AS/400 ====°=

ICF Programming

Version 4

SC41-5442-00

AS/400 ====°=

ICF Programming

Version 4

SC41-5442-00

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

First Edition (August 1997)

This edition applies to the licensed program IBM Operating System/400 (Program 5769-SS1), Version 4 Release 1 Modification 0, and to all
subsequent releases and modifications until otherwise indicated in new editions.

Make sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto Rico, or
Guam, you can order publications through the IBM Software Manufacturing Solutions at 800+879-2755. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication. You can also mail your
comments to the following address:

IBM Corporation

Attention Department 542
IDCLERK

3605 Highway 52 N

Rochester, MN 55901-7829 USA

Oor you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth
in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices ¢
Programming Interface Information iX
Trademarks and Service Marks iX
About ICF Programming, SC41-5442 Xi
Who Should Use This Book Xi
Prerequisite and Related Information Xi
Information Available on the World Wide Web Xi
Chapter 1. Introduction to AS/400 System
Communications 1-1
Planning for Data Communications 11
Installing Communications Hardware 1-1
Configuring Your System for Data Communications 1-1
Writing Programs that Use the Intersystem
Communications Function (ICF) 11
Operating Communications on the AS/400 System 11
Chapter 2. Communications Features 2-1
Intersystem Communications Function Communications
Types 2-1
AS/400 System Communications Types 2-1
Non-Intersystem Communications Function
Communications 2-3
Communicating with Remote Work Stations 2-3
Combinations of Communications Types 2-3
AS/400 System Communications Line Support 2-3
Operating System/400 2-4
Communications Configuration 2-4
Intersystem Communications Function File 2-4
Data Description Specifications (DDS) 2-4
System-Supplied Formats 2-4
Control Language 2-4
Security ... 2-5
Error Handling 2-5
High-Level Language Support 2-5
Additional Programming Support 2-5
Chapter 3. Introduction to Intersystem
Communications Function 3-1
Configuring for Communications 3-2
Varying on Communications Configurations 3-3
The Intersystem Communications Function File 3-3
Definingthe File 3-3
Usingthe File 3-3
Starting Your Program 3-4
Opening the Intersystem Communications Function File 3-4
Starting Communications with the Remote System 3-4
Starting a Program on the Remote System 3-6
Connecting to the Session — Target Program 3-7
Sending and ReceivingData 3-9
Ending Communications with the Remote System 3-10
Ending the Transaction 3-10
Ending the Session 3-11
Closing the Intersystem Communications Function File 3-12
Varying off Communications Configurations 3-12

© Copyright IBM Corp. 1997

Additional Information on Sessions and Transactions
Multiple Transactions
Multiple Sessions

Summary
Source Program
Target Program

Chapter 4. Intersystem Communications Function
Files
Introduction to Intersystem Communications Function
Files
Intersystem Communications Function File Commands
File-Level Attribute Commands
Program Device Entry Commands
Display Information Commands
Creating an Intersystem Communications Function File
Defining the Record Formats for an Intersystem
Communications Function File
File Attributes
Acquiring a Program Device when the File Is Opened
Changing an Intersystem Communications Function File
Overriding an Intersystem Communications Function File
Identifying the Devices Used with an Intersystem
Communications Function File
Defining Program Device Entries Permanently
Defining Program Device Entries Temporarily
Mapping Program Device Name to Communications
Configurations
Communications-Type-Dependent Attributes
Intersystem Communications Function Command
Summary

Chapter 5. Using an Intersystem Communications
Function File
Opening an Intersystem Communications Function File
Obtaining Information about the Open Intersystem

Communications Function File
Acquiring a Program Device
Acquiring a Program Device — Source Program
Acquiring a Program Device — Target Program
Obtaining Information about a Particular Program Device
Program Device Definition List
Get-Attributes Operation
Sending and Receiving Data
Common I/O Feedback Area
File-Dependent 1/0 Feedback Area
Checking Return Codes
Writing to a Program Device
Inviting a Program Device
Format Selection Processing
Reading from Invited Program Devices
Reading from One Program Device
Writing and Then Reading from One Program
Device
Canceling an Invite of a Program Device

4-3
4-3

4-5
4-6

Waiting for a Display File, an ICF File, and a Data
Queue
Releasing a Program Device
Closing an Intersystem Communications Function File
Summary
Local System
Remote System

Chapter 6. Using Communications DDS Keywords
Starting a Program on the Remote System
Evoke (EVOKE, DFREVOKE, SECURITY, and
SYNLVL)
Differences between DDS and System-Supplied
Evoke Functions
Sending Data
Variable-Length Data (VARLEN)
Variable-Buffer-Management (VARBUFMGT)
Force-Data (FRCDTA)
Confirm (CONFIRM)
Format-Name (FMTNAME)
Subdevice-Selection (SUBDEV)
End-of-Group (ENDGRP)
Function-Management-Header (FMH)
Control-Data (CTLDTA)
Prepare-for-Commit Function
Transaction-Synchronization-Level Function
Examples of Sending Data
Receiving Data
Invite (INVITE)
Timer (TIMER)
Record-ldentification (RECID)
Problem Notification
Fail (FAIL)
Cancel (CANCEL)
Negative-Response (NEGRSP)
Additional Keywords
Respond-to-Confirm (RSPCONFIRM)
Request-to-Write (RQSWRT)
Allow-Write (ALWWRT)
Cancel-Invite (CNLINVITE)
Ending a Communications Transaction
Detach (DETACH)
Using the Detach Function When the
Synchronization Level is None
Using the Detach Function When the
Synchronization Level is Confirm
Using the Detach Function When the
Synchronization Level is Commit
Using the Detach Function From a Target Program
Ending the Communications Session
End-of-Session (EOS)
Using Response Indicator Keywords
Receive-Confirm
Receive-Control-Data
Receive-End-of-Group
Receive-Function-Management Header
Receive-Fall
Receive-Cancel
Receive-Negative-Response
Receive-Turnaround

iv ICF Programming V4R1

5-15
5-16
5-17
5-17
5-18
5-19

6-1
6-1

6-1

6-6

6-8
6-8
6-9
6-9
6-10
6-11
6-12
6-12
6-13
6-15
6-16
6-16
6-16

6-17

Receive-Detach
Receive-Rollback
Receive-Take-Commit
Example DDS Files for Creating an Intersystem
Communications Function File
Keyword Processing Charts

Chapter 7. Using System-Supplied Communications
Formats
General Description
Starting a Program on the Remote System
Evoke
Sending Data
Receiving Data
Invite
Timer
Problem Notification
Fail
Cancel
Negative-Response
Additional System-Supplied Formats
Positive-Response
Request-to-Write
Cancel-Invite
Ending a Communications Transaction
Detach
Ending the Communications Session
End of Session
System-Supplied Format Support
Mapping System-Supplied Formats to DDS Keywords

Chapter 8. Programming Considerations
Return Codes
Major Codes
Minor Codes
ICF Environment Considerations
Open or Acquire Considerations
Output Considerations
Input Considerations
Release, End-of-Session, and Close Considerations
Release Considerations
End-of-Session Considerations
Close Considerations
Two-Phase Commit Considerations
Committing Resources
Rolling Back Resources
Exchanging Log Names
Performance
Remote Program Start Considerations
Defining the Environment
Handling Program Start Requests
Prestarting Jobs for Program Start Requests
Commands
Application Considerations
Security Considerations for Prestart Jobs
Prestart Jobs Program
System Considerations
Security Considerations
File Considerations
File Redirection

Additional Considerations

Chapter 9. ILE C Communications Applications
Introduction to the ILE C Interface
Multiple-Session Inquiry
Error Handling
Accessing the Feedback Areas
Source Program Multiple-Session Inquiry

Chapter 10. COBOL/400 Communications
Applications
Introduction to the COBOL/400 Interface
Example Programs
Batch Data Transfer (Example 1)
Multiple-Session Inquiry (Example II)

Chapter 11. RPG/400 Communications
Applications
Introduction to the RPG/400 Interface
Example Programs
Batch Data Transfer (Example 1)
Multiple-Session Inquiry (Example II)

Chapter 12. Tracing Intersystem Communications
Function Operations and Functions
Starting the Trace
Stopping the Trace
Trace Records Sent to a Spooled File
Trace Records Sent to a Database File
Ending the Trace
Additional Considerations
Displaying Communications Status

Appendix A. Language Operations, Data
Description Specifications Keywords, and
System-Supplied Formats

Language Operations

DDS Keyword Support

System-Supplied Format Support

Appendix B. Communications Error Handling
System Error Classification
System Messages
User Program Error Detection
Control Language (CL) Commands for Determining

Configuration Status
Major/Minor Return Codes
Major Code 00
Major Code 02

B-1
B-1
B-1
B-2

Major Code 03
Major Code 04
Major Codes 08-11
Major Code 34
Major Code 80
Major Code 81
Major Code 82
Major Code 83
Failed Program Start Requests

Appendix C. Open Feedback and I/O Feedback
Open Feedback Area
Program Device Definition List
Input/Output Feedback Area
Common I/O Feedback Area
File-Dependent I/0O Feedback Area

Appendix D. EBCDIC and ASCII Character Sets
EBCDIC Character Set
ASCII Character Set

Appendix E. File Transfer Support
File Transfer Support Overview
Data Compression
File Transfer Considerations
To and From an AS/400 System
AS/400 System Retrieving from System/36
AS/400 System Sending to System/36
Multiple Communication-Type Support
File Transfer Parameters
To and From an AS/400 System
AS/400 System Sending to System/36
AS/400 System Retrieving a File from System/36
Retrieving a Library Member from System/36
Calling File Transfer Support for the ILE C
Programming Language
Calling File Transfer Support for COBOL/400
Programming Language
Calling File Transfer Support for RPG/400
Programming Language
Calling File Transfer Support for a CL Program
File Transfer Support Messages

Bibliography oo
Communications Books
Programming Language Books

System/36-Related Books

Index

Contents

D-1
D-1
D-2

E-1

E-1
E-1
E-1
E-2

E-2
E-3
E-3
E-6
E-9

E-12

\Y

Figures

3-1.

3-2.
3-3.

3-5.
3-6.

3-11.
3-12.
3-13.
3-14.
3-15.
4-1.
4-2.
4-3.
4-4.

4-6.

4-7.

5-6.

Sending Data from a Local Program to a
Remote Program
Major Parts of ICF Data Management 3-2
ICF File-Configuration Relationship
Establishing a Session
Communications Session Established 3-6
Program Started at Remote System by Evoke

Function 3-7
Requesting Program Device Relationship . . 3-8
Establishing a Logical Connection between the

Target Program and the Session 3-9
Data Sent by a Send Request 3-10
Ending a Communications Transaction:

Detach Function 3-11
Ending a Session: Release Operation and
End-of-Session Function 3-12
Starting and Ending Sessions and

Transactions 3-13
Remotely Started Program Starts a Session

and Transaction 3-14
The AS/400 System Application Starts a

Session with a Remote System 3-15
Remote System Starts a Session with a

Program Start Request 3-16
ICF File Overview 4-1
Creatingan ICF File 4-3
ICF File Attributes 4-3
File Attributes for Changing an ICF File . . . 4-5
File Attributes for Overriding an ICF File . . 4-6
Defining a Program Device Entry to an ICF

File 4-8
Mapping Parameters for All Communications

Types 4-10
Relationship of Remote Location Name to

Device Description 4-12

Communications-Type-Dependent Attributes 4-12

Relationship between ICF Commands . . . 4-16
Relationship of Program Device Entries to
Operations 5-2

Attribute Information Fields
Using Write Operation When Sending Data . 5-8

Format Selection Options 5-9
Using the Invite Function and
Read-from-Invited-Program-Devices

Operation to Receive Data 5-11
Relationship between Timer and
Read-from-Invited-Program-Devices

Operations 5-12
Using the Read Operation 5-15
Display File and ICF File Entry Field

Attributeso 5-16
Relationship of Program, File, and

Configuration 5-18
ILE C Program, File, and Configuration

Mapping 5-20

Vi ICF Programming V4R1

5-11.

5-12.

6-2.

6-3.

6-5.
6-6.

6-7.

6-9.
6-10.
6-11.
6-12.
6-13.
6-14.

6-15.
6-16.

6-17.
6-18.
6-19.
7-1.
7-2.
7-3.
7-4.

7-5.
7-6.
7-7.
7-8.
7-9.
7-10.
7-11.
7-12.
7-13.
7-14.

7-15.
7-16.

7-17.
7-18.
7-19.
7-20.
7-21.

COBOL/400 Program, File, and Configuration

Mapping 5-21
RPG/400 Program, File, and Configuration
Mapping 5-22
Starting a Target Program 6-3
Using the CONFIRM, FRCDTA, and

FMTNAME Keywords to Send Data 6-6
Using the ENDGRP and FMH Keywords to
SendData 6-7
TNSSYNLVL Function with Invite 6-8
Using the FAIL Keyword to Send an Error
Indication, 6-10
Using the CANCEL Keyword to Send an

Error Indication 6-11
Sending a Negative Response with Sense

Code to Remote System 6-12
Using the Respond-to-Confirm Function . . 6-13
Using the Request-to-Write Function . . . 6-14
TNSSYNLVL Function with ALWWRT . . . 6-15
Using the Allow-Write Function 6-15
Using the Cancel-Invite Function 6-16
Ending a Communications Transaction . . 6-17
Using the Release and End-of-Session

Functions 6-18
DDS Source File for a Batch Data Transfer
Program 6-20
DDS Source File for a Multiple Session

Program 6-21
Output DDS Processing Keyword Support 6-21
Input DDS Processing Keyword Support . 6-22
Keyword Processing Chart 6-23
Starting a Target Program 7-2
Evoke Parameter List 7-3

Evoke RPG/400 Output Specification 7-4
Using $$SENDNF, $$SENDNI, and $$SENDE

toSendData 7-5
Required Output Fields 7-5
Send RPG/400 Output Specification 7-6
Timer RPG/400 Output Specification 7-8
Using 3FAIL to Send an Error Signal . . . 7-9
Fail RPG/400 Output Specification ... T-10
Using $$CANL to Send an Error Indication 7-10
Cancel RPG/400 Output Specification . . . 7-11
Using $3NRSP to Send an Error Condition 7-12
Sense Data Format 7-12
Negative-Response RPG/400 Output

Specifications L. 7-13
Using $$RCD to Request Write 7-14
Request-to-Write RPG/400 Output

Specification 7-15
Using $$CNLINV to Cancel an Invite . . . 7-16
Cancel-Invite RPG/400 Output Specifications 7-17
Ending the Communications Transaction . 7-18
Detach RPG/400 Output Specification . . . 7-19
Using the Release Operation and

End-of-Session Function 7-19

7-22.

7-23.
7-24.

9-10.

10-1.
10-2.

10-3.
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.
10-10.
10-11.
10-12.
10-13.
10-14.
10-15.
10-16.
10-17.
10-18.
10-19.
10-20.
10-21.
10-22.
10-23.
10-24.
10-25.

10-26.

End-of-Session RPG/400 Output

Specification L. 7-20
System-Supplied Format Support 7-20
Mapping of System-Supplied Formats to DDS
Keywords 7-21
Sample ICF Communications Environment . 8-7
COBOL/400 Coding for a Prestart Job

Program 8-10
ILE C Function 9-1
Program Starts at Display Station 9-3
Program Devices Explicitly Acquired ... 94
Evoke Starts Target Programs 9-5
Main Menu Written to Display Station 9-6
Program Sends Inquiry Request to Remote

System 9-7
Target Program Sends a Reply 9-8
Program Ends the Session 9-9
Source Program Example — CSRCDMUL
(User-Defined Formats) 9-13
Target Program Example — CTGTDMUL
(User-Defined Formats) 9-27
COBOL/400 Statements 10-1
File Status Values for Major and Minor

Return Codes 10-1
Batch Data Transfer 10-2
Multiple-Session Inquiry 10-3

Evoke Request Starts a Target Program . 10-4
Target Program Prints Records 10-4
Source Program Prints the Received Records 10-4
Target Program Ends the Transaction . . . 10-5
Source Program Example — CSDBAT

(User-Defined Formats) 10-7
Source Program Example — CSFBAT
(System-Supplied Formats) 10-13
Target Program Example — CTDBAT
(User-Defined Formats) 10-19
Target Program Example — CTFBAT
(System-Supplied Formats) 10-23
Program Starts at Display Station 10-26
Program Devices Explicitly Acquired 10-27
Evoke Starts Target Programs 10-28
Main Menu Written to Display Station 10-29
Program Sends Inquiry Request to Remote

System 10-30
Target Program Sends a Reply 10-31
Program Ends the Session 10-32
DDS for Source Program Multiple Session

Inquiry Using CMNFIL 10-33
DDS for Source Program Multiple Session

Inquiry Using DSPFIL 10-34
Source Program Example — CSDMUL
(User-Defined Formats) 10-37
Source Program Example — CSFMUL
(System-Supplied Formats) 10-51
DDS Source for ICF File Used in Target

Program Multiple Session Inquiry 10-65
DDS Source for Database File Used in

Target Program Multiple Session Inquiry 10-65
Target Program Example — CTDMUL
(User-Defined Formats) 10-67

10-27.

11-1.
11-2.

11-3.
11-4.
11-5.
11-6.
11-7.
11-8.
11-9.

11-10.
11-11.
11-12.
11-13.
11-14.
11-15.
11-16.
11-17.
11-18.
11-19.
11-20.
11-21.
11-22.
11-23.
11-24.
11-25.

12-1.

A-1.
A-2.

B-1.

B-10.
B-11.

C-2.
C-3.
C-4.
C-5.

Target Program Example — CTFMUL
(System-Supplied Formats)
RPG/400 Statements
*STATUS Values for Major and Minor Return

Codes 11-1
Batch Data Transfer 11-2
Multiple-Session Inquiry 11-3

Evoke Request Starts a Target Program . 11-4
Target Program Prints Records 11-4
Source Program Prints the Received Records 11-4
Target Program Ends the Transaction . . . 11-5
Source Program Example — RSDBAT

(User-Defined Formats) 11-7
Source Program Example — RSFBAT
(System-Supplied Formats) 11-12
Target Program Example — RTDBAT
(User-Defined Formats) 11-18
Target Program Example — RTFBAT
(System-Supplied Formats) 11-22
Program Starts at Display Station 11-26
Program Devices Explicitly Acquired 11-27
Evoke Starts Target Programs 11-28
Main Menu Written to Display Station . 11-29
Program Sends Inquiry Request to Remote

System 11-30
Target Program Sends a Reply 11-31
Program Ends the Session 11-32
Source Program Example — RSDMUL
(User-Defined Formats) 11-38
Source Program Example — RSFMUL
(System-Supplied Formats) 11-52
DDS Source for ICF File Used by Target

Program Multiple-Session Inquiry 11-66
DDS Source for Database File Used by

Target Program Multiple Session Inquiry 11-66
Target Program Example — RTDMUL
(User-Defined Formats) 11-68
Target Program Example — RTFMUL
(System-Supplied Formats) 11-73
Spooled Trace Records 12-3
Language Operations A-1
Language Operations A-1
Processing Control DDS Keywords A-2
System-Supplied Format Support A-6

File Error Message Identifier Groups B-2

Major Code 00 B-4
Major Code 02 B-7
Major Code 03 B-10
Major Code 04 B-12
Major Codes 08-11 B-12
Major Code 34 B-12
Major Code 80 B-13
Major Code 81 B-15
Major Code 82 B-17
Major Code 83 B-20

Offset Values for ILE COBOL, and ILE RPG Cc-1

Open Feedback Area C-1
Program Device Definition List C-2
Common I/O Feedback Area C-3
File-dependent I/O Feedback Area C-4

Figures vii

D-1. EBCDIC Character Set D-1 E-7. Retrieving Files from System/36—Optional

D-2. ASCIl CharacterSet D-2 Parameters E-12
E-1. Example of File Transfer Support E-1 E-8. Retrieving a Library Member from
E-2. Transferring Files to and from an AS/400 System/36—Required Parameters E-13
System—Required Parameters E-3 E-9. Retrieving a library member from
E-3. Transferring Files to and from an AS/400 System/36—Optional Parameters E-15
System—Optional Parameters E-5 E-10. ILE C Coding for File Transfer Support . . E-16
E-4. AS/400 System Sending to E-11. COBOL/400 Coding for File Transfer Support E-23
System/36—Required Parameters E-6 E-12. RPG/400 Coding for File Transfer Support E-28
E-5. Transferring Files to and from an AS/400 E-13. CL Coding for File Transfer Support E-32
System—Optional Parameters E-9 E-14. File Transfer Messages E-34
E-6. AS/400 System Retrieving a File from
System/36—Required Parameters E-10

viii ICF Programming V4R1

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Subject to IBM's valid intellectual property or other legally protectable
rights, any functionally equivalent product, program, or service may be used instead of the IBM product, program, or service.
The evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are
the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this docu-
ment does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact the software interoperability coordinator. Such information may be available,
subject to appropriate terms and conditions, including in some cases, payment of a fee.

Address your questions to:

IBM Corporation

Software Interoperability Coordinator
3605 Highway 52 N

Rochester, MN 55901-7829 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This publication may also
refer to products that have not been announced in your country. IBM makes no commitment to make available any unan-
nounced products referred to herein. The final decision to announce any product is based on IBM's business and technical
judgment.

This publication contains examples of data and reports used in daily business operations. To illustrate them as completely as
possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious
and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an illustration. These exam-
ples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. All programs contained herein are provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

Programming Interface Information

This programming book is intended to help application programmers write communications programs that use the intersystem
communications function (ICF). It primarily contains reference information which allows the customer to write programs that
use the services of ICF. ICF contains no programming interfaces for customers.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation in the United States
or other countries or both:

© Copyright IBM Corp. 1997 4

Advanced Peer-to-Peer Networking
AnyNet

Application System/400

APPN

AS/400

C/400

CICs

COBOL/400

FORTRAN/400

IBM

ILE

Integrated Language Environment

Operating System/2
Operating System/400
0Ss/2

0S/400

RPG IV

RPG/400

SAA

Systems Application Architecture
System/370
System/390

VTAM

400

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service

marks of others.

X ICF Programming V4R1

About ICF Programming, SC41-5442

This book contains programming information for writing appli-

cation programs that use the intersystem communications
function (ICF).

For a list of publications related to this book, see the Bibli-
ography.

Who Should Use This Book

This book is intended primarily for AS/400 system and
remote system application programmers who write commu-
nications programs that use ICF.

To work with the information in this book, you should have
knowledge of general communications concepts. AS/400
communications concepts are covered in the AS/400
Advanced Series Handbook.

Before using this book, you should be familiar with the fol-
lowing information:

AS/400 system programming terminology and programming
using the ILE C, ILE COBOL, or ILE RPG languages.

© Copyright IBM Corp. 1997

Prerequisite and Related Information

For information about other AS/400 publications (except
Advanced 36), see either of the following:

e The Publications Reference book, SC41-5003, in the
AS/400 Softcopy Library.

e The AS/400 Information Directory, a unique, multimedia
interface to a searchable database that contains
descriptions of titles available from IBM or from selected
other publishers. The AS/400 Information Directory is
shipped with the OS/400 operating system at no charge.

Information Available on the World Wide
Web

More AS/400 information is available on the World Wide
Web. You can access this information from the AS/400
home page, which is at the following uniform resource locator
(URL) address:

http://www.as400.1ibm.com

Select the Information Desk, and you will be able to access a
variety of AS/400 information topics from that page.

Xi

Xii ICF Programming V4R1

Chapter 1. Introduction to AS/400 System Communications

This chapter describes, in general, the different sources and
background information needed to use intersystem commu-
nications function (ICF) communications on the IBM* AS/400
Advanced Series* (AS/400*) system. ICF is a function of the
operating system that allows a program to communicate
interactively with another program or system. Detailed
instructions are available in other books referred to in this
chapter.

Planning for Data Communications

Data communications planning should already be complete.

Installing Communications Hardware

Communications hardware, such as modems and cables,
must be installed before you can start running your pro-
grams. (The exception is intrasystem communications, which
requires no hardware installation.) However, if your hard-
ware is not yet installed, you can read this book and begin
writing your programs.

Configuring Your System for Data
Communications

The Communications Configuration book explains how to
configure for communications. Although you cannot run your
application programs until the system is properly configured,
you can read this book and begin writing your programs.

© Copyright IBM Corp. 1997

You need to configure the remote system to allow commu-
nications with the AS/400 system. The Communications
Configuration book contains configuration considerations for
some remote systems when communicating with an AS/400
system.

Writing Programs that Use the Intersystem
Communications Function (ICF)

You can write communications programs using the Integrated
Language Environment* (ILE*) C/400*, ILE COBOL*, and ILE
RPG* languages. For an explanation of the communications
application interface provided by the intersystem communica-
tions function (ICF), read Chapter 3 through Chapter 8. You
can then refer to Chapter 9 through Chapter 11 for program-
ming examples that you can use to help write and run pro-
grams on the AS/400 system.

You also need the appropriate communications programming
book for the communications type you are using (for
example, the APPC Programming book), the programming
language books for the language you plan to use, and the
DDS Reference book.

Operating Communications on the AS/400
System

To use communications on the AS/400 system, you must be
familiar with the base operating system as well as the com-
mands unique to communications. Refer to the System
Operation book and the CL Reference book for information
on the general operation of the system.

1-2 ICF Programming V4R1

Chapter 2. Communications Features

This chapter introduces the AS/400 system communications
features, including:

¢ |CF communications types

e AS/400 system communications line support
e Base operating system support

¢ High-level language support

e Additional programming support

Intersystem Communications Function
Communications Types

Communications between application programs are accom-
plished using the AS/400 system ICF and underlying support
provided by various communications types . Several com-
munications types are provided so that the AS/400 system
can communicate with remote systems having different com-
munications methods. Some of the communications
methods are:

¢ Binary synchronous communications (BSC)

e Systems Network Architecture (SNA). Examples of SNA
are:

— Systems Network Architecture upline facility (SNUF)

— Advanced program-to-program communications
(APPC)

— APPC over Transmission Control Protocol/Internet
Protocol (TCP/IP)

— Finance communications
— Retail communications
¢ Asynchronous communications
A communications type, designed for a specific remote
system, makes it unnecessary to handle most system-
dependent and protocol considerations when coding the

AS/400 system application programs. The following commu-
nications types are supported by ICF:

e Advanced program-to-program communications (APPC)
e Systems Network Architecture upline facility (SNUF)

¢ Binary synchronous communications equivalence link
(BSCEL)

¢ Asynchronous communications

¢ Intrasystem communications

e Finance communications

¢ Retail communications
An AS/400 system program uses high-level language oper-
ations and communications functions to communicate with a
remote system through ICF. A return code, made up of

major and minor return codes, informs the program of the
success or failure of each operation. You can use several of

© Copyright IBM Corp. 1997

the communications functions and return codes with any of
the communications types. You can use some functions and
return codes with only one or two communications types.
You can use a program written for use with one communica-
tions type, with little or no change, to communicate with a
different communications type. The level of change required
in the program depends on the two communications types,
the communications functions, and the return codes.

Your configuration device descriptions identify the devices on
your local system with which communications occur. Each
communications type has a corresponding configuration
device description of the same type.

AS/400 System Communications Types

The following is a description of the AS/400 system commu-
nications types supported by ICF, including a brief overview
of the remote systems and devices supported by each type.

Advanced Program-to-Program Communications
(APPC): APPC allows the system to communicate with
other IBM and non-IBM systems that support the SNA logical
unit type 6.2 (LU 6.2) architecture. Using APPC allows
system functions and application programs on the system to
communicate with other system functions or application pro-
grams on:

¢ The same system

¢ Another AS/400 system

e A System/38

e A System/36

¢ Any other system (such as CICS* with similar levels of
APPC support.

APPC allows AS/400 system application programs to start
programs on remote systems, and allows remote programs
to start programs on the AS/400 system. APPC also allows
AS/400 system application programs to start other application
programs on the local system. The networking capability of
data communications support that routes data in a network
between two or more APPC systems that do not need to be
adjacent, called Advanced Peer-to-Peer Networking*
(APPN*) support, is available through the APPC interface.

An APPC conversation cannot be used by both the
System/38 environment and the AS/400 operating environ-
ment. A diagnostic message is sent to an application
attempting to open an ICF file in the AS/400 operating envi-
ronment, to accept a conversation using Common Program-
ming Interface (CPI) Communications, or to open either a
communications file or a mixed device file in the System/38
environment for the same APPC conversation. Only one
interface can be used for any conversation.

Refer to the APPC Programming book for more information.

2-1

APPC over TCP/IP: APPC over TCP/IP allows the
system to communicate with other systems that support the
SNA logical unit type 6.2 (LU 6.2) architecture running over
TCP/IP. This support must be compliant with the Multipro-
tocol Transport Networking (MPTN) architecture, such as the
support in the IBM AnyNet* products. Refer to the Multipro-
tocol Transport Networking (MPTN) Architecture: Technical
Overview book, GC31-7073, for more information about
MPTN.

