
iSeries™

Programming with VisualAge® RPG

Version 6.0 for Windows®

SC09-2449-07

���

iSeries™

Programming with VisualAge® RPG

Version 6.0 for Windows®

SC09-2449-07

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

455.

Eighth Edition (June 2005)

This edition applies to Version 6.0 of IBM WebSphere Development Studio Client for iSeries and to all subsequent

releases and modifications until otherwise indicated in new editions.

This edition replaces SC09-2449-06 .

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or

addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address given below.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory

Information Development

D1/817/8200/MKM

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

You can also send your comments electronically to IBM. See “How to Send Your Comments” on page xi for a

description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this Book ix

Who Should Use This Book ix

Prerequisite and Related Information ix

How to Use This Book ix

The VisualAge RPG Library x

How to Send Your Comments xi

Accessing Online Information xi

Using Online Books xi

Publications in PDF Format xi

Using Online Help xii

What’s New in This Release xiii

Changes in WebSphere Development Studio Client

for iSeries Version 5.1.2 xiii

Changes in WebSphere Development Studio Client

for iSeries Version 5.1 xiv

Changes in WebSphere Development Studio Client

for iSeries Version 5.0 xiv

Part 1. A First Look at Client/Server

Applications 1

Chapter 1. Creating a Client/Server

Application 3

About the Sample Application 3

Building the Sample Application 3

Deciding What to Show the User 5

Welcome to the Video Store Catalog 5

Browsing by Category 5

Searching for Specific Titles 6

Previewing Titles 6

Modifying and Submitting Orders 6

Submitting Orders 6

High-Level Window Design 6

Creating the Comedy Window 7

Creating the GUI 7

Setting Attributes 7

Adding Program Logic 8

Creating the Preview Window 11

Creating the GUI 11

Setting Attributes at Design Time 12

Setting Attributes at Run Time 12

Adding Program Logic 12

Creating Messages 15

Creating the Online Help 15

Context-sensitive help 15

Creating Help push buttons 16

A Review of Visual Programming 17

Chapter 2. Planning Your Application 19

Enabling Secure Java Applications 19

Decide What Functions to Provide 19

Help Your Users 19

Keep Window Design Simple 20

Number of Windows 20

Content of Each Window 20

Plan Your Code Effectively 21

Keep the User Informed 21

Use a Consistent Style 21

Anticipate Translation Issues 22

Part 2. Working with Parts 23

Chapter 3. Programming with Parts . . 25

Getting and Setting Part Attributes 25

Referencing Parts in Your Program 25

Responding to Events 26

System Attributes 27

Working with Event and System Attributes 27

Coding Static Text and Entry Field Parts 28

Creating and Retrieving Entry Field Parts . . . 28

Operation Codes for Window Parts 29

Using Window Operation Codes on Parts with

Identical Names 30

Chapter 4. Sample Programs for

VisualAge RPG 33

Before You Begin 34

Building the Examples 34

Running the Examples 34

Accessing an iSeries 400 Server 34

Chapter 5. Common Attributes 35

PartName Attribute 35

ParentName Attribute 35

PartType Attribute 35

Color Attributes 37

Enabled Attribute 37

Size and Position Attributes 37

Visible Attribute 38

Focus Attribute 38

UserData Attribute 39

Label Attribute 39

Label Substitution 39

Translation Tips 39

Chapter 6. Using Data Transfer 41

A Typical Data Transfer Scenario 41

Parts That Support Data Transfer 41

Enabling Parts for Data Transfer 41

Data Transfer Example 42

Chapter 7. Using Parts 45

ActiveX 46

Adding ActiveX Controls 47

Setting Properties 47

Calling Methods 48

Responding to Events 50

© Copyright IBM Corp. 1994, 2005 iii

Animation Control 53

Calendar 54

Determining Which Date the User Selected . . . 54

Using Date Index Attributes 55

Canvas 56

Check Box 58

Setting the State of a Check Box Part 59

Setting a Mnemonic 59

Signaling Events 59

Combination Box 60

Selecting the Type of Combination Box 61

Adding and Setting the Initial Sequence of Items 61

Adding Items at Run Time 61

Updating Items in a List 61

Setting the Top of the List 62

Removing Items 62

Selecting and Deselecting Items 62

Retrieving a User-Selected Item 62

Using Keys 63

Setting the Entry Field Text 64

Signaling Events 64

Component Reference 65

Referencing Part Attributes in Other Components 65

Monitoring for Events in Another Component . . 66

Container 67

Adding Columns to a Container 67

Adding Records to a Container 68

Updating Container Columns 69

Removing Records from a Container 70

Changing the Container View 70

DDE Client 74

Entry Field 75

Using the InsertMode Attribute 76

Using the Text Attribute 76

Getting and Setting Information for a Window . 76

Validity Checking 76

Preventing User Input 77

Masking Sensitive Data 77

Graph 78

Sending data to the Graph 78

Graphic Push Button 80

Setting the Image 81

Assigning Command Keys 81

Signaling Events 81

Group Box 82

Labeling a Group Box 82

Grouping Radio Buttons 82

Horizontal Scroll Bar 83

Image 84

Creating the Image Part 85

Setting the File Name 85

Controlling the Magnification Panel 85

Image Example 85

Java Bean 89

Adding Beans to your Project 89

Location of Bean JAR Files 90

Setting the JAR Classpath 90

Setting/Getting JavaBean Properties and

Invoking Methods 91

List Box 92

Adding and Setting the Sequence of Items . . . 92

Adding Items at Run Time 93

Updating Items in a List 93

Setting the Top of the List 93

Removing Items 93

Selecting and Deselecting Items 93

Types of Selection 93

Retrieving Items from the List 94

Using Keys 94

Signaling Events 94

List Box Example 94

Search Example 98

Media 101

Specifying a File Name 101

Setting AudioMode 101

Setting the Volume 102

Setting the Position 102

Using the Media Panel Part 102

Signaling Events 102

Media Panel 103

Creating a Media Panel Part 103

Linking Other Parts 103

Signaling Events 104

Menu Bar 105

Creating Pull-down Menus 105

Menu Item 106

Placing a Check Mark beside a Menu Item . . 106

Setting Menu Text 106

Setting a Mnemonic 106

Enabling Menu Items 107

Signaling Events 107

Message Subfile 108

Displaying Predefined Messages 108

Displaying Text Supplied in Your Program . . 108

Using Substitution Variables 108

Removing Messages 109

Message Subfile Example 110

Multiline Edit 112

Getting and Setting the Text 112

Manipulating Lines of Text in a Multiline Edit

Part 112

Manipulating Characters in a Multiline Edit Part 113

Manipulating Selected Portions of Text in a

Multiline Edit Part 113

Changing Color 113

Choosing Fonts 113

Preventing User Input 113

Multiline Edit Example 113

Notebook 117

Changing Font Emphasis 117

Notebook Page 118

Showing Tab Text 118

Setting a Mnemonic 118

Notebook Page with Canvas 119

ODBC/JDBC Interface 120

Connecting to an ODBC Database 121

Creating a Record Set 121

Accessing Table Data 122

Data Types 122

Retrieving Table Rows 123

Updating Row Data 124

Deleting a Row 124

iv Programming with VisualAge RPG

ODBC/JDBC Interface Part Example 124

Outline Box 137

Special Height and Width Settings 137

Pop-up Menu 138

Progress Bar 139

Progress Bar Example 139

Push Button 140

Setting a Default Push Button 140

Setting a Mnemonic 140

Assigning Command Keys 141

Signaling Events 141

Radio Button 142

Setting a Mnemonic 142

Grouping Radio Buttons 142

Setting the State of a Radio Button 144

Signaling Events 144

Slider 145

Getting and Setting the Slider Value 145

Signaling Events 145

Slider Example 146

Spin Button 151

Setting Spin Button Values 151

Getting the Spin Button Value 151

Preventing User Input 152

Spin Button Example 152

Static Text 155

Changing the Text of a Static Text Part 155

Getting Static Text Values 155

Getting and Setting Information for a Window 155

Editing Output 156

Status Bar 157

Status Bar Example 157

Subfile 158

Creating a Subfile Part 159

Maximum Number of Fields per Subfile . . . 159

Operation Codes for Manipulating Subfile Parts 159

Loading a Subfile 159

Determining the Subfile Size 159

Getting the Record Count 159

Reading and Updating Records 160

Changing Subfile Fields 160

Hidden Fields 161

Formatting Subfile Fields 161

Enabling Tabbing 161

Subfile Example 161

Signaling Events 170

Submenu 171

Timer 172

Displaying the Timer Icon 172

Setting the Interval 172

Generating Tick Events 173

Getting the Timer Value 173

Controlling the Timer Using Timer Modes . . . 173

Timer Example 173

Vertical Scroll Bar 179

Window 180

Window with Canvas 181

Displaying a Window 181

Resizing a Window 183

Setting the Focus 185

Window List 185

Terminating a Program 186

Clearing Fields on a Window 187

Example of a Window Part 187

*Component 188

Using the *component part 188

Displaying a File Open/Save As dialog. . . . 188

Selecting a printer 189

Using Plugins 190

Part 3. Working with iSeries Data 191

Chapter 8. iSeries Connectivity 193

Defining iSeries Information 193

Notebook Considerations 193

Setting Up a Server 194

Setting a Server at Design Time 194

Setting a Server at Run Time 194

Using Data Areas 195

Using iSeries 400 Database Files 196

Level Checking 199

Locking Database Files 199

Overriding Database Files 199

iSeries 400 Database I/O Considerations 200

Using Record Blocking to Improve Performance 200

iSeries 400 Servers Used 200

Controlling Server Connections at Run Time . . . 201

Setting the Remote Location name 201

Connecting to a remote location 203

Sample Program Using the Signon API 205

Handling Server Sign-On Errors 208

Explicitly Handling File Open Errors 208

Explicitly connecting to the server 209

Setting up a general program error handler . . 209

Using the Security File for Applets 210

Chapter 9. Reusing iSeries

Applications 213

Reuse Scenario 213

Importing Display Files 217

Converting Display Files 218

Reusing UIM Help 222

UIM and IPF functions that use the same tags 222

Equivalent UIM and IPF functions that use

different tags 223

UIM Functions with no IPF equivalents . . . 224

Reusing RPG Source 224

Part 4. Advanced Topics 225

Chapter 10. Debugging Your

Application 227

Starting the Debugger 227

Displaying the Assembly Code 228

Loading the DLL Occurrence 228

Entering Debug Startup Information 229

Setting a Breakpoint 229

Running with Breakpoints 231

Using the Mouse or Keyboard to Start Debug

Functions 231

Contents v

Selecting Options from the Tool Bar 232

Displaying and Changing Variables, Arrays, and

Structures 233

Changing the Contents of a Field or Structure . . 234

Changing the Representation 234

Changing the Default Representation 234

Displaying Pointers and Storage 234

Changing the Debugger Views 236

Setting Fonts 237

Chapter 11. Editing Output 239

Edit Codes 239

Edit Words 240

Parts of an Edit Word 241

Chapter 12. Using Picture, Sound, and

Video Files 243

Creating Icons for Windows 244

Converting OS/2 Icons to Windows Format . . . 244

Chapter 13. Tips for Creating Online

Help with IPF 245

Creating Online Help 245

Using IPF 245

Supporting Help for Other Languages 245

Adding Graphics to Your Online Help 245

Deciding What Type of Help to Provide 246

Adding Context-Sensitive Help 246

Creating a Help Push Button 246

Creating Hypertext Links 246

Chapter 14. Tips for Creating and

Using Windows Help 249

Establishing the Resource ID 249

Writing the Help Text 250

Creating the Help Project File 252

Compiling the VARPG Program 252

Testing the Help 252

Creating a Contents File 252

Chapter 15. Tips for Creating

JavaHelp 253

Creating a HelpSet File 254

Creating the Map File 255

Creating the TOC File 255

Creating the JAR File 256

Chapter 16. Working with Messages 259

Defining Text for Substitution Labels 259

Creating a New Message 260

Editing a Message 261

Deleting a Message 261

Finding a Message 261

Using Messages with Logic 262

Translating Message Files 262

Manually Changing Message Files 263

Using Messages as Labels 263

Chapter 17. Communicating Between

Objects 265

Linking Parts 265

Using a VisualAge RPG Application as a DDE

Server 266

AppName 266

Topic 266

Item 266

DDEAddLink 267

DDEMode 267

Communicating Between Components 267

Making Local Calls 267

Using the CALLB Operation 267

Calling Local Programs using CALLP 269

Calling Local Programs using START 270

Starting Components using START 272

Calling Remote Programs 273

Calling iSeries 400 Programs 273

Starting Workstation Programs from the iSeries

server 274

Using Multiple Procedures 274

Prototyped Calls 275

Procedure Considerations 277

Procedure Implications 277

Chapter 18. Calling Java Methods

from VisualAge RPG Programs 279

The Object Data Type and CLASS Keyword . . . 279

Prototyping a Java Method 280

Examples of Prototyping Java Methods 281

Creating Objects 283

Calling Java Methods 283

Additional Considerations 286

Chapter 19. Considerations When

Compiling for Java 287

Project File Name Convention 287

Conditional Compile Directives 287

Java Source Code Restrictions 287

Possible VARPG Source Changes 288

Runtime Differences 290

Applet Restrictions 291

J2SDK 1.2 Printing Problems 291

Chapter 20. Creating and Running

VisualAge RPG Applets 293

Creating Applets 293

Testing Your Applet 295

Troubleshooting 296

Running One Applet from Another 297

Chapter 21. Calling System Functions

when Compiling for Java 299

A Simple Call 299

Passing and Receiving Parameters 301

Parameter Types 301

Passing Arrays 323

Returning A Char Value 339

Returning A Zoned Value 340

vi Programming with VisualAge RPG

Returning A Packed Value 342

Returning A Binary Value 344

Returning An Integer Value 345

Returning An Unsigned Value 346

Returning A Date, Time, or Timestamp Value 348

Returning A Float Value 348

Returning A Varying-Length Character Value 349

Returning Array Values 349

Chapter 22. Creating Non-GUI

VisualAge RPG Programs 375

Creating Standalone VARPG Programs 375

Creating DLLs 376

Exception Handling 379

Debugging Applications 379

Debugging Procedures 379

Chapter 23. DBCS Considerations . . 381

VisualAge RPG Support for DBCS Data Types . . 381

DBCS ONLY Data Type 382

DBCS Either Data Type 382

DBCS Mixed Data Type 383

Pure DBCS Considerations 383

Chapter 24. Merging Code in Your

Application 385

Chapter 25. Vendor Plugins 389

Adding a Vendor Plugin 389

Invoking a Vendor Plugin 389

Managing Vendor Plugins 389

Chapter 26. Creating Plugins 391

Creating Plugins Using VisualAge RPG 391

Creating the .plg file 391

Template for .plg file and sample 397

Creating the .EXE file 399

Packaging Your Application 412

Considerations when Creating Plugins using

VisualAge for C++ 412

Considerations when Creating Plugins using REXX 412

Part 5. Distributing Your

Application 413

Chapter 27. Packaging Runtime Code

and Applications 415

Before You Begin 415

Packaging the VisualAge RPG Runtime Code and

Applications 415

Starting the Packaging Utility 416

Packaging Windows Applications for Windows 416

Packaging Java Applications for Windows . . . 419

Packaging Java Applications for Other Platforms 420

Chapter 28. Installing Windows

NT/95/98 Runtime Code and

Applications 423

Installing the Runtime Code 423

A Note About Embedded SQL 423

Installing an Application 423

Maintaining the Runtime Code and Applications 423

Installing From the LAN 424

Installing Silently from the LAN 424

Part 6. Appendixes 425

Appendix A. Application Files 427

Appendix B. Writing Thin Client

Applications 431

Implementing a VARPG Thin Application Model 431

Sample Application Using Remote Calls 432

The Client Program 433

The Server Program 434

Sample Application Using Data Queues 436

The Client Application 437

The Server Program 441

Other Possible Implementations 443

Reusable Server Program Example 443

Appendix C. Creating and Compiling

Non-GUI Programs from MS-DOS . . . 447

Accessing an AS/400 System 448

Appendix D. Secure Sockets Layer

(SSL) Setup 449

SSL Considerations 449

Prerequisites 449

SSL Setup for the iSeries 400 Server 450

SSL Setup for the Workstation 452

Notices 455

Programming Interface Information 456

Trademarks and Service Marks 456

Glossary 457

Bibliography 469

Index 471

Contents vii

viii Programming with VisualAge RPG

About this Book

This book is a guide for using VisualAge® RPG to develop client/server

applications. It describes the steps at every stage of the application development

cycle, from design to packaging and distribution. Programming examples are

included, to clarify the concepts and the process.

Who Should Use This Book

This book is written for programmers who will be using VisualAge RPG to

develop client/server applications. It assumes that you are familiar with

developing RPG applications on iSeries™ 400™ systems.

Prerequisite and Related Information

Use the iSeries Information Center as your starting point for looking up iSeries and

AS/400e technical information. You can access the Information Center in two ways:

v From the following Web site:

http://www.ibm.com/eserver/iseries/infocenter

v From CD-ROMs that ship with your OS/400 order:

iSeries Information Center, SK3T-4091-00. This package also includes the PDF

versions of iSeries manuals, iSeries Information Center: Supplemental Manuals,

SK3T-4092-00, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as CL

commands, system application programming interfaces (APIs), logical partitions,

clustering, Java

™ , TCP/IP, Web serving, and secured networks. It also includes

links to related IBM® Redbooks and Internet links to other IBM Web sites such as

the Technical Studio and the IBM home page.

How to Use This Book

Note: For information on the product, see Getting Started with WebSphere

Development Studio Client for iSeries, SC09-2625-06.

The Programming with VisualAge RPG book consists of the following parts:

A First Look at Client/Server Applications

This part describes the steps involved in creating a client/server

application with VisualAge RPG. It walks you through the design and

development of a sample application, and discusses design issues.

Working with Parts

This part contains tips about creating a graphical user interface with

VisualAge RPG parts and writing program logic to drive those parts. It

does not describe how to use every operation code, nor does it describe the

details of every attribute or event. For such information, see the VisualAge

RPG Language Referenceand VisualAge RPG Parts Reference.

Working with iSeries 400 Data

This part discusses how to set up your application to access data on an

© Copyright IBM Corp. 1994, 2005 ix

iSeries 400 server, and how to reuse existing server applications by

converting them to VisualAge RPG applications that run on a

programmable workstation (PWS).

Advanced Topics

This part highlights the many features you can add to your VisualAge RPG

application. It covers topics such as printing from your application, editing

output, using the debugger, using picture and sound files, creating online

help, adding messages, and running your application on a DBCS system. It

also describes the many different ways VisualAge RPG applications can

share data and communicate.

Distributing Your Application

This part discusses how to package the VisualAge RPG runtime code and

your application. It also describes how to install the runtime code and the

application on a user’s PWS.

The VisualAge RPG Library

The VisualAge RPG library contains the following publications:

Programming with VisualAge RPG

This book contains specific information about creating applications with VisualAge

RPG. It describes the steps you have to follow at every stage of the application

development cycle, from design to packaging and distribution. Programming

examples are included to clarify the concepts and the process of developing

VisualAge RPG applications.

VisualAge RPG Parts Reference

This book provides information on the VisualAge RPG parts, part attributes, part

events, and event attributes. It is a reference for anyone who is developing

applications using VisualAge RPG.

VisualAge RPG Language Reference

This book provides information about the RPG IV language as implemented using

the VisualAge RPG compiler. It contains:

v Language fundamentals such as the character set, symbolic names and reserved

words, compiler directives, and indicators

v Data types and data formats

v Error and exception handling

v Specifications

v Built-in functions, expressions, and operation codes.

For an overview of the entire product, see Getting Started with WebSphere

Development Studio Client for iSeries.

For a list of related publications, see the Bibliography at the end of this book.

You can also find the most current information about IBM WebSphere

Development Studio Client for iSeries on the following online source:

The Development Studio Client Home Page

ibm.com/software/ad/wdsc/

x Programming with VisualAge RPG

How to Send Your Comments

Your feedback is important in helping us to provide the highest quality

information possible. IBM welcomes any comments about this book or any other

iSeries documentation.

v If you prefer to send comments by mail, use the following address:

IBM Canada Ltd. Laboratory

Information Development

D1/817/8200/MKM

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7
v If you prefer to send comments electronically, use this e-mail address:

toreador@ca.ibm.com

v If you prefer to send comments by fax, use this number:

1-845-491-7727

Be sure to include the following:

v The name of the book

v The publication number of the book

v The page number or topic to which your comment applies.

Accessing Online Information

VisualAge RPG contains a variety of online books and online help. You can access

the help while you are using the product, and can view the books either while you

are using the product, or independently.

Using Online Books

To view an online book, either:

v Select the name of the book from the Help pull-down menu of the VisualAge

RPG GUI Designer or the editor window.

v Access the books from the Start menu. Select Programs → IBM WebSphere

Development Studio Client for iSeries. Then select Documentation.

Publications in PDF Format

VisualAge RPG publications are available in Portable Document Format (PDF)

from the iSeries Information Center at URL

http://www.ibm.com/eserver/iseries/infocenter .

Note: You need the Adobe Acrobat Reader, Version 3.01 or later for Windows, to

view the PDF format of our publications on the workstation. If your location

does not have the reader, you can download a copy from the Adobe

Systems Web site (http://www.adobe.com).

The following VisualAge RPG publications are available in PDF format:

v Programming with VisualAge RPG

v VisualAge RPG Parts Reference

v VisualAge RPG Language Reference

For information on the product, see Getting Started with WebSphere Development

Studio Client for iSeries, SC09-2625-06.

About this Book xi

Using Online Help

Online help is available for all areas of VisualAge RPG. To get help for a particular

window, dialog box, or properties notebook, select the Help push button (when

available).

Note: To view help that is in HTML format, your workstation must have a

frames-capable Web browser, such as Netscape Navigator 4.04 or higher, or

Microsoft® Internet Explorer 4.01 or higher. (Recommended browser is

Netscape Navigator 4.6 or Internet Explorer 5.0)

Using context-sensitive help

To receive context-sensitive help at any time, press F1. The help that appears is

specific to the area of the interface that has input focus. Input focus can be on

menu items, windows, dialog boxes, and properties notebooks, or on specific parts

of these.

For context-sensitive help on dialog boxes, click on the question mark (when

available) in the top right-hand corner of the window. A question mark will appear

beside the mouse arrow. Click on a word or field and help information on that

specific field will be displayed.

Using language-sensitive help

To receive language sensitive help, press F1 in an edit window. If the cursor is on

an operation code, you receive help for that operation code; otherwise, you receive

help for the current specification.

xii Programming with VisualAge RPG

What’s New in This Release

Changes in WebSphere Development Studio Client for iSeries Version 6.0 include:

v VARPG Run-time Library Version Check: When installing or launching a

VARPG application, the application will check the version of the VARPG

run-time library installed is sufficient.

v Application Packaging Utility:

– Added a choice to disable repeated messages. (eg. ″file exist...″)

– If a specified directory already exists, allow override.
v Project Description Text: Enable project description text to be set when the

project is saved for the first time. This description is then displayed in the Open

Component dialog.

v Backup & Restore Utilities: Support adding & displaying a short project

description.

v Open File dialog: Allow selection of multiple files, and selection of a folder

name.

v (For Citrix users) New ″Use Separate Folder″ option: Added to the User

Preference dialog.

The ″Use Separate Folder″ check box is added for Citrix server users only. If

checked, the security file that stores the user ID and password (file

FVDCSEC.TXT) is stored in a different directory for each user. For example, for

user username, the file is stored in c:\Documents and

Settings\username\Application Data\IBM\VARPG. At run time, if you want to

use a different security file for each user, create a file called fvdvarpg.ini in

x:\vrpgrt\system (x:\vrpgrt is where the VARPG runtime is installed) that

contains only this line:

USE_SEPARATE_FOLDER=TRUE

If Use Separate Folder is unchecked(default), all users will share the same

security file.

Part changes:

v Container: Allow setting of READONLY for the entire container. If the record

number is set to 0, READONLY applies to the whole container.

v Line Graph: Allow clicking a point on a line graph to set group & point values.

Previously, this operation was allowed on Bar or Pie graphs only. When clicked

on, the group & point value is set and the point is highlighted with a circle.

This publication includes updates from the Readme files of previous releases and

other technical corrections.

Changes are noted by a vertical bar (|).

Changes in WebSphere Development Studio Client for iSeries Version

5.1.2

v Java Version: JDK 1.4.2 is supported.

v Component Package Utility: The utility now remembers the library settings in

the build options dialog box.

v ODBC Support: Corrected a problem which caused an ″invalid cursor state″

error.

Part changes:

© Copyright IBM Corp. 1994, 2005 xiii

v *component:

– Attributes SelFolder, DlgPrompt, and FolderName can be used to select a

folder.

– Attribute FocusPart returns the name of the part that has the focus.
v Subfile: Attribute ByteComp can be set when sorting a subfile column. When

this value is set to 1, the sorting algorithm does a byte-by-byte comparison of

the two strings (the default is still to do a language sensitive comparison).

v Media: This part now works on Windows XP.

Changes in WebSphere Development Studio Client for iSeries Version

5.1

v Print Settings: The printer file Open function now uses the printer settings from

a previously shown Printer Selection dialog in the application.

– A new file spec keyword called DEVMODE is added for printer files. You

can use it to specify a Windows operating system GDI DEVMODE data

structure to directly set printer settings for the printer file open.

– A new attribute called PRTDEVMODE is added to the *componentT part.

You can use it to pass the the address of a DEVMODE data structure to the

*COMPONENT SELPRINTER attribute’s Printer Selection dialog, to prime

the print settings shown initially on the dialog.
v DSPLY opcode: For the free-form syntax version of the DSPLY operation, *DFT

can be coded as a placeholder for a blank second operand. For example, DSPLY

message *DFT reply.

– The response operand is no longer required on the DSPLY operation, but is

optional.

– The Factor 2 operand, which is the message-window-definition-name, is now

optional as well.
v Subfile part: Can now make the left columns remain static when scrolling

horizontally. Use the FreezeCol attribute to control the number of columns kept

static.

Can now also set the font for individual records in a subfile.

v Container part: A new Presentation Manager (PM) compatible style allows you

to quickly add records to a container part. You also no longer experience any

problems when you add a large number of items to the container part.

v ActiveX events: You can now access and change the parameters of an ActiveX

event when it occurs. You can also use a pointer type parameter when you call

an ActiveX method.

v Canvas part: JPEG format support is added. Also, you can now use a

VKeyPress event. The event occurs when you press a virtual key on your

screen, and when one of the parts in the canvas has focus.

v GUI Designer: When you open a project, you can now press a character key to

scroll to the project whose name begins with that key.

Changes in WebSphere Development Studio Client for iSeries Version

5.0

v Launching from the IDE: You can launch the VARPG GUI Designer from the

workbench.

v Language enhancements made in ILE RPG V5R2 and V5R1 are now available.

v Qualified GUI attribute access: A new syntax is supported for accessing GUI

part attributes in expressions or free-form calculations, as an alternative to the

%GETATR and %SETATR built-in functions.

v Free-form action subroutines: When you define a new event, the corresponding

action subroutine is added to the program source code in a free-form style. This

happens when the location where the subroutine is added falls within a

xiv Programming with VisualAge RPG

free-form section. In essence, this applies when an /END-FREE directive follows

the end of the calculation specifications, but before any output, procedure, or

compile-time data specifications.

v Client conversion support for iSeries database fields with CCSID 65535: Until

now, VARPG programs have not been able to work with iSeries database fields

specified with CCSID 65535, which designates that no conversion be done when

accessing the field data. The client workstation operating in ANSI could not

understand the received EBCDIC data.

A new File specification keyword CVTHEX has been added for

externally-described remote disk files. When specified, any character fields with

a CCSID of 65535 in the file will be converted to the workstation CCSID for use

in the application. (The client-side conversion process uses the server sign-on job

CCSID in place of the field’s 65535 CCSID to perform the conversion.) Note that

CVTHEX is not supported when compiling to Java.

v PRTFMT(*SYS) for Windows device context printing: A new File specification

keyword PRTFMT(*SYS) has been added for printer files when you compile to

Windows. This new keyword enables the files to perform output using a device

context and perform graphics device interface calls to the operating system,

instead of the usual raw text output. After opening the file, the device context

handle is copied to positions 81 to 84 of the printer file INFDS, so that the

application can reference it when making its own Windows GDI calls. Note that

PRTFMT does not apply when compiling to Java.

v ActiveX: The main application and its components can now access the same

type of ActiveX part.

v JPEG support is added to the Graphic push button.

v Subfile part: You can set a subfile row as bold, italic, strikeout, or underscore.

However, you must set the Index attribute first, and set the FontArea to 3. For

example, if you wanted to set a row to be italic, you would need to set the

Index to 4, the FontArea to 3, an the FontItalic to 1. You can also use GETATR

for these features, in a specific row (indicated by the Index attribute). The run

time environment is changed so that defined messages are now shown as is.

Previous behavior deleted empty rows, and ignored the CR/NewLine control

character at the end of each row.

v Subfile part: The runtime can now perform validation for the Character type

subfile field.

v List Box part: The TOPITEM attribute is added to the List box part.

v Corrected a problem which produced an unrecoverable error when using the

Open File dialog.

What’s New in This Release xv

xvi Programming with VisualAge RPG

Part 1. A First Look at Client/Server Applications

Chapter 1, “Creating a Client/Server Application,” on page 3

Walks you through the design and implementation of a client/server

application.

Chapter 2, “Planning Your Application,” on page 19

Helps you plan and design a graphical user interface for your new

client/server application.

© Copyright IBM Corp. 1994, 2005 1

2 Programming with VisualAge RPG

Chapter 1. Creating a Client/Server Application

This section describes how to create a client/server application using VisualAge®

RPG. A sample application is used to describe the following stages of the

development process:

1. Designing what the user will see and do with the application.

2. Creating the graphical user interface (GUI).

3. Setting attributes for the GUI parts.

4. Writing the program logic to drive the GUI.

5. Writing messages and online help for the application.

About the Sample Application

The sample application, called the Video Store Catalog, was created with

VisualAge RPG, and is in the VisualAge RPG Samples folder. It provides an online

catalog that customers can use to buy videos, and has a preview component that

customers can use to view video clips before they place their order.

The information about the videos is stored in a database on the iSeries 400 server.

Customers using the Video Store Catalog are actually viewing data stored on the

iSeries server. The information that customers provide, such as their name and

phone number, is also stored on the host.

Note: Another sample application, Video Store Cashier, can access the same

database on the host. It uses the information from the customers’ orders to

update the inventory of the video store and to bill customers. The Video

Store Cashier is not discussed in this section. For information about building

and running it, see the comments in the CASHIER.VPG file in the Video

Store Cashier project folder.

Building the Sample Application

The Video Store Catalog application requires the files defined in the F specification

to be on an iSeries server. The WDSC\samples\vidcust subdirectory has the save file

VIDEOSTORE.sav of the library with the required files.

To upload the necessary files and build the application and its associated preview

component, follow these steps:

1. Ensure that both VisualAge RPG and the VisualAge RPG Samples are installed.

2. Upload and restore the VIDEOSTORE.sav file on your iSeries server as follows:

a. On your iSeries server, create a save file named VIDEOSTORE in any

library, for example, USER.

b. On your workstation, change your current directory to vidcust and issue the

ftp command as follows:

x:\...\WDSC\samples\vidcust>ftp HOSTNAME

c: is the drive where you installed the product and HOSTNAME is the

name of the iSeries server where you created the save file. (You can use

your server’s TCP/IP address, instead.)

c. Enter your user ID when prompted for it.

d. Enter your password when prompted for it.

e. After you are signed on, make the USER library your current library. Enter:

© Copyright IBM Corp. 1994, 2005 3

ftp>cd user

f. Specify the file transfer as binary. Enter:

ftp>binary

The 200 Representation type is binary IMAGE message appears.

g. Transfer the save file. Enter:

ftp>put VIDEOSTORE.sav

The File transfer completed successfully. message indicates that the

VIDEOSTORE.sav was uploaded.

h. Enter: ftp>quit

The VIDEOSTORE save file should now be in library USER on your iSeries

server.

i. Use RSTLIB to restore the library and retain the same name - VIDEOSTORE

- on your iSeries server. Otherwise, change the REMOTE_FILE_NAME

parameter in the Catalog.rst file to the name you restored the save file to.

j. In the Catalog.rst file, change the REMOTE_LOCATION_NAME parameter to

point to the Remote location name of your iSeries server.
3. Build the Video Store Catalog sample application. Select Build>Windows or

Build>Java from the pop-up menu of the Video Store Catalog project folder in

the VisualAge RPG Sample Applications folder. When the project builds

successfully, an executable program, CATALOG.EXE for Windows, or

CATLAOG.CLASS for Java is created in the Video Store Catalog project folder.

4. Build the associated Preview component. Select Build>Windows or Build>Java

from the pop-up menu of the Preview project folder. When the project builds

successfully, a dynamic link library (COMMON.DLL) for Windows, or a

COMMON.CLASS file for Java is created.

Use one of the following methods to run the Video Store Catalog application:

v Select Run>Windows or Run>Java from the pop-up menu of the Video Store

Catalog project folder.

v Open the Video Store Catalog project folder and double-click on the

CATALOG.EXE icon.

v Type catalog on a command line.

Notes:

1. The multimedia aspects of this application require additional hardware and

software. To run the audio in the preview, you must have a sound card on your

system. To run the video clip in the preview, you must have Media Player

installed. Java applications require the Java Media Framework (JMF) API.

2. The video clips are .AVI files (for Windows) or .MOV files (for Java) that are

stored in the Preview folder.

3. To build and run Java applications, you must have Sun’s Java 2 Software

Development Kit (J2SDK) Version 1.2, or higher, installed on your workstation.

If you do not have the J2SDK, you can download it from Sun Microsystems at

the following URL:

http://java.sun.com/products/

After installing the J2SDK, set the PATH environment variable to point to the

location of both the Java compiler and the Java Runtime Environment (JRE).

For example, if your home directory for the J2SDK is c:\jdk1.2, add the

following path statement: c:\jdk1.2\bin

4 Programming with VisualAge RPG

Deciding What to Show the User

A key step in creating your application is to decide what you want users to do

with your application, and then to determine what you need to provide so that

they can do it.

During the planning stages of the Video Store application, we decided that

customers should be able to list the videos in a particular category (such as

Action/Adventure or Comedy). They should also be able to list the videos that are

made by their favorite director, feature their favorite actor, or are among the top-10

sellers in the store. To help them decide whether they want to buy a particular

video, they should be able to preview it. After they find the video they want to

buy, they can place their order and then pay for their purchase at the cashier

counter.

Now that we have itemized what the customers should be able to do with the

application, we can design what they will see when they display the video catalog.

This is the time to start designing the content, number, and order of windows in

the application.

Welcome to the Video Store Catalog

The main window, or entry point to the application, is the Video Catalog —

Welcome window. It sets the stage for what customers can do with the catalog. To

use the catalog, the customers must press a graphic push button to select from the

following choices:

 Browse by Category...

 New releases...

 Top 10 Best Sellers...

 Search for Specific Titles...

 Help Catalog

Selecting Help Catalog displays the Get Help on using theCatalog window. If they

press one of the other push buttons, another window is displayed from which they

can perform other actions, such as view lists, preview clips, or submit a purchase

order.

Browsing by Category

Selecting Browe by Category displays the Video Catalog — Categories window.

This window presents a list of video categories to choose from:

 Action/Adventure Horror

 Children Western

 Science Fiction Romance

 Comedy Classics

To select a category, the customer presses its associated push button. This displays

the Video Titles window, which lists the items for that category. Customers can

preview some of the titles, add a title to their order, delete it from their order if

they change their mind, and submit their order to the cashier.

Chapter 1. Creating a Client/Server Application 5

Searching for Specific Titles

The Video Catalog — Search window lets customers search for a video by category,

title, director, or actor. After they specify the search criteria and press the Search

push button to initiate a search of the database, the results are displayed in the

Video Titles window.

Previewing Titles

Customers can preview a video that is on a list by reading a review of it or, if they

have the appropriate hardware and software, by viewing a clip of it with

associated audio.

Modifying and Submitting Orders

The Video Catalog — Review/Order My Selections window lets customers modify

their order. They can delete videos from the list, change the number of copies they

want to buy, and change the type of medium they want the video to be on (tape or

laser disk). This window is displayed when customers select a video from a list in

a Video Titles window and then press the Review/submit order push button.

When all the information for their order is entered, customers submit their order

from this window.

Submitting Orders

When customers submit their orders, they must provide their name, address, and

phone number on the Video Catalog — Order Reference window. This information

is stored in a database on the iSeries 400 server.

High-Level Window Design

Discussing how to create every one of the windows in the Video Store Catalog is

beyond the scope of this section. The following sections describe how you could

use the GUI Designer to create two windows resembling the Comedy and the

Preview windows, modify some of their part attributes, and write some of the

associated program logic. You find these windows by taking the following path

through the Video Store Catalog application:

 Video Catalog — Welcome

Pressing the Browse by Category push button on the

Video Catalog — Welcome window displays the

Video Catalog — Categories window.

Video Catalog — Categories

Pressing the Comedy push button on the Video

Catalog — Categories window displays the Video

Catalog — Comedy window.

Video Catalog — Comedy

Pressing the Preview button after selecting a title on

the Video Catalog — Comedy window displays a

Preview window.

6 Programming with VisualAge RPG

Video Catalog — Preview

The preview runs in this window.

If you want to see the design for the sample application, select Edit from the

pop-up menu of the Video Store Catalog project folder in the VisualAge RPG

Sample Applications folder. This displays the application’s project window and the

parts palette. The project window shows all the windows defined for the

application. Double-click on an entry to see its design window with the associated

parts. To view the project’s VARPG source code, select Project>Edit source code

from the project window.

Creating the Comedy Window

 The Comedy window displays the list of comedy videos that customers can

purchase. This section describes how you can create a window similar to this one.

Creating the GUI

Select a window with canvas part from the parts palette with the right mouse

button, move the pointer icon onto the project view of the GUI Designer, and

right-click again. This becomes the design window, on which you put the

following parts from the palette: group box, push button, static text, and subfile.

Aligning the parts

You can use the alignment tools in the GUI Designer to size, align, and space the

parts so that they resemble those shown in Figure 1. For information on using

these tools, see the online help or HTML tutorial.

Setting Attributes

After a part is placed and positioned on the window, you can modify the default

settings for the part attributes using its properties notebook. To do this, right-click

on the part and select Properties from the part’s pop-up menu.

Some of the part attributes you can modify are described below.

Figure 1. The Comedy window

Chapter 1. Creating a Client/Server Application 7

Window attributes

You can select the items you want to appear on the window (such as system menu,

title bar, and minimize and maximize buttons), and configure the border of the

window. By default, the window uses the system font and has a white

background. You can change the font and color.

Canvas attributes

By default, the canvas part uses the system font, and is the same color as the

folder background. You can change the font and background color of the canvas

part. You can also place a graphic on the canvas part.

Subfile attributes

By default, the subfile part is created with no columns. If you know the database

field names, you can create subfile entry fields using the GUI Designer. Otherwise,

you can reference the existing fields in the database by following these steps:

1. Select Define reference fields from the Server menu. The Define Reference

Fields window appears.

2. Specify the iSeries 400 server and library information to view the database field

information.

3. Select the appropriate fields from the Fields list box with the right mouse

button, move the pointer icon onto the subfile part in the design window, and

right-click again.

The new subfile entry field inherits the attributes from the original field:

Length is set to the column width, and Type is set to the data type.

Set the style and data type for a subfile entry field using the appropriate properties

notebook. For example, you can set the length, or the type of data.

Push button attributes

Label each of the push buttons to indicate its purpose to the user. To create a

mnemonic for each push button, put the mnemonic identifier before a character in

the label. For Windows, use an ampersand (&). Note that we put an ellipsis (...)

in the label of the Review/submit order push button so that users know that they

will have to provide more information after they press the button to place their

order.

For each push button, specify what action will happen when the user presses it.

For example, for the Preview push button, an action subroutine will be performed;

for the Help push button, help for the window will be displayed. You can set this

information on the Action tab of the push button’s properties notebook. (See

“Creating the Online Help” on page 15 for related information.)

Adding Program Logic

Program logic is required to drive certain GUI functions. This section describes

some of the Video Store Catalog’s program logic. (The source file, CATALOG.VPG,

is in the Video Store Catalog folder.)

Note: You can type the program logic for a particular event by invoking an edit

session from the GUI Designer. For example, to add program logic to the

Press event for a particular push button, select Events>Press from the push

button’s pop-up menu.

Displaying the Comedy window

To have the Comedy window appear when the user presses the Comedy push

button on the Video Titles — Categories window, do the following:

8 Programming with VisualAge RPG

1. Write an action subroutine to handle the Press event for the Comedy push

button.

We wrote the COMEDYGPB action subroutine (shown in Figure 2) to handle

this event. When the user presses the push button, the COMEDYGPB

subroutine calls the brComedy user subroutine. This subroutine reads the

database and calls another user subroutine, dspbrowse, to check if the database

is empty. If it is, a message is displayed. If it is not empty, control returns to the

brComedy user subroutine, the title of the window is changed, and the results

of the database search are displayed.

2. Write program logic to read the Comedy video titles from the database and

populate the subfile part with the list of titles. Call the dspbrowse subroutine to

check whether the database is empty. If the database is not empty, set the title

for the browse window to display the found comedy titles. Otherwise, display

message number MSG0001 to inform the user that no match was found in the

database. See Figure 3 on page 10.

 ** **

 ** Categories window action-link subroutines **

 ** **

 ** **

 *

 * This routine is executed when the Comedy graphic push button in the

 * Categories window is pressed.

 *

 C COMEDYGPB BEGACT PRESS CATW

 C z-add 0 srchdir

 C z-add 0 srchact

 C exsr brComedy

 C ENDACT

Figure 2. Handling the PRESS event

Chapter 1. Creating a Client/Server Application 9

Displaying the Preview Window

We wrote an action subroutine (see Figure 4 on page 11) to handle the PRESS event

for the Preview push button on the Comedy window. When the user presses the

button, the PREVIEWPB action subroutine is called to start the common

component that displays the Preview window.

 * *

 * User Subroutine: brComedy *

 * Description : Show browse window with comedy videos *

 * *

 C brComedy BEGSR

 C clear browsesf

 * Get records from vil0004, the logical file on the AS/400

 * for comedy type videos.

 C *start setll vil0004

 C read vil0004 61

 C *IN61 doweq ’0’

 C exsr ckcriteria

 C read vil0004 61

 C end

 C exsr dspbrowse

 * The next three lines set the browse window’s title bar text.

 C movel *blanks vdocatstl

 C movel stlcmdy vdocatstl

 C eval %setatr(’browsew’:’browsew’:’Label’) =

 C vdocatttl

 C ENDSR

 ...

 * *

 * User Subroutine: dspbrowse *

 * Description : Check if the browse subfile is empty. If so, *

 * display message MSG0001 saying match not found. *

 * *

 C dspbrowse BEGSR

 C eval items=%getatr(’BROWSEW’:’BROWSESF’:’Count’)

 C items ifeq 0

 C *MSG0001 dsply msgrsp 9 0

 C else

 C eval %setatr(’BROWSEW’: ’BROWSEW’: ’VISIBLE’)=1

 C eval %setatr(’BROWSEW’: ’BROWSEW’: ’FOCUS’)=1

 C endif

 C ENDSR

Figure 3. Reading the iSeries Database and showing the results window

10 Programming with VisualAge RPG

Creating the Preview Window

 The Preview window uses the multimedia capabilities of the operating system to

give customers a glimpse of a video clip. This section describes how you can create

a window that resembles the above.

Note: To run the audio in the preview, you must have a sound card on your

system. To run the video clip, you must have a Media Player installed. Java

applications require the Java Media Framework (JMF) API.

Creating the GUI

Point-and-click the following parts onto a window with canvas part to create a

window that resembles the Preview window:

v Media part

v Multiline edit part

v Push button parts

v Static text parts

 * When the preview button in the browse window is pressed, the common

 * component is started. The common component displays the preview

 * window of a video.

 *

 *

 C PREVIEWPB BEGACT PRESS BROWSEW

 C READS BROWSESF 55

 C *IN55 ifeq ’0’

 C start ’common’

 C parm brsfpart

 C endif

 C ENDACT

Figure 4. Action subroutine for displaying the Preview window

Figure 5. The Preview Window

Chapter 1. Creating a Client/Server Application 11

Setting Attributes at Design Time

After the parts are placed and positioned in the window, you can set the part

attributes using their respective properties notebook. Some of the attributes you

can set are described below.

Media part attributes

Push button parts are used to control the playback of the video clip: Play, Pause,

Record, and Stop. The AudioMode attribute sets the operating mode of the media

part.

Static text attributes

You can change the font attribute of a static text part to make it stand out from the

other text on the display. Resize the static text part so that it is large enough to

hold the longest text. (It is a good idea to leave a bit of extra room, if your

application is to be translated in the future.)

Multiline edit part

In the code, we set the multiline edit (MLE) part called ABSTMLE to accept text. In

the part’s properties notebook, we indicated that the part is read-only.

Setting Attributes at Run Time

To change the title of the displayed window at run time, we used the SETATR

operation code to set the Label attribute (see Figure 6 on page 13).

See also “Getting and Setting Part Attributes” on page 25.

Adding Program Logic

You have to provide some program logic to drive certain GUI functions on the

Preview window. This section describes some of the program logic (see Figure 6 on

page 13) for the Preview component.

Specifying the video to preview

The video selected in the Comedy window determines which video preview is

played. The previeww action subroutine reads which video is to be used, and then

determines the file name of the actual video file.

Controlling the video

You can write code to control video by using the media part. In our sample, the

media part is used to play a digital video file associated with the video selected.

Push buttons with the associated AudioMode attribute control the playback of the

video file:

1 Pause

2 Play

3 Record

4 Stop

The code for the Preview component follows:

12 Programming with VisualAge RPG

 *

 Fvideo if e k disk remote BLOCK(*YES)

 *

 DFlg s 1 inz(*OFF)

 DFldx s 12

 *

 *

 C *entry PLIST

 C parm partno 5 0

 *

 * Action link subroutines for PREVIEWW *

 *

 C PREVIEWW BEGACT CREATE PREVIEWW

 C partno setll video 50

 C N50*msg0001 DSPLY msgrsp 9 0

 C read video 51

 C *IN51 IFEQ ’0’

 C ’TITLEST’ SETATR vititle ’label’

 C ’DIRST’ SETATR vidirect ’label’

 *

 C viactr1 CAT viactr2:1 actors 41

 C ’ACTST’ SETATR actors ’label’

 *

 C ’ABSTMLE’ SETATR vireview ’text’

 *

 * If its for Java, use .mov file

 /If defined(COMPILE_JAVA)

 *

 C vibitmap CAT ’.mov’:0 videofil 13

 * If its not for Java, then use .avi file

 /else

 C vibitmap CAT ’.avi’:0 videofil 13

 /EndIf

 C endif

 *signify videofil is not yet loaded to Audio part

 C move ’N’ loaded

 *

 C ENDACT

 * *

Figure 6. The Preview Component (Part 1 of 3)

Chapter 1. Creating a Client/Server Application 13

 *

 C PBPLAY BEGACT PRESS PREVIEWW

 *

 C if loaded=’N’

 C eval %setatr(’previeww’:’audo’:’FileName’)

 C =videofil

 C move ’Y’ loaded 1

 C endif

 *

 C eval %setatr(’previeww’:’audo’:’audioMode’)=2

 *

 C ENDACT

 * *

 *

 C PBPAUSE BEGACT PRESS PREVIEWW

 *

 C eval %setatr(’previeww’:’audo’:’audioMode’)=1

 C ENDACT

 * *

 *

 C PBRECORD BEGACT PRESS PREVIEWW

 *

 C eval %setatr(’previeww’:’audo’:’audioMode’)=3

 C ENDACT

 * *

 *

 C PBSTOP BEGACT PRESS PREVIEWW

 *

 C eval %setatr(’previeww’:’audo’:’audioMode’)=4

 C ENDACT

 * *

Figure 6. The Preview Component (Part 2 of 3)

 *

 C CANCELPB BEGACT PRESS PREVIEWW

 *

 C move *on Flg

 C STOP

 C ENDACT

 * *

 *

 C PREVIEWW BEGACT CLOSE PREVIEWW

 *

 C if Flg=*ON

 C eval Fldx=’*DEFAULT’

 C else

 C eval Fldx=’*NODEFAULT’

 C endif

 C ENDACT Fldx

 *

Figure 6. The Preview Component (Part 3 of 3)

14 Programming with VisualAge RPG

Creating Messages

To add messages, select Project>Define messages from the GUI Designer. The

Define Messages window appears. Select Create, and then select the type of

message you want to create (for example, information or warning). Type the actual

text for the message, and any additional information or second-level help, in the

spaces provided.

VisualAge RPG automatically generates a message ID for the message you create.

Reference that message ID in your code. For example, in Figure 3 on page 10,

MSG0001 is used by the DSPLY operation code.

Creating the Online Help

We added different types of help to the Video Store Catalog application. The

following sections describe how you can replicate some of this help.

Context-sensitive help

Add context-sensitive help to the Browse by Category graphic push button part by

selecting Help text from the part’s pop-up menu. This starts an edit session that

already contains information similar to that shown in Figure 7.

 The :h1 res=01. is a heading tag containing a resource identifier. The resource

identifier is automatically generated — do not edit this text. The heading appears

directly after this tag; it is used on the help panel and listed in the help index at

run time. By default, the name of the part for which you are adding text is used as

the heading. You should replace that with a heading that identifies the purpose of

the help panel and is more meaningful to users. Type the actual help text after the

:p. tag. By default, the word Help appears in the edit session.

An example of help text from the Video Store Catalog application is shown in

Figure 8. The help panel that is generated from that source and displayed at run

time is shown in Figure 9 on page 16.

:h1 res=01.PSB0000C

:p.Help

Figure 7. Edit session for adding online help

:h1 res=12.Browse by Category

:p.Select this to browse videos by categories.

Figure 8. Help for the Browse by Category graphic push button

Chapter 1. Creating a Client/Server Application 15

Creating Help push buttons

To create the help graphic push button at the bottom of the Preview window or

the Comedy window, select a graphic push button from the parts palette with the

right mouse button, move the pointer icon onto the design window, and right-click

again. In the properties notebook, specify the image to be displayed on the graphic

push button, and specify that you want to display help when the Press event

occurs.

Figure 10 shows the source for the push button that provides help for the Welcome

window. The :link. tag is used to link related pieces of help information so that

users can find the appropriate information quickly and easily. You place this tag

around text that is related to the help text in another panel. The text between the

:link. and :elink. tags is highlighted in the runtime application (see Figure 11 on

page 17). By selecting the highlighted text, the user jumps to the related target help

panel. The resource id (resid) of the target panel is a parameter of the link tag.

Figure 9. Example of context-sensitive online help panel

:h1 res=22.Get Help on using the Catalog

:p.Select one of the graphic push buttons.

:p.

:link reftype=hd res=12.Browse by Category:elink.

Press this button to browse by categories.

:p.

:link reftype=hd res=19.New Releases:elink.

Press this button to view the new video releases.

:p.

:link reftype=hd res=20.Top 10 Bestsellers:elink.

Press this button to view the 10 best ranked.

:p.

:link reftype=hd res=21.Search for Specific Titles:elink.

Press this button to search for specific titles.

Figure 10. Help for the Welcome window

16 Programming with VisualAge RPG

For more information about creating online help for your application, see the

following topics:

v Chapter 13, “Tips for Creating Online Help with IPF,” on page 245

v Chapter 14, “Tips for Creating and Using Windows Help,” on page 249

v Chapter 15, “Tips for Creating JavaHelp,” on page 253

A Review of Visual Programming

The steps described in the previous sections are similar to the ones you will take

when you create your own application using VisualAge RPG. These steps are:

1. Deciding What to Show the User

Before you begin creating a new application, you should select the purpose of

your application, how it will be presented to the user, and how it will

communicate with other applications.

2. Creating the GUI using the GUI Designer

After you have designed the application, you can use the GUI Designer to

create the graphical user interface. VisualAge RPG provides a catalog of GUI

parts for you to choose from, and gives you the ability to create user-defined

parts to suit your needs. You can select the parts that you want to appear in the

interface, and select their positions on a design window. Customize the parts as

required.

See the online help for information about creating windows, adding parts to

the window, and aligning and customizing them.

3. Getting and Setting Attributes

You can set some part attributes during design time using the part’s properties

notebook. You can also use GETATR and SETATR operations codes, or %getatr

and %setatr built-in functions, to get or set the attributes for a part during run

time. When getting or setting part attributes, you reference a part by using the

name defined for it in the GUI Designer.

For more information about the parts, and how you can get and set part

attributes, refer to VisualAge RPG Parts Reference.

4. Writing Program Logic

Each part responds to a set of predefined events. Events are typically generated

as a result of some user interaction with the GUI. For example, selecting a push

button signals a Press event. Events can also be generated by your program.

For example, the DDE client part generates a Timeout event if it is unable to

start a conversation with a server program within a predetermined period of

time.

Figure 11. Example of help for a window that contains a hypertext link

Chapter 1. Creating a Client/Server Application 17

You respond to events in your program by coding the BEGACT (begin action)

and ENDACT (end action) operation codes. The code between these operation

codes, called an action subroutine, is executed for a particular event. If you do

not code an action subroutine, no action is taken when the event occurs.

5. Adding Messages and Online Help

In addition to creating the GUI and writing some program logic to make it run,

you can add messages and online help to your application.

18 Programming with VisualAge RPG

Chapter 2. Planning Your Application

This section discusses what you should do before you begin coding a new

application or converting an existing OS/400* application into a VisualAge RPG

application.

If you are creating a new application, this is the time to decide on its purpose, how

it will be presented to the user, and how it will communicate with other

applications.

If you are planning to reuse an existing OS/400 application, this is the time to

evaluate the old character screen displays and decide how to improve them using

the power of graphical user interface parts. (For more information about reusing

existing applications, see Part 3, “Working with iSeries Data,” on page 191.)

The information in this section will help you design an application that meets the

user’s needs and is practical to implement.

Enabling Secure Java Applications

If you plan to deploy Java applications for use on the World Wide Web, note that

only systems running on the OS/400, Version 4 Release 4, or later, support the

Secure Sockets Layer (SSL) specification. Data flow between workstation

applications and servers running on earlier OS/400 versions will not be secure.

For information on setting up SSL support for VisualAge RPG, see Appendix D,

“Secure Sockets Layer (SSL) Setup,” on page 449. If your VARPG applications will

be running applets that use the client security file, see “Using the Security File for

Applets” on page 210.

Decide What Functions to Provide

First, determine what the main purpose of your application is, and what functions

you must provide to address it. After you determine the core functions, tackle the

advanced functions such as dynamic data exchange (DDE) and printing.

Help Your Users

Users will have varying degrees of experience with GUIs. Consider providing

online help that is tailored for the level of knowledge of a typical user. VisualAge

RPG makes it easy for you to add online help to the GUI. You can add four kinds

of help:

Context-sensitive help

Help information that is adapted to the current context of a choice, object,

or group of choices or objects.

Task help

Information about tasks the user can perform with your application.

ToolTip help

Hover-type help about the tools available to the user.

Window-level help

Information about the contents of a window.

© Copyright IBM Corp. 1994, 2005 19

Other ways to help your users are to give them all the information they need to

complete a task, and to provide meaningful prompts and labels on GUI parts. You

can use an ellipsis (...) to indicate that more information is needed before a

particular action can be performed. (For example, use Display... to tell users that

they will be prompted for more information before the display action is carried

out.) Do not use an ellipsis on a label if the action will be performed immediately

after the button is pressed. For example, a Help button does not need an ellipsis

because the help information is displayed as soon as the button is pressed. You can

also provide help in the form of a static text field that is updated when the mouse

pointer moves over different parts of your interface.

You can minimize the amount of information that your users have to provide by

setting default values. For example, you can use a combination box part to give

users the option of selecting from a list of commonly used choices. This prevents

key-in errors at run time.

Keep Window Design Simple

There are two basic aspects to good window design:

v The number and structure of windows in your application

v The content of each window

Number of Windows

It is a good idea to have one main window from which the user can initiate all of

the main tasks. Provide secondary windows for additional information that users

must specify to complete a task.

Avoid a lot of nested windows because too many layers make a simple task look

complex. Also remember that too many windows will clutter the screen, especially

if the user has more than one application running. Users can also get lost if they

have many windows on their screen.

Try to minimize the number of parts in each window. This will increase

performance when windows are displayed. An application with many windows

and few parts per window will perform better than the same application with

fewer windows and more parts per window.

Content of Each Window

Group all related information in one place. Use the group box part and the outline

box part to visually indicate which radio buttons are related.

Use graphic images and icons to identify tasks or to complement the words in the

window. Make sure that all text is spelled correctly.

Position the parts in a window in a neat, logical manner. You do not have to plan

the position of some parts because their position is predetermined. For example, a

menu bar part is always located just below the window’s title bar.

If windows have common parts, you should display those parts in a consistent

location. This makes it easier for users to find common information.

20 Programming with VisualAge RPG

Plan Your Code Effectively

After you design the GUI, you must decide what code is needed to support actions

that will be performed by users. VisualAge RPG helps you create the GUI without

writing a lot of code — it does the routine tasks for you. All parts have default

attributes, which you can modify using the GUI Designer or in your program. You

have to explicitly set other attributes. For example, if you want users to be able to

view graphics by pressing a push button labeled Display..., you must do more

than point and click the push button part from the palette onto your design

window: at the very least you must set the label attribute to read Display... and

write logic to find and display the data.

Keep the User Informed

Use messages to provide particularly important or urgent information. Give

detailed but not verbose messages that describe the problem and, if at all possible,

explain how to correct it. VisualAge RPG provides three ways of displaying

messages, and you should choose the method most appropriate for the type of

information you want displayed:

Window

To provide urgent information that the user should know about; for

example, a process that was not completed successfully.

Message subfile

To provide information about a choice, or to contain a message about the

completion of an action or process.

Second-level message help

To provide an extra level of detail that may not be required at all times by

all users; for example, to describe a course of action that novice users may

not know about.

For long processes, you may want to add a progress indicator to keep the user

informed.

Plan to provide text, visual, or audio cues to users to present exceptions. For

example, you may want to show that a push button is not available by dimming

the text on it. No one can plan for every possible user action, so you should also

plan how your application will inform users about actions it cannot interpret. For

example, you may want to display a message if a user tries to exit a file without

saving the changes made during an edit session.

Use a Consistent Style

Use consistent terms to minimize confusion. For example, if you use Login on one

window, do not use User ID to refer to the same concept somewhere else.

Use consistent mnemonics across the application windows. A mnemonic is a letter

key that can be pressed to select a choice or perform an action. The letter key

corresponds to the underlined letter of a choice on a push button or in a menu. For

example, if you use Save to represent the save function on a push button in one

window, use it on every window that has that push button.

Chapter 2. Planning Your Application 21

Anticipate Translation Issues

Even if your current plans do not include translating the application into another

language, you should design and create your application so that it could be easily

translated in the future. By doing so you will have less to rework if the need to

translate arises.

Consider keeping the executable code separate from the text. This way you can use

the text in the appropriate language with the standard executable code.

Note: There are other reasons why you should consider separating the text from

the code. You can correct errors in the text and make changes to terminology

in future releases more easily.

You can create separate message files for each language and assign different file

extensions to each. Each of the message files should have identical message

numbers but text written in a different language. You can build one .EXE for all

languages simply by using the appropriate message file. For example, an English

version of the compiled message file could be named SAMPLE.ENG and a German

version could be named SAMPLE.GER. You can instruct users to rename the

appropriate message file to SAMPLE.MSG before running the application. For

more information, see Chapter 16, “Working with Messages,” on page 259.

Also keep in mind that translation can change the sizing requirements for text

(such as labels), entry fields, buffer, and windows. When sizing a part in the GUI

Designer that will have a substitution label, keep in mind that translated text may

be longer than the original.

If you use mnemonics, remember that the mnemonic character may be different for

different languages.

22 Programming with VisualAge RPG

Part 2. Working with Parts

Chapter 3, “Programming with Parts,” on page 25

Provides an overview of the general programming tasks you must do to

drive the GUI parts.

Chapter 4, “Sample Programs for VisualAge RPG,” on page 33

Describes how to use sample programs for some VisualAge RPG parts.

Chapter 5, “Common Attributes,” on page 35

Describes attributes that are common to most parts and how you can use

them.

Chapter 6, “Using Data Transfer,” on page 41

Describes how you can use data transfer to manipulate the value of some

parts.

Chapter 7, “Using Parts,” on page 45

Contains helpful hints about using VisualAge RPG parts.

© Copyright IBM Corp. 1994, 2005 23

24 Programming with VisualAge RPG

Chapter 3. Programming with Parts

This section presents some tips for programming with parts. Topics include how to

get and set part attributes, reference parts in your program, respond to events and

system attributes, work with event and system attributes, and code static text and

entry field parts.

Getting and Setting Part Attributes

You can set some part attributes during design time using the part’s properties

notebook.

Some attributes can be set or retrieved at run time in the application by using:

v Qualified Attribute Names: Part attributes can be accessed directly in expressions

or free-form calculations using the qualified naming syntax of

window-name.part-name.attribute-name.

v Built-in functions %getatr and %setatr: These are useful when the window or

part may vary at run time, and for which the name is identified in program

variables in the application code.

v The fixed-format operation codes GETATR and SETATR were the earliest form

of accessing part attributes, and can only be used to reference parts on the same

window as the part that generated the event.

For example, if the part that generated the event is on WINDOW1, the fixed

operation codes can reference only parts on WINDOW1. If a GETATR or

SETATR operation code references a part on another window, compile-time

errors occur for single-link action subroutines because the compiler verifies that

the referenced part exists on that window. Run time errors occur for

multiple-link action subroutines.

To reference parts on different windows, use the other alternatives.

For more information about the attributes and where you can set them, refer to the

VisualAge RPG Parts Reference.

See the VisualAge RPG Language Reference for information about using these

operation codes and built-in functions.

Referencing Parts in Your Program

When getting or setting part attributes, you reference a part by using the name

defined for it in the GUI Designer. The name must follow AS/400 system naming

conventions. Specifically, the name:

v Must not exceed 10 characters in length. Only SBCS characters are allowed.

Characters must be letters A-Z, numbers 0-9, @, #, $, or _ (underscore).

v Must begin with the letters A-Z, @, #, or $.

v Can be entered in upper case or lower case.

v Must not have embedded blanks.

v Must not be an extended name (that is, must not be in double-quotation marks).

Note: When your program is running, you can reference only those parts that

have been created. Parts are created when the window they are on is also

created. Creating a window or part loads it into memory. Any attempt to

reference a part that is not yet created results in a Part not found message.

© Copyright IBM Corp. 1994, 2005 25

Responding to Events

Each part responds to a set of predefined events. You can use one of the following

methods to obtain a list of predefined events:

1. Refer to the VisualAge RPG Parts Reference for a complete list.

2. Press F1 when focus is on the part in the palette or catalog to get a general

description of the part and a list of the attributes and events associated with it.

3. In the GUI Designer, invoke the pop-up menu for the part, and select the

Events item.

Events are typically generated as the result of some interaction with the user

interface. For example, pressing a push button signals a Press event. Events can

also be generated by your program. For example, the DDE Client part generates a

Timeout event if it is unable to start a conversation with a server program within a

predetermined time period. If your program changes the text value of an entry

field part, a Change event is signaled by the entry field.

You respond to events in your program by coding the BEGACT (begin action) and

ENDACT (end action) operation codes. The code between these operation codes,

called an action subroutine, is executed for a particular event. When you create an

action subroutine for a specific event, an action link is defined. If you did not code

an action subroutine for a particular event, no action is taken when the event

occurs. The code in an action subroutine is executed until the ENDACT operation

code is reached. Therefore, if you coded EXSR operation codes within an action

subroutine, these subroutines (called user subroutines) are also executed.

You cannot invoke an action subroutine using the EXSR operation code. You can,

however, invoke a particular action subroutine by more than one action. For

example, you can have code that is executed when a push button is pressed or

when a menu item is selected. You can review which events have action

subroutines and modify link events to action subroutines in the Action Subroutines

window. To display the Action Subroutines window:

1. Select Edit source code from the Project menu in the GUI Designer. This starts

an edit session.

2. From the edit session, select Edit>Action subroutines. The Action Subroutines

window appears.

Event attributes contain data that is relevant to an event. For example, the

MouseMove event stores the X and Y coordinates to indicate where the mouse was

located when the event occurred. Before you can use event attributes in your

program, they must be defined on definition specifications. The name of the event

attribute is the name of the entity on the definition specification. Because the

compiler does not verify the length of the variable and some attributes have

varying lengths, be sure to specify a length large enough to contain the expected

value.

Note: Event attributes cannot be changed by your program. Therefore, they cannot

appear in a result field or as the target field for an EVAL operation.

The VisualAge RPG Parts Reference describes all the event attributes.

The following example illustrates how the %MouseX and %MouseY event

attributes can be defined and used in a program.

26 Programming with VisualAge RPG

System Attributes

System attributes pertain to your application rather than to a specific part.

As with event attributes, system attributes must be defined on a definition

specification. They cannot be modified by your program.

VisualAge RPG supports the following system attributes:

 Table 1. System Attributes

Attribute Description Type Length

%DspHeight Returns the height of

the screen at run

time, in pixels.

Numeric 4

%DspWidth Returns the width of

the screen at run

time, in pixels.

Numeric 4

Working with Event and System Attributes

Each event attribute is valid for a particular event and can be used only within

action subroutines that are linked to that event. For example, if you use an event

attribute for the MouseMove event within an action subroutine that is linked to

the ReSize event, a runtime error is issued. Type checking is performed only on

event attributes at run time. If you define a character field for a numeric event

attribute, this error is detected only at run time.

System attributes can be used anywhere within your program because they are not

linked to any particular event. Type checking is performed on system attributes at

compile time.

Event and system attributes must be defined on a definition specification before

they can be used throughout the VisualAge RPG component. They are treated by

the compiler as read-only fields in automatic storage. Any nested and active action

subroutine has its own copy of an event attribute.

 *

 * Define mouse x and y coordinate event attributes

 *

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++

D%MouseX S 4P 0

D%MouseY S 4P 0

 *

 * Check if Mouse coordinates in range:

 *

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

CSRN01Factor1+++++++Opcode(E)+Extended-factor2++++++++++++++++++++++++++

C %MouseX ifgt 100

C %MouseY andgt 100

C ..

C endif

 *

 ***** End of Source

Chapter 3. Programming with Parts 27

For example, assume that the ENT0000A+CHANGE+WIN1 action subroutine is

linked to window WIN1, entry field part ENT0000A, and event CHANGE.

 Also assume that the PSB0000A+PRESS+WIN1 subroutine is linked to window

WIN1, push button part PSB0000A, and event PRESS.

 When push button PSB0000A is pressed, action subroutine

PSB0000A+PRESS+WIN1 is invoked. When the SETATR operation is performed,

the CHANGE event is triggered for entry field part ENT0000A. This invokes the

ENT0000A+CHANGE+WIN1 action subroutine.

Each action subroutine has its own storage for %PART because event attribute

fields are in automatic storage:

v In action subroutine PSB0000A+PRESS+WIN1, %PART contains ’PSB0000A’.

v In action subroutine ENT0000A+CHANGE+WIN1, %PART contains ’ENT0000A’.

v When action subroutine ENT0000A+CHANGE+WIN1 completes and action

subroutine PSB0000A+PRESS+WIN1 continues executing, %PART contains

’PSB0000A’, not ’ENT0000A’.

Coding Static Text and Entry Field Parts

The following section contains some tips for coding static text and entry field

parts.

Creating and Retrieving Entry Field Parts

Note: This section also applies to static text parts. For simplicity, only entry field

parts are mentioned in the text.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++

C ENT0000A BEGACT CHANGE WIN1

C .

C .

C %PART dsply boxid reply

 * ’ENT0000A’ is displayed.

C .

C .

C endact

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

CSRN01Factor1+++++++Opcode(E)+Extended-factor2++++++++++++++++++++++++

C PSB0000A BEGACT PRESS WIN1

C .

C %PART dsply boxid reply

 * ’PSB0000A’ is displayed.

C .

C ENT0000A SETATR 10 TEXT

 * This triggers the CHANGE event for entry field ENT0000A

 * which causes action subroutine ENT0000A+CHANGE+WIN1 to be

 * invoked.

C .

C .

C %PART dsply boxid reply

 * ’PSB0000A’ is displayed.

C .

C .

C endact

28 Programming with VisualAge RPG

When a READ is performed, where does VisualAge RPG store the retrieved value?

When a WRITE is performed, what value does VisualAge RPG use to set the

value?

For each entry field part, VisualAge RPG creates a field with the same name as the

part. This field is defined to match the definition of the Text attribute (or the Label

attribute for static text parts). For example, if there is an entry field part called

ENT00012, and the Text attribute is defined as character 20, then VRPG

automatically defines a 20-character field called ENT00012. You can use this field in

your program.

You can override the definition of the field on a definition specification by defining

a field of the same name. However, the definition of the field must comply with

the rules of VisualAge RPG concerning type and length compatibility. For example,

the field must be the same length as the attribute definition. For numeric fields, the

field does not have to be the same type as the attribute definition.

When you run your application, the value of an entry field is initialized by the

value that you supplied in the GUI Designer. However, you can overwrite this

value by setting the INZ keyword in your definition specification, or by moving a

value into the program field. In these cases, the value stored in each of these fields

does not necessarily match the value that you see on the screen for the

corresponding part.

If you store a different value in a field in a user or action subroutine, VisualAge

RPG does not reflect that new value on the screen. Therefore, the value stored in

the field is different from what is displayed on the screen. To reflect the stored

value on the screen, you must use a WRITE operation or a SETATR operation.

The same holds true for SHOWWIN. When a window is first opened, the values

that appear on the screen correspond to the values supplied for the parts in the

GUI Designer. If you change the stored value for a corresponding VisualAge RPG

field before you show the window, then the value in the field does not match what

is seen on the screen. To make the two values identical, you have to perform a

WRITE operation or a set attribute operation in an action subroutine that is linked

to the Create event for the window. This synchronizes the value stored in the field

with the value on the screen, and the user sees only the new value when the

window is shown.

In general, it is a good idea to use an action subroutine that is linked to the Create

event to set values that should appear on the screen when a window is opened.

Operation Codes for Window Parts

Several operation codes have been enhanced in VisualAge RPG to operate on

windows and their parts: READ, WRITE, CLEAR, and RESET. These operation

codes can be used with windows and affect static text and entry field parts.

READ Performs get attribute operations on all the affected static text and entry

field parts.

WRITE

Performs set attribute operations on all of the affected static text and entry

field parts.

CLEAR

Sets all numeric entry field parts to zero, and all character entry field parts

to blanks. (It does not operate on static text parts.)

Chapter 3. Programming with Parts 29

RESET

Sets static text and entry field parts back to their initial values.

The window operation codes use these attributes:

Text Attribute of entry field parts that is used to perform READ, WRITE,

CLEAR, and RESET operations.

Label Attribute of static text parts that is used to perform READ, WRITE, and

RESET operations.

Using Window Operation Codes on Parts with Identical Names

You can have two entry fields with the same name, two static text parts with the

same name, or even an entry field part that has the same name as a static text part,

as long as the parts belong to different windows. This section describes how to

avoid inadvertently setting the value of one of these parts to the value of another.

Only one program field is created for a given part name. If there is an entry field

part in window W1 named MYPART, and an entry field part in window W2

named MYPART, then one VisualAge RPG field is created, called MYPART. The

compiler creates the definition to match one of the part definitions.

If you have more than one part with the same name, the compiler will issue an

error message if the parts do not have compatible definitions. Parts are compatible

if they accept the same type of data (numeric or character), are the same length,

and (if numeric) have the same number of decimal positions.

If the parts that share a field have different initial values, then the initial value of

the field is set depending on the part the compiler encounters first when creating

the internal fields for entry field parts. This can vary from one build to another, so

when multiple parts share the same field you should not depend on the field

having a specific initial value, unless you set all the initial values to be the same.

Performing an operation on one of the windows containing one of these parts

itself, or on one of the parts, results in the entry field containing a value that

matches the screen value of the part involved in the operation. However, the field

contains a value that probably does not match the screen values of the other parts

on other windows that share this field. Even though multiple parts share the same

field, an operation on any of these parts affects only the part specified on the

operation or contained in the window specified on the operation. The other parts

that share the field are not affected.

Example

The following example shows what can happen when you set the value of one of

the parts to a value of another part when the parts share a field.

1. Define the fields: The Entry field A01 in window W1 is defined as character

10, and the Entry field A01 in window W2 is defined as character 10. The value on

the screen for W1 is 78893, and the value on the screen for W2 is 885364. Field A01

contains the value 0000000000. These are the initial values.

W1 W2 Program Field

A01 78893 885364 0000000000A01 A01

30 Programming with VisualAge RPG

2. Perform a READ on W1: Field A01 now contains 78893. This matches entry

field A01 in W1.

3. Perform a WRITE on W2: The screen value of entry field A01 in W2 is now

78893.

4. Perform a CLEAR on W2: Field A01 now contains blanks. This matches entry

field A01 in W2. The Entry field A01 in W1 - value on screen is 78893. The Entry

field A01 in W2 - value on screen is blank.

5. Perform a GETATR on entry field A01 in W1 with target field A01: Field A01

now contains 78893. This matches entry field A01 in W1.

 If you want all the parts that share a field to display the same value, then you

have to perform SETATR operations on all the parts using the field as the source

value, or perform WRITE operations on all the windows that contain one of these

parts.

It is recommended that you give unique names to all entry field parts in your

component to avoid accidentally setting the value of one of the parts to the value

of another.

W1 W2 Program Field

A01 78893 885364 78893A01 A01

W1 W2 Program Field

A01 78893 78893 78893A01 A01

W1 W2 Program Field

A01 78893 A01 A01

W1 W2 Program Field

A01 78893 78893A01 A01

Chapter 3. Programming with Parts 31

32 Programming with VisualAge RPG

Chapter 4. Sample Programs for VisualAge RPG

The Samples folder (in the VisualAge RPG projects folder) contains the source code

and the runtime version of the sample applications discussed in this part of the

book. Table 2 lists the sample programs.

 Table 2. Sample programs for VisualAge RPG

Program Description

Animation Animation control part example

ActiveX ActiveX control example

Bean Java bean part example

Calendar Calendar part example

Component Reference Part Component reference example

Container Container part example

Customer Maintenance* Customer maintenance example

DDE Client DDE client part example

DDE Hotlink DDE hot link example

Drag and Drop Data transfer example

Graph Graph part example

Image* Image part example

Listbox List box part example

Message Subfile Message subfile part example

Multiline Edit Multiline edit part example

Notebook Notebook part example

Odbcceld ODBC/JDBC interface part example

Popup Menu Pop-up menu part example

Progress Progress bar part example

Resize Resize example

Runtime_control_of_server_connections Control of server connection using the

Signon API example

Scroll Scroll bar part example

Slider** Slider part example

Spin Button Spin button part example

Subfile* Subfile part example

Timer Timer part example

VARPG Plug-in Vendor plug-in example

Video Store Cashier* Video store cashier example

Video Store Catalog* Video store catalog example

Welcome Welcome example

© Copyright IBM Corp. 1994, 2005 33

Notes:

1. * This example requires data on an iSeries 400 server.

2. ** Also shows how to use the BackMix and ForeMix attributes

Before You Begin

Before you can run the sample applications, you must install the VisualAge RPG

component. The associated samples are in the Samples folder, which is in the

VRPG Projects folder.

Read the comments in the sample programs. The comments contain tips and

requirements, as well as any restrictions.

Before you can build and run Java applications, you must have Sun Microsystem’s

Java 2 Software Development Kit (J2SDK) Version 1.2, or higher, installed on your

workstation. If you do not have the J2SDK, you can download it from Sun

Microsystems at the following URL:

http://java.sun.com/products/

After installing the J2SDK, set the PATH environment variable to point to the

location of both the Java compiler and the Java Runtime Environment (JRE). For

example, if your home directory for the J2SDK is c:\jdk1.2, add the following path

statement: c:\jdk1.2\bin

If you plan to run VisualAge RPG applets inside a browser, the international

version of the JRE must be installed on the client workstation.

Building the Examples

If you want to run most of the samples, you must first build the application.

To build one of the sample programs, display the pop-up menu for the sample’s

folder, and select Build>Windows or Build>Java.

Running the Examples

To run a sample program, display the pop-up menu for the program, and select

Run>Windows or Run>Java.

Accessing an iSeries 400 Server

Some sample programs, such as the subfile example, access data on an iSeries 400

server. The data files used by these programs are not shipped with VisualAge RPG.

However, the source file comment section describes the file layout for that

example. You must create the data file on the server and supply data.

To run these examples, start the GUI Designer on the sample program, and use the

Define iSeries Information notebook in the Servers pull-down menu to do the

following:

1. Change the remote location parameter to point to the server that you want to

access.

2. Change the remote file name parameter so that you can access the appropriate

data file for the example.

See Chapter 8, “iSeries Connectivity,” on page 193 for more information about

defining iSeries 400 information.

34 Programming with VisualAge RPG

Chapter 5. Common Attributes

This section lists the attributes that are common to most parts and describes how

you can use them.

PartName Attribute

All parts have a name. VisualAge RPG automatically generates this name when the

part is created. You can change the name of the part in its properties notebook or

by editing it directly in the tree view of the GUI Designer’s project window. The

*component part name cannot be edited.

Note: You cannot change the part name at run time.

Each window must have a unique name, and all parts on a given window must

have unique names. Parts on different windows can have the same name, except

for subfile part names, which must be unique across your component.

The compiler implicitly defines a field name for entry field and static text parts

using the PartName attribute. You can use that name in your program if you want

to refer to the value of these parts. For more information, see Chapter 3,

“Programming with Parts,” on page 25.

If you change the name of a part, you must change all references to that part in

your program source. If you attempt to reference the old name of a part that has

been renamed, you will get either compile errors, or a runtime error indicating that

the part could not be found.

ParentName Attribute

The ParentName attribute returns the name of the parent part. The parent is the

window on which a part is placed. For a window part, the parent is the window

itself.

PartType Attribute

You can use the PartType attribute to determine the type of a part in your

program. PartType returns the type of the part as defined by VisualAge RPG. The

value returned for VisualAge RPG parts consists of the string FVDES followed by

the part type. For example, for an entry field part, the part type would be

FVDESEntryField. One exception to this rule is the component reference part; it

has a prefix of FVDESV.

Table 3 summarizes the PartType attribute value for each VisualAge RPG part.

 Table 3. The PartType attribute for VisualAge RPG parts

PartType attribute VisualAge RPG part

FVDESOCX ActiveX

FVDESAnimationControl Animation control

FVDESCalendar Calendar

FVDESCanvas Canvas

© Copyright IBM Corp. 1994, 2005 35

Table 3. The PartType attribute for VisualAge RPG parts (continued)

PartType attribute VisualAge RPG part

FVDESCheckBox Check box

FVDESComboBox Combination box

FVDESContainerControl Container

FVDESVComponentReference Component reference

FVDESDDEClient DDE client

FVDESEntryField Entry field

FVDESGraph Graph

FVDESGraphicPushButton Graphic push button

FVDESGroupBox Group box

FVDESHScrollBar Horizontal scroll bar

FVDESImage Image

FVDESJavaBean Java Bean

FVDESListBox List box

FVDESAudio Media

FVDESMediaPanel Media panel

FVDESMenuItem Menu item

FVDESMessageSubfile Message subfile

FVDESMultiLineEdit Multiline edit

FVDESNotebook Notebook

FVDESNotebookPage Notebook page

FVDESODBCInterface ODBC/JDBC Interface

FVDESOutlineBox Outline box

FVDESPopUpMenu Pop-up menu

FVDESProgressBar Progress bar

FVDESPushButton Push button

FVDESRadioButton Radio button

FVDESSlider Slider

FVDESSpinButton Spin button

FVDESStaticText Static text

FVDESStatusBar Status bar

FVDESSubfile Subfile

FVDESSubmenu Submenu

FVDESTimer Timer

FVDESVScrollBar Vertical scroll bar

FVDESFrameWindow Window

36 Programming with VisualAge RPG

Color Attributes

You can change the color of most parts by using the BackColor and ForeColor

attributes. The attribute values are numbers that represent specific colors. The

compiler provides a set of figurative constants, such as *RED and *GREEN, that

you can use to set the colors. Refer to the VisualAge RPG Language Reference for

these names.

You can specify a color mix for the part by using the ForeMix and BackMix

attributes. The value of these attributes represents a mixture of the primary colors

of red, green, and blue. This is often referred to as the RGB color value. This RGB

value is a string consisting of three values separated by colons (:). Each value

represents the intensity of red, green, and blue, in that order. The value of each

color is between 0 and 255.

In the following code example, the background color mix of a static text part is set

to a medium shade of blue:

 For a more detailed example on how to specify the ForeMix and BackMix

attributes, see “Slider” on page 145.

Enabled Attribute

When a part is enabled, it can respond to user interaction and generate events. For

example, when an enabled push button is pressed, it generates a Press event that

may then be handled by your program.

You may not want a part to be enabled until a certain condition exists. In the case

of the push button, you may want the user to be able to press it only when an

item has been selected in a list box.

When a part is not enabled, it does not respond to user interaction, and its label is

dimmed.

To enable a part, set its Enabled attribute value to 1. If you do not want it to be

enabled, set this value to 0.

Size and Position Attributes

You can use the Height and Width attributes to indicate the size, in pixels, of most

parts.

You can also use the Left, Bottom and Top attributes to specify the position of the

part in its containing part (usually a window). The position value is also expressed

in pixels. When you position any part, the values are relative to the top left corner.

These attributes are useful because they dynamically change the size and position

of the parts at run time. For example:

v If a user can resize a window, you may want to code an action subroutine to

handle the ReSize event and alter the position of the parts on that window so

that they remain centered within the window. If you do not do this, the parts

will remain relative to the top left corner of the window.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

 *

C ’ST1’ setatr ’000:000:128’ ’BackMix’

Chapter 5. Common Attributes 37

v If your application runs on systems that use monitors with different resolutions,

you can use the %DspWidth and %DspHeight system attributes to ensure that

the windows are visible regardless of the screen resolution. You may want to

position the window in the center of the screen, or at some other coordinate.

Here’s a calculation that can be done in the Create event for a window. This

example calculates the appropriate coordinates to center a window called Window1;

then moves the window to a new coordinate before displaying it on the screen.

Visible Attribute

You can use the Visible attribute to specify when you want a part or a window to

be displayed. For example, you may want a push button to appear on the screen

only at run time. To do this, when you create the push button in the GUI Designer,

go to the properties notebook for the part and set the visible flag off. Then, at run

time, set the Visible attribute value to 1 when you want the push button to appear.

Focus Attribute

The area of a window where a user can interact with the interface has input focus.

The part that has input focus must be enabled to respond to user actions, such as

the pressing of a key or a button.

There are times when you want to focus on a part in your program so that the

user can use it immediately. For example, if you are checking several entry fields

and require the user to re-enter information in a particular entry field, you would

set the Focus attribute value to 1 for that entry field. When you set the attribute,

the cursor appears where the user can begin typing data into the entry field.

