCII (which, for the strings

 * used, is equivalent to UTF-8)

 */

#pragma convert(819)

/* Procedure: Oops

 *

 * Description: Helper routine that is called when a JNI function

 * returns a zero value, indicating a serious error.

 * This routine reports the exception to stderr and

 * ends the JVM abruptly with a call to FatalError.

 *

 * Parameters: env -- JNIEnv* to use for JNI calls

 * msg -- char* pointing to error description in UTF-8

IBM Developer Kit for Java 491

*

 * Note: Control does not return after the call to FatalError

 * and it does not return from this procedure.

 */

void Oops(JNIEnv* env, char *msg) {

 if ((*env)->ExceptionOccurred(env)) {

 (*env)->ExceptionDescribe(env);

 }

 (*env)->FatalError(env, msg);

}

/* This is the program’s "main" routine. */

int main (int argc, char *argv[])

{

 JavaVMInitArgs initArgs; /* Virtual Machine (VM) initialization structure, passed by

 * reference to JNI_CreateJavaVM(). See jni.h for details

 */

 JavaVM* myJVM; /* JavaVM pointer set by call to JNI_CreateJavaVM */

 JNIEnv* myEnv; /* JNIEnv pointer set by call to JNI_CreateJavaVM */

 char* myClasspath; /* Changeable classpath ’string’ */

 jclass myClass; /* The class to call, ’NativeHello’. */

 jmethodID mainID; /* The method ID of its ’main’ routine. */

 jclass stringClass; /* Needed to create the String[] arg for main */

 jobjectArray args; /* The String[] itself */

 JavaVMOption options[1]; /* Options array -- use options to set classpath */

 int fd0, fd1, fd2; /* file descriptors for IO */

 /* Open the file descriptors so that IO works. */

 fd0 = open("/dev/null1", O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IROTH);

 fd1 = open("/dev/null2", O_CREAT|O_TRUNC|O_WRONLY, S_IWUSR|S_IWOTH);

 fd2 = open("/dev/null3", O_CREAT|O_TRUNC|O_WRONLY, S_IWUSR|S_IWOTH);

 /* Set the version field of the initialization arguments for J2SDK v1.3. */

 initArgs.version = 0x00010002;

 /* To use J2SDK v1.4, set initArgs.version = 0x00010004; */

 /* To use J2SDK v1.5, set initArgs.version = 0x00010005; */

 /* Now, you want to specify the directory for the class to run in the classpath.

 * with Java2, classpath is passed in as an option.

 * Note: You must specify the directory name in UTF-8 format. So, you wrap

 * blocks of code in #pragma convert statements.

 */

 options[0].optionString="-Djava.class.path=/CrtJvmExample";

 /*To use J2SDK v1.4 or v1.5, replace the ’1.3’ with ’1.4’ or ’1.5’.

 options[1].optionString="-Djava.version=1.3" */

 initArgs.options=options; /* Pass in the classpath that has been set up. */

 initArgs.nOptions = 2; /* Pass in classpath and version options */

 /* Create the JVM -- a nonzero return code indicates there was

 * an error. Drop back into EBCDIC and write a message to stderr

 * before exiting the program.

 */

 if (JNI_CreateJavaVM("myJVM, (void **)"myEnv, (void *)"initArgs)) {

 #pragma convert(0)

 fprintf(stderr, "Failed to create the JVM\n");

 #pragma convert(819)

 exit(1);

 }

 /* Use the newly created JVM to find the example class,

 * called ’NativeHello’.

 */

 myClass = (*myEnv)->FindClass(myEnv, "NativeHello");

492 IBM Systems - iSeries: Programming IBM Developer Kit for Java

if (! myClass) {

 Oops(myEnv, "Failed to find class ’NativeHello’");

 }

 /* Now, get the method identifier for the ’main’ entry point

 * of the class.

 * Note: The signature of ’main’ is always the same for any

 * class called by the following java command:

 * "main" , "([Ljava/lang/String;)V"

 */

 mainID = (*myEnv)->GetStaticMethodID(myEnv,myClass,"main",

 "([Ljava/lang/String;)V");

 if (! mainID) {

 Oops(myEnv, "Failed to find jmethodID of ’main’");

 }

 /* Get the jclass for String to create the array

 * of String to pass to ’main’.

 */

 stringClass = (*myEnv)->FindClass(myEnv, "java/lang/String");

 if (! stringClass) {

 Oops(myEnv, "Failed to find java/lang/String");

 }

 /* Now, you need to create an empty array of strings,

 * since main requires such an array as a parameter.

 */

 args = (*myEnv)->NewObjectArray(myEnv,0,stringClass,0);

 if (! args) {

 Oops(myEnv, "Failed to create args array");

 }

 /* Now, you have the methodID of main and the class, so you can

 * call the main method.

 */

 (*myEnv)->CallStaticVoidMethod(myEnv,myClass,mainID,args);

 /* Check for errors. */

 if ((*myEnv)->ExceptionOccurred(myEnv)) {

 (*myEnv)->ExceptionDescribe(myEnv);

 }

 /* Finally, destroy the JavaVM that you created. */

 (*myJVM)->DestroyJavaVM(myJVM);

 /* All done. */

 return 0;

}

For more information, see Java Invocation API.

Example: IBM i5/OS PASE native method for Java

The IBM i5/OS PASE native method for Java example calls an instance of a native C method that then

uses Java Native Interface (JNI) to call back into Java code. Rather than accessing the string directly from

Java code, the example calls a native method that then calls back into Java through JNI to get the string

value.

To see HTML versions of the example source files, use the following links:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

v PaseExample1.java

v PaseExample1.c

IBM Developer Kit for Java 493

Before you can run the i5/OS PASE native method example, you must complete the following tasks:

1. Download the example source code to your AIX workstation

2. Prepare the example source code

3. Prepare your iSeries server

Run the i5/OS PASE native method for Java example

After you complete the previous tasks, you can run the example. Use either of the following commands

to run the example program:

v From an iSeries server command prompt:

 JAVA CLASS(PaseExample1) CLASSPATH(’/home/example’)

v From a Qshell command prompt or i5/OS PASE terminal session:

 cd /home/example

 java PaseExample1

Example: PaseExample1.java

Note: Read the Code example disclaimer for important legal information.

//

//

// This example program loads the native method library ’PaseExample1’.

// The source code for the native method is contained in PaseExample1.c

// The printString method in this Java program uses a native method,

// getStringNative to retrieve the value of the String. The native method

// simply calls back into the getStringCallback method of this class.

//

//

public class PaseExample1 {

 public static void main(String args[]) {

 PaseExample1 pe1 = new PaseExample1("String for PaseExample1");

 pe1.printString();

 }

 String str;

 PaseExample1(String s) {

 str = s;

 }

 //---

 public void printString() {

 String result = getStringNative();

 System.out.println("Value of str is ’" + result + "’");

 }

 // This calls getStringCallback through JNI.

 public native String getStringNative();

 // Called by getStringNative via JNI.

 public String getStringCallback() {

 return str;

 }

 //---

 static {

494 IBM Systems - iSeries: Programming IBM Developer Kit for Java

System.loadLibrary("PaseExample1");

 }

}

 Collected links

 Code example disclaimer

Example: PaseExample1.c

Note: Read the Code example disclaimer for important legal information.

/*

 *

 * This native method implements the getStringNative method of class

 * PaseExample1. It uses the JNI function CallObjectMethod to call

 * back to the getStringCallback method of class PaseExample1.

 *

 * Compile this code in AIX to create module ’libPaseExample1.so’.

 *

 */

#include "PaseExample1.h"

#include <stdlib.h>

/*

 * Class: PaseExample1

 * Method: getStringNative

 * Signature: ()Ljava/lang/String;

 */

JNIEXPORT jstring JNICALL Java_PaseExample1_getStringNative(JNIEnv* env, jobject obj) {

 char* methodName = "getStringCallback";

 char* methodSig = "()Ljava/lang/String;";

 jclass clazz = (*env)->GetObjectClass(env, obj);

 jmethodID methodID = (*env)->GetMethodID(env, clazz, methodName, methodSig);

 return (*env)->CallObjectMethod(env, obj, methodID);

}

 Collected links

 Code example disclaimer

Example: Download the example source code to your AIX workstation

Before you can run the IBM i5/OS PASE native method for Java example, you need to download a

compressed file that contains the source code. To download the compressed file to your AIX workstation,

complete the following steps.