APPC programs running over TCP/IP networks should see
little or no difference than if they ran over SNA networks.
Therefore, information in this book that applies to APPC also
applies to APPC over TCP/IP (unless otherwise noted).
Some additional configuration is required for APPC over
TCP/IP. Refer to the Communications Configuration book for
information about configuring for APPC over TCP/IP.

Examples of systems that support APPC over TCP/IP
include:

e QOperating System/400* (OS/400*)
e Operating System/2* (0S/2*)
e Multiple Virtual Storage (MVS)

Systems Network Architecture Upline Facility

(SNUF): SNUF allows the system to communicate with
CICS and Information Management System (IMS) applica-
tions on other IBM systems. You can use SNUF to commu-
nicate with the following host systems:

e System/370* computer
e System/390* computer

SNUF allows AS/400 system application programs to start
programs on remote host systems, and allows programs on
remote host systems to start programs on the AS/400
system. Both interactive and batch operations are sup-
ported.

SNA 3270 Program Interface: The SNA 3270 program
interface allows an AS/400 application to communicate with a
host application by sending and receiving 3270 data streams.

Refer to the SNA Upline Facility Programming book for more
information.

Binary Synchronous Communication Equivalence
Link (BSCEL): AS/400 system BSCEL provides the fol-
lowing:

¢ Distributed data processing support to the AS/400

system users who want to communicate with another
system or device at a remote location using BSC.

e Online and batch communications between application
programs on different systems (such as System/38)
using BSC.

2-2 ICF Programming V4R1

e Communications with another AS/400 system,
System/36, or System/34 using BSCEL.

e Communications with another AS/400 system,
System/36, or System/34, with RPG Il support for tele-
communications.

BSCEL allows AS/400 system applications to start programs
on remote systems that support BSCEL, and allows remote
programs to start programs on the AS/400 system.

Refer to the BSC Equivalence Link Programming book for
more information.

Asynchronous Communications: Asynchronous com-
munications is a method of communications supported by the
operating system that allows an exchange of data with a
remote device, using either a start-stop line or an X.25 line.
The system can use asynchronous communications support
to communicate with another asynchronous communications
location or with a packet assembler/disassembler (PAD) that
gives the system access to an X.25 packet-switching data
network (PSDN). The system can use X.25 support to com-
municate directly through an X.25 network, or to emulate a
PAD using the International Telegraph and Telephone
Consultative Committee (CCITT) recommendations X.3,
X.28, and X.29.

The system can use the AS/400 system asynchronous com-
munications support to communicate with:

e Another AS/400 system
e A System/36
¢ Asynchronous devices

Asynchronous communications support allows AS/400
system application programs to start programs on remote
systems, and allows remote programs to start programs on
the AS/400 system.

Refer to the Asynchronous Communications Programming
book for more information.

Intrasystem Communications: Intrasystem commu-
nications allows communication between two application pro-
grams on the same AS/400 system. A source program can
acquire more than one session for a given device
description, and can have more than one transaction at the
same time. However, a source program cannot have a
transaction with two different programs on the same session.

Note: Intrasystem communications does not support the
concept of a remote system or a remote program. When
these terms are used in this book with regard to intrasystem
communications, they refer to the program with which your
program is communicating.

Refer to the Intrasystem Communications Programming book
for more information.

Finance Communications: Finance communications
allows you to attach 3601, 3694, 4701, 4702, 4730, 4731,
4732, 4736, 4737, and Financial Branch System Services
(FBSS) controllers to your AS/400 system using synchro-
nous data link control (SDLC) . SDLC is a form of commu-
nications line control that uses commands to control the
transfer of data over a communications line. You can also
attach the 4701, 4702, 4737, and Financial Branch System
Services controllers using X.25.

Note: 4737 self-service transaction station controllers are
configured as FBSS controllers.

In addition, you can attach controllers configured as FBSS
controllers using a token-ring or Ethernet local area network
(LAN). Since these controllers do not support Ethernet net-
works, you must use an 8209 bridge when you use an
Ethernet configuration on the AS/400 system.

While programs using ICF can communicate with any of the
finance controllers, programs that do not use ICF can com-
municate only with controllers configured as a 3694, 4701,
and 4702 on the AS/400 system.

Refer to the Finance Communications Programming book for
more information.

Retail Communications: Retail communications allows
you to attach retail controllers (3651, 3684, 4680, 4681,
4684, and 4692) to the AS/400 system using the SDLC pro-
tocol. X.25 is supported for a 4684 controller, provided it has
Retail Industry Programming Support Services (RIPSS) 3.01,
a program that provides access to the application files on the
4684 controller.

Note: The 4681 controller is the double-byte character set
(DBCS) equivalent of the 4680 controller, and the 4692 is the
DBCS equivalent of the 4684 controller. In addition, retail
communications allows the AS/400 system to act as an in-
store processor in the retail environment.

You can use the AS/400 system in several different retail
environments:

¢ Retail in-store processor environment

You can have a host system such as a System/370 at a
remote site with several retail controllers and terminals in
your store. The AS/400 system can be installed in your

store as an in-store processor to coordinate communica-
tions between the host and the retail controllers.

¢ Retail host processor environment
The AS/400 system can also function as a host system
to several retail controllers.

Refer to the Retail Communications Programming book for
more information.

Non-Intersystem Communications
Function Communications

You can also run non-ICF communications on the AS/400
system, such as the following:

e 3270 device emulation and 3270 BSC application
program interface

¢ Remote job entry (RJE)
¢ Finance communications

e Transmission Control Protocol/Internet Protocol pro-
grams (TCP/IP)

e Common Programming Interface (CPI) Communications
e User-defined communications

e Sockets

Because these communications functions are not part of ICF,
they are described in other books, which are identified in the
list of related books in the Bibliography. Refer also to the
Publications Reference book.

Communicating with Remote Work
Stations

No communications programming is required to communicate
with remote work stations. The necessary communications
programs are provided by the system based on the informa-
tion provided when the remote work station is configured.
The program interface for remote work stations is the same
as the program interface for local work stations. Refer to the
Application Display Programming book for information on the
application interface to remote work stations.

Combinations of Communications Types

You can configure multiple communications device
descriptions in the AS/400 system. Multiple communica-
tions configurations , or the physical placement of commu-
nications controllers, the attachment of communications lines,
and so on, can be active at the same time. All active config-
urations do not have to be of the same type. The number of
configurations that can be active is determined by the
number of communications lines available, and whether any
lines are being shared by SNA-type communications. A con-
figuration becomes active when you vary on the configura-
tion, as described in “Varying on Communications
Configurations” on page 3-3.

AS/400 System Communications Line
Support

The AS/400 system supports the following telecommunication
lines (all the lines do not have to be the same):

e Switched point-to-point (manual or automatic answer,
manual or automatic call)

Chapter 2. Communications Features 2-3

¢ Nonswitched point-to-point
¢ Nonswitched multipoint
¢ |IBM Token-Ring Local Area Network
¢ X.25 network
¢ Ethernet network
¢ Frame Relay
e IDLC
e DDI
e Wireless
Each ICF communications type (except intrasystem commu-

nications) requires at least one communications line to com-
municate with a remote system.

Operating System/400

Following is a description of the Operating System/400
(0S/400) support provided for AS/400 system communica-
tions.

Communications Configuration

Before you can use communications on the AS/400 system,
you must define the environment through the communica-
tions configuration function. This support allows you to
create, change, display, and delete the communications
network interface, network server, line, controller, and device
descriptions.

APPC/APPN support requires mode descriptions and class-
of-service descriptions. The configuration support provides
this function.

An integrated services digital network (ISDN) , which is a
network that can provide voice, data, and image over the
same communications line, requires network interface
descriptions and connection lists. The configuration support
provides this function.

A File Server 1/0 Processor (FSIOP) , which is an
input/output processor (IOP) that serves files, requires a
network server description.

Refer to the Communications Configuration book for more
information on communications configuration. APPN support
provides the ability to communicate with a remote system
without having to manually configure the remote system.
Refer to the APPN Support book for more information.

2-4 ICF Programming V4R1

Intersystem Communications Function File

The ICF file is used to send and receive data between two
application programs, and to describe how to present that
data. The ICF file contains the file description identifying the
record formats used by the communications application
program.

The ICF file allows you to define a single file and the
program devices used by that file. An ICF file supports any
combination of program devices for all the supported commu-
nications types. The application program can then write data
to or receive data from any of the program devices defined in
the file.

Refer to Chapter 4 for information on creating and using the
ICF file.

Data Description Specifications (DDS)

DDS defines the format of the data and the characteristics of
the operation used on the data. This information is specified
as part of the ICF file, the display file, and the printer file.

Certain DDS functions are unique to communications. These
functions are described in Chapter 6. (For general informa-
tion on coding DDS, refer to the DDS Reference book.)

System-Supplied Formats

System-supplied formats that provide functions similar to
those accomplished by using DDS keywords are provided as
part of the ICF support, and can be used to do specific com-
munications functions. Refer to Chapter 7 for more informa-
tion about system-supplied formats.

Control Language

With control language (CL) commands, you can create,
change, display, and delete the various communications con-
figurations. A menu interface is also provided to assist you
in this function.

ICF file commands are provided that allow you to create,
change, and override the file descriptions. Commands are
also provided that allow you to add, change, remove or over-
ride device entries for the file. Chapter 4 describes the file
commands and their use.

You cannot use CL commands to do ICF communications
functions.

For more information on the CL commands for configuring
communications, refer to the Communications Configuration
book.

Security

The security provided on the AS/400 system controls who
can use communications device descriptions, and the com-
mands that are used with the device descriptions. Security
on both the local and remote systems must be considered in
writing and running applications.

See the Security — Reference book for general system secu-
rity information and Chapter 8 for communications-specific
security considerations.

Error Handling

Major and minor return codes are provided to the application
program so that error conditions can be properly handled.
Applications written in the ILE C, ILE COBOL, and ILE RPG
programming languages can access the return codes to help
diagnose problems. In addition, messages are entered in the
job log to identify the error that occurred. The ILE COBOL
and ILE RPG programming languages provide language-
defined file status that can be used either in place of, or in
addition to, the major and minor return code. The ILE C pro-
gramming language does not have file status values.

You can recover from many communications errors with little
or no operator involvement. You may be able to reestablish
the session or close and reopen the file to accomplish

recovery within the user program. The Communications
Management book describes line errors.
Appendix B discusses program error recovery.

High-Level Language Support

You can use AS/400 system communications support to write
application programs in the supported high-level languages.

The ILE C, ILE COBOL, and ILE RPG programming lan-
guages support the ICF interface. Chapter 9 through
Chapter 11 provide program examples written in the ILE C,
COBOL/400, and RPG/400 languages.

The programs presented in this book serve as examples
only. They are used to show concepts and techniques and
may not represent the most efficient programming methods.

Additional Programming Support

Support is also provided in addition to the ICF interface to
allow the application program to send or retrieve database
file members from one system to another. This support is
provided by file transfer support (FTS).

Appendix E describes this support.

Chapter 2. Communications Features 2-5

2-6 ICF Programming V4R1

Chapter 3. Introduction to Intersystem Communications Function

ICF allows program-to-program communications between the 3. Not all communications types require all the operations
AS/400 system and other systems. It also provides program- shown in this chapter. Refer to the appropriate commu-
to-device communications between the AS/400 system and nications programming book for the communications
hardware devices. type you are using for information about a specific com-

munications type.
This chapter provides an introduction to:
In Figure 3-1, an application program on the local AS/400
system (local program) sends data to an application program
on a remote AS/400 system (remote program) and then
receives data.

¢ How ICF works

¢ Some of the terms used to describe ICF

e Configuring for and starting communications
¢ Defining your ICF file

* How to write a program to use ICF Either program can send data first. You must determine

which system is to send data first before you write a

Notes: program, so you know which operations to do first. Use ICF

1. The two examples shown in this chapter allow two communications functions and high-level language operations
AS/400 systems to communicate with each other. One to handle communications within an application program.
program is started by the local AS/400 system operator; The ICF functions are described in Chapter 6 and
this program then starts the program on the remote Chapter 7. The language operations you use are the same
AS/400 system. operations you use when your program is not using ICF.

2. Although communications types in these examples are Although these operations are summarized in Chapter 9
advanced program_to_program communications (APPC) through Chapter 11, they are not fU”y described in this book.
and binary synchronous communications equivalence Refer to the appropriate language reference book for more
link (BSCEL), the examples provide a general under- information.

standing of how to write a program that uses any com-
munications type under ICF.

Local Remote
AS/400 System AS/400 System
Local Remote
Application Application
Program Program
Send Receive Send Receive
| 4 |
I } Data Link { ¢ I
—

Data Flow
RSLS106-3

Figure 3-1. Sending Data from a Local Program to a Remote Program

© Copyright IBM Corp. 1997 3-1

Local

AS/400 System

Local
Application

Program

Data

Send Receive
i i
VA { v
ICF

Data

Management

] AN

Communications
Support

Data Link

Remote

AS/400 System

Remote
Application

Program

Data

Send Receive
i i
vy v
ICF

Data

Management

M AN

\Y U

Communications
Support

AN

a

R—

)

Sl

Figure 3-2. Major Parts of ICF Data Management

Figure 3-2 shows the major parts of ICF. The local applica-
tion program is the program you write to allow your system
to communicate with a remote system. ICF data manage-
ment handles the communications functions and data from
your program. The underlying support provided by the com-
munications type handles the communications protocol
needed to connect your AS/400 system to the remote
system.

ICF data management supports several communications
types. Use the communications type that enables you to
communicate with your remote system. Refer to Chapter 2
for a list of the communications types and for an overview of
the remote systems they support. See the appropriate com-
munications programming book for a complete description of
the remote systems supported by a specific communications

type.

Hardware and system-supplied programs handle sending and
receiving data on the communications line. Since you do not
need to know about these system programs to write an appli-
cation program using ICF, these programs and hardware are
not described in this book.

3-2 ICF Programming V4R1

RSLS107-3

Configuring for Communications

Before communications can occur between two systems,
both systems must be configured. You must configure your
system to define the appropriate communications hardware
and characteristics before you can use your programs. The
AS/400 system communications configuration support allows
you to create, change, delete, display, and print the following
configuration objects:

¢ Line descriptions

e Controller descriptions

¢ Device descriptions

¢ Mode descriptions

¢ Class-of-service descriptions
¢ Network interface descriptions
¢ Network server descriptions

¢ Connection lists

e Configuration lists

Not all of the listed configurations are used by all the com-
munications types.

Part of the connection between the application and configura-
tion is through the remote location name that is defined as
part of the device description. Refer to “The Intersystem
Communications Function File” for more information on how
this connection is made.

If programs on your system can be started from a remote
system, you can define the distribution of work across your
subsystems. The AS/400 system considers the communica-
tions device to be another source of work for a subsystem.
Therefore, you must define a communications entry within
the subsystem description to identify the communications
devices for which work can be received by the subsystem.

Default communications entries are shipped with the system.
However, you can change these entries with the Add,
Change, and Remove Communications Entry (ADDCMNE,
CHGCMNE, and RMVCMNE) commands. Refer to the Com-
munications Management book for more information on using
these commands. Refer to the Work Management book for
information on subsystems and communications entries.

Varying on Communications
Configurations

You must vary on the particular communications configura-
tions you want to use before running your communications
applications. (The configurations must already be defined.)
The Vary Configuration (VRYCFG) command is used to vary
on the appropriate network interface, line, controller, network
server, and device descriptions.

Note: You can specify that the configurations be automat-
ically varied on at IPL when you create your configurations.

The VRYCFG command does the following:

¢ Ensures compatibility between the configuration and the
communications hardware

¢ Determines whether the requested data link is available

e Establishes a physical connection with the remote
system

Note: For SNA configurations, SNA communications
may be established with the remote system, depending
on the line type (switched or nonswitched) and the con-
figuration parameters you have chosen.

The VRYCFG command prepares only the local end of the
link to communicate with the remote system. You must also
prepare the remote system. Communication can begin when
you have prepared both ends and have established a phys-
ical connection between the two. For APPC communica-
tions, a mode must be started before you establish a
session. Generally, the mode starts automatically when the
device is varied on or when a request to establish a session
is received. You can also use the Start Mode (STRMOD)
command to start a mode.

Refer to the Communications Management book for more
information on the VRYCFG command on starting modes.

The Intersystem Communications Function
File

An ICF device file defines the layout of the data sent and
received between two application programs and links you to
the configuration objects that you will use to communicate
with the remote system. You identify and use this file in your
high-level language application.

Defining the File

The following commands are used to define the file:

¢ The Create Intersystem Communications Function File
(CRTICFF) command is used to create the ICF file.

Note: If you use system-supplied formats (described in
Chapter 7), IBM supplies a file called QICDMF for your
use and you do not need to do this step.

e The Add Intersystem Communications Function Device
Entry (ADDICFDEVE) or Override Intersystem Commu-
nications Function Device Entry (OVRICFDEVE)
command is used to define a program device entry.

This program device entry is that part of the file that pro-
vides the connection to the configuration objects that you
will use to communicate with the remote system.

Using the File

An application program uses the file as follows:

e A program communicates through a program device
name. The program device name used in the applica-
tion maps you to the program device entry in the ICF file
that contains the same program device name.

¢ The program device entry also contains a remote
location name. This remote location name (specified as
part of the device description) provides the final step in
completing the link between the application and the
device description.

Refer to Chapter 4 for more information on creating the ICF
file and on defining program device entries to the ICF file.
Also refer to Chapter 4 for more information on the remote
location name.

Figure 3-3 on page 3-4 shows the relationship between the
program, the ICF file, and the communications configura-
tions.

Not all of the communications types require that all of these
configurations be explicitly created. Also note that the
network interface description is only required when communi-
cating across an ISDN.

Chapter 3. Introduction to Intersystem Communications Function 3-3

Application Program

Program Device
Name

ICF File

Program Device Entry

Program Device
Name

Device Description

Remote Location
Name >

Remote Location Name

Controller Description

Line Description

Network Interface
Description (ISDN only)

Figure 3-3. ICF File-Configuration Relationship

RSLS680-2

Starting Your Program

Your application program can be started by an operator at
your system, or by a request from the remote system.

A remote system starts an application program on your local
AS/400 system by sending a special record, called a
program start request , to your system. Refer to “Starting a
Program on the Remote System” on page 3-6 for more infor-
mation about the program start request. Refer to the appro-
priate communications programming book for the
communications type you are using for a description of this
special record.

Opening the Intersystem Communications
Function File

Before communications can occur, your program must open

an ICF file (previously created with the CRTICFF command).
All communications functions are issued through the ICF file.

3-4 ICF Programming V4R1

Starting Communications with the Remote
System

Before your local program can communicate with the remote
system, you must establish a communications session . A
communications session is a logical connection between two
systems through which a local program can communicate
with a program at a remote location. A communications
session is established with an acquire operation and is
ended with a release operation or end-of-session function.

In Figure 3-4 on page 3-5, your program establishes a
session using an acquire operation with PGMDEVA specified
as the program device name.

The program device name specified on an acquire operation
must correspond to a program device entry in the ICF file
with the same program device name. The remote location
name associated with that program device entry identifies the
remote system with which the session is to be established.

The program device entry is defined with the ADDICFDEVE

or OVRICFDEVE command. The PGMDEV parameter spec-
ifies the program device name. The RMTLOCNAME param-
eter specifies the remote location name. The remote location

name (also specified as part of the device description) pro-
vides the link between the program device entry and the
device description.

Local
AS/400 System

Local
Program

Acquire
PGMDEVA

—— Return
Code

’ |]

Data
Management

v i

Communications
Support

Remote
AS/400 System

ICF
Data
Management

Communications
Support

Data Link

Figure 3-4. Establishing a Session

The following is an example of how a control language
program and a high-level language application program are
used to acquire a program device. You can use either the
ADDICFDEVE or OVRICFDEVE command. This example
uses the ADDICFDEVE command.

RSLS110-5

YOURCL

ADDICFDEVE FILE(ICFFILE) PGMDEV(PGMDEVA) RMTLOCNAME (CHICAGO)
I

| Identifies the remote
| Tocation with which

| your program will

| communicate.

Identifies the name known
by the program (PGMDEVA).

Identifies the ICF file
to which the definition is added.

CALL YOURPROG

YOURPROG

OPEN ICFFILE

ACQUIRE PGMDEVA

Note: You can use other parameters with the
ADDICFDEVE and OVRICFDEVE commands to define attri-
butes, such as format selection (FMTSLT), to be used during
this session. See Chapter 4 for more information about the

3-5

Chapter 3. Introduction to Intersystem Communications Function

ADDICFDEVE and OVRICFDEVE commands and their
parameters.

When the program issues an acquire operation, ICF data
management returns a return code to your program indi-
cating whether it can communicate (whether a session is
established) with the remote system at this time. If commu-
nications cannot be established, the return code tells your

program why communications failed. See Appendix B for
more information about return codes.

Your program cannot send or receive data until the acquire
operation succeeds. Therefore, your program must check
the return code. In our example, the return code indicates
that communications was started. Therefore, a communica-
tions session exists between the local AS/400 system and
the remote AS/400 system, as shown in Figure 3-5.

Local Remote
AS/400 System AS/400 System
Local
Program
AN
‘ \Communications
Session
ICF ICF
Data Data
Management Management
Y
Communications Communications
Support < Support
>
Data Link

Figure 3-5. Communications Session Established

The acquire can be done automatically as a part of the open
file operation by specifying the desired program device name
(in this example PGMDEVA) on the ACQPGMDEYV param-
eter of the CRTICFF command. Refer to Chapter 4 for more
information.

Even though the session has been started, the application
program at the remote system has not yet started. “Starting
a Program on the Remote System” describes how an appli-
cation program is started at the remote system.

Starting a Program on the Remote System

Your program must specify and start the program at the
remote system with which it will communicate. After this
remote program has been started, a communications trans-
action has been started. A communications transaction is a
logical connection between two programs on a session. A
communications transaction is started by an evoke function

3-6 ICF Programming V4R1

RSLS111-4

and is ended by a detach function. After the communications
transaction starts, data can be exchanged between the two
programs.

Use the evoke function with the necessary parameters to
send the name of the program that you want started at the
remote system. These parameters include the program
name (from either a high-level language program or a control
language program), the remote system library where the
program is stored, and security information (when required).
When your program issues a write operation with the evoke
function specified, a program start request is sent to the
remote system.

The program that issues the evoke function is the source
program . The program started on the remote system is the
target program . In this example, the local program is the
source program (it issued the evoke), and the remote
program is the target program.

In Figure 3-6 on page 3-7, the evoke function is used to
start the program named TGTPGM at the remote system.

Local
AS/400 System

Remote
AS/400 System

Source Target
Program Program
Evoke
TGTPGM o TGTPGM
Communications
A | 4 | __—— Transaction \ N
/I/I<\ Return
v | Code
ICF ICF
Data Data
Management Management
] A 3
Program
Start
7 7 | Request %
Communications L—Z-b =/ Communications
Support « Support
>

Data Link

Figure 3-6. Program Started at Remote System by Evoke Function

A return code is always given to your program to indicate the
status of the evoke function unless the program start request
is delayed by use of the DFREVOKE keyword. In

Figure 3-6, the return code tells your program that the evoke
request was accepted and a program start request was sent
to the remote system. If the program start request succeeds,
the remote system program and the communications trans-
action start.

Your program can also send program initialization parame-
ters with the evoke function. If the remote system is an
AS/400 system, the target program can access any parame-
ters specified with the evoke as if they were parameters
passed on a call command.

The type of evoke function you use depends on the commu-
nications type you use and on the type of remote system
with which you communicate. For more information about
the evoke functions, refer to Chapter 6, Chapter 7, and to
the appropriate communications programming book for the
communications type you are using.

RSLS112-4

Connecting to the Session — Target
Program

Before a target program can send or receive data, it must
first be associated with the session in which the program
start request was received. This association is established
by opening an ICF file and acquiring a program device asso-
ciated with a special remote location name of *REQUESTER.

A remote location name of *REQUESTER specifies that:

e The remote location used is the remote location speci-
fied in the device description that received the program
start request.

e There is no specific remote location assigned to the
program device by the ADDICFDEVE or the
OVRICFDEVE command.

Any program device name defined in a program device entry
with a remote location name of *REQUESTER is referred to
as a requesting program device

The target program identifies the requesting program device
in the same way that the source program does. The target
program specifies, on an acquire operation, the same
program device name as the name specified on the
PGMDEYV parameter on the ADDICFDEVE or the
OVRICFDEVE command.

Chapter 3. Introduction to Intersystem Communications Function 3-7

Application Program

Program Device Name

(Requesting Program
Device)

ICF File

Program Device Entry

Program Device

Name

Device Description

Remote Location
Name --————-—-—-—--—- I Tt >
(*REQUESTER)

Remote Location Name

Controller Description

Line Description

Figure 3-7. Requesting Program Device Relationship

Figure 3-7 on page 3-8 shows the relationship between the
program, the ICF file, and the communications configurations
for a requesting program device.

Note: The device description that receives the program start
request is the device description that is selected when the
acquire operation is issued to the requesting program device.

When the target program issues an acquire operation to the
requesting program device, a new session does not start.
The acquire only establishes a logical connection between
the target program and the session and transaction that were
started by the source program.

The remote program cannot send or receive data until the
acquire operation is successful.

The following shows how a control language program and
high-level language application program can be used to
acquire a requesting program device.

3-8 ICF Programming V4R1

RSLS681-1

TGTCLPGM

OVRICFDEVE PGMDEV(PGMDEVB) ~ RMTLOCNAME (*REQUESTER)

|
| Identifies that you want to
| communicate with the device
| description that receives the
| program start request.

Identifies the name known
by the program (PGMDEVB).
CALL TGTPGM

TGTPGM

OPEN ICFFILE

ACQUIRE PGMDEVB

Note: The target program started as a result of a program
start request can be a high-level language program or a
control language (CL) program. In this example, the CL
program containing the OVRICFDEVE command and the call
statement is the program that is started as a result of the
program start request. The CL program calls the high-level
language program. In Figure 3-8 on page 3-9, the target
program establishes a logical connection to the session and
transaction (started by the source program) by acquiring the

requesting program device named PGMDEVB (as assigned
by the ADDICFDEVE or OVRICFDEVE command).

Local
AS/400 System
Source
Program
A
ICF
Data
Management
Vv
Communications
Support <
Data Link

Remote
AS/400 System
Target
Program
Acquire
PGMDEVB
| %
| I\ Return
v L Code
ICF
Data
Management
i i
|
Communications
Support
>

RSLS659-4

Figure 3-8. Establishing a Logical Connection between the Target Program and the Session

The acquire can be done automatically as part of the open
file operation, by specifying the requesting program device
name (in this example, PGMDEVB) on the ACQPGMDEV
parameter of the CRTICFF command. Refer to Chapter 4
for more information.

Sending and Receiving Data

In Figure 3-9 on page 3-10, the source program sends data
first. To obtain that data, the target program must issue a
receive request as the first operation following the acquire.

You use the same program device name specified on the
acquire operation on each send and receive request. In the

example, the source program uses the program device name
PGMDEVA and the target program uses PGMDEVB.

Again, the source program gets a return code indicating the
status of the send request. Since the remote system in this
example is an AS/400 system, the target program is also
given a return code indicating the status of the receive
request.

3-9

Chapter 3. Introduction to Intersystem Communications Function

Local
AS/400 System

Remote
AS/400 System

Figure 3-9. Data Sent by a Send Request

Source Target
Program Program
Send Receive
PGMDEVA PGMDEVB
A I AN 4
—__ Return \\Return
v | Code v i Code
ICF ICF
Data Data
Management Management
vy vy
Communications Communications
Support < Support
Data Link

Ending Communications with the Remote
System

You must end both the communications transaction and the
communications session to end communications with the
remote system. You can end the communications session in
one of the following two ways:

¢ Explicitly by the program, as shown in Figure 3-10 on
page 3-11 and Figure 3-11 on page 3-12

¢ Implicitly ending all sessions and transactions associated
with the source program by a close of the ICF file

The transaction and session can be ended by either the
source or target program.

Ending the Transaction

The sending and receiving of data continues until one of the
two programs ends the communications transaction (either
the source or target program can end the transaction). The
detach function is used to tell the remote program that your
program has no more data to send and has ended the com-
munications transaction.

3-10 ICF Programming V4R1

RSLS113-5

Figure 3-10 on page 3-11 shows the source program issuing
a detach function to end the communication transaction.

In this example, the target program is given a return code
indicating that the transaction has ended. The target
program can continue or end processing, but it can no longer
communicate with the source program. However, the target
program must end the logical connection to the session by
ending the session.

The communications session still exists for the source
program. The source program can start another program at
the remote system and another transaction, or it can end the
communications session and stop communicating with the
remote system.

If a target program issues the detach, its logical connection
to the session as well as the transaction is ended.

Local
AS/400 System

Remote
AS/400 System

Source
Program

Detach the
Transaction

I -

S

v 1

Return
Code

ICF
Data
Management
I Detach the
vV 1 Transaction
Communications _‘_’
Support <

Target
Program
Receive
AN | 4
| Return Code
—— | (transaction
ended)
|
ICF
Data
Management
4 I I

) VR i
— Communications

Support

Data Link

Figure 3-10. Ending a Communications Transaction: Detach Function

Ending the Session

When a session is no longer needed, it should be ended. A
source program ends the session by issuing a release opera-
tion or end-of-session function. However, a target program
must also sever the connection to the session by issuing a
release operation or end-of-session function.