 *

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

 *

 * Declare the display size system attributes

D%DspHeight S 4P0

D%DspWidth S 4P0

 *

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

 *

 * Handle create event for Window1.

 * Gets screen size and calculates pixel coordinates to

 * position the window in the center of the screen.

 *

C WINDOW1 BEGACT CREATE WINDOW1

 *

 * Get the windows dimensions:

C ’Window1’ GETATR ’Width’ winWidth 4 0

C ’Window1’ GETATR ’Height’ winHeight 4 0

 *

 * Calculate new coordinates to center window

C %DspWidth SUB winWidth newLeft 4 0

C %DspHeight SUB winHeight newBottom 4 0

C newLeft DIV 2 newLeft

C newBottom DIV 2 newBottom

 *

 * Center the window and make it visible

C ’Window1’ SETATR newLeft ’Left’

C ’Window1’ SETATR newBottom ’Bottom’

C ’Window1’ SETATR 1 ’Visible’

C ENDACT

 *

38 Programming with VisualAge RPG

In addition to giving focus to a particular part, you can determine if a part has

gained focus. A part gains focus when the user selects it by either tabbing to it or

by selecting it with the mouse. When this happens, a GotFocus event is generated

for the part. Conversely, a LostFocus event is generated when a part loses focus.

UserData Attribute

All parts support the UserData attribute. Use this attribute to assign any text string

to a part. This string has no effect on the value of any other attribute of the part,

and it is not displayed. The UserData attribute can contain a maximum of 65,535

characters.

Label Attribute

Several parts have a Label attribute. This is descriptive text that explains the

purpose of the part. The text that appears on a push button is an example of this

attribute.

The following parts have a Label attribute:

v Check box

v Container

v Group box

v Menu item

v Push button

v Radio button

v Static text

v Window

v Window with canvas

Label Substitution

You can substitute the text of a label by using a symbol when you set the Label,

TabLabel, or InfoLabel attributes. This is particularly useful if you are developing

applications for use with other languages, because it allows you to translate labels

and messages that you defined in the GUI Designer.

When you specify label substitution for a part, an entry is made in the

component’s message file. Multiple parts can use the same label substitution (for

example, ^OK.). The same message file entry is used for all references.

You define a substitution label for a part in its properties notebook by specifying a

string, with no imbedded blanks, preceded by the caret (^) symbol. This adds a

message to the message file. Select Project>Define Messages... to invoke the

message editor and add the message text you want to replace the Label attribute

when the application is run.

Translation Tips

When sizing a part in the GUI Designer that will have a substitution label, keep in

mind that translated text may be longer than the original.

If you use mnemonics, remember that the mnemonic character may be different for

other languages.

You can have more than one translated message file in the runtime subdirectories

by assigning different file extensions to each. For example, an English version of

the compiled message file could be named SAMPLE.ENG and a German version

Chapter 5. Common Attributes 39

named SAMPLE.GER. You can instruct the user to copy the appropriate message

file to SAMPLE.MSG before running the application.

40 Programming with VisualAge RPG

Chapter 6. Using Data Transfer

This section discusses how you can use data transfer to manipulate the value of

some parts.

Note: Data transfer is not supported for Java applications.

A Typical Data Transfer Scenario

In a typical data transfer scenario the user selects a part (called the source part)

with the mouse, drags it to another part (called the target part) and releases the

button to drop the value on the target part. This transfers information from the

source part to the target part, and the target part can then act upon that

information.

Note: The part itself is not being moved with data transfer. It is the value of the

part that is being transferred.

Parts That Support Data Transfer

The following table lists the parts that support data transfer, and the data that each

of them acts on.

 Table 4. VisualAge RPG parts that support data transfer

Part Data Transferred

Combination box The value in the entry field portion of the combination box,

or the selected item for a drop-down list type of

combination box

Entry field The Text attribute value

List box The selected item

Message subfile The selected message

Multiline edit The Text attribute value

Static text The Label attribute value

Enabling Parts for Data Transfer

If you want a part to be a source part, set the DragEnable attribute for it to a

value of 1 and if you want it to be a target part, set the DropEnable attribute for it

to a value of 1. You can set these attributes in the part’s properties notebook or in

your program. You can not reset these attributes during run time: once you enable

a part for data transfer, it remains set.

After you have set the DragEnable and DropEnable attributes, you can drag the

source part and drop it on the target part. This causes the Drop event to occur for

the target part.

Note: The DragEnable and DropEnable attributes are not supported in Java

applications.

© Copyright IBM Corp. 1994, 2005 41

Data Transfer Example

In the following example, a window has two entry fields named EF1 and EF2. The

DragEnable attribute is set for EF1, and the DropEnable attribute is set for EF2.

The text value of EF1 can then be dragged and dropped onto EF2.

Entry field EF2 only allows certain values. In the Drop event for this part, the

action subroutine checks that the dropped value is valid. If the value is not valid, a

message is added to the message subfile part.

 * *

 * Program ID . . : DragDrop *

 * *

 * Description . : Sample program to illustrate how to respond *

 * to the DROP event, and access the dropped data. *

 * *

 * Note: Drag and drop is not supported for Java *

 * *

 *

 * Define the DROP data event attribute

 D%Data S 5A

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : PB_EXIT *

 * *

 * Event . . : PRESS *

 * *

 * Description: End the program *

 * *

 *

 C PB_EXIT BEGACT PRESS MAIN

 *

 C move *on *inlr

 *

 C ENDACT

Figure 12. Sample Drag and Drop Code (Part 1 of 2)

42 Programming with VisualAge RPG

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : EF2 *

 * *

 * Event . . : DROP *

 * *

 * Description: This action subroutine will get control when a *

 * value has been ’dropped’ onto the entry field EF2 *

 * By checking the %Data event attribute, it will *

 * determine if the dropped value is allowed for the *

 * entry field and add a message to the message *

 * subfile part accordingly. *

 * *

 *

 C EF2 BEGACT DROP MAIN

 *

 * Clear the message subfile

 C ’Msg1’ setatr 0 ’RemoveMsg’

 *

 * Check that dropped value is allowed

 *

 C if %Data <> ’Yes ’ and

 C %Data <> ’No ’ and

 C %Data <> ’Maybe’

 *

 C ’Msg1’ setatr 1 ’AddMsgID’

 C endif

 *

 C ENDACT

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : EF2 *

 * *

 * Event . . : CHANGE *

 * *

 * Description: *

 * *

 *

 C EF2 BEGACT CHANGE MAIN

 *

 C ENDACT

Figure 12. Sample Drag and Drop Code (Part 2 of 2)

Chapter 6. Using Data Transfer 43

44 Programming with VisualAge RPG

Chapter 7. Using Parts

This section contains helpful hints about using VisualAge RPG parts. Each part

description contains a list of the attributes and events which apply to the part. The

following parts are described in detail.

v “ActiveX” on page 46

v “Animation Control” on page 53

v “Calendar” on page 54

v “Canvas” on page 56

v “Check Box” on page 58

v “Combination Box” on page 60

v “Component Reference” on page 65

v “Container” on page 67

v “DDE Client” on page 74

v “Entry Field” on page 75

v “Graph” on page 78

v “Graphic Push Button” on page 80

v “Group Box” on page 82

v “Horizontal Scroll Bar” on page 83

v “Image” on page 84

v “Java Bean” on page 89

v “List Box” on page 92

v “Media” on page 101

v “Media Panel” on page 103

v “Menu Bar” on page 105

v “Menu Item” on page 106

v “Message Subfile” on page 108

v “Multiline Edit” on page 112

v “Notebook” on page 117

v “Notebook Page” on page 118

v “Notebook Page with Canvas” on page 119

v “ODBC/JDBC Interface” on page 120

v “Outline Box” on page 137

v “Pop-up Menu” on page 138

v “Progress Bar” on page 139

v “Push Button” on page 140

v “Radio Button” on page 142

v “Slider” on page 145

v “Spin Button” on page 151

v “Static Text” on page 155

v “Status Bar” on page 157

v “Subfile” on page 158

v “Submenu” on page 171

v “Timer” on page 172

v “Vertical Scroll Bar” on page 179

v “Window” on page 180

v “Window with Canvas” on page 181

v “*Component” on page 188

Note: The parts are presented in alphabetical order, not in the order in which you

must use them. You must use the window part or the window with canvas

part first to start building your application, and then add other parts as

required.

© Copyright IBM Corp. 1994, 2005 45

For more information about part attributes, events, and event attributes, see the

VisualAge RPG Parts Reference. For additional programming tips, see Chapter 3,

“Programming with Parts,” on page 25.

ActiveX

* Restriction: This part is unsupported in Java applications.

Use the ActiveX part to add ActiveX control objects to your project. Your

applications can then access their attributes and monitor for events. (ActiveX

controls are developed and provided by third party vendors.)

You must be familiar with the ActiveX controls you are adding. The VARPG GUI

Designer cannot control the functions provided by these parts.

Note: VARPG only works with ActiveX controls that have interfaces written in

C++. Check with your ActiveX control provider to make sure that VARPG

will work with the ActiveX control you want to use.

46 Programming with VisualAge RPG

Part Attributes

 Activate AddEvent Bottom DeActivate

HasPrpPage Height Left Method

OCXProp OCXPropIdx OCXValue Parameter

paramindex parentname partname parttype

refresh ReturnVal RmvEvent ShowProp

Top UserData Visible Width

Applicable Events

 Create Destroy OCXEvent

Adding ActiveX Controls

To add an ActiveX control to your project, click on the ActiveX part in the parts

palette. Click the mouse pointer onto the design window where you want the

ActiveX part placed. An Insert Object dialog appears. Select the ActiveX control

you want to work with.

An ActiveX control can contain properties, methods, and events that a programmer

can manipulate, call, and respond to respectively. The term ActiveX control refers

to the actual ActiveX component you are using. Examples include a graph,

calendar, or spreadsheet control. The term ActiveX part refers to the ActiveX part

found on the VARPG parts palette.

Setting Properties

You can set the properties of an ActiveX control at build or run time. To set

properties during build time, open the ActiveX Part Properties notebook from the

design window. Right-click on the ActiveX icon in the design window and select

Properties. If a properties editor is available for the ActiveX control, it will be

displayed, as well. You can then directly edit the property values.

The properties, methods, and events of the ActiveX control appear on the

Information page of the ActiveX Part Properties notebook. Select the appropriate

radio button to view what is available.

Setting or getting a property during run time requires two steps. First, set the

ActiveX part’s OCXProp attribute to the property name of the ActiveX control you

are using. Use the OCXValue attribute to set or get the property.

The following example sets the Depth property for an ActiveX pie chart control:

C ’PieChart’ Setatr ’Depth’ ’OCXProp’

C ’PieChart’ Setatr DepthValue ’OCXValue’

Note: The OCXValue attribute takes a string value. The VisualAge RPG run time

will handle the appropriate conversions before forwarding the value to your

ActiveX control.

The OCXPropIdx attribute sets or retrieves the index for an ActiveX string array

property type. You can use this attribute together with the OCXProp and

OCXValue attributes to manipulate string array property types.

For example, the following code sets the first element of the property DataFiles to

c:\temp\Sample.mdb, that is, DataFiles[0]=’c:\temp\Sample.mdb’.

Chapter 7. Using Parts 47

C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXPROP’)=

C ’DataFiles’

C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXPROPIDX’)=’0’

C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXVALUE’)

C =’C:\temp\Sample.mdb’

To set an element of a multi-dimensional array property, pass the index value for

each element in a string as ’n1 n2 n3’, where n1 is the index for element 1 and so

on. For example, the following code sets 3DImageData[2][4][7] to 200:

C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXPROP’)=

C ’3DImageData’

C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXPROPIDX’)

C = ’2 4 7’

C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXVALUE’)

C = 200

Each time the OCXProp attribute is set, the internal index value for an array at run

time is reset to NULL. So, to set or get the array properties, first set OCXProp to

the property name. Then, set OCXPropIdx to the index value in the array. Lastly,

set or get the OCXValue attribute.

The ActiveX part properties notebook shows the property types in the Information

tab. If the type of a property is a string array, the Information tab displays

String[][]...[], where the number of [] pairs indicates the dimension of the

array. For a numeric array, Numeric[][]...[] is displayed. For a non-array

property, either ″Numeric″ or ″String″ is displayed. In the following example, the

properties are all string arrays:

Calling Methods

The VisualAge RPG IDE attempts to compile a listing of available methods for

your ActiveX control. This list is available on the Information page of the ActiveX

Part Properties notebook. For each method, the parameters are shown with brace

brackets containing IN for an input parameter, OUT for an output parameter, or

nothing if no information is available.

Note: It may not be possible for the builder to discover all available methods for

your ActiveX control. Consult the control’s documentation for a complete

listing.

48 Programming with VisualAge RPG

Calling an ActiveX control’s methods is performed at run time by setting the

ActiveX part’s Method attribute. The Method attribute takes a string value

containing the method name, followed by zero or more parameter values separated

by a comma. The syntax is:

method_name, value1, value2, ...

The following example calls the AboutBox method of an ActiveX pie chart control.

The method takes no parameters.

C ’PieChart’ Setatr ’AboutBox’ ’Method’

The next example calls the AddData method of an ActiveX pie chart control. This

method takes two parameters: a string label and a float value.

D datax C const(’AddData, ItemX, 3.0’)

C ’PieChart’ Setatr datax ’Method’

Chapter 7. Using Parts 49

Responding to Events

VisualAge RPG can respond to any events generated by the ActiveX control you

are using. ActiveX control events are accepted by VisualAge RPG as an OCXEvent.

You can use the %RealName event to retrieve the actual name of the event.

To receive an event from an ActiveX control, you must first register the event with

the VisualAge RPG run time. Set the ActiveX part’s AddEvent attribute to the

string name of the event to be received. You can also set the AddEvent attribute to

*ALL to receive all events generated by the ActiveX control. To unregister an event,

set the RmvEvent attribute to the string name of the event.

 * Declare the event attribute

D %RealName s 20a

 * Register the event with the VisualAge RPG run time

C ’DataQ’ Setatr ’Click’ ’AddEvent’

 * Respond to the OCXEvent

C DATAQ BEGACT OCXEVENT FRA000000B

C if %RealName = ’Click’

 * Do something here

C endif

When an ActiveX part fires an event, the event may contain some parameters.

Prior to WDSC V5.1, these parameters were ignored. They were not available to

the application. Now, with the introduction of these two attributes in V5.1, the

event parameters are available to the application.

To access a parameter, these are the steps:

1.When an OCXEVENT fires, in its event action-subroutine, the parameter index

should be set first:

 C ’ocx’ setatr 2 ’PARAMINDEX’

2.Get the parameter and put it into a Character variable ″param″:

 C ’ocx’ getatr ’Parameter’ param

3. If the parameter is a numeric value, convert ″param″ into numeric format.

The above steps are for accessing a non-pointer parameter. For pointer parameters,

the following must be done:

Take for example an ActiveX control, DieRoll, which simulates a dice roll, which

has the event,

 BeforeRollTo(PTR to Variant number, PTR to Boolean useNumber)

The above info shows that the event has 2 parameters. The first one, number, is a

pointer to a Variant structure which contains a bstrVal member, and this bstrVal

may contain a value from ″one″ to ″six″, the number of dots on a dice. The value

of vstrVal can be retrieved and be changed to a different number in the action

subroutine. The second one, useNumber, is a pointer to a Boolean value. If this

value is set to be ″true″, the Dice control will roll to the number set here (e.g.,

suppose number=″Four″; if it is set to ″five″, the dice will display 5 dots. If there is

no change, the dice will display 4 dots).

Please note that in order to pass a parameter back to the control, the control must

define the parameter as a pointer (to desired types), and allow the pointer to be

50 Programming with VisualAge RPG

passed back (some pointer parameters are for ″read″ only, applications can not

change their value. This is controled by the ActiveX control developer.).

How to access and change the BOOL parameter of the event:

 d BoolVal s 1b 0 based(pBool)

 d Bool DS

 d pBool 1 4* Pointer

 d PB_Value 1 4b 0

 d*’param’ is used to receive the pointer parameter. Then

 d*move it into ’PB_Value’ to get the numeric value.

 d param s 8A pointer, char

 C*Get the second parameter, a Bool pointer (BOOL *).

 C ’ocx2’ setatr 2 ’PARAMINDEX’

 C ’ocx2’ getatr ’Parameter’ paramBool 7

 C ’msb’ setatr paramBool ’addmsgtext’

 C EVAL PB_Value = 0

 C MOVE PARAMBool PB_Value

 C*Change the value to be TRUE, so that the DieRoll control

 C*will use the new parameter1 value set here in this subroutine.

 C eval Boolval = x’01’

To access and change the first parameter of the event, it is helpful to look at the

VARIANT structure first:

struct VARIANT {

 VARTYPE vt; //Indicate data type of this structure. VT_BSTR(8) is a string.

 unsigned short wReserved1;

 unsigned short wReserved2;

 unsigned short wReserved3;

 union {

 unsigned char bVal; // VT_UI1

 short iVal; // VT_I2

 long lVal; // VT_I4

 float fltVal; // VT_R4

 double dblVal; // VT_R8

 VARIANT_BOOL xbool; // VT_BOOL

 DATE date; // VT_DATE

 BSTR bstrVal; // VT_BSTR

 short FAR* piVal; // VT_BYREF|VT_I2

 long FAR* plVal; // VT_BYREF|VT_I4

}

NOTE: Refer to MicroSoft’s ActiveX control document for more info.

In this case, ″number″ is defined as a string, so the type, vt, is VT_BSTR (which is

8), and ″bstrVal″ member in the union will point to a string (like ″five″).

When the event fires, the first parameter will point to a structure like this. Use this

pointer, the values in the structure can be changed. This is how to do it:

 d*’param’ is used to receive the pointer parameter. Then

 d*move it into ’PTR_Value’ to get the numeric value.

 d param s 8A pointer, char
 dTEST DS

 d P1 1 4* Pointer

 d PTR_Value 1 4b 0

 d

 d*This structure is for receiving a VARIANT * pointer from runtime

 d*when an event is fired.

 d*The value ’bstrValParam’ can then be changed.

 d VARIANTStrPar DS based(p1) 8=VT_BSTR

Chapter 7. Using Parts 51

d typeStrParam 1 2b 0

 d reserved1Param 3 4b 0

 d reserved2Param 6b 0

 d reserved3Param 7 8b 0

 d bstrValParam * String

 d B0 9 12B 0

 d padding2Param 13 16b 0

 d

 d*Change the ’bstrValParam’ member of the structure.

 d NewBSTRVal s 20A based(bstrValParam)

 d

 C OCX2 BEGACT OCXEVENT MAIN

 C IF %REALNAME=’BeforeRollToVariant’

 C*Get the pointer (char string), and transform it into a pointer.

 C*The first parameter is a pointer to a VARIANT structure.

 C ’ocx2’ setatr 1 ’PARAMINDEX’

 C*Please note that the length of the returned "PARAMETER" string

 C*varies. E.g., the length of the first parameter here is 8, while

 C*the second one is 7. So, a long-enough variable need to be

 C*defined to receive the string, and it’s need to be processed so

 C*that there’s no SPACE characters in it before it is converted

 C*to a numeric value.

 C ’ocx2’ getatr ’Parameter’ param

 C EVAL PTR_Value = 0

 C MOVE PARAM PTR_Value

 C*Change the value of ’bstrValParam’ member of the structure.

 C eval strFour=’four’+x’00’

 C eval NewBSTRVal=strFour

This way, the contents of the structure pointed to by the first parameter can be

changed. The above code will make the Dice display 4 dots.

52 Programming with VisualAge RPG

Animation Control

In Windows applications, the animation control part plays video files with the AVI

extension. This part differs from the media part in that the video is actually played

independently of the program logic. One typical use of this part is to display an

AVI file that shows some progress, such as a file being moved from one folder to

another.

The animation control part plays video files with no sound. The AVI file cannot be

in compressed format, unless it was compressed with the Running-Length Encoded

(RLE) method.

In Java applications, the animation control part is used to play back an animated

GIF file sequence using the NbrOfImage attribute.

Part Attributes

 FileName FrameRate Handle* Left

Mode NbrOfImage ParentName PartName

PartType Top UserData Visible

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy

Chapter 7. Using Parts 53

Calendar

The calendar part represents a monthly calendar. By clicking on one of the month

arrows, the user can navigate the calendar by going to the next or previous month.

You also have complete program control over the calendar such as going to a

specific date, determining which date the user has selected, and adding short text

comments to individual days in the calendar.

Part Attributes

 Border Bottom ClearAll ClearDate

ClearMonth ClearYear Color ColorArea

ColorMix Date DateIdx DateText

DateUnder Day DayIdx DayLen

DayNumPos DayNumRect DayStart Enabled

FontArea FontBold FontItalic FontName

FontSize FontStrike* FontUnder* FrmtString

Handle* Height HRule Left

Month MonthArrow MonthIdx MonthLen

OutlineRcl ParentName PartName PartType

Refresh ShowRects ShowText TipText

Top UserData Visible VRule

WeekDay WeekDayIdx Width Year

YearIdx YearLen

* Note: See the attribute description for restrictions.

Applicable Events

 Click Create Destroy DblClick

MouseDown MouseEnter MouseExit MouseMove

MouseUp MthChange YearChange

Determining Which Date the User Selected

The DateUnder attribute can be used to determine which date the mouse pointer

is over. In the following example, the date is being retrieved when the user clicks

on the calendar. Note that we are checking that the DateUnder value is not blank.

This is because the click event occurs no matter where the mouse is. If the mouse

is not over a specific date, the DateUnder attribute will be blank.

Also note that the date is returned as character string in the form of YYYYMMDD:

54 Programming with VisualAge RPG

Using Date Index Attributes

Several attributes are provided that allow you to access the calendar without

affecting what is currently being displayed. In this example, a comment is being

added to a specific day in the calendar.

 C ’Cal1’ Getatr ’DateUnder’ YYYYMMDDA 8

 *

 * If mouse is over a day...

 C If YYYYMMDDA <> *Blanks

 *

 * Make date numeric

 C Move YYYYMMDDA YYYYMMDD 8 0

 *

 * Process the date

 * ...

 * ...

 C EndIf

 *

Figure 13. Example of the calendar part

 *

 * Set index to date to reference

 C ’Cal1’ Setatr ’19971210’ ’DateIdx’

 *

 * Set comment for the day

 C ’Cal1’ Setatr ’Vacation’ ’DateText’

 *

Figure 14. Adding a comment

Chapter 7. Using Parts 55

Canvas

Use the canvas part with a window or a notebook page if you want to place more

than one part on your window or notebook page. You can point and click various

parts onto the canvas, position them, and organize them to produce a graphical

user interface.

The canvas part occupies the client area of either a window or a notebook page. If

there is no canvas in your window or notebook page, then you can put only one

part on the client area, unless the parts are extensions to the window, such as

menu bars and message subfiles.

More often than not, you will be creating windows and notebook pages with more

than one part on them. In that case, you should use the notebook page with canvas

part and the window with canvas part. They save you a step because they already

contain the canvas part.

At build time, you can also include a bitmap image as the canvas background by

specifying the FileName attribute. This image can be tiled by setting the Tile

attribute. For Java applications, you can include GIF or JPG images as the

background.

Notes:

1. The canvas part, the window (without canvas) part, and the notebook page

(without canvas) part are located on the parts catalog, not the parts palette. If

you want to use them frequently, you can add them to the parts palette.

2. If parts located on a canvas part have the default font setting specified (Default

System Font), they will inherit the font definition specified for the canvas part.

To apply a certain font to the majority of parts on a canvas, specify that font for

the canvas part rather than for each individual part.

For related information, see:

v “Window” on page 180

v “Window with Canvas” on page 181

v “Notebook Page” on page 118

v “Notebook Page with Canvas” on page 119.

56 Programming with VisualAge RPG

Part Attributes

 BackColor BackMix Bottom* Enabled

FileName FontBold FontItalic FontName

FontSize FontStrike* FontUnder* Handle*

Height Left ParentName PartName

PartType ReadOnly Refresh Tile

Top* UserData Width

* Note: See the attribute description for restrictions.

Applicable Events

 Click Create DblClick Destroy

MouseDown MouseMove MouseUp Popup

VKeyPress

Chapter 7. Using Parts 57

Check Box

Use the check box part if you want the user to choose between two clearly

distinguishable states; for example, on and off.

A label associated with the check box describes what its setting is when it is

selected.

Typically, you use a group of check boxes to provide a list of options. The user can

select one or more check boxes, or not select any. The options are not mutually

exclusive; therefore, selecting one check box has no effect on others on the window.

If you want the user to be able to select only one option from two or more, use

radio buttons instead. See “Radio Button” on page 142 for more information.

To set the state of a check box, the user can either click on it with the mouse, press

the space bar on the keyboard when the check box is in focus, or (if you have

assigned one) press the mnemonic key.

Part Attributes

 AddLink* AllowLink* BackColor BackMix

Bottom Checked Enabled Focus

FontBold FontItalic FontName FontSize

FontStrike* FontUnder* ForeColor ForeMix

Handle* Height Highlight* Label

Left ParentName PartName PartType

Refresh RemoveLink* ShowTips TipText

Top UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy MouseEnter MouseExit

MouseMove Popup Select

58 Programming with VisualAge RPG

Setting the State of a Check Box Part

Set the Checked attribute to one of the following values to describe the state of the

check box:

1 The check box is set and the state is turned on.

0 The check box is not set and the state is turned off.

The check box contains a check mark when its state is on.

Setting a Mnemonic

Note: Mnemonics are not supported in Java applications.

To specify a mnemonic key for the check box, place the mnemonic identifier in

front of a character in the check box label. For Windows, use an ampersand (&).

This character is the mnemonic key and will be displayed on your interface with

an underscore (for example, Visible). The underscore informs users that they can

select the check box by pressing the underlined character on the keyboard.

Signaling Events

When the user selects a check box to turn the state either on or off, a Select event

is signaled.

Chapter 7. Using Parts 59

Combination Box

A combination box provides the user with the option of entering specific

information, or selecting from a list of commonly used choices.

It consists of an entry field with an attached list box that presents a list of values

which the user can scroll through. If the user selects one of these values, it will

appear in the entry field and replace any existing text. Alternatively, the user can

type a value, that does not have to match any of the listed ones, directly into the

entry field.

Combination boxes come in different styles. You can select the style you want from

the part’s properties notebook

For related information, see:

v “List Box” on page 92

v “Entry Field” on page 75

Part Attributes

 AddItemEnd AutoScroll* BackColor BackMix

Bottom Case* Count DelimChar

DeSelect* DragEnable* DropEnable* Enabled

FieldExit FirstSel Focus FontBold

FontItalic FontName FontSize FontStrike*

FontUnder* ForeColor ForeMix GetItem

Handle* Height Index InsertItem*

ItemKey Left ParentName PartName

PartType ReadOnly Refresh RemoveItem

Search* SearchType* Selected SelectItem

Sequence* SetItem SetTop* Showtips

SizeToFit* Text TipText Top

UseDelim UserData Visible Width

* Note: See the attribute description for restrictions.

60 Programming with VisualAge RPG

Applicable Events

 Change Create Destroy Drop*

DropDown* Enter GotFocus KeyPress

LostFocus MouseEnter MouseExit MouseMove

Popup Select VKeyPress

* Note: See the event description for restrictions.

Selecting the Type of Combination Box

In the combination box properties notebook, choose the type of combination box

you want to create:

Combination box

Displays both the entry field and the list box portions of the combination

box.

Drop-down combination box

Displays the entry field portion. The list box portion is hidden until the

down arrow (↓) is pressed.

Drop-down list combination box

Displays the entry field portion. The list box portion is hidden until the

down arrow (↓) is pressed. The entry field does not accept text; it is used

only to display the selection from the list box portion.

Note: All types of combination boxes support dragging from the entry field

portion. Only the simple combination box supports dragging from the list

box portion. All types support dropping onto the entry field portion, not

onto the list box portion.

Adding and Setting the Initial Sequence of Items

You can use the combination box properties notebook to place an initial list of

items in a combination box at design time.

By default, items are displayed in the combination box in the order in which you

added them. If you want them displayed in a more precise order, then before you

start adding them, set the Sequence attribute to either ascending, descending, or

index. This sorts the items in ASCII collating sequence as they are added.

You cannot use the Sequence attribute to change the order of items that are

already in the combination box.

Adding Items at Run Time

You can insert items into a combination box at run time by using the InsertItem

attribute. The order in which items are displayed is determined by the Sequence

attribute.

Updating Items in a List

You can update items that are already in the list. Use the Index attribute to

indicate which item you want to change, and then use the SetItem attribute to set

the changed data.

Note: The SetItem attribute replaces an item to its original location in a list,

regardless of the value you set for the Sequence attribute. For example, if

Chapter 7. Using Parts 61

you had set the Sequence attribute to ascending order before the

combination box was filled, the items appear in the combination box in

ascending sequence; however, if you then retrieve an item, change its value,

and use the SetItem attribute to replace it in the combination box, the item

is inserted in the same position it was in before. Therefore, the list may or

may not be in ascending sequence after the change.

Setting the Top of the List

Use the SetTop attribute to specify which list item should appear at the top of the

combination box. Setting this item does not reorder the items in the list; it scrolls

the list so that the item you select is displayed at the top, followed by the items

that came after it.

Removing Items

Use the RemoveItem attribute and the Index value of the item you want to

remove. Index values start at 1. When an item is removed from the list, all items

following the removed item are moved up one position in the list.

To remove all items in the list, specify an Index value of 0.

Selecting and Deselecting Items

The user can select and deselect items by using the mouse or the keyboard. You

can select and deselect items using the Selected and DeSelect attributes in your

program. Before you use these attributes, set the Index attribute.

Retrieving a User-Selected Item

When the user selects an item from the list in a combination box, that item is

placed into the entry field. You can use the Text attribute to get the item. Also, you

can use the FirstSel attribute to determine the index of the item that was selected.

62 Programming with VisualAge RPG

The user may also type a value into the entry field portion of the combination box.

This value does not have to be one of those in the list. If you want the user to be

able to select only items that are in the list, set the ReadOnly attribute value to 0.

You can use the Count attribute to determine if there are items to retrieve.

Using Keys

Both the list box and the combination box allow you to add items to the list that

consist of a ’key’ portion and a ’data’ portion. When items are added to the list,

only the data portion of the item is displayed. When the user selects an item you

can programatically retrieve the key portion of the item.

To enable keys in a list, you must check the ’Use separator’ check box on the

’Separator’ page of the parts settings notebook and specify a separator character.

The default separator character is the semicolon (;). The items in the list consist of

the key portion, followed by the separator, followed by the data portion. For

example:

01;Shipping

As an example, assume you wish to display a list of departments in a list allowing

the user to make a selection. In your database you store the department as a 2

character field but you want the user to see the descriptive name. You would add

the following data to the list:

v 01;Shipping

v 02;Manufacturing

v 03;Payroll

v 04;Distribution

Note: With the combination box you can add the default list on the Data page of

its settings notebook.

When the user makes a selection from the list the following code could be used to

get the key portion of the item

 C ’Combo1’ Getatr ’FirstSel’ X 2 0

 C ’Combo1’ Setatr X ’Index’

 C ’Combo1’ Getatr ’ItemKey’ Key

Chapter 7. Using Parts 63

Setting the Entry Field Text

When a combination box is first displayed, its entry field is blank. If you want to

place one of the list items in the entry field, set the SelectItem attribute value with

the index of the item to be used.

Signaling Events

The Select event is signaled when:

v The user selects an item that is in a combination box.

v You select an item in the list in your program.

v The user selects an item that is already selected.

The Enter event is signaled when:

v The user double-clicks on an item that is in the combination box

v The Enter key is pressed when the list box has focus and an item has been

selected.

In your action subroutine for these events, you can use the Selected attribute to

determine which item was selected.

64 Programming with VisualAge RPG

Component Reference

The component reference part enables one VARPG component to communicate

with another. You use the component reference part to affect a part on the other

component. The component being referenced must be running in the same

application as the component reference part.

The component reference part also monitors a specified event in the other

component. When the monitored event occurs, a Notify event is signaled by the

component reference part.

Part Attributes

 AddSrcEvt AttrValue Bottom CompName

Left NotSrcEvt NotSrcPart NotSrcWin

ParentName PartName PartType RefAttr

RefParent RefPart RmvSrcEvt UserData

Visible

Applicable Events

 Create Destroy Notify

Referencing Part Attributes in Other Components

There are two methods you can use to reference an attribute of a part in another

component:

1. Define the attribute in the properties notebook of the component reference part.

2. Set the appropriate component reference part attributes at run time.

Before you can reference part attributes in another component, you must ensure

that the other component is running. Use the START operation code to start

another component.

The following code fragment illustrates how a component reference part in one

component can change the value of a part attribute in another. In this example, the

FileName attribute of an image part (IMG1) on window WIN01 in component

COMPB is being updated with a new value.

 *

 * Change the bitmap for image part IMG1 on

 * window WIN01 in component COMPB

 C ’CR1’ Setatr ’COMPB’ ’CompName’

 C ’CR1’ Setatr ’WIN01’ ’RefParent’

 C ’CR1’ Setatr ’IMG1’ ’RefPart’

 C ’CR1’ Setatr ’FILENAME’ ’RefAttr’

 C ’CR1’ Setatr ’D:\PIC.BMP’ ’AttrValue’

 *

Chapter 7. Using Parts 65

Monitoring for Events in Another Component

You can use the component reference part in one component to monitor for an

event that occurs in another component running in the same application. Define

the event to be monitored in the component reference part’s properties notebook,

or at run time by setting the appropriate attributes. When the event being

monitored in the other component occurs, a Notify event is signaled by the

component reference part.

The following code fragment shows how a component reference part can be set at

run time to monitor for an event in another component. In this example, the event

being monitored is the Press event for a push button called PB1 on window

WIN01 in component COMPB.

 *

 * Monitor for the PRESS event of push button

 * PB1 on window WIN01 in component COMPB

 C ’CR1’ Setatr ’COMPB’ ’CompName’

 C ’CR1’ Setatr ’PRESS’ ’NotSrcEvt’

 C ’CR1’ Setatr ’PB1’ ’NotSrcPart’

 C ’CR1’ Setatr ’WIN01’ ’NotSrcWin’

 *

66 Programming with VisualAge RPG

Container

Use the container part to store related records. The records can be shown in an

icon view, tree view, text tree view, or details view.

Part Attributes

 AddRcd Arrange BackColor BackMix

BlankChar Bottom ChildCount ChildList

Collapsed ColNumber Count DeleteRcd

DeSelect EditItem Enabled ExtSelect*

FirstSel Focus FontBold FontItalic

FontName FontSize FontStrike* FontUnder*

ForeColor ForeMix GetNewID GetRcdFld

GetRcdIcon GetRcdText Handle* Height

InUse* Label Left MiniIcon

ParentId ParentList ParentName PartName

PartType ReadOnly RecordID Refresh

RemoveRcd Selected SelectRcd SetRcdFld

SetRcdIcon SetRcdText SetTop* ShowTips

SortAsc SortDesc TipText Top

UserData View* Visible VisTitle

VisTitlSep Width

* Note: See the attribute description for restrictions.

Applicable Events

 Click Collapsed ColSelect Create

DblClick Destroy Enter Expanded

GotFocus KeyPress LostFocus MouseDown

MouseEnter MouseExit MouseMove MouseUp

Popup Select VKeyPress

Adding Columns to a Container

In a details view, a record corresponds to a row in the container part, and each

column in that row corresponds to a field in that record. Before you can add a

record to a container, you must add the columns required to display the fields by

using the container part’s properties notebook.

You have to specify which of the following four types of columns you want to

create:

Object text

An object text column displays the descriptive text that is specified when

the record is created. You can change the text at run time with the

SetRcdText attribute. Users can change this text at run time by pressing the

Alt key and selecting the field with the mouse. To get the value of this

column, use the GetRcdText attribute.

Chapter 7. Using Parts 67

Object icon

An object icon column displays the icon file that is specified when the

record is created. You can change the icon file name at run time using the

SetRcdIcon attribute.

Text Text is a string containing additional information. A text column can

contain any string value. The text cannot have any blanks in it. If you want

a blank to appear at run time, use an underscore (_) character in the

string. Use the SetRcdFld attribute to change this text at run time. Users

can change the text at run time by pressing the Alt key and selecting the

field with the mouse. To get the value of this column, use the GetRcdFld

attribute.

Icon An icon shows additional graphical record information. An icon column

displays an icon file. Use the SetRcdIcon to change the icon file name at

run time.

You can add up to 20 columns to a container part. Of these, up to 15 can be some

combination of object text and text columns, and up to five can be object icon

columns and icon columns. Note that under Windows, only the first column can

contain an icon.

The number of columns and column types cannot be changed at run time. If you

add records that have more fields than the number of columns in the container, the

extra fields are ignored.

Adding Records to a Container

In your code, use the AddRcd attribute to add records to a container. This attribute

consists of a string of the following:

 ID Text FileName ParentID {field_data field_data ...}

Blanks are used as delimiters. The parameters are:

ID A unique numeric value you give to a record. This number must be greater

than zero. To ensure that you assign a unique ID to each record you create,

use the GetNewID attribute.

Text The text that is displayed with the object icon. The text can be changed at

run time by using the SetRcdText attribute.

FileName

The name of a file containing the icon image for an object icon column.

This icon is displayed in the container’s Icon and Tree views. You can

change the icon file name at run time using the SetRcdIcon attribute.

ParentID

The unique ID of the record under which this record will appear. If this

record does not have a parent record, put a 0 in this field.

Field_data

Additional information for a record that is displayed in a text or icon

column. Each field_data value updates a corresponding column in the

container part. If you want to have an empty text column or icon container

column, you must specify an underscore (_) in the corresponding

field_data parameter.

The following code fragment shows the parameters that are specified to add a

sample record to a container. No column data is added in this example.

68 Programming with VisualAge RPG

Use the Count attribute to determine how many records are in a container.

Updating Container Columns

Once a record has been added to a container, the data in the record fields is

displayed in the corresponding columns of the container. You can update data in

individual container text columns by updating the record fields.

Note: You can update only the data in the columns; you cannot change the

number of columns in the container. The number of columns is set when

you create the container in the GUI Designer.

To update a column, set the RecordID attribute to the record that corresponds to

that column, and set the ColNumber attribute to the field on that record that

contains the updated data. The following code fragment illustrates how to update

the third column in a container:

 If you want the new column value to contain imbedded blanks, use the underscore

character to represent each blank. The underscore characters are replaced by blanks

when the column is updated. For example:

 *

 * This is not a child record

 C Eval Parent = ’0’

 *

 * Use the icon text specified in the GUI designer

 C Eval IconText = ’_’

 *

 * Set the icon file name to be used for this record

 C Eval IconFile = ’.\\TOM.ICO’

 *

 * Get a new container record ID and make it character

 C ’CT1’ Getatr ’GetNewId’ NextIDN 6 0

 C Move NextIDN NextID 6

 *

 * Create the container record structure

 C Eval NextRcd = NextID + ’ ’ +

 C IconText + ’ ’ +

 C IconFile + ’ ’ +

 C Parent

 *

 * Add the record to the container

 C ’CT1’ Setatr NextRcd ’AddRcd’

 *

 *

 * Set the record id to be referenced

 C ’CT1’ Setatr NextIDN ’RecordID’

 *

 * Reference the third column in the record

 C ’CT1’ Setatr 3 ’ColNumber’

 *

 * Update the column with the new data

 C ’CT1’ Setatr ’Larry’ ’SetRcdFld’

 *

 *

 * ’New data’ is set in the column

 C ’CT1’ Setatr ’New_data’ ’SetRcdFld’

 *

Chapter 7. Using Parts 69

Use the GetRcdFld attribute to retrieve the contents of a record field. Set the

RecordID attribute to the unique ID of the record, and the ColNumber attribute to

the desired column number.

Removing Records from a Container

Use the RemoveRcd attribute to remove records from a container part and to

remove the record ID that uniquely identifies that record. To remove all records in

the container, set the record ID value to zero.

The following code fragment illustrates how a record is removed from a container:

Changing the Container View

To change the view, use the View attribute. The container part can display the

following views of the data: icon, tree icon, tree text, and details.

Icon view

An icon view has each record represented by an icon, with text beneath it. Child

records are not displayed in icon view. You specify the icon file name and the

descriptive text in the record structure when you add the record to the container.

You can change the icon and icon text at run time by using the SetRcdIcon and

SetRcdText attributes.

To have the icons displayed in rows in the container, set the Arrange attribute to 1.

To use mini icons, set the MiniIcon attribute to 1 or check the Mini Icon box on

the properties notebook’s ’Style’ page.

 *

 * Get ID of first selected record

 C ’CT1’ Getatr ’FirstSel’ TmpID 6 0

 *

 * If a record was selected, remove it from the container

 C If TmpID <> 0

 C ’CT1’ Setatr TmpID ’RemoveRcd’

 C EndIf

 *

70 Programming with VisualAge RPG

Tree view

In a tree view, records are presented in a hierarchy. The tree icon view displays

each record with its icon and icon text beside it. If a record has child records, a

plus sign is displayed next to its icon. Selecting the plus sign shows all the records

related to this record. The tree text view displays records in the same way as the

tree icon view, except in text-only mode, without icons.

Connecting lines are drawn between related records to show their relationship.

Figure 15. Sample icon view

Chapter 7. Using Parts 71

Details View

In a details view, records are shown one after the other with each column

displayed (similar to a subfile). Child records are not displayed in this type of

view.

Figure 16. Sample tree view

72 Programming with VisualAge RPG

If the container is not large enough to display all records at once, scroll bars are

automatically added.

To change the view, use the View attribute.

Mini Icons

This option allows the programmer to specify whether the icons contained in the

container part will be shown as regular icons, or as mini icons. This will only affect

the icon view, and will leave the tree and details views unchanged.

Figure 17. Sample details view

Chapter 7. Using Parts 73

DDE Client

* Restriction: This part is unsupported in Java applications.

Use the DDE client part to exchange data with other applications, such as

spreadsheet applications, that support the dynamic data exchange (DDE) protocol.

The exchange is called a DDE conversation. The application that initiates the

conversation is the client, and the application that responds is the server. To

determine if an application supports DDE, refer to the documentation that came

with it.

The DDE client part supports both cold-link and hot-link conversations. A

cold-link conversation consists of a client program making explicit requests to the

server program. A hot-link conversation consists of a server program automatically

updating the client program when its data changes.

You can configure cold-link or hot-link conversations from the DDE client part’s

properties notebook and in your program logic.

Part Attributes

 AppName Bottom DDEAddLink DDEMode

DDERmvLink Execute Format Item

Left ParentName PartName PartType

Poke Request TimeOut Top

Topic UserData Visible

Applicable Events

 Create Data Destroy ExecuteAck

PokeAck Terminate TimeOut

74 Programming with VisualAge RPG

Entry Field

Use the entry field part if you want the user to input something that you cannot

predict the value of. An entry field is an area into which the user can type or place

text. Its boundaries are usually indicated. The user can scroll through the text in

the entry field if more information is available than is currently visible.

You can configure the entry field part to accept character, numeric, or double-byte

character set (DBCS) data.

You can also make the entry field read-only, so that it contains information that

cannot be directly altered by the user.

You can point and click on an entry field part in the parts palette and then click it

onto the subfile part to create a subfile entry field.

Part Attributes

 AddLink* Alignment AllowLink* AutoScroll*

AutoSelect BackColor BackMix Bottom

CapsLock Copy CsrAtEnd Cut

DataType Delete DragEnable* DropEnable*

Enabled FieldExit Focus FontBold

FontItalic FontName FontSize FontStrike*

FontUnder* ForeColor ForeMix Handle*

Height InsertMode* Left Masked

ParentName PartName PartType Paste

ReadOnly Refresh RemoveLink* ShowTips

Text TextEnd TextLength TextSelect

TextStart TipText Top UserData

Visible Width

* Note: See the attribute description for restrictions.

Chapter 7. Using Parts 75

Applicable Events

 Change Click Create DblClick

Destroy Drop GotFocus KeyPress

Link* LostFocus MouseDown MouseEnter

MouseExit MouseMove MouseUp Popup

VKeyPress

* Note: See the event description for restrictions.

Using the InsertMode Attribute

In Windows, insert mode is always on. It cannot be turned off.

Using the Text Attribute

Use the Text attribute to get or set the value of an entry field. The field you use to

do this must be defined as the same type as the entry field. For example, if you are

getting the value of a numeric entry field, the field that receives the value must

also be defined as numeric.

Getting and Setting Information for a Window

During compilation, the compiler implicitly defines fields in your program with

the same name as the entry field part, and with the same data type and length. By

using the READ and WRITE operation codes with a window name specified in

factor 2, the Text attribute value is automatically copied to or from these fields.

The READ and WRITE operation codes are most useful if you have many entry

fields in your user interface because you do not have to execute a series of get and

set attributes.

See Chapter 3, “Programming with Parts,” on page 25 for more information.

Validity Checking

You can use the properties notebook to specify that an entry field should accept

only data that meets criteria you specify. To ensure that the data matches certain

values, set the Compare values. To ensure that the data falls within a range of

predefined values, set the Range values.

Note: VisualAge RPG uses the ASCII collating sequence for validity checking. This

differs from the server, which uses the EBCDIC collating sequence.

Therefore, results may vary between systems.

To have validity checking performed, you must have at least one push button or

graphic push button on the window that has the Validate attribute set. When the

push button is pressed, validity checking is performed for each entry field that has

validity checking criteria defined. If any of the entry fields fail this validity check,

a message window is displayed and no press event is signaled to your program.

You can also use the field at the top of the properties notebook to set the message

that is displayed if the validity check fails. Either enter the text of the message to

be diplayed or the named message file (such as *MSG0001) to have the

corresponding message appear. If this field is left blank, the default system

message is displayed whenever there is a validity check failure.

Note: There is a 15 character limit on this field.

76 Programming with VisualAge RPG

Preventing User Input

To prevent the user from entering data in an entry field, do one of the following:

v Set the ReadOnly attribute to 1. After you set this attribute, you can still change

the value of the entry field in your program.

v Set the Enabled attribute to 0. After you set this attribute, the entry field does

not respond to events and the user cannot tab to it.

Masking Sensitive Data

If the entry field contains sensitive data, such as a password or an account number,

set the Masked attribute to 1. When this attribute is set, the asterisk character (*)

appears in the entry field for each character typed. This does not affect the actual

data read from the entry field.

Chapter 7. Using Parts 77

Graph

The graph part allows you to create and design a graph in your project. At

runtime, you can send data to the graph and change graph attributes and the

graph type. The graph part supports Pie, Line, Bar, and Line and Bar graph types.

The Bar and Line graph types support the ToolTip text control. When enabled,

moving the mouse over a data point displays the tooltip text control. To use this

support in your program logic, set the value for the point into the TipText attribute

and set the ShowTips attribute on for the window that contains the graph part.

Part Attributes

 AutoInc BarLabel Bottom Color

ColorArea ColorMix DataGroup DataPoint

DataValue Enabled FillStyle* FontArea

FontBold FontItalic FontName FontSize

FontStrike* FontUnder* GnEqGrpCol GnEqPntCol

GraphType GroupLabel GrphHiLite Handle*

Height HitItem* HlitPoints* LabelPlace

Left LegendType ParentName PartName

PartType Refresh StartNew TipText

Title TitlePlace Top UnderPoint*

UseData UserData Visible Width

XAxisLabel YAxisLabel YInc

* Note: See the attribute description for restrictions.

Applicable Events

 Click Create DblClick Destroy

MouseDown MouseEnter MouseExit MouseMove

MouseUp Popup

Sending data to the Graph

Before you send data to the graph, you must indicate which DataGroup and

which DataPoint is to receive the value. The DataPoint attribute represents the

positional element of the graph that represents the value. For a Bar chart, this

would be a Bar. For a line graph, a point, and for a Pie graph, which slice. The

DataGroup is optional. This attribute indicates that there are groups of data to be

graphed. The default DataGroup is one. Setting the DataValue attribute sets the

value of the selected element.

As an example of a DataGroup, assume you wish to plot the high and low

temperature of each month for a given year. This graph would have two data

groups. The first would represent the low temperature for a month and the second

the high temperature for the month. For this graph, you first set the DataGroup

attribute to 1. Then, in a loop, you would set the DataValue for each DataPoint to

the low temperature value. To complete the graph repeat the same steps for the

high temperatures by setting the DataGroup to 2.

78 Programming with VisualAge RPG

Sending data to the graph does not update the graph. You must set the UseData

attribute to display the data.

The following code fragment shows how this may be done:

 If the graph is a pie graph, each group is represented as a separate pie.

 *

 C Do 2 Group 2 0

 C ’Graph1’ Setatr Group ’DataGroup’

 *

 C Do 12 Point 2 0

 C ’Graph1’ Setatr Point ’DataPoint’

 *

 C If Group = 1

 C ’Graph1’ Setatr Low(Point) ’DataValue’

 *

 C Else

 C ’Graph1’ Setatr High(Point) ’DataValue’

 C Endif

 *

 C EndDo

 *

 C EndDo

 *

 C ’Graph1’ Setatr 1 ’UseData’

Figure 18. Sending data to the graph

Chapter 7. Using Parts 79

Graphic Push Button

Use graphic push buttons to provide convenient access to frequently used actions.

A graphic push button provides the same function as a push button. It indicates an

action that will be initiated when the user selects it, but instead of displaying a

label to describe its function, it displays an image. The FileName attribute specifies

the name of the image to use.

Valid Windows image formats include:

v Windows and OS/2® Bitmaps (BMP, VGA, BGA, RLE, DIB, RL4, RL8)

v Icon (ICO)

v Microsoft/Aldus Tagged Image File Format (TIF, TIFF)

v CompuServe Graphics Interchange Format (GIF)

v ZSoft PC Paintbrush Image File Format (PCX)

v Truevision Targa/Vista Bitmap (TGA, VST, AFI)

v Amiga Interleaved Bitmap Format (IFF, ILBM)

v X Windows Bitmap (XBM)

v IBM Printer Page Segment (PSE, PSEG, PSEG38PP, PSEG3820)

v Joint Photographic Experts Group format (JPG, JPEG)

Note: This product’s support for the JPG/JPEG format is based in part on the

work of the Independent JPEG Group.

Valid Java image formats include:

v CompuServe Graphics Interchange Format (GIF)

v Joint Photographic Experts Group format (JPG, JPEG)

For related information, see “Push Button” on page 140.

80 Programming with VisualAge RPG

Part Attributes

 Bottom Enabled FileName Focus

Handle* Height HelpEnable HighLight

Left ParentName PartName PartType

Refresh ShowTips TipText Top

UserData Validate Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy GotFocus LostFocus

MouseEnter MouseExit MouseMove Popup

Press

Setting the Image

To set the image that is displayed on a graphic push button, use the FileName

attribute, and specify a valid bitmap (.BMP) or icon (.ICO) file name. You must

store system-specific bitmap and icon files in the appropriate runtime directory. For

more information, see Chapter 12, “Using Picture, Sound, and Video Files,” on

page 243.

Assigning Command Keys

You can assign a command key to a graphic push button. To do this, open the

properties notebook and select one of the command keys from the available list.

When the user presses the command key at run time, it has the same effect as

pressing the mouse button or a key on the keyboard. A Press event is signaled to

your program.

Signaling Events

When the push button is pressed, a Press event is signaled to your program.

Chapter 7. Using Parts 81

Group Box

Use a group box to visually distinguish a group of parts in a window.

A group box is a rectangular box that is drawn around a group of parts to indicate

that they are related. It is generally advisable to label a group box. If a label is not

needed, you can use an outline box.

Part Attributes

 Bottom Enabled FontBold FontItalic

FontName FontSize FontStrike* FontUnder*

ForeColor ForeMix Handle* Height

Label Left ParentName PartName

PartType Refresh Top UserData

Visible Width

Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy

Labeling a Group Box

Use the Label attribute to specify what string is to be used for the group box label.

Grouping Radio Buttons

See “Grouping Radio Buttons” on page 142 for related information.

82 Programming with VisualAge RPG

Horizontal Scroll Bar

Use the horizontal scroll bar part to allow users to scroll through a pane of

information from left-to-right, or right-to-left. The information can be a list of files,

records in a database, columns in a document, and so on. You can use the Range

attribute to represent the total number of objects to be scrolled through and the

PageSize attribute to determine the number of objects that can be displayed on a

page.

Part Attributes

 Bottom Enabled Focus Handle*

Height Left NextLine NextPage

PageSize ParentName PartName PartType

Position PrevLine PrevPage Range

Top UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy Scroll

Chapter 7. Using Parts 83

Image

Use the image part to display a picture. The FileName attribute specifies the name

of the image to use.

Valid Windows image formats include:

v Windows and OS/2 Bitmaps (BMP, VGA, BGA, RLE, DIB, RL4, RL8)

v Icon (ICO)

v Microsoft/Aldus Tagged Image File Format (TIF, TIFF)

v CompuServe Graphics Interchange Format (GIF)

v ZSoft PC Paintbrush Image File Format (PCX)

v Truevision Targa/Vista Bitmap (TGA, VST, AFI)

v Amiga Interleaved Bitmap Format (IFF, ILBM)

v X Windows Bitmap (XBM)

v IBM Printer Page Segment (PSE, PSEG, PSEG38PP, PSEG3820)

v Joint Photographic Experts Group format (JPG, JPEG)

Note: This product’s support for the JPG/JPEG format is based in part on the

work of the Independent JPEG Group.

Valid Java image formats include:

v CompuServe Graphics Interchange Format (GIF)

v Joint Photographic Experts Group format (JPG, JPEG)

These files reside on the programmable workstation (PWS), not on the host. You

should store system-specific bitmap and icon files in the appropriate runtime

directory (RT_JAVA, or RT_WIN32) so that the packaging utility includes them

when you package your application.

Note: The image part can only be dropped on a notebook page with canvas or

window with canvas.

84 Programming with VisualAge RPG

Part Attributes

 AddLink* AllowLink* BackColor BackMix

Border Bottom Enabled FileName

Handle* Height Left Magnify

Panel ParentName PartName PartType

Print PrintAsIs Refresh RemoveLink*

ShowTips TipText Top UserData

Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Click Create DblClick Destroy

Link* MouseEnter MouseExit MouseMove

* Note: See the event description for restrictions.

Creating the Image Part

The image part can be created only on a canvas part.

Setting the File Name

To display a picture in the image part, set the FileName attribute with the name of

the file containing the image. In Windows applications, the file must contain a

valid bitmap or icon image. In Java applications, the file must contain a valid GIF

or JPG image. The image may appear differently on individual workstations

depending on the display device driver. If you specify a file name that is not valid,

no picture will be displayed. You can clear the image part by setting the FileName

attribute to blanks. If you get an error (such as File not found) when using the

SETATR operation code to set a file name, the error indicator is turned on. For

more information, see Chapter 12, “Using Picture, Sound, and Video Files,” on

page 243.

Controlling the Magnification Panel

By default, the image part is created with a magnification panel. You can remove

the magnification panel by disabling it in the properties notebook of the image

part.

You can also enable or disable the magnification panel by using the Panel attribute

in your program. If you set the Panel attribute to 0, the magnification panel is not

displayed, and more of the picture can be shown. If you set it to 1, the

magnification panel is displayed, and there is less room for the picture to be

shown.

You can set the amount of magnification in your program. The magnification value

is represented by a percentage between 25 and 200. Specifying a value of 0 will

result in the best fit, where the image will just fit in the image window while

keeping the horizontal to vertical ratio constant.

Image Example

In this example, a file is read from the iSeries 400 server. Each record in the file

contains a part number field, which is inserted into the list box as each record is

Chapter 7. Using Parts 85

read. When the user selects a part number in the list box and presses the View

push button, the part number is concatenated with the string .BMP to form a file

name. That file name is then used to set the FileName attribute of the image part

to display the picture. The Label attribute of the PINFO static text part is updated

to indicate the result of setting the file name attribute. Press the Close push button

to terminate the program.

 * *

 * Program ID . . : IMAGE *

 * *

 * Description . : Example of the Image Part *

 * *

 * This sample program illustrates how the image *

 * part can be implemented in VARPG Client. *

 * *

 * The example assumes there is file on the host *

 * AS/400 system called PARTS. That file format *

 * consists of a field called PARTNO. *

 * *

 * When the application is started, the Create *

 * event for window WIN1 is invoked which reads all *

 * records from the file and inserts the PARTNO *

 * field value into list box LB1. *

 * *

 * When the user presses the View push button, *

 * the image file name is constructed and used to *

 * set the FILENAME attribute of the image part *

 * IMG1. *

 * *

 *

 H

 * Define the PARTS file

 *

 FPARTS IF E DISK REMOTE

 *

 DPath C ’’

 dnopic C ’Picture not available’

 *

Figure 19. Sample Using the Image Part (Part 1 of 3)

86 Programming with VisualAge RPG

 * *

 * Window . . : WIN1 *

 * *

 * Part . . . : Close *

 * *

 * Event . . : Press *

 * *

 * Description: Terminate the program *

 * *

 *

 C CLOSE BEGACT PRESS WIN1

 *

 C move *on *inlr

 *

 C ENDACT

 * *

 * Window . . : WIN1 *

 * *

 * Part . . . : WIN1 *

 * *

 * Event . . : Create *

 * *

 * Description: This action subroutine is executed when window WIN1 *

 * is created. *

 * It will fill the list box with the part number values*

 * from the PARTS file. *

 * *

 *

 C WIN1 BEGACT CREATE WIN1

 *

 * Fill the listbox part with items from the database

 C read produc1 9999

 *

 C *in99 doweq *off

 C ’LB1’ setatr partno ’InsertItem’

 C read produc1 9999

 C enddo

 *

 C ENDACT

 *

Figure 19. Sample Using the Image Part (Part 2 of 3)

Chapter 7. Using Parts 87

 * *

 * Window . . : WIN1 *

 * *

 * Part . . . : VIEW *

 * *

 * Event . . : PRESS *

 * *

 * Description: Display the image for the selected part *

 * *

 *

 C VIEW BEGACT PRESS WIN1

 *

 * Get index of selected item

 C ’LB1’ getatr ’FirstSel’ x 4 0

 *

 * If an item was selected, build the bitmap file name

 C x ifgt *zero

 C ’LB1’ setatr x ’Index’

 C ’LB1’ getatr ’GETITEM’ tmp20 20

 C movel tmp20 part 5

 C endif

 *

 C move *blanks fullpath 64

 C move *blanks tmp64 64

 C path cat part:0 tmp64

 C tmp64 cat ’.gif’:0 fullpath

 *

 * Set the file name in the image FILENAME attribute

 * to display the image

 C ’IMG1’ setatr fullpath ’FILENAME’ 80

 *

 * If indicator 80 is on, the set the image file name

 * failed. i.e. the file was not found.

 * Set the Label attribute for the static text part PINFO to

 * indicate status

 C *in80 ifeq *on

 C ’PINFO’ setatr nopic ’Label’

 *

 C else

 C ’PINFO’ setatr *BLANKS ’Label’

 C endif

 *

 C ENDACT

 *

Figure 19. Sample Using the Image Part (Part 3 of 3)

88 Programming with VisualAge RPG

Java Bean

* Restriction: This part is unsupported in Windows applications.

Use the Java Bean part to add JavaBeans® to your project. You can use JavaBeans

by calling Java methods, directly. For more information on calling Java methods,

see Chapter 18, “Calling Java Methods from VisualAge RPG Programs,” on page

279.

To develop applications that use the Java Bean part, you must have Sun

Microsystem’s Java 2 Software Development Kit (J2SDK), Standard Edition, version

1.2 or higher, installed on your workstation. If you do not have the J2SDK, you can

download it from Sun Microsystems at the following URL:

http://java.sun.com/products/

After installing the J2SDK, set the PATH environment variable to point to the

location of the Java compiler. For example, if your home directory for the J2SDK is

x:\jdk1.2, add the following path statement:

x:\jdk1.2\bin

Also, set the JVM_DIR environment variable to point to the location of the jvm.dll,

which is part of the J2SDK and JRE (Java Runtime Environment). For example, if

your home directory for the J2SDK is x:\jdk1.2, set JVM_DIR to the following

statements:

x:\jdk1.2\jre\bin\classic

Part Attributes

 AddEvent Bottom Enabled Height

Left ParentName PartName PartType

RmvEvent ShowProp Top UserData

Visible Width

Applicable Events

 Create Destroy BeanEvent

Adding Beans to your Project

To add a bean to your project, click on the Java Bean part in the parts palette. Click

the mouse pointer onto the design window where you want the bean placed. A file

Open dialog appears. Select the JAR file containing the bean (or beans) you want

to work with. A window appears listing all the beans available in the JAR file.

After you select a bean from the list, the bean will be instantiated. It will be shown

in a seperate window together with the associated property-sheet dialog and the

bean-customizer, if available. (You can change the properties of the bean through

the property-sheet dialog and the bean customizer.)

To show the properties, methods, and events for a bean, open the Java Bean Part

Properties notebook from the design window. Right-click on the Java Bean icon in

Chapter 7. Using Parts 89

the design window and select Properties. The properties, methods, and events of a

bean are on the Information page. Select the appropriate radio button to view what

is available.

Not all bean events are supported. VARPG-supported events are prefixed with an

asterisk(*) in the Events list.

Location of Bean JAR Files

All bean-related JAR files for the project should be in the internal bean directory,

x:\...\WDSC\beans, where x:\...\WDSC is the home directory where VARPG is

installed. This directory should include any bean-dependent JAR files, as well. For

example, if BeanA is found in BeanA.jar and requires class files in beanclass.jar,

both BeanA.jar and beanclass.jar must be copied to the internal bean directory.

While editing a project, you may select a bean from a JAR file that is not in the

internal bean directory. This JAR file will be copied to the internal bean directory

after you build the project. However, you still need to copy any bean-dependent

JAR files to this directory.

Remove any unused JAR files from the internal bean directory. Doing this avoids

the loading of unnecessary, non-project JARs.

Setting the JAR Classpath

The VARPG packaging utility does not handle the classpath setup for JAR files.

You must set the classpath variable to include all the JAR files used by the beans

in your project. For example, if BeanA uses BeanA.jar and depends on

beanclasses.jar, set the classpath as follows:

SET CLASSPATH=x:\beandir\BeanA.jar;x:\beandir\beanclasses.jar;%CLASSPATH%;

where x:\beandir is the path for bean’s the JAR files.

90 Programming with VisualAge RPG

Setting/Getting JavaBean Properties and Invoking Methods

VARPG supports invoking java methods directly. (See Chapter 18, “Calling Java

Methods from VisualAge RPG Programs,” on page 279 for details.) The VARPG

run time provides a Java accessor class to access the JavaBeans objects in your

projects. The accessor class, com.ibm.varpg.parts.VarpgBeanPart, is in the varpg.jar

file. This class allows you to retrieve the bean objects that are instantiated by the

VARPG run time. These bean objects are parts of the VARPG project. The method

to get the bean object is:

public static Object getBeanObject(String strComponentName,

 String strParentName,

 String strPartName);

where strComponentName is the name of component containing the bean part,

strParentName is the name of the window containing the bean part, and

strPartName is the name of the bean part. The caller must check for any null

references returned by the method to make sure the call is successful.

To find the actual method specification for setting or getting properties and

invoking methods, refer to the Bean’s documentation as provided by the vendor, or

view the Information page of the Java Bean Part Properties Notebook.

Chapter 7. Using Parts 91

List Box

Use the list box part to provide the user with a list of items from which one or

more items can be selected. A list box consists of read-only items. An item in a list

box is a string of characters.

Horizontal and vertical scroll bars allow the user to view sections of the list that

are not currently displayed. You can configure the list box so that the user can

select either just one item or multiple items. You can use the Search, SearchType,

and Case attributes to easily search for a particular item in the list.

Part Attributes

 AddItemEnd AddLink* AllowLink* BackColor

BackMix Bottom Case* Count

DelimChar DeSelect DragEnable* DropEnable*

Enabled ExtSelect* FirstSel Focus

FontBold FontItalic FontName FontSize

FontStrike* FontUnder* ForeColor ForeMix

GetItem Handle* Height Index

InsertItem* ItemKey Left MultSelect

NbrOfSel ParentName PartName PartType

Refresh RemoveItem RemoveLink* Search*

SearchType* Selected SelectItem SelectList

Sequence* SetItem SetTop ShowTips

SizeToFit TipText Top TopItem

UseDelim UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy Drop* Enter*

GotFocus KeyPress LostFocus MouseEnter

MouseExit MouseMove Popup Select

VKeyPress

* Note: See the event description for restrictions.

Adding and Setting the Sequence of Items

By default, items are displayed in the list box in the order in which you added

them. If you want them displayed in a more precise order, then before you start

adding them, set the Sequence attribute to either ascending, descending, or index.

This sorts the items in ASCII collating sequence as they are added.

You cannot use the Sequence attribute to change the order of items that are

already in the list box.

92 Programming with VisualAge RPG

Adding Items at Run Time

You can insert items into a list box at run time by using the InsertItem attribute.

The order in which items are displayed is determined by the Sequence attribute.

Updating Items in a List

You can change items that are already in the list. Use the Index attribute to

indicate which item you want to change, and the SetItem attribute to specify the

changed data.

Note: When you change an item using the SetItem attribute, the item remains in

its original location, regardless of the value of the Sequence attribute. For

example, if you had set the Sequence attribute to ascending order when you

created the list, the items appear in the list box in ascending order; however,

if you then retrieve an item, change its value, and use the SetItem attribute

to replace it in the list box, the item is inserted in the same position it was

in before. Therefore, the list may or may not be in ascending sequence after

the change.

Setting the Top of the List

Use the SetTop attribute to specify which list item should appear at the top of the

list box. Setting this item scrolls the list. It changes the display, but it does not

reorder the items in the list.

Removing Items

Use the RemoveItem attribute to remove items from the list. Use the index value

to specify the item that is to be removed. Index values start at 1. When an item is

removed from the list, all items following the removed item are moved up one

position in the list.

To remove all items in the list, specify an index value of 0.

Selecting and Deselecting Items

The user can select or deselect items by using the mouse or the keyboard. You can

select and deselect items by setting the Selected and DeSelect attributes in your

program. To use these attributes, first set the Index attribute.

Types of Selection

You can use attributes to specify how items are selected in a list box. Single,

multiple, and extended selection are available.

Single selection

Single selection (the default) permits only one item in a list to be selected

at one time. If an item is currently selected, it will be deselected when

another item is selected.

Multiple selection

The user can select any number of objects, or not select any.

Extended selection

This type of selection is optimized for the selection of a single object, but

the user can extend selection to more than one object, if required.

Chapter 7. Using Parts 93

Retrieving Items from the List

To retrieve an item from a list box, use the GetItem attribute. First set the Index

attribute to indicate which item you want to retrieve.

You typically retrieve items that have been selected by the user. To determine

which items in a list box have been selected, use the FirstSel or Selected attribute.

The FirstSel attribute returns the index of the first selected item in the list. If you

need to check for additional selected items, be sure to use the DeSelect attribute to

deselect this item; otherwise the FirstSel attribute returns the same item.

To determine if a specific item has been selected, use the Selected attribute. The

Selected attribute uses the Index attribute value to determine if that item has been

selected.

You can use the Count attribute to determine if there are any items to retrieve.

Using Keys

Both the list box and the combination box allow you to add items to the list that

consist of a ’key’ portion and a ’data’ portion. When items are added to the list,

only the data portion of the item is displayed. When the user selects an item you

can programatically retrieve the key portion of the item.

See the Using Keys section in the combination box part description for more

information.

Signaling Events

The Select event is signaled when:

v The user selects an item that is in a list box.

v You select an item in the list in your program.

v The user selects an item that is already selected.

The Enter event is signaled when:

v The user double-clicks over an item that is in the list box

v The user presses the Enter key when the list box has focus and an item has been

selected.

In your action subroutine for these events, you can use the Selected or FirstSel

attribute to determine which item was selected.

List Box Example

Press the Add push button to insert the text value from the entry field part into

the list. Press the Clear push button to clear the list, the Select push button to

select an item from the list and the Remove push button to remove the selected

item from the list. Press Close to end the program.

94 Programming with VisualAge RPG

Chapter 7. Using Parts 95

 * *

 * Program ID . . : LISTBOX *

 * *

 * Description . : Sample program to demonstrate the Listbox part. *

 * *

 *

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : CLEAR *

 * *

 * Event . . : PRESS *

 * *

 * Description: Clear the listbox and the entry field. Give focus *

 * to the entry field part. *

 * *

 *

 C CLEAR BEGACT PRESS MAIN

 *

 C ’LB1’ setatr 0 ’RemoveItem’

 C ’EF1’ setatr *blanks ’Text’

 C ’EF1’ setatr 1 ’Focus’

 *

 C ENDACT

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : CLOSE *

 * *

 * Event . . : PRESS *

 * *

 * Description: Terminate the program *

 * *

 *

 C CLOSE BEGACT PRESS MAIN

 *

 C move *on *INLR

 *

 C ENDACT

Figure 20. Coding Example Using the List Box Part (Part 1 of 3)

96 Programming with VisualAge RPG

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : REMOVE *

 * *

 * Event . . : PRESS *

 * *

 * Description: Remove the selected item from the list box. *

 * The ’FirstSel’ attribute is used to determine the *

 * index of the first selected item. *

 * *

 *

 C REMOVE BEGACT PRESS MAIN

 *

 C ’LB1’ getatr ’FirstSel’ Index 3 0

 *

 C Index ifgt *zero

 C ’LB1’ setatr Index ’RemoveItem’

 C endif

 *

 C ENDACT

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : ADD *

 * *

 * Event . . : PRESS *

 * *

 * Description: Adds the value in the entry field part as a new item *

 * to the list box part. *

 * *

 *

 C ADD BEGACT PRESS MAIN

 *

 C ’EF1’ getatr ’TEXT’ tmp 30

 *

 C tmp ifne *blanks

 C ’LB1’ setatr tmp ’InsertItem’

 C ’EF1’ setatr *blanks ’Text’

 C ’EF1’ setatr 1 ’Focus’

 C endif

 *

 C ENDACT

Figure 20. Coding Example Using the List Box Part (Part 2 of 3)

Chapter 7. Using Parts 97

Search Example

You can use the Search, SearchType, and Case attributes to search for a particular

item in the list. Using them is faster than reading each item in your program and

comparing for specific values.

The following example shows how to locate a customer name in a list box as the

user types a name in the entry field. The window is named MAIN, the list box is

LB1, and the entry field is EF1. The user interface follows:

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : SELECT *

 * *

 * Event . . : PRESS *

 * *

 * Description: Retrieves the selected item from the list box and *

 * copies it to the entry field. *

 * *

 *

 C SELECT BEGACT PRESS MAIN

 *

 C ’LB1’ getatr ’FirstSel’ x 3 0

 *

 C x ifgt *zero

 C ’LB1’ setatr x ’Index’

 C ’LB1’ getatr ’GetItem’ temp 20

 C ’EF1’ setatr temp ’Text’

 C endif

 *

 C ENDACT

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : EF1 *

 * *

 * Event . . : CHANGE *

 * *

 * Description: For CRP sample’s notify event purpose *

 * *

 *

 C EF1 BEGACT CHANGE MAIN

 *

 C ENDACT

 *

Figure 20. Coding Example Using the List Box Part (Part 3 of 3)

98 Programming with VisualAge RPG

In the window’s Create event, we set the Case attribute of the list box to 0 to

indicate that the search is not case sensitive. The SearchType attribute is set to 1

indicating we only want to compare the number of characters in the search string

with the first characters of the list item. The rest of the code is filling the list box

with records from the iSeries database.

C MAIN BEGACT CREATE MAIN

 *

C ’LB1’ Setatr 0 ’Case’

C ’LB1’ Setatr 1 ’SearchType’

 *

C Read Custom01 99

 *

C DoW NOT *in99

C ’LB1’ Setatr CustNa ’AddItemEnd’

C Read Custom01 99

C EndDo

 *

C ’LB1’ Setatr 1 ’SelectItem’

 *

C ENDACT

The following code is the action subroutine for the Change event of the entry field

EF1. Each time a character is typed in the entry field, this action subroutine is

invoked.

The value of the Text attribute of the entry field is retrieved, and if it is not blank,

that value is used as the search string for the Search attribute of the list box. If a

match is found (Index attribute is greater than 0), the found item is selected and

then moved to the top of the list box with the Settop attribute.

C EF1 BEGACT CHANGE MAIN

 *

C ’EF1’ Getatr ’Text’ Search 40

 *

C If Search <> *Blanks

C ’LB1’ Setatr Search ’Search’

 *

C If %Getatr(’Main’:’LB1’:’Index’)<>0

Chapter 7. Using Parts 99

C Eval %Setatr(’Main’:’LB1’:’SelectItem’)=

C %Getatr(’Main’:’LB1’:’Index’)

C Eval %Setatr(’Main’:’LB1’:’SetTop’)=

C %Getatr(’Main’:’LB1’:’Index’)

C EndIf

 *

C Else

C ’LB1’ Setatr 1 ’SetTop’

C ’LB1’ Setatr 1 ’SelectItem’

C ’LB1’ Setatr 1 ’Index’

 *

C EndIf

 *

C ENDACT

If the entry field is blank, the first item in the list box is moved to the top, and is

selected. The INDEX attribute is set to 1 so that subsequent searches begin at the

top of the list.

100 Programming with VisualAge RPG

Media

Use the media part to play or record audio information or to play video files.

The media part gives your programs the ability to process wave (.WAV), MIDI

(.MID), and QuickTime Movie (.MOV) files. If you want to use audio files, the

computer must be equipped with a sound card capable of processing these files. To

record a sound file, you will need a microphone or some other supported input

device for the sound card. MIDI files cannot be recorded with the media part.

Java applications require the Java Media Framework (JMF) API. The media part

only supports the playback of audio and video files in the Java environment.

The video file formats that can be processed are: MPEG (*.mpg) files, QUICKTIME

Movie (*.mov) files, *.dat files, Microsoft® Video for Windows *.avi files are

supported for Windows. To play these video files, the computer must have the

appropriate drivers.

Part Attributes

 AddLink* AllowLink* AudioMode Bass*

Bottom FileName Handle* InPlace

Left Length Panel ParentName

PartName PartType Position RemoveLink*

ShowPlyBar* Top Treble* UserData

Visible Volume

* Note: See the attribute description for restrictions.

Applicable Events

 Complete Create Destroy Link*

* Note: See the event description for restrictions.

Specifying a File Name

Use the FileName attribute value to specify the name of the file you want to

process. For more information, see Chapter 12, “Using Picture, Sound, and Video

Files,” on page 243.

Note: Some wave files are shipped in compressed format. The media part

processes only noncompressed wave files.

Setting AudioMode

To process a file, set the AudioMode attribute to one of the following values:

Value Description

1 Pause — Suspends processing the file

Chapter 7. Using Parts 101

2 Play — Plays the file

3 Record — Records a file

4 Stop — Stops processing the file

Setting the Volume

Use the Volume attribute to set the volume for the for the media part and the

system’s waveout and synthesizer.

Setting the Position

Use the Position attribute to determine the start position in the file to be

processed. Express the attribute value in milliseconds.

Using the Media Panel Part

You can use the media panel part to control the media part. In the media panel

part’s properties notebook, set the media part name in the AddLink attribute, and

enable the AllowLink attribute. This allows the user to control the media part

simply by pressing the appropriate button on the media panel. See “Media Panel”

on page 103 for more information.

Signaling Events

When the media part has completely processed a file, a Complete event is

signaled.

102 Programming with VisualAge RPG

Media Panel

Note: This part is not supported in Java applications.

Use the media panel part to provide convenient access to frequently used actions.

You can also use it to give the user control over other parts without your having to

write any program logic. For example, you can use it to create push buttons or

slider controls that control the volume or mode of a media part.

In the properties notebook for the media panel part, you can determine:

v Which buttons, from a defined set of buttons, the media panel will contain

v Whether or not the position and volume slider controls will be visible

Note: The media panel part can only be dropped on a notebook page with canvas

or window with canvas.

Part Attributes

 AddLink AllowLink BackColor BackMix

Bottom Enabled Handle Height

Left PanelItem PanelMode ParentName

PartName PartType Position RemoveLink

Top UserData Visible Volume

Width

Applicable Events

 Change Create Destroy Link

MouseEnter MouseExit MouseMove Popup

Press

Creating a Media Panel Part

A media panel part can be created only on a canvas part.

Linking Other Parts

There are two methods for linking a media panel part to another part: one involves

using the properties notebook and the other involves writing program logic. The

first method is the simplest. The only time you need to write program logic is if

you want the link to be set during run time, and then you would set the AddLink

and AllowLink attributes. A typical example would be to link the media panel to a

media part. When a control is changed on the media panel, the link mechanism

automatically affects the media part.

When you create a link from the media panel part to another part, only certain

buttons are enabled on the media panel part. To make all the buttons enabled, you

must also create a link from the other part back to the media panel part.

Chapter 7. Using Parts 103

Refer to the AddLink description in VisualAge RPG Parts Reference, SC09-2450-05

for more information about the parts you can link to a media panel part.

Signaling Events

When the volume slider or the position slider is moved, a Change event is

signaled. Use the PanelItem attribute to determine which slider was changed. Use

the Volume attribute to determine the value of the volume slider, and the Position

attribute to determine the value of the position slider.

When a push button on the media panel is pressed, a Press event is signaled. Use

the numeric value returned by the PanelItem attribute to determine which button

caused the Press event. Refer to VisualAge RPG Parts Reference, SC09-2450-05for a

list of possible values.

104 Programming with VisualAge RPG

Menu Bar

Use the menu bar part to give users access to pull-down menus. You can add

submenu parts and menu item parts to the menu bar.

A menu bar appears near the top of the window frame, just below the title bar.

When the user selects a menu item from it, a pull-down menu appears, showing

the items on that menu. Selecting a menu item immediately initiates the action it

describes.

Note: You can manipulate this part’s properties, events, and so on, only from its

pop-up menu in the project tree view.

For related information, see:

v “Menu Item” on page 106

v “Submenu” on page 171

v “Pop-up Menu” on page 138

Part Attributes

 PartType PartName ParentName UserData

Applicable Events

 Create Destroy

Creating Pull-down Menus

You cannot open the properties notebook of a menu bar, submenu, or menu item

by double clicking on it or via pop-up menus. You must manipulate it in the tree

view.

Chapter 7. Using Parts 105

Menu Item

Use menu items to construct pull-down or pop-up menus.

A menu item describes an action that is initiated when the user selects that item.

To construct a menu:

1. Drop a submenu part onto a menu bar or pop-up menu.

2. Drop menu items onto the submenu.

Note: You can manipulate this part’s properties, events, and so on, only from its

pop-up menu in the project tree view.

For related information, see:

v “Menu Bar” on page 105

v “Pop-up Menu” on page 138

v “Submenu” on page 171

Part Attributes

 Checked Enabled FileName Label

ParentName PartName PartType UserData

Visible

Applicable Events

 Create Destroy MenuSelect

Placing a Check Mark beside a Menu Item

A check mark symbol next to a menu item informs the user that the action

represented by the menu item is selected. For example, if a check mark appears

next to a Show Grid menu item, a grid is displayed.

To display a check mark next to a menu item, set the Checked attribute to 1. To

remove a check mark, set the attribute to 0.

Setting Menu Text

Use the Label attribute to set the text for a menu item.

Setting a Mnemonic

Note: Mnemonics are not supported in Java applications.

To specify a mnemonic key for the menu item, place the mnemonic identifier in

front of a character in the text of the Label attribute. For Windows, use an

ampersand (&). The designated character is displayed on the interface with an

underscore, for example, Display. The underscore informs users that they can

select the menu item by pressing the underlined character on the keyboard.

106 Programming with VisualAge RPG

Enabling Menu Items

You can control whether or not a MenuSelect event is issued when the user selects

a menu item.

By default, the menu item is enabled when you create it. An enabled menu item

generates a MenuSelect event when selected.

Set the Enabled attribute to 0 if you do not want a menu item enabled. When a

menu item is not enabled, it is dimmed on the display, and it does not generate a

MenuSelect event when selected.

Signaling Events

When the user selects a menu item, a MenuSelect event is signaled.

Note: Only menu items signal a MenuSelect event. Submenus (such as cascaded

menus), which are attached to other menu items do not.

Chapter 7. Using Parts 107

Message Subfile

Use the message subfile part to display predefined messages or to display text that

you supply in your program logic: for example, error or status information.

This part is always positioned at the bottom of the window frame and runs the

width of the window. You cannot resize its width; you can, however, resize its

height so that it shows more messages. At run time, users can use scroll bars to

view all of the messages.

Part Attributes

 AddMsgID AddMsgText Count DragEnable*

DropEnable* Enabled FirstSel FontBold

FontItalic FontName FontSize FontStrike*

FontUnder* ForeColor ForeMix GetItem

Handle* Height Index MsgSubText

NbrOfSel ParentName PartName PartType

RemoveMsg Selected ShowTips TipText

UserData Visible

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy Drop Enter

MouseEnter MouseExit MouseMove Popup

Select

Displaying Predefined Messages

To display messages that are already defined in the GUI Designer, set the

AddMsgId attribute to the ID number of the message you want to display. Use the

numeric portion of the message identifier.

Displaying Text Supplied in Your Program

To display text that is not part of a predefined message, use the AddMsgText

attribute in your program and supply a text string or literal as the message value.

Using Substitution Variables

The message subfile part supports substitution variables. A substitution variable is

defined when you create the message by typing an percent (%) character

followed by a numeric value (for example, %123). This substitution variable is

replaced by data your program provides before you add the message. Message

substitution data applies to the AddMsgID and AddMsgText attributes.

Message substitution data is a series of words separated by blanks. Each

substitution word replaces the corresponding substitution variable before the

108 Programming with VisualAge RPG

message is added to the message subfile part. To set the message substitution data,

use the MsgSubText attribute before you set the AddMsgID attribute.

Note: The substitution data remains in effect until another MsgSubText attribute is

used.

Removing Messages

Use the RemoveMsg attribute to remove a message from the message subfile part.

Specify the index number of the message to be removed. To remove all messages,

use an index value of 0.

Chapter 7. Using Parts 109

Message Subfile Example

In this example, the user is prompted to enter a part number for processing. The

part number must be greater than zero and less than 2000. When the OK push

button is pressed, the program checks that the value is in the required range. If the

value is not in the range, a message is added to the message subfile part.

 * *

 * Program ID . . : MESSAGE *

 * *

 * Description . : Sample program to demonstrate the Message *

 * subfile part. *

 * *

 *

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : PB_CLOSE *

 * *

 * Event . . : PRESS *

 * *

 * Description: Terminate the program *

 * *

 *

 C PB_CLOSE BEGACT PRESS MAIN

 *

 C move *on *inlr

 *

 C ENDACT

Figure 21. Coding Example Using the Message Subfile Part (Part 1 of 2)

110 Programming with VisualAge RPG

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : PB_OK *

 * *

 * Event . . : PRESS *

 * *

 * Description: Check that the value entered is allowed. If not, *

 * add a message to Message subfile part. *

 * *

 * The value entered is used as substitution text in *

 * the message. *

 * *

 *

 C PB_OK BEGACT PRESS MAIN

 *

 * Clear the message subfile

 *

 C ’Msg1’ setatr 0 ’RemoveMsg’

 *

 * Get the part number

 *

 C ’PartNum’ getatr ’Text’ tmp4 4 0 *

 * If part number is not valid, add a message to the

 * Message part. The partnumber entered by the user is

 * used as the substition text.