1. Create a temporary directory on your AIX workstation that you want to contain the source files.

2. Download the i5/OS PASE example source code into the temporary directory.

3. Unzip the example files into the temporary directory.

For more information about the IBM i5/OS PASE native method for Java example, see the following

topics:

v Example: IBM i5/OS PASE native method for Java

v Example: Prepare the example source code

v Example: Prepare your iSeries server
 Collected links

 Download the i5/OS PASE example source code

 Example: IBM i5/OS PASE native method for Java

The IBM i5/OS PASE native method for Java example calls an instance of a native C method that then

IBM Developer Kit for Java 495

rzahapaseexmp.zip
rzahapaseexmp.zip

uses Java Native Interface (JNI) to call back into Java code. Rather than accessing the string directly

from Java code, the example calls a native method that then calls back into Java through JNI to get the

string value.

 Example: Prepare the example source code

 Example: Prepare your iSeries server

Example: Prepare the example source code

Before moving the IBM i5/OS PASE native method for Java example to your iSeries server, you need to

compile the source code, create a C include file, and create a shared library object.

The example includes the following C and Java source files:

v PaseExample1.c: C source code file that contains an implementation of getStringNative().

v PaseExample1.java: Java source code file that calls the native getStringNative method in the C

program.

You use the compiled Java .class file to create a C include file, PaseExample1.h, which contains a function

prototype for the getStringNative method contained in the C source code.

To prepare the example source code on your AIX workstation, complete the following steps:

1. Use the following command to compile the Java source code:

 javac PaseExample1.java

2. Use the following command to create a C include file that contains the native method prototypes:

 javah -jni PaseExample

The new C include file (PaseExample1.h) contains a function prototype for the getStringNative

method. The example C source code (PaseExample1.c) already includes the information you would

copy and modify from the C include file to use the getStringNative method. For more information

about using JNI, see the Java Native Interface tutorial on the Sun Web site.

3. Use the following command to compile the C source code and create a shared library object.

 xlc -G -I/usr/local/java/J1.3.0/include PaseExample1.c -o libPaseExample1.so

The new shared library object file (libPaseExample1.so) contains the native method library

″PaseExample1″ that the example uses.

Note: You may need to change the -I option to point to the directory that contains the correct Java

native method include files (for example, jni.h) for your AIX system.

For more information about the IBM i5/OS PASE native method for Java example, see the following

topics:

v Example: IBM i5/OS PASE native method for Java

v Example: Download the example source code to your AIX workstation

v Example: Prepare your iSeries server
 Collected links

 Java Native Interface tutorial

 Example: IBM i5/OS PASE native method for Java

The IBM i5/OS PASE native method for Java example calls an instance of a native C method that then

uses Java Native Interface (JNI) to call back into Java code. Rather than accessing the string directly

from Java code, the example calls a native method that then calls back into Java through JNI to get the

string value.

 Example: Download the example source code to your AIX workstation

 Example: Prepare your iSeries server

496 IBM Systems - iSeries: Programming IBM Developer Kit for Java

http://java.sun.com/docs/books/tutorial/native1.1/index.html
http://java.sun.com/docs/books/tutorial/native1.1/index.html

Example: Prepare your iSeries server

Before running the IBM i5/OS PASE native method for Java example, you need to prepare your iSeries

server to run the example. Preparing the server requires copying the files to the server and adding the

necessary environment variables to run the example.

To prepare your server, complete the following steps:

1. Create the following integrated file system directory on the server that you want to contain the

example files. For example, use the following control language (CL) command to create the directory

named /home/example:

 mkdir /home/example

2. Copy the following files to the new directory:

v PaseExample1.class

v libPaseExample1.so
3. From an iSeries command prompt, use the following control language (CL) commands to add the

necessary environment variables:

 addenvvar PASE_THREAD_ATTACH ’Y’

 addenvvar PASE_LIBPATH ’/home/example’

 addenvvar QIBM_JAVA_PASE_STARTUP ’/usr/lib/start32’

Note: When using PASE native methods from an i5/OS PASE terminal session, a 32-bit PASE

environment is already started. In this case, set only PASE_THREAD_ATTACH to Y and. PASE_LIBPATH

to the path for the PASE native method libraries. In this situation, when you define

QIBM_JAVA_PASE_STARTUP, the JVM does not successfully start.

For more information about the added environment variables, see the following topic:

v Environment variables for the IBM i5/OS PASE example

For more information about the IBM i5/OS PASE native method for Java example, see the following

topics:

v Example: IBM i5/OS PASE native method for Java

v Example: Download the example source code to your AIX workstation

v Example: Prepare the example source code
 Collected links

 Environment variables for the IBM i5/OS PASE example

To use the IBM i5/OS PASE native methods for Java example, you need to set environment variables.

 Example: IBM i5/OS PASE native method for Java

The IBM i5/OS PASE native method for Java example calls an instance of a native C method that then

uses Java Native Interface (JNI) to call back into Java code. Rather than accessing the string directly

from Java code, the example calls a native method that then calls back into Java through JNI to get the

string value.

 Example: Download the example source code to your AIX workstation

 Example: Prepare the example source code

Examples: Use the Java Native Interface for native methods

This example program is a simple Java Native Interface (JNI) example in which a C native method is

used to display ″Hello, World.″ Use the javah tool with the NativeHello class file to generate the

NativeHello.h file. This example assumes that the NativeHello C implementation is part of a service

program that is called NATHELLO.

Note: The library where the NATHELLO service program is located must be in the library list for this

example to run.

IBM Developer Kit for Java 497

Example 1: NativeHello class

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
public class NativeHello {

 // Declare a field of type ’String’ in the NativeHello object.

 // This is an ’instance’ field, so every NativeHello object

 // contains one.

 public String theString; // instance variable

 // Declare the native method itself. This native method

 // creates a new string object, and places a reference to it

 // into ’theString’

 public native void setTheString(); // native method to set string

 // This ’static initializer’ code is called before the class is

 // first used.

 static {

 // Attempt to load the native method library. If you do not

 // find it, write a message to ’out’, and try a hardcoded path.

 // If that fails, then exit.

 try {

 // System.loadLibrary uses the iSeries library list in JDK 1.1,

 // and uses the java.library.path property or the LIBPATH environment

 // variable in JDK1.2

 System.loadLibrary("NATHELLO");

 }

 catch (UnsatisfiedLinkError e1) {

 // Did not find the service program.

 System.out.println

 ("I did not find NATHELLO *SRVPGM.");

 System.out.println ("(I will try a hardcoded path)");

 try {

 // System.load takes the full integrated file system form path.

 System.load ("/qsys.lib/jniexample.lib/nathello.srvpgm");

 }

 catch (UnsatisfiedLinkError e2) {

 // If you get to this point, then you are done! Write the message

 // and exit.

 System.out.println

 ("<sigh> I did not find NATHELLO *SRVPGM anywhere. Goodbye");

 System.exit(1);

 }

 }

 }

 // Here is the ’main’ code of this class. This is what runs when you

 // enter ’java NativeHello’ on the command line.

 public static void main(String argv[]){

 // Allocate a new NativeHello object now.

 NativeHello nh = new NativeHello();

 // Echo location.

 System.out.println("(Java) Instantiated NativeHello object");

 System.out.println("(Java) string field is ’" + nh.theString + "’");

 System.out.println("(Java) Calling native method to set the string");

498 IBM Systems - iSeries: Programming IBM Developer Kit for Java

// Here is the call to the native method.

 nh.setTheString();

 // Now, print the value after the call to double check.

 System.out.println("(Java) Returned from the native method");

 System.out.println("(Java) string field is ’" + nh.theString + "’");

 System.out.println("(Java) All done...");

 }

}

Example 2: Generated NativeHello.h header file

Note: Read the Code example disclaimer for important legal information.
/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class NativeHello */

#ifndef _Included_NativeHello

#define _Included_NativeHello

#ifdef __cplusplus

extern "C" {

#endif

/*

 * Class: NativeHello

 * Method: setTheString

 * Signature: ()V

 */

JNIEXPORT void JNICALL Java_NativeHello_setTheString

 (JNIEnv *, jobject);

#ifdef __cplusplus

}

#endif

#endif

This NativeHello.c example shows the implementation of the native method in C. This example shows

how to link Java to native methods. However, it points out complications that arise from the fact that the

iSeries server is internally an extended binary-coded decimal interchange code (EBCDIC) machine. It also

shows complications from the current lack of true internationalization elements in the JNI.