Figure 3-11 on page 3-12 shows the source program using
the release operation and the target program using an end-
of-session function to end the session.

When the source program issues the release operation, ICF
data management tries to end the session. If the commu-
nications transaction has ended, the session ends and the
source program receives a return code indicating that the
session has ended.

If the session cannot be ended, the source program receives
a return code indicating that the release operation was not
successful. (For example, the transaction may not have

Chapter 3. Introduction to Intersystem Communications Function

RSLS114-7

ended.) If your program cannot recover from the error, you
can use the end-of-session function to force the session to
end. The end-of-session function always ends the session.

If you issue an end-of-session, you may not be able to deter-
mine:

e |f the transaction has ended normally

e |f all the data has been sent or received

Note: When you use the end-of-session function, your
program must make sure all data is received.

The program at the remote system may (depending on the
communications type) receive a return code indicating that
the session did not end normally.

After ending the transaction and session, a source program
can start another session and transaction, continue local pro-
cessing, or end.

A target program can continue local processing or end after
ending a session.

3-11

Local
AS/400 System
Source
Program
Release
A I
/Return
I I_/ Code
ICF
Data
Management
vV |
Communications Data Link
Support <

Remote
AS/400 System

Target
Program
End the
Session
L 4
Return
[~ Code
v | |
ICF
Data
Management
R / i
Communications
Support

RSLS115-4

Figure 3-11. Ending a Session: Release Operation and End-of-Session Function

Closing the Intersystem Communications
Function File

Your program should close the ICF file when you are done
processing. Closing the ICF file also implicitly ends any
active transactions or sessions for the program.

Varying off Communications
Configurations

When you no longer need a communications configuration,
you can use the Vary Configuration (VRYCFG) command to
vary off the configurations you previously varied on.

If you are using an APPC device, you can end any active
modes with the End Mode (ENDMOD) command before you
use the VRYCFG command. If you do not use the ENDMOD
command, any active modes associated with the device are
ended automatically as part of the VRYCFG.

3-12 ICF Programming V4R1

Refer to the Communications Management book for informa-

tion on the VRYCFG and ENDMOD commands.

Additional Information on Sessions and
Transactions

The information presented in this chapter has only described
the flow of two programs using a single session and trans-
action to communicate with each other.

The following sections describe variations of sessions and
transactions.
Multiple Transactions

Figure 3-12 on page 3-13 shows how a source program on
a single session can start and end multiple transactions.
Only one transaction can be active on a session at a time.

Session

Started

(2 send
n/—~ Receive <

Program A

and

Session

Continue

ﬂ/’/’% Receive «

B /l—/{ Detach

Session

Ends and Release or EOS >
Program A Close
Ends

Local

AS/400 System

Source Program A

Open

(start a session)

Remote

AS/400 System

Acquire

(start a transaction)

Evoke

Target Program B

Program B Starts
Open
Acquire

Receive

Sena a8

(end the transaction)

Detach

(start a transaction)

Evoke

» Receive
Release

Close

Program B Ends

Target Program C

Program C Starts
Open

Acquire

Receive

Send

(end the transaction)

Send

. 7|
. /

(start a transaction)

Evoke

Detach
Release

Close

Program C Ends

Target Program B

Program B Starts
Open

Acquire

Send

Receive

Receive

(end the transaction)

Send

(end the session)

Figure 3-12. Starting and Ending Sessions and Transactions

Program A, on the local AS/400 system, opens the ICF
file and then issues an acquire operation to start a
session with the remote AS/400 system.

Program A issues the evoke function, which starts the
communications transaction, to start Program B on the
remote AS/400 system.

Program B must open the ICF file on the remote
AS/400 system and issue an acquire operation for the
requesting program device to establish a logical con-
nection to the session and transaction.

Programs A and B exchange data. Program A ends
the transaction. Program B can end (as shown) or
continue processing. Program B cannot, however,
communicate with the local AS/400 system.

Program B releases the session it previously acquired
and closes the ICF file.

Program A starts a transaction with Program C on the
remote AS/400 system and exchanges data.

Receive
Release

Close

Program B Ends

RSLS116-4

Program C on the remote AS/400 system ends the
transaction. (Either program can end the communica-
tions transaction.) Program C releases the session
and closes the ICF file.

Program A starts and ends another transaction with
Program B. Program A then releases the session with
the remote AS/400 system, and closes the file on the
local AS/400 system.

Multiple Sessions

A program can communicate over multiple sessions to the
same system or different systems, and can have all the ses-
sions at the same time. When a program is communicating
over multiple sessions, it can be both a target and a source
program, but it cannot be both on the same session.

A program started by a program start request is the target
program for that session. However, this program can also

Chapter 3. Introduction to Intersystem Communications Function 3-13

become a source program by establishing a session with
another remote system. Figure 3-13 on page 3-14 shows
how a target program can start a session and a transaction.

file and then issues an acquire operation to start a
session with the remote AS/400 system.

Program A, on the local AS/400 system, opens the ICF

Program A uses the evoke function to start Program B

on the remote AS/400 system-I, which starts a commu-

nications transaction.

Program B must open the ICF file and issue an acquire

operation for the requesting program device to estab-
lish a logical connection with the session and trans-

action.

Local
AS/400 System

Remote
AS/400 System-I

Source
Program A

Open
Acquire

0

(start a session)

Target/Source

Session Program B
Started (start a transaction)
Evoke >
B over
Acquire
Send » Receive
n// Receive * Send

5 i

A

A

{

[Acquire

Evoke

Send

Receive

Programs A and B can exchange data.

Program B issues an acquire operation to start a
session with the remote AS/400 system-II.

Program B uses the evoke function to start Program C
on the remote AS/400 system-Il, which starts a com-
munications transaction.

Program C must open the ICF file and issue an acquire
operation for the requesting program device to estab-
lish a logical connection.

Programs B and C can exchange data.

Remote
AS/400 System-II

Target

Program C

Open

> Acquire}/

Receive

Figure 3-13. Remotely Started Program Starts a Session and Transaction

Summary

The major tasks you do to use ICF for a source program and

a target program are explained in the following sections.

Source Program

Figure 3-14 on page 3-15 shows the sequence of events

your AS/400 system application program follows when it
starts a session with the remote system.

EH You must vary on the communications configurations

before programs can use them to communicate wi

th a

remote system. Use the VRYCFG command to vary

3-14 ICF Programming V4R1

4]

Send

RSLS660-5

on the configurations. You can do the VRYCFG either
within the application CL or interactively.

You must start the AS/400 system application program
(source program) that communicates with the program
at the remote system.

The application program must open an ICF file.

The AS/400 system program must start a session with
the remote system before communications can begin.
Your program starts a session when it issues an
acquire operation.

When your program starts (establishes) the session
with an acquire operation, an ADDICFDEVE or

AS/400 System

Remote System

ICF

n VRYCEG ——)

(activate the

configuration)

E Source Program

n Open ICF File =mm———)

Data Link

g A——

I

I
n Acquire P (start a session)

B Evoke » Start the target program

(transaction)

(send and/or receive data)

Target Program

» (Acquire *Requester)

Send/Receive :

(end the transaction)

B 1

: Send/Receive

the remote system)

Close ICF File =)

The source program can
end, start another
session, and/or continue

local processing.

m VRYCFG)

(deactivate the

Detach 4 >
(either program can end
the transaction)

Release __* (ends the session with

configuration)

Detach

The target program
can end or continue

local processing.

RSLS102-4

Figure 3-14. The AS/400 System Application Starts a Session with a Remote System

OVRICFDEVE command specifies the program device
name and the remote location name (identifying the
remote system) associated with the session.

Note: The acquire can be done implicitly as part of
the open operation.

Within each session, you can start (evoke) transactions
to allow your program to communicate with target pro-
grams. A transaction starts when your program uses
the evoke function to start a specified target program.

Within each transaction, data can be sent and received
between the source program and the target.

Either program can end the transaction when all data
has been sent or received. Your program uses the
detach function to end the transaction. When the

Chapter 3. Introduction to Intersystem Communications Function

9]

remote system ends the transaction, your program
receives a return code indicating that the transaction
has ended. If a target program issues the detach, the
logical connection to the session is ended implicitly by
the detach (a release operation is not needed).

When all transactions have ended, your program
should end the session. Your program can end the
session by using the release operation or the end-of-
session function.

Your program must close the ICF file.

Use the VRYCFG command to vary off the commu-
nications configurations when they are no longer
needed. You can use the VRYCFG command either
within the application CL or interactively.

3-15

AS/400 System

ICF

H vrycrc
(vary on the
configuration)

Program 4

Target Program
Open ICF File ———b

Acquire —)>

(start a program)

gy A—

Remote System

Source Program

Data Link

Remote Program

Session and transaction
are started when the
program start request
is received.

Establish connection
with the session
and transaction.

(send and/or receive data)

Start Request

Send/Receive «

(end the transaction)

» Send/Receive

Detach <«

[~

Close ICF File m———p

This program can
end or continue
local processing.

VRYCFG —

(vary off the

Either program can end
the transaction. When the
transaction ends, the
session also ends for the
AS/400 System application
program.

configuration)

Figure 3-15. Remote System Starts a Session with a Program Start Request

Target Program

Figure 3-15 shows the sequence

of events that occurs when

the remote system starts the session by sending a program

start request.

You must vary on the communications configurations

before programs can use them to communicate with a
remote system. Use the VRYCFG command to vary

on the configurations.

Note: Before your system

can process incoming

program start requests, you must define subsystem
communications entries using the ADDCMNE
command. Refer to the Communications Management

book for more information.

A program on the AS/400 system is started when your

system receives the program start request from the

remote system.

3-16 ICF Programming V4R1

4]

[co [l]

» Detach

The source program
can end or continue
local processing.

RSLS103-6

The program must open the ICF file.

The program must acquire the requesting program
device to establish a logical connection to the session
and the transaction. The program device name speci-
fied on the acquire operation must be associated with a
remote location name of *REQUESTER
(RMTLOCNAME(*REQUESTER), specified on either
the ADDICFDEVE or the OVRICFDEVE command).

Your program can send or receive data, depending on
the procedures previously set up with the remote
system.

Either program can end the transaction when all data
has been sent or received.

Your program must close the ICF file.

Use the VRYCFG command to vary off the commu-
nications configurations when they are no longer
needed.

The previous outline summarizes the sequence of events example, you can acquire and release multiple program

needed for both source and target programs. Overall, every devices in the same program. You can also run multiple pro-
event is required, but different subsets of events can be grams without varying on and varying off the communications
repeated without repeating the whole series of events. For configurations.

Chapter 3. Introduction to Intersystem Communications Function 3-17

3-18 ICF Programming V4R1

Chapter 4. Intersystem Communications Function Files

This chapter describes the ICF files, including:

¢ Using ICF file commands
¢ Creating and changing ICF files
¢ |dentifying the program devices used with ICF files

Chapter 5 describes how you use ICF files.

Introduction to Intersystem
Communications Function Files

A device file is a description of how input data is presented
to a program from a device and how output data is presented
to a device from a program. A device can be a physical
device or a remote system. For example:

e For asynchronous communications, a device can be an
ASCII terminal.

e For advanced program-to-program communications
(APPC), a device can be a logical unit on a remote
system.

Device files do not contain data. Device files contain the file
description identifying the device to be used and the record
formats used by the application programs. The record
formats and associated processing keywords are defined in
the data description specifications (DDS) source.

The type of device file used for communications is the ICF
file. The ICF file allows the definition of program devices for
different communications types. The communications types
are advanced program-to-program communications (APPC),
Systems Network Architecture upline facility (SNUF), binary
synchronous communications equivalence link (BSCEL),
asynchronous, intrasystem, finance, and retail communica-
tions. Your application program writes data to and reads

ICF File

Application ©

Program

Reads/Writes

to Program Device 4 PGMDEV
(RMTLOCNAME)

in File

~_

Figure 4-1. ICF File Overview

© Copyright IBM Corp. 1997

Remote Location
—»

data from the file. You can specify whether the data is to be
read from a specific program device or from the first program
device that responds to a request. You always write data to
a specific program device.

Note: References to APPC apply to APPC over TCP/IP
communications also.

The ICF file allows multiple sessions with different remote
systems. You can define and use up to 256 program
devices with an ICF file. The program devices can be a
combination of different communications types. You must
create the necessary communications configuration
descriptions for the program devices defined to the file.

Multiple programs (in the same job or separate jobs) can use
the same ICF file simultaneously. Each program can have
256 program devices per file.

The file description information for an ICF file is derived from
the parameters on the Create Intersystem Communications
Function File (CRTICFF) command or the Change Inter-
system Communications Function File (CHGICFF) command.
The record format information is derived from the DDS that
define each record format in the device file and from the
fields within each format.

You must also use either the Add Intersystem Communica-
tions Function Device Entry (ADDICFDEVE) or the Override
Intersystem Communications Function Device Entry
(OVRICFDEVE) command to specify the program devices
used with the file. These commands provide the connection
between the program device name and the remote location
name.

The ICF file has attributes unique to ICF and attributes
common to other types of device files. Figure 4-1 provides
an overview of ICF files.

Communications
Device

Description

RMTLOCNAME

RSLS661-6

4-1

Notes:
1. The ICF file is created by using the CRTICFF command.

2. The RMTLOCNAME parameter on the ADDICFDEVE
command associates a remote location name to a
program device. The remote location name is used to
select the appropriate device description.

3. Not all communications types require an explicitly-
created device description. For more information, see
the appropriate communications programming book for
the communications type you are using.

If you use system-supplied formats (described in Chapter 7),
ICF supplies a file for your use. This file is QICDMF in
QSYS. If you use this file in your program, you do not need
to define DDS or create a file. However, you do need to
define the program device entry with the OVRICFDEVE
command.

DDS and system-supplied formats provide parallel functions
for ICF. System-supplied formats provide a majority of the
function without the need to code DDS or to create an ICF
file. DDS provides the following additional functions:

e Externally described data

¢ Additional processing (for example, CONFIRM pro-
cessing for APPC)

¢ Indicators to determine session state information

¢ More flexibility — DDS keywords can be used together
in multiple combinations

Intersystem Communications Function File
Commands

Three types of commands apply to ICF files: file-level attri-
bute commands, program device entry commands, and com-
mands for displaying information.

File-Level Attribute Commands

The file-level attribute commands are:

Create Intersystem Communications Function File
(CRTICFF)
This command creates an ICF file that can be used with
communications devices. After the command runs, the
file contains the file attributes and the record format defi-
nitions.

Change Intersystem Communications Function File
(CHGICFF)
This command changes the file attributes of an ICF file.

Override with Intersystem Communications Function File
(OVRICFF)
This command can (1) override (replace) the file named
in the program, (2) override certain parameters of a file

4-2 ICF Programming V4R1

used by the program, or (3) override the file named in
the program and override certain parameters of the file
to process.

Delete Override (DLTOVR)
This command deletes the effect of the OVRICFF
command.

Delete File (DLTF)
This commands deletes the file from the system and
frees the storage space allocated to that file.

Program Device Entry Commands

The program device entry commands are:

Add Intersystem Communications Function Device Entry
(ADDICFDEVE)
This command adds a program device entry with the
specified device name and attributes to the file. You can
use this command multiple times to add multiple
program device entries to the same file.

Change Intersystem Communications Function Device
Entry (CHGICFDEVE)
This command changes the program device entry that
was defined with the ADDICFDEVE command.

Override Intersystem Communications Function Device
Entry (OVRICFDEVE)
This command is used either (1) to override attributes
specified in the ADDICFDEVE command or (2) to tem-
porarily associate the specified program device name
and attributes to the file. This command is different from
the ADDICFDEVE command because it does not perma-
nently change the ICF file. The association between the
program device entry and the file is only for the job in
which the command runs. You can use this command
multiple times to override multiple program device
entries to the file.

Delete Override Device Entry (DLTOVRDEVE)
This command deletes the effect of the OVRICFDEVE
command.

Remove Intersystem Communications Function Device
Entry (RMVICFDEVE)
This command removes one or more program device
entries from the file.

Display Information Commands

The commands used to display information are:

Display File Description (DSPFD)
This command displays information about the attributes
of a device file.

Display File Field Description (DSPFFD)
This command displays field-level information for a
device file.

Display Override (DSPOVR)
This command displays file overrides at any active call
level for a job.

Creating an Intersystem Communications
Function File

Use the CRTICFF command to create an ICF file. The ICF
file contains a file description made up of information speci-
fied in two places:

e The source file containing the DDS
¢ The CRTICFF command

Figure 4-2 shows ICF file creation.

ICF File

3

» File Attributes
ACQPGMDEV
MAXPGMDEV

CRTICFF
Command

Record Information
Field Layout
N DDS Keywords

RSLS662-3

Figure 4-2. Creating an ICF File

Defining the Record Formats for an
Intersystem Communications Function File

DDS provides two functions. The first function is to describe
the data format as used by the program, by defining record
formats and the fields within the records. The second func-
tion is to define the characteristics of the operation to be
done on the record by the use of DDS keywords. DDS is
supplied in the source file specified on the SRCFILE param-
eter of the CRTICFF file command.

Refer to the DDS Reference book for information on using
DDS to define record formats and fields. Chapter 6
describes the function of DDS keywords unique to commu-
nications. Information on coding the DDS keywords is in the
DDS Reference book.

File Attributes

Figure 4-3 identifies the attributes used with an ICF file.
These attributes are specified by the parameters on the
CRTICFF command.

Figure 4-3. ICF File Attributes

Parameter Description

FILE Name of the file

SRCFILE Name of the source file containing the DDS

SRCMBR Name of the member within the source file
containing the DDS

OPTION Output listing options

GENLVL Severity level of DDS messages that cause
the file create to fall

FLAG Minimum security level of error messages to
be listed

ACQPGMDEV Program device to acquire when the file is
opened

MAXPGMDEV Maximum number of program devices the
program can acquire using this file (This
parameter also restricts the number of device
entries that can be added with the
ADDICFDEVE command.)

MAXRCDLEN Maximum record length used with the file

WAITFILE Length of time to wait for file resources to
become available

WAITRCD Length of time to wait for a record to be
returned when performing a read-from-invited-
program-devices operation

DTAQ Name and library of the data queue on which
entries are placed

SHARE Specifies whether the open data path for the
file is shared with other opens of the same file
in the routing step

LVLCHK Record format level indicators check

AUT Default authority granted to the public

REPLACE Specifies whether an existing ICF file is
replaced

TEXT Descriptive text describing the file

Acquiring a Program Device when the File

Is Opened

Use the acquire program device (ACQPGMDEYV) parameter
on the CRTICFF command to specify the program device
you want to acquire when the file opens. The values for the
ACQPGMDEYV parameter are described below.

*NONE: Specifies that no program devices are acquired
when the file opens. This value is the default for the
ACQPGMDEYV parameter.

When you specify *NONE, the program can open the file
without consideration of whether the devices to be used
are available. In addition, the program does not need a

Chapter 4. Intersystem Communications Function Files 4-3

routine to handle errors that occur if the program device
cannot be acquired when the file is opened.

The program must acquire at least one program device
to the file before doing any input/output (I/O) operations.

Program Device Name: Specifies the name of a
program device to be acquired to the file when the file is
opened. You can specify the name of any program
device associated with the file using the ADDICFDEVE
or OVRICFDEVE commands. See “ldentifying the
Devices Used with an Intersystem Communications
Function File” on page 4-7 for more information on how
to define a program device to an ICF file. The specified
program device must be associated with the file before
the file is opened.

When you specify a program device name for the
ACQPGMDEYV parameter, space is reserved in the file
for the specified program device. Refer to the next
section for information about reserving space in the file
for program devices.

Determining the Maximum Number of Program
Devices: The maximum program device (MAXPGMDEV)
parameter on the CRTICFF command specifies the
maximum number of program devices you want to use in the
file. Use the ADDICFDEVE or the OVRICFDEVE command
to associate program devices to the file. Following are
guidelines for specifying the value for the MAXPGMDEV
parameter:

¢ An ICF file can either be a single- or a multiple-device
file. If your program uses the file as a single-device file,
specify a value of 1 on the MAXPGMDEYV parameter. If
your program uses the file as a multiple-device file,
specify the number of program devices simultaneously
active to the file. If your file is a single-device file, only
one session can be active in the program and the use of
the read-from-invited-program-devices operation is
restricted. If your file is a multiple-device file, more than
one session can be active simultaneously and the read-
from-invited-program-devices operation is allowed.
Refer to the appropriate language reference book to
learn:

— How to indicate that the program should use the file
as a single- or multiple-device file

— The differences between single- and multiple-device
files

e The value specified on the MAXPGMDEYV parameter
restricts the number of program device entries you can
add to the file using the ADDICFDEVE command.

¢ The value specified for the MAXPGMDEV parameter
indicates the maximum number of program devices you
want to have simultaneously active for this file. If you
specify a program device name on the ACQPGMDEV
parameter, space is reserved in the file for the program
device to be acquired when the file opens, and this

4-4 |CF Programming V4R1

device must be counted when determining the
MAXPGMDEYV value. You must, however, still define a
program device entry to the file for this program device.

For example, if you specify a program device name of
PGMDEVA on the ACQPGMDEYV parameter and a 1 on
the MAXPGMDEYV parameter, the only device that can
be added to the file with the ADDICFDEVE command is
PGMDEVA. PGMDEVA is also the only device that can
be used with the file. If you specify a 2 for the
MAXPGMDEYV parameter, you can add and use
PGMDEVA and one additional device with the file.

e The value you specify on the MAXPGMDEYV parameter
should be no larger than necessary. If you specify a
larger number of program devices than your program
requires, the program uses unnecessary system
resources. If the requirements for the maximum number
of devices change, you can use the CHGICFF command
to change the MAXPGMDEYV parameter. Refer to
“Changing an Intersystem Communications Function
File” on page 4-5 for more information.

e The number of devices a program can handle (while
maintaining a reasonable response time) is determined
by the amount of processing the program does for each
program device.

Determining the Maximum Record Length: Use the
maximum record length (MAXRCDLEN) parameter on the
CRTICFF command to specify the maximum record length
you want to use with the file. This length is used in calcu-
lating the size of allocated 1/0 buffers and this determines
the largest I/O operation that can be performed against the
file. The following are guidelines for specifying the value for
the MAXRCDLEN parameter:

e If your program uses externally described data and you
do not vary the defined length of record formats, use the
default value of *CALC. The system then generates the
maximum record length based on the largest record
defined in the file.

¢ If you use system-supplied formats in combination with
an externally described file, this parameter defines the
maximum length you can specify on the system-supplied
formats. Since this parameter determines the allocation
of I/O buffers and the system rejects output requests
that are longer than the allocated 1/O buffers, this param-
eter is important if you try to use a system-supplied
format to write a record larger than the largest record in
the file. Refer to Chapter 7 for more information about
system-supplied formats.

¢ The value specified on the MAXRCDLEN parameter
should be no larger than necessary. The value specified
can be smaller than the largest record in the file. This
can be used to minimize the size of I/0 buffers allocated
for a program that is using a common file that contains a
larger record length than is used by the program.

Determining the Wait-for-File Resources Value:

Use the wait file (WAITFILE) parameter on the CRTICFF
command to specify the maximum amount of time the open
and acquire operations wait before a file resource (such as a
device description) becomes available for use by the file.
When a file resource is available to an ICF file, the resource
is allocated to the job using that file, and is not available to
other jobs.

Some communications types also use the WAITFILE param-
eter to determine the amount of time to wait for remote com-
munications session resources to become available.

The following are guidelines for specifying the value for the
WAITFILE parameter:

e |f a session is not available for allocation to the job in
which your program is running, the system waits until the
session is available or until the specified amount of time
elapses.

¢ |f you specify an extremely large value, your program
waits a long time before it is notified that the session
cannot be established.

¢ The wait time needs to be increased if your program
fails at open or acquire time while trying to acquire a
program device to a session that appears to be avail-
able.

Determining the Wait-for-Record Value: Use the wait
record (WAITRCD) parameter on the CRTICFF command to
specify the maximum number of seconds that the read-from-
invited-program-devices operation waits for a response from
the invited program devices. Although the normal response
is from an invited program device, the read-from-invited-
program-devices operation may also complete with a job-
being-canceled (controlled) indication.

The value specified for the WAITRCD parameter has no
effect on input operations directed to a specific program
device. Instead, a read operation to a specific program
device waits until a response is available from that program
device.

Refer to Chapter 5 for more information on the read-from-
invited-program-devices and read operations.

If your program does not use the read-from-invited-program-
devices operation, you need not be concerned about the
value specified on this parameter.

The following are guidelines for selecting the WAITRCD
parameter value if your program uses the read-from-invited-
program-devices operation:

*NOMAX: Indicates that the read-from-invited-program-
devices operation should wait until a response is avail-
able from an invited program device. This is the default.

When *NOMAX is specified on the WAITRCD param-
eter, the read-from-invited-program-devices operation

does not return control to the program unless a
response is available from an invited program device or
the job is ending in a controlled way. If the invited
program devices are unable to return a response, the
program waits until the job is ended.

*IMMED: Indicates that the read-from-invited-program-
devices operation should not wait for a response from an
invited program device.

Specifying *IMMED allows the program to receive a
response (if available) from an invited program device.
If no response is available, the program receives a 0310
return code without waiting for a time limit to end.

Number of Seconds: Specifies the number of seconds
that the read-from-invited-program-devices operation
waits for a response from an invited program device. |If
no response is received from the invited program
devices within the specified amount of time, the program
is informed through a major/minor return code.

Specifying the number of seconds allows the program to
receive a response from an invited program device if a
response is available within the specified amount of
time. If no response is available within the specified
amount of time, the program receives a 0310 return
code, indicating that the time limit has ended.

Using a Data Queue: If you want your program to wait
for an ICF file and a data queue at the same time, use the
data queue (DTAQ) parameter on the CRTICFF command.
The program can also wait for a display file if the same data
queue is specified on the CRTDSPF, CHGDSPF, or
OVRDSPF commands. Refer to “Waiting for a Display File,
an ICF File, and a Data Queue” on page 5-15 for more infor-
mation.

Determining Other CRTICFF Command Parameter
Values: Refer to the CRTICFF command in the CL Refer-
ence book to determine the appropriate values for the
SRCFILE, SRCMBR, OPTION, GENLVL, FLAG, LVLCHK,
SHARE, AUT, REPLACE, and TEXT parameters.

Changing an Intersystem Communications
Function File

Use the CHGICFF command to change the file-level attri-
butes of an ICF file. The changes made to the file are
system-wide and affect all programs that open the file after
the CHGICFF has been done. Any programs that already
have opened the file are not affected during the current run.
Use the parameters in Figure 4-4 for changing file-level attri-
butes values specified on the CRTICFF command.

Figure 4-4 (Page 1 of 2). File Attributes for Changing an ICF File

Parameter

ACQPGMDEV

Description

Program device to be acquired when the file is
opened

Chapter 4. Intersystem Communications Function Files 4-5

Figure 4-4 (Page 2 of 2). File Attributes for Changing an ICF File

Parameter Description

MAXPGMDEV Maximum number of program devices that can
be acquired by the program using this file; this
parameter also restricts the number of device
entries that can be added with the
ADDICFDEVE command.

MAXRCDLEN Maximum record length used with the file

WAITFILE Length of time to wait for file resources to
become available

WAITRCD Length of time to wait for a record to be
returned when performing a read-from-invited-
program-devices operation

DTAQ Name and library of the data queue on which
entries are placed

SHARE Specifies whether the open data path for the file
is shared with other opens of the same file in
the routing step

LVLCHK Record format level indicators check

TEXT Descriptive text for describing the file

Overriding an Intersystem
Communications Function File

Use the OVRICFF command to temporarily override the file
named in the program, the file-level attributes of the file, or
both. The OVRICFF command affects only the job in which
it is run. Use the parameters in Figure 4-5 for overriding file-
level attribute values specified on either the CRTICFF or
CHGICFF command.

Figure 4-5. File Attributes for Overriding an ICF File

Parameter Description

FILE Name of file to override (same file name as
application)

TOFILE Name of file

ACQPGMDEV Program device to be acquired when the file is
opened

MAXRCDLEN Maximum record length used with the file

WAITFILE Length of time to wait for file resources to
become available

WAITRCD Length of time to wait for a record to be
returned when performing a read-from-invited-
program-devices operation

DTAQ Name and library of the data queue on which
entries are placed

SHARE Specifies whether the open data path for the file
is shared with other opens of the same file in
the routing step

LVLCHK Record format level indicators check

TEXT Descriptive text for describing the file

SECURE Specifies whether this file is secure from previ-

ously called override commands

4-6 ICF Programming V4R1

Override commands can be scoped to the job level, the acti-
vation group level (the default), or the call level. Overrides
scoped to the job level remain in effect until they are deleted,
replaced, or until the job in which they are specified ends.
Overrides scoped to the activation group level remain in
effect until they are deleted, replaced, or until the activation
group is deleted. Overrides scoped to the call level remain
in effect until they are deleted, replaced, or until the program
in which they were issued ends.