 * Since substitution text must be a string, we move the

 * numeric part number value to a character field, and use

 * it as the substitution text.

 C tmp4 ifle *zero

 C tmp4 orgt 1999

 C move tmp4 char4 4

 C ’Msg1’ setatr char4 ’MsgSubText’

 C ’Msg1’ setatr 1 ’AddMsgID’

 *

 * Give the PartNum entry field FOCUS, so the cursor will

 * return to it.

 C ’PartNum’ setatr 1 ’Focus’

 *

 * Part number is OK, continue processing

 C else

 * ...

 * ...

 * ...

Figure 21. Coding Example Using the Message Subfile Part (Part 2 of 2)

Chapter 7. Using Parts 111

Multiline Edit

Use the multiline edit part if you want the user to be able to type in several lines

of text.

The multiline edit part has defined boundaries. Sometimes not all of its text is

visible. The user can scroll up, down, left, or right to view text that is currently not

visible.

Part Attributes

 AddLineEnd AddOffset BackColor BackMix

Bottom CanUndo CharOffset Copy

CsrLine CsrPos Cut Delete

DragEnable* DropEnable* Enabled Focus

FontBold FontItalic FontName FontSize

FontStrike* FontUnder* ForeColor ForeMix

Handle* Height InsertLine InsertText

Left LineNumber LineText NbrOfLines

ParentName PartName PartType Paste

ReadOnly Refresh ShowTips Text

TextEnd TextLength TextSelect TextStart

TextString TipText Top TopLine

Undo UserData Visible Width

WordWrap

* Note: See the attribute decription for restrictions.

Applicable Events

 Change Click Create DblClick

Destroy Drop GotFocus KeyPress

LostFocus MouseDown MouseEnter MouseExit

MouseMove MouseUp Popup VKeyPress

Getting and Setting the Text

Use the Text attribute to get or set the text of the multiline edit part.

Note: The default text entered in the properties notebook for the multiline edit

part is not saved. Text for a multiline edit part can only be set at run time.

Manipulating Lines of Text in a Multiline Edit Part

To insert new lines into a multiline edit part:

1. Set the LineNumber attribute to the line number after which you want to insert

text.

2. Use the InsertLine attribute.

Your text is inserted after the line you specify. Any lines that are below the line

you specified are moved down to make room for the inserted text.

112 Programming with VisualAge RPG

Manipulating Characters in a Multiline Edit Part

To insert a string of characters into a multiline edit part:

1. Set the CharOffset attribute to specify where you want the new text inserted.

Text following the CharOffset value will be replaced with the new text.

2. Use the AddOffset attribute to add text at CharOffset.

Manipulating Selected Portions of Text in a Multiline Edit Part

You can use several attributes to manipulate selected portions of text in a multiline

edit part.

To return just the selected text, use the TextSelect attribute. If no text is selected,

the TextSelect attribute returns a null string, and the result field that is to receive

the text remains unchanged.

Use the TextStart and TextEnd attributes to return the starting and ending

character positions of the selected text.

Changing Color

If a multiline edit part exists on a canvas part whose background color is set to the

system default, changes to the background color of the canvas will be inherited by

the multiline edit part. Additional multiline edit parts added to the canvas will not

inherit this color. To correct this, defer setting the background color of the canvas

until you have placed all multiline edit parts on it. Alternatively, you can make the

multiline edit parts inherit the color by setting the color of the canvas to the

system default and then back to your predefined RGB color setting.

If you drag and drop a color onto the scroll bar of a multiline edit part, that color

is not saved. The multiline edit part will be changed to the new color, but when

you close and reopen the window, the color will be changed back to the original.

Choosing Fonts

Not all fonts are supported by the multiline edit part. After you select a font for

this part, it will adjust to display the closest match for the selected font.

Preventing User Input

You can prevent users from entering text in the multiline edit part by doing one of

the following:

v Set the ReadOnly attribute to 0.

v Set the Enabled attribute to 0. (This also prevents the multiline edit part from

responding to events such as Change and GotFocus.)

You can still change the value of the multiline edit part in your program.

Multiline Edit Example

In this example, pressing the Copy push button copies the selected text from the

multiline edit to the entry field. Pressing the Close push button ends the program.

Chapter 7. Using Parts 113

114 Programming with VisualAge RPG

 * *

 * Program ID . . : MLE *

 * *

 * Description . : Sample program to demonstrate the Multiline Edit *

 * part. *

 * *

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : PB_CLOSE *

 * *

 * Event . . : PRESS *

 * *

 * Description: Terminate the program *

 * *

 *

 C PB_CLOSE BEGACT PRESS MAIN

 *

 C move *on *inlr

 *

 C ENDACT

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : PB_COPY *

 * *

 * Event . . : PRESS *

 * *

 * Description: Copy the selected text in the MLE to the entry field *

 * part. *

 * *

 *

 C PB_COPY BEGACT PRESS MAIN

 *

 C ’EF1’ setatr *blanks ’Text’

 C ’MLE1’ getatr ’TextStart’ start 5 0

 C ’MLE1’ getatr ’TextSelect’ selected 128

 *

 C start ifgt *zero

 C ’ef1’ setatr selected ’Text’

 C endif

 *

 C ENDACT

Figure 22. Coding Example Using the Multiline Edit Part (Part 1 of 2)

Chapter 7. Using Parts 115

 * *

 * Window . . : Main *

 * *

 * Part . . . : Top *

 * *

 * Event . . : Press *

 * *

 * Description: Set the 5th line in the MLE part as top line. *

 * *

 * Change activity: *

 * *

 *

 C TOP BEGACT PRESS MAIN

 *

 C eval %setatr(’MAIN’:’MLE1’:’TOPLINE’) = 5

 C ENDACT

 * *

 * Window . . : Main *

 * *

 * Part . . . : Bottom *

 * *

 * Event . . : Press *

 * *

 * Description: Set bottom *

 * *

 *

 C BOTTOM BEGACT PRESS MAIN

 *

 C eval %setatr(’MAIN’:’MLE1’:’TOPLINE’) = 0

 C ENDACT

Figure 22. Coding Example Using the Multiline Edit Part (Part 2 of 2)

116 Programming with VisualAge RPG

Notebook

Use the notebook part to present data that can be logically grouped by topic: for

example, customer information divided into categories such as Name, Shipping

Address, Orders, and Credits.

A notebook part is a graphical representation of a bound notebook. (In Windows

applications, this is known as a tab control.) You can add pages to the notebook,

and you can group the pages into sections separated by tabbed dividers. If the

notebook page has a canvas, you can add more than one part to it. If it does not

have a canvas, you can add only one part to it.

The user can turn the pages of the notebook to move from one page to the next, or

go straight to a section by clicking on its divider tab.

You can add notebook pages by:

v Using the properties notebook for the notebook part

v Pointing-and-clicking (or dragging-and-dropping) a properties tab or notebook

page with canvas onto the notebook part

For related information, see:

v “Notebook Page” on page 118

v “Notebook Page with Canvas” on page 119

Part Attributes

 BackColor BackMix Bottom Count

Enabled Focus FontBold FontItalic

FontName FontSize FontStrike* FontUnder*

ForeColor ForeMix Handle* Height

Left PageNumber ParentName PartName

PartType Refresh ShowTabs* Top

UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy

Changing Font Emphasis

Changing the font emphasis for a notebook part to underscore or strikeout causes

the status text to take on the new emphasis but not the tab text.

Chapter 7. Using Parts 117

Notebook Page

Use the notebook page part to add pages to a notebook.

You can add only one part to a notebook page; that part will be automatically

sized to fit the entire page. If you want to add more than one part on a page, you

must point-and-click a canvas part onto the notebook page. Alternatively, you can

use the notebook page with canvas part to save a step.

Note: You can manipulate this part’s properties, events, and so on, only from its

pop-up menu in the project tree view.

The user can press the left and right arrow keys to move from one page to the

next.

For related information, see

v “Notebook” on page 117

v “Notebook Page with Canvas” on page 119

Part Attributes

 Enabled OnTop ParentName PartName

PartType Refresh TabImage TabLabel

UserData Visible

Applicable Events

 Create Destroy PageSelect SelPending*

* Note: See the event description for restrictions.

Showing Tab Text

On a DBCS machine, the tab of a notebook page may not show all its text when

the MINCHO Proportional font is used. Changing the font to another style, such as

MINCHO Normal or MINCHO System, will fix this.

Setting a Mnemonic

To specify a mnemonic key for the notebook page, place the mnemonic identifier

in front of a character in the text of the Label attribute. This designated character is

displayed on the interface with an underscore (for example, Display). Note that for

Windows, mnemonics are displayed, but do not function on notebook pages.

Note: Mnemonics are not supported in Java applications

118 Programming with VisualAge RPG

Notebook Page with Canvas

Use the notebook page with canvas to add pages to a notebook part.

The canvas part occupies the client area of a notebook page part. By adding parts

to the canvas part, you can create a graphical user interface.

If you want to add only one part to the page, you can use the notebook page part

instead of the notebook page with canvas part. Because the notebook page part

does not have a canvas on it, the part you add will be sized automatically.

For related information, see:

v “Notebook” on page 117

v “Notebook Page” on page 118

Part Attributes

 Enabled OnTop ParentName PartName

PartType Refresh TabImage TabLabel

UserData Visible

Applicable Events

 Create Destroy PageSelect SelPending

Chapter 7. Using Parts 119

ODBC/JDBC Interface

The ODBC/JDBC Interface part provides the ability to process database files that

support the Windows ODBC API or Sun Microsystem’s JDBC API. Examples of

these database file types include Foxpro, Access, and Paradox.

To develop applications that can use the ODBC/JDBC Interface part, you must be

familiar with SQL and have either the Windows ODBC SDK or Sun Microsystem’s

Java 2 Software Development Kit (J2SDK), Standard Edition, installed on your

workstation.

If you do not have the ODBC SDK, you can download it from Microsoft at the

following URL:

http://www.microsoft.com/odbc/download.htm

The JDBC support is part of the Java™ 2 Software Development Kit (J2SDK)

Version 1.2 for Windows. If you do not have the J2SDK, you can download it from

Sun Microsystems at the following URL:

http://java.sun.com/products/

Applications that access and manipulate data in a JDBC database require the

appropriate JDBC 2.0 compliance driver. You can find JDBC driver and other

information at the following URL:

http://java.sun.com/products/jdbc/

Note: JDBC is not supported in applets.

An ODBC or JDBC database consists of one or more tables. Data is stored in a

table as a series of rows. Each row, or record, contains a number of columns with

data. Your program can submit SQL statements along with ODBC/JDBC Interface

part attributes to manipulate rows, or to move data between program fields and

table columns.

Before you can process an existing database, your VARPG program must first

connect to the database and indicate which table to reference. To manipulate the

rows in a table, your program must create a record set that identifies the records to

be returned and maintained by the ODBC/JDBC Interface part. To access the data

in a row, you must bind each column used in the table row with a program field

in your program. In Java applications, pointers are not supported. A column is

bound to a part; only the static text and entry field parts can be used for binding.

If you are creating a Java application that uses the ODBC/JDBC interface part, end

users running your application must install the varpgjdb.jar file on their

workstation and add its location to their classpath statement. The packaging utility

does inlcude this JAR file. The JAR file is located in the WDSC\java subdirectory.

Part Attributes

 AllowChg* BindPart Bottom BufferDec*

BufferLen* BufferPtr* BufferType* CharData

120 Programming with VisualAge RPG

Column ColumnDec ColumnLen ColumnName

Columns ColumnType Connect Connected

ConnectStr CurrentRow DeleteRow ExecuteSQL

Fetch FetchNext FetchPrior GetTables

Handle* Height InsertRow IsData

Left ParentName PartName PartType

Refresh Rows* SQLError SQLMsgBox

SQLQuery Top UnBind UpdateRow

UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy

Connecting to an ODBC Database

Before you can process an existing database, your VARPG program must first

connect to the database and indicate which table to reference.

Note: The VARPG ODBC/JDBC Interface part can only connect to one table at a

time. If that table has dependencies or relations with other tables, your

program cannot update or delete records in the database.

To connect to a database, first set the ConnectStr attribute to the required

connection string for the database. Then, use the Connect attribute to do the

connection. In Windows, if you set the ConnectStr attribute to *BLANKS, the

ODBC Manager will display the Select Data Source dialog from which you can

select the table to connect to. Once the connection is made, the Connected attribute

will be set to 1. If the connection fails, the Connected attribute is set to 0.

When the following code fragment is executed, the Select Data Source dialog will

be displayed. If a table was selected, the ConnectStr attribute will contain the

connection string. The Connect attribute is set to make the connection.

C ’ODBC’ Setatr *Blanks ’ConnectStr’

C ’ODBC’ Setatr 1 ’Connect’

C If %Getatr(’Main’:’ODBC’:’Connected’)=1

C ...

C Else

C ...

C EndIf

Creating a Record Set

Once you have connected to a database, you must create a record set before you

can access any data in the database. To create a record set, submit a SELECT

statement to the ODBC/JDBC Interface part using the SQLQuery and ExecuteSQL

attributes. The SELECT statement identifies which table in the database is being

accessed and which group of records in the table is to be processed.

The following code segment is an example of creating a record set of all records in

table CUSTOMERS:

Chapter 7. Using Parts 121

D SelAll C ’Select * From "Customers"’

 *

C ’ODBC’ Setatr SelAll ’SQLQuery’

C ’ODBC’ Setatr 1 ’ExecuteSQL’

Accessing Table Data

Data is stored in a table as a series of rows. Each row contains a number of

columns with data. You can manipulate the rows in a table by using the

ODBC/JDBC Interface part attributes such as FetchNext, FetchPrior, UpdateRow,

and so on. However, to access the data in a row, you must bind each column in the

table row with a program field in your program. Once this binding is set, the

ODBC/JDBC Interface part can move data between the program fields and the

table columns.

To bind the program field, you use the following ODBC/JDBC Interface part

attributes:

Column

Establishes which column in the table is to be bound.

BufferPtr

Contains the address of the program field to bind to the column.

BufferDec

Specifies the number of decimal places for the buffer column.

BufferLen

Specifies the length of the program field.

BufferType

Indicates the data type of the program field.

 In the following example, 2 fields defined in the D specifications are being bound

to columns 1 and 2 in a table:

D first S 20

D last S 30

 *

D fptr S * INZ(%Addr(first))

D lptr S * INZ(%Addr(last))

 *

C ’ODBC1’ Setatr 1 ’Column’

C ’ODBC1’ Setatr 20 ’BufferLen’

C ’ODBC1’ Setatr fptr ’BufferPtr’

C ’ODBC1’ Setatr 1 ’BufferType’

 *

C ’ODBC1’ Setatr 2 ’Column’

C ’ODBC1’ Setatr 30 ’BufferLen’

C ’ODBC1’ Setatr lptr ’BufferPtr’

C ’ODBC1’ Setatr 1 ’BufferType’

You can also use the %ADDR built-in directly on the C specifications to avoid

coding the D specifications to define the pointers:

C Eval %Setatr(`Main’:’ODBC1’:’BufferPtr’)=%Addr(first)

Data Types

Use the BufferType attribute to indicate the data type of the program field

referenced by the BufferPtr attribute. The ODBC/JDBC Interface part uses the

BufferType attribute to perform the correct data translation when moving data

122 Programming with VisualAge RPG

between the program field and table column. It is important to set this attribute

correctly, as there is no checking for proper field types.

Set the Column attribute before using the BufferType attribute. If the program field

is associated with a part on the interface, you can use the DataType attribute to get

the buffer type.

Use the following chart to set the VARPG data type for the corresponding,

supported SQL data type. Specify the BufferLen and BufferDec attributes only as

listed in the chart.

For character, decimal, integer, or small integer data types, specify only the

BufferLen attribute.

Note that Double, Float, and Real data types can be defined, in VARPG, as either

Float(F) or Zoned. If you define these as Zoned, the VARPG run time will only use

the number of decimal places specified by the BufferDec attribute when moving

data from the column. This can result in a loss of precision if the data source has

more decimal places than is specified by the BufferDec attribute. If you define

these fields as Float(F), do NOT specify the BufferLen or BufferDec attribute.

SQL Data Type VARPG Data Type

Specify Program Field

Length (use BufferLen)

Specify Decimal Places

for Buffer Column (use

BufferDec)

Character CHAR X

Decimal Zoned X

Integer Zoned X

Small Integer Zoned X

Double 8F

Double Zoned X X

Float 4F

Float Zoned X X

Real 4F

Real Zoned X X

If a column contains a data type that is not supported by the ODBC/JDBC

Interface part, set the AllowChg attribute to 0 for that column. The ODBC/JDBC

Interface part will not move data between any program field and the column. The

data remains unchanged.

Retrieving Table Rows

To process rows in a table, you must first create a record set. A record set is a

group of records returned and maintained by the ODBC/JDBC Interface part. Your

program submits an SQL statement to the ODBC/JDBC Interface part using the

SQLQuery and ExecuteSQL attributes. First, the SQLQuery attribute is set to the

SQL statement to execute. Then, the ExecuteSQL attribute is set to 1 to execute the

query.

In the following example, all records are being selected from the table Customers:

D SelAll C ’Select * From "Customers"’

 *

C ’ODBC1’ Setatr SelAll ’SQLQuery’

C ’ODBC1’ Setatr 1 ’ExecuteSQL’

Chapter 7. Using Parts 123

To determine the number of rows that were returned as the result of an SQLQuery,

you can check the value of the Rows attribute.

Once a record set has been returned, you can process each row using the

FetchNext and FetchPrior attributes. Set the FetchNext attribute to 1 to return the

next row in the record set. Set the FetchPrior attribute to 1 to return the previous

row in the record set. To determine if a FetchNext or FetchPrior successfully

returned a row, check the value of the IsData attribute. A value of 1 indicates that

data was returned. Otherwise, the IsData value is set to 0.

In the following example, all of the records in a record set are read and the value

of column 1 (field first) is added to list box LB1.

C ’ODBC1’ Setatr 1 ’FetchNext’

C ’ODBC1’ Getatr ’IsData’ Temp 1 0

 *

C DoW Temp = 1

C ’LB1’ Setatr first ’AddItemEnd’

C ’ODBC1’ Getatr ’IsData’ Temp

C EndDo

Updating Row Data

To update data in a row, use the UpdateRow attribute to specify the row to be

updated. Be aware that UpdateRow will cause any row to be updated. You do not

need to fetch the row first. Typically however, you will update a row that has just

been fetched. In this case, you would use the CurrentRow attribute. This attribute

contains the row number of a row just fetched.

In the following code segment, assume a row has been read and information has

been displayed on a window. The user presses the update button after making

changes.

C PB_Update BEGACT PRESS Main

 *

C Read ’Main’

C ’ODBC1’ Getatr ’CurrentRow’ Row 1 0

C ’ODBC1’ Setatr Row ’UpdateRow’

 *

C ENDACT

Deleting a Row

Deleting a row is similar to updating one. (See “Updating Row Data.”) Use the

DeleteRow attribute to specify the row to be deleted. As with the UpdateRow

attribute, DeleteRow will cause any row in the row set to be deleted. It is not

necessary to fetch the row first.

In the following example, the user has pressed the Delete push button to delete a

record that has just been fetched and is currently being displayed on a window.

C PB_Delete BEGACT PRESS Main

 *

C ’ODBC1’ Getatr ’CurrentRow’ Row 1 0

C ’ODBC1’ Setatr Row ’DeleteRow’

 *

C ENDACT

ODBC/JDBC Interface Part Example

The following example uses a database created with Microsoft Access. The

database has one table named CUSTOMERS. This simple inquiry program displays

124 Programming with VisualAge RPG

a window containing details about a customer. Push buttons are provided that

allow the user to go to the next and previous records, and to update and delete the

current record.

The following figure shows the inquiry window:

 The code for this example follows.

Chapter 7. Using Parts 125

 * Define connect string

 *

D ConnectStr C ’DSN=MS Access 97 Database;DBQ=-

D CelDial.mdb;-

D DriverId=25;FIL=-

D MS Access;MaxBufferSiz’

 * Working variables

DClr S 2 0

DCol S 10

DSQL S 255A

D%ColNumber S 2 0

D%Part S 10

D%Character S 2

D AppStart C ’HourGlas.ANI’

 *

DDel M MsgNbr(*MSG0003)

D MsgData(CustNo:CustNa)

D J S 4 0

D I S 4 0

 *

D CSENDINFO S 1S 0

 *

 * Define pointers to field buffers

 *

DCBalance S 18S 3 Balance (Numeric-Double)

DP_001 S * Number

DP_002 S * Name

DP_003 S * Rep number

DP_004 S * Contact

DP_005 S * Phone

DP_006 S * Fax

DP_007 S * Address

DP_008 S * City

DP_009 S * Country

DP_010 S * Zip Postal Code

DP_011 S * Zip location

DP_012 S * Balance

DP_013 S * Send Market Info to?

 *

 * Select ALL records

 *

DSelAll C ’Select * From "Customers"’

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 1 of 11)

126 Programming with VisualAge RPG

 * *

 * Window/Part/Event: *

 * *

 * Description: Bind program fields to columns and connect to the *

 * database table CUSTOMERS *

 * *

 *

C Main BEGACT CREATE Main

 *

C ’Main’ Setatr appstart ’MouseIcon’

C ’ODBC’ Setatr 0 ’Visible’

C MoveL ’ASC ’ Seq 4

C Eval CLR = *White

C Move ’255:255:255’ Mix

C ’SFL1’ Setatr 1 ’SizeToFit’

C ’SFL1’ Getatr ’BackColor’ RowClr 2 0

 * Bind fields to columns

 *

 * Bind column: Number

C ’ODBC’ SetAtr 1 ’Column’

C ’ODBC’ SetAtr 7 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_001=%Addr(CUSTNO)

C ’ODBC’ SetAtr P_001 ’BufferPtr’

 *

 * Bind column: Name

C ’ODBC’ SetAtr 2 ’Column’

C ’ODBC’ SetAtr 40 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_002=%Addr(CUSTNA)

C ’ODBC’ SetAtr P_002 ’BufferPtr’

 *

 * Bind column: Rep number

C ’ODBC’ SetAtr 3 ’Column’

C ’ODBC’ SetAtr 5 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_003=%Addr(Repno)

C ’ODBC’ SetAtr P_003 ’BufferPtr’

 *

 * Bind column: Contact

C ’ODBC’ SetAtr 4 ’Column’

C ’ODBC’ SetAtr 30 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_004=%Addr(Contac)

C ’ODBC’ SetAtr P_004 ’BufferPtr’

 *

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 2 of 11)

Chapter 7. Using Parts 127

* Bind column: Phone

C ’ODBC’ SetAtr 5 ’Column’

C ’ODBC’ SetAtr 17 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_005=%Addr(CPhone)

C ’ODBC’ SetAtr P_005 ’BufferPtr’

 *

 * Bind column: Fax

C ’ODBC’ SetAtr 6 ’Column’

C ’ODBC’ SetAtr 17 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_006=%Addr(CFax)

C ’ODBC’ SetAtr P_006 ’BufferPtr’

 *

 * Bind column: Address

C ’ODBC’ SetAtr 7 ’Column’

C ’ODBC’ SetAtr 40 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_007=%Addr(CAddr)

C ’ODBC’ SetAtr P_007 ’BufferPtr’

 *

 * Bind column: City

C ’ODBC’ SetAtr 8 ’Column’

C ’ODBC’ SetAtr 30 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_008=%Addr(CCity)

C ’ODBC’ SetAtr P_008 ’BufferPtr’

 *

 * Bind column: Country

C ’ODBC’ SetAtr 9 ’Column’

C ’ODBC’ SetAtr 20 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_009=%Addr(CCount)

C ’ODBC’ SetAtr P_009 ’BufferPtr’

 *

 * Bind column: Zip Postal Code

C ’ODBC’ SetAtr 10 ’Column’

C ’ODBC’ SetAtr 10 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_010=%Addr(CZip)

C ’ODBC’ SetAtr P_010 ’BufferPtr’

 *

 * Bind column: Zip location

C ’ODBC’ SetAtr 11 ’Column’

C ’ODBC’ SetAtr 1 ’BufferLen’

C ’ODBC’ SetAtr 1 ’BufferType’

C Eval P_011=%Addr(CZiplo)

C ’ODBC’ SetAtr P_011 ’BufferPtr’

 *

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 3 of 11)

128 Programming with VisualAge RPG

* Bind column: Balance

C ’ODBC’ SetAtr 12 ’Column’

C ’ODBC’ SetAtr 18 ’BufferLen’

C ’ODBC’ SetAtr 0 ’BufferType’

C ’ODBC’ SetAtr 3 ’BufferDec’

C Eval P_012=%Addr(CBalance)

C ’ODBC’ SetAtr P_012 ’BufferPtr’

C ’ODBC’ SetAtr ConnectStr ’ConnectStr’

 *

 * Bind column: Send Info

C ’ODBC’ SetAtr 13 ’Column’

C ’ODBC’ SetAtr 1 ’BufferLen’

C ’ODBC’ SetAtr 0 ’BufferType’

C ’ODBC’ SetAtr 0 ’BufferDec’

C Eval P_013=%Addr(CSendInfo)

C ’ODBC’ SetAtr P_013 ’BufferPtr’

 *

 * Connect to the database and select all records

C ’ODBC’ SetAtr 1 ’Connect’

C ’ODBC’ SetAtr SelAll ’SQLQuery’

C ’ODBC’ SetAtr 1 ’ExecuteSQL’

 *

C ’Main’ Setatr 1 ’ProgresBar’

C ’ODBC’ Getatr ’Rows’ Rows 4 0

C ’Main’ Setatr Rows ’PBRange’

C Eval %Setatr(’Main’:’Main’:’PBStepSize’)=110

 *

C Z-Add 22 MaxRows 2 0

C Exsr Fill

 *

C ENDACT

 * *

 * Window/Part/Event: Main/PB_Close/Press *

 * *

 * Description: End the program *

 * *

 *

C PB_CLOSE BEGACT PRESS Main

 *

C Move *ON *INLR

 *

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 4 of 11)

Chapter 7. Using Parts 129

 * *

 * Window/Part/Event: Main/PB_OK/Press *

 * *

 * Description: Close the Detail window *

 * *

 *

C PB_OK BEGACT PRESS DETAIL

 *

C ClsWin ’Detail’

 *

C ENDACT

 * *

 * Window/Part/Event: Main/SFL1/Enter *

 * *

 * Description: Show detail on selected customer *

 * *

 *

C SFL1 BEGACT ENTER MAIN

 *

C ReadS SFL1

C Eval SQL=’SELECT * FROM CUSTOMER WHERE CUSTNO=’+

C Custno

C ShowWin ’Detail’ 80

C Write ’Detail’

C Eval %Setatr(’Detail’:’Detail’:’Focus’)=1

 *

C ENDACT

 * *

 * Window/Part/Event: Main/PB_Columns/Press *

 * *

 * Description: Show the options window *

 * *

 *

C PB_COLUMNS BEGACT PRESS MAIN

 *

C ShowWin ’Columns’ 88

C Eval %Setatr(’Columns’:’Columns’:’Focus’)=1

 *

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 5 of 11)

130 Programming with VisualAge RPG

 * *

 * Window/Part/Event: Columns/PB_Cancel/Press *

 * *

 * Description: Close the options window *

 * *

 *

C PB_CANCEL BEGACT PRESS COLUMNS

 *

C ClsWin ’Columns’

 *

C ENDACT

 * *

 * Window/Part/Event: Main/SFL1/ColSelect *

 * *

 * Description: Sort columns by selected column *

 * *

 *

C SFL1 BEGACT COLSELECT MAIN

 *

C Eval SQL=’SELECT * FROM CUSTOMERS ORDER BY ’ +

c %EditC(%ColNumber:’1’) + ’ ’ + Seq

C ’ODBC’ Setatr SQL ’SQLQuery’

C ’ODBC’ Setatr 1 ’ExecuteSQL’

C Exsr Fill

 *

C ENDACT

 * *

 * Window/Part/Event: Main/PB_Update/Press *

 * *

 * Description: Updated changed record *

 * *

 *

C PB_UPDATE BEGACT PRESS MAIN

 *

C ReadC SFL1 99

 *

C If NOT *IN99

C ’SFL1’ Getatr ’FirstSel’ Sel 4 0

C ’ODBC’ Setatr Sel ’UpdateRow’

 *

C Else

C *MSG0002 Dsply mRC 9 0

C EndIf

 *

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 6 of 11)

Chapter 7. Using Parts 131

 * *

 * Window/Part/Event: Main/PB_Delete/Press *

 * *

 * Description: Delete selected record *

 * *

 *

C PB_DELETE BEGACT PRESS MAIN

 *

C ReadS SFL1 99

 *

C If NOT *in99

C Del Dsply mRC

 *

C If mRC=*YESButton

C ’SFL1’ Getatr ’FirstSel’ Sel 4 0

C ’ODBC’ Setatr Sel ’DeleteRow’

C EndIf

 *

C EndIf

 *

C ENDACT

 * *

 * Window/Part/Event: Main/PB_Opt/Press *

 * *

 * Description: Show the options window *

 * *

 *

C PB_Opt BEGACT PRESS MAIN

 *

C ShowWin ’Columns’ 88

 *

C ENDACT

 * *

 * Window/Part/Event: Columns/CB_Hrule/Select *

 * *

 * Description: Toggle horizontal rule *

 * *

 *

C CB_HRULE BEGACT SELECT COLUMNS

 *

C Eval %Setatr(’Main’:’SFL1’:’HRule’)=

C %Getatr(’Columns’:’CB_HRule’:’Checked’)

 *

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 7 of 11)

132 Programming with VisualAge RPG

 * *

 * Window/Part/Event: Columns/CB_VRule/Select *

 * *

 * Description: Toggle vertical rule *

 * *

 *

C CB_VRULE BEGACT SELECT COLUMNS

 *

C Eval %Setatr(’Main’:’SFL1’:’VRule’)=

C %Getatr(’Columns’:’CB_VRule’:’Checked’)

 *

C ENDACT

 * *

 * Subroutine: Fill *

 * *

 * Description: Fill the subfile from the database *

 * *

C Fill Begsr

 *

C ’Main’ Setatr 99 ’MouseShape’

C Z-Add 0 Count

C Eval *IN01 = *OFF

C Clear SFL1

C ’SQL’ Setatr SQL ’Text’

C ’ODBC’ Setatr 1 ’FetchNext’

C ’ODBC’ Getatr ’IsData’ Temp 1 0

 *

 * Do while there is data

C DoW Temp = 1

C Write SFL1

 *

C Eval *IN01 = NOT *IN01

 *

C If *IN01

C Eval %Setatr(’Main’:’SFL1’:’RowBGMix’)=Mix

C EndIf

 *

 * Move the progress bar

C Add 1 Count

C ’Main’ Setatr 1 ’PBStep’

 * Check if there is another row

C ’ODBC’ Setatr 1 ’FetchNext’

C ’ODBC’ Getatr ’IsData’ Temp 1 0

C EndDo

 *

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 8 of 11)

Chapter 7. Using Parts 133

C ’Main’ Setatr 0 ’PBSetPos’

C ’Count’ Setatr Count ’Label’

C ’SFL1’ Setatr 1 ’SelectItem’

C Eval %Setatr(’Main’:’SQL’:’Text’)=

C %Getatr(’Main’:’ODBC’:’SQLQuery’)

C ’Main’ Setatr 1 ’MouseShape’

 *

C EndSr

 * *

 * Window/Part/Event: Columns/ST06/Click *

 * *

 * Description: Change list colour *

 * *

 *

C ST06 BEGACT CLICK COLUMNS

 *

C Eval *IN01 = *OFF

C Eval I=%Getatr(’Main’:’SFL1’:’Count’)

C %Part Getatr ’BackMix’ Mix 11

 *

C Do I J

C Eval *IN01 = NOT *IN01

 *

C If *IN01

C Eval %Setatr(’Main’:’SFL1’:’Index’)=J

C Eval %Setatr(’Main’:’SFL1’:’RowBGMix’)=Mix

C EndIf

 *

C EndDo

 *

C ENDACT

 * *

 * Window/Part/Event: Main/PB_Sql/Press *

 * *

 * Description: Process SQL statement *

 * *

 *

C PB_SQL BEGACT Press MAIN

 *

C ’SQL’ Getatr ’Text’ SQL

C Eval %Setatr(’Main’:’ODBC’:’SQLQuery’)=SQL

C Eval %Setatr(’Main’:’ODBC’:’ExecuteSQL’)=1

C Exsr Fill

 *

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 9 of 11)

134 Programming with VisualAge RPG

 * *

 * Window/Part/Event: Columns/CB01/Select *

 * *

 * Description: Hide/Show columns *

 * *

 *

C CB01 BEGACT SELECT COLUMNS

 *

C MoveL %Part TempName 4

C Move TempName Num2 2 0

C Eval %Setatr(’Main’:’SFL1’:’ColNumber’)=Num2

C %Part Getatr ’Checked’ State 1 0

 *

C If State = 1

C Eval State = 0

 *

C Else

C Eval State=1

C EndIf

 *

C Eval %Setatr(’Main’:’SFL1’:’Hidden’)=State

 *

C ENDACT

 * *

 * Window/Part/Event: Columns/CB_Sort/Select *

 * *

 * Description: Set sort sequence *

 * *

 *

C CB_SORT BEGACT SELECT COLUMNS

 *

C If %Getatr(’Columns’:’CB_Sort’:’Checked’)=1

C Eval SEQ = ’ASC ’

 *

C Else

C Eval SEQ = ’DESC’

C EndIf

 *

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 10 of 11)

Chapter 7. Using Parts 135

 * *

 * Window/Part/Event: Detail/Detail/Create *

 * *

 * Description: Set all fields to read only *

 * *

 *

C DETAIL BEGACT CREATE DETAIL

 *

C ’CAN0000037’ Setatr 1 ’ReadOnly’

 *

C ENDACT

 * *

 * Window/Part/Event: Main/MI_Tips/MenuSelect *

 * *

 * Description: Toggle display of tip text *

 * *

 *

C MI_TIPS BEGACT MENUSELECT MAIN

 *

C If %Getatr(’Main’:’MI_Tips’:’Checked’)=0

C Eval %Setatr(’Main’:’MI_Tips’:’Checked’)=1

 *

C Else

C Eval %Setatr(’Main’:’MI_Tips’:’Checked’)=0

C EndIf

C Eval %Setatr(’Main’:’Main’:’ShowTips’)=

C %Getatr(’Main’:’MI_Tips’:’Checked’)

 *

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 11 of 11)

136 Programming with VisualAge RPG

Outline Box

Use an outline box around a group of parts to indicate that they are related.

An outline box is a rectangular, unlabeled box. If you need a label on the box, use

the group box part instead.

For related information, see “Group Box” on page 82.

Part Attributes

 Bottom Handle* Height Left

ParentName PartName PartType Refresh

Top UserData Visible Width

Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy

Special Height and Width Settings

You can create lines using two outline box attributes. Set the Width attribute to 1

to create a vertical line, or set the Height attribute to 1 to create a horizontal line.

Chapter 7. Using Parts 137

Pop-up Menu

Use the pop-up menu part to display a number of choices that pertain to a

particular part on your interface. You can add menu item parts and submenu parts

to the pop-up menu part.

The menu is called a “pop-up” because it appears when the user presses the

appropriate key or mouse button.

Note: You can manipulate this part’s properties, events, and so on, only from its

pop-up menu in the project tree view.

For related information, see:

v “Menu Bar” on page 105

v “Menu Item” on page 106

v “Submenu” on page 171

Part Attributes

 Handle* InvName InvPName ParentName

PartName PartType UserData Visible*

X Y

* Note: See the attribute description for restrictions.

Applicable Events

There are no events for this part.

138 Programming with VisualAge RPG

Progress Bar

Use the progress bar part to indicate graphically the progress of a process, such as

copying files, loading a database, and so on.

For example, to show the progress of copying 100 files, you could set the PBRange

attribute to 100 and the PBStepSize attribute to 10. Your code could then monitor

the copyfile process and move the progress bar indicator forward in steps for every

ten files copied.

In Java applications, if the progress bar’s width is smaller than its height, the

progress bar will have a vertical orientation.

Part Attributes

 Bottom Handle* Height Left

ParentName PartName PartType PBRange

PBSetPos PBStep PBStepSize Top

UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy

Progress Bar Example

In the following example, the progress bar indicator is updated every time a read

operation occurs:

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq----

 *

C EVAL %setatr(’win01’:’WIN1’:’PBRange’)=10

C EVAL %setatr(’win01’:’WIN1’:’PBStepSize’)=1

C DO 10

C Read Input

C EVAL %setatr(’win01’:’WIN1’:’PBStep’)=1

C EndDo

 *

Chapter 7. Using Parts 139

Push Button

Use push buttons to provide convenient access to frequently used actions.

Each push button part controls a specific action. When the user clicks on a push

button, its action is initiated immediately. The text label on the push button

describes its action.

Compare with “Graphic Push Button” on page 80.

Part Attributes

 BackColor BackMix Border* Bottom

Enabled Focus FontBold FontItalic

FontName FontSize FontStrike* FontUnder*

ForeColor ForeMix Handle* Height

HelpEnable HighLight Label Left

ParentName PartName PartType Refresh

ShowTips TipText Top UserData

Validate Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy GotFocus LostFocus

MouseEnter MouseExit MouseMove Popup

Press

Setting a Default Push Button

In the properties notebook of a push button part, you can specify that you want

the push button to be the default push button for the window you are designing.

The default push button is displayed with a heavy black border, and the action

associated with it is performed when the user presses the Enter key.

Note: You can define only one default push button per window. If you define

more than one, VisualAge RPG will choose one.

Setting a Mnemonic

Note: Mnemonics are not supported in Java applications.

For each push button, use the Label attribute to associate text with a specific push

button. That text appears on the button.

To specify a mnemonic key for the push button, place the mnemonic identifier in

front of a character in the text of the Label attribute. For Windows, use an

ampersand (&). This designated character is displayed on the interface with an

140 Programming with VisualAge RPG

underscore (for example, Cancel). The underscore informs users that they can

select the push button by pressing the Alt key and the underlined character on the

keyboard.

Assigning Command Keys

You can assign a command key to a push button. To do this, open the part’s

properties notebook and select one of the command keys from the available list.

When the user presses the command key at run time, it has the same effect as

pressing the mouse button or a key on the keyboard. A Press event is signaled to

your program.

Signaling Events

A Press event is signaled to your program when:

v the user selects a push button.

v the user presses the Enter key if a default push button is defined.

v the user presses a command key that is assigned to a push button.

Chapter 7. Using Parts 141

Radio Button

Use radio buttons if you want the user to select only one of a group of related but

mutually exclusive choices. When the user makes a selection, the previously

selected choice in the group is deselected.

A radio button appears as a raised circular button that is labeled with text beside

it. When selected, the circular button displays a dot.

Do not use radio buttons if you want the user to be able to select more than one

choice at a time. In that case, see “Check Box” on page 58.

Part Attributes

 BackColor BackMix Bottom Checked

Enabled Focus FontBold FontItalic

FontName FontSize FontStrike* FontUnder*

ForeColor ForeMix Handle* Height

HighLight* Label Left ParentName

PartName PartType Refresh SelectIdx

ShowTips TipText Top UserData

Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy Enter MouseEnter

MouseExit MouseMove Popup Select

Setting a Mnemonic

To specify a mnemonic key for the radio button, place the mnemonic identifier in

front of a character in the text of the Label attribute. For Windows, use an

ampersand (&). This designated character is displayed on the interface with an

underscore (for example, Blue). The underscore informs users that they can select

the radio button by pressing the underlined character on the keyboard.

Note: Mnemonics are not supported in Java applications.

Grouping Radio Buttons

When you create radio buttons, group them logically, so that selecting a button

will affect only the state of buttons in its own group.

For example, assume that you have four radio buttons on a design window. RB1

and RB2 are mutually exclusive to each other, and RB3 and RB4 are mutually

exclusive to each other. You must group these buttons into two logical groups. The

following figure illustrates how these radio buttons can be grouped on the design

window:

142 Programming with VisualAge RPG

To arrange radio buttons in logical groups:

1. Arrange the radio buttons as desired, and optionally place a group box around

each group. (See “Group Box” on page 82.)

2. Select the canvas part in the design window and press mouse button 2.

3. From the pop-up menu, select Tabs and Groups....

The Customize Tabs and Groups window appears, listing all of the parts on the

design window. Resize this window, if necessary, to see all the parts.

4. Click mouse button 1 to select the radio button that will be the first button in

the first group. In this example, RB1 is the first radio button in group 1.

5. Click mouse button 2 to get the pop-up menu for this radio button part, and

select Group mark.

An X mark symbol appears next to the radio button under the Group Mark

column.

Note: You can also set the group mark in the properties notebook for the part.

6. Use Ctrl+Up Arrow and Ctrl+Down Arrow to position RB2 after RB1. Note that

this positioning can also be done within the tree view and can also be done

using move up and move down menu items. Ensure that the Group mark

attribute is not set for RB2.

This specifies that RB2 is the second radio button in group 1.

7. Press OK to close the window.

Note: Do not close the window using the system menu, or your changes will

not be saved.

RB1 and RB2 are now considered to be part of one group, so selecting either will

only affect the other. Repeat the same process for RB3 and RB4. The following

figure shows the Customize Tabs and Groups window after parts have been

grouped:

Chapter 7. Using Parts 143

Note: Tab stops and group marks can also be set for individual parts from within

a part’s properties notebook.

Setting the State of a Radio Button

In the radio button’s properties notebook, you can indicate if the radio button is to

be initially selected or not. Only one radio button in a group may be selected at

one time. If you select more, only the last one in the group will be selected.

By default, when you create a radio button, the Checked attribute is set to 0. This

means that the radio button is not set and the state is turned off. The radio button

is displayed with the circle empty.

If you want to create a radio button that is set and the state is turned on, you must

set the Checked attribute to 1. In this case, the radio button is displayed with the

circle partially filled.

You can set the Checked attribute in the properties notebook or in your program.

Signaling Events

When the user selects a radio button, a Select event is signaled.

144 Programming with VisualAge RPG

Slider

Use the slider part if you want the user to be able to display, set, or modify a

value by moving a slider arm along a slider shaft.

Sliders are typically used for values that have familiar increments, such as seconds

or degrees, or to show the percentage of a task that has been completed.

By default, a slider is placed horizontally in the center of a box with the slider

shaft on the left side. A scale can be displayed to show the units of measure for the

shaft.

Use the properties notebook for the slider part to:

v Set the range of values that a slider can return

v Position the slider vertically or horizontally in a window

v Provide a scale to indicate the units of measure represented by the slider

Part Attributes

 AddLink* AllowLink* BackColor BackMix

Bottom Enabled Focus FontBold

FontItalic FontName FontSize FontStrike*

FontUnder* ForeColor ForeMix Handle*

Height Left Maximum Minimum

ParentName PartName PartType Refresh

RemoveLink* ShowTips TickLabel TickNumber

TipText Top UserData Value

Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Change Create Destroy GotFocus

Link* LostFocus MouseEnter MouseExit

MouseMove Popup

* Note: See the event description for restrictions.

Getting and Setting the Slider Value

You can get or set the value of the slider by using the Value attribute.

When you get the Value attribute, make sure that you have defined a large enough

result field to contain the returned value.

Signaling Events

The Change event is signaled when the position of the slider arm changes.

Chapter 7. Using Parts 145

If you use increment buttons to move the slider arm, the Change event is signaled

continuously as long as the buttons are pressed.

If you use the mouse to move the slider arm, the Change event occurs when the

mouse button is released.

Slider Example

This example illustrates how the slider part can be used to control the color of

other parts by using the BackMix attribute. As each slider is moved, its value is

used to determine the background color mix of its corresponding static text part to

show the intensity of that color. The background color of the static text labeled

Sample is updated to show the combined color mix of all three colors.

146 Programming with VisualAge RPG

 * *

 * Program ID . . : Slider *

 * *

 * Description . : Sample program to illustrate the slider part. *

 * *

 * As each slider arm is moved, a CHANGE event is *

 * signalled for that slider. *

 * The CHANGE action subroutine retrieves the value *

 * of the slider, and updates the background colour *

 * mix of its corresponding static text part to *

 * show the intensity of that colour. *

 * *

 * The background colour mix of static text part *

 * ’SAMPLE’ is also updated to show the result of *

 * mixing all the colour values. *

 * *

 *

 H

 *

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : PB_EXIT *

 * *

 * Event . . : PRESS *

 * *

 * Description: Terminate the program. *

 * *

 *

 C PB_EXIT BEGACT PRESS MAIN

 *

 C move *on *inlr

 *

 C ENDACT

Figure 24. Coding Example Using the Slider Part (Part 1 of 4)

Chapter 7. Using Parts 147

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : GREEN *

 * *

 * Event . . : CHANGE *

 * *

 * Description: Update the Green colour value. *

 * *

 *

 C GREEN BEGACT CHANGE MAIN

 *

 C ’green’ getatr ’Value’ val 3 0

 C move val grnmix 3

 C move *blanks mix 11

 C movel ’000:’ mix

 C mix cat grnmix:0 mix

 C mix cat ’:000’:0 mix

 C ’STGreen’ setatr mix ’BackMix’

 C exsr update

 *

 C ENDACT

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : BLUE *

 * *

 * Event . . : CHANGE *

 * *

 * Description: Update the Blue colour value. *

 * *

 *

 C BLUE BEGACT CHANGE MAIN

 *

 C ’blue’ getatr ’Value’ val

 C move val blumix 3

 C move *blanks mix

 C movel ’000:000:’ mix

 C mix cat blumix:0 mix

 C ’STBlue’ setatr mix ’BackMix’

 C exsr update

 *

 C ENDACT

Figure 24. Coding Example Using the Slider Part (Part 2 of 4)

148 Programming with VisualAge RPG

 * *

 * Subroutine . . : UPDATE *

 * *

 * Description . : Updates the background colour mix of the static *

 * text part ’Sample’ to show the results of *

 * combining the colour values from the three *

 * sliders. *

 * *

 *

 C UPDATE BEGSR

 *

 C move *blanks smpmix 11

 C movel redmix smpmix

 C smpmix cat ’:’:0 smpmix

 C smpmix cat grnmix:0 smpmix

 C smpmix cat ’:’:0 smpmix

 C smpmix cat blumix:0 smpmix

 C ’Sample’ setatr smpmix ’BackMix’

 *

 C ENDSR

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : RED *

 * *

 * Event . . : CHANGE *

 * *

 * Description: Update Red colour value. *

 * *

 *

 C RED BEGACT CHANGE FRA0000B

 *

 C ’red’ getatr ’Value’ val

 C move val redmix 3

 C move *blanks mix

 C movel redmix mix

 C mix cat ’:000:000’:0 mix

 C ’STRed’ setatr mix ’BackMix’

 C exsr update

 *

 C ENDACT

Figure 24. Coding Example Using the Slider Part (Part 3 of 4)

Chapter 7. Using Parts 149

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : MAIN *

 * *

 * Event . . : CREATE *

 * *

 * Description: Initialize the color mix *

 * *

 *

 C MAIN BEGACT CREATE MAIN

 *

 C move ’000’ grnmix

 C move ’000’ blumix

 C move ’000’ redmix

 *

 C ENDACT

Figure 24. Coding Example Using the Slider Part (Part 4 of 4)

150 Programming with VisualAge RPG

Spin Button

Use the spin button part to display, in sequence, a group of related but mutually

exclusive choices that have a logical consecutive order; for example, months of the

year. The choices are displayed as though they were arranged in a ring. The user

can move (or “spin”) through the choices by pressing the up arrow to go to the

next higher value, or the down arrow to go to the next lower one. Alternatively,

one of the choices can be typed directly into the entry field for the spin button.

Part Attributes

 AddItemEnd Alignment* BackColor BackMix

Bottom Enabled Focus FontBold

FontItalic FontName FontSize FontStrike*

FontUnder* ForeColor ForeMix Handle*

Height Left Maximum Minimum

ParentName PartName PartType ReadOnly

Refresh RemoveItem ShowTips Text

TipText Top UserData Value

Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Change Create Destroy GotFocus

Link* LostFocus MouseEnter MouseExit

MouseMove Popup SpinDown SpinEnd

SpinUp

* Note: See the event description for restrictions.

Setting Spin Button Values

The data type of the spin button determines the method used to set the spin list

values.

To specify the allowed values for a numeric spin button, set the Maximum and

Minimum attributes.

To set the initial spin list values of a character spin button, set the AddItemEnd

attribute for each item you want to add. Add the items in the order in which you

want them to appear because the character spin button items are not sorted

automatically.

Getting the Spin Button Value

The attribute you use to retrieve the value that is selected in a spin button depends

on the type of spin button.

v For character spin buttons, use the Text attribute.

Chapter 7. Using Parts 151

v For numeric spin buttons, use the Value attribute. This attribute returns a value

ranging from the minimum to the maximum value specified for the spin button.

Preventing User Input

You can prevent the user from typing a value directly into the field associated with

the spin button by setting the ReadOnly attribute in the spin button properties

notebook or by setting the ReadOnly attribute to 1 in your program.

Spin Button Example

This example illustrates how to set and get the values for a numeric and a

character spin button. When you start the program, an initial list is inserted into

each spin button. When you select the Copy push button, the value of each spin

button is copied to the associated entry field part.

Press the Close push button to end the program.

152 Programming with VisualAge RPG

 * *

 * Program ID . . : SPIN *

 * *

 * Description . : Sample program to demonstrate the Spin button *

 * part. *

 * *

 * A Character, and Numeric spin button are used *

 * to show how they are initialized, and how their *

 * values are retrieved. *

 * *

 *

 H

 *

 DDAY S 10A DIM(7) PERRCD(1) CTDATA

 *

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : PB_COPY *

 * *

 * Event . . : PRESS *

 * *

 * Description: Copy the value from each Spin button to its *

 * corresponding entry field part. *

 * *

 *

 C PB_COPY BEGACT PRESS MAIN

 *

 C ’SPB1’ Getatr ’Value’ tmp2N 2 0

 C ’EF1’ Setatr tmp2N ’Text’

 *

 C ’SPB2’ Getatr ’Text’ tmp 10

 C ’EF2’ Setatr tmp ’Text’

 *

 C ENDACT

Figure 25. Coding Example Using the Spin Button Part (Part 1 of 2)

Chapter 7. Using Parts 153

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : MAIN *

 * *

 * Event . . : CREATE *

 * *

 * Description: Center the window on the display, and *

 * initialize the spin buttons. *

 * *

 *

 C MAIN BEGACT CREATE MAIN

 *

 * Initialize the Character spin button with the days of the

 * week from the array DAY

 C Do 7 I 2 0

 C ’SPB2’ Setatr day(i) ’AddItemEnd’

 C EndDo

 *

 * Initialize the numeric spin button

 C ’SPB1’ Setatr 1 ’Minimum’

 C ’SPB1’ Setatr 10 ’Maximum’

 *

 C ENDACT

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : PB_EXIT *

 * *

 * Event . . : PRESS *

 * *

 * Description: Terminate the program. *

 * *

 *

 C PB_EXIT BEGACT PRESS MAIN

 *

 C Move *On *INLR

 *

 C ENDACT

**CTDATA DAY

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Figure 25. Coding Example Using the Spin Button Part (Part 2 of 2)

154 Programming with VisualAge RPG

Static Text

Use the static text part as a label for other parts, such as a prompt for an entry

field part. Static text parts do not accept end user input. In Java applications, static

text can be displayed only on a single line.

Part Attributes

 Alignment BackColor BackMix Bottom

DataType DragEnable* DropEnable* DropValue*

Enabled FontBold FontItalic FontName

FontSize FontStrike* FontUnder* ForeColor

ForeMix Handle* Height Label

Left ParentName PartName PartType

Refresh ShowTips TipText Top

UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Click Create DblClick Destroy

Drop Link* MouseDown MouseEnter

MouseExit MouseMove MouseUp Popup

* Note: See the event description for restrictions.

Changing the Text of a Static Text Part

The static text part is a rectangular area into which text is placed. Use the Label

attribute to change the text of a static text part.

If you change the text so that it is longer than the original text, the new text will

be clipped at the borders of the enclosing rectangle. The text will also be clipped if

you change the FontName and FontSize attributes to a larger font or size.

When you change text in your program, make sure that the static text part in the

GUI Designer is large enough to show the new text.

Getting Static Text Values

To get the value of a static text part, you must specify the Label attribute. If you

are getting the value of a numeric static text part, the field that receives the value

must also be defined as numeric.

Getting and Setting Information for a Window

During compilation, the compiler implicitly defines fields in your program with

the same name as the static text part, and with the same data type and length. By

using the READ and WRITE operation codes with a window name specified in

factor 2, the Label attribute value is automatically copied to or from these fields.

Chapter 7. Using Parts 155

The READ and WRITE operation codes are most useful if you have many static

text parts in your user interface because you do not have to execute a series of get

and set attributes.

See Chapter 3, “Programming with Parts,” on page 25 for more information.

Editing Output

You can edit the contents of a static text part if the data type is numeric. See

Chapter 11, “Editing Output,” on page 239 for a description of editing.

156 Programming with VisualAge RPG

Status Bar

Use the status bar part to provide additional information about a process or action

for your window. You can create up to five panes for the status bar. The status bar

part provides more flexibility than the StatusBar attribute for the window part.

By default, a status bar is created at the bottom of the window. However, you can

use the properties notebook to reposition it to the top. You can also set the border

style, number of panes, and text alignment.

Part Attributes

 Handle* ParentName PartName PartType

SBIndex SBLabel SBPanes UserData

Visible

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy

Status Bar Example

In the following example, the status bar label is updated while some initial

processing occurs:

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq----

 *

C STBAR BEGACT CREATE MAIN

C ’STBAR’ SETATR ’Wait...’ ’SBLABEL’

 *

 * Do some processing.

 *

C DO

C ...

C ENDDO

 *

 * Clear the status bar label.

 *

C ’STBAR’ SETATR *BLANKS ’SBLABEL’

C ENDACT

 *

Chapter 7. Using Parts 157

Subfile

Use the subfile part to display a list of records, each consisting of one or more

fields.

The subfile part has similar function to an iSeries
™

subfile. The user can scroll

horizontally or vertically through the list using the subfile’s scroll bars.

To create a subfile entry field, point-and-click on a field from the Define Reference

Fields window or the parts palette and click it onto the subfile part. You can also

add fields using the properties notebook.

Note: The subfile part can only be point-and-clicked onto a notebook page with

canvas or window with canvas.

Part Attributes

 AddItemEnd AllowEdit AutoSelect BackColor

BackMix Bottom ButtonIdx Buttons

ButtonTip ByteComp CapsLock CellBGClr

CellBGMix CellFGClr CellFGMix ColBGClr

ColBGMix ColFGClr ColFGMix ColNumber

ColWidth Count DColFRVCol DeSelect

EditColumn EditIndex EditText EnableBtn

Enabled ExtSelect* FirstSel Focus

FontArea FontBold FontItalic FontName

FontSize FontStrike* FontUnder* ForeColor

ForeMix Handle* HdgBGClr HdgBGMix

HdgFGClr HdgFGMix HdgIdx HdgText

Height Hidden HRule Index

ItemCount Left MapViewCol MultSelect

NbrOfSel OpenEdit PageSize ParentName

PartName PartType RemoveItem RowBGClr

RowBGMix RowFGClr RowFGMix Scale

Selected SelectItem SelectList SetTop

SflNxtChg ShowTips SizeToFit SortAsc

SortDesc StartAt TipText Top

TopRecord UserData VColFRDCol ViewColumn

Visible VRule Width

* Note: See the attribute description for restrictions.

Applicable Events

 Change ColSelect Create Destroy

Enter FirstRec GotFocus KeyPress

LastRec LostFocus MouseEnter MouseExit

MouseMove NextRec PageDown PageEnd

PageTop PageUp Popup PrevRec

Select VKeyPress

158 Programming with VisualAge RPG

Creating a Subfile Part

You can create a subfile part only on a canvas part.

Maximum Number of Fields per Subfile

You can define a maximum of 99 fields for a subfile.

Operation Codes for Manipulating Subfile Parts

In addition to using attributes to control a subfile, you can use several operation

codes to affect the subfile part. Specify the name of the subfile in factor 2. Do not

enclose it in quotation marks.

The following operation codes are supported. For a complete description of each,

refer to VisualAge RPG Language Reference, SC09-2451-04, or to the

language-sensitive help.

Code Operation

CHAIN

Reads a record from a subfile by specifying an index.

CLEAR

Clears all records from the subfile.

DELETE

Deletes a record from the subfile. All records following the deleted record

are moved up one position.

READC

Reads a record if the value of any of the entry fields in the record has

changed.

READS

Reads a selected record from the subfile. Users can select a record with

either the mouse or the keyboard. After the record has been read, it is

deselected.

UPDATE

Updates an existing subfile record. A record must have been read before

this operation code can be used.

WRITE

Adds a new record to the subfile.

Loading a Subfile

To display information in a subfile part, the information is written one record at a

time to the subfile part. Subfile fields that were defined in the GUI Designer for

the subfile part are set to the desired values, and the WRITE operation is

performed on the subfile record format.

Determining the Subfile Size

Unlike the iSeries 400 subfile, the subfile part does not have subfile or subfile page

sizes. The number of records a subfile can hold is limited by the amount of

memory on your workstation. The subfile page size (that is, the number of records

shown at one time) is determined when you create the subfile in the GUI Designer.

Getting the Record Count

To determine how many records are currently in a subfile, use the Count attribute.

Chapter 7. Using Parts 159

Reading and Updating Records

Records in a subfile part can be updated or deleted. To update records, you must

first position the subfile to the record that you want to update. You can position

the subfile by a CHAIN, READC, or READS operation. These operations cause the

field values from the retrieved record to be assigned to the corresponding program

fields for the subfile record format. Your program can then modify the field values.

An UPDATE operation that is run on the subfile part then sends the current values

from the associated fields back out to the subfile. Use CHAIN to select records by

relative position within a subfile, READC to select records that the user has

changed on the subfile display, and READS for the records that the user selected.

The following example shows a READS operation do a loop to obtain all the

selected records in a subfile, process them, and update them one record at a time.

This is coded in an action subroutine for the Press event for a push button called

Report.

Changing Subfile Fields

Note: A subfile field cannot be changed by the user if it is set as read-only.

Before a field in a subfile can be changed by the user, it must be opened for

editing, either by the user of your application or by you in your program:

1. The user selects the field with the mouse pointer then clicks mouse button 1

while holding down the Alt key. The user can then use the tab and back-tab

keys to move to different fields on the same record, and use the up and down

arrow keys to move to different records.

2. To open a field for editing in your program:

a. Use the Index attribute to indicate which record contains the field to be

edited.

b. Set the ColNumber attribute to indicate the column number of the field to

be edited.

c. Set the OpenEdit attribute value to 1 to open the field for editing. (You can

set this attribute value to 0 to close any fields that are currently open for

editing.)

 ...
 C REPORT BEGACT PRESS WIN1

 *

 C READS SUBF1 99

 *

 C *IN99 DOWEQ *OFF

 *

 *

 * For the selected record, process it, and mark it

 * as ’Reported’ in the subfile display.

 *

 C MOVEL ’(Reported)’ SF1NAME

 *

 C UPDATE SUBF1

 *

 C READS SUBF1 99

 C END

 *

 C ENDACT

Figure 26. Coding example of reading and modifying records

160 Programming with VisualAge RPG

Use the READC operation to determine if the user has changed any field in the

subfile.

Hidden Fields

In the subfile part’s properties notebook, you can set subfile fields to be Hidden so

that they are not displayed. For example, a subfile record can contain record key

information in a hidden field. You cannot see the hidden field, but the field is

returned to the program with the subfile record.

Formatting Subfile Fields

The fields in a subfile can be highlighted in several ways. Foreground and

background colors can be set for both subfile headings and individual subfile

fields. You can place horizontal or vertical line separators within a subfile.

See Chapter 11, “Editing Output,” on page 239 for information.

Enabling Tabbing

Use the Customize Tabs and Groups dialog to enable tabbing to a subfile part.

Right-click on the canvas part of the window containing the subfile part. Select

Tabs and Groups from the pop-up menu. The Customize Tabs and Groups dialog

appars. To set or clear the Tab stop setting, right-click on the part name and select

the Tab stop menu item.

Subfile Example

In the following example, a subfile part is used to display records from a database

file on an iSeries 400 server. Rather than filling the subfile with all records from the

database, navigation push buttons (FirstRec, LastRec, PageTop, PageUp,

PageDown, PrevPage, NextPage) are provided to control scrolling through the

records in the subfile.

When you press the Select push button, the READS operation code is used to

determine which record was selected, and the value of the CUSTNO field is

displayed in the static text part. Also, the first field in the record is opened for

editing.

Select the Exit menu item to end the program.

Chapter 7. Using Parts 161

 * *

 * Program ID . . : SUBFILE *

 * *

 * Description . : Sample program to demonstrate the subfile part. *

 * *

 * This sample program requires a physical database *

 * file on the AS/400 called CUSTOMER. *

 * *

 *

 H

 FCUSTOMER IF E DISK REMOTE INFDS(INFDS) BLOCK(*Yes)

 *

 * INFDS for database file. FileSize will contain the number

 * of records in the file when the file is opened.

 DINFDS DS

 DFileSize 156 159B 0

 *

 * *

 * Subroutine . . : *INZSR *

 * *

 * Description . : Initialize working variables. *

 * *

 *

 C *INZSR BEGSR

 *

 C Z-Add 10 PageSize 2 0

 C Z-Add 1 CurRec 6 0

 C FileSize Sub PageSize LastPage 6 0

 C Add 1 LastPage

 *

 C ENDSR

 * *

Figure 27. Coding Example Using the Subfile Part (Part 1 of 10)

 * *

 * Subroutine . . : NEXTPAGE *

 * *

 * Description . : Get the next page of records from the database. *

 * *

 *

 C NEXTPAGE BEGSR

 *

 C add PageSize CurRec

 *

 C CurRec IfGt FileSize

 C Sub PageSize CurRec

 *

 C Else

 C Exsr FillPage

 C ’SFl1’ setatr 2 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C EndIf

 *

 C ENDSR

Figure 27. Coding Example Using the Subfile Part (Part 2 of 10)

162 Programming with VisualAge RPG

 * *

 * Subroutine . . : PREVPAGE *

 * *

 * Description . : Return the previous page of records from the *

 * database. *

 * *

 *

 C PREVPAGE BEGSR

 *

 C Sub PageSize CurRec

 *

 C CurRec IfLe *zero

 C Add PageSize CurRec

 *

 C Else

 C Exsr FillPage

 C ’SFl1’ setatr 5 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C EndIf

 *

 C ENDSR

 * *

 * Subroutine . . : FILLPAGE *

 * *

 * Description . : Fill the subfile part with a page of records *

 * from the database. *

 * *

 *

 C FILLPAGE BEGSR

 *

 C Clear Sfl1

 C CurRec Setll customer

 C Z-Add 1 count 2 0

 C Read customer 9999

 *

 C *in99 DoWeq *off

 C count AndLE PageSize

 C Write Sfl1

 *

 C If %Getatr(’Main’:’HILITE’:’Checked’)=1

 C ’SFL1’ Setatr Count ’Index’

 C ’SFL1’ Setatr 1 ’ColNumber’

 C ’SFL1’ Setatr *DarkGreen ’CellFGClr’

 C ’SFL1’ Setatr 2 ’ColNumber’

 C ’SFL1’ Setatr *DarkPink ’CellFGClr’

 C ’SFL1’ Setatr 3 ’ColNumber’

 C ’SFL1’ Setatr *DarkBlue ’CellFGClr’

 C EndIf

Figure 27. Coding Example Using the Subfile Part (Part 3 of 10)

Chapter 7. Using Parts 163

*

 C Add 1 count

 C Read customer 9999

 C EndDo

 *

 C Read customer 9999

 *

 C CurRec ifeq 1

 C ’SFl1’ setatr 1 ’BUTTONIDX’

 C ’SFL1’ setatr 0 ’ENABLEBTN’

 C ’SFl1’ setatr 2 ’BUTTONIDX’

 C ’SFL1’ setatr 0 ’ENABLEBTN’

 C ’SFl1’ setatr 5 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C ’SFl1’ setatr 6 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C endif

 *

 C *in99 ifeq *on

 C CurRec oreq LastPage

 C ’SFl1’ setatr 1 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C ’SFl1’ setatr 2 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C ’SFl1’ setatr 5 ’BUTTONIDX’

 C ’SFL1’ setatr 0 ’ENABLEBTN’

 C ’SFl1’ setatr 6 ’BUTTONIDX’

 C ’SFL1’ setatr 0 ’ENABLEBTN’

 C endif

 C ENDSR

 *

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : MAIN *

 * *

 * Event . . : CREATE *

 * *

 * Description: Get the first page of records. *

 * *

 *

 C MAIN BEGACT CREATE MAIN

 *

 C Exsr FillPage

 *

 C ’SFL1’ Setatr *Green ’HdgBGClr’

 C ’SFL1’ Setatr *Black ’HdgFGClr’

 C ’SFL1’ Setatr 1 ’ColNumber’

Figure 27. Coding Example Using the Subfile Part (Part 4 of 10)

164 Programming with VisualAge RPG

*

 C ’MAIN’ Setatr 1 ’Visible’

 C ’SFL1’ Setatr 1 ’BUTTONIDX’

 C ’SFL1’ Setatr ’*MSG0001’ ’BUTTONTIP’

 C ’SFL1’ Setatr 0 ’ENABLEBTN’

 C ’SFL1’ Setatr 2 ’BUTTONIDX’

 C ’SFL1’ Setatr ’*MSG0002’ ’BUTTONTIP’

 C ’SFL1’ Setatr 0 ’ENABLEBTN’

 C ’SFL1’ Setatr 3 ’BUTTONIDX’

 C ’SFL1’ Setatr 0 ’ENABLEBTN’

 C ’SFL1’ Setatr 4 ’BUTTONIDX’

 C ’SFL1’ Setatr 0 ’ENABLEBTN’

 C ’SFL1’ Setatr 5 ’BUTTONIDX’

 C ’SFL1’ Setatr ’*MSG0004’ ’BUTTONTIP’

 C ’SFL1’ Setatr 6 ’BUTTONIDX’

 C ’SFL1’ Setatr ’*MSG0005’ ’BUTTONTIP’

 *

 C ENDACT

 * *

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : PB_SELECT *

 * *

 * Event . . : PRESS *

 * *

 * Description: Read the selected subfile record. *

 * The static text part ’Selected’ is updated to show *

 * the selected customer number. *

 * The first field in the subfile is opened for editing.*

 * *

 *

 C PB_SELECT BEGACT PRESS MAIN

 *

 C Reads sfl1 27

 *

 C *in27 IfEq *off

 C ’Selected’ Setatr custno ’Label’

 C ’SFL1’ Setatr 1 ’ColNumber’

 C ’SFL1’ Setatr 1 ’OpenEdit’

 C EndIf

 *

 C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 5 of 10)

Chapter 7. Using Parts 165

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : HRULE *

 * *

 * Event . . : MENUSELECT *

 * *

 * Description: *

 * *

 *

 C HRULE BEGACT MENUSELECT MAIN

 *

 C If %Getatr(’Main’:’HRULE’:’Checked’)=1

 C ’SFL1’ Setatr 0 ’HRule’

 C ’HRULE’ Setatr 0 ’Checked’

 *

 C Else

 C ’SFL1’ Setatr 1 ’HRule’

 C ’HRULE’ Setatr 1 ’Checked’

 C EndIf

 *

 C ENDACT

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : VRULE *

 * *

 * Event . . : MENUSELECT *

 * *

 * Description: *

 * *

 *

 C VRULE BEGACT MENUSELECT MAIN

 *

 C If %Getatr(’Main’:’VRULE’:’Checked’)=1

 C ’SFL1’ Setatr 0 ’VRule’

 C ’VRULE’ Setatr 0 ’Checked’

 *

 C Else

 C ’SFL1’ Setatr 1 ’VRule’

 C ’VRULE’ Setatr 1 ’Checked’

 C EndIf

 *

 C Exsr FillPage

 *

 C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 6 of 10)

166 Programming with VisualAge RPG

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : HILITE *

 * *

 * Event . . : MENUSELECT *

 * *

 * Description: *

 * *

 *

 C HILITE BEGACT MENUSELECT MAIN

 *

 C If %Getatr(’Main’:’HILITE’:’Checked’)=1

 C Eval %Setatr(’Main’:’HILITE’:’Checked’)=0

 *

 C Else

 C Eval %Setatr(’Main’:’HILITE’:’Checked’)=1

 C EndIf

 *

 C Exsr FillPage

 *

 C ENDACT

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : SFL1 *

 * *

 * Event . . : PAGETOP *

 * *

 * Description: *

 * *

 *

 C SFL1 BEGACT PAGETOP MAIN

 *

 C Z-Add 1 CurRec

 C Exsr FillPage

 *

 C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 7 of 10)

Chapter 7. Using Parts 167

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : SFL1 *

 * *

 * Event . . : PAGEUP *

 * *

 * Description: *

 * *

 *

 C SFL1 BEGACT PAGEUP MAIN

 *

 C exsr PrevPage

 *

 C ENDACT

 *

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : SFL1 *

 * *

 * Event . . : LASTREC *

 * *

 * Description: *

 * *

 *

 C SFL1 BEGACT LASTREC MAIN

 *

 C FileSize Sub PageSize CurRec

 C Add 1 CurRec

 *

 C CurRec IfLt 1

 C Z-Add 1 CurRec

 C EndIf

 *

 C Exsr FillPage

 *

 C ’SFL1’ setatr 1 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C ’SFL1’ setatr 2 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C ’SFL1’ setatr 5 ’BUTTONIDX’

 C ’SFL1’ setatr 0 ’ENABLEBTN’

 C ’SFL1’ setatr 6 ’BUTTONIDX’

 C ’SFL1’ setatr 0 ’ENABLEBTN’

 C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 8 of 10)

168 Programming with VisualAge RPG

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : SFL1 *

 * *

 * Event . . : PAGEDOWN *

 * *

 * Description: *

 * *

 *

 C SFL1 BEGACT PAGEDOWN MAIN

 *

 C Exsr NextPage

 *

 C ENDACT

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : SFL1 *

 * *

 * Event . . : FIRSTREC *

 * *

 * Description: *

 * *

 *

 C SFL1 BEGACT FIRSTREC MAIN

 *

 C Z-Add 1 CurRec

 C Exsr FillPage

 *

 C ’SFL1’ setatr 1 ’BUTTONIDX’

 C ’SFL1’ setatr 0 ’ENABLEBTN’

 C ’SFL1’ setatr 2 ’BUTTONIDX’

 C ’SFL1’ setatr 0 ’ENABLEBTN’

 C ’SFL1’ setatr 5 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C ’SFL1’ setatr 6 ’BUTTONIDX’

 C ’SFL1’ setatr 1 ’ENABLEBTN’

 C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 9 of 10)

Chapter 7. Using Parts 169

Signaling Events

The Select event is signaled when:

v The user selects an item that is in a subfile

v You select an item in the list in your program

v The user selects an item that is already selected

The Enter event is signaled when:

v The user double-clicks over an item that is in the subfile

v The user presses the Enter key when the subfile has focus, and an item has been

selected

In your action subroutine for these events, you can use the READS operation code

to determine which item was selected.

 * *

 * Window . . : MAIN *

 * *

 * Part . . . : EXIT *

 * *

 * Event . . : MENUSELECT *

 * *

 * Description: *

 * *

 *

 C EXIT BEGACT MENUSELECT MAIN

 *

 C Move *on *inlr

 *

 C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 10 of 10)

170 Programming with VisualAge RPG

Submenu

Use a submenu to:

v Start a new cascaded menu from a menu item on an existing menu.

v Start a pull-down menu from a menu item on the menu bar.

After creating a submenu, you can add menu items to it by pointing-and-clicking

(or dragging-and-dropping) the menu item part onto the submenu part in the tree

view only.

Note: You can manipulate this part’s properties, events, and so on, only from its

pop-up menu in the project tree view.

For related information, see “Menu Item” on page 106.

Part Attributes

 ParentName PartName PartType UserData

Applicable Events

 Create Destroy

Chapter 7. Using Parts 171

Timer

Use the timer part if your program must perform certain operations at preset time

intervals. For example, you can use it to close a window, or perhaps end an

application, after a certain period of inactivity.

A timer part counts units of time and tracks the preset time interval between two

events, triggering the second event once the interval has passed.

When you create a timer part in the GUI builder, the part is represented as an icon

on the design window. However, in the properties notebook for a timer part, you

can specify that you do not want the icon displayed while the program is

executing.

Note: Do not use the timer part when precise timing is required. Due to other

programs running on your system, the Tick event may not necessarily occur

at the exact interval you specify.

Part Attributes

 AddLink* AllowLink* Bottom Interval

Left Multiplier ParentName PartName

PartType RemoveLink* TimerMode TimerTicks

Top UserData Visible

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy Link* Tick

* Note: See the event description for restrictions.

Displaying the Timer Icon

By default, the Visible attribute is set to 1 so that the timer icon is displayed while

the program is executing. If you do not want this icon displayed, set this attribute

to 0.

Setting the Interval

The timer interval is expressed in milliseconds. When the interval elapses, a timer

Tick event is signaled. You can set this interval in the timer part’s properties

notebook. You can also set it in your program by using the Interval attribute.

Note: The minimum timer interval is 100 milliseconds.

The timer part has a Multiplier attribute. By setting this attribute you can

determine how many times the interval value elapses before a timer Tick event is

generated. The default multiplier value is set to 1, so that the timer generates a

Tick event at the end of each interval.

172 Programming with VisualAge RPG

Generating Tick Events

When a timer is started, its interval value is reset to zero. When the interval value

is reached, the timer generates a Tick event and updates the interval value.

Getting the Timer Value

Each time the timer generates a Tick event, its value is incremented by one. Use

the Value attribute to get the current value of the timer. You can set the timer

value in the properties notebook or in your program.

Controlling the Timer Using Timer Modes

Use the TimerMode attribute to control the timer.

Set TimerMode to 1 to start the timer. Starting the timer causes it to begin

generating Tick events, and its Value attribute is incremented when the interval

value is reached.

Set TimerMode to 2 to stop the timer. When the timer stops, it ceases generating

Tick events, and its value is not updated.

Timer Example

In this example, a static text part is moved in the window for each timer Tick

event.

When you press the Start push button, the timer mode is set to 1. This starts the

timer and generates Tick events. During the processing of the Tick event, new

coordinates are calculated for the static text part, and the part is set to the new

location.

When you press the Stop push button, the TimerMode is set to 2. This stops the

timer.

Press the Close push button to terminate the program.

Chapter 7. Using Parts 173

 * *

 * Program ID . . : TIMER *

 * *

 * Description . : Sample program to demonstrate the timer part *

 * by moving a static text part in a window each *

 * time the timer ’Ticks’. *

 * *

 *

 H

 *

 * Declare display size System attributes

 D%DspHeight S 4 0

 D%DspWidth S 4 0

 *

 * Declare new size event attributes

 D%NewHeight S 4 0

 D%NewWidth S 4 0

 *

 * Define working variables

 DminX S 4 0 INZ(0)

 DmaxX S 4 0

 DminY S 4 0

 DmaxY S 4 0

 DxChange S 4 0 INZ(5)

 DyChange S 4 0 INZ(5)

 *

Figure 28. Coding Example Using the Timer Part (Part 1 of 6)

174 Programming with VisualAge RPG

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : FRA0000B *

 * *

 * Event . . : CREATE *

 * *

 * Description: Center the window on the display. *

 * *

 * Calculate starting values. *

 * Since the height attribute of the window part *

 * includes the title bar, we subtract the height of *

 * the title bar so the static text part remains within *

 * the window frame. *

 * *

 * For SVGA, this value is about 20 pixels. It could *

 * be adjusted for other resolutions. *

 * *

 *

 C FRA0000B BEGACT CREATE FRA0000B

 *

 * Get beginning window height and width

 C ’FRA0000B’ getatr ’Height’ winHeight 4 0

 C ’FRA0000B’ getatr ’Width’ winWidth 4 0

 *

 * Center the window on the display

 C eval %setatr(’FRA0000B’:

 C ’FRA0000B’:

 C ’Left’)=(%DspWidth-winWidth)/2

 *

 C eval %setatr(’FRA0000B’:

 C ’FRA0000B’:

 C ’Bottom’)=(%DspHeight-winHeight)/2

 *

 * Get beginning coordinates of static text part

 C ’ST1’ getatr ’Left’ picX 4 0

 C ’ST1’ getatr ’Bottom’ picY 4 0

 *

 * Get dimensions of static text part

 C ’ST1’ getatr ’Height’ picHeight 4 0

 C ’ST1’ getatr ’Width’ picWidth 4 0

 * * Calculate minimum and maximum Y coordinates

 C ’Start’ getatr ’Height’ startH 4 0

 C ’Start’ getatr ’Bottom’ startB 4 0

 C eval minY = startB + startH

 C eval maxY = winHeight - picHeight - 20

 *

Figure 28. Coding Example Using the Timer Part (Part 2 of 6)

Chapter 7. Using Parts 175

* Calculate maximum X coordinate

 C eval maxX = winWidth - picWidth

 *

 C ENDACT

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : START *

 * *

 * Event . . : PRESS *

 * *

 * Description: Start the timer. *

 * *

 *

 C START BEGACT PRESS FRA0000B

 *

 C ’Timer1’ setatr 1 ’TimerMode’

 *

 C ENDACT

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : STOP *

 * *

 * Event . . : PRESS *

 * *

 * Description: Stop the timer. *

 * *

 *

 C STOP BEGACT PRESS FRA0000B

 *

 C ’Timer1’ setatr 2 ’TimerMode’

 *

 C ENDACT

Figure 28. Coding Example Using the Timer Part (Part 3 of 6)

176 Programming with VisualAge RPG

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : CLOSE *

 * *

 * Event . . : PRESS *

 * *

 * Description: Terminate the program. *

 * *

 *

 C CLOSE BEGACT PRESS FRA0000B

 *

 C eval *inlr = *on

 *

 C ENDACT

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : TIMER1 *

 * *

 * Event . . : TICK *

 * *

 * Description: Respond to timer tick events by moving the static *

 * text part in the window. *

 * *

 * If the static text part moves outside the window *

 * frame, its’ xChange or yChange values are multiplied *

 * by -1 to reverse the direction. *

 * *

Figure 28. Coding Example Using the Timer Part (Part 4 of 6)

Chapter 7. Using Parts 177

*

 C TIMER1 BEGACT TICK FRA0000B

 *

 * Calculate new static text coordinates

 C eval picX = picX + xChange

 C eval picY = picY + yChange

 *

 * Check static text remains in window boundaries

 C select

 *

 C picX whenlt 0

 C eval xChange = xChange * -1

 C eval picX = minX + xChange

 *

 C picX whengt maxX

 C eval xChange = xChange * -1

 C eval picX = maxX + xChange

 *

 C picY whenlt minY

 C eval yChange = yChange * -1

 C eval picY = minY + yChange

 *

 C picY whengt maxY

 C eval yChange = yChange * -1

 C eval picY = maxY + yChange

 *

 C endsl

 *

 * Move static text to new coordinates

 C ’ST1’ setatr picX ’Left’

 C ’ST1’ setatr picY ’Bottom’

 *

 *

 C ENDACT

Figure 28. Coding Example Using the Timer Part (Part 5 of 6)

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : FRA0000B *

 * *

 * Event . . : RESIZE *

 * *

 * Description: Get the size of the window after it has been resized *

 * so static part uses entire window. *

 * *

 *

 C FRA0000B BEGACT RESIZE FRA0000B

 *

 C eval maxY = %NewHeight - picHeight - 20

 C eval maxX = %NewWidth - picWidth

 *

 C ENDACT

Figure 28. Coding Example Using the Timer Part (Part 6 of 6)

178 Programming with VisualAge RPG

Vertical Scroll Bar

Use the vertical scroll bar part to allow users to scroll through a pane of

information vertically. The information can be a list of files, records in a database,

columns in a document, and so on. You can use the Range attribute to represent

the total number of objects to be scrolled through and the PageSize attribute to

determine the number of objects that can be displayed on a page.

Part Attributes

 Bottom Enabled Focus Handle*

Height Left NextLine NextPage

PageSize ParentName PartName PartType

Position PrevLine PrevPage Range

Top UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

 Create Destroy Scroll

Chapter 7. Using Parts 179

Window

Windows are the user’s primary means of interacting with your program. Your

application must contain at least one window.

You can add only one part to the client area of a window, except for parts that are

extensions to the window frame, such as menu bars, pop-up menus and message

subfiles. The part you add is automatically sized to fit the client area.

If you want a window to contain more than one part, you must add a canvas part

to it. Or, use the window with canvas part to save a step.

Note: The window part is located in the Frames section of the parts catalog, not

on the parts palette.

For related information, see:

v “Canvas” on page 56

v “Window with Canvas” on page 181

Part Attributes

 Bottom Center Enabled FileName*

Focus* FontBold* FontItalic* FontName*

FontSize* FontStrike* FontUnder* Handle*

Height IconHandle* Label Left

MouseIcon* MouseShape* ParentName PartName

PartType PBRange PBSetPos PBStep

PBStepSize Print PrintAsIs ProgresBar

Refresh SBLabel SBPosition SBStyle

ShowTips StatusBar Top UserData

Visible Width WindowMode*

* Note: See the attribute description for restrictions.

Applicable Events

 Activate Close Create DeActivate

Destroy LClickTray Moved RClickTray

ReSize ShutDown

180 Programming with VisualAge RPG

Window with Canvas

Windows are the end user’s primary means of interacting with your program. The

canvas, on a window with canvas part, allows you to add many parts to the

window.

You can point and click various parts onto the canvas portion, position them, and

organize them to produce a graphical user interface. You can also add parts that

are extensions of the window’s frame, such as menu bars, pop-up menus and

message subfiles.

If you need to put only one part on the client area of the window, you do not need

the window with canvas part: you should use the window part instead (found in

the Frames section of the parts catalog). Without a canvas, the part you add will be

automatically sized to fit the client area.

For related information, see:

v “Canvas” on page 56

v “Window” on page 180

Part Attributes

 Bottom Center Enabled FileName*

Focus* FontBold* FontItalic* FontName*

FontSize* FontStrike* FontUnder* Handle*

Height IconHandle* Label Left

MouseIcon* MouseShape* ParentName PartName

PartType PBRange PBSetPos PBStep

PBStepSize Print PrintAsIs ProgresBar

Refresh SBLabel SBPosition SBStyle

ShowTips StatusBar Top UserData

Visible Width WindowMode*

* Note: See the attribute description for restrictions.

Applicable Events

 Activate Close Create DeActivate

Destroy LClickTray Moved RClickTray

ReSize ShutDown

Displaying a Window

By default, all windows are marked as Visible and Open Immediately when they

are created in the GUI Designer.

Decide which window you want the user to see first. That window is called the

main or primary window and you must set the Visible and Open Immediately

attributes accordingly for it. If you do not change the default settings, all the

windows will appear when the user starts your application.

