

AS/400 Advanced Series IBM

APPC Programming
Version 4

 SC41-5443-00

AS/400 Advanced Series IBM

APPC Programming
Version 4

 SC41-5443-00

 Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First Edition (August 1997)

This edition applies to the licensed program IBM Operating System/400 (Program 5769-SS1), Version 4 Release 1 Modification 0, and to all
subsequent releases and modifications until otherwise indicated in new editions.

Make sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto Rico, or
Guam, you can order publications through the IBM Software Manufacturing Solutions at 1-800-879-2755. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication. You can also mail your com-
ments to the following address:

IBM Corporation
Attention Department 542
IDCLERK
3605 Highway 52 N
Rochester, MN 55901-7829 USA

or you can fax your comments to:

United States and Canada: 1-800-937-3430
Other countries: 1-507-253-5192

If you have access to the Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth
in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Trademarks . vii

About APPC Programming (SC41-5443-00) ix
Who Should Read This Book ix
Prerequisite and Related Information ix
Information Available on the World Wide Web ix

Chapter 1. Introduction to AS/400 APPC Support . 1-1
Support Provided by APPC 1-1
Relationship between APPC and APPN Support . . . 1-1
Relationship between APPC and AnyNet/400 Support 1-1
User-Written Applications 1-2
IBM-Supplied Applications 1-2
Configuration Requirements 1-3
Communications Lines Supported 1-4

Chapter 2. Configuring APPC 2-1
Defining the APPC Configuration 2-1

Configuring for Sockets 2-1
Configuring for APPC Over TCP/IP Support 2-1
Configuring an ISDN Network 2-1
Configuring for Frame-Relay 2-2
Line Description 2-2
Controller Description 2-2
Device Description 2-3
Mode Description 2-3
Deleting APPC Configuration Descriptions 2-4

Configuration for an APPC Network without APPN
Support . 2-4

Chapter 3. APPC Concepts 3-1
APPC Sessions and Conversations 3-1

Sessions . 3-1
Conversations . 3-1

Using the Location Parameters 3-3
Specifying Configurations with APPN(*NO) 3-4
Specifying Configurations with APPN(*YES) 3-4

APPC Unit-of-Work Identifier 3-5
Two-Phase Commit 3-6

Protected Conversations and Resources 3-6
Resynchronization 3-6

APPC Data Compression 3-6
Considerations for Data Compression 3-7
Specifying Data Compression Parameters for a Mode

Description . 3-8
Specifying Network Attributes for Data Compression 3-8
When Do Changes Take Effect? 3-12
How to Determine If a Session Uses Compression 3-12

APPC Security Considerations 3-12
AS/400 Security Levels 3-12
Physical Security 3-12
Session Level Security 3-12
Validation Tables for Establishing a Session . . . 3-13

Failure to Establish a Session 3-14
Examples of Failures 3-14

Examples of Failures - by System 3-15
Conversation Level Security 3-16

Implementations of LU6.2 Conversation Level
Security . 3-16

Enhanced SECURITY(SAME) 3-17
Degrees of Conversation Level Security 3-18
Password Protection 3-18
System/38 and System/36 Secure Locations . . . 3-18
System-Supplied Format Security 3-19
User IDs Used when the AS/400 System Is the

Target System 3-19
Converting User IDs and Passwords to Upper Case 3-20
General Security Considerations 3-20
Incorrect Password Attempts 3-21
Password Expiration Management 3-21
Special Authority (Security Officer and Service) . 3-21
APPC Devices Created by the System 3-22

Chapter 4. Running APPC 4-1
Vary On and Vary Off Support 4-1

Vary Configuration On Example 4-2
Controlling Modes 4-2

Start Mode (STRMOD) Command 4-2
End Mode (ENDMOD) Command 4-3
Change Session Maximum (CHGSSNMAX)

Command . 4-3
Displaying the Mode Status 4-5

Examples of Displaying Mode Status 4-5

Chapter 5. Writing ICF APPC Application Programs 5-1
Intersystem Communications Function File 5-1
Specifying the Program Device Entry Commands . . . 5-2
Communications Operations and Functions 5-3

Starting a Session Using the Open and Acquire
Operations . 5-3

Starting a Transaction Using the Evoke Function . . 5-3
Sending Data . 5-5

Control-Data Function 5-5
Force-Data Function 5-5
Confirm Function 5-5
Prepare-for-Commit Function 5-5
Transaction-Synchronization-Level Function 5-6
Format-Name Function 5-6
Variable-Buffer-Management Function 5-6

Receiving Data . 5-7
Invite Function . 5-7
Read-from-Invited-Program-Devices Operation . . . 5-7
Using the Variable-Buffer-Management Function on

Read Operations 5-7
Waiting for a Display File, ICF File, or Data Queue 5-8

Notifying the Remote Program of Problems by Using the
Fail Function . 5-8

Using Additional Functions and Operations 5-9
Respond-to-Confirm Function 5-9
Request-to-Write Function 5-9
Allow-Write Function 5-9

 Copyright IBM Corp. 1997 iii

Timer Function . 5-9
Get-Attributes Operation 5-9

Ending a Transaction Using the Detach Function . . . 5-9
Using the Detach Function When the

Synchronization Level is None 5-10
Using the Detach Function When the

Synchronization Level is Confirm 5-10
Using the Detach Function When the

Synchronization Level is Commit 5-10
Using the Detach Function From a Target Program 5-10

Ending a Session 5-10
Release Operation 5-10
End-of-Session Function 5-10
Close Operation 5-11

Using Response Indicators 5-11
Receive-Confirm 5-11
Receive-Fail . 5-11
Receive-Turnaround 5-11
Receive-Detach 5-12
Receive-Control-Data 5-12
Receive-Rollback 5-12
Receive-Take-Commit 5-12

Using Input/Output Feedback Areas 5-12
Using Return Codes 5-13
Mapping between ICF Operations and Functions and

LU Type 6.2 Verbs 5-13
Mapping of LU Type 6.2 Verbs to ICF Operations

and Functions 5-13
Example ICF Operations and Functions Mapped to

LU Type 6.2 Verbs 5-14
Flow Diagrams . 5-17

A Note about the Flow Diagrams 5-17
Flow Diagram for Inquiry Applications Using ICF . 5-17
Flow Diagram for Inquiry Applications Using LU

Type 6.2 Verbs 5-19

Chapter 6. Writing APPC Application Programs
Using CPI Communications 6-1

Description of Communications Side Information . . . 6-1
Managing the Communications Side Information . . 6-2

Using Program Calls 6-4
Program Calls Supported by the AS/400 System . . 6-4

Using Pseudonyms When Writing Applications 6-6
Mapping of CPI Communications Calls to ICF

Operations and Functions 6-6
ICF to CPI Communications—Examples 6-8

Flow Diagram for Inquiry Applications Using CPI
Communications Calls 6-10

Return Codes for CPI Communications 6-14

Chapter 7. Application Considerations for ICF . . . 7-1
General Considerations 7-1
Open and Acquire Operation Considerations 7-1
WAITFILE Considerations 7-2

WAITFILE Considerations for Switched Connections 7-2
WAITFILE Considerations for APPN Support 7-2

Output Considerations 7-2
Input Considerations 7-3
Confirm Considerations 7-3
Two-Phase Commit Considerations 7-4

Committing Resources 7-4
Rolling Back Resources 7-4
Exchanging Log Names 7-4
Performance . 7-4

End-of-Session, Release, and Close Considerations . 7-4
Prestart Jobs Considerations 7-5
Trace ICF Communications Considerations 7-5

Chapter 8. Application Considerations for CPI
Communications 8-1

General Considerations 8-1
Performance Considerations 8-1
Two-Phase Commit Considerations 8-1

Committing Resources 8-2
Rolling Back Resources 8-2
Exchanging Log Names 8-2
Immediate Return on Allocate 8-2
Performance . 8-2

Prestart Job Considerations 8-2
Trace CPI Communications Considerations 8-3

Appendix A. ICF Operations, DDS Keywords, and
System-Supplied Formats A-1

Language Operations A-1
Language Operations Supported A-1
Data Description Specifications Keywords A-2
System-Supplied Formats A-3

Appendix B. Sense Data and Return Codes B-1
SNA Sense Data . B-1
Return Codes . B-1
Major Code 00 . B-1
Major Code 02 . B-4
Major Code 03 . B-7
Major Code 04 . B-10
Major Codes 08 and 11 B-10
Major Code 34 . B-10
Major Code 80 . B-12
Major Code 81 . B-14
Major Code 82 . B-17
Major Code 83 . B-22
CPI Communications Return Codes B-27
Program Start Request Errors B-27

Appendix C. Implementation of the LU Type 6.2
Architecture . C-1

AS/400 System Implementation of Control Operator
Verbs . C-1

Change-Number-of-Sessions Verbs C-1
Session-Control Verbs C-1
LU Definition Verbs C-2

ICF Implementation of the LU Type 6.2 Architecture . C-2
Specifying the Resource Parameter C-3
Mapped Conversation Verbs C-3
Basic Conversation Verbs C-9
Miscellaneous Verbs C-17
Mapping of LU 6.2 Return Codes to ICF Return

Codes . C-18
LU 6.2 Conversation Verb Option Sets Used by the

AS/400 System C-22

iv OS/400 APPC Programming V4R1

LU 6.2 Control-Operator Verb Option Sets Used by the
AS/400 System C-25

Appendix D. APPC Configuration Examples D-1
Switched Network without APPN

Support—Configuration Example D-1
Creating the Line Description (New York to Los

Angeles) . D-1
Configuring System B (Los Angeles) D-2

Nonswitched Network without APPN
Support—Configuration Example D-3

Configuring System A (New York) D-3
Creating the Line Description (New York to Los

Angeles) . D-3
Creating the Controller Description (New York to Los

Angeles) . D-3
Creating the Device Description (New York to Los

Angeles) . D-4
Configuring System B (Los Angeles) D-4

X.21 Short-Hold Mode—Configuration Example D-4
Configuring the New York System D-4
Configuring the Los Angeles System D-6

Programs Communicating on the Same
System—Configuration Example D-6

Appendix E. ICF Program Examples E-1
Objects Used by Program Examples E-1

ICF File Object (T8189ICF) E-1
Display File Object (T8189DSP) E-2
Database File Object (T8189DB) E-2

ILE C/400 Local Program for Inquiry Applications
(Example 1) . E-2

Program Explanation E-3
ILE C/400 Remote Program for Inquiry Applications

(Example 1) . E-11
Program Explanation E-11

COBOL/400 Local Program for Inquiry Applications
(Example 2) . E-18

Program Explanation E-19
COBOL/400 Remote Program for Inquiry Application

(Example 2) . E-27
Program Explanation E-27

RPG/400 Local Program for Inquiry Applications
(Example 3) . E-34

Program Explanation E-34
RPG/400 Remote Program for Inquiry Application

(Example 3) . E-41

Program Explanation E-41

Appendix F. CPI Communications Program
Examples . F-1

Objects Used by Program Examples F-1
Communications Side Information Object (T8189CSI) F-1
Display File Object (T8189DSP) F-1
Database File Object (T8189DB) F-2

ILE C/400 Local Program for Inquiry Applications
(Example 1) . F-2

Program Explanation F-2
ILE C/400 Remote Program for Inquiry Applications

(Example 1) . F-9
Program Explanation F-10

COBOL/400 Local Program for Inquiry Applications
(Example 2) . F-16

Program Explanation F-16
COBOL/400 Remote Program for Inquiry Application

(Example 2) . F-25
Program Explanation F-25

RPG/400 Local Program for Inquiry Applications
(Example 3) . F-33

Program Explanation F-33
RPG/400 Remote Program for Inquiry Application

(Example 3) . F-44
Program Explanation F-45

Appendix G. APPC Tools G-1
AS/400 APPC File Transfer Protocol G-1
ATELL Tools . G-1
ATELL . G-1

Installing the tool ATELL G-1
Deleting the tool ATELL G-2
Configuration Requirements for Using ATELL . . . G-2
Calling ATELL . G-2

Installation Example of an APPC Tool G-2

Bibliography . X-1
Planning and Installation Books X-1
Customer and System Operation Books X-1
AS/400 Communications Books X-1
AS/400 Programming Books X-1
Client Access/400 Books X-1
Communications Architectures X-1
CPI Communications X-2

Index . X-3

 Contents v

vi OS/400 APPC Programming V4R1

 Notices

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these avail-
able in all countries in which IBM operates. Any reference to
an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may
be used. Subject to IBM's valid intellectual property or other
legally protectable rights, any functionally equivalent product,
program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of opera-
tion in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications cov-
ering subject matter in this document. The furnishing of this
document does not give you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of infor-
mation between independently created programs and other
programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact the
software interoperability coordinator. Such information may
be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee. Address your
questions to:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829
U.S.A.

This publication could contain technical inaccuracies or
typographical errors.

This publication may refer to products that are not currently
available. IBM makes no commitment to make available any
unannounced products referred to herein. The final decision
to announce any product is based on IBM's business and
technical judgment.

This publication contains examples of data and reports used
in daily business operations. To illustrate them as completely
as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished
by IBM as simple examples to provide an illustration. These
examples have not been thoroughly tested under all condi-
tions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. All programs
contained herein are provided to you “as is.” The implied
warranties of merchantability and fitness for a particular
purpose are expressly disclaimed.

 Trademarks

The following terms are trademarks of the IBM Corporation in
the United States or other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AIX
AnyNet
AnyNet/2
AnyNet/400
Application System/400
APPN
AS/400
C/400
IBM
ILE
NetView
Novell
Opticonnect for OS/400
Operating System/400
OS/400
PS/2
VTAM
400

Other company, product, and service names, which may be
denoted by a double asterisk (**), may be trademarks or
service marks of others.

 Copyright IBM Corp. 1997 vii

viii OS/400 APPC Programming V4R1

About APPC Programming (SC41-5443-00)

This book describes the advanced program-to-program com-
munications (APPC) support provided by the AS/400 system.
It is intended for the application programmer responsible for
developing application programs that use the APPC support.

Included in this book are application program considerations,
configuration requirements and commands, problem manage-
ment for APPC, and general networking considerations.

Although this book does contain some information about
systems other than an AS/400 system, it does not contain all
the information that the other systems may need to commu-
nicate with an AS/400 system using APPC. For complete
information for a particular remote system type, refer to that
system's documentation.

Who Should Read This Book

This book is intended for the application programmer respon-
sible for developing application programs that use the APPC
support.

You should have knowledge of general communications con-
cepts. For information on basic communications, you can
refer to the Discover/Education course in the communications
module. The Discover/Education course is separately
orderable.

It is also assumed that you have read the following or have
the equivalent knowledge:

 � System Operation

 � ICF Programming

� CPI Communications Reference

Prerequisite and Related Information

For information about Advanced 36 publications, see the
Advanced 36 Information Directory, SC21-8292, in the
AS/400 Softcopy Library.

For information about other AS/400 publications (except
Advanced 36), see either of the following:

� The Publications Reference, SC41-5003, in the AS/400
Softcopy Library.

� The AS/400 Information Directory, a unique, multimedia
interface to a searchable database that contains
descriptions of titles available from IBM or from selected
other publishers.

For a list of related publications, see the “Bibliography” on
page X-1.

Information Available on the World Wide
Web

More AS/400 information is available on the World Wide
Web. You can access this information from the AS/400 home
page, which is at the following universal resource locator (url)
address:

http://www.as4ðð.ibm.com

Select the Information Desk, and you will be able to access a
variety of AS/400 information topics from that page.

 Copyright IBM Corp. 1997 ix

x OS/400 APPC Programming V4R1

Chapter 1. Introduction to AS/400 APPC Support

The AS/400 advanced program-to-program communi-
cations (APPC) support is the AS/400 system implementa-
tion of the Systems Network Architecture (SNA) logical unit
(LU) type 6.2 and node type 2.1 architectures. Throughout
this guide, APPC is used generically to refer to the applica-
tion program interface and general support supplied by the
AS/400 system to the LU 6.2 and node type 2.1 architec-
tures.

Support Provided by APPC

The APPC support handles all of the SNA protocol require-
ments when your system is communicating with a remote
system using the LU type 6.2 and node type 2.1 architec-
tures. You can connect your system to any other system that
supports the APPC program interface. APPC application pro-
grams can also communicate over lines using the Internet
Protocol (IP) of Transmission Control Protocol/Internet Pro-
tocol (TCP/IP).

Relationship between APPC and APPN
Support

The AS/400 APPC support handles the protocol needed for
communicating between an application program running on
your AS/400 system and an application running on a remote
system. The protocol, which is defined by the SNA LU 6.2
architecture, consists of a set of verbs that are common to
the local and remote systems in a network. However, the
way in which each system provides a program interface to
the verbs may differ.

The AS/400 system provides the following program
interfaces:

� The intersystem communications function (ICF) file inter-
face

� The Common Programming Interface (CPI) Communi-
cations call interface

� The CICS file interface

� The sockets application program interface (API)

In ICF, the LU 6.2 verbs are implemented using data
description specifications (DDS) keywords and system-
supplied formats. Refer to “Mapping between ICF Operations
and Functions and LU Type 6.2 Verbs” on page 5-13 for a
list of LU 6.2 verbs and their corresponding DDS keywords
or system-supplied formats.

In CPI Communications, the LU 6.2 verbs are implemented
using CPI Communications calls. Refer to “Mapping of CPI
Communications Calls to ICF Operations and Functions” on
page 6-6 for a mapping of CPI Communications calls and
ICF operations and functions. The CPI Communications Ref-

erence book provides a mapping between LU 6.2 verbs and
CPI Communications calls.

In CICS/400 support, the LU 6.2 verbs are implemented
using EXEC CICS commands. For a list of the EXEC CICS
commands used to control an APPC conversation, see the
CICS/400 Administration and Operations Guide.

For the sockets API, the LU 6.2 verbs are implemented using
the socket functions. For a list of the sockets APIs, see the
Sockets Programming book.

The APPC support also handles networking functions, and
allows peer systems in a network to start and end sessions
without a controlling host system.

The AS/400 Advanced Peer-to-Peer Networking (APPN)
support is an enhancement to the node type 2.1 architec-
ture, and provides additional networking functions such as
searching distributed directories, dynamically selecting
routes, routing of intermediate sessions, creating and starting
remote locations, and routing data using transmission priori-
ties. The APPN Support book provides details about the
APPN support.

Relationship between APPC and
AnyNet/400 Support

AnyNet is a family of products that allow applications written
for one type of network protocol to be run over a different
type of network protocol.

Without AnyNet, your choice of application program interface
(API) dictates your choice of network protocol, or the oppo-
site, your choice of network protocol dictates your choice of
APIs. For example, without AnyNet, an ICF or CPI Communi-
cations (APPC) application program can only run over an
SNA network. To run both ICF or CPI Communications
(APPC) and sockets programs without AnyNet, requires both
an SNA and a TCP/IP network.

AnyNet gives you more options. AnyNet allows you to mix
and match your choice of application programs with your
choice of network protocols. In fact, you can do this without
changing your application programs. Your choice of destina-
tion addresses (such as remote location) determines which
type of network protocol is used.

AnyNet/400 is included with the Operating System/400
licensed program and provides the following support:

� APPC over TCP/IP

The APPC over TCP/IP support allows APPC application
programs (such as ICF or CPI Communications applica-
tions) to communicate between systems in a TCP/IP
network. The systems running the APPC application pro-
grams must both have APPC over TCP/IP support. For

 Copyright IBM Corp. 1997 1-1

more information on APPC over TCP/IP support, see the
Communications Configuration book.

� Sockets over SNA

The sockets over SNA support allows sockets applica-
tion programs to communicate between systems in an
SNA network. The systems running the sockets applica-
tion programs must both have sockets over SNA support
unless there is an AnyNet gateway between them. With
an AnyNet gateway (such as AnyNet/2 Sockets over
SNA Gateway) between an SNA and a TCP/IP network,
sockets application programs running on systems with
sockets over SNA support can communicate with
sockets application programs running on systems in the
TCP/IP network.

IBM-supplied application programs that use the CPI Commu-
nications, ICF, or sockets interfaces (such as display station
pass-through or File Transfer Protocol (FTP)) can also take
advantage of AnyNet support. Therefore, you do not need to
have user-written applications to take advantage of AnyNet
support.

 User-Written Applications

APPC provides both an interactive and batch communi-
cations interface between user-written application programs
on local and remote systems. An AS/400 system can start
programs on a remote system, or a remote system can start
programs on an AS/400 system.

An AS/400 application using the APPC support can:

� Write to or read from an ICF file

� Access the CPI Communications call interface

� Use the EXEC CICS commands

� Use the sockets APIs

If you use ICF, you can write application programs using the
following languages.

� Integrated Language Environment C/400 (ILE C/400)
language

� Integrated Language Environment COBOL/400 (ILE
COBOL/400) language

 � FORTRAN/400 language

� Integrated Language Environment RPG/400 (ILE
RPG/400) language

 Chapter 5 of this guide and the ICF Programming book
contain information about writing applications using ICF files.

If you use CPI Communications, you can write application
programs in the following programming languages:

� ILE C/400 language

� ILE COBOL/400 language

 � FORTRAN/400 language

 � REXX/400

� ILE RPG/400 language

� Cross System Product (CSP)

Chapter 6 of this guide and the CPI Communications Refer-
ence book contain information about writing applications
using the CPI Communications call interface.

If you use CICS, you can write application programs using
the ILE COBOL/400 language. For more information about
writing CICS application programs, see the CICS/400 Appli-
cation Programming Guide.

If you use sockets, you can write application programs using
the ILE C/400 language. Both the source and target pro-
grams must use the sockets API. For more information about
writing sockets application programs, see the Sockets Pro-
gramming book.

Note: An APPC conversation cannot be used by both the
System/38 environment and the AS/400 system oper-
ating environment. An escape message is sent to an
application that is attempting to open an ICF file or to
allocate a CPI Communications conversation in the
AS/400 operating environment and to open a commu-
nications file or a mixed device file in the System/38
environment for the same APPC conversation.

An application can use a combination of ICF, CPI Communi-
cations, CICS/400, and sockets interfaces. However, when
communicating with another program, an APPC application
cannot use combinations of ICF operations or functions and
CPI Communications calls, EXEC CICS commands, or
sockets APIs on the same conversation.

 IBM-Supplied Applications

APPC also provides the communications capabilities for the
following:

� Distributed data management (DDM) , a function of the
operating system that allows an application program or
user on one system to access database files stored on
remote systems. Refer to the Distributed Data Manage-
ment book for additional information.

� Distributed Relational Database Architecture (DRDA)
support , provides access to relational data across
systems that support this architecture. The operating
system and the DB2/400 Query Manager and SQL
Development Kit licensed program combine to provide
this support on AS/400 systems. Refer to the Distributed
Database Programming book for additional information.

� SNA distribution services (SNADS) , an asynchronous
distribution service that defines a set of rules to receive,
route, and send electronic mail in a network of systems.
Refer to the SNA Distribution Services book for addi-
tional information.

� Display station pass-through , a function that allows a
user to sign on to one system (an AS/400 system,

1-2 OS/400 APPC Programming V4R1

System/38, or System/36) from another system (an
AS/400 system, System/38, or System/36) and use that
system’s programs and data. Refer to the Remote Work
Station Support book for additional information.

� File transfer support , a function of the operating
system that moves file members from one system to
another by using asynchronous, APPC, or BSCEL com-
munications support. Refer to the ICF Programming
book for additional information.

� Client Access/400 , which provides system functions to
an attached personal computer. Refer to “Client
Access/400 Books” on page X-1 for a list of Client
Access/400 books.

� Alert support , which provides the support for handling
alerts on the AS/400 system. Alerts, which the system
detects, are used to report a problem or an impending
problem to the network operator. Refer to the DSNX
Support book for additional information.

� Electronic customer support , a function of the oper-
ating system that allows a customer to access the
question-and-answer (Q & A) function; problem analysis,
reporting, and management; IBM product information;
and technical information exchange. Refer to the Local
Device Configuration book for additional information.

� CICS/400 support , which allows user-written application
programs to process transactions entered at remote
work stations. CICS/400 support provides the CICS envi-
ronment with CICS-specific functions, and the AS/400
environment with functions that are not CICS-specific.
Refer to the CICS/400 Administration and Operations
Guide or the CICS/400 Application Programming
Guidefor additional information.

� APING support , a function of the operating system pro-
vided by the Verify APPC Connection (VFYAPPCCNN)
command, also known as APING, exchanges data
packets between the local location and the specified
remote location using Advanced Program-to-Program
Communications (APPC), and measures the round-trip
time of each data exchange.

For this function to work, the remote location specified
must be running the target portion of this function,
APINGD (APING daemon). Refer to the CL Reference
book for additional information.

� AREXEC support , a function of the operating system
provided by the Run Remote Command (RUNRMTCMD)
command, also known as AREXEC when an SNA
address is specified for the remote location name, allows
AS/400 users to run a command on a remote system
that is running the target portion of this function.

The target portion of this function can be an rexecd
(remote executing) daemon if you specify *IP for the
address type, or an AREXECD (APPC remote exe-

cuting) daemon when an SNA address is specified for
the remote location name. If you want to run a command
on a Client Access/400 client that supports this function,
you will need to specify an SNA address for the remote
location name.

When the command is sent to the remote system, the
local system waits for the command to complete and the
output from the remote command will be sent back to
the local system and placed in a spooled file. Refer to
the CL Reference book for additional information.

� OptiConnect support for APPC

OptiConnect optical fiber connectivity among adjacent
machines, supports:

– Two-phase commitment control

– Loosely coupled parallelism

– All APPC applications that use the ICF or CPI/C
interfaces with the value APPN = *NO.