These reasons, although they are not new with the JNI, cause some unique iSeries server-specific

differences in the C code that you write. You must remember that if you are writing to stdout or stderr or

reading from stdin, your data is probably encoded in EBCDIC form.

In C code, you can easily convert most literal strings, those that contain 7-bit characters only, into the

UTF-8 form that is required by the JNI. To do this, bracket the literal strings with code-page conversion

pragmas. However, because you may write information directly to stdout or stderr from your C code,

you might allow some literals to remain in EBCDIC.

Note: The #pragma convert(0) statements convert character data to EBCDIC. The #pragma convert(819)

statements convert character data to American Standard Code for Information Interchange (ASCII).

These statements convert character data in the C program at compile time.

Example 3: NativeHello.c native method implementation of the NativeHello Java class

Note: Read the Code example disclaimer for important legal information.
#include <stdlib.h> /* malloc, free, and so forth */

#include <stdio.h> /* fprintf(), and so forth */

#include <qtqiconv.H> /* iconv() interface */

#include <string.h> /* memset(), and so forth */

IBM Developer Kit for Java 499

#include "NativeHello.h" /* generated by ’javah-jni’ */

/* All literal strings are ISO-8859-1 Latin 1 code page (and with 7-bit

characters, they are also automatically UTF-8). */

#pragma convert(819) /* handle all literal strings as ASCII */

/* Report and clear a JNI exception. */

static void HandleError(JNIEnv*);

/* Print an UTF-8 string to stderr in the coded character */

set identifier (CCSID) of the current job. */

static void JobPrint(JNIEnv*, char*);

/* Constants describing which direction to covert: */

#define CONV_UTF2JOB 1

#define CONV_JOB2UTF 2

/* Convert a string from the CCSID of the job to UTF-8, or vice-versa. */

int StringConvert(int direction, char *sourceStr, char *targetStr);

/* Native method implementation of ’setTheString()’. */

JNIEXPORT void JNICALL Java_NativeHello_setTheString

(JNIEnv *env, jobject javaThis)

{

 jclass thisClass; /* class for ’this’ object */

 jstring stringObject; /* new string, to be put in field in ’this’ */

 jfieldID fid; /* field ID required to update field in ’this’ */

 jthrowable exception; /* exception, retrieved using ExceptionOccurred */

 /* Write status to console. */

 JobPrint(env, "(C) In the native method\n");

 /* Build the new string object. */

 if (! (stringObject = (*env)->NewStringUTF(env, "Hello, native world!")))

 {

 /* For nearly every function in the JNI, a null return value indicates

 that there was an error, and that an exception had been placed where it

 could be retrieved by ’ExceptionOccurred()’. In this case, the error

 would typically be fatal, but for purposes of this example, go ahead

 and catch the error, and continue. */

 HandleError(env);

 return;

 }

 /* get the class of the ’this’ object, required to get the fieldID */

 if (! (thisClass = (*env)->GetObjectClass(env,javaThis)))

 {

 /* A null class returned from GetObjectClass indicates that there

 was a problem. Instead of handling this problem, simply return and

 know that the return to Java automatically ’throws’ the stored Java

 exception. */

 return;

 }

 /* Get the fieldID to update. */

 if (! (fid = (*env)->GetFieldID(env,

 thisClass,

 "theString",

 "Ljava/lang/String;")))

 {

 /* A null fieldID returned from GetFieldID indicates that there

 was a problem. Report the problem from here and clear it.

 Leave the string unchanged. */

 HandleError(env);

 return;

 }

500 IBM Systems - iSeries: Programming IBM Developer Kit for Java

JobPrint(env, "(C) Setting the field\n");

 /* Make the actual update.

 Note: SetObjectField is an example of an interface that does

 not return a return value that can be tested. In this case, it

 is necessary to call ExceptionOccurred() to see if there

 was a problem with storing the value */

 (*env)->SetObjectField(env, javaThis, fid, stringObject);

 /* Check to see if the update was successful. If not, report the error. */

 if ((*env)->ExceptionOccurred(env)) {

 /* A non-null exception object came back from ExceptionOccurred,

 so there is a problem and you must report the error. */

 HandleError(env);

 }

 JobPrint(env, "(C) Returning from the native method\n");

 return;

}

static void HandleError(JNIEnv *env)

{

 /* A simple routine to report and handle an exception. */

 JobPrint(env, "(C) Error occurred on JNI call: ");

 (*env)->ExceptionDescribe(env); /* write exception data to the console */

 (*env)->ExceptionClear(env); /* clear the exception that was pending */

}

static void JobPrint(JNIEnv *env, char *str)

{

 char *jobStr;

 char buf[512];

 size_t len;

 len = strlen(str);

 /* Only print non-empty string. */

 if (len) {

 jobStr = (len >= 512) ? malloc(len+1) : &buf;

 if (! StringConvert(CONV_UTF2JOB, str, jobStr))

 (*env)->FatalError

 (env,"ERROR in JobPrint: Unable to convert UTF2JOB");

 fprintf(stderr, jobStr);

 if (len >= 512) free(jobStr);

 }

}

int StringConvert(int direction, char *sourceStr, char *targetStr)

{

 QtqCode_T source, target; /* parameters to instantiate iconv */

 size_t sStrLen, tStrLen; /* local copies of string lengths */

 iconv_t ourConverter; /* the actual conversion descriptor */

 int iconvRC; /* return code from the conversion */

 size_t originalLen; /* original length of the sourceStr */

 /* Make local copies of the input and output sizes that are initialized

 to the size of the input string. The iconv() requires the

 length parameters to be passed by address (that is as int*). */

 originalLen = sStrLen = tStrLen = strlen(sourceStr);

 /* Initialize the parameters to the QtqIconvOpen() to zero. */

 memset(&source,0x00,sizeof(source));

 memset(&target,0x00,sizeof(target));

IBM Developer Kit for Java 501

/* Depending on direction parameter, set either SOURCE

 or TARGET CCSID to ISO 8859-1 Latin. */

 if (CONV_UTF2JOB == direction) {

 source.CCSID = 819;

 }

 else {

 target.CCSID = 819;

 }

 /* Create the iconv_t converter object. */

 ourConverter = QtqIconvOpen(&target,&source);

 /* Make sure that you have a valid converter, otherwise return 0. */

 if (-1 == ourConverter.return_value) return 0;

 /* Perform the conversion. */

 iconvRC = iconv(ourConverter,

 (char**) &sourceStr,

 &sStrLen,

 &targetStr,

 &tStrLen);

 /* If the conversion failed, return a zero. */

 if (0 != iconvRC) return 0;

 /* Close the conversion descriptor. */

 iconv_close(ourConverter);

 /* The targetStr returns pointing to the character just

 past the last converted character, so set the null

 there now. */

 *targetStr = ’\0’;

 /* Return the number of characters that were processed. */

 return originalLen-tStrLen;

}

#pragma convert(0)

See Use the Java Native Interface for native methods for background information.

 Collected links

 Code example disclaimer

 Code example disclaimer

 literal strings

It is easier to encode literal strings in UTF-8 if the string is composed of characters with a 7-bit

American Standard Code for Information Interchange (ASCII) representation.

 Code example disclaimer

 Use the Java Native Interface for native methods

You should only use native methods in cases where pure Java cannot meet your programming needs.

Example: Use sockets for interprocess communication

This example uses sockets to communicate between a Java program and a C program.

You should start the C program first, which listens on a socket. Once the Java program connects to the

socket, the C program sends it a string by using that socket connection. The string that is sent from the C

program is an American Standard Code for Information Interchange (ASCII) string in codepage 819.

The Java program should be started using this command, java TalkToC xxxxx nnnn on the Qshell

Interpreter command line or on another Java platform. Or, enter JAVA TALKTOC PARM(xxxxx nnnn) on the

502 IBM Systems - iSeries: Programming IBM Developer Kit for Java

iSeries command line to start the Java program. xxxxx is the domain name or Internet Protocol (IP)

address of the system on which the C program is running. nnnn is the port number of the socket that the

C program is using. You should also use this port number as the first parameter on the call to the C

program.

