
IBM Systems - iSeries

Programming

Optical device programming

Version 5 Release 4

���

IBM Systems - iSeries

Programming

Optical device programming

Version 5 Release 4

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 51.

First Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Optical device programming 1

What’s new for V5R4 1

Printable PDF 1

Optical device programming concepts 2

Integrated file system 2

Hierarchical file system (HFS) 3

Volume, directory, and file considerations 4

Integrated file system programming 5

Integrated file system APIs 6

Integrated file system generic commands . . . 12

Examples: Integrated file system 14

Hierarchical file system (HFS) programming . . . 17

Hierarchical file system APIs 17

Control file system functions 25

Using standard attributes 29

Using special attributes 30

Copying file attributes using HFS 31

Examples: HFS 33

Tips: Optical programming 35

Media capacity and volume threshold 35

Managing media capacity on a per-file basis . . 36

Expanding buffer I/O through HFS 36

Using forced buffered data APIs 37

Held optical files 37

Path names 38

Examples: Moving spooled files to and from

optical storage 39

Related information 49

Code license and disclaimer information 49

Appendix. Notices 51

Programming Interface Information 53

Trademarks 53

Terms and conditions 53

© Copyright IBM Corp. 2006 iii

iv IBM Systems - iSeries: Programming Optical device programming

Optical device programming

This topic collection describes the application programming interfaces (APIs) developers can use to access

optical volumes on the i5/OS™ operating system.

You can use the APIs described in this topic collection to perform interface functions with a variety of

different file systems, including the optical file system. This topic collection is not a complete description

of these APIs. It only describes the aspects of API use that are unique to the optical file system.

Programmers can use the available APIs to create, access, change, or maintain optical files and directories.

You can use the APIs described in this topic collection to customize use of optical support for specific

business applications.

You can find the information you need in one of the following topics.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.

What’s new for V5R4

Find out what’s new to the Optical device programming topic for i5/OS V5R4.

New look

This topic collection is new to the iSeries™ Information Center for i5/OS V5R4. In i5/OS V5R3, this

information was available in chapter 7 of the book titled Optical Support. In i5/OS V5R4, this information

has a new navigation structure that makes it easier to use.

Printable PDF

You can print the Optical device programming topic collection with Adobe Acrobat Reader.

To view or download the PDF version of this document, select Optical device programming (about 544

KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

© Copyright IBM Corp. 2006 1

rzau8.pdf
http://www.adobe.com/products/acrobat/readstep.html

Optical device programming concepts

Read this topic collection for basic concepts of optical device programming. Basic concepts that are

described for optical device programming include the i5/OS optical storage system, integrated file

system, hierarchical file system, and considerations for volumes.

This topic collection describes the interfaces that an application programmer can use to access optical

volumes on i5/OS. The proper name for these interfaces is application programming interfaces (APIs).

You can use these APIs to perform interface functions with a variety of different file systems, of which

the optical file system is one. This topic collection does not include all of the API documentation. It only

describes the aspects of API use that are unique to the optical file system. i5/OS optical file systems

consist of any data storage system using optical media including CD, DVD, WORM, and

Magneto-Optical.

Programmers can use the available APIs to create, access, change, or maintain optical files and directories.

The APIs may be used to customize usage of optical support for specific business applications.

Two categories of APIs can be used to manipulate optical files and directories:

v Integrated file system support, which consists of UNIX-type APIs and the generic command interface

v Hierarchical file system (HFS) support, which consists of APIs and generic commands.

You can use both categories of APIs concurrently. For example, an optical file that is opened for reading

by one application by using the HFS Open Stream File API can be opened for reading by another

application using the Open UNIX-type API.

Because different file systems exist in i5/OS, you must provide some means for the HFS or the integrated

file system to differentiate for which file system a call is targeted. This is accomplished by requiring that

the first name in the path name parameter be the name of the file system to be called, preceded by a

leading slash. In order for the optical file system to be identified as the receiver of a request submitted to

the HFS or the integrated file system, the first portion of the path name parameter must be /QOPT. The

remaining path elements to follow /QOPT are volume/directory/subdirectory/file. For an example of a

path name, see the following:

/QOPT/CD001/Dir1/SubDir1/File

For more information about using integrated file system and HFS APIs, see the APIs topic.

Integrated file system

The integrated file system is a part of i5/OS that supports stream input/output and storage management

similar to personal computer and UNIX® operating systems, while providing an integrating structure

over all information stored in your server.

The integrated file system comprises 11 file systems, each with its own set of logical structures and rules

for interacting with information in storage. Key features of the integrated file system include the

following:

v Support for storing information in stream files that can contain long continuous strings of data. These

strings of data might be, for example, the text of a document or the picture elements in a picture. The

stream file support is designed for efficient use in client/server applications.

v A hierarchical directory structure that allows objects to be organized similar to common PC file

structures. A path specified through the directories to an object accesses the object.

v A common interface that allows users and applications to access not only the stream files but also

database files, documents, and other objects that are stored in your server.

2 IBM Systems - iSeries: Programming Optical device programming

v A common view of stream files that are stored locally on your server, Integrated xSeries® Server for

iSeries, or a remote Windows NT® server. Stream files can also be stored remotely on a local area

network (LAN) server, a Novell NetWare server, another remote iSeries server, or a Network File

System server.

The integrated file system enhances the already extensive data management capabilities of i5/OS with

additional capabilities to better support emerging and future forms of information processing, such as

client/server, open systems, and multimedia.

The integrated file system enables you to do the following:

v Attain fast access to i5/OS data, especially for applications such as iSeries Access that use the i5/OS

file server.

v Handle types of stream data, such as images, audio, and video more efficiently.

v Use a file system base and a directory base for supporting UNIX-based open system standards, such as

Portable Operating System Interface for Computer Environments (POSIX) and XPG. This file structure

and this directory structure also provides a familiar environment for users of PC operating systems

such as Disk Operating System (DOS), and Windows® operating systems.

v Gain access to file support with unique capabilities (such as record-oriented database files, UNIX-based

stream files, and file serving) to be handled as separate file systems, while allowing them all to be

managed through a common interface.

LAN-attached optical devices do not support this interface.

 Related information

 Integrated file system

Hierarchical file system (HFS)

A hierarchical file system (HFS) is a part of the operating system that includes the application

programming interface (API) and the underlying file system (optical or otherwise) support.

The HFS API makes it possible for an application that is written in a high-level language to create, store,

retrieve, and manipulate data on a directly attached optical library device, LAN-attached optical library

device, CD-ROM, or DVD device. To find more information about HFS APIs, refer to the APIs topic in

the Programming topic collection on the iSeries Information Center.

HFS API optical support consists of two parts:

v An application programming call interface to the hierarchical file system to manipulate objects known

as files and directories.

v An optical or other registered file system that manages the storage devices where the files and

directories are stored.

HFS API optical functions include the following:

v Creating or deleting a directory

v Opening, reading, or closing a directory

v Opening, reading, writing, or closing a file

v Locking or unlocking bytes in a file

v Getting or setting the size of a file

v Renaming, copying, deleting, or removing a file

v Retrieving or changing directory entry attributes

Applications use HFS APIs to manage stream files on an i5/OS system. These stream files are also called

objects to identify them as data elements that do not have a conventional record structure. The object is

treated as a named byte stream of known length, whose size can vary from a few bytes to megabytes.

Optical device programming 3

HFS APIs allow applications to create and manage file objects on storage devices and to perform

input/output operations to those file objects. HFS APIs allow applications to create and manage directory

objects, which can be thought of as a logical grouping of similar file objects. These directory objects

contain information about the file objects that belong to that directory. Directories can be contained

within directories resulting in the hierarchical structure.

Volume, directory, and file considerations

Several special considerations will make your optical programming easier.

Volume considerations

Consider the following terms when referring to volumes:

v Online. The volume is mounted in a drive under the read/write heads.

v Near online. The volume is in the optical media library, but not online. The volume may be in a

storage slot or the opposite side of an online volume.

v Removed. The volume is not physically in an optical media library, but volume information for the

volume was kept when the volume was removed.

v Offline. The volume is in an optical device, but the device is either powered off, varied off, or no

longer connected.

Consider the following characteristics of optical volumes:

v An optical volume is one side of an optical cartridge.

v Some optical cartridges contain two volumes, others contain one.

v All volume names must be unique.

v Depending on the optical media density and type, the capacity of a volume can range from a few

hundred megabytes to many gigabytes.

v Normally, a near online volume takes less than 10 seconds to become an online volume. This requires

the volume to be mounted into a drive.

v The number of drives in the optical media library determines how many volumes can be online at any

time. Only one volume can be mounted in a drive (online) at one time. The remaining volumes in the

library are near online.

v Volumes are generally independent of each other, with one exception. The two volumes on the same

cartridge can never be completely independent. Both volumes on a cartridge can never be online at the

same time. Copying between two volumes on the same cartridge can be done, but it requires the

cartridge to be “flipped” several times to copy all of the requested files.

v There is no limit to the number of removed volumes that can exist.

How an application manages volumes depends almost entirely on the requirements of the application.

Data should be written to volumes strategically, depending on the desired retrieval time in the future. If

it is not desirable to wait for a near online volume to become online, the application might need to be set

up so that the most likely volumes to be accessed are online.

Directory considerations

The only limit to the number of directories that can be created on a volume is the capacity of the media.

This restriction also applies to the number of files that can exist in an optical directory. Directories are not

required to exist for files to be stored on a volume. If you want, all files can be stored in the root

directory of a volume. The root directory is the �/� directory that is created when a volume is initialized.

This root is not considered a directory in the traditional sense since it cannot be created or deleted like

other directories. The root directory will always exist on initialized optical volumes.

4 IBM Systems - iSeries: Programming Optical device programming

Directories can be used to categorize optical files into more manageable subsets. Directories can contain

files from a particular time period, subject, characteristic, or any combination of these. For example, there

may be a directory SPOOLFILES with subdirectories YEAR_1994 and YEAR_1995. Taking this one step further,

there could be subdirectories within these subdirectories named MONTH_MARCH and MONTH_APRIL. See the

following for an example of this structure:

/SPOOLFILES /YEAR_1994 /MONTH_MARCH

86 Optical Support V5R3

|

|

/MONTH_APRIL /YEAR_1995 /MONTH_MARCH /MONTH_APRIL

In this example, the following are the fully qualified directory names:

/SPOOLFILES

/SPOOLFILES/YEAR_1994

/SPOOLFILES/YEAR_1994/MONTH_MARCH

/SPOOLFILES/YEAR_1994/MONTH_APRIL

/SPOOLFILES/YEAR_1995

/SPOOLFILES/YEAR_1995/MONTH_MARCH

/SPOOLFILES/YEAR_1995/MONTH_APRIL

Directories can be useful when categorizing files, but they are not necessary. Like volume names,

directory names must be unique within the same volume. For example, volume VOL001 cannot have two

directories named DIR001. Volume VOL001 can, however, have a DIR001 directory and a DIR000/DIR001

directory. Also, a DIR001 directory can exist on volume VOL001 and volume VOL002. For information

about directory naming conventions, see “Path names” on page 38.

File considerations

The size of optical files depends almost entirely on the requirements of the application and the users of

those files. The size of an optical file (accessible through HFS or the integrated file system) can range

from 0 bytes to 4 294 705 152 bytes depending on the capacity of a volume. The physical size of the

target piece of media is limited by the amount of free space available.

When selecting optimal file sizes for your application, pay special attention to the following

considerations:

v The amount of system disk unit or main storage on the iSeries server

v How the data will be read (sequentially or randomly)

v Whether the entire file will typically be retrieved, or just a small portion

v Whether files will be updated once they are written to the volume

Generally, the larger the file, the better the performance and media use. When larger files are used, less

media space is taken up by file directory information and more is used for actual data. Also, the

performance related to file size is not a linear comparison. It does not take twice as long to write 20 KB

of data as it does to write 10 KB of data. Performance (KB/second) improves as the amount of data being

read or written increases.

Integrated file system programming

Read this topic collection to learn how to use UNIX-type APIs to program your optical file system.

The integrated file system support provides a UNIX-type interface that you can use to maintain optical

files and directories. LAN-attached optical devices do not support this interface.

The integrated file system support for optical support consists of:

v UNIX-type APIs: These APIs are C language functions that can be used in ILE C for i5/OS programs.

v Generic commands: These are system CL commands that allow interface to optical support.