Using the optical bus leads to enhanced performance. You
can use this support to run many types of APPC applications
across the optical bus. This will decrease complexity and
increase performance.

For each of these IBM-supplied applications you must con-
figure the APPC support on each of the systems in the
network. Chapter 2 in this manual and the Communications
Configuration book contain additional information concerning
configurations.

The following TCP/IP applications are some of the TCP/IP
applications that use the sockets interface:

� File Transfer Protocol (FTP)

� line printer daemon (LPD)

� line printer requester (LPR)

� Simple Mail Transfer Protocol (SMTP)

� Simple Network Management Protocol (SNMP)

� Remote Procedure Call (RPC)

TELNET and the PASCAL APIs do not use the sockets inter-
face. TELNET and applications that use the PASCAL APIs
cannot use APPC support.

 Configuration Requirements

You configure your system to use the APPC support with the
configuration menus or the control language commands sup-
plied with the AS/400 system. These configuration require-
ments are discussed in Chapter 2 and in the
Communications Configuration book, which also has a
description of the communications configuration process.

 Chapter 1. Introduction to AS/400 APPC Support 1-3

Communications Lines Supported

The number of configurations that can be varied on at the
same time depends on the size of your system and the type
of communications adapters attached. Each line used by
APPC can be one of the following (all the lines on your
system and throughout the network do not have to be the
same type):

� Distributed data interface (DDI)

 � Frame-relay network

 � FSIOP

� IDLC (ISDN data link control) 1 switched or non-switched

 � SNA pass-through

� Synchronous data link control (SDLC) point-to-point
switched (manual answer, automatic answer, manual
call, or automatic call)

� SDLC point-to-point nonswitched

� SDLC multipoint nonswitched

� X.25 packet switched data network supporting both per-
manent virtual circuit and switched virtual circuit con-
nections

 � Token-ring network

 � Ethernet network

 � Wireless network

In addition to supporting the line types just listed, APPC
allows sharing these lines as follows:

� If an APPC controller is configured to use primary SDLC
support, it can also share a multipoint line with finance
support, retail support, and with remote work station
support. They can all be active on the multipoint line at
the same time.

� If an APPC controller is configured to use secondary
SDLC support, it can share a line with:

– The SNA version of remote job entry (RJE) 2

– 3270 device emulation for SNA 3

– SNA upline facility (SNUF) 4

– Distributed systems node executive (DSNX) 5

support

– Distributed host command facility (DHCF) 6

support

– Network routing facility (NRF) 7 support

 – SNA pass-through

– SNA Primary LU2 Support (SPLS) 8

 They can all be active on the line at the same time.

� If an APPC controller is configured to use X.25 support,
then multiple remote systems can be active at the same
time. The APPC support can share the X.25 line with:

 – Finance support

 – Retail support

– Remote work station support

– The SNA version of RJE

– 3270 device emulation for SNA

 – SNA pass-through

 – SNUF

 – DSNX support

 – DHCF support

 – NRF support

 – SPLS

– Transmission Control and Protocol/Internet Pro-
tocol (TCP/IP) .9

� If an APPC controller is configured to use a token-ring
network, then multiple remote systems can be active at

1 ISDN is the abbreviation for integrated services digital network, a CCITT recommendation that defines an interface to a network that can
carry voice, data, and image over the same communications line. IDLC is an asynchronous, balanced data link protocol used between two
systems to exchange information over an ISDN network.

2 RJE allows a user to submit a job from a display station on the AS/400 system to a System/370-type host system.

3 3270 device emulation allows an AS/400 system to appear as a 3274 Control Unit in an SNA network.

4 SNUF allows an AS/400 system to communicate with CICS/VS and IMS/VS application programs on a host system.

5 DSNX is a function of the operating system that receives and analyzes requests from the NetView Distribution Manager licensed program on
a host system. If the request is directed to the system that receives it, the request is processed on that system or on a personal computer
directly attached to that system. If the request is intended for a different system, it is routed toward its destination.

6 DHCF is a function of the operating system that supports the data link between a System/370 terminal using an AS/400 application in an
HCF (Host Command Facility) environment.

7 NRF is a function of the operating system that supports the data link between a System/370 terminal using an AS/400 application in an NRF
(Network Routing Facility) environment.

8 SPLS is a function of the operating system that supports the data link between a System/370 terminal using an AS/400 application in an
SNA environment. The HCF and NRF licensed programs are not required for SPLS.

9 TCP/IP is a set of vendor-independent communications protocols that support peer-to-peer connectivity functions for both local and wide
area networks.

1-4 OS/400 APPC Programming V4R1

the same time. The APPC support can share the token-
ring network line with:

 – Finance support

– Remote work station support

– The SNA version of RJE

– 3270 device emulation for SNA

 – SNUF

 – DSNX support

 – DHCF support

 – NRF support

 – SNA pass-through

 – SPLS

 – TCP/IP

� If an APPC controller is configured to use Ethernet
support, then multiple remote systems can be active at
the same time. The APPC support can share the
Ethernet line with:

 – Finance support

– Remote work station support

– 3270 device emulation for SNA

 – SNA pass-through

 – SNUF

 – DSNX support

 – DHCF support

 – NRF support

 – SPLS

 – TCP/IP

� If an APPC controller is configured to use DDI support,
then multiple remote systems can be active at the same
time. The APPC support can share the DDI line with:

– Remote work station support

 – DHCF support

 – NRF support

 – SNA pass-through

 – SPLS

 – TCP/IP

� If an APPC controller is configured to use a frame-relay
network, then multiple remote systems can be active at
the same time. The APPC support can share the frame-
relay network line with:

 – DHCF support

 – NRF support

 – SNA pass-through

 – SPLS

 – TCP/IP

� If an APPC controller is configured to use a wireless
network, then multiple remote systems can be active at
the same time. The APPC support can share the
wireless network line with:

 – SNA pass-through

 – TCP/IP

� If an APPC controller is configured to use IDLC, the
APPC support can share the IDLC line with:

– Remote work station support

– 3270 device emulation for SNA

 – SNA pass-through

 – SNUF

 – DSNX

 Chapter 1. Introduction to AS/400 APPC Support 1-5

1-6 OS/400 APPC Programming V4R1

 Chapter 2. Configuring APPC

This chapter describes the commands used for configuring
APPC.

When using APPC configuration commands, you can enter
the commands in one of two ways:

� Using the command prompt. Enter the command and
press F4 (Prompt). A prompt menu is shown for the
command.

� Using direct entry. Enter the command and its parame-
ters following the syntax described in the CL Reference.

The following is a brief introduction to the communications
descriptions you need to configure before you can use the
APPC support. A complete description of these and related
commands are contained in the APPN Support book, the
Communications Configuration book, and the online help.

Defining the APPC Configuration

The AS/400 system with APPC support allows you to create
and store many APPC configuration descriptions on the
system. Each configuration description name must be
unique.

An APPC configuration consists of a line, an APPC or host
controller, an APPC device, and a mode description. If your
program is communicating with a partner program on the
same system, you do not need to configure a line
description.

If you are using an integrated services digital network
(ISDN), you must also create a connection list and network
interface description.

For frame-relay, you must also create a network interface
description.

To configure devices, controllers, and lines you must have
*IOSYSCFG special authority in your user profile for the
create and change configuration commands.

Without requiring this special authority it is possible for
anyone on the system to set up an alternate configuration
that they can use to bypass the security on the system.
Refer to the System Operationbook for more information.

Configuring for Sockets

To have TCP/IP sockets applications communicate across an
SNA connection, requires the following additional configura-
tion steps. These steps can be done using the Configure
AF_INET Sockets over SNA (CFGIPS) command.

1. Designate the local IP address or addresses assigned to
the local host using the Add IP over SNA Interface
(ADDIPSIFC) command.

2. Designate the IP routes to the remote hosts local host
using the Add IP over SNA Route (ADDIPSRTE)
command.

3. Designate the SNA location names that are associated
with each IP address for each remote host using the
Add IP over SNA Location Entry (ADDIPSLOC)
command.

The Sockets Programming book contains information about
configuring for sockets.

Configuring for APPC Over TCP/IP
Support

Using APPC over TCP/IP support requires that you set the
allow ANYNET support (ALWANYNET) network attribute to
*YES. To run APPC over a TCP/IP network, you must con-
figure the APPC controller, device, and mode descriptions as
always. However, the line description is not associated with
these configuration objects. The line description must be
associated with a network controller. The association of
APPC locations and TCP/IP addresses must also be per-
formed. The TCP/IP Configuration and Reference book con-
tains more information about configuring a TCP/IP network.
The Communications Configuration book contains a config-
uration example for APPC over TCP/IP support.

Configuring an ISDN Network

Using an ISDN network requires that you configure a con-
nection list and network interface description before the line,
controller, device, and mode descriptions. The ISDN Support
book contains more information about configuring an ISDN
network.

 1. Connection Lists

A connection list contains configuration information that
is required by the system to manage how calls are sent
or received across an ISDN network. Information about
connection lists is referred from the line description or
from one of the related controller descriptions. The fol-
lowing commands are used when working with con-
nection lists and with the entries in the connection lists:

� Create Connection List (CRTCNNL)

� Change Connection List (CHGCNNL)

� Display Connection List (DSPCNNL)

� Delete Connection List (DLTCNNL)

� Work with Connection Lists (WRKCNNL)

� Add Connection List Entry (ADDCNNLE)

� Change Connection List Entry (CHGCNNLE)

� Rename Connection List Entry (RNMCNNLE)

� Remove Connection List Entry (RMVCNNLE)

 Copyright IBM Corp. 1997 2-1

� Work with Connection List Entry (WRKCNNLE)

2. Network Interface Description

The network interface description contains information
required by the system to communicate with, and to
describe the system interface to, an ISDN network. The
following commands are used when working with the
network interface descriptions:

� Create Network Interface Description (ISDN)
(CRTNWIISDN)

� Change Network Interface Description (ISDN)
(CHGNWIISDN)

� Delete Network Interface Description (DLTNWID)

� Display Network Interface Description (DSPNWID)

� Work with Network Interface Description
(WRKNWID)

Configuring for Frame-Relay

Using frame-relay requires that you configure a network inter-
face description before the line, controller, device, and mode
descriptions. The LAN and Frame Relay Support book con-
tains more information about configuring for frame-relay.

The network interface description describes the interface
between the AS/400 system and the frame-relay network.
The following commands are used when working with
network interface descriptions:

� Create Network Interface Description (Frame-Relay
Network) (CRTNWIFR)

� Change Network Interface Description (Frame-Relay
Network) (CHGNWIFR)

� Delete Network Interface Description (DLTNWID)

� Display Network Interface Description (DSPNWID)

� Work with Network Interface Description (WRKNWID)

 Line Description

The line description describes the physical line connection
and the data link protocol to be used between the AS/400
system and the network. The following commands are used
to create or change line descriptions:

� Create Line Description (Distributed Data Interface)
(CRTLINDDI)

� Change Line Description (Distributed Data Interface)
(CHGLINDDI)

� Create Line Description (Frame-Relay Network)
(CRTLINFR)

� Change Line Description (Frame-Relay Network)
(CHGLINFR)

� Create Line Description (IDLC) (CRTLINIDLC)

� Change Line Description (IDLC) (CHGLINIDLC)

� Create Line Description (SDLC) (CRTLINSDLC)

� Change Line Description (SDLC) (CHGLINSDLC)

� Create Line Description (X.25) (CRTLINX25)

� Change Line Description (X.25) (CHGLINX25)

� Create Line Description (Token-Ring Network)
(CRTLINTRN)

� Change Line Description (Token-Ring Network)
(CHGLINTRN)

� Create Line Description (Ethernet) (CRTLINETH)

� Change Line Description (Ethernet) (CHGLINETH)

� Create Line Description (Wireless) (CRTLINWLS)

� Change Line Description (Wireless) (CHGLINWLS)

� Work with Line Descriptions (WRKLIND)

 Controller Description

The controller description describes adjacent systems in the
network. Certain parameters on the Create Controller
Description (APPC) (CRTCTLAPPC) or Create Controller
Description (HOST) (CRTCTLHOST) commands dictate how
the local system treats the adjacent system. The following
commands are used to create or change controller
descriptions:

� Create Controller Description (APPC) (CRTCTLAPPC)

� Change Controller Description (APPC) (CHGCTLAPPC)

� Create Controller Description (HOST) (CRTCTLHOST)

� Change Controller Description (HOST) (CHGCTLHOST)

� Work with Line Descriptions (WRKLIND)

Defining Controller Descriptions for IP Networks:
If you are configuring for APPC over IP, use the value
*ANYNW for the link type (LINKTYPE) parameter for these
commands.

Defining Controller Descriptions for ISDN
Networks: If you are configuring an ISDN network, use
the value *IDLC or *X25 for the link type (LINKTYPE) param-
eter for these commands.

Defining Controller Descriptions for Programs
Communicating on the Same System: If you are
configuring an APPC controller for use by source and target
programs that are communicating with each other on the
same system, use the value *LOCAL for the link type
(LINKTYPE) parameter for the CRTCTLAPPC command.

Note that source and target programs communicating with
each other on the same system do not require a line
description. All APPC program functions are supported, and
the fact that data is not actually leaving the system is trans-
parent to the APPC application programs.

2-2 OS/400 APPC Programming V4R1

The source and target programs must use different APPC
device descriptions, but share the same controller
description.

The two device descriptions must be created on the same
controller with partner local and remote location names. For
an example, see “Programs Communicating on the Same
System—Configuration Example” on page D-6.

 Device Description

The device description describes the characteristics of the
logical connection between two locations in the network (the
local location and the remote location), and contains informa-
tion about the device, or logical unit, that is attached to the
system. The device description allows you to specify the
RMTLOCNAME (the name of the remote location associated
with the device description) and the LCLLOCNAME (the
name assigned to the local location). The remote location
name, when combined with the remote network ID, identifies
a remote location to your local AS/400 system. This name
must match one of the local location names specified in the
configuration definition on the remote system. The local
location name, when combined with the local network ID,
identifies your local system to a remote system. This name
must match one of the remote location names specified in
the configuration definition on the remote system.

Note: No two devices on the same controller can have the
same combination of names specified for the
following: remote location name, local location name,
and remote network identifier.

The device descriptions exist only at the end points (the local
location and the remote location) of a session. There are no
device descriptions for intermediate sessions at a network
node. When using the APPC support, device descriptions are
not created automatically, as they are when you are using
the APPN support (that is, APPN(*YES) is specified in the
controller description). Therefore, you must create a device
description for each end point in your network. The following
commands are used to create or change device descriptions:

� Create Device Description (APPC) (CRTDEVAPPC)

� Change Device Description (APPC) (CHGDEVAPPC)

� Work with Device Descriptions (WRKDEVD)

To display the status of the network interface, line, controller,
and device descriptions for APPC, use the Work Configura-
tion Status (WRKCFGSTS) command. This command allows
you to determine if the line is available for use. The Retrieve
Configuration Status (RTVCFGSTS) command can also be
used from a CL program to determine device status. Refer to
the Communications Management book for more information
about these commands.

Defining Device Descriptions for Programs Com-
municating on the Same System: If you are config-
uring an APPC device for use by source and target programs
that are communicating with each other on the same system,
you must create two device descriptions on the same con-
troller, and create partner local and remote location names.
For an example, see “Programs Communicating on the
Same System—Configuration Example” on page D-6.

 Mode Description

The mode description describes the session characteristics
and number of sessions that are used to negotiate the
allowed values between the local and remote location. A
mode with the same name must exist at both end points (the
local location and the remote location) of a session. The
mode need not exist for an intermediate session except at
the network node server for a low-entry networking node.

Note: Use caution when you choose names that use the
special characters #, $, and @. These special char-
acters might not be on the remote system's keyboard.
The names that may be exchanged with remote
systems include the following:

 � Network IDs

 � Location names

 � Mode names

 � Class-of-service names

� Control point names

The following predefined modes are shipped with the AS/400
system:

BLANK the default mode name specified in the network
attributes when the system is shipped. Using this
mode results in a mode name of 8 blanks (hex
40). This mode is equivalent to the *BLANK
session group name on a System/36 and to the
*BLANK mode name parameter of the Add
Device Mode Entry (ADDDEVMODE) command
on a System/38.

#BATCH a mode tailored for batch communications.

#BATCHSC which is the same as #BATCH except that the
associated class-of-service description requires a
data link security level of at least *PKTSWTNET
(packet switched network).

#INTER a mode tailored for interactive communications.

#INTERSC which is the same as #INTER except that the
associated class-of-service description requires a
data link security level of at least *PKTSWTNET,
(packet switched network).

QCASERVR a mode for use with AS/400 server functions.

QRMTWSC a mode tailored for use with the 5494 remote
work station controller.

QSPWTR a mode used for Advanced Function Printing
(AFP) support.

 Chapter 2. Configuring APPC 2-3

Every local location on your local system will use the values
specified in the mode to negotiate session limits with every
remote location. After negotiating the session limits, the limits
are kept between each local location and remote location.

Note: For a single-session device, the values for the mode
parameters MAXSSN, MAXCNV, LCLCTLSSN, and
PREESTSSN are not used. The values for MAXSSN,
MAXCNV, LCLCTLSSN, and PREESTSSN come
from the device description for configurations not
using APPN support and from the APPN remote
location list for configurations using APPN support.
Refer to the Communications Configuration book for
the values defined in the IBM-supplied mode
descriptions and for descriptions of the parameters
and values associated with mode descriptions. The
following commands are used to create or change
mode descriptions:

� Create Mode Description (CRTMODD)

� Change Mode Description (CHGMODD)

� Work with Mode Descriptions (WRKMODD)

Certain parameters for the configuration commands can only
be changed when the configuration description is varied off.
Refer to the Communications Configuration book to deter-
mine if you must vary off the configuration description to
make changes. If the configuration description is varied off to
make changes, you must vary on the configuration
description after the changes are made. This permits you to
use the new attributes for your session.

Deleting APPC Configuration Descriptions

To delete descriptions associated with an APPC configura-
tion, use the following commands:

� Delete Network Interface Description (DLTNWID)

� Delete Line Description (DLTLIND)

� Delete Controller Description (DLTCTLD)

� Delete Device Description (DLTDEVD)

� Delete Mode Description (DLTMODD)

� Delete Connection List (DLTCNNL)

Configuration for an APPC Network
without APPN Support

An APPC network without APPN is one in which the systems
in the network are low-entry networking nodes . A low-entry
networking node is a node that implements the node type 2.1
architecture without the APPN extensions. If you are config-
uring an AS/400 system, for example, and you specify
APPN(*NO) on the controller description, then the AS/400
system is considered to be a low-entry networking node. In
this case, you do not need to configure transmission group
and node characteristics or class-of-service descriptions.
This information is only needed when using the APPN
support. For information on configuring APPN networks, see
the APPN Support book.

In this kind of network, you must configure an APPC device
description for each end point.

Note: A low-entry networking node may participate in an
APPN network by using the services of an attached
network node server. However, the user at a low-
entry networking node must configure all the remote
locations with which communications will occur as if
those locations existed at the network node server.
The ability for a low-entry networking node to use the
APPN network varies depending on how the system
is configured.

2-4 OS/400 APPC Programming V4R1

 Chapter 3. APPC Concepts

The following topics in this chapter for APPC apply to both
the ICF file interface and the CPI Communications call inter-
face.

APPC Sessions and Conversations

A session gives an application program on one system a
logical connection to a remote system. Starting a session is
analogous to establishing a telephone connection between
two offices. Once the application program is connected to a
session, it needs to establish a conversation, which enables
communications to occur with the target program. A conver-
sation is analogous to the dialogue that two persons
exchange over a telephone connection. This section
describes how the concept of sessions and conversations
are implemented on the AS/400 system.

 Sessions

In an APPC communications environment, no single system
is responsible for the control of all sessions. Instead, control
of the sessions is distributed among the systems in the
network. For example, when two AS/400 systems are con-
nected using APPC, each system may start (BIND) and end
(UNBIND) sessions. Those sessions for which your system
is responsible are called locally controlled sessions. Sessions
for which the remote system is responsible are called
remotely-controlled sessions.

The application program does not directly connect to a
session. It may not choose a particular session over which to
communicate. Instead, when an application program asks to
establish a session to a remote location, the APPC support
selects an available session from the mode and builds a con-
nection between the application program and the session. A
locally controlled session is selected if one is available. If no
locally controlled session is available, then an available
remotely-controlled session is used. When CPI Communi-
cations is used to request the session and return_control is
CM_IMMEDIATE, only available, active, locally controlled
sessions are selected.

The MAXSSN parameter of the Create Mode Description
(CRTMODD) command is used to specify a limit on the total
number of sessions.

 Conversations

Conversations may be synchronous or asynchronous . In a
synchronous conversation, the two programs directly commu-
nicate with one another. A conversation is asynchronous
when the sending program completes its transmission of data
and ends its conversation before the receiving program
receives all the data. This can be due to the delay inherent in
the communications line or the AS/400 data buffers, or the
specific protocols used to send the data.

When a conversation becomes asynchronous, its temporary
connection with the session is broken. An application
program with an asynchronous conversation can continue to
receive data from the local AS/400 system data buffers until
all the data is returned to it, but it can no longer transmit
because it has been disconnected from the session. In the
meantime, the session may be used by another application
program. There can be more application programs running,
or more conversations, than there are sessions.

The MAXCNV parameter of the Create Mode Description
(CRTMODD) command is used to specify a limit on the total
number of conversations that can be run at the same time for
a particular mode to avoid overuse of AS/400 system
resources. By specifying a value for the number of conversa-
tions for the SNGSSN parameter on the Create Device
Description (APPC) (CRTDEVAPPC) command, you can
control the number of conversations for single-session APPC
devices.

Conversations between type 6.2 logical units always use
half-duplex flip-flop protocols , in which they alternate
sending requests to one another. Parameters in the BIND
identify one of the logical units as first speaker , or the
speaker that begins in the send state. The other logical unit
begins in the receive state. The first speaker allows the other
logical unit to become the sender by setting the change
direction indicator (located in the request header of the last
request unit sent) from sender to receiver status. The two
logical units can continue to switch between send and
receive state until they end the session.

Once an APPC conversation has started, the link between
the two application programs is also called a transaction for
ICF.

The AS/400 APPC support allows programs to interact with
the LU type 6.2 support using mapped or basic conversa-
tions. The following sections describe the difference between
the two conversation types.

Mapped Conversations: When using mapped conversa-
tions, the application program is responsible for, and only
sends or receives, the user data portion of the communi-

 Copyright IBM Corp. 1997 3-1

cations data stream 1. The system performs all the proc-
essing of the architected 2 length (LL) and general data
stream identifier (GDS ID) that precede all user data sent
to, or received from, the remote system. The Architecture
 Logic for LU Type 6.2 book contains more information about
the length (LL) and the general data stream (GDS).

Mapped Conversations for ICF: The CNVTYPE parameter
on an ICF device entry command specifies the conversation
type. To use a mapped conversation, both the source and
target programs must agree. The source program must be
specified as *SYS for the CNVTYPE parameter on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command.
The target program, however, may specify either *SRCPGM
or *SYS.

Note: If you use mapped conversations, the Variable Buffer
Management (VARBUFMGT) keyword (see page 5-6)
is the only ICF keyword that is not supported.

Mapped Conversations for CPI Communications:
CM_MAPPED_CONVERSATION is the default for the
conversation_type characteristic set by the
Initialize_Conversation (CMINIT) call. A source program can
also set the conversation_type to
CM_MAPPED_CONVERSATION by issuing a
Set_Conversation_Type (CMSCT) call before allocating a
conversation with the Allocate (CMALLC) call. A target
program cannot set the conversation type, but can determine
the conversation_type by issuing the
Extract_Conversation_Type (CMECT) call.

Basic Conversations: When using basic conversation
support, the user program is responsible for the integrity of
certain parts of the communications data stream that the
program never sees when using mapped conversations.

When using basic conversation support, the architected
length (LL) and general data stream identifier (GDS ID) bytes
that precede all user data in the communications data stream
are received from, and presented to, the user program along
with the user data. The system assumes that the first 2 bytes
in the output buffer contain the LL when the program issues
a write operation. The system also assumes that the first 2
bytes of data received from the remote system are the LL
and passes them, as received, to the user program when it
issues a read operation.

The system makes no assumptions and has no requirements
for the presence of the GDS ID bytes. Your application
program is responsible for the content of the GDS ID bytes
to ensure the user program functions properly with the
remote APPC system or program.

When using basic conversation support, you should have an
in-depth knowledge of the other system or program capabili-
ties and requirements, and you should also understand the
LU type 6.2 general data stream (GDS) structure. A GDS
variable (a record) is made up of one or more of the archi-
tected structures (LL segment) shown in Table 3-1. More
than one LL segment is used when the GDS variable cannot
be contained in a single LL segment because of system or
program limitations and is referred to as a concatenated
GDS variable.

Table 3-1. General Data Stream Structure

Byte Name Description

0,1 LL Architected length. Bit 0 is the concatenation bit, which is ignored by the system. It can be used by
the program or the remote system or program. According to the architecture, if the bit is off, this
segment is the last, or only, part of the GDS variable. If the bit is on, the GDS variable does not
complete with this segment and one or more LL segments follow.

Bits 1 through 15 contain the binary value of the total length of the current GDS variable or, if
concatenation is being used, the length of the current portion of the GDS variable. The value must
include the 2 bytes of the LL itself.

2,3 GDS ID Identifier. The system treats these bytes as user data when using basic conversation support.
However, the other APPC system or program may depend on these bytes containing meaningful
information.

According to the architecture, if this is the first or only LL segment in a GDS variable, then the
identifier value is contained in bytes 2 and 3. If this is an LL segment that follows an LL segment
that had the concatenation bit set on, then these 2 bytes contain the first 2 characters of user data
that is to be concatenated to the data previously received. The identifier is provided only in the first
LL segment of concatenated GDS variables.