Chapter 7. Using Parts 181

Setting the Open Immediately attribute

Set this attribute at design time if you want the window to be created when the

application starts. Creating a window loads it into memory: because there is an

overhead associated with this, you should decide which windows need to be

loaded when the application starts. (You can have the other windows loaded later

on.) You can use the SHOWWIN operation code to display windows that are not

displayed very often (such as a window that displays a product copyright), instead

of setting them so that they open immediately.

Note: The Open Immediately attribute does not control whether a window is

actually displayed on the screen. To display a window, you must set its

Visible attribute to 1 in your program, or mark it as Visible in its properties

notebook.

Using the SHOWWIN operation code

You can load a window in your program by specifying the window name in Factor

2 of the SHOWWIN operation code. This operation code loads the window into

memory.

Note: The SHOWWIN operation does not control whether a window is actually

displayed on the screen. To display a window, you must set its Visible

attribute to 1 in your program or mark it Visible in its properties notebook.

You can set a window’s attributes only after it has been loaded. To load a window,

either select the Open Immediately check box on the Startup page of the part’s

notebook, or use the SHOWWIN operation code in your program.

If a window is defined as Open Immediately, and you issue the SHOWWIN

operation code for that window in your program, you will receive a runtime error

indicating that the window has already been loaded. You can avoid this error by

coding an error indicator on the SHOWWIN operation code and checking the error

indicator in your program. If the indicator is turned on, then the window is

already up and you should set the Visible attribute on. This will display the

window, and the error will not be issued.

Referencing

The parts on a window are created when the window is created. Therefore, if you

attempt to reference any part on a window that has not been loaded, or to

reference a window attribute before the window is created, you will receive a Part

not found message.

Hint

If a window is displayed and you cannot click on its title bar, use this

method to move the window:

1. Position the mouse cursor somewhere on the visible portion of the

window.

2. Click and release mouse button 1.

3. Press the Alt-space key combination. Then press M.

4. Use the arrow keys to reposition the window.

5. When the window is in the desired position, press Enter.

182 Programming with VisualAge RPG

Resizing a Window

There are two things you can do to create your application so that the user has one

or more ways to resize a window:

v In the GUI Designer, set the border of a window as Sizeable. This setting allows

the user to select the window border with the mouse button, and resize the

border while keeping the mouse button pressed. When the mouse button is

released, the ReSize event is signaled.

v Add a Maximize and a Minimize button to the window. The user can then

change the size of the window by selecting one of these buttons.

You can position parts on the window so that they maintain their relative position

and size within the window’s boundaries after the window is resized. To do this,

use the ReSize event with the %NewHeight and %NewWidth event attributes.

In the following coding example, a push button part labeled PB1 is located in the

upper right corner of a window. When the window is resized, the ReSize action

subroutine calculates new Left and Bottom attribute values to ensure that the push

button remains within the window’s boundaries.

 * *

 * Program ID . . : ReSize *

 * *

 * Description . : Sample program to demonstrate how to ensure *

 * parts remain within a window after it has been *

 * resized. *

 * *

 * A push button is located in the upper right *

 * corner of the window. If the window is resized *

 * to a smaller size, the push button will no *

 * longer be visible, since all parts maintain *

 * their relation with the lower-left corner of the *

 * window. *

 * The RESIZE event is used to ensure the push *

 * button also maintains its position relative to *

 * the upper right corner of the window. *

 * *

 *

 H

 *

 * Declare display size System attributes

 D%DspHeight S 4 0

 D%DspWidth S 4 0

 *

Figure 29. Ensuring parts are displayed correctly after a window is resized (Part 1 of 3)

Chapter 7. Using Parts 183

* Declare %NewHeight, and %NewWidth event attributes. These will

 * contain the width and height of the window after it has been

 * resized.

 D%NewHeight S 4 0

 D%NewWidth S 4 0

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : FRA0000B *

 * *

 * Event . . : RESIZE *

 * *

 * Description: Ensure the push button part ’PB1’ remains visible. *

 * *

 *

 C FRA0000B BEGACT RESIZE FRA0000B

 *

 C %NewWidth sub HOffset NewLeft 4 0

 C %NewHeight sub VOffset NewBottom 4 0

 C ’PB1’ setatr NewLeft ’Left’

 C ’PB1’ setatr NewBottom ’Bottom’

 *

 C ENDACT

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : PSB0000D *

 * *

 * Event . . : PRESS *

 * *

 * Description: Terminate the program. *

 * *

 *

 C PSB0000D BEGACT PRESS FRA0000B

 *

 C move *on *inlr

 *

 C ENDACT

Figure 29. Ensuring parts are displayed correctly after a window is resized (Part 2 of 3)

184 Programming with VisualAge RPG

Setting the Focus

Determine which window you want the user to work with first, and use the Focus

attribute to give that window focus. If you do not, VisualAge RPG determines

which window has focus when your application is loaded. By default, it will be the

last window created that has the Visible attribute set.

Window List

In the properties notebook for a window part, you can indicate if the window

should appear in the window list. This list appears when you press the

Ctrl+Alt+Delete in Windows. By default, window parts do not appear in the

window list. You should set at least the main window to appear in the window

list. You can use the task list to redisplay the window.

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : FRA0000B *

 * *

 * Event . . : CREATE *

 * *

 * Description: Center the window on the display. *

 * Get current coordinate of push button PB1 and its *

 * offset from the upper right corner of the window. *

 * *

 *

 C FRA0000B BEGACT CREATE FRA0000B

 *

 C ’FRA0000B’ getatr ’Height’ winHeight 4 0

 C ’FRA0000B’ getatr ’Width’ winWidth 4 0

 C %DspWidth sub winWidth diffWidth 4 0

 C %DspHeight sub winHeight diffHeight 4 0

 *

 C eval %setatr(’FRA0000B’:

 C ’FRA0000B’:

 C ’Left’) = diffWidth / 2

 *

 C eval %setatr(’FRA0000B’:

 C ’FRA0000B’:

 C ’Bottom’) = diffHeight / 2

 *

 * Calculate the offsets of the push button part ’PB1’ from

 * the upper right corner of the window. These values are used

 * to maintain this offset if the window is resized.

 C ’PB1’ getatr ’Left’ PBLeft 4 0

 C ’PB1’ getatr ’Bottom’ PBBottom 4 0

 C ’FRA0000B’ getatr ’Width’ WinWidth 4 0

 C ’FRA0000B’ getatr ’Height’ WinHeight 4 0

 C WinWidth sub PBLeft HOffset 4 0

 C WinHeight sub PBBottom VOffset 4 0

 *

 C ENDACT

Figure 29. Ensuring parts are displayed correctly after a window is resized (Part 3 of 3)

Chapter 7. Using Parts 185

Terminating a Program

If the user selects the Close option from the system menu on a window, the

operating system closes the window but does not necessarily terminate your

program. To prevent this from happening, you can do one of the following:

v Select the Terminate on close check box in the second Style page in the

window’s properties notebook. This will terminate your program when the user

closes the window.

v In the first Style page of the window’s properties notebook, deselect the System

Menu check box so that your windows are created without a System Menu. (By

default, all windows are created with a system menu.)

v Use the Close event. This event is signaled when the user selects Close from the

system menu. In the Close event action subroutine, you could set the LR

indicator on, or prompt the user to confirm that this window should be closed,

and set the ENDACT return point accordingly. For example, by setting the

return value to *NODEFAULT the close request is ignored and the window is not

closed.

 *

 * Define message box variables

 Dstyle M button(*yesbutton: *nobutton)

 D style(*WARN)

 Dmsg M msgtext(’Are sure you want to exit?’)

 *

 * *

 * Window . . : FRA0000B *

 * *

 * Part . . . : FRA0000B *

 * *

 * Event . . : CLOSE *

 * *

 * Description: Handle Close event from system menu to verify user *

 * wants to close this window. *

 * *

 *

 C FRA0000B BEGACT CLOSE FRA0000B

 *

 * Prompt for close

 C msg dsply style rc 9 0

 *

 * If Yes, terminate program, allow close to occur

 C rc ifeq *YESBUTTON

 C move *on *inlr

 C movel ’*DEFAULT ’return 12

 *

 * Else, do not close this window

 C else

 C movel ’*NODEFAULT ’return

 C endif

 *

 C ENDACT return

186 Programming with VisualAge RPG

Clearing Fields on a Window

If you have several entry fields on a window, you can use the CLEAR operation

code. This will clear all entry field values to their default values. Numeric fields

are cleared with zeros and character fields are cleared with blanks.

Example of a Window Part

The window part shown below has a System menu, a Minimize button, and a

Maximize button.

Chapter 7. Using Parts 187

*Component

The *component part allows programmers to access and use component- and

system-wide attributes.

A *component part is the ″part representation″ of the component. One *component

part is created for each component automatically; it is invisible and not on the

palette.

Part Attributes

 Active* Alarm AppData Button

ClipBoard CurrentDir Dialog DIRName*

DlgOwner DlgPrompt* DoEvents* DspHeight

DspWidth FileName FocusPart* FolderName*

HelpWindow HostName* LookNFeel* MsgData

MsgFile* MsgID MsgText Name

OS Parent PartCount PartList

Platform PlugCmd* PlugDLL* PlugID*

PlugRC* PlugResult* Printer* PrtDevmode

SelFolder* SelPrinter* ShData ShDataLen

ShDataName ShDataPos ShowMsgID SwitchTo*

WrkStnName*

* Note: See the attribute description for restrictions.

Applicable Events

There are no events associated with this part.

Using the *component part

The *component part allows programmers to access and use component- and

system-wide attributes. A *component part is the ’part representation’ of the

component. One *component part is created for each component automatically; it is

not visible and is not on the parts palette.

Displaying a File Open/Save As dialog.

The Button, FileName, Dialog, and DlgOwner attributes of the *component part

are used to display the Windows common File Open or Save As dialog. The dialog

attribute determines which type of dialog to display. Set it to 1 to display an Open

dialog or to 2 to display a Save As dialog. The DlgOwner attribute specify which

part is the ’owner’ of the dialog. When this attribute is set, the owner is ’modal’ to

the dialog. That is it can not respond to events until the dialog is dismissed.

Setting the FileName attribute displays the file open dialog. To determine which

button the user used to dismiss the dialog, retrieve the value of the Button

attribute.

In the following example, a File Open dialog is displayed. Notice that FileName

attribute can be set to display only files with a certain extension:

188 Programming with VisualAge RPG

The following example shows how to use a File Open dialog to select multiple

files.

Selecting a printer

If your application prints to a printer attached to the workstation you can use the

SelPrinter and Printer attributes to allow the user to select to which printer the

output is to be sent. Setting the SelPrinter attribute to 1 displays the Windows

Print dialog to be displayed. When the user selects a printer from that dialog, the

printed output from your application will be sent to that printer.

Initial settings shown in the dialog can be set by the PrtDevmode attribute.

 *

 * Display File Open dialog

 C ’*Component’ Setatr 1 ’Dialog’

 *

 * This window is the owner

 C ’*Component’ Setatr ’Main Main’ ’DlgOwner’

 *

 * Show only .DAT files

 C ’*Component’ Setatr ’*.DAT’ ’Filename’

 *

 * Get the button pressed

 C ’*Component’ Getatr ’Button’ Button 1 0

 *

 * Handle the OK button

 C If Button = 1

 *

 * User canceled

 C Else

 *

 C EndIf

Figure 30. Displaying a File Open dialog

 *

 C eval %setatr(’*Component’:’*Component’

 C :’MulSel’) = 1

 C eval %setatr(’*Component’:’*Component’

 C :’Dialog’) = 1

 C eval %setatr(’*Component’:’*Component’

 C :’Filename’)=’*.jpg’

 C*Get the number of selected files.

 C z-add 0 num

 c ’*component’ getatr ’NumOfSel’ num

 C*Get the path of the selected files.

 C eval str=

 C %getatr(’*Component’:’*Component’:

 C ’folderName’)

 C*Retrieve the name of the selected files.

 C 1 do num idx 4 0

 C eval %setatr(’*Component’:’*Component’

 C :’FileIndex’) = idx

 C eval str=

 C %getatr(’*Component’:’*Component’:

 C ’filename’)

 C enddo

Figure 31. Use a File Open dialog to select multiple files

Chapter 7. Using Parts 189

Using Plugins

The PlugDLL, PlugID, PlugCmd, PlugRC, and PlugResult attributes give you the

ability to extend the functionality of the GUI Designer. You provide the additional

functionality in a program that you have developed. Once your application is

registered to the GUI Builder by using the Vendor menu, your application can

interact with the GUI Designer. See chapter 20 for more details on creating plugins.

Querying the Parts in a Component

The Parent, PartCount and PartList attributes can be used at runtime to query the

part names in a component. For example, you could use these attributes to resize

and reposition parts on a window if the window has been resized.

190 Programming with VisualAge RPG

Part 3. Working with iSeries Data

Chapter 8, “iSeries Connectivity,” on page 193

Describes how to set up a connection between your application and an

iSeries server.

Chapter 9, “Reusing iSeries Applications,” on page 213

Describes how to import existing display files, UIM help, and RPG source

from existing iSeries 400 applications.

© Copyright IBM Corp. 1994, 2005 191

192 Programming with VisualAge RPG

Chapter 8. iSeries Connectivity

If you are using an iSeries server while you are developing your application (for

example, importing display files) or while you are running it (for example,

accessing iSeries database files for I/O), you must define the iSeries information

used by the application. This information is stored separately from the application,

so that it can be updated without changing the application itself.

This section discusses the following topics:

v Defining iSeries information

v Setting up an iSeries server at design time and at run time

v Using data areas

v Using iSeries database files

v Database I/O considerations

v Controlling server connections at run time

v Using the security file for applets

Defining iSeries Information

During the development of your application, you can use the Define iSeries

Information properties notebook to define aliases (override names) for the

following iSeries information:

v Servers

v Files

v Programs

v Data areas

v Lock level

Once you have developed an application and are ready to install it on your user’s

workstation, you need to ensure that either:

v For SNA communications the following is configured:

A router must be defined using Client Access. This router name is also used as

the Remote Location Name.

v For TCP/IP communications the following is configured:

Use the host name defined for your iSeries server as the Remote Location Name.

Additionally, refer to the online help for the steps you must take to define iSeries

information.

Notebook Considerations

If the Define iSeries Information properties notebook pages do not contain the

override name for the program, the data area, or the database file, then the

following occurs:

1. The name of the program, data area, or database file in the program is used.

2. If the program name, data area, or database file is library-qualified in the

program, then this library is used.

3. If the program name or database file is not library-qualified in the program, the

library list (*LIBL) on the iSeries server is searched.

4. The first server listed on the server page is used.

© Copyright IBM Corp. 1994, 2005 193

Note: The first server listed in the server page of the Define iSeries Information

notebook is known as the default server. At least one server is required for

every program that makes use of an iSeries server.

Setting Up a Server

You must set up a server when you are developing your application, so that you

can access it while you edit, compile, and debug your application. When you

package and distribute your application to other workstations, you also have to set

up a server if the running application accesses a different server than the one used

during design time.

Whenever you set up a server, ensure that the library list of the service job

contains the remote resource that you want to work with.

Setting a Server at Design Time

If you need to use a server while you are developing your application, you must

define server information using the Define Server Logon window and the Define

iSeries Information notebook. See the online help for more information.

You must also define an iSeries job description to set up the library list. You can

associate a library list with a job description on the iSeries server. This job

description can then be associated with a user profile. Use the user ID from this

user profile when you are prompted by the VisualAge RPG to logon to a server.

The iSeries service job contains the correct library list.

Setting a Server at Run Time

If you need to access a server while you are running your application, you must

verify that the iSeries information points to the correct server. Use the Define

iSeries Information utility to invoke the Define iSeries Information notebook.

You must also set up the library list, either by changing the job description or by

using the CL commands QCMDDDM or QCMDEXC.

Defining a job description to set up a library list

You can associate a library list with a job description on the iSeries server. This job

description can then be associated with a user profile. Use the user ID from this

user profile when you are prompted by the VisualAge RPG to logon to a server.

The iSeries service job contains the correct library list.

Changing the library list

If a VisualAge RPG program calls CL commands:

v Specify a CALL to QCMDDDM if the CL command issues commands for iSeries

files.

v Specify a CALL to QCMDEXC if the CL command issues commands to server

programs or data areas.

CL commands can be issued to be run in the DDM service job using the CALL

operation code. A special program must be called in order for the CL command to

be run in the DDM service job. The special program is QCMDDDM. This interface

is the same as the interface for calling QCMDEXC. The difference between

QCMDEXC and QCMDDDM is that QCMDEXC runs in a separate job that is used

to service remote call requests and data area requests.

194 Programming with VisualAge RPG

QCMDDDM can be used to change the library list of the DDM service job to

ensure that the library containing the database files is present in the DDM job’s

library list.

Using Data Areas

Before your application can use data areas, you must set up the server.

If your application accesses a data area, the name of this data area can be either

the name of the data area or an override name. You can define the override name

in the GUI Designer using the Data area page of the Define iSeriesInformation

notebook.

See “Notebook Considerations” on page 193 if the notebook page does not contain

an override name for the data area.

Table 5 and Figure 32 illustrate how to access a data area using an override name.

 Table 5. Enter this information on the Data area page of the Define iSeriesInformation

notebook

Data area override name: DTAARA (this must be entered in uppercase)

Remote data area name: REMDTAARA

Server alias name: SERVER01

Be sure the data area has been initialized before you attempt to use it. A runtime

exception is issued if a data area on the server does not contain a valid packed

decimal value when attempting to retrieve it into a data area data structure with a

packed decimal subfield in a VisualAge RPG program.

 * *

 * Program ID . . : dtaaraex.vpg *

 * *

 * Description . : Code segment to get the contents of an AS/400 *

 * data area. *

 *

 D dtaara S 6P 0 DTAARA

 * *

 * Window . . : WIN1 *

 * *

 * Part . . . : PSB0000C *

 * *

 * Event . . : PRESS *

 * *

 * Description: Get the contents of the AS/400 data area. *

 *

 C PSB0000C BEGACT PRESS WIN1

 C IN dtaara

 C ENDACT

Figure 32. Accessing a data area

Chapter 8. iSeries Connectivity 195

Using iSeries 400 Database Files

Before your application can access iSeries 400database files, you must set up the

server.

Remote DISK file names used in your VisualAge RPG programs can be either the

iSeries 400 file name or a file alias name. You can define a file alias name using the

File page of the Define iSeriesInformation notebook. See “Notebook

Considerations” on page 193 for information about what happens if the notebook

page does not contain a file alias for the iSeries 400file.

Database file overrides issued in the remote server DDM job are ignored by open

requests issued by the VisualAge RPG application. Open requests made by server

programs that run in the DDM service job may elect to either ignore or apply the

file overrides.

The VisualAge RPG supports overriding the server’s library name, file name, and

member name using the File page in the Define iSeriesInformation notebook.

The Define iSeriesInformation notebook is used when the application is being built

and while the application is running. At build time, the File page is used during

file extracts to find the external descriptions of the files. It is also used for an

externally described data structure when so specified in a definition specification.

At application run time, the File page is used to locate the actual remote iSeries

400 database files being used. The file alias name used in the VisualAge RPG

program is used to find an appropriate entry in the File page.

If no entry exists in the File page, then the library list of the first server defined in

the server page is used to find a file with the same name as the file in the

VisualAge RPG program.

Keeping the actual file name separate from the file name used in the VisualAge

RPG program allows you to retarget the actual file. You can direct it to a different

file on the same iSeries server or a different iSeries server without changing the

VisualAge RPG program.

Figure 33 on page 197 contains an example that illustrates:

v The association of file names with file entries in the File page of the Define

iSeriesInformation notebook.

v Matching part names with fields.

Note: The NAME and ADDRESS information must be entered on the application’s

window. The information is entered on the database when the OK push

button is pressed.

196 Programming with VisualAge RPG

 * *

 * Program ID . . : ioex.vpg *

 * *

 * Description . : Create Database records using data from window. *

 * *

 * Files : FILE1 *

 * *

 *

 FFILE1 UF A E DISK REMOTE USROPN

 * *

 * Window . . : WIN1 *

 * *

 * Part . . . : *INZSR *

 * *

 * Event . . : Initialization routine *

 * *

 * Description: Open Database file (FILE1). *

 * *

 *

 C *INZSR BEGSR

 C OPEN FILE1

 C ENDSR

 * *

 * Window . . : WIN1 *

 * *

 * Part . . . : PSB0000D *

 * *

 * Event . . : PRESS *

 * *

 * Description: User is finished creating records. End Application. *

 * *

 *

 C PSB0000D BEGACT PRESS WIN1

 C SETON LR

 C ENDACT

Figure 33. Database file example (Part 1 of 2)

Chapter 8. iSeries Connectivity 197

FILE1 in the file specification is used as a file alias, since an entry exists in the File

page of the associated Define iSeriesInformation notebook.

The first member of FILE1 in library LIB1 on server TORAS180 is used during file

open. FILE1 in the remote name does not have to match the override name in the

file entry. The override name represents a link between the file entry in the File

page and the file name used in the VisualAge RPG program.

The part names of the two entry fields are NAME and ADDRESS. The VisualAge

RPG creates fields with the same names and the same attributes. In this example,

NAME and ADDRESS are 20-character fields. The database file also contains two

fields named NAME and ADDRESS, both 20 characters. The following is the DDS

for these fields:

 R RECORD100

 A NAME 20A

 A ADDRESS 20A

When field names and their attributes match, only one field is created. This

example reads the data from the window.

When this READ is performed, data is moved automatically from the screen into

the two fields NAME and ADDRESS. Since the data is now in the appropriate

fields, it can be written directly to the database without any further field

movement.

In this example, the data in the two fields NAME and ADDRESS is moved to the

output buffer automatically before the write command is issued to the iSeries 400

database.

 * *

 * Window . . : WIN1 *

 * *

 * Part . . . : PSB0000C *

 * *

 * Event . . : PRESS *

 * *

 * Description: Read field information from screen and add record *

 * to AS/400 Database file. *

 * *

 * *

 *

 C PSB0000C BEGACT PRESS WIN1

 C READ ’WIN1’

 C WRITE FORMAT1

 C ENDACT

Figure 33. Database file example (Part 2 of 2)

 C* N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

 C READ ’WIN1’

 C* N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

 C WRITE FORMAT1

198 Programming with VisualAge RPG

Level Checking

The VisualAge RPG supports level checking between a VisualAge RPG program

and the iSeries 400 database files being used.

The compiler always provides the information required by level checking. Level

checking occurs on a record-format basis when the file is opened, unless you

specify LVLCHK(*NO) when creating or changing the database file.

Note: If a level check occurs, it is handled as an I/O error. For more information,

see VisualAge RPG Language Reference.

Locking Database Files

The OS/400 system allows a lock state (exclusive, exclusive allow read, shared for

update, shared no update, or shared for read) to be placed on a file used during

the execution of a job. Programs within a job are not affected by file lock states. A

file lock state applies only when a program in another job tries to use the file

concurrently. The file lock state can be allocated with the CL command ALCOBJ

(Allocate Object). For more information on allocating resources and lock states, see

the see the CL and APIs section of the Programming category in the Information

Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter.

The OS/400 system places the following lock states on database files when it opens

the files:

v Opened for INPUT: Lock state of Shared for read

v Opened for UPDATE: Lock state of Shared for update

v Opened for ADD: Lock state of Shared for update

v Opened for OUTPUT: Lock state of Shared for update

Overriding Database Files

To override the library name or file name of a database file, use the QCMDDDM

command as shown in the following example:

 D QCMDDDM C ’QCMDDDM’ Linkage(*Server)

 C OvrMenufl BEGSR

 C Eval QCMDDDM_Parm1 = ’OVRDBF FILE(MENUFL)’ +

 C

’ TOFILE(SYSLIBT/MENUFL)’ +

 C

’ MBR(’ + MemberName + ’)’ +

 C

’ OVRSCOPE(*JOB)’ +

 C

’ OPNSCOPE(*JOB)’

 C Exsr CallExecDDM

 C ENDSR

 C CallExecDDM BEGSR

 C EVAL QCMDDDM_Parm2 = %LEN(QCMDDDM_Parm1)

 C Call QCMDDDM

 C Parm QCMDDDM_Parm1

 C Parm QCMDDDM_Parm2

 C ENDSR

Chapter 8. iSeries Connectivity 199

iSeries 400 Database I/O Considerations

In general, all VisualAge RPG database I/O operations available in the ILE

RPG/400 language are also available in the VisualAge RPG language, and are

semantically equivalent. See VisualAge RPG Language Reference for more

information, including which operation codes support local access, remote access,

or both.

Using Record Blocking to Improve Performance

If your application reads data from an iSeries 400 server, you can improve the

performance of your application by using record blocking. Record blocking means

that file I/O operations are done on multiple sequential records (on blocks of

records) instead of on one record at a time.

VisualAge RPG offers default record blocking if any of the following are true:

v The file is output-only and contains only one record format.

v The file is a combined file.

v The file is input-only, contains only one record format, and uses only OPEN,

CLOSE, FEOD, and READ operation codes.

v The RECNO keyword is not specified on the file description specification.

In addition, you can perform explicit record blocking on files that meet the

following criteria:

v The File Addition entry (position 20) is blank.

v The RECNO keyword is not used on the file.

v The file has only one record format.

v The CHAIN, SETLL or SETGT operation codes are used on the file.

v The READE, READP, or READPE operation codes are not used on the file.

If a file meets the above criteria, you can enable record blocking by updating your

program with BLOCK(*YES) on the file description and recompiling the program.

Figure 34 shows an example that uses the BLOCK keyword option.

 If you use BLOCK(*NO) on a file description and recompile the program, no

record blocking will take place, not even the default record blocking that

VisualAge RPG supports.

iSeries 400 Servers Used

If you use TCP/IP, the Optimized Central server and the Remote Command server

must be activated. Use the STRHOSTSVR command to start these servers. Go to

the iSeries Information Center at URL

http://www.ibm.com/eserver/iseries/infocenter for more information on this

command.

 FFILE1 IF E K DISK BLOCK(*YES)

 F REMOTE

 ...
 C FLD2 SETLL REC1

 ...
 C READ REC1 10

Figure 34. Example using BLOCK keyword option

200 Programming with VisualAge RPG

These servers are required when you develop your applications. In addition, when

you run your applications, you should have the TCP/IP DDM server active as

well. Use the STRTCPSRV command to start this server.

Controlling Server Connections at Run Time

VARPG has a default way to establish connections to remote servers, for most

applications this default way of connecting an application to a remote server is

sufficient. In some instances requirements surfaced to allow a more dynamic way

of connecting to remote servers. These APIs are made available for VARPG

programmers to use, in case the application they write has a need to use a non

default connection setup.

The default VARPG runtime controlled connection startup works as follows:

1. The VARPG runtime gets the server name from the project’s Remote Server

Table (.RST) file,

2. The VARPG runtime gets the userid/password information from the VARPG

security file if available. If this information is not available the user gets

prompted for userid/password.

3. The VARPG runtime then establishes the connection.

If an application has requirements that can’t be handled thru this default

connection startup the programmer is encouraged to use these VARPG connection

APIs.

VARPG provides two types of connection APIs:

1. The Set server APIs to set the server name (Remote Location) to connect to

2. The Connect APIs to control the initiation of the connection with the pre-set

server, including authentication.

Here are two scenarios why a programmer would want to implement a non

default connection start up:

1. The application needs to dynamically switch servers without re-starting it

2. Signon information needs to be handled without using the VARPG security file,

but signon information needs to be available for multiple VARPG applications

to avoid multiple prompts for authentication.

Programmers can use the Set server and Connect APIs individually or in

conjunction with each other. When used together, one of the Set server APIs has to

be used first to set the server name, then one of the Connect APIs can be used to

establish the connection to this server.

Both API types are described in this section, first the Set server APIs and then the

Connect APIs.

In the VARPG environment, connections normally remain active during the lifetime

of an application. Connections are shared by components running inside the

application’s process. This behavior is true for user controlled VARPG connections,

too.

Setting the Remote Location name

As described before, by default the remote location name of the server is specified

in the .RST file and the connection gets set to the remote location name at start up

of the application. If the programmer wants to supply the remote location name

dynamically instead of using the .RST file he can use one of the two Set server

Chapter 8. iSeries Connectivity 201

APIs supplied in VARPG. These APIs will set the connection environment, they

will not establish a connection. The connection can then be established by

accessing the server (opening a file or invoking a remote program) or by using the

Connect APIs described in the second half of this chapter.

VARPG provides these two Set server APIs:

v The Set Server API allows the programmer to set a server to a new Remote

Location name regardless of which remote server a current session is already

connected to. In the case an active connection is already established this

connection will be terminated.

v The Change Server API allows a programmer to specify a new Remote Location

name for a specific remote server connection already in use. It will stop the

communications session already in place and will set the connection to the new

Remote Location name so a subsequent request to connect to the server alias

will result in establishing a session with this new server.

The only difference to the Set server API is the fact that the programmer can

qualify the server name to be terminated and changed. The parameters for new

remote location name and keep job are the same as in the Set Server function.

These two APIs allow the VARPG programmer to easily write VARPG programs

that can dynamically change the target server, and allow the application to connect

to different servers without ending the VARPG application.

For the user controlled connection startup, the programmer uses the APIs to pass

the existing server name, new server name, and information how to deal with jobs

on an existing connection. The functions whose interface is described by these APIs

are located in the FVDCWVC9.DLL. This DLL is part of the VARPG run time and

is located in the path; there is no need to rearrange the path environment for

applications using this API.

The Set remote location function, VARPG_Set_Remote_Location, accepts the

following parameters and provides a numeric return code indicating the success or

failure of the change server process:

v New Remote Location name

v Keep job

The parameters are null terminated character variables passed by reference. The

following example shows the C signature and the RPG IV prototype for the API:

 * Set server prototype

 * extern "C" VARPG_ENTRY int VARPG_Set_Remote_Location(char *

 * newRmtLocation, char * keepServerJob);

 *

 D setsrv pr 5i 0 dll(’FVDCWVC9’) extproc

 D (’VARPG_Set_Remote_Location’)

 D newrmtl * value options(*string)

 D keepjob * value options(*string)

If you need to set the remote location name back to the default, specify ″″ (an

empty string) in the new remote location name parameter.

When terminating an existing connection, if the programmer wants to end the

active VARPG jobs running on the iSeries server for this session, he needs to

specify the literal ’OFF’ for the keepServerJob parameter. Only if the jobs are

supposed to continue running, after the VARPG communications session

terminated, specify ’ON’. The programmer has to manage non terminated VARPG

202 Programming with VisualAge RPG

jobs himself, and has to make sure they get terminated eventually. The VARPG

runtime doesn’t have access to these jobs after a server has been switched.

The Change remote location function, VARPG_Chg_Remote_Location, accepts the

following parameters and provides a numeric return code indicating success or

failure of the change server process:

v Old Remote location name

v New Remote Location name

v Keep job

The parameters are null terminated character variables passed by reference.

The following example shows the C signature and the RPG IV prototype for the

API:

 * Change server prototype

 * extern "C" VARPG_ENTRY int VARPG_Chg_Remote_Location(char *

 * oldRmtLocation, char * newRmtLocation,

 * char * keepServerJob);

 *

 Dchangesrv pr 5i 0 dll(’FVDCWVC9’) extproc

 D (’VARPG_Chg_Remote_Location’)

 D oldrmtl * value options(*string)

 D newrmtl * value options(*string)

 D keepjob * value options(*string)

The return codes for these APIs are listed in Figure 35 on page 205.

Connecting to a remote location

A user-controlled connection differs from a default VARPG connection in the way

the signon information gets provided. For a user controlled connection the

programmer provides the authentication information through the connection API.

For a default connection the authentication information is provided in the VARPG

security file and if not specified there the default signon dialog is displayed to

gather this information.

VARPG provides two APIs to control connection startup at run time. These APIs

can be used directly in VARPG programs.

1. The Signon API allows programmers to connect to an iSeries server by

providing their own signon information.

2. The Change Password API allows programmers to handle changes to the

signon password.

For the user controlled connection startup, the programmer uses the Signon API to

identify the server name, user Id, and password so the VARPG run time can

establish the connection. The functions whose interface is described by these APIs

are located in the FVDCWVC9.DLL. This DLL is part of the VARPG runtime and is

located in the path; there is no need to rearrange the path environment for

applications using this API.

It is important to note the programmer can’t switch servers by just using the

Connect APIs and specifying a new server name, in order to switch a server, one of

the Set server APIs has to be used first to re-set the VARPG communications

environment, then the Set Signon function which is part of the Connect APIs can

be used to establish the connection to the new server.

Chapter 8. iSeries Connectivity 203

The Set Signon function, VARPG_Set_Signon_Info, accepts the following

parameters and provides a numeric return code indicating its success or failure:

v Server name

v UserId

v Password

The parameters are null terminated character variables passed by reference.

The following example shows the C signature and the RPG IV prototype for the

API:

 * Signon prototype

 * extern "C" int VARPG_Set_Signon_Info(char * server, char * userid,

 * char * password);

 D signon pr 5I 0 dll(’FVDCWVC9’)

 D extproc(’VARPG_Set_Signon_Info’)

 D system * VALUE options(*string)

 D userid * VALUE options(*string)

 D password * VALUE options(*string)

The Change Password function, VARPG_Change_Password, has one additional

parameter - the new password to be used. The function also returns a numeric

value indicating success or failure of the API execution. Its parameters are:

v Server name

v UserId

v Old password

v New password

These parameters are null terminated character variables passed by reference.

The following example shows the C API and the corresponding RPG prototype:

 * New password prototype

 * VARPG_ENTRY int __cdecl VARPG_Change_Password(char * server,

 * char * userid, char * password, char * newpassword);

 D newpassw pr 5I 0 dll(’FVDCWVC9’)

 D extproc(’VARPG_Change_Password’)

 D system * value options(*string)

 D userid * VALUE options(*string)

 D oldpassword * VALUE options(*string)

 D newpassword * VALUE options(*string)

There are many different ways to gather the server/user Id information. The

sample program provided in VARPG uses its own signon dialog written in

VARPG. Remember that the connection is established for the VARPG application

and its components. If you start another VARPG application, by default the

VARPG run time will use its usual connection startup mechanism again the same

way it does for the first VARPG application. The programmer has two options to

change this behavior.

1. Use the control specification option INHERITSIGNON in the application to

re-use the previously specified authentication information

2. Use these Connect APIs to control how to deal with server authentication

When using the Signon API in a VARPG application with remote server files, make

sure to specify the USROPN keyword in the file specifications for the remote files.

If USROPN is not specified, the server connection will be established at application

204 Programming with VisualAge RPG

startup before you have a chance to invoke the SIGNON function. In components

started after the communication session has been established, you can use the RPG

implicit opening of files by not specifying the USROPN keyword in these

components. The components will reuse the existing connection of the application.

 The return codes for these Connection and Signon APIs are:

Sample Program Using the Signon API

The sample application presents a window with a ″Signon to server″ push button.

Pressing this button starts the Signon component, which gathers the

userID/password information. The component will signal back whether or not the

connection is successful. This application uses the component reference part to

monitor the Signon component for completion.

 OK 0

 INVALID_PARAMETER 1

 INTERNAL_ERROR 2

 FUNCTION_NOT_SUPPORTED 3

 COMMUNICATIONS_ERROR 4

 SERVER_INVALID 101

 USER_ID_UNKNOWN 201

 USER_ID_REVOKED 202

 NEW_PWD_LENGTH_LONGER_THAN_MAX 301

 NEW_PWD_LENGTH_SHORTER_THAN_MIN 302

 NEW_PWD_CONTAINS_CHAR_USED_THAN_ONCE 303

 NEW_PWD_CONTAINS_ADJACENT_DIGIT 304

 NEW_PWD_CONTAINS_REPEATED_CONSECUTIVELY 305

 NEW_PWD_PREVIOUSLY_USED 306

 NEW_PWD_MUST_CONTAIN_ONE_NUMERIC 307

 NEW_PWD_CONTAINS_INVALID_CHAR 308

 NEW_PWD_CONATINS_DISALLOWED_WORD 309

 NEW_PWD_CONTAINS_USERID 310

 PASSWORD_INCORRECT 311

 PASSWORD_DISABLED_NEXT_INVALID_ATTEMPT 312

 PASSWORD_EXPIRED 313

 NEW_PWD_CONTAINS_CHAR_SAME_POSITION_AS_LAST 315

Figure 35. Return codes for the Connection and Signon APIs

Chapter 8. iSeries Connectivity 205

Files have been specified with the USROPN keyword, so no connection request is

made by the VARPG run time. Pressing ″Sign on to server″ will start the

component.

Figure 36. Initial Window with Signon Push Button

206 Programming with VisualAge RPG

The user can now specify the server and userID/password information. The

component will use this data to start the signon API and establish the connection

to the server. When the initial window gets notified that a connection has been

established successfully, the program accesses the customer database on the iSeries

server.

A variation that is implemented in this sample is to show a Change password

dialog if the user’s password has expired. This condition can be detected by

checking the return code of the SIGNON function.

Chapter 8. iSeries Connectivity 207

The program uses this dialog to get the new password and then send it to the

VARPG communications layer by invoking the VARPG_Change_Password

function. The code for all of these functions is included in the

Runtime_control_of_server_connections sample program.

Handling Server Sign-On Errors

The first time an application requires server access (to open a file or perform a

remote program call) it will seek to establish a server connection. A sign-on dialog

may then be displayed to prompt for a userid and password, if these settings were

not pre-defined. If this dialog is cancelled by the user, then a runtime error is

issued. (1421 - Logon cancelled by user) If the error is passed to the RPG default

error handler, a runtime error dialog is shown.

To avoid showing this runtime error, the application can instead handle the error

by:

v Handling file open errors

v Explicitly connecting to the server

v Setting up a general program error handler

Explicitly Handling File Open Errors

To explicitly handle file open errors, the file must first be opened directly by the

application code, so it must be specified with File keyword USROPN. Then, open

it with OPEN(E) or with a result error indicator, and check the results.

Note:

Note: All files in the application must be changed to USROPN, to prevent the

otherwise implicit file opens that are done at application startup trying to

connect first.
 fcustoml3 uf e k disk remote usropn

 C open customl3 90

208 Programming with VisualAge RPG

C *IN90 ifeq *ON

 C* error openning the file.

 C else

 C* open ok.

 C endif

Explicitly connecting to the server

Another approach is to control the establishing of the server connection directly.

Refer to the sample project runtime_control_of_server_connection.

This must be done before the application requires the connection for implicit file

opens, file access, or program calls. (Make all files USROPN, or move the files to a

sub-component started only after the connection is established)

Setting up a general program error handler

Another approach is to use a *PSSR, which has the benefit that files can still be

implicitly opened. (Instead of using USROPN.)

However, this receives control for other errors as well, so care should be taken to

handle the errors specifically; allowing for unexpected errors.

 D*A program exception/error subroutine can be specified by coding *PSSR in factor 1 of

 D*a BEGSR operation.

 C *PSSR BEGSR

 C ENDSR ’*CANCL’

If you would like to determine the cause of the exception/error in *PSSR

subroutine, you can use a program status data structure:

 D*Information regarding the program exception/error is made

 D*available through a program status data structure that is specified with an S in

 D* position 23 of the data structure statement on the definition specifications.

 DMYPSDS SDS

 D PROC_NAME *PROC * Component n
 D PGM_STATUS *STATUS * Status code
 D PRV_STATUS 16 20S 0 * Previous st
 D LINE_NUM 21 28 * Src list li
 D ROUTINE *ROUTINE * Routine nam
 D PARMS *PARMS * Num passed

 D EXCP_TYPE 40 42 * Exception t
 D EXCP_NUM 43 46 * Exception n
 D*

 D EXCP_DATA 91 170 * Exception d
 D*

 D DATE1 191 198 * Date (*DATE
 D YEAR 199 200S 0 * Year (*YEAR
 D LAST_FILE 201 208 * Last file u
 D FILE_INFO 209 243 * File error

 D*

 D JOB_DATE 270 275S 0 * Date (UDATE
 D RUN_DATE 276 281S 0 * Run date (U
 D RUN_TIME 282 287S 0 * Run time (U
 D CRT_DATE 288 293 * Create date
 D CRT_TIME 294 299 * Create time
 D CPL_LEVEL 300 303 * Compiler le
 D SRC_FILE 304 313 * Source file
 D

 D*The following is a general error handler. If any error occur, it

 D*will get called. You can then determine the cause by checking PGM_STATUS

 D*in the above PSDS.

Chapter 8. iSeries Connectivity 209

C *PSSR BEGSR

 C* Do error handling here...

 C ENDSR ’*CANCL’

Using the Security File for Applets

When a VARPG application needs an iSeries resource, such as a database file, a

valid user ID and password is required to connect to the iSeries server. For

VARPG, the user ID and password are stored in a security file on the client

workstation. However, applets by default, cannot access any files on the client

workstation. This results in the user being prompted for a user ID and password

each time the applet is run. If you want to use the security file when running

applets and avoid this prompting, you need to give each applet permission to read

the security file. You do this by using the PolicyTool utility that is part of Sun

Microsystem’s J2SDK. You can find more information on how to use PolicyTool in

the Tool Documentation section of the J2SDK 1.2 documentation.

Note: The procedure described here only works for Windows clients.

1. Create the security file on the client workstation.

If not already done, install the VARPG runtime on the client workstation. From

the Start menu, choose Programs>VisualAge RPG Runtime>Define Server

Logon. The Define Server Logon dialog appears. Add the user ID and

password for a specific iSeries server to store them in the security file.

2. Create the required permissions.

Permissions are required so that the Java VM can read the security file. To create

the permissions, do the following:

a. From an MS DOS prompt, type PolicyTool and press enter. The Policy Tool

dialog box appears.

If this is the first time you have used PolicyTool, a message indicating that

the policy file cannot be found in a certain directory is also displayed. Make

a note of the name and directory of the policy file in the message. This will

be the location you will save your policy file to in a later step.

b. From the Policy Tool dialog, click the Add Policy Entry button. The Policy

Entry dialog appears. In the CodeBase entry field, type:

"http://xxxx/-"

where xxxx is the URL and directory that contains the applet that is to be

given permission to the security file.

c. Click the Add Permission button. Complete the Permissions dialog as

follows:

v From the Permissions combination box, choose RuntimePermission.

v From the Target combination box, choose loadLibrary.<library name>.

v In the entry field immediately to the right of the Target combination box,

change loadLibrary.<library name> to loadLibrary.fvdcjava.

v Press OK to return to the Policy Entry dialog.
d. From the Policy Entry dialog, again click the Add Permission button.

Complete the Permissions dialog as follows:

v From the Permissions combination box, choose FilePermission.

v In the entry field immediately to the right of the Target combination box,

type the name of the security file. This file is located in the ibmcom

subdirectory of your Windows directory. For example:

c:\windows\ibmcom\fvdcsec.txt

where your Windows directory is c:\windows.

v From the Actions drop down combination box, choose read.

210 Programming with VisualAge RPG

v Press OK to return to the Policy Entry dialog.

v Press Done to return to the Policy Tool dialog.
e. From the Policy Tool dialog, choose File then Save as from the menu. Save

the policy file you have just created to the file name and directory you

noted in 2a on page 210. Now choose File, then Exit to exit the PolicyTool.

If you are still prompted for the user ID and password, use PolicyTool again

to verify that you have specified all the parameters correctly.

Chapter 8. iSeries Connectivity 211

212 Programming with VisualAge RPG

Chapter 9. Reusing iSeries Applications

When you develop your VisualAge RPG application, you may want to reuse an

existing iSeries 400 application or various pieces of it. This section describes some

of the things you must consider when reusing iSeries 400 applications.

Reuse Scenario

You can use VisualAge RPG to modify applications that run on the server so that

they run on a PWS, access data on the host, and have a graphical user interface.

This section provides an overview of the steps involved.

Importing display files: The Import utility converts existing display files to a

graphical user interface on a PWS. After you import a display file, the record

formats are converted to user-defined parts and stored on the Imported page of the

parts catalog. You can move the parts to the parts palette as you work on the

application, and then store them in the parts catalog when you finish working on

the application until you need them again.

For example, importing the 5250 screen shown in Figure 37 results in the GUI

shown in Figure 38 on page 214. Records are converted to a group of parts, fields

are converted to entry field parts, and constants are converted to static text parts.

All command keys are converted to push button parts, and the push button labels

reflect the original command key keyword.

 OOO OO OOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO Status: OOOOOOO

 Purchase Order Header Maintenance P.O. Number: 666666

 -.

 Vendor Number: 99999 OOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOO

 OOOOOOOOOOOOOOOOOOOOOOOOO 66666666-666-6666

 OOOOOOOOOOOOOOOOO OOOOOOO

 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

 Ship to: 9999 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

 Print : B (Y,N)

 Ship Via: BBBBBBBBBB Date Entered: OOO OO OOOO

 F.O.B.: BBBBBBBBBBBBBBB Date Revised: OOO OO OOOO

 Terms Code : BBBB OOOOOOOOOOOOOOO OOO OO OOOO

 Password : Originator : OOOOOOOOOOOOOOO

 Prep./Collect/Chg : B (P,C,X)

 Confirm./Orig. : B (C,O)

 Warehouse: BB OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

 Requested by: BBBBBBBBBBBBBBB Work Order #: 9999999

 -.

 Cmd1 Exit Cmd3 PO Notes Cmd4 Lookup Cmd5 Material Status Cmd9 Vendor Maint.

 Cmd11 Delete Cmd15 Vendor Notes Cmd16 Vendor Quotes

Figure 37. Sample 5250 screen from a Purchase Order application

© Copyright IBM Corp. 1994, 2005 213

Note: The new parts inherit the original field names, but you can rename them if

you like. Retaining the same field name improves productivity when

manipulating program logic for reuse.

You may want to customize the imported parts to take advantage of the basic

design issues discussed in Chapter 2, “Planning Your Application,” on page 19.

Customizing the GUI:

Figure 38. Result of importing the Purchase Order screen

214 Programming with VisualAge RPG

Figure 39 shows how the imported window would look if you made the following

changes to the interface:

v Replace the command keys with a menu bar and associated menu items. For

example, a Vendor menu contains actions that were originally converted to push

buttons. This gives users easy access to frequently performed actions, and

launches related windows.

v Group related information, using group box parts to provide a visual cue for

users. For example, a group box labeled Shipment Information contains entry

fields that pertain to shipment information.

v Use grouped radio buttons for information that requires a user to select from a

number of known choices. For example, only three methods of payment are

possible (prepaid, collect, charge); therefore users need to select only one radio

button to indicate the method being used. The radio buttons are in a group box

labeled Payment.

These changes take advantage of the graphical capabilities that VisualAge RPG

offers.

Reusing online help: When you reuse an application, you may want to reuse the

existing User Interface Manager (UIM) help, too. You will have to modify it

somewhat to reflect the look of the new GUI; however, it could save you the effort

required to create help from scratch.

You can customize the converted UIM help and add new types of help using the

Information Presentation Facility (IPF). You can write help for each window and

context-sensitive help for each part, and you can link the help information by

Figure 39. Customized GUI for the Purchase Order application

Chapter 9. Reusing iSeries Applications 215

creating hypertext links in the help source. See “Reusing UIM Help” on page 222,

and Chapter 13, “Tips for Creating Online Help with IPF,” on page 245 for more

information.

Writing program logic: You can reuse logic written in RPG IV because the compiler

is based on that language. Simply cut-and-paste existing code for reuse.

You also have to write some additional program logic, using event-driven

programming. For every event associated with a part, there is an action subroutine

which describes how the program responds to an event. Procedural operation

codes for program control are not required; program control is implicit. Some of

the VisualAge RPG operation codes unique to VisualAge RPG applications are:

BEGACT

Begins an action subroutine

ENDACT

Ends an action subroutine

SETATR

Sets the value of a part attribute

GETATR

Retrieves the value of a part attribute

SHOWWIN

Displays a window

CLSWIN

Closes a window

Figure 40 on page 217 contains an action subroutine from a sample purchase order

application. When SHOWWIN is called from a particular window to display the

PUR570R2 window, an action subroutine is coded for the Create event to prepare

the window for the user’s next action.

If this is a new purchase order (#PONUM = 0), the menu items change, delete,

print, and fax are set to not respond to the MENUSELECT event. For each of the

menu items, the %setatr function is used to set the enabled attribute to 0. The

BEGACT operation code indicates the beginning of the action subroutine, and

ENDACT indicates the end of it.

216 Programming with VisualAge RPG

Connecting to the Host: If your application uses iSeries 400 database fields or

imports iSeries 400 display files when you are building your application, you must

define the iSeries 400 server it uses. You can communicate with the host at any

time, as long as the server logon information is appropriately defined. See the

online help for more information about defining server information.

Importing Display Files

If you have a display file that contains record formats you wish to include on a

design window, you can import these record formats from an iSeries server to the

VisualAge RPG environment. After the import is completed, the record is

converted to a user-defined part and stored on the Imported page of the parts

catalog. Before you can import a display file:

v define the server that you will be accessing. See the online help.

v You must have a minimum of *USE authority for these display files.

To import a display file:

1. Choose the Server→Import display file from the GUI Designer.

2. Select a display file using one of these methods:

v Type the full name of the display file (<server>library/file) in the File name

entry field, and press Enter while the cursor is still in the field.

v Do the following:

a. Select one of the servers that is displayed. A list of libraries is displayed

under the server name.

b. Select one of these library names. A list of display file objects is

displayed.

c. Select one of these display file objects. A list of records in the file is

displayed.
3. Select the record that you want to import.

4. If you do not want to use the default part name, type a part name in the Part

name entry field.

5. If you do not want to use the default icon, you can press the Find push button

to use the Find an Icon window.

6. Select one of the following to indicate where you want the part to reside:

 *

 * Window . . : PUR570R2 PO Header Maintenance *

 * *

 ***-

 *

 C PUR570R2 BEGACT CREATE PUR570R2

 c*

 c*

 C if #PONUM = 0

 C eval %setatr(’pur570r2’:’m2_change’:’enabled’)=0

 C eval %setatr(’pur570r2’:’m2_delete’:’enabled’)=0

 C eval %setatr(’pur570r2’:’m2_print’:’enabled’)=0

 C eval %setatr(’pur570r2’:’m2_fax’:’enabled’)=0

 c end

 c exsr POCHECK

 c write ’PUR570R2’

 C ENDACT

 ***-

Figure 40. Sample action subroutine

Chapter 9. Reusing iSeries Applications 217

Catalog only

The part is added to the Imported page in the catalog.

Catalog and palette

The part is added to the Imported page in the catalog, and the icon for

the imported part appears on the palette.
7. Choose Import.

Converting Display Files

When you import a display file, the record formats, fields, and keywords that have

equivalent parts or attributes are converted, and you can use these parts as you

would any other part. The record formats, fields, and keywords that do not have

an equivalent part are not converted.

In general,

v Record formats are converted to a VisualAge RPG window or a group of parts,

depending on the record type.

v Fields are converted to entry fields.

v Constants are converted to static text parts.

v Conditioning indicator options are ignored.

Note: Fields with a length greater than 64 bytes are sized to 64 bytes on the GUI;

however, the length attribute in the properties notebook is set to the original

length.

Record Formats

The following list describes how display record formats are converted to parts.

MNUBAR

The MNUBAR record format is converted to a menu bar part that you can

drop onto a window with canvas.

PULLDOWN

The PULLDOWN record format is used with the MNUBAR record format

to create a submenu part. The PULLDOWN record format is converted to

menu item parts for the MNUBAR record format that it references.

RECORD

The RECORD record format is converted to a group of parts that you can

drop onto a window with canvas.

SFL, SFLCTL

These record formats are converted to a subfile part that you can drop onto

a window with canvas.

 Constants in the SFL records are not converted.

WINDOW

The WINDOW definition record format is converted to a window with

canvas part. The WINDOW reference record format is converted to a group

of parts that you can drop onto a window with canvas.

These record formats are not converted: ERRSFL, SFLMSG, and USRDFN. The

PULLDOWN and WINDOW keywords within a subfile are not converted.

Positional Entries

The following table describes how positional entries in the DDS used to create a

display file determine how formats and fields are converted.

218 Programming with VisualAge RPG

Table 6. Positional entries and conversion

Columns Meaning Entry and Conversion Results

8-16 Indicators

 Not converted

17 Record type

R Converted as described in

Record Formats

H Not converted

19-28 Name

 If a named field, used as the

name of the part

29 Reference

R Not converted

30-34 Length

 Sets the data length

35 Keyboard shift

A Converted to character

E Data type set to DBCS Either

G Data type set to DBCS Only

I Read-only, Disabled

J Data type set to DBCS Only

O Data type set to DBCS Mixed

D F M N S W X Y

Not converted

36-37 Decimals

 Determines the number of

decimal positions in the

converted part. If specified,

sets data type to Numeric.

38 Usage

I B Enabled

M P Not converted

O Read-only, Enabled

H Converted if the field is a

subfile field

39-41 Location

 Determines the position of the

part on the window

45-80 Keywords

Constant

Creates a static text part

Display File Keywords

The following list describes how display file keywords are converted to parts.

Options used with these keywords can determine whether or not the keywords are

converted.

CFnn, CAnn

These keywords are converted to push buttons that have a label identical

to the name of the keyword.

CHOICE

See MLTCHCFLD and SNGCHCFLD.

Chapter 9. Reusing iSeries Applications 219

CNTFLD

The CNTFLD keyword is converted to a multiline edit part.

COLOR

The COLOR keyword determines the foreground color attribute of the

part. If there is more than one COLOR keyword, the last one is used.

COMP

The COMP keyword is used to set the comparison attributes in the part’s

properties notebook.

DATE The DATE keyword is converted to a static text part.

DFT The text associated with DFT becomes the label for the part.

v If the field that is being converted is a constant field, the DFT value is

used on the label.

v If the field that is being converted is specified on a named field, the DFT

keyword value is converted to the default text of the part.

DFTVAL

The DFTVAL keyword value is converted to the default value of the part.

DSPATR

If the DSPATR display attribute is:

v HI, the foreground color is made brighter.

v ND, the converted field is set to not visible.

v PR, the converted field is set to disabled.

Any other display attributes are not converted.

HELP The HELP keyword is converted to a push button with the label HELP.

The help function is not converted.

MLTCHCFLD

If the MLTCHCFLD keyword is used inside a PULLDOWN record, each

CHOICE keyword associated with it is converted to a menu item part on a

submenu part. The converted menu item part has a check mark next to it

to indicate that it is active.

 If the MLTCHCFLD keyword is used outside a PULLDOWN record, each

CHOICE keyword associated with it is converted to a check box part.

Check boxes are positioned horizontally with the same default space

between them. They are not grouped.

MNUBAR

The MNUBAR record format is converted to a menu part.

MNUBARCHC

Each MNUBARCHC is converted to a menu item.

PRINT

The PRINT keyword is converted to a push button with the label PRINT.

The print function is not converted.

PSHBTNCHC, PSHBTNFLD

The PSHBTNFLD is converted to a push button part. The text associated

with the PSHBTNCHC keyword is converted to the label on a push button

part.

PULLDOWN

The PULLDOWN record format is used with the MNUBAR record format

to create a submenu part. The PULLDOWN record format is converted to

the menu item parts for the MNUBAR record format that it references.

220 Programming with VisualAge RPG

RANGE

The RANGE keyword is converted to the range attribute for the part.

SFL, SFLCTL

These record formats are converted to a subfile part.

SFLPAG

Influences the initial height of the subfile part.

SNGCHCFLD

If the SNGCHCFLD keyword is used inside a PULLDOWN record, each

CHOICE keyword associated with it is converted to a menu item part on a

submenu part.

 If the SNGCHCFLD keyword is used outside a PULLDOWN record, each

CHOICE keyword associated with it is converted to a radio button part.

The radio buttons are arranged horizontally with the same default space

between them. They are not grouped.

SYSNAME

The SYSNAME keyword is converted to a static text part.

TIME The TIME keyword is converted to a static text part.

USER The USER keyword is converted to a static text part.

VALUES

The VALUES keyword causes the field to be converted to a drop-down

combination box part. The values associated with the VALUES keyword

are used on the drop-down list.

WDWTITLE

The WDWTITLE keyword is used to determine the label and attributes for

a window with canvas part.

v If the title text is assigned to a program-to-system field, it is not

converted.

v If the title text is assigned to a literal field, the label for the window with

canvas part is set to this text.

WINDOW

The WINDOW definition record format is converted to a window with

canvas part. The WINDOW reference record format is converted to a group

of parts that you can drop onto a window with canvas.

No other keywords are converted.

Converting Color

Character-based computer screen entry fields are converted to entry field parts that

are color-coded.

Note: Not all displays support these colors. On VGA displays, for example, the

converted entry fields will be white.

The color of each converted entry field depends on the type and attributes defined

in the display file:

 Table 7. Original and Converted Field Attributes

Field Type Field Attributes GUI Attributes

I/O* ReadOnly: Off

Enabled: On

Color: Light Yellow

Chapter 9. Reusing iSeries Applications 221

Table 7. Original and Converted Field Attributes (continued)

Output ReadOnly: On

Enabled: On

Color: Light Green

Input ReadOnly: Off

Enabled: On

Color: Light Blue

Input or I/O Protected ReadOnly: Off

Enabled: Off

Color: Light Red

Input or I/O Inhibited keyboard ReadOnly: On

Enabled: On

Color: Medium Red

Input or I/O Inhibited keyboard Protected ReadOnly: On

Enabled: Off

Color: Deep Pink

Note: I/O = Input and output

The color-coding allows you to visually determine the attributes that are set for the

entry field part. For example, if a light-green entry field is displayed, you know

that it is used by the program to display data and cannot receive user input. If a

light-red entry field is displayed, you know that it can receive user input, but that

it is not enabled because it was a protected field in the original application.

Reusing UIM Help

You can reuse the iSeries 400 help that was written using User Interface Manager

(UIM) even though VisualAge RPG help files are written using the Information

Presentation Facility (IPF). Both UIM and IPF formats use General Markup

Language (GML) principles and are highly inter-changeable. For detailed

information about using IPF, see Information Presentation Facility Guide and

Reference(available online). You should also see the online document entitled IPF

Restrictions. This document provides details on the subset of IPF tags that you are

restricted to in a Windows environment.

To reuse UIM help files:

1. Use the editor to copy and paste the members containing the UIM help.

2. Change the UIM tags to the appropriate IPF tags.

The following sections compare some of the UIM and IPF tags.

UIM and IPF functions that use the same tags

There are functions in UIM and IPF that are equivalent and are tagged exactly the

same way. In these cases you can use your UIM tags verbatim.

 Table 8. Identical UIM and IPF Tags

UIM Tag Tag Function IPF Tag

:DL. Definition List :dl.

:FIG. Figure :fig.

:HP1. Highlighted Phrase :hp1.

:HP2. Highlighted Phrase :hp2.

222 Programming with VisualAge RPG

Table 8. Identical UIM and IPF Tags (continued)

UIM Tag Tag Function IPF Tag

:HP3. Highlighted Phrase :hp3.

:HP4. Highlighted Phrase :hp4.

:HP5. Highlighted Phrase :hp5.

:HP6. Highlighted Phrase :hp6.

:HP7. Highlighted Phrase :hp7.

:HP8. Highlighted Phrase :hp8.

:HP9. Highlighted Phrase :hp9.

:LINES. Lines :lines.

:LI. List Item :li.

:LP. List Part :lp.

:NT. Note :nt.

:OL. Ordered List :ol.

:P. Paragraph :p.

:PARML. Parameter List :parml.

:P Parameter Description :pd.

:PT. Parameter Term :pt.

:SL. Simple List :sl.

:UL. Unordered List :ul.

:XMP. Example :xmp.

&. Ampersand (&) &.

&COLON. Colon (:) &colon.

&period. Period (.) &period.

&SLR. Right slash (/) &slr.

Equivalent UIM and IPF functions that use different tags

There are functions in UIM and IPF that are equivalent but are tagged differently.

In this situation, change the UIM tagging to its equivalent IPF tagging.

 Table 9. Equivalent UIM and IPF Tags

UIM Tag Function IPF Tag

:CIT. Citation :hp5.

:H1. Heading :h2.

:H2. Heading :h3.

:H3. Heading :h4.

:H4. Heading :h5.

:HELP. Heading :help.

:ISCH. Index item :i1.

:ISCHSYN. Index synonym :isyn.

:PK. Programming keyword :hp2.

:PK. with :DEF. Default programming

keyword

:hp7.

Chapter 9. Reusing iSeries Applications 223

Table 9. Equivalent UIM and IPF Tags (continued)

UIM Tag Function IPF Tag

:PV. Programming variable :hp5.

UIM Functions with no IPF equivalents

There are functions available in UIM that are not available in IPF. In this situation,

either delete the function or find another way to implement the function using IPF

tagging.

 Table 10. UIM Tags with No IPF Equivalents

UIM Tag Function Suggested IPF Substitutions

:HP0. No highlighting Use no :hpn tag around the text.

:PC. Paragraph continuation Use no tag. Continue with the text of the

paragraph.

:RT. Reverse text Use a different type of highlighting using a

:hpn tag.

:XH1. Extended help heading There is no extended help in IPF. Use a

:link. tag to create a hypertext link to

another help window (:h1.) where you

provide extended help.

:XH2. Extended help heading There is no extended help in IPF. Use a

:link. tag to create a hypertext link to

another help window (:h1.) where you

provide extended help.

:XH3. Extended help heading There is no extended help in IPF. Use a

:link. tag to create a hypertext link to

another help window (:h1.) where you

provide extended help.

:XH4. Extended help heading There is no extended help in IPF. Use a

:link. tag to create a hypertext link to

another help window (:h1.) where you

provide extended help.

Reusing RPG Source

To reuse RPG source code on a server:

1. If the source code is not RPG IV syntax, convert it to RPG IV syntax using the

ILE RPG conversion tool (CVTRPGSRC) on the server.

2. Use the editor to copy and paste the members containing the RPG source and

commonly used subroutines.

3. The syntax checker highlights any operation codes that are not supported by

the compiler. See VisualAge RPG Language Reference for a description of the

supported operation codes.

Note: In addition to differences between operation codes, there are a number of

other differences between the RPG IV language and the VisualAge RPG

compiler you must be aware of prior to reusing RPG source. For a

description of the differences between the RPG IV language and the

VisualAge RPG language, see VisualAge RPG Language Reference.

224 Programming with VisualAge RPG

Part 4. Advanced Topics

Chapter 10, “Debugging Your Application,” on page 227

Describes how to debug an application.

Chapter 11, “Editing Output,” on page 239

Describes how to format output.

Chapter 12, “Using Picture, Sound, and Video Files,” on page 243

Describes the use of picture and sound files in your application.

Chapter 13, “Tips for Creating Online Help with IPF,” on page 245

Describes how to create and use online help in your application.

Chapter 14, “Tips for Creating and Using Windows Help,” on page 249

Describes how to create and use Windows help in your application.

Chapter 15, “Tips for Creating JavaHelp,” on page 253

Describes how to create and use JavaHelp in your application.

Chapter 16, “Working with Messages,” on page 259

Describes how to create and use message files in your application.

Chapter 17, “Communicating Between Objects,” on page 265

Describes how to communicate between objects in your application.

Chapter 20, “Creating and Running VisualAge RPG Applets,” on page 293

Describes how to create and run Java applets.

Chapter 18, “Calling Java Methods from VisualAge RPG Programs,” on page 279

Describes how to call Java methods.

Chapter 19, “Considerations When Compiling for Java,” on page 287

Describes RPG source restrictions, possible required source changes, and

runtime differences for Java applications.

Chapter 21, “Calling System Functions when Compiling for Java,” on page 299

Describes how to call external procedures through the Java Native

Interface.

Chapter 22, “Creating Non-GUI VisualAge RPG Programs,” on page 375

Describes how to create non GUI applications.

Chapter 23, “DBCS Considerations,” on page 381

Describes how to prepare your application for translation.

Chapter 24, “Merging Code in Your Application,” on page 385

Describes how to merge pieces of code into your application.

© Copyright IBM Corp. 1994, 2005 225

226 Programming with VisualAge RPG

Chapter 10. Debugging Your Application

The debugger provided with VisualAge RPG helps you detect and diagnose any

errors in your application. It can be used to debug multiple-language applications.

You can:

v Manage execution of applications and DLLs

v Set and control breakpoints

v Display and modify program states by using storage, registers, variables, and

call stack windows.

This section illustrates some of these features using a VisualAge RPG program.

To debug Java code generated by VARPG, you need Windows NT and the

Distributed Debugger.

Starting the Debugger

To start the debugger, select the Debug menu item from the Project menu. Two

windows appear. The Debug Session Control window and the VisualAge RPG

Source window. Figure 41 illustrates these two windows.

 When the debugger starts, it searches for the VisualAge RPG source member and

then displays it in the Source window. Once the source is displayed, you can

perform debugging tasks.

Note: The current position of the executing program is indicated by a highlighted

line number. Here, the first line of the source member is highlighted.

Figure 41. The VisualAge RPG Source and Debug Session Control Windows

© Copyright IBM Corp. 1994, 2005 227

Displaying the Assembly Code

If the debugger does not find the VisualAge RPG source, it loads the program and

displays the assembly source code instead of the VisualAge RPG source code. The

window that is displayed is similar to the one displayed in Figure 42.

 To correct this problem, make sure that the VisualAge RPG source code (.VPG file)

resides on your workstation.

Loading the DLL Occurrence

If the assembly source code is displayed, it means that the VisualAge RPG source

member cannot be found. To resolve this, select Set load occurrence from the

Breakpoints pull-down menu. The load occurrence breakpoint window is

displayed (Figure 43 on page 229). From this window, you can load the DLL

occurrence. Type the following information, and then select OK:

application_name.DLL

This returns you to the debug session. When the assembly source view is

displayed again, press the R key to resume execution of the program. When the

DLL is loaded, the system displays a message and the name of your application is

displayed in the control window. You can now click on the application to get the

source to display. If the source does not display this means you have lost or

deleted the source.

Figure 42. The Disassembly Window.

228 Programming with VisualAge RPG

If your application uses the START opcode to start another component, you will

have to use this procedure to load the other component DLL. This will allow you

to set breakpoints within the other components.

Entering Debug Startup Information

If the executable file cannot be located, the debugger displays a window similar to

the one in Figure 44 below. You can re-enter the program name and parameters on

this window.

Setting a Breakpoint

You can control how your program executes by setting breakpoints. A breakpoint

stops the execution of your program at a specific location or when a specific event

occurs. To set a breakpoint, move the cursor to the line number that you would

like to break at and double-click mouse button 1. The debugger highlights the line

number with a red mark. You can repeat this process as many times to mark all

the necessary lines that you would like to break at. Figure 45 on page 230

illustrates the way the screen looks with several breakpoints set. You can view all

of your breakpoints in the Breakpoints List window.

Figure 43. Setting the Load Occurrence Breakpoint.

Figure 44. Startup Information.

Chapter 10. Debugging Your Application 229

Select Breakpoints>List to display this window. The following information is also

provided for each breakpoint:

v The enablement state

v The type of breakpoint

v The position of the breakpoint

v The condition under which the breakpoint is activated

Figure 45. Setting Several Breakpoints.

Figure 46. The Breakpoints List Window.

230 Programming with VisualAge RPG

Running with Breakpoints

Pressing the R key causes the program to run. It stops at the first breakpoint that it

encounters. When the debugger encounters a breakpoint, it stops and highlights

the entire line as shown in Figure 47 below. This indicates the position where the

executing program has paused.

Using the Mouse or Keyboard to Start Debug Functions

Most debug functions can be started using the mouse or keyboard. For example, to

set a breakpoint location, you double-click mouse button 1 on a line number. The

same thing can be accomplished by selecting Line from the Breakpoints pull-down

menu. When you select Line, the Line Breakpoint window is displayed. You must

then enter the line number. When you enter the line number and press Enter, the

line you selected is highlighted with red.

Figure 47. Running with Breakpoints.

Chapter 10. Debugging Your Application 231

You can also resume execution of the program in different ways. Do any of the

following:

v Press the letter R

v Move the mouse to the Run pull-down menu, then select Run

v Move the mouse to the run icon on the tool bar and single-click mouse button 1

Selecting Options from the Tool Bar

The following table lists all the options available on the tool bar and briefly

explains each one.

Icon Function

Step over

Executes the current (highlighted) line in the program, but does not enter

any called function.

Step into

Executes the current (highlighted) line in the program and enters any

called program or function.

Step debug

Executes the current (highlighted) line in the program. The debugger steps

over any function for which debug information is not available, and steps

into any function for which debugging information is available.

Step return

Automatically executes the lines of code up to, and including, the return

statement of the current function.

Run Begins execution of the program at the current (highlighted) line.

Figure 48. The Line Breakpoints Window.

Figure 49. Tool Bar Options.

232 Programming with VisualAge RPG

Halt Stops execution of the program.

Views Toggles to the next view.

Monitor expression

Displays a variable or expression in a monitor window.

Call stack

Views the active functions of a thread’s call stack.

Registers

Displays the threads registers in the register window.

Storage

Displays the contents of storage in the storage window.

Breakpoints

Lists all the breakpoints that have been set.

Debug session control

Displays the debug session control window.

Displaying and Changing Variables, Arrays, and Structures

Displaying a variable, array or other valid VisualAge RPG structure while

debugging is a commonly used function. The easiest way to do this is to move the

mouse to any specification where fields are allowed and double-click mouse button

1. For example, move the mouse to the conditioning indicator, factor 1, factor 2,

result field, and/or the resulting indicators and double-click. This causes the

specification’s contents to be displayed.

Note: If the variable is an operand for the EVAL operation code, select the variable

you want to display by highlighting it with the mouse, then double-click.

If the field or structure you would like to display or change is in view, then the

simplest way to display its content is to use the mouse and double-click it.

However, if you are dealing with a large program, and you cannot locate a certain

variable or structure easily, then Monitor expression from the Monitors pull down

menu (Note that pressing Ctrl-M accomplishes the same thing).

On the Monitor Expression window, as shown in Figure 50, type the expression,

field or structure that you would like to display, then press Enter.

 After you press Enter, the VisualAge RPG field or structure is displayed in the

Program Monitor window, as shown in Figure 51 on page 234.

Figure 50. The Monitor Expression Window.

Chapter 10. Debugging Your Application 233

Changing the Contents of a Field or Structure

Once you display a field or a VisualAge RPG structure, you can change its

contents. To do this, double-click on the value in the Program Monitor window,

type the new value, then press Enter.

Changing the Representation

The debugger allows you to change the representation for any displayed variable

on the program monitor. Representation types can be decimal, hexadecimal, binary,

or string; any valid representation for that variable or structure. To do this, select a

variable in the Program Monitor window. Then select a representation from the

Edit>Representation menu. The contents of the variable is now displayed in the

representation you selected.

Changing the Default Representation

Variables have default representation types. For example, a character field would

be displayed in the Program Monitor window as characters, not hexadecimal. The

debugger allows you to alter this behavior. You have the option of setting the

default representation for each data type. To change the default representation for

a field, select Options>Debugger settings>Default data representation>System.

The Default Data Representation window is displayed.

Displaying Pointers and Storage

One of the data types supported by VisualAge RPG is pointers. Figure 52 on page

235 illustrates an example of displaying a pointer value by using the Storage

window. Select Monitor>Storage to display the Storage window.

Figure 51. The Program Monitor Window.

234 Programming with VisualAge RPG

Figure 52. Displaying a Pointer Value.

Chapter 10. Debugging Your Application 235

Changing the Debugger Views

Most of the examples in this section illustrate the VisualAge RPG Source view. The

debugger also displays other views: disassembly and mixed view. To change

views, select an option from the View menu, as shown in Figure 53.

Figure 53. Changing the Debug Views.

236 Programming with VisualAge RPG

Setting Fonts

There are many options available in the debugger that allow you to customize

your debug session. For example, you can set your fonts. Figure 54 displays the

font window. To display the font window, select Options>Window settings>Fonts.

In the font window, select the desired font, style, and size, then select OK. The font

changes display in your debugging session.

Figure 54. Setting fonts.

Chapter 10. Debugging Your Application 237

238 Programming with VisualAge RPG

Chapter 11. Editing Output

The compiler supports editing capabilities that determine how data is formatted

when it is displayed in entry field and static text parts. To edit the output, you can

set edit codes or edit words in the properties notebook for these parts.

Edit codes let you format data according to predefined formats, while edit words

let you define your own formatting. You can specify either an edit code or an edit

word for a part: you cannot specify both.

Edit codes and edit words can be specified only for numeric entry field and

numeric static text parts.

When data from a formatted entry field is read into your program, the compiler

strips all editing characters before returning the data to your program.

Note: Edit code entries on the control specification in your application are ignored;

they have no effect on the output of these edit codes.

Edit Codes

Several edit codes are supported to format the data into predefined formats. These

formats insert the proper thousand and decimal separators, and determine how a

negative number is displayed by providing a fixed or floating minus sign or the

CR (Credit) symbol.

You can optionally specify asterisk protection or floating currency symbol with the

edit codes. If you specify asterisk protection, an asterisk is displayed with each

zero that is suppressed. If you specify floating currency symbol, the symbol

appears to the left of the first significant digit. The symbol does not display on a

zero balance when an edit code is used that suppresses the zero balance.

The actual characters to be used for the thousand and decimal separators and

currency symbol are determined by the operating system when the application is

run.

© Copyright IBM Corp. 1994, 2005 239

The following table summarizes the supported edit codes and the editing they

provide, and provides examples.

Note: The compiler does not support user-defined edit codes. User-defined edit

codes are defined and stored on the AS/400 system, and are not available to

VisualAge RPG programs.

 Table 11. VisualAge RPG Edit Codes

Edit

Code

Com-

mas

Deci-

mal

Point

Sign for

Negative Balance

Positive Number

Example

Negative

Number Example

Zero

balance

none No Yes Yes 0123456789 0123456789-

1 Yes Yes No Sign 124,567.89 124,567.89 .00

2 Yes Yes No Sign 124,567.89 124,567.89

3 No Yes No Sign 124567.89 124567.89 .00

4 No Yes No Sign 124567.89 124567.89

A Yes Yes CR 124,567.89 124,567.89CR .00

B Yes Yes CR 124,567.89 124,567.89CR

C No Yes CR 124567.89 124567.89CR .00

D No Yes CR 124567.89 124567.89CR

J Yes Yes -(minus) 124,567.89 124,567.89- .00

K Yes Yes -(minus) 124,567.89 124,567.89-

L No Yes -(minus) 124567.89 124567.89- .00

M No Yes -(minus) 124567.89 124567.89-

N Yes Yes -(floating minus) 124,567.89 -124,567.89 .00

O Yes Yes -(floating minus) 124,567.89 -124,567.89

P No Yes -(floating minus) 124567.89 -124567.89 .00

Q No Yes -(floating minus) 124567.89 -124567.89

Y (2.) 1984-12-25

Z (3.) No No No Sign 1234567 1234567

Notes:

1. All edit codes suppress leading zeros

2. The Y edit code is used to date fields. The date field should be defined as a

numeric field. The output of this edit code is in the form nnnn-nn-nn. This

format cannot be changed. The date separator character is determined by the

operating system when the application is run.

3. The Z edit code removes the + or − sign.

Edit Words

You can use edit words if none of the supplied edit codes meets your editing

requirements. An edit word is a template that is applied to your data before it is

placed in the part. With edit words you can specify:

v Suppression of leading zeros

v Leading asterisks

v The fixed/floating currency symbol

v The position of thousands and decimal separators.

240 Programming with VisualAge RPG

Note: When you use edit words, make sure that you specify the currency, decimal,

and thousands symbols correctly. If the symbols do not match the edit word,

you will get improperly formatted output but no runtime error. These

symbols are replaced by the runtime operating system values when the

application is run.

Parts of an Edit Word

An edit word consists of the body, the status and the expansion. These parts are

shown in the following example:

 x x x , x x $ 0 . x x & C R * x T O T A L

 | || || |

 |-------------body--------------||-status-||----expansion-----|

 where BLANK = x

 CURRENCY SYMBOL = $

 THOUSAND SEPARATOR = ,

 DECIMAL SYMBOL = .

Body of an edit word

The body is the space for the digits that are transferred from the data field to the

part. It begins at the farthest left position of the edit word. It contains a number of

blanks plus one zero or asterisk, the total equals the number of digits in the data

field to be edited.

The following characters have special meaning when used in the body of an edit

word:

Blank A blank is replaced with the digit from the corresponding position of the

data field.

Ampersand

An ampersand causes a blank in the edited display.

Zero A zero stops zero suppression. The zero is itself a digit position. Any zeros

in the data field to the right of the stop-zero-suppression character are

displayed. Each zero that is suppressed is replaced by a blank.

Asterisk

An asterisk instead of a zero can be used as a stop-zero-suppression

character. This is called asterisk protection, and each zero that is

suppressed is replaced by an asterisk. Any asterisks or zeros to the right of

the stop-zero-suppression character are constants, and will be displayed

as-is.

Currency Symbol

If you code a currency symbol immediately to the left of the

stop-zero-suppression character, a currency symbol is inserted in the

position to the left of the first significant digit. It is called a floating

currency symbol when it is used in this manner. If you code a currency

symbol in the farthest left position of the edit word, it is fixed and is

displayed in the same location. It is called a fixed currency symbol.

Thousand Separator and Decimal Separators

Thousand and decimal separators are displayed in the same relative

positions in which they are coded in the edit word. All other characters are

displayed if they are to the right of significant digits in the edit word. If

they are to the left of the high-order significant digit in the edit word, they

are blanked out or replaced by an asterisk if asterisk protection is being

used.

Chapter 11. Editing Output 241

Status of an edit word

The status positions display the sign of the data. The status continues to the right

of the body to either a credit (CR) or minus (-) symbol. These two symbols

display only when the field is negative. An ampersand (&) is used for displaying

a blank.

Expansion of an edit word

The expansion positions are not changed by the edit operations. The expansion

position starts at the first position to the right of the status (or body, if status is not

specified). The expansion cannot contain blanks. If a blank is required, use an

ampersand in the edit word.

242 Programming with VisualAge RPG

Chapter 12. Using Picture, Sound, and Video Files

The animation control, canvas, graphic push button, image, media, and menu item

parts allow you to display images on your windows by specifying a valid image

name in the FileName attribute.

Valid Windows image formats include:

OS/2 and Windows Bitmaps

The file extensions .BMP, .VGA, .BGA, .RLE, .DIB, .RL4, and .RL8 are

recognized as OS/2 or Windows bitmaps.

Icon Format

The .ICO file extension is recognized as an icon file.

CompuServe Graphics Interchange Format

The .GIF file extension is recognized as a GIF file.

ZSoft PC Paintbrush Image File Format

The .PCX file extension is recognized as a Paintbrush file.

Microsoft/Aldus Tagged Image File Format

The .TIF and .TIFF file extensions are recognized as TIFF files.

Truevision Targa/Vista Bitmap

The file extensions .TGA, .VST, and .AFI are recognized as Targa/Vista

files. This class only supports 8 bit-per-plane and 24 bit-per-plane images.

Amiga IFF/ILBM Interleaved Bitmap Format

The file extensions .IFF and .LBM are recognized as interleaved bitmap

files.

X Windows Bitmap

The .XBM file extension is recognized as a X Bitmap file. This class

supports X10 and X11 1bpp bitmaps. Some .XBM files with text strings

inside look to be sprites or icons and are not supported.

IBM Printer Page Segment

The following file extensions .PSE, .PSEG, .PSEG38PP and .PSEG3820 are

recognized as PSEG files. PSEG files are used to include image data in

BookMaster documents. PSEG files only contain 1 bit-per-plane, which is

always ink on paper, that is, black on white.

 Valid Java image formats include:

v CompuServe Graphics Interchange Format (GIF)

v Joint Photographic Experts Group format (JPG, JPEG)

In addition, you can add sound and video by using the media part, which

supports WAV, .MID, .MPG, .MOV, .DAT, and .AVI files.

When developing a VisualAge RPG application that includes pictures, sound, or

video, avoid hard coding the FileName attribute for the parts. The user will

probably install your application in a different directory than the one in which it

was developed.

© Copyright IBM Corp. 1994, 2005 243

To be sure that these files are found at run time, use the Current directory string

(.\): a dot and a backslash followed by the file name. At run time, the file is found

in the current directory from which the application is run.

For example, in the properties notebook for a graphic push button, specify the

following as the file name for an icon named EXIT.ICO, so that it will be found at

run time in the current directory.

 .\\EXIT.ICO

Note: For applications running in Windows, the current directory must be

specified in the AUTOEXEC.BAT file.

During build time, you must copy your picture files to the build-time directory to

access these files.

Before packaging your application for distribution, copy all associated picture and

sound files to the appropriate runtime subdirectory (RT_JAVA or RT_WIN32) of

your project, because it is this directory that is packaged and distributed to users.

See Part 5, “Distributing Your Application,” on page 413 for instructions on

packaging your application.

Creating Icons for Windows

If you have VisualAge for C++ for Windows, you can use the Resource Workshop

utility to create Windows icons.

Converting OS/2 Icons to Windows Format

VisualAge RPG includes a utility program to convert OS/2 icons and bitmaps into

Windows versions. For details on this utility and its parameters, go to a DOS

prompt and type IBMPCNV -H.

244 Programming with VisualAge RPG

Chapter 13. Tips for Creating Online Help with IPF

The Information Presentation Facility (IPF) lets you create and manage online help

files for your application. You can also use IPF to create tutorials and online

documentation. With VisualAge RPG, the online help that you create will be native

Windows help.

This section introduces IPF, and gives you some tips for creating online help for

your application. For detailed information about using IPF, see Information

Presentation Facility Guide and Reference(available online). You should also see the

online document entitled IPF Restrictions. This document provides details on the

subset of IPF tags that you are restricted to in a Windows environment.

You can reuse UIM help source from an AS/400 system, as well. See “Reusing

UIM Help” on page 222.

Creating Online Help

To add online help for a part in your application:

1. Display the part’s pop-up menu.

2. Choose Help text. An edit session opens.

3. Type the contextual help text for the part.

4. Tag the help text using the IPF tag language.

5. Save the help by choosing Save from the File menu.

Using IPF

The source for VisualAge RPG application help modules is in IPF format. IPF

enables you to create online information, specify how it will appear on the screen,

connect various parts of the information, and provide help information that can be

requested by the user. IPF features include:

v A tagging language that formats text, provides ways to connect information

units, and customizes windows

v A compiler that creates online documents and help windows

v A viewing program that displays formatted online documents

Supporting Help for Other Languages

You can copy and manually edit the .VPF file using any text editor. Do not,

however, do either of the following:

v Modify or remove the number that appears after the res= text. That number is

the resource identifier, and it is generated by the GUI Designer when you create

the help for a part. The resource identifier is used to locate the appropriate help

text. If you delete or change a resource identifier, the help text pertaining to it

will not be located.

v Remove the heading information. You can replace the heading information with

the translated text.

Adding Graphics to Your Online Help

Use the :artwork. tag to imbed graphics inside the source files, as required. The

graphics must be in bitmap format (.BMP files).

© Copyright IBM Corp. 1994, 2005 245

Deciding What Type of Help to Provide

Users can access help in three different ways within your VisualAge RPG

application:

Context-sensitive help

Help information that is adapted to the current context of a choice or part.

A user accesses this help by pressing F1 when a choice or part is in focus.

You can provide this help via the part’s pop-up menu.

Window-level help

Information about the purpose of a window. A user accesses this help by

pressing on a help push button. You can provide this help by creating a

Help push button and adding the associated help information.