Optical device programming 5

Integrated file system APIs

Use this table as a quick reference for UNIX-type optical file system APIs.

Like all file systems, the optical file system has unique rules and restrictions for applications that access

optical functions through the integrated file system. Several of the UNIX-type APIs and generic

commands are not supported. Others are only partially supported, or restricted.

Review the following tables to better understand supported and unsupported APIs and commands.

 Table 1. Optical implementation of UNIX-type APIs

UNIX-type API Supported Comments and usage notes

access (Determine File

Accessibility)

Yes Requires *X authority to the parent optical

volume. For non-Universal Disk Format (UDF)

volumes, no other authority is required. For

UDF formatted volumes, the following

authorization rules apply:

v Requires *X authority to each directory in the

path preceding the object tested.

v Requires *R authority when R_OK is specified.

v Requires *W authority when W_OK is

specified.

v Requires *X authority when X_OK is specified.

v Requires *RX authority when R_OK|X_OK is

specified.

v Requires *WX authority when W_OK|X_OK

is specified.

v Requires *RX authority when R_OK|W_OK is

specified.

v Requires no authority when F_OK is specified.

accessx (Determine File

accessibility based on the who

parameter)

Yes Does not require *X authority to the parent

optical volume. For UDF volumes, the following

authorization rules apply:

Valid values for the who parameter are:

v ACC_INVOKER

v ACC_SELF

v ACC_ALL

v ACC_OTHERS
1. Requires *R authority when R_OK is

specified

2. Requires *W authority when W_OK is

specified

3. Requires *X authority when X_OK is

specified

Authority checks are mutually exclusive.

6 IBM Systems - iSeries: Programming Optical device programming

Table 1. Optical implementation of UNIX-type APIs (continued)

chdir (Change Current

Directory)

Yes Requires *X authority to the parent optical

volume.

For non-UDF volumes, no other authority is

required.

For UDF formatted volumes, *X authority is

required to each directory in the path

chmod (Change File

Authorizations)

Yes Only supported for UDF formatted optical

volumes. Requires *CHANGE authority to the

parent optical volume. Requires *X authority to

each directory in the path preceding the object.

To perform this operation, you must be the

owner of the file or have *ALLOBJ special

authority.

chown (Change Owner and

Group of File)

Yes Only supported for UDF formatted optical

volumes. Requires *CHANGE authority to the

parent optical volume. Requires *X authority to

each directory in the path preceding the object.

To perform this operation, you must be the

owner of the file, or have *ALLOBJ special

authority. Files and directories on non-UDF

formatted volumes are owned by QDFTOWN

user profile.

close (Close File Descriptor) Yes

closedir (Close Directory) Yes

creat (Create or Rewrite File) Yes Requires *CHANGE authority to the parent

optical volume. For non-UDF volumes, no other

authority is required. For UDF formatted

volumes, *X authority is required to each

directory in the path and *WX authority to the

parent directory.

The change and modification time stamps for

the parent directory are not updated.

dup (Duplicate Open File

Descriptor)

Yes

dup2 (Duplicate Open File

Descriptor to Another

Descriptor)

Yes

fchmod (Change File

Authorizations by Descriptor)

Yes Only supported for UDF formatted optical

volumes. To perform this operation, you must be

the owner of the file or have *ALLOBJ special

authority.

Optical device programming 7

Table 1. Optical implementation of UNIX-type APIs (continued)

fchown (Change Owner and

Group of File by Descriptor)

Yes Only supported for UDF formatted optical

volumes. To perform this operation, you must be

the owner of the file or have *ALLOBJ special

authority. Files and directories on non-UDF

formatted volumes are owned by QDFTOWN

user profile.

fcntl (Perform File Control

Command)

No

fpathconf (Get Configurable

Path Name Variables by

Descriptor)

Yes

fstat (Get File Information by

Descriptor)

Yes Owner, group, and other mode bits are always

on, regardless of the user’s authority to the file.

File access time stamp is not changed.

fsync (Synchronize Changes to

File)

Yes For UDF formatted volumes, data is forced to

optical disk. For non-UDF formatted volumes,

data is forced to internal disk storage that is

recoverable through held optical files.

ftruncate (Truncate File) Yes

getcwd (Get Current®

Directory)

Yes Requires *X authority to the parent optical

volume. For non-UDF volumes, no other

authority is required. For UDF formatted

volumes, *RX authority is required to each

directory in the path name preceding the object.

getegid Yes

geteuid Yes

getgid Yes

getgrid Yes

getgrnam Yes

getgroups Yes

getpwnam Yes

getpwuid Yes

getuid Yes

ioctl (Perform File I/O Control

Request)

No

link (Create Link to File) No QOPT does not support links.

lseek (Get File Read/Write

Offset)

Yes

8 IBM Systems - iSeries: Programming Optical device programming

Table 1. Optical implementation of UNIX-type APIs (continued)

lstat (Get File or Link

Information)

Yes File access time stamp is not changed.

Requires *X authority to the parent optical

volume. For non-UDF volumes, no other

authority is required. For UDF formatted

volumes, *X authority is required to each

directory in the path preceding the object and *R

authority is required to the object.

mkdir (Make Directory) Yes Requires *CHANGE authority to the parent

optical volume. For non-UDF volumes, no other

authority is required. For UDF formatted

volumes, *X authority is required to each

directory in the path and *WX authority to the

parent directory.

The change and modification time stamps for

the parent directory are not updated.

Owner ID and group ID are not set.

open (Open File) Yes If the file is opened for write access , *CHANGE

authority is required to the parent optical

volume.

If the file is opened for read access, *USE

authority is required to the parent optical

volume.

For UDF formatted volumes, the following

additional authorization rules apply:

v Requires *R authority when object is being

opened O_RDONLY.

v Requires *W authority when object is being

opened O_WRONLY.

v Requires *RW authority when object is being

opened O_RDWR.

v Requires *WX to the parent directory when

object does not exist and O_CREAT is

specified.

opendir (Open Directory) Yes Requires *USE authority to the parent optical

volume.

For UDF formatted volumes, *X authority is

required to each directory in the path preceding

the object, and *R authority is required to the

object being opened.

pathconf (Get Configuration

Path Name Variables)

Yes

Optical device programming 9

Table 1. Optical implementation of UNIX-type APIs (continued)

Qp0lGetPathFromFileId Yes

Qp0lRenameKeep Partial QOPT does not support renaming a directory.

The object must be a file.

Requires *CHANGE authority to the parent

optical volume. For non-UDF volumes, no other

authority is required. UDF formatted volumes

require *X authority to each directory in the

path, and *WX authority to the parent directory,

and *W authority to the file. If renaming the

volume, *RWX is required to the root (/)

directory of the volume.

New and old files must exist in the same

directory.

Qp0lRenameUnLink Partial QOPT does not support renaming a directory.

The object must be a file.

Requires *CHANGE authority to the parent

optical volume. For non-UDF volumes, no other

authority is required. UDF formatted volumes

require *X authority to each directory in the

path, *WX authority to the parent directory, and

*W authority to the file. If renaming the volume,

*RWX is required to the root (/) directory of the

volume.

The object that is identified by a new path

cannot exist.

read (Read from File) Yes The file access time is not updated. When

reading from files on volumes formatted in

Universal Disk Format (UDF), byte locks on the

range being read are ignored. The same is true

for readv().

readdir (Read Directory Entry) Yes The directory access time is not updated.

readlink (Read Value of

Symbolic Link)

No QOPT does not have symbolic links.

10 IBM Systems - iSeries: Programming Optical device programming

Table 1. Optical implementation of UNIX-type APIs (continued)

rename (Rename File or

Directory)

Partial QOPT does not support renaming a directory.

The object must be a file or a volume.

Requires *CHANGE authority to the parent

optical volume. For non-UDF volumes, no other

authority is required. UDF formatted volumes

require *X authority to each directory in the

path, *WX authority to the parent directory, and

*W authority to the file. If renaming the volume,

*RWX is required to the root (/) directory of the

volume.

The object that is identified by a new path

cannot exist.

rewinddir Yes

rmdir (Remove Directory) Yes Requires *CHANGE authority to the parent

optical volume. For non-UDF volumes, no other

authority is required. For UDF formatted

volumes, *X authority is required to each

directory in the path and *WX authority is

required to the parent directory.

Change and modification time stamps for the

parent directory are not updated.

The operation will not be allowed if the

directory is busy.

stat (Get File Information) Yes File access time stamp is not changed.

Requires *X authority to the parent optical

volume. For non-UDF volumes, no other

authority is required. For UDF formatted

volumes, *X authority is required to each

directory in the path preceding the object and *R

authority is required to the object. When issued

to an optical volume, the size returned is the

volume capacity or 2 147 483 647, whichever is

smaller.

symlink (Make Symbolic Link) No QOPT does not support symbolic links.

sysconf (Get System

Configuration Variables)

Yes

Optical device programming 11

Table 1. Optical implementation of UNIX-type APIs (continued)

unlink (Remove Link to File) Yes Requires *CHANGE authority to the parent

optical volume. For non-UDF volumes, no other

authority is required. For UDF formatted

volumes, *X authority is required to each

directory in the path and *RX authority is

required to the parent directory.

Change and modification time stamps for parent

directory are not updated.

Link to a file cannot be removed when a job has

the file opened.

unmask (Set Authorization

Mask for Job)

Yes

utime (Set File Access and

Modification Times)

No QOPT does not support setting the file access or

modification time.

write (Write to File) Yes Change and modification time stamps for the file

are updated when the file is closed. When

writing to files on volumes formatted in

Universal Disk Format (UDF), byte locks on the

range being written are ignored. The same is

true for writev().

Integrated file system generic commands

This topic includes a quick reference of generic commands related to the integrated file system.

For authorities that are required to issue generic commands, see the iSeries Security Reference book .

 Table 2. Optical implementation of generic commands

Generic command Supported Comments and restrictions

ADDLNK No

CHGAUD No

CHGAUT Yes Supported only for UDF formatted

optical volumes.1

CHGCURDIR Yes

CHGOWN Yes Supported only for UDF formatted

optical volumes.

CHGPGP Yes Supported only for UDF formatted

optical volumes.

CHKIN No

CHKOUT No

CPY Yes

CRTDIR Yes Command will fail if attempt is to

create /QOPT or next level directory,

which represents a volume.

DSPAUT Yes

12 IBM Systems - iSeries: Programming Optical device programming

Table 2. Optical implementation of generic commands (continued)

Generic command Supported Comments and restrictions

DSPCURDIR Yes

DSPLNK Yes

ENDJRN No

MOV Partial QOPT does not support moving a

directory, if it contains files or

subdirectories. QOPT does not

support moving a volume.

RMVDIR Partial QOPT does not support

RMVLNK(*YES).

RMVLNK Yes

RNM Partial QOPT does not support renaming a

directory.

RST Partial QOPT supports restoring an entire

volume using SUBTREE (*STG).

RTVCURDIR Yes

SAV Partial QOPT supports saving an entire

volume using SUBTREE (*STG).

SAVRST No

STRJRN No

WRKAUT Yes Supported only for UDF formatted

optical volumes.1, 2

WRKLNK Yes

Note:

1. To perform this operation, you must be the owner of the file or have *ALLOBJ special

authority.

QOPT does not maintain or honor object level authorities associated with optical files and

directories. Therefore, any attempt to change or revoke object level authorities is not allowed.

The only allowed value for the New object authorities (OBJAUT) parameter is *SAME.

You are not allowed to specify *EXCLUDE for the New data authorities (DTAAUT) parameter.

Command parameter rules require that if *EXCLUDE is specified for the New data authorities

parameter, a value of *NONE must be specified for the New object authorities parameter.

If the desire is to revoke authority associated with the owner, group, or other user, *NONE may

be specified as a value for the New data authorities parameter. In this case the specified user

and the user’s data authorities are removed from the list of authorized users.

QOPT does not maintain or honor a private authority list. An attempt to assign New data

authorities to a user other than the owner, group, or other (*PUBLIC) is not allowed.

2. QOPT does not maintain or honor a private authority list. An attempt to add a new user

(option 1 from the WRKAUT display) and assign new data authorities to a user other than the

owner, group, or other (*PUBLIC) is not allowed.

Option 4 is not supported to remove the user from list of authorized users. Select and prompt

(F4) option 2 for the user you with to remove. The New data authorities parameter (DTAAUT)

must be set to *NONE and the New object authorities parameter (OBJAUT) must be set to

(*SAME).