There are two common ways of using the override pro-
cessing. One way is to scope all your override processing to
the job level, as shown in the following example:

MAINCLPGM
OVRICFF FILE(ICFFILE) TOFILE(ICFFILE) WAITRCD(2) OVRSCOPE(*JOB)
CALL CPGM
CALL CBLPGM
CALL RPGPGM

In the example, the OVRICFF applies to all the other pro-
grams, because overrides that are scoped to the job level
affect all programs in the job. The WAITRCD value of 2
seconds is in effect for the programs CPGM, CBLPGM, and
RPGPGM.

The second approach is to do your override processing at
the highest possible call level, as shown in the following
example:

MAINCLPGM
CALL CCLPGM
CALL CBLCLPGM
CALL RPGCLPGM

CCLPGM
OVRICFF FILE(ICFFILE) TOFILE(ICFFILE) WAITRCD(2)
CALL CPGM

CBLCLPGM
OVRICFF FILE(ICFFILE) TOFILE(ICFFILE) WAITRCD(4)
CALL CBLPGM

RPGCLPGM
OVRICFF FILE(ICFFILE) TOFILE(ICFFILE) WAITRCD(4)
CALL RPGPGM

When CPGM is called, the WAITRCD value in effect is 2
seconds. The effects of the OVRICFF in CCLPGM are
deleted when CCLPGM exits to the MAINCLPGM program.
The WAITRCD specified on the CRTICFF is now in effect
again. When CBLPGM or RPGPGM is called, the WAITRCD
value in effect is 4 seconds.

Refer to the Data Management book for the rules governing
the use of override commands.

Use the DLTOVR command to delete the effect of the
OVRICFF command.

You can use the DSPOVR command to display the file over-
ride in effect.

The WAITRCD parameter has no meaning in the
FORTRANY/400 language, as the FORTRAN/400 language
does not allow the read-from-invited-program-device opera-
tion.

Identifying the Devices Used with an
Intersystem Communications Function File

A program communicates through a program device in an
ICF file. A program device entry has two functions:

e Associates a program device name with a remote
location name

e Establishes a set of program communications-type-
dependent attributes

The program device name need not be the same as the
name of the device description. To establish an association
between the name used in the program (program device
name) and the communications configurations, you must
define a program device entry to the file.

You must define one program device entry for each name
used in the program (even if the name of the configuration is
the same as the name used in the program). If the program
is written to handle the requesting program device, you must
define a program device entry for the requester by specifying
a special value of *REQUESTER for the RMTLOCNAME
parameter on the ADDICFDEVE or the OVRICFDEVE
command.

You must define the program device entry before the
program device can be acquired. If you specified a program
device on the ACQPGMDEYV parameter of the CRTICFF
command, you must define the appropriate program device
before the file can be opened.

Note: The FORTRAN/400 language does not support
program device names. To establish an ICF session using
the FORTRAN/400 language, you must use the
ACQPGMDEYV parameter on the CRTICFF, CHGICFF, or
OVRICFF commands. You can have only one ICF session
for each ICF file opened using the FORTRAN/400 language.

Defining Program Device Entries
Permanently

You can define a program device entry in numerous ways.
For example, the ADDICFDEVE command permanently adds
the program device entry to the file, while the OVRICFDEVE
command provides the same function without changing the
file. Figure 4-6 on page 4-8 shows how to define a program
device entry to an ICF file.

Note: Figure 4-6 on page 4-8 shows only one program
device entry. Multiple program device entries can be
defined. The maximum number of entries is determined by
the MAXPGMDEYV parameter specified at file creation.

You can define a program device entry to an ICF file perma-
nently or temporarily. A permanent definition is system-wide
and affects all users of the file. A permanent definition adds
the program device entry to the specified file. A temporary
definition does not change an ICF file. The definition is only
associated with the job in which the command is entered.
Because temporary changes are not directed to a specific

ICF file, all ICF files associated with the job or call level are
affected.

Use the ADDICFDEVE command to add a program device
entry to an ICF file. The program device entry is added to
the file specified in the FILE parameter.

Use the CHGICFDEVE command to change a program
device entry previously added to an ICF file with the
ADDICFDEVE command. The PGMDEYV parameter identi-
fies the entry to change. You can use the CHGICFDEVE
command to change the association to the communications
configurations, the program communications-type-dependent
attributes, or both.

Use the RMVICFDEVE command to remove a program
device entry previously added to an ICF file with the
ADDICFDEVE command. The PGMDEV parameter identi-
fies the entry to remove.

Defining Program Device Entries
Temporarily

In addition to the file attributes and record formats similar to
those in other device files, an ICF file also contains program
device entries that provide the link between the application
and each of the remote systems or devices with which your
program communicates.

The following lists the CL commands that provide override
functions for device entries:

DLTOVRDEVE
Delete Override Device Entry: Deletes one or more
program device overrides that were previously spec-
ified in a call level.

OVRICFDEVE
Override with Intersystem Communications Program
Function Device Entry: Used to temporarily add the
program device entry and the remote location name
to the ICF file or to override a program device entry
with the specified remote location name and attri-
butes for an ICF file.

A program device entry has two functions:

e |t associates a program device name with a remote
location.

¢ |t establishes a set of program communications-type
dependent attributes.

Multiple program device entries can be defined. Each
program device entry must have a unique program device
name. The maximum number of entries is determined by the
MAXPGMDEYV parameter specified at file creation.

Program device entries may be defined by the ADDICFDEVE
command or the OVRICFDEVE command. The
ADDICFDEVE command makes a permanent addition to the
file, and the OVRICFDEVE command makes a temporary
change to the program device information. It is not neces-

Chapter 4. Intersystem Communications Function Files 4-7

ICF File

>

File Attributes
ACQPGMDEV
MAXPGMDEYV

Record Information
Field Layout
DDS Keywords

Program Device Entry
ADDICFDEVE Mapping to
Command Configuration

Device Attributes

~.

Figure 4-6. Defining a Program Device Entry to an ICF File

sary to add a program device entry before overriding it.
Several ADDICFDEVE commands may be used to add mul-
tiple program devices to the same file. Several
OVRICFDEVE commands may be used to change different
device entries.

Overriding Remote Location Name: The device entry
override may be used to temporarily define or change the
remote location name associated with the program device
entry.

The following example demonstrates the use of the
OVRICFDEVE command to override the remote location
name:

OVRICFDEVE PGMDEV(PGMDEVA) RMTLOCNAME (CHICAGO)
CALL RPGPGM

In this example, when RPGPGM specifies PGMDEVA,
remote location CHICAGO is used.

Overriding Session Attributes: The device entry over-
ride may also be used to temporarily change the character-
istics of the communications session that is established when
the program device is acquired.

Although some of the session attributes have system-level
defaults, the default for the majority of these attributes is
information supplied during communications configuration.

Session attributes are identified as parameters on the
ADDICFDEVE or OVRICFDEVE command. Parameters not
specified on either command take on the appropriate system
default or specified configuration value. If the same param-
eter is specified on both the ADDICFDEVE and
OVRICFDEVE commands, the value specified on

4-8 ICF Programming V4R1

Remote Location

(RMTLOCNAME)

Communications
Device

Description

RSLS663-4

OVRICFDEVE overrides the value declared on the
ADDICFDEVE command.

The following example demonstrates the use of the
OVRICFDEVE command to override the format selection pro-
cessing attribute:

OVRICFDEVE PGMDEV(PGMDEVA) FMTSLT (*PGM)

In this example, format selection is changed to *PGM. This
overrides what was previously defined in the program device
entry. Refer to the appropriate communications program-
ming book for more information on the use of the session
attributes. Refer to the CL Reference book for more informa-
tion on the format and allowable values of the parameters on
the OVRICFDEVE command.

Overriding Remote Location Name and Session
Attributes: This form of the override device entry is a
combination of the previous two forms. With this form of
override, you can override the remote location that is used by
a program, and you can also override the session attributes.

Applying OVRICFDEVE Command: Device entry
overrides follow most of the same rules as file overrides.
They are effective from the time they are specified until they
are replaced or deleted or until the program in which they
were specified ends. Any program device entry overrides
that are in effect at the time the device is acquired are
applied.

The OVRICFDEVE command can be used to initialize an
environment or change the environment while running.

In the following example, the OVRICFDEVE commands are
initializing an environment:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (BOSTON) . . .

Override 2 OVRICFDEVE PGMDEV(PGMDEV2) +
RMTLOCNAME (ROCHMN) . . .

CALL PGM(A)
CALL PGM(B)

CALL PGM(X)

When the program uses any ICF file and acquires the
program device named PGMDEV1, then the remote location
named BOSTON and attributes from override 1 are used
when establishing the communication session.

When the program uses an ICF file and acquires the
program device named PGMDEV2, then the remote location
named ROCHMN and attributes from override 2 are used
when establishing the communication session.

In the following example, the OVRICFDEVE commands are
used to change the running environment:

Override 1 OVRICFDEVE PGMDEVE (PGMDEV1) +
RMTLOCNAME (BOSTON) . . .
CALL PGM(A)
Override 2 OVRICFDEVE PGMDEVE (PGMDEV2) +

RMTLOCNAME (ROCHMN) . . .
CALL PGM(A)

The first time program A is called, an ICF file is opened and
the program device named PGMDEV1 acquired. The remote
location named BOSTON and attributes from override 1 are
used when establishing the communication session.

The second time program A is called, an ICF file is opened
and the program device named PGMDEV2 is acquired. The
remote location named ROCHMN and attributes from over-
ride 2 are used when establishing the communication
session.

Applying OVRICFDEVE from Multiple Call Levels: When
you have more than one override for the same program
device at several call levels (nested calls), the order in which
the overrides are applied to the program device is from the
highest call level to the lowest call level. Any job level over-
rides are applied last.

To prevent overrides at lower call levels from being applied,
see “Applying OVRICFDEVE with SECURE.”

In the following example, override 2 is in the highest call
level and override 1 is in the lowest call level.

Override 1 OVRICFDEVE PGMDEV (PGMDEV1) +
FMTSLT (*PGM) BATCH(*NO)
CALL PGM(A)
Program A
Override 2 OVRICFDEVE PGMDEV(PGMDEV1) +

FMTSLT (*RECID) APPID(PAYROLL)
CALL PGM(X)

When program X acquires program device PGMDEV1, the
following attributes are used:

FMTSLT(*PGM)
BATCH(*NO)
APPID(PAYROLL)

From Override 1
From Override 1
From Override 2

The attribute of FMTSLT(RECID) specified in override 2 is
not used because it was overridden by FMTSLT(*PGM)
specified in override 1. Override 1 overrides override 2. If
there is a third override for program device PGMDEV1
embedded in program X, it is overridden by override 2 and
then override 1.

A similar situation exists when you change the remote
location to be used with the program device and you also
change some of the attributes of the program device. For
example:

Override 1 QVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (NYCAPPC)
CALL PGM(A)
Program A
Override 2 OVRICFDEVE PGMDEV(PGMDEV1) +

RMTLOCNAME (MPLSAPPC) +
CNVTYPE (*USER)
CALL PGM(X)

When program X is ready to acquire PGMDEV1, it acquires
remote location NYCAPPC instead of MPLSAPPC (because
override 1 overrides override 2 remote location). Also, the
conversation type is *USER (because of override 2).

Applying OVRICFDEVE with SECURE: On occasion,
you may want to protect program devices used by a program
from overrides at lower call levels.

You can prevent additional program device overrides by
coding the SECURE(*YES) parameter on a program device
override command for each program device needing pro-
tection. This protects you from overrides at lower call levels.

The following shows an example of a protected program
device:

Chapter 4. Intersystem Communications Function Files 4-9

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (BOSTON)
OVRICFDEVE PGMDEV(PGMDEV4) +
RMTLOCNAME (ROCHMN)
CALL PGM(A)
Program A
OVRICFDEVE PGMDEV(PGMDEV5) +
RMTLOCNAME (NYC)
CALL PGM(B)
Program B
OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (MPLS) SECURE(*YES)
CALL PGM(X)

Override 2

Override 3

Override 4

When program X acquires program device PGMDEV1 for an
ICF file, the remote location MPLS and attributes from over-
ride 4 are used. Because override 4 specifies
SECURE(*YES), override 1 is not applied.

Deleting Device Entry Overrides: When a program
returns from a call level containing program device entry
overrides, the overrides are deleted, just as any file overrides
are deleted. When control is transferred to another program
(TFRCTL command) so that the program is running at the
same call level, the overrides are not deleted. If you want to
delete an override before the run is completed, you can use

the Delete Override Device Entry (DLTOVRDEVE) command.

This command only deletes overrides in the call level in
which the command is entered. A DLTOVRDEVE command
does not delete the effects of an ADDICFDEVE command.
To remove an ADDICFDEVE command, you must use the
Remove Intersystem Communications Function Program
Device Entry (RMVICFDEVE) command. To identify an
override, use the program device name specified on the
PGMDEYV parameter of the override. You can delete all
overrides at this call level by specifying value *ALL for the
PGMDEV parameter. For example:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (BOSTON)

Override 2 OVRICFDEVE PGMDEV(PGMDEV4) +
RMTLOCNAME (ROCHMN)

Override 3 OVRICFDEVE PGMDEV(PGMDEV5) +
RMTLOCNAME (NYC)

DLTOVRDEVE PGMDEV (PGMDEV1)
DLTOVRDEVE PGMDEV (*ALL)

Delete Override 1
Delete Override 2

Delete override 1 causes override 1 to be deleted. Delete
override 2 causes the remaining overrides (overrides 2 and
3) to be deleted.

Displaying Device Entry Overrides: Device entry
overrides are not displayed by the Display Override
(DSPOVR) command. There is no corresponding command
to display device entry overrides.

Mapping Program Device Name to
Communications Configurations

The first purpose of the program device entry is to associate
a program device name with a device description. This
mapping uses the parameters shown in Figure 4-7 on the
ADDICFDEVE, CHGICFDEVE, and OVRICFDEVE com-
mands.

Note: References to APPC apply to APPC over TCP/IP
communications also.

PGMDEV
Specifies the program device name being defined (the
name used by the program to do operations). The
program device name must be unique throughout all
entries in the file. You can map two or more different
program device names to the same communications
configurations. This mapping allows you to have mul-
tiple sessions through the same configurations, and to
have different device attributes for the same configura-
tions. PGMDEYV is a required parameter.

Figure 4-7. Mapping Parameters for All Communications Types

Intra-
Parameter Description APPC SNUF BSCEL Async system Finance Retail
PGMDEV Program X X X X X X X
device name
RMTLOCNAME Remote X X X X X X X
location name
DEV Communica- X X X
tions device
description
LCLLOCNAME Local location X
name
MODE Mode
RMTNETID Remote X
network ID
4-10 ICF Programming V4R1

The other parameters are associated with information sup-
plied at various times during configuration. The following
descriptions show the relationship of these parameters to the
program device definition.

RMTLOCNAME
Specifies the name of the remote location associated
with the program device. The remote location name is
the primary mapping to communications configurations.
A remote location is associated with any device
description that contains the same remote location name
(RMTLOCNAME parameter on the Create Device XXXX
(CRTDEVXXXX) command). For APPC, intrasystem,
and SNUF communications, there can be a one-to-many
relationship between the remote location name and the
device description. For asynchronous, BSCEL, finance,
and retail communications, there is a one-to-one
relationship.

The remote location name is used by the system to
select the device description. For those communications
types that support multiple device descriptions per
remote location, each communications type defines the
criteria for selecting the best device. For a given remote
location name, a list of devices (one or more) may be
available for use.

Each communications type has specific rules for defining
what constitutes an available device. Because asyn-
chronous, BSCEL, finance, and retail communications
have a one-to-one relationship between the device and
remote location name, no device selection process is
necessary. APPC, intrasystem, and SNUF communica-
tions all have a means for selecting the best available
device for use.

For APPC, intrasystem, and SNUF communications, if
you want to use a specific device description instead of
allowing the system to select it for you, use the DEV
parameter to further qualify the remote location to a spe-
cific device description.

Figure 4-8 on page 4-12 shows the relationship of the
remote location to the device description. Your program
selects the communications type and communications
link by acquiring a program device associated with a
remote location name. The system selects a device
description, based on availability (such as varied on and
not in use), and other parameters that were specified
when the program device entry was defined (such as
device description). Note that multiple device
descriptions can contain the same remote location
name. In Figure 4-8 on page 4-12, if your program
acquires a program device associated with a remote
location of 'A', the system either selects DEVDL1 or
DEVD2, and the session established uses the APPC
communications type.

For additional information on how the system processes
the RMTLOCNAME, DEV, LCLLOCNAME, and
RMTNETID parameters for APPC, refer to the APPC
Programming book.

The remote location need not exist at the time you
define the program device entry. However, the remote
location must exist (either as a device description on the
system, or as a remote location in the network) when the
program device is acquired.

If the communications type you are using allows multiple
sessions per remote location, the same remote location
can be mapped to different program device names.

If the program device entry is being defined to process
incoming program start requests, the special value of
*REQUESTER must be used for the RMTLOCNAME
parameter. The remaining parameters on the
ADDICFDEVE, OVRICFDEVE, and CHGICFDEVE com-
mands in Figure 4-7 on page 4-10 do not apply (except
PGMDEV) and should not be specified.

RMTLOCNAME is a required parameter.

DEV

Further qualifies the remote location to a specific com-
munications device description.

DEV is an optional parameter. If you do not specify the
DEV parameter, and there are several communications
device descriptions associated with the remote location,
the system determines which device to use. Note that
the device used may not be the one you want (for
example, the device you want may not be varied on).

Note: If you rename a device after specifying the
device name and remote location, you must update your
ICF file accordingly.

LCLLOCNAME

Specifies the local location name of the local system.
LCLLOCNAME is an optional parameter.

MODE

Specifies the mode used for the remote location. When
you specify the special value *NETATR (the default) the
mode in the network attributes is used. BLANK indi-
cates that a mode name consisting of all blanks is used.
MODE is an optional parameter.

RMTNETID

Specifies the remote network identifier of the remote
location. When you specify the special value *NETATR
(the default) the network identifier in the network attri-
butes is used. *NONE indicates that a network identifier
consisting of all blanks is used. RMTNETID is an
optional parameter.

Chapter 4. Intersystem Communications Function Files 4-11

Device Descriptions

DEVD1
Remote Location Name A{ RMTLOCNAME (A) APPC
DEVD2
Remote Location Name B 4 RMTLOCNAME (A) APPC
DEVD3
Remote Location Name C -] > RMTLOCNAME (B) ASYNCHRONOUS
DEVD4
Remote Location Name D > RMTLOCNAME (C) SNUF
DEVDS
Remote Location Name E _ d RMTLOCNAME (D) BSCEL
DEVD6
Remote Location Name F —— d RMTLOCNAME (E) INTRASYSTEM
DEVD7
Remote Location Name G > RMTLOCNAME (F) FINANCE
DEVDS8
d RMTLOCNAME (G) RETAIL

RSLS682-3

Figure 4-8. Relationship of Remote Location Name to Device Description

If any of the information supplied in the RMTLOCNAME, Communications-Type-Dependent
DEV, LCLLOCNAME, MODE, or RMTNETID parameters Attributes

conflicts, the acquire operation to the program device fails.

The second purpose of a program device entry is to establish

the characteristics of the communications session. These

- o= ; communications-type-dependent attributes are specified as

gramming book for the communications type you are using. parameters on the ADDICFDEVE, CHGICFDEVE, and
OVRICFDEVE commands.

For more specific information, refer to Communications Con-
figuration book and the appropriate communications pro-

Figure 4-9 describes the communications-dependent attri-
butes used with an ICF file and the communication types that
support each attribute.

Note: References to APPC apply to APPC over TCP/IP
communications also.

Figure 4-9 (Page 1 of 3). Communications-Type-Dependent Attributes

Intra-
Parameter Description APPC SNUF BSCEL Async system Finance Retail
FMTSLT Record format X X X X X X X

selection technique.

4-12 ICF Programming V4R1

Figure 4-9 (Page 2 of 3). Communications-Type-Dependent Attributes

Parameter

Description

APPC

SNUF

Intra-

BSCEL Async system Finance Retail

CMNTYPE

Identifies the commu-
nications type you are
using to select
prompting on the
command.

X

X

X X X X

X

APPID

VTAM* identifier of the
Customer Information
Control (CICS/VS) or
the Information Man-
agement System for
Virtual Storage
(IMS/VS) host system.

BATCH

Specifies whether this
session is used for
batch activity with
IMS/VS host system.

HOST

Identifies type of host
system with which to
communicate.

ENDSSNHOST

Specifies the command
used to end a session
with the host system.

SPCHOSTAPP

Specifies whether the
support should be cus-
tomized for special
host applications
outside the CICS/VS or
IMS/VS application
layer.

INZSELF

Specifies whether a
formatted INIT-SELF is
used in place of the
unformatted logon
normally sent to the
host system.

HDRPROC

Specifies whether
received function man-
agement headers
should be passed to
the application.

MSGPTC

Specifies whether
message protection
should be used.

EMLDEV

Specifies whether the
application is using
3270 data streams.

CNVTYPE

Conversation type.

BLOCK

Specifies whether
system or user will
block and unblock
transmitted records.

RCDLEN

Maximum record length
to transmit and receive.

BLKLEN

Maximum block length
to transmit and receive.

Chapter 4. Intersystem Communications Function Files

4-13

Figure 4-9 (Page 3 of 3). Communications-Type-Dependent Attributes

Parameter Description APPC SNUF

Intra-
BSCEL Async system Finance Retail

TRNSPY Specifies whether text
transparency is used
when sending blocked
records.

X

DTACPR Specifies whether
blanks are compressed
when sending and
receiving data.

TRUNC Specifies whether
trailing blanks are
removed when sending
data.

OVRFLWDTA Specifies whether over- X
flow data (data in
excess of what can be
contained in the input
buffer) is discarded or
retained.

GRPSEP Specifies separator for
groups of data (data
sets and documents).

RMTBSCEL Specifies whether the
session supports
BSCEL commands and
online messages.

INLCNN Specifies the method of
making a connection
on the line when a
session is established.

SECURE Specifies whether this X X
program device is
secured from previ-
ously called override
commands.

You can specify any parameter on any communications type,
but the parameter is ignored if it is not supported by the
specified communications type.

Although some attributes, like FMTSLT and CNVTYPE, have
system-level defaults, the default for the majority of the
parameters is the information supplied during communica-
tions configuration.

Parameters not specified on an ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command take on the
appropriate system default or specified configuration value.
If the same parameter is specified on both an ADDICFDEVE
and OVRICFDEVE command, the value specified on the
OVRICFDEVE overrides the value declared on the
ADDICFDEVE command.

The OVRICFDEVE command follows the general rules for
override processing. For information on determining the
result when two OVRICFDEVE commands are specified for

4-14 ICF Programming V4R1

the same program device entry, refer to “Applying
OVRICFDEVE from Multiple Call Levels” on page 4-9.

Format Selection (FMTSLT): The FMTSLT parameter
specifies the type of record selection used for input oper-
ations for the program device specified in the PGMDEV
parameter.

Following are the values for the FMTSLT parameter:

*PGM
The record format is determined by the program.

*RECID
The record format is based on the use of the RECID
DDS keyword.

*RMTFMT
The remote program determines the record format
to use.

These different values have meaning only when used in con-
junction with specific DDS keywords. Refer to Chapter 5 for
more information on format selection processing.

Communications Type (CMNTYPE): The CMNTYPE
parameter identifies the communications type for which you
are defining a program device entry. This identification
prompts you for the communications-type-dependent attri-
butes associated with the communications type you are
using.

These values are available for the CMNTYPE parameter
when *REQUESTER is not specified for the remote location
name:

*ALL
Prompt for all possible communications-type-
dependent attributes

*APPC
Prompt for all APPC-supported and APPC over
TCP/IP supported attributes

*SNUF
Prompt for all SNUF-supported attributes

*BSCEL
Prompt for all BSCEL-supported attributes

*ASYNC
Prompt for all asynchronous communications-
supported attributes

*INTRA
Prompt for all intrasystem communications-
supported attributes

*FINANCE
Prompt for all finance communications-supported
attributes

*RETAIL
Prompt for all retail communications-supported attri-
butes

This parameter is valid only if you enter the command inter-
actively.

However, when you specify *REQUESTER for the remote
location name (RMTLOCNAME), you are only prompted for
selected values based on the CMNTYPE parameter:

*ALL
Prompt for FMTSLT, CNVTYPE, RCDLEN,
BLKLEN, and SECURE parameters

*APPC
Prompt for FMTSLT, CNVTYPE, and SECURE
parameters

*ASYNC
Prompt for the FMTSLT and SECURE parameters

*SNUF
Prompt for FMTSLT, RCDLEN, BLKLEN, and
SECURE parameters

*BSCEL
Prompt for the FMTSLT and SECURE parameters

*INTRA
Prompt for the FMTSLT and SECURE parameters

*FINANCE
Prompt for the FMTSLT and SECURE parameters

*RETAIL
Prompt for the FMTSLT and SECURE parameters

Note: You can still specify values for the parameters that
you are not prompted for (when *REQUESTER is specified
for the remote location name) by typing those values and
parameters on any command line with any of the program
device entry commands. However, the parameter values you
specify are ignored and no error return codes are issued.

Secure from Override (SECURE): The SECURE
parameter is valid only on the OVRICFDEVE command.

This parameter does not apply to the ADDICFDEVE or
CHGICFDEVE commands. This parameter is used to restrict
the effects of override processing.

Refer to the Data Management book for information about
how the SECURE parameter works. Refer to the CL Refer-
ence book for more information about the format and allow-
able values.

Other Communications-Type-Dependent Parame-
ters: Each of these parameters has specific meaning and
function, depending on the communications type you are
using. Also, some of these parameters are ignored if the
program device being defined is for a
RMTLOCNAME(*REQUESTER). Refer to the appropriate
communications programming book for more information on
the use of these parameters.

Refer to the CL Reference book for more information on the
format and allowable values for these parameters.

Intersystem Communications Function
Command Summary

Figure 4-10 on page 4-16 shows the relationship between
ICF commands.

The CRTICFF and CHGICFF commands are used to
create the ICF file and work with file-level attributes.
(The DLTF command is used to delete the ICF file.)

H The ADDICFDEVE, CHGICFDEVE, and RMVICFDEVE
commands allow defining program device- or
communications-type-dependent information in the ICF
file. The ADDICFDEVE command is optional, and is
used only to support early binding, and setting of
system-wide defaults.

The OVRICFF command allows the changing of file-
level attributes at the job level only. This command
does not cause any permanent change, and it is not
system-wide. (The DSPOVR command displays the
information entered on the OVRICFF command. The
DLTOVR command is used to delete the effects of the
OVRICFF command.)

Chapter 4. Intersystem Communications Function Files ~ 4-15

The OVRICFDEVE command affects the processing of
the ICF file at the job level only. You do not specify
the file on the override. Whatever ICF file is active at
the time is the file that is overridden. It does not cause
any permanent change, and it is not system wide. The
OVRICFDEVE command uses a late binding function
that ties the program device and the remote location at

Creation Time Frame
(permanent change)

job time. The OVRICFDEVE command is also used to
temporarily change communications-type-dependent
attributes. The OVRICFDEVE command is job-wide,
and has the characteristics of an override command.
(The DLTOVRDEVE command is used to delete the
effects of the OVRICFDEVE command.)

Processing Time Frame
(job-level change)

OVRICFF 3|

Figure

4-16

ICF File
CHGICFF

File

Attributes

Device
ADDICFDEVE Attributes
CHGICFDEVE [~———————————" >)
RMVICFDEVE w

4-10. Relationship between ICF Commands

ICF Programming V4R1

OVRICFDEVE n

RSLS664-4

Chapter 5. Using an Intersystem Communications Function File

This chapter describes how an application uses an ICF file.

To use an ICF file, identify it as a WORKSTN file in the ILE
RPG programming language or as a TRANSACTION file in
the ILE COBOL programming language. For the ILE C pro-
gramming language, the type of file need not be specified.

The ILE C, ILE COBOL, and ILE RPG programming lan-
guages support an interface that allows the application to
perform the following operations:

¢ Open the file

e Acquire a program device

e Read from a program device
e Write to a program device

¢ Release a program device

¢ Close the file

The FORTRAN/400 language supports an interface that
allows the application to perform the following operations:

¢ Open the file
¢ Read from the file (program device is implied)
e Write to the file (program device is implied)

¢ Close the file

Read and write operations are done using a record that con-
tains data description specifications (DDS) keywords. These
DDS keywords allow more specific communications functions
to be done with the read and write operations. ICF also sup-
ports system-supplied record formats that can be used in
place of user-defined DDS record formats. Refer to

Chapter 6 and Chapter 7 for more information about the
communications functions that can be performed with the
read and write operations.

Sample programs in Chapter 9 through Chapter 11 provide
an overview of the language interface that supports these
functions. For more information on the language interface,
refer to the appropriate language reference book.