Task help

Information about tasks the user can perform with your application. A user

accesses this help by hypertext linking to other help information from

within a help panel. You can supply this information by creating online

information and creating a hypertext link to it from the window-level or

context-sensitive help. A hypertext link allows a user to jump from one

help panel to another, or from selected text within a help panel to related

information.

ToolTip help

Hover help style information about the tools that are available for use. To

create this help, go to the ’general’ page of a part’s properties notebook

and type a description of the tool (up to 15 characters) in the entry field.

You can also use a message identifier, for example *MSG0001, to specify

the help text.

Adding Context-Sensitive Help

To add context-sensitive help for a part, select Help text from the part’s pop-up

menu. This starts an edit session that contains information similar to that shown in

Figure 55.

 The :h1 res=01. is a resource identifier that is automatically generated. Do not

edit this text. Type a heading after this tag that identifies the purpose of the help

panel, and type the help text after the :p. tag.

Creating a Help Push Button

To create a Help push button, select a push button from the parts palette with the

right mouse button, move the mouse pointer onto the design window, and

right-click again. Select Help text from the push button’s pop-up menu to edit the

help information. Set the Help Enable attribute for that push button, and set the

Label attribute to the word Help.

Creating Hypertext Links

To link related pieces of help information so that your users can find the

appropriate information quickly and easily, use a link tag in your help text. You

can create links to a help panel using a resid or a refid.

:h1 res=01.PSB0000C

:p.Help

Figure 55. Edit session for adding online help

246 Programming with VisualAge RPG

For linking to help panel defined with a id=:

:link reftype=hd refid=search.Search window:elink.

For linking to help panel defined with a res=:

:link reftype=hd res=15433.Search push button:elink.

Chapter 13. Tips for Creating Online Help with IPF 247

248 Programming with VisualAge RPG

Chapter 14. Tips for Creating and Using Windows Help

One of the features of VisualAge RPG is the ability to create cursor-sensitive help

for your applications. You create the help by right clicking the mouse on a part in

the design window and choosing Help text. This starts the editor. You write the

help text using the Information Presentation Facility (IPF) tag language. During the

build process, the help source is compiled to create the HLP file. The IPF tag

language results in a help file with a distinctive OS/2 look. This section explains

how you can create true Windows help for your application.

What you Need

You need two tools to create a Windows help file:

v A word processor capable of saving files in Rich Text Format (RTF) format

v The Windows help compiler

The help compiler uses a help source file saved in RTF as input. Several word

processors, including Lotus WordPro, Microsoft Word, and WordPerfect are capable

of saving files in RTF format. Note that the Windows WordPad editor can save

files in RTF format. However, this particular RTF format cannot be used to create

help files. It does not retain many of the formatting options required by the help

compiler to create a help file.

The Help Compiler Workshop is a tool available from Microsoft that consists of an

IDE for managing your help files, as well as the help compiler. It can be

downloaded from the Microsoft help compiler FTP at URL:

ftp://ftp.microsoft.com/softlib/mslfiles/hcwsetup.exe

There are many tools on the market available, commercially and as shareware, that

provide complete help authoring environments.In addition, there a several books

available that describe how to use the Help Compiler workshop. Many of these

books include a CD-ROM with the help compiler workshop, such as the Microsoft

Windows 95 Help Authoring Kit ISBN1-55615-892-0.

Steps to creating Windows help

The basic steps to follow to use Windows help in your application are:

1. Establish the resource id for each part that will have help.

2. Write the help text.

3. Create the help project file.

4. Compile the help file.

Establishing the Resource ID

Every part, such as an entry field, push button, or window, has an identifier

assigned to it usually referred to as a resource ID. VisualAge RPG assigns resource

IDs for you and they cannot be changed. To see the resource ID for a part,

right-click on the part in the design window. Select Properties to show its

properties notebook. The resource Id is the number at the top of the General page.

In the following example, it is the number 12 next to the Part ID:

© Copyright IBM Corp. 1994, 2005 249

During the build process, VisualAge RPG generates a resource ID table entry for

each part that you have created help for using the Help text menu item from the

part’s popup menu. The Windows help engine uses this table to determine the

resource ID for a part so it can display the correct help. You must create the help

text for each part in this way for the part to have Windows help. Currently,

VisualAge RPG does not create this table entry automatically for you. If you do

follow this process, no help is displayed and no error message is generated.

Writing the Help Text

Before writing the help, you need to know a few Windows help terms. The

following files are needed before you can create a Windows help file (HLP

extension):

Topic file

This file contains your help text. Your help project can consist of one or

more topic files. Topic files contain one or more topics. You create the topic

file with your word processor and save it in RTF format (RTF extension).

Project file

The project file contains information about your help file. It contains such

things as which topic files are to be included. The project file is maintained

by the Help Workshop IDE. Typically, you do not modify it directly.

Contents file

If you want a Contents tab when the help file is displayed, you must have

a contents file. The Contents file is also created and maintained by the

Help Workshop IDE.

 The following example outlines the basic steps for creating a topic file with one

topic. It has the help text for the entry field part. Lotus WordPro is used to create

the topic file. When the new document is opened in your word processor, type a

title at the top of the page such as Help for Entry Field. Following the title, type the

body of the help text.

Each topic must have a topic ID. A topic ID is a footnote with the # symbol.

Here are the steps for creating the required footnote in WordPro. Follow the steps

in your word processor for creating footnotes with the # symbol:

 1. Position the cursor just before the topic heading.

 2. Select Create-Footnote/EndNote...

 3. On the Footnotes dialog press OK.

 4. The cursor will be positioned at the bottom of the document in the footnote

section.

 5. Type the topic Id: HelpForEF.

 6. Position the cursor at the beginning of the topic Id.

 7. Right click the mouse and select Text properties from the pop-up menu.

 8. On the Properties dialog, select the Bullet and number tab.

 9. Check the Edit on page checkbox.

10. Type a # character before the topic Id.

Figure 56. Displaying the Resource ID

250 Programming with VisualAge RPG

11. Close the Text properties dialog.

Your document should look similar to the following. The data following the line is

the footnote:

 #Help for Entry field

 This is help for the entry field part.

 more stuff ...

 __

 #HelpForEF

You can have several topics in a single topic file. Each topic must begin on a new

page. Once you complete typing the help text, save your topic file in RTF format.

Chapter 14. Tips for Creating and Using Windows Help 251

Creating the Help Project File

Following are the basic steps to create a minimum project file. Start the Microsoft

Help Workshop and do the following:

 1. Create a new project file by choosing File-New and select New project. A new

project is created.

 2. Press the Files push button.

 3. On the Topic files dialog, press Add... and add the topic file you just created.

Press OK to close the Topic Files dialog.

 4. Press the Windows push button.

 5. On the Window Properties dialog, press Add to display the Add a New

Window Type dialog.

 6. Create a window named main, and close all dialogs to return to the Help

Workshop.

 7. Map the topic Id(HelpForEF) in the topic file to the resource Id for the entry

field part(12).

 8. Press the Map push button.

 9. On the Map dialog, press Add.

10. When the Add Map Entry dialog appears, type HelpForEF in the Topic ID

field, and 12 in the Mapped numeric value field. Press OK.

11. Press OK to close the Map dialog.

12. Save and compile the project file. This will create the help (HLP) file.

Copy the new HLP file to the RT_WIN32 directory of the VARPG project.

Compiling the VARPG Program

During the build process, VisualAge RPG creates a HLP file in the RT_WIN32

directory. This will, of course, overwrite the HLP file you just copied. Also, a RTF

file with will be created in the project’s source directory. If you have saved your

topic file here with the same name, it will be overwritten. To prevent this, open the

project’s Build Options properties notebook and go to the Help file page. Clear the

Create RTF Help file check box. Now, VisualAge RPG will not build the help or

create the RTF and HLP files.

Each time you add help to a part, you must recompile the VARPG program.

Testing the Help

Start the VARPG application. When the window appears, tab to the entry field and

press F1. The help should be displayed in a Windows help window.

You can also display the help as What’s this? help. To do this, open the properties

notebook for the window. On the Style page, check the Context check box. The

Minimize and Maximize button check boxes must be cleared.

To have the help displayed in a pop-window rather than a help window, check the

Popup choice.

Creating a Contents File

If you want your help to have a Help Topics dialog box, you need to create a

Contents file. A Contents file is created in the Help Workshop IDE when you

select File-New and New contents file. Name the contents file the same name as

the help file, and save it in the same directory.

252 Programming with VisualAge RPG

Chapter 15. Tips for Creating JavaHelp

One of the features of VisualAge RPG is the ability to serve context-sensitive

JavaHelp for your VARPG Java applications. (VisualAge RPG currently supports

the JavaHelp 1.1 release.) To build and run VARPG Java applications that include

JavaHelp, you need:

v A basic knowledge of the HTML 3.2 tags.

v JavaHelp metadata files for your application:

– Navigational data - table-of-contents file (TOC)

– HelpSet data - HelpSet and Map files

– HTML topic files
v A copy of the Java 2 Software Development Kit, Standard Edition (J2SDK)

version 1.2, or higher, installed on your workstation. (The J2SDK is available

from Sun at URL http://java.sun.com/products/)

This section summarizes how to create basic, context-sensitive JavaHelp for your

VARPG Java applications. For complete information on the JavaHelp System, see

the JavaHelp System User’s Guide. All JavaHelp documentation is available with the

JavaHelp System, which you can download at URL

http://java.sun.com/products/javahelp.

The following steps summarize how to create and incorporate JavaHelp into your

application:

1. Create a HelpSet:

v Create the HTML topics.

v Create a HelpSet file.

v Create a map file.

v Create a table-of-contents (TOC) file.

Optionally, you can create an index file and a full-text search database. Refer

to the JavaHelp System User’s Guide for details on these topics and the tools

needed to implement search.

v Compress and encapsulate the help files into a JAR file.
2. After creating your JavaHelp with all required files and packaging them in a

JAR file, copy the JAR file to the RT_JAVA subdirectory of your propject.

3. Build and run your project.

The JavaHelp system is file based - topics are contained in files that are displayed

in a suitable viewer, one file at a time. It is a good idea to group related topics

together to keep them organized and to make it as easy as possible to link the

topics together. It is also important to organize topics so they can be easily

packaged into a compressed JAR for your application. It is usually best to organize

your topics in a folder hierarchy that you can ″tear off″ and place in the JAR file.

The Video Store Catalog application contains sample JavaHelp files. They are

located in the javahelp and help subdirectories of the WDSC\samples\vidcust

directory. Use these files as templates for developing your own JavaHelp.

Note: In Java, file and folder names are case-sensitive. Type names exactly as

shown in the samples provided.

© Copyright IBM Corp. 1994, 2005 253

Creating a HelpSet File

When JavaHelp is started by your application, the first thing it does is read the

HelpSet file. The HelpSet file defines the HelpSet for your application: the set of

data that comprises your help system. The HelpSet file includes the following

information:

Map file

The map file associates topic IDs with the URL or path name of your

HTML topic files.

View information

Describes the navigators used in the HelpSet. The standard navigators are:

table of contents, index, and full-text search.

HelpSet title

The name of the top-level TOC folder.

Home ID

The name of the (default) ID that is displayed when the help viewer is

called without specifying an ID.

The HelpSet file (filename.hs) is coded in Extended Markup Language (XML)

format. The following is an example of a HelpSet file:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>

<!DOCTYPE helpset

 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 1.0//EN"

 "http://java.sun.com/products/javahelp/helpset_1_0.dtd">

<helpset version="1.0">

 <!-- title -->

 <title>Video Store Catalog - Help</title>

 <!-- maps -->

 <maps>

 <homeID>11</homeID>

 <mapref location="Map.jhm"/>

 </maps>

 <!-- views -->

 <view>

 <name>TOC</name>

 <label>Table Of Contents</label>

 <type>javax.help.TOCView</type>

 <data>VIDCTOC.xml</data>

 </view>

</helpset>

Where:

<title> Names the HelpSet. This corresponds to the title of the help window.

<homeID>

Specifies the name of the (default) ID that is displayed when the help is

called if an ID is not explicitly specified.

<data>

Specifies the path to the data used by the navigator. In our example, this is

the TOC view. The TOC file name is uppercase and the xml extension is

lowercase. The TOC file must exist in your help directory.

254 Programming with VisualAge RPG

Creating the Map File

When your application activates JavaHelp, the first thing it does is read the

application’s HelpSet file. The next thing it does is read the map file listed in the

HelpSet file. The map file associates topic IDs with URLs (paths to HTML topic

files). By convention, map file names include the jhm suffix. The Map file is in

XML format.

Following is an example of a map file:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>

<!DOCTYPE map

 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN"

 "http://java.sun.com/products/javahelp/map_1_0.dtd">

<map version="1.0">

 <mapID target="11" url="help/welcome.htm" />

 <mapID target="18" url="help/catalog.htm" />

 <mapID target="14" url="help/browse.htm" />

 <mapID target="15" url="help/new.htm" />

 <mapID target="16" url="help/top10.htm" />

 <mapID target="17" url="help/search.htm" />

</map>

target Specifies the part ID for the VARPG part. The part ID is automatically

assigned to the part by the GUI Designer. You can retrieve it from the

part’s properties notebook.

url Specifies the path to the HTML topic file containing the help text. The path

can be relative or absolute.

Creating the TOC File

The table of contents (TOC) file describes to the TOC navigator the content and

layout of the TOC. The TOC file is in XML format. Following is a small example of

a TOC file:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>

<!DOCTYPE toc

 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp TOC Version 1.0//EN"

 "http://java.sun.com/products/javahelp/toc_1_0.dtd">

<toc version="1.0">

<tocitem text="Video Store Catalog - help">

 <tocitem text="Welcome" target="11"/>

 <tocitem text="Help" target="22"/>

 <tocitem text="Browse" target="14"/>

 <tocitem text="New" target="19"/>

 <tocitem text="Top 10" target="20"/>

 <tocitem text="Search" target="21"/>

</tocitem>

</toc>

Where:

tocitem

The first TOC entry specifies the title for your table of contents. (You can

nest TOC entries within a higher-level entry.)

text Specifies the text to use for subsequent TOC entries.

Chapter 15. Tips for Creating JavaHelp 255

target Specifies the ID of the HTML topic to display when the user chooses this

entry in the TOC. The ID corresponds to the part ID identified in the map

file.

Creating the JAR File

Once all necessary help files are created, use the jar command to encapsulate and

compress your files. Your jar file name must be as follows:

 SOURCE_FILE_NAMEHS

Where the SOURCE_FILE_NAME part is the name specified in the Source file field

on the Save as Application - VisualAge RPG window. The file name must end with

HS and be in uppercase. The jar extension is lowercase.

256 Programming with VisualAge RPG

Issue the command from the top most directory containing your help hierarchy.

For example, if your help directory structure is as follows:

javahelp (directory)

 Map.jhm

 CATALOG.hs

 VIDCTOC.xml

 help (subdirectory)

 browse.htm

 catalog.htm

 new.htm

 search.htm

 top10.htm

 welcome.htm

Issue the jar command from the javahelp directory as follows:

jar -cf VIDCUSTHS.jar *.*

Copy the resultant jar file into the RT_JAVA subdirectory for your project. Build

and run the project with the Java option (Build>Java or Run>Java, respectively.).

Chapter 15. Tips for Creating JavaHelp 257

258 Programming with VisualAge RPG

Chapter 16. Working with Messages

You can create, view, edit, and delete messages for your VARPG application.

You can view and delete existing messages directly from the Define Messages

window. Use the Define Messages window to access the Edit Message window,

from which you can create a new message or modify an existing one.

Messages fall into two groups in VARPG: those that you cannot reference in your

code at run time, and those that you can.

The first group consists of a label-type message that is used to replace a

substitution label; for example, on a push button or a window.

The second group contains four types of messages: Action, Critical, Information,

and Warning. These messages can be displayed on a message window or in a

message subfile part. They can be used to dynamically update text in your

interface at run time; for example, to display installation progress messages.

Defining Text for Substitution Labels

To associate text with a substitution label:

1. Ensure that you have defined a substitution label on the part. Follow the

procedure described in the online help.

2. Choose Project→Define messages from the GUI Designer. The Define Messages

window opens.

3. Select a label-type message from the list that is displayed.

4. Choose the Edit push button. The Edit Message window opens displaying the

label you selected.

5. In the Message field, type the text to be substituted for the label

6. Select Save to keep your changes, or Cancel (or double click in the window’s

system menu) to discard them.

Note: When sizing a part in the GUI Designer that has a substitution label, keep in

mind that translated text may be longer than the original.

© Copyright IBM Corp. 1994, 2005 259

Creating a New Message

To create a new message:

 1. Choose Project→Define messages from the GUI Designer. The Define

Messages window opens.

 2. Select Create. The Edit Message window opens.

 3. In the Message Alias field, type a string up to 10 characters long. It must not

contain blanks. Your code can use the message alias instead of the message ID

to display the message.

 4. Select a message type from the Type drop-down box. There are four types to

choose from:

Message Type

Meaning

Action

Use this type of message for situations in which the user must take

some action to correct the situation or choose an alternative action.

Critical

Use this type of message for situations in which the user must take

immediate action to correct the situation or choose an alternative

action.

Information

Use this type of message for situations in which you simply want to

inform the user about something; but the user does not have to

perform any action.

Warning

Use this type of message when the user can continue the original

request without modification, but should be aware of the existence of

some situation.
 5. Type the message text in the Message field.

 6. If you want to provide help for the message, type it in the Message Help

field.

When you create message help and use the DSPLY operation code to display

the message, a Help push button will appear at the bottom of the message

window. When the user clicks on this push button, the help text will be

displayed as additional information.

 7. Select the Moveable check box if you want the user to be able to move the

message to the background and continue with other tasks before taking action

with the message.

 8. From the Buttons drop-down box, select what combination of push buttons

you want to appear at the bottom of the message window:

Choice Buttons That Will Appear

abortRetryIgnoreButton

Abort, Retry and Ignore

okButton

OK

okCancelButton

OK and Cancel

retryCancelButton

Retry and Cancel

260 Programming with VisualAge RPG

yesNoButton

Yes and No

yesNoCancelButton

Yes, No and Cancel
 9. Select a default push button by selecting the Button 1, Button 2, or Button 3

radio button. When the message window is displayed and the user presses the

Enter key, the action associated with the default push button is performed.

For example, if you selected enterCancelButton from the Buttons drop-down

and you want the default push button to be Cancel, you would select the

Button 2 radio button.

10. Select Save to keep the message, or Cancel to discard it.

Note: Message identifiers (message IDs) range from MSG0001 to MSG9999, and

are assigned by VisualAge RPG. When all message IDs in the range are

used, VisualAge RPG posts an error when you try to create a new message,

and no new message can be created until you delete one. After you delete a

message, you can create a new message that uses the ID of the deleted one.

Editing a Message

To edit a message:

1. Select Project→Define messages from the GUI Designer. The Define Messages

window appears.

2. Select a message from the list that is displayed. If you cannot find the message

you want, follow the instructions in “Finding a Message.”

3. Choose Edit from the Define Messages window. The Edit Message window

opens, displaying the message you selected.

4. Change the message alias, type, text, help or message window information.

5. Select Save to keep your changes, or Cancel to discard them.

Deleting a Message

To delete a message:

1. Choose Project→Define messages from the GUI Designer. The Define Messages

window opens.

2. Select a message from the list that is displayed. If you cannot find the message

you want, follow the instructions in “Finding a Message.”

3. Choose the Delete push button.

Finding a Message

Here are some tips for finding a message:

v If you know what the exact message ID is, use the Sort by Message ID feature

of the Define Messages window. The messages appear in ascending order of

message ID.

v If you know what type of message you are looking for, use the Sort by Type

feature of the Define Messages window. The messages are sorted in ascending

order of message ID within the following groups:

1. Messages you can set at run time:

a. Information

b. Warning

c. Action

d. Critical

Chapter 16. Working with Messages 261

2. Messages you cannot set at run time (substitution labels).

You can move through the list of messages using either the arrow keys or the

scroll bars. If the list is long, scrolling is the fastest way to find what you are

looking for.

Using Messages with Logic

It is common practice to display messages in message windows at run time. Once

a message is created, one way to display it is to use the DSPLY operation code and

the message subfile part’s AddMsgID attribute.

For information on the AddMsgID attribute, see the VisualAge RPG Parts Reference,

SC09-2450-05 .

You can use the MSGDATA and MSGNBR keywords on the definition specification

to define messages with substitution variables. A substitution variable is defined

when you create the message by typing a percent (%) character followed by a

numeric value (for example, %1 %2 %3). The substitution variable is replaced by

the corresponding field defined in the MSGDATA keyword. For example, %1

would be replaced by the first field defined in MSGDATA, %2 by the second field

defined in MSGDATA, and so on. The MSGNBR keyword must contain an

8-character message identifier; for example, *MSG0001.

To use message substitution on the DSPLY operation code, define a message data

type on the D specification. For example:

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

 *

D notFound M MSGNBR(*MSG0001)

D MSGDATA(cusno: file)

 *

The fields CUSNO and FILE are defined elsewhere in the program. Assume that

the message text for message *MSG0001 is:

Customer number %1 was not found in file %2.

To display the message with the DSPLY operation and have substitution done,

code the following on the C specification:

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

C notFound DSPLY rc 9 0

For more information on the DSPLY operation code, see the VisualAge RPG

Language Reference, SC09-2451-04.

Translating Message Files

You do not have to recompile your application to incorporate translated messages.

You can have more than one message file in a runtime directory, by assigning

different file extensions to each. For example, an English version of the compiled

message file could be named SAMPLE.ENG and a German version could be

named SAMPLE.GER. You can instruct the user to rename the appropriate message

file to SAMPLE.MSG before running the application.

262 Programming with VisualAge RPG

Manually Changing Message Files

You can manually edit the .TXM ASCII file for translation purposes. This file

contains the messages you created for your application. It is created in the source

directory that is specified when the application is created.

An example of the record layout of the file is shown in Figure 57.

 Make sure that you edit only the text that appears after the colon (:) in the record

layout.

The first record identifies the message prefix, and the following records each

represent a message in the application.

Each message has a message prefix, MSG; a four-digit identifier or ID number; and

a letter describing the type of message. In our example, message number 1 is an

information message, and message number 2 is a warning message.

Do not do any of the following:

v Modify the message ID. Changing message IDs will cause unpredictable results.

Without a message ID, your message cannot be displayed.

v Add a message. The message style will not be defined, and the message will

never display in the Define Messages window.

v Delete a message. The Define Messages window will still display everything

about the message except its message text.

Using Messages as Labels

You can set the label for any part that has a LABEL attribute from the message text

in a message file. Any label with the prefix ‘*MSG’ indicates the message text from

a message file. In the example in Figure 58, the label for the push button PB1 is set

with the text from message number 0001 in the message file.

 If the message number cannot be found in the component message file, then the

application searches the message file indicated by the *component MsgFile

attribute for the message number. If the message number does not exist in either

message file, then the message identifier (in this example, MSG0001) appears as the

label text.

 MSG

 MSG0001I:The file was saved to your current working directory.

 MSG0002W:Another user already has this file open for editing.

Figure 57. Sample record layout for a TXM file

 C ’PB1’ SETATR ’*MSG0001’ ’Label’

Figure 58. Dynamically setting a part label from a message file

Chapter 16. Working with Messages 263

264 Programming with VisualAge RPG

Chapter 17. Communicating Between Objects

With VisualAge RPG, you can perform various kinds of communications between

objects.

Part to Part

You can link parts in VisualAge RPG so that one part notifies another that

it has changed, and the recipient part issues an event when it is notified of

this change.

VisualAge RPG application to other PWS applications

You can enable your application to exchange information with another

application that supports the DDE protocol. A VisualAge RPG application

can be either the client or the server in the exchange. For information on

the client function, see “DDE Client” on page 74. The server function is

described in this section.

Component to Component

You can enable one component to communicate with another.

You can also use operation codes to do the following:

v Call local functions

v Call local programs

v Start and stop components

v Call remote programs

This section provides helpful tips for each type of communication, and gives

examples.

Linking Parts

The following parts can be linked using VisualAge RPG:

v Check box

v Entry field

v Image

v List box

v Media

v Media panel

v Slider

v Timer

A part that notifies another part when it changes is called the source part, and the

part that is notified of this change is called the target part.

One way to set up communication between a source part and a target part is to

use the Link page of the source part’s properties notebook. In the fields provided,

type the name of the target part and the name of the window in which it resides.

If you want the target to issue a Link event when it is notified by the source part,

select the Enable notify target check box.

Alternatively, you can set up the communication link by setting the AddLink

attribute and the target in the form WindowName|PartName. If you want the target

to issue a Link event, set the AllowLink attribute to 1. Figure 59 on page 266

© Copyright IBM Corp. 1994, 2005 265

shows sample code used to link a media panel part, MMP1, to a media part,

AUDIO1.

Note: You can set only one link for a source part in the GUI Designer, but you can

set multiple links in your code.

Using a VisualAge RPG Application as a DDE Server

Any VisualAge RPG application can act as a server in a dynamic data exchange

(DDE) conversation.

Parts that can be a source of a LINK event can produce DDE data. A DDE client

part can obtain data from a component of the same application or a different

application. For more information about the DDE client part, see “DDE Client” on

page 74.

For example, assume that you are building an application called CLIENT. It

consists of a window called WINDOW_C, a DDE client part called DDECLI_C,

and a static text part called STTEXT_C.

Suppose the application needs data from a server application called SERVER. This

server application has a window called WINDOW_S and an entry field part called

ENTRY_S. Whenever the value in the entry field of the server application is

changed, the static text part of the client application is updated to reflect the

change.

To establish a hot link between the client and server applications, you would

specify the following attributes of the DDECLI_C DDE client part in the client

application:

AppName

This is the name of the server application: SERVER.EXE.

Topic

This is the name of the server component, followed by a vertical bar, followed by

the component instance name. For VisualAge RPG, in most cases the component

name is the same as the component instance name, and also the same as the

executable name. For this example, the component name is SERVER|SERVER.

Item

This is the name of the server part. For VisualAge RPG programs, this is the

window name, followed by a vertical bar, followed by the part name. In this

example, the item attribute value is WINDOW_S|ENTRY_S.

 *

 C ’MMP1’ SETATR ’WIN2|AUDIO1’ ’AddLink’

 C ’MMP1’ SETATR 1 ’AllowLink’

 *

Figure 59. Sample code showing one part linked to another

266 Programming with VisualAge RPG

DDEAddLink

This is the name of the client part. It consists of the window name, followed by a

vertical bar, followed by the part name. In this example, the DDEAddLink

attribute is WINDOW_C|STTEXT_C.

DDEMode

Set DDEMode to 1 to begin the conversation and initiate the hot link between the

server and the client. To terminate the conversation, set DDEMode to 2. This

signals the Terminate event to the client application.

Communicating Between Components

Components are projects in VisualAge RPG. They represent one or more

application windows that were created with the GUI Designer. An example is a

window that prompts a user to enter the name of an image file, and then displays

the image. To enable one VisualAge RPG component to communicate with another,

use a component reference part. For more information, see “Component Reference”

on page 65.

Making Local Calls

This section discusses local calls you can make using these operation codes:

Operation Code

Purpose

CALLB

Calls a local function. The function can be in an object code file (OBJ) or

exported from a dynamic link library (DLL).

CALLP

Calls a local program or function (procedure) . The function must be

exported from a dynamic link library (DLL). For more information, see

“Using Multiple Procedures” on page 274. Using CALLP is preferable to

using CALLB.

START

Starts a new component in the application or calls a local program.

Using the CALLB Operation

Use the CALLB operation code to call a function from your VisualAge RPG

application. If you are linking to an OBJ that was compiled in a language other

than RPG, make sure that the runtime environment for the compiler is correctly

initialized and terminated (see the compiler documentation for more information).

The following examples illustrate the different ways that you can call a C function

using CALLB. Figure 60 on page 268 contains the sample C function that is called.

Chapter 17. Communicating Between Objects 267

Calling functions using named constants or literals

The following examples illustrate how to call a function using a named constant or

literal:

#include <stdio.h>

 *

/*The following two lines are required only if you compile */

/*the OBJ with the IBM C/C++ compiler. These lines */

/*are not required if the function is exported from a DLL. */

int _CRT_init(void);

void _CRT_term(void);

 *

/* print the str and age parameters to a file */

void MYFUNC(char *str, int *age) {

 FILE *fp;

 int j;

 *

/*The following line is required only if you compile */

/*the OBJ with the IBM C/C++ compiler. This line */

/*is not required if the function is exported from a DLL. */

 _CRT_init();

 *

 fp=fopen("myfunc.log", "a");

 *

 /* print the character data to a file*/

 for (j=0; j<10; ++j) {

 fprintf(fp, "%c", str[j]);

 }

 *

 /* if an age is given, print the age */

 if (age == NULL) {

 fprintf(fp, "no age is given\n");

 } else {

 fprintf(fp, "num = %d\n", *age);

 }

 *

 fclose(fp);

 *

/*The following line is required only if you compile */

/*the OBJ with the IBM C/C++ compiler. This line */

/*is not required if the function is exported from a DLL. */

 _CRT_term();

}

Figure 60. Sample C function, MYFUNC

 DConst1 C CONST(’MYFUNC’)

 Dwilma s 80a inz(’mydata’)

 Dage s 9b 0 inz(32)

 *

 *

 C *inzsr begsr

 c***

 c*********** *** CALLB in VRPG with a PLIST *** ******************

 c***

 C myplist plist

 C parm wilma

 C parm age

 C CALLB Const1 myplist

 C seton lr

 C endsr

Figure 61. Calling functions using a named constant

268 Programming with VisualAge RPG

Calling functions using a procedure pointer

The following example illustrates how to call a function using a procedure pointer.

If a procedure pointer is used with CALLB, then the *ROUTINE field in the

program status data structure (PSDS) is not updated with the name of the function

being called. The field is set to blanks.

Calling functions without the required parameters

The following example illustrates how to call a function with less than the required

number of parameters. Use the *OMIT parameter which maps to a NULL pointer.

Calling Local Programs using CALLP

Use CALLP to make calls to local programs synchronously. This means that the

called program completes execution before the VisualAge RPG statement following

CALLP is executed.

Each program that you call using CALLP requires a prototype. The prototype

defines the system name of the called program and the number and types of

parameters that the program is expecting. Specify this prototype using the PR type

definition specification. This specification consists of:

 *

 Dwilma s 80a inz(’mydata’)

 Dage s 9b 0 inz(32)

 C *inzsr begsr

 C callb ’MYFUNC’

 C parm wilma

 C parm age

 C seton lr

 C endsr

Figure 62. Calling library functions using a literal

 *

 Dp2 s * procptr inz(%paddr(’MYFUNC’))

 Dwilma s 80a inz(’mydata’)

 Dage s 9b 0 inz(32)

 C *inzsr begsr

 C callb p2

 C parm wilma

 C parm age

 C seton lr

 C endsr

Figure 63. Calling functions using a procedure pointer

 *

 Dp2 s * procptr inz(%paddr(’MYFUNC’))

 Dwilma s 80a inz(’mydata’)

 Dage s 9b 0 inz(32)

 C *inzsr begsr

 C callb p2

 C parm wilma

 C parm *OMIT

 C seton lr

 C endsr

Figure 64. Calling functions without the required parameters

Chapter 17. Communicating Between Objects 269

Columns

Description

6 D

7-21 Name of the program to be used in the VisualAge RPG program

24-25 PR

44-80 keyword

Use the CLTPGM keyword with the system name of the program as a parameter.

If the program expects parameters, use one definition specification for each

parameter immediately after the PR definition specification. These definition

specifications should consist of the name, length, and type of parameter. Specify

the precision of numeric parameters. Always specify the VALUE keyword. You can

also specify the ASC, DATFMT, DESC, DIM, LIKE, NOOPT, OPTIONS, and

TIMFMT keywords on your parameter definitions.

Figure 65 defines pgm1 to VisualAge RPG. One parameter can be passed to the

program.

 In Figure 66, the CALLP operation code calls pgm1 with parameters f1d1 and 22.4.

 For more information on procedures, see “Using Multiple Procedures” on page

274.

Calling Local Programs using START

When you use the START operation code to call a program, VisualAge RPG does

not wait for the called program to finish executing, but makes the call and then

continues. From that point on, the called program executes independently of the

VisualAge RPG program that called it.

When using START, you do not have to prototype local programs.

F2 can be a character literal, a named constant, or a variable name.

If F2 is a character literal, it is assumed to be a component. If it is a constant name

and you specify LINKAGE(*CLIENT) on the definition of the constant, it is

assumed to be a local program. See Figure 67 on page 271.

D pgm1 PR CLTPGM(’testprog’)

D parm1 20A VALUE

Figure 65. Specifying definition specification parameters when calling local programs

C CALLP pgml(f1d1:22.4)

Figure 66. Calling a local program using CALLP

270 Programming with VisualAge RPG

If F2 is a variable name, it is assumed to be the component name unless you define

the variable on a definition specification with LINKAGE(*CLIENT) specified. Any

variable defined in this way can be used like any other RPG field. In Figure 68, the

first START operation code will attempt to start a component, and the second

START operation code will attempt to start a local program.

 START can still have a PLIST specified in the result field, or it can be followed by

a list of PARMS. These PARMS are passed to the component or local program.

Restrictions for CALLP and START

Note these restrictions when using CALLP and START operation codes with local

programs:

v The PATH environment variable is used to find the local program if the program

name is not specified with a full path name.

v The program can normally have a maximum of 20 parameters. In some cases,

this maximum is less than 20 because the command string must not exceed 1024

bytes. (The command string consists of the program name and the parameters

converted to characters.)

v Pointers and procedure pointers are not allowed as parameters. Everything must

be passed by value.

v When you use START with an error indicator to call local programs, the error

indicator is set to ON if the local program cannot be started.

v LINKAGE(*SERVER) is not valid with the START operation code.

v When specifying the name of a program to call, include the extension if it is

other than EXE. If you do not provide an extension, EXE is assumed. For

example,

CLTPGM(’superc2’)

Calls SUPERC2.EXE

CLTPGM(’rexxpgm’)

Calls REXXPGM.EXE

CLTPGM(’rexxpgm.cmd’)

Calls REXXPGM.CMD
This applies when specifying the program name as a named constant for START,

or when passing the program name as a variable.

D test1 C ’component’

D test2 C ’testprog’ LINKAGE(*CLIENT)

 *

*To start a component:

C START ’xxx’

 *

*To start a component:

C START test1

 *

*Starts local program testprog.exe:

C START test2

Figure 67. Example using START to call local programs

D name1 S 20A

D name2 S 20A LINKAGE(*CLIENT)

 *

C START name1

C START name2

Figure 68. Defining variable names for the START operation code

Chapter 17. Communicating Between Objects 271

Starting Components using START

Use the START operation code to start a new component in the application, and

the STOP operation code to terminate its execution. For a detailed description of

the syntax for these two operation codes, see VisualAge RPG Language Reference.

The following section describes the behavior of START and STOP with your

application’s components.

Starting a Component

The START operation code starts a new component in the application. When the

operation is performed, both the starting and the started components, together

with any other active components in the application, are ready to receive user

actions on all the parts currently enabled by all the components.

The START operation code is similar to the CALL operation code in the following

ways:

v Parameters can be passed to a component.

v Parameters are mapped to the parameters in the *ENTRY PLIST of the target

component.

v In the source component, factor 2 of the PARM operation code is copied to the

result field of the same PARM operation code. When control returns to the

source component, the result field is copied to factor 1.

v In the target component, the result field is copied to factor 1. When control

returns to the source component, factor 2 is copied to the result field if the target

component completes a successful startup.

v No checks or conversions are performed on the parameters.

The START operation code is different from the CALL operation code in the

following ways:

v The terms called and calling are used with the CALL operation code. A called

program is a program whose execution is requested by another program. A

calling program is a program that requests the execution of another program.

With the START operation code, the terms target (called) and source (calling) are

used.

v CALL invokes a program, executes it, then returns back to the calling program

with factor 1, factor 2, and the result field copied as described above. START

initializes a component, executes its *INZSR, and returns to the source

component with factor 1, factor 2, and the result field copied as described above.

The difference is that with the START operation code, factor 2 in the target

program is copied to the result field at the end of the *INZSR (if *INZSR is

successful), not at the end of the program.

v Once the START operation has finished initializing the target component, the

action subroutine in the source component continues executing, and the target

component remains active with its action subroutines enabled to receive events.

v Since parameters are passed by address, any parameters that are passed can be

accessed by both the source and target components after the initial START has

ended. This means that both the source and target components can continue to

share information using the parameter fields.

Terminating a Component

The STOP operation code terminates the execution of a component. If you do not

specify the component name in factor 2, the component that is currently running is

terminated. When a component is terminated, any child components that it may

have started are terminated first.

272 Programming with VisualAge RPG

When a STOP operation is performed that affects the currently executing

component, operations following the STOP are not executed. In other words, the

result of a STOP is immediate. For example, if COMPA starts COMPB, and

COMPB is the component that is currently executing and it issues a STOP for

COMPA, COMPB terminates first, followed by COMPA. No operations following

the STOP are performed.

Terminating a component with a STOP is considered normal termination, and the

*TERMSR is invoked for any final user processing.

Calling Remote Programs

This section discusses how your VisualAge RPG application can call an iSeries 400

program, and how an RPG application running on an iSeries 400 server can call a

VisualAge RPG application.

Calling iSeries 400 Programs

Before your application can call an iSeries server program, you must set up the

server.

The name of the called program can be either the iSeries server program name

(optionally library-qualified) or an override name. You can define the program

override using the Program page of the Define iSeries Information notebook. See

“Notebook Considerations” on page 193 for information about what happens if the

notebook pages do not contain an override name for the data area.

Table 12 and Figure 69 on page 274 illustrate how to call an iSeries program using

an override name. The program in Figure 69 on page 274 calls MYLIB/LOOKUP

on SERVER01.

 Table 12. Enter this information on the Program page

Program override name: REMPGM

Remote program name: MYLIB/LOOKUP

Server alias name: SERVER01

Chapter 17. Communicating Between Objects 273

Note: If the program on the iSeries server contains a workstation file, it will fail

when the system attempts to open it. Since the remote call command is done

through the DDM server, the display device is unknown to workstation data

management. A technique you can use is to create the workstation file on

the iSeries server with the Display Device value set to the name of the

session (OMXxxxx) and set the Maximum Number of Devices parameter to

a value greater than 1. This will allow parameters to be passed to the iSeries

server program. Do not try to explicitly acquire the session with an ACQ

statement. This will cause a conflict to occur which results in an error. You

still cannot acquire any 5250 emulator display device on your workstation,

because it will result in a deadlock that can only be ended by rebooting the

workstation.

Starting Workstation Programs from the iSeries server

If you have an RPG application running on the server and would like to start a

VisualAge RPG application on a Windows workstation, use the STRPCCMD

command.

Using Multiple Procedures

The ability to code more than one procedure greatly enhances your ability to code

a modular application.

 * *

 * Program ID . . : rcallex.vpg *

 * *

 * Description . : Code segment to call a remote program on the *

 * AS/400. *

 * *

 *

 * REMPGM is the remote program alias name

 D as400pgm S 6A INZ(’REMPGM’) LINKAGE(*SERVER)

 * The following variables are parameters that are passed to the

 * remote program

 * student_id - input

 * name - output

 D student_id S 6S 0 INZ(32533)

 D name S 20A

 * *

 * Window . . : WIN1 *

 * *

 * Part . . . : PSB0000C *

 * *

 * Event . . : PRESS *

 * *

 * Description: Call a remote program on the AS/400 to get the name *

 * of the person associated with a student id. *

 * *

 *

 C PSB0000C BEGACT PRESS WIN1

 C CALL as400pgm

 C PARM student_id

 C PARM name

 C ENDACT

Figure 69. Calling an iSeries 400 program

274 Programming with VisualAge RPG

A VisualAge RPG program consists of one or more modules. A procedure is any

piece of code that can be called with a bound call. VisualAge RPG has two kinds

of procedures: a main procedure and a subprocedure. A main procedure is a

procedure that can be specified as the program entry procedure and receives

control when it is first called. Note that a main procedure is only produced when

creating an EXE.

A subprocedure is a procedure that is specified after the main source section. A

subprocedure differs from a main procedure primarily in that:

v Names that are defined within subprocedure are not accessible outside the

subprocedure.

v The call interface must be prototyped.

v Calls to subprocedures must be bound procedure calls.

v Only P, D, and C specifications can be used.

Subprocedures can provide independence from other procedures because the data

items are local. Local data items are normally stored in automatic storage, which

means that the value of a local variable is not preserved between calls to the

procedure.

Subprocedures offer another feature. You can pass parameters to a subprocedure

by value, and you can call a subprocedure in an expression to return a value.

Prototyped Calls

To call a subprocedure, you must use a prototyped call. You can also call any

program or procedure that is written in any language by using a prototyped call. A

prototyped call is one where the call interface is checked at compile time through

the use of a prototype. A prototype is a definition of the call interface. It includes

the following information:

v Whether the call is bound (procedure) or dynamic (program)

v How to find the program or procedure (the external name)

v The number and nature of the parameters

v Which parameters must be passed, and which are optionally passed

v The data type of the return value, if any (for a procedure)

The prototype is used by the compiler to call the program or procedure correctly,

and to ensure that the caller passes the correct parameters. Figure 70 shows a

prototype for a procedure FmtCust, which formats various fields of a record into

readable form. It has two output parameters.

 To produce the formatted output fields, FmtCust calls a procedure NumToChar.

NumToChar has a numeric input parameter that is passed by value, and returns a

character field. Figure 71 on page 276 shows the prototype for NumToChar.

 * Prototype for procedure FmtCust (Note the PR on definition

 * specification.) It has two parameters.

 D FmtCust PR

 D Name 100A

 D Address 100A

Figure 70. Prototype for FmtCust Procedure

Chapter 17. Communicating Between Objects 275

If the program or procedure is prototyped, you call it with CALLP or within an

expression if you want to use the return value. You pass parameters in a list that

follows the name of the prototype, for example, name (parm1 : parm2 : ...).

Figure 72 shows a call to FmtCust. Note that the names of the parameters, shown

in Figure 70 on page 275, do not match those in the call statement. The parameter

names in a prototype are for documentation purposes only. The prototype serves to

describe the attributes of the call interface. The actual definition of call parameters

takes place inside the procedure itself.

 Using prototyped calls you can call (with the same syntax):

v Programs that are on the system at run time

v Exported procedures in other modules

v Subprocedures in the same module

In order to format the name and address properly, FmtCust calls NumToChar to

convert the customer number to a character field. Because FmtCust wants to use

the return value, the call to NumToChar is made within an expression. Figure 73

shows the call.

 The use of procedures to return values, as in the above figure, allows you to write

any user-defined function you require. In addition, the use of a prototyped call

interface opens up a number of options for parameter passing.

v Prototyped parameters can be passed in several ways: by reference, by value (for

procedures only), or by read-only reference. The default method for RPG is to

pass by reference. However, passing by value or by read-only reference gives

you more options for passing parameters.

v If the prototype indicates that it is allowed for a given parameter, you may be

able to do one or more of the following:

– Pass *OMIT

– Leave out a parameter entirely

– Pass a shorter parameter than is specified (for character and graphic

parameters, and for array parameters)

 * Prototype for procedure NumToChar

 * The returned value is a character field of length 31.

 D NumToChar PR 31A

 * The input parameter is packed with 30 digits and 0 decimal

 * positions, passed by value.

 D NUMPARM 30P 0 VALUE

Figure 71. Prototype for NumToChar Procedure

 C CALLP FmtCust(RPTNAME : RPTADDR)

Figure 72. Calling the FmtCust Procedure

 *--

 * CUSTNAME and CUSTNUM are formatted to look like this:

 * A&P Electronics (Customer number 157)

 *--

 C EVAL Name = CUSTNAME + ’ ’

 C + ’(Customer number ’

 C + %trimr(NumToChar(CUSTNUM)) + ’)’

Figure 73. Calling the NumToChar Procedure

276 Programming with VisualAge RPG

Procedure Considerations

v You cannot define return values for a main procedure. Parameters must be

passed by value.

v A main procedure is only contained within an EXE. you specify that its

parameters be passed by value.

v Any of the calculation operations may be coded in a subprocedure. However, all

files must be defined globally, so all input and output specifications must be

defined in the main source section. Similarly, all data areas must be defined in

the main procedure, although they can be used in a subprocedure.

v The control specification can only be coded in the main source section since it

controls the entire module.

v A subprocedure can be called recursively. Each recursive call causes a new

invocation of the procedure to be placed on the call stack. The new invocation

has new storage for all data items in automatic storage, and that storage is

unavailable to other invocations because it is local. (A data item that is defined

in a subprocedure uses automatic storage unless the STATIC keyword is

specified for the definition.)

The automatic storage that is associated with earlier invocations is unaffected by

later invocations. All invocations share the same static storage, so later

invocations can affect the value held by a variable in static storage.

v Exception handling within a subprocedure differs from that in a main procedure

primarily because there is no default exception handler for subprocedures.

Situations where the default handler would be called for a main procedure result

in the abnormal end of the subprocedure.

v VisualAge RPG procedure names are in uppercase. When calling these

procedures, make sure that the case matches that of the procedure.

Procedure Implications

As a programmer, you have the have the option of producing three possible target

objects:

v A VisualAge RPG DLL (contains GUI operation codes)

v A utility DLL which contains only RPG subprocedures that do not include any

GUI operation codes

v An RPG EXE which does not contain any GUI operation codes.

VisualAge RPG DLL Considerations

v VisualAge RPG DLL subprocedures are not externalized.

These subprocedures are designated as internal only by the compiler. Entry

points are not externalized to other modules. Any attempt to link to these

subprocedures will cause the link step to fail.

v The EXPORT keyword is not allowed on procedure specifications, since

procedures cannot be exported from VisualAge RPG DLLs.

Utility DLL Considerations

This DLL is built when the keyword NOMAIN is provided on the control

specification.

The compiler will produce both a DLL and LIB file as a result of the compilation.

The LIB file will contain all the procedures that have the EXPORT keyword on

their Begin P-specification. The LIB file allows you to link to the subprocedures

that the DLL contains.

v The DLL consists of procedures only.

All subroutines (BEGSR) must be local to a procedure.

v There are no GUI operation codes allowed in the source.

Chapter 17. Communicating Between Objects 277

This includes START, STOP, SETATR, GETATR, %SETATR, %GETATR,

SHOWWIN, CLSWIN and READS. DSPLY can be used, but if the procedure

containing it is called from a VisualAge RPG DLL, then the DSPLY operation

code does nothing.

v *inzsr and *termsr are not permitted.

v *ENTRY parms are not permitted.

v Exception handling differs from the VisualAge RPG DLL in the following way:

– No information about the exception is communicated back to the caller if the

caller does not reside in the utility DLL.

– The recommended way for a user to handle exceptions in a utility DLL is to

have an error indicator, or a local *PSSR for each routine which returns an

appropriate return code to the caller.

– The default exception handler is never invoked from a utility DLL, since the

default exception handler is not invoked when an exception occurs in a

procedure. If an exception occurs in the utility DLL and there is no error

indicator or *PSSR, an exit() is performed and information about the

exception is written to the FVDCERRS.LOG file.

EXE Considerations

v An EXE is built when the keyword EXE is provided on the control specification.

v The EXE consists of procedures only.

All subroutines (BEGSR) must be local to a procedure. The EXE must contain a

procedure whose name matches the name of the source file. This will be the

main entry point for the EXE (i.e. the main procedure).

v There are no GUI operation codes allowed in the source.

This includes START, STOP, SETATR, GETATR, %SETATR, %GETATR,

SHOWWIN, CLSWIN and READS. DSPLY can be used.

v *inzsr and *termsr are not permitted.

v *ENTRY parms are not permitted.

If there are entry parameters, they are specified on the parameter definition for

the main procedure, and they must be passed in by VALUE (the VALUE

keyword must be specified for each parameter).

v The EXPORT keyword is not allowed on the Begin P specification.

v Exception handling differs from the VRPG DLL. The default exception handler is

never invoked from an EXE. If an exception occurs in the EXE, and there is no

error indicator or *PSSR, an exit() is performed and information about the

exception is written to the FVDCERRS.LOG file.

278 Programming with VisualAge RPG

Chapter 18. Calling Java Methods from VisualAge RPG

Programs

This section describes how to call Java methods from VARPG programs that have

been converted to Java source code, and the additions to the VARPG language to

support this. In order to call Java methods, the VARPG compiler needs the

following information:

v The name of the method

v The class that contains the method

v The class of the returned object if the method returns an object

v Whether or not the method is a static method

v The data types of the parameters passed to the method

In addition, if the method is not a static method, then an object must be

instantiated in order to call the method. If the method returns an object, then the

compiler must have somewhere to store that object. If the method accepts an object

as a parameter, then there must be some way to create that object.

These requirements have led to the following additions to the VARPG language:

v The Object data type

v The CLASS keyword

v Extension of the EXTPROC keyword

The Object Data Type and CLASS Keyword

Fields that can store objects are declared using the O data type. To declare a field

of type O, code O in column 40 of the D-specification and use the CLASS keyword

to provide the class of the object. The CLASS keyword accepts two parameters:

CLASS(*JAVA:class_name)

*JAVA identifies the object as a Java object. Class_name specifies the class of the

object. It must be a character literal, and the class name must be fully qualified.

The class name is case sensitive.

For example, to declare a field that will hold an object of type BigDecimal:

D bdnum S O CLASS(*JAVA:’java.math.BigDecimal’)

To declare a field that will hold an object of type String:

D string S O CLASS(*JAVA:’java.lang.String’)

Note that both class names are fully qualified and that their case exactly matches

that of the java class.

Fields of type O cannot be defined as subfields of data structures. It is possible to

have arrays of type O fields, but tables of type O are not allowed because they

have to be preloaded at run time.

The following keywords cannot be used with the CLASS keyword:

© Copyright IBM Corp. 1994, 2005 279

ALIGN, ALT, ASCEND, BASED, BUTTON, CLTPGM, CONST, CTDATA, DATFMT,

DESCEND, DTAARA, EXTFLD, EXTFMT, EXTNAME, FROMFILE, INZ, LINKAGE,

MSGDATA, MSGNBR, MSGTEXT, MSGTITLE, NOOPT, NOWAIT, OCCURS, OPTIONS,

OVERLAY, PACKEVEN, PERRCD, PREFIX, PROCPTR, STYLE, TIMFMT, TOFILE,

VALUE, VARYING

Prototyping a Java Method

Like subprocedures, Java methods must be prototyped in order to call them

correctly. The VARPG compiler must know the name of the method, the class it

belongs to, the data types of the parameters and the data type of the returned

value (if any), and whether or not the method is a static method.

The extended EXTPROC keyword can be used to specify the name of the method

and the class it belongs to. When prototyping a Java method, the expected format

of the EXTPROC keyword is:

EXTPROC(*JAVA:class_name:method_name | *JAVARPG:class_name:method_name)

*JAVARPG identifies the method as a VARPG-generated Java method. *JAVA

identifies the method as a Java method that was generated from code originally

written in Java, and not VARPG-generated. This distinction is important because

methods generated from *JAVARPG will allow certain data types to be passed by

reference that normally cannot be passed by reference in Java. This allows the

same source code to be used when targetting Windows and when generating Java

source code.

Both the class name and the method name must be character literals. The class

name must be a fully qualified Java class name and is case sensitive. The method

name must be the name of the method to be called, and is case sensitive.

The extended form of the EXTPROC keyword can only be used when calling Java

methods. If targeting Windows, using this form of the EXTPROC keyword will

result in a compiler error.

The data types of the parameters and the returned value of the method are

specified in the same way as they are when prototyping a subprocedure. The only

twist on this is that the data types actually map to Java data types. The compiler

maps VARPG data types to Java data types as follows:

 Java Data Type VARPG Data Type

char[] graphic or unicode

boolean indicator (N)

byte[] alpha (A of any length)

byte integer (3I)

int integer (10I)

short integer (5I)

long integer (20I)

float float (4F)

double float (8F)

any object object (O)

280 Programming with VisualAge RPG

Zoned, Packed, Binary, and Unsigned data types are not available in Java. If you

pass a Zoned, Packed, Binary, or Unsigned field as a parameter, the compiler will

do the appropriate conversion, but this will most likely result in truncation and/or

loss of precision.

If the method you are calling is a VARPG-generated method, meaning that

*JAVARPG has been specified as the first parameter of the EXTPROC keyword,

then Packed, Zoned, Binary, and Unsigned data types can be specified as the data

type of parameters and returned values. Methods generated from code originally

written in Java cannot use Packed, Zoned, Binary, and Unsigned data types on the

prototype for parameters or return values.

When calling a method, the compiler will accept arrays as parameters if the

parameter is prototyped using the DIM keyword. Otherwise, only scalar fields,

data structures, and tables will be accepted.

Currently, you cannot call methods which expect the following Java data types or

which return values of these types: byte, char, and long

If the return value of a method is an object, then you must provide the class of the

object by coding the CLASS keyword on the prototype. The class name specified

will be that of the object being returned. Use the EXTPROC keyword to specify the

class of the method being called.

If the method being called is a static method, then you must be specify the STATIC

keyword on the prototype.

In Java, the following data types can only be passed by value:

byte

int

short

long

float

double

Parameters of these types must have the VALUE keyword specified for them on

the prototype.

If the method you are calling is a VARPG-generated method, meaning that

*JAVARPG has been specified as the first parameter of the EXTPROC keyword,

then these data types can be passed by reference and the VALUE keyword is not

required.

Note that objects can only be passed by reference. The VALUE keyword cannot be

specified with type O. Since arrays are seen by Java as objects, parameters

mapping to arrays must also be passed by reference. This includes byte arrays.

Examples of Prototyping Java Methods

This section presents some examples of prototyping Java methods.

Example 1

The Java Integer class contains a static method called toString, which accepts an int

parameter, and returns a String object. It is declared in Java as follows:

String Integer.toString(int)

This method would be prototyped as follows:

Chapter 18. Calling Java Methods from VisualAge RPG Programs 281

D tostring PR O EXTPROC(*JAVA:

D ’java.lang.Integer’:

D ’toString’)

D CLASS(*JAVA:’java.lang.String’)

D STATIC

D num 10I 0 VALUE

The EXTPROC keyword identifies the method as a non VARPG-generated method.

It also indicates that the method name is ’toString’, and that it is found in class

’java.lang.Integer’.

The O in column 40 and the CLASS keyword tell the compiler that the method

returns an object, and the class of that object is ’java.lang.String’.

The STATIC keyword indicates that the method is a static method, meaning that an

Integer object is not required to call the method.

The data type of the parameter is specified as 10I, which maps to the Java int data

type. Because the parameter is an int, it must be passed by value, and the VALUE

keyword is required.

Example 2

The Java Integer class contains a static method called getInteger, which accepts

String and Integer objects as parameters, and returns an Integer object. Is is

declared in Java as follows:

Integer Integer.getInteger(String, Integer)

This method would be prototyped as follows:

D getint PR O EXTPROC(*JAVA:

D ’java.lang.Integer’:

D ’getInteger’)

D CLASS(*JAVA:’java.lang.Integer’)

D STATIC

D string O CLASS(*JAVA:’java.lang.String’)

D num O CLASS(*JAVA:’java.lang.Integer’)

This method accepts two objects as parameters. O is coded in column 40 of the

D-specification and the CLASS keyword specifies the class of each object

parameter.

Example 3

The Java Integer class contains a method called shortValue, which returns the short

representation of the Integer object used to invoke the method. It is declared in

Java as follows:

short shortValue()

This method would be prototyped as follows:

D shortval PR 5I 0 EXTPROC(*JAVA:

D ’java.lang.Integer’:

D ’shortValue’)

The STATIC keyword is not specified because the method is not a static method.

The method takes no parameters, so none are coded.

The returned value is specified as 5I, which maps to the Java short data type.

282 Programming with VisualAge RPG

Example 4

The Java Integer class contains a method called equals, which accepts an Object as

parameter and returns a boolean. It is declared in Java as follows:

boolean equals(Object)

This method would be prototyped as follows:

D equals PR N EXTPROC(*JAVA:

D ’java.lang.Integer’:

D ’equals’)

D obj O CLASS(*JAVA:’java.lang.Object’)

The returned value is specified as N, which maps to the Java boolean data type.

Creating Objects

In order to call a non-static method, an object is required. The class of the object

must be the same as the class containing the method. Objects are instantiated, or

created, by calling the class constructor. The class constructor is not a static

method, but it does not require an object to call it. The special method name

*CONSTRUCTOR is used when prototyping a constructor.

For example, in order to construct a BigDecimal object from a float value, the

constructor that expects a float parameter must be called as follows:

BigDecimal(float) returns a new BigDecimal object

The constructor would be prototyped as follows:

D bdcreate PR O EXTPROC(*JAVA:

D ’java.math.BigDecimal’:

D *CONSTRUCTOR)

D CLASS(*JAVA:’java.math.BigDecimal’)

D dnum 4F VALUE

Note that the parameter must be passed by value because it maps to the Java float

data type.

Calling Java Methods

Java methods can be called using existing operation codes CALLP (when no return

value is expected) and EVAL (when a return value is expected). No new syntax is

required.

When calling a static method, an object is not required in order to make the call.

When calling a non-static method, an object is required. The object to be used must

be coded as the first parameter in the call. This parameter is not specified on the

prototype, but is implied for all methods that are not static. This means that

whenever a method that is not static is called, a minimum of one parameter must

be specified.

Example 1

In this example, the goal is to add two BigDecimal values together. In order to do

this, two BigDecimal objects must be instantiated by calling the constructor for the

BigDecimal class, fields must be declared to store the BigDecimal objects, and the

add() method in the BigDecimal class must be called.

Chapter 18. Calling Java Methods from VisualAge RPG Programs 283

*

 * Prototype the BigDecimal constructor that accepts a String

 * parameter. It returns a new BigDecimal object.

 *

D bdcreate1 PR O EXTPROC(*JAVA:

D ’java.math.BigDecimal’:

D *CONSTRUCTOR)

D CLASS(*JAVA:’java.math.BigDecimal’)

D str O CLASS(*JAVA:’java.lang.String’)

 *

 * Prototype the BigDecimal constructor that accepts a double

 * parameter. 8F maps to the Java double data type and so must

 * be passed by VALUE. It returns a BigDecimal object.

 *

D bdcreate2 PR O EXTPROC(*JAVA:

D ’java.math.BigDecimal’:

D *CONSTRUCTOR)

D CLASS(*JAVA:’java.math.BigDecimal’)

D double 8F VALUE

 *

 * Define fields to store the BigDecimal objects.

 *

D bdnum1 S O CLASS(*JAVA:’java.math.BigDecimal’)

D bdnum2 S O CLASS(*JAVA:’java.math.BigDecimal’)

 *

 *

 * Since one of the constructors we are using requires a String object,

 * we will also need to construct one of those. Prototype the String

 * constructor that accepts a byte array as a parameter. It returns

 * a String object.

 *

D makestring PR O EXTPROC(*JAVA:

D ’java.lang.String’:

D *CONSTRUCTOR)

D CLASS(*JAVA:’java.lang.String’)

D bytes 10A

 *

 * Define a field to store the String object.

 *

D string S O CLASS(*JAVA:’java.lang.String’)

 *

 * Prototype the BigDecimal add method. It accepts a BigDecimal object

 * as a parameter, and returns a BigDecimal object (the sum of the parameter

 * and of the BigDecimal object used to make the call).

 *

D add PR O EXTPROC(*JAVA:

D ’java.lang.BigDecimal’:

D ’add’)

D CLASS(*JAVA:’java.math.BigDecimal’)

D bd1 O CLASS(*JAVA:’java.math.BigDecimal’)

 *

 * Define a field to store the sum.

 *

D sum S O CLASS(*JAVA:’java.math.BigDecimal’)

D

D double S 8F INZ(1.1)

D fld1 S 10A

Here is the code that does the call.

C MOVEL ’mystring’ fld1 10

C*

C* Call the constructor for the String class, to create a String

C* object from fld1. Since we are calling the constructor, we

284 Programming with VisualAge RPG

C* do not need to pass a String object as the first parameter.

C*

C EVAL string = makestring(fld1)

C*

C* Call the BigDecimal constructor that accepts a String

C* parameter, using the String object we just instantiated.

C*

C EVAL bdnum1 = bdcreate1(string)

C*

C* Call the BigDecimal constructor that accepts a double

C* as a parameter.

C*

C EVAL bdnum2 = bdcreate2(double)

C*

C* Add the two BigDecimal objects together by calling the

C* add method. The prototype indicates that add accepts

C* one parameter, but since add is not a static method, we

C* must also pass a BigDecimal object in order to make the

C* call, and it must be passed as the first parameter.

C* bdnum1 is the object we are using to make the

C* call, and bdnum2 is the parameter.

C*

C EVAL sum = add(bdnum1:bdnum2)

C* sum now contains a BigDecimal object with the value

C* bdnum1 + bdnum2.

Example 2

This example shows how to perform a TRIM in Java by using the trim() method as

an alternative to the VARPG %TRIM built-in function. The trim() method in the

String class is not a static method, so a String object is needed in order to call it.

 *

 * Define a field to store the String object we wish to trim

 *

D str S O CLASS(*JAVA:’java.lang.String’)

 *

 * Prototype the constructor for the String class. The

 * constructor expects a byte array.

 *

D makestring PR O EXTPROC(*JAVA:

D ’java.lang.String’:

D *CONSTRUCTOR)

D CLASS(*JAVA:’java.lang.String’)

D parm 10A

D

 *

 * Prototype the String method getBytes which converts a String to a byte

 * array. We can then store this byte array in an alpha field.

 *

D makealpha PR 10A EXTPROC(*JAVA:

D ’java.lang.String’:

D ’getBytes’)

 *

 * Prototype the String method trim. It doesn’t take any parameters,

 * but since it is not a static method, must be called using a String

 * object.

 *

D trimstring PR O EXTPROC(*JAVA:

D ’java.lang.String’:

D ’trim’)

 *

D fld S 10A INZ(’ hello ’)

Chapter 18. Calling Java Methods from VisualAge RPG Programs 285

The call is coded as follows:

C*

C* Call the String constructor

C*

C EVAL str = makestring(fld)

C*

C* Trim the string by calling the String trim() method.

C* We will reuse the str field to store the result.

C*

C EVAL str = trimstring(str)

C*

C* Convert the string back to a byte array and store it

C* in fld.

C*

C EVAL fld = makealpha(str)

Static methods are called in the same way, except that an object is not required to

make a call. If the makealpha() method above was static, the call would look like:

C EVAL fld = makealpha()

If the method does not return a value, use the CALLP operation code.

Additional Considerations

The compiler will not attempt to resolve classes at compile time. If a class cannot

be located at run time, a runtime error will occur. It will indicate that an

UnresolvedLinkException object was received from the Java environment.

The compiler does no type checking of parameters at compile time. If there is a

conflict between the prototype and the method being called, an error will be

received at run time.

It is very important that *JAVARPG be specified as the first parameter of

EXTPROC if the method being called is a non VARPG-generated method. If this is

not done, it is likely that one of the above two error situations will occur.

286 Programming with VisualAge RPG

Chapter 19. Considerations When Compiling for Java

This section describes VARPG source restrictions, possible changes required in

your VARPG source, and runtime behaviour diffferences when using the Java build

option to create Java source.

Project File Name Convention

The project file name for a Java application must follow Java naming conventions.

The first character must be alphabetic. If your project’s name is incorrect, you can

use the Rename Project utility to rename it. (Select Rename project from the pop-up

menu of the project’s icon.)

Conditional Compile Directives

Two conditional compiler directives are defined by the compiler to help maintain a

single source file that can be used to create both Windows components and Java

source code. These directives are:

v COMPILE_WINDOWS is defined by the compiler when a Windows build is

requested.

v COMPILE_JAVA will be defined by the compiler when a Java build is

requested.

Since the compiler defines these two names, it is not necessary to define them

using the /DEFINE directive.

Java Source Code Restrictions

The following language elements are not supported when generating Java source

code:

Keywords:

v ALIGN

v EXPROPTS

v STATIC on field definitions. STATIC is supported on Java method

prototypes.

Operation codes:

v ALLOC

v CABxx

v CALLB

v DEALLOC

v DSPLY (only for NOMAIN and EXE; otherwise supported)

v GOTO

v REALLOC

v TAG

Operation extenders:

v M

v R

Language Elements:

v Embedded SQL

Data types:

© Copyright IBM Corp. 1994, 2005 287

v Pointer data type

File types:

v SPECIAL

File operations:

v Writing records by relative record number

Possible VARPG Source Changes

This section summarizes the changes that may be required to your VARPG source

in order to generate the Java source code.

 1. The to/from notation must be used when defining subfields of the PSDS and

INFDS in order to allow the compiler to validate the subfield definitions. The

definition of subfields in the INFDS and PSDS must match the definitions

specified in the VARPG Language Reference. A compile time error will be

issued if they do not.

 2. There cannot be an unconditional LEAVE or ITER operation as anything other

than the last operation in a loop, otherwise the Java compiler will issue an

error. If there is an unconditional LEAVE or ITER operation in a loop, all

operations occuring after it in the loop should be deleted, as they will never

be executed.

 3. When adding and and subtracting date/time/timestamp durations, only

values between maxint (2 147 483 647) and -maxint (-2 147 483 648) can be

used.

 4. Because Java does not allow int (10I), short (5I), float (4F), and double (8F)

values to be passed by reference, Java code has to be generated by VARPG to

retain this functionality for subprocedures being converted to Java. The code

generated to accomplish this can cause java compiler errors when the VARPG

source contains subprocedures with multiple return points and receives

integer or float parameters passed by reference.

Sample code that may cause Java compile errors:

 C IF x = 1

 C ...

 C RETURN 1

 C ELSE

 C ...

 C RETURN 0

 C ENDIF

The preceding code should be changed to:

 C IF x = 1

 C ...

 C RETURN 1

 C ELSE

 C ...

 C ENDIF

 C RETURN 0

 5. The characters ’*’, ’#’, and ’@’ cannot be used in Java identifiers. Because of

this, all occurences of ’*’, ’#’, and ’@’ in VARPG names will be changed to ’_’.

It is possible that this conversion will result in duplicate names.

 6. If a COMMIT or ROLBK operation is coded within an application that has no

files, a severity 30 message (RNF7833) will be issued.

 7. Due to the way that a local *PSSR is converted to Java, it is not possible to call

a local *PSSR. Also note that since GOTO is not supported, the only way to

leave a local *PSSR and avoid the default handler is to code a RETURN

operation.

 8. There is no short circuiting of logical expressions. This means that the order in

which a compound logical expression is executed cannot be relied upon.

288 Programming with VisualAge RPG

9. Varying length fields are implemented as a class when converting to Java.

This means that they are not stored as documented in the VARPG Language

Reference. Code that depends on them being stored a certain way will not

work.

10. Data structure subfields will not be initialized to blanks if there is no initial

value provided, but will be initialized to a default value depending on the

datatype of the subfield. The default value is 0 for numerics, blanks for

character, and *LOVAL for date, time, and timestamp. Varying length fields

will have their length set to 0.

11. The *HIVAL and *LOVAL values are not allowed for graphic and UCS-2 fields.

12. If a length is specified for a data structure, it must match the total length of

the subfields it contains, otherwise the compiler will issue a severity 30

diagnostic message.

13. Subroutines cannot be defined within subprocedures. The only exception to

this is that a *PSSR can be defined within a subprocedure. Any subroutines

within subprocedures should be moved outside the subprocedure. If the

subroutine accesses local fields within the subprocedure, then either the fields

need to be changed to global fields, or the subroutine should be changed to a

subprocedure that accepts the local fields as parameters.

14. Unconditional LEAVE statements within DO loops are not supported. A Java

compiler error will occur if this situation exists. Since an unconditional LEAVE

within a DO loop means that the loop will only ever be executed once, the

LEAVE should be removed and the code changed to remove the loop

operation codes.

15. Using event attributes in fixed compound conditional statements currently

causes Java compile errors. The equivalent free form expression should be

used instead.

Sample code that may cause Java compile errors:

 C %mousex IFEQ x

 C %mousey ANDEQ y

 C ...

 C ENDIF

The preceding code should be changed to:

 C IF %mousex = x AND

 C %mousey = y

 C ...

 C ENDIF

16. An unconditional RETURN operation cannot be coded unless it is the last

statement in a user subroutine, action subroutine, or subprocedure. Otherwise,

the Java compiler may report errors.

17. An unconditional LEAVESR operation cannot be coded unless it is the last

statement in a user subroutine or action subroutine. Otherwise, the Java

compiler may report errors.

18. SELECT statements can cause Java compile errors when they occur in

subprocedures, contain RETURN operations, and no RETURN is coded within

the main body of the subprocedure.

Sample code that may cause Java compile errors:

 C SELECT

 C x WHENEQ y

 C RETURN 1

 C x WHENEQ z

 C RETURN 2

 C OTHER

 C RETURN 0

 C ENDSL

The preceding code should be changed to:

Chapter 19. Considerations When Compiling for Java 289

C SELECT

 C x WHENEQ y

 C RETURN 1

 C x WHENEQ z

 C RETURN 2

 C ENDSL

 C RETURN 0

In general, a RETURN operation should be coded for all possible code paths

of a subprocedure, otherwise the Java compiler may report errors.

19. Arrays cannot be passed by value to subprocedures.

Runtime Differences

Because of differences between the Windows and Java environments, an

application may run differently under Java than it does under Windows. The

following areas are affected:

 1. The %SCAN builtin function will return an integer result. In Windows, it

returns an unsigned result.

 2. The truncate numeric build option is unreliable and should not be depended

upon.

 3. When an I/O exception occurs, the user will not be given the option to retry

the operation.

 4. Data structures are not treated as one large character field when the Java

application is running. This may cause unexpected results if they are used as

such.

 5. The format of binary, integer, and unsigned datatypes is handled differently

for local files. When reading and writing local files, the Java format is

assumed, which means that the high order bytes are leftmost, whereas when

running as a Windows application, they are rightmost.

 6. Exception handling for subprocedures will behave the same as for action

subroutines. The default error handler will be called if there is no local *PSSR

or INFSR and no error indicator on the operation.

 7. If an invalid date, time, or timestamp value is encountered when reading or

writing a field to/from a file, the field will be set to the default value

(*LOVAL). No error is reported.

 8. Java can only handle a 3 digit millisecond portion in timestamps. When doing

calculations with timestamps that use all 6 digits of the millisecond portion

(meaning they do not have milliseconds in the form 000xxx), the results might

not be as expected.

 9. Intermediate results in expressions are not limited to 30 digits. In fact, when

running in the VARPG environment, no attention is paid to the precision of

intermediate results.

10. Memory cannot be shared between components. If a component is started by

another component via START, changes made to passed parameters are not

reflected across components.

11. Integer overflow or underflow will not be reported. Float overflow or

underflow will be reported as status 9999.

12. If an error occurs while a subprocedure in a NOMAIN or EXE application is

being executed, and there is no error indicator or *PSSR, then the error will be

reported back to the caller and handled by the caller. When running under

Windows, the application would terminate.

13. A status 50 error will never be issued when running Java applications. Java

gives no diagnostic messages for character conversions it cannot handle. Java

may issue a status 100 for an unsuccessful conversion or an

ArrayIndexOutOfBoundsException when the converted string is used.

14. Positioning a host file to Null-Valued Records when ALWNULL(*NO) has

been specified results in CPF5035.

290 Programming with VisualAge RPG

Applet Restrictions

The following language elements are not supported when running a VARPG applet

and will result in Java errors at run time:

v Printer files

v Local files

v Calling C functions, external subprocedures, EXEs.

v NOMAIN and EXE applications cannot be run as applets.

J2SDK 1.2 Printing Problems

The Java 2 Software Development Kit (J2SDK), version 1.2 or higher, is currently

experiencing problems when text is sent to a printer device. One workaround for

this problem is to run the Java application as follows:

 java -Djava2d.font.usePlatformFont=true -ms32m -mx32m <classname>

However, the printed text may not appear as expected. This problem will be

resolved when the existing problem with J2SDK 1.2 is fixed, without requiring a

VARPG update.

Chapter 19. Considerations When Compiling for Java 291

292 Programming with VisualAge RPG

Chapter 20. Creating and Running VisualAge RPG Applets

Once you have created a visual interface and the associated VARPG logic on your

workstation, you can build and deploy your application as a Java applet that runs

in any Web browser with an appropriate Java Virtual Machine (JVM). This gives

you the extra flexibility of making your application widely available over the

internet. Many users with browser access to your Web site can run the applet

inside their browser and also communicate with data on the iSeries server.

This section describes how to build and deploy such VARPG applets.

Creating Applets

Note: In order to build the Java version of a project, the Java 2 Software

Development Kit (J2SDK), version 1.2 or greater, must be installed on the

workstation. The J2SDK is available from Sun Microsystems at URL

http://java.sun.com/products/

To run applets, the international version of the Java 2 Run Time

Environment (J2RE) must be installed.

Applets are Java applications that run inside the context of a Web page. When a

Web page containing an applet is loaded, the applet’s code is downloaded from

the HTTP server to the workstation and the Java applet is started. Typically, the

applet is embedded in the main Web page and runs when the Web page is

displayed in a browser. Teh applet can also be displayed in a separate window.

There are no special design or development steps required to create VARPG

applets. Designing and coding your VARPG project is the same for applets as for

Windows applications. However, you may want to consider writing thin clients

when targeting as applets to avoid long download times. (See Appendix B,

“Writing Thin Client Applications,” on page 431 for more information.).

There are security restrictions for applets that you should be aware of. These

security restrictions are not VisualAge RPG restrictions, but are part of the Java

language run time specification for applets. Applets cannot:

v Access local resources on the client, such as, the file system and printers

v Open a socket connection to a different host from the one where the applet

resides. This means that you cannot load an applet from one iSeries 400 server

and access files that are on a different server.

You can , however, set up a policy file to relax some of these security restrictions.

See “Using the Security File for Applets” on page 210 and the Java documentation

for more information on setting up policy files.

Use the same steps to design and code your applet as you would to design and

code a typical Windows application . However, be aware of the restrictions that

apply when coding for the Java environment. Once you complete your applet’s

visual interface and the associated VARPG logic, build the application.

© Copyright IBM Corp. 1994, 2005 293

You can control your applet’s build options on the Java: Build options notebook.

Select Project>Build Options>Java from the VisualAge RPG design window to

display the Java Build Options for your project:

The majority of the settings are simliar to those used for building a Windows

application, with the following exceptions:

SSL Select SSL if you want all TCP/IP connections between your iSeries server

and Java applet or application to be encrypted using Secure Sockets Layer

technology. (See Appendix D, “Secure Sockets Layer (SSL) Setup,” on page

449 for information on SLL setup.)

Java Compiler

VisualAge RPG generates a Java source file (.java) from your project and

relies on an external Java compiler to create the class file (.class) from the

source. If you are not using the IBM or Sun Microsystem’s Java 2 SDK,

then you will need to specify the Java compiler you are using here.

Options

Pass any command line options you want to the Java compiler.

Applet - Embedded

Determines if your applet is run when the HTML page it is embedded in is

displayed in a Web browser, or if your applet starts in an external window.

Applet - Directory for HTML and JAR files

You can specify a directory where you want all of the required runtime

files for your applet to be placed. These files are generated when you build

your project for Java. By default, these files are placed in the project’s

source directory on your workstation.

 Hint: Map a network drive to your iSeries server and enter the IFS

directory where you would like to deploy the applet from.

Now that you have configured the options for your applet, you are ready to build

the project. From the project’s design window, select Project>Build>Java. Upon a

Figure 74. Listbox Sample - Java: Build Options Notebook

294 Programming with VisualAge RPG

successful build, the runtime files for the applet are created in the project’s source

directory or the directory specified in the Directory for HTML and JAR files Java

build option.

For example, if you build the Listbox sample to create a Java application and

specify c:\applet\Listbox as the directory to contain the applet’s runtime files,

you should see the following files in this directory:

listbox.htm

listbox_applet.htm

LISTBOX.jar

vapplet.jar

These files are used to deploy your applet from the Web server, as follows:

listbox.htm

Launches your applet using the Java Plug-in.

listbox_applet.htm

Checks the user’s workstation for the required VisualAge RPG Java

runtime (varpg.jar) file. If the workstation has the correct version of the

run time, then the browser opens the listbox.htm page. Otherwise, the user

is prompted to download and install the correct runtime file.

LISTBOX.jar

Contains the LISTBOX.class, LISTBOXApplet.class, LISTBOX.ODX,

LISTBOX.RST and any *Resources.properties (if you defined messages for

the application) files used by your project.

vapplet.jar

Contains a small subset of the VisualAge RPG Java run time that is

required on the Web server.

Testing Your Applet

This section describes the set up required for testing your VisualAge RPG applet.

1. Install the IBM or Sun Microsystem’s Java 2 Runtime Environment (J2RE).

VisualAge RPG generated applets require the international version of the Java

2 Run Time Environment (J2RE) to execute prorperly. When you install the IBM

or Sun Microsystem’s Java 2 SDK (or JRE), the Java Plug-in is automatically

installed. If you are running on your development machine, then the J2SDK

you installed for developing the applet is sufficient.

2. Add the VisualAge RPG Java run time (varpg.jar) file to your JRE’s extension

directory.

The VisualAge RPG Java run time file should be copied to each client machine

and added to the local JRE’s extension directory. Typically this is a subdirectory

named jre\lib\ext\. This avoids having to download the run time from the

HTTP server every time an applet is run from the Web page. The varpg.jar file

is located in the JAVA subdirectory under the WDSC install directory. For

example c:\wdsc\java\varpg.jar.

3. Copy your applet’s runtime files to the iSeries IFS directory where you will be

serving the applet from. In the Listbox sample, these files would be:

listbox.htm

listbox_applet.htm

LISTBOX.jar

vapplet.jar

Chapter 20. Creating and Running VisualAge RPG Applets 295

Hint: Map a network drive to your iSeries server and enter the IFS directory in

the Directory for HTML and JAR files Java build option before you create your

applet.

4. Set up the iSeries HTTP server to allow access to the directory containing your

applet.

You will need to start and configure the IBM HTTP Server if you have not

already done so. See HTTP Server for iSeries Webmaster’s Guide for information

on configuring the HTTP server.

Add a PASS statement to your iSeries HTTP configuration file that allows

access to the IFS directory where you placed the applet runtime files. For this

example the applet files are in the IFS directory /applets. So, add the following

PASS statement:

Pass /applets/* /applets/*

5. Run the applet from your Web browser. For example, open your Web browser

with the following URL:

http://Toras14m:999/Listbox.htm

where Toras14m is your iSeries server name, 999 is your HTTP port number,

and Listbox.htm is the Web page containing your applet.

Here is the Listbox applet running inside the Windows browser:

Troubleshooting

The following is a list of common configuration problems that can cause applets

not to run:

v The proper J2RE is not installed. Ensure that the Java 2 SDK or international

version of the J2RE is installed along with the Java Plug-in.

Figure 75. Listbox Applet Running inside Internet Explorer

296 Programming with VisualAge RPG

v The applet’s required runtime files are not in the correct directory on the server.

The files AppName.htm, AppName_applet.htm, vapplet.jar, and APPNAME.jar

need to be in the directory referenced in the second parameter to the HTTP

server’s Pass statement.

v Java file names are case sensitive. This causes the majority of configuration

issues. Make sure that all .jar files are in the correct case. Windows Explorer

does not always show file names in their actual case. Use the OS/400 wrklnk

command to check the case of the file names stored in the IFS.

If your applet is still not running, try enabling the Java Plug-in console to see if

any error messages are being displayed. Start the Plug-in control pannel by

selecting Start>Programs>Java Plug-in Control Panel. From the basic tab, select

Show Java Console and click Apply. Close all open Web browser windows and

restart the Web browser for the changes to take affect. The next time you run the

applet, the Java Console window appears with messages.

Running One Applet from Another

You can run one VisualAge RPG-generated applet from another, by modifying the

calling applet’s main .htm file to include the called applet. For example, to start

AppletB from AppletA, modify the AppletA.htm file as follows:

v Find the lines that inlcude APPLETA.jar and varpg.jar. Typically, the following

lines:

<PARAM NAME = "archive" VALUE = "APPLETA.jar , varpg.jar">

 ...

 archive = "APPLETA.jar , varpg.jar"

v Insert , APPLETB.jar between the varpg.jar and closing quotes so the VALUE

and archive values are now:

<PARAM NAME = "archive" VALUE = "APPLETA.jar , varpg.jar , APPLETB.jar">

 ...

 archive = "APPLETA.jar , varpg.jar , APPLETB.jar"

Be sure to include a blank character before and after the comma delimiter.

When you display the AppletA.htm page in your Web browser, it should now run

AppletB, too.

If the called applet (AppletB, in this example), also accesses data on the server, you

need to give each applet permission to read the security file that resides on the

workstation. Otherwise, the user will be prompted to enter a valid user Id and

password each time that AppletB is run. See“Using the Security File for Applets”

on page 210 for more information.

In this example, you need to modify the local policy file by adding the following

lines:

 permission java.lang.RuntimePermission "modifyThreadGroup";

 permission java.lang.RuntimePermission "modifyThread";

The policy file (java.policy) is located in the Java run time lib\security

subdirectory.

For socket permission, you may need to add a line like the following:

 permission java.net.SocketPermission

"server_name:port_number", "connect,resolve";

Chapter 20. Creating and Running VisualAge RPG Applets 297

If you need to change the name or location of this policy file, modify the

java.security file in the same directory.

298 Programming with VisualAge RPG

Chapter 21. Calling System Functions when Compiling for

Java

The VisualAge RPG compiler includes support for calling external procedures

implemented as function entry points in Dynamic Link Libraries (DLLs) on the

Windows platform through the Java Native Interface (JNI). This section discusses

how to use this support.

Refer to the Java Native Interface (JNI) section of the Java 2 Software Development

Kit (J2SDK) documentation as prerequisite reading.

A Simple Call

The first code example shows a simple call to an external procedure with no

parameters and no return value. The simple VisualAge RPG application calls an

external procedure in a sample dynamic link library. The JNI specification dictates

the function name and interface to the native function being called. A function will

be coded and compiled into a new DLL to be the target of the call. The following

samples will only demonstrate native functions coded in the C language, but the

illustrated coding principles apply equally to other language implementations.

Once the native function has control, it is free to call other native functions, such

as system APIs.

Code a procedure prototype for the procedure in VisualAge RPG, specifying the

DLL keyword to provide the name of the DLL which will contain the native

function being called. The EXTPROC keyword may optionally be coded to specify

a function name different from the procedure name within the VisualAge RPG

program.

Note: The value of the EXTPROC keyword is case sensitive. Code a call to the

procedure in the VisualAge RPG source.

© Copyright IBM Corp. 1994, 2005 299

For the Windows platform, the native function is coded to use the StdCall program

linkage. The function is coded as an exported function in the DLL. The exported

function name must match the name dictated by the JNI specification. The format

of the JNI Specification is:

Java_VARPGComponentName_ExternalProcedureName_OverloadedNativeMethods

The full native function names are ’Java_VCOMP1_proc1’ and

″Java_VCOMP1_SUB2’ in this sample. The overloaded native method are not

needed for this sample.

The JNI interface dictates the first two parameters: an interface pointer, and a this

object pointer. Additional parameters correspond to the procedures declared

parameters. The jni.h header file is included in the C language source program to

provide interface definitions. This file is provided with the J2SDK. You may need

to update your INCLUDE environment variable in your C compiler to include the

directory containing the C language header files for J2SDK.