Example 1: TalkToC client class

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.net.*;

import java.io.*;

class TalkToC

{

 private String host = null;

 private int port = -999;

 private Socket socket = null;

 private BufferedReader inStream = null;

 public static void main(String[] args)

 {

 TalkToC caller = new TalkToC();

 caller.host = args[0];

 caller.port = new Integer(args[1]).intValue();

 caller.setUp();

 caller.converse();

 caller.cleanUp();

 } // end main() method

 public void setUp()

 {

 System.out.println("TalkToC.setUp() invoked");

 try

 {

 socket = new Socket(host, port);

 inStream = new BufferedReader(new InputStreamReader(

 socket.getInputStream()));

 }

 catch(UnknownHostException e)

 {

 System.err.println("Cannot find host called: " + host);

 e.printStackTrace();

 System.exit(-1);

 }

 catch(IOException e)

 {

 System.err.println("Could not establish connection for " + host);

 e.printStackTrace();

 System.exit(-1);

 }

 } // end setUp() method

 public void converse()

 {

 System.out.println("TalkToC.converse() invoked");

 if (socket != null && inStream != null)

 {

 try

 {

 System.out.println(inStream.readLine());

 }

IBM Developer Kit for Java 503

catch(IOException e)

 {

 System.err.println("Conversation error with host " + host);

 e.printStackTrace();

 }

 } // end if

 } // end converse() method

 public void cleanUp()

 {

 try

 {

 if(inStream != null)

 {

 inStream.close();

 }

 if(socket != null)

 {

 socket.close();

 }

 } // end try

 catch(IOException e)

 {

 System.err.println("Error in cleanup");

 e.printStackTrace();

 System.exit(-1);

 }

 } // end cleanUp() method

} // end TalkToC class

SockServ.C starts by passing in a parameter for the port number. For example, CALL SockServ ’2001’.

Example 2: SockServ.C server program

Note: Read the Code example disclaimer for important legal information.
#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/tcp.h>

#include <unistd.h>

#include <sys/time.h>

void main(int argc, char* argv[])

{

 int portNum = atoi(argv[1]);

 int server;

 int client;

 int address_len;

 int sendrc;

 int bndrc;

 char* greeting;

 struct sockaddr_in local_Address;

 address_len = sizeof(local_Address);

 memset(&local_Address,0x00,sizeof(local_Address));

 local_Address.sin_family = AF_INET;

 local_Address.sin_port = htons(portNum);

 local_Address.sin_addr.s_addr = htonl(INADDR_ANY);

504 IBM Systems - iSeries: Programming IBM Developer Kit for Java

#pragma convert (819)

 greeting = "This is a message from the C socket server.";

 #pragma convert (0)

 /* allocate socket */

 if((server = socket(AF_INET, SOCK_STREAM, 0))<0)

 {

 printf("failure on socket allocation\n");

 perror(NULL);

 exit(-1);

 }

 /* do bind */

 if((bndrc=bind(server,(struct sockaddr*)&local_Address, address_len))<0)

 {

 printf("Bind failed\n");

 perror(NULL);

 exit(-1);

 }

 /* invoke listen */

 listen(server, 1);

 /* wait for client request */

 if((client = accept(server,(struct sockaddr*)NULL, 0))<0)

 {

 printf("accept failed\n");

 perror(NULL);

 exit(-1);

 }

 /* send greeting to client */

 if((sendrc = send(client, greeting, strlen(greeting),0))<0)

 {

 printf("Send failed\n");

 perror(NULL);

 exit(-1);

 }

 close(client);

 close(server);

}

For more information, see Use sockets for interprocess communication.

Example: Run the Java Performance Data Converter

You can either use the iSeries command line or the Qshell environment to run the Java Performance Data

Converter (JPDC).

Using the iSeries command line:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.

1. Enter the Run Java (RUNJVA) command or JAVA command on the iSeries command line.

2. Enter com.ibm.as400.jpdc.JPDC on the class parameter line.

3. Enter general pexdfn mydir/myfile myrdbdire on the parameter line.

4. Enter ’/QIBM/ProdData/Java400/ext/JPDC.jar’ on the classpath parameter line.

Note: You can omit the classpath if the ’/QIBM/ProdData/Java400/ext/JPDC.jar’ string is in the

CLASSPATH environment variable. You can use either the Add Environment Variable

IBM Developer Kit for Java 505

(ADDENVVAR) command, Change Environment Variable (CHGENVVAR) command, or Work

with Environment Variable (WRKENVVAR) command to add this string to the CLASSPATH

environment variable.

Using the Qshell environment:

1. Enter the Start Qshell (STRQSH) command to start the Qshell Interpreter.

2. Enter this on the command line:

java -classpath /QIBM/ProdData/Java400/ext/JPDC.jar com.ibm.as400/jpdc/JPDC

jinsight pexdfn mydir/myfile myrdbdire

Note: You can omit the classpath if the ’/QIBM/ProdData/Java400/ext/JPDC.jar’ string is added to

your current environment. You can use either the ADDENVVAR command, CHGENVVAR, or

WRKENVVAR command to add this string to your current environment.

For background information, see Run the Java Performance Data Converter.

Example: Embed SQL Statements in your Java application

The following example SQLJ application, App.sqlj, uses static SQL to retrieve and update data from the

EMPLOYEE table of the DB2 sample database.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
import java.sql.*;

import sqlj.runtime.*;

import sqlj.runtime.ref.*;

#sql iterator App_Cursor1 (String empno, String firstnme) ; //

1

#sql iterator App_Cursor2 (String) ;

class App

{

 /**********************

 ** Register Driver **

 **********************/

 static

 {

 try

 {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver").newInstance();

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 /********************

 ** Main **

 ********************/

 public static void main(String argv[])

 {

 try

 {

 App_Cursor1 cursor1;

 App_Cursor2 cursor2;

 String str1 = null;

 String str2 = null;

506 IBM Systems - iSeries: Programming IBM Developer Kit for Java

long count1;

 // URL is jdbc:db2:dbname

 String url = "jdbc:db2:sample";

 DefaultContext ctx = DefaultContext.getDefaultContext();

 if (ctx == null)

 {

 try

 {

 // connect with default id/password

 Connection con = DriverManager.getConnection(url);

 con.setAutoCommit(false);

 ctx = new DefaultContext(con);

 }

 catch (SQLException e)

 {

 System.out.println("Error: could not get a default context");

 System.err.println(e) ;

 System.exit(1);

 }

 DefaultContext.setDefaultContext(ctx);

 }

 // retrieve data from the database

 System.out.println("Retrieve some data from the database.");

 #sql cursor1 = {SELECT empno, firstnme FROM employee}; //

2

 // display the result set

 // cursor1.next() returns false when there are no more rows

 System.out.println("Received results:");

 while (cursor1.next()) //

3

 {

 str1 = cursor1.empno(); //

4

 str2 = cursor1.firstnme();

 System.out.print (" empno= " + str1);

 System.out.print (" firstname= " + str2);

 System.out.println("");

 }

 cursor1.close(); //

9

 // retrieve number of employee from the database

 #sql { SELECT count(*) into :count1 FROM employee }; //

5

 if (1 == count1)

 System.out.println ("There is 1 row in employee table");

 else

 System.out.println ("There are " + count1

 + " rows in employee table");

 // update the database

 System.out.println("Update the database.");

 #sql { UPDATE employee SET firstnme = ’SHILI’ WHERE empno = ’000010’ };

 // retrieve the updated data from the database

 System.out.println("Retrieve the updated data from the database.");

 str1 = "000010";

 #sql cursor2 = {SELECT firstnme FROM employee WHERE empno = :str1}; //

6

 // display the result set

 // cursor2.next() returns false when there are no more rows

 System.out.println("Received results:");

 while (true)

 {

 #sql { FETCH :cursor2 INTO :str2 }; //

7

 if (cursor2.endFetch()) break; //

8

IBM Developer Kit for Java 507

System.out.print (" empno= " + str1);

 System.out.print (" firstname= " + str2);

 System.out.println("");

 }

 cursor2.close(); //

9

 // rollback the update

 System.out.println("Rollback the update.");

 #sql { ROLLBACK work };

 System.out.println("Rollback done.");

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

}

1Declare iterators. This section declares two types of iterators:

v App_Cursor1: Declares column data types and names, and returns the values of the columns according

to column name (Named binding to columns).

v App_Cursor2: Declares column data types, and returns the values of the columns by column position

(Positional binding to columns).