Opening an Intersystem Communications
Function File

The processing done by the open operation depends on
whether the open is a subsequent open of a shared file. The
open is a subsequent open of a shared file if you specify
SHARE(*YES) and the file is currently open with
SHARE(*YES) specified.

If the open is not a subsequent open of a shared file in the
same job, the open operation allocates the file and any other
resources needed to support the acquiring of program

© Copyright IBM Corp. 1997

devices to the file, and allocates the input/output (I/O)
buffers.

If the open is a subsequent open of a shared file, the
program is simply attached to the already open file. Any
program devices acquired by other programs are available
for use by this program. The state or attributes of the file do
not change during a subsequent open. For example, if the
program device specified as the ACQPGMDEV parameter
has been released, the subsequent open does not cause it to
be acquired.

After the file and other resources have been allocated, the
open operation implicitly acquires the program device speci-
fied by the ACQPGMDEYV parameter, on the Create Inter-
system Communications Function File (CRTICFF), Change
Intersystem Communications Function File (CHGICFF), or
Override Intersystem Communications Function File
(OVRICFF) command. See “Acquiring a Program Device
when the File Is Opened” on page 4-3 for information on
how to specify the ACQPGMDEYV parameter.

The following is a description of the processing done by the
open operation based on the ACQPGMDEYV parameter value
specified for the file:

e If you did not specify the ACQPGMDEYV parameter, or if
you specified *NONE, the open operation does not
acquire any program devices. A program device must
be explicitly acquired for the file before the program tries
any /O operations to the file, or before another program
opens the same file if the file is opened with
SHARE(*YES) specified.

¢ |f you specify a program device name on the
ACQPGMDEYV parameter, the open operation acquires
the specified program device. See “Acquiring a Program
Device” on page 5-2 for information about acquiring a
specific program device.

If the open operation is not successful, the only allowable
operation is closing the file. See “Closing an Intersystem
Communications Function File” on page 5-17 for more infor-
mation.

Obtaining Information about the Open
Intersystem Communications Function File

After the program opens the file, an open feedback area is
available to the program. This area contains information
about the open file such as the file name, library name, and
program device information. You can use the information in
this area as long as the file is open. See Appendix C for a
summary chart of the open feedback fields. Refer to the
appropriate language reference book for information on
accessing the fields.

5-1

Acquiring a Program Device

Before any input or output operations can be directed to a
program device, the program device must be acquired.

Only program devices defined to the file by use of the Add
Intersystem Communications Function Device Entry
(ADDICFDEVE) or the Override Intersystem Communications
Function Device Entry (OVRICFDEVE) command can be
acquired. See “ldentifying the Devices Used with an Inter-
system Communications Function File” on page 4-7 for more
information about defining program device entries.

A program device can be acquired in two ways:

¢ One program device can be implicitly acquired through
the open operation. Refer to “Opening an Intersystem

Example 1

Communications Function File” on page 5-1 for more
information on an implicit acquire through the open oper-
ation.

e A program device can be explicitly acquired through the
acquire operation. The acquire operation can be used
many times with different program device names.

When a program device is explicitly acquired with an acquire
operation, you identify the session to establish by using the
same program device name on the acquire as specified on
the PGMDEYV parameter on the ADDICFDEVE or the
OVRICFDEVE command.

The examples in Figure 5-1 show the relationship between
the program device entry (defined using an ADDICFDEVE or
an OVRICFDEVE command) and an ILE C, COBOL/400,
and RPG/400 operation.

ADDICFDEVE FILE(ICFFILE) PGMDEV(PGMDEVA) RMTLOCNAME(CHICAGO)

RPG/400 Program

'PGMDEVA' ACQ ICFFILE

Example 2

OVRICFDEVE

COBOL/400 Program

PGMDEV(PGMDEVA) RMTLOCNAME (CHICAGO)

ACQUIRE 'PGMDEVA' FOR ICFFILE.

Example 3

OVRICFDEVE PGMDEV(PGMDEVA) RMTLOCNAME(CHICAGO)

C/400 Program

N

_Racquire(FP,"PGMDEVA");

Figure 5-1. Relationship of Program Device Entries to Operations

Note: For FORTRAN/400 programs, the acquire operation
can be done implicitly by the system only when the ICF file is
opened by specifying a program device hame on the
ACQPGMDEYV parameter of the CRTICFF, CHGICFF, or
OVRICFF command. The FORTRAN/400 language does not
support program device names for ICF files; the program
device is implied on read and write operations.

Acquiring the program device automatically allows any /O
operations valid for that program device to be issued. For
example, if the file is opened for input only, the read opera-
tion is allowed, but the write operation is not allowed.

The amount of time the system waits for resources to
become available to complete the acquire request is speci-
fied on the WAITFILE parameter of the CRTICFF, CHGICFF,
or OVRICFF command.

5-2 ICF Programming V4R1

RV2P921-2

The following sections describe some of the functions per-
formed when a program device is acquired.

Acquiring a Program Device — Source
Program

The system tries to allocate a new session with the remote
location for the job in which the program is running.
Some causes of a failed acquire operation are:

e The device associated with the program device is not
varied on.

¢ The device description for the device associated with the
program device is allocated to another job.

e A session is not available for the remote location.

Acquiring a Program Device — Target
Program

The system tries to establish a connection with the
requesting program device. An acquire operation to the

requesting program device does not allocate a new session.

It only establishes a logical connection to the session and
transaction on which the target program was started.
The acquire operation fails if any of the following occur:

¢ The session was previously ended by the target
program.

¢ A program not started by an evoke function issues an
acquire for a requesting program device.

¢ The requesting program device is acquired for another
file in the job.

Obtaining Information about a Particular
Program Device

You can obtain information about a program device in two
ways:

¢ Using the program device definition list
¢ Using the get-attributes operation

Program Device Definition List

After a program device is acquired, the program device
becomes part of the program device definition list. The
program device definition list contains information about the
program device, such as the program device class, device
type, and invite state.

You can use the information in the program device definition
list as long as the program device is acquired. The support
provided by the high-level language you use determines
whether you can access this information.

See Appendix C for a summary chart of the program device
definition list. Refer to the appropriate language reference
book for information on accessing these fields.

Get-Attributes Operation

The get-attributes operation can be used at any time after a
file has been opened to determine the status of a particular
program device. The program device does not need to be
acquired. The operation gets the current status about the
session in which your program is communicating based on
the last ICF operation performed. The value for position 41
is an exception; this value is updated asynchronously by the
system. If the program device is not acquired, the informa-
tion is obtained from the program device entry defined with
the ADDICFDEVE or OVRICFDEVE command.

The status information received by the get-attributes opera-
tion contains the fields shown in Figure 5-2.

Figure 5-2 (Page 1 of 3). Attribute Information Fields

Position Value Meaning

1 through 10 Name Program device name: The name the program used to identify the program device in the file to read
and write from.

11 through 20 Name Device description name: The device description associated with the program device name (specified
during configuration and optionally on the ADDICFDEVE or OVRICFDEVE command).

21 through 30 Name User ID: If the program was started locally, this is the user ID used to sign on to the work station. If
the program was started as a result of a program start request, this is the user ID used to start the
target program.

31 | The device is an ICF device type.

D The device is a display device.
U Unknown.
32 through 37 APPC APPC or APPC over TCP/IP communications type.
SNUF SNUF communications type.
BSCEL BSCEL communications type.
ASYNC Asynchronous communications type.
INTRA Intrasystem communications type.
FINANC Finance communications type.
RETAIL Retail communications type.

38 Y This is a requesting program device.

N This is a program device acquired by a source program.

39 Y Program device has been acquired.

N Program device has not been acquired.
40 Y Input is invited for this program device.
N Input is not invited for this program device.

Chapter 5. Using an Intersystem Communications Function File 5-3

Figure 5-2 (Page 2 of 3). Attribute Information Fields

Position Value Meaning
41 Y Invited input is available for this program device.
N Invited input is not available for this program device.
42 through 50 Reserved Not applicable to communications.
51 Y Session has an active transaction.
N Session does not have an active transaction.
521 0 Synchronization level is NONE.
1 Synchronization level is CONFIRM.
2 Synchronization level is COMMIT.
531 M Mapped conversation.
B Basic conversation.
54 through 61 Name Remote location name: This is the remote location associated with the program device name (speci-
fied during configuration and on the ADDICFDEVE or OVRICFDEVE command).
62 through 691 Name Local logical unit (LU) name.
70 through 771 Name Local network ID.
78 through 851 Name Remote LU name.
86 through 931 Name Remote network ID.
94 through 1011 Name Mode: This is the mode associated with the program device name (specified during configuration and
optionally on the ADDICFDEVE or OVRICFDEVE command).
102 through 1041 Reserved Not applicable to communications.
1051 APPC conversation state.
X'00' Reset. No conversation exists.
X'o1' Send. Program can send data.
X'02' Defer receive. Program enters receive state after a confirm, flush, or commit operation completes
successfully.
X'03' Defer deallocate. Program enters deallocate state after a commit operation completes successfully.
X'04' Receive. Program can receive data.
X'05' Confirm. Program received a confirmation request.
X'06' Confirm send. Program received a confirmation request and send control.
X'07! Confirm deallocate. Program received a confirmation request and deallocate notification.
X'08' Commit. Program received a commit request.
X'09' Commit send. Program received a commit request and send control.
X'0A! Commit deallocate. Program received a commit request and deallocate notification.
X'0B' Deallocate. Program received a deallocate notification.
X'0C!' Rollback required. Program must roll back changes to protected resources.
106 through 1131 Name LU 6.2 conversation correlator
114 through 1441 Reserved
145 through 1461 Binary ISDN remote number length in bytes, including type and plan.
147 through 1481 00 ISDN unknown remote number type.
01 ISDN international remote number type.
02 ISDN national remote number type.
03 ISDN network specific remote number type.
04 ISDN subscriber remote number type.
06 ISDN abbreviated remote number type.
149 through 1501 00 ISDN unknown remote number plan.
01 ISDN/telephony remote number plan.
03 ISDN data remote number plan.
04 ISDN telex remote number plan.
08 ISDN national standard remote number plan.
09 ISDN private remote number plan.

5-4 ICF Programming V4R1

Figure 5-2 (Page 3 of 3). Attribute Information Fields

Position Value Meaning
151 through 1541 Reserved
155 through 1901 Character ISDN remote number (blank-padded EBCDIC).
191 through 194 Reserved
195 through 1961 Binary ISDN remote subaddress length in bytes, including type.
197 through 1981 00 ISDN NSAP remote subaddress type.
02 ISDN user defined remote subaddress type.
199 through 2381 Character ISDN remote subaddress (EBCDIC representation of hexadecimal data padded on the right with
Zeros)
2391 Reserved
240 0 Incoming ISDN call.
1 Outgoing ISDN call.
2 Not a switched ISDN connection.
241 through 2421 Binary X.25 remote network address length in bytes.
243 through 2741 Character X.25 remote network address (blank-padded EBCDIC).
275 through 2781 Reserved
279 through 2801 Binary X.25 remote address extension length in bytes, including type and extension.
2811 0 X.25 address assigned according to 1ISO 8348/AD2.
2 Not X.25 ISO 8348/AD2 address type.
282 through 3211 Character X.25 remote address extension (EBCDIC representation of hexadecimal data)
322 through 3251 Reserved
326 0 Incoming X.25 switched virtual circuit (SVC).
1 Outgoing X.25 SVC.
2 Not X.25 SVC.
327 through 3901 Character Name of program specified to be started as a result of the received program start request, even if a
routing list caused a different program to be started.
391 Binary Length of the protected logical unit of work identifier (LUWID). Must be from 0 to 26.
392 Binary Length of the qualified LU name. Must be from 0 to 17.
393 through 409 Character Network-qualified protected LU name in the following form: netid.luname. netid is the network identi-
fier. luname is the logical unit name. This field may be blank.
410 through 415 Character Protected LUWID instance number.
416 through 417 Binary Protected LUWID sequence number.
Note: The protected LUWID identifies the current logical unit of work for a protected conversation.
418 Binary Length of the unprotected LUWID. Must be from 0 to 26.
419 Binary Length of the qualified LU name. Must be from 0 to 17.
420 through 436 Character Network-qualified unprotected LU name in the following form: netid.luname. netid is the network
identifier. luname is the logical unit name. This field may be blank.
437 through 442 Character Unprotected LUWID instance number.
443 through 444 Binary Unprotected LUWID sequence number.

Note: The unprotected LUWID identifies the current logical unit of work for conversations with a syn-
chronization level of none or confirm.

1 This information is valid only for some of the communications types. These fields will be blank if the information does not pertain to the

communications type you are using.

Chapter 5. Using an Intersystem Communications Function File 5-5

Sending and Receiving Data

Data is sent between systems by using output (or write) and
input (or read) operations. The read and write operations are
done using a record format. The results of read and write
operations are communicated to the program with ICF mes-
sages, major/minor return codes, high-level language status
values, and an |/O feedback area .

The I/O feedback area is updated for every read/write opera-
tion. The I/O feedback area consists of two sections:

e The common |/O feedback area contains information
relevant to all communications types.

¢ The file-dependent I/O feedback area contains infor-
mation that can apply to one or more of the communica-
tions types.

Common /O Feedback Area

The common 1I/O feedback area contains information in the
following fields:

e OQutput operation count. A count of the number of suc-
cessful output operations. This count is updated only
when an output operation completes successfully.

¢ Input operation count. A count of the number of suc-
cessful input operations. This count is updated only
when an input operation completes successfully and
data is received.

e Output then input operation count. A count of the
number of successful output then input operations.

e Count of other operations. A count of the number of
successful operations other than output and input oper-
ations (such as acquire and release operations).

e Current operation. A hex value representing the
current (last requested) operation, sent as follows:

Hex 01 Input

Hex 05 Output

Hex 06 Output then Input
Hex 11 Release

Hex 12 Acquire

¢ Record format name. Name of the record format just
processed. The record format is either specified on the
1/0 request or determined by the specified format
selection processing option.

e Device class and type. A hex code representing a
device class for ICF and the communications type used

as follows:

Hex OBOE APPC

Hex 0B20 SNUF

Hex 0BOA BSCEL

Hex OB1F Asynchronous
Hex OB1E Intrasystem
Hex 0B42 Finance

Hex 0B43 Retail

5-6 ICF Programming V4R1

e Program device name. The program device name to
which the last operation was issued.

e Record length. The record length of the last I/O opera-
tion based on the record format processed, not including
any indicators or program-to-system fields (P-data
fields).

¢ Blocked record count. The number of records sent or
received on an I/O operation. For ICF, the value is
always 1.

e Record length. The record length of the last I/O opera-
tion based on the record format processed, including
indicators and P-data.

File-Dependent I/O Feedback Area

The file-dependent 1/O feedback area contains information in
the following fields:

e Actual record length. On input, this is the actual length
of user data received from the remote system or device.
When the data received is longer than the data
requested (all the received data cannot be contained in
the record format used), the length of data is provided, if
known. If the actual length cannot be determined, the
field is set to hex FFFFFFFF. When a partial record is
received (the remainder of the record is never sent), the
length of the data received is provided. If the input oper-
ation completes with an error (other than partial record
or truncated record), the contents of the field are unpre-
dictable.

On output, the actual length is the length of data moved
from the user’s buffer to the output buffer to send to the
remote system. If the output operation completes with
an error, the contents of the field are undetermined.

¢ ICF major/minor return code. A 4-character code (2
characters representing the major code, 2 characters
representing the minor code) indicating the results of
each operation.

¢ Negative response error data. For some return codes,
this field contains more detailed information about the
reason for the error. Refer to the following books:

APPC Programming

Finance Communications Programming
SNA Upline Facility Programming
Retail Communications Programming

for more information on this field, depending on what
communications type you are using.

¢ Request-to-write indication. This indication tells you if
the remote system requested that the application
program stop sending data and give permission (by
issuing a read or an allow-write request) to the remote
system to begin sending.

¢ Remote format name. The remote format name
received from the program device on an input operation.
This is valid when the FMTSLT option on the
ADDICFDEVE or OVRICFDEVE command is *RMTFMT.

See Chapter 6 for more information on the FMTNAME
DDS keyword.

¢ Mode. Mode associated with the program device.
Mode is for APPC only. Refer to the APPC Program-
ming book for more information on modes.

e Safe indicator. This field shows that an end-of-text
(ETX) control character has been received in the buffer,
and it is only valid for BSCEL. The safe indicator is not
set if BLOCK(*USER) was specified on the
ADDICFDEVE or OVRICFDEVE command. Refer to the
BSC Equivalence Link Programming book for more infor-
mation on this indicator.

Refer to Appendix C for a summary of the fields and the
communications types to which the information applies.
Refer to the appropriate communications programming book
for specific details on pertinent fields.

Like the open feedback area, the support provided by the
high-level language you use determines whether you can
access this information.

Checking Return Codes

After each operation, an ICF return code is returned to your
program. Your program checks this return code to deter-
mine:

¢ The status of the operation just completed
¢ The operation that should be done next

It is recommended that your program check these return
codes at the completion of every operation to ensure that the
operation completed successfully or that the appropriate
recovery action is taken.

A summary of these return codes is described in

Appendix B. These codes, or groups of codes, are also con-
verted to language return codes. For example, the ICF
codes are converted to RPG *STATUS values or to ILE
COBOL file status values. The ILE C programming language
does not have file status values. These values are shown in
a chart in the appropriate language chapter of this book.

Each ICF return code consists of a 2-digit major code and a
2-digit minor code . The major code identifies the general
condition for a group of return codes, and is usually sufficient
to determine the action to be taken. The minor code identi-
fies the specific condition and may indicate the specific
action that should be taken next. For example:

8233
|

| Minor code

Major code

In this example the major code 82 indicates that an acquire
or open operation was not successful. The minor code 33
indicates that the operation failed because an ADDICFDEVE
command or OVRICFDEVE command was not issued for the
program device you are trying to acquire.

Usually, your program determines the action to take by
checking only the major code or the language status code.
However, you may need to check minor codes for specific
conditions that occur for your particular application or com-
munications configuration.

For more information about major and minor return codes,
refer to Chapter 8.

Writing to a Program Device
Use a write operation to send data to the remote system.

The ICF file supports a set of DDS processing keywords and
system-supplied formats, used in conjunction with the write
operation, to perform various communications functions.
Refer to Chapter 6 and Chapter 7 for more information
about specifying the communications function to be used with
the write operation.

Note: Data can be written to only one program device for
each write operation.

Figure 5-3 on page 5-8 shows the use of the write operation
when sending data.

Your program uses a write operation to send data to
the remote system.

H Your program receives a return code indicating the
completion status of the operation.

If a successful return code is received, your program
continues sending several records.

Inviting a Program Device

Your program indicates it wants to start an asynchronous
input operation by inviting a program device. The invite func-
tion prepares your program to receive data. Your program
can continue processing after issuing the invite request, and
does not have to wait for the data.

An invite function is specified by:

¢ |ssuing a write operation to a program device using a
record format with the INVITE DDS keyword in effect.

¢ |ssuing a write operation to a program device using a
system-supplied format whose definition contains the
invite function.

For more information about specifying the invite function, see
Chapter 6 and Chapter 7.

Chapter 5. Using an Intersystem Communications Function File 5-7

AS/400 System

ICF
Source Data Communications
Program Management Support
e
e
Ll
1] Write = /) ={ 7
E _ | Return Code P
Ll
L]
L]
B Write = 7 = 7
_ | Return Code B
e
e
S

Figure 5-3. Using Write Operation When Sending Data

You can receive the response from an invited program
device by doing an input operation. See “Reading from
Invited Program Devices” on page 5-10 and “Reading from
One Program Device” on page 5-14 for more information.

At least one program device must be invited before a read-
from-invited-program-devices operation can return a
response from a program device.

A program would invite a program device because:

¢ Inviting several program devices allows the program to
do a read-from-invited-program-devices operation and
receive data from one of the invited program devices
with a response available. Therefore, using the invite
function of the ICF file, the program can handle receiving
a record from any one of several invited program
devices by reading from a single point in the program.
The program issues an input operation for the response.

e A program wants to use the time-out capability of the
read-from-invited-program-devices operation.

Format Selection Processing

The format selection (FMTSLT) parameter on the
ADDICFDEVE and OVRICFDEVE commands determines
how ICF data management selects the record format to use
when receiving data with the read and read-from-invited-
program-devices operations. The three different methods of
selecting a record format are discussed here. The name of
the record format selected is placed in the 1/0 feedback area.

5-8 ICF Programming V4R1

RSLS669-3

Refer to “Determining the Record Format Returned” on
page 5-14 for more information about determining the record
format selected.

Program Selection (*PGM): If you specify
FMTSLT(*PGM), which is the default, on the ADDICFDEVE
or OVRICFDEVE command, your program must specify the
record format to use when your program does an input oper-
ation. If no record format name is given, ICF data manage-
ment uses the default record format. The default format is
always the first format defined in the file.

The only selection process that is applicable when using the
system-supplied QICDMF file is FMTSLT(*PGM). The
default record format in this file is a 4096-byte data record
called DFTRCD. You should either specify this format on the
input operation or allow the system to default. Your program
must then examine the input data to determine what data
processing to perform on the fields in the record.

Record-Identifier Selection (*RECID): Selecting
FMTSLT(*RECID) on the ADDICFDEVE or OVRICFDEVE
command provides a means of identifying and selecting the
record format to use based on the data received. If you
specify FMTSLT(*RECID), the file is searched for the RECID
keyword on each input operation. The RECID keyword pro-
vides a definition for determining which record format to use.

When you specify the RECID keyword, you define a compare
value. You must define the beginning position in the record
format and the compare value to use. When data is
received, the corresponding positions in the record are com-

pared to the defined RECID values. When a match is found,
that record format is used to process the received data. If no
match is found, or if no data is received, the default record
format is used.

When the FMTSLT(*RECID) is specified, the default format
for an ICF file is one of the following:

¢ The first format in the file without the RECID keyword
specified

¢ The first format in the file if all formats have the RECID
keyword specified (applies only when no data is
received)

Notes:

1. An ICF return code of 81E9 is returned to your program
if the default format has the RECID keyword specified
and no match is found for the received data. Refer to
Appendix B for a complete list of return codes.

2. If a read with a record format specified is issued, the
format specified must match the name determined by
the RECID keyword selection process. If not, return
code 3441 is returned to your program.

Refer to Chapter 6 for more information about the RECID
keyword.

Remote Format Selection (*RMTFMT): Remote
format selection is supported by APPC and intrasystem com-
munications.

If you specify FMTSLT(*RMTFMT) on the ADDICFDEVE or
OVRICFDEVE command, your program does not need to
enter a format name when it does an input operation.
Instead, the format name passed with the data from the
Summary of Format Selection Processing:

Figure 5-4 summarizes the record format that is selected
based on the format selection option specified on the
FMTSLT parameter and the record format name specified on
the input operation (if one was specified). This chart also
shows what return codes can result from the format selection
process on an input operation.

remote program is used. If the remote system is an AS/400
system, the remote program must specify the FMTNAME
keyword in the record used to send the data to ensure the
format name is sent.

If the remote system does not send a format name (for
example, a record is sent without a FMTNAME keyword
specified) and a format name is specified with the input oper-
ation in your program, that name is used to process the data
received. If no format name is specified on the input opera-
tion, the default record format in the ICF file is used. The
default record format is the first record format in the file.

If the remote program sends a format name and your
program specifies a format name, the names must match. If
they do not match, return code 3441 is returned to your
program.

If the remote program sends a format name and
FMTSLT(*RMTFMT) was not specified on the ADDICFDEVE
or OVRICFDEVE commands, the remote format name sent
is ignored by ICF.

The record format name received from the remote system on
a successful input operation is put in the file-dependent
section of the 1/0 feedback area. The high-level language
may access this area to determine the remote record format
name received from the remote system. Refer to the appro-
priate language reference book for more information about
accessing the I/O feedback area.

Figure 5-4 (Page 1 of 2). Format Selection Options

Record Format Name Not

selection.
program.

FMTSLT Specified on Input Opera-
Option Input Data Record Format Name Specified on Input Operation tion
*PGM Does not apply to format If specified format name is defined in ICF file, specified Default format! selected.

format selected. Otherwise, return code 83EO returned to

Chapter 5. Using an Intersystem Communications Function File 5-9

Figure 5-4 (Page 2 of 2). Format Selection Options

Record Format Name Not

FMTSLT Specified on Input Opera-

Option Input Data Record Format Name Specified on Input Operation tion

*RECID Data received matches If matched format is same as specified format, matched Matched format selected.
record format in file with format selected. Otherwise, return code 3441 returned to
RECID keyword. program.

Data received does not If default format2 does not have RECID keyword, default If default format2 does not

match any record in file format selected. Otherwise, return code 81E9 returned to have RECID keyword,

with RECID keyword. program. default format selected. Oth-
If format selected (default2) is not same as specified erW|se,dreturn code 81E9
format, error return code 3441 returned to program. returned to program.

No data received. If default format2 is same as specified format, default Default format2 selected.
format selected. Otherwise, return code 3441 returned to
program.

*RMTFMT | Record format name If remote format name is defined in the ICF file, remote If remote format is defined in
(remote format) received format selected. Otherwise, default 1 format selected. the ICF file, remote format
from the remote system If format selected is not same as specified format, return fseleCteld' ?theaw'se' default

code 3441 returned to program. ormat= selected.
Record format name If specified format name is defined in the ICF file, specified Default formatl selected.
(remote format) not format selected. Otherwise, error return code 83EOQ
received from the remote returned to program.
system

1 The default record format for FMTSLT(*PGM) and FMTSLT(*RMTFMT) is the first record format in the ICF file.

2 The default format for FMTSLT(*RECID) is the first record format in the ICF file that does not have a *RECID keyword specified, or the
first record format if all record formats have the *RECID keyword specified.

Reading from Invited Program Devices

The primary purpose of the read-from-invited-program-
devices operation is to provide a single point in the program
at which the program can wait for and receive a record from
one of several program devices. The read-from-invited-
program-devices operation can wait for and return a record
to the program from one of the invited program devices with
an available record.

The read-from-invited-program-devices operation is also used
to check whether the timer that was set by the timer function
has ended. Refer to Chapter 6 and Chapter 7 for more
information on the timer function.

The read-from-invited-program-devices operation can com-
plete when:

¢ A complete record arrives for an invited program device.

5-10 ICF Programming V4R1

¢ A communications failure is detected on one of the
invited program devices.

¢ The job is being canceled (controlled).

¢ The time specified by either the timer function or the
WAITRCD parameter on the CRTICFF command is
reached.

The read-from-invited-program-devices operation is only valid
if the high-level language you are using considers the ICF file
to be a multiple device file. The ILE C, ILE COBOL, and ILE
RPG languages consider the ICF file to be a multiple device
file, while the FORTRAN/400 language does not. See the
appropriate language reference book for more information.

Figure 5-5 on page 5-11 shows how you can use the invite
function and read-from-invited-program-devices operation to
receive data from two different program devices.

AS/400 System

ICF
Source Data

Program Management

C
e Program

L) Device

Write with PGMDEVA

Request
Data for

PGMDEVA

Communications

Support

INVITE v

Return Code

Program
Device

Write with PGMDEVC

Request
Data for

PGMDEVC

INVITE v

Return Code

a

v
Data Received
for Program
Device

PGMDEVA

Read-from-

Invited-

Program
Return Code

r\<-—

) Data Link

Devices = }/ /(—
and Data
L
e
e

Data Received I

for Program

Device

PGMDEVC

Program

Device
Write with
PGMDEVA

INVITE

Request
Data for

PGMDEVA \

2000227 <

~
\
\

Return Code

Read-from-

Invited-

Program P Return Code }/ /(

Devices

RSLS126-7

Figure 5-5. Using the Invite Function and Read-from-Invited-Program-Devices Operation to Receive Data

Your program uses the invite function to ask the
remote system to send data for program device
PGMDEVA.

A successful completion return code tells your program
that ICF data management received the operation and
is asking the remote system to send data. No data
has yet been received.

Your program issues another invite function. This
invite is for program device PGMDEVC. Data has not
yet been received for the first invite for program device
PGMDEVA.

The system receives data for program device
PGMDEVA. (Data is not necessarily received in the
order in which the invite functions were issued. For

co []

Chapter 5. Using an Intersystem Communications Function File

example, data can be received for program device
PGMDEVC before data is received for PGMDEVA.
Your program must check the program device name to
determine for which program device the data is
received.)

A read-from-invited-program-devices operation is used
to receive the data sent.

This time a successful completion return code tells
your program that data has been received and is in
your program buffer.

Data is received for program device PGMDEVC.

Another invite function is used to ask for program
device PGMDEVA data.

5-11

B Another read-from-invited-program-devices operation is
used to receive the data for program device
PGMDEVC.

Specifying Maximum Wait Interval: You can specify
the maximum amount of time your program will wait for a
read-from-invited-program-devices operation to complete.
The time interval can be specified by:

¢ Specifying the WAITRCD parameter on the CRTICFF,
CHGICFF, and OVRICFF commands

¢ |ssuing the timer function

The WAITRCD parameter establishes the maximum time
interval used for all read-from-invited-program-devices oper-
ations issued against the file.