4 - n User data Unarchitected user data.

1 In SNA, the communications data stream is made up of a structured field, called the general data stream, followed by the user data. The
general data stream consists of a length (LL), which is defined as the first two bytes of the structured field, and a general data stream
identifier (GDS ID), which is defined as the next two bytes following the length field that identifies the GDS-defined format of the data.

2 Architected refers to the specification set forth for the LU type 6.2 protocol.

3-2 OS/400 APPC Programming V4R1

Basic Conversations for ICF: The CNVTYPE parameter
on an ICF device entry command specifies the conversation
type. To use a basic conversation, both the source and
target programs must agree. The source program must
specify *USER for the CNVTYPE parameter on the
ADDICFDEVE, CHGICFDEVE or OVRICFDEVE command.
The target program, however, may specify either *SRCPGM
or *USER.

Note: Only the FMTNAME DDS keyword is not supported
when using basic conversations.

This section discusses basic conversations in which the
VARBUFMGT function is not used. For information about
basic conversations in which the VARBUFMGT function is
used, refer to “Variable-Buffer-Management Function” on
page 5-6.

The AS/400 system treats the LL as user data. If
VARBUFMGT is not used, it also uses LL as a length. That
is, these bytes are passed, as is, to or from the user buffer
along with the other data on input and output operations.
When you use keywords that cause the system to examine
specific locations in the data stream (RECID for example),
you must note that the system considers the first 4 bytes (LL
and GDS ID) to be a part of the record. Therefore, if you
expect the system to examine the first byte of unarchitected
user data, you should specify the fifth position.

In addition, the system considers each LL segment to be a
separate record, regardless of whether the concatenation bit
is set.

When issuing input or output operations on a basic conversa-
tion, the system ignores all data in the input or output buffer
beyond the length specified by the LL. Your programs do not
need to blank fill the output buffer beyond that length. On
read operations, the system does not pad the buffer with
blanks when the LL is smaller than the record format length.
Any bytes in the buffer beyond the length specified by the LL
are considered to be data that cannot be predicted (for
example, data left from a previous operation). If a RECID
DDS keyword is specified with a position beyond that defined
by the LL, it matches only if the compare value for the
RECID DDS keyword is a blank (hex 40).

Basic Conversations for CPI Communications: To use
the basic conversation support, your source program should
set the conversation_type to CM_BASIC_CONVERSATION
by issuing a call to Set_Conversation_Type (CMSCT). This
must be done before the conversation is allocated with an
Allocate (CMALLC) call. Target programs cannot set the con-
versation type, but can use Extract_Conversation_Type
(CMECT) to determine the conversation_type.

Conversation States: The LU 6.2 verbs that a program
can issue for a particular conversation depend on the state of
the conversation. As the program issues verbs, the state of
the conversation can change. The state of the conversation
can change based on the following:

� The function of the verb.

� The result of a verb issued by the remote program.

� The result of network errors.

A program can use the ICF get-attributes operation to get its
conversation state. Table C-1 on page C-11 shows the attri-
butes returned by the get-attributes operation including the
possible values for the conversation state. The SNA Trans-
action Programmer's Reference Manual for LU Type 6.2 has
detailed information about conversation states.

Using the Location Parameters

For a user or IBM-supplied application using APPC, the
remote location name, device, local location name, remote
network ID, and mode parameters that can be specified on
various system commands are used to determine the link to
the remote system. These parameters can be specified, for
example, on an ADDICFDEVE or OVRICFDEVE command,
on a Create Communications Side Information (CRTCSI) or
Change Communications Side Information (CHGCSI)
command, or in a DDM file. Refer to the documentation for
the product you are using for information on specifying these
parameters. If any of the parameters are not specified (either
because you did not specify them or the command does not
allow the parameter to be specified) the following defaults
are used:

� Remote location name: No default; parameter is
required.

� Local location name: *LOC

 � Device: *LOC

� Remote network ID: *LOC

 � Mode: *NETATR

Remote location names are used to make application pro-
grams independent of communications devices by allowing a
remote location name to be used to access a remote com-
munications resource. A remote communications resource is
represented on the AS/400 system as one or more device
descriptions; therefore, a remote location name is a logical
name that is used to select which particular device
description or descriptions should be used.

Because the remote location name is the basis for deter-
mining which device description should be used, it is neces-
sary to specify the remote location name when creating any
device description that can be used by APPC. These device
descriptions must be manually created except when using
advanced peer-to-peer networking (APPN) support, or when
running over a TCP/IP network. In general, APPN support
does not require that remote location names be configured

 Chapter 3. APPC Concepts 3-3

because the system searches the network and finds the
location at the remote system where the location name was
defined as a local location name. For the special cases when
remote locations need to be configured for APPN support, it
is done through a configuration list. In either case, the
system creates device descriptions containing the remote
location name when APPN support is being used.

Once the AS/400 system has determined that the application
requires APPC, then the processing depends on whether
APPN support is being used or not.

Specifying Configurations with APPN(*NO)

More than one device description can contain the same
remote location name and other matching parameter values.
This results in a match for the local location name and
remote network ID. Special values for resolving these param-
eters are as follows:

� If a device is specified as *LOC, any device name will
match.

� If a local location name is specified as *LOC, any local
location name will match.

� If a remote network ID is specified as *LOC, any remote
network ID name will match.

� If a local location name is specified as *NETATR, the
value used is retrieved from the network attributes.

� If a remote network ID is specified as *NETATR, the
value used is retrieved from the network attributes.

You have the choice of letting the system select a device
description based on the three values (remote location name,
local location name, remote network ID), or requesting a spe-
cific device description. If you let the system select the
device description, the APPC device descriptions are
searched alphabetically for all descriptions that match the
remote location name, local location name, and remote
network ID parameters. Of the devices that match these
parameters, the system chooses the first device that it finds
with the best status.

The best status is determined in the following order:

� A device with a status of active is chosen (if available)

� A device with a status of varied on or a switched device
with a status of vary on pending is chosen (if available)

� A device with a status of recovery pending or a non-
switched device with a status of vary on pending is
chosen (if available)

If no device is available that satisfies any of the conditions
listed above, a device is still chosen but an error message
and return code will also be given to the application.

Note: Single-session devices that are in use are not chosen
if devices with unused sessions are available.

This allows devices that are varied off or in recovery to be
passed over in favor of devices that are likely to have a

session (for example, a device that is already actively com-
municating with the remote system). An error occurs if the
system does not find a device that has a status of active,
varied on, varied on pending, or recovery pending.

If you request a specific device description, it is selected if all
of the following conditions are true:

� The device description contains the specified remote
location name

� The local location name and remote network ID result in
a match

� The device is not in a varied-off status.

Requesting a specific device description is recommended in
the following cases:

� When device descriptions containing the same remote
location name, local location name, and remote network
ID are attached to more than one controller description.
Selecting the device description allows you to control
which line and controller are used.

� When a specific logical unit on the host system is
required by the AS/400 application program.

If a device description is not found, the request to establish a
session fails. If the device description is selected, the mode
parameter is then processed. The selected device description
must have the mode configured as a valid mode. The mode
must also be started and, once started, have available ses-
sions. If none of these conditions are met, the request to
establish a session fails. Special values for the mode are
resolved as follows:

� *NETATR: Value to use for the mode is retrieved from
the system network attributes.

� BLANK: Mode is represented in the network as 8 blank
(hex 40) characters.

Specifying Configurations with
APPN(*YES)

The device, local location name, and remote network ID
parameters are first processed as follows:

� The value specified for the device description (DEV
parameter) is ignored for APPN processing. If APPN
must automatically create (configure) a device
description, APPN will assign a name to the description.

� If the local location name (LCLLOCNAME parameter) is
*NETATR or *LOC, then the local location name is
retrieved from the network attributes.

� If the remote network ID (RMTNETID parameter) is
*NETATR, *LOC, or *NONE, then the remote network ID
is retrieved from the network attributes (the LCLNETID
parameter).

The system then attempts to find the remote location within
the APPN network (specified by the remote network ID
parameter) and determines a route to the remote location.

3-4 OS/400 APPC Programming V4R1

The device description selected is one that matches the
remote location name, local location name, and remote
network ID and that is attached to the controller description
representing the first connection of the calculated route. If a
device description is selected, it will be activated (varied on)
if necessary. If a device description does not exist, then one
is automatically created (configured) and activated.

If an appropriate device description cannot be selected, the
request to establish a session fails. If a device description is
selected, the MODE parameter is then processed. The speci-
fied MODE must be configured on the system. If the mode is
configured and it is not already attached to the selected
device description, it is attached and started automatically by
the system. If the mode is already attached, it is then started
if it has not already started.

If the mode is not configured, cannot be attached to the
device, cannot be started, or has no sessions available, the
request to establish a session fails. Special values are proc-
essed as follows:

� *NETATR: The value to use for the mode is retrieved
from the system network attributes.

� BLANK: The mode is represented in the network as 8
blank (hex 40) characters.

APPC Unit-of-Work Identifier

The unit-of-work identifier 3 is an option of the LU type 6.2
architecture that is supported by IBM products that use
APPC. The AS/400 system supports both sending and
receiving of the unit-of-work identifier. This identifier is built
by the system whenever it sends a program start request so
that the system can track a distributed transaction involving
resources on various systems. The AS/400 system always
sends the unit-of-work identifier when an application using
ICF issues an evoke function, or when an application using
CPI Communications issues the allocate call. If a program
start request is received by the AS/400 system from another
system and the program start request does not carry the
unit-of-work identifier, the AS/400 system builds a unit-of-
work identifier and associates it with the job being started on
the AS/400 system.

The protected logical unit of work identifier (LUWID) is
the unit-of-work identifier used to keep track of distributed
two-phase commit resources. A two-phase commit trans-
action can have multiple commits and rollbacks issued during
the transaction. A new protected logical unit of work is
started after each successful commit and rollback operation.
Thus, multiple LUWIDs can be assigned for one transaction.

The unit-of-work identifier and protected LUWID can be
found in four places within the system. When the APPC job
is running, the unit-of-work identifier and protected LUWID
can be displayed by entering the Display Job (DSPJOB)
command for that job. The protected LUWID can also be dis-
played, when the APPC job is running, by entering the Work
with Commitment Definitions (WRKCMTDFN) command.
When an APPC job ends, the unit-of-work identifier or pro-
tected LUWID is printed on the AS/400 job log. To use user-
defined auditing, a message (CPI835D or CPI9803) is sent to
the history file. These messages contain the job name and
the unit-of-work identifier or protected LUWID. Even after the
jobs have ended, the unit-of-work identifier (or protected
LUWID) and job name of all APPC jobs can be determined
by examining the history file using the Display Log
(DSPLOG) command.

The unit-of-work identifier or protected LUWID can be used
when you need to know what jobs on two or more systems
are involved in a transaction. The AS/400 system displays
the unit-of-work identifier when option 1 is selected from the
Display Job display. The AS/400 system displays the pro-
tected LUWID when option 16 is selected from the Display
Job display. It also displays the protected LUWID when
option 5 is selected from the Work with Commitment Defi-
nitions display. For distributed transactions that involve an
AS/400 system to another AS/400 system, the unit-of-work
identifier or protected LUWID can be used to determine the
job names on each AS/400 system that are involved in the
transaction. For example, if two AS/400 systems, one in
Chicago and one in Denver, are running an APPC trans-
action, the following commands can be used to determine
the unit-of-work identifier so that a problem can be resolved:

1. The AS/400 operators at both locations enter the Work
with Configuration Status (WRKCFGSTS) command to
display all active APPC jobs within each system.

2. Assuming that both operators know the name of the
device description that represents the other AS/400
system, option 5 (Work with job) can be selected to
display each APPC job. Select option 1 from the Display
Job display to display the unit-of-work identifier. Or
select option 16 from the Display Job display to display
the protected LUWID. The unit-of-work identifier or pro-
tected LUWID shown at both systems is the same.

If the operator does not know the device description that
represents the other AS/400 system, then all APPC jobs
running under all APPC device descriptions must be dis-
played to find the unit-of-work identifier that matches the job
on the remote system. You can also use the Display Log
(DSPLOG) command with MSGID(CPI9803) specified. You
can use the WRKCMTDFN command and specify the pro-
tected LUWID from the job on the remote system to find the
job on the local system.

3 A unit of work is the amount of processing that is started directly or indirectly by a program on the source system. The unit-of-work identifier
is a unique label assigned to a unit of work.

 Chapter 3. APPC Concepts 3-5

 Two-Phase Commit

Using two-phase commit (known in SNA as sync point) pro-
tocols, customer applications can perform transactions that
involve updates to data stored on two or more systems.
Within a transaction, all of the updates for that transaction
must be committed or rolled back together.

An application can invoke two-phase commit protocols to
define synchronization points. At each synchronization point,
all protected resources (such as files or databases), which
are used on multiple systems, are in consistent states, even
if errors or failures have occurred. All updates to the pro-
tected resources must be either committed or rolled back to
the last synchronization point.

Two-phase commit also defines a protocol to recover from
system, conversation, transaction program (TP), and local
resource failures. In other words, two-phase commit provides
the ability to resynchronize resources after such a failure.

Protected Conversations and Resources

In order to use the two-phase commit protocols, the applica-
tion must start commitment control and evoke a protected
conversation. ICF application programs need to evoke a con-
versation at a synchronization level of commit
(SYNLVL(*COMMIT)) for two-phase commit. CPI Communi-
cations application programs need to evoke a conversation at
a synchronization level of sync point (CM_SYNC_POINT).

Conversations that use two-phase commit protocols are also
known as protected conversations . Protected conversa-
tions are not allowed in the System/36 and System/38 envi-
ronments of an AS/400 system. They are also not allowed for
single-session connections.

A network of application programs communicating over pro-
tected conversations forms a transaction program network
as shown in Figure 3-1. The initiator issues the first commit
operation. Once the commit is issued, each node in the
transaction program network is asked to commit its resources
using the two-phase commit protocols. If all agents respond
with a commit operation, all nodes in the transaction program
network commit their updates. If one node responds with a
rollback, all of the nodes in the transaction program network
are forced to roll back their changes to the last synchroniza-
tion point.

 ┌─────────┐

 │Initiator│

 └────┬────┘

 ┌────────┴────────┐

 ┌────┴────┐ ┌────┴────┐

 │Cascaded │ │Cascaded │

 │Initiator│ │Initiator│

 └────┬────┘ └────┬────┘

 ┌────┴────┐ ┌────┴────┐

┌──┴──┐ ┌──┴──┐ ┌──┴──┐ ┌──┴──┐

│Agent│ │Agent│ │Agent│ │Agent│

└─────┘ └─────┘ └─────┘ └─────┘

Figure 3-1. Transaction Program Network

The two-phase commit protocol permits updates to pro-
tected resources to be committed or rolled back as a unit.
During the first phase, agents are asked if they are ready to
commit. If all agents respond positively, they are asked to
commit their updates. Otherwise, the agents are asked to roll
back their updates.

 Resynchronization

Resynchronization of protected resources happens when a
failure (such as a session or node failure) occurs during a
commit or rollback operation. Normal communications
recovery methods should be used to correct the communi-
cations error. After the communications error is corrected, the
system brings up a session between the two systems that
detected the error. Then, it resynchronizes the protected
resource states.

For more information about two-phase commit and resyn-
chronization, see the Backup and Recovery book.

APPC Data Compression

APPC session-level data compression reduces the amount of
data sent across a communications line during an APPC
session. It can increase the throughput on slower lines. It can
reduce the cost per bit on expensive lines. However, data
compression also uses processing unit cycles. It can actually
reduce throughput on fast lines that can send the data faster
than the processing unit can compress it. Data compression
varies in its effectiveness depending on the content of the
data. For example, data compression is more effective on
text than on binary data.

You can use APPC data compression between any two
systems that support APPC and data compression. For
example, clients using Client Access/400 can use APPC data
compression if Communications Manager/2 or Communi-
cations Manager/400 and the AS/400 mode description are
configured properly.

You can set up APPC to do compression in various ways.
APPC can compress the outbound data, the inbound data, or
both. You can select from two different compression algo-
rithms and three levels of one of the compression algorithms.

3-6 OS/400 APPC Programming V4R1

In other words, you can select from four levels of data com-
pression.

You can specify network attributes to set the system strategy
for APPC data compression. For APPC sessions, the system
can do the following:

� Require data compression

� Request data compression based on line speed

� Request data compression regardless of line speed

� Allow data compression

� Disallow data compression

This network attribute may be overridden by its corre-
sponding parameter in a mode description. The system can
also notify session end nodes that data compression should
be done. This applies when the system is an APPN network
node serving as an intermediate node for the session. This
request may be based on line speed. This network attribute
has no corresponding parameter in mode descriptions.

The compression algorithms are:

Run-length encoding (RLE) Substitutes a 1- or 2-byte
sequence in the data stream for each repeated
run of the same character. This algorithm
requires no storage and fewer processing unit
cycles than the adaptive dictionary-based com-
pression algorithm. Its compression ratio is
worse than the compression ratio for adaptive
dictionary-based compression.

Adaptive dictionary-based compression Adaptive
dictionary-based compression is a dynamic com-
pression algorithm, similar to Lempel-Ziv, that
compresses previously seen strings to 9-, 10-,
and 12-bit codes. This algorithm is referred to as
LZ. The algorithm is adaptive because it makes
its codes by referring to previous instances of
strings in the data stream. These coded strings
are stored in a common dictionary that is created
adaptively as the data flows from the sender to
the receiver. The LZ algorithm requires storage
and extra processing unit cycles.

Three levels of LZ compression are supported:

LZ9 Requires less storage and fewer
processing unit cycles than LZ10
and LZ12. However, its com-
pression ratio is also worse than
LZ10 and LZ12.

LZ10 Requires more storage and proc-
essing unit cycles than LZ9 but less
storage and fewer processing unit
cycles than LZ12. Similarly, its com-
pression ratio is better than LZ9 but
worse than LZ12.

LZ12 Requires the most storage and proc-
essing unit cycles and has the best
compression ratio.

Considerations for Data Compression

When deciding how to configure your system for APPC
session-level data compression, you should consider the
following:

Line speed The slower the line, the more likely the line is a
performance bottleneck. Also, the slower the
line, the likelier the data compression will
improve the throughput of the line. The faster the
line, the likelier the data is transmitted faster
than it is compressed and decompressed.

Processing unit utilization Data compression and decom-
pression use processing unit cycles at both ends
of the session. If processing unit cycles are
available at both ends of the session, data com-
pression is viable. If the processing unit is
heavily used, data compression may adversely
affect system performance.

Line charges Data compression reduces the amount of data
transmitted. Therefore, it should reduce
utilization-based line charges (such as X.25).

Line usage Heavily-used lines can benefit from data com-
pression because data compression can reduce
the amount of traffic on the lines.

Intermediate node compression requests Intermediate
nodes should request compression if sessions
routed through them go in or out on a slow line.
If System A is on a fast line but has sessions
routed through intermediate nodes, System A
should allow compression. By allowing com-
pression, System A can compress data when an
intermediate system requests it.

Specialized modes Unique compression needs should be
specified using a unique mode description. Thus,
the network attributes and commonly used
modes can meet most needs, and a few special-
ized modes can meet any unique needs.

Type of data The effectiveness of the compression algo-
rithms depends on the content of the data being
compressed. RLE compresses repeated charac-
ters. Its effectiveness is entirely dependent on
the quantity of repeated characters. For
example, a compiled program may have only a
few repeated characters. Similarly, the LZ com-
pression algorithm compresses repeated strings
of characters. Therefore, its effectiveness is
dependent on the quantity of repeated character
strings.

 Chapter 3. APPC Concepts 3-7

Specifying Data Compression Parameters
for a Mode Description

There are three mode description parameters that control
APPC data compression. The first is the data compression
(DTACPR) parameter. The DTACPR parameter specifies
whether or not you want data compressed for sessions that
have one end at this AS/400 system. The second is the
inbound data compression (INDTACPR) parameter, which
specifies the desired level of compression for inbound data.
The third is the outbound data compression (OUTDTACPR)
parameter, which specifies the desired level of compression
for outbound data. These mode description parameters
allow you to specify data compression settings, which can be
unique to the session or sessions using this mode. These
parameters are used with the Create Mode Description
(CRTMODD) and the Change Mode Description
(CHGMODD) commands.

The DTACPR parameter has an initial value of *NETATR,
which means the parameter uses the value of the DTACPR
network attribute. To disallow data compression on APPC
sessions using this mode, specify *NONE. To allow data
compression when session partners request it, specify
*ALLOW. To request data compression for APPC sessions
using this mode, specify *REQUEST. If you specify
*REQUEST, data is compressed only if the session partner
grants the request. To require data compression on APPC
sessions, specify *REQUIRE. If you specify *REQUIRE, ses-
sions using this mode are established only if the partner
grants the request for compression at the specified com-
pression levels. No other compression levels can be used for
both inbound and outbound data. To request data com-
pression based on line speed, specify the maximum line
speed at which you want data compressed.

The INDTACPR and OUTDTACPR parameters have an
initial value of *RLE. This means that the run-length encoding
algorithm is used to compress inbound and outbound data.
To get better compression ratios while using more storage
and expending more processing unit cycles, specify *LZ9,
*LZ10, or *LZ12. The LZ algorithm with the 9-bit code (*LZ9)
has the worst compression ratio and the lowest resource

usage of the LZ choices. On the other hand, *LZ12 has the
best compression ratio and the highest resource usage.

Specifying Network Attributes for Data
Compression

There are two network attributes that control APPC data
compression. One is the data compression (DTACPR)
network attribute. The DTACPR network attribute specifies
whether or not you want data compressed for sessions that
have one end at this AS/400 system. The DTACPR network
attribute is only used when the DTACPR parameter in a
mode description is *NETATR. The second network attribute
that affects APPC data compression is the intermediate node
data compression (DTACPRINM) network attribute. The
DTACPRINM network attribute specifies the level of data
compression to request when this AS/400 system is an inter-
mediate session node. These network attributes can be
specified using the Change Network Attributes (CHGNETA)
command.

The DTACPR network attribute has an initial value of
*NONE. It can also have values of *ALLOW, *REQUEST,
*REQUIRE, or a specific line speed. For more information on
the meaning of these values, see the discussion of the
DTACPR parameter in “Specifying Data Compression
Parameters for a Mode Description.”

The DTACPRINM network attribute has an initial value of
*NONE, which means that when this AS/400 system is an
APPN intermediate node, this system does not notify the end
nodes that data compression is needed. To notify the end
nodes that data compression should be done, specify
*REQUEST. To base requests for data compression on line
speed, specify the maximum line speed at which you want
data compressed. If data compression is done, the end
nodes (not this intermediate node) do the compression and
decompression. For data to be compressed, the end nodes
must have their modes configured to allow it.

How to Get the Compression You Want: Table 3-2
shows whether or not data is compressed based on the
values of the data compression (DTACPR) parameters at the
two end points.

Table 3-2 (Page 1 of 2). Results of Compression Settings. This table shows whether or not data is compressed depending on the
data compression (DTACPR) parameters of System A and System B.

 DTACPR Value System B

*NONE *ALLOW *REQUEST *REQUIRE

System A *NONE 1 1 1 5

*ALLOW 1 2 3 7

*REQUEST 1 3 3 7

*REQUIRE 4 6 6 8

3-8 OS/400 APPC Programming V4R1

Table 3-2 (Page 2 of 2). Results of Compression Settings. This table shows whether or not data is compressed depending on the
data compression (DTACPR) parameters of System A and System B.

 DTACPR Value System B

*NONE *ALLOW *REQUEST *REQUIRE

Notes:

1. No compression for either inbound or outbound data.

2. No compression for either inbound or outbound data unless an intermediate node requests compression. See note 3 for information about the
compression levels used for the session.

3. The compression level used from System A to System B is the minimum of the outbound level of System A (OUTDTACPR) and the inbound level
of System B (INDTACPR). The compression level used from System B to System A is the minimum of the outbound level of System B
(OUTDTACPR) and the inbound level of System A (INDTACPR).

4. The session is not established unless the inbound (INDTACPR) and outbound (OUTDTACPR) compression levels of System A are both *NONE.
In which case the session is established, but the data is not compressed.

5. The session is not established unless the inbound (INDTACPR) and outbound (OUTDTACPR) compression levels of System B are both *NONE.
In which case the session is established, but the data is not compressed.

6. The inbound data compression level (INDTACPR) for System B must be greater than or equal to the outbound data compression level
(OUTDTACPR) for System A. Likewise, the outbound data compression level (OUTDTACPR) for System B must be greater than or equal to the
inbound data compression level (INDTACPR) for System A. If these two conditions are met, the compression levels for System A are used.
Otherwise, no session is established.

7. The inbound data compression level (INDTACPR) for System A must be greater than or equal to the outbound data compression level
(OUTDTACPR) for System B. Likewise, the outbound data compression level (OUTDTACPR) for System A must be greater than or equal to the
inbound data compression level (INDTACPR) for System B. If these two conditions are met, the compression levels for System B are used.
Otherwise, no session is established.

8. The inbound data compression level (INDTACPR) for System B must equal the outbound data compression level (OUTDTACPR) for System A.
Conversely, the OUTDTACPR parameter for System B must match the INDTACPR parameter for System A. If they are equal, the session uses
those compression levels. Otherwise, no session is established.

This table makes the following simplifications:

� DTACPR(line-speed) is not shown. When the line speed of the line is less than or equal to the value of DTACPR, the compression level is the
same as when DTACPR is *REQUEST. When the line speed of the line is greater than the value of DTACPR, the compression level is the same
as when DTACPR is *ALLOW.