Optical device programming 13

Examples: Integrated file system

These examples can help you program your optical file system using the integrated file system.

This topic demonstrates the use of the integrated file system UNIX-type APIs that pertain to the QOPT

physical file system and are used with the ILE C for i5/OS programming language.

The programming examples demonstrate the following functions:

v Retrieving optical directory entries

v Creating an optical file

v Writing a file

v Closing a file

v Opening a file

v Reading a file

v Changing the offset into a file

For more information about UNIX-Type APIs, see the UNIX-Type APIs topic in the iSeries Information

Center.

Sample code

This sample program demonstrates the use of various integrated file system APIs.

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.
/**/

/* */

/* This program demonstrates the use of various integrated file */

/* system functions applied to the QOPT physical file system */

/* including: */

/* chdir() - change current directory */

/* close() - close file */

/* closedir() - close directory */

/* creat() - create file */

/* lseek() - seek file (change file offset) */

/* open() - open file */

/* opendir() - open directory */

/* read() - read file */

/* readdir() - read directory entry */

/* rewinddir() - rewind directory entries */

/* stat() - directory statistics */

/* write() - write file */

/* */

/**/

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <dirent.h>

#include <sys/stat.h>

#include <fcntl.h>

void main (void)

{

 /***/

 /* local variables, contents and defines */

 /***/

 char path[294]; /* optical path */

 DIR *dirP; /* pointer to the directory */

 int filedes; /* open file descriptor */

 struct dirent *direntP; /* directory entry structure */

14 IBM Systems - iSeries: Programming Optical device programming

struct stat info; /* dir/file information */

 int volume_number; /* what it says... */

 int rc = 0; /* function return codes */

 int kk = 0; /* local counter */

 char data[] = "The quick red fox jumped over the fence";

 /***/

 /* Retrieve the list of volumes from the QOPT physical file */

 /* system by opening the QOPT pfs root directory and reading the */

 /* directory entries. */

 /***/

 memset(path, /* clear path name */

 0x00,

 sizeof(path));

 strcpy(path, /* set physical file system */

 "/QOPT");

 rc = stat("/QOPT", &info);; /* determine number of files */

 if (rc != 0)

 perror("stat() failed:");

 dirP = opendir(path); /* open the directory */

 if (dirP == NULL)

 perror("opendir() failed:");

 for (kk = 1; kk <= info.st_nlink; kk++)

 {

 direntP = readdir(dirP);

 if (direntP == NULL)

 perror("readdir() failed:");

 printf("%d) %s\n", kk, direntP->d_name);

 }

 /***/

 /* Prompt user for the volume they want to work with and make it */

 /* the current directory. */

 /***/

 printf("\nEnter the number the volume you want to work with:\n");

 scanf("%d", &volume_number);;

 rewinddir(dirP); /* beginning of directory */

 for (kk = 1; kk <= volume_number; kk++)

 direntP = readdir(dirP); /* get requested dir. entry */

 strcat(path, "/");

 strcat(path, direntP->d_name);

 rc = chdir(path); /* set current working dir. */

 if (rc != 0)

 perror("chdir() failed:");

 if (getcwd(path, sizeof(path)) == NULL)

 perror("getcwd() failed:");

 printf("\nThe current working directory is: %s\n", path);

 rc = closedir(dirP); /* close the directory */

 if (rc != 0)

 perror("closedir() failed:");

 /***/

 /* Create and open a file write only. If the file exists it */

 /* will be truncated. The owner will have read, write, and */

 /* execute authority to the file. */

 /***/

 strcat(path, "/");

 printf("\nEnter a file name:\n");

 scanf("%s", &path[strlen(path)]);

 filedes = creat(path, S_IRWXU);

 if (filedes == -1)

Optical device programming 15

{

 perror("creat() failed");

 return;

 }

 rc = write(filedes, data, sizeof(data));

 if (rc == -1)

 perror("write() failed:");

 close(filedes);

 /***/

 /* Read back the file and print it. */

 /***/

 memset(data, 0x00, sizeof(data));

 filedes = open(path, O_RDWR);

 if (filedes == -1)

 {

 perror("open() failed");

 return;

 }

 read(filedes, data, sizeof(data));

 if (filedes == -1)

 {

 perror("read() failed");

 return;

 }

 printf("\nThe data written to file is: %s\n", data);

 /***/

 /* Change the offset into the file and change part of it. Read */

 /* the entire file, print it out and close the file. */

 /***/

 lseek(filedes, 4, SEEK_SET);

 rc = write(filedes, "slow old ", 9);

 if (rc == -1)

 {

 perror("write() failed");

 return;

 }

 lseek(filedes, 18, SEEK_SET);

 rc = write(filedes, "went under ", 11);

 if (rc == -1)

 {

 perror("write() failed");

 return;

 }

 lseek(filedes, 0, SEEK_SET);

 read(filedes, data, sizeof(data));

 if (filedes == -1)

 {

 perror("read() failed");

 return;

 }

 printf("\nThe data now is: %s\n", data);

 close(filedes);

 printf("Done...\n");

 return;

}

16 IBM Systems - iSeries: Programming Optical device programming

Hierarchical file system (HFS) programming

Read this topic collection to learn how to program with the hierarchical file system (HFS).

If you need to read to or write from a LAN-attached optical, you will need to use the hierarchical files

system (HFS), which is part of i5/OS.

The HFS API support for optical support consists of two parts:

v An application programming call interface to the hierarchical file system to manipulate objects known

as files and directories.

v An optical or other registered file system that manages the storage devices where the files and

directories are stored.

HFS API optical functions include the following:

v Creating or deleting a directory

v Opening, reading, or closing a directory

v Opening, reading, writing, or closing a file

v Locking or unlocking bytes in a file

v Getting or setting the size of a file

v Renaming, copying, deleting, or removing a file

v Retrieving or changing directory entry attributes

The following information can help you to program applications that use the HFS with optical devices.

Hierarchical file system APIs

This topic describes how the use of HFS APIs is different for the optical file system, as compared to

general API use.

Although the APIs that HFS supports are common to all file systems, each file system has different

interpretations or restrictions regarding those APIs. The following table summarizes the optical

interpretation of each HFS API. LAN-attached optical devices and directly attached optical devices have

different restrictions for several of the APIs. Some examples of directly attached optical devices are CDs,

DVDs, and SCSI attached optical libraries. Some examples of LAN-attached optical devices are Ethernet

or token ring attached optical libraries.

 Table 3. Optical HFS API restrictions

HFS APIs Directly attached usage notes LAN-attached usage notes

Change File Pointer (QHFCHGFP) None. None.

Close Stream File (QHFCLOSF) None. None.

Optical device programming 17

Table 3. Optical HFS API restrictions (continued)

Control File System (QHFCTLFS) Supports the following requests:

v SAV saves a held optical file.

v RLS releases a held optical file.

v SRD/VOL returns a sector read

from an optical volume.

v SRD/DEV returns a sector read

from an optical device.

v RTV/VOL returns volume-specific

information.

v GET reads file data directly from

the media with minimal data

caching. For UDF formatted

volumes, GET requires *X

authority to each directory in the

path preceding the file and *R

authority to the file.

Supports the following requests:

v UPD/LAN performs a dynamic

index refresh of the list of LAN

volumes.

v UPD/VOL returns volume-specific

information.

v RTV/VOL returns volume-specific

information.

v RTV/DIR returns subdirectory and

file entries for a specified directory.

18 IBM Systems - iSeries: Programming Optical device programming

Table 3. Optical HFS API restrictions (continued)

Copy Stream File (QHFCPYSF) If the source file is in the QOPT file

system, *USE authority is required to

the source optical volume.

If the target file is in the QOPT file

system, *CHANGE authority is

required to the target optical volume.

Copy information parameter, byte 1,

option 2 is not supported (Copy

Append). If specified, CPF1F62 will

be returned.

When the operation is complete,

QCRTDTTM, QACCDTTM, and

QWRTDTTM are set to the current

date.

When copying between the QOPT

and QDLS file systems, file attributes

are optionally copied depending on

global optical attribute CPYATR. This

attribute can be displayed or changed

utilizing the CHGOPTA command.

When copying between the QOPT

and QDLS file systems, file

permissions are not copied. If

permissions need to be preserved

between these file systems use the

copy (CPY) CL command.

If the source file is on a UDF

formatted volume, *X authority is

required to each directory in the path

preceding the file. *R authority is

required to the file.

If the target file is on a UDF

formatted volume, *WX authority is

required to the parent directory and

*X authority is required to each

directory in the path preceding the

parent directory.

If the source file is in the QOPT file

system, *USE authority is required to

the source optical volume.

If the target file is in the QOPT file

system, *CHANGE authority is

required to the target optical volume.

Copy information parameter, Byte 1,

Option 2 is not supported (Copy

Append).

Copying from a volume in a directly

attached library to a volume in a

LAN-attached optical device is not

supported.

Optical device programming 19

Table 3. Optical HFS API restrictions (continued)

Create Directory (QHFCRTDR) When the operation is complete,

QCRTDTTM, QACCDTTM,

QWRTDTTM are set to the current

date.

When the operation is complete,

QFILSIZE and QALCSIZE are set to

0.

Requires *CHANGE authority to the

optical volume.

Creating the optical root directory is

not supported.

Creating the volume portion of the

directory is not supported.

Attributes passed in the attribute

information table are not supported,

and will result in a CPF1F71 error

message. The length of the attribute

information table parameter must be

0.

Optical attribute OPT.CHGATDTTM,

which indicates the last time that the

directory attributes were changed, is

created. This date is set to the current

date. If a user specifies an attribute, it

is ignored.

For UDF formatted volumes, *WX

authority is required to the parent

directory. *X authority is required to

each directory in the path preceding

the parent directory. The owner of

the directory will be the user creating

the directory and the owner data

authorities will be set to *RWX. The

primary group and primary group

data authorities will be the same as

the parent directory. The *PUBLIC

data authorities will be the same as

the parent directory.

When the operation is complete,

QCRTDTTM, QACCDTTM,

QWRTDTTM are set to the current

date.

When the operation is complete,

QFILSIZE and QALCSIZE are set to

0.

Requires *CHANGE authority to the

optical volume.

Creating the optical root directory is

not supported.

Creating a volume portion of a

directory is not supported.

All standard attributes are ignored.

The length of attribute information

table parameter must be set to 0.

20 IBM Systems - iSeries: Programming Optical device programming

Table 3. Optical HFS API restrictions (continued)

Delete Directory (QHFDLTDR) Deleting the optical root directory is

not supported.

Deleting the volume portion of a

path is not supported.

Requires *CHANGE authority to the

optical volume.

For UDF formatted volumes, *WX

authority is required to the parent

directory and *X authority is required

to each directory in the path

preceding the parent directory. *W

authority is required to the directory

being deleted.

Deleting the optical root directory is

not supported.

Deleting the volume portion of a

path is not supported.

Requires *CHANGE authority to the

optical volume.

Delete Stream File (QHFDLTSF) Requires *CHANGE authority to the

optical volume.

For UDF formatted volumes, *WX

authority is required to the parent

directory. *X authority is required to

each directory in the path preceding

the parent directory. *W authority is

required to the file being deleted.

Requires *CHANGE authority to the

optical volume.

Get File Size (QHFGETSZ) None None

Set File Size (QHFSETSZ) None Not Supported

Optical device programming 21

Table 3. Optical HFS API restrictions (continued)

Open Stream File (QHFOPNSF) Parameter open information:

v Opening with an access mode

(byte 6) of write only or

read/write requires *CHANGE

authority to the volume.

v Opening with an access mode

(byte 6) of read only requires *USE

authority to the volume.

v Lock Modes (byte 5) are enforced

across different open instances. If

the same job opens a file multiple

times, these open locks can

conflict.

If QALCSIZE was specified on an

open request for the write operation,

optical media will be checked to see

if enough space is available. If not,

error message CPF1F62 is returned.

All standard attributes except

QALCSIZE are ignored.

If a file is being created, QCRTDTTM,

QACCDTTM, and QWRTDTTM are

set to the current date. If a file is

being updated, QWRTDTTM is set to

the current date. If a file is being

read, no time stamps are changed.

QACCDTTM is never changed after a

file is created. It will always equal

QCRTDTTM.