2Initialize the iterator. The iterator object cursor1 is initialized using the result of a query. The query

stores the result in cursor1.

3Advance the iterator to the next row. The cursor1.next() method returns a Boolean false if there are no

more rows to retrieve.

4Move the data. The named accessor method empno() returns the value of the column named empno on

the current row. The named accessor method firstnme() returns the value of the column named firstnme

on the current row.

5SELECT data into a host variable. The SELECT statement passes the number of rows in the table into the

host variable count1.

6 Initialize the iterator. The iterator object cursor2 is initialized using the result of a query. The query

stores the result in cursor2.

7Retrieve the data. The FETCH statement returns the current value of the first column declared in the

ByPos cursor from the result table into the host variable str2.

8Check the success of a FETCH.INTO statement. The endFetch() method returns a Boolean true if the

iterator is not positioned on a row, that is, if the last attempt to fetch a row failed. The endFetch() method

returns false if the last attempt to fetch a row was successful. DB2 attempts to fetch a row when the

next() method is called. A FETCH...INTO statement implicitly calls the next() method.

9Close the iterators. The close() method releases any resources held by the iterators. You should explicitly

close iterators to ensure that system resources are released in a timely fashion.

For background information on this example, see Embed SQL Statements in your Java application.

Examples: Change your Java code to use client socket factories

These examples show you how to change a simple socket class, named simpleSocketClient, so that it uses

socket factories to create all of the sockets. The first example shows you the simpleSocketClient class

without socket factories. The second example shows you the simpleSocketClient class with socket

factories. In the second example, simpleSocketClient is renamed to factorySocketClient.

508 IBM Systems - iSeries: Programming IBM Developer Kit for Java

Example 1: Socket client program without socket factories

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/* Simple Socket Client Program */

import java.net.*;

import java.io.*;

public class simpleSocketClient {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketClient serverHost serverPort");

 System.out.println("serverPort defaults to 3000 if not specified.");

 return;

 }

 if (args.length == 2)

 serverPort = new Integer(args[1]).intValue();

 System.out.println("Connecting to host " + args[0] + " at port " +

 serverPort);

 // Create the socket and connect to the server.

 Socket s = new Socket(args[0], serverPort);

 .

 .

 .

 // The rest of the program continues on from here.

Example 2: Simple socket client program with socket factories

Note: Read the Code example disclaimer for important legal information.
/* Simple Socket Factory Client Program */

// Notice that javax.net.* is imported to pick up the SocketFactory class.

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySocketClient {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java factorySocketClient serverHost serverPort");

 System.out.println("serverPort defaults to 3000 if not specified.");

 return;

 }

 if (args.length == 2)

 serverPort = new Integer(args[1]).intValue();

 System.out.println("Connecting to host " + args[0] + " at port " +

 serverPort);

 // Change the original simpleSocketClient program to create a

 // SocketFactory and then use the socket factory to create sockets.

 SocketFactory socketFactory = SocketFactory.getDefault();

 // Now the factory creates the socket. This is the last change

IBM Developer Kit for Java 509

// to the original simpleSocketClient program.

 Socket s = socketFactory.createSocket(args[0], serverPort);

 .

 .

 .

 // The rest of the program continues on from here.

For background information, see Change your Java code to use socket factories.

Examples: Change your Java code to use server socket factories

These examples show you how to change a simple socket class, named simpleSocketServer, so that it uses

socket factories to create all of the sockets. The first example shows you the simpleSocketServer class

without socket factories. The second example shows you the simpleSocketServer class with socket

factories. In the second example, simpleSocketServer is renamed to factorySocketServer.

Example 1: Socket server program without socket factories

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/* File simpleSocketServer.java*/

import java.net.*;

import java.io.*;

public class simpleSocketServer {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketServer serverPort");

 System.out.println("Defaulting to port 3000 since serverPort not specified.");

 }

 else

 serverPort = new Integer(args[0]).intValue();

 System.out.println("Establishing server socket at port " + serverPort);

 ServerSocket serverSocket =

 new ServerSocket(serverPort);

 // a real server would handle more than just one client like this...

 Socket s = serverSocket.accept();

 BufferedInputStream is = new BufferedInputStream(s.getInputStream());

 BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());

 // This server just echoes back what you send it...

 byte buffer[] = new byte[4096];

 int bytesRead;

 // read until "eof" returned

 while ((bytesRead = is.read(buffer)) > 0) {

 os.write(buffer, 0, bytesRead); // write it back

 os.flush(); // flush the output buffer

 }

 s.close();

510 IBM Systems - iSeries: Programming IBM Developer Kit for Java

serverSocket.close();

 } // end main()

} // end class definition

Example 2: Simple socket server program with socket factories

Note: Read the Code example disclaimer for important legal information.
/* File factorySocketServer.java */

// need to import javax.net to pick up the ServerSocketFactory class

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySocketServer {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketServer serverPort");

 System.out.println("Defaulting to port 3000 since serverPort not specified.");

 }

 else

 serverPort = new Integer(args[0]).intValue();

 System.out.println("Establishing server socket at port " + serverPort);

 // Change the original simpleSocketServer to use a

 // ServerSocketFactory to create server sockets.

 ServerSocketFactory serverSocketFactory =

 ServerSocketFactory.getDefault();

 // Now have the factory create the server socket. This is the last

 // change from the original program.

 ServerSocket serverSocket =

 serverSocketFactory.createServerSocket(serverPort);

 // a real server would handle more than just one client like this...

 Socket s = serverSocket.accept();

 BufferedInputStream is = new BufferedInputStream(s.getInputStream());

 BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());

 // This server just echoes back what you send it...

 byte buffer[] = new byte[4096];

 int bytesRead;

 while ((bytesRead = is.read(buffer)) > 0) {

 os.write(buffer, 0, bytesRead);

 os.flush();

 }

 s.close();

 serverSocket.close();

 }

}

For background information, see Change your Java code to use socket factories.

IBM Developer Kit for Java 511

Examples: Change your Java client to use secure sockets layer

These examples show you how to change one class, named factorySocketClient, to use secure sockets

layer (SSL). The first example shows you the factorySocketClient class not using SSL. The second example

shows you the same class, renamed factorySSLSocketClient, using SSL.

Example 1: Simple factorySocketClient class without SSL support

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/* Simple Socket Factory Client Program */

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySocketClient {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java factorySocketClient serverHost serverPort");

 System.out.println("serverPort defaults to 3000 if not specified.");

 return;

 }

 if (args.length == 2)

 serverPort = new Integer(args[1]).intValue();

 System.out.println("Connecting to host " + args[0] + " at port " +

 serverPort);

 SocketFactory socketFactory = SocketFactory.getDefault();

 Socket s = socketFactory.createSocket(args[0], serverPort);

 .

 .

 .

 // The rest of the program continues on from here.

Example 2: Simple factorySocketClient class with SSL support

Note: Read the Code example disclaimer for important legal information.
// Notice that we import javax.net.ssl.* to pick up SSL support

import javax.net.ssl.*;

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySSLSocketClient {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java factorySSLSocketClient serverHost serverPort");

 System.out.println("serverPort defaults to 3000 if not specified.");

 return;

 }

 if (args.length == 2)

 serverPort = new Integer(args[1]).intValue();

 System.out.println("Connecting to host " + args[0] + " at port " +

512 IBM Systems - iSeries: Programming IBM Developer Kit for Java

serverPort);

 // Change this to create an SSLSocketFactory instead of a SocketFactory.

 SocketFactory socketFactory = SSLSocketFactory.getDefault();

 // We do not need to change anything else.

 // That’s the beauty of using factories!

 Socket s = socketFactory.createSocket(args[0], serverPort);

 .

 .

 .

 // The rest of the program continues on from here.

For background information, see Change your Java code to use secure sockets layer.

Examples: Change your Java server to use secure sockets layer

These examples show you how to change one class, named factorySocketServer, to use secure sockets

layer (SSL).

The first example shows you the factorySocketServer class not using SSL. The second example shows you

the same class, renamed factorySSLSocketServer, using SSL.

Example 1: Simple factorySocketServer class without SSL support

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 519.
/* File factorySocketServer.java */

// need to import javax.net to pick up the ServerSocketFactory class

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySocketServer {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketServer serverPort");

 System.out.println("Defaulting to port 3000 since serverPort not specified.");

 }

 else

 serverPort = new Integer(args[0]).intValue();

 System.out.println("Establishing server socket at port " + serverPort);

 // Change the original simpleSocketServer to use a

 // ServerSocketFactory to create server sockets.