� Both systems support APPC data compression. For any APPC system that does not support compression, the resulting compression level is the
same as when DTACPR is *NONE.

No Compression Sometimes Means No Session: When
the DTACPR parameter is *REQUIRE, the INDTACPR and
OUTDTACPR parameters specify the level of compression
that is required for the inbound and outbound data. If that
level of compression is not agreed to by the other system,
the session is not started.

Intermediate Node Compression Requests: When both
systems allow compression but neither system requests com-
pression, the data is compressed if an intermediate node
requests compression. A system allows compression but
does not request it when:

� DTACPR is *ALLOW

� DTACPR is line-speed and the line speed of the line is
greater than the value of DTACPR.

Data Compression Based on Line Speed: When the
value of the DTACPR parameter is a line speed:

� Data compression is requested (the same as for
*REQUEST) when the line speed is less than or equal to
the value specified

� Data compression is allowed (the same as for *ALLOW)
when the line speed is greater than the value specified

Whether or not the data is compressed depends on the
DTACPR parameter of the partner system, see Table 3-2 on
page 3-8.

Determining the Compression Level: The compression
level is specified on the inbound (INDTACPR) and outbound
(OUTDTACPR) data compression parameters. The
INDTACPR parameters of the systems are matched with the
OUTDTACPR parameters of their partner system. The two
systems negotiate to determine the compression levels for
the session. The minimum compression levels of the
matched INDTACPR and OUTDTACPR parameters are
used. The compression levels from minimum to maximum
are:

 Minimum Maximum

None RLE LZ9 LZ1ð LZ12

 Table 3-3 shows the level of compression resulting from the
settings shown for the INDTACPR or OUTDTACPR parame-
ters.

Table 3-3 (Page 1 of 2). Minimum Compression Level Chart

 *NONE *RLE *LZ9 *LZ10 *LZ12

*NONE None None None None None

 Chapter 3. APPC Concepts 3-9

Table 3-3 (Page 2 of 2). Minimum Compression Level Chart

 *NONE *RLE *LZ9 *LZ10 *LZ12

*RLE None RLE RLE RLE RLE

*LZ9 None RLE LZ9 LZ9 LZ9

*LZ10 None RLE LZ9 LZ10 LZ10

*LZ12 None RLE LZ9 LZ10 LZ12

Data Compression Examples: The following examples
illustrate how some of the considerations for data com-
pression may influence the configuration of APPC data com-
pression. Use these examples to identify the considerations
that are appropriate in your environment. Do not use the
values shown without considering their effect in your environ-
ment.

Example 1. Slow Line: System A and B are both config-
ured to request compression.

 ┌───┐ 12ðð bps ┌───┐

│ A ├────────────┤ B │

 └───┘ └───┘

Network Network

Attributes Attributes

 DTACPR=\REQUEST DTACPR=\REQUEST

Mode Mode

 DTACPR=\NETATR DTACPR=\NETATR

 INDTACPR=\LZ12 INDTACPR=\LZ1ð

 OUTDTACPR=\LZ12 OUTDTACPR=\LZ1ð

 Considerations

 � Slow line.

� Processor and storage resources are available. Other-
wise, a lower compression level (LZ10, LZ9, or RLE)
may be used.

Resulting Compression Levels: The compression level is
negotiated and the minimum level is selected.

Example 2. Slow Line, Another Solution: System A is
configured to request compression and System B is config-
ured to allow compression.

 ┌───┐ 12ðð bps ┌───┐

│ A ├────────────┤ B │

 └───┘ └───┘

Mode Mode

 DTACPR=\REQUEST DTACPR=\ALLOW

 INDTACPR=\LZ1ð INDTACPR=\LZ12

 OUTDTACPR=\LZ9 OUTDTACPR=\RLE

 Considerations

 � Slow line.

� Processor and storage resources are available. Other-
wise, a lower compression level (LZ10, LZ9, or RLE)
may be used.

Resulting Compression Levels: The compression level is
negotiated and the minimum level is selected.

Example 3. Slow Line, Yet Another Solution: System A
is configured to request compression if the line speed
between A and B is 2400 bps or less. It is configured to
allow compression if the line speed between A and B is
greater than 2400 bps. System B is configured to allow com-
pression.

 ┌───┐ 12ðð bps ┌───┐

│ A ├────────────┤ B │

 └───┘ └───┘

Mode Mode

 DTACPR=24ðð DTACPR=\ALLOW

 INDTACPR=\LZ1ð INDTACPR=\LZ12

 OUTDTACPR=\LZ1ð OUTDTACPR=\LZ9

 Considerations

 � Slow line.

� Processor and storage resources are available. Other-
wise, a lower compression level (LZ10, LZ9, or RLE)
may be used.

Resulting Compression Levels: The compression level is
negotiated and the minimum level is selected.

Example 4. Fast Line: System A and B are both config-
ured to allow compression.

 ┌───┐ 16M bps ┌───┐

│ A ├────────────┤ B │

 └───┘ └───┘

Mode Mode

 DTACPR=\ALLOW DTACPR=\ALLOW

A to B LZ9
B to A RLE

A to B LZ10
B to A LZ10

A to B LZ10
B to A LZ9

3-10 OS/400 APPC Programming V4R1

 Considerations

 � Fast line

Resulting Compression Levels: The data is not compressed
because neither system requests compression.

Example 5. One Fast Line and One Slow Line: System A
and System C are both configured to allow compression.
System B is configured to request compression for any ses-
sions that use System B as an intermediate node.

┌───┐ 4M bps ┌───┐ 12ðð bps ┌───┐

│ A ├──────────┤ B ├──────────┤ C │

└───┘ └───┘ └───┘

Network Network Network

Attributes Attributes Attributes

 DTACPR=\ALLOW DTACPRINM= DTACPR=\ALLOW

 \REQUEST

Mode Mode

 DTACPR=\NETATR DTACPR=\NETATR

 INDTACPR=\LZ1ð INDTACPR=\LZ1ð

 OUTDTACPR=\LZ1ð OUTDTACPR=\LZ1ð

 Considerations

� Fast line from System A to System B.

� Slow line from System B to System C.

� Processor and storage resources are available.

Resulting Compression Levels

Example 6. Heavy Data Traffic in One Direction

 ┌───┐ 24ðð bps ┌───┐

│ A ├────────────┤ B │

 └───┘ └───┘

Mode Mode

 DTACPR=\REQUEST DTACPR=\REQUEST

 INDTACPR=\NONE INDTACPR=\LZ1ð

 OUTDTACPR=\LZ1ð OUTDTACPR=\NONE

 Considerations

 � Slow line.

� More data is sent from System A to System B than from
System B to System A. The level of compression speci-
fied on the OUTDTACPR parameter on System A maps
to the level specified on the INDTACPR parameter on
System B.

� Processor and storage resources are available.

Resulting Compression Levels

Example 7. Processor Utilization Too High

 ┌───┐ 96ðð bps ┌───┐

│ A ├────────────┤ B │

 └───┘ └───┘

Network Network

Attributes Attributes

 DTACPR=\NONE DTACPR=\REQUEST

 Considerations

 � Slow line.

� System A does not allow compression because its proc-
essing unit is already busy.

Resulting Compression Levels

 Example 8. Specialized Mode

┌───┐ 192ðð bps ┌───┐

│ A ├────────────┤ B │

 └───┘ └───┘

Network Network

Attributes Attributes

 DTACPR=\REQUEST DTACPR=\REQUEST

Mode 1 Mode 1

 DTACPR=\NETATR DTACPR=\NETATR

 INDTACPR=\LZ9 INDTACPR=\LZ9

 OUTDTACPR=\LZ9 OUTDTACPR=\LZ9

Mode 2 Mode 2

 DTACPR=\NETATR DTACPR=\NETATR

 INDTACPR=\LZ12 INDTACPR=\LZ9

 OUTDTACPR=\LZ9 OUTDTACPR=\LZ12

 Considerations

� 19200 bps line speed.

� Processor and storage resources are available.

� Off-shift large file transfers from System B to System A.

Note: Additional modes may be needed to handle unique
compression needs.

Resulting Compression Levels

A to B None
B to A None

A to C LZ10
C to A LZ10

A to B (Mode 1) LZ9
B to A (Mode 1) LZ9
A to B (Mode 2) LZ9
B to A (Mode 2) LZ12

A to B LZ10
B to A None

 Chapter 3. APPC Concepts 3-11

When Do Changes Take Effect?

For APPC, changes to the mode description or network attri-
butes do not take effect immediately. They take effect for
sessions on a device when the device is varied off and then
back on.

For APPN support, changes to the mode description or
network attributes do not take effect immediately. They take
effect for sessions on a device when all devices with the
same remote location name, local location name, and remote
network ID are varied off.

How to Determine If a Session Uses
Compression

For APPC, trace the communications line, which you can do
using the Start System Service Tools (STRSST) command
menu interface. For more information about the STRSST
command, see the CL Reference.

For APPN support, display the unformatted BIND using the
Display APPN Information (DSPAPPNINF) command.

In either case, the SNA Formats manual contains information
to help you find the negotiated compression values.

APPC Security Considerations

There are four aspects of security for an AS/400 system, a
System/38, and a System/36 communicating with each other
using APPC and APPN:

� Physical security surrounding the systems, modems,
communication lines and display stations that can be
configured in the line description and used in the route
selection process

� Location security that verifies the identity of other
systems in the network

� User ID security that verifies the identity and rights of
users to issue commands on their local system and
remote systems

� Resource security that controls user access to partic-
ular resources, such as confidential databases

Only security for communications or multiple systems man-
agement is discussed in this section. Security needs to be
consistent across all the systems in a network if intersystem
access is to be controlled and yet not unnecessarily
restricted.

Location, user ID, and resource security are only possible if
the system security level is set at an appropriate level. The
AS/400 security levels are explained in more detail in
“AS/400 Security Levels.”

IBM-supplied application programs and user-written applica-
tion programs have different security implementations that
must be understood. An important issue is what user ID is

used when communicating with the remote system. Default
user IDs can be provided for some applications but not for
others, and customers must decide the requirements that
determine the use of default user IDs.

AS/400 Security Levels

An understanding of the base security functions of the
AS/400 system is necessary when discussing network secu-
rity.

When the system is using level 10 security, AS/400 APPC
connects to the network as a nonsecure system. The AS/400
system does not validate the identity of a remote system
when a session is being established, and does not require
transaction security on incoming program start requests.

Note: For level 10, security information configured for the
APPC remote location (location password and secure
location in the device description or remote location
list) is ignored and is not used when a session or
conversation is being established.

Security is dependent on both systems. If the AS/400 system
is the remote system and is using level 20 or above, AS/400
APPC connects to the network as a secure system. The
sending system can then provide both session and applica-
tion level security functions.

The security level is a system value (QSECURITY) that can
be set with the Change System Values (CHGSYSVAL)
command or from the configuration menu as part of an initial
program load (IPL) of the system. The change takes place
after the next IPL of the system.

For more information on security levels, see the Security -
Reference manual.

 Physical Security

You are responsible for the physical security of your system
when you specify *NONE for the location password
(LOCPWD) parameter during APPC configuration. In this
case, the AS/400 system does not validate the identity of a
remote system when a session is being established.
However, you can still use application level security if the
remote system supports it, for example, if the remote system
is an AS/400 system with security level 20 or above.

Session Level Security

Session level security or security on the BIND is achieved
by specifying a password on the LOCPWD parameter during
configuration. The AS/400 system uses the password to vali-
date the identity of the remote system when a session is
being established. The password must match the password
specified on the remote system or the connection is not
allowed. Not all systems support session level security. For
example, Series/1 RPS version 7.1 and CICS/VS release 1.6
do not. If the remote system does not support session level

3-12 OS/400 APPC Programming V4R1

security, you must specify LOCPWD(*NONE) to establish the
connection, and provide the necessary physical security.

If the location passwords specified for two systems are the
same (or null), then the sessions are considered secure and
they allow location security.

See Table 3-4 for a list of the null password implementations
for the AS/400 system, System/38, and System/36.

Both the System/38 and the AS/400 system (with level 20 or
above) have a location security manager with a null pass-
word but the System/36 does not. This means that a
location must be explicitly defined with the System/36
SECEDIT COMM procedure if session-level security is to
exist between a System/36 and another location (System/36,
System/38 or AS/400 system). This is the same as if a

location is not defined with SECEDIT COMM or if password
security is not active so that no locations can be defined with
SECEDIT COMM.

A non-null-location password enhances security because
there is greater certainty about the identity of the remote
system. This is especially important in X.25 networks and
switched communications.

However, in a large network an equally large number of
passwords may be required if any-to-any connectivity is
required. To simplify the password management function, the
password can default to a value of null without reducing
application program security.

Validation Tables for Establishing a
Session

Table 3-5 and Table 3-6 show the allowed security levels for
session establishment (or BIND) that result from all the com-
binations of location passwords in a peer network. When a
session fails to be established (the BIND fails), no APPC
communications is possible between these two systems.
When the remote system allows incoming conversation-level
security parameters, your system may use the signed-on
user ID; a user ID and password; or *NONE. When the
remote system does not allow incoming conversation-level
security parameters, your system may not send the
signed-on user ID.

Table 3-4. Null Password Implementations

System Parameter Null Value

AS/400 System Remote Config.
List Loc. Pass-
word or LOCPWD
parameter

*NONE

System/38 CRTDEVD
SYSVLDPWD

*NONE

System/36 SECEDIT COMM
Location Pass-
word

*NULL

Table 3-5 (Page 1 of 2). Establishing a Session between an AS/400 System and a System/38, System/36, or another AS/400 system.

Remote System/Security Local AS/400 Security Level 1

10 >10 (*NONE Specified) >10 (PASSWORD Specified)

AS/400 System

Security = 10 Security not
accepted

Security accepted3 Fails

Security >10 (*NONE2) Security not
accepted

Security accepted Fails

Security >10 (PASSWORD2) Fails Fails Security accepted if passwords
match

System/38

*NONE Security not
accepted

Security accepted Fails

PASSWORD Fails Fails Security accepted if passwords
match

System/36

No password Security not
accepted

Security accepted4 Fails

*NULL Security not
accepted

Security accepted Fails

PASSWORD Fails Fails Security accepted if passwords
match

 Chapter 3. APPC Concepts 3-13

Table 3-5 (Page 2 of 2). Establishing a Session between an AS/400 System and a System/38, System/36, or another AS/400 system.

Remote System/Security Local AS/400 Security Level 1

10 >10 (*NONE Specified) >10 (PASSWORD Specified)

1 The information under each security level indicates the effect of each security level on session establishment (BIND).

2 These are values for the LOCPWD parameter on the CRTDEVAPPC command.

3 Security accepted indicates that the incoming conversation-level security parameters (user ID and password, or user ID and
already verified indicator without a password) are allowed.

4 Security is accepted but the already verified indicator is never sent.

Table 3-6. Establishing a Session between a System/36 or System/38 and Another System/36 or System/38

Remote System/
Password

System/38 1 Location Password System/36 1 Location Password

*NONE PASSWORD No Password *NULL PASSWORD

System/38

*NONE Security accepted
2

Fails Security not
accepted

Security accepted Fails

PASSWORD Fails Security accepted
if passwords match

Fails Fails Security accepted
if passwords
match

System/36

No password Security not
accepted

Fails Security not
accepted

Security not
accepted

Fails

*NULL Security accepted Fails Security not
accepted

Security accepted Fails

PASSWORD Fails Security accepted
if passwords match

Fails Fails Security accepted
if passwords
match

1 The information under each password location indicates the effect of each password location on session establishment
(BIND).

2 Security accepted indicates that the incoming conversation-level security parameters (user ID and password, or user ID and
already verified indicator without a password) are allowed.

Failure to Establish a Session

With the addition of support for APPC password protection
and two-phase commit there have been occurrences of failed
session establishments (or BINDs) with non-OS/400 systems.
There have also been failed BIND requests related to the
V3R1 support of full-duplex for Anynet/400 Sockets over
SNA, also with non-OS/400 systems. These failures are the

result of incorrect support (by non-OS/400 systems) of the
password protection, two-phase commit, and full-duplex bits
in the BIND requests sent by OS/400.

Examples of Failures

When the BIND negotiation fails (because of incorrect
support of the LU 6.2 architecture by non-OS/400 systems),
the following SNA sense codes may occur:

3-14 OS/400 APPC Programming V4R1

Table 3-7. Sense Code Descriptions

Sense Code Description Comments.

X'080F 6051' End User of LU Not
Authorized.

The requesting end user or LU does not have the proper security authorization
to access the requested resource.

6051 Access Security Information Invalid: The request specifies an Access Secu-
rity Information field that is unacceptable to the receiver; for security reasons, no
further detail on the error is provided. This sense data is sent in FMH-7 or
UNBIND.

Note: X'080F' has many causes; X'6051' is just one example. You can look for
the CPF1269 message by using the DSPLOG CL command.

X'0835 0007' Invalid Parameter (with
Pointer Only).

The request contained a fixed- or variable-length field whose contents are invalid
or not supported by the NAU that received the request.

nnnn Bytes 2 and 3 contain a two-byte binary count that indexes (0-origin) the
first byte of the fixed- or variable-length field having invalid contents.

X'0007' is referring to the Normal-flow send/receive mode selection.

X'0835 0024' See previous sense
code.

X'0024' is referring to the synchronization level.

X'086F 0000' Length error. A length field within a structure is invalid, or two or more length fields are incom-
patible.

X'1006 0006' Required field or param-
eter is missing.

0006 A required subfield of a control vector was omitted.

X'1008 6021' Invalid FM Header. The FM Header was not understood or translatable by the receiver, or an FM
header was expected but not present. For LU 6.2, this sense code is sent in
FMH-7 or UNBIND.

6021 Transaction Program Name Not Recognized: The FMH-5 Attach command
specifies a transaction program name that the receiver does not recognize. This
sense data is sent only in FMH-7.

X'1008 6034' See previous sense
code.

X'6034' is referring Conversation Type Mismatch: The FMH-5 Attach command
specifies a conversation type that the receiver does not support for the specified
transaction program. This sense data is sent only in FMH-7.

If any of the previous sense codes are received as part of a
failure to establish a session, the failure is probably related to
incorrect support (by the remote non-OS/400 system) of:

 � Password protection

 � Two-phase commit

 � Full-duplex

You should check to verify proper support of the BIND
request by the non-OS/400 system that received the request.

Note: The previous sense code explanations are taken from
the SNA Formatspublication.

Examples of Failures - by System

Table 3-8. Sense Code Descriptions

System Failure Fix Available?

System/36 Echoed the reserved bit for password substitution
(password protection).

Yes, (System/36 PTF)

Novell Netware for SAA Echoing the full-duplex bit. Yes, contact Novell.

Novell Netware for SAA Echoing the already verified bit. Yes, contact Novell.

Novell Netware for SAA Echoing the password substitution bit. Yes, contact Novell.

SUNLINK for SUN Did not expect user subfield 13 for password substi-
tution.

Yes, contact SUN.

Pearl OEM "look alike" 5494 Controller Fields are incompatible. Aware of problem.

Idea OEM "look alike" 5494 Controller Fields are incompatible. Aware of problem.

 Chapter 3. APPC Concepts 3-15

Conversation Level Security

ICF supports three types of security that are specified on the
SECURITY DDS keyword:

Table 3-9. ICF Security Support

LU6.2 Architected Term DDS Keyword

SECURITY(NONE) no keyword or SECURITY(3 *NONE)

SECURITY(SAME) SECURITY(3 *USER)

SECURITY(PGM) SECURITY(1 profile 2 password 3 user ID)

CPI-Communications supports four types of security that are
specified on the Set_Conversation_Security_Type call:

Table 3-10. CPI-Communications Security Support

LU6.2 Architected Term CMSCST Value.

SECURITY(NONE) CM_SECURITY_NONE

SECURITY(SAME) CM_SECURITY_SAME (default value)

SECURITY(PGM) CM_SECURITY_PROGRAM

SECURITY(PROGRAM_STRONG) CM_SECURITY_PROGRAM_STRONG

For the conversation level security implementation done by
CICS/400, refer to the CICS/400 Administration and Oper-
ations Guide book. For sockets conversation level security
implementation, refer to the Sockets Programming book.

Implementations of LU6.2 Conversation
Level Security

These descriptions assume that the remote system is the
source of the conversation and the local system (an AS/400)
is the target of the conversation.

 SECURITY(NONE): SECURITY(NONE) conversations
send no user ID, no password, and no profile from the
remote (source) system. On AS/400s receiving
SECURITY(NONE) program start requests, the DFTUSR
parameter on the communications entry for the subsystem
description (where the remote job runs) controls if the job
starts.

The DFTUSR parameter can have these values:

*SYS
This allows IBM-supplied programs (for example,
SNADS, DDM, DRDA, display station pass-through) to
run without sending security information. *SYS rejects
programs that IBM does not supply (for example, user-
written ICF or Common Programming Interface Commu-
nications applications).

*NONE
All programs that do not send security information are
rejected. This includes IBM-supplied and user written
programs.

user-profile-name
All programs (IBM-supplied and others) that do not send
security information will run under control of this user
profile. All programs are treated the same. This is not
desirable if you do not know what programs are being
requested. This user profile should have minimal
authority, and the user profile should not be specified on
an *ALL communications entry. The user profile should
only be specified on communications entries for specific
locations - if it is used at all.

If there is no communications entry on any active subsystem
then all attempts to start a SECURITY(NONE) conversation
will fail. For more information on communications entries
refer to the Work Management book.

 SECURITY(SAME): SECURITY(SAME) conversations
are dependent on local (target) system configurations for the
degree of conversation level security. The SECURELOC
(secure location) parameter on the APPC device description
or APPN remote configuration list entry controls the level of
security. The value is sent to the remote system when ses-
sions are established. The value is used to determine how
allocate or evoke requests should be built. The value applies
only to conversations that are started with the
SECURITY(SAME) level of security. The target system
enforces this value.

SECURELOC has the following values:

*NO

� The remote system is not a secure location.

� Security validation that is done by the remote
system is not accepted. SECURITY(SAME) conver-

3-16 OS/400 APPC Programming V4R1

sations are treated as SECURITY(NONE) by the
remote system.

� No security information is sent with allocate or
evoke requests. This means that the local (target)
system has no indication of who the user is on the
remote system that is sending the program start
request.

� The use of communications entries, as described
previously, is applied to this situation.

*YES

� The remote system is a secure location, and the
local system accepts security validation that is done
by remote systems.

� For SECURITY(SAME) conversations, the local
system allows the remote system to verify user
passwords and send an already verified indicator
with the allocate or evoke requests.

� No password is sent. This means that any user with
the same user profile name on both systems can
run programs on the local system. If the user on the
source system does not exist on the target system,
the request is rejected.

Note: You must trust the security/password
checking on the remote system if you are
using SECURELOC(*YES) since any user
with the same user profile on each system
can sign on and run jobs on your local
system. QSECOFR is an example of a user
profile that exists on all systems. Whoever
can use the QSECOFR profile on the remote
system can also use it on the local system if
SECURELOC is *YES. This is a very pow-
erful feature of SECURELOC(*YES).

*VFYENCPWD

� The remote system is not a secure location. For
SECURITY(SAME) conversations, the remote
system is not allowed to send the already verified
indicator.

� On the remote system, user IDs and passwords are
retrieved from the security manager.

� Passwords are encrypted and sent with the user ID
on allocate or evoke requests, to be verified by the
local system.

� If the remote system does not support password
protection, then session establishment is not
allowed.

� For remote systems supporting password protection,
but not supporting verification of encrypted pass-
words (VFYENCPWD), conversations are treated as
SECURITY(NONE).

� The user profile names and passwords for users
that are the same person on each system must be
the same.

� The retrieval of the user ID and password is done
by APPC and applications do not need to change to
use this option.

� Using this option along with ensuring all user pro-
files and passwords are non-trivial significantly
reduces the risk that someone can run jobs on the
local system by pretending to be someone else (or
being mistaken for someone else).

Note: Generally, *VFYENCPWD allows you to trust
some users but not all users on the remote
system.

SECURITY(PGM): SECURITY(PGM) conversations send
user ID, password, and profile that are based on what the
application program specifies. The profile is optional on
SECURITY(PGM) requests. Passwords may or may not be
encrypted (known as protected passwords). For more infor-
mation on protected passwords see “Password Protection”
on page 3-18.

SECURITY(PROGRAM_STRONG): This is similar to
SECURITY(PGM) with encrypted passwords. The difference
is that an error is returned if the target system does not
support password protection (cannot encrypt passwords).
This is a good way of ensuring passwords are not inter-
cepted on the communications line, something
SECURITY(PGM) does not ensure.

 Enhanced SECURITY(SAME)

Enhanced SECURITY(SAME) on the OS/400 is used for CPI
Communications SECURITY(SAME) conversations.
Enhanced SECURITY(SAME) occurs when one of the fol-
lowing occurs:

� The target system specifies SECURELOC(*NO).

� Each system supports password protection.

For enhanced SECURITY(SAME):

� The remote system retrieves the user ID and password.

� The password is encrypted and sent along with the user
ID on the allocate request.

� On the local system, the user ID must exist and the
password must be the same on each system.

Normal SECURITY(SAME) would cause the conversation to
be treated as SECURITY(NONE) because SECURELOC is
*NO. Enhanced SECURITY(SAME) is similar to
SECURITY(SAME) with the target having
SECURELOC(*VFYENCPWD) described previously. An
important difference is that enhanced SECURITY(SAME) is
controlled on the source system, while the
SECURELOC(*VFYENCPWD) is controlled on the target
system.