The following authorization rules

apply only for UDF formatted

volumes.

v If opening a file for READ, *X

authority is required to each

directory in the path preceding the

file and *R authority is required to

the file.

v If opening an existing file for

WRITE, *X authority is required to

each directory in the path name

preceding the file and *W authority

is required to the file.

v If opening an existing file for

READ/WRITE, *X authority is

required to each directory in the

path name preceding the file and

*RW authority is required to the

file.

v If creating the file, *WX authority

is required to the parent directory.

v If creating the file, the owner of

the file will be the user creating

the file and the owner data

authorities will be set to *RWX.

The primary group and primary

group data authorities will be the

same as the parent directory. The

*PUBLIC data authorities will be

the same as the parent directory.

Parameter Open information:

v Byte 3 (write-through flag), is not

supported.

v Byte 7 (type of open operation to

perform), is not supported.

v Opening with an access mode

(byte 6) of read-only requires *USE

authority to the volume.

Unless the file open attempt is for

read-only access, attributes are not

tolerated and result in error message

CPF1F71. The length of the attribute

information table parameter must be

0.

If a file open attempt is for read-only

access, attributes are tolerated but

ignored.

22 IBM Systems - iSeries: Programming Optical device programming

Table 3. Optical HFS API restrictions (continued)

Read Stream File (QHFRDSF) None. None.

Retrieve Directory Entry Attributes

(QHFRTVAT)

Requires *USE authority to an optical

volume.

For UDF formatted volumes, *X

authority is required to each

directory in the path name preceding

the file and *R authority is required

to the file or directory being read.

The user can retrieve only

LAN-standard attributes: QFILSIZE,

QCRTDTTM, and QWRTDTTM.

Requires *USE authority to an optical

volume.

The length of attribute information

table parameter must be set to 0.

Write Stream File (QHFWRTSF) None. None.

Change Directory Entry Attributes

(QHFCHGAT)

QFILATTR is the only standard

attribute that can be changed. All

others that are specified are ignored.

Read only flag, byte 1 of the

QFILATTR attribute, can only be set

for a file, not a directory. If specified

for a directory, it is ignored.

Changed flag, byte 5 of the

QFILATTR attribute, can be set to

either 0 or 1. It is automatically set

on (1) whenever a file is created or

written to.

If OPT.CHGATDTTM is specified, it

is ignored.

Requires *CHANGE authority to an

optical volume.

For UDF formatted volumes, *X

authority is required to each

directory in the path name preceding

the file and *W authority is required

to the file.

API not supported.

Close Directory (QHFCLODR) None. API not supported.

Force Buffered Data (QHFFRCSF) If the volume media format is *UDF,

then data is forced to optical media.

If the volume media format is not

*UDF, then data is forced to internal

disk storage, not to optical media.

For a file opened for read-only

access, this API has no effect.

API not supported.

Lock and Unlock Range in Stream

File (QHFLULSF)

None. API not supported.

Optical device programming 23

Table 3. Optical HFS API restrictions (continued)

Move Stream File (QHFMOVSF) If the source file is in the QOPT file

system, *CHANGE authority is

required to the optical source

volume.

If the target file is in the QOPT file

system, *CHANGE authority is

required to the optical target volume.

When moving between the QOPT

and QDLS file systems, file attributes

are optionally copied depending on

the global optical attribute CPYATR.

This attribute can be displayed or

changed using the CHGOPTA

command.

If the source file is on a UDF

formatted volume, *WX authority is

required to the parent directory and

*X authority is required to each

directory in the path name preceding

the parent directory. *RW authority is

required to the file.

If the target file is on a UDF

formatted volume, *WX authority is

required to the parent directory and

*X authority is required to each

directory in the path name preceding

the file.

API not supported.

Open Directory (QHFOPNDR) Opening the file system root

(/QOPT) will allow both directly

attached and LAN-attached volumes

to be returned on Read Directory

Entries.

Lock mode is ignored when opening

the file system root.

Lock mode of no lock is not

supported. If requested, a lock mode

of deny none is substituted.

Requires *USE authority to the

optical volume.

For UDF formatted volumes, *X

authority is required to each

directory in the path name preceding

the directory being opened and *R

authority is required to the directory

being opened.

API not supported.

24 IBM Systems - iSeries: Programming Optical device programming

Table 3. Optical HFS API restrictions (continued)

Read Directory Entries (QHFRDDR) QNAME is returned without the

QOPT file system name.

QNAME is the only field that is set

for a LAN-attached volume.

QWRTDTTM will always equal

QCRTDTTM.

For files and directories,

QACCDTTM will always equal

QCRTDTTM.

For volumes, QACCDTTM will equal

the last volume reference date.

API not supported.

Rename Stream File (QHFRNMSF) Requires *CHANGE authority to the

optical volume.

For UDF formatted volumes, *WX

authority is required to the parent

directory and *X authority is required

to each directory in the path name

preceding the parent directory. *W

authority is required to the file being

renamed.

API not supported.

Rename Directory (QHFRNMDR) API not supported. API not supported.

Control file system functions

Optical support provides Control File System (QHFCTLFS) functions to perform unique operations for

the optical file system.

The functions described below are optical specific functions that are not otherwise available through the

HFS APIs. Different functions are available for directly attached and LAN-attached optical devices.

The following control file system functions are available for directly attached media libraries:

v SAV. Saves a held optical file.

v RLS. Releases a held optical file.

v SRD/VOL. Performs a sector read to an optical volume.

v SRD/DEV. Performs a sector read to an optical device.

v RTV/VOL. Returns volume-specific information.

v GET. Reads file data directly from the media with minimal caching.

Control File System functions for directly attached optical devices

The following functions are available for directly attached optical devices.

Save held optical file function

Use the Control File System program to save a held optical file. A process must be allowed read access to

a held optical file to save it.

The following is the syntax for the input buffer for the QHFCTLFS program:

’SAV’ + ’/’ + held-file-path + ’//’ + destination-file-path

Optical device programming 25

For example:

v Input data buffer: SAV/VOLUME1/DIRECTORY1/FILE1//VOLUME2/DIRECTORY2/FILE2

v Input data buffer length: 54

This function is also available using an option on the Work with Held Optical File (WRKHLDOPTF)

display. However, unlike the save option on the Work with Held Optical File (WRKHLDOPTF) display,

the save held optical file function of the control file system API does not automatically release a held file

after it is saved. Therefore, an explicit release held optical file request is needed afterward.

Release held optical file function

Use the Control File System program to clear the held status of a file and release the optical file system

from its obligation to write to the optical disk. A process must be allowed read and write access to a held

file in order to release it; this means that no locks may currently be imposed on the file by other active

jobs.

The following is the syntax for the input buffer for the QHFCTLFS program:

’RLS’ + ’/’ + held-file-path

For example:

v Input data buffer: RLS/VOLUME1/DIRECTORY1/FILE1

v Input data buffer length: 28

This function is also available using an option on the Work Held Optical File (WRKHLDOPTF) display.

Sector read function

The Control file system program can be used to do a sector reading of optical media. The sector read

function is useful if the application knows precisely where data is stored on optical media. Sector read

functions can be accomplished without opening and closing files and independently of all HFS APIs.

Multiple sectors may be read at one time.

There are two variations of the input buffer for issuing the Control File System sector read function:

SRD/VOL/volume_name/starting sector/number of sectors

SRD/DEV/device_name/starting sector/number of sectors

Both return the range of sectors requested by the user. Sectors can be requested from an optical volume

or optical device. For example, if an application wanted to read five sectors of optical volume VOL01

beginning at sector 1000, the following is requested: SRD/VOL/VOL01/1000/5

Note: DEV is valid for stand-alone CD and DVD devices.

Retrieve volume information function

Use the Control File System program to retrieve information about a particular volume.

The following is the input buffer format for the QHFCTLFS program:

RTV/VOL/volume_name

The format of the information returned in the output buffer is identical to the output file structure for

volume attributes (QAMODVA).

26 IBM Systems - iSeries: Programming Optical device programming

Get file data

You can use the Control File System (QHFCTLFS) HFS API to read a block of data from a file directly

into your output buffer. This function improves performance when reading an entire file sequentially or

when reading large blocks of data. The optical file system will not copy or cache the data as it does

through normal Open, Read, and Close Stream File HFS APIs. When doing random read operations to a

file, the Open, Read, and Close Steam File option may still provide the best performance.

The following restrictions apply when using this API:

v Align output buffer on a 512-byte boundary.

v File offset must be 0 or a multiple of 4096.

v Maximum-read size is 16 384 000 bytes.

v The HFS API requires Shared No Update (*SHRNUP) access to the file.

v Calling program must be in user (not system) state.

v The HFS API requires *USE authority to the volume.

Here is the syntax for the input buffer for the QHFCTLFS program:

’GET’ + ’/’ + entire path + ’//’ + bytes to read + ’/’ + file offset

The following example will read 15 MB from FILE.XXX, starting at the beginning of the file with

(offset=0):

v Input data buffer: GET/VOL1/DIR1/SUBDIR1/FILE.XXX//15728640/0

v Input data buffer length: 42

The number of bytes read is returned in the Length of data returned parameter. In the above example if

FILE.XXX is only 50 KB in size, 51200 will be returned in the field. Therefore, it is not necessary to know

the file size prior to issuing this request. Likewise, if 15728640 is returned in the Length of data returned

parameter, the file is at least 15 MB in size. More read operations may be necessary to retrieve all the

data.

It is not required that the number of bytes to read be a multiple of 4096. However, if the number is not a

multiple of 4096, data may be read into the output buffer beyond the number of bytes requested. This is

because the device does I/O in blocks of 4096 bytes. Therefore, reading data in multiples of 4096 bytes is

advised in order to avoid this problem.

Errors from control file system (GET)

The following table shows some common application errors that may occur using this API.

 Table 4. Common errors for the GET API

Message Error

OPT1812 with 6030 as unexpected return code File offset is beyond the end of file.

OPT1812 with A950 as unexpected return code Output buffer is not 512-byte aligned.

OPT1860 Bytes to read is greater than the buffer size.

OPT1812 with C060 as unexpected return code Attempted to read more than 16 384 000 bytes.

OPT1812 with C061 as unexpected return code File offset is not a 4096 multiple.

CPF1F48 Input buffer is not valid. Verify the syntax.

Optical device programming 27

Control file system functions for LAN-attached optical devices

The following control file system functions are available for LAN-attached media libraries.

v UPD/LAN - performs a dynamic refresh of the LAN volume lists.

v UPD/VOL - returns volume-specific information.

v RTV/VOL - returns volume-specific information.

v RTV/DIR - returns subdirectory and file entries for a specified directory.

Update volume information

Use the Control File System program to retrieve information about a particular volume or to update the

internal list of available volumes on a LAN.

The following is the input buffer format for the QHFCTLFS program:

UPD/VOL/volume_name

It performs the following:

v UPD/VOL/volume-name: Using this input buffer format returns the amount of free space on a

volume, total user space, media type, and opposite-side volume ID. The format is shown here:

– Bytes (1-32): Opposite-side volume ID.

– Bytes (33): Reserved.

– Bytes (34-37): User free space on the volume. This is a 4-byte binary field.

– Bytes (38-41): Total free space on the volume. This consists of the user free space on the volume plus

the reserved space on the volume. The reserved space on the volume is determined when setting the

volume-full threshold for the volume. This is a 4-byte binary field.

– Bytes (42): Media type. This is a 1-byte binary field that can have the following values.

- 0 = Nonvalid Media or 3431 Standalone Drive

- 1 = Write Once Read Many (WORM) media

- 2 = Rewriteable media
– Bytes (43): Magnitude of free space on the volume. This is a 1-byte binary field that can have the

following values:

- 0 = Space field is in number of bytes.

- 1 = Space field is in number of kilobytes (1024).

- 2 = Space field is in number of megabytes (1048576).
– Bytes (44): Magnitude of Total Space on the Volume. This is a 1-byte binary field that can have the

following values:

- 0 = Space field is in number of bytes.

- 1 = Space field is in number of kilobytes (1024).

- 2 = Space field is in number of megabytes (1048576).
v UPD/LAN: Using this input buffer format updates an internal list of available volumes on all activated

servers. You can perform this function after adding or removing cartridges from data servers.

Retrieve volume information function

Use the Control File System program to retrieve information about a particular volume.

The following is the input buffer format for the QHFCTLFS program:

RTV/VOL/volume_name

28 IBM Systems - iSeries: Programming Optical device programming

The format of the information returned in the output buffer is identical to the output file structure for

volume attributes (QAMODVA).