 ServerSocketFactory serverSocketFactory =

 ServerSocketFactory.getDefault();

 // Now have the factory create the server socket. This is the last

 // change from the original program.

 ServerSocket serverSocket =

 serverSocketFactory.createServerSocket(serverPort);

 // a real server would handle more than just one client like this...

 Socket s = serverSocket.accept();

 BufferedInputStream is = new BufferedInputStream(s.getInputStream());

 BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());

 // This server just echoes back what you send it.

IBM Developer Kit for Java 513

byte buffer[] = new byte[4096];

 int bytesRead;

 while ((bytesRead = is.read(buffer)) > 0) {

 os.write(buffer, 0, bytesRead);

 os.flush();

 }

 s.close();

 serverSocket.close();

 }

}

Example 2: Simple factorySocketServer class with SSL support

Note: Read the Code example disclaimer for important legal information.
/* File factorySocketServer.java */

// need to import javax.net to pick up the ServerSocketFactory class

import javax.net.*;

import java.net.*;

import java.io.*;

public class factorySocketServer {

 public static void main (String args[]) throws IOException {

 int serverPort = 3000;

 if (args.length < 1) {

 System.out.println("java simpleSocketServer serverPort");

 System.out.println("Defaulting to port 3000 since serverPort not specified.");

 }

 else

 serverPort = new Integer(args[0]).intValue();

 System.out.println("Establishing server socket at port " + serverPort);

 // Change the original simpleSocketServer to use a

 // ServerSocketFactory to create server sockets.

 ServerSocketFactory serverSocketFactory =

 ServerSocketFactory.getDefault();

 // Now have the factory create the server socket. This is the last

 // change from the original program.

 ServerSocket serverSocket =

 serverSocketFactory.createServerSocket(serverPort);

 // a real server would handle more than just one client like this...

 Socket s = serverSocket.accept();

 BufferedInputStream is = new BufferedInputStream(s.getInputStream());

 BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());

 // This server just echoes back what you send it.

 byte buffer[] = new byte[4096];

 int bytesRead;

 while ((bytesRead = is.read(buffer)) > 0) {

 os.write(buffer, 0, bytesRead);

 os.flush();

 }

514 IBM Systems - iSeries: Programming IBM Developer Kit for Java

s.close();

 serverSocket.close();

 }

}

For background information, see Change your Java code to use secure sockets layer.

Troubleshoot IBM Developer Kit for Java

This topic shows you how to find job logs and collect data for Java program analysis. This topic also

provides information about program temporary fixes (PTFs) and getting support for IBM Developer Kit

for Java.

If the performance of your program degrades as it runs for a longer period of time, you may have

erroneously coded a memory leak. You can use the JavaWatcher, a component of iSeries iDoctor, to help

you debug your program and locate any memory leaks. For more information, see JavaWatcher.

Limitations

This list identifies any known limitations, restrictions, or unique behaviors in the IBM Developer Kit for

Java.

v When a class is loaded and its superclasses are not found, the error indicates that the original class was

not found. For example, if class B extends class A, and class A is not found when loading class B, the

error indicates that class B was not found, even though it is actually class A that was not found. When

you see an error that indicates that a class was not found, check to make sure that the class and all of

its superclasses are in the CLASSPATH. This also applies to interfaces that are implemented by the

class being loaded.

v The garbage collection heap is limited to 240 GB.

v There is no explicit limit to the number of constructed objects.

v The java.net backlog parameter on an iSeries server may behave differently than on other platforms.

For example:

– Listen backlogs 0, 1

- Listen(0) means to allow one pending connection; it does not disable a socket.

- Listen(1) means to allow one pending comment, and means the same as Listen(0).
– Listen backlogs > 1

- This allows many pending requests to remain on the listen queue. If a new connection request

arrives and the queue is at the limit, then it deletes one of the pending requests.
v You can only use the Java virtual machine, regardless of the JDK version you are using, in

multi-thread capable (that is, thread-safe) environments. The iSeries server is thread-safe, but some file

systems are not. For a list of nonthread-safe file systems, see Integrated File System.

v Internet Protocol version 6 (IPv6) support is not fully implemented and some side effects may occur.

For more information, see Sockets.

Find job logs for Java problem analysis

Use the job log from the job that ran the Java command, and the batch immediate (BCI) job log where the

Java program ran, to analyze causes of a Java failure. They both may contain important error information.

There are two ways to find the job log for the BCI job. You can find the name of the BCI job that is

logged in the job log of the job that ran the Java command. Then, use that job name to find the job log

for the BCI job.

You can also find the job log for the BCI job by following these steps:

1. Enter the Work with Submitted Jobs (WRKSBMJOB) command on the iSeries command line.

IBM Developer Kit for Java 515

http://www.ibm.com/eserver/iseries/support/i_dir/idoctor.nsf/jw.html

2. Go to the bottom of the list.

3. Look for the last job in the list, called QJVACMDSRV.

4. Enter option 8 (Work with Spooled Files) for that job.

5. A file called QPJOBLOG displays.

6. Press F11 to see view 2 of the spooled files.

7. Verify that the date and time match the date and time when the failure occurred.

If the date and time do not match the date and time when you signed off, continue looking through

the list of submitted jobs. Try to find a QJVACMDSRV job log with a date and time that matches

when you signed off.

If you are unable to find a job log for the BCI job, one may not have been produced. This happens if you

set the ENDSEP value for the QDFTJOBD job description too high or the LOG value for the QDFTJOBD

job description specifies *NOLIST. Check these values, and change them so that a job log is produced for

the BCI job.

To produce a job log for the job that ran the Run Java (RUNJVA) command, perform the following steps:

1. Enter SIGNOFF *LIST.

2. Then, sign back on.

3. Enter the Work with Spooled Files (WRKSPLF) command on the iSeries command line.

4. Go to the bottom of the list.

5. Find a file named QPJOBLOG.

6. Press F11.

7. Verify that the date and time match the date and time when you entered the signoff command.

If the date and time do not match the date and time when you signed off, continue looking through

the list of submitted jobs. Try to find a QJVACMDSRV job log with a date and time that matches

when you signed off.

Collect data for Java problem analysis

To collect data for an authorized program analysis report (APAR), follow these steps.

1. Include a complete description of the problem.

2. Save the Java class file that caused the problem while running.

3. You can use the SAV command to save objects from the integrated file system. You may need to save

other class files that this program must run. You may also want to save and send in an entire

directory for IBM to use when trying to reproduce the problem, if necessary. This is an example of

how to save an entire directory.

Example: Save a directory

Note: Read the Code example disclaimer for important legal information.

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) OBJ((’/mydir’))

If possible, save the source files for any Java classes that are involved in the problem. This is helpful

to IBM when reproducing and analyzing the problem.

4. Save any service programs that contain native methods that are required to run the program.

5. Save any data files that are required to run the Java program.

6. Add a complete description of how to reproduce the problem.

This includes:

v The value of the CLASSPATH environment variable.

v A description of the Java command that was run.

v A description of how to respond to any input that is required by the program.
7. Include any vertical licensed internal code (VLIC) logs that have occurred near the time of failure.

516 IBM Systems - iSeries: Programming IBM Developer Kit for Java

8. Add the job log from both the interactive job and the BCI job where the Java virtual machine was

running.

Apply program temporary fixes

Beginning in i5/OS V5R4, you can use the Display Java Virtual Machine Jobs (DSPJVMJOB) CL command

to manage your JVM jobs and apply PTFs while the system is active.

Many Java Program Temporary Fixes (PTFs) impact the JVM such that, if the code is applied while a JVM

job is running, applying the PTF will cause unpredictable results. In the past, the application of some

Java PTFs has been delayed until an initial program load (IPL) could be performed on the system to

ensure that there would be no JVM jobs running on the system. Many users, however, found this to be

inconvenient. A JVM pre-condition was added so that many of those delayed PTFs could be applied

immediately, if no JVMs are active on the system. The DSPJVMJOB command allows you to see which jobs

have JVMs running in them. With this information, you can end the jobs containing active JVMs

appropriately before applying PTFs, instead of waiting for an IPL for the PTFs to be applied.

To learn more about the DSPJVMJOB command, see Display Java Virtual Machine Jobs in the CL topic.