 Chapter 3. APPC Concepts 3-17

Enhanced SECURITY(SAME) is enabled by setting the
conversation_security_type to the CM_SECURITY_SAME
value with the Set_Conversation_Security_Type call. This
value is already the default value, if you do not explicitly set
it with CMSCST then the SECURITY(SAME) conversations
continue to be treated as SECURITY(NONE) when target
systems specify SECURELOC(*NO).

If you use enhanced SECURITY(SAME) support:

� The user ID must explicitly exist on both systems.

� The password must be the same on both systems.

If these conditions are not met, the program start request is
rejected with a security violation error. To avoid this error, do
one of the following:

� Remove the Set_Conversation_Security_Type
(CMSCST) call.

� Change the conversation security level to
SECURITY(NONE) or SECURITY(PGM). For
SECURITY(PGM) specify a valid user ID and password.

� Add the user ID or correct the password on the target
system.

� Have the local system acknowledge that the source
system is a secure location (SECURELOC(*YES)).

Note:

1. Enhanced SECURITY(SAME) is not used for ICF
or CICS/400 SECURITY(SAME) conversations.

2. Enhanced SECURITY(SAME) is only used for
CPI Communications when
CM_SECURITY_SAME is set by the CMSCST
call.

Degrees of Conversation Level Security

The following table illustrates the degree of security target
systems can expect with each of the conversation security
levels:

Table 3-11. Degrees of Conversation Level Security

Degree of Security Conversation Level Security Used.

Failing Conversations SECURITY(NONE) with no communications entry or *NONE in the communications entry

SECURITY(SAME) with SECURELOC(*NO) and no communications entry or *NONE in the
communications entry

Least Secure Conversations SECURITY(SAME) with SECURELOC(*YES)

SECURITY(NONE) with a communications entry allowing jobs to start with default user profiles

SECURITY(SAME) with SECURELOC(*NO) and a communications entry allowing jobs to start
with default user profiles

More Secure Conversations SECURITY(PGM) with password in the clear

Most Secure Conversations SECURITY(PGM) with a protected (encrypted) password

Enhanced SECURITY(SAME)

SECURITY(SAME) with SECURELOC(*VFYENCPWD)

SECURITY(PROGRAM_STRONG)

 Password Protection

With password protection support APPC substitutes a char-
acter string, called a protected password , for a user pass-
word when APPC starts a conversation. To use this support,
the following conditions must be met:

� The systems of both partners must support password
protection. This is done for OS/400 Version 3 Release 1
or later.

� The password must have been created on a system that
runs OS/400 Version 2 Release 2 or later.

� The conversation level of security must be either
SECURITY(PGM), SECURITY(PROGRAM_STRONG),
enhanced SECURITY(SAME), or SECURITY(SAME)
with the target having SECURELOC(*VFYENCPWD).

When password protection is available it reduces the
chances that someone monitoring the communications line
can discover the password of a User ID needed to run jobs
on the system. SECURITY(PROGRAM_STRONG),
enhanced SECURITY(SAME), and SECURITY(SAME) with
SECURELOC(*VFYENCPWD) require password protection
support to provide the function requested. SECURITY(PGM)
uses password protection support if it is available but will
work with or without it.

System/38 and System/36 Secure
Locations

Secure locations are defined on the System/38 by using the
SECURELU parameter on the CRTDEVD command. The
values for this parameter are *YES and *NO. The secure
value is *YES. The nonsecure value is *NO.

3-18 OS/400 APPC Programming V4R1

For the System/36, secure locations are defined by using the
'Require User Password' option on SECEDIT COMM. The
values are N and Y. The secure value is N. The nonsecure
value is Y.

System-Supplied Format Security

For system-supplied formats which use security information
($$EVOK, $$EVOKET, $$EVOKNI) the security information
is specified in the data buffer of the source-side application
program as follows:

� Positions 9 through 16 is the password

� Positions 17 through 24 is the user ID

Note: Profile ID cannot be specified when using system-
supplied formats.

The values that can be specified for the security fields are:

� 'literal': a literal value (up to 8 characters) that contains
the needed security information.

 � 'blanks':

– When specified for the user ID, 'blanks' operate the
same as *USER

– When specified for the password, 'blanks' operate
the same as *NONE

� *NONE: No value is to be used

� *USER: The user ID of the currently signed on user

Table 3-12 shows the values that can be specified for the
system-supplied formats security fields, and the resultant
conversation security levels that are used.

Table 3-12. Effects of System-supplied Format Security Fields on Conversation Level Security

User ID Field

Password Field

'literal' 'blanks' *NONE *USER

'literal' SECURITY (PGM) SECURITY (PGM) SECURITY (PGM) SECURITY (PGM)

'blanks' SECURITY (PGM) SECURITY
(SAME)

SECURITY
(NONE)

SECURITY (SAME)

*NONE SECURITY (PGM) SECURITY
(SAME)

SECURITY
(NONE)

SECURITY (SAME)

*USER SECURITY (PGM) SECURITY (PGM) SECURITY (PGM) SECURITY (PGM)

User IDs Used when the AS/400 System Is
the Target System

Table 3-13 shows where user IDs are extracted when the
AS/400 system is the target system and the session estab-
lishment is one of the following:

� Security not accepted

� Security accepted and SECURELOC(*YES) is specified

� Security accepted and SECURELOC(*NO) is specified

� Security accepted and SECURELOC(*VFYENCPWD) is
specified

Table 3-13 (Page 1 of 2). Summary of User IDs Used when the AS/400 System is the Target System

Session Establishment SECURITY(NONE) Applica-
tions using Subsystem
Default User ID

SECURITY(SAME) Applica-
tions using Source Sign-on
User ID

SECURITY(PGM) or
SECURITY(PROGRAM_STRONG)
Applications using User ID and
Password Sent in Program
Start Request

Security not accepted1 DDM2 SNADS3 AS/400
display station pass-through
S/36 display station pass-
through S/38 display station
pass-through FTS4 User-
written program

Not applicable, security is not
accepted

Not applicable, security is not
accepted

Security accepted1 and conver-
sation is not affected by
SECURELOC

AS/400 display station pass-
through S/38 display station
pass-through SNADS User-
written program

Not applicable, all
SECURITY(SAME) conversa-
tions are affected by
SECURELOC

AS/400 display station pass-
through FTS User-written
program

 Chapter 3. APPC Concepts 3-19

Table 3-13 (Page 2 of 2). Summary of User IDs Used when the AS/400 System is the Target System

Session Establishment SECURITY(NONE) Applica-
tions using Subsystem
Default User ID

SECURITY(SAME) Applica-
tions using Source Sign-on
User ID

SECURITY(PGM) or
SECURITY(PROGRAM_STRONG)
Applications using User ID and
Password Sent in Program
Start Request

Security accepted1 and
SECURELOC(*YES)

Not applicable, the value of
SECURELOC does not affect
SECURITY(NONE) conversa-
tions

AS/400 display station pass-
through S/36 display station
pass-through DDM FTS User-
written program

Not applicable, the value of
SECURELOC does not affect
SECURITY(PGM) conversations

Security accepted1 and
SECURELOC(*NO)

Not applicable, the value of
SECURELOC does not affect
SECURITY(NONE) conversa-
tions

User-written program CPI
Communications programs
using enhanced
SECURITY(SAME)5 Note: All
other SECURITY(SAME) con-
versations are treated as
SECURITY(NONE) when
SECURELOC(*NO) is speci-
fied

Not applicable, the value of
SECURELOC does not affect
SECURITY(PGM) conversations

Security accepted1 and
SECURELOC(*VFYENCPWD)

Not applicable, the value of
SECURELOC does not affect
SECURITY(NONE) conversa-
tions

AS/400 display station pass-
through DDM FTS User-written
program

Not applicable, the value of
SECURELOC does not affect
SECURITY(PGM) conversations

Notes:

1 A security level (QSECURITY) system value of 10 is not secure. A value of 20 or greater is secure.

2 Distributed data management

3 SNA distribution services

4 File transfer support

5 If enhanced SECURITY(SAME) is used by a CPI Communications program, the user ID is sent with a protected password.
All other applications will have SECURITY(SAME) treated as SECURITY(NONE).

Converting User IDs and Passwords to
Upper Case

APPC converts a lower case or mixed case user ID to upper
case so the user ID is accepted by the AS/400. Passwords
are also converted to upper case unless they are passwords
substitutes, that is, encrypted.

This lower-to-upper case conversion supports AIX systems
that connect to the AS/400 as a database server. For
example, AIX users are often defined as lower case names
and use lower case passwords.

AS/400 only accepts upper case entries for these fields.
Because of this, lower case or mixed case user IDs or pass-
words that would have been rejected are now accepted.

General Security Considerations

The following password considerations only apply if pass-
word protection is not active. When application program
security is used, you should avoid sending and receiving
passwords unnecessarily on start requests. The system
starting the transaction should validate the user ID. This
removes the possibility of having a password intercepted
during transmission.

In any network with communications between secure
systems, it is very important that the person responsible for
network security ensure that each user has a unique user ID
throughout the network. When local verification of the user ID
is performed, only the user ID is passed between secure
systems on the network. Any user on a remote system
having a user ID the same as a local user ID has access to
the local system with all of the authority of the local user. For
example, a user on a system in New York should not have
the same user ID as a user on a system in Los Angeles if
the New York user is starting jobs on both systems.

3-20 OS/400 APPC Programming V4R1

Incorrect Password Attempts

It is possible for a password that is not valid to be entered by
a remote user; this can mean that an error occurred or an
attempt was made to break security. You should consider
preventing any further use of the device until the situation is
understood.

A password that is not valid can be sent by a remote user
when the remote system sends a program start request.
When a program start request is rejected, the system sends
message CPF1269 to the QSYSOPR message queue. The
system identifies the error as a password that is not valid.
The message will be directed to the QSYSMSG message
queue if it exists.

A system administrator may set a limit on the number of con-
secutive password attempts that are not valid for a given
display device. When this limit is reached, the device is then
varied off. The limit is set with the system value QMAXSIGN
on both the AS/400 system and System/38 and with the
SECDEF command on the System/36.

On the System/36, this limit also applies to display station
pass-through users from remote locations. If a display station
pass-through user fails to sign on within the limit set on a
System/36, the System/36 logically disables that user’s
location. This means that no user from that location is
allowed to start a program on the System/36. Message
SYS-8437 is placed in the history file when each attempted
program start request is rejected. Users currently active are
not affected. This situation is cleared by disabling the sub-
system (not just the location) and re-enabling it on the target
System/36. This could affect many users on many systems,
some of which are not using the System/36 (except as an
intermediate APPN node).

Sign-ons exceeding the limit on the System/38 and the
AS/400 system are not handled the same way on the
System/36. Both vary off the virtual display station pass-
through device. Other APPC users are not affected and the
situation is cleared by varying on the virtual display station
pass-through device. If there are other virtual display station
pass-through devices defined, then subsequent users can
select them until they are all varied off or in use. Other APPC
applications such as file transfer support (FTS) or distributed
data management (DDM) are not affected by the QMAXSIGN
value.

When an AS/400 device is varied off, message CPF1397 is
issued. The message might also be used as an alert
because it may indicate that someone has attempted to
break security, or that someone has forgotten a password
and needs assistance to set it again.

Some customers may want to view the QHST log for security
violation messages. This can be done by using the Display
Log (DSPLOG) command and specifying message IDs that
relate to security. These include CPF1107, CPF1120,
CPF2234, CPF1269, and CPF1397. The output can be sent

from an output queue to the central location for analysis
using object distribution.

Users can sign on to one AS/400 system, System/38 or
System/36 more than once with the same profile. If this does
not suit a customer’s environment, you can limit the user
profile to one sign-on by use of the QLMTDEVSSN system
value (*SYSVAL) for the LMTDEVSSN parameter on the
CRTUSRPRF or CHGUSRPRF command.

When the employees at distributed sites do not receive edu-
cation about the security aspects of their system, then central
security control is needed. Distributed site employees need
to keep the security officer informed of transfers or leaves so
user profiles can be removed. Central control also provides
consistent implementations across the network so that one
site does not ignore security.

Password Expiration Management

Client users can change their expired AS/400 passwords
when signing on to the AS/400 system. In order to do this,
the client must support this function. The Client Access/400
clients support this function.

Special Authority (Security Officer and
Service)

Although user profiles that grant security officer and service
authorities give those users special authority, one of the fol-
lowing conditions must be true in order for received program
start requests to be accepted from a user with security officer
or service authority.

� The user must be explicitly authorized to the AS/400
APPC device description through which the program
start request was received.

� The user must have created the APPC device
description.

� The QLMTSECOFR system value is set to zero, which
indicates security officer and service authorities are not
to be limited.

For example, if an AS/400 system receives a program start
request with a user ID and password that selects a user
profile that has as its special authority, security administrator
or service authority, and this user ID has not been explicitly
granted authority to the APPC device description, then the
program start request is rejected.

This aspect of system security is consistent with the way
work station security is done for the security officer and
service user profiles. Anyone who has object management
authority for an APPC device description can grant authority
for the APPC device description to the security officer or
service user IDs.

If the security officer or service user creates an APPC device
description, the security officer or service user (like anyone

 Chapter 3. APPC Concepts 3-21

else who creates device descriptions) is explicitly authorized
to the device description.

When a device is authorized to all users (*ALL), the user IDs
that have security administration or service authority are not
included. This allows the security officer or service user to
specify the APPC device description from which security
officer or service functions can be performed.

APPC Devices Created by the System

Devices created automatically by the system are created with
an object authority of *CHANGE. All users, except those with
security officer or service authorization, have object manage-
ment authority. You can change the object authority of these
devices by using the Change Device APPC (CHGDEVAPPC)
command and the appropriate security commands.

3-22 OS/400 APPC Programming V4R1

 Chapter 4. Running APPC

This chapter contains the information you need to run your
network, including information on the Vary Configuration
(VRYCFG) command and on the commands used to control
modes.

Vary On and Vary Off Support

The Vary Configuration (VRYCFG) command is used to start
and end the communications support.

Note: You can also start and end the communications
support using the Work with Configuration Status
(WRKCFGSTS) display. Refer to the Communications
Management book for information about this support
and additional information about the Vary Configura-
tion command.

VRYCFG with STATUS(*ON) starts or activates the link
between two or more systems and associates the communi-
cations support with a particular configuration, which can
include network server, network interface, line, controller, and
device descriptions (if manually created).

VRYCFG with STATUS(*OFF) ends the link between two or
more systems and releases the communications support and
the configuration with which it is associated. When you
specify VRYCFG with STATUS(*OFF), the association
between the local and remote system is ended. No further
communication is possible between the systems using the
specified configurations.

The VRYCFG command has the following parameters:

CFGOBJ
Specifies the name of the description for the network
server, network interface, line, controller, or device to be
varied on or off; or a list of names of configuration ele-
ments of the same configuration type, such as network
interface, line, controller, or device type.

CFGTYPE
Specifies the type of configuration description to be
varied on or off.

*NWS: The network server and attached lines are
varied.

*NWI: The network interface is varied.

*LIN: The line is varied.

*CTL: The controller is varied.

*DEV: The device is varied.

STATUS
Specifies the status to vary the configuration object to.

*ON: The object is varied on.

*OFF: The object is varied off.

RANGE
Specifies what configuration elements should be varied,
whether it is only the configuration element specified
(*OBJ) or the configuration element specified and its
attached configuration elements (*NET). For network
servers, the RANGE parameter is ignored; the attached
lines are always varied. For network interfaces, the
attached configuration elements are lines, controllers,
and devices. For lines, the attached configuration ele-
ments are controllers and devices. For controllers, the
configuration elements are devices. Devices are consid-
ered not to have attached configuration elements. For
devices there is no difference between specifying
RANGE(*OBJ) or RANGE(*NET).

*NET: All downline attached configuration elements are
varied.

*OBJ: Only the specified objects are varied.

VRYWAIT
Specifies whether the DDI, frame relay, Ethernet, IDLC,
token-ring, X.25, or switched SDLC line description is to
be varied on asynchronously or synchronously. For a
synchronous vary on operation, you can specify a wait
time when an application will open or acquire a commu-
nications file immediately after issuing the vary on of the
communications description.

*CFGOBJ: Use the VRYWAIT parameter value specified
in the line description.

*NOWAIT: Do not wait for vary on completion. The line
will vary on asynchronously.

WAIT-TIME: Specify a value from 15 to 180 seconds in
1-second intervals.

The system will wait until either the line is varied on
before completing the VRYCFG command or until the
timer expires.

ASCVRYOFF
Specifies if the configuration object (or objects if
RANGE(*NET) is specified) is to be varied off synchro-
nously or asynchronously. If the synchronous option is
chosen, the configuration will be completely varied off
before returning control to the user. Otherwise, the vary
off request will fail. If the asynchronous option is chosen,
control may be returned to the user before the vary off
operation is completed.

*NO: The vary off is done synchronously.

*YES: The vary off is done asynchronously.

RESET
Specifies if the input/output processor (IOP) associated
with the object is to be reset.

*NO: The associated IOP is not reset.

*YES: The associated IOP is reset.

 Copyright IBM Corp. 1997 4-1

Vary Configuration On Example

Using the network configured in “Nonswitched Network
without APPN Support—Configuration Example” on
page D-3, the following example shows the VRYCFG com-
mands that activate the line, controller, and devices on a
non-switched line.

System A
VRYCFG CFGOBJ(LOSANGEL) CFGTYPE(\LIN) STATUS(\ON) RANGE(\NET)

System B
VRYCFG CFGOBJ(NEWYORK) CFGTYPE(\LIN) STATUS(\ON) RANGE(\NET)

Note: For programs communicating with each other on the
same system, the controller description (*CTL) is the
configuration type that should be specified.

 Controlling Modes

This section contains information about controlling modes.
Included is a description of the Start Mode (STRMOD) and
End Mode (ENDMOD) commands, used to start and end
modes with remote locations. Also described is the Change
Session Maximum (CHGSSNMAX) command, used to
control the number of sessions that are currently active
between a local location and remote location using the speci-
fied mode.

Start Mode (STRMOD) Command
Note: Refer to “Using the Location Parameters” on

page 3-3 for information on how the system proc-
esses the RMTLOCNAME, LCLLOCNAME, DEV,
RMTNETID, and MODE parameters for this
command.

The Start Mode (STRMOD) command starts a mode, ena-
bling sessions to be established between the local location
and remote location. The STRMOD command can be used
to start one or all modes for an APPC configuration.

The STRMOD command is required only if the mode has
been explicitly ended by a previous ENDMOD command.
The APPC support issues an implicit STRMOD command
when a device description is varied on.

The STRMOD command has the following parameters:

RMTLOCNAME
Specifies the remote location name. This parameter is
required.

DEV
Specifies the device description name.

*LOC: Specifies that the device description is to be
determined by the system.

device name: Specify the name of the device
description.

Note: The device description parameter is ignored if
the system is using APPN support to communi-
cate with the remote location specified as
RMTLOCNAME. See “Using the Location
Parameters” on page 3-3 for more details.

MODE
Specifies the mode that is to be started.

*NETATR: Specifies that the mode specified in the
network attributes is used.

*ALL: Specifies that all configured modes for the speci-
fied remote location are to be started.

BLANK: A mode name consisting of 8 blank characters
is used.

mode-name: Specify a mode name.

Note: SNASVCMG and CPSVCMG are reserved
names and cannot be specified.

LCLLOCNAME
Specifies the name of your location.

*LOC: Specifies that the local location name is to be
determined by the system.

*NETATR: Specifies that the default local location name
specified in the network attributes is to be used.

local-location name: Specify the name of your location.
The local location name is specified if you want to indi-
cate a specific local location name for the remote
location.

RMTNETID
Specifies the remote network ID used with the remote
location.

*LOC: Specifies that the system selects the remote
network ID.

*NETATR: Specifies that the remote network ID speci-
fied in the network attributes is used.

*NONE: The remote network has no name.

remote-network-id: Specify the name of the remote
network ID.

 Example 1
STRMOD RMTLOCNAME(LOSANGEL) MODE(BLANK)

This command starts a mode named BLANK with a remote
location named LOSANGEL. The device, local location
name, and remote network identifier are selected by the
system based on the remote location name LOSANGEL.

 Example 2
STRMOD RMTLOCNAME(LOSANGEL) MODE(\ALL)

 LCLLOCNAME(NEWYORK) RMTNETID(APPN)

This command starts all configured modes that are currently
not started. Because the device description uses the default,
*LOC, the system selects the device description based on

4-2 OS/400 APPC Programming V4R1

the remote location name LOSANGEL, the local location
name NEWYORK, and the remote network identifier APPN.

End Mode (ENDMOD) Command
Note: Refer to “Using the Location Parameters” on

page 3-3 for information on how the system proc-
esses the RMTLOCNAME, LCLLOCNAME, DEV,
RMTNETID, and MODE parameters for this
command.

The ENDMOD command ends one or more active modes.
You can also specify how activities that have been requested
on the remote system, but have not been performed are to
be handled. This command is not required, but it can be
issued at any time. Once an ENDMOD command is run, no
sessions can be started between the local and remote
locations on any mode that has ended until an explicit
STRMOD command is run. However, a local session
maximum of zero does not prevent a switched connection
from being made. While the local session maximum is zero
and a switched connection is made (either dial or answer),
no communications occur on that mode until a STRMOD
command is run to allow sessions to be established.

The ENDMOD command has the following parameters:

RMTLOCNAME
Specifies the remote location name for which one or
more modes are to be ended. This parameter is
required.

DEV
Specifies the device description name.

*LOC: Specifies that the device description is to be
determined by the system.

device-name: Specify a device description name.

MODE
Specifies the mode that is to be ended.

*NETATR: Specifies that the mode specified in the
network attributes is used.

*ALL: Specifies all modes currently in use by the remote
location are to be ended.

BLANK: The mode name, consisting of 8 blank charac-
ters, is to be used.

mode-name: Specify a mode name.

Note: SNASVCMG and CPSVCMG are reserved
names and cannot be specified.

LCLLOCNAME
Specifies the name of your location.

*LOC: Specifies that the local location name is to be
determined by the system.

*NETATR: Specifies that the local location name speci-
fied in the network attributes is used.

local-location-name: Specify the name of your location.
The local location name is specified if you want to indi-

cate a specific local location name for the remote
location.

RMTNETID
Specifies the remote network ID used with the remote
location.

*LOC: Specifies that the system selects the remote
network ID.

*NETATR: Specifies that the remote network ID speci-
fied in the network attributes is used.

*NONE: Specifies that remote network has no name.

remote-network-id: Specify the name of the remote
network ID used.

CPLPNDRQS
The complete pended requests parameter allows you to
specify whether the remote location can complete work
that is pending or if the work pending should be ended
before being allowed to start.

*NO: Specifies that requested activities currently in
progress at the remote location can complete; activities
that have been requested, but not started at the remote
location are not performed.

*YES: Specifies that all requested activities be allowed
to complete before the mode is ended.

 Example 1
ENDMOD RMTLOCNAME(LOSANGEL) MODE(BLANK)

This command ends mode named BLANK for remote
location LOSANGEL. The device, local location name, and
remote network ID are selected by the system based on the
remote location name LOSANGEL.

 Example 2
ENDMOD RMTLOCNAME(LOSANGEL) MODE(\ALL)

 LCLLOCNAME(NEWYORK) RMTNETID(APPN) CPLPNDRQS(\NO)

All currently active modes for remote location LOSANGEL
are ended. Any work pending on the modes is not allowed to
be completed. Because the device description was allowed
to default to a value of *LOC, the system selects the device
descriptions based on the remote location name LOSANGEL,
the local location name NEWYORK, and the remote network
identifier APPN.

Change Session Maximum (CHGSSNMAX)
Command
Note: Refer to “Using the Location Parameters” on

page 3-3 for information on how the system proc-
esses the RMTLOCNAME, LCLLOCNAME, DEV,
RMTNETID, and MODE parameters for this
command.

The Change Session Maximum (CHGSSNMAX) command is
used to change the maximum number of sessions the local
location allows a mode to have. When a change to the

 Chapter 4. Running APPC 4-3

MAXSSN parameter is made, the remote location is informed
and allowed to negotiate for a lower session maximum (the
remote location cannot negotiate a session maximum higher
than the value specified for the MAXSSN parameter). The
session maximum value that results from the negotiation is
called the current session maximum.

The following rules apply:

� Neither location may activate more sessions than the
current session maximum.

� If the requested session maximum is accepted or negoti-
ated by the remote location, the value requested on the
CHGSSNMAX command is stored as the local session
maximum.

� The remote location is not allowed to increase the
current session maximum above the value stored as the
local session maximum.

If a request to change the session maximum is rejected by
the remote location, the CHGSSNMAX command ends
abnormally and the local session maximum is changed as
follows:

� If the request was increasing the number of sessions, it
is changed to the value specified on the MAXSSN
parameter.

� If the request was decreasing the number of sessions, it
is not changed.

This new value for the local session is only used the next
time a new session maximum needs to be negotiated. The
current session maximum, which controls how many ses-
sions can be active between the local and remote location, is
not changed if the command fails.

This command is normally used by the system operator to
control the number of sessions that can be active at the
same time with a remote location. This command is used
only when the specified remote location and mode are active.
If the current number of active sessions is greater than the
maximum number specified on the command, no new ses-
sions are created until the number of active sessions falls
below that specified on the command. If the current number
of active sessions is less than the maximum number speci-
fied, sessions may not be established until jobs requiring
them are started.

The value determined by the locations remains in effect until
another CHGSSNMAX command or an End Mode
(ENDMOD) command is run for the same mode, or until all
the device descriptions associated with the remote location
are varied off.

Many CHGSSNMAX commands can be issued before the
current maximum number of sessions ever become active.
The number specified the last time the command was issued
is the current local session maximum value.

If a vary off of the device description associated with the
specified remote location is in progress, this command ends
with an error.