AS/400 System

The timer function is used to specify the maximum time
interval used for read-from-invited-program-devices oper-
ations until either the timer ends or a new interval is set
using the timer function. When the interval for the timer
operation is in effect, the value specified on the WAITRCD
parameter is ignored.

If a response is not received from the invited program
devices within the specified amount of time, the program is
notified with an ICF return code (0310) indicating that the
timer interval has ended.

Figure 5-6 shows the relationship between the timer function
and the read-from-invited-program-devices operation.

ICF
Your Data
Program Management

(]

Write with >/ /)

Communications
Support

> 7] - . Data Record

N

INVITE
Return Code

Write with
TIMER

v

Return Code

3

Read-from-
Invited-

Program
Devices | Return Code 7 1<

Is Sent

Data Link

Data Record

and Data

("Write with

ﬁ
BN
[}
I\I\
Hﬂ

Is Received

Data Record

INVITE > Z
Return Code

H Write with _

TIMER Return Code

s

Read-from-
Invited- ~ Time

Program
_.Devices | Return Code 7'3'?5)595

()

v
]
DN
i

Is Sent

RSLS127-6

Figure 5-6. Relationship between Timer and Read-from-Invited-Program-Devices Operations

[Your program issues an invite function.

5-12 ICF Programming V4R1

H A successful completion return code tells your program
that ICF data management accepted the request and
that the remote system is expected to respond. No
data has yet been received.

Your program uses the timer function to set the
maximum length of time to wait for a response.

B A read-from-invited-program-devices operation is used
to read the data or, if the data is not received within
the length of time specified, the return code indicates
that the time you set has elapsed.

BH The data is received before the time elapses. There-
fore, a successful completion return code is passed to
the program with the response from the remote
system.

A Your program again uses the invite function to send
data and ask for a response. The time interval is again
set, and another read-from-invited-program-devices
operation is issued.

This time the read-from-invited-program-devices opera-
tion results in a return code that tells your program the
time elapsed before a response was received from the
remote system. When this happens, you may want to
send a message to the operator, continue processing,
or both.

The ILE COBOL programming language provides a means of
calling the read-from-invited-program-devices operation as if
WAITRCD(*IMMED) is specified. Refer to the ILE
COBOL/400 Reference book for information about the NO
DATA phrase of the READ statement. See “Determining the
Wait-for-Record Value” on page 4-5 for information about
specifying the WAITRCD parameter.

Note: WAITRCD has no meaning to the FORTRAN/400 lan-
guage, since the read-from-invited-program-devices operation
is not supported.

Refer to Chapter 6 and Chapter 7 for information on speci-
fying the timer function.

Responses: A program can receive one of many
responses from the read-from-invited-program-devices opera-
tion. These responses are communicated to your program
through an ICF return code.

The ICF file also supports a set of DDS response indicators
that can be used in conjunction with the read-from-invited-
program-devices operation to indicate status information
about the operation. Refer to Chapter 6 for more information
about response indicators.

The following sections describe possible responses from the
read-from-invited-program-devices operation and the condi-
tions under which the program receives the response.

Data from One of the Invited Program Devices with Data
Available: If at least one invited program device has data
available and the job has not been ended (controlled), the
read-from-invited-program-devices operation returns data
from one of the invited program devices.

After the read-from-invited-program-devices operation com-
pletes, the program can examine feedback that allows it to

Chapter 5. Using an Intersystem Communications Function File

identify the program device that returned the data and the
record format of the data returned. See “Determining Which
Invited Program Device Had Data Available” on page 5-14
for information about how to determine which program device
responded. See “Determining the Record Format Returned”
on page 5-14 for information about determining the format of
the returned record.

The program device returning the data is no longer in the
invited state. The program device must be invited before it
can return any more data using the read-from-invited-
program-devices operation. Other invited program devices
remain invited.

Job Ended (Controlled): The read-from-invited-program-
devices operation returns this response if the job is ended
(controlled) before or during the wait for data to become
available from an invited program device.

Receiving the job ended response does not cancel the invite.
All invited program devices remain invited.

If any program in the job is notified that the job is being
ended (controlled), that program should notify all other pro-
grams in the job. The system notifies only one program
regardless of how many ICF files are used in the job.

When a program receives a job ended (controlled) indication,
the program should complete operations and end before the
system changes the job ended (controlled) to job ended
(immediate) and forces all processing to stop. This action is
important if a program needs to complete some processing
before it ends.

No Invited Program Devices Have Data Available: The
read-from-invited-program-devices operation returns this
response when the job is not being ended and:

¢ At least one program device is invited.

¢ No data is available from any of the invited program
devices.

e The WAITRCD(*IMMED) parameter is specified.
All invited program devices remain invited.

Time-Out on Wait for Data from Invited Program
Devices: The read-from-invited-program-devices operation
returns this response when:

¢ No data is available from any of the invited program
devices in the amount of time specified as the
WAITRCD parameter or the timer function.

e The job is not being ended.
All invited program devices remain invited.

No Program Devices Invited: If no program devices are in
the invited state and the timer function is not in effect, the
program is notified that no program devices were invited.

5-13

Error from One of the Invited Program Devices: The
read-from-invited-program-devices operation can return an
error condition instead of data from one of the invited
program devices if:

e The job is not being ended.
e At least one invited program device has a response
available.

If an invited program device detects an error while it does the
input operation, the error (like the data) is held until the
program device is read using a read-from-invited-program-
devices or read operation.

Determining Which Invited Program Device Had

Data Available: After a read-from-invited-program-devices
operation returns data from an invited program device, the
program may need to identify the name of the program
device from which the data was returned. This identification
is necessary if the program wants to handle one program
device differently from other program devices.

The program can determine the name of the program device
that returned the data from a field in the I/O feedback area.
Refer to the appropriate language reference book to learn
about other ways to get this information, and about how to
access the 1/0 feedback area.

If the program needs the name of the program device that
returned the data, the program must get that information
before doing any other 1/0 operations to the file.

If the read-from-invited-program-devices operation did not
return a data available response (some other response, like
job ended (controlled) was returned to the program), the field
containing the name of the program device to which 1/0 was
last directed in the 1/0 feedback area is set to *N (not appli-
cable).

Determining the Record Format Returned: Because
a read-from-invited-program-devices operation returns a
record from one of the invited program devices with an avail-
able record, regardless of that record’s format, you cannot
specify a record format on the read-from-invited-program-
devices operation.

The system uses the FMTSLT parameter on the
ADDICFDEVE, CHGICFDEVE, and OVRICFDEVE com-
mands to determine the record format. Therefore, the
program may have to determine the format of the record

5-14 ICF Programming V4R1

returned before handling the record (if a program device can
return a record in one of several record formats).

The program can determine the record format of the data
returned from a field in the I/O feedback area that indicates
the name of the last record format used for /0. Refer to the
appropriate language reference book to learn about other
ways of getting this information and about how to access the
I/O feedback area.

Note that if the program needs the name of the record format
used to receive the data, the program must get that informa-
tion before doing any other 1/O operations to the file.

Reading from One Program Device

A read operation waits for and receives data from one
program device. There is no time limit on a read operation
(the WAITRCD parameter and the interval specified on a
timer function are ignored). The program waits until data is
available from that program device. The read operation
differs from the read-from-invited-program-devices operation
in that a read operation is directed to a specific program
device, whereas the read-from-invited-program-devices oper-
ation receives data from any program device that was previ-
ously invited.

Note: When a program device is invited, it is recommended
that a read-from-invited-program-devices operation be per-
formed rather than a read operation to receive data. Perfor-
mance may be degraded if your program issues multiple
read operations to invited program devices.

The program can indicate to the system that a read operation
must be done in three ways:

¢ Explicitly, by specifying the name of a program device
on the read operation

e Implicitly, by specifying the name of a record format on
the read operation

e Implicitly, by specifying neither a record format or
program device name, and the high-level language con-
siders the ICF file a single device file

Because you cannot specify a record format on a read-from-
invited-program-devices operation, the system interprets a
read with a record format specified as a read operation. See
the appropriate language reference book for information
about calling the read operation explicitly or implicitly and
about which program device is used if the read operation is
implicitly called.

AS/400 System

ICF
Source Data
Program Management

L
e
&

Data Record

Communications
Support

Data Is Sent

|
¢

Write = [/)
Return Code

E Read for >
Program
Device

PGMDEVA Return Code

> =

Data Is
Received for
Program
Device
PGMDEVA

Data Link

and Data

%] <

H“H
I

Figure 5-7. Using the Read Operation

Figure 5-7 shows how to use the read operation.

EH Your program uses a write operation to send data to
the remote system.

H A read operation is then issued to receive data from
PGMDEVA. The program waits to receive the data
before continuing.

If the program device specified on the read operation has
been invited, the invite is satisfied and the input operation
started when the program device was invited is completed
before control is returned to the program.

The ICF file supports a set of DDS response indicators that
can be used in conjunction with the read operation to indi-
cate status information about the operation. Refer to
Chapter 6 for more information about response indicators.

Writing and Then Reading from One
Program Device

Some high-level languages support an interface to send a
single I/O operation that does a write operation followed by a
read operation to a program device.

The same record format is used on both the write and read
operation.

RSLS140-8

Canceling an Invite of a Program Device

If a program device is invited, it is possible to cancel the
invite:
e Explicitly, by issuing a cancel-invite function to the
program device

¢ Implicitly, by issuing a write operation to the program
device

Refer to Chapter 6 and Chapter 7 for information about
specifying the cancel-invite function.

Waiting for a Display File, an ICF File, and
a Data Queue

You can use data queues for a program that waits for data
on a display file, an ICF file, and a data queue at the same
time (in any combination). When you specify the DTAQ
parameter for certain commands, you can indicate a data
queue that will have entries placed on it when any of the fol-
lowing occurs:

¢ An enabled function key or the Enter key is pressed
from an invited display device.

e Data becomes available from an invited ICF session.
e A user-defined entry is made to the data queue by a job
running on the system.
The commands that allow you to indicate a data queue with
the DTAQ parameter are:

e Create Display File (CRTDSPF)
¢ Change Display File (CHGDSPF)
e Override Display File (OVRDSPF)

Chapter 5. Using an Intersystem Communications Function File ~ 5-15

e Create ICF File (CRTICFF)
¢ Change ICF File (CHGICFF)
¢ Override ICF File (OVRICFF)

By using the IBM-supplied QSNDDTAQ program, jobs
running on the system can also place entries on the same
data queue as the one specified in the DTAQ parameter.

For an ICF or display file, the application program uses the
IBM-supplied QRCVDTAQ program to receive each entry
placed on the data queue and then processes the entry
based on whether it was placed there by the display file, the
ICF file, or the QSNDDTAQ program. For a display file, the
application then issues a read or read-from-invited-devices

operation to receive the data. For more information on the
QRCVDTAQ function and syntax, and examples of waiting
on one or more files and a data queue, see the CL Program-
ming book.

The display file and ICF file entry that is put on the data
queue is 80 characters in length and contains the field attri-
butes described in Figure 5-8. Therefore, the data queue
that is specified using the commands listed above must have
a length of at least 80 characters.

Entries placed on the data queue by jobs using QSNDDTAQ
are defined by the user.

Figure 5-8. Display File and ICF File Entry Field Attributes

Position Data Type Meaning

1 through 10 Character

*ICFF (ICF file)
*DSPF (display file)

The type of file that placed the entry on the data queue. This field can have one of two values:

If the job receiving the data from the data queue has only one display file or one ICF file open, then
this is the only field that needs to be used to determine what type of entry has been received from the

data queue.
11 through 12 Binary

Unique identifier for the file. The value of the identifier is the same as the value in the open feedback

area for the file. This field should be used by the program receiving the entry from the data queue only
if more than one file with the same name is placing entries on the data queue.

13 through 22 Character

The name of the display or ICF file. This is the name of the file actually opened after all overrides

have been processed, and is the same as the file name found in the open feedback area for the file.
This field should be used by the program receiving the entry from the data queue only if more than one
display file or ICF file is placing entries on the data queue.

23 through 32 Character

The library where the file is located. This is the name of the library after all overrides have been

processed, and is the same as the library name found in the open feedback area for the file. This field
should be used by the program receiving the entry from the data queue only if more than one display
file or ICF file is placing entries on the data queue.

33 through 42 Character

The program device name after all overrides have been processed. This name is the same as that

found in the program device definition list of the open feedback area. For file type *DSPF, this is the
name of the display device where the command was entered or the Enter key was pressed. For file
type *ICFF, this is the name of the program device where data is available. This field should be used
by the program receiving the entry from the data queue only if the file that placed the entry on the data
gueue has more than one device or session invited prior to receiving the data queue entry.

43 through 80 Character Reserved.

Releasing a Program Device

You can explicitly release a program device from an ICF file
by using the release operation, or you can implicitly release
the device by closing the file.

If you release the program device, you must reacquire it
before you can use it again for 1/0O operations.

The release operation ends the session only when certain
criteria are met. The end-of-session function always ends
the session. Refer to Chapter 6 and Chapter 7 for more
information about specifying an end-of-session function.
The following processing is done by the release operation:

e Source program

5-16 ICF Programming V4R1

— If the program device is invited, the release opera-
tion fails.

— If a transaction is still active on the session, the
release operation fails.

— If a transaction is not active on the session, the
session ends.

— If the device description associated with the
program device is allocated when the program
device is acquired, it is deallocated when the
program device is released.

— If an error occurs due to the hardware or an SNA
protocol violation, the release operation fails.

e Target program

— The release operation severs the logical connection
between the application and the requesting program
device. The session is not ended.

— The program (or another program in the same job
structure) can reestablish the connection to the
same session by acquiring the requesting program
device. The communications session, including the
state of the session, remains intact.

Closing an Intersystem Communications
Function File

The processing done by the close operation depends on
whether the file is shared. If the file is not shared, the fol-
lowing processing is done:

¢ All sessions associated with the source program are
ended.

Chapter 5. Using an Intersystem Communications Function File

e All sessions associated with the target program are
released.

e The file resources allocated by the open operation are
deallocated and returned to the system.

If the file is shared, the program cannot do 1/O operations to
the file. Other programs that have the file open can still use
the file.

If the close operation is successful, an open operation is the
only program operation allowed to the file. If the close oper-
ation fails, the program should call the close operation a

second time. A second close operation is always successful.

Summary
Figure 5-9 on page 5-18 shows the relationship between the

program, the ICF file, and the communications configuration
on a local and remote AS/400 system.

5-17

Source Job

Program

Device

RMTLOCNAME

Name
(CHICAGO)

!
!
!
!
!
} Mode
!
!
!
!
!
!

Class-of-
Service

Description

Local System

Figure 5-9. Relationship of Program, File, and Configuration

Notes:

1. The mode description and class-of-service description

apply to APPC only.

2. Network interface description applies only to ISDN.

5-18 ICF Programming V4R1

Device

Description

Controller

Description

Line

Description

!
!
!
Network |
!
Interface !

Description

Subsystem

Target Job

|
|
|
|
File |
|
|
|

RMTLOCNAME
(*REQUESTER)

Deschiption

fffffff -

| |

| !

| |

| |

| |

| I !

Controller } Mode }
|

Descr}iption } }

| |

| |

| !

Class-of-
Service

Description

|
Netwq)rk

Interface

Remote System
RSLS177-6

Local System

The source program is your ILE C, ILE COBOL, or ILE RPG
application, which is communicating with the target program
through an ICF file. You can create this file using the
CRTICFF command, and change it using the CHGICFF or
OVRICFF command.

The source program:

¢ Opens the file

e Acquires one or more program devices (Only one is
allowed per ICF file for FORTRAN/400 applications.)

¢ Reads and writes to program devices in the file to
receive and send data

¢ Releases the acquired program devices
¢ Closes the file
The device entries defined in the file with the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command provide:
e Mapping to the communications configurations
¢ Communications-type-dependent definitions of program
device attributes

The local configurations selected by the program device
entry define the connection to the remote system.

Remote System

An incoming program start request from the local system
starts a target job.

The target program is your ILE C, ILE COBOL, or ILE RPG
application, which is communicating with the source program
through an ICF file. You can create this file using the

CRTICFF command and change it using the CHGICFF or
OVRICFF command.
The target program:

¢ Opens the file

e Acquires the requesting program device (This must be
done implicitly on the open for FORTRAN/400 pro-
grams.)

¢ Reads and writes to the requesting program device for
the file to receive and send data

¢ Releases the requesting program device (This must be
done implicitly on the close for FORTRAN/400 pro-
grams.)

¢ Closes the file
The device entries defined in the file with the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command provide:

¢ A relationship to the requesting program device

e Communications-type-dependent definitions of program

device attributes

Refer to “Remote Program Start Considerations” on
page 8-5 for more information on subsystems.

Chapter 5. Using an Intersystem Communications Function File ~ 5-19

Figure 5-10 shows how the program, file, and configuration

names are mapped to each other in ILE C programming lan-
guage.

Create C/400 Program

#include <ld\u" >
ginclude ecio.n >

_RFILE "ICFPTR;

ICFPTR = _Ropen("ICFFILE" “ar +°);

\

_Racquire (ICFPTR "PGMDEVA");

_Rwrite (ICFPTR, &record, sizeof(record));

\

_Rreadn (ICFPTR @record, sizeof(record), DET)

Create ICF File

CRTICFF FILE(ICFFILE)

\

ADDICFDEVE FILE(ICFFILE) PGMDEV(PGMDEVA) RMTLOCNAME (CHICAGO)

Create Com munications Configurations

Remote location
Local location

Network 1D

RV2P922-3

Figure 5-10. ILE C Program, File, and Configuration Mapping

5-20 ICF Programming V4R1

You create various configuration objects when you use the
communications configuration function. The remote location
name provides the primary mapping between the program
device and the communications configurations. The speci-

Create COBOL/400 Program

fied remote location name is used to select the device
description.

Figure 5-11 shows how the program, file, and configuration
names are mapped to each other in the COBOL/400 pro-
gramming language.

SELECT ICFFILE ASSIGN TO WORKSTATION-ICFFILE

FD ICFFILE.

i \

ACQUIRE "PGMDEVA" FOR ICFFILE.

WRITE ICF-BUFFER

FORMAT IS "RECORD"

TERMINAL IS "PGMDEVA"

READ ICFFILE

Create ICF File

CRTICFF FILE(ICFFILE)...

:

ADDICFDEVE FILE(ICFFILE) PGMDEV(PGMDEVA) RMTLOCNAME(CHICAGO)

Create Communications Configurations

Remote location

Local location

Network ID

Figure 5-11. COBOL/400 Program, File, and Configuration Mapping

Chapter 5. Using an Intersystem Communications Function File

/

RvV2PO923-0

5-21

You create various configuration objects when you use the
communications configuration function. The remote location
name provides the primary mapping between the program
device and the communications configurations. The speci-
fied remote location name is used to select the device
description.

Figure 5-12 shows how the program, file and configuration
names are mapped to each other in RPG/400 programming
language.

Create RPG/400 Program

You create various configuration objects when you use the
communications configuration function. The remote location
name provides the primary mapping between the program
device and the communications configurations. The speci-
fied remote location name is used to select the device
description.

FICFFILE

: KID DEVICE

F KNUM 2

¢ 'PGMDEVA' ACQ ICFFILE

c READ ICFFILE

c MOVEL'PGMDEVA' DEVICE 10
c READ RECORD

Create ICF File
CRTICFF FILE(ICFFILE)...

ADDICFDEVE FILE(ICFFILE) PGMDEV(PGMDEVA) RMTLOCNAME(CHICAGO)

Create Communications Configurations

Local location

Network ID

Remote location

Figure 5-12. RPG/400 Program, File, and Configuration Mapping

5-22 ICF Programming V4R1

RV2P924-0

Chapter 6. Using Communications DDS Keywords

This chapter explains how to use data description specifica-
tions (DDS) keywords on input and output operations to
perform communications functions with the remote system.
These DDS keywords are associated with the defined record
format used on the read or write operation. The record
formats associated with the DDS source for your ICF file are
referred to as user-defined formats. This is in contrast to the
system-supplied formats discussed in Chapter 7. Itis
assumed that you have opened your file and established
your session as described in Chapter 5.

The information and illustrations provided describe the func-
tion of each of the processing keywords supported by the
ICF file. Although all of the parameters supported by each
keyword are described, the information on coding the
keywords is found in the DDS Reference book. The DDS
Reference book also contains general information on defining
record formats.

You can use several DDS keywords and combinations of
keywords on a single input/output (I/O) operation.

Figure 6-19 on page 6-23 shows the processing sequence
when multiple DDS keywords are specified together.

All the keywords described in this chapter may not be sup-
ported by the communications type you are using. Further-
more, some keywords may operate differently depending on
the communications type. Figure 6-17 on page 6-21 and
Figure 6-18 on page 6-22 summarize the support provided
by each communications type. Refer to the appropriate com-
munications programming book for the communications type
you are using for more detail about supported keywords.

Several DDS keywords that do processing-control, refer-
encing, and text-definition functions that are valid in ICF files
and other types of files are not discussed in this book.

These keywords are ALIAS, FLTPCN, INDARA, INDTXT,
REF, REFFLD, and TEXT. Refer to the DDS Reference
book for more information on how to code and use these
keywords. These keywords are supported by all communica-
tions types.

Examples of source DDS and the commands used to create
and use an ICF file are found at the end of this chapter.

Refer to Chapter 10 for complete program examples that use
DDS keyword processing.

You can use system-supplied communications formats
instead of DDS keywords to do communications-specific
functions. Refer to Chapter 7 for more information on
system-supplied formats.

© Copyright IBM Corp. 1997

Starting a Program on the Remote System

Your program must specify the target program it will commu-
nicate with before it can send or receive data. The target
program is started by specifying an output operation with the
EVOKE keyword in effect. Generally, the necessary parame-
ters to identify the target program you want to start must be
specified. However, for some communications types, these
parameters are not required.

These parameters include items such as the program name,
the name of the remote library where the program is stored,
and security information (when required). You may also
include data with the evoke function, which will be sent to the
target program when the evoke function is done. A program
start request is sent to the remote system when your
program issues the evoke function (unless, for APPC appli-
cations, the evoke is delayed by specifying the DFREVOKE
keyword).

Use the EVOKE, SECURITY, and SYNLVL keywords to start
a program at the remote system.

Evoke (EVOKE, DFREVOKE, SECURITY,
and SYNLVL)

The EVOKE keyword allows your program to start a program
on the remote system. EVOKE is valid only when the source
program is not already communicating with the target
program on the same transaction.

The format of the EVOKE keyword is:

EVOKE([Tibrary-name/]program-name [parameter-1...
[parameter-255]]1)

The program-name parameter is required on the EVOKE
DDS keyword to identify the program to be started on the
remote system. However, some communications types do
not require the program name. In these cases, blanks
should be used for the program name instead. Refer to the
appropriate communications book to determine if the commu-
nications type you are using requires a program name on the
EVOKE DDS keyword.

The optional library-name parameter specifies the library
where the program is stored on the remote system. In
general, it is best to specify the library separate from the
program. If you specify the target program as a single literal,
then it must be specified in the format required by the remote
system or in the architected format. For example, if you are
using APPC with another AS/400 system, the program name
can be in the form library/program or program.library. If the
remote system is an AS/400 system and a library name is
not given, the library list for the subsystem that is handling
the request on the remote system is searched for the
program name. The library list for the subsystem consists of

6-1

the values from the QSYSLIBL and QUSRLIBL system
values at the time the subsystem was started.

In addition to passing the program-name and library-name to

the remote system, you can also use the EVOKE DDS

keyword to send up to 255 user-defined parameters to the

remote system. (Some communications types do not support

255 parameters. Refer to the appropriate communications

programming book for any additional restrictions.) The target

program defines the number and format of the parameters.

If the remote system is another AS/400 system, the following

apply:

e The parameters are passed to the program as if they

were passed from a Call a Program (CALL) command.

¢ |f the parameters contain embedded commas, the
remote AS/400 system considers these to be multiple
parameters rather than a single parameter.

Any transaction status information sent by the source
program is received on the first read operation of the target
program. For example, if the target AS/400 system program
is started from an AS/400 system with an evoke-with-invite
function using advanced program-to-program communica-
tions (APPC), the first read operation on the target program
completes with an 0300 (change direction received)
major/minor return code.

DFREVOKE Keyword: You can use the DFREVOKE
DDS keyword to delay sending a program start request until
the output buffer is full of data or until the output buffer is
flushed, using the FRCDTA or CONFIRM keyword, for
example.

The DFREVOKE keyword is valid only for APPC and used
only for specialized applications that must have data sent
with the EVOKE keyword. See the APPC Programming
book for more information.

SECURITY Keyword: You can use the SECURITY DDS
keyword to include security information with the evoke
request. The SECURITY keyword is only valid in conjunction
with the EVOKE keyword. All security specifications must
satisfy the requirements of the remote system.

The format of the SECURITY keyword is:
SECURITY(n reserved-word|'literal'|field-name-1
|&field-name-1[.3.])

The n parameter required by the remote system identifies the
security subfield being described. The n parameter can be
specified as:

e 1 for a profile ID
e 2 for a password
e 3 forauserID
You can specify the following values for the security fields:

reserved-word. This value can be specified as one of
the following:

6-2 ICF Programming V4R1

e *USER. Specifies that the user’s profile name on
the local AS/400 system is used as the security
field.

¢ *NONE. Specifies that the security field is not sup-
plied.

literal’. A literal value of up to 10 characters that con-
tains the needed security information.

field-name (or &field-name). The name of a field in the
record format that contains the needed security informa-
tion. If you want to send blanks as the security field,
you must specify this as a literal value or use a field
name.

If you do not explicitly define the security values on the
SECURITY keyword for an evoke request, no security values
are sent.

Refer to Chapter 8 for information about remote program
start considerations on the AS/400 system.

SYNLVL Keyword: Use the SYNLVL DDS keyword to
specify the level of synchronization supported on this trans-
action. It determines whether the programs support no syn-
chronization, confirmation-level synchronization (using
CONFIRM and RSPCONFIRM keywords), or commit-level
synchronization. Commit-level synchronization is a two-
phase commit protocol using the PRPCMT keyword and
commit and rollback operations. The SYNLVL keyword is
valid only in conjunction with the EVOKE keyword.

The format of the SYNLVL keyword is:
SYNLVL[(*NONE | *CONFIRM| *COMMIT)]

You can specify the following optional values for the SYNLVL
keyword:

*NONE. Specifies that confirmation of the receipt of
data is not allowed on this transaction. For example, on
the AS/400 system the CONFIRM keyword is not
allowed with SYNLVL (*NONE).

*CONFIRM. Specifies that the sending program can
request that the receiving program responds to receipt of
the data. The receiving program can send a positive
response, or the receiving program or system can send
a negative response. For example, on the AS/400
system the CONFIRM keyword is allowed on write oper-
ations.

Refer to the keyword descriptions for “Confirm
(CONFIRM)” on page 6-4, “Receive-Confirm” on

page 6-19, and “Respond-to-Confirm (RSPCONFIRM)”
on page 6-12 for additional information on CONFIRM
processing.

*COMMIT. Allows the programs to operate as described
for the *CONFIRM value. Moreover, *COMMIT requires
programs to use two-phase commit processing to protect
their resources. Two-phase commit processing allows
programs to synchronize updates to protected resources
(such as databases). If necessary, updates can be

rolled back, so that the resources remain synchronized.
Refer to the descriptions of the PRPCMT, RCVROLLB,
and RCVTKCMT keywords for more information on two-
phase commit processing. The Backup and Recovery
book has information about commitment control and the
commit and rollback operations, which are an essential
part of two-phase commit processing.

Evoke lllustration: Figure 6-1 shows how to start a
target program on the remote system.

| The source program issues an evoke request to start
the program at the remote system.

AS/400 System

H The evoke parameters, including program name, library
name, and security information are sent to the remote
system. Program initialization parameters can also be
sent with the program start request (optional).

A successful completion return code tells the source
program that the evoke request was accepted and a
program start request was sent to the remote system.
If the program start request is successful, both the
program at the remote system and the communications
transaction are started.

ICF
Source Data

Program Management

E)
C)
e
Write with
Evoke

————

Communications

vz > 4

v

Return Code

Support
Program Start
Request to
Remote System
. }/ /{g
Data Link
{e—

Answer from
Remote System

Figure 6-1. Starting a Target Program

Differences between DDS and
System-Supplied Evoke Functions

The DDS EVOKE keyword is handled differently from the
system-supplied evoke formats when data is also sent. The
data passed on a system-supplied evoke format is treated as
a parameter and is passed along with the program start
request to the remote system. Any data passed using the
EVOKE keyword, except for user-defined parameters,
program names, and library names, is not treated as a
parameter. This information is sent separately from the
program start request after the evoke request completes suc-
cessfully. Therefore, the remote program must issue a read
operation to receive the data when the DDS EVOKE keyword
is used.

RSLS125-5

Sending Data

You may begin sending and receiving data when both
systems are communicating with each other. This section
discusses sending data. See “Receiving Data” on page 6-7
for a discussion on receiving data.