Lastly, the sample C source file is compiled into a DLL.

 **

 * Source File: VCOMP1.VPG

 *

 * Demonstrate calling an external procedure thru JNI.

 *

 **

 * This declares a procedure named ’sub1’ which refers to

 * a function named ’proc1’ in a Dynamic Link Library ’VSUB.DLL’

d sub1 pr dll(’VSUB’) extproc(’proc1’)

 * Without the EXTPROC keyword

d sub2 pr dll(’VSUB’)

C *INZSR BEGSR

C callp sub1

C callp sub2

c seton lr

C ENDSR

 * This action subroutine is linked to a Create event for the Window.

 * It causes the component to end after running the INZSR.

C CREATE1 BEGACT

C seton LR

C ENDACT

Figure 76. Sample file VCOMP1.VPG

300 Programming with VisualAge RPG

Passing and Receiving Parameters

The JNI specification passes Java primitive data types directly, but VisualAge RPG

processes all the VARPG data types through classes. This means that VARPG calls

to native functions will always involve passing objects. The JNI specification

provides interface functions for the native function to access the values of passed

objects. Due to the different class methods for each VARPG data type, each type

will be discussed individually.

Parameter Types

Character

VisualAge RPG implements character fields as byte arrays in Java including a

character field of length one. The JNI interface function GetByteArrayElements

returns the value of the byte array parameter. The value can be changed and

returned to the calling function through the ReleaseByteArrayElements interface

function.

Note: The value should not be used in the native function after calling the release

function.

The first parameter for the native function in the C language source has been

changed from a void pointer to a JNIEnv pointer. It points to a table of function

pointers for JNI interface functions. The prototyped parameters for the external

// Source File: VSUB.C

// Add (d:\jdk12\include;d:\jdk12\include\win32) to the INCLUDE setting

// in order to find jni.h when compiling.

// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5

// Compile command: icc /q /ss /ge- /fe vsub.dll vsub.c

#include <stdio.h>

#include <string.h>

#include <jni.h>

//---

void _Export __stdcall Java_VCOMP1_proc1(void *je , void *jc)

{

 printf(" proc1 called successfully.\n");

}

//---

void _Export __stdcall Java_VCOMP1_SUB2(void *je , void *jc)

{

 printf(" SUB2 called successfully.\n");

}

Figure 77. Sample File VSUB.C

Chapter 21. Calling System Functions when Compiling for Java 301

procedure are added to the native function’s parameters, after the two standard

JNI pointers. The character parameters are declared as jbyteArray types in the

native function.

The GetByteArrayElements interface function is used to obtain the value of the

Java byte array for the VARPG character field.

The obtained value can be changed and returned to the Java caller with the

ReleaseByteArrayElements interface function.

The obtained value should not be accessed after releasing it.

Note: It is possible the value obtained is the actual value in the Java object, and

not a copy in memory. The changes made to it might be reflected in the Java

caller even without calling the release function. Refer to the

GetByteArrayElements function in the JNI documentation for more

information.

302 Programming with VisualAge RPG

**

 * Source File: VCOMP1.VPG

 *

 * Demonstrate calling an external procedure thru JNI.

 *

 **

 * This declares a procedure named ’sub1c’ which refers to

 * a function named ’proc1c’ in a dynamic Load Library ’VSUBC.DLL’

 * With 1 character parameter

d sub1c pr dll(’VSUBC’) extproc(’proc1c’)

d 1

 * Without the EXTPROC keyword

 * With 2 character parameters

d sub2c pr dll(’VSUBC’)

d 4

d 10

d c1 s 1 inz(’J’)

d c4 s 4 inz(’blue’)

d c10 s 10 inz(’abcdefghij’)

d mb1 m style(*info) button(*OK)

d rc s 9 0

C *INZSR BEGSR

C callp sub1c(c1)

C callp sub2c(c4:c10)

 * Display the changed values from the calls

c c4 dsply mb1 rc

c c10 dsply mb1 rc

c seton lr

C ENDSR

 * This action subroutine is linked to a Create event for the Window.

 * It causes the component to end after running the INZSR.

C CREATE1 BEGACT

C seton LR

C ENDACT

Figure 78. Sample file VCOMPC.VPG

Chapter 21. Calling System Functions when Compiling for Java 303

// Source File: VSUBC.C

// Native function with Character parameters

// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5

// Compile command: icc /q /ss /ge- /fe vsubc.dll vsubc.c

#include <stdio.h>

#include <string.h>

#include <jni.h>

//---

void _Export __stdcall Java_VCOMPC_proc1c(JNIEnv *je , void *jc,

 jbyteArray p1)

{

 char *c1;

 printf(" proc1c called successfully.\n");

 c1 = (char *) (*je)->GetByteArrayElements(je, p1, NULL);

 printf(" c1 = \’%c\’\n", c1[0]);

}

//---

void _Export __stdcall Java_VCOMPC_SUB2C(JNIEnv *je , void *jc,

 jbyteArray p1, jbyteArray p2)

{

 char *c4;

 char *c10;

 printf(" SUB2C called successfully.\n");

 c4 = (char *) (*je)->GetByteArrayElements(je, p1, NULL);

 c10 = (char *) (*je)->GetByteArrayElements(je, p2, NULL);

 printf(" c4 = %.4s.\n", c4);

 printf(" c10 = %.10s.\n", c10);

Figure 79. Sample file VSUBC.C (Part 1 of 2)

 // Now change the values

 memcpy(c4, "Gray", 4);

 memcpy(c10, ">Received<", 10);

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, p1, (signed char *) c4, 0);

 (*je)->ReleaseByteArrayElements(je, p2, (signed char *) c10, 0);

}

Figure 79. Sample file VSUBC.C (Part 2 of 2)

304 Programming with VisualAge RPG

Zoned Numeric

 **

 * Source File: VCOMPN.VPG

 *

 * Demonstrate calling an external procedure thru JNI.

 *

 **

 * With a Zoned(4,0) parameter

d subz pr dll(’VSUBN’)

d 4S 0

 * With a Packed(9,2) parameter

d subp pr dll(’VSUBN’)

d 9P 2

 * With Binary(4,0), Binary(9,0) parameter2

d subb pr dll(’VSUBN’)

d 4B 0

d 9B 0

d z4 s 4S 0 inz(1234)

d p92 s 9P 2 inz(1234567.89)

d b4 s 4B 0 inz(1234)

d b9 s 9B 0 inz(123456789)

Figure 80. Sample File VCOMPN.VPG (Part 1 of 2)

d mb1 m style(*info) button(*OK)

d rc s 9 0

C *INZSR BEGSR

C callp subz(z4)

C callp subp(p92)

C callp subb(b4:b9)

 * Display the changed values from the calls

c z4 dsply mb1 rc

c p92 dsply mb1 rc

c b4 dsply mb1 rc

c b9 dsply mb1 rc

c seton lr

C ENDSR

 * This action subroutine is linked to a Create event for the Window.

 * It causes the component to end after running the INZSR.

C CREATE1 BEGACT

C seton LR

C ENDACT

Figure 80. Sample File VCOMPN.VPG (Part 2 of 2)

Chapter 21. Calling System Functions when Compiling for Java 305

// Source File: VSUBN.C

// Native function with Character parameters

// Add (d:\jdk12\include;d:\jdk12\include\win32) to the INCLUDE setting

// in order to find jni.h when compiling.

// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5

// Compile command: icc /q /ss /ge- /fe vsubn.dll vsubn.c

#include <stdio.h>

#include <string.h>

#include <jni.h>

static void SwapBin2(short *b2);

static void SwapBin4(int *b4);

//---

void _Export __stdcall Java_VCOMPN_SUBZ(JNIEnv *je , void *jc,

 jobject p1)

{

 jclass cls;

 jmethodID mid;

 jobject aryobj;

 char *zd;

 printf(" SUBZ called successfully.\n");

 // p1: Zoned

 // Call the method to get the zoned value

 cls = (*je)->GetObjectClass(je, p1);

 mid = (*je)->GetMethodID(je, cls, "zonedValue", "()[B");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 aryobj = (*je)->CallObjectMethod(je, p1, mid);

 zd = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

 printf(" zd = %.4s.\n", zd);

Figure 81. Sample File VSUBN.C (Part 1 of 2)

306 Programming with VisualAge RPG

An RpgZoned object is passed as the parameter. The RpgZoned::zonedValue

method is used to obtain a byte array containing the numeric value of the object in

zoned decimal format. Once the byte array is obtained on the Java side of the

interface, the GetByteArrayElements JNI interface function is called to access the

byte array on the native side of the interface.

To invoke the zonedValue method on the object, the GetObjectClass, GetMethodID,

and CallObjectMethod interface functions are used. Care must be taken to specify

the correct method signature on the GetMethodID call. (No parameters, and

returning a byte array in this case.)

To alter the value on the Java side, the byte array value is changed, the

ReleaseByteArrayElements interface function is invoked to set the byte array

change on the Java side, and the appropriate RpgZoned class method is invoked

on the Java side to set the RpgZoned object’s value with the value represented in

the byte array. In this case, it’s the assignFromNative method which takes a byte

array and two integers as parameters. (The RpgNumeric class referred to in the

sample code is a parent class to the RpgZoned class.)

 // Now change the values

 memcpy(zd, "9876", 4);

 // Returning the Zoned parameter

 // 1. Update the Byte array object with the changed value.

 (*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) zd, 0);

 // 2. Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 // cls = (*je)->GetObjectClass(je, p1);

 // (clS) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return;

 }

 (*je)->CallVoidMethod(je, p1, mid,

 aryobj,

 (int) 1, // = Component.ZONED_TYPE

 0 // precision

);

}

Figure 81. Sample File VSUBN.C (Part 2 of 2)

Chapter 21. Calling System Functions when Compiling for Java 307

Packed Numeric

void _Export __stdcall Java_VCOMPN_SUBP(JNIEnv *je , void *jc,

 jobject p1) // P(9,2)

{

 jclass cls;

 jmethodID mid;

 jobject aryobj;

 char *packednum;

 printf(" SUBP called successfully.\n");

 // p1: Packed 9,2

 // Call the method to get the zoned value

 cls = (*je)->GetObjectClass(je, p1);

 mid = (*je)->GetMethodID(je, cls, "packedValue", "()[B");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 aryobj = (*je)->CallObjectMethod(je, p1, mid);

 packednum = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

 // Now change the values

 memcpy(packednum, "\x98\x76\x54\x32\x1C", 5);

Figure 82. Sample File VSUBN.C continued (Part 1 of 2)

308 Programming with VisualAge RPG

The packed decimal parameter case is similar to the zoned decimal. Only the

appropriate methods for converting an RpgPacked object to and from a byte array

value are used.

The RpgPacked::packedValue method is used to obtain a byte array containing the

numeric value of the RpgPacked parameter object in native packed decimal format,

and then the JNI interface functions are invoked to make the Java byte array

accessible from the native side of the interface.

After altering the byte array on the native side and invoking the

ReleaseByteArrayElements interface function to return the byte array to the Java

side, the assignFromNative method is once again invoked to set the RpgPacked

object’s value from the Java byte array.

 // Returning the Packed parameter

 // 1. Update the Byte array object with the changed value.

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) packednum, 0);

 // 2. Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 // cls = (*je)->GetObjectClass(je, p1);

 // (cls) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return;

 }

 (*je)->CallVoidMethod(je, p1, mid,

 aryobj,

 (int) 2, // = Component.PACKED_TYPE

 2 // precision (Number of decimal places)

);

}

Figure 82. Sample File VSUBN.C continued (Part 2 of 2)

Chapter 21. Calling System Functions when Compiling for Java 309

Binary

void _Export __stdcall Java_VCOMPN_SUBB(JNIEnv *je , void *jc,

 jobject p1 // B(4,0)

 ,jobject p2) // B(9,0)

{

 jclass cls;

 jmethodID mid;

 jobject aryobj;

 jobject aryobj2;

 char *binarynum;

 char *b9;

 short binary2;

 int binary4;

 printf(" SUBB called successfully.\n");

 // p1: Binary 4,0

 // Call the method to get the binary value

 cls = (*je)->GetObjectClass(je, p1);

 mid = (*je)->GetMethodID(je, cls, "binaryValue", "()[B");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 aryobj = (*je)->CallObjectMethod(je, p1, mid);

 binarynum = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

 // Must reverse the byte order of the value received

 memcpy(&binary2, binarynum, 2);

 SwapBin2(&binary2);

Figure 83. Sample File VSUBN.C continued (Part 1 of 5)

310 Programming with VisualAge RPG

printf(" binary = %hd\n", (short) binary2);

 // p2: Binary 9,0

 // Call the method to get the binary value

 cls = (*je)->GetObjectClass(je, p2);

 mid = (*je)->GetMethodID(je, cls, "binaryValue", "()[B");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 aryobj2 = (*je)->CallObjectMethod(je, p2, mid);

 b9 = (char *) (*je)->GetByteArrayElements(je, aryobj2, NULL);

 // Must reverse the byte order of the value received

 memcpy(&binary4, b9, 4);

 SwapBin4(&binary4);

 printf(" binary = %d.\n", (int) binary4);

Figure 83. Sample File VSUBN.C continued (Part 2 of 5)

Chapter 21. Calling System Functions when Compiling for Java 311

// Now change the values

 binary2 = 5;

 // Swap it back for returning to the Java value

 SwapBin2(&binary2);

 memcpy(binarynum, &binary2, 2);

 // Returning the parameter

 // 1. Update the Byte array object with the changed value.

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) binarynum, 0);

 // 2. Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 cls = (*je)->GetObjectClass(je, p1);

 // (cls) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return;

 }

Figure 83. Sample File VSUBN.C continued (Part 3 of 5)

312 Programming with VisualAge RPG

(*je)->CallVoidMethod(je, p1, mid,

 aryobj,

 (int) 3, // = Component.BINARY_TYPE

 0 // precision (Number of decimal places)

);

 // Now change the values

 binary4 = 19981999;

 // Swap it back for returning to the Java value

 SwapBin4(&binary4);

 memcpy(b9, &binary4, 4);

 // Returning the parameter

 // 1. Update the Byte array object with the changed value.

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, aryobj2, (signed char *) b9, 0);

 // 2. Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 cls = (*je)->GetObjectClass(je, p2);

 // (cls) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return;

 }

Figure 83. Sample File VSUBN.C continued (Part 4 of 5)

Chapter 21. Calling System Functions when Compiling for Java 313

This case is similar to the zoned decimal. Only the appropriate methods for

RpgBinary objects are used. The only added complication is that the native Intel

architecture platform stores binary integers in a low-order-bytes-leftmost format,

but the Java side works with them in a low-order-bytes-rightmost format. The

SwapBin2 and SwapBin4 functions are employed to reverse the byte order when

converting between the two sides for two- and four-byte binary integers.

The RpgBinary::binaryValue method is used to obtain a byte array containing the

numeric value of the RpgBinary parameter object in native binary format. Then the

JNI interface functions are invoked to make the Java byte array accessible from the

native side of the interface. After altering the byte array on the native side and

invoking the ReleaseByteArrayElements interface function to return the byte array

to the Java side, the assignFromNative method is once again invoked to set the

RpgBinary object’s value from the Java byte array.

 (*je)->CallVoidMethod(je, p2, mid,

 aryobj2,

 (int) 3, // = Component.BINARY_TYPE

 0 // precision (Number of decimal places)

);

}

//---

static void SwapBin2(short *b2)

{

 char tmp;

 char *p;

 p = (char *) b2;

 tmp = p[0];

 p[0] = p[1];

 p[1] = tmp;

}

//---

static void SwapBin4(int *b4)

{

 char tmp;

 char *p;

 p = (char *) b4;

 tmp = p[0];

 p[0] = p[3];

 p[3] = tmp;

 tmp = p[1];

 p[1] = p[2];

 p[2] = tmp;

}

Figure 83. Sample File VSUBN.C continued (Part 5 of 5)

314 Programming with VisualAge RPG

Integer, Unsigned

 * With Parameters: Integer, unsigned

 d subiu pr dll(’VSUBO’)

 d 5i 0

 d 10i 0

 d 5u 0

 d 10u 0

Figure 84. Sample VJNIO.VPG

static void SwapBin2(char *);

static void SwapBin4(char *);

void _Export __stdcall Java_VJNIO_SUBIU(JNIEnv *je , void *jc,

 jobject p1, jobject p2, jobject p3, jobject p4)

{

 jclass cls, cls2;

 jmethodID mid;

 jshort i2;

 jint i4;

 jobject aryobj3, aryobj4;

 unsigned short *u2;

 unsigned int *u4;

 printf(" SUBIU called successfully.\n");

 // p1: Integer, 2 byte

 // Call the method to get the value

 cls = (*je)->GetObjectClass(je, p1);

 mid = (*je)->GetMethodID(je, cls, "getValue", "()S");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 i2 = (*je)->CallShortMethod(je, p1, mid);

 printf(" i2 = %hd\n", (short) i2);

 // p2: Integer, 4 byte

 // Call the method to get the value

 cls = (*je)->GetObjectClass(je, p2);

 mid = (*je)->GetMethodID(je, cls, "getValue", "()I");

Figure 85. Sample VSUBO.C (Part 1 of 6)

Chapter 21. Calling System Functions when Compiling for Java 315

if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 i4 = (*je)->CallIntMethod(je, p2, mid);

 printf(" i4 = %d\n", (short) i4);

 // p3: Unsigned 2-byte.

 // Call the method to get the double value

 cls = (*je)->GetObjectClass(je, p3);

 mid = (*je)->GetMethodID(je, cls, "unsignedValue", "()[B");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 aryobj3 = (*je)->CallObjectMethod(je, p3, mid);

 u2 = (unsigned short *) (*je)->GetByteArrayElements(je, aryobj3, NULL);

 // Must reverse the byte order of the value received

 SwapBin2((char *) u2);

 printf(" u2 = %hu\n", *u2);

Figure 85. Sample VSUBO.C (Part 2 of 6)

316 Programming with VisualAge RPG

// p4: Unsigned 4-byte.

 // Call the method to get the double value

 cls = (*je)->GetObjectClass(je, p4);

 mid = (*je)->GetMethodID(je, cls, "unsignedValue", "()[B");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 aryobj4 = (*je)->CallObjectMethod(je, p4, mid);

 u4 = (unsigned int *) (*je)->GetByteArrayElements(je, aryobj4, NULL);

 // Must reverse the byte order of the value received

 SwapBin4((char *) u4);

 printf(" u4 = %u\n", *u4);

 // Now change the values

 i2 = 99;

 i4 = 88;

 *u2 = 77;

 *u4 = 66;

 // Must reverse the byte order of the value being returned

 SwapBin2((char *) u2);

 SwapBin4((char *) u4);

 // Return the array memory to Java. Used later to set return

 // values for parameters

 (*je)->ReleaseByteArrayElements(je, p3, (signed char *) u2, 0);

 (*je)->ReleaseByteArrayElements(je, p4, (signed char *) u4, 0);

Figure 85. Sample VSUBO.C (Part 3 of 6)

Chapter 21. Calling System Functions when Compiling for Java 317

// Returning P1: Integer 2-byte

 // Invoke the RpgShortRef::setValue method to set the object

 // value with a short parameter value

 // Obtain the method ID so it can be invoked.

 cls = (*je)->GetObjectClass(je, p1);

 mid = (*je)->GetMethodID(je, cls, "setValue", "(S)V");

 if (mid == NULL)

 {

 printf(" ERROR 5: GetMethod.\n");

 return;

 }

 (*je)->CallVoidMethod(je, p1, mid, i2);

 // Returning P2: Integer 4-byte

 // Invoke the RpgIntRef::setValue method to set the object

 // value with an integer parameter value

 // Obtain the method ID so it can be invoked.

 cls = (*je)->GetObjectClass(je, p2);

 mid = (*je)->GetMethodID(je, cls, "setValue", "(I)V");

 if (mid == NULL)

 {

 printf(" ERROR 6: GetMethod.\n");

 return;

 }

 (*je)->CallVoidMethod(je, p2, mid, i4);

Figure 85. Sample VSUBO.C (Part 4 of 6)

318 Programming with VisualAge RPG

// Returning P3: Unsigned 2-byte

 // Invoke the RpgNumeric::assignFromNative method to set the object

 // value with an unsigned parameter value

 // Obtain the method ID so it can be invoked.

 cls = (*je)->GetObjectClass(je, p3);

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 7: GetMethod.\n");

 return;

 }

 // Pass (aryobj3) as first parameter to method because the

 // method expects a Java byte array object

 (*je)->CallVoidMethod(je, p3, mid,

 aryobj3,

 (int) 5, // = Component.UNSIGNED_TYPE

 (int) 0); // 0 decimal places

 // Returning P4: Unsigned 4-byte

 // Invoke the RpgNumeric::assignFromNative method to set the object

 // value with an unsigned parameter value

 // Obtain the method ID so it can be invoked.

 cls = (*je)->GetObjectClass(je, p4);

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 8: GetMethod.\n");

 return;

 }

 (*je)->CallVoidMethod(je, p4, mid, aryobj4,

 (int) 5, // = Component.UNSIGNED_TYPE

 (int) 0); // 0 decimal places

}

Figure 85. Sample VSUBO.C (Part 5 of 6)

Chapter 21. Calling System Functions when Compiling for Java 319

Two-byte integers use the RpgShortRef::getValue and setValue methods to access

their values into short values on the native side. Similarly four-byte integers use

RpgIntRef::getValue and setValue methods to pass between native-side int values.

Unsigned parameters are complicated by the lack of a Java primitive matching an

unsigned value. The unsigned object value is accessed through byte array

primitives. The parameter access invokes the method to get the byte array

representing the unsigned value then invokes the GetByteArrayElements interface

function to access the array elements on the native side. Furthermore, on a native

Intel/Windows platform, the byte value must first be byte-reversed to change it

into the low-order-bytes-leftmost format. Returning the parameter follows a reverse

process.

Float (4/8)

static void SwapBin2(char *p)

{

 char tmp;

 tmp = p[0];

 p[0] = p[1];

 p[1] = tmp;

}

static void SwapBin4(char *p)

{

 char tmp;

 tmp = p[0];

 p[0] = p[3];

 p[3] = tmp;

 tmp = p[1];

 p[1] = p[2];

 p[2] = tmp;

}

Figure 85. Sample VSUBO.C (Part 6 of 6)

 * With Parameters: Float 4, Float 8.

 d subf pr dll(’VSUBO’)

 d 4f

 d 8f

Figure 86. Sample VJNIO.VPG

320 Programming with VisualAge RPG

void _Export __stdcall Java_VJNIO_SUBF(JNIEnv *je , void *jc,

 jobject p1, jobject p2)

{

 jclass cls, cls2;

 jmethodID mid;

 jfloat f4;

 jdouble f8;

 // p1: Float

 // Call the method to get the float value

 cls = (*je)->GetObjectClass(je, p1);

 mid = (*je)->GetMethodID(je, cls, "getValue", "()F");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 f4 = (*je)->CallFloatMethod(je, p1, mid);

 printf(" f4 = %f\n", (float) f4);

 // p2: Double

 // Call the method to get the double value

 cls2 = (*je)->GetObjectClass(je, p2);

 mid = (*je)->GetMethodID(je, cls2, "getValue", "()D");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return;

 }

 f8 = (*je)->CallDoubleMethod(je, p2, mid);

 printf(" f8 = %lf\n", (double) f8);

Figure 87. Sample VSUBO.C (Part 1 of 2)

Chapter 21. Calling System Functions when Compiling for Java 321

The float and double parameter cases are similar to the previous data types. Only

the methods to access the parameter values work with Java primitive data types,

which map to corresponding native primitives, instead of the usual byte arrays.

JNI interface functions dealing with these specific primitives are used to invoke the

methods to access the parameter values.

The RpgFloatRef::getValue, setValue, RpgDoubleRef::getValue, and setValue

methods are used.

 // Now change the values

 f4 = 999.888;

 f8 = 98789.65456;

 // Returning the Float parameter

 // Invoke the method from the RpgFloatRef class which

 // assigns a Float parameter value to the object

 // Obtain the method ID so it can be invoked.

 mid = (*je)->GetMethodID(je, cls, "setValue", "(F)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return;

 }

 (*je)->CallVoidMethod(je, p1, mid, f4);

 // Returning the Double parameter

 // Invoke the method from the RpgDoubleRef class which

 // assigns a Double parameter value to the object

 // Obtain the method ID so it can be invoked.

 mid = (*je)->GetMethodID(je, cls2, "setValue", "(D)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return;

 }

 (*je)->CallVoidMethod(je, p2, mid, f8);

}

Figure 87. Sample VSUBO.C (Part 2 of 2)

322 Programming with VisualAge RPG

Date, Time, Timestamp

Date, time, and timestamp parameters work the same as character parameters,

since they are implemented on the Java side as byte arrays.

Passing Arrays

Handling arrayed parameters is done one of two ways depending on the datatype.

Invoke the GetObjectArrayElement interface function to get an address to an

individual object element in the array, then process it like the scalar parameter

methods. Or in the case of an array of Java primitives, there are specific interface

functions to access them as an array of native primitives, and then release them

back to Java.

 * With Parameters: Date, Time, Timestamp.

 d subdtz pr dll(’VSUBO’)

 d 10d

 d 8t

 d 26z

 d fd s 10d inz(D’1999-12-31’)

 d ft s 8t inz(T’09.00.00’)

 d fts s 26z inz(Z’2001-01-01-08.01.01’)

 C callp subdtz(fd:ft:fts)

Figure 88. Sample VJNIO.VPG

void _Export __stdcall Java_VJNIO_SUBDTZ(JNIEnv *je , void *jc,

 jbyteArray p1, jbyteArray p2, jbyteArray p3)

{

 char *fd, *ft, *fz;

 fd = (char *) (*je)->GetByteArrayElements(je, p1, NULL);

 ft = (char *) (*je)->GetByteArrayElements(je, p2, NULL);

 fz = (char *) (*je)->GetByteArrayElements(je, p3, NULL);

 printf(" fd = %.10s.\n", fd);

 printf(" ft = %.8s.\n", ft);

 printf(" fz = %.26s.\n", fz);

 // Now change the values

 memcpy(fd, "2000-01-01",10);

 memcpy(ft, "17.00.00", 8);

 memcpy(fz, "2222-22-22-02.02.02", 19);

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, p1, (signed char *) fd, 0);

 (*je)->ReleaseByteArrayElements(je, p2, (signed char *) ft, 0);

 (*je)->ReleaseByteArrayElements(je, p3, (signed char *) fz, 0);

}

Figure 89. Sample VSUBO.C

Chapter 21. Calling System Functions when Compiling for Java 323

d subca pr dll(’VSUBA’)

 d 4

 d 10 dim(4)

 d c1 s 1 inz(’J’)

 d c4 s 4 inz(’blue’)

 d c10 s 10 inz(’abcdefghij’) dim(4)

 d subz pr dll(’VSUBA’)

 d 4S 0 dim(4)

 d subp pr dll(’VSUBA’)

 d 9P 2 dim(4)

 d subb pr dll(’VSUBA’)

 d 4B 0 dim(4)

 d 9B 0 dim(4)

 d z4 s 4S 0 dim(4)

 d p92 s 9P 2 dim(4)

 d b4 s 4B 0 dim(4)

 d b9 s 9B 0 dim(4)

 d subf pr dll(’VSUBA’)

 d 4f dim(4)

 d 8f dim(4)

Figure 90. Sample VJNIA.VPG (Part 1 of 2)

324 Programming with VisualAge RPG

d subdtz pr dll(’VSUBA’)

 d 10d dim(4)

 d 8t dim(4)

 d 26z dim(4)

 d subiu pr dll(’VSUBA’)

 d 5i 0 dim(4)

 d 10i 0 dim(4)

 d 5u 0 dim(4)

 d 10u 0 dim(4)

 d f4 s 4f dim(4) inz(1234.56)

 d f8 s 8f dim(4) inz(1111.2222)

 d fd s 10d dim(4) inz(D’1999-12-31’)

 d ft s 8t dim(4) inz(T’09.00.00’)

 d fts s 26z dim(4) inz(Z’2001-01-01-08.01.01’)

 d fi2 s 5i 0 dim(4) inz(1)

 d fi4 s 10i 0 dim(4) inz(2)

 d fu2 s 5u 0 dim(4) inz(3)

 d fu4 s 10u 0 dim(4) inz(4)

 C *INZSR BEGSR

 C callp subca(c4:c10)

 C callp subz(z4)

 C callp subp(p92)

 C callp subb(b4:b9)

 C callp subf(f4:f8)

 C callp subdtz(fd:ft:fts)

 C callp subiu(fi2:fi4:fu2:fu4)

 c seton lr

 C ENDSR

Figure 90. Sample VJNIA.VPG (Part 2 of 2)

Chapter 21. Calling System Functions when Compiling for Java 325

// Source File: VSUBA.C

// Native function with Character parameters

// Add (d:\jdk12\include;d:\jdk12\include\win32) to the INCLUDE setting

// in order to find jni.h when compiling.

// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5

// Compile command: icc /q /ss /ge- /fe vsuba.dll vsuba.c

#include <stdio.h>

#include <string.h>

#include <jni.h>

static void SwapBin2(char *);

static void SwapBin4(char *);

void _Export __stdcall Java_VJNIA_SUBCA(JNIEnv *je , void *jc,

 jbyteArray p1, jobjectArray p2)

{

 char *c4;

 char *c10;

 jobject p2e;

 // Resolve to 2nd element of array parameter

 p2e = (*je)->GetObjectArrayElement(je, p2,

 1); /* Array index, first element = 0. */

 c4 = (char *) (*je)->GetByteArrayElements(je, p1, NULL);

 c10 = (char *) (*je)->GetByteArrayElements(je, p2e, NULL);

 printf(" c4 = %.4s.\n", c4);

 printf(" c10 = %.10s.\n", c10);

 // Now change the values

 memcpy(c4, "Gray", 4);

 memcpy(c10, "Changed ", 10);

 // Update the values back to the Java Caller

 (*je)->ReleaseByteArrayElements(je, p1, (signed char *) c4, 0);

 (*je)->ReleaseByteArrayElements(je, p2e, (signed char *) c10, 0);

}

void _Export __stdcall Java_VJNIA_SUBZ(JNIEnv *je , void *jc,

 jobject p1)

Figure 91. Sample VSUBA.C (Part 1 of 14)

326 Programming with VisualAge RPG

{

 jclass cls;

 jmethodID mid;

 jobject aryobj;

 char *zd;

 jobject pe;

 // Resolve to element of array parameter

 pe = (*je)->GetObjectArrayElement(je, p1,

 0); /* Array index, first element = 0. */

 // p1: Zoned

 // Call the method to get the zoned value

 cls = (*je)->GetObjectClass(je, pe);

 mid = (*je)->GetMethodID(je, cls, "zonedValue", "()[B");

 aryobj = (*je)->CallObjectMethod(je, pe, mid);

 zd = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

 printf(" zd = %.4s.\n", zd);

 // Now change the values

 memcpy(zd, "9876", 4);

 // Returning the Zoned parameter

 // 1. Update the Byte array object with the changed value.

 (*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) zd, 0);

Figure 91. Sample VSUBA.C (Part 2 of 14)

Chapter 21. Calling System Functions when Compiling for Java 327

// 2. Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 // cls = (*je)->GetObjectClass(je, p1);

 // (clS) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 (*je)->CallVoidMethod(je, pe, mid,

 aryobj,

 (int) 1, // = Component.ZONED_TYPE

 0 // precision

);

}

void _Export __stdcall Java_VJNIA_SUBP(JNIEnv *je , void *jc,

 jobject p1 // P(9,2)

)

{

 jclass cls;

 jmethodID mid;

 jobject aryobj;

 char *packednum;

 char tmp[80]; // For tracing

 jobject pe;

 // Resolve to element of array parameter

 pe = (*je)->GetObjectArrayElement(je, p1,

 1); /* Array index, first element = 0. */

 // p1: Packed 9,2

 // Call the method to get the zoned value

 cls = (*je)->GetObjectClass(je, pe);

 mid = (*je)->GetMethodID(je, cls, "packedValue", "()[B");

 aryobj = (*je)->CallObjectMethod(je, pe, mid);

 packednum = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

Figure 91. Sample VSUBA.C (Part 3 of 14)

328 Programming with VisualAge RPG

// Now change the values

 memcpy(packednum, "\x98\x76\x54\x32\x1C", 5);

 // Returning the Packed parameter

 // 1. Update the Byte array object with the changed value.

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) packednum, 0);

 // 2. Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 // cls = (*je)->GetObjectClass(je, p1);

 // (clS) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 (*je)->CallVoidMethod(je, pe, mid,

 aryobj,

 (int) 2, // = Component.PACKED_TYPE

 2 // precision (Number of decimal places)

);

}

//---

Figure 91. Sample VSUBA.C (Part 4 of 14)

Chapter 21. Calling System Functions when Compiling for Java 329

void _Export __stdcall Java_VJNIA_SUBB(JNIEnv *je , void *jc,

 jobject p1 // B(4,0)

 ,jobject p2 // B(9,0)

)

{

 jclass cls;

 jmethodID mid;

 jobject aryobj;

 jobject aryobj2;

 char *binarynum;

 char *b9;

 short binary2;

 int binary4;

 jobject pe,p2e;

 // Resolve to element of array parameter

 pe = (*je)->GetObjectArrayElement(je, p1,

 2); /* Array index, first element = 0. */

 // Resolve to element of array parameter

 p2e = (*je)->GetObjectArrayElement(je, p2,

 3); /* Array index, first element = 0. */

 // p1: Binary 4,0

 // Call the method to get the binary value

 cls = (*je)->GetObjectClass(je, pe);

 mid = (*je)->GetMethodID(je, cls, "binaryValue", "()[B");

 aryobj = (*je)->CallObjectMethod(je, pe, mid);

 binarynum = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

Figure 91. Sample VSUBA.C (Part 5 of 14)

330 Programming with VisualAge RPG

// Must reverse the byte order of the value received

 memcpy(&binary2, binarynum, 2);

 SwapBin2((char *) &binary2);

 printf(" binary = %hd\n", (short) binary2);

 // p2: Binary 9,0

 // Call the method to get the binary value

 cls = (*je)->GetObjectClass(je, p2e);

 mid = (*je)->GetMethodID(je, cls, "binaryValue", "()[B");

 aryobj2 = (*je)->CallObjectMethod(je, p2e, mid);

 b9 = (char *) (*je)->GetByteArrayElements(je, aryobj2, NULL);

 // Must reverse the byte order of the value received

 memcpy(&binary4, b9, 4);

 SwapBin4((char *) &binary4);

 printf(" binary = %d.\n", (int) binary4);

 // Now change the values

 binary2 = 5;

 // Swap it back for returning to the Java value

 SwapBin2((char *) &binary2);

Figure 91. Sample VSUBA.C (Part 6 of 14)

Chapter 21. Calling System Functions when Compiling for Java 331

memcpy(binarynum, &binary2, 2);

 // Returning the Packed parameter

 // 1. Update the Byte array object with the changed value.

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) binarynum, 0);

 // 2. Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 cls = (*je)->GetObjectClass(je, pe);

 // (clS) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 (*je)->CallVoidMethod(je, pe, mid,

 aryobj,

 (int) 3, // = Component.BINARY_TYPE

 0 // precision (Number of decimal places)

);

 // Now change the values

 binary4 = 19981999;

 // Swap it back for returning to the Java value

 SwapBin4((char *) &binary4);

 memcpy(b9, &binary4, 4);

Figure 91. Sample VSUBA.C (Part 7 of 14)

332 Programming with VisualAge RPG

// Returning the Packed parameter

 // 1. Update the Byte array object with the changed value.

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, aryobj2, (signed char *) b9, 0);

 // 2. Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 cls = (*je)->GetObjectClass(je, p2e);

 // (clS) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 (*je)->CallVoidMethod(je, p2e, mid,

 aryobj2,

 (int) 3, // = Component.BINARY_TYPE

 0 // precision (Number of decimal places)

);

}

//---

Figure 91. Sample VSUBA.C (Part 8 of 14)

Chapter 21. Calling System Functions when Compiling for Java 333

void _Export __stdcall Java_VJNIA_SUBF(JNIEnv *je , void *jc,

 jfloatArray p1, jdoubleArray p2)

{

 jclass cls, cls2;

 jmethodID mid;

 jfloat *f4;

 jdouble *f8;

 jobject p1e,p2e;

 printf(" SUBF called successfully.\n");

 f4 = (*je)->GetFloatArrayElements(je, p1, NULL);

 f8 = (*je)->GetDoubleArrayElements(je, p2, NULL);

 printf(" f4 = %f\n", (float) f4[0]);

 // p2: Double

 // Call the method to get the double value

 printf(" f8 = %lf\n", (double) f8[0]);

 // Now change the values

 f4[0] = 999.888;

 f8[1] = 98789.65456;

 // Returning the Float parameter

 (*je)->ReleaseFloatArrayElements(je, p1, f4, 0);

 (*je)->ReleaseDoubleArrayElements(je, p2, f8, 0);

}

Figure 91. Sample VSUBA.C (Part 9 of 14)

334 Programming with VisualAge RPG

//---

void _Export __stdcall Java_VJNIA_SUBDTZ(JNIEnv *je , void *jc,

 jbyteArray p1, jbyteArray p2, jbyteArray p3)

{

 char *fd, *ft, *fz;

 jobject p1e, p2e, p3e;

 printf(" SUBDTZ called successfully.\n");

 // Resolve to element of array parameter

 p1e = (*je)->GetObjectArrayElement(je, p1,

 2); /* Array index, first element = 0. */

 p2e = (*je)->GetObjectArrayElement(je, p2,

 3); /* Array index, first element = 0. */

 p3e = (*je)->GetObjectArrayElement(je, p3,

 0); /* Array index, first element = 0. */

 fd = (char *) (*je)->GetByteArrayElements(je, p1e, NULL);

 ft = (char *) (*je)->GetByteArrayElements(je, p2e, NULL);

 fz = (char *) (*je)->GetByteArrayElements(je, p3e, NULL);

 printf(" fd = %.10s.\n", fd);

 printf(" ft = %.8s.\n", ft);

 printf(" fz = %.26s.\n", fz);

 // Now change the values

 memcpy(fd, "2000-01-01",10);

 memcpy(ft, "17.00.00", 8);

 memcpy(fz, "2222-22-22-02.02.02", 19);

 // Update the values back to the Java Caller

 (*je)->ReleaseByteArrayElements(je, p1e, (signed char *) fd, 0);

 (*je)->ReleaseByteArrayElements(je, p2e, (signed char *) ft, 0);

 (*je)->ReleaseByteArrayElements(je, p3e, (signed char *) fz, 0);

}

Figure 91. Sample VSUBA.C (Part 10 of 14)

Chapter 21. Calling System Functions when Compiling for Java 335

//---

void _Export __stdcall Java_VJNIA_SUBIU(JNIEnv *je , void *jc,

 jshortArray p1, jintArray p2, jobject p3, jobject p4)

{

 jclass cls, cls2;

 jmethodID mid;

 jshort *i2;

 jint *i4;

 jobject aryobj3, aryobj4;

 unsigned short *u2;

 unsigned int *u4;

 jobject p1e, p2e, p3e, p4e;

 printf(" SUBIU called successfully.\n");

 // Resolve to element of array parameter

 i2 = (*je)->GetShortArrayElements(je, p1, NULL);

 i4 = (*je)->GetIntArrayElements(je, p2, NULL);

 p3e = (*je)->GetObjectArrayElement(je, p3, 2);

 p4e = (*je)->GetObjectArrayElement(je, p4, 3);

 printf(" i2 = %hd\n", (short) i2[0]);

 printf(" i4 = %d\n", (short) i4[1]);

 // p3: Unsigned 2-byte.

 // Call the method to get the double value

 cls = (*je)->GetObjectClass(je, p3e);

 mid = (*je)->GetMethodID(je, cls, "unsignedValue", "()[B");

 aryobj3 = (*je)->CallObjectMethod(je, p3e, mid);

 u2 = (unsigned short *) (*je)->GetByteArrayElements(je, aryobj3, NULL);

Figure 91. Sample VSUBA.C (Part 11 of 14)

336 Programming with VisualAge RPG

// Must reverse the byte order of the value received

 SwapBin2((char *) u2);

 printf(" u2 = %hu\n", *u2);

 // p4: Unsigned 4-byte.

 // Call the method to get the double value

 cls = (*je)->GetObjectClass(je, p4e);

 mid = (*je)->GetMethodID(je, cls, "unsignedValue", "()[B");

 aryobj4 = (*je)->CallObjectMethod(je, p4e, mid);

 u4 = (unsigned int *) (*je)->GetByteArrayElements(je, aryobj4, NULL);

 // Must reverse the byte order of the value received

 SwapBin4((char *) u4);

 printf(" u4 = %u\n", *u4);

Figure 91. Sample VSUBA.C (Part 12 of 14)

Chapter 21. Calling System Functions when Compiling for Java 337

// Now change the values

 i2[0] = 99;

 i4[1] = 88;

 *u2 = 77;

 *u4 = 66;

 // Must reverse the byte order of the value being returned

 SwapBin2((char *) u2);

 SwapBin4((char *) u4);

 // Return the array memory to Java. Used later to set return

 // values for parameters

 (*je)->ReleaseByteArrayElements(je, p3e, (signed char *) u2, 0);

 (*je)->ReleaseByteArrayElements(je, p4e, (signed char *) u4, 0);

 (*je)->ReleaseShortArrayElements(je, p1, i2, 0);

 (*je)->ReleaseIntArrayElements(je, p2, i4, 0);

 // Returning P3: Unsigned 2-byte

 // Invoke the RpgNumeric::assignFromNative method to set the object

 // value with an unsigned parameter value

 // Obtain the method ID so it can be invoked.

 cls = (*je)->GetObjectClass(je, p3e);

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 // Pass (aryobj3) as first parameter to method because the

 // method expects a Java byte array object

 (*je)->CallVoidMethod(je, p3e, mid,

 aryobj3,

 (int) 5, // = Component.UNSIGNED_TYPE

 (int) 0); // 0 decimal places

Figure 91. Sample VSUBA.C (Part 13 of 14)

338 Programming with VisualAge RPG

Returning A Char Value

 // Returning P4: Unsigned 4-byte

 // Invoke the RpgNumeric::assignFromNative method to set the object

 // value with an unsigned parameter value

 // Obtain the method ID so it can be invoked.

 cls = (*je)->GetObjectClass(je, p4e);

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 (*je)->CallVoidMethod(je, p4e, mid, aryobj4,

 (int) 5, // = Component.UNSIGNED_TYPE

 (int) 0); // 0 decimal places

}

static void SwapBin2(char *p)

{

 char tmp;

 tmp = p[0];

 p[0] = p[1];

 p[1] = tmp;

}

static void SwapBin4(char *p)

{

 char tmp;

 tmp = p[0];

 p[0] = p[3];

 p[3] = tmp;

 tmp = p[1];

 p[1] = p[2];

 p[2] = tmp;

}

Figure 91. Sample VSUBA.C (Part 14 of 14)

 d subrc pr 10 dll(’VSUBR’)

 d fc s 10 inz(’ibm varpg ’)

 C eval fc = subrc

Figure 92. Sample VJNIR.VPG

Chapter 21. Calling System Functions when Compiling for Java 339

Returning a value from the function involves obtaining the appropriate Java object

and then returning it. In this sample, a new object (matching a Character(10) field)

was created, then it’s value was assigned. Since the RPG character fields are

implemented as Java byte arrays, a Java byte array object of length ten was

created, then the GetByteArrayElements interface function was used to access the

byte array elements on the native side, then released back to Java, and finally used

to return from the function.

If the appropriate Java byte array object was already available from one of the

input parameters, then it could have been used instead of creating a new object.

Returning A Zoned Value

jbyteArray _Export __stdcall Java_VJNIR_SUBRC(JNIEnv *je , void *jc)

{

 jbyteArray ba;

 char *p;

 printf(" SUBRC called successfully.\n");

 // Create a new byte array object so it can be returned.

 ba = (*je)->NewByteArray(je, 10 /* = byte array length */);

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "Success ",10);

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 return ba;

}

Figure 93. Sample VSUBR.C

 d subrs pr 5s 0 dll(’VSUBR’)

 d fs s 5s 0

 C eval fc = subrc

Figure 94. Sample VJNIR.VPG

340 Programming with VisualAge RPG

jobject _Export __stdcall Java_VJNIR_SUBRS(JNIEnv *je , void *jc)

{

 jclass cls;

 jmethodID mid;

 jobject rzo;

 jbyteArray ba;

 char *p;

 printf(" SUBRS called successfully.\n");

 // Create a new RpgZoned object.

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgZoned");

 mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

 rzo = (*je)->NewObject(je, cls, mid,

 (int) 5, /* # of digits */

 (int) 0 /* # of decimal places */

);

 // To set the zoned object value, we need a Java byte array to use

 // as an input parameter to the method for setting the zoned object.

 // Could constuct a new byte array object, or get one by retrieving

 // the zoned value from the object.

 // Will construct a byte array.

 // Create a new byte array object

 ba = (*je)->NewByteArray(je, 5 /* = byte array length */);

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "55555", 5);

Figure 95. Sample VSUBR.C (Part 1 of 2)

Chapter 21. Calling System Functions when Compiling for Java 341

An RpgZoned object is constructed so it may be returned. Its value is then set

through a method call. However, the method to set the value requires a byte array

object as an input parameter supplying the value, so the byte array object is

constructed first.

An RpgZoned object is constructed by looking up the class, then the constructor

method for the class, then invoking the constructor method. A Java byte array

object is then constructed and set to a zoned format byte value. A method for

setting the RpgZoned object’s value is then resolved and invoked, passing it the

byte array object as one of its parameters.

Returning A Packed Value

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 // Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 // cls = (*je)->GetObjectClass(je, p1);

 // (cls) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 (*je)->CallVoidMethod(je, rzo, mid,

 ba,

 (int) 1, // = Component.ZONED_TYPE

 0 // precision

);

 return rzo;

}

Figure 95. Sample VSUBR.C (Part 2 of 2)

 d subrp pr 5p 0 dll(’VSUBR’)

 d fp s 5p 0

 C eval fp = subrp

Figure 96. Sample VJNIR.VPG

342 Programming with VisualAge RPG

Returning a packed value is similar to the zoned case above.

jobject _Export __stdcall Java_VJNIR_SUBRP(JNIEnv *je , void *jc)

{

 jclass cls;

 jmethodID mid;

 jobject ro;

 jbyteArray ba;

 char *p;

 printf(" SUBRP called successfully.\n");

 // Create a new RpgPacked object.

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgPacked");

 mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

 ro = (*je)->NewObject(je, cls, mid,

 (int) 5, /* # of digits */

 (int) 0 /* # of decimal places */

);

 // To set the packed object value, we need a Java byte array to use

 // as an input parameter to the method for setting the packed object.

 // Could constuct a new byte array object, or get one by retrieving

 // the packed value from the object.

 // Create a new byte array object

 ba = (*je)->NewByteArray(je, 3 /* = byte array length */);

Figure 97. Sample VSUBR.C (Part 1 of 2)

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "\x55\x55\x5C", 3);

 // Update the values back to the Java Caller

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 // Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 (*je)->CallVoidMethod(je, ro, mid,

 ba, // The byte array object

 (int) 2, // = Component.PACKED_TYPE

 0 // decimal places

);

 return ro;

}

Figure 97. Sample VSUBR.C (Part 2 of 2)

Chapter 21. Calling System Functions when Compiling for Java 343

An RpgPacked object is constructed by looking up the class, then the constructor

method for the class, then invoking the constructor method. A Java byte array

object is then constructed and set to a packed format byte value. A method for

setting the RpgPacked object’s value is then resolved to and invoked, passing it the

byte array object as one of it’s parameters.

Returning A Binary Value

 d subrb pr 5b 0 dll(’VSUBR’)

 d fb s 5b 0

 C eval fb = subrb

Figure 98. Sample VJNIR.VPG

jobject _Export __stdcall Java_VJNIR_SUBRB(JNIEnv *je , void *jc)

{

 jclass cls;

 jmethodID mid;

 jobject ro;

 jbyteArray ba;

 char *p;

 printf(" SUBRB called successfully.\n");

 // Create a new RpgPacked object.

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgBinary");

 mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

 ro = (*je)->NewObject(je, cls, mid,

 (int) 5, /* # of digits */

 (int) 0 /* # of decimal places */

);

Figure 99. Sample VSUBR.C (Part 1 of 2)

344 Programming with VisualAge RPG

Returning a binary value is similar to the zoned or packed cases above, only an

RpgBinary object is returned.

Returning An Integer Value

 // To set the object value, we need a Java byte array to use

 // as an input parameter to the method for setting the object.

 // Create a new byte array object

 ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "\x00\x00\xD9\x03", 4); // 55555 = 0xD903

 // Update the values back to the Java Caller

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 // Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 (*je)->CallVoidMethod(je, ro, mid,

 ba, // The byte array object

 (int) 3, // = Component.Binary_TYPE

 0 // decimal places

);

 return ro;

}

Figure 99. Sample VSUBR.C (Part 2 of 2)

 d subri2 pr 5i 0 dll(’VSUBR’)

 d subri4 pr 10i 0 dll(’VSUBR’)

 d fi2 s 5i 0

 d fi4 s 10i 0

 C eval fi2= subri2

 C eval fi4= subri4

Figure 100. Sample VJNIR.VPG

Chapter 21. Calling System Functions when Compiling for Java 345

Returning a two-byte or four-byte binary integer value is simple. This is due to the

types supported as Java primitives.

Returning An Unsigned Value

jshort _Export __stdcall Java_VJNIR_SUBRI2(JNIEnv *je , void *jc)

{

 jshort rc;

 rc = -5555;

 return rc;

}

jint _Export __stdcall Java_VJNIR_SUBRI4(JNIEnv *je , void *jc)

{

 return -55555;

}

Figure 101. Sample VSUBR.C

 d subru pr 10u 0 dll(’VSUBR’)

 d fu s 10u 0

 C eval fu = subru

Figure 102. Sample VJNIR.VPG

346 Programming with VisualAge RPG

Returning a two- or four-byte unsigned binary value is similar to the zoned or

packed cases above, only an RpgUnsigned object is used.

jobject _Export __stdcall Java_VJNIR_SUBRU(JNIEnv *je , void *jc)

{

 jclass cls;

 jmethodID mid;

 jobject ro;

 jbyteArray ba;

 char *p;

 printf(" SUBRU called successfully.\n");

 // Create a new RpgUnsigned object.

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgUnsigned");

 mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

 ro = (*je)->NewObject(je, cls, mid,

 (int) 5, /* # of digits */

 (int) 0 /* # of decimal places */

);

 // To set the object value, we need a Java byte array to use

 // as an input parameter to the method for setting the object.

 // Create a new byte array object

 ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "\x00\x00\xD9\x03", 4); // 55555 = 0xD903

Figure 103. Sample VSUBR.C (Part 1 of 2)

 // Update the values back to the Java Caller

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 // Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 (*je)->CallVoidMethod(je, ro, mid,

 ba, // The byte array object

 (int) 5, // = Component.UNSIGNED_TYPE

 0 // decimal places

);

 return ro;

}

Figure 103. Sample VSUBR.C (Part 2 of 2)

Chapter 21. Calling System Functions when Compiling for Java 347

Returning A Date, Time, or Timestamp Value

 Date, time, and timestamp values are returned as Java byte arrays of the expected

length. This is similar to the character data type.

Returning A Float Value

 d subrd pr 10d dll(’VSUBR’)

 d fd s 10d

 C eval fd = subrd

Figure 104. Sample VJNIR.VPG

jbyteArray _Export __stdcall Java_VJNIR_SUBRD(JNIEnv *je , void *jc)

{

 jbyteArray ba;

 char *p;

 // Create a new byte array object so it can be returned.

 ba = (*je)->NewByteArray(je, 10 /* = byte array length */);

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "2000-01-01",10);

 // Update the values back to the Java Caller

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 return ba;

}

Figure 105. Sample VSUBR.C

 d subrf pr 4f dll(’VSUBR’)

 d subrf8 pr 8f dll(’VSUBR’)

 d ff s 4f

 d ff8 s 8f

 C eval ff = subrf

 C eval ff8= subrf8

Figure 106. Sample VJNIR.VPG

348 Programming with VisualAge RPG

Returning a float or double (eight-byte float) value is done directly. This is due to

the types supported as Java primitives.

Returning A Varying-Length Character Value

 A varying-length character value is returned through a Java byte array, where the

array length matches the current value length.

Returning Array Values

A JNI interface function is called to allocate an array object. If the array elements

are Java primitive data types, then the interface functions for allocating these type

of array objects is used. (There is a specific function for each primitive type.) These

jfloat _Export __stdcall Java_VJNIR_SUBRF(JNIEnv *je , void *jc)

{

 jfloat rc;

 rc = -4444.4444;

 return rc;

}

jdouble _Export __stdcall Java_VJNIR_SUBRF8(JNIEnv *je , void *jc)

{

 return -7777777.55555;

}

Figure 107. Sample VSUBR.C

 d subrcv pr 10 dll(’VSUBR’) varying

 d fcv s 10 varying

 C eval fcv= subrcv

Figure 108. Sample VJNIR.VPG

jbyteArray _Export __stdcall Java_VJNIR_SUBRCV(JNIEnv *je , void *jc)

{

 jbyteArray ba;

 char *p;

 // Return a byte array of the current data length

 // Create a new byte array object so it can be returned.

 ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "abcd",4);

 // Update the values back to the Java Caller

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 return ba;

}

Figure 109. Sample VSUBR.C

Chapter 21. Calling System Functions when Compiling for Java 349

also allocate the elements of the array. Then it is only a matter of calling the

interface function to map the array elements to native memory and they can be set,

relased back to Java, and then returned from the function.

If it is not the case of a Java primitive data type for the array elements, then a Java

object must be allocated for each element of the array, its value set as desired , and

then finally the object is assigned to the specific element of the array. Allocating

the individual objects for the elements is similar to the scalar return value case for

that datatype.

 * Source File: VJNIRA.VPG

d subrca pr 10 dll(’VSUBRA’) dim(4)

d subrsa pr 5s 0 dll(’VSUBRA’) dim(4)

d subrpa pr 5p 0 dll(’VSUBRA’) dim(4)

d subrba pr 5b 0 dll(’VSUBRA’) dim(4)

d subri2a pr 5i 0 dll(’VSUBRA’) dim(4)

d subri4a pr 10i 0 dll(’VSUBRA’) dim(4)

d subrua pr 10u 0 dll(’VSUBRA’) dim(4)

d subrda pr 10d dll(’VSUBRA’) dim(4)

d subrfa pr 4f dll(’VSUBRA’) dim(4)

d subrf8a pr 8f dll(’VSUBRA’) dim(4)

d subrcva pr 10 dll(’VSUBRA’) varying dim(4)

d fc s 10 dim(4)

d fs s 5s 0 dim(4)

d fp s 5p 0 dim(4)

d fb s 5b 0 dim(4)

d fi2 s 5i 0 dim(4)

d fi4 s 10i 0 dim(4)

d fu s 10u 0 dim(4)

d fd s 10d dim(4)

d ff s 4f dim(4)

d ff8 s 8f dim(4)

d fcv s 10 varying dim(4)

d mb1 m style(*info) button(*OK)

d rc s 9 0

Figure 110. Sample VJNIRA.VPG (Part 1 of 2)

350 Programming with VisualAge RPG

C *INZSR BEGSR

C eval fc = subrca

c fc(2) dsply mb1 rc

C eval fs = subrsa

c fs(2) dsply mb1 rc

C eval fp = subrpa

c fp(2) dsply mb1 rc

C eval fb = subrba

c fb(2) dsply mb1 rc

C eval fi2= subri2a

c fi2(2) dsply mb1 rc

C eval fi4= subri4a

c fi4(2) dsply mb1 rc

C eval fu = subrua

c fu(2) dsply mb1 rc

C eval fd = subrda

c fd(2) dsply mb1 rc

C eval ff = subrfa

c ff(2) dsply mb1 rc

C eval ff8= subrf8a

c ff8(2) dsply mb1 rc

C eval fcv= subrcva

c fcv(2) dsply mb1 rc

C eval rc = %len(fcv(2))

c rc dsply mb1 rc

c seton lr

C ENDSR

Figure 110. Sample VJNIRA.VPG (Part 2 of 2)

Chapter 21. Calling System Functions when Compiling for Java 351

// Source File: VSUBRA.C

// Native function which returns Array values

// Add (d:\jdk12\include;d:\jdk12\include\win32) to the INCLUDE setting

// in order to find jni.h when compiling.

// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5

// Compile command: icc /q /ss /ge- /fe vsubra.dll vsubra.c

#include <stdio.h>

#include <string.h>

#include <jni.h>

static void SwapBin2(char *);

static void SwapBin4(char *);

//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRCA(JNIEnv *je , void *jc)

{

 jobjectArray oa;

 jclass cls;

 jbyteArray ba;

 char *p;

 int i;

 printf(" SUBRCA called successfully.\n");

 // Create the object array

 cls = (*je)->FindClass(je, "java/lang/Object");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

Figure 111. Sample VSUBRA.C (Part 1 of 22)

352 Programming with VisualAge RPG

oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

 if (oa == NULL)

 {

 printf(" ERROR 2: Newobj\n");

 return NULL;

 }

 // Populate the array

 for (i=0; i<4; i++)

 {

 // Create a new byte array object so it can be returned.

 ba = (*je)->NewByteArray(je, 10 /* = byte array length */);

 // Set value of 2nd element

 if (1 == i)

 {

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "Success ",10);

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 }

 (*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */

 , ba);

 } // for i

 return oa;

}

//---

Figure 111. Sample VSUBRA.C (Part 2 of 22)

Chapter 21. Calling System Functions when Compiling for Java 353

jobjectArray _Export __stdcall Java_VJNIRA_SUBRSA(JNIEnv *je , void *jc)

{

 jobjectArray oa;

 int i;

 jclass cls;

 jmethodID mid;

 jobject rzo;

 jbyteArray ba;

 char *p;

 printf(" SUBRSA called successfully.\n");

 // Create the object array

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgZoned");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

 oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

 if (oa == NULL)

 {

 printf(" ERROR 2: Newobj\n");

 return NULL;

 }

 // Populate the array

 for (i=0; i<4; i++)

 {

 // Create a new RpgZoned object.

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgZoned");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

Figure 111. Sample VSUBRA.C (Part 3 of 22)

354 Programming with VisualAge RPG

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return NULL;

 }

 rzo = (*je)->NewObject(je, cls, mid,

 (int) 5, /* # of digits */

 (int) 0 /* # of decimal places */

);

 if (rzo == NULL)

 {

 printf(" ERROR3: \n");

 return NULL;

 }

 // Set value of 2nd element

 if (1 == i)

 {

 // To set the zoned object value, we need a Java byte array to use

 // as an input parameter to the method for setting the zoned object.

 // Could constuct a new byte array object, or get one by retrieving

 // the zoned value from the object.

 // Will construct a byte array.

 // Create a new byte array object

 ba = (*je)->NewByteArray(je, 5 /* = byte array length */);

 if (ba == NULL)

 {

 printf(" ERROR4: \n");

 return NULL;

 }

Figure 111. Sample VSUBRA.C (Part 4 of 22)

Chapter 21. Calling System Functions when Compiling for Java 355

// Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "55555", 5);

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 // Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 // cls = (*je)->GetObjectClass(je, p1);

 // (clS) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return NULL;

 }

 (*je)->CallVoidMethod(je, rzo, mid,

 ba,

 (int) 1, // = Component.ZONED_TYPE

 0 // precision

);

 }

Figure 111. Sample VSUBRA.C (Part 5 of 22)

356 Programming with VisualAge RPG

(*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */

 , rzo);

 } // for i

 return oa;

}

//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRPA(JNIEnv *je , void *jc)

{

 jobjectArray oa;

 int i;

 jclass cls;

 jmethodID mid;

 jobject ro;

 jbyteArray ba;

 char *p;

 printf(" SUBRPA called successfully.\n");

 // Create the object array

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgPacked");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

 oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

 if (oa == NULL)

 {

 printf(" ERROR 2: Newobj\n");

 return NULL;

 }

 // Populate the array

 for (i=0; i<4; i++)

 {

Figure 111. Sample VSUBRA.C (Part 6 of 22)

Chapter 21. Calling System Functions when Compiling for Java 357

// Create a new RpgPacked object.

#if 0

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgPacked");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

#endif

 mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return NULL;

 }

 ro = (*je)->NewObject(je, cls, mid,

 (int) 5, /* # of digits */

 (int) 0 /* # of decimal places */

);

 if (ro == NULL)

 {

 printf(" ERROR3: \n");

 return NULL;

 }

 // Set value of 2nd element

 if (1 == i)

 {

 // To set the packed object value, we need a Java byte array to use

 // as an input parameter to the method for setting the packed object.

 // Could constuct a new byte array object, or get one by retrieving

 // the packed value from the object.

 // Will construct a byte array.

Figure 111. Sample VSUBRA.C (Part 7 of 22)

358 Programming with VisualAge RPG

// Create a new byte array object

 ba = (*je)->NewByteArray(je, 3 /* = byte array length */);

 if (ba == NULL)

 {

 printf(" ERROR4: \n");

 return NULL;

 }

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "\x55\x55\x5C", 3);

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 // Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 // cls = (*je)->GetObjectClass(je, p1);

 // (clS) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return NULL;

 }

Figure 111. Sample VSUBRA.C (Part 8 of 22)

Chapter 21. Calling System Functions when Compiling for Java 359

(*je)->CallVoidMethod(je, ro, mid,

 ba, // The byte array object

 (int) 2, // = Component.PACKED_TYPE

 0 // decimal places

);

 }

 (*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */

 , ro);

 } // for i

 return oa;

}

//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRBA(JNIEnv *je , void *jc)

{

 jobjectArray oa;

 int i;

 jclass cls;

 jmethodID mid;

 jobject ro;

 jbyteArray ba;

 char *p;

 printf(" SUBRBA called successfully.\n");

 // Create the object array

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgBinary");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

Figure 111. Sample VSUBRA.C (Part 9 of 22)

360 Programming with VisualAge RPG

oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

 if (oa == NULL)

 {

 printf(" ERROR 2: Newobj\n");

 return NULL;

 }

 // Populate the array

 for (i=0; i<4; i++)

 {

 // Create a new RpgPacked object.

#if 0

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgBinary");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

#endif

 mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return NULL;

 }

 ro = (*je)->NewObject(je, cls, mid,

 (int) 5, /* # of digits */

 (int) 0 /* # of decimal places */

);

Figure 111. Sample VSUBRA.C (Part 10 of 22)

Chapter 21. Calling System Functions when Compiling for Java 361

if (ro == NULL)

 {

 printf(" ERROR3: \n");

 return NULL;

 }

 // Set value of 2nd element

 if (1 == i)

 {

 // To set the packed object value, we need a Java byte array to use

 // as an input parameter to the method for setting the packed object.

 // Could constuct a new byte array object, or get one by retrieving

 // the packed value from the object.

 // Will construct a byte array.

 // Create a new byte array object

 ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

 if (ba == NULL)

 {

 printf(" ERROR4: \n");

 return NULL;

 }

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "\x00\x00\xD9\x03", 4); // 55555 = 0xD903

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

Figure 111. Sample VSUBRA.C (Part 11 of 22)

362 Programming with VisualAge RPG

// Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 // cls = (*je)->GetObjectClass(je, p1);

 // (clS) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return NULL;

 }

 (*je)->CallVoidMethod(je, ro, mid,

 ba, // The byte array object

 (int) 3, // = Component.Binary_TYPE

 0 // decimal places

);

 }

 (*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */

 , ro);

 } // for i

 return oa;

}

Figure 111. Sample VSUBRA.C (Part 12 of 22)

Chapter 21. Calling System Functions when Compiling for Java 363

//---

jshortArray _Export __stdcall Java_VJNIRA_SUBRI2A(JNIEnv *je , void *jc)

{

 jshortArray rc;

 jshort *n;

 printf(" SUBRI2A called successfully.\n");

 rc = (*je)->NewShortArray(je, 4 /* = array length */);

 // Pin the array element memory so native side can access it.

 n = (*je)->GetShortArrayElements(je, rc, NULL);

 n[1] = -5555;

 // Update the values back to the Java Caller

 (*je)->ReleaseShortArrayElements(je, rc, n, 0);

 return rc;

}

//---

jintArray _Export __stdcall Java_VJNIRA_SUBRI4A(JNIEnv *je , void *jc)

{

 jintArray rc;

 jint *n;

 printf(" SUBRI4A called successfully.\n");

 rc = (*je)->NewIntArray(je, 4 /* = array length */);

 // Pin the array element memory so native side can access it.

 n = (*je)->GetIntArrayElements(je, rc, NULL);

 n[1] = -5555;

 // Update the values back to the Java Caller

 (*je)->ReleaseIntArrayElements(je, rc, n, 0);

 return rc;

}

Figure 111. Sample VSUBRA.C (Part 13 of 22)

364 Programming with VisualAge RPG

//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRUA(JNIEnv *je , void *jc)

{

 jobjectArray oa;

 int i;

 jclass cls;

 jmethodID mid;

 jobject ro;

 jbyteArray ba;

 char *p;

 printf(" SUBRUA called successfully.\n");

 // Create the object array

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgUnsigned");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

 oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

 if (oa == NULL)

 {

 printf(" ERROR 2: Newobj\n");

 return NULL;

 }

 // Populate the array

 for (i=0; i<4; i++)

 {

 // Create a new RpgPacked object.

#if 0

 cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgUnsigned");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

#endif

Figure 111. Sample VSUBRA.C (Part 14 of 22)

Chapter 21. Calling System Functions when Compiling for Java 365

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

 if (mid == NULL)

 {

 printf(" ERROR: GetMethod.\n");

 return NULL;

 }

 ro = (*je)->NewObject(je, cls, mid,

 (int) 5, /* # of digits */

 (int) 0 /* # of decimal places */

);

 if (ro == NULL)

 {

 printf(" ERROR3: \n");

 return NULL;

 }

 // Set value of 2nd element

 if (1 == i)

 {

 // To set the packed object value, we need a Java byte array to use

 // as an input parameter to the method for setting the packed object.

 // Could constuct a new byte array object, or get one by retrieving

 // the packed value from the object.

 // Will construct a byte array.

Figure 111. Sample VSUBRA.C (Part 15 of 22)

366 Programming with VisualAge RPG

// Create a new byte array object

 ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

 if (ba == NULL)

 {

 printf(" ERROR4: \n");

 return NULL;

 }

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "\x00\x00\xD9\x03", 4); // 55555 = 0xD903

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

Figure 111. Sample VSUBRA.C (Part 16 of 22)

Chapter 21. Calling System Functions when Compiling for Java 367

// Prepare to call the method from the RpgNumeric class which

 // takes a byte array object and assigns it’s value into the

 // RpgNumeric object. Obtain the method ID.

 // cls = (*je)->GetObjectClass(je, p1);

 // (clS) still identifies the second parameter. Re-use value

 mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

 if (mid == NULL)

 {

 printf(" ERROR 2: GetMethod.\n");

 return NULL;

 }

 (*je)->CallVoidMethod(je, ro, mid,

 ba, // The byte array object

 (int) 5, // = Component.UNSIGNED_TYPE

 0 // decimal places

);

 }

 (*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */

 , ro);

 } // for i

 return oa;

}

//---

Figure 111. Sample VSUBRA.C (Part 17 of 22)

368 Programming with VisualAge RPG

jobjectArray _Export __stdcall Java_VJNIRA_SUBRDA(JNIEnv *je , void *jc)

{

 jobjectArray oa;

 jclass cls;

 jbyteArray ba;

 char *p;

 int i;

 printf(" SUBRD called successfully.\n");

 // Create the object array

 cls = (*je)->FindClass(je, "java/lang/Object");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

 oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

 if (oa == NULL)

 {

 printf(" ERROR 2: Newobj\n");

 return NULL;

 }

 // Populate the array

 for (i=0; i<4; i++)

 {

 // Create a new byte array object so it can be returned.

 ba = (*je)->NewByteArray(je, 10 /* = byte array length */);

Figure 111. Sample VSUBRA.C (Part 18 of 22)

Chapter 21. Calling System Functions when Compiling for Java 369

// Set all elements to a valid date value.

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "2000-01-01",10);

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 (*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */

 , ba);

 } // for i

 return oa;

}

//---

jfloatArray _Export __stdcall Java_VJNIRA_SUBRFA(JNIEnv *je , void *jc)

{

 jfloatArray rc;

 jfloat *n;

 printf(" SUBRF called successfully.\n");

 rc = (*je)->NewFloatArray(je, 4 /* = array length */);

 // Pin the array element memory so native side can access it.

 n = (*je)->GetFloatArrayElements(je, rc, NULL);

 n[1] = -4444.4444;

 // Update the values back to the Java Caller

 (*je)->ReleaseFloatArrayElements(je, rc, n, 0);

 return rc;

}

Figure 111. Sample VSUBRA.C (Part 19 of 22)

370 Programming with VisualAge RPG

//---

jdoubleArray _Export __stdcall Java_VJNIRA_SUBRF8A(JNIEnv *je , void *jc)

{

 jdoubleArray rc;

 jdouble *n;

 printf(" SUBRF8 called successfully.\n");

 rc = (*je)->NewDoubleArray(je, 4 /* = array length */);

 // Pin the array element memory so native side can access it.

 n = (*je)->GetDoubleArrayElements(je, rc, NULL);

 n[1] = -7777777.55555;

 // Update the values back to the Java Caller

 (*je)->ReleaseDoubleArrayElements(je, rc, n, 0);

 return rc;

}

//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRCVA(JNIEnv *je , void *jc)

{

 // This is similar to fixed length character, only the individual

 // array elemnts can be created as byte arrays of different lengths

 // to reflect the current length of the varying length values.

Figure 111. Sample VSUBRA.C (Part 20 of 22)

Chapter 21. Calling System Functions when Compiling for Java 371

jobjectArray oa;

 jclass cls;

 jbyteArray ba;

 char *p;

 int i;

 printf(" SUBRCVA called successfully.\n");

 // Create the object array

 cls = (*je)->FindClass(je, "java/lang/Object");

 if (cls == NULL)

 {

 printf(" ERROR 1: FindClass.\n");

 return NULL;

 }

 oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

 if (oa == NULL)

 {

 printf(" ERROR 2: Newobj\n");

 return NULL;

 }

Figure 111. Sample VSUBRA.C (Part 21 of 22)

372 Programming with VisualAge RPG

// Populate the array

 for (i=0; i<4; i++)

 {

 // Create a new byte array object so it can be returned.

 ba = (*je)->NewByteArray(je,

 /* = byte array length */

 (1==i) ? 4 : 10);

 // Set value of 2nd element

 if (1 == i)

 {

 // Pin the byte array element memory so native side can access it.

 p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

 memcpy(p, "abcd",4);

 // Update the values back to the Java Caller

 // Fourth Parameter = 0 also causes the variable’s storage to be freed,

 // so can not access the variables after this function call.

 (*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

 }

 (*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */

 , ba);

 } // for i

 return oa;

}

Figure 111. Sample VSUBRA.C (Part 22 of 22)

Chapter 21. Calling System Functions when Compiling for Java 373

374 Programming with VisualAge RPG

Chapter 22. Creating Non-GUI VisualAge RPG Programs

This section describes how to create standalone VARPG applications and Dynamic

Link Libraries (DLLs). Standalone VARPG applications have no user interface, but

they can access local and AS/400 files, and call AS/400 programs. DLLs are

modules that cannot be executed directly; they contain procedures that can be

called by other VARPG applications. DLLs can also access local files, as well as

AS/400 files and programs. You can think of DLLs as you would of AS/400

service programs.

You can create standalone VARPG applications within the VARPG GUI designer, or

by issuing commands in an MS-DOS command prompt. (See Appendix C,

“Creating and Compiling Non-GUI Programs from MS-DOS,” on page 447 for the

commands.) This section describes how to use the GUI designer to create non-GUI

programs.

When creating standalone applications or DLLs, the following restrictions apply:

v They must consist entirely of procedures.

v *ENTRY is not permitted.

v The special subroutines *INZSR and *TERMSR are not allowed.

v All subroutines must be local to a procedure.

v The EXPORT keyword is not allowed when creating standalone applications.

v Because standalone applications and DLLs have no user interface, the %GETATR

and %SETATR built-ins, and GUI operation codes are not allowed. These

include:

– CLSWIN, GETATR, SETATR, START, STOP, SHOWWIN, READS
The DSPLY operation code can be used. However, if the procedure containing it

is called from a VisualAge RPG DLL, the DSPLY operation code does nothing.

Also, the DSPLY operation code does not support a message data type in factor

1.

Creating Standalone VARPG Programs

A standalone VARPG program is created when the EXE keyword is specified on

the control specification.

H EXE

The program source must contain a procedure whose name matches the name of

the source file. This will be the main entry point for the program. If there are

parameters to be passed to the program, they must be specified on the parameter

definition for the main procedure, and they must be passed in by value. That is,

the VALUE keyword must be specified for each parameter. When calling an

application from the command line, separate parameters by spaces. If more

parameters or fewer are passed than are specified, no error message is displayed.

To create a standalone program in the GUI Designer, select Project > New > Non

GUI project from the project window. The editor opens a new source file that has

an H control specification template. Uncomment the H * EXE specification and code

your program. When completed, save your project and build the application. You

can set any needed build options from the project window, as well.

© Copyright IBM Corp. 1994, 2005 375

In the following example, the standalone VARPG program accepts a single

parameter. When run, the program will translate the parameter to uppercase and

display the result using the DSPLY operation code. Note that the name of the

main, and only, procedure is MyPgm. If you want to try this sample, be sure to

specify MYPGM as the file name when you save it.

 * Sample standalone VARPG program

H EXE

 *

 * Prototype for the main procedure

D MyPgm PR

D 64A Value

 *

 * Procedure definition for MYPGM

PMyPgm B

 *

D MyPgm PI

D InString 64A Value

 *

D OutString S 64A

 *

D LC C ’abcdefghijklmnopqrstuvwxyz’

D UC C ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

 *

 * Translate input parameter to uppercase and display it

C lc:uc Xlate InString OutString

C OutString Dsply I 1

 *

PMyPgm E

Creating DLLs

A DLL is created when the keyword NOMAIN is specified on the control

specification:

H NOMAIN

To create a DLL in the GUI Designer, select Project > New > Non GUI project

from the project window. The editor opens a new source file that has an H control

specification template. Uncomment the H * NOMAIN specification and code your

program. When completed, save your project and build the DLL. You can set any

needed build options from the project window, as well.

When you build a DLL, the compiler produces the DLL and a LIB file. The LIB file

is used to link the DLL to other applications. The LIB file will be in the same

directory as the source and it will have the same name as the DLL. The LIB file

contains all the procedures that have the EXPORT keyword on their Begin

P-specification.

The following example shows how to code the part of program MyPGM that

translates the lowercase string to uppercase as a procedure in a DLL. The source

for the DLL has one procedure named ToUpper in it. Add the Export keyword to

the procedure defintion so that this procedure can be called from other programs.

 * Sample VARPG DLL

H NOMAIN

 *

 * Prototype ToUpper procedure

D ToUpper PR 64A

D 64A Value

 *

376 Programming with VisualAge RPG

* The ToUpper procedure

PToUpper B Export

 *

D ToUpper PI 64A

D InString 64A Value

 *

D OutString S 64A

 *

D LC C ’abcdefghijklmnopqrstuvwxyz’

D UC C ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

 *

 *

C lc:uc Xlate InString OutString

C Return OutString

 *

PToUpper E

When you create and build a DLL, you can give it any name. For this example, we

use MyFunc. A successful build will create the following files in the source

directory:

v MyFunc.VPG - program source

v MyFunc.DLL - the DLL

v MyFunc.LST - the compiler listing

v MyFunc.LIB - the library file

v MyFunc.EVT - the event file (used by the GUI designer to display the error

feedback window; not required to run the program)

Edit and modify the MyPGM source so it calls the ToUpper procedure in the

MyFunc.DLL that was just created. The modified source follows:

0000 * Calling a procedure in a VARPG DLL

0001 H EXE

0002 *

0003 D ToUpper PR 64A DLL(’MyFunc’)

0004 D ExtProc(’TOUPPER’)

0006 D 64A Value

0007 *

0008 D MyMain PR

0009 D 64A Value

0010 *

0011 PMyMain B

0012 *

0013 D MyMain PI

0014 D InString 64A Value

0015 *

0016 D Upper S 64A

0017 *

0018 C Eval Upper=ToUpper(Instring)

0019 C Upper Dsply I 1

0010 *

0011 PMyMain E

Line Description of Change

0003 Define the prototype for the ToUpper procedure and specify that the

procedure returns a parameter that is an alpha field, 64 bytes long. The

DLL keyword specifies that the procedure is in the DLL named

MyFunc.DLL.

Chapter 22. Creating Non-GUI VisualAge RPG Programs 377

0004 The ExtProc keyword specifies the name of the procedure to be called.

Since the name is the same name that is used on the Definition

specification (line 0003), you can omit the keyword. If the name is

specified, however, it must be in uppercase, as shown.

0006 This statement indicates that the procedure expects one parameter - a 64

character alpha field. In this case, the parameter is being passed by

VALUE.

0018 This is the call to the procedure.

 If the procedure you are calling does not return a value, then you must use the

CALLP operation code to invoke it:

C CALLP SomeFunc(parm1:parm2)

378 Programming with VisualAge RPG

Exception Handling

Exception handling differs from GUI VARPG applications in the following ways:

v No information about the exception is communicated back to the caller if the

caller does not reside in the utility DLL.

v The default exception handler is never invoked from a DLL, since the default

exception handler is not invoked when an exception occurs in a procedure. If an

exception occurs in the DLL and there is no error indicator or *PSSR, the DLL

ends. Information about the exception is written to the FVDCERRS.LOG file.

v The recommended way to handle exceptions in a utility DLL is to have an error

indicator or a local *PSSR for each routine which returns an appropriate return

code to the caller.

Debugging Applications

To debug VARPG programs, be sure to use the debug compiler option when

building the application. If the debug option is not set, you can still start the

debugger on the program, but you will have to work with the assembler view of

your program.

To run the debugger against your source, you must first build your application.

From the project view, choose Project > Build > Windows NT/95/98. To start the

debugger, select the Debug menu item from the Project menu. See Chapter 10,

“Debugging Your Application,” on page 227 for more information on debugging.

Debugging Procedures

If you want to debug code in your DLL, you need to follow some extra steps:

1. Start the debugger for your main application- in our example, MyMain.

2. On the Debugger - Session Control dialog, choose Breakpoints-Set load

occurrence....

3. When the Load Occurrence Breakpoint dialog is displayed, type the name of

the DLL, MyFunc, in the DLL File Name entry and press OK.

4. Run your program.

When the procedure is called in the DLL, a debugger message dialog is displayed

indicating that the DLL is being loaded. Press OK and do the following:

1. Locate the Debug - Session Control dialog and note that there is a new entry in

the right side panel with the name of the DLL.

Chapter 22. Creating Non-GUI VisualAge RPG Programs 379

2. Click on the + sign next to the DLL name. It will expand to show the name of

the object module, MyFunc.obj.

3. Double-click on the object module name.

4. The source view of the debugger will now show the source for procedure

ToUpper in DLL MYFUNC.

You can now add breakpoints and display program variables in the DLL. Also, if

you are currently STARTing other VARPG components, or if you are calling your

own ’C’ functions, you can also use the above procedures to debug them.

Figure 112. Selecting the MyFunc.DLL Object File

380 Programming with VisualAge RPG

Chapter 23. DBCS Considerations

If you plan to use VisualAge RPG on a Double Byte Character Set (DBCS) system,

you must consider the following:

v The compiler does not allow shift-in and shift-out characters in literals. If you

use the VisualAge RPG editor to open an AS/400 member in order to copy

source into your VisualAge RPG program, you must remove the shift-in and

shift-out characters from all literals. If they are not removed, compile errors

occur.

v The compiler removes shift-in and shift-out characters from your VisualAge RPG

source members when they are retrieved using the remote /COPY feature.

v DBCS characters are not allowed in the icon file name extension for an

application.

v A VisualAge RPG application name that contains non-DBCS characters will

cause a build failure.

VisualAge RPG Support for DBCS Data Types

VisualAge RPG supports a number of DBCS data types. When you run your

application, certain rules are followed when the DBCS data types are used, in

order to ensure that data is correctly transferred between the AS/400 server and

the workstation. The following DBCS data types are supported:

DBCS Only

A field of this data type contains only DBCS data, and should be used

when you are using the AS/400 database. It is equivalent to the J data type

supported by the AS/400 database.

DBCS Either

A field of this data type contains all single-byte or all DBCS data. It should

be used when you are using the AS/400 database. It is equivalent to the E

data type supported by the AS/400 database.

DBCS Mixed

A field of this data type contains all single-byte or all DBCS data. It should

be used when you are interchanging data with the AS/400 database. It is

equivalent to the O data type supported by the AS/400 database.

AS/400 J, O and E data types require that DBCS data be bracketed by SO (Shift

Out) and SI (Shift In) characters. The workstation fields DBCS Either, DBCS Mixed,

and DBCS ONLY fields do not use SO and SI characters. When these fields are

used to transfer data to the server, SO and SI characters are added appropriately.

When data is being retreived from the server, SO and SI characters are stripped,

and the VisualAge RPG field is padded with two single-byte blanks.

DBCS Either, DBCS Mixed, and DBCS ONLY fields are represented as character

fields with the same names as their part names within the VisualAge RPG

application.

The following example illustrates how data is converted when DBCS data is

transferred to and from the server. In this example, a 10 byte DBCS ONLY field is

created using VisualAge RPG. This means that the field can contain four DBCS

characters, since each DBCS character requires two bytes. The extra two bytes are

© Copyright IBM Corp. 1994, 2005 381

used to insert the SO and SI characters before the field is transferred to the server.

Assume that the field contains the following data before being transferred to the

server:

 DBDBDBDBblbl

 Where DB = 1 Double byte character.

 bl = 1 Single byte blank character.

Before the field is transferred to the server, it is converted so that the DBCS data is

bracketed by the SO and SI characters. The single-byte blanks are treated as being

insignificant, and they are replaced with the appropriate SO and SI characters.

Therefore, the field would appear as follows before being transferred to the server:

 SODBDBDBDBSI

If the same data is retrieved from the server, then the SO and SI characters are

stripped and the field is padded with two single byte blanks:

 DBDBDBDBblbl

 Where DB = 1 Double byte character

 bl = 1 Single byte blank character

Note: The character fields representing the DBCS ONLY, DBCS Mixed, or DBCS

Either data types must be padded with the appropriate number of

single-byte blanks in order for the field to be transferred to the server and in

order for the data within the field to be displayed in the window correctly.

VisualAge RPG ensures that enough single-byte blanks are present. When setting

DBCS fields or retrieving information from DBCS fields using the SETATR and

GETATR operation codes, respectively, you must ensure that the length of the field

in the SETATR and GETATR operations is the same length as the field in the

window. If it is not, it may not be transferred between the server and the

workstation.