 Related information

 Maintain and manage i5/OS and related software

 Use software fixes

Get support for the IBM Developer Kit for Java

Support services for the IBM Developer Kit for Java are provided under the usual terms and conditions

for iSeries software products. Support services include program services, voice support, and consulting

services.

Use the online information that is provided at IBM iSeries Home Page under the topic ″Support″ for

more information. Use IBM Support Services for 5722-JV1 (IBM Developer Kit for Java). Or, contact your

local IBM representative.

You may, at IBM direction, be required to obtain a more current level of the IBM Developer Kit for Java

to receive Continued Program Services. For more information, see Support for multiple Java Development

Kits (JDKs).

Resolving defects of the IBM Developer Kit for Java program are supported under program services or

voice support. Resolving application programming or debugging issues are supported under consulting

services.

The IBM Developer Kit for Java application program interface (API) calls are supported under consulting

services, unless:

1. It is clearly a Java API defect as demonstrated by re-creation in a relatively simple program.

2. It is a question that asks for documentation clarification,

3. It is a question about the location of samples or documentation.

All programming assistance is supported under consulting services. This includes the program samples

that are provided in the IBM Developer Kit for Java licensed program (LP) product. Additional samples

may be available on the Internet at IBM iSeries Home Page on an unsupported basis.

The IBM Developer Kit for Java LP provides information about solving problems. If you believe that

there is a potential defect in the IBM Developer Kit for Java API, a simple program that demonstrates the

error is required.

IBM Developer Kit for Java 517

|

|
|

|
|
|
|
|
|
|
|

|

|

|

|

http://www.ibm.com/eserver/iseries/
http://www.ibm.com/eserver/iseries/

Related information for IBM Developer Kit for Java

The following Javadoc reference information relates to IBM Developer Kit for Java.

Javadoc

v iSeries-specific JAAS Javadoc

v JAAS API Specification

v Java 2 Platform, Standard Edition API Specification

See the following reference information that relates to IBM Developer Kit for Java.

Java Naming and Directory Interface

The Java Naming and Directory Interface (JNDI) is part of the JavaSoft platform application program

interface (API). With JNDI, you can connect seamlessly to multiple naming and directory services. You

can build powerful and portable directory-enabled Java applications by using this interface.

JavaSoft developed the JNDI specification with leading industry partners, including IBM, SunSoft, Novell,

Netscape, and Hewlett-Packard Co.

Note: The i5/OS Java Runtime Environment (JRE) and the versions of the Java 2 Platform, Software

Development Kit (J2SDK) offered by the IBM Developer Kit for Java include the Sun LDAP provider.

Because i5/OS Java support includes the Sun LDAP provider, that support no longer includes the

ibmjndi.jar file. The ibmjndi.jar file offered an IBM-developed LDAP service provider for older versions of

the J2SDK.

For more information about JNDI, see Java Naming and Directory interface by Sun Microsystems, Inc.

 Collected links

 Java Naming and Directory interface by Sun Microsystems, Inc.

JavaMail

The JavaMail API provides a set of abstract classes that models an electronic (e-mail) system. The API

provides general mail functions for reading and sending mail, and requires service providers to

implement the protocols.

Service providers implement specific protocols. For example, Simple Mail Transfer Protocol (SMTP) is a

transport protocol for sending e-mail. Post Office Protocol 3 (POP3) is the standard protocol for receiving

e-mail. Internet Message Access Protocol (IMAP) is an alternative protocol to POP3.

In addition to service providers, JavaMail requires the JavaBeans Activation Framework (JAF) to handle

mail content that is not plain text. This includes Multipurpose Internet Mail Extensions (MIME), Uniform

Resource Locator (URL) pages, and file attachments.

All the JavaMail components are shipped as part of the IBM Developer Kit for Java. These components

include the following:

v mail.jar This JAR file contains JavaMail APIs, the SMTP service provider, the POP3 service provider,

and the IMAP service provider.

v activation.jar This JAR file contains the JavaBeans Activation Framework.

Refer to Sun Microsystems, Inc. JavaMail documentation for more information.

 Collected links

 JavaMail

518 IBM Systems - iSeries: Programming IBM Developer Kit for Java

ptfdocs/index.html
apidocs/index.html
javaapi/api/overview-summary.html
http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/
http://java.sun.com/products/javamail/FAQ.html
http://java.sun.com/products/javamail/FAQ.html

Java Print Service

The Java Print Service (JPS) API allows printing on all Java platforms. Java 1.4 and subsequent versions

provide a framework in which Java runtime environments and third parties can provide stream generator

plugins for producing various formats for printing, such as PDF, Postscript, and Advanced Function

Presentation™ (AFP™). These plugins create the output formats from bi-dimensional (2D) graphic calls.

An iSeries print service represents a printer device that is configured on the iSeries with the i5/OS

command Create Device Description (Printer) (CRTDEVPRT). Specify the publishing information

parameters when you create a printer device. This increases the number of print service attributes

supported by the iSeries print services.

If a printer supports Simple Network Management Protocol (SNMP), configure the printer on the iSeries.

Specify *IBMSNMPDRV for the value of the system driver program parameter in the CRTDEVPRT

command. The print services use SNMP to retrieve specific information (printer service attributes) about

a configured printer.

The Doc Flavors supported by the iSeries include *AFPDS, *SCS, *USERASCII - (PCL), *USERASCII -

(Postscript), and *USERASCII - (PDF). Specify the Doc Flavors that the printer supports in the Data

Streams Supported parameter within the Publishing Information of the CRTDEVPRT command.

When an application uses a print service to print a job (document) on the iSeries, the print service places

the document into a spooled file on an output queue with the same name as the printer device (also the

same name as specified in the PrinterName attribute). Start a printer writer with the command

STRPRTWTR before the documents print on the printer device.

In addition to the attributes defined by the Java Print Service specification, the iSeries print services

support the following attributes for all Doc Flavors:

v PrinterFile (specifies a printer file, name and library, to be used when creating the spooled file)

v SaveSpooledFile (indicates whether to save the spooled file)

v UserData (a 10 character string of user defined data)

v JobHold (indicates whether to hold the spooled file)

v SourceDrawer (indicates the source drawer to use for the output media)

How to enable JPS when using JDK 1.5

The following are the symbolic links that need to be set up to enable the Java Print Service:

ADDLNK OBJ(’/QIBM/ProdData/OS400/Java400/ext/ibmjps.jar’)

 NEWLNK(’/QIBM/ProdData/Java400/jdk15/lib/ext/ibmjps.jar’)

 LNKTYPE(*SYMBOLIC)

ADDLNK OBJ(’/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar’)

 NEWLNK(’/QIBM/ProdData/Java400/jdk15/lib/ext/jt400Native.jar’)

 LNKTYPE(*SYMBOLIC)

Refer to Sun Microsystems Java Print Service documentation for more information.

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

IBM Developer Kit for Java 519

|

|

|
|
|
|
|
|
|

|

|
|
|
|
|

http://java.sun.com/j2se/1.4/docs/guide/jps

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

520 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|
|

|

|
|

|

|
|
|

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998, 2006 521

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

522 IBM Systems - iSeries: Programming IBM Developer Kit for Java

|
|
|

Programming Interface Information

This IBM Developer Kit for Java publication documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of IBM Developer Kit for Java.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

Advanced Function Presentation

AFP

AIX

AT

C/400

DB2

DB2 Universal Database

Distributed Relational Database Architecture

DRDA

i5/OS

IBM

Integrated Language Environment

iSeries

PowerPC

VisualAge

WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

Appendix. Notices 523

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

524 IBM Systems - iSeries: Programming IBM Developer Kit for Java

����

Printed in USA

	Contents
	IBM Developer Kit for Java
	What's new
	Printable PDF
	Install and configure IBM Developer Kit for Java
	Install IBM Developer Kit for Java
	Install a licensed program with the Restore Licensed Program command
	Support for multiple Java 2 Software Development Kits
	Install extensions for the IBM Developer Kit for Java
	Download and install Java packages

	Run your first Hello World Java program
	Map a network drive to your iSeries server
	Create a directory on your iSeries server
	Create a directory using iSeries Navigator
	Create a directory using the command entry line

	Create, compile, and run a HelloWorld Java program
	Create and edit Java source files

	Customize your iSeries server for the IBM Developer Kit for Java
	Java classpath
	Java system properties
	SystemDefault.properties file
	List of Java system properties