You can use several DDS keywords and combinations of
keywords in conjunction with sending data. These keywords
provide additional information about how to process the data
being sent to the remote program.

The following are valid functions that can be done when
sending data. The DDS keywords associated with these
functions are valid only with output operations.

Chapter 6. Using Communications DDS Keywords ~ 6-3

Variable-Length Data (VARLEN)

The length of an output operation is determined by the
record format specified. The record format length is deter-
mined by the record definition in DDS. You can use the
VARLEN keyword to change the length of the data record
sent with each write operation, while using the same record
format.

The format of the VARLEN keyword is:
VARLEN (&field-name)

The field-name parameter specifies the length of the record
sent on a write operation. The length cannot be greater than
the length of the data field defined for this record format.
The length you specify with the VARLEN keyword overrides
any length specified elsewhere in your write operation.

Variable-Buffer-Management
(VARBUFMGT)

Use the VARBUFMGT keyword to send or receive multiple or
partial records, rather than just one record, with one record
format per write or read operation.

Using the VARBUFMGT keyword allows you to specify the
length of data independently of the data itself. A program
uses the data length specified as the value passed in the
variable length (VARLEN) DDS keyword, or if VARLEN is not
used, the length of the record format specified on the read or
write operation. The length specified must be greater than
zero.

This function is valid only for APPC. Refer to the APPC Pro-
gramming book for more information.

Force-Data (FRCDTA)

Use the FRCDTA keyword on a write request to cause the
communications support to immediately send any data cur-
rently held in the output buffer. The communications support
does not wait for the buffer to fill. Any data specified on the
same operation as the force-data request is also sent. No
operation is done if there is no data in the buffer to send.

Note: This causes the data to be sent to the other system,
but not necessarily to the remote program.

Confirm (CONFIRM)

Use the CONFIRM keyword to request that the remote
program respond when it has received the data you sent. An
output operation with the CONFIRM keyword specified forces
any data in the output buffer to be sent. The CONFIRM
keyword also asks the remote program to respond when the
data is received. The operation does not complete, and your
program does not continue, until a response is received.

The remote program must respond with either a positive or

6-4 ICF Programming V4R1

negative reply as to whether the data was successfully
received.

Note: Refer to the RCVCONFIRM keyword described in
“Using Response Indicator Keywords” on page 6-18 and the
RSPCONFIRM keyword described in “Additional Keywords”
on page 6-12 for information on how to receive and respond
to a confirm request.

If a positive response is received, the output operation com-
pletes normally. If a negative response is received, the
major/minor return code and ICF message indicate the
reason.

CONFIRM is valid only on a transaction with a synchroniza-
tion level of confirm.

Format-Name (FMTNAME)

Use the FMTNAME keyword to pass the name of the record
format used for this output operation to the remote system.
If the remote system is an AS/400 system, ICF uses this
name to find the record format to use when receiving the
data at the remote system.

Note: If you use the FMTNAME keyword while sending data
to another AS/400 system, you should specify *RMTFMT for
the format selection (FMTSLT) parameter on the Add Inter-
system Communications Function Device Entry
(ADDICFDEVE), Change Intersystem Communications Func-
tion Device Entry (CHGICFDEVE), or Override Intersystem
Communications Function Device Entry (OVRICFDEVE)
command at the system at which the data is received.

Subdevice-Selection (SUBDEV)

Use the SUBDEV keyword to specify the remote system
device (such as a printer or diskette) to which you are
sending data. The receiving controller then directs output
from your program to the appropriate device. The subdevice
selection is designed primarily to support specific hardware
devices, such as 3776, 3777, and 3780.

The format of the SUBDEV keyword is:
SUBDEV (type)

The type parameter values, *DC1, *DC2, *DC3, and *DCA4,
are required to specify the device control character used by
the receiving controller so that output can be directed to the
appropriate device.

End-of-Group (ENDGRP)

Use the ENDGRP keyword to indicate to the remote system
the end of a user-defined group of records. The communica-
tions type you are using determines the type of indication
sent to the remote system to indicate the end of a group of
records.

Note: Refer to the RCVENDGRP keyword described in
“Using Response Indicator Keywords” on page 6-18 for infor-
mation on how to handle receiving an end-of-group indi-
cation.

Function-Management-Header (FMH)

Use the function-management-header (FMH) keyword to
send control information about the data that follows to the
remote system. A function-management-header is valid only
with the first record of a group.

Note: Refer to the RCVFMH keyword described in “Using
Response Indicator Keywords” on page 6-18 for information
on how to handle receiving a function-management-header.

Control-Data (CTLDTA)

Use the CTLDTA keyword to send control data to the remote
program. Control data has meaning only to the partner
transaction programs. For example, this data can be used
as prefix control information for application data that follows
it, or it can be used to carry special data for mapped conver-
sation transactions.

This keyword is valid only for APPC. See the APPC Pro-
gramming book for more information.

Prepare-for-Commit Function

Your program uses the prepare-for-commit (PRPCMT)
function to request one of its partners to prepare to commit
its protected resources. The partner can respond with a
commit, a rollback, or a FAIL operation. If the partner
responds with a FAIL operation, the partner program is in
control and can attempt to correct any errors that it detected.

The PRPCMT function contrasts with the commit operation in
the following ways:

e PRPCMT only works with one conversation at a time.
The commit operation attempts to commit all protected
resources in the two-phase commit transaction.

¢ PRPCMT only prepares the remote protected resources
to be committed. In other words, the remote resources
have been locked and cannot be changed. They are in
a state in which they can either be committed or rolled
backed. Eventually, the remote resources are com-
mitted or rolled back depending on whether the rest of
the two-phase commit transaction commits or rolls back
its protected resources.

The commit operation ends only after all remote pro-
tected resources in the two-phase commit transaction.
have either been committed or rolled back.

e PRPCMT allows the application program to attempt error
recovery without rolling back the protected logical unit of
work (LUW). When the application program issues a
PRPCMT and the partner responds with a fail function,
the PRPCMT function completes. The application
program can then attempt error recovery, and issue the
PRPCMT function again.

Note: The remote program is in send state after
responding with the fail function. The local application
program cannot issue the PRPCMT function again until
the conversation states change.

When the application program issues a commit operation
and the partner responds with a fail function, the logical
unit of work is rolled back.

An operation that includes the prepare-for-commit function
does not complete until the remote program responds with a
commit or rollback operation or a FAIL or EOS function.

After the PRPCMT function completes successfully, your
program can do any one of the following.

¢ Use the commit operation to commit protected
resources.

¢ Use the rollback operation to roll back the protected
logical unit of work (LUW).

¢ Use the end-of-session function to end the attachment of
the program to a session and roll back the protected
LUW.

Note: The prepare-for-commit function only applies when
SYNLVL(*COMMIT) is specified in the EVOKE DDS record
format used by the source program, or when the program
start request received by a target program establishes a syn-
chronization level of commit. An AS/400 target program can
determine the synchronization level established by the
source program by using the get-attributes operation.

The prepare-for-commit function causes any data currently
held in the buffer to be sent, including any data on a write
operation that specified the prepare-for-commit function.

Transaction-Synchronization-Level
Function

Your program uses the transaction-synchronization-level
(TNSSYNLVL) function to specify that synchronization for this
transaction should be done at the level that the SYNLVL
keyword specified on the evoke.

The TNSSYNLVL keyword can only be used if specified with
one of the following keywords.

e ALWWRT
e DETACH
* INVITE

Chapter 6. Using Communications DDS Keywords ~ 6-5

AS/400 System

ICF
Source Data Communications
Program Management Support
L
e
e
Write with
o)
— Data Is Sent
CONFIRM > Z s Z
Return Code
< ¢ <m— Response
Received
e
L
L
Data Link
) 7 I -
(write 227722 > Z —Zz
Return Code
Write with
FRCDTA % Z > /| nn— | Data Is Sent
Ld _ | Return Code
. D L
»
| | write with }/ A > A ——)
FMTNAME _ | Return Code Data Includes
- Format Name

RSLS180-4

Figure 6-2. Using the CONFIRM, FRCDTA, and FMTNAME Keywords to Send Data

Examples of Sending Data

Figure 6-2 shows how to use the CONFIRM, FRCDTA, and
FMTNAME keywords when sending data.

Your program issues a write-with-confirm operation to
send data to the remote system and asks the remote
system for a response.

Your program cannot continue processing until a
response is received from the remote system. Your
program checks the return code to determine if the

remote system issued a positive or negative response.

If a successful return code is received, your program
continues sending several records. On the last record,
your program also specifies the force-data function.
The FRCDTA causes all buffered data to be sent. The
return code indicates the data is successfully sent.
The force-data request does not wait for a response
from the remote system.

Your program sends a record. The format-name func-
tion indicates that the record format name used on this
write is also sent to the remote system. The remote
system uses this record format when receiving the
data.

Figure 6-3 on page 6-7 shows how to use the ENDGRP and
FMH keywords when sending data.

6-6 ICF Programming V4R1

AS/400 System

ICF
Source Data Communications
Program Management Support
e
e
Ll
Write with
(1] EMH > Z > /| wem——)- | Data Is Sent
_ | Return Code Data
N Includes
o FMH
e Data Link
° -z
Write > [Z > /| ——
| | Return Code Data
E Write with ™
ENDGRP > 7 > [/| n—
Return Code Data
< with
ENDGRP
Indicator

Figure 6-3. Using the ENDGRP and FMH Keywords to Send Data

H Your program sends a record to the remote system
and, with the FMH keyword, indicates that the first part
of the data is function-management-header data, which
contains information about the user data that follows.

H Your program continues sending data records to the
remote system. Your program uses the end-of-group
function on the last record to indicate it is the last in
this group of records.

Receiving Data

You can use two operations to receive data: read and read-
from-invited-program-devices. In addition, you can use the
invite, timer, and record-identification functions with the pre-
ceding operations to provide additional functions when
receiving data.

The read operation receives data from the program device
you specify. This operation differs from the read-from-
invited-program-devices operation, which receives data from
any program device with a previously issued invite request.

RSLS181-3

Invite (INVITE)

The INVITE keyword prepares your program to receive data.
You must do an output operation with the INVITE keyword
specified to issue an invite function. You can combine addi-
tional output keywords or data with the invite function. Your
program can continue processing after issuing the invite
request, and does not need to wait for the data.

The read-from invited-program-devices operation is a com-
panion to the invite function. After issuing an invite function,
you use the read-from-invited-program-devices operation to
receive the data from the remote system.

You do not need to issue an invite function before a read
operation to receive data. However, if an invite is out-
standing for a program device to which a read is issued, the
read completes the invite and receives the data.

Note: When a program device is invited, it is recommended
that a read-from-invited-program-devices operation be per-
formed rather than a read operation to receive data. Perfor-
mance may be degraded if your program issues multiple
read operations to invited program devices.

Refer to Chapter 5 for additional information about the read
and read-from-invited-program-devices operations and their
relationship to the invite function.

Chapter 6. Using Communications DDS Keywords ~ 6-7

Invite with Transaction Synchronization Level:

When your application program specifies the TNSSYNLVL
keyword with the invite function, the additional function per-
formed depends on the synchronization level of the conver-
sation. The TNSSYNLVL keyword can be specified with the
invite function only if the synchronization level is *NONE or
*CONFIRM. Figure 6-4 on page 6-8 shows the details.

Figure 6-4. TNSSYNLVL Function with Invite

Synchronization Function

Level

*NONE The force-data function is performed in addi-
tion to the invite function.

*CONFIRM The confirm function is performed in addition
to the invite function.

*COMMIT Not allowed

Timer (TIMER)

Your program can use the timer function before performing
some specified function, such as a read-from-invited-
program-devices operation. The timer function specifies an
interval of time (in hours, minutes, and seconds) to wait
before your program receives a timer-expired (0310) return
code.

Use the TIMER keyword to set the timer for the specified
interval of time. The TIMER keyword is issued on an output
operation.

The format of the TIMER keyword is:
TIMER(HHMMSS | &field-name)

The parameter specified with the TIMER keyword can be one
of the following:

HHMMSS
A literal value where HH is the number of hours,
MM is minutes, and SS is seconds.

&field-name
A value where the field contains the TIMER value in
the same HHMMSS format.

Your program continues to run, and all operations and func-
tions are valid during the time interval. Your program must
issue a read-from-invited-program-devices operation some
time after it has issued the timer function, so it can accept
the return code indicating that the timer interval has ended.

Only one time interval can be maintained for your program.
If a previous timer function has been issued and the timer
has not yet ended, the old time interval is replaced by the
new interval.

The timer function can be used to vary the maximum amount
of time that a read-from-invited-program-devices operation
will wait for a response. When the time interval set by the
TIMER keyword is in effect, the value specified for the
WAITRCD parameter on the CRTICFF command is ignored.

6-8 ICF Programming V4R1

There is a minor difference between the functions of the
TIMER keyword and the WAITRCD parameter. When a
write operation is done using the TIMER keyword, the timer
starts immediately. The time interval is no longer in effect
when a subsequent read-from-invited-program-devices oper-
ation completes or when the end of the interval is reached.
When the WAITRCD parameter is used, the timer starts
when a read-from-invited-program-devices operation is per-
formed.

You can use the timer function to retry other operations that
may not be successful, possibly because of a temporary lack
of resources (for example, during an acquire operation). To
do this, issue the timer function, and then perform read-from-
invited-program-devices operations until the timer interval
ends. (The read-from-invited-program-devices operation
allows the program to continue receiving input from other
invited program devices while waiting for the timer.)

Refer to Chapter 5 for additional information on the read-
from-invited-program-devices operation and its relationship to
the timer function.

Record-ldentification (RECID)

The RECID keyword identifies and selects the record format
to use with an input operation based on the data received
from the remote program. This keyword is applicable only if
you specify FMTSLT(*RECID) on the ADDICFDEVE or
OVRICFDEVE command.

The format of the RECID keyword is:
RECID(starting-position compare-value)

Specify the starting-position parameter as either nnnnn or
*POSnnnnn, where nnnnn defines the beginning position of
the compare value within the record format. The first posi-
tion in the record is position 1. Specify the compare-value
parameter as:

*ZERO. The data character in the position specified
must be 0 (hex FO) to match the record identifier.

*BLANK. The data character in the position specified
must be a blank (hex 40) to match the record identifier.

literal'. The data received, beginning with the position
defined by the starting-position value, must match the
literal specified here.

If the length of the record received is less than the number of
positions examined for RECID value, the positions past the
end of the record are treated as if they contained blanks. If
the RECID keyword compare value specifies blanks for those
positions, the data is considered a match.

For example, if your program receives both header and detail
records from the remote program, you can specify the fol-
lowing in your ICF file:

RECID(1 'H')
RECID(1 'D')

Your program issues input operations to the file without spec-
ifying a record format name. You do not specify a record
format name because the correct record format is not known
until the data is received. Your program receives the records
(either headers or detail) in the order they are sent by the
remote program. For this example, the sending and
receiving programs provide for an explicit code (an H for
header records and a D for detail records) to identify the type
of record being sent and received. The RECID keyword
identifies the input buffer location where the H or D appears,
and specifies the value (starting in the position specified) that
identifies the record type.

The remote program must identify the type of record (either
header or detail) by placing H or D in the first position of the
data buffer.

For each input operation, the value specified in the first posi-
tion of the buffer is compared with the value specified on the
RECID keyword. If the value in a record is H, the format
associated with the RECID(1 'H') specification is selected.
Duplicate RECID keyword compare values are not checked.
The first format with a compare value that matches the
received value is used.

Be careful how you specify more than one RECID keyword
within a file if more than one compare value begins in the
same record position. For example, the following compare
values begin in the same position:

RECID(1 'A)
RECID(1 'AB)
RECID(1 'ABC)

The first format is always selected if the data starts with an
A, because any received records matching the last two
compare values also match the first. Specify the longest
value first to prevent confusion.

RECID(1 'ABC)
RECID(1 'AB')
RECID(1 'A)

You can use the RECID DDS keyword to eliminate pro-
cessing of alphanumeric data in fields that should contain
only numeric data. Refer to “Input Considerations” on
page 8-3 for more information on eliminating data decimal
errors.

Problem Notification

Use the fail, cancel, and negative-response functions to
inform the application program of an error that has occurred
in the data being sent or received. The DDS keywords asso-
ciated with these functions are specified on an output opera-
tion.

Fail (FAIL)

Use the FAIL keyword to indicate that an error has occurred
when sending and receiving data.

If a program that is sending data issues a fail, it may indicate
that the data just sent was in error. Your program can con-
tinue to send data and is usually responsible for the first
error recovery. The communications type you are using
determines whether data that is in the output buffer before
issuing the fail function is sent to the remote system with the
fail indication. The communications type determines the type
of notification sent.

You can also use a fail function if your program receives
data and detects an error in the received data. Figure 6-5
on page 6-10 shows how to use the fail function when your
program is receiving data and detects an error.

Chapter 6. Using Communications DDS Keywords ~ 6-9

AS/400 System

ICF
Source Data Communications
Program Management Support
Ll
e
L]
Write with R
INVITE _|Return Code
Read-from-~
Invited- >
Program
) Return Code
Devices < % /)< % /| €<===== Data Is Received
n . . and Data
Write with >
INVITE _ |Return Code
Read-from-
Invited- > Data Link
Program \
. Return Code I
Devices <= 7 < %] =
)) and Data
Write with > > > | Fail Indication
FAIL _ |Return Code Sent to Other
D Program
Write = [Z = e
| Return Code
¢ Message Is Sent
to Remote
System
RSLS134-6
Figure 6-5. Using the FAIL Keyword to Send an Error Indication
E Your program is receiving data from the remote PRPCMT, the application program can try to correct

program. the problem.

H While receiving data, your program determines that it

L0 Refer to the RCVFAIL keyword described in “Using
must send a fail indication to the other program.

Response Indicator Keywords” on page 6-18 for information
A message or data is then sent (write operation) to tell on handling receipt of a fail indication.
the other program why you sent the fail indication.

When a fail function is the response to a commit oper- Cancel (CANCEL)
ation, the system rolls back the protected LUW on the

side that issued the commit operation. The side that Use the CANCEL keyword to tell the remote system to
issued the fail function must do a rollback operation cancel the group of records you are currently sending. Your
after the request to roll back is received from the program can use the cancel function only when sending data
partner. When a fail function is the response to a (similar to issuing a fail when your program is sending data).
PRPCMT function, APPC does not roll back the pro- Figure 6-6 on page 6-11 shows how to use the cancel func-
tected LUW. Since APPC does not do a rollback for tion when a program is sending data and detects an error.

6-10 ICF Programming V4R1

AS/400 System

ICF
Source Data

Program Management

Ll
Ll
e

Write : }/ /‘

Communications

Return Code

Write : }/ /‘

Return Code
Ll
e
e

E Write with _

CANCEL -

I
Message »
n or Data _| Return Code

Is Sent

Support
= }/ /{Ezé Data Is Sent
Data Link
Cancel
» — —— Indication
Is Sent
> ——

Figure 6-6. Using the CANCEL Keyword to Send an Error Indication

EF Your program is sending data to the remote system.

Your program checks the data and determines that
something is wrong with it.

Your program uses a cancel function to tell the remote
system to discard the data you have sent.

Your program can send a message indicating the
problem, send the data again, receive more data, or
end the transaction.

Refer to the RCVCANCEL keyword described in “Using
Response Indicator Keywords” on page 6-18 for information
on handling receipt of a cancel indication.

Negative-Response (NEGRSP)

Use the NEGRSP keyword to tell the remote system that the
data just received is not correct. The format of the NEGRSP
keyword is:

NEGRSP[(&field-name)]

RSLS132-6

The optional parameter on the NEGRSP keyword specifies
the name of the field that contains sense data to be sent to
the remote program with the negative response.

Issuing a negative-response function is similar to issuing a
fail function while receiving data, except that you can also
include 8 characters of sense data with the negative-
response function. The sense data tells the remote system
what is wrong with the data you received. The first 4 charac-
ters of the sense data must begin with 10XX, 08XX, or 0000.
The last 4 characters are user-defined. Refer to the appro-
priate communications programming book for the commu-
nications type you are using for more information about the
allowed sense values.

The sense data is sent in the normal output buffer. No other
data is allowed to be sent with a negative-response function.

Figure 6-7 on page 6-12 shows how to send a negative
response with a sense code to the remote system.

Chapter 6. Using Communications DDS Keywords 6-11

AS/400 System

ICF
Source Data Communications
Program Management Support
Ll
e
S
Write with o
INVITE e
_ | Return Code
n Read-from-
Invited- :
Program
Return Code }/ A }/ /(= Data Is Received
Devices - ~
and Data
Data Link
Write with o o I
E GRS i }/ /{ i }/ /{ - Negative
NEGRSP
P Return Code Response Is
Sent with
Sense Data

RSLS130-5

Figure 6-7. Sending a Negative Response with Sense Code to Remote System

[Your program finds that the data it is receiving is not
correct.

H The program sends a negative response to the remote
system, including the sense data 08110000. The neg-
ative response tells the remote system that the data
received is wrong, and the sense data 08110000 asks
the remote system to cancel the current group of data
records.

Refer to the RCVNEGRSP keyword described in “Using
Response Indicator Keywords” on page 6-18 for information
on handling receipt of a negative response indication.

Additional Keywords
You can use the respond-to-confirm, request-to-write, allow-

write, and cancel-invite functions to perform additional func-
tions.

6-12 ICF Programming V4R1

Respond-to-Confirm (RSPCONFIRM)

Use the RSPCONFIRM keyword to send a positive response
to a received confirm request. The respond-to-confirm func-
tion can be used only when a confirm request is outstanding.
You can check the major/minor return codes or use the
RCVCONFIRM indicator to determine when to issue a
respond-to-confirm function. After sending the response,
your program can continue processing as indicated by any
other information received.

Figure 6-8 on page 6-13 shows how to use the respond-to-
confirm function.

AS/400 System

ICF
Source Data Communications
Program Management Support
L
L]
Cl
n Read ¢ }/ /‘ ¢ }/ /‘ 4 Data Is Received
Return Code with Confirm
Request
E Write with SE—— — —— ——————— » r———-% Positive Response
RSPCONFIRM Sent
ﬁ Data Link
Data
n Read : }/ /‘ : }/ /{ 4__ Data Is Received
e
L
S

Figure 6-8. Using the Respond-to-Confirm Function

E Your program is receiving data from the remote
system. The return code indicates data and a confirm
request. The read could have also been done with the
RCVCONFIRM keyword to indicate that a confirm
request was received.

H Your program issues a write operation with the
RSPCONFIRM keyword in effect to acknowledge the
receipt of data.

Your program continues to receive because the remote
program is still in send state.

RSLS679-2

Request-to-Write (RQSWRT)

Use the RQSWRT keyword, while your program is receiving
data, to ask the remote system to stop sending so your
program can send. The request-to-write function tells the
remote system you want to change the direction of data
transmission. If the remote system allows the change, your
program can send either data or a message, or both, to the
remote system. After issuing the request-to-write, your
program must continue receiving data until the remote
system sends a noatification indicating it is ready to receive.

Figure 6-9 on page 6-14 shows how to use the request-to-
write function.

6-13

Chapter 6. Using Communications DDS Keywords

AS/400 System

ICF
Your Data Communications
Program Management Support
e
e
e
[Write with
INVITE >
_| Return Code
Read-from-
Invited- >
Program Data and .
Devices < % < % /]<===="\ Data Is Received
. Return Code
Ll
L]
Write with
RQSWRT > -
and INVITE I
_| Return Code | Data Link
Read-from-" /
Invited- . , -—
Program I
7 R
Devices eturn Code 7 e /’V) <ot Request
: . and Data | to Write
Write with > L ey | €Nt 1O the
INVITE] Remote System
Read-from-
Invited- -
Program v
Devices | Return Code .
N Z /- % | —— Change Direction
Write with R g Indication Is
INVITE > A > /| b Received
Ll
e
e

Figure 6-9. Using the Request-to-Write Function

6-14

Your program is receiving data from the remote
system. The program processes the data received,
then receives data again.

At some time while data is being received, your
program determines that it needs to send a message
to the remote system. Your program issues a write
operation, with the RQSWRT and INVITE keywords in
effect, to ask the remote system to stop sending so
your program can send the message. The request-
write indication is sent to the remote system at the first
available opportunity. Since the session is in receive
state, the indication may be held until the next data
record is received.

After issuing the request-to-write function, your
program must continue receiving data until it gets a
return code indicating that the remote system is ready
to receive. To continue receiving, another read-from-
invited-program-devices operation is used.

ICF Programming V4R1

RSLS128-5

B Another invite and read-from-invited-program-devices
operation is issued to continue receiving data.

H When the remote system is ready to receive, it sends
one more data record with a change-direction indi-
cation. The record says the remote system is now
ready to receive data or, as in this example, a
message.

@ A write operation with the INVITE keyword in effect is
used to send the message to the remote system and
ask the remote system to continue sending data.

When your program receives a request-to-write request from
the remote system, a code is set in the 1/O feedback file-
dependent section. Refer to Figure C-5 on page C-3 for
more information about where this field is in the I/O feedback
area.

The code indicates the following conditions:

0 Continue sending as normal.

1 A request-to-write has been received.

Refer to the appropriate communications programming book
for the communications type you are using for more specific
information on what this code means for the communications
type you are using.

Allow-Write (ALWWRT)

Use the ALWWRT keyword to explicitly inform the remote
system that your program is done sending. The allow-write
function clears the buffers, forcing any data to be sent. The
same function occurs automatically if you issue an input
operation after a write operation. In that case, the ALWWRT
DDS keyword is not required. After issuing an allow-write,
your application program can issue an input operation to
receive data from the remote system.

Figure 6-11 shows how to use the allow-write function.

E Your program sends several data records to the
remote system.

H You use an allow-write with the last record to inform
the remote system you are done sending.

The remote system can now send data, and your
program must begin receiving.

Refer to “Receive-Turnaround” on page 6-19 for information
on handling receipt of an allow-write indication.

AS/400 System

Your application program uses the allow-write (ALWWRT)
function to inform the remote program that your program is
done sending data and is ready to receive. This causes a
change-direction indicator to be sent to the remote program.

After issuing the allow-write function, your program can then
issue an input operation to receive data from the remote
program.

When your application program specifies the TNSSYNLVL
keyword with the ALWWRT keyword, the additional function
performed depends on the synchronization level of the con-
versation. Figure 6-10 shows the details.

Figure 6-10. TNSSYNLVL Function with ALWWRT

Synchronization Function

Level

*NONE The force-data function is performed in addi-
tion to the allow-write function.

*CONFIRM The confirm function is performed in addition
to the allow-write function.

*COMMIT The conversation enters defer receive state

until your application program issues a
commit operation, a force-data function, or a
confirm function. Once the commit operation,
force-data function, or confirm function com-
pletes successfully, the conversation is in
receive state.

ICF
Source Data Communications
Program Management Support
e
L]
e
Write 7 Z > [/| ——
nﬂﬂ’ _ | Return Code
1\ Write U Z > [/| wm—) | Data Link
| Return Code I
E lej\llt/e\NWRI'tl'h L % 7 > /| mme——) | Data |s Sent
Return Code Data with
< ALWWRT
~ . Data Is
B Read < % Z Z /| | ceived

Figure 6-11. Using the Allow-Write Function

RSLS182-3

6-15

Chapter 6. Using Communications DDS Keywords

AS/400 System

ICF
Source Data Communications
Program Management Support
S
L
Cl
Write with Ry —~—— — —————— :
n | INVITE Return Code
e Data Link
e
) —Zz
Write with EE——— - -~~~ » - | Ne Data
E CNLINVITE Yet Received
Return Code
<
o[Data
B Write 7 Z > J] — sent
en
Data

Figure 6-12. Using the Cancel-Invite Function

Cancel-Invite (CNLINVITE)

Use the CNLINVITE keyword to cancel a valid invite for
which no data has yet been received from an invited program
device. Your program can continue to send data.

Figure 6-12 shows how to use the CNLINVITE keyword.

F Your program issues an invite operation to receive data
from the remote program, then continues processing.

H Your program uses the cancel-invite function to cancel
the previous invite operation. Your program must
check the return code it receives to determine if any
data has already been received from the remote
system.

Your program can continue to send data if data was
not received.

6-16 ICF Programming V4R1

RSLS183-5

Ending a Communications Transaction

A communications transaction can be ended by your
program or by the program at the remote system. Your job
and the remote system that your system is communicating
with determine the program that ends the transaction.

Communications with the remote program end when your
program ends the transaction. However, the session may
still exist if your program started the session. If the session
still exists, you can end the session or you may be able to
start another program at the remote system.

Detach (DETACH)

Use the DETACH DDS keyword to end the transaction. The
detach explicitly informs the remote program that your
program is done sending and has ended the transaction.

Figure 6-13 on page 6-17 shows how your program can end
a communications transaction.

AS/400 System

Communications
Support

Data Link

ICF
Source Data
Program Management
n Write with >
DETACH i

Return Code

N —

Detach Sent
to Remote System

Figure 6-13. Ending a Communications Transaction

[Your program issues the detach to tell the remote
system that your program ended the communications
transaction.