Notes:

1. When this command is used to reduce the number of
sessions with a remote location, the sessions that are
ended first are the available locally controlled sessions,
followed by any other available sessions. If the new
session count is still not reached, other sessions are
ended as jobs using them are completed or are can-
celed.

2. When the CHGSSNMAX command is used to increase
the maximum number of sessions that can be created
with a remote location, the locally controlled sessions
are made available first (depending on the negotiated
values), and then other sessions are made available.

3. The CHGSSNMAX command does not change the value
specified for the MAXSSN parameter in the mode
description; the Change Mode Description (CHGMODD)
command must be used to permanently change the
value.

The CHGSSNMAX command has the following parameters:

RMTLOCNAME
Specifies the remote location name. This is a required
parameter.

remote-location name: Specify the name of the remote
location.

MAXSSN
Specifies the number of sessions allowed with the
remote location. This value represents the desired
maximum number of sessions for the specified mode
name. It must be less than or equal to the MAXSSN
parameter limit defined in the mode description. This
value can be negotiated to a lower value by the remote
location; therefore, the value specified here is not neces-
sarily the value that is used.

Valid values for this parameter are 1 through 512.

DEV
Specifies the name of the device description to be used.

*LOC: The device associated with the remote location is
used. If several devices can be associated with the
remote location, the system determines which device is
used.

device-name: Specify the name of a device description
that is associated with the remote location.

MODE
Specifies the name of the mode that is changed.

*NETATR: Specifies that the mode name specified in
the network attributes is used.

BLANK: A mode name (consisting of 8 blank charac-
ters) is used.

4-4 OS/400 APPC Programming V4R1

mode-name: Specify a value, no more than 8 characters,
used to identify the mode that is changed.

Note: SNASVCMG and CPSVCMG are reserved
names and cannot be specified.

LCLLOCNAME
Specifies the local location name used.

*LOC: Specifies that the local location name is to be
determined by the system.

*NETATR: The local location name that is in the network
attributes is used.

local-location name: Specify the name of your location.
Specify the local location if you want to indicate a spe-
cific local location name for the remote location.

RMTNETID
Specifies the remote network ID that is used with the
remote location.

*LOC: The system selects the remote network ID.

*NETATR: The remote network ID specified in the
network attributes is used.

*NONE: The remote network has no name.

remote-network id: Specify a remote network ID.

 Example
CHGSSNMAX RMTLOCNAME(APPCLOC1) MODE(APPCMOD1)

 MAXSSN(1ð)

This command changes the maximum number of sessions
allowed by the mode APPCMOD1 for remote location
APPCLOC1 to a maximum of 10.

Displaying the Mode Status

You can use the Display Mode Status (DSPMODSTS)
command to display the status of all mode entries for an
APPC configuration. The display shows the following
information:

� Mode name and status

� Device name and status

� Local location name

� Remote location name

� Additional information for conversations and sessions

This command is valid only for APPC device descriptions
and if a mode is attached to the APPC device description.

The DSPMODSTS command has the following parameters:

DEV
Specifies the name of the APPC device description that
contains the mode to be displayed.

MODE
Specifies the mode whose status is being displayed.

*ALL: Specifies that all the modes used by the specified
device are displayed.

mode: Specify the name (8 characters maximum) of the
mode whose status is being displayed for the specified
device.

BLANK: Specifies that the mode name of 8 blank char-
acters is displayed.

OUTPUT
Specifies if the output from the command is shown at
the requesting display station or printed with the job’s
spooled output on a printer.

*: The output is shown (if requested by an interactive
job) or printed with the job’s spooled output (if requested
by a batch job).

*PRINT: The output is printed with the job’s spooled
output on a printer.

Examples of Displaying Mode Status

The following examples refer to the APPC network (without
APPN support) example described in Appendix D, in which a
system at location NEWYORK (with a device description
LOSANGEL) is communicating with a system at location
LOSANGEL (with device description NEWYORK).

You can type the DSPMODSTS command and use the
command prompt, or you can type the command with param-
eters on any command line and press the Enter key. The
following is an example of the kind of display that is shown
when you run the DSPMODSTS command and specify
LOSANGEL for the device and BLANK for the mode (that is,
type DSPMODSTS DEV(LOSANGEL) MODE(BLANK) and press the
Enter key):

à ð
Display Details of Mode Status

 System: SYSNAMðð

 Mode/status : BLANK Started

 Device/status : LOSANGEL ACTIVE

 Local location/network ID : NEWYORK APPC

 Remote location/network ID : LOSANGEL APPC

Conversations: Total Source Target Detached
Configured maximum : 8

Number for device : 1 1 ð ð

Number for location : 1 1 ð ð

Sessions: Total Local Remote
Configured limits : 8 4

Local maximum : 8

Negotiated limits : 8 4 4

Number for device : 1 1

Number for location : 1 1

 Bottom
 Press Enter to continue.

F3=Exit F5=Refresh F12=Cancel F14=Display previous mode

á

ñ

This display shows the following information:

 Chapter 4. Running APPC 4-5

Mode/status
Name of the mode description and status of the mode.
One of the following may be displayed for the status of
the mode:

Ended
Indicates that the mode cannot be used for communi-
cations. The local system has issued an ENDMOD
command to end the mode. Only the local system
can start the mode.

Reset
Indicates that the mode cannot be used for communi-
cations. Either the mode is in the initial state (not yet
started), or it has been ended by the remote system.
Either the local or the remote system may attempt to
start the mode.

Started
Indicates that the mode has been started and can be
used for communications.

Unknown
Status of mode could not be determined.

Device/status
Name of the APPC device and status of the APPC
device. One of the following may be displayed for the
status of the device:

Varied off pending
The device is in the process of being varied off.

Varied off
The device is not being used for communications.

Vary on pending
The device is in the process of being varied on.

Varied on
The device is varied on.

Active
The device is ready to handle APPC sessions.

Held
The user or the system held the communications
device to prevent it from participating in communi-
cations.

RCYPND
Error recovery is pending for the device.

RCYCNL
Error recovery was canceled for the device.

Failed
This status indicates that an error occurred for the
device that can only be recovered by varying the
device off and on again.

*Damaged
The device object has received hard damage.

*Locked
The status of the device could not be determined
because another job had an exclusive lock on the
device.

*Unknown
The status indicator of the device cannot be deter-
mined.

Local location/network ID
Name of the local location and the network ID associated
with the local location. The name and network ID can
each have up to 8 characters.

Remote location/network ID
Name of the remote location and the network ID associ-
ated with the remote location. The name and network ID
can each have up to 8 characters.

Conversations

Configured maximum
How many were configured for this device.

Number for device

Total
Current number running on this device.

Source
Current number of conversations that are allo-
cated to source programs on this device.

Target
Current number of conversations that are allo-
cated to target programs on this device (started
as a result of a received program start request).

Detached
Current number of conversations that are not
active on a session but have not been detached
from the program on this device.

Number for location

Total
Current number running for this location.

Source
Current number of conversations that are allo-
cated to source programs for this location.

Target
Current number of conversations that are allo-
cated to target programs for this location (started
as a result of a received program start request).

Detached
Current number of conversations that are not
active on a session but have not been detached
from the program for this location.

Sessions

Configured limits

Total
How many were configured for this device.

Local
Number of locally controlled sessions configured.

Local maximum
Maximum number of sessions requested by the most
current CHGSSNMAX command.

4-6 OS/400 APPC Programming V4R1

Negotiated limits

Total
Current maximum number of sessions allowed for
this device.

Local
Current minimum number of locally controlled ses-
sions on this device.

Remote
Current minimum number of remotely controlled
sessions on this device.

Number for device

Total
Current active number of sessions on this device.

Local
Current active number of locally controlled ses-
sions on this device.

Number for location

Total
Current active number of sessions running for this
location.

Local
Current active number of locally controlled ses-
sions for this location.

To display all modes for a device, you can type

DSPMODSTS DEV(LOSANGEL) MODE(\ALL)

 and then press the Enter key to obtain the following display:

à ð
Display Mode Status

 System: SYSNAMðð

 Device : LOSANGEL

 Device status : ACTIVE

 Type options, press Enter.

 5=Display details

 Mode ---------Conversations---------
Opt Mode Status Total Source Target Detached

BLANK Started ð ð ð ð

#BATCH Started ð ð ð ð

SNASVCMG Started ð ð ð ð

If you then press F11 (Display sessions), the following
display is shown:

à ð
Display Mode Status

 System: SYSNAMðð

 Device : LOSANGEL

 Device status : ACTIVE

 Type options, press Enter.

 5=Display details

 Mode --Sessions--
 Opt Mode Status Total Local
 BLANK Started ð ð

 #BATCH Started ð ð

 SNASVCMG Started ð ð

These displays show the device name and status. Current
values are also shown for conversations and sessions. From
these displays you may also select option 5 (Display details)
for a selected mode.

The following examples depict how the mode controlling
commands (STRMOD, ENDMOD, and CHGSSNMAX)
change the affected modes. The DSPMODSTS command is
used throughout this example to show the transitions that are
taking place for the modes affected by these commands.
This example shows the mode controlling commands being
run at system NEWYORK as they relate to the connection
with location LOSANGEL.

To show the following display, type

DSPMODSTS DEV(LOSANGEL) MODE(\ALL)

 and press F11 (Display sessions) to display information
about the sessions:

à ð
Display Mode Status

 System: SYSNAMðð

 Device : LOSANGEL

 Device status : ACTIVE

 Type options, press Enter.

 5=Display details

 Mode --Sessions--
 Opt Mode Status Total Local
 BLANK Started 1 1

 #BATCH Started 1 1

 SNASVCMG Started 1 1

the modes after the connection between NEWYORK and
LOSANGEL has been established. The display shows that
the reserved mode SNASVCMG and that the modes
#BATCH and BLANK have been started. The SNASVCMG
mode is used by the system for negotiating SNA sessions
between two locations as well as alerts between network
nodes. (In SNA, an alert is a record sent to a focal point to
identify a problem or an impending problem.)

The following display shows what happens when the local
system has started an application that acquires a session.
The mode specified on the DSPMODSTS command is
#BATCH (Note that this is one of the modes specified on the
CRTDEVAPPC command when NEWYORK and LOSANGEL
were configured. Refer to Appendix D for details).

à ð
Display Mode Status

 System: SYSNAMðð

 Device : LOSANGEL

 Device status : ACTIVE

 Type options, press Enter.

 5=Display details

 Mode ---------Conversations---------
Opt Mode Status Total Source Target Detached

BLANK Started ð ð ð ð

#BATCH Started 1 1 ð ð

SNASVCMG Started ð ð ð ð

Pressing F11 (Display sessions) gives the previous display
showing display mode status for sessions. The displays also
show that there is one session that has been established and
one conversation currently in progress between NEWYORK
and LOSANGEL using the mode #BATCH.

Because all modes for APPN(*NO) start automatically when
the device description is varied on, you must first end a
mode using the ENDMOD command before you can issue a
STRMOD command to start a mode. You can then start an

 Chapter 4. Running APPC 4-7

IBM-supplied mode BLANK to the remote location
LOSANGEL by issuing the STRMOD command:

STRMOD RMTLOCNAME(LOSANGEL) MODE(BLANK)

 Then press the Enter key to start the mode. (Note that the
mode BLANK is the other mode specified on the
CRTDEVAPPC command during configuration).

By next issuing the DSPMODSTS command

DSPMODSTS DEV(LOSANGEL) MODE(BLANK)

 you will see that the mode BLANK has been started, and
also the session limits that have been negotiated between
NEWYORK and LOSANGEL. Because the DSPMODSTS
command was started by supplying the mode name, the
display that is shown is the one that shows the details of the
mode status:

à ð
Display Details of Mode Status

 System: SYSNAMðð

 Mode/status : BLANK Started

 Device/status : LOSANGEL ACTIVE

 Local location/network ID : NEWYORK APPC

 Remote location/network ID : LOSANGEL APPC

Conversations: Total Source Target Detached
Configured maximum : 8

Number for device : ð ð ð ð

Number for location : ð ð ð ð

Sessions: Total Local Remote
Configured limits : 8 4

Local maximum : 8

Negotiated limits : 8 4 4

Number for device : ð ð

Number for location : ð ð

 Bottom
 Press Enter to continue.

F3=Exit F5=Refresh F12=Cancel F14=Display previous mode

á

ñ

To change the maximum number of sessions allowed
between locations NEWYORK and LOSANGEL, you can use
the CHGSSNMAX command. If you want to change the
maximum number of sessions specified for the mode BLANK
from 8 to 6, for example, type

CHGSSNMAX RMTLOCNAME(LOSANGEL) MODE(BLANK)

 MAXSSN(6)

 To show the mode status, type

DSPMODSTS DEV(LOSANGEL) MODE(\ALL)

à ð
Display Mode Status

 System: SYSNAMðð

 Device : LOSANGEL

 Device status : ACTIVE

 Type options, press Enter.

 5=Display details

 Mode ---------Conversations---------
Opt Mode Status Total Source Target Detached
5 BLANK Started ð ð ð ð

#BATCH Started 1 1 ð ð

SNASVCMG Started ð ð ð ð

Use Option 5 to display the details of the mode status for the
mode BLANK:

à ð
Display Details of Mode Status

 System: SYSNAMðð

 Mode/status : BLANK Started

 Device/status : LOSANGEL ACTIVE

 Local location/network ID : NEWYORK APPC

 Remote location/network ID : LOSANGEL APPC

Conversations: Total Source Target Detached
Configured maximum : 8

Number for device : ð ð ð ð

Number for location : ð ð ð ð

Sessions: Total Local Remote
Configured limits : 8 4

Local maximum : 6

Negotiated limits : 6 3 3

Number for device : ð ð

Number for location : ð ð

 Bottom
 Press Enter to continue.

F3=Exit F5=Refresh F12=Cancel F14=Display previous mode

á

ñ

As this display shows, the configured limits for the mode are
not affected by the CHGSSNMAX command. What has
changed are the negotiated limits between NEWYORK and
LOSANGEL using mode BLANK.

To end all of the user modes between NEWYORK and
LOSANGEL, you can use the ENDMOD command. Once this
command has been run, no new sessions can be started
between the two locations on modes BLANK and #BATCH
until another explicit STRMOD command is run. Type

ENDMOD RMTLOCNAME(LOSANGEL) MODE(\ALL)

 To display the mode status, type

DSPMODSTS DEV(LOSANGEL)

à ð
Display Mode Status

 System: SYSNAMðð

 Device : LOSANGEL

 Device status : ACTIVE

 Type options, press Enter.

 5=Display details

 Mode ---------Conversations---------
Opt Mode Status Total Source Target Detached

BLANK Ended ð ð ð ð

5 #BATCH Ended 1 1 ð ð

SNASVCMG Started ð ð ð ð

Note: Only the user modes #BATCH and BLANK are
affected by the ENDMOD command. The reserved
mode SNASVCMG is not affected by the ENDMOD
command.

Use Option 5 to display the details of the mode status for the
mode #BATCH:

4-8 OS/400 APPC Programming V4R1

à ð
Display Details of Mode Status

 System: SYSNAMðð

 Mode/status : #BATCH Ended

 Device/status : LOSANGEL ACTIVE

 Local location/network ID : NEWYORK APPC

 Remote location/network ID : LOSANGEL APPC

Conversations: Total Source Target Detached
Configured maximum : 8

Number for device : 1 1 ð ð

Number for location : 1 1 ð ð

Sessions: Total Local Remote
Configured limits : 8 4

Local maximum : ð

Negotiated limits : ð ð ð

Number for device : 1 1

Number for location : 1 1

 Bottom
 Press Enter to continue.

F3=Exit F5=Refresh F12=Cancel F14=Display previous mode

á

ñ

The ENDMOD command causes the mode #BATCH to end,
but it does not affect sessions that have already been acti-
vated. This is the reason that there is still one active session

and one active conversation between NEWYORK and
LOSANGEL using mode #BATCH.

To display the mode status, type

DSPMODSTS DEV(LOSANGEL)

 The DSPMODSTS command shown here occurred after the
application that had acquired a session using mode #BATCH
has ended. This caused the session and conversation
counts to go to zero.

à ð
Display Mode Status

 System: SYSNAMðð

 Device : LOSANGEL

 Device status : ACTIVE

 Type options, press Enter.

 5=Display details

 Mode ---------Conversations---------
Opt Mode Status Total Source Target Detached

BLANK Ended ð ð ð ð

#BATCH Ended ð ð ð ð

SNASVCMG Started ð ð ð ð

 Chapter 4. Running APPC 4-9

4-10 OS/400 APPC Programming V4R1

Chapter 5. Writing ICF APPC Application Programs

This chapter describes how an application program uses the
AS/400 system, intersystem communications function (ICF)
file, and APPC to communicate with a remote system. The
program can be coded using any of the high-level languages
that support ICF, such as ILE C/400, ILE COBOL/400,
FORTRAN/400, and ILE RPG/400. These languages allow
an application program to do the following:

� Start a session by opening a file and acquiring a
program device either explicitly or implicitly.

� Send or receive information by writing to or reading from
a program device.

� End a session by releasing the program device and
closing the file.

Note: FORTRAN/400 supports only the following
operations:

� Open with acquire

 � Close

 � Read

 � Write

For more information about the languages, refer to the
appropriate language reference manual. Chapter 7 contains
additional information about writing applications that use
APPC.

This chapter also contains the following information:

� A description of the read and write operations that
specify a record format, which contains specific commu-
nications functions. You can define record formats using
data description specifications (DDS) keywords, or you
can use system-supplied formats.

� Information about using return codes. After an ICF oper-
ation completes, a return code (and a high-level lan-
guage file status) is returned to your application. The
return code indicates whether the operation completed
successfully or unsuccessfully. Along with the return
code, exception messages may also be issued. Refer to
Appendix B, Sense Data and Return Codes for more
information about return codes and to the appropriate
language reference manuals for more information about
the high-level language file status.

� A mapping of the LU type 6.2 architected verbs and
parameters to the corresponding ICF operation or func-
tion. This information is useful if you are writing applica-
tion programs that are used for communications between
an AS/400 system and another system, such as a
System/370 or personal computer, that supports APPC.

Intersystem Communications Function File

An intersystem communications function (ICF) file must be
created before your application can use APPC. For more
information about the ICF file, see the ICF Programming
book.

The ICF file is a system object of type *FILE with a specific
set of commands and operations. The commands allow you
to manage the attributes of the file and the operations allow
a program to use the file. Commands allow you to create,
delete, change and display the file description.

The following commands are valid for APPC applications.

CRTICFF
Create ICF file and file level attributes. This command
allows you to create an ICF file.

CHGICFF
Change ICF file. This command allows you to change
the file attributes of the ICF file.

OVRICFF
Override ICF file. This command allows you to tempo-
rarily change the file attributes of the ICF file at run
time. These changes are only in effect for the duration
of the job and do not affect other users of the file.

DLTF
Delete file. This command allows you to delete a file
from the system.

DSPFD
Display file description. This command displays the file
description of any file on the system. The information
may be printed or displayed.

DSPFFD
Display file field description. This command displays
the description of the fields in any file on the system.
This information may be printed or displayed.

ADDICFDEVE
Add ICF device entry. This command allows you to
permanently add a program device entry that contains
a program device name, remote location information,
and session level attributes.

CHGICFDEVE
Change ICF device entry. This command allows you to
permanently change the program device attributes pre-
viously added with the ADDICFDEVE command.

OVRICFDEVE
Override ICF device entry. This command allows you
to:

� Temporarily add the program device entry, the
remote location information, and the session level
attributes to the ICF file.

 Copyright IBM Corp. 1997 5-1

� Override a program device entry with the specified
remote location information and session level attri-
butes for an ICF file.

RMVICFDEVE
Remove ICF device entry. This command allows you
to permanently remove the program device entry previ-
ously added with the ADDICFDEVE command or
changed with the CHGICFDEVE command.

Specifying the Program Device Entry
Commands

The following describes the parameters for the
ADDICFDEVE, CHGICFDEVE, and OVRICFDEVE com-
mands and lists the values for each parameter for APPC. For
more information about how the system processes the
location parameters (RMTLOCNAME, DEV, LCLLOCNAME,
RMTNETID, and MODE), refer to “Using the Location
Parameters” on page 3-3.

PGMDEV
Specifies the program device name that is defined in the
ICF file and specified in the application. The total
number of devices that may be acquired to an ICF file is
determined by the MAXPGMDEV parameter on the
CRTICFF or CHGICFF command.

pgm-device name: Enter the name by which the user
program refers to this communications session.

RMTLOCNAME
Specifies the remote location name with which your
program communicates. A remote location must be
specified using the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command. If a remote location name is
not specified, a major and minor error return code is
returned when an attempt is made to acquire the
program device.

*REQUESTER: The name used to refer to the communi-
cations device through which the program was remotely
started.

location-name: Enter the name of the remote location
that should be associated with the program device.

DEV
Specifies the name of the device description used for the
remote location. If the device is not valid for the remote
location, a major and minor error return code is returned
when an attempt is made to acquire the program device.

*LOC: Specifies that the device is to be determined by
the system.

device-name: Specify the name of the device that is
associated with the remote location.

LCLLOCNAME
Specifies the name of your location. If the local location
name is not valid for the remote location, a major and

minor error return code is returned when an attempt is
made to acquire the program device.

*LOC: Specifies that the local location name is to be
determined by the system.

*NETATR: Specifies that the local location name speci-
fied in the system network attributes is used.

local-location name: Specify the name of your location.

MODE
Specifies the mode to be used.

*NETATR: Specifies that the mode specified in the
system network attributes is used.

BLANK: The mode name, consisting of 8 blank charac-
ters, is used.

mode-name: Specify a mode name for the remote
location. If the mode is not valid for any combination of
remote location device, local location, and remote
network ID, a major and minor error return code is
returned when an attempt is made to acquire the
program device.

RMTNETID
Specifies that the remote network ID used with the
remote location.

*LOC: Specifies that the remote network ID for the
remote location should be used. If several remote
network IDs are associated with the remote location, the
system automatically selects the remote network ID.

*NETATR: Specifies the remote network ID specified in
the network attributes is used.

*NONE: The remote network has no name.

remote-network id: Specify a remote network ID.

FMTSLT
Specifies the type of record selection used for input
operations.

*PGM: The program determines what record formats are
selected.

*RECID: The RECID keywords specified in the DDS for
the ICF file are used to select records.

*RMTFMT: The remote format name received from the
sending system is used to select records.

CNVTYPE
Specifies the conversation type for which the application
program is designed. For additional information, refer to
“APPC Sessions and Conversations” on page 3-1.

*SYS: Specifies that the system gives the length and
general data stream identifier values that go before each
section of user data in APPC communications. The
application gives the data portion of the general data
stream on output operations and receives only the data
portion of the general data stream on input operations.
For the LU type 6.2 architecture, this is the mapped con-
versation support.

5-2 OS/400 APPC Programming V4R1

*USER: Specifies that the application program gives the
length and general data stream identifier values that go
before each section of user data. The application gives
the length and general data stream values in the first
4 bytes of output data and receives the length and
general data stream values in the first 4 bytes of input
data. For the LU type 6.2 architecture, this is the basic
conversation support.

*SRCPGM: Specifies that the target program accepts
the conversation type specified by the source program.

OVRFLWDTA
Specifies whether overflow data is discarded or kept.
Overflow data is the excess data that occurs when your
print buffer is not able to receive all of a lengthy input
operation.

*DISCARD: Specifies that overflow data is truncated.

*RETAIN: Specifies that overflow data is kept and can
be obtained on the next input operation.

Communications Operations and
Functions

This section gives a brief description of the operations and
functions you can code into a program that uses the APPC
support to communicate with another system.

Common functions such as RECID are not described in this
publication. You should refer to the ICF Programming book
or the DDS Reference for additional information.

Starting a Session Using the Open and
Acquire Operations

A communications session is a logical connection between
two systems through which a local program can communi-
cate with a program at a remote location. Your application
program uses the open and acquire operation to establish a
session, which is controlled by your system (locally con-
trolled) or by the remote system (remotely controlled).

Starting a Transaction Using the Evoke
Function

A transaction is a logical connection between two programs,
and is equivalent to establishing a conversation between the
two programs. Your program uses the evoke function to start
a program on the remote system after a session is started.
The evoke function causes a program start request (an
APPC FMH5) to be sent. It is only valid when your program
is not already communicating with another program on the
same session.

You can use the defer evoke (DFREVOKE) keyword with
the EVOKE keyword to delay the evoke function until one of
the following conditions is met.

� The send buffer is full.

� The program does an operation using an ALWWRT,
CONFIRM, DETACH, FRCDTA, INVITE, or PRPCMT
keyword.

� The program does a commit or rollback operation.

 The DFREVOKE keyword is useful for specialized applica-
tions in which data must be sent at the same time as the
program start request.

Note: If you have an APPC device configured with the
single session location as *YES (that is,
SNGSSN(*YES)), you can only have one active
session and one active transaction at any given time.
However, if your program acquires a session, uses
an evoke function to start a program on that session,
and then sends or receives a detach function, your
program is no longer connected to the session it pre-
viously acquired. A program running in a different job
can then acquire your old session, provided a conver-
sation is available on the mode associated with that
session. If your program attempts another evoke
function to start a program on the old session, it will
fail.

With the evoke function your program can specify the fol-
lowing information:

� Remote program name

� Remote library name (optional)

� User-defined program initialization parameters (optional)

� Synchronization level (optional)

� Security information (optional)

If your program uses the EVOKE, SECURITY, and SYNLVL
keywords, you can specify all of the above information. If
your program is using one of the evoke system-supplied
formats, you can specify all of the above except synchroniza-
tion level. In this case the default for the synchronization
level is always *NONE.

For information on how to code the evoke function refer to
the ICF Programming book and the DDS Reference.