The system uses format QAMODVA for volumes in all optical device types. While the format is the same,

not all fields contain a value for LAN volumes.

Retrieve directory information function

Use the Control File System program to retrieve a list of files and subdirectories for a particular directory.

The following is the input buffer for the QHFCTLFS program:

RTV/DIR/volume_name/directory_name

The directory information is returned in the output buffer in the following format:

v CBdirectoryBCBdirectoryBCBfilenameBCBfilenameBB, whereas the following are:

– C

- D = Directory entry

- F = File name entry
– B = EBCDIC blank

– BB = Double EBCDIC blanks to indicate end of string

The output buffer must be at least 31 KB long.

Using standard attributes

Learn about automatically generated directory attributes of the optical file system.

Directory entries for files and directories have information that is associated with them called attributes.

Each attribute consists of a name and a value. Some attributes generate automatically when creating the

directory or file. These attributes are called standard attributes. Standard attributes start with the letter Q

for ease of identification. All file systems use standard attributes. Several receive unique interpretation by

the optical file system. LAN-attached optical devices have a different interpretation of standard attributes

than directly-attached optical devices. The following is a basic definition of the standard attributes and

their meaning with respect to optical support.

QALCSIZE attribute

As an output field, QALCSIZE is the number of bytes allocated on optical disk by the file. It will always

be 0 for directories.

When the QALCSIZE attribute is specified on the Open Stream File during a write request, the media is

checked to see if there is enough space available to allocate the amount specified. If there is not enough

space available on the optical volume, message CPF1F61, No free space available on media, is issued.

For more information about using this attribute, see Media Capacity and volume threshold.

QACCDTTM attribute

This attribute is not supported by the optical file system. It is always the same as the file creation date

and time (QCRTDTTM).

QCRTDTTM attribute

This attribute indicates the creation date of a file or directory.

Optical device programming 29

QWRTDTTM attribute

This attribute indicates the last date and time that data was written to an optical file. It does not reflect

the date and time that the file attributes were last written.

QFILATTR attribute

Support of this attribute is only by directly-attached optical support devices. The optical interpretation of

the file flags is as follows:

v Read-only file: i5/OS provides full support of this attribute through the optical file system. When

setting this attribute to on (1), you cannot delete or overwrite the file.

v Hidden file: i5/OS maintains this attribute for the user application to manage, but does not fully

support it by the optical file system. When setting this attribute to ON (1), the optical file system does

not recognize the file as hidden. User applications require no special access to files with this attribute

on.

v System file: i5/OS maintains this attribute for the user application to manage; but does not fully

support it by the optical file system. When setting this attribute to ON (1), the optical file system does

not recognize the file as a system file. User applications require no special access to files with this

attribute on.

v Changed file: i5/OS supports this attribute by the optical file system. It is automatically set on (1)

when a file is created or written to. You can only set it off(0) by using the Change Directory Entry

Attributes (QHFCHGAT) API.

Using special attributes

Read about special attributes unique to the optical file system.

Attributes for files and directories that are not standard and therefore not recognized by HFS are referred

to by HFS as extended attributes. They are usually defined by a business application, but some are

recognized by the optical file system as having special meaning.

OPT.CHGATDTTM attribute

This optical attribute reflects the last date and time that the file attributes were written. It is returned to

the user application as an extended attribute through the Retrieve Directory Entry Attributes

(QHFRTVAT) command.

QOPT.IOMETH attribute

This is a special extended attribute to the optical file system. Provided supported is only by

directly-attached optical support devices; it is ignored by LAN support. The system also ignores this

attribute when the media format is Universal Disk Format.

When an extended attribute of this name is passed by the application as the attribute name field in the

Attribute Information Table (AIT) during an open stream file request, the optical file system knows that a

special method of I/O is being requested. The optical file system retrieves the special method of I/O

from the attribute value field in the AIT.

Currently, there is only one special method of I/O supported by the optical file system: You can request

this method of I/O when the attribute value field for the QOPT.IOMETH attribute contains the value

(EXPNBUFF). The optical software recognizes this special extended attribute as a requested I/O method,

and not as a normal extended attribute. It is not hereafter associated with the file in any way, and does

not appear when attributes for the file are retrieved. All read operations for the process use expanding

30 IBM Systems - iSeries: Programming Optical device programming

buffer I/O until the file is closed. Methodology and restrictions for using expanding buffer I/O are listed

here. In order to determine if expanding buffer I/O should be used, see Expanding buffer I/O through

HFS.

An HFS attribute in an attribute information table consists of several fields. These fields and the values

you specify when opening a file for expanding buffer I/O are summarized in the following table.

 Table 5. Expanding buffer attribute definition

Field Data type (see note) Value for EBIO

Attribute name CHAR(*) QOPT.IOMETH

Attribute value CHAR(*) EXPNBUFF

Length attribute name BIN(4) 0000000B

Length attribute value BIN(4) 00000008

Note:

v CHAR(*) indicates a variable number of bytes of character information.

v BIN(4) indicates 4 bytes of binary information.

v All character fields should be set in uppercase.

In addition to the values for attribute fields, two additional fields are required to build an attribute

information table:

v The number of attributes defined in the table

v The table offset to each attribute, in bytes

The Open Stream File (QHFOPNSF) API requires 10 bytes of open information as input. When you

attempt to open a file for expanding buffer I/O, the open information is subject to the following

restrictions:

v The action to take if a file exists must be to open the file.

v The action to take if a file does not exist must be to return an error.

v The lock mode for the file must be Deny Write or Deny Read/Write (exclusive).

v The access mode for the file must be Read Only.

If there is an expanded buffer I/O attribute in the attribute information table and any of these restrictions

are not observed, an OPT1133 message is issued, indicating which of the fields in the open information

was passed in error.

For information about the format of attributes, the Attribute Information Table, or the Open Stream File

API, see the APIs topic.

Restrictions for expanding buffer I/O

In addition to the restrictions that were detailed when opening a file for expanded buffer I/O, you cannot

use the following APIs for expanding buffer I/O, after a file is opened:

v Write Stream File

v Set Stream File Size

v Lock or Unlock Range in Stream File

Copying file attributes using HFS

Learn how to copy file attributes using the hierarchical file system (HFS).

Optical device programming 31

When you copy files using the hierarchical file system between QOPT and QDLS file systems, the target

file is assigned either default file attributes or the file attributes of the source file. This depends on the

value you specify for the copy attributes (CPYATR) global value on the Change Optical Attributes

(CHGOPTA) command.

When the CPYATR global value is specified as *NO on the CHGOPTA command, default file attributes

are created for files that are copied between the QOPT and QDLS file systems.

When the CPYATR global value is specified as *YES on the CHGOPTA command, file attributes from the

source file are copied to the target file for copies between the QOPT and QDLS file system.

Copying attributes from QDLS to QOPT

In copies or moves from QDLS to QOPT, the following default attributes are assigned to the target file:

v Standard file attributes:

– Creation date and time is set to the current date and time.

– Modification date and time is set to the current date and time.

– Access date and time is set to the current date and time.

– The QFILATTR standard attribute is set to 00000; the file is not read-only, the file is not hidden, the

file is not a system file, the file is not a directory, and the file has not changed since it was last

archived or created.
v No DIA document attributes are copied.

v No user-defined extended attributes are copied.

The file name (QNAME) and file size (QFILSIZE) are maintained.

Copying attributes from QOPT to QDLS

In copies or moves from QOPT to QDLS, the following default attributes are created:

v Standard file attributes:

– Creation date and time is set to the current date and time.

– Modification date and time is set to the current date and time.

– Access date and time is set to the current date and time.

– The QFILATTR standard attribute is set to 00000; the file is not read-only, the file is not hidden, the

file is not a system file, the file is not a directory, and the file has not changed since it was last

archived or created.
v DIA document attributes:

– DIA.CA04C700 (text description) is set to the file name.

– DIA.CA04C701 (profile GCID) is set to code page 697 and character set 500.

– DIA.CA04C706 (file type) is set to 000E (PC file).

– DIA.CA04C720 (library assigned document name) is assigned to represent this file.

– DIA.CA04C708 (last changed date and time) is set to the current date and time.

– DIA.CA04C707 (creation date and time) is set to the current date and time.

– DIA.CA04C710 (NLS information) is set to the language ID and country or region ID of the job.

– DIA.CA04C740 (file date and time) is set to the current date and time.
v No user-defined extended attributes are copied.

The file name (QNAME) and file size (QFILSIZE) are maintained.

32 IBM Systems - iSeries: Programming Optical device programming

Examples: HFS

Use these hierarchical file system examples to help you program your optical file system.

This topic demonstrates how the HFS API can be used with the ILE RPG programming language.

The programming examples demonstrate the following functions:

v Retrieving a path name from an array

v Calling the HFS API to open a stream file

v Calling the HFS API to write a 256-byte buffer passed to the program as a parameter

v Calling the HFS API to close the stream file

For more information about APIs, see Application device programming (APIs).

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.

Getting a path and calling subroutines

This sample gets a path and calls subroutines.

E AR 1 5 36

C *ENTRY PLIST

* 2 PARAMETERS - A DATA BUFFER ID AND AN INDEX TO THE ARRAY

C PARM DATAIN 256

C PARM IDX 10

* MOVE THE ARRAY ELEMENT TO A FIELD CALLED "PATH"

C MOVE AR,IDX PATH

* EXECUTE SUBROUTINES TO OPEN, WRITE AND CLOSE A FILE

C EXSR OPNSF

C RTCD IFEQ 0

C EXSR WRTSF

C EXSR CLOSF

C END

C SETON LR

* TABLE/ARRAY : AR

** /QOPT/MYVOL1/DIRA/FILE

/QOPT/MYVOL1/DIRA/SUBDIRB/FILE

/QOPT/MYVOL1/DIRA/SUBDIRB/C/FILE

/QOPT/MYVOL1/DIRA/SUBDIRB/C/D/FILE

/QOPT/MYVOL1/DIRA/SUBDIRB/C/D/E/FILE

Defining data structures for opening files

This sample defines data structures in the HFS.

* PATH LENGTH PARAMETER

IPATHLN DS

I B 1 40PATHL

* OPEN INFORMATION PARAMETER

IOPNINF DS

I 1 1 EXISTS

I 2 2 NOTTHR

I 3 3 SYNASY

I 4 4 RSV1

I 5 5 SHAREM

I 6 6 ACCESS

I 7 7 OTYPE

I 8 10 RSV3

* ATTRIBUTE LENGTH PARAMETER

IATTRLN DS

I B 1 40ATTRL

* RETURN CODE PARAMETER

Optical device programming 33

IRETCD DS

I B 1 40RCLEN

I B 5 80RTCD

I 9 15 CONDTN

I 16 16 RSV

I 17 272 MSG

* BYTES TO READ/WRITE PARAMETER

IBYTRDW DS B 1 40BYT2RW

* BYTES ACTUALLY READ/WRITTEN PARAMETER

IBYTACT DS B 1 40BYTARW

Opening an optical file

This sample opens an optical file.

* PARAMETER LIST FOR QHFOPNSF CALL

C POPNSF PLIST

C PARM FHDLE 16

C PARM PATH 36

C PARM PATHL

C PARM OPNINF

C PARM ATRTBL 1

C PARM ATTRLN

C PARM ACTION 1

C PARM RETCD

C* OPEN FILE SUBROUTINE

C OPNSF BEGSR

C* FILL IN THE PATH AND ATTRIBUTE LENGTHS

C Z-ADD36 PATHL SET PATH LEN=36

C Z-ADD*ZEROS ATTRL ZERO ATTRIBUTE LENGTH

C* FILL IN THE OPNINF PARAMETER

C MOVE ’0’ EXISTS 1 FAIL IF EXISTS

C MOVE ’1’ NOTTHR 1 CREATE IF NOT THERE

C MOVE ’0’ SYNASY 1 ASYNCHRONOUS

C MOVE *BLANKS RSV1 1

C MOVE ’1’ SHAREM 1 DENY NONE

C MOVE ’2’ ACCESS 1 READ/WRITE

C MOVE ’0’ OTYPE 1 NORMAL

C MOVE *BLANKS RSV3 3

C* CALL THE API TO OPEN THE STREAM FILE

C CALL ’QHFOPNSF’POPNSF 50

C OPNEND ENDSR

Writing a file to an optical disk

This sample writes a file to an optical disk.