DBCS ONLY Data Type

VisualAge RPG ensures the following when the DBCS ONLY data type is used,

regardless of whether the data is added via the field on the window or entered

using the SETATR operation code:

v The minimum field length is 2. This ensures that there is enough room for the

SO and SI characters that are added when the data is transferred to the server.

v The field contains valid DBCS characters. Each double-byte pair is checked to

ensure that a valid DBCS character is used.

v The field is appropriately padded with blank characters. If a smaller value is

entered than the field allows, the field is padded to the maximum length of 2

with double-byte blanks. The last two bytes of the field are padded with

single-byte blanks.

DBCS Either Data Type

The DBCS Either data type must contain either all single-byte data or all

double-byte data: mixture of DBCS and single-byte data is not allowed. If

single-byte data is used, then the maximum length of the field can be used to hold

the single-byte data and the maximum length of the data can be transferred to and

from the server.

382 Programming with VisualAge RPG

VisualAge RPG enforces the following rules when the first two bytes of the field

represent a DBCS character, regardless of whether the data is added via the field

on the window or entered using the SETATR operation code:

v The minimum field length is 2. This ensures that there is enough room for the

SO and SI characters that are added when the data is transferred to the server.

v The field contains only valid DBCS characters. Each double-byte pair is checked

to ensure that a valid DBCS character is used.

v The field is appropriately padded with blank characters. If a smaller value is

entered than the field will allow, then the field is padded to the maximum

length of 2 with double-byte blanks. The last two bytes of the field are padded

with single-byte blanks.

DBCS Mixed Data Type

This field can contain any number of DBCS or single-byte characters

interchangeably. VisualAge RPG enforces the following rules:

v This character field is always padded with single-byte blanks.

v For each change in DBCS mode, an SO and SI character must be accounted for.

Each time the user changes between entering DBCS characters and entering

single-byte characters, 2 is subtracted from the maximum length that can be

entered. For example, assume a DBCS Mixed field is created with a length of 20

using VisualAge RPG. This field has the following value:

 DBsbDBsbDBsbDBsb.

 where DB = 1 DBCS character.

 sb = 1 single byte character.

This is the maximum length of the field, since the field is converted to the

following before being transferred to the server.

 SODBSIsbSODBSIsbSODBSIsbSODBSIsb.

 where SO = 1 shift out character.

 sb = 1 shift in character.

All 20 bytes of the field are used.

Pure DBCS Considerations

Both the VisualAge RPG language and the AS/400 database support a pure DBCS

data type: the G or Graphic data type. Pure DBCS data does not require the SO

(Shift Out) or the SI (Shift In) characters on the AS/400 server or the workstation.

When Graphic data is converted between the AS/400 server and the workstation,

no SO and SI characters are added or removed.

GUI entry fields do not directly map to the Graphic data type supported in the

VisualAge RPG language. To use the full extent of the field, it is recommended that

you create a character entry on the window. When you do, a VisualAge RPG

character field is created with the same name as the GUI Designer part. A separate

Graphic field can then be used to interact with the character entry field created,

using the GUI Designer. Use the SETATR or GETATR operation code to interact

with the entry fields. In this way, the entire length of the entry field can be used to

store DBCS characters without concern for the SO and SI characters.

Chapter 23. DBCS Considerations 383

384 Programming with VisualAge RPG

Chapter 24. Merging Code in Your Application

When programming, you may wish to merge two or more parts of a project or

component and the associated code together. You can use the Merge function to do

this. Select the Merge menu item from the Project pull-down menu. This will bring

up the Open Component - VisualAge RPG dialog box, which will allow you to

select the project that you would like to merge from.

This dialogue is similar in look and function to the Find Folder/Project dialog box.

You can either specify the project in the entry field, including the complete path, or

you can use the list box to select a drive and proceed to select folders to find the

necessary project. Both methods will open the GUI Objects Tree View window for

the specified project. Alternatively, you can select the GUI Objects menu item from

the View pull-down menu in the project organizer.

 This window shows two views, the one on the left contains the tree view of the

project that you selected to merge from, and the one on the right contains all of the

children of the part that is selected in the tree-view on the left. You can select

multiple parts in the right side of the window much like you can in the Windows

Explorer. This view may be used as an additional parts pallette because you can

select items from here (either the left or the right pane), and then point-and-click

them onto the current project’s tree view or onto the design window. This works in

the same way as the parts pallette in that you can only place parts into a

frame-based part, and frame-based parts can only be placed into the root of your

project tree. When you merge the GUI and the associated code, the builder will

force a save of the current project that you are working on, in order to provide you

with a backup of your work in the event that you are not satisfied with the merge

results.

Figure 113. The Code Merge GUI Objects Tree View

© Copyright IBM Corp. 1994, 2005 385

In addition to the GUI layout, the merge will copy linked action subroutines, help

panels, technical descriptions, references to media files, referenced user subroutines

and user messages. There are a few rules to keep in mind about merging code in

these specific cases.

v All linked action subroutines will be copied.

v Referenced media files are not copied along with the references. It is your

responsibility to do this.

v File description specifications and definition specifications are not copied to the

current project. Again, it is your responibility to do this.

v User subroutines, RPG procedures and User messages referenced by the action

subroutine being copied will also be copied. This includes all references to user

subroutines used by an EXSR or a CASxx operation code, RPG procedures

referenced on a CALLP operation code, and user messages referenced with the

DSPLY operation code.

v For parts which have been renamed, all action subroutines that refer to the part,

and which have names that conform to the standard format will be renamed.

For example, the following source code would be renamed as it follows the

standard format. The requirement for this format is that the partname and

windowname directly correspond to the location in which the part can be found.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq----

C PSB000000C BEGACT PRESS FRA000000B

 .

 .

 .

C ENDACT

v User messages which are copied are renamed consecutively begining with the

first message copied. All merged user messages are numbered sequentially

starting immediately after the last message in the current project. The message

IDs are changed on DSPLY operation codes that reference them.

v If a name conflict is detected for a user subroutine, it will not be renamed and it

will be added to a list contained in the merge log file. The log will also be

displayed on the Code Merge Results window. The merge log file will be placed

in the project directory, with a filename of projectname.mrg where projectname

is the name of your project. This file will be overwritten if more than one merge

is performed for the same project. The file is not automatically appended. The

following example contains a listing of a sample merge file.

The following parts were copied to the target project:

 Source Name Target Name

 SEARCHW:CAN00023 SEARCHW:CAN00023

 SEARCHW:SEARCHW SEARCHW:SEARCHW

 SEARCHW:SEARCHGB SEARCHW:SEARCHGB

 SEARCHW:STX00071 SEARCHW:STX00071

 SEARCHW:TITLECB SEARCHW:TITLECB

 SEARCHW:STX00073 SEARCHW:STX00073

 SEARCHW:STX00074 SEARCHW:STX00074

 SEARCHW:STX00075 SEARCHW:STX00075

 SEARCHW:CATCB SEARCHW:CATCB

 SEARCHW:DIRCB SEARCHW:DIRCB

 SEARCHW:ACTORCB SEARCHW:ACTORCB

 SEARCHW:SEARCHPB SEARCHW:SEARCHPB

 SEARCHW:CANCELSEPB SEARCHW:CANCELSEPB

 SEARCHW:HELPPB SEARCHW:HELPPB

 SEARCHW:STX00082 SEARCHW:STX00082

386 Programming with VisualAge RPG

The following help panels were copied to the target project:

 Source Name Target Name

 24.SEARCHW 88.SEARCHW

 79.SEARCHPB 99.SEARCHPB

 80.CANCELSEPB 100.CANCELSEPB

 81.HELPPB 101.HELPPB

Merging Source Code:

 Action Subroutine CATW+CLOSE+CATW

 Renaming To SEARCHW+CLOSE+SEARCHW

 Action Subroutine TITLECB+CREATE+SEARCHW

 Action Subroutine DIRCB+CREATE+SEARCHW

 Action Subroutine ACTORCB+CREATE+SEARCHW

 Action Subroutine CATCB+CREATE+SEARCHW

 Action Subroutine TITLECB+ENTER+SEARCHW

 Action Subroutine CATCB+SELECT+SEARCHW

 Action Subroutine DIRCB+SELECT+SEARCHW

 Action Subroutine ACTORCB+SELECT+SEARCHW

 Action Subroutine CANCELSEPB+PRESS+SEARCHW

 Action Subroutine SEARCHPB+PRESS+SEARCHW

 Message *MSG0001 -> *MSG0003

 Message *MSG0001 -> *MSG0003

 Message *MSG0001 -> *MSG0003

 Message *MSG0001 -> *MSG0003

 User Subroutine WRTBRSFSR

 User Subroutine CASECAT

 User Subroutine CKCRITERIA

 User Subroutine DSPBROWSE

 Message *MSG0001 -> *MSG0003

 User Subroutine BRACTION

 User Subroutine BRCHILDREN

 User Subroutine BRSCIFI

 User Subroutine BRCOMEDY

 User Subroutine BRHORROR

 User Subroutine BRWESTERN

 User Subroutine BRROMANCE

 User Subroutine BRCLASSIC

The following messages were copied to the target project:

 Source Message Target Message

 1 3

Technical description of the following parts were copied to the target

project:

 Source Name Target Name

 SEARCHW:SEARCHPB SEARCHW:SEARCHPB

 SEARCHW:CANCELSEPB SEARCHW:CANCELSEPB

 SEARCHW:HELPPB SEARCHW:HELPPB

Chapter 24. Merging Code in Your Application 387

The following rules apply to the resolution of part name conflicts:

v The merged part or window will be renamed.

v If a window gets renamed all of the parts contained in it will inherit the new

window name.

v Action subroutines linked to a renamed window or part will be renamed and

relinked, if they follow the standard naming format.

v Calculation Specifications containing a GETATR or SETATR operation code

which refer to a renamed part will be changed.

v The merge process tries to correct part references in the code being merged to

address part name changes.

User messages that are used in merged parts are also copied. The following rules

apply:

v If there is a name conflict, for a user message, a rename will take place.

v References to renamed user messages will be updated.

388 Programming with VisualAge RPG

Chapter 25. Vendor Plugins

Plugins are applications that are written by third party developers and are created

to provide additional functionality to VisualAge RPG. A wide variety of tasks

could be automated such as the insertion of a line of code to set the value of an

attribute selected from a list for a named part; or a procedure which allows

programmers to print their RPG source formatted to include page headings and

footers.

Adding a Vendor Plugin

To add a plugin that you have either created or obtained from a third party

developer, do the following:

1. Click on the Vendor pull-down menu.

2. Highlight the Plugins item to reveal the plugins submenu.

3. Click on the Add plugin... command to open the Add plugin window.

4. Select the vendor plugin that you would like to add from the files diplayed in

the window. The files that are displayed have a .plg extension.

Invoking a Vendor Plugin

When you have added a plugin to the VisualAge RPG GUI designer, you then

have to invoke the function. The most simple method of doing this is to select the

plugin menu item that was defined by the vendor. The menu item can either be on

the Vendor pull-down menu, or on the Selected pull-down menu or from a part’s

popup menu. In some cases the plugin will not have a menu item defined, and it

will be necessary to invoke this plugin external to the GUI designer (to see an

example of this method of invocation, see the LPEXSAMP sample plugin). As an

example, add one or more of the vendor plugin samples provided with VisualAge

RPG. To invoke these plugins, do the following:

1. Click on the Vendor pull-down menu.

2. Highlight the Plugins item to reveal the plugins submenu.

3. Highlight the menu item that is added along with the plugin. The name of this

menu item is variable, because it is created by the developer of the plugin.

Depending on the developer/vendor this may produce another submenu. If

this is the case, go to step 4, otherwise, click the menu item to invoke the

plugin.

4. Click on the appropriate menu item from the submenu to invoke the plugin.

Managing Vendor Plugins

If you have vendor plugins functioning in VisualAge RPG, you may want to find

out information about a plugin, such as the developer, the developer’s description

of what it is that the plugin does, or the dll that is associated with the plugin. This

information can be obtained in the Manage plugins window.

To open the Manage plugins window, do the following:

1. Click on the Vendor pull-down menu.

2. Highlight the Plugins item to reveal the plugins submenu.

3. Click on the Manage plugins... command to open the Manage plugins

window.

© Copyright IBM Corp. 1994, 2005 389

390 Programming with VisualAge RPG

Chapter 26. Creating Plugins

You can create a plugin to address your own specific needs, or as a VisualAge RPG

supplement to be shipped to other programmers who may benefit from your

plugin. Plugins can be created using one of either VisualAge RPG, VisualAge C++,

or REXX. The following steps outline the plugin creation process using VisualAge

RPG code. Additional sections will follow that will address the exceptions and

additional guidelines for creating plugins with VisualAge C++ or REXX.

Creating Plugins Using VisualAge RPG

There are two components required to create a plugin, the executable file and the

plugin informations file. The executable file consists of compiled source code

which performs the desired function. The plugin information file (.plg) acts as an

interface between the GUI designer and the executable file. It contains important

information such as the definitions for the pull-down menu items that are added to

the GUI designer, as well as the actual call to the executable file.

It does not matter which of the two files that you create first, as both must be

present for the plugin to function. This example starts with the .plg file.

Creating the .plg file

The .plg file acts as the interface between the plugin and the designer. It is an

ASCII file which contains organizational information such as the location of the

necessary DLL, the location of the associated help files, and the name of the plugin

itself and the vendor. The .plg file also contains the information that is needed to

interface the plugin with the designer. This includes the command line string, the

desired text for the menu items, and the key combination that serves as an

accelerator. The following list of keywords explains the various parameters,

including the rules which apply, whether the parameter is required or optional,

and the information that you need to provide. An example follows this list of

keywords which illustrates how this file appears when it is finished.

Note: The spaces between the keyword and the parameter value that is being used

for the value in your plugin are arbitrary. The spaces used in the examples

are designed for presentation only.

Alternate_Paths

This is a string that indicates what relative paths should be used when loading the

plugin DLL described below. This field is optional.

The string takes the form:

"&1\relativePath1;&1relativePath2;...;&1\relativePathN;"

where &1\ will be converted to the full path to the .plg file. This means that if you

have a suite of plugins that get installed in a directory such as c:\myplugins, and

they all link to a common DLL: c:\myplugins\plugutil\plugutil.dll, then if each

individual plugin was located in c:\myplugins\plugN\plugN.plg, you could specify

the alternate path: &1\..\util;, which would be converted to:

c:\myplugins\plugN\..\util; and be appended to the PATH before your DLL is

loaded. The quotation marks are required if you choose to use this keyword.

© Copyright IBM Corp. 1994, 2005 391

Instead of a string, you may also use a resource id to point to a path specified in

an external source.

DLL_Names

The value for this field is a string that defines the name of the required DLL files

for this plugin. This is an optional field, but if used, there must be a DLL named

that is used by the plugin. Additionally, an mri.dll may be named. The mri.dll

name is optional, but cannot be included without a plugin.dll. If both are included,

they are delimited by a space. The name of the DLL files can include the path

relative to the location of the plugin files.

plugin.dll

This is the name of the DLL containing the code for the plugin. If the

plugin is not a function call within a DLL, then this may be omitted.

mri.dll

If mri (translatable strings) is in a separate DLL, name that dll here. The

DLLS are specified first so that any strings to follow can be contained in

the DLLs.

 Whenever a string is required further on in the .plg file, if a string enclosed in

quotation marks is not specified, then the value given is assumed to be a string

resource id in either mri.dll or plugin.dll

Vendor_Name

This is either the name of the vendor enclosed in double quotation marks, or the

resource id of a string. This field is optional, but recommended. An example of this

string would be:

Vendor_Name: "Plug-Me-In Inc."

Plugin_Name

This is either the name of the plugin enclosed in quotation marks, the resource id

of a string. This field is optional, but recommended. An example of this field using

a string is:

Plugin_Name: "Who Am I?"

Help_File

This field is optional, and identifies the Windows .hlp file used for displaying help

for the menu items. It is a string, not enclosed in quotation marks, which includes

the relative path to the help file.

Unloading_Function

This field is optional. The Unloading_Function field cannot be used in conjunction

with the Unloading_Command_Line field. This field is only used if there is

information or a display element that needs to be modified or removed after the

plugin is finished or removed. This string, enclosed in quotation marks, designates

the function which will be used. This function must be contained in the DLL that

accompanies the plugin.

The Unloading_Function is the name of the function to be called when the plugin

is about to be unloaded. It has the following signature:

392 Programming with VisualAge RPG

where the parameters are:

ppluginPath_

The fully qualified path to the plugin being invoked, up to and including

the final backslash.

ppluginStub_

The rest of the plugin filename (eg. ″myplug.plg″).

pdllPath_

The fully qualified path to the DLL containing VARPG’s exposed methods.

builderId_

A string used by VARPG to identify the builder and which is used by the

plugin when communicating with the builder.

remove_

0 The builder is shutting down.

1 The user has requested that the plugin be removed altogether. If

this is the case, the plugin should remove any information it has

stored in the registry at this time.

Return value

0 success

1 failure, or refusal

If the plugin returns a 1 from this function, the builder may prompt the

user with the option to forcibly remove the plugin by unloading its DLL. If

this occurs, it is possible that the plugin may then crash the designer. If

this occurs, restart the designer.

Unloading_Command_Line

As mentioned above, this field cannot be used at the same time as the

Unloading_Function field.

When this option is used, you provide a string to be executed as though it were

being run from the command line. For example, you could start Netscape by

specifying the string: netscape.exe

This method allows you to obtain the same set of parameters that would be

available to a function in a DLL. This is accomplished through the definition of

substitution variables. Whenever a ’&0’, ’&1’, ’&2’, ’&3’, ’&4’ or ’&5’ is found in

the string specified, it is replaced with the following:

&0 ppluginPath_

&1 ppluginStub_

&2 pdllPath_

&3 builderId_

&4 remove_

unsigned long

 unloadFunctionName(

 const char* ppluginPath_,

 const char* ppluginStub_,

 const char* pdllPath_,

 const char* builderId_,

 int remove_)

Chapter 26. Creating Plugins 393

&5 path to the GUI Designer’s root directory

IBM_PluginInterface | PluginInterface

This is an advanced feature that is not required. This field allows you to expose

your plugin as a programmable component. You cannot use these two options in

the same .plg file. If you do not have a reason to specify either of these interfaces,

do not do so.

When either one or the other of these options is used, the function name specified

is used when other plugins interact with this plugin through a

target/command/parameters interface.

The signature of the function should be:

 for the IBM_ style function, where arguments_ is used for input and output.

For the non-IBM style function, the signature should be:

 In this case, if there is a return string, ppreturnString_ should be allocated

memory by the plugin using GlobalAlloc(GMEM_FIXED, [bufferSize]) so that

VARPG can deallocate the memory when it is finished with it. If there is no return

string required, this parameter can be ignored. The following is an example of this

command:

To see an example of a plugin that supports the IBM_PluginInterface feature, look

at the LPEXSAMP sample provided in the

x:\...\WDSC\samples\vndplugs\lpexsamp directory (where x corresponds to the

letter of the drive onto which you installed VisualAge RPG).

Begin_Details ... End_Details

Between these tags, enter anything that you wish to show the user when this

plugin’s information is displayed in the Manage plugins dialog. You may want to

give a brief description of the purpose and use of your plugin. You can enter text

here, or you can use the String/Resid form described for the mri.dll. This field is

optional, but is highly recommended.

unsigned long __stdcall IBMtargetCommandFunction(

 const IString& pluginPath_,

 const IString& dllPath_,

 const IString& builderId_,

 const IString& target_,

 const IString& command_,

 IString& arguments_);

unsigned long __stdcall targetCommandFunction(

 const char* ppluginPath_,

 const char* pdllPath_,

 const char* pbuilderId_,

 const char* ptarget_,

 const char* pcommand_,

 const char* parguments_,

 char** ppreturnString_);

{

 IString returnString = ...;

 ...

 *ppreturnString = GlobalAlloc(returnString. length() + 1);

 strcpy(*ppreturnString, returnString);

}

394 Programming with VisualAge RPG

Function_Name

This is the name of the function that should be called in the plugin.dll when the

menu item is triggered. You can either use this field or the Command_Line field.

You may not use both. It should have the following signature:

 where the parameters are:

ppluginPath_

Same meaning as for unloadFunctionName().

pdllPath_

Same meaning as for unloadFunctionName().

builderId_

Same meaning as for unloadFunctionName().

menuContextId_

An unsigned long value representing the type of menu from which this

plugin is invoked. This value determines the meaning of partsIds_. The

possible values are:

1 The plugin was invoked from the menu bar, (that is, this is a

project-scoped plugin) and partsIds_ is an empty string.

2 The plugin was invoked for a single selected part, (that is, this is a

single-selection-scoped plugin) and partsIds_ contains the identifier

of the selected part.

4 The plugin was invoked for a group of jointly-selected parts (that

is, this is a multiple-selection-scoped plugin) and partsIds_ is a

string containing the blank delimited set of part identifiers of the

selected parts.

8 The plugin is invoked when the GUI designer is started.

partsIds_

 This is a string representing the part or parts, to which the function call

should apply as indicated by the menuContextId_. Within partsIds_, each

individual part identifier is a sequence of dot-separated unsigned long

values (eg. 432.5632.612) which represent the child-parent hierarchy of the

given part. In the stated example, 612 is the ID of the part, 5632 is the ID

of its parent, and 432 is the ID of the parent’s parent.

Command_Line

When this option is used, you provide a string to be executed as though it was

being run from the command line. For example, you could start Netscape by

specifying the string: netscape.exe.

This method allows you to obtain the same set of parameters that would be

available to a function in a DLL. This is accomplished through the definition of

substitution variables. Whenever a ’&0’, ’&1’, ’&2’, ’&3’, ’&4’ or ’&5’ is found in

the string you specify, it is replaced with the following:

&0 ppluginPath_

unsigned long

 pluginFunctionName(

 const char* ppluginPath_,

 const char* pdllPath_,

 const char* builderId_,

 unsigned long menuContextId_,

 const char* partsIds_);

Chapter 26. Creating Plugins 395

&1 pdllPath_

&2 builderId_

&3 menuContextId_

&4 partsIds_

&5 path to the GUI Designer’s root directory.

Using the Netscape example above, suppose the vendor provided an HTML file

with its plugin, and this particular menu item is intended to display that HTML

file. Assume also that the plugin file is located in d:\vendor\plugins, and the

HTML file is d:\vendor\plugins\htmlsrc\plugpage.html. To have the plugin

display this web page, the definition of the command line might be as follows:

netscape &0htmlsrc\plugpage.html

Which would expand to, and be run as:

netscape d:\vendor\plugins\htmlsrc\plugpage.html

Menu_Name

This is either a string or a string resource id that indicates what the menu item

should be. These strings have the format:

submenu1/submenu2/.../submenuN/menuitem

where submenu1 through submenuN are optional submenus.

For example:

 where ″Plug-Me-In Inc.″ is the submenu and ″Who am I?″ is the menu item.

Menu_Info_Strings

This is a list of strings or string ids that are associated with the corresponding

submenus/menuitem as specified in Menu_Name. The association works

backwards.

For example, if you specify one submenu and one menu item in Menu_Name, but

only specify one string in Menu_Info_Strings, then the string you specify in

Menu_Info_Strings will be associated with the menu item, and the submenu will

be ignored. (It is possible that a previous menu item addition defined an info-area

string for the given menu item.)

Supported_Menus

As mentioned in Function_Name, the menuContextId_ indicates a type of menu.

Supported_Menus indicates the menus to which this particular entry should be

added.

Help_Id

If a help file has been specified, and there is help associated with this command,

provide the help id here in the ulong_panel parameter of Help_Id. If the

optional_force_window_parameter is provided and is a non-zero value, then the

help will be displayed in a full help window rather than in the default context

popup. This field takes the form of:

Menu_Name: "Plug-Me-In Inc./Who am I?"

Help_Id: ulong_panel optional_force_window_parameter

396 Programming with VisualAge RPG

and a sample of how this is actually coded is:

Accelerator

This optional field specifies the accelerator to be associated with the item. It

consists of one of F1 through F12, followed by one or more modifiers (SHIFT, ALT,

CONTROL)

Note: <F1/10>, <Alt-F5/7/8/9/10>, and <Shift-F9/10> are already reserved by

the designer, and if specified will be ignored.
To use this function, provide the following information:

 This field, when used will look like the following sample:

End_of_Definition

This indicates to the parser that a function definition has ended and that a new

one may begin.

Template for .plg file and sample

When using the previously described fields to create a .plg file for the GUI

designer you need to follow this format:

Note: There must be at least one Function_Name or Command_Line definition.

There is no limit on the maximum number allowed.

Help_Id: 1000 1

Accelerator: [F1 | F2 | F3 | ... | F12] [SHIFT] [CONTROL] [ALT]

Accelerator: F8 Shift

Chapter 26. Creating Plugins 397

Note:

v All filenames are given relative to the location of the .plg file.

v The unloaders are optional, but if you choose to have one, you can only

have one or the other.

v Either the Function Name or Command Line may be specified.

The following is a specific example of a simple .plg file. There are some plugin

samples provided with VisualAge RPG. The files can be found in the

X:\...\WDSC\samples\vndplugs\ directory on the workstation where VisualAge

RPG is installed (where X corresponds to the drive letter).

// Lines that begin with double forward-slashes are ignored

// (that is, treated as comments)

Alternate_Paths: string_or_resId

dll_Names: plugin.dll mri.dll

Vendor_Name: string_or_resId

Plugin_Name: string_or_resId

Help_File: helpfile.hlp

Unloading_Function: "unloadingFunction"

 (or)

Unloading_Command_Line: "command line invocation with substitution symbols &0, &1, &2, &3, &4, &5"

IBM_PluginInterface: "IBMtargetCommandFunction"

 (or)

PluginInterface: "targetCommandFunction"

Begin_Details:

 .

 .

 Optional text outlining the function of the plugin.

 .

 .

End_Details:

Function_Name: "functionName1"

 (or)

Command_Line: "command line invocation1 with substitution symbols &0, &1, &2, &3, &4"

Menu_Name: string_or_resId

Menu_Info_Strings: string_or_resId string_or_resId ...

Supported_Menus: menuContextId1 menuContextId2 ...

Help_Id: ulong_panel optional_force_window_parameter

Accelerator: [F1 | F2 | F3 | ... | F12] [SHIFT] [CONTROL] [ALT]

End_of_definition:

398 Programming with VisualAge RPG

Creating the .EXE file

To create an .EXE file for the GUI designer you need to be aware of the following:

When using VisualAge RPG to create plugins, you use the *component part to

interact with the designer. By setting values for the PlugDLL, PlugId, PlugCmd,

PlugRC, and PlugResult attributes, all of the necessary information can be

communicated between the designer and the plugin.

To create a working plugin you must establish proper communication by providing

the designer with the following information:

builderId_

This is the same id that was provided by the designer when the plugin

was invoked.

target_

This is a string representing the aspect of the designer you wish to interact

with.

command_

This is the specific action you wish the designer to take.

parameters_

Any arguments required by the command.

Note: In a VARPG program, builderId_ corresponds to *component’s PlugId

attribute. In order to make a call to the Plugin interface, you must first have

set PlugId and also PlugDLL. PlugDLL indicates to the VARPG runtime

where the dll containing the builder’s plugin interface is located. When

issuing a command, first concatenate the values of target_, command_ and

parameters_ using blanks for delimeters and then use the result to set

*component’s PlugCmd attribute.

You get a result and an error code in return. In the case of a function call, one of

the parameters is set to contain the result string, and the returned unsigned long

value contains the error code. The following are some basic return codes common

to all commands. Any additional error codes will be defined in the respective table

of Targets and Commands.

// Print project plugin

Vendor_Name: "Plug-Me-In Inc."

Plugin_Name: "Who Am I?"

Begin_Details:

Who Am I?

 This plugin will display information about the current

 project including its directory name and file name.

End_Details:

Command_Line: "d:\myproj\whoami\rt_win32\whoami.exe &1 &2 &4"

Menu_Name: "Plug-Me-In Inc./Who am I?"

Supported_Menus: 1

Accelerator: F7 Shift

End_of_Definition

Chapter 26. Creating Plugins 399

Return Code

Meaning

0 All went well, and the command was handled.

1 The target was not recognized.

2 The target did not recognize the command.

4 The builder can not be found.

5 Some unknown error occurred and the results of the command can not be

trusted.

Targets/Commands and the associated Return Values

A list of the valid targets and commands follows, along with the semantics of their

parameters and returned values.

 Table 13. Target: Project

Command Parameter(s) Meaning/Return Value

Build [win32|java]

Default: win32

Builds either a win32 or java

version of the project, depending

on whether the platform is

″win32″ or ″java″. No return

value, and returns immediately

(that is, before the build

completes).

BuildOptions [win32|java]

Default: win32

Shows the build options for

either win32 or java, depending

on whether the platform is

″win32″ or ″java″. No return

value, but does not return until

the (modal) dialog is dismissed.

CursoredPart none Returns a string containing the

partId for the currently cursored

part. If no design window is

open, or if no open design

window is the active design

window, then this is an empty

string.

ExpandAll [1] If this parameter=1, then the

entire treeview is expanded;

otherwise, it is collapsed.

ForceOpen [projectName] Opens the specified project

without checking whether or not

the current project needs to be

saved. Returns a 1 indicating that

the ForceOpen was successful, or

a 0 to indicate that the

ForceOpen was unsuccessful.

400 Programming with VisualAge RPG

Table 13. Target: Project (continued)

Get ProjectDir Returns the current project’s root

directory.

ProjectFileName Returns the current project’s fully

qualified .IVG file name.

ProjectTargetName Returns the name of the file that

will be generated when the

project is built (for example,

″myproj.exe″).

ProjectTitle Returns the title of the current

project.

ProjectFileStub Returns the filename (minus the

extension) of the names of the

current project (for example,

″myproj″).

IsSaveRequired none Returns 1 to indicate that the

project has been modified, 0 to

indicate that it hasn’t been

touched since being opened.

IsTemporary none Returns a 1 if this is an unnamed

project, 0 otherwise.

MostRecentlyUsed n Returns the n’th most recently

opened project, where n is equal

to or greater than 1. Returns an

empty string if the index is out

of bounds.

Open projectName Checks to see if the user wants to

save the project before opening

another project. Returns 1 if a

project was successfully opened,

and 0 otherwise.

PartId partName [windowName

|[0|1|2]]

Returns a partId when given a

part name. If you specify a

windowName, then this will

either return the id of the part, or

if there is no such part, it will

return an empty string. If you

specify a searchType, then the

following rules will be used

when searching for a part with

the given name:

 0 (default) - Return the first

part with the given name.

1 - Return all parts with

the given name.

2 - If there is only one part

with this name, return it;

otherwise return nothing.

PromptedSave none Prompts the user for a project

name and then saves the project.

Returns a 1 to indicate that a

successful save took place;

otherwise it returns a 0.

Chapter 26. Creating Plugins 401

Table 13. Target: Project (continued)

PromptExisting none Prompts the user for an existing

project. Returns the project

filename.

Run none Runs the current project.

Save none Saves the current project.

SaveAs projectName Saves the current project with the

specified project name.

SelectedParts none Returns a string containing the

partIds of all of the parts

currently selected in the project’s

treeview.

 Table 14. Target: PartClass

Command Parameter(s) Meaning/Return Value

AllAttributes ClassName Returns a list of the attributes

supported by the given

ClassName.

AllClasses none Returns a list of all available part

classes. Each list item is

embedded in double quotation

marks since some may consist of

multiple words (for example, in

the case of vendor parts).

AllEvents ClassName Returns all registered events for

the given class.

IBMClasses none Returns a list of all IBM

supplied, non-vendor part

classes.

IconDll ClassName Returns the path of the dll

containing the icon that

represents the given part class.

IconId ClassName Returns the resource id of the

icon (in the dll given by

″IconDll″) for the given class.

IsType TypeName Returns 1 to indicate that the

ClassName given class is of the

given type; otherwise it returns a

0. Possible values for TypeName

include: Frame, Canvas,

MenuBar, NoteBook,

NoteBookPage, PopUpMenu,

SubMenu, MenuItem, Subfile and

SubfileEntryField.

VendorClasses none Returns a list of all available

vendor part part classes.

 Table 15. Target: Part

Command Parameter(s) Meaning/Return Value

402 Programming with VisualAge RPG

Table 15. Target: Part (continued)

ActionSubroutine partId eventName Locates the linked action

subroutine, eventName or creates

a link and scans to it if it does

not already exist.

ActionSubroutines partId Returns a list of action

subroutines defined for this part.

AllEvents partId Returns all registered events for

the given part.

Children [partId] Returns a list of blank delimited

partIds enumerating all of the

specified part’s children. If no

partId is provided, a list of all of

the project’s windows is

returned.

ClassName partId Returns the classname of the

indicated part.

CreateChild partId className Creates a part of the given class

name className as a child of the

specified part. Returns the partID

of the newly created part.

CreateFrame ClassName Creates a part of the specified

class. The class must be a frame

based part. Returns the partID of

the newly created part.

DataInfo dataType dataLength

decimalPlaces

where:

dataType is ’0’=Numeric or

’1’=Character

dataLength is the data length

decimalPlaces is the number of

decimal places

Returns a string of three

numbers, each separated by a

blank. Applicable parts include

entry field, static text, and subfile

entry field.

ExtraColorAreas

see Note below

partId Returns a count of the color areas

that this part supports if this part

supports color areas other than

foreground and background.

FileName partId Obtains the file name set for this

part. If the part doesn’t support

files, the return value is an empty

string.

GetColor partId [x]

where x corresponds to the

colorArea of the part indicated.

Get the color for the specified

area. Returns a string with 4

blank delimited numbers:

 useDefault - (0 or 1)

redMix - (0 - 255)

greenMix - (0 - 255)

blueMix - (0 - 255)

Chapter 26. Creating Plugins 403

Table 15. Target: Part (continued)

GetFont partId [x]

where x corresponds to the

fontArea of the part indicated.

Gets the part’s font. Returns an

empty string if the font is not

supported. Otherwise, the first

part of the returned string is a 0

or 1 indicating whether or not

the default font is being used, the

second word of the string is a

point size, the third word of the

string is a number which (ORs)

together applicable font styles

from the following:

 1 - bold

2 - italic

4 - underscore

8 - strikeout

16 - outline

The rest of the string is the font’s

facename.

GetRect partId Gets the coordinates (x y width

height) of the part relative to its

parent.

HasFile partId Returns a 1 to indicate that the

part supports a file (for example,

canvas, image, media, ...);

otherwise it returns a 0.

IsColorArea

see Note below

partId [x]

where x corresponds to the

colorArea of the part indicated.

Returns a 1 to indicate that the

color area is supported;

otherwise it returns a 0.

IsFontArea partId [x]

where x represents a fontArea of

the part indicated.

Returns a 1 to indicate that the

font area is supported; otherwise

it returns a 0.

Label partId Returns the part’s label (if it has

one).

LinkedEvents partId Returns a list of events for which

this part has action links.

Name partId Returns the name of the part as

shown in the treeview and

settings notebook.

OpenDesignWindow partId [1] When set to 1, opens and sets

focus to the design window to

which the indicated part belongs.

If set to 0, then the design

window is closed instead.

OpenPart partId Either opens the part’s settings

notebook, or if the part is a

frame, opens the part’s

corresponding design window.

OpenSettings partId Opens the part’s settings

notebook.

404 Programming with VisualAge RPG

Table 15. Target: Part (continued)

SetColor

see Note below

partId

colorArea

useDefault

redMix

greenMix

blueMix

Sets the color for the given area.

See GetColor for more

information for the allowed

values for each of the

parameters.

SetCursored partId If the part’s design window is

open the part becomes the active

part but selection state doesn’t

change. If the design window is

not open, this has no effect.

SetDataInfo partId dataType dataLength

decimalPlaces

where:

partId is the part’s id

dataType is ’0’=Numeric or

’1’=Character

dataLength is the data length

decimalPlaces is the number of

decimal places

Sets the data properties of a part.

Does not update the Properties

Notebook of a part that is

already open, or in use. The

programmer must ensure new

values are compatible with

existing ones already defined for

the part. Applicable parts include

entry field, static text, and subfile

entry field.

SetFileName partId newFileName Sets the file name for this part.

Nothing happens if the part

doesn’t support files.

SetFont partId fontArea setToDefault

pointSize styles faceName

Sets the part’s font.

SetLabel partId newLabel Attempts to set the part’s label. If

the given label is invalid, an

error message is shown. Returns

1 to indicate that the label was

set; otherwise it returns a 0.

SetName partId newName Attempts to set the name of the

part. If the set fails, an error

message is displayed. If the part

has action links associated with

it, a message is displayed asking

the user if they wish to break the

links. Returns 1 to indicate

success, or 0 to indicate failure.

SetRect partId x y width height Sets the coordinates (x y width

height) of the part relative to its

parent.

Chapter 26. Creating Plugins 405

Table 15. Target: Part (continued)

SetSelected partId [0|1] [0|1] Selects/deselects the given part.

The first parameter in the string

is turnOn, and the second is

exclusive. If turnOn or exclusive

are not specified, it is assumed

they have the value ″1″.

Exclusive indicates whether

selecting the part should deselect

all other parts and turnOn

indicates whether or not the

part’s selection status should be

altered.

SetStyles partId styles extendedStyles

[0|1]

Sets the styles and extended

styles of the given part. Note that

these settings will not necessarily

be updated in the properties

notebook or the design window

if either is open. This command

is intended for use when a part is

being created and initialized. A

″0″ at the end of this string will

indicate that the value is in

decimal format, while a one

indicates that hexadecimal

notation is being used.

Styles partId [0|1] Returns two numeric values

separated by a space representing

the styles and extended styles of

the given part. A ″0″ at the end

of this string will indicate that

the value is in decimal format,

while a one indicates that

hexadecimal notation is being

used.

Zoom partId [0|1] Expands the treeview and scrolls

to the indicated part. If ″1″ is

specified, then the treeview is

also given focus.

Note: A part will have a Foreground (1) color area, a Background (0) color area or

no color area, or it will have Extra color areas. The window part, for

example has no color areas. The Checkbox has foreground and background

color areas. The graph has Extra color areas. Therefore, 0 and 1 only

necessarily indicate background and foreground color if the part has no

Extra colors.

The following require that the source file be open in LPEX.

 Table 16. Target: Subroutine

Command Parameter(s) Meaning/Return Value

DeleteActionSub routineName Deletes the action subroutine

with the given name.

DeleteUserSub routineName Deletes the user subroutine with

the given name.

406 Programming with VisualAge RPG

Table 16. Target: Subroutine (continued)

UserSubroutine routineName If the subroutine does not exist,

creates a user subroutine with the

given name and locates it in the

source file. If it does exist, it is

located in the source file.

UserSubroutines none Returns a list of user subroutines.

 Table 17. Target: Grid

Command Parameter(s) Meaning/Return Value

IsOn none Returns a 1 if the grid is

currently on, and a 0 if it is off.

TurnOn [0|1] If set to 1, will turn on the grid.

If set to 0, will turn it off.

(Defaults to on.)

 Table 18. Target: Lpex

Command Parameter(s) Meaning/Return Value

DoIt Any_LPEX_command Passes your parameters to

LPEX’s ″DoIt″.

IsSourceFileOpen none Returns a 1 to indicate that the

source file is open; otherwise it

returns a 0.

OpenSourceFile none Opens the source file in LPEX.

Query Any_LPEX_query Passes your parameters to

LPEX’s ″Query″.

 Table 19. Target: Plugin

Command Parameter(s) Meaning/Return Value

AddPlugin filename Attempts to add the specified

plugin. Returns ″0″ if successful.

get PluginCount Returns the number of plugins

currently installed.

Plugin oneBasedIndex Returns the fully qualified path

of the oneBasedIndex’th plugin.

If n is less than 1 or greater than

the number of plugins, a null

string is returned.

Plugins Returns a list of the fully

qualified paths of all plugins.

InvokePlugin oneBasedIndex target command

parameters

Invokes the plugin using a

target/command interface.

 Table 20. Target: Registry

Command Parameter(s) Meaning/Return Value

DeleteKey key This command will delete the

given key from the registry

(including any subkeys).

Chapter 26. Creating Plugins 407

Table 20. Target: Registry (continued)

Get key [″defaultValue″] If the key does not exist, the

return value is defaultValue,

otherwise it is the value of the

key in the registry. When

entering substitute the

’defaultValue’ string with the

string of your choice. The double

quotation marks are required.

GetRect key [″x y width height″] This command will retreive a

rectangle from the registry, and if

the element with the given key is

not found, the default values

supplied will be returned instead.

The double quotation marks are

required.

Set key value Use this command to set a string

value into the registry. No return

value.

SetRect key ″x y width height″ This command will store the

given rectangle in the registry

using normalized coordinates.

The double quotation marks are

required.

A note on using the registry commands.

Plugins are strongly urged to use an initial subkey that is likely to be uniquely

theirs, so that they don’t interfere with other plugins’ registry entries.

All registry entries made using these commands will be restricted to a common

subsection of VARPG’s registry entry, however; it is possible to overlap across

plugins.

To avoid such overlaps, plugins could use a variation on the pathname of the .PLG

file as the initial subkey as follows:

If the plugin’s pathname is:

"c:\plugins\My_Plugins\myplug.plg",

and the registry entry is to be used to store a window position, then an

appropriate key to use for this value would be:

"c__plugins_my plugins_myplug.plg\Window Position"

(Note that case was eliminated from the path portion of the key, and that the colon

and back-slashes were converted to underscores.) The keys and values specified

must be enclosed in quotes, since the keys can contain spaces. Thus, if you were

trying to set a string value you would use:

Set("c__plugins_my_plugins_myplug.plg\Some relevant keyname" "The new value.")

Embedded quotes are prefaced with a backslash:

Set("c__plugins_my_plugins_myplug.plg\Some relevant keyname" "The new \"quoted\"value.")

408 Programming with VisualAge RPG

There are some other commands which apply to (some of) the GUI Designer’s own

constituant windows. (For example, the parts catalog)

Applicable Targets:

MainWindow

This is the main Gui Designer window.

Catalog

The parts catalog.

DBRefDlg

The Define Reference Fields window.

ImportDlg

The Import Display File window.

LPEX The editor window.

Note that these only apply when the indicated window is open.

 Table 21. Target: GUI Designer constituent windows

Command Parameter(s) Meaning/Return Value

GetHandle none Returns the Windows HANDLE

for the given window.

GetIWindowPointer none Returns the IWindow pointer for

the given window.

MoveSizeTo X Y Width Height Sets the window’s size and

position.

MoveTo X Y Moves the window to position

(X, Y).

Position none Returns the position of the

window in the form ″X,Y″.

Rect none Returns the window’s rectangle

in the form ″X,Y,Width,Height″

SetFocus none Sets focus to the indicated

window.

SetSize Width Height Sets the size of the window.

ShowSetFocus none Shows the window (if it’s not

already visible) and sets focus to

it.

Size none Returns the size of the window

in the form ″X Y″.

NotifyOnClose Window handle Specifies which window is to be

notified when the GUI Designer

is closed.

Sample Plugin Source Code

The following is the source code for the plugin that corresponds to the plg file

used the in section above.

Chapter 26. Creating Plugins 409

 * *

 * Program ID . . : WhoAmi *

 * *

 * Description . : Sample program to illustrate the Vendor plugin *

 * interface of VARPG. *

 * *

 * When invoked from the Vendor menu item on the *

 * GUI Designer this program will use the plugin *

 * interface to gather information about the *

 * current project and display it on a window *

 * named MAIN. *

 * *

 * The following plugin file, WHOAMI.PLG, was specified when adding *

 * this plugin to the GUI designer *

 * *

 * // WhoAmi.plg plug in file *

 * Vendor_Name: "Plug-Me-In Inc." *

 * Plugin_Name: "Who Am I?" *

 * Begin_Details: *

 * Who Am I? *

 * This plug-in will display information about the current *

 * project including its directory name and file name. *

 * End_Details: *

 * Command_Line: "d:\myproj\whoami\rt_win32\whoami.exe &1 &2"*

 * Menu_Name: "Plug-Me-In Inc./Who am I?" *

 * Supported_Menus: 1 *

 * Accelerator: F7 Shift *

 * End_of_Definition *

 * *

 *

 D Cmd S 255A

 *

 C *Entry Plist

 C Parm PlugDLL 64

 C Parm PlugID 64

410 Programming with VisualAge RPG

 * *

 * Window . . : Main *

 * *

 * Part . . . : PB_Cancel *

 * *

 * Event . . : Press *

 * *

 * Description: Terminate the program *

 * *

 *

 C PB_CANCEL BEGACT PRESS MAIN

 *

 C Move *on *inlr

 *

 C ENDACT

 *

 * *

 * Window . . : Main *

 * *

 * Part . . . : Main *

 * *

 * Event . . : Create *

 * *

 * Description: Set up the PLUGDLL and PLUGID values of the *

 * *COMPONENT part to establish communication with the *

 * GUI builder. *

 * *

 * Execute PLUGCMD attributes to collect information *

 * about the current project *

 * *

 *

 C MAIN BEGACT CREATE MAIN

 *

 C ’*Component’ Setatr PlugDll ’PlugDLL’

 C ’*Component’ Setatr PlugID ’PlugID’

 *

 C Eval Cmd=’Project Get ProjectDir’

 C ’*Component’ Setatr Cmd ’PlugCmd’

 C ’*Component’ Getatr ’PlugResult’ DirName

 *

 C Eval Cmd=’Project Get ProjectFileStub’

 C ’*Component’ Setatr Cmd ’PlugCmd’

 C ’*Component’ Getatr ’PlugResult’ File

 *

 C Eval Cmd=’Project Get ProjectTargetName’

 C ’*Component’ Setatr Cmd ’PlugCmd’

 C ’*Component’ Getatr ’PlugResult’ TAR

 *

 C Eval Cmd=’Project Get ProjectTitle’

 C ’*Component’ Setatr Cmd ’PlugCmd’

 C ’*Component’ Getatr ’PlugResult’ Title

 *

 C Eval Cmd=’Project Get ProjectFileName’

 C ’*Component’ Setatr Cmd ’PlugCmd’

 C ’*Component’ Getatr ’PlugResult’ Folder

 *

 C Write ’Main’

 *

 C ENDACT

Chapter 26. Creating Plugins 411

Packaging Your Application

The final step in creating the plugin is the compilation of the .EXE file. Select Build

from the File pull-down menu, and then select the platform that you would like to

use the plugin on. Once the file is compiled, it is ready for use. Refer back to the

instructions for Adding a Vendor Plugin in order to add the plugin. From this

point, you may use the plugin, or you can do any further testing that may be

required.

Considerations when Creating Plugins using VisualAge for C++

The process for creating plugins using VisualAge for C++ is the same as for using

VisualAge RPG. The only difference is that when you create the plugin using

VisualAge for C++, you do not have the direct use of the *component part. Instead,

to allow VisualAge for C++ programs to be used as plugins, the

IBMExecuteVDECommand() function has been provided. Its use is demonstrated

in the sample plugin, ″TreeSamp″.

If necessary, you can cut and paste the code from the

x:\...\WDSC\samples\vndplugs\treesamp (where x corresponds to the letter of

the drive onto which you installed VisualAge RPG) and the

x:\...\WDSC\samples\vndplugs\plugutil directories in order to create the correct

calls to the IBMExecuteVDECommand().

Considerations when Creating Plugins using REXX

The process for creating plugins using REXX is almost identical to that of the

VisualAge RPG example. REXX programmers do not have direct access to the GUI

designer using the *component part. To facilitate the use of REXX scripts as

plugins, the RexxExecuteVDECommand() function is included amongst this set of

functions. An example of how to use this function in a REXX file can be found in

the sample plugin, ″RexxSamp″.

If necessary, you can cut and paste the code from the

x:\...\WDSC\samples\vndplugs\rexxsamp (where x corresponds to the letter of

the drive onto which you installed VisualAge RPG) directory in order to create the

correct calls to the REXXExecuteVDECommand().

412 Programming with VisualAge RPG

Part 5. Distributing Your Application

Chapter 27, “Packaging Runtime Code and Applications,” on page 415

Describes using the packaging utility.

Chapter 28, “Installing Windows NT/95/98 Runtime Code and Applications,” on

page 423

Describes using the installation utility for Windows applications.

© Copyright IBM Corp. 1994, 2005 413

414 Programming with VisualAge RPG

Chapter 27. Packaging Runtime Code and Applications

After you build and test your application, you can package it and distribute it to

other workstations that have the VisualAge RPG runtime code installed.

This section describes how to package the VisualAge RPG runtime code and

VisualAge RPG applications.

Note: If the application will be using an iSeries server other than the one it

accessed during the development cycle, all server objects used by the

application should also be packaged and restored to the new server. They

are not packaged by the VisualAge RPG application packaging utility.

Before You Begin

Make sure that the files needed by your application are stored in the appropriate

runtime directory (RT_WIN32 for Windows or RT_JAVA for Java). Some files are

automatically placed in the runtime directory after you build your application (for

example, the .MSG, .HLP, .DLL, .BND, .RST, and .EXE files); others you will have

to put in yourself (for example, any .BMP, .GIF, .ICO, .JPG, .MID, and .WAV files).

If you put additional files in the runtime directories before you package your

application, make sure that the file names are not the same as those of any existing

application files.

After you put all the files in the runtime directory, also make sure that no two files

have the same name and first two characters in their file extension. For example, if

you have two files FILEA.ABC and FILEA.ABB in the RT_WIN32 directory, one

will be overwritten during the packaging process.

If you plan to package to diskettes, it is convenient to have pre-formatted diskettes

available before you begin the packaging process.

Packaging the VisualAge RPG Runtime Code and Applications

This section describes the process you must follow to package either the VisualAge

RPG runtime code, an application, or shared components.

Note: Verify that the remote location name in the RST file is the same server as

your users will be using. If not, modify the Remote Location column for the

entry on the Servers page in the Define iSeries Information notebook. To

access this notebook from the GUI Designer, select Define iSeries

information from the Server pull-down menu. To access it at run time, use

the Define iSeries Information icon. To access it at packaging time, use the

Change server button.

In the RST file, you must also specify the correct protocol used by your users.

For SNA, the remote location name is the name of the router defined in Client

Access.

For TCP/IP, the remote location name is the iSeries server host name defined in

your TCP/IP server list.

© Copyright IBM Corp. 1994, 2005 415

Starting the Packaging Utility

To start the packaging utility, use one of these methods:

v Select Project>Package from the Project Organizer

v Select the Package option from the project icon’s pop-up menu

v Select Application Packaging Utility from the Start > Programs > IBM

WebSphere Development Studio Client for iSeries > VisualAge RPG menu.

The Application Package window appears:

Specify the target system for your application:

v Windows

Packages the Windows version of your application for the Windows platform.

v Java applications for Windows

Packages the Java version of your application for the Windows platform.

v Java application/applet for all platforms

Packages the Java version of your application for other operating systems.

Packaging Windows Applications for Windows

Select Windows and press OK. The Package Windows dialog appears:

Specify the following:

v What you want to package

v The application package information

v The runtime package information

416 Programming with VisualAge RPG

Specifying What You Want to Package

In the Package window, specify the following information:

Application Name

The fully qualified application project name. You can type over the default

(if any), or use the Find push button to invoke the Find Projects for

Packaging window. When you specify an application project name, the title

of the application will be displayed for your information.

What you want to package

Use the check boxes to indicate whether you want to package the

application, the shared components, the runtime code, or all three. If you

select shared components, a window containing a list of shared

components will open. You can select which shared components in the list

should be packaged.

 Use the radio buttons to indicate whether you want to package the entire

application or only selected components. If you choose to package selected

components, a window will open that contains a list of components within

the application that you can select. You can also package additional shared

components created by other applications. These shared components will

be automatically added to the list the next time you choose to package by

component.

Specifying the Application Package Information

After making your selections on the Package window, press OK. The package

information window appears:

In the Package information window, specify the following information:

Target directory

The target directory for packaging. If you package to a diskette, the target

directory can only be the root directory of the diskette; there can be no

subdirectory. If you package to a directory, that directory must not contain

other files.

Company Name

The company name that the application will be registered under.

Note: When you package an updated version of a previously distributed

application, use the same company name for the revised application.

Otherwise, the revised application will be treated like a new

application.

Chapter 27. Packaging Runtime Code and Applications 417

Version

The version of the application.

Title The title of the application.

418 Programming with VisualAge RPG

Here you can use the Change server button to display a list of servers (remote

locations) used by your application. You can modify the list so that the package

will use the new names.

Select Package to begin the packaging. A progress indicator window appears.

Messages are displayed to tell you what labels to put on the various diskettes as

you create them. When packaging is completed, a completion message is

displayed.

Specifying the Runtime Package Information

If you indicated that you want to package the runtime code, you must specify the

target directory in the Package Run-Time window:

If you package to a diskette, the target directory can only be the root directory of

the diskette; there can be no subdirectory. If you package to a directory, that

directory must not contain other files.

Select Package to begin the packaging. A progress indicator window appears. A

completion message indicates when packaging is completed.

Packaging Java Applications for Windows

Packaging the Java version of your application for the Windows platform follows a

similar set of dialogs as the Windows version.

Specify what you want to package and whether you want to package the run time.

If you want to package the application, specify the application project name and

select the application check box. Use the runtime checkbox to package the run

time.

Chapter 27. Packaging Runtime Code and Applications 419

Packaging Java Applications for Other Platforms

Select Java application/applet for all platforms on the Application Package

window and press OK. The Package Java window appears:

Specify the following:

v What you want to package: the application, run time, or both.

v The format of your package: the Application files (valid only for the Application

choice) or the Jar file.

Specifying What You Want to Package

In the Package Java window, specify the following information:

Application Name

The fully qualified application project name. You can type over the default

(if any), or use the Find push button to display the Find Projects for

Packaging window. When you specify an application project name, the title

of the application will be displayed for your information.

What you want to package

Indicate whether you want to package the application or the runtime jar

file.

 For the Application choice, you can choose one of the following formats:

v Application files

Include all of the files in the runtime directory and place them in the

target directory.

v Jar file

Include all of the files for a component in its own jar file. (Any GIF

image files will just be copied and not included in the jar file.)

v Include JDBC

Include the JDBC class functions file in the jar.

Packaging the Application Jar File

If you select to have your application packaged as a Jar file, the following window

appears:

420 Programming with VisualAge RPG

Specify the target directory. You can specify Jar options, as well. If you select

Inlcude HTML file, the default HTML page for the application will be copied to

the target diretory. If you select Export to iSeries, the Smart Guide to export files

to the server will be displayed.

Note: If your application has multiple components, each component will have its

own jar file. Also, any GIF image files will just be copied and not included

in the jar file.

Chapter 27. Packaging Runtime Code and Applications 421

Packaging the Run Time

If you select to have a runtime Jar file, the following window appears:

 Specify the jar file name and the target directory. If you select Export to iSeries,

the Smart Guide to export files to the server will be displayed.

422 Programming with VisualAge RPG

Chapter 28. Installing Windows NT/95/98 Runtime Code and

Applications

This section describes installing the runtime code and applications for Windows

NT/95/98, using InstallShield.

Note: The runtime code must always be installed before you install an application.

Only one copy of the runtime code is installed on a workstation, regardless

of how many applications are installed.

Installing the Runtime Code

Start the installation utility by running the

setup.exe

command in the package and follow the steps given in the dialog boxes.

The Define Server Logon, the Define AS/400 Information utility and the Define

TCP/IP Server List are installed with the runtime code. Use these utilities to

maintain and update the names and location of AS/400 resources at run time. See

Chapter 8, “iSeries Connectivity,” on page 193 for more information.

A Note About Embedded SQL

If your application has embedded SQL and is referencing a database to which your

application was not bound at build time, you have to re-bind your application to a

database to which it does have access.

Installing an Application

Install the application by calling the

setup.exe

in the package and follow the steps given in the dialog boxes.

The Define AS/400 Information utility is installed optionally with the application.

Use this utility to maintain and update the names and location of AS/400

resources at run time. See Chapter 8, “iSeries Connectivity,” on page 193 for more

information.

Maintaining the Runtime Code and Applications

To update the runtime code or application, use the same setup.

To remove the runtime code or VisualAge RPG applications do the following:

1. From the Windows NT/95/98 Start pop-up menu on the Task Bar, select

Settings and then Control Panel.

2. Invoke the Add/Remove Programs utility.

© Copyright IBM Corp. 1994, 2005 423

Installing From the LAN

This section applies to Windows applications running on Windows NT/95/98.

To run from the LAN:

1. Package the runtime code or application to a LAN server.

2. Install the runtime code or application to the root directory of the same server.

The directory name should be VRPGRT_LAN for the runtime code or

XXX_LAN for the application. XXX is the name of the application’s executable

file.

3. Install the runtime code to the client workstation using the package from step

1. Select the compact option.

4. Install the application using the package from step 1. Select the compact option.

Installing Silently from the LAN

This section describes how to install the runtime or application code silently from a

LAN server. The basic steps are:

1. Package the runtime or application code to your LAN server using the

packaging utility. (See “Packaging the VisualAge RPG Runtime Code and

Applications” on page 415 for instructions.)

2. Install the run time or application on the LAN server using the -r setup option:

setup -r

The r parameter enables the system to record your keystrokes during the

installation process. This information is stored in the setup.iss file created in

your Windows directory. Your keystrokes will be used for silent installation.

3. Copy the setup.iss file from your Windows directory to the LAN directory

where you packaged the run time or application. For example, if c:\winnt is

your Windows directory, the setup.iss file can be found under c:\winnt.

Note: Make sure you copy the runtime setup.iss file before you install the

application to its LAN directory with the r option. Otherwise the

setup.iss file from the application install will overwrite the setup.iss file

created by the runtime install step.

4. Modify the copy of the setup.iss file in the LAN directory where you packaged

the run time or application. Change the szDir entry to point to the target drive

and directory where the run time or application package will be installed to.

5. From the client workstation, go to the LAN directory where the run time or

application was packaged. Run the following command:

setup -s

After installing the run time, shut down and restart your operating system.

424 Programming with VisualAge RPG

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2005 425

426 Programming with VisualAge RPG

Appendix A. Application Files

This section describes all the files that VisualAge RPG produces when you create a

GUI, write logic, and build an application. Unless specified, do not edit, rename, or

remove these files from the directory in which they were created.

Note: For Java applications, it is RT_JAVA. For Windows NT/95/98 applications, it

is RT_WIN32.

 Table 22. Application files

File name Format Description

filename.CLASS Binary The runtime directory contains the

filename.CLASS file, which is created when

a project is compiled for Java.

filename.DLL Binary The runtime directory contains the

filename.DLL file, which is created using

the .VPG file. A VisualAge RPG DLL is the

program object for the application. The

compiler can also create a utility DLL and

its accompanying .LIB file.

filename.EVT ASCII The source directory for the application

contains the filename.EVT file, which

contains compiler feedback errors.

filename.EXE Binary The runtime directory contains the

filename.EXE file, which contains the

runtime mainline. The compiler can also

create an EXE that is self-contained.

filename.HLP Binary The runtime directory contains the

filename.HLP file, which is the compiled

help file that was created using the .IPF,

.IPM, .VPG, and .TXM files.

filename.HTM ASCII The source directory for the application

contains the filename.HTM file, which

includes HTML code for launching the

compiled Java program as an applet.

filename_applet.HTM ASCII The source directory for the application

contains the filename_applet.HTM file,

which includes HTML code that checks the

VARPG Java run time to ensure that the

user has the correct version of the run time

installed as an extension.

filename.IPF ASCII The source directory for the application

contains the filename.IPF file, which

contains all the control information needed

to build online help.

© Copyright IBM Corp. 1994, 2005 427

Table 22. Application files (continued)

File name Format Description

filename.IPM ASCII The source directory for the application

contains the filename.IPM file, which

contains all the second-level help you write

for messages for windows and their parts.

v Do not rename or remove this file from

the directory it was created in.

v Use the GUI Designer (Define Messages

window) to edit this file. If you must edit

this file outside of the GUI Designer,

limit your changes to simple text editing

such as correcting grammar and spelling

mistakes. Do not remove or modify

resource IDs, add messages, or delete

messages.

filename.JAVA ASCII The source directory for the application

contains the filename.JAVA file, which

contains the generated Java source resulting

from a Java compile.

filename.LIB Binary The filename.LIB file contains all the

exported procedures that are part of a

utility filename.DLL.

filename.LST ASCII The source directory for the application

contains the filename.LST file, which

contains the compile listing.

filename.ODF Binary or

ASCII

The source directory for the application

contains the filename.ODF file, which

contains all the information about your

application’s windows and their parts.

v Do not rename or remove this file from

the directory it was created in.

v This file can only be edited using the

GUI Designer.

filename.ODX ASCII The source directory contains the

filename.ODX file, which is created using

filename.ODF and is used at run time.

filenameResources.properties ASCII The runtime directory for the application

contains the filenameResources.properties

file, which contains all messages you write

for the windows and their parts, in Java

format.

filename.RST ASCII The source directory contains the master

copy of this file. filename.RST contains all

the server aliases, file overrides, data area

overrides, program overrides, and lock level

information you define for your application.

You can change its contents at build time

using the GUI Designer, or at run time

using the Define AS/400 Information utility.

428 Programming with VisualAge RPG

Table 22. Application files (continued)

File name Format Description

filename.TXC ASCII The source directory for the application

contains the filename.TXC file, which

contains all the programming notes you

keep in the multiline edit fields provided

for storing technical descriptions.

v Do not rename or remove this file from

the directory it was created in.

v Use a part’s properties notebook to

change its settings.

filename.TXM ASCII The source directory for the application

contains the filename.TXM file, which

contains all messages you write for the

windows and their parts.

v Do not rename or remove this file from

the directory it was created in.

v Use the GUI Designer (Define Messages

window) to edit this file. If you must edit

this file outside of the GUI Designer,

limit your changes to simple text editing

such as correcting grammar and spelling

mistakes. Do not remove or modify

resource IDs (resids), add messages, or

delete messages.

filename.VCX Binary The runtime and source directories for the

application contain the filename.VCX file,

which contains persistence information for

any ActiveX parts used in your application.

filename.VPF ASCII The source directory for the application

contains the filename.VPF file, which

contains all the help text you write for

windows and their parts.

v Do not rename or remove this file from

the directory it was created in.

v You can edit this file by using either the

GUI Designer’s editor (using a pop-up

menu for a part or using a properties

notebook) .

filename.VPG ASCII The source directory for the application

contains the filename.VPG file, which

contains all the VisualAge RPG application

source code you write.

v Do not rename or remove this file from

the directory it was created in.

v Use the GUI Designer to edit the source

code.

Appendix A. Application Files 429

430 Programming with VisualAge RPG

Appendix B. Writing Thin Client Applications

VisualAge RPG applications that mainly run on and utilise workstation resources

are called thick client applications. Thin client applications mostly rely on the

iSeries server to perform their processing and only leave the GUI handling to the

client.

Thick client applications follow very much the same programming style found in

today’s RPG III or RPG IV applications, but they run mostly on the workstation

instead of the iSeries server. File specifications are used to specify which database

files to access, and native RPG operations like READ, CHAIN, and so on, are used

to access the data on the server. The iSeries server functions as a data server and

does minimal computing to support the VARPG application.

The thick client model has several disadvantages over its thin client counterpart.

Its capability for module reuse is very limited and there is an increased overhead

cost associated with change management. As well, moving processing onto the

client workstation under utilises the processing power of the server.

Making the client portion of an application thinner, offers the following

advantages:

v The amount of code running on the client can be easily reduced.

v Application reusability will be greatly enhanced.

v Maintainance of complex code will be easier.

This section discusses two possible implementations of the thin client model. Both

implementations exploit multiple VARPG capabilities that provide integration with

the iSeries server. The two examples include capabilities that use:

v External description of data structures to define externally described data in a

data structure easily without the use of direct file access

v Remote call interface to provide a simple way of calling server programs and

passing data

v Reference fields in the GUI designer. Fields in the subfile of the user interface

are defined as reference fields, no additional definition of database fields is

needed.

Implementing a VARPG Thin Application Model

The thin VARPG application model can be implemented in several, different ways.

Two ways are described here. One implementation uses remote calls to an iSeries

server; the other uses data queues on the iSeries server. The same user interface is

used in both examples.

The simple client application reads data from a customer file and fills a subfile

with 10 records at a time. The following illustration shows the user interface for

this application:

© Copyright IBM Corp. 1994, 2005 431

The interface consists of a window with canvas, a subfile, and a push button to

load one More page of records into the subfile. The subfile size for this particular

example is 10 records. It can be changed by increasing the height of the subfile

part.

The following names are used in this example:

Part Name

Window

WIN1

Subfile

SUB1

Push button

PSBMORE

Sample Application Using Remote Calls

In traditional RPG programs, user interface code and database access logic are

intermixed in one module. Part of this structure stems from the history of RPG,

and part from the usage of the Original Program Model (OPM) that forces the

programmer to achieve good performance. One way to implement the thin

application model is to split the user interface logic completely from the database

access logic and have each piece run on different systems. The user interface logic

runs on a Windows client, the database access logic runs on the iSeries server.

This sample application shows how to support reading records of data from the

iSeries database and placing this data into a GUI subfile. The program on the

iSeries server could just as well support full database access (READ and WRITE).

This could be implemented by supplying one program for each different access

method, or by passing the desired operations as parameters to a single server

program.

Figure 114. Client GUI Interface

432 Programming with VisualAge RPG

The following diagram shows how this sample works:

The client program gets requests from the user interface. It calls a server program

that reads records from a database program and passes this data back to the client

through parameters. The subfile gets filled with the returned data.

The Client Program

The main part of the client side program is the user interface. It is created in the

same way as all VARPG applications and can utilize the external database

descriptions of the server by using database reference fields. Any validation

checking specified in the database is done automatically on the client by the

VARPG run time. The Client program requests data from the server by calling a

server data access program, the data itself is passed via parameters. The Client

program does not use file specifications; instead, the data definition is done

through external described data structures. This way the programmer still gets the

benefits of external field descriptions in the VARPG program.

Sample RPG Source for the Client Side

The VARPG program consists of D and C specifications. The D specifications

contain the following data definitions:

v The fields used as parameters:

– cust, a multi occurrence structure

– custelem, a numeric field, contains the maximum number of records being

requested

– eof, a named indicator, gets passed when the end-of-file indicator is set to ON

in the server program

– nrecords, a numeric field, contains the number of records returned
v Two working fields:

– fileend, a named indicator, for keeping the file end condition

– counter, a counter for the DO loop
v getrec, a constant, defines the program being called on the server. It defines the

linkage to the server and the actual name of the server program. The program

name must be specified in UPPERCASE.
H

D cust e ds extname(customer)

D occurs(10)

D inz

D eof s n inz

Appendix B. Writing Thin Client Applications 433

D nrecords s 2 0

D fileend s n inz

D getrec c linkage(*server)

D const(’GETREC’)

D counter s 2 0

D custelem s 2 0 inz(%elem(cust))

The C specifications contain one action subroutine that is linked to 3 events:

v Press event from push button PSBMore

v Create event from window Win1 (Linked to PSBmore/press action subroutine)

v Pageend event from subfile Subf1

The first statement is a call to the server program to fetch more records. The rest of

the logic just processes the data passed via parameter and moves it from the multi

occurrence data structure to the subfile. After the subfile is filled with a set of

records the highest record number in the subfile is applied to the SETTOP attribute

to move this set of record into the visible area of the subfile.

At the end, if the end-of-file is reached, the More push button gets set to be

disabled. Note that the Page Down keys still work. It is still possible to cause an

event that will trigger this action subroutine even with a disabled push button.

 *

C PSBmore begact PRESS win1

C call GETREC

C parm cust

C parm custelem

C parm eof

C parm nrecords

C eval counter=1

C dow counter<=nrecords and not fileend

C counter occur cust

C write sub1

C eval counter=counter+1

C enddo

C eval %setatr(’win1’:

C ’sub1’:’settop’)=%getatr(’win1’§

C ’sub1’:’count’)

C if eof

C eval %setatr(’win1’:

C ’psbmore’:’enabled’)=0

C eval fileend=*on

C endif

 *

C endact

As you can see, the client end of this code is straight forward and minimizes the

processing on the workstation.

The Server Program

Since the VARPG client program excludes the database access logic, this function is

now provided by the server program. The server program contains all FILE

definitions and operations to handle the database processing. Data is exchanged by

moving a data structure as a parameter between the client and the server program.

The data structure contains the field definitions of the data file record format. In

this example, a multi occurrence data structure is used for accessing a collection of

records. The number of occurrences is equal to the numbers of records to be

passed; in this example, 10. Any operational information, such as error information

for example, could be passed by parameter, as well. The server program gets

434 Programming with VisualAge RPG

invoked by the Call in the VARPG client program and ends after each request. The

Return operation code is used to end the program and keep the invocation

environment. This will benefit performance in subsequent calls, since no

initialization is needed. This also requires the program to be created to run in a

named activation group, since *NEW would destroy the invocation environment

and free storage immediately.

Sample RPG Source for the Server Side

The File specification defines the external database file Customer. The data

definition specifications define the parameters to be passed. These must be defined

the same as on the client side. Count represents a work variable for the counter in

the DO loop. Custelem contains the number of elements in the data structure

CUST, it is used as a limit for the DO loop.

 * Program to read a set of records into a data structure

 **

Fcustomer if e disk

D cust e ds extname(customer)

D occurs(20)

D eof s n

D count s 2 0

D custelem s 2 0

At the top of the calculation specifications, the PLIST operation code defines the

parameters being passed to this program. The DO loop reads from the database

file and puts the data into data structure CUST, which will be passed back as a

parameter to the client program. The other two parameters just indicate the status

of the database access:

v EOF will be set to ON if indicator 99 gets set by the READ statement.

v Count contains the number of records being passed back to the client in data

structure CUST.
C *entry plist

C parm cust

C parm custelem

C parm eof

C parm count

C eval count=1

C count occur cust

C read customer 9999

C dow count<custelem and not *in99

C eval count=count+1

C count occur cust

C read customer 9999

C enddo

C if *IN99

C eval count=count-1

C eval eof=*on

C endif

C return

When compiling the server program, be sure not to specify *NEW for Activation

Group. If *NEW is specified (the default), any storage allocated by this program is

freed when RETURN is executed. One of the benefits of this thin client example is

the reusability of the server application by different applications. Even traditional

5250 applications can use the server modules for database access. This approach

certainly makes it easier to maintain applications since changes in a server module

are reflected in all applications that use it.

Appendix B. Writing Thin Client Applications 435

Sample Application Using Data Queues

The iSeries server provides built in support for data queues to allow applications

to communicate with each other asynchronously. This sample application exploits

data queues, instead of parameter passing, to exchange the data from the database

with the VARPG client program. This application is based on 2 data queues on the

server that are used by the client and server program. The server program in this

example gets launched as an independent program on the server using the

NOWAIT keyword in the D specifications of the client program.

The following diagrams illustrate how this example works.

First, two data queues are created and server program DATAQ is started. The

server program begins requesting data from data queue ’O’ and remains in an

indefinite wait.

 The next state is entered when a GUI event requests more data. (See Figure 114 on

page 432 for the client interface.) The three events that trigger the action

subroutine are:

v Create event from the window

v Press event from the More... push button

v Pageend event from the subfile

The client program then waits on data queue ’I’ for data. The server program

accesses the database file and gets the data.

436 Programming with VisualAge RPG

In the third state, the server program fills data queue ’I’. The client program

becomes active and puts the data into the subfile. After this, the program returns

to its initial state and the process starts again.

The Client Application

The user interface is the same as that in the previous application, basically a subfile

getting filled with data from the iSeries server database. The filling of the subfile

starts with the create event of the window, and continues when the More... push

button is pressed or a pageend event occurs using the page down keys. This is

essentially the same as in the previous example.

The setup for the data queues is done in the create window action subroutine,

which calls a program on the server to create 2 data queues in a library on the

iSeries server. To create unique data queues for each client, we use the *component

part’s hostname attribute to retrieve the client’s hostname and IP address. The last

5 characters of the IP address portion of the returned string get tagged onto the

name of the data queues. The characters ’I’ or ’O’ at the end of the data queue

name provide the unique names for the Input or Output data queues.

The server job receives commands from the ’O’ data queue; the client program

sends commands to the ’O’ data queue.

Appendix B. Writing Thin Client Applications 437

After creating the data queues, the client program calls the server program and

passes it the 2 data queue names. The server program waits on data queue ’O’ for

commands from the client program.

The client program gets activated by GUI events and then sends requests to data

queue ’O’. It then waits on data queue ’I’ until this data queue is filled by the

server job.

When the client program gets a termination request, the *TERMSR subroutine is

invoked to signal the server program to end and the 2 data queues will be deleted.

Client Sample Source

This program is a bit larger because the data queue environment has to be

managed in it, as well.

Data definitions

The data definitions for the client program:

D*

D* This program uses the *component part attribute hostname

D* variable to store the host name and IP address of the client.

D entipadd s 100a

D*

D* Command strings to create and delete data queues

D QCMDEXC s 10 inz(’QCMDEXC’)

D linkage(*server)

D* Variables to hold command information

D cmd s 256 INZ

D cmdlen s 15p 5 inz(%size(cmd))

D cmd1 s 256 INZ(’CRTDTAQ DTAQ(QGPL/’)

D cmde s 256 INZ(’DLTDTAQ DTAQ(QGPL/’)

D cmd2 s 9 inz(’) MAXLEN(’)

D*

D* Prefix for data queue name

D qname1 s 4 inz(’CUSQ’)

D*

D* Variables that contain the 2 data queue names used for one client

D qnamei s 10

D qnameo s 10

D

D* Define RCVDTAQ and SNDDTAQ programs as server programs

D QRCVDTAQ s 10 inz(’QRCVDTAQ’)

D linkage(*server)

D QSNDDTAQ s 10 inz(’QSNDDTAQ’)

D linkage(*server)

D* RPG IV server program defintion

D DATAQ s 10 inz(’DATAQ’)

D linkage(*server) nowait

D*

D* Data structure containing customer database data

D CustDS e ds extname(customer) occurs(10)

D*

D* Data structure containing process information

D rinfo ds

D eof n

D nrecords 2 0

D filler 20

D* Limit for loop

D custelem s 2 0 inz(%elem(CustDS))

D* Indicator for file end reached

D fileend s n

438 Programming with VisualAge RPG

D*

D* Parameters for data queue APIs

D msg_sz s 5 0

D Name_of_Q s 10

D Name_of_Lb s 10

D count s 2 0

D maxlen s 10 0 inz(%size(custds:*all))

D wait_time s 5 0

The create window action subroutine

The data queues are created and the server RPG program DATAQ is started, the

program gets invoked with the NOWAIT keyword; the client program will not

wait for it to end. Both programs are working completely asynchronously.

C*

C WIN1 BEGACT CREATE WIN1

C* Get client IP address to build unique data queue names.

C* entipadd will contain the client’s full host name and IP address.

C*

C eval entipadd =

C %GetAtr(’*component’:

C ’*component’:’hostname’)

C* hostname returns the string ’hostname IPAddress’.

C* We only use the IPAddress portion of the returned string.

C* Substring the second part of the returned string:

C eval entipadd = %subst(entipadd: %scan(’ ’:

C entipadd)+1)

C* Create the names for the ’I’ and ’O’ data queues.

C* Use the last 5 characters of IPAddress and add ’I’ or ’O’.

C eval qnameI= qname1 +

C %subst(entipadd:%len

C (%trim(entipadd))-4:5) + ’I’

C eval qnameO= qname1 +

C %subst(entipadd:%len

C (%trim(entipadd))-4:

C 5) + ’O’

C* Set up command parameters to create data queues.

C eval cmd=%trim(%trimr(cmd1) +

C qnamei + cmd2 +

C %editc(%size(

C CustDS:*all):’Z’) + ’)’)

C* Create the data queues.

C call QCMDEXC 98

C parm cmd

C parm cmdlen

C*

C eval cmd=*blank

C eval cmd=%trim(%trimr(cmd1) +

C qnameo + cmd2 +

C %editc(%size(

C CustDS:*all):’Z’) + ’)’)

C call QCMDEXC 98

C parm cmd

C parm cmdlen

C*

C* Call server program to access database on server

C call DATAQ 98

C parm qnamei

C parm qnameo

C* Initialization is done; now, do event processing.

Appendix B. Writing Thin Client Applications 439

C*

C exsr callhost

C endact

C*

The action subroutine to handle requests for more data

A request is sent to data queue ’O’. The client program then waits for a response

from the server program DATAQ, on data queue ’I’. After receiving the data, the

subfile gets filled in a loop.

C*

C* Action subroutine gets invoked from:

C* - Press event of PSBMORE push button

C* - Pageend event from subfile

C PSBmore BEGACT PRESS win1

C*

C* Get data from server and display it in the subfile.

C EXSR callhost

C ENDACT

C*

C*

C* User subroutine ’callhost’ requests server data.

C*

C callhost begsr

C* As long as there is data, get more data.

C if not fileend

C*

C*

C* Send a request to data queue ’O’ to fetch data.

C*

C eval nrecords=10

C call QSNDDTAQ

C parm qnameo

C parm ’QGPL ’ NAME_OF_LB 10

C parm 23 MSG_SZ 5 0

C parm rinfo

C* Wait on data queue ’I’ for data.

C* Expecting processing data here in DS rinfo.

C eval wait_time=-1

C eval MSG_sz=23

C call QRCVDTAQ

C parm qnamei

C parm ’QGPL ’ NAME_OF_LB

C parm MSG_SZ

C parm rinfo

C parm WAIT_TIME

C* Expecting data from database here.

C eval Msg_sz=%size(custds:*all)

C call QRCVDTAQ

C parm QNAMEi

C parm ’QGPL ’ NAME_OF_LB

C parm MSG_SZ

C parm CustDS

C parm WAIT_TIME

C* For as many records as the server has read, fill the subfile.

C eval count=1

C dow count<=nrecords and not fileend

C count occur CustDS

C write sub1

C eval count=count+1

C enddo

C eval %setatr(’win1’:

440 Programming with VisualAge RPG

C ’sub1’:’settop’)=

C %getatr(’win1’:

C ’sub1’:’count’)

C* If end-of-file was signaled, disable the push button.

C if eof

C eval %setatr(’win1’:

C ’psbmore’:’enabled’)=0

C eval fileend=*on

C endif

C endif

C* End of user subroutine

C endsr

Terminate subroutine

A termination request is sent to server program DATAQ and the 2 data queues are

deleted.

C* When client app ends, clean up server environment

C*

C *termsr begsr

C* Indicate end of program to server program and send data to dataq ’O’

C eval nrecords=0

C call QSNDDTAQ 98

C parm qnameo

C parm ’QGPL ’ NAME_OF_LB 10

C parm 23 MSG_SZ 5 0

C parm rinfo

C* Delete both data queues

C eval cmd=*blank

C eval cmd=%trim(%trimr(cmde) +

C qnamei + ’)’)

C call QCMDEXC 98

C parm cmd

C parm cmdlen

C eval cmd=*blank

C eval cmd=%trim(%trimr(cmde) +

C qnameo + ’)’)

C call QCMDEXC 98

C parm cmd

C parm cmdlen

C* Application ends

C endsr

The Server Program

After the server program gets launched, it enters a loop and waits on data queue

’O’ until it gets a request from the client program. Two different requests are

possible in this example. The program determines which request has been sent: to

read more data, or to end.

For a request for more data it will read 10 more records from the database and

then send 2 items to data queue ’I’.

The first item contains process information, how many records were actually read,

and whether an end of file situation has occurred.

The second item contains the multi occurrence data structure with the data from

the database file.

The client program will receive these records from data queue ’I’ and fill the

subfile accordingly.

Appendix B. Writing Thin Client Applications 441

When the server program gets signaled that a termination is requested, the LR

indicator will be set on and the DO loop will end. This will end the program. Any

other cleanup will be managed by the client program.

Server Sample Source

File and data definitions

Fcustomer if e disk

D* data structure containing database data to be passed to client

D CustDS e ds extname(customer) occurs(10)

D* data structure to pass control information between client and server

D rinfo ds

D eof n

D count 2 0

D fill 20

D* number of occurs in DS for loop limit

D custelem s 2 0 inz(%elem(CustDS))

D* library name for dataq and data size to be send to dataq and wait time

D Name_of_LB s 10 inz(’QGPL’)

D msg_sz S 5 0

D wait_time s 5 0

D* name of dataq’s passed from client

D qnamei s 10

D qnameo s 10

Main line program

Process the DO loop, wait on data queue ’O’ until requests arrive, read more

records from the database, send the data to data queue ’I’, and wait again for more

requests.

C* Beginning of mainline

C *entry plist

C parm qnamei

C parm qnameo

C* DO loop runs forever until client program signals that it

C* terminates

C dow not *inlr

C* Wait for client program to signal that it needs data

C eval wait_time=-1

C eval MSG_sz=23

C call ’QRCVDTAQ’

C parm qnameo

C parm NAME_OF_LB

C parm MSG_SZ

C parm rinfo

C parm WAIT_TIME

C*

C* Read 10 records from database file

C* count = 0 means client program is terminating

C if count >0

C eval count=1

C count occur CustDS

C read customer 9999

C dow count<custelem and not *in99

C eval count=count+1

C count occur CustDS

C read customer 9999

C enddo

C* Determine whether there is more data in file

C if *IN99

C eval count=count-1

C eval eof=*on

C endif

442 Programming with VisualAge RPG

C* Send information to the data queue.

C* Send one record with information on how many records are read and

C* whether end-of-file was reached

C*

C call ’QSNDDTAQ’ 98

C parm QnameI

C parm NAME_OF_LB

C parm 23 MSG_SZ

C parm rinfo

C* Send the data in DS from database file to dataq

C eval msg_sz=%SIZE(custds:*all)

C call ’QSNDDTAQ’ 98

C parm qnamei

C parm NAME_OF_LB

C parm MSG_SZ

C parm CUSTds

C* When client program ends, it sends nrecords 0, then ends this

C* program as well

C else

C eval *inlr=*on

C*

C end

C enddo

C*

C* End of MAINLINE

Other Possible Implementations

In addition to these specific examples, variations and combinations of both

implementations are possible. The goal is to minimize client processing and use the

server’s power to run these applications. Reuse of modules on the server can be

accomplished since 5250 and GUI applications can use the same server programs.

One possible implementation is to use requests in form of an SQL statement that

gets passed to a server program, This server program issues the SQL statement

and routes the received data to a data queue. The client program, waiting on the

data queue, uses the data passed back to satisfy the end user request. In this

particular application, a single keyed data queue is used instead of multiple data

queues.

Another implementation could pass all input data from the user interface to a

server program to do error checking and processing on the server; any error

conditions would get passed back to the client. This approach allows a high degree

of reusability of business logic between 5250 applications and GUI applications,

and provides an even thinner client.

Reusable Server Program Example

The following RPG IV code for a 5250 subfile application uses the same server

program, but drives a 5250 interface. This example shows the reuse capabilities of

server programs for GUI and 5250 applications. The business logic contained in the

5250 server program can readily be used by thin client GUI programs. The

following illustration shows a sample of the 5250 screen that displays the same

database information as in the GUI sample in the beginning of this chapter.