Notes:

1. If a program start request is received on the AS/400
system with an unqualified program name, (that is, it has
no library name) the system uses the library list specified
on the QUSRLIBL system value at the time the sub-
system that is handling the program start request was
started.

2. If a program start request is received on the AS/400
system with a qualified program name, the program
name can be in the form 'program.library' or in the form
'library/program'.

3. Program names and library names on the AS/400
system are limited to 10 characters each.

 Chapter 5. Writing ICF APPC Application Programs 5-3

Program Initialization Parameters

When using EVOKE DDS keyword
If your program is using DDS keywords, it may send
up to 255 user-defined parameters to the remote
system. The number and format of the parameters is
defined by the target program. If the remote system is
another AS/400 system, the parameters are passed to
the target program as if they were passed from a call
to a program (CALL) command. For a prestart job
program, the parameters are retrieved from a data
area using the Retrieve Data Area (RTVDTAARA)
command or the appropriate high-level language oper-
ation (such as the COBOL ACCEPT statement).

If the remote system is an AS/400 system, a maximum
of 40 parameters may be passed. The total length of
the user-defined parameters cannot exceed 32,767
characters. For a prestart job, the length of the user-
defined parameters cannot exceed 2000 bytes. To
determine the total length of the data to be sent, use
the following formula:

4 + (4 + length(parm1) + 4 +

length(parm2) + ... + 4 + length(parmn))

The constant 4 must be included to allow for system
overhead.

When using evoke system-supplied formats
If your program is using one of the evoke system-
supplied formats, you specify the parameters in the
user buffer. Because this does not allow you to specify
individual parameters, you can only pass one param-
eter or you must know how the remote system sepa-
rates program initialization parameters and use that
separator to code the parameters in the user buffer.
For example, a System/36 separates parameters with
a comma. If you want the program initialization param-
eter data to be treated as individual parameters by a
System/36, you should code your user buffer with each
parameter separated by a comma.

Notes:

1. When sending program parameters as part of the evoke
data stream, ensure each parameter sent is the same
length as the respective parameter in the target
program. If it is longer than the respective target
program parameter, truncation occurs. If it is shorter,
unpredictable results may occur.

2. For program start requests received on an AS/400
system, commas embedded within parameters cause
what would otherwise be a single parameter to be con-
sidered multiple parameters. For example:

 Parm 1="A"

 Parm 2="B,C"

 Parm 3="D,E"

 Instead of being three parameters, this example is con-
sidered five separate parameters.

3. The DFREVOKE keyword is not supported by system-
supplied formats.

These notes pertain to both the DDS keyword and the
system-supplied formats for specifying program initialization
parameters.

Synchronization Level: When using DDS keywords,
you specify the synchronization level by using the SYNLVL
keyword. The SYNLVL keyword supports the following
values:

� *NONE: Specifies that confirm or two-phase commit
processing is not allowed on this transaction. This is the
default value.

� *CONFIRM: Specifies that the sending program can
request the receiving program to acknowledge receipt of
the data. The receiving program can send a positive
acknowledgement, or the receiving program or system
can send a negative acknowledgement. Two-phase
commit processing is not allowed on
SYNLVL(*CONFIRM) transactions. Refer to “Confirm
Considerations” on page 7-3 for more information about
confirm processing. Also, refer to the descriptions of the
CONFIRM, RSPCONFIRM, and RCVCONFIRM
keywords for more information on confirm processing.

� *COMMIT: Allows the programs to operate as described
for the *CONFIRM value. Moreover, *COMMIT requires
programs to use two-phase commit processing to protect
their resources. Two-phase commit processing allows
programs to synchronize updates to protected resources
(such as databases). If necessary, updates can be rolled
back, so that the resources remain synchronized. Refer
to the descriptions of the PRPCMT, RCVROLLB, and
RCVTKCMT keywords for more information on two-
phase commit processing. The Backup and Recovery
book has information about commitment control and the
commit and rollback operations, which are an essential
part of two-phase commit processing.

Notes:

1. Your program cannot specify a synchronization level
when using one of the evoke system-supplied formats.
In this case the synchronization level always defaults to
*NONE.

2. Simply specifying SYNLVL(*CONFIRM) does not cause
confirm processing to occur; it only means that confirm
processing will be allowed. To perform confirm proc-
essing, you must specify the CONFIRM keyword or the
TNSSYNLVL keyword.

3. The TNSSYNLVL keyword can be used with all synchro-
nization levels. For more information about the
TNSSYNLVL keyword, see “Transaction-
Synchronization-Level Function” on page 5-6.

5-4 OS/400 APPC Programming V4R1

Security: If your program is using DDS keywords, security
information for the evoke function is provided with the SECU-
RITY keyword. If your program is using one of the evoke
system-supplied formats, security information is provided in
the evoke parameter list coded in your program. The default
value is to send no security information with the evoke func-
tion. Refer to “APPC Security Considerations” on page 3-12
for information about APPC security.

 Sending Data

You can send data during a transaction using the write oper-
ation. APPC also supports various functions that are dis-
cussed below. These functions may be issued by your
program to another program with or without data.

Note: These functions can be used only when your program
is in send state. For more information about sending
and receiving data, see “Conversations” on page 3-1.

 Control-Data Function

Your program uses the control-data (CTLDTA) keyword at
the file or record level to inform the remote program that
control data is being sent. The CTLDTA keyword signals
program-specific data that is not considered normal data
flow.

The CTLDTA keyword has no additional affect when the
EOS, RSPCONFIRM, or RQSWRT keywords are in effect.

 Force-Data Function

Your program uses the force-data (FRCDTA) function to
immediately send communications data currently held in the
buffer without waiting for the buffer to become full. Your
program can continue to send data without waiting for confir-
mation to be returned, but your program must be in send
state.

The FRCDTA keyword has no additional effect when the
keywords ALWWRT, CONFIRM, DETACH, EVOKE, INVITE,
or FAIL are also selected.

 Confirm Function

Your program uses the confirm function to indicate the end
of a user-defined group of data and requests that the remote
program acknowledge that it has accepted the data. An oper-
ation that includes the confirm function does not complete
until the remote program responds with a positive or negative
acknowledgment.

Note: The confirm function only applies when
SYNLVL(*CONFIRM) or SYNLVL(*COMMIT) is speci-
fied in the EVOKE DDS record format used by the
source program, or when the program start request
received by a target program establishes a synchroni-
zation level of confirm. An AS/400 target program can

determine the synchronization level established by
the source program by using the get-attributes opera-
tion. Refer to “Get-Attributes Operation” on page 5-9
for more information.

The confirm function causes any data currently held in the
buffer to be sent, including any data on a write operation that
specified the confirm function. Refer to “Confirm
Considerations” on page 7-3 for additional information.

 Prepare-for-Commit Function

Your program uses the prepare-for-commit (PRPCMT)
function to request one of its partners to prepare to commit
its protected resources. The partner can respond with a
commit, a rollback, or a FAIL operation. If the partner
responds with a FAIL operation, the partner program is in
control and can attempt to correct any errors that it detected.

The PRPCMT function contrasts with the commit operation in
the following ways:

� PRPCMT only works with one conversation at a time.
The commit operation attempts to commit all protected
resources in the two-phase commit transaction program
network.

� PRPCMT only prepares the remote protected resources
to be committed. In other words, the remote resources
have been locked and cannot be changed. They are in a
state in which they can either be committed or rolled
backed. Eventually, the remote resources are com-
mitted or rolled back depending on whether the rest of
the two-phase commit transaction program network
commits or rolls back its protected resources.

The commit operation ends only after all remote pro-
tected resources in the two-phase commit transaction
program network have either been committed or rolled
back.

� PRPCMT allows the application program to attempt error
recovery without rolling back the protected logical unit of
work (LUW). When the application program issues a
PRPCMT and the partner responds with a fail function,
the PRPCMT function completes. The application
program can then attempt error recovery, and issue the
PRPCMT function again. The fail function is described in
“Notifying the Remote Program of Problems by Using
the Fail Function” on page 5-8.

Note: The remote program is in send state after
responding with the fail function. The local appli-
cation program cannot issue the PRPCMT func-
tion again until the conversation states change.

When the application program issues a commit operation
and the partner responds with a fail function, the logical
unit of work is rolled back.

An operation that includes the prepare-for-commit function
does not complete until the remote program responds with a
commit or rollback operation or a FAIL or EOS function.

 Chapter 5. Writing ICF APPC Application Programs 5-5

After the PRPCMT function completes successfully, your
program can do any one of the following.

� Use the commit operation to commit protected
resources.

� Use the rollback operation to roll back the protected
logical unit of work (LUW).

� Use the end-of-session function to end the attachment of
the program to a session and roll back the protected
LUW.

Note: The prepare-for-commit function only applies when
SYNLVL(*COMMIT) is specified in the EVOKE DDS
record format used by the source program, or when
the program start request received by a target
program establishes a synchronization level of
commit. An AS/400 target program can determine the
synchronization level established by the source
program by using the get-attributes operation. Refer
to “Get-Attributes Operation” on page 5-9 for more
information.

The prepare-for-commit function causes any data currently
held in the buffer to be sent, including any data on a write
operation that specified the prepare-for-commit function.
Refer to “Two-Phase Commit Considerations” on page 7-4
for additional information.

 Transaction-Synchronization-Level
Function

Your program uses the transaction-synchronization-level
(TNSSYNLVL) function to specify that synchronization for this
transaction should be done at the level that the SYNLVL
keyword specified on the evoke.

The TNSSYNLVL keyword can only be used if specified with
one of the following keywords.

 � ALWWRT

 � DETACH

 � INVITE

The following topics have more information about the
transaction-synchronization-level function.

� “Allow-Write Function” on page 5-9

� “Ending a Transaction Using the Detach Function” on
page 5-9

� “Invite Function” on page 5-7

 Format-Name Function

Your program uses the format-name (FMTNAME) function
to send the record format name, along with any data speci-
fied, to the remote system. The format name can only be
used with mapped conversations (conversations in which
CNVTYPE (*SYS) is specified on the ADDICFDEVE,
CHGICFDEVE, and OVRICFDEVE commands for the source

program. This function should also only be used if the remote
system is able to receive the APPC architected map name
GDS ID variable. For example, the AS/400 system and
System/38 support receipt of map names; System/36 does
not.

When sending and receiving format names between AS/400
systems, you should specify FMTSLT(*RMTFMT) on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE commands.

 Variable-Buffer-Management Function

If you want to send multiple or partial records using one write
operation, then your program can use the variable-buffer-
management (VARBUFMGT) function.

Using the VARBUFMGT keyword allows you to specify the
length of data independently of the data itself. A program
uses the data length specified as the value passed in the
variable length (VARLEN) DDS keyword, or if VARLEN is not
used, the length of the record format specified on the write
operation is used. Note that the length specified on the
VARLEN keyword must be greater than zero if it is used.

Note: The variable-buffer-management function can only be
used with basic conversations (that is, with
CNVTYPE (*USER) on the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE commands for the
source program, or with CNVTYPE (*USER) or
CNVTYPE (*SRCPGM) for the target program).
Figure 5-1This example shows only one of many
ways to perform this task. You can also write a
program that will send multiple variable-length
records. In addition, other programming languages
may be used.

 R EXAMPLE1 VARBUFMGT

 REC1 3ð

 R EXAMPLE2 VARBUFMGT

 VARLEN(&VLEN);

 REC2 3ð

 VLEN 5S P

Figure 5-1. DDS Used for Variable-Buffer-Management Example
Program

 ð1 VARBUF1.

ð5 ARRAY OCCURS 3 TIMES.

1ð RECORD-LENGTH PIC 99 COMP-4.

 1ð RECORD-DATA PIC X(8).

Figure 5-2 (Part 1 of 3). COBOL/400 Example Program for
Sending Multiple Fixed-Length Records

5-6 OS/400 APPC Programming V4R1

 SEND-FULL-FORMAT.

 \\

 \ The next WRITE will be done to a record format without the \

 \ VARLEN keyword specified; this will cause the length of the \

 \ entire record format to be used. Three ten-character records \

 \ will be sent. \

 \ Note: This format also uses the VARBUFMGT keyword to remove \

 \ the limitation of exactly one logical record. \

 \\\

MOVE 1ð TO RECORD-LENGTH(1).

MOVE "RECORD 1" TO RECORD-DATA(1).

MOVE 1ð TO RECORD-LENGTH(2).

MOVE "RECORD 2" TO RECORD-DATA(2).

MOVE 1ð TO RECORD-LENGTH(3).

MOVE "RECORD 3" TO RECORD-DATA(3).

WRITE ICFREC FROM VARBUF1 FORMAT IS "EXAMPLE1"

TERMINAL IS PGM-DEV-NME.

Figure 5-2 (Part 2 of 3). COBOL/400 Example Program for
Sending Multiple Fixed-Length Records

 SEND-PARTIAL-FORMAT.

 \\\

 \ The next WRITE will be done to a record format with the \

 \ VARLEN keyword specified; this will allow less than the \

 \ entire record format to be used. Two ten-character records \

 \ will be sent using a record format. \

 \ Note: This format also uses the VARBUFMGT keyword to remove \

 \ the limitation of exactly one logical record. \

 \\\

MOVE 1ð TO RECORD-LENGTH(1).

MOVE "RECORD 4" TO RECORD-DATA(1).

MOVE 1ð TO RECORD-LENGTH(2).

MOVE "RECORD 5" TO RECORD-DATA(2).

MOVE VARBUF1 TO REC2 OF EXAMPLE2-O.

MOVE 2ð TO VLEN OF EXAMPLE2-O.

WRITE ICFREC FORMAT IS "EXAMPLE2"

TERMINAL IS PGM-DEV-NME.

Figure 5-2 (Part 3 of 3). COBOL/400 Example Program for
Sending Multiple Fixed-Length Records

 Receiving Data

Your application program uses the read operation to obtain
data or control information from the remote system. The read
operation is valid while the transaction is active and is in
either the receive or send state. Using the read operation in
send state causes your program to send the change-direction
indicator to your partner program, after which your program
enters receive state.

If you do not use the variable-buffer-management
(VARBUFMGT) function, and you request less data than the
length of the record you are receiving, the remaining data to
be received is handled according to the OVRFLWDTA
parameter on the ICF device entry being used.

 Invite Function

Your application program uses the invite function to request
input data from a remote program, but it receives control
without waiting for the input. To obtain the data, your
program must issue a read-from-invited-program-devices or
read operation during the transaction. The invite function is
valid while the transaction is active and in either the receive

or send state. Using the invite function while in send state
causes your program to send the change-direction indicator
to your partner program, after which your program enters the
receive state.

When your application program specifies the TNSSYNLVL
keyword with the invite function, the additional function per-
formed depends on the synchronization level of the conver-
sation. The TNSSYNLVL keyword can be specified with the
invite function only if the synchronization level is *NONE or
*CONFIRM. Table 5-1 shows the details.

 Read-from-Invited-Program-Devices
Operation

Your program can use the read-from-invited-program-
devices operation to obtain data from any program that has
responded to an invite function that was previously issued in
your program. If data becomes available to your program
from more than one program device before the read-from-
invited-program-devices operation is issued, your program
receives the data that was first made available.

Using the Variable-Buffer-Management
Function on Read Operations

If you want to receive multiple or partial records instead of
just one record, using one read operation, then your program
can use the variable-buffer-management (VARBUFMGT)
function.

You should also note that basic conversations using the
VARBUFMGT function differ from basic conversations that do
not use the function and from mapped conversations in the
following manner:

� If you use VARBUFMGT, and you request less data than
the length of the record you are receiving, the remaining
data to be received is saved until your next read opera-
tion.

� If you do not use VARBUFMGT, and you request less
data than the length of the record you are receiving, the
remaining data to be received is handled according to
the OVRFLWDTA parameter on the ICF device entry
being used.

Figure 5-3 on page 5-8 This example shows only one of
many ways to perform this task. You can also write a
program that will receive multiple variable-length records. In

Table 5-1. TNSSYNLVL Function with Invite

Synchronization
Level Function

*NONE The force-data function is performed in
addition to the invite function.

*CONFIRM The confirm function is performed in addi-
tion to the invite function.

*COMMIT Not allowed

 Chapter 5. Writing ICF APPC Application Programs 5-7

addition, other programming languages may be used. Note
that the DDS used for this example is the same as the DDS
used in the example program for sending fixed-length
records in Figure 5-1 on page 5-6.

 ð1 VARBUF1.

ð5 ARRAY OCCURS 3 TIMES.

1ð RECORD-LENGTH PIC 99 COMP-4.

 1ð RECORD-DATA PIC X(8).

 RECEIVE-RECORDS.

 \\

 \ The following READ will receive ð,1,2, or 3 records (1ð \

 \ bytes per record) and display the data from each record. \

 \ Note: this format uses the VARBUFMGT keyword to remove \

 \ the limitation of exactly one logical record. \

 \\

READ ICFFILE INTO VARBUF1

FORMAT IS "EXAMPLE1"

INDICATORS ARE ICFF-INDIC-AREA.

ACCEPT IO-FBA FROM IO-FEEDBACK FOR ICFFILE.

 DISPLAY ACTUAL-RECEIVE-LENGTH.

IF ACTUAL-RECEIVE-LENGTH < 1 THEN

DISPLAY "NO DATA RECEIVED"

 ELSE

 DISPLAY RECORD-DATA(1).

IF ACTUAL-RECEIVE-LENGTH > 1ð THEN

 DISPLAY RECORD-DATA(2).

IF ACTUAL-RECEIVE-LENGTH > 2ð THEN

 DISPLAY RECORD-DATA(3).

Figure 5-3. COBOL/400 Example Program for Receiving Multiple
Fixed-Length Records

Waiting for a Display File, ICF File, or Data
Queue

A data queue is an object that is used to communicate and
store data used by several programs in a job or between
jobs. You can use data queues when your program waits for
one or more of the following to occur:

� Pressing an enabled function key or Enter key from an
invited display device

� Data becoming available when the session is invited for
an ICF program device

� A user-defined entry being made to a data queue by a
job running on the system

To indicate that a data queue will have entries placed in it
when your program has to wait for any of the three actions
listed above, use one of the following commands with the
specified data queue (DTAQ) parameter:

� Create Display File (CRTDSPF)

� Change Display File (CHGDSPF)

� Override Display File (OVRDSPF)

� Create ICF File (CRTICFF)

� Change ICF File (CHGICFF)

� Override ICF File (OVRICFF)

Refer to the ICF Programming book for more information.

Notifying the Remote Program of
Problems by Using the Fail Function

Your program uses the fail function to indicate that it has
detected an abnormal condition while it was sending or
receiving data. If a program is in a receive state, the fail
function causes a negative-response indication and an APPC
FMH7 to be sent to the remote system. If the program is in a
send state, the fail function causes an APPC FMH7 to be
sent to the remote system.

No data can be sent with a fail function. The fail function is
also used to send a negative response to a received confirm
request.

If a program that is in the send state issues a fail function, it
may indicate that the data just sent was in error or that some
other condition occurred. All records sent before the fail func-
tion was issued are still sent to the remote program.

If a program that is in the receive state issues a fail function,
it indicates that the data received was in error. The program
that sent the fail function should immediately do at least one
output operation so it can indicate why it sent the fail opera-
tion. The record sent by the output operation should identify
what the error is and where the remote program should start
again. Data received by APPC, but not yet given to the appli-
cation program, is lost after a fail function has been issued
by a program in receive state.

The program that issued the fail function will be in a send
state, and the program that receives the fail function will be
in a receive state. This allows the program that was sending
data to determine which record failed or which record it
should begin sending again.

If both programs issue a fail function at the same time, the
program that was receiving will be successful and should
send. The program that was sending will receive a fail return
code.

When a fail function is the response to a commit operation,
the system rolls back the protected LUW on the side that
issued the commit operation. The side that issued the fail
function must do a rollback operation after the request to roll
back is received from the partner. When a fail function is the
response to a PRPCMT function, APPC does not roll back
the protected LUW. Since APPC does not do a rollback for
PRPCMT, the application program can try to correct the
problem.

5-8 OS/400 APPC Programming V4R1

Using Additional Functions and
Operations

APPC supports the additional functions and operation listed
below. Refer to the ICF Programming book for more informa-
tion on these functions and operation.

 Respond-to-Confirm Function

Your program uses the respond-to-confirm (RSPCONFIRM)
function to send a positive response to a received confirm
request. The RSPCONFIRM function can only be used when
a confirm request is outstanding. You can check the major
and minor return codes or use the receive confirm
(RCVCONFIRM) indicator to determine when to issue a
RSPCONFIRM function. After issuing the RSPCONFIRM
function your program can continue processing.

 Request-to-Write Function

Your program uses the request-to-write (RQSWRT) function
to indicate that it wants to send something to the remote
program (or it wants to end the session in a controlled
manner) rather than continue receiving data. The remote
program, however, must decide whether to stop sending and
when to stop. The request-to-write function causes an APPC
SIGNAL to be sent to the remote system.

After issuing a request-to-write function, your program must
continue to receive data until it receives a return code that
indicates the remote program is ready to begin receiving (if it
decides to do so). Your program, in response to the return
code, can then begin sending its data, perform other proc-
essing, or end.

 Allow-Write Function

Your application program uses the allow-write (ALWWRT)
function to inform the remote program that your program is
done sending data and is ready to receive. This causes a
change-direction indicator to be sent to the remote program.

After issuing the allow-write function, your program can then
issue an input operation to receive data from the remote
program.

When your application program specifies the TNSSYNLVL
keyword with the ALWWRT keyword, the additional function
performed depends on the synchronization level of the con-
versation. Table 5-2 shows the details.

 Timer Function

Your program can use the timer function to set a timer. A
read-from-invited-program-devices operation is the only oper-
ation with which your program can determine that a timer has
ended. For example, your program can set a timer and invite
multiple program devices. It can then issue a read-from-
invited-program-devices operation, which would ensure that
your program does not wait indefinitely when no data is
received on any of the invited devices. The read-from-invited-
program-devices operation can complete with a return code
indicating that a timer has ended.

 Get-Attributes Operation

Your program uses the get-attributes operation to determine
the status of the session. It can be issued at any time during
a session. The operation gets the current status information
about the session to which your program is communicating.
Refer to “GET_ATTRIBUTES” on page C-11 and to the ICF
Programming book for more information about the get-
attributes operation.

Ending a Transaction Using the Detach
Function

Your program uses the detach function to inform the remote
program that your program is done sending data and has
ended the transaction. The detach function indicates that the
current record is the last record to be sent and causes an
APPC conditional end bracket (CEB) to be sent. The detach
function can be issued by either the source or target program
and can only be issued when the program is in the send
state.

Table 5-2. TNSSYNLVL Function with ALWWRT

Synchronization
Level Function

*CONFIRM The confirm function is performed in addi-
tion to the allow-write function.

*COMMIT The conversation enters defer receive state
until your application program issues a
commit operation, a force-data function, or
a confirm function. Once the commit opera-
tion, force-data function, or confirm function
completes successfully; the conversation is
in receive state.

Table 5-2. TNSSYNLVL Function with ALWWRT

Synchronization
Level Function

*NONE The force-data function is performed in
addition to the allow-write function.

 Chapter 5. Writing ICF APPC Application Programs 5-9

Using the Detach Function When the
Synchronization Level is None

When the synchronization level is none and the detach and
transaction-synchronization-level functions are used together,
force-data and detach functions are performed.

After a detach function is accepted by your program, no
further input or output operations with the remote program
are allowed.

Using the Detach Function When the
Synchronization Level is Confirm

When a detach function and a confirm function or
transaction-synchronization-level function are used together,
a confirm function is performed. If the remote program
responds positively, the detach function is performed. If the
remote program responds negatively, or has already sent a
negative response, the transaction may not end immediately.
The sender of the negative response is responsible for the
initial error recovery. The point at which action is taken to
recover from the error determines when the transaction is
ended.

To respond positively to the detach function with a confirm or
transaction-synchronization-level function, the remote
program must use the respond-to-confirm function.

To respond negatively to the detach function with a confirm
or transaction-synchronization-level function, the remote
program should use the fail function.

After a detach function is accepted by your program, no
further input or output operations with the remote program
are allowed.

Using the Detach Function When the
Synchronization Level is Commit

For two-phase commit processing, the detach function must
be accompanied by the transaction-synchronization-level
function. The transaction does not end until your program
issues a commit operation, and the commit operation com-
pletes successfully. If the commit operation fails, the fol-
lowing is done.

� The logical unit of work is rolled back.

� The transaction is not ended.

� The conversation state is returned to what it was at the
last commit boundary.

Using the Detach Function From a Target
Program

After a target program issues a detach function, both the
session and the transaction end. No further operations are
valid on the program device.

Ending a Session

The following operations and function can be used by your
program to end a session with the remote program.

 Release Operation

Your program uses the release operation to attempt to end
the program’s attachment to a session. Depending on how
the session was started, the release operation produces dif-
ferent results:

� If the release operation is issued by the program that is
the source of the conversation, the session ends imme-
diately (unless some error condition occurs). The opera-
tion frees the resources (allocated to the program) that
were used during the session. If the release operation is
not successful, the end-of-session function can be
issued to end the session. The release operation is valid
only when a transaction is not active for source pro-
grams. This means that a detach function must first be
issued before the release, or that a successful evoke
function was not issued on the session.

If your program is the source of a conversation with a
synchronization level of commit, the release operation
causes a rollback to occur unless the release comes at
a commit boundary.

� If the release operation is issued from the program that
is the target of the conversation, the connection to the
program is temporarily ended, and the transaction is
kept active. This target conversation can be acquired
again later in the same job; however, the session is not
available for use by other programs until the target
program issues an end-of-session function, a detach
function, or ends. The detach function cannot be issued
before the release because the detach function ends the
session.