* PARAMETER LIST FOR QHFRDSF OR QHFWRTSF CALL

C PRWSF PLIST

C PARM FHDLE 16

C PARM DATAIN

C PARM BYT2RW

C PARM BYTARW

C PARM RETCD

C* CALL API TO WRITE TO THE FILE

C WRTSF BEGSR

C Z-ADD256 BYT2RW SET WRITE LENGTH=256

C CALL ’QHFWRTSF’PRWSF 50

C WRTEND ENDSR

Closing an optical file

This sample closes an optical file.

* PARAMETER LIST FOR QHFCLOSF CALL

C PCLOSF PLIST

C PARM FHDLE 16

34 IBM Systems - iSeries: Programming Optical device programming

C PARM RETCD

C* CALL API TO CLOSE THE FILE

C CLOSF BEGSR

C CALL ’QHFCLOSF’PCLOSF 50

C CLSEND ENDSR

C* END OF SAMPLE RPG CALL TO THE HFS API

Tips: Optical programming

The following techniques are often helpful in designing custom optical programs for your business.

This topic describes how the optical file system manages file data so application programmers can

optimize their applications. Since applications have different requirements, this topic does not suggest the

best way to write an optical application. It does, however, provide explanations that all application

programmers could find useful.

Use this topic to determine the best way to handle optical file management, either through the HFS or

UNIX-type APIs. Use this topic only for applications to directly attached optical support.

Note: Concepts in this topic do not apply to optical LAN support.

Media capacity and volume threshold

Read about indicating a volume threshold for your applications.

One thing to consider when writing to optical media is the possibility of reaching the media capacity or

threshold. The optical file system provides a logical threshold capability to help applications protect

themselves from reaching the absolute volume capacity. The logical threshold is defined when the volume

initializes, and is unique for each volume. You can change this threshold by using the Change Optical

Volume command.

Note: The logical volume threshold is only applicable for the high performance optical file system

(HPOFS) media format. For UDF media format, the logical volume threshold is always 100% and

cannot be changed.

You should devise a strategy to deal with the situation when the media becomes full. This is especially

true when writing to WORM media. You might consider the following questions:

v How should I use the volume threshold?

v What should I do when the volume is full?

v How can I prepare for a volume-full condition?

The logical volume threshold is only applicable for high performance optical file system (HPOFS) media

format. For UDF media format, the logical volume threshold is always 100% and cannot be changed.

The volume threshold is provided to allow applications to prepare for an actual volume-full condition.

When WORM media becomes full, there can be no further write operations. Depending on the

requirements of the application, the threshold can be used in various ways to prepare for the media

becoming physically full.

For example, an application might write groups of spooled files to optical disk. After each group is

written, an additional file might be written that contains an index to the spooled files just written.

Without the index, the spooled files could be useless. Unless the application can manage the media

capacity, the volume might run out of space before the index file can be written. One way to avoid

running out of space is to set the volume threshold to 99%. When the message No space available is

issued, the application can then increase the threshold to 100% and write any necessary additional files.

Optical device programming 35

Managing media capacity on a per-file basis

Learn how to manage media capacity on a per-file basis.

An application might need to manage the media capacity on a per-file basis. Following are a few

methods you can use to decide if a file will fit on the media:

1. Handle error on a close operation

Assume an optical volume is initialized to a 95% threshold and an application writes files until the

volume threshold is reached. When the threshold is reached, the application will receive message

CPF1F61, No free space available on media. At this point, the volume threshold can be increased to

97% (or anything else up to 100%) by using the CHGOPTVOL command. You can then attempt to

close the file.

2. Specify QALCSIZE on the Open Stream File HFS API

Another method to determine if a file will fit on a volume is by specifying an allocation size

(QALCSIZE) on an open stream file. On an open stream file, the system can pass a value in attribute

QALCSIZE. This attribute is valid when the open operation is for create or replace; otherwise, it is

ignored. Specifying a value for QALCSIZE results in comparing the specified value against the space

available on the volume. If the space available is less than QALCSIZE, then the system issues message

CPF1F61. The space available must exceed the QALCSIZE in order for the open operation to occur.

Only on the first open instance of a file honors this attribute. If specified by more than one opening of

a file, the system ignores the additional attributes.

Note: This does not actually allocate space on the optical volume at the time of the open operation. It

checks the volume to see if the number of requested bytes are available.

There are drawbacks to using this method:

a. You need to know the size of the file you are creating at the time you make the open request.

b. If multiple jobs are writing to the same media, there is no guarantee that by the time the data is

written, the space will still be available.

If the size of the file is known prior to the time the open request is made, and there will not be other

jobs writing to that volume during the time your file is open, this is an excellent method to check

media capacity before creating a file.

3. Retrieve space available on a volume

Another method is to have the application retrieve the space available on the volume. You can do this

by using the Display Optical (DSPOPT) command through output file support. The output file can

then be read to retrieve the number of bytes assumed to be available on the media.

Expanding buffer I/O through HFS

Read about tailoring read requests for performance and to expand buffer I/O in HFS.

An alternative method of opening a stream file through HFS can improve performance for applications

that typically read portions, but not all, of the data in large optical files. This alternate method of

input/output is referred to as expanding buffer I/O. Expanding buffer I/O is available only to HFS API

applications when accessing High Performance Optical File System (HPOFS) or ISO 9660 formatted

media. This attribute is ignored when the media format is UDF.

Note: Using the HFS APIs, optical file data is buffered into a virtual optical file in i5/OS main storage. If

expanding buffer I/O is not selected as an option, the size of this buffer is equal to the size of the

actual optical file. For example, a 100 MB file on optical media has a 100 MB buffer when the file is

opened through the HFS API Open Stream File. The performance cost for overhead operations

involving the optical buffer is proportional to the buffer size. The time it would take to read one

byte of a 100 MB file is substantially greater than reading one byte of a 50 KB file.

36 IBM Systems - iSeries: Programming Optical device programming

When an optical file is opened for expanding buffer I/O, the size of the buffer begins at zero and

expands as data is read into the buffer as requested by the application. The minimum amount of the size

expansion is 256 KB. The buffer expands only if the requested data is contained within a logical 256 KB

page that is not yet contained in the buffer. For these reasons, the amount of time it would take to read

one byte of a 100 MB file opened for expanding buffer I/O should be roughly identical to the time to

read one byte of a 50 KB file opened in the same manner.

Situations in which expanding buffer I/O is useful

Expanding buffer I/O should be considered as an option for improving the performance of reads if any

of the following conditions are met:

v The typical size of an optical file to be read is greater than 256 KB.

v The amount of data read from the optical file between the open and close stream file is a fraction of

the total file data. The exact fraction would be impossible to specify, but the performance

improvements that are achieved will be greater the smaller the fraction. For example, an application

that used expanding buffer I/O to read 25 KB of a 50 MB file would experience much greater

performance improvements than an application that read 45 MB of the same file. An application that

reads the entire 50 MB example file 40 KB at a time through multiple reads probably would not

experience any performance improvement using expanding buffer I/O.

v The application will not issue the Set Stream File Size, Lock-Unlock Byte Range, or Write Stream file

APIs while the file is open for expanding buffer I/O.

For specific details on how to implement expanding buffer I/O, see “Using special attributes” on page 30.

Using forced buffered data APIs

Read about using the QHFFRCSF or fscync() APIs to write optical file data to nonvolatile media while

writing to optical media.

When creating or updating optical files, the data is not guaranteed to exist on optical disk until the file is

successfully closed. Optical file data can, however, be synchronously written to nonvolatile storage using

either the HFS API Force Buffered Data (QHFFRCSF) or the fsync() UNIX-type API. The type of

nonvolatile storage is different depending on the optical media format.

For the High Performance Optical File System (HPOFS), all file data will be written to the internal disk

storage. The data can then be recovered through a held optical file if a power loss or other unexpected

error occurred which prevented the file from being closed.

For Universal Disk Format (UDF), all file data will be written to the optical disk when a force operation

is issued. No recovery is required if a power loss or other unexpected error occurs, which prevents the

file from being closed. However, if write operations are issued after the data is forced and the close

operation is never successful, the file data is unpredictable. Because the write operations that follow the

force operation are asynchronous, the data might not be written to the optical disc.

Held optical files

Read about how to manage virtual files that are held due to an error while writing to optical media.

Held optical files are virtual files that were never successfully written to optical media. A virtual file

becomes held if an error occurs during the close operation of a file on a non-UDF formatted volume. You

can manage these virtual files by using application interfaces and optical utilities. No creation of held

files occurs for files that fail to archive on UDF formatted volumes.

Assume an optical volume is initialized to a 95% threshold and an application writes files until the

volume threshold is reached. When the threshold is reached, the application will receive message

CPF1F61, No free space available on media. In this example, the absolute volume capacity is reached

Optical device programming 37

and the file is too large to fit on the volume. Because increasing the volume threshold will not help,

another solution is needed. When the close request fails, the virtual file becomes held. Using the Work

With Held Optical Files command, this virtual file can be saved to another volume. If you want, the file

can be saved under a different name. The save request can also be performed using a control file system

function.

Path names

This topic describes path names for optical volumes.

The term path refers to a file-system name, volume name, directory name, and file name.

Path names for volumes in directly-attached devices

In the path name for volumes in directly attached devices, the forward slash (/) is used as a separator

character. The path name must begin with a forward slash and contain no more than 294 characters. See

the following for an example of the format for a path name on a directly-attached device:

/QOPT/VOL_NAME/DIRECTORY_NAME/SUB_DIR1/.../SUB_DIRn/FILE_NAME

QOPT refers to the optical file system. You must use it to qualify the optical file system when issuing calls

to optical support through the HFS API or the Unix-type APIs. The portion of the path following the file

system name cannot contain more than 289 characters. For the rules for using path names, see the

following:

v A path name can consist of any EBCDIC characters, except the characters that are listed below:

– X’00’ through X’3F’

– X’FF’

– The quotation mark (�)

– The asterisk (*)

– The less than (<) and greater than (>) signs

– The question mark (?)

– The hyphen (-)

– The back slash (\)

When accessing UDF formatted volumes through the integrated file system APIs, the only characters

not valid are X’00’ through X’3F’, X’FF’, and back slash.

v The volume identifier can be a maximum of 32 characters for HPOFS media format, and a maximum

of 30 characters for UDF media format. The identifier must contain only alphabetic characters (A

through Z), numeric characters (0 through 9), a hyphen (-), an underscore(_), or a period (.). The first

character must be alphabetic or numeric, and the identifier cannot contain blanks.

v You can include one or more directories in the path name, but it is not required. The total number of

characters in all of the subdirectories together cannot exceed 256 characters.

v The file name is the last element in the path. The directory length in the path limits the file name

length. The directory name and file name combined cannot exceed 256 characters. The preceding

forward slash of the directory name is considered part of this 256 characters.

Path names for volumes in LAN-attached devices

For a path name on an optical volume in a LAN-attached optical device, the forward slash (/) is used as

a separator character. The path name must begin with a forward slash and contain no more than 261

characters. See the following for an example of the format for a path name on an optical volume in a

LAN-attached optical device:

/QOPT/VOL_NAME/DIRECTORY_NAME/SUB_DIR1/.../SUB_DIRn/FILE_NAME

38 IBM Systems - iSeries: Programming Optical device programming

QOPT refers to the optical file system, and must be used to qualify the optical file system when issuing

calls to optical support through the HFS or integrated file system APIs. The portion of the path following

the file system name cannot contain more than 256 characters. For the rules for using path names on

LAN-attached devices, see the following:

v See the IBM® 3995 LAN Optical Library Dataserver book for the allowed characters for path names.

v The volume name is required and can contain a maximum of 32 characters.

v One or more directories can be included in the path name, but it is not required. The total number of

characters in all of the subdirectories together cannot exceed 254 characters.

v The file name is the last element in the path. The file name length is limited by the volume and

directory length in the path. The volume name, directory name, and file name combined cannot exceed

256 characters. The preceding forward slashes of the volume and directory name are considered part of

the 256 characters.

Examples: Moving spooled files to and from optical storage

This topic includes some basic optical programming examples using i5/OS control language (CL)

commands.