Appendix B. Writing Thin Client Applications 443

This subfile only fits 8 records on the screen because each record occupies 2 rows

on the subfile. The program source for this application follows:

H* Program to list customer records

F* Workstn file containing DSPF

Fgetrecs cf e workstn sfile(sub1:recnum)

D* Data structure to pass data from server program to the subfile

Dcust e ds extname(customer) occurs(8)

D inz

Deof s 1 inz(*off)

Dnrecords s 2 0

Dfileend s 1 inz(*off)

Dcount s 2 0

Dcustelem s 2 0 inz(%elem(cust))

Drecnum s 5 0 inz(1)

 * Main program to invoke subfile sub routine and end the program

 * In91 indicates that database file has not reached the end

C EVAL *IN91=*ON

C exsr more

C eval *inlr=*on

c

C more BEGsr

 * LOOP to fetch more data and display in subfile

C dow not *in03

 * Call server program to get data first time and when page down

 * is used.

C if *in91

C call ’GETREC’

C parm cust

C parm custelem

C parm eof

C parm nrecords

C eval count=1

 * recnum1 is sbfrcdnbr in subfile control record, to position top record

 * to be shown on screen

C EVAL RECNUM1=RECNUM

 * Loop to fill subfile with new records

C dow count<=nrecords

C count occur cust

444 Programming with VisualAge RPG

C write sub1

C eval count=count+1

C eval recnum=recnum+1

C enddo

 * After the set of records is added to subfile, display it, plus header

 * and footer record formats

C write record1

C write footer

C exfmt sub1ctl

 * Handle none pagedown keys

C else

C read sub1ctl 99

C endif

C if eof=*on

 * IN90 enables PAGEDOWN key for additional records to be read.

 * At file end it gets disabled.

C eval *in90=*on

C eval recnum=recnum1

C endif

C enddo

 * Leave the LOOP when Exit requested

C ENDSR

Appendix B. Writing Thin Client Applications 445

446 Programming with VisualAge RPG

Appendix C. Creating and Compiling Non-GUI Programs from

MS-DOS

You can create standalone VARPG applications within the VARPG GUI designer, or

by issuing commands in an MS-DOS command prompt. This section porvides the

commands you can use from an command prompt. To use the GUI Designer, see

Chapter 22, “Creating Non-GUI VisualAge RPG Programs,” on page 375.

To start the editor and create source in an MS-DOS command prompt, enter:

codeedit filename.VPG

Be sure to include the .VPG extension in the filename so you can benefit from the

editor’s tokenizing and syntax checking of your source.

To run the FVDFNFE compiler, issue the compiler command from an MS-DOS

command prompt. The syntax of the command is:

fvdfnfe filename.VPG [/compiler_option1 ... /compiler_optionn]

Note: You must include the .VPG extension in the source file name; it is not

assumed.

The compiler options, which you can type in upper- or lowercase, are optional.

They are as follows:

Option Description

/BL name

Link library name. If more than one, enclose in double quotes.

/D Generate debug information

/GL 1-99

Generation severity level

/L Generate an output listing

/LI Indentation

/LX Generate a cross-reference (XREF) listing

/LV Generate a Visual cross-reference (XREF) listing

/LD Expand DDS in listing

/LC Expand /COPY in listing

/LE Show external references

/LM2 Show second-level messages in listing

/LS Show excluded lines in listing

/LP 10-99

Lines per page (listing)

/HCU Host cache enabled

/HCR Host cache refresh

/RF Fix numeric

© Copyright IBM Corp. 1994, 2005 447

/RN Allow null

/RNU Allow null under user control

/RT Truncate numeric

/TI Generate debug information (same as /D)

/SB Name

SQL bind file name

/SF XX

SQL format for date/time columns

/SI XX (RR RS CS UR) SQL isolation level

/SN Name

SQL database name

/SP Name

SQL package file name

/SR SQL record blocking

/SU Database user id

/SUP Database password

/SVC Convert variable character

/SVG Convert variable graphic

Accessing an AS/400 System

If the program is to access data on the AS/400 system or call AS/400 programs,

you must create a Remote Server Table (RST) file. The RST file is an ASCII file

that is read by the compiler and the VARPG run time to determine information

about the system to use and the location of files. An RST file is created by the GUI

Designer when you use the Define AS/400 Information dialog. During compile

time, the RST file must be in the same directory as the program source. During run

time, the RST file must be in the same directory as the program executable files.

Here is an example of an RST file:

 DEFINE_SERVER SERVER_ALIAS_NAME(MYAS400)

 REMOTE_LOCATION_NAME(TORAS40Z)

 NETWORK_PROTOCOL(*TCP)

 TEXT(Development - RST)

 DEFINE_FILE FILE_ALIAS_NAME(CUSTOMER)

 REMOTE_FILE_NAME(PRODUCT/CUSTMAST)

 SERVER_ALIAS_NAME(MYAS400)

 TEXT()

The DEFINE_FILE statement indicates where the files defined in the ’F’

specifications can be found on the AS/400 system. In this example, the file named

CUSTOMER in the ’F’ specification actually refers to file CUSTMAST in library

PRODUCT. If the file is in your library list, the DEFINE_FILE statement can be

omitted. In that case, the library list, *LIBL, will be searched for the file.

The TEXT keyword is used for comments and can be blank.

448 Programming with VisualAge RPG

Appendix D. Secure Sockets Layer (SSL) Setup

Secure Sockets Layer (SSL) provides secure connections by encrypting the data

exchanged between a client and an iSeries 400 server session and performing

server authentication. SSL can be used only with a SSL capable iSeries 400 server

running OS/400, Version 4 Release 4 or later. The use of SSL connection

significantly decreases performance of the product compared to the use of

connection without encryption. It is recommended that SSL be used only when the

sensitivity of data transferred merits the decrease in performance.

This section provides instructions on configuring your iSeries 400 server for Secure

Sockets Layer support.

Note: If any fixes are applied to the VARPG run time, the following procedures

must be repeated. For SSL to work properly on the iSeries 400 server, the

QSECOFR user profile password must not be expired.

SSL Considerations

v A good knowledge of SSL is required for setup. You should know how to use

the Digital Certificate Manager (DCM) program on the iSeries 400 server to

perform SSL-related tasks, such as generating system certificates. For

information on the DCM program, invoke its online help or go to the

Information Center at URL http://www.ibm.com/eserver/iseries/infocenter.

v Ensure that you adhere to import and export regulations. IBM iSeries Client

Encryption products provide SSL version 3.0 encryption support using

non-exportable 128-bit for U.S. and Canada use only and exportable 56–bit for

international use. In customer configurations where Client Encryption products

might be downloaded across national boundaries, the customer is responsible for

ensuring that the non exportable products are not made available outside the

U.S. and Canada. Both the non-exportable and exportable Client Encryption

products can be used in combination to allow the appropriate Client Encryption

product to be downloaded on different Web sites.

Prerequisites

The following prerequisites must be met before setting up SSL:

v Software:

– Crytographic Access Provider licensed program (5769-AC1, 5769-AC2, or

5769-AC3)

– IBM iSeries Client Encryption program (5722-CE2 or 5722-CE3) where

5722-CE2 (56-bit) is for use in countries other than the U.S. or Canada, and

5722-CE3 (128-bit) is for use only in the U.S. and Canada.
v Hardware:

– IBM HTTP Server for iSeries (5722-DG1)

– Base operating system option 34 Digital Certificate Manager (DCM)
v Authorization:

Provide proper authorizations for users to access the SSL files. Follow these

steps to change the authority:

1. Enter the command:

wrklnk ’/QIBM/ProdData/HTTP/Public/jt400/*

2. Choose option 9 in the correct directory (SSL56, or SSL128).

3. Give users *RX authority to the directory.

© Copyright IBM Corp. 1994, 2005 449

Note: Individual users or groups of users can be authorized.

SSL Setup for the iSeries 400 Server

Follow the instructions below to setup your iSeries 400 server for SSL:

Start DCM:

1. Start the HTTP servers by using the command:

STRTCPSVR SERVER(*HTTP) HTTPSVR (*ADMIN)

2. Access the iSeries 400 Administration server by typing in your server’s URL

address and port number. For example:

http://your.server.name:2001/

The proper security officer authority, plus *secadm and *allobj authorities are

needed.

3. Enter your iSeries 400 user ID and password.

4. From the AS/400 Tasks page, access DCM by selecting the DCM link.

Obtain a system certificate for your iSeries 400 server from the Digital Certificate

Manager program:

Click on the ? icon for instructions on obtaining a system certificate. You can either

obtain the system certificate from a trusted Certificate Authority (CA) or build

your own.

v To obtain a system certificate from a trusted CA:

Note: This is what you should use if your application is an internet application

and you need to distribute your run time.

Select a CA. You can get a certificate from one of the following companies:

– VeriSign, Inc.

– Integration Financial Network

– Thawte Consulting

– RSA Data Security

Obtain request data for submission to the trusted CA from DCM. Refer to the

DCM help for the exact steps you need to follow.Your CA will process your

request form and provide you with the certificate. To install it onto your system,

use the Receive a System Certificate option.

v To obtain your own system certificate:

Note: This should only be used for an intranet because the run time created can

only be used for your specific iSeries 400 server.

1. Create your CA on the iSeries 400 server.

2. Generate the system certificate from your own CA.

For information on creating a CA, on the DCM page click on Certificate

Authority.

Apply the system certificate to the following server applications:

QIBM_OS400_QZBS_SVR_CENTRAL

QIBM_OS400_QZBS_SVR_DATABASE

QIBM_OS400_QZBS_SVR_DTAQ

QIBM_OS400_QZBS_SVR_NETPRT

QIBM_OS400_QZBS_SVR_RMTCMD

QIBM_OS400_QZBS_SVR_SIGNON

QIBM_OS400_QZBS_SVR_FILE

QIBM_OS400_QRW_SVR_DDM_DRDA

450 Programming with VisualAge RPG

Appendix D. Secure Sockets Layer (SSL) Setup 451

SSL Setup for the Workstation

To set up SSL for the workstation, follow the steps below:

Download the appropriate version of the SSL Client Encryption software to your

workstation from the iSeries 400 server:

 Product File to Download Location for Download

5722-CE2

5722-CE3

sslightx.zip

sslightu.zip

/QIBM/ProdData/HTTP/Public/jt400/SSL56

/QIBM/ProdData/HTTP/Public/jt400/SSL128

If you built your own certificate, perform the following steps to download the CA

certificate:

1. Download SSLTools.jar from the directory in which you downloaded the SSL

Client Encryption.

2. Add SSLTools.jar and sslightu.zip to your CLASSPATH statement.

3. Create a temporary directory. For example, c:\tempkey.

4. Create the following subdirectory under c:\tempkey:

com\ibm\as400\access

5. From the tempkey directory, run the following command in one line:

java com.ibm.sslight.nlstools.keyrng com.ibm.as400.access.KeyRing

connect <systemname>:<port>

Where <systemname> is the name of your iSeries 400 server and <port> is

your port number.

Note: The server port can be any of the host servers to which you have access.

For example, you can use 9476, which is the default port for the secure

sign-on server on the iSeries 400 server. When you are prompted to enter

a password, enter toolbox. This is the only password that works. The

SSL tool then connects to the iSeries 400 server and lists the certificates it

finds.

6. Enter the CA certificate number. Be sure to use the CA certificate and not the

site certificate. A message will be issued stating that the certificate is being

added to com.ibm.as400.access.KeyRing.class.

7. Delete the file SSLTools.jar.

A KeyRing.class file has been created in the directory.

Create a customized varpg.jar file by following the instructions below:

1. Create a temporary directory. For example, c:\tempjar.

2. Copy the file sslightu.zip to c:\tempjar.

452 Programming with VisualAge RPG

3. Run the following command:

jar xvf sslightu.zip

You will find the meta-inf and com\ibm\sslight subdirectories created for you

in c:\tempjar.

4. If you built your own certificate:

a. Under subdirectory c:\tempjar\com\ibm add subdirectory \as400\access.

b. Copy the KeyRing.class file in c:\tempkey\com\ibm\as400\access

subdirectory to the c:\tempjar\com\ibm\as400\access subdirectory.
5. Copy the varpg.jar file into c:\tempjar.

6. From c:\tempjar, run the following command:

jar uvf varpg.jar -C ./ com

Note: C is in uppercase.
Running this command updates the varpg.jar file so that it can be used with

your SSL-enabled VARPG applications. This will also work for regular, non

SSL-enabled applications.

Enable your application to use SSL:

1. Rename the varpg.jar in your VARPG install directory \WDSC\JAVA .

2. Compile your application with the /SSL user-defined option in the Build

options dialog.

3. Run the application with the customized file varpg.jar.

Appendix D. Secure Sockets Layer (SSL) Setup 453

454 Programming with VisualAge RPG

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

B3/KB7/8200/MKM

© Copyright IBM Corp. 1994, 2005 455

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming Interface Information

This publication is intended to help you to create and manage VisualAge RPG

applications and user interfaces on the workstation, in a client/server environment.

This publication documents General-Use Programming Interface and Associated

Guidance Information provided by IBM WebSphere Development Studio Client for

iSeries.

Trademarks and Service Marks

The following terms are trademarks or registered trademarks of the International

Business Machines Corporation in the United States or other countries or both:

 Application System/400 AS/400 AS/400e

Common User Access CUA DATABASE 2

DB2 DB2 Connect DB2 Universal Database

IBM OS/400 SQL/DS

VisualAge WebSphere 400

Java and all Java-based trademarks are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and/or other countries.

Lotus is a trademark of Lotus Development Corporation in the United States, or

other countries, or both.

ActiveX, Microsoft, Windows, and Windows NT are trademarks or registered

trademarks of Microsoft Corporation in the United States, or other countries, or

both.

Other company, product, and service names may be trademarks or service marks

of others.

456 Programming with VisualAge RPG

Glossary

This glossary includes terms and definitions from:

v The American National Dictionary for Information Systems ANSI X3.172-1990,

copyright 1990 by the American National Standards Institute (ANSI). Copies

may be purchased from the American National Standards Institute, 1430

Broadway, New York, New York, 10018. Definitions are defined by the symbol

(A) after the definition.

v The Information Technology Vocabulary developed by Subcommittee 1, Joint

Technical Committee 1, of the International Organization for Standardization and

the International Electrotechnical Committee (ISO/IEC JTC1/SC1). Definitions of

published parts of this vocabulary are identified by the symbol (|) after the

definition; definitions taken from draft international standards, committee drafts,

and working papers being developed by ISO/IEC JTC1/SC1 are identified by

the symbol (T) after the definition indicating that the final agreement has not yet

been reached among participating National Bodies of SC1.

v IBM Dictionary of Computing , New York: McGraw-Hill, 1994.

v Object-Oriented Interface Design IBM Common User Interface Guidelines,

SC34-4399-00, Carmel, IN: Que Corporation, 1992.

A

action. (1) Synonym for action subroutine. (2) An executable program or command file used to manipulate a project’s

parts or participate in a build.

action subroutine. Logic that you write to respond to a specific event.

active window. The window with which a user is currently interacting. This is the window that receives keyboard

input.

activeX part. A part that adds ActiveX control objects to the project. VARPG applications can then access their

attributes and monitor for events.

anchor. Any part that you use as a reference point for aligning, sizing, and spacing other parts.

animation control part. A part that allows the playback of video files, with the AVI extension, in Windows, or the

playback of animated GIF sequences in Java applications.

API. Application programming interface.

applet. A program that is written in Java and runs inside of a Java-compatible browser or AppletViewer.

application. A collection of software components used to perform specific user tasks on a computer.

application programming interface (API). A functional interface supplied by the operating system or a separately

orderable licensed program that allows an application program written in a high-level language to use specific data

or functions of the operating system or the licensed program.

ASCII (American National Standard Code for Information Interchange). The standard code, using a coded

character set consisting of 7-bit coded characters (8 bits including parity check), that is used for information

interchange among data processing systems, data communication systems, and associated equipment. The ASCII set

consists of control characters and graphic characters. (A)

B

BMP. The file extension of a bitmap file.

© Copyright IBM Corp. 1994, 2005 457

build. The process by which the various pieces of source code that make up components of a VARPG application

are compiled and linked to produce an executable version of the application.

button. (1) A mechanism on a pointing device, such as a mouse, used to request or start an action. (2) A graphical

mechanism in a window that, when selected, results in an action. An example of a button is an OK push button that,

when selected, initiates an action.

C

calendar part. A part that adds a calendar that can be modified by the user to include text, color and other

attributes.

canvas part. A part onto which you can point and click various other parts, position them, and organize them to

produce a graphical user interface. A canvas part occupies the client area of either a window part or a notebook page

part. See also notebook page with canvas part and window with canvas part.

check box part. A square box with associated text that represents a choice. When a user selects a choice, an

indicator appears in the check box to indicate that the choice is selected. The user can clear the check box by

selecting the choice again. In VisualAge RPG, you point and click on a check box part in the parts palette or parts

catalog and click it onto a design window.

click. To press and release a mouse button without moving the pointer off of the choice or object. See also

double-click.

client. (1) A system that is dependent on a server to provide it with data. (2) The PWS on which the VARPG

applications run. See also DDE client.

client area. The portion of the window that is the user’s workspace, where a user types information and selects

choices from selection fields. In primary windows, the area where an application programmer presents the objects

that a user works on.

client/server. The model of interaction in distributed data processing in which a program at one site sends a request

to a program at another site and awaits a response. The requesting program is called a client; the answering program

is called a server. See also client, server, DDE client, DDE server.

clipboard. An area of storage provided by the system to hold data temporarily. Data in the clipboard is available to

other applications.

cold-link conversation. In DDE, an explicit request made from a client program to a server program. The server

program responds to the request. Contrast with hot-link conversation.

color palette. A set of colors that can be used to change the color of any part in your application’s GUI.

combination box. A control that combines the functions of an entry field and a list box. A combination box contains

a list of objects that a user can scroll through and select from to complete the entry field. Alternatively, a user can

type text directly into the entry field. In VisualAge RPG, you can point and click on a combination box part in the

parts palette or parts catalog and click it onto a design window.

Common User Access architecture (CUA architecture). Guidelines for the dialog between a human and a

workstation or terminal.

compile. To translate a source program into an executable program (an object program).

component. A functional grouping of related files within a project. A component is created when the NOMAIN and

EXE keywords are not present on the control specifications.

component reference part. A part that enables one component to communicate with another component in a

VARPG application.

*component part. A part that is the “part representation” of the component. One *component part is created for

each component automatically, and it is invisible.

CONFIG.SYS. The configuration file, located in the root directory of the boot drive, for the DOS, OS/2, or Windows

operating systems. It contains information required to install and run hardware and software.

458 Programming with VisualAge RPG

configuration. The manner in which the hardware and software of an information processing system are organized

and interconnected (T).

container part. A part that stores related records and displays them in a details, icon, or tree view.

CUA architecture. Common User Access architecture.

cursor. The visible indication of the position where user interaction with the keyboard will appear.

D

database. (1) A collection of data with a given structure for accepting, storing, and providing, on demand, data for

multiple users. (T) (2) All the data files stored in the system.

data object. An object that conveys information, such as text, graphics, audio, or video.

DBCS. Double-byte character set.

DDE. Dynamic data exchange.

DDE client. An application that initiates a DDE conversation. Contrast with DDE server. See also DDE client part,

DDE conversation.

DDE client part. A part used to exchange data with other applications, such as spreadsheet applications, that

support the dynamic data exchange (DDE) protocol.

DDE conversation. The exchange of data between a DDE client and a DDE server. See also cold-link conversation and

hot-link conversation.

DDE server. An application that provides data to another DDE-enabled application. Contrast with DDE client. See

also DDE conversation.

default. A value that is automatically supplied or assumed by the system or program when no value is specified by

the user. The default value can be assigned to a push button or graphic push button.

default action. An action that will be performed when some action is taken, such a pressing the Enter key.

dereferencing. The action of removing the association between a part and an AS/400 database field.

design window. The window in the GUI designer on which parts are placed to create a user interface.

details view. A standard contents view in which a small icon is combined with text to provide descriptive

information about an object.

dimmed. Pertaining to the reduced contrast indicating that a part can not be selected or directly manipulated by the

user.

direct editing. The use of techniques that allow a user to work with an object by dragging it with a mouse or

interacting with its pop-up menu.

DLL. Dynamic link library.

double-byte character set (DBCS). A set of characters in which each character is represented by 2 bytes. Languages

such as Japanese, Chinese, and Korean, which contain more symbols than can be represented by 256 code points,

require double-byte character sets. Because each character requires 2 bytes, the typing, displaying, and printing of

DBCS characters requires hardware and programs that support DBCS. Four double-byte character sets are supported

by the system: Japanese, Korean, Simplified Chinese, and Traditional Chinese. Contrast with single-byte character set

(SBCS).

double-click. To quickly press a mouse button twice.

drag. To use a mouse to move or to copy an object. For example, a user can drag a window border to make it larger

by holding a button while moving the mouse. See also drag and drop.

drag and drop. To directly manipulate an object by moving it and placing it somewhere else using a mouse.

Glossary 459

drop-down combination box. A variation of a combination box in which a list box is hidden until a user takes

explicit acts to make it visible.

drop-down list. A single selection field in which only the current choice is visible. Other choices are hidden until

the user explicitly acts to display the list box that contains the other choices.

dynamic data exchange (DDE). The exchange of data between programs or between a program and a datafile

object. Any change made to information in one program or session is applied to the identical data created by the

other program. See also DDE conversation, DDE client, DDE server.

Dynamic link library (DLL). A file containing executable code and data bound to a program at load time or run

time, rather than during linking. The code and data in a dynamic link library can be shared by several applications

simultaneously.

E

EBCDIC. Extended binary-coded decimal interchange code. A coded character set of 256 8-bit characters.

emphasis. Highlighting, color change, or other visible indication of conditions relative to an object or choice that

affects a user’s ability to interact with that object or choice. Emphasis can also give a user additional information

about the state of a choice or an object.

entry field part. An area on a display where a user can enter information, unless the field is read-only. The

boundaries of an entry field are usually indicated. In VisualAge RPG, you point and click on an entry field part in

the parts palette or parts catalog and click it onto a design window.

error logging. Keeps track of errors in an error log. The editor takes you to the place in the source where the error

occurred.

event. A signal generated as a result of a change to the state of a part. For example, pressing a button generates a

Press event.

exception. (1) In programming languages, an abnormal situation that may arise during execution, that may cause a

deviation from the normal execution sequence, and for which facilities exist in a programming language to define,

raise, recognize, ignore, and handle it. (I) (2) In VisualAge RPG, an event or situation that prevents, or could prevent,

an action requested by a user from being completed in a manner that the user would expect. Exceptions occur when

a product is unable to interpret a user’s input.

EXE. The extension of an executable file.

EXE module. An EXE module consists of a main procedure and subprocedures. It is created when the EXE keyword

is present on the control specification. All subroutines (BEGSR) must be local to a procedure. The EXE must contain a

procedure whose name matches the name of the source file. This will be the main entry point for the EXE, that is, the

main procedure.

export. A function that converts an internal file to some standard file format for use outside of an application.

Contrast with import.

F

field. (1) An identifiable area in a window, such as an entry field where a user types text. (2) A group of related

bytes, such as a name or amount, that is treated as a unit in a record.

file. A collection of related data that is stored and retrieved by an assigned name. A file can include information

that starts a program (program-file object), contains text or graphics (data-file object), or processes a series of

commands (batch file).

focus. Synonym for input focus.

font palette. A set of fonts that can be used to change the font of a part in your application’s GUI.

460 Programming with VisualAge RPG

G

graph part. A part that allows the user to add a graph to the GUI. The graph styles available are line, bar, line and

bar, or pie chart.

graphical user interface (GUI). A type of user interface that takes advantage of high-resolution graphics. A

graphical user interface includes a combination of graphics, the object-action paradigm, the use of pointing devices,

menu bars and other menus, overlapping windows, and icons.

graphic push button part. A push button, labeled with a graphic, that represents an action that will be initiated

when a user selects it. Contrast with push button part.

group box part. A rectangular frame around a group of controls to indicate that they are related and to provide an

optional label for the group. In VisualAge RPG, you point and click on a group box part in the parts palette or parts

catalog and click it onto a design window.

group marker. A mark that identifies a part as being the first one in a group. When a user moves the cursor

through a group of parts and reaches the last part, the cursor returns to the first part in the group.

GUI designer. A suite of tools used to create interfaces by dragging and dropping parts from the parts palette to the

design window.

H

hide button. A button on a title bar that a user clicks on to remove a window from the workplace without closing

the window. When the window is hidden, the state of the window, as represented in the window list, changes.

Contrast with maximize button and minimize button.

horizontal scroll bar part. A part that adds a horizontal scroll bar to a window. This part allows users to scroll

through a pane of information, from left-to-right or right-to-left.

hot-link conversation. In DDE, an automatic update of a client program by a server program when data changes on

the server. Contrast with cold-link conversation.

I

ICO. The file extension of an icon file.

icon. A graphical representation of an object, consisting of an image, image background, and a label.

icon view. A standard contents view in which each object contained in a container is displayed as an icon.

image part. A part used to display a picture, from a BMP or ICO file, on a window.

import. A function that converts AS/400 display file objects to the appropriate VARPG part. Contrast with export.

inactive window. A window that can not receive keyboard input at a given moment.

index. The identifier of an entry in VARPG parts such as list boxes or combination boxes.

information area. A part of a window in which information about the object or choice that the cursor is on is

displayed. The information area can also contain a message about the normal completion of a process. See also status

bar.

Information Presentation Facility (IPF). A tool used to create online help on a programmable workstation.

Information Presentation Facility (IPF) file. A file in which the application’s help source is stored.

INI. The file extension for a file in the OS/2 or Windows operating system containing application-specific

information that needs to be preserved from one call of an application to another.

input focus. The area of a window where user interaction is possible from either the keyboard or the mouse.

Glossary 461

input/output (I/O). Data provided to the computer or data resulting from computer processing.

IPF. Information Presentation Facility

item. In dynamic data exchange, a unit of data. For example, the top left cell position in a spreadsheet is row 1,

column 1. This cell position may be referred to as item R1C1.

J

JAR files (.jar). In Java, abbreviation for Java ARchive. A file format that is used for aggregating many files into

one.

Java. An object-oriented programming language for portable interpretive code that supports interaction among

remote objects. Java was developed and specified by Sun Microsystems, Incorporated.

java bean part. A part that allows VARPG applications to access Sun Microsystem’s JavaBeans.

JavaBeans. In Java, a portable, platform-independent reusable component model.

Java Database Connectivity (JDBC). An industry standard for database-independent connectivity between Java and

a wide range of databases. The JDBC provides a call-level application programming interface (API) for SQL-based

database access.

Java 2 Software Development Kit (J2SDK). Software that Sun Microsystems distributes for Java developers. This

software includes the Java interpreter, Java classes, and Java development tools. The development tools include a

compiler, debugger, dissassembler, AppletViewer, stub file generator, and documentation generator.

Java Native Interface (JNI). A programming interface that allows Java code that runs inside of a Java Virtual

Machine (JVM) to interoperate with functions that are written in other programming languages.

Java Runtime Environment (JRE). A subset of the Java Developer Kit for end users and developers who want to

redistribute the JRE. The JRE consists of the Java Virtual Machine, the Java Core Classes, and supporting files.

Java Virtual Machine (JVM). The part of the Java Runtime Environment (JRE) that is responsible for interpreting

Java bytecodes.

L

link event. An event that a target part receives whenever the state of a source part changes.

list box part. A control that contains scrollable choices that a user can select. In VisualAge RPG, you can point and

click on a list box part in the parts palette or parts catalog and click it onto a design window.

M

main procedure. A main procedure is a subprocedure that can be specified as the program entry procedure and

receives control when it is first called. A main procedure is only produced when creating an EXE. See EXE module

main source section. In a VARPG program, the main source section contains all the global dedfinitions for a

module. For a component, this section also includes the action and user subroutines.

main window. See primary window.

manipulation button. See mouse button 2.

maximize button. A button on the rightmost part of a title bar that a user clicks on to enlarge the window to its

largest possible size. Contrast with minimize button, hide button.

media panel part. A part used to give the user control over other parts. For example, a media panel part can be

used to control the volume of a media part.

media part. A part that gives a program the ability to process sound files and video files.

462 Programming with VisualAge RPG

menu. A list of choices that can be applied to an object. A menu can contain choices that are not available for

selection in certain contexts. Those choices are dimmed.

menu bar part. The area near the top of a window, below the title bar and above the rest of the window, that

contains choices that provide access to other menus. In VisualAge RPG, you can point and click on a menu bar part

in the parts palette or parts catalog and click it onto a design window.

menu item part. A part that is a graphical or textual item on a menu. A user selects a menu item to work with an

object in some way.

message. (1) Information not requested by a user but displayed by a product in response to an unexpected event or

when something undesirable could occur. (2) A communication sent from a person or program to another person or

program.

message file. A file containing application messages. The file is created from the message source file during the

build process. See also build.

message subfile part. A part that can display predefined messages or text supplied in program logic.

migrate. (1) To move to a changed operating environment, usually to a new release or version of a system. (2) To

move data from one hierarchy of storage to another.

MID. The file extension of a MIDI file.

MIDI file. Musical Instrument Digital Interface file.

minimize button. A button, located next to the rightmost button in a title bar, that reduces the window to its

smallest possible size. Contrast with maximize button and hide button.

mnemonic. A single character, within the text of a choice, identified by an underscore beneath the character. See also

mnemonic selection.

mnemonic selection. A selection technique whereby a user selects a choice by typing the mnemonic for that choice.

mouse. A device with one or more push buttons used to position a pointer on the display without using the

keyboard. Used to select a choice or function to be performed or to perform operations on the display, such as

dragging or drawing lines from one position to another.

mouse button. A mechanism on a mouse used to select choices, initiate actions, or manipulate objects with the

pointer. See also mouse button 1 and mouse button 2.

mouse button 1. By default, the left button on a mouse used for selection.

mouse button 2. By default, the right button on a mouse used for manipulation.

mouse pointer. Synonym for cursor.

multiline edit (MLE) part. A part representing an entry field that allows the user to enter multiple lines of text.

N

navigation panel. A group of buttons that can be used to control the visible selection of records in a subfile.

NOMAIN module. A module that contains only subprocedures. There are no action or standalone user subroutines

in it. A NOMAIN module is created when the NOMAIN keyword is present on the control specification.

notebook part. A graphical representation of a notebook. You can add notebook pages to the notebook part and

then group the pages into sections separated by tabbed dividers. In Windows, a notebook is sometimes referred to as

a Windows tab control. See also notebook page part, notebook page with canvas part.

notebook page part. A part used to add pages to a notebook part. See also notebook.

notebook page with canvas part. A combination of a notebook page part and a canvas page part. See also notebook,

canvas part.

Glossary 463

O

object. (1) A named storage space that consists of a set of characteristics that describe itself and, in some situations,

data. An object is anything that exists in and occupies space in storage and on which operations can be performed.

Some examples of objects are programs, files, libraries, and folders. (2) A visual component of a user interface that a

user can work with to perform a task. An object can appear as text or an icon.

object-action paradigm. A pattern for interaction in which a user selects an object and then selects an action to

apply to that object.

object-oriented programming. A method for structuring programs as hierarchically organized classes describing the

data and operations of objects that may interact with other objects. (T)

object program. A target program suitable for execution. An object program may or may not require linking. (T)

odbc/jdbc part. A part that allows VAPRG applications to access and process database files that support the

Windows ODBC API or Sun Microsystem’s JDBC API.

operating system. A collection of system programs that control the overall operation of a computer system.

outline box part. A part that is a rectangular box positioned around a group of parts to indicate that all the parts

are related.

P

package. A function used to collect all the parts of a VARPG application together for distribution.

parts. Objects that make up the GUI of a VARPG application.

parts catalog. A storage space for all of the parts used to create graphical user interfaces for VARPG applications.

parts palette. A collection of parts that are most appropriate for building the current graphical user interface for an

application. When you finish one GUI, you can wipe the palette clean and add parts from the parts catalog that you

require for the next application.

plugin. A function created by the user or an outside vendor that can be used in VARPG programs.

point and click. (1) A selection method which is used to copy a part from the parts palette or catalog to the GUI

design window, the icon view, or the tree view. (2) To place a part in any of the desired views, point to and click on

the part, then move the cursor to the chosen window and point the cursor and click where you want the part to

appear. In the icon and tree views, the part will be placed on the parent part, and you will then have to move it

where you would like it to appear in the design window.

pop-up menu. A menu that, when requested, appears next to the object with which it is associated. It contains

choices appropriate for the object in its current context.

pop-up menu part. A part that, when added to an object on your interface, appears next to the object with which it

is associated when requested. You can point and click on a pop-up menu part in the parts palette or parts catalog

and click it onto a design window.

pop-up window. A movable window, fixed in size, in which a user provides information required by an application

so that it can continue to process a user request. Synonymous with secondary window.

primary window. The window in which the main interaction between the user and the application takes place.

Synonymous with main window.

procedure. A procedure is any piece of code that can be called with the CALLP operation code.

procedure interface definition. A procedure interface definition is a repetition of the prototype information within

the definition of a procedure. It is used to declare the entry parameters for the procedure and to ensure that the

internal definition of the procedure is consistent with the external definition (the prototype)

464 Programming with VisualAge RPG

programmable workstation (PWS). A workstation that has some degree of processing capability and that allows a

user to change its functions.

progress bar part. A part that can be used to indicate graphically the progress of a process, such as copying files,

loading a database, and so on.

progress indicator. One or more controls used to inform a user about the progress of a process.

project. The complete set of data and actions needed to build a single target, such as dynamic link library (DLL) or

an executable file (EXE).

prompt. (1) A visual or audible message sent by a program to request the user’s response. (T) (2) A displayed

symbol or message that requests input from the user or gives operational information. The user must respond to the

prompt in order to proceed.

properties notebook. A graphical representation that resembles a bound notebook containing pages separated into

sections by tabbed divider pages. Select the tabs of a notebook to move from one section to another.

prototype. A prototype is a definition of the call interface. It includes information such as: whether the call is bound

(procedure) or dynamic (program); the external name; the number and nature of the parameters; which parameters

must be passed; the data type of any return value (for a procedure)

pull-down menu. A menu that extends from a selected choice on a menu bar or from a system-menu symbol. The

choices in a pull-down menu are related to one another in some manner.

push button part. A button labeled with text that represents an action that starts when a user selects the push

button. You can point and click on a push button part in the parts palette or parts catalog and click it onto a design

window. See also graphic push button part.

PWS. Programmable workstation.

R

radio button part. A circle with text beside it. Radio buttons are combined to show a user a fixed set of choices from

which only one can be selected. The circle is partially filled when a choice is selected. You can point and click on a

radio button part in the parts palette or parts catalog and click it onto a design window.

reference field. An AS/400 database field from which an entry field part can inherit its characteristics.

restore button. A button that appears in the rightmost corner of the title bar after a window has been maximized.

When the restore button is selected, the window returns to the size and position it was in before it was maximized.

See also maximize button.

S

SBCS. Single-byte character set.

scroll bar. A part that shows a user that more information is available in a particular direction and can be moved

into view by using a mouse or the page keys.

secondary window. A window that contains information that is dependent on information in a primary window,

and is used to supplement the interaction in the primary window. See also primary window. Synonym for pop-up

window.

secure sockets layer (SSL). A popular security scheme that was developed by Netscape Communications Corp. and

RSA Data Security, Inc. SSL allows the client to authenticate the server and all data and requests to be encrypted. The

URL of a secure server that is protected by SSL begins with https rather than http.

selection border. The visual border that appears around a VARPG part or a custom-made part, allowing the part to

be moved with the mouse or keyboard.

selection button. See mouse button 1.

Glossary 465

server. A system in a network that handles the requests of another system, called a client.

server alias. A name you define that can be used instead of the server name.

shared component. A component that can be accessed by more than one project.

single-byte character set (SBCS). A character set in which each character is represented by a one-byte code.

Contrast with double-byte character set (DBCS).

sizing border. The border or frame around a part (or set of parts) that you select to resize the part (or set of parts)

using the mouse or the keyboard.

slider part. A visual component of a user interface that represents a quantity and its relationship to the range of

possible values for that quantity. A user can also change the value of the quantity. You can point and click on a slider

part in the parts palette or parts catalog and click it onto a design window.

slider arm. The visual indicator in the slider that a user can move to change the numerical value.

source directory. The directory in which all source files for a VARPG application are stored.

source part. A part that can notify target parts whenever the state of the source part changes. A source part can

have multiple targets.

spin button part. A type of entry field that shows a ring of related but mutually exclusive choices through which a

user can scroll and select one choice. A user can also type a valid choice in the entry field. You can point and click on

a spin button part in the parts palette or parts catalog and click it onto a design window.

SSL. Secure sockets layer.

static text part. A part used as a label for other parts, such as a prompt for an entry field part.

status bar. A part of a window that displays information indicating the state of the current view or object. See also

information area.

status bar part. A part on a window that can display additional information about a process or action for the

window.

subfile field. A field used to define fields in a subfile part. See also subfile part.

subfile part. A part used to display a list of records, each consisting of a number of fields. This part is similar to an

AS/400 subfile. See also subfile field.

submenu. A menu that appears from, and contains choices related to, a cascading choice in another menu.

Submenus are used to reduce the length of a pull-down menu or a pop-up menu. See also submenu part.

submenu part. A part used to start a submenu from a menu item or existing menu, or to start a pull-down menu

from a menu item on a menu bar. See also submenu and menu item part.

subprocedure. A subprocedure is a procedure specified after the main source section. It must have a corresponding

prototype in the definition specifications of the main source section

syntax checking. Verifies that the syntax of each line is correct while you are editing the source. By doing so, it can

avoid compile errors. You can set this option on or off. You can view only certain specification types, such as C specs,

or a line with a specific string.

T

tab stop. An attribute used to set a tab stop for a part so that users can focus on it when they use the Tab key to

move through the interface.

target part. A part that receives a link event from a source part whenever the state of the source part changes.

target directory. The directory in which the compiled VARPG application is stored after a build. Contrast with target

folder.

466 Programming with VisualAge RPG

target folder. The object in which the icon representing a VARPG application is placed.

target program. The object to be built by the project, such as a dynamic link library (DLL).

thread. The smallest unit of operation to be performed within a process.

timer part. A part used to track the interval of time between two events and trigger the second event when the

interval has passed.

title bar. The area at the top of each window that contains the system-menu symbol.

token highlighting. Enhances the readability of the code. You can configure highlighting of different language

constructs with different colors or fonts to identify the program structures. You can turn token highlighting on or off.

tool bar. A menu that contains one or more graphical choices representing actions a user can perform using a

mouse.

topic. In dynamic data exchange (DDE), the set of data that is the subject of a DDE conversation.

tree view. A way of displaying the contents of an object in a hierarchical fashion.

U

user-defined part. A part, consisting of one or more parts you have customized, that you save to the parts palette or

parts catalog for reuse. When in the palette or catalog, you can point and click this part onto the design window as

you would any other VARPG part.

utility DLL. See NOMAIN module

V

vertical scroll bar part. A part that adds a vertical scroll bar to a window. This part allows users to scroll through a

pane of information vertically.

W

WAV. The file extension of a wave file.

wave file. A file used for audio sounds on a waveform device.

window part. An area with visible boundaries that represents a view of an object or with which a user conducts a

dialog with a computer system. You can point and click on a window part from the parts palette or parts catalog and

click it onto the project window.

window with canvas part. A combination of the window part and the canvas part. See also window part and canvas

part.

work area. An area used to organize objects according to a user’s tasks. When a user closes a work area, all

windows opened from objects contained in the work area are removed from the workplace.

workplace. An area that fills the entire display and holds all of the objects that make up the user interface.

workstation. A device that allows a user to do work. See also programmable workstation.

Glossary 467

468 Programming with VisualAge RPG

Bibliography

For additional information about topics related to WebSphere Development Studio

Client, refer to the following IBM publications:

WebSphere Development Studio Client manuals:

v Getting Started with WebSphere Development Studio Client for iSeries, SC09-2625-06,

provides information about WebSphere Development Studio Client for iSeries,

giving an overview of the various components, how they work together, and the

business advantages of using them.

VisualAge RPG manuals:

v Programming with VisualAge RPG, SC09-2449-05, contains specific information

about creating applications with VisualAge RPG. It describes the steps you have

to follow at every stage of the application development cycle, from design to

packaging and distribution. Programming examples are included to clarify the

concepts and the process of developing VARPG applications.

v VisualAge RPG Parts Reference, SC09-2450-05, provides a description of each

VARPG part, part attribute, part event, part attribute, and event attribute. It is a

reference for anyone who is developing applications using VisualAge RPG.

v VisualAge RPG Language Reference, SC09-2451-04, provides reference information

about the VARPG language and compiler.

v Java for RPG Programmers introduces you to the Java language (and RPG IV) by

comparing it to the RPG language. It is a good first step in your Java journey. It

also includes an interactive CD tutorial on Java and VisualAge for Java, by

MINDQ.

v Experience RPG IV Tutorial is an interactive CD tutorial that teaches you RPG IV

and ILE, in a fun and step-by-step approach. The book is a handbook with

questions and exercises to help you get hands-on experience with this exciting

new version of RPG.

v Another non-IBM book of interest to VisualAge RPG users is VisualAge for RPG

by Example.

If you have internet access, you can obtain current iSeries and AS/400e

information and publications from the following Web site:

http://www.ibm.com/eserver/iseries/infocenter

For the PDF version of iSeries publications, refer to the CD ROM iSeries Information

Center: Supplemental Manuals, SK3T-4092-00.

Application Development Manager manuals:

v ADTS/400: Application Development Manager Introduction and Planning Guide,

GC09-1807-00, describes the basic concepts and the planning needed to make

effective use of the Application Development Manager feature.

v ADTS: Application Development Manager User’s Guide, SC09-2133-02, describes

how to create and manage projects defined to the Application Development

Manager feature.

v ADTS/400: Application Development Manager Self-Study Guide, SC09-2138-00,

provides practical hands-on experience using the Application Development

Manager feature. The guide illustrates how to use the Application Development

Manager feature by leading you through a series of step-by-step exercises.

© Copyright IBM Corp. 1994, 2005 469

v ADTS/400: Application Development Manager API Reference, SC09-2180-00,

describes how application programmers can write their own interface to the

Application Development Manager feature.

Information Presentation Facility manual:

v Information Presentation Facility Programming Guide G25H-7110, describes the

elements that make up the Information Presentation Facility (IPF). IPF is a tool

that supports the design and development of online documents and online help

facilities.

SQL manuals:

v IBM SQL Reference Version 2 SC26-8416, Volume 2, compares the facilities of

– DB2

– SQL/DS™

– DB2/400™

– DB2/6000™

– IBM SQL

– ISO-ANSI (SQL92E)

– X/Open™ (XPG4-SQL).
v DB2 Universal Database Administration Guide S10J-8157, provides information

necessary to use and administer the DB2 product.

v DB2 Universal Database Embedded SQL Programming Guide S10J-8158, describes

how to design and code application programs that access DB2 Client/Server

family servers (such as DB2 or DB2/400). It presents detailed information on the

use of Structured Query Language (SQL), and API calls in applications.

470 Programming with VisualAge RPG

Index

Special characters
.BMP file

using 84, 243

.DLL file
calling functions 268

description 427

loading the DLL occurrence while

debugging 228

.EVT file, description 427

.EXE file
calling .EXEs 269

description 427

.HLP file, description 427

.ICO file
using 84, 243

.IPF file, description 427

.IPM file, description 427

.LIB file, description 427

.LST file, description 427

.MID file
processing by media parts 101

.ODF file, description 427

.ODX file, description 427

.RST file, description 427

.TXC file, description 427

.TXM file, description 427

.VPF file, description 427

.VPG file, description 427

.WAV file
processing by media parts 101

*component part
attributes 188

events 188

purpose of 188

*INZSR 272

*TERMSR 273

%DspHeight system attribute 27, 38

%DspWidth system attribute 27, 38

%GETATR, using 25

%SETATR, using 25

A
accessing picture files at build time 244

action subroutine
modifying link events 26

action subroutine, invoking 26

ActiveX part
attributes 47

creating 47

events 47, 50, 89

methods 48

properties 47

purpose of 46

AddItemEnd attribute 151

AddLink attribute
controlling media part with 102

for media panel parts 103

AddMsgId attribute 108

AddMstTxt attribute 108

AddOffset attribute 113

AddRcd attribute 68

AllowLink attribute
enabling media panel control by

setting 102

for media panel parts 103

animation control part
attributes 53

events 53

purpose of 53

applets
calls 297

create 293

Java build options 294

runtime requirements 295

application
installing 423

packaging 415

re-installing 423

re-packaging 423

removing 423

updating 423

Application files
description 427

filename.DLL 228, 427

filename.EVT 427

filename.EXE 427

filename.HLP 427

filename.IPF 427

filename.IPM 427

filename.LIB 427

filename.LST 427

filename.ODF 427

filename.ODX 427

filename.RST 193, 427

filename.TXC 427

filename.TXM 427

filename.VPF 427

filename.VPG 427

applications, thin client 431

Arrange attribute 70

array
changing during debug session 233

displaying during debug session 233

AS/400
accessing files on the iSeries 400

server 34

creating data files for the sample

programs 34

filename.RST 427

messages for translation 262

reusing applications from 213

reusing UIM help 222

attributes
AddItemEnd 151

AddLink 102, 103

AddMsgId 108

AddMsgTxt 108

AddOffset 113

AddRcd 68

AllowLink 102, 103

attributes (continued)
Arrange 70

AudioMode 101

BackColor 37

BackMix 37, 146

Bottom 37

CharOffSet 113

Checked 58, 106

checking event and system

attributes 27

ColNumber 69, 160

Count 69, 94, 159

DDEMode 267

DeSelect 62, 93, 94

DragEnable 41

DropEnable 41

Enabled 37, 77, 107, 113

FileName 81, 85, 101, 243

FirstSel 62

Focus 38

FontName 155

FontSize 155

for ActiveX parts 47

for animation control parts 53

for canvas parts 57

for check box parts 58

for combination box parts 60, 61

for component reference parts 65

for container parts 67

for DDE client parts 74

for entry field parts 75

for graphic push button parts 81

for group box parts 82

for horizontal scroll bar parts 83

for image parts 85

for Java Bean parts 89

for list box parts 78, 92

for media panel parts 103

for menu item parts 106

for message subfile parts 108

for multiline edit parts 112

for notebook canvas parts 119

for notebook page parts 118

for notebook parts 117

for ODBC/JDBC interface parts 120

for outline box parts 137

for pop-up menu parts 138

for positioning parts 37

for progress bar parts 139

for push buttonparts 140

for radio button parts 142

for slider parts 145

for static text parts 155

for status bar parts 157

for subfile parts 158

for submenu parts 171

for timer parts 172

for vertical scroll bar parts 179

for window with canvas parts 181

for window without canvas

parts 180

© Copyright IBM Corp. 1994, 2005 471

attributes (continued)
ForeColor 37

ForeMix 37

GetItem 94

GetNewID 68

GetRcdText 67

getting and setting 25

Height 37, 137

Index 61, 62, 94, 160

InfoLabel 39

InsertItem 61, 93

InsertLine 112

InsertMode 76

Interval 172

Label 39, 82, 106, 140, 155

Left 37

LineNumber 112

Masked 77

Maximum 151

Minimum 151

MsgSubText 109

Multiplier 172

OpenEdit 160

OpenImmediately 181, 182

Panel 85

PanelItem 104

ParentName 35

PartName 35

PartType 35

Position 102, 104

ReadOnly 62, 77, 113, 152

RecordID 69

RemoveItem 62, 93

RemoveMsg 109

RemoveRcd 70

Selected 62, 93, 94

SelectItem 64

Sequence 61, 92

SetItem 61, 93

SetRcdIcon 70

SetRcdText 67

SetTop 62, 93

TabLabel 39

Terminate on close 186

Text 62, 76, 112, 151

TextEnd 113

TextSelect 113

TextStart 113

TimerMode 173

UserData 39

Validate 76

Value 145, 151, 173

View 73

Visible 38, 172, 181

Volume 102, 104

Width 37, 137

AudioMode attribute 101

B
BackColor attribute, common uses of 37

backmatter
common uses of 37

for slider parts 146

BEGACT operation code, responding to

events with 26

bibliography 469

bitmaps, using 243

Bottom attribute, common uses of 37

breakpoint
setting 229, 231

C
calendar 54

purpose of 54

CALL operation code, example of 273

CALLB operation code
calling local functions 267, 268

calling local programs
calling local programs 267

functions using named constants 268

functions using procedure

pointer 269

functions without required

parameters 269

local functions 268

local programs 267

remote programs 272

canvas part
attributes 57

events 57

purpose of 56

CHAIN (random retrieval from file)

operation code 159

Change event
and multiline edit parts 113

for media panel parts 104

for slider parts 145

changing
a pointer value while debugging 236

debugger views 236

the contents of a field while

debugging 234

the representation while

debugging 234

variables, arrays, and structures while

debugging 233

changing position of parts 182

CharOffset attribute 113

check box part
attributes 58

events 58, 59

getting and setting states 58

purpose of 58

Checked attribute
for check box parts 58

for menu item parts 106

CLEAR operation code
for subfile parts 159

purpose of 29

Close event 186

ColNumber attribute 69, 160

color of converted parts after

import 221

combination box part
adding and changing items 61

and data transfer 41

attributes 60

events 61

order of items 61

purpose of 60

removing items 62

retrieving a user-selected item 62

combination box part (continued)
selecting and deselecting items 62

common attributes, description of 35

compiling programs
filename.EVT 427

filename.LST 427

Complete event 102

component reference part
attributes 65

communication between

components 265

events 65

example 65

purpose of 65

components
communication between 265

starting 272

stopping 272

container part
attributes 67

changing views of 70

events 67

example adding records to 69

example removing records from 70

example updating data in 69

purpose of 67

container views, changing 70

context-sensitive help 246

control language (CL) program
ALCOBJ 199

CVTRPGSRC, ILE RPG conversion

tool 224

QCMDDDM 194

QCMDEXC 194

STRPCCMD 274

controlling server connections 201

conversion
RPG source code using

CVTRPGSRC 224

Count attribute
for container parts 69

for list box parts 94

for subfile parts 159

Create event, example of 38

CVTRPGSRC, ILE RPG/400 conversion

tool 224

D
data area overrides 195

data transfer
example 42

parts that support 41

using 41

DDE client
attributes 74

determining if programs support 74

events 74

purpose of 74

DDEAddLink attribute
using 267

DDEMode attribute 267

debugger
breakpoints 228

changing debugger views 236

changing the contents of a field 234

changing the representation 234

472 Programming with VisualAge RPG

debugger (continued)
changing the view 233

displaying registers 233

displaying the debug session control

window 233

displaying the program monitor 233

displaying the stack 233

displaying the storage 233

displaying variables 233

Load occurrence 228

overview 227

running a program while

debugging 232

running the program 232

setting breakpoints 229, 231

starting 227

step return 232

stepping 232

stepping into 232

stepping over 232

tool bar selections 232

default settings
due to CLEAR operation code 187

focus 185

open immediately 181

order of items in a combination

box 61

system menu settings 186

visible 181

window list contents 185

Define AS/400 Information utility
and packaging your application 415

setting a server at run time 194

DELETE (delete record) operation

code 159

DeSelect attribute
for list box parts 93, 94

designing
messages 21

number of windows 20

online help 19

program logic 21

Video Store Catalog application 5

window content 20

directly editing messages 263

display files
color of converted parts 221

display file keywords 219

display record formats 218

reusing 217, 218

displaying variables
debug assembly source code 228

debug load occurrence

breakpoint 228

pointer value while debugging 234

variables while debugging 233

variables, arrays, and structures while

debugging 233

Double Byte Character Set
application development

considerations 381

DBCS Either data type 381, 382

DBCS Mixed data type 381, 383

DBCS Only data type 381, 382

GETATR operation code 382, 383

graphic data type 383

Pure DBCS 383

Double Byte Character Set (continued)
SETATR operation code 382, 383

DragEnable attribute 41

DropEnable attribute 41

DSPLY 262

E
edit codes

formatting data into predefined

formats 239

purpose of 239

user-defined 240

edit words
body of 241

correcting improperly formatted

output 241

expansion positions of 242

parts of 241

purpose of 239, 240

status of 242

editing
data in entry fields and static text

parts 239, 240

help files 222

messages 261

RPG source 224

Enabled attribute
common uses of 37

for entry field parts 77

for menu item parts 107

for multiline edit parts 113

ENDACT operation code, responding to

events with 26

Enter event
for combination box parts 64

for list box parts 94, 170

entry field part
and data transfer 41

attributes 75

clearing 187

events 76

overriding defined values 29

purpose of 75

starting components 272

storing read values 29

error messages
error referencing parts 182

improperly formatted output 241

Event attributes
defining event and system

attributes 27

purpose of 26

event attributes, using 26

events
Change 104, 113, 145

checking for event attribute errors 27

Close 186

coding BEGACT and ENDACT 26

Complete 102

description of attributes 26

Enter 94, 170

for ActiveX parts 47

for animation control parts 53

for check box parts 59

for combination box parts 64

for DDE client parts 74

events (continued)
for entry field parts 76

for graphic push button parts 81

for group box parts 82

for horizontal scroll bar parts 83

for image parts 85

for Java Bean parts 89

for list box parts 92

for media panel parts 103

for media parts 101

for menu bar parts 105

for menu item parts 106

for message subfile parts 108

for multiline edit parts 112

for notebook page parts 118

for notebook parts 117

for ODBC/JDBC Interface parts 121

for outline box parts 137

for progress bar parts 139

for push button parts 140

for radio button parts 142

for slider parts 145

for spin button parts 151

for static text parts 155

for status bar parts 157

for subfile parts 158

for submenu parts 171

for timer parts 172

for vertical scroll bar parts 179

for window with canvas parts 181

for window without canvas

parts 180

GotFocus 38, 113

invoking action subroutines 26

listing events for a part 26

LostFocus 38

MenuSelect 107

Notify 66

Press 81, 141

responding to events in your

program 26

Select 59, 94, 144, 170

Tick 172

examples
adding records to a container part 69

getting and setting values for spin

button parts 152

grouping radio buttons 142

of data transfer 42

of parts sharing a program field 30

reading and modifying subfile

records 160

removing records from container

parts 70

resizing a window 183

updating container parts 69

using component reference part 65

using Create event for a window 38

using subfile part to display database

records 161

using subfiles to display server

data 161

using the image part 86

using the list box part 94

using the message subfile part 110

using the multiline edit part 113

using the slider part 146

Index 473

examples (continued)
using the timer part 173

Video Store Catalog application 3

window part 187

exchanging information with other PWS

applications 265

execute subroutine
invoking action subroutines with 26

F
field parts

unique names 30

file aliases (overrides) 196

FileName attribute
for graphic push button parts 81

for image parts 85

for media parts 101, 243

finding a message
a message 261

FirstSel attribute 62

Focus attribute, common uses of 38

FontName attribute 155

FontSize attribute 155

ForeColor attribute, common uses of 37

ForeMix attribute, common uses of 37

G
GETATR

using 25

GetItem attribute 94

GetNewID attribute 68

GetRcdText attribute 67

getting the record count
count of records in a subfile 159

part attributes 25

state of check box parts 58

state of radio button parts 144

text attribute for multiline parts 112

value for slider parts 145

values for spin button parts 151

glossary 457

GotFocus event
and multiline edit parts 113

common uses of 38

graph 78

purpose of 78

graphic data type 383

graphic push button part
attributes 81

events 81

purpose of 80

group box
attributes 82

events 82

purpose of 82

grouping radio buttons, example 142

H
Height attribute

common uses of 37

for outline box parts 137

help
adding graphics to 245

help (continued)
creating a help push button 246

creating for Windows 249

creating hypertext links 246

editing 222

filename.IPM 427

filename.VPF 427

for Java applications 253

planning your application 19

reusing UIM 222

translating 245

types of 246

help push button, creating 246

hidden subfile fields 161

horizontal scroll bar
attributes 83

events 83

purpose of 83

hypertext links, creating 246

I
icons, using 243

image part
accessing picture and sound files at

build time 244

attributes 85

events 85

purpose of 84

specifying the FileName

attribute 243

importing 217

and color of converted parts 221

display file keywords 219

display files 217, 218

display record formats 218

positional entries and conversion 218

scenario 213

Index attribute
for combination box parts 61, 62

for list box parts 94

for subfile parts 160

InfoLabel attribute 39

Information Presentation Facility

(IPF) 245

InsertItem
for list box parts 93

InsertItem attribute
for combination box parts 61

for list box parts 93

InsertLine attribute 112

InsertMode attribute 76

installing
applications (for Windows NT) 423

code for examples in this book 33

DBCS considerations 381

runtime code (for Windows NT) 423

Video Store Catalog example 3

Interval attribute 172

IPF (Information Presentation

Facility) 245

J
Java applications

SSL setup 449

Java Bean part
associated JARs 90

attributes 89

classpath setup 90

creating 89

properties and methods 91

purpose of 89

java methods, calling 279

Java methods, prototyping 280

java restrictions 287

java runtime differences 290

java source changes 288

java, compiling 287

JavaHelp, creating 253

L
Label attribute

common uses of 39

for group box parts 82

for menu item parts 106

for push button parts 140

for static text parts 155

purpose of 30

labels
description 39

substitution 259

Left attribute, common uses of 37

level checking 199

library lists
Define iSeriesInformation notebook

considerations 196

job description 194

QCMDDDM 194

QCMDEXC 194

setting up a server 194

LineNumber attribute 112

for multiline edit parts 112

linking parts 265

list box part
and data transfer 41

attributes 78, 92

events 92

purpose of 92

locking database files 199

LostFocus event, common uses of 38

M
Make Message File utility 262

Masked attribute 77

Maximize button 183

Maximum attribute 151

media panel part
attributes 103

controlling media part with 102

events 103

purpose of 103

media part
attributes 101

controlling with media panel

part 102

events 101

purpose of 101

signaling events 102

474 Programming with VisualAge RPG

menu bar
attributes 105

events 105

purpose of 105

menu item part
attributes 106

events 105, 106

purpose of 106

menubar
purpose of 105

MenuSelect event
for menu item parts 107

message subfile part
and data transfer 41

attributes 108

events 108

example of 110

purpose of 108

messages
choosing type of 260

compiling for translation 262

creating 259, 260

deleting 261

designing 21

editing 261

editing for translation 263

filename.TXM 427

finding 261

types of 259

using as labels 263

using with logic 262

Minimize button 183

Minimum attribute 151

mnemonics
for check box parts 59

for menu items 106

for notebook pages 118

for push buttons 140

for radio buttons 142

translating 22

modifying
link events to action subroutines 26

resource IDs 427

MsgSubText attribute 109

multiline edit part
and data transfer 41

attributes 112

events 112

example of 113

purpose of 112

multiple procedures
prototyped call 275

Multiplier attribute 172

MultSelect attribute
for list box parts 78, 92

for subfile parts 158

N
non-GUI programs 375

non-GUI programs from DOS 447

notebook page part
attributes 118

events 118

purpose of 118

notebook page with canvas part
attributes 119

notebook page with canvas part

(continued)
events 119

purpose of 119

notebook part
attributes 117

events 117

purpose of 117

Notify event 66

O
ODBC/JDBC interface part

access table data 122

attributes 120, 139

connect to a database 121

create a record set 121

data types 122

events 121, 139

purpose of 120

retrieve table rows 123

Open Immediately attribute 181

OpenEdit attribute 160

operation codes
CALLB 268

CHAIN 159

CLEAR 159, 187

DELETE 159

READ 76

READC 159

READS 159

SETATR 85

SHOWWIN 182

START 65, 272

STOP 272

UPDATE 159

WRITE 76, 159

Outline Box part
attributes 137

events 137

purpose of 137

overrides
accessing data areas 195

accessing database files 196

calling iSeries server programs 273

P
packaging

application 415

prerequisites 415

runtime code 415

Packaging utility 415

Panel attribute 85

PanelItem attribute 104

ParentName attribute, common uses

of 35

part colors
common uses of 37

slider part example 146

part type
description 275

PartName attribute, common uses of 35

parts
*component 188

ActiveX 46

parts (continued)
animation control 53

canvas 56

changing colors of 37

check box 58

combination box 60

Combination box 60

component reference 65

Component Reference 65

container 67

Container 67

DDE client 74

enabling parts 37

entry field 75

graph 78

graphic push button 80

group box 82

horizontal scroll bar 83

image 84

Java Bean 89

linking 265

list box 86, 92

listing events for a part 26

media 101

media panel 103

menu bar 105

menu item 106

message subfile 108

multiline edit 112

notebook 117

notebook page 118

notebook page with canvas 119

ODBC/JDBC interface 120

outline box 137

placement on various monitor

resolutions 38

pop-up menu 138

positioning 37

progress bar 139

push button 140

radio button 142

referencing 25

slider 145

spin button 151

static text 155

status bar 157

subfile 158

submenu 171

support data transfer 41

timer 172

vertical scroll bar 179

window 180, 181

window frame 180

PartType attribute, common uses of 35

Picture file
for image parts 84

using 243

pictures, adding 243

planning your application 19

pointer
changing the value while

debugging 236

displaying while debugging 234

pop-up menu part
attributes 138

events 138

purpose of 138

Index 475

Position attribute
for media panel parts 104

setting 102

position of parts, changing 182

positional entries, and conversion during

import 218

Press event
for graphic push button parts 81

for push button parts 141

programs, non-GUI 375

progress bar part
purpose of 139

prototyped call
prototyped call 275

prototyping, Java methods 280

publications, list of 469

push button part
attributes 140

events 140

purpose of 140

Q
QCMDDDM

changing the library list 194

QCMDDDM, changing the library

list 194

QCMDEXC
changing the library list 194

QCMDEXC, changing the library

list 194

R
radio button part

attributes 142

events 142

example showing how to group 142

purpose of 142

re-packaging 423

READ (read a record) operation code
database files 198

purpose of 29

READC (read next modified record)

operation code 159

ReadOnly attribute
for combination box parts 62

for entry field parts 77

for multiline edit parts 113

for spin button parts 152

READS (read selected record from

subfile) operation code 159

RecordID attribute 69

recursion
recursive calls 277

referencing
parts on different windows 25

parts on the same windows 25

RemoveItem attribute 62, 93

RemoveMsg attribute 109

RemoveRcd attribute 70

removing
an application 423

the runtime code 423

RESET
purpose of 29

resizing windows 183

reusing
applications from iSeries 400 213

display files 217, 218

RPG source 224

UIM help files 222

RGB color value 37

RPG source
reusing 224

running with breakpoints
debug breakpoints 231

programs while debugging 232

runtime
deleting 423

filename.DLL 427

filename.EXE 427

filename.HLP 427

filename.ODX 427

filename.RST 427

re-installing 423

re-packaging 423

removing 423

updating 423

runtime code
installing 423

packaging 415

S
sample programs

building 34

installing 33

running 34

special instructions for samples

requiring iSeries server data 34

secure sockets layer setup 449

Select event
for combination box parts 64

for list box parts 94

for radio button parts 144

for subfile parts 170

signaling 59

Selected attribute
for combination box parts 62

for list box parts 93, 94

selecting items in combination boxes 62

SelectItem attribute 64

Sequence attribute
for combination box parts 61

for list box parts 92

server connections, runtime control 201

servers
accessing data areas 195

accessing database files 196

calling iSeries 400 programs with

workstation files 274

calling server programs 273

database considerations 200

defining iSeries Information 193

issuing CL commands 194

level checking 199

library list considerations 194

locking database files 199

notebook considerations 193

overriding database files 199

setting up for developing/running

applications 194

servers (continued)
using your application as a DDE

Server 266

SETATR
using 25

SETATR (set attribute) operation code
for image parts 85

reflecting stored values on the

screen 29

SetItem attribute
for combination box parts 61

for list box parts 93

SetRcdIcon attribute 70

SetRcdText attribute 67, 70

setting
debug breakpoints 229

debug fonts 237

SetTop attribute
for combination box parts 62

for list box parts 93

sharing program fields, example of

parts 30

SHOWWIN operation code
loading window into memory 182

Signon API, sample program 205

Signon API,using 201

slider part
attributes 145

events 145

purpose of 145

sound files, using 243

sound, adding 243

source code
editing 224

filename.VPG 427

spin button part
events 151

example of 152

purpose of 151

SSL setup 449

standalone programs 375

START (start a component) operation

code
and component reference parts 65

calling local programs using 270

description 272

restrictions when calling local

programs with 271

starting
debug window 227

the debugger 227

starting a component 272

starting components
starting components 272

static text part
and data transfer 41

attributes 155

events 155

overriding defined values 29

purpose of 155

storing read values 29

unique names 30

status bar part
attributes 157

events 157

purpose of 157

476 Programming with VisualAge RPG

stepping over
while debugging 232

STOP (stop a component) operation code
description 272

subfile part
attributes 158

events 158

example displaying server data 161

example of reading and updating

records 160

hidden fields 161

purpose of 158

submenu part
attributes 171

events 171

purpose of 171

substitution labels
defining text for 259

description 39

system attributes
%DspHeight 27, 38

%DspWidth 27, 38

System attributes
checking for system attribute

errors 27

T
TabLabel attribute 39

Terminate on close 186

terminating a program 186

text
for combination box parts 62

for entry field parts 76

for spin button parts 151

purpose of 30

Text attribute 112

TextEnd attribute 113

TextSelect attribute 113

TextStart attribute 113

thin clients 431

Tick event 172

TickLabel attribute
for slider parts 145

timer part
events 172

purpose of 172

TimerMode attribute 173

translating
compiling messages for 262

editing messages for 263

messages 22

mnemonics 22

tips for 22, 39

U
update subfiel record

for subfile parts 159

User Interface Manager, reusing

files 222

UserData attribute, common uses of 39

utilities
Define iSeries Information 194, 415

Make Message File 262

Packaging 415

V
Validate attribute 76

Value attribute
for slider parts 145

for spin button parts 151

for timer parts 173

Vendor Plugins
adding 389

creating 391

invoking 389

managing 389

vertical scroll bar
attributes 179

events 179

purpose of 179

Video Catalog application
adding messages 15

adding online help 15

creating the Comedy window 7

creating the Preview window 11

description of 3

designing 5

installing 3

running 4

View attribute 73

views, changing 70

Visible attribute
common uses of 38

for timer parts 172

for window parts 181

visual RPG
breakpoints list 230

changing a pointer value 236

changing variables, arrays, and

structures 233

debug startup information 229

debug tool bar 232

debug window 227

displaying a pointer value 234

displaying the assembly source

code 228

displaying the load occurrence

breakpoint 228

displaying variables, arrays, and

structures 233

running breakpoints 231

setting breakpoints 229

setting debug fonts 237

Volume attribute
for media panel parts 104

for media parts 102

W
Width attribute

common uses of 37

for outline box parts 137

window part
attributes 180

events 180

purpose of 180

window with canvas part
attributes 181

events 181

purpose of 181

windows
attributes 180, 181

attributes for operation codes 30

creating at startup 182

default settings 181

designing content of 20

displaying 181

displaying pictures on 243

events 180, 181

giving input focus 38

loading into memory 182

method for moving 182

OpenImmediately attribute 181

operation codes for 29

positioning without use of title

bar 182

purpose of 180, 181

referencing 182

resizing 183

setting focus 185

setting window list contents 185

specifying when to display 38

style considerations 21

system menu settings 186

terminating on Close 186

unique names for entry field and

static text parts 30

using sound 243

Visible attribute 181

when you can set attributes 182

Windows help, creating 249

WRITE (create new records) operation

code
database files 198

for subfile parts 159

purpose of 29

reflecting stored values on the

screen 29

Index 477

478 Programming with VisualAge RPG

���

Printed in U.S.A.

SC09-2449-07

	Contents
	About this Book
	Who Should Use This Book
	Prerequisite and Related Information
	How to Use This Book
	The VisualAge RPG Library
	How to Send Your Comments
	Accessing Online Information
	Using Online Books
	Publications in PDF Format
	Using Online Help
	Using context-sensitive help
	Using language-sensitive help

	What's New in This Release
	Changes in WebSphere Development Studio Client for iSeries Version 5.1.2
	Changes in WebSphere Development Studio Client for iSeries Version 5.1
	Changes in WebSphere Development Studio Client for iSeries Version 5.0

	Part 1. A First Look at Client/Server Applications
	Chapter 1. Creating a Client/Server Application
	About the Sample Application
	Building the Sample Application
	Deciding What to Show the User
	Welcome to the Video Store Catalog
	Browsing by Category
	Searching for Specific Titles
	Previewing Titles
	Modifying and Submitting Orders
	Submitting Orders

	High-Level Window Design
	Creating the Comedy Window
	Creating the GUI
	Aligning the parts

	Setting Attributes
	Window attributes
	Canvas attributes
	Subfile attributes
	Push button attributes

	Adding Program Logic
	Displaying the Comedy window
	Displaying the Preview Window

	Creating the Preview Window
	Creating the GUI
	Setting Attributes at Design Time
	Media part attributes
	Static text attributes
	Multiline edit part

	Setting Attributes at Run Time
	Adding Program Logic
	Specifying the video to preview
	Controlling the video

	Creating Messages
	Creating the Online Help
	Context-sensitive help
	Creating Help push buttons

	A Review of Visual Programming

	Chapter 2. Planning Your Application
	Enabling Secure Java Applications
	Decide What Functions to Provide
	Help Your Users
	Keep Window Design Simple
	Number of Windows
	Content of Each Window

	Plan Your Code Effectively
	Keep the User Informed
	Use a Consistent Style
	Anticipate Translation Issues

	Part 2. Working with Parts
	Chapter 3. Programming with Parts
	Getting and Setting Part Attributes
	Referencing Parts in Your Program

	Responding to Events
	System Attributes
	Working with Event and System Attributes
	Coding Static Text and Entry Field Parts
	Creating and Retrieving Entry Field Parts
	Operation Codes for Window Parts
	Using Window Operation Codes on Parts with Identical Names
	Example

	Chapter 4. Sample Programs for VisualAge RPG
	Before You Begin
	Building the Examples
	Running the Examples
	Accessing an iSeries 400 Server

	Chapter 5. Common Attributes
	PartName Attribute
	ParentName Attribute
	PartType Attribute
	Color Attributes
	Enabled Attribute
	Size and Position Attributes
	Visible Attribute
	Focus Attribute
	UserData Attribute
	Label Attribute
	Label Substitution
	Translation Tips

	Chapter 6. Using Data Transfer
	A Typical Data Transfer Scenario
	Parts That Support Data Transfer
	Enabling Parts for Data Transfer
	Data Transfer Example

	Chapter 7. Using Parts
	ActiveX
	Adding ActiveX Controls
	Setting Properties
	Calling Methods
	Responding to Events

	Animation Control
	Calendar
	Determining Which Date the User Selected
	Using Date Index Attributes

	Canvas
	Check Box
	Setting the State of a Check Box Part
	Setting a Mnemonic
	Signaling Events

	Combination Box
	Selecting the Type of Combination Box
	Adding and Setting the Initial Sequence of Items
	Adding Items at Run Time
	Updating Items in a List
	Setting the Top of the List
	Removing Items
	Selecting and Deselecting Items
	Retrieving a User-Selected Item
	Using Keys
	Setting the Entry Field Text
	Signaling Events

	Component Reference
	Referencing Part Attributes in Other Components
	Monitoring for Events in Another Component

	Container
	Adding Columns to a Container
	Adding Records to a Container
	Updating Container Columns
	Removing Records from a Container
	Changing the Container View
	Icon view
	Tree view
	Details View
	Mini Icons

	DDE Client
	Entry Field
	Using the InsertMode Attribute
	Using the Text Attribute
	Getting and Setting Information for a Window
	Validity Checking
	Preventing User Input
	Masking Sensitive Data

	Graph
	Sending data to the Graph

	Graphic Push Button
	Setting the Image
	Assigning Command Keys
	Signaling Events

	Group Box
	Labeling a Group Box
	Grouping Radio Buttons

	Horizontal Scroll Bar
	Image
	Creating the Image Part
	Setting the File Name
	Controlling the Magnification Panel
	Image Example

	Java Bean
	Adding Beans to your Project
	Location of Bean JAR Files
	Setting the JAR Classpath
	Setting/Getting JavaBean Properties and Invoking Methods

	List Box
	Adding and Setting the Sequence of Items
	Adding Items at Run Time
	Updating Items in a List
	Setting the Top of the List
	Removing Items
	Selecting and Deselecting Items
	Types of Selection
	Retrieving Items from the List
	Using Keys
	Signaling Events
	List Box Example
	Search Example

	Media
	Specifying a File Name
	Setting AudioMode
	Setting the Volume
	Setting the Position
	Using the Media Panel Part
	Signaling Events

	Media Panel
	Creating a Media Panel Part
	Linking Other Parts
	Signaling Events

	Menu Bar
	Creating Pull-down Menus

	Menu Item
	Placing a Check Mark beside a Menu Item
	Setting Menu Text
	Setting a Mnemonic
	Enabling Menu Items
	Signaling Events

	Message Subfile
	Displaying Predefined Messages
	Displaying Text Supplied in Your Program
	Using Substitution Variables
	Removing Messages
	Message Subfile Example

	Multiline Edit
	Getting and Setting the Text
	Manipulating Lines of Text in a Multiline Edit Part
	Manipulating Characters in a Multiline Edit Part
	Manipulating Selected Portions of Text in a Multiline Edit Part
	Changing Color
	Choosing Fonts
	Preventing User Input
	Multiline Edit Example

	Notebook
	Changing Font Emphasis

	Notebook Page
	Showing Tab Text
	Setting a Mnemonic

	Notebook Page with Canvas
	ODBC/JDBC Interface
	Connecting to an ODBC Database
	Creating a Record Set
	Accessing Table Data
	Data Types
	Retrieving Table Rows
	Updating Row Data
	Deleting a Row
	ODBC/JDBC Interface Part Example

	Outline Box
	Special Height and Width Settings

	Pop-up Menu
	Progress Bar
	Progress Bar Example

	Push Button
	Setting a Default Push Button
	Setting a Mnemonic
	Assigning Command Keys
	Signaling Events

	Radio Button
	Setting a Mnemonic
	Grouping Radio Buttons
	Setting the State of a Radio Button
	Signaling Events

	Slider
	Getting and Setting the Slider Value
	Signaling Events
	Slider Example

	Spin Button
	Setting Spin Button Values
	Getting the Spin Button Value
	Preventing User Input
	Spin Button Example

	Static Text
	Changing the Text of a Static Text Part
	Getting Static Text Values
	Getting and Setting Information for a Window
	Editing Output

	Status Bar
	Status Bar Example

	Subfile
	Creating a Subfile Part
	Maximum Number of Fields per Subfile
	Operation Codes for Manipulating Subfile Parts
	Loading a Subfile
	Determining the Subfile Size
	Getting the Record Count
	Reading and Updating Records
	Changing Subfile Fields
	Hidden Fields
	Formatting Subfile Fields
	Enabling Tabbing
	Subfile Example
	Signaling Events

	Submenu
	Timer
	Displaying the Timer Icon
	Setting the Interval
	Generating Tick Events
	Getting the Timer Value
	Controlling the Timer Using Timer Modes
	Timer Example

	Vertical Scroll Bar
	Window
	Window with Canvas
	Displaying a Window
	Setting the Open Immediately attribute
	Using the SHOWWIN operation code
	Referencing

	Resizing a Window
	Setting the Focus
	Window List
	Terminating a Program
	Clearing Fields on a Window
	Example of a Window Part

	*Component
	Using the *component part
	Displaying a File Open/Save As dialog.
	Selecting a printer
	Using Plugins
	Querying the Parts in a Component

	Part 3. Working with iSeries Data
	Chapter 8. iSeries Connectivity
	Defining iSeries Information
	Notebook Considerations

	Setting Up a Server
	Setting a Server at Design Time
	Setting a Server at Run Time
	Defining a job description to set up a library list
	Changing the library list

	Using Data Areas
	Using iSeries 400 Database Files
	Level Checking
	Locking Database Files
	Overriding Database Files

	iSeries 400 Database I/O Considerations
	Using Record Blocking to Improve Performance

	iSeries 400 Servers Used
	Controlling Server Connections at Run Time
	Setting the Remote Location name
	Connecting to a remote location
	Sample Program Using the Signon API

	Handling Server Sign-On Errors
	Explicitly Handling File Open Errors
	Explicitly connecting to the server
	Setting up a general program error handler

	Using the Security File for Applets

	Chapter 9. Reusing iSeries Applications
	Reuse Scenario
	Importing Display Files
	Converting Display Files
	Record Formats
	Positional Entries
	Display File Keywords
	Converting Color

	Reusing UIM Help
	UIM and IPF functions that use the same tags
	Equivalent UIM and IPF functions that use different tags
	UIM Functions with no IPF equivalents

	Reusing RPG Source

	Part 4. Advanced Topics
	Chapter 10. Debugging Your Application
	Starting the Debugger
	Displaying the Assembly Code
	Loading the DLL Occurrence
	Entering Debug Startup Information
	Setting a Breakpoint
	Running with Breakpoints
	Using the Mouse or Keyboard to Start Debug Functions
	Selecting Options from the Tool Bar
	Displaying and Changing Variables, Arrays, and Structures
	Changing the Contents of a Field or Structure
	Changing the Representation
	Changing the Default Representation
	Displaying Pointers and Storage
	Changing the Debugger Views
	Setting Fonts

	Chapter 11. Editing Output
	Edit Codes
	Edit Words
	Parts of an Edit Word
	Body of an edit word
	Status of an edit word
	Expansion of an edit word

	Chapter 12. Using Picture, Sound, and Video Files
	Creating Icons for Windows
	Converting OS/2 Icons to Windows Format

	Chapter 13. Tips for Creating Online Help with IPF
	Creating Online Help
	Using IPF
	Supporting Help for Other Languages
	Adding Graphics to Your Online Help
	Deciding What Type of Help to Provide
	Adding Context-Sensitive Help
	Creating a Help Push Button
	Creating Hypertext Links

	Chapter 14. Tips for Creating and Using Windows Help
	Establishing the Resource ID
	Writing the Help Text
	Creating the Help Project File
	Compiling the VARPG Program
	Testing the Help
	Creating a Contents File

	Chapter 15. Tips for Creating JavaHelp
	Creating a HelpSet File
	Creating the Map File
	Creating the TOC File
	Creating the JAR File

	Chapter 16. Working with Messages
	Defining Text for Substitution Labels
	Creating a New Message
	Editing a Message
	Deleting a Message
	Finding a Message
	Using Messages with Logic
	Translating Message Files
	Manually Changing Message Files

	Using Messages as Labels

	Chapter 17. Communicating Between Objects
	Linking Parts
	Using a VisualAge RPG Application as a DDE Server
	AppName
	Topic
	Item
	DDEAddLink
	DDEMode

	Communicating Between Components
	Making Local Calls
	Using the CALLB Operation
	Calling functions using named constants or literals
	Calling functions using a procedure pointer
	Calling functions without the required parameters

	Calling Local Programs using CALLP
	Calling Local Programs using START
	Restrictions for CALLP and START

	Starting Components using START
	Starting a Component
	Terminating a Component

	Calling Remote Programs
	Calling iSeries 400 Programs
	Starting Workstation Programs from the iSeries server

	Using Multiple Procedures
	Prototyped Calls
	Procedure Considerations
	Procedure Implications
	VisualAge RPG DLL Considerations
	Utility DLL Considerations
	EXE Considerations

	Chapter 18. Calling Java Methods from VisualAge RPG Programs
	The Object Data Type and CLASS Keyword
	Prototyping a Java Method
	Examples of Prototyping Java Methods
	Example 1
	Example 2
	Example 3
	Example 4

	Creating Objects
	Calling Java Methods
	Additional Considerations

	Chapter 19. Considerations When Compiling for Java
	Project File Name Convention
	Conditional Compile Directives
	Java Source Code Restrictions
	Possible VARPG Source Changes
	Runtime Differences
	Applet Restrictions
	J2SDK 1.2 Printing Problems

	Chapter 20. Creating and Running VisualAge RPG Applets
	Creating Applets
	Testing Your Applet
	Troubleshooting

	Running One Applet from Another

	Chapter 21. Calling System Functions when Compiling for Java
	A Simple Call
	Passing and Receiving Parameters
	Parameter Types
	Character
	Zoned Numeric
	Packed Numeric
	Binary
	Integer, Unsigned
	Float (4/8)
	Date, Time, Timestamp

	Passing Arrays
	Returning A Char Value
	Returning A Zoned Value
	Returning A Packed Value
	Returning A Binary Value
	Returning An Integer Value
	Returning An Unsigned Value
	Returning A Date, Time, or Timestamp Value
	Returning A Float Value
	Returning A Varying-Length Character Value
	Returning Array Values

	Chapter 22. Creating Non-GUI VisualAge RPG Programs
	Creating Standalone VARPG Programs
	Creating DLLs
	Exception Handling
	Debugging Applications
	Debugging Procedures

	Chapter 23. DBCS Considerations
	VisualAge RPG Support for DBCS Data Types
	DBCS ONLY Data Type
	DBCS Either Data Type
	DBCS Mixed Data Type
	Pure DBCS Considerations

	Chapter 24. Merging Code in Your Application
	Chapter 25. Vendor Plugins
	Adding a Vendor Plugin
	Invoking a Vendor Plugin
	Managing Vendor Plugins

	Chapter 26. Creating Plugins
	Creating Plugins Using VisualAge RPG
	Creating the .plg file
	Alternate_Paths
	DLL_Names
	Vendor_Name
	Plugin_Name
	Help_File
	Unloading_Function
	Unloading_Command_Line
	IBM_PluginInterface | PluginInterface
	Begin_Details ... End_Details
	Function_Name
	Command_Line
	Menu_Name
	Menu_Info_Strings
	Supported_Menus
	Help_Id
	Accelerator
	End_of_Definition

	Template for .plg file and sample
	Creating the .EXE file
	Targets/Commands and the associated Return Values
	Sample Plugin Source Code

	Packaging Your Application

	Considerations when Creating Plugins using VisualAge for C++
	Considerations when Creating Plugins using REXX

	Part 5. Distributing Your Application
	Chapter 27. Packaging Runtime Code and Applications
	Before You Begin
	Packaging the VisualAge RPG Runtime Code and Applications
	Starting the Packaging Utility
	Packaging Windows Applications for Windows
	Specifying What You Want to Package
	Specifying the Application Package Information
	Specifying the Runtime Package Information

	Packaging Java Applications for Windows
	Packaging Java Applications for Other Platforms
	Specifying What You Want to Package
	Packaging the Application Jar File
	Packaging the Run Time

	Chapter 28. Installing Windows NT/95/98 Runtime Code and Applications
	Installing the Runtime Code
	A Note About Embedded SQL

	Installing an Application
	Maintaining the Runtime Code and Applications
	Installing From the LAN
	Installing Silently from the LAN

	Part 6. Appendixes
	Appendix A. Application Files
	Appendix B. Writing Thin Client Applications
	Implementing a VARPG Thin Application Model
	Sample Application Using Remote Calls
	The Client Program
	Sample RPG Source for the Client Side

	The Server Program
	Sample RPG Source for the Server Side

	Sample Application Using Data Queues
	The Client Application
	Client Sample Source

	The Server Program
	Server Sample Source

	Other Possible Implementations
	Reusable Server Program Example

	Appendix C. Creating and Compiling Non-GUI Programs from MS-DOS
	Accessing an AS/400 System

	Appendix D. Secure Sockets Layer (SSL) Setup
	SSL Considerations
	Prerequisites
	SSL Setup for the iSeries 400 Server
	SSL Setup for the Workstation

	Notices
	Programming Interface Information
	Trademarks and Service Marks

	Glossary
	Bibliography
	Index