	Internationalization
	Time zone configuration
	Java character encodings
	Examples: Creating an internationalized Java program

	Release-to-release compatibility
	Database access with the IBM Developer Kit for Java
	Access your iSeries database with the IBM Developer Kit for Java JDBC driver
	Get started with JDBC
	Connections
	JVM Properties for JDBC
	DatabaseMetaData interface for IBM Developer Kit for Java
	Exceptions
	Transactions
	Distributed transactions
	Statement types
	ResultSets
	JDBC object pooling
	Batch updates
	Advanced data types
	RowSets
	Performance tips for the IBM Developer Kit for Java JDBC driver

	Access databases using IBM Developer Kit for Java DB2 SQLJ support
	Structured Query Language for Java profiles
	The structured query language for Java (SQLJ) translator (sqlj)
	Precompile SQL statements in a profile using the DB2 SQLJ profile customizer, db2profc
	Print the contents of DB2 SQLJ profiles (db2profp and profp)
	SQLJ profile auditor installer (profdb)
	Convert a serialized profile instance to Java class format using the SQLJ profile conversion tool (profconv)
	Embed SQL statements in your Java application
	Compile and run SQLJ programs

	Java SQL routines
	Use Java SQL routines
	Java stored procedures
	Java user-defined scalar functions
	SQLJ procedures that manipulate JAR files
	Parameter passing conventions for Java stored procedures and UDFs

	Java with other programming languages
	Use the Java Native Interface for native methods
	Java Invocation API
	Java native methods and threads considerations
	Native methods and the Java Native Interface
	Strings in native methods

	IBM i5/OS PASE native methods for Java
	Java i5/OS PASE environment variables
	Java i5/OS PASE error codes
	Managing native method libraries
	Example: IBM i5/OS PASE native method for Java

	Teraspace storage model native methods for Java
	Comparison of Integrated Language Environment® and Java
	Use java.lang.Runtime.exec()
	Example: Call another Java program with java.lang.Runtime.exec()
	Example: Call a CL program with java.lang.Runtime.exec()
	Example: Call a CL command with java.lang.Runtime.exec()

	Interprocess communications
	Use sockets for interprocess communication
	Use input and output streams for interprocess communication
	Example: Call Java from C
	Example: Call Java from RPG

	Java platform
	Java applets and applications
	Java virtual machine
	Java JAR and class files
	Java threads
	Sun Microsystems, Inc. Java Development Kit

	Advanced topics
	Java classes, packages, and directories
	Files in the integrated file system
	Java file authorities in the integrated file system
	Run Java in a batch job

	Run your Java application on a host that does not have a graphical user interface
	Native Abstract Windowing Toolkit
	Levels of NAWT support
	Installing and using Native Abstract Windowing Toolkit
	Tips on using VNC
	Tips for using NAWT with WebSphere Application Server

	Java security
	Java security model
	Java Cryptography Extension
	Java Secure Socket Extension
	Using SSL (JSSE, version 1.0.8)
	Using Java Secure Socket Extension

	Java Authentication and Authorization Service
	Prepare and configure an iSeries server for Java Authentication and Authorization Service
	Java Authentication and Authorization Service (JAAS) 1.0
	Java Authentication and Authorization Service samples

	IBM Java Generic Security Service (JGSS)
	JGSS concepts
	Configuring your iSeries server to use IBM JGSS
	Running IBM JGSS applications
	Developing IBM JGSS applications
	Debugging
	Samples: IBM Java Generic Security Service (JGSS)
	IBM JGSS javadoc reference information

	Tune Java program performance with IBM Developer Kit for Java
	Java event trace performance tools
	Java performance considerations
	Select which mode to use when running a Java program
	Java interpreter
	Static compilation
	Just-In-Time compiler

	Java garbage collection
	IBM Developer Kit for Java advanced garbage collection
	Java garbage collection performance considerations

	Java Native Method Invocation performance considerations
	Java method inlining performance considerations
	Java exception performance considerations
	Java call trace performance tools
	Java profiling performance tools
	Java Virtual Machine Profiler Interface

	Collect Java performance data
	Performance Data Collector tool
	Java Performance Data Converter tool
	Run the Java Performance Data Converter

	Commands and tools for the IBM Developer Kit for Java
	Java tools that are supported by the IBM Developer Kit for Java
	Java tools
	Java command in Qshell

	CL commands that are supported by Java
	Considerations for using the ANZJVM command

	iSeries Navigator commands that are supported by Java

	Debug Java programs that run on your server
	Debug Java programs from an i5/OS command line
	Debug a Java program
	Debug Java and native method programs
	Debug a Java program from another display
	Debug Java classes loaded through a custom class loader
	Debug servlets
	Java Platform Debugger Architecture
	Find memory leaks

	Code examples for the IBM Developer Kit for Java
	Example: Internationalization of dates using the java.util.DateFormat class
	Example: Internationalization of numeric display using the java.util.NumberFormat class
	Example: Internationalization of locale-specific data using the java.util.ResourceBundle class
	Example: Access property
	Example: BLOB
	Example: CallableStatement interface for IBM Developer Kit for Java
	Example: Remove values from a table through another statement's cursor
	Example: CLOB
	Example: Create a UDBDataSource and bind it with JNDI
	Example: Create a UDBDataSource, and obtain a user ID and password
	Example: Create a UDBDataSourceBind and set DataSource properties
	Example: DatabaseMetaData interface for IBM Developer Kit for Java - Return a list of tables
	Example: Datalink
	Example: Distinct types
	Example: Embed SQL Statements in your Java application
	Example: End a transaction
	Example: Invalid user ID and password
	Example: JDBC
	Example: Multiple connections that work on a transaction
	Example: Obtain an initial context before binding UDBDataSource
	Example: ParameterMetaData
	Example: Change values with a statement through another statement's cursor
	Example: ResultSet interface for IBM Developer Kit for Java
	Example: ResultSet sensitivity
	Example: Sensitive and insensitive ResultSets
	Example: Set up connection pooling with UDBDataSource and UDBConnectionPoolDataSource
	Example: SQLException
	Example: Suspend and resume a transaction
	Example: Suspended ResultSets
	Example: Test the performance of connection pooling
	Example: Test the performance of two DataSources
	Example: Update BLOBs
	Example: Update CLOBs
	Example: Use a connection with multiple transactions
	Example: Use BLOBs
	Example: Use CLOBs
	Example: Use JTA to handle a transaction
	Example: Use metadata ResultSets that have more than one column
	Example: Use native JDBC and IBM Toolbox for Java JDBC concurrently
	Example: Use PreparedStatement to obtain a ResultSet
	Example: Use the Statement object's executeUpdate method
	Examples: JAAS HelloWorld
	Example: JAAS SampleThreadSubjectLogin
	Sample: IBM JGSS non-JAAS client program
	Sample: IBM JGSS non-JAAS server program
	Sample: IBM JGSS JAAS-enabled client program
	Sample: IBM JGSS JAAS-enabled server program
	Examples: IBM Java Secure Sockets Extension
	Example: Call a CL program with java.lang.Runtime.exec()
	Example: Call a CL command with java.lang.Runtime.exec()
	Example: Call another Java program with java.lang.Runtime.exec()
	Example: Call Java from C
	Example: Call Java from RPG
	Example: Use input and output streams for interprocess communication
	Example: Java Invocation API
	Example: IBM i5/OS PASE native method for Java
	Example: PaseExample1.java
	Example: PaseExample1.c
	Example: Download the example source code to your AIX workstation
	Example: Prepare the example source code
	Example: Prepare your iSeries server

	Examples: Use the Java Native Interface for native methods
	Example: Use sockets for interprocess communication
	Example: Run the Java Performance Data Converter
	Example: Embed SQL Statements in your Java application
	Examples: Change your Java code to use client socket factories
	Examples: Change your Java code to use server socket factories
	Examples: Change your Java client to use secure sockets layer
	Examples: Change your Java server to use secure sockets layer

	Troubleshoot IBM Developer Kit for Java
	Limitations
	Find job logs for Java problem analysis
	Collect data for Java problem analysis
	Apply program temporary fixes
	Get support for the IBM Developer Kit for Java

	Related information for IBM Developer Kit for Java
	Java Naming and Directory Interface
	JavaMail
	Java Print Service
	Code license and disclaimer information

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