This topic includes examples of four CL commands that can be used to move spooled files and database

members to and from optical storage:

v Copy stream file

v Copy database to optical

v Copy spooled file to optical

v Copy optical to database

Copy Stream File: Command source

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.
/***/

/* */

/* COMMAND NAME: CPYSTRF */

/* */

/* COMMAND TITLE: Copy stream file */

/* */

/* COMMAND DESCRIPTION: Copy stream file between two file systems */

/* */

/***/

 CMD PROMPT(’Copy Stream File’)

 PARM KWD(SRCFILE) TYPE(*CHAR) LEN(300) MIN(1) +

 MAX(1) PROMPT(’Source file name’) +

 VARY(*YES)

 PARM KWD(TGTFILE) TYPE(*CHAR) LEN(300) MIN(1) +

 MAX(1) PROMPT(’Target file name’) +

 VARY(*YES)

 PARM KWD(RPLFILE)TYPE(*CHAR) LEN(6) DFT(*NO) +

 SPCVAL((*NO ’0 ’) (*YES ’1 ’)) +

 PROMPT(’Replace existing file’)

Copy Stream File: CL program source

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.

This CL sample can be used to copy stream files between file systems.

Optical device programming 39

http://www-1.ibm.com/support/docview.wss?uid=ssg1S7000193

/**/

/* */

/* PROGRAM: CPYSTRF (Copy stream file) */

/* */

/* */

/* DESCRIPTION: */

/* This is the CL program for sample CL command CPYSTRF. This */

/* program can be used to copy stream files between file */

/* systems. The actual copy is done by making a call to */

/* the HFS API program QHFCPYSF (Copy stream file). */

/* */

/* */

/* INPUT PARAMETERS: */

/* - Complete source path */

/* Example: /filesystem/directory1/directoryx/file */

/* /QDLS/DIRA/DIRB/FILE01 */

/* - or - */

/* /filesystem/volume/directory1/directoryx/file */

/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */

/* - Complete target path */

/* Note: Except for the file the path must already exist. */

/* Example: /filesystem/directory1/directoryx/file */

/* /QDLS/DIRA/DIRB/FILE01 */

/* - or - */

/* /filesystem/volume/directory1/directoryx/file */

/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */

/* - Replace existing target file */

/* *YES - replace existing file */

/* *NO - do not replace existing file */

/* */

/* */

/* LOGIC: */

/* - Separate source file length and value */

/* - Ensure source path is converted to upper case */

/* - Separate target file length and value */

/* - Ensure target path is converted to upper case */

/* - Call copy stream file */

/* */

/* */

/* EXAMPLE: */

/* The example will copy document THISWEEK from folder BILLS */

/* to optical volume YEAR1993. The document will be put into */

/* directory /BILLS/DEC as file WEEK50. */

/* Folders are stored in file system DLS (document library services)*/

/* */

/* CPYSTRF SRCFILE(’/QDLS/BILLS/THISWEEK’) */

/* TGTFILE(’/QOPT/YEAR1993/BILLS/DEC/WEEK50’) */

/* RPLFILE(*NO) */

/* */

/**/

 PGM PARM(&SRCFILE &TGFILE &CPYINFO);

 /**/

 /* Input parameters */

 /**/

 DCL VAR(&SRCFILE); TYPE(*CHAR) LEN(300)

 DCL VAR(&TGTFILE); TYPE(*CHAR) LEN(300)

 DCL VAR(&CPYINFO); TYPE(*CHAR) LEN(6)

 /**/

 /* Program variables */

 /**/

 DCL VAR(&SRCLEN); TYPE(*CHAR) LEN(4) +

 VALUE(X’00000000’)

 DCL VAR(&TGTLEN); TYPE(*CHAR) LEN(4) +

 VALUE(X’00000000’)

 DCL VAR(&ERRCODE); TYPE(*CHAR) LEN(4) +

40 IBM Systems - iSeries: Programming Optical device programming

VALUE(X’00000000’)

 DCL VAR(&COUNT); TYPE(*DEC) LEN(5 0)

 DCL VAR(&TBL); TYPE(*CHAR) LEN(10) +

 VALUE(’QSYSTRNTBL’)

 DCL VAR(&LIB); TYPE(*CHAR) LEN(10) +

 VALUE(’QSYS ’)

 /**/

 /* Monitor for any messages sent to this program */

 /**/

 MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(DONE))

 MONMSG MSGID(OPT0000) EXEC(GOTO CMDLBL(DONE))

 /**/

 /* The HFS API needs to be passed the file and the file length. */

 /* By coding the VARY(*YES) parameter on the command definition */

 /* for the source and target file we are passed the length of */

 /* entered value as a 2 byte binary field which precedes the */

 /* actual value entered. */

 /**/

 /**/

 /* Separate source file length and file value. Ensure source */

 /* file is upper case. */

 /**/

 CHGVAR VAR(%SST(&SRCLEN 3 2)) VALUE(%SST(&SRCFILE 1 2))

 CHGVAR VAR(%SST(&SRCFILE 1 300)) VALUE(%SST(&SRCFILE 3 298))

 CHGVAR VAR(&COUNT); VALUE(%BIN(&SRCLEN 3 2))

 CALL QDCXLATE (&COUNT +

 &SRCFILE +

 &TBL +

 &LIB)

 /**/

 /* Separate target file length and file value. Ensure target */

 /* file is upper case. */

 /**/

 CHGVAR VAR(%SST(&TGTLEN 3 2)) VALUE(%SST(&TGTFILE 1 2))

 CHGVAR VAR(%SST(&TGTFILE 1 300)) VALUE(%SST(&TGTFILE 3 298))

 CHGVAR VAR(&COUNT); VALUE(%BIN(&TGTLEN 3 2))

 CALL QDCXLATE (&COUNT +

 &TGTFILE +

 &TBL +

 &LIB)

 /**/

 /* Call the copy stream file HFS API to copy the source file to */

 /* the target file. */

 /**/

 CALL QHFCPYSF (&SRCFILE +

 &SRCLEN +

 &CPYINFO +

 &TGTFILE +

 &TGTLEN +

 &ERRCODE)

 SNDPGMMSG MSG(’CPYSTRF completed successfully’)

 RETURN

DONE:

 SNDPGMMSG MSGID(OPT0125) MSGF(QSYS/QCPFMSG) +

 MSGDTA(CPYSTRF) MSGTYPE(*ESCAPE)

 RETURN

ENDPGM

Optical device programming 41

Copy database file to optical file: command source

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.
/**/

/* */

/* COMMAND NAME: CPYDBOPT */

/* */

/* COMMAND TITLE: Copy database to optical */

/* */

/* DESCRIPTION: Copy database file to an optical file */

/* */

/**/

CPYDBOPT: CMD PROMPT(’Copy DB to Optical’)

 PARM KWD(FRMFILE) TYPE(QUAL1) MIN(1) +

 PROMPT(’From file’)

 PARM KWD(FRMMBR) TYPE(*NAME) LEN(10) +

 SPCVAL((*FIRST)) EXPR(*YES) MIN(1) +

 PROMPT(’From member’)

 PARM KWD(TGTFILE) TYPE(*CHAR) LEN(300) +

 MIN(1) EXPR(*YES) +

 PROMPT(’Target file’)

QUAL1: QUAL TYPE(*NAME) LEN(10)

 QUAL TYPE(*NAME) LEN(10) DFT(*LIBL) +

 SPCVAL((*LIBL) (*CURLIB)) +

 PROMPT(’Library’)

Copy database file to optical file: CL program source

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.

This CL sample can be used to copy a member from a database file to optical storage.

/**/

/* */

/* PROGRAM: CPYDBOPT (Copy database to Optical) */

/* */

/* */

/* DESCRIPTION: */

/* This is the CL program for sample CL command CPYDBOPT. This */

/* program can be used to copy a member from a database file to */

/* optical storage. */

/* */

/* */

/* DEPENDENCIES: */

/* - The sample command and program CPYSTRF exists. */

/* - There is an existing folder named OPTICAL.FLR */

/* This folder is used for temporary storage when copying */

/* from database to optical. It is assumed that this folderis */

/* empty and that the user will delete anything which gets */

/* copied into it. */

/* */

/* */

/* INPUT PARAMETERS: */

/* -From file */

/* - From member */

/* - Complete target path */

/* Assumption: - Except for the file the complete path currently */

/* exists. */

/* - File does not currently exist. */

/* Example: /filesystem/volume/directory1/directoryx/file */

42 IBM Systems - iSeries: Programming Optical device programming

/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */

/* */

/* */

/* LOGIC: */

/* - Separate file and library */

/* - Copy file to folder */

/* - Build source file */

/* - Copy file from Document Library Service (DLS) to OPT */

/* */

/* */

/* EXAMPLE: */

/* The example will copy member MYMEMBER in file MYFILE in library */

/* MYLIB to optical storage. It will be stored as file */

/* MYFILE.MYMEMBER in directory /MYLIB on volume VOLN01. */

/* */

/* CPYDBOPT FRMFILE(MYLIB/MYFILE) */

/* FRMMBR(MYMEMBER) */

/* TGTFILE(’/QOPT/VOLN01/MYLIB/MYFILE.MYMEMBER’) */

/* */

/**/

 PGM PARM(&FROMFILE &FROMMBR &TGTFILE);

 /**/

 /* Input parameters */

 /**/

 DCL VAR(&FROMFILE); TYPE(*CHAR) LEN(20)

 DCL VAR(&FROMMBAR); TYPE(*CHAR) LEN(10)

 DCL VAR(&TGTFILE); TYPE(*CHAR) LEN(300)

 /**/

 /* Program variables */

 /**/

 DCL VAR(&FILE); TYPE(*CHAR) LEN(10)

 DCL VAR(&LIB); TYPE(*CHAR) LEN(10)

 DCL VAR(&SRCFILE); TYPE(*CHAR) LEN(28) +

 VALUE(’/QDLS/OPTICAL.FLR/xxxxxxxxxx’)

 /**/

 /* Monitor for all messages sent to this program */

 /**/

 MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(DONE))

 MONMSG MSGID(IWS0000) EXEC(GOTO CMDLBL(DONE))

 MONMSG MSGID(OPT0000) EXEC(GOTO CMDLBL(DONE))

 /**/

 /* Separate file and library names then copy the DB file to a */

 /* PC folder. */

 /**/

 CHGVAR VAR(&FILE); VALUE(%SST(&FROMFILE 1 10))

 CHGVAR VAR(&LIB); VALUE(%SST(&FROMFILE 11 10))

 CPYTOPCD FROMFILE(&LIB/&FILE); +

 TOFLR(OPTICAL.FLR) +

 FROMMBR(&FROMMBR); +

 TRNTBL(*NONE)

 /**/

 /* Complete the source file path name with the member and copy */

 /* the stream file from DLS to optical */

 /**/

 CHGVAR VAR(%SST(&SRCFILE 19 10)) VALUE(&FROMMBR);

 CPYSTRF SRCFILE(&SRCFILE); +

 TGTFILE(&TGTFILE);

 SNDPGMMSG MSG(’CPYDBOPT completed successfully’)

 RETURN

Optical device programming 43

DONE:

 SNDPGMMSG MSGID(OPT0125) MSGF(QSYS/QCPFMSG) +

 MSGDTA(CPYDBOPT) MSGTYPE(*ESCAPE)

 RETURN

ENDPGM

Copy spooled file to optical: command source

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.
/**/

/* */

/* COMMAND NAME: CPYSPLFOPT */

/* */

/* COMMAND TITLE: Copy spooled file to optical */

/* */

/* DESCRIPTION: Copy spooled file to an optical file */

/* */

/**/

CPYSPLFO: CMD PROMPT(’Copy Spooled File to Optical’)

 PARM KWD(FRMFILE) TYPE(*NAME) LEN(10) +

 MIN(1) +

 PROMPT(’From file’)

 PARM KWD(TGTFILE) TYPE(*CHAR) LEN(300) +

 MIN(1) EXPR(*YES) +

 PROMPT(’Target file’)

 PARM KWD(JOB) TYPE(Q2) +

 DFT(*) SNGVAL(*) +

 MIN(0) MAX(1) +

 PROMPT(’Jobname’)

 PARM KWD(SPLNBR) TYPE(*CHAR) LEN(5) +

 SPCVAL((*ONLY) (*LAST)) DFT(*ONLY) +

 PROMPT(’Spool number’)

Q2: QUAL TYPE(*NAME) LEN(10) +

 MIN(1) +

 EXPR(*YES)

 QUAL TYPE(*NAME) LEN(10) +

 EXPR(*YES) +

 PROMPT(’User’)

 QUAL TYPE(*CHAR) LEN(6) +

 RANGE(000000 999999) +

 EXPR(*YES) FULL(*YES) +

 PROMPT(’Number’)

Copy spooled file to optical: CL program source

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.