Refer to the RCVDETACH keyword described in “Using
Response Indicator Keywords” on page 6-18 for information
on handling receipt of a detach indication.

If a detach function is issued by the target program, the EOS
function is issued after the detach function is completed.

This should be done since neither the EOS, Detach, or any
other ICF function can end the session (that is, cause an
UNBIND to be sent).

Using the Detach Function When the
Synchronization Level is None

When the synchronization level is none and the detach and
transaction-synchronization-level functions are used together,
force-data and detach functions are performed.

After a detach function is accepted by your program, no
further input or output operations with the remote program
are allowed.

Using the Detach Function When the
Synchronization Level is Confirm

When a detach function and a confirm function or
transaction-synchronization-level function are used together,
a confirm function is performed. If the remote program
responds positively, the detach function is performed. If the
remote program responds negatively, or has already sent a

RSLS136-5

negative response, the transaction may not end immediately.
The sender of the negative response is responsible for the
initial error recovery. The point at which action is taken to
recover from the error determines when the transaction is
ended.

To respond positively to the detach function with a confirm or
transaction-synchronization-level function, the remote
program must use the respond-to-confirm function.

To respond negatively to the detach function with a confirm
or transaction-synchronization-level function, the remote
program should use the fail function.

After a detach function is accepted by your program, no
further input or output operations with the remote program
are allowed.

Using the Detach Function When the
Synchronization Level is Commit

For two-phase commit processing, the detach function must
be accompanied by the transaction-synchronization-level
function. The transaction does not end until your program
issues a commit operation, and the commit operation com-
pletes successfully. If the commit operation fails, the fol-
lowing is done.

¢ The logical unit of work is rolled back.

e The transaction is not ended.

e The conversation state is returned to what it was at the
last commit boundary.

6-17

Chapter 6. Using Communications DDS Keywords

Using the Detach Function From a Target
Program

After a target program issues a detach function, both the
session and the transaction end. No further operations are
valid on the program device.

Ending the Communications Session

How the communications session is ended depends on
whether your program or the remote system started the
session.

The release operation ends the session only if all processing
is complete. The end-of-session operation always ends the
session.

AS/400 System

End-of-Session (EOS)

Use the EOS DDS keyword to issue an end-of-session func-
tion. The only possible return codes from end-of-session are
0000 or 830B (program device not acquired).

If the target program ends the transaction by the detach
function, the session is ended implicitly. If the source
program ends the transaction, the target program must issue
an end-of-session or go to the end of the job to end the
session. Figure 6-14 shows how you can end the session
using the release operation and the end-of-session function.

For conversations started using EVOKE with SYNLVL (*COMMIT)
specified:

e If EOS is issued after a TAKE_COMMIT_* indication has
been received by the transaction program (TP), resyn-
chronization processing is performed.

¢ In all other cases, the EOS causes the logical unit of
work (LUW) to be put into rollback required state. The
TP must perform a rollback operation before working
with any other resources involved in that LUW.

ICF
Source Data Communications
Program Management Support
e
L]
e
n Release > > ——————— 1
\
| Return Code }
B —_— —_—
e
L]
e
B Write . .
with EOS g " Session |
4| | Return Code . Ended | Data Link

Figure 6-14. Using the Release and End-of-Session Functions

EF Your program issues the release operation to end the
current communications session.

H The return code tells your program whether the session
was ended, or if an error occurred while trying to end
the session. If, for example, all transactions have not
ended when the release operation is issued, an error
occurs and the session is not ended.

If an error occurs and normal recovery is not possible,
your program can use the end-of-session function to
end the session.

B The end-of-session function always ends the session.

6-18 ICF Programming V4R1

RSLS138-6

Using Response Indicator Keywords

Response keywords provide information to your program
about the data record being received or the actions taken by
the remote program. Check which response indicators are
set when your program does an input operation to determine:

¢ What the remote program sent

¢ What the remote program expects from your program

¢ What your program’s next operation should be
Response keywords are only effective for input operations or
a combined output then input. They have no effect on an

output operation. Multiple response keywords can be used
on a single input operation.

Receive-Confirm

Use the RCVCONFIRM keyword to request that a response
indicator be set on if the record received from the remote
system contains a confirm request. A received confirm
request indicates that the remote program expects your
program to do a specific action to synchronize the programs.
The action can be a write with the RSPCONFIRM keyword
(positive response), or a write with the FAIL keyword (nega-
tive response). If the session is abnormally ended (end-of-
session or job end before ending the transaction), a negative
response is sent.

This same type of information can be determined by
checking the major/minor return code returned in the 1/O
feedback area at the completion of each operation.

The program receiving the confirm indication is responsible
for making sure that the response (positive or negative) is
returned to the program requesting the confirmation.

If you want to return a positive response to the remote
system, issue a write with the RSPCONFIRM DDS keyword
in effect. If you want a negative response returned, either
issue a write with the FAIL DDS keyword in effect, or abnor-
mally end the session (end-of-session or job end before
ending the transaction).

Receive-Control-Data

Use the RCVCTLDTA keyword to request that a response
indicator be set on if the record received from the remote
system contains a control-data indication. The response indi-
cator is set if the data received in the input buffer is control
data.

Receive-End-of-Group

Use the RCVENDGRP keyword to request that a response
indicator be set on if the record received from the remote
system contains an end-of-group indicator. The response
indicator is set if the last record received in the input buffer
was the end of a user-defined group of records.

Receive-Function-Management Header

Use the RCVFMH keyword to request that a response indi-
cator be set on if the record received from the remote system
contains a function-management-header indication. The
response indicator is set if the data received in the input
buffer is function-management-header data. Asynchronous,
finance, intrasystem, and retail communications give the user
data along with the function-management-header indication
in one operation. If you are using SNUF, however, you must
do an additional input operation to get the remaining user
data that accompanied the function-management-header.

Receive-Falil

Use the RCVFAIL keyword to request that a response indi-
cator be set on if the record received from the remote system
contains a fail indication. The remote program informs your
program that it found something wrong while sending or
receiving data. Your program should issue an input opera-
tion after receiving a fail indication. The program sending the
fail indication must start the error recovery.

Receive-Cancel

Use the RCVCANCEL keyword to request that a response
indicator be set on if the record received from the remote
system contains a cancel indication. The remote system
informs your program that the current chain of data is not
correct. Your program should discard the data, then con-
tinue to receive or end the job.

Receive-Negative-Response

Use the RCVNEGRSP keyword to request that a response
indicator be set on if the data received from the remote
system contains a negative-response indication. The remote
system informs your program that an error was detected in
the data it just received. You may receive an 8-byte sense
code with the negative response signal.

Receive-Turnaround

Use the RCVTRNRND keyword to request that a response
indicator be set on if the data received from the remote
system contains a change-in-transmission-direction indi-
cation. The remote system informs your program that it is
finished sending data, and is ready to receive data. Your
program can begin sending data.

Receive-Detach

Use the RCVDETACH keyword to request that a response
indicator be set on if the record received from the remote
system contains a detach indication. The remote system
informs your program that it is ending this communications
transaction with your program. Your program can no longer
communicate with the remote program. The session with the
remote system may still exist if your program started the
session. If the remote system started the session, commu-
nications with the remote system are ended.

Receive-Rollback

Use the RCVROLLB keyword to request that a response
indicator be set on as an indication of one of the following
conditions:

¢ The remote program sent a ROLLBACK. This indicates
that the remote program expects your program to
rollback its protected resources.

6-19

Chapter 6. Using Communications DDS Keywords

e The protected LUW entered the rollback required state.

Your program must respond with a rollback operation. Your
program can only get this response indicator if it has a con-
versation with a synchronization level of commit.

This response indicator can be received with the following
return codes.

e 0054

e 0254

e 80F9, 80FA, 80FB

e 81FO0, 81F1, 81F2, 81F3, 81F4, 81F5
e 83FB, 83FC, 83FD, 83FE, 83FF

Receive-Take-Commit

Use the RCVTKCMT keyword to request that a response
indicator be set on as an indication that the remote program
sent a PRPCMT function or a commit operation. This indi-
cates that the remote program expects your program to
determine if it can commit its protected resources. Your
program must either do a commit or rollback operation or a
FAIL or EOS function. Your program can only get this
response indicator if it has a conversation with a synchroni-
zation level of commit.

This response indicator can be received with major return
codes 02 (end job or end subsystem in progress) or 03 (no
data received). The major return code can be accompanied
by a minor return code of 57, 58, or 59.

6-20 ICF Programming V4R1

Example DDS Files for Creating an
Intersystem Communications Function File

Figure 6-15 and Figure 6-16 on page 6-21 are DDS source
files that can be used to create an ICF file. Files created
using this source DDS are used in the application program
examples in Chapter 9 through Chapter 11.

Ax ICF FILE
Ax USED IN BATCH DATA TRANSFER PROGRAM

* ok k¥

A FILE LEVEL INDICATORS:

A INDARA
Ax
A RCVTRNRND(15 'END OF DATA')
Ax
A 30 DETACH
Ax
A INDTXT(30 '30->DETACH TAR-
A GET PROGRAM. ')
Ax
A RCVDETACH(35 'RECEIVED -
A DETACH.')
Ax
Ax
A
Ax ICF RECORD FORMATS *
A

R RCVDATA

RCVFLD 80A
R SNDDATA
SNDFLD 80A

R EVOKPGM
A 50 EVOKE (&LIB/&PGMID)
A PGMID 1A P
A LIB 1A P
A R ENDREC
A R INVITE
A 45 INVITE

Figure 6-15. DDS Source File for a Batch Data Transfer Program

A%

*
Ax ICF FILE *
Ax USED IN SOURCE MULTIPLE SESSION PROGRAM *
Ax *
A INDARA

A R ITMRSP

A RECID(1 'I')
A RECITM 1

A ITEMNO 6 0

A DESC 30

A QTYLST 70

A QTYOH 7 0

A QTY00 70

A QTYBO 7 0

A UNITQ 2

A PRO1 7 2

A PRO5 7 0

A UFRT 5 2

A SLSTM 9 2

A SLSTY 1 2

A CSTTM 9 2

A CSTTY 1 2

A PRO 5 2

A L0S 9 2

A FILL1 56

A R DTLRSP

A RECID(1 'C')
A RCVTRNRND (90)
A RECCUS 1

A CUSTNO 6 0

A DNAME 30

A DLSTOR 6 0

A DSLSTM 9 0

A DSPMO1 9 0

A DSPMO2 9 0

A DSPMO3 9 0

A DSTTYD 1 0

A IDEPT 30

A FILL2 57

A R DETACH

A DETACH

A R EOS

A E0S

A R EVKREQ

A EVOKE (&L1B/&PGMID)
A PGMID 10A P

A LIB 10A P

A R ITMREQ

A INVITE

A ITEMNO 6 0

A R DTLREQ

A INVITE

A CUSTNO 6 0

#x %% END OF SOURCE = * % x

Figure 6-16. DDS Source File for a Multiple Session Program

The following is an example of a Create Intersystem Commu-
nications Function (CRTICFF) command used to create an
ICF file from a DDS source file:

CRTICFF FILE(ICFLIB/ICFFILE) SRCFILE(ICFLIB/QDDSSRC)
SRCMBR (*FILE) ACQPGMDEV (*NONE) MAXPGMDEV (10)
TEXT('ICF FILE EXAMPLE')

The created file has the following attributes:

¢ The file name is ICFFILE and it is stored in library
ICFLIB, as specified on the FILE parameter.

e The SRCFILE parameter indicates that the DDS source
file, from which this ICF file is created, is a member in
file QDDSSRC in library ICFLIB.

¢ The SRCMBR parameter indicates the source file has
the same name as the file you are creating.

e The ACQPGMDEYV parameter indicates that no program
device is automatically acquired when the file is opened.
Your program must explicitly issue the acquire.

e The MAXPGMDEV parameter indicates that up to 10
program devices can be acquired and active with this
file.

e The TEXT parameter describes the file.

The remaining parameters not specified on the CRTICFF
command are assigned default values. Refer to Chapter 4
and the CL Reference book for more information on these
parameters and their default values.

The following is an example of an ADDICFDEVE command
used to add a program device entry to the ICF file just
created:

ADDICFDEVE FILE(ICFLIB/ICFFILE) PGMDEV(PGMDEVA)
RMTLOCNAME (CHICAGO) FMTSLT(*PGM)

The file now has a program device entry with the following
attributes:

e The PGMDEV parameter indicates that PGMDEVA is
the program device name added to the file. This is the
program device name used in your program.

¢ The RMTLOCNAME parameter indicates that CHICAGO
is the name of the remote location associated with
PGMDEVA. CHICAGO is the remote location name
specified on the device description when you configured
your system for communications.

e The FMTSLT parameter indicates that *PGM is the
format selection option used on input operations. For
more information on this parameter, refer to “Format
Selection Processing” on page 5-8.

The remaining parameters not specified on the
ADDICFDEVE command have assigned default values.
Refer to Chapter 4 and the CL Reference book for more
information on these parameters and their default values.

Keyword Processing Charts

Figure 6-17 and Figure 6-18 on page 6-22 summarize the

DDS keywords discussed in this chapter. Use these charts
for a quick reference when defining and creating an ICF file,
and when writing application programs.

Figure 6-17 lists the DDS keywords defined in this chapter
that are supported by the various communications types for
output operations.

Figure 6-17 (Page 1 of 2). Output DDS Processing Keyword Support

Asyn- Intra-
DDS Keyword APPC SNUF BSCEL chronous system Finance Retail
ALWWRT X X X X
Chapter 6. Using Communications DDS Keywords 6-21

Figure 6-17 (Page 2 of 2). Output DDS Processing Keyword Support

DDS Keyword

APPC

SNUF

BSCEL

Asyn-
chronous

Intra-
system

Finance

Retail

CANCEL

X

X

X2

X

CNLINVITE

X

X

X

X

CONFIRM

X

CTLDTA

DETACH

x1

DFREVOKE

X | X | X | X

ENDGRP

EOS

EVOKE

FAIL

X | X | X | X

FMH

X | X[X|X|X

x1

FMTNAME

FRCDTA

INVITE

NEGRSP

XXX [X[X|X[X|[X]|X

PRPCMT

RQSWRT

RSPCONFIRM

SECURITY

X | X | X | X

SUBDEV

SYNLVL

TIMER

XXX | X|X|[X

TNSSYNLVL

VARBUFMGT3

VARLEN

X | X | X|X]|X

X

X

X

X

X

1 Use of these keywords are restricted. Refer to the Asynchronous Communications Programming book for more details.
2 This keyword is not valid for the 3694 controller. Refer to the Finance Communications Programming book for more details.

3 Use of this keyword is restricted. Refer to the APPC Programming book.

Figure 6-18 lists the DDS keywords defined in this chapter
that are supported by the various communications types for

input operations.

Figure 6-18 (Page 1 of 2). Input DDS Processing Keyword Support

DDS Keyword

APPC

SNUF

BSCEL

Asyn-
chronous

Intra-
system

Finance

Retail

RCVCANCEL

X

X

X

RCVCONFIRM

X

X

RCVCTLDTA

RCVDETACH

RCVENDGRP

RCVFAIL

RCVFMH

RCVNEGRSP

X | X | X|X]|X

6-22 ICF Programming V4R1

Figure 6-18 (Page 2 of 2). Input DDS Processing Keyword Support

Asyn- Intra-
DDS Keyword APPC SNUF BSCEL chronous system Finance Retall
RCVROLLB
RCVTKCMT X
RCVTRNRND X X
RECID X X X X X X

Figure 6-19 shows the priority sequence used by ICF in pro-
cessing these DDS keywords and data during output oper-

ations.

1 Is EOS specified?

no

yes

Do EOS Function

14

2 Is FAIL specified?

no

yes

Do FAIL Function

12

3 Is NEGRSP specified?

no

yes

Do NEGRSP Function
(Send sense code if specified)

12

4 Is CANCEL specified?

no

yes

Do CANCEL Function

12

5 1Is CNLINVITE specified?

no

yes

Do CNLINVITE Function

11

6 Is RSPCONFIRM specified?

no

yes

Do RSPCONFIRM Function

14

7 Is RQSWRT specified?

no

| yes

Is INVITE or READ specified?

| yes | no

|
| Do RQSWRT Function | Do RQSWRT
| with Invite or Read | Function
14 14

Figure 6-19 (Part 1 of 2). Keyword Processing Chart

8 Is EVOKE specified?
no | yes

Incorporate DFREVOKE, SECURITY, and SYNLVL keywords

Is user data specified? (Not program initialization

parameters)
yes I no
Do EVOKE Function | Do EVOKE
(Incorporate FMH keyword | Function
and program initial- | (Incorporate
ization parameters if | rest of
specified) | keywords and
| program
| initialization
11 14 parameters
appropriately)

9 Is TIMER specified?
no yes

Do TIMER Function

14
10 Is PRPCMT specified?
no yes
Perform PRPCMT function
14

1

—

Process data (Incorporate VARLEN keyword)
(Incorporate VARBUFMGT keyword)

12 Is DETACH specified?
no | yes

Is CONFIRM specified?

yes no

Do DETACH Function
with CONFIRM

|
|
|
| Do DETACH function
|
(Also process format name |
|
|
4

without CONFIRM

if FMTNAME keyword
specified)
14 1

13 Is INVITE, ALWWRT, ENDGRP, FMH, SUBDEV, FMTNAME, FRCDTA,
no yes CONFIRM or GET specified?

Perform INVITE or GET function if specified
Perform ALWWRT function if specified
Perform ENDGRP function if specified
Perform FMH function if specified

Perform SUBDEV function if specified
Perform FMTNAME function if specified
Perform FRCDTA function if specified
Perform CONFIRM function if specified
Perform TNSSYNLVL function if specified
Perform CTLDTA function if specified

14 END

Figure 6-19 (Part 2 of 2). Keyword Processing Chart

Chapter 6. Using Communications DDS Keywords

6-23

6-24 ICF Programming V4R1

Chapter 7. Using System-Supplied Communications Formats

This chapter defines the system-supplied communications
formats you can use in your program to control data commu-
nications with the remote system. These system-supplied
formats are used in place of user-defined data description
specifications (DDS) record formats on the write operation.
This chapter also maps these system-supplied communica-
tions formats to their DDS keyword counterparts in

Figure 7-24 on page 7-21.

Programming examples are included to show you how these
system-supplied formats are used. These examples are
program segments only. You can find complete ILE C,
COBOL/400., and RPG/400 programming examples in
Chapter 9 through Chapter 11.

All system-supplied formats described in this chapter may not
be supported by the communications type you are using.
Figure 7-23 on page 7-20 summarizes the support provided
by each communications type. For more detail, refer to the
appropriate communications programming book for the com-
munications type you are using.

General Description

You can use system-supplied formats for communications
only when using an ICF file. You can either create your own
file or use the default file provided by ICF for communica-
tions when using system-supplied formats. This file,
QICDMF, is in library QSYS. You must still perform the
override commands for QICDMF to define your program
device names.

The QICDMF file was created with the following character-
istics:
e The INDARA keyword is used in this file; therefore, a
separate indicator area must be specified in your
program when this file is used.

¢ *NONE was specified for the ACQPGMDEYV parameter.
Therefore, no program device is acquired when the file
is opened.

¢ The maximum record length for the file is 4096 bytes.
The maximum record length is used in allocating I/O
buffers. If your program does not need this large a
record, you may want to override this value by using the
Override Intersystem Communications Function File
(OVRICFF) command, specifying the MAXRCDLEN
parameter.

¢ The maximum number of program devices that can be
acquired with this file is five. If your program uses more
than five program devices, you will need to change this
file by using the Change Intersystem Communications

© Copyright IBM Corp. 1997

Function File (CHGICFF) command and specifying a
larger value for the MAXPGMDEV parameter.

e 30 SECONDS was specified for the WAITFILE param-
eter.

¢ *NOMAX was specified for the WAITRCD parameter.
¢ *NO was specified for the SHARE parameter.

e *USE was specified for the AUT parameter. Refer to the
Security — Reference book for information on what rights
this characteristic provides.

Do not change this file with the CHGICFF command unless
you need to change the maximum number of program
devices or want to provide different default characteristics
system-wide than those provided at file creation. Use the
Override Intersystem Communications Function File
(OVRICFF) command to temporarily override any character-
istics needed by a particular application.

Do not add any program device entries to the file using the
Add Intersystem Communications Function Device Entry
(ADDICFDEVE) command. Define program device entries
using the Override Intersystem Communications Function
Device Entry (OVRICFDEVE) command.

The primary communications functions you can perform
using system-supplied formats are:

¢ Evoke functions (starting remote programs)
e Output functions (sending data)
e Detach functions (ending communications transactions)

e End-of-session functions (ending the session)
These functions are described on the following pages.

All of the system-supplied formats are specified on output
operations. The system-supplied formats that allow you to
perform the invite and timer functions do, however, affect

input processing.

Note: This chapter discusses only how you can use
system-supplied formats to do specific communications func-
tions, such as starting and stopping a communications trans-
action and sending data. Your program will, of course, need
to perform additional operations such as starting a session
and receiving data. Refer to the appropriate sections in
Chapter 5 for information on these operations.

Starting a Program on the Remote System

The target program must be started before communications
can begin between your program and a target program. To
start a target program and to start a communications trans-
action, your program must issue an evoke function.

7-1

Evoke

You can use one of the following three system-supplied
formats to perform an evoke function:

Evoke ($$EVOKNI). Starts the specified program on
the remote system. Your program remains in send
state, so it can send data to the target program.

Evoke with Invite ($$EVOK). Starts the specified
program on the remote system and invites that program
to send data.

Evoke with Detach ($$EVOKET). Starts the specified
program on the remote system and ends the commu-

AS/400 System

nications transaction, without allowing the target program
to communicate in return. Refer to “Ending a Commu-
nications Transaction” on page 7-17 for more informa-
tion on the detach function.

Figure 7-1 shows how to start a target program on the
remote system.

2]

The source program uses an evoke function to start
the program at the remote system.

The evoke parameters, including program name, library
name, and security information, are sent to the remote
system.

ICF
Source Data Communications
Program Management Support
e
B Program Start
e Request to
Write with Remote System
$SEVOKNI »
v = 2 = /Jem=====." Data Link
Return Code 1’
¢ < —

Answer from
Remote System

Figure 7-1. Starting a Target Program

7-2

ICF Programming V4R1

RSLS670-2

A successful completion return code tells the source
program that the evoke function was accepted and a
program start request was sent to the remote system.
If the program start request is successful, both the
program at the remote system and the communications
transaction are started.

You must specify an evoke parameter list in the output
buffer with an evoke function. The evoke parameter list con-
tains information for the remote system, such as what
program to start on the remote system. Specify the field
parameters in that list using the format shown in Figure 7-2.

Figure 7-2. Evoke Parameter List

Positions Field Description

1 through 8 The name of the program to be evoked

(left-adjusted)

The password you use to sign on the
remote system (left-adjusted)

9 through 16

17 through The user identifier you use to sign on the

24 remote system (left-adjusted)

25 through The name of the remote system library that

32 contains the program to be evoked (left-
adjusted)

33 through Reserved

52

53 through The length of data (program parameters)

56

57 through Program initialization parameters

XXXX

If a field is not used, enter the correct number of blanks for
the unused field.

If multiple program initialization parameters are used, the
program is responsible for using the proper separation char-
acters for the remote system. For example, if the remote
system is an AS/400 system, multiple parameters must be
separated by a comma.

If the remote system is another AS/400 system, the program
parameters are passed to the target program as if they were
passed from a Call a Program (CALL) command. Data sent
with an evoke function are parameters used by the target
program.

System-supplied formats do not allow a synchronization level
of CONFIRM and always revert to the default synchronization
level of NONE.

The following is an example of an ILE C write statement that
can be used to issue an evoke.

struct {
char program_name??(8??);
char password??(8?7);
char user_id??(8?7);
char library_name??(8?7);
char filler??(2027?);
char data_length??(47?);
char data??(10002?);

} evoke_rec;

_RFILE *icffptr; /* Pointer to the ICF file */

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

_Rformat (icffptr, "$$EVOKNI");
/* Set evoke w/no invite format */
_Rpgmdev (icffptr, "CM1");
/* Set default device to CM1 */

_Rwrite(icffptr, &evoke_rec, sizeof(evoke_rec));/* Do the evoke */

The following is an example of a COBOL/400 WRITE state-
ment which can be used to issue an evoke.
01 DATA-RECORD.

03 PROGRAM-NAME PIC X(8).
03 PASSHORD PIC X(8).
03 USER-ID PIC X(8).
03 LIBRARY-NAME PIC X(8).
03 FILLER PIC X(20).
03 DATA-LENGTH PIC 9(4).
03 THE-DATA PIC X(256).

WRITE TRANSACTION-RECORD FROM DATA-RECORD,
FORMAT IS '$$EVOKNI', TERMINAL IS ICF-PGMDEV.

Figure 7-3 on page 7-4 is an example of an RPG/400 output
specification used to issue an evoke function.

Chapter 7. Using System-Supplied Communications Formats 7-3

International Business Machines Corporation

RPG OUTPUT SPECIFICATIONS

GX21-9090-4 UM/050«
Printed in U.S.A.

. . 12 75 76 77 78 79 80
rogrom Keyin Graphic Cord Electro Number g . Program
Progrommer Dote Ingm?won Key oo m’— {dentificotion
O o gspuce Skip Output Indicators Commas ZE{SPBS"WWS No Sign| R | — x:E‘smuge
ole v us sign
SE F\E\ngumE Y = Date 5-9-
B % s ‘ EXCPT Name Yes Yes 1 Al Field Edit | yser
® Filenome gL e & n Yes No 2 B | K |Z=Zero efine
U B Record Name ~lrle 5|, And And EO:.‘“OH No Yes 3 c |t Suppress pefines
e lef] & | & ol S| i No No 4 b | ™
£ Alolo| ® | < T i T Bl output =
o[r FHEE CHE o C|S| Recors |3 Constont or Edit Word
NN SR R 3| s ® 12345 6 78 9101112131415 16 17 18 1920 21 22 23 24
3 4 5(6|7 8 9101112 13[14|15(16(17|18| 1920|271 22 23124125251271282913d31 32 33 34 35 36 3738(39(40 41 42 43|44/45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70[71 72 73 74
T T T T T 1T [L L L P PN [T T T T T
opti oG E] Ll fr i EVIOKE, L N T O O N O A
olel fo[11111 IEEEREEEN RN NREEE | ikig| | igigiE ok
T T T T T T T rT [PPN P I I N N e R A N N
ool i i I I LB ACEPIROGHT S
e Jo 1 T T e |
[[el [PN N NN R
R o] B A T T 1 I AR L 24 NUSERPRGA:
el Jo| 11111 e s e]
ol7l lof + b 0 T O R A R R 2y R AT T S R R
oisi o| iidid Ll LI6I6] | TINIQE TALTIZI41007 1 L
olsl of 11 AEEEEE R R Lo R R
RSLS184-1
Figure 7-3. Evoke RPG/400 Output Specification
: function-management-header and an invite to the remote
Sending Data g
program.
A data record can be sent from your program to the remote ¢ Send with End-of-Group ($$SENDE) . Sends a data
program. The following list describes each of the system- record to the remote program and tells the remote
supplied send formats that can be used to send data: program that the record is the last in a group or chain of
¢ Send ($$SENDNI). Sends one data record to the records.
remote program. ¢ Send with Detach ($$SENDET) . Sends a data record
¢ Send with Invite ($$SEND) . Sends one data record to to the remote progrgm ‘i?]d tells the r.emtpte ptrogramt.that
the remote program and issues an invite to the remote)(/:our prog”’"p IS ekr: tlvr\]/g |.:,hcotmmun|ca lons hransac :jond'
program. Your program must use an input operation to Ro][nmtunllltlzza(;gns eC een the :_VO pr_(lj_grams t.av”e ended.
receive the data sent from the remote system. elerto 'Ending a Lommunications fransaction™on
page 7-17 for more information on the detach function.
¢ Send with Function-Management-Header
Note: Except for $3SENDFM and $$SENDNF, you can

7-4

($$SENDNF). Sends a data record that includes a
function-management-header to the remote program.
Function-management-header data contains control
information that tells the remote system about the data
being sent.

Send with Function-Management-Header and Invite
($$SENDFM). Sends a data record that includes a

ICF Programming V4R1

specify a length of zero and perform any of the preceding
functions without sending any data.

Figure 7-4 on page 7-5 shows how to use system-supplied
formats to send data.

AS/400 System

ICF

Source Data

Communications

Program Management Support
)
e
Cl
Write with
n g——7§ Data Is Sent
SSSENDNF > 4 > Z
_ | Return Code Data
- Includes
- FMH
Data Link
Ll
N I
Write with o }/ /‘ o }/ /‘
> > ———
$SSENDNI
Return Code Data
2 B ~
Write with
o » §§§
$SSSENDE > 4 > 4
Return Code Data with
End-of-Group
Indicator

Figure 7-4. Using $$SENDNF, $$SENDNI, and $$SENDE to Send Data

[Your program sends a record to the remote system
and, with the $$SENDNF communications format, indi-
cates that the first part of the data is function-
management-header data. The
function-management-header data contains information
about the user data