This CL sample can be used to copy a spooled file to optical storage.

/***/

/* */

/* PROGRAM: CPYSPLFOPT (Copy Spooled File to Optical) */

/* */

/* */

44 IBM Systems - iSeries: Programming Optical device programming

/* DESCRIPTION: */

/* This is the CL program for sample CL command CPYSPLFOPT. This */

/* program can be used to copy a spooled file to optical storage. */

/* */

/* */

/* DEPENDENCIES: */

/* - The sample command and program CPYDBOPT exists. */

/* - The sample command and program CPYSTRF exists. */

/* - There is an existing folder named OPTICAL.FLR */

/* This folder is used for temporary storage when copying */

/* from spooled files to optical. It is assumed that this folder */

/* is empty and that the user will delete anything which gets */

/* copied into it. */

/* - This CL program uses the CL command CPYSPLF to copy the */

/* spooled files to a physical file before copying them to */

/* optical. When you use the CPYSPLF command to copy */

/* a spooled file to a physical file, certain information can */

/* be lost or changed. Before using this command please */

/* refer to the CL Reference Book for the limitations and */

/* restrictions of the CPYSPLF command. */

/* - There is an existing file named LISTINGS in library QUSRSYS. */

/* It is assumed that this file contains no existing members */

/* and that any members that are created will be deleted by the */

/* user. The record length of the file is 133. */

/* */

/* */

/* INPUT PARAMETERS: */

/* - From file */

/* Specify the name of the spooled file to be copied. */

/* - Target file */

/* Assumption: Except for the file the path must already exist. */

/* Example: /filesystem/volume/directory1/directoryx/file */

/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */

/* - Job */

/* Specify the name of the job that created the spooled file */

/* which is to be copied. The possible values are: */

/* The job that issued this command is the job that */

/* created the spooled file. */

/* - or - */

/* job-name Specify the name of the job that created the */

/* spooled file. */

/* user-name Specify the user name that identifies the user */

/* profile under which the job was run. */

/* job-number Specify the system assigned job number. */

/* - Spool number */

/* If there are multiple files for a job specify the files */

/* spool number. */

/* */

/* */

/* LOGIC: */

/* - Separate job into its three parts: job name, user, job number */

/* - Copy spooled files to database */

/* - Copy database to optical */

/* */

/* */

/* EXAMPLE: */

/* The example will copy spooled file QSYSPRT spool number 2 which */

/* the current process has printed to optical storage. */

/* It will be stored on volume YEAR92 in directory */

/* /DEC/WEEK01/MONDAY as file INVOICES */

/* */

/* CPYSPLFO SPLFILE(QSYSPRT) */

/* TGTFILE(’/QOPT/YEAR92/DEC/WEEK01/MONDAY/INVOICES’) */

/* SPLNBR(2) */

/* */

/***/

 PGM PARM(&FROMFILE &TGTFILE &JOB &SPLNBR);

Optical device programming 45

/**/

 /* Input parameters */

 /**/

 DCL VAR(&FROMFILE); TYPE(*CHAR) LEN(10)

 DCL VAR(&TGTFILE); TYPE(*CHAR) LEN(300)

 DCL VAR(&JOB); TYPE(*CHAR) LEN(26)

 DCL VAR(&SPLNBR); TYPE(*CHAR) LEN(5)

 /**/

 /* Program variables */

 /**/

 DCL VAR(&JNAME); TYPE(*CHAR) LEN(10)

 DCL VAR(&JUSER); TYPE(*CHAR) LEN(10)

 DCL VAR(&JNUM); TYPE(*CHAR) LEN(6)

 /**/

 /* Monitor for all messages that can be signalled */

 /**/

 MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(DONE))

 MONMSG MSGID(OPT0000) EXEC(GOTO CMDLBL(DONE))

 /**/

 /* Separate each part of the job name and call the copy spool */

 /* file command using the current job or the specified name. */

 /**/

 CHGVAR VAR(&JNAME); VALUE(%SST(&JOB 1 10))

 CHGVAR VAR(&JUSER); VALUE(%SST(&JOB 11 10))

 CHGVAR VAR(&JNUM); VALUE(%SST(&JOB 21 6))

 IF COND(&JNAME *EQ ’*’) THEN(DO)

 CPYSPLF FILE(&FROMFILE); +

 TOFILE(QUSRSYS/LISTINGS) +

 TOMBR(&FROMFILE); +

 SPLNBR(&SPLNBR); +

 CTLCHAR(*FCFC)

 ENDDO

 ELSE DO

 CPYSPLF FILE(&FROMFILE); +

 TOFILE(QUSRSYS/LISTINGS) +

 TOMBR(&FROMFILE); +

 JOB(&JNUM/&JUSER/&JNAME); +

 SPLNBR(&SPLNBR); +

 CTLCHAR(*FCFC)

 ENDDO

 /**/

 /* Copy the database file to optical storage */

 /**/

 CPYDBOPT FRMFILE(QUSRSYS/LISTINGS) +

 FRMMBR(&FROMFILE); +

 TGTFILE(&TGTFILE);

 SNDPGMMSG MSG(’CPYSPLFOPT completed successfully’)

 RETURN

DONE:

 SNDPGMMSG MSGID(OPT0125) MSGF(QSYS/QCPFMSG) +

 MSGDTA(CPYSPLFOPT) MSGTYPE(*ESCAPE)

 RETURN

ENDPGM

46 IBM Systems - iSeries: Programming Optical device programming

Copy optical to database: command source

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.
/**/

/* */

/* COMMAND NAME: CPYOPTDB */

/* */

/* COMMAND TITLE: Copy optical to database */

/* */

/* DESCRIPTION: Copy optical file to database file */

/* */

/**/

CPYOPTDB: CMD PROMPT(’Copy Optical to DB ’)

 PARM KWD(SRCFILE) TYPE(*CHAR) LEN(300) +

 MIN(1) EXPR(*YES) +

 PROMPT(’Source file’)

 PARM KWD(TOFILE) TYPE(QUAL1) MIN(1) +

 PROMPT(’To file’)

 PARM KWD(TOMBR) TYPE(*NAME) LEN(10) +

 SPCVAL((*FIRST)) EXPR(*YES) MIN(1) +

 PROMPT(’To member’)

QUAL1: QUAL TYPE(*NAME) LEN(10)

 QUAL TYPE(*NAME) LEN(10) DFT(*LIBL) +

 SPCVAL((*LIBL) (*CURLIB)) +

 PROMPT(’Library’)

Copy optical to database: CL program source

Note: By using the following code examples, you agree to the terms of the “Code license and disclaimer

information” on page 49.

This CL sample can be used to copy a file from an optical volume to a member of an existing file on a

database.

/**/

/* */

/* PROGRAM: CPYOPTDB (Copy Optical to Database) */

/* */

/* */

/* DESCRIPTION: */

/* This is the CL program for sample CL command CPYOPTDB. This */

/* program can be used to copy a file which is on optical */

/* storage to a member of an existing file. */

/* */

/* */

/* DEPENDENCIES: */

/* - The sample command and program CPYSTRF exist. */

/* - There is an existing folder named OPTICAL.FLR */

/* This folder is used for temporary storage when copying */

/* from optical to database. It is assumed that this folder is */

/* empty and that the user will delete anything which gets */

/* copied into it. */

/* */

/* */

/* INPUT PARAMETERS: */

/* - Complete source path */

/* Example: /filesystem/volume/directory1/directoryx/file */

/* /QOPT/VOLN01/DIRA/DIRB/FILE01 */

/* - To file */

Optical device programming 47

/* Assumptions: */

/* - Target library already exists. */

/* - Target file already exists and has the same attributes */

/* as that which contained the original file. */

/* - To member */

/* */

/* */

/* LOGIC: */

/* - Build target file */

/* - Copy file from OPT to Document Library Services (DLS) */

/* - Separate file and library */

/* - Copy from folder to database file */

/* */

/* */

/* EXAMPLE: */

/* The example will copy file invoices which is in directory */

/* DEC on volume YEAR1992. INVOICES was originally a spooled file */

/* which had a record length of 133. It will be placed in file */

/* LISTINGS which is in library QUSRSYS as member INVOCDEC92. */

/* */

/* CPYDBOPT TGTFILE(’/QOPT/YEAR1992/DEC/INVOICES’) */

/* TOFILE(QUSRSYS/LISTINGS) */

/* TOMBR(INVOCDEC92) */

/* */

/**/

 PGM PARM(&SRCFILE &TOFILE &TOMBR);

 /***/

 /* Input parameters */

 /***/

 DCL VAR(&SRCFILE); TYPE(*CHAR) LEN(300)

 DCL VAR(&TOFILE); TYPE(*CHAR) LEN(20)

 DCL VAR(&TOMBR); TYPE(*CHAR) LEN(10)

 /***/

 /* Program variables */

 /***/

 DCL VAR(&FILE); TYPE(*CHAR) LEN(10)

 DCL VAR(&LIB); TYPE(*CHAR) LEN(10)

 DCL VAR(&TGTFILE); TYPE(*CHAR) LEN(28) +

 VALUE(’/QDLS/OPTICAL.FLR/xxxxxxxxxx’)

 /***/

 /* Monitor for all messages signalled */

 /***/

 MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(DONE))

 MONMSG MSGID(IWS0000) EXEC(GOTO CMDLBL(DONE))

 MONMSG MSGID(OPT0000) EXEC(GOTO CMDLBL(DONE))

 /***/

 /* Build the target file name and copy the stream file from */

 /* optical to DLS */

 /***/

 CHGVAR VAR(%SST(&TGTFILE 19 10)) VALUE(&TOMBR);

 CPYSTRF SRCFILE(&SRCFILE); +

 TGTFILE(&TGTFILE);

 /***/

 /* Separate the file and library names. Copy the folder to DB. */

 /***/

 CHGVAR VAR(&FILE); VALUE(%SST(&TOFILE 1 10))

 CHGVAR VAR(&LIB); VALUE(%SST(&TOFILE 11 10))

 CPYFRMPCD FROMFLR(OPTICAL.FLR) +

 TOFILE(&LIB/&FILE); +

 FROMDOC(&TOMBR); +

48 IBM Systems - iSeries: Programming Optical device programming

TOMBR(&TOMBR); +

 TRNTBL(*NONE)

 SNDPGMMSG MSG(’CPYOPTDB completed successfully’)

 RETURN

DONE:

 SNDPGMMSG MSGID(OPT0125) MSGF(QSYS/QCPFMSG) +

 MSGDTA(CPYOPTDB) MSGTYPE(*ESCAPE)

 RETURN

ENDPGM

Related information

Read these related topics to place optical device programming in context.

Listed below are the related Web sites and Information Center topics for optical device programmers.

Web sites

v Optical storage

iSeries Optical solutions Web site.

v Optical storage applications

iSeries Optical storage applications Web site.

Other information

v Integrated file system

v Optical storage

v APIs

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

Optical device programming 49

|
|
|
|
|

|
|

|

|
|

|

|
|
|

http://www-1.ibm.com/servers/eserver/iseries/optical/overview/netoverview99/optnetoverviewc.htm
http://www-1.ibm.com/servers/eserver/iseries/optical/applications/applications.htm

50 IBM Systems - iSeries: Programming Optical device programming

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2006 51

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

52 IBM Systems - iSeries: Programming Optical device programming

Programming Interface Information

This Optical device programming topic collection documents intended Programming Interfaces that allow

the customer to write programs to obtain the services of i5/OS.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 i5/OS

 IBM

 iSeries

 xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 53

|
|
|
|

54 IBM Systems - iSeries: Programming Optical device programming

����

Printed in USA

	Contents
	Optical device programming
	What's new for V5R4
	Printable PDF
	Optical device programming concepts
	Integrated file system
	Hierarchical file system (HFS)
	Volume, directory, and file considerations

	Integrated file system programming
	Integrated file system APIs
	Integrated file system generic commands
	Examples: Integrated file system

	Hierarchical file system (HFS) programming
	Hierarchical file system APIs
	Control file system functions
	Using standard attributes
	Using special attributes
	Copying file attributes using HFS
	Examples: HFS

	Tips: Optical programming
	Media capacity and volume threshold
	Managing media capacity on a per-file basis
	Expanding buffer I/O through HFS
	Using forced buffered data APIs
	Held optical files
	Path names
	Examples: Moving spooled files to and from optical storage

	Related information
	Code license and disclaimer information

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