 End-of-Session Function

Your program uses the end-of-session function to end the
program’s attachment to a session. If a program is in a
receive state, the end-of-session function causes a negative-
response indication and an APPC FMH7 to be sent to the
remote system. If the program is in a send state, the end-of-
session function causes an APPC FMH7 to be sent to the
remote system. Unlike the release operation, the end-of-
session function always ends the session (if it still exists).
However, if the function is issued during an active trans-
action, APPC ends the transaction abnormally, and if the
conversation is synchronous (see “Conversations” on
page 3-1), the partner program will also be notified that the
transaction ended abnormally. For example, your program
could issue the end-of-session function after an error has
occurred on one of its previous operations; it may be an error
from which your program cannot easily recover.

5-10 OS/400 APPC Programming V4R1

When your program issues an end-of-session function, APPC
ends the program’s attachment to the session and frees the
resources in the AS/400 system that were used during the
session. The resources are made available to other pro-
grams in the AS/400 system that want to establish a session.

Notes:

1. When your program is a source program, it should use
the end-of-session function or a release operation after a
transaction has ended normally.

2. When a target program, started by a program start
request, receives a detach function, it should issue an
end-of-session function to make the conversation avail-
able for other transactions. When a target program
sends a detach function, ICF implicitly issues an end-of-
session function for your program.

3. For two-phase commit processing, the EOS causes a
rollback to occur.

 Close Operation

Your program uses the close operation to close the ICF file
and to end the program’s attachment to active sessions the
program has acquired. If a program is in a receive state, the
close operation causes a negative-response indication and
an APPC FMH7 to be sent to the remote system. If the
program is in a send state, the close operation causes an
APPC FMH7 to be sent to the remote system. If the close
operation is issued from a source program, any active ses-
sions connected to the ICF file are ended, and all resources
that were allocated for the file are deallocated. If a trans-
action is active when the close operation is issued, both the
session and the transaction are abnormally ended.

If the close operation is issued from the program that is the
target of the conversation, the connection to the program is
only temporarily ended, and the transaction is kept active.
This target conversation can be acquired again later in the
same job by issuing the open operation and the acquire
operation. However, the session is not available for use by
other programs until the target program issues an end-of-
session function, a detach function, or ends.

For two-phase commit processing, the close operation
causes a rollback to occur if the session is ended.

Using Response Indicators

Response indicators are defined to your program in the ICF
file and are set on each input operation. However, these indi-
cators are optional and major and minor return codes can
also be used to indicate the status of input operations.

 Receive-Confirm

Your program uses the receive-confirm (RCVCONFIRM)
response indicator to receive an indication that the record
received from the remote system contains a confirm request.
A received confirm request indicates that the other program
is expecting your program to perform a specific action to syn-
chronize the programs. This action can be a RSPCONFIRM
function to positively respond; or a close operation, FAIL
function, or EOS function to negatively respond.

The presence of the confirm request is also indicated by
major return codes 00 (data received), 02 (end job or end
subsystem in progress), or 03 (no data received) and minor
return codes 13, 14, 15, 18, 1C, 1D, 44, 45, and 46.

 Receive-Fail

Your program uses the receive-fail (RCVFAIL) response
indicator to receive an indication that the partner application
has detected an error. Your application program should take
the appropriate recovery action. Your program remains in
receive state after receiving the RCVFAIL indicator and
should continue to issue input operations. Receipt of a fail
request is also indicated by a major and minor return code.
Refer to return codes 83C7 through 83CC in Appendix B,
Sense Data and Return Codes.

The failure notification is always received without user data.
Receipt of the failure causes a notify message to be sent if
the RCVFAIL keyword is not specified. The same messages
are used whether the program is in send or receive state.

 Receive-Turnaround

Your program uses the receive-turnaround (RCVTRNRND)
response indicator to receive an indication that the record
returned in the input buffer of the local system has ended a
transmission. The RCVTRNRND response indicator indicates
that the remote program is ready to receive data.

Your program can detect a receive-turnaround indicator by
checking for the following major return codes along with the
appropriate minor return codes.

00 user data received

02 end job or end subsystem in progress

03 no data received

The appropriate minor return codes are 00, 04, 06, 13, 14,
44, and 58.

If the return code is 0358, the conversation is not in send
state until after a successful commit operation.

 Chapter 5. Writing ICF APPC Application Programs 5-11

 Receive-Detach

Your program uses the receive-detach (RCVDETACH)
response indicator to receive an indication that a detach
request has been received. If the detach request is received
along with data, major return code 00 is set along with the
appropriate minor code. If the detach request is received
without data, major return code 03 is set along with the
appropriate minor code. The detach request can also be
received with a major return code of 02 (end job or end sub-
system in progress), along with the appropriate minor code.
The minor code can be 08, 0C, 11, 1C, 46, or 59.

If the return code is 0359, the conversation is not detached
until after a successful commit operation.

 Receive-Control-Data

Your program uses the receive-control-data (RCVCTLDTA)
response indicator to receive an indication that the record in
the input buffer contains control data. If the receive-control-
data response indicator is received along with data, major
return code 00 is set along with the appropriate minor code.
If the response indicator is received without data, major
return code 03 is set along with the appropriate minor code.
The response indicator can also be received with a major
return code of 02 (end job or end subsystem in progress),
along with the appropriate minor code. The minor return code
can be 02, 04, 05, 06, 0C, 11, 13, 18, 1D, 44, 45, 46, 3421,
or 3481.

 Receive-Rollback

Your program uses the receive-rollback (RCVROLLB)
response indicator to receive an indication of one of the fol-
lowing conditions.

� The remote program sent a ROLLBACK. This indicates
that the remote program expects your program to
rollback its protected resources.

� The protected LUW entered the rollback required state.

Your program must respond with a rollback operation. Your
program can only get this response indicator if it has a con-
versation with a synchronization level of commit.

This response indicator can be received with the following
return codes.

 � 0054

 � 0254

� 80F9, 80FA, 80FB

� 81F0, 81F1, 81F2, 81F3, 81F4, 81F5

� 83FB, 83FC, 83FD, 83FE, 83FF

 Receive-Take-Commit

Your program uses the receive-take-commit (RCVTKCMT)
response indicator to receive an indication that the remote
program sent a PRPCMT function or a commit operation.
This indicates that the remote program expects your program
to determine if it can commit its protected resources. Your
program must either do a commit or rollback operation or a
FAIL or EOS function. Your program can only get this
response indicator if it has a conversation with a synchroni-
zation level of commit.

This response indicator can be received with major return
codes 02 (end job or end subsystem in progress) or 03 (no
data received). The major return code can be accompanied
by a minor return code of 57, 58, or 59.

Using Input/Output Feedback Areas

Your program may have access to the input/output (I/O)
feedback area. If it does, there are certain fields that you
should be aware of when writing APPC applications.

Major return code
This field contains the major return code indicating the
status of input and output operations.

Minor return code
This field contains the minor return code indicating the
status of input and output operations.

Negative-response data
For some return codes, this field contains the SNA
sense data received from the remote system. Refer to
the APPN Support book and to the SNA Formats
manual for more information about sense data.

Request-to-write indicator
This field indicates whether the remote program has
requested permission to send data.

Format name data
This field contains the APPC map name received from
the remote system. If the remote system is an AS/400
system, this is the record format name sent as a result
of a write operation with the FMTNAME function speci-
fied.

Mode
This field contains the name of the mode to which the
session is attached. Refer to “Mode Description” on
page 2-3 for a description of modes.

Actual received data length
This field contains the length of the data received on
an input operation.

Length of the record associated with the last I/O opera-
tion
This field contains the length of the record associated
with the last I/O operation. This value includes data,
option indicators, response indicators, and program-to-
system data, if applicable.

5-12 OS/400 APPC Programming V4R1

Using Return Codes

After each operation, an ICF return code is returned to your
program. Your program should check this return code to
determine:

� The status of the operation just done

� The operation that should be done next

For example, a major return code of 00 indicates that data
was received on an input operation. Along with this major
code you can receive from APPC minor codes, such as:

� 01: Indicates that your program should continue
receiving data.

� 08: Indicates that the remote program has ended the
transaction. Your program can do one of the following:

– If it is a source program, issue another evoke func-
tion or end the session.

– If it is a target program, end the session and con-
tinue local processing or go to end of job.

– 1C: Indicates that the remote program has ended
the transaction and requested confirmation. Your
program must first respond either positively or nega-
tively to the confirmation request. If your program
responds positively, it should continue as for the 08
minor code. If it responds negatively, it should then
inform the remote program why it responded nega-
tively or it can go to end of job without performing
error recovery. In any case, if your program
responds negatively, it is responsible for the appro-
priate error recovery.

Another example would be a major code of 83. In this case
either the local system, remote system, or remote program
has detected an error that may be recoverable. Different
minors can be returned just as for the 00 major. For
example:

� If your program receives a C7 minor return code, the
remote program has sent your program an error condi-
tion (on the AS/400 system this is done by using the fail
function). If your program receives this return code, or

any of the other fail return codes, it should perform an
input operation to allow the remote program to send the
appropriate error recovery information. In this situation,
the remote program is responsible for the necessary
error recovery.

� If your program receives a CD minor return code, your
program has issued a confirm function which is currently
not allowed. Either your program is using a transaction
which was not started with a synchronization level of
confirm or the current state of the transaction does not
allow the confirm function. For this return code, your
program is responsible for the necessary error recovery.
The session and transaction are still active and you can
recover from this error by issuing the operation without
the confirm function.

Your program should check the ICF return codes at the com-
pletion of every operation to ensure that the operation com-
pleted successfully or that the appropriate recovery action is
taken.

Refer to Appendix B, Sense Data and Return Codes for a
description of the return codes that can be returned to your
application when it is using APPC.

Mapping between ICF Operations and
Functions and LU Type 6.2 Verbs

The two tables in this section map ICF operations and func-
tions to LU type 6.2 verbs, and can be useful if you are
writing applications between an AS/400 system and another
system that supports APPC. A more detailed mapping of the
architected verbs to the APPC implementation is provided in
Appendix C.

Mapping of LU Type 6.2 Verbs to ICF
Operations and Functions

The following table lists the LU type 6.2 verbs and the corre-
sponding ICF operation or function, the DDS keyword, and
the system-supplied format.

Table 5-3 (Page 1 of 2). Mapping between ICF Operations or Functions and LU Type 6.2 Verbs

LU 6.2 Mapped or Basic Conversation
Verbs

ICF Operation or Function DDS Keyword System- Supplied
Format

MC_ALLOCATE or ALLOCATE Combination of acquire operation and
evoke function

EVOKE $$EVOKNI

MC_CONFIRM or CONFIRM Confirm function CONFIRM No equivalent

MC_CONFIRMED or CONFIRMED Respond-to-Confirm function RSPCONFIRM No equivalent

 Chapter 5. Writing ICF APPC Application Programs 5-13

Table 5-3 (Page 2 of 2). Mapping between ICF Operations or Functions and LU Type 6.2 Verbs

LU 6.2 Mapped or Basic Conversation
Verbs

ICF Operation or Function DDS Keyword System- Supplied
Format

MC_DEALLOCATE or DEALLOCATE Write operation with detach function, and,
depending on the type of program, one of
the following:

� For a source program, an end-of-
session function, release, or close
operation must follow the detach.

� For a target program, a close opera-
tion should follow the detach.

DETACH EOS $$SENDET
$$EOS

MC_FLUSH or FLUSH Force-data function FRCDTA No equivalent

MC_GET_ATTRIBUTES or
GET_ATTRIBUTES

Get-attributes operation Not applicable Not applicable

MC_POST_ON_RECEIPT or
POST_ON_RECEIPT

Invite function INVITE $$SEND with 0
length

MC_PREPARE_FOR_SYNCPT or
PREPARE_FOR_SYNCPT

Prepare-for-commit function PRPCMT No equivalent

MC_PREPARE_TO_RECEIVE or
PREPARE_TO_RECEIVE

Allow-write or invite function ALWWRT or
INVITE

$$SEND with 0
length

MC_RECEIVE_AND_WAIT or
RECEIVE_AND_WAIT

Read operation to a specific program
device

Not applicable Not applicable

MC_REQUEST_TO_SEND or
REQUEST_TO_SEND

Request-to-write function RQSWRT $$RCD

Note: This also
causes an
invite to be
issued.

SEND_DATA Write operation of a format with a data
length greater than 2

Not applicable $$SENDNI

MC_SEND_DATA Write operation Not applicable $$SENDNI

MC_SEND_DATA with
USER_CONTROL_DATA

Write operation with CTLDTA keyword CTLDTA Not applicable

MC_SEND_ERROR or SEND_ERROR Fail function FAIL $$FAIL

MC_TEST or TEST No equivalent; however, the application
program can check the request-to-write
indicator in the I/O feedback area to deter-
mine if a REQUEST_TO_SEND was
received.

Not applicable Not applicable

MC_TEST or TEST (POSTED) Get-attributes operation Not applicable Not applicable

GET_TYPE Get-attributes operation Not applicable Not applicable

WAIT Read-from-invited-program-devices opera-
tion

Not applicable

Not applicable

Example ICF Operations and Functions
Mapped to LU Type 6.2 Verbs

The following table provides some example ICF operations
and functions that can be used in your application program
and the LU type 6.2 architected verb and parameter to which
it corresponds. This table only provides DDS keyword exam-
ples, and should be used to supplement the more detailed
information contained in Appendix C.

Notes:

1. Brackets [] indicate that contents are optional.

2. Parameters that are required (such as RESOURCE and
RETURN_CODE) are not always listed explicitly in the
table.

3. These examples show one way of performing the opera-
tion or function; there may be others.

5-14 OS/400 APPC Programming V4R1

Table 5-4 (Page 1 of 3). Mappings for Example ICF Operations and Functions

ICF Operations/Functions LU Type 6.2 Verbs—Basic or Mapped

An acquire operation followed by: Corresponds to:
EVOKE([library-name/]program-name)

Note: It is the combination of an acquire operation and evoke func-
tion that corresponds to [MC_]ALLOCATE.

[MC_]ALLOCATE with TPN(program-name) followed by an [MC_]FLUSH

With an evoke function, you can also specify any of the following:
[parameter-1...[parameter-255]] [PIP(YES(variable1 variable2...variablen))]
SECURITY(3 \USER) or

SECURITY([1 profile ID] [2 password] [3 userid])

SECURITY(SAME) or

SECURITY(PGM)

SYNLVL(\NONE) SYNC_LEVEL(NONE)
DFREVOKE Do not follow the [MC_]ALLOCATE with an [MC_]FLUSH
SYNLVL(\CONFIRM) or

 SYNLVL(\COMMIT)
...

Write (data length > ð) with CONFIRM

SYNC_LEVEL(CONFIRM) or

 SYNC_LEVEL(SYNCPT)
...

[MC_]SEND_DATA followed by [MC_]CONFIRM

If your program specifies SYNLVL(*CONFIRM) and the CONFIRM
DDS keyword, the remote program must then issue a:

Corresponds to:

RSPCONFIRM (positive response)

 or

FAIL (negative response)

[MC_]CONFIRMED

 or

MC_]SEND_ERROR

If the remote program issues a
Get-attributes operation, [MC_]GET_ATTRIBUTES
it can determine the SYNLVL established by the source program.
Your program issues a:

FRCDTA

Corresponds to:

[MC_]FLUSH

Your program issues a write with FMTNAME to send the record format
name along with data to the remote system.

Note: The format-name can only be used with mapped conversa-
tions, and should only be used if the remote system is able to
receive the APPC architected map name GDS ID variable.

Corresponds to:

MC_SEND_DATA with

 [MAP_NAME(YES(map-name))]

Your program uses a: Corresponds to:
Write operation [MC_]SEND_DATA
to send data to the remote system, and then uses a:
Read operation [MC_]RECEIVE_AND_WAIT

to receive data from a specific program device (for example,
PGMDEVA) and waits to receive data before continuing

Your program uses a: Corresponds to:
Write operation with a CTLDTA keyword [MC_]SEND_DATA with USER_CONTROL_DATA
If your program issues a: Corresponds to:
Write without data and INVITE

requesting data from the remote program to send data for a program
device (for example, PGMDEVA), your program receives control
without waiting for input.

You can also specify the following with the invite function:

[MC_]POST_ON_RECEIPT or [MC_]PREPARE_TO_RECEIVE followed by

[MC_]POST_ON_RECEIPT, if the program is in send state

TNSSYNLVL

unless your program specified SYNLVL(*COMMIT).

Later, your program can issue a

TYPE(SYNC_LEVEL) specified with the [MC_]PREPARE_TO_RECEIVE

Read-from-invited-program-devices operation. WAIT

A successful completion return code (set in the I/O feedback area)
tells your program that data has been received and is in your
program’s buffer.

Your program issues a:

Write without data and RQSWRT

to indicate that it wants to send data to the remote program rather
than continue receiving data.

Corresponds to:

[MC_]REQUEST_TO_SEND

Your program issues a:

Write with data and ALWWRT

to inform the remote program that your program is done sending data
and is ready to receive.

Corresponds to:

[MC_]SEND_DATA followed by

 [MC_]PREPARE_TO_RECEIVE

 Chapter 5. Writing ICF APPC Application Programs 5-15

Table 5-4 (Page 2 of 3). Mappings for Example ICF Operations and Functions

ICF Operations/Functions LU Type 6.2 Verbs—Basic or Mapped

Your program issues a:

Write with data, ALWWRT, and TNSSYNLVL

to inform the remote program that your program is done sending data
and is ready to receive.

If your program specified SYNLVL(*COMMIT), your program issues
a:

Corresponds to:

[MC_]SEND_DATA followed by

 [MC_]PREPARE_TO_RECEIVE

 with TYPE(SYNC_LEVEL)

Commit operation

to commit the changes.

SYNCPT

Your program issues a:

Write without data and ALWWRT

to inform the remote program that your program is done sending data
and is ready to receive.

Corresponds to:

[MC_]PREPARE_TO_RECEIVE

Your program issues a:

Write without data, ALWWRT, and TNSSYNLVL

to inform the remote program that your program is done sending data
and is ready to receive.

If your program specified SYNLVL(*COMMIT), your program issues
a:

Corresponds to:

[MC_]PREPARE_TO_RECEIVE

with TYPE(SYNC_LEVEL)

Commit operation

to commit the changes.

SYNCPT

Your program issues a:

Write without data and PRPCMT

Corresponds to:

[MC_]PREPARE_FOR_SYNCPT

To end a session, a source program issues: Corresponds to:
Write with DETACH, followed by EOS or close [MC_]DEALLOCATE with TYPE(FLUSH)

Note: The combination of DETACH and EOS corresponds to
[MC_]DEALLOCATE. The detach function indicates that the
record is the last record to be sent and causes an APPC
CEB to be sent.

If your program issues: Corresponds to:
DETACH with CONFIRM, followed by EOS or close, [MC_]DEALLOCATE with TYPE(CONFIRM)

the transaction does not end if the remote program sends a
FAIL (negative acknowledgement) [MC_]SEND_ERROR

Otherwise, the transaction ends normally when the remote program
issues a:

Write without data and RSPCONFIRM [MC_]CONFIRMED

If your program issues: Corresponds to:
DETACH with TNSSYNLVL [MC_]DEALLOCATE with TYPE(SYNC_LEVEL)

If your program specified SYNLVL(*COMMIT), the transaction does
not end until your program issues a:

Commit operation

 to commit the changes.

SYNCPT

If a program receives the following detach and commit indications for
a protected conversation

Corresponds to:

RCVDETACH and RCVTKCMT WHAT_RECEIVED(TAKE_SYNCPT_DEALLOCATE) on an appropriate LU 6.2

operation
(or it receives return codes 0259 or 0359), it should commit changes
using:

Commit operation SYNCPT

If the program is a target program, started by a program start
request, and it receives a detach indication for an unprotected con-
versation using:

Corresponds to:

RCVDETACH RETURN_CODE(DEALLOCATE_NORMAL) on an appropriate LU 6.2

operation
(or it receives return codes 0008, 0208, or 0308), it should end the
session using:

EOS [MC_]DEALLOCATE with TYPE(LOCAL)

If the program is a source program, and it receives a detach indi-
cation for an unprotected conversation using:

Corresponds to:

RCVDETACH RETURN_CODE(DEALLOCATE_NORMAL) on an appropriate LU 6.2

operation

5-16 OS/400 APPC Programming V4R1

Table 5-4 (Page 3 of 3). Mappings for Example ICF Operations and Functions

ICF Operations/Functions LU Type 6.2 Verbs—Basic or Mapped

(or it receives return codes 0008, 0208, or 0308), it should end the
session using:

a release operation followed by a close operation [MC_]DEALLOCATE with TYPE(LOCAL)

(An end-of-session function is not necessary for the source program.)

If your program uses an

EOS

during an active transaction, both the transaction and the conversa-
tion are ended abnormally by APPC.

Corresponds to:

[MC_]DEALLOCATE

with TYPE(ABEND)

 Flow Diagrams

This section provides example flow diagrams showing how
two programs can exchange information and data. The first
flow diagram, showing how ICF operations and functions are
used, is based on the inquiry application examples in
Appendix E. In this example, a source program on a local
AS/400 system requests information about a part number
from a target program on a remote AS/400 system.

The second flow diagram, showing how the LU type 6.2
verbs and parameters are used, parallels the flow diagram
for inquiry applications.

A Note about the Flow Diagrams

In the flow diagrams in this section, vertical dotted lines indi-
cate the components involved in the exchange of information
between systems. The horizontal arrows indicate the direc-
tion of the flow for that step. The numbers lined up on the left
side of the flow are reference points to the flow and indicate
the progression of verbs or functions made on the conversa-
tion. These same numbers correspond to the numbers
under the Step heading of the text description for each
example.

Not all possible parameters that can be issued with a verb
are listed in the flow diagrams. For a complete list and
description of the parameters, refer to Appendix C.

Flow Diagram for Inquiry Applications
Using ICF

Figure 5-4 on page 5-18 shows the flow for the exchange of
information that occurs in an inquiry application using ICF
operations and functions.

The steps shown in Figure 5-4 are described below.

Table 5-5 (Page 1 of 2). Description of Flow Diagram

Step Description

.1/ and .2/ Program A opens an ICF file and issues an acquire operation to start a session with the remote AS/400 system.
This causes a session to be established if a session is not already available. The major and minor return code
of 0000 indicates that the acquire operation was successful.

.3/ and .4/ Program A issues an evoke function, which establishes a conversation with the partner program. The evoke
function is issued with a synchronization level of confirm.

.5/ and .6/ Program C opens an ICF file on the remote system and issues an acquire operation for the requesting program
device to establish a logical connection to the session and transaction.

.7/ Program C issues a read operation to receive information from Program A.

.8/ Program A issues a write operation with a confirm function and an allow-write function to request information
about a part number (sent as the data). When these functions are used, the data is flushed, the change-
direction indicator is sent, and a confirmation request is sent to the partner program.

The read operation that program C issued (step .7/) completes with a major and minor return code of 0014,
indicating that data was received with the change-direction indicator, and the partner program requested confir-
mation.

.9/ Program C must now respond to the confirmation request. Program C issues a write operation with the respond-
to-confirm function. As a result, a positive response is sent to the received confirmation request. Program C
prepares to send data. Meanwhile, Program A receives a major and minor return code of 0001 in response to
the confirmation request, indicating that the write operation it issued completed successfully.

.1ð/ Program C sends the requested data using the write operation with the allow-write function.

 Chapter 5. Writing ICF APPC Application Programs 5-17

Table 5-5 (Page 2 of 2). Description of Flow Diagram

Step Description

.11/ and .12/ Program A issues a read operation and receives the data. The major and minor return code of 0000 on the read
operation indicates that data was received with the change-direction indicator. Program A can send more
requests to be processed, if necessary.

.13/ Program C issues a read operation to receive information from Program A.

.14/ and .15/ Program A ends the transaction by issuing a detach function and closing the ICF file. The read operation that
Program C issued (step .13/) completes with a major and minor return code of 0308, indicating that a detach
was received without any data.

.16/ and .17/ Though Program C can continue local processing, it ends the session using the end-of-session function.

.18/ Program C then closes the ICF file.

Program
A

Program
C

end the transaction

AS/400 System AS/400 System

response

data with
confirm and

change-direction
indicator

ICF
Support

ICF
Support

return code = 0001

Evoke with program name,
synchronization level

of confirm

return code = 0000

return code = 0000

return code = 0000

Write operation with data,
confirm, allow-write

data, change-direction
indicator

Write operation with detach

close

close

return code = 0000

open, acquire
program device

start of session
(if not already available)

start of transaction

write operation with
respond-to-confirm

write operation with
allow-write, data

read operation

write with end-of-session

return code = 0000, data

Read operation

return code = 0308

RV2P751-1

Program C is started

Open, Acquire *REQUESTER

Read Operation

data, return code =0014

Figure 5-4. Data Flow Using ICF Operations and Functions

5-18 OS/400 APPC Programming V4R1

Flow Diagram for Inquiry Applications
Using LU Type 6.2 Verbs

Figure 5-5 on page 5-20 shows the flow for the exchange of
information that occurs between two systems using LU type
6.2 verbs, and parallels the flow diagram for the ICF inquiry
applications on 5-17.

Mapped conversation verbs are used as examples in the flow
diagram, but basic conversation verbs could also be used.

The steps shown in Figure 5-5 are described as follows:

Table 5-6. Description of Flow Diagram

Step Description

.1/ The MC_ALLOCATE verb allocates a session between System X and System Y, and on that session allocates
a conversation between the local transaction program and a remote transaction program. The TPN parameter
specifies the name of the remote program to be connected at the other end of the conversation. If a session
between the logical units (LUs) is not already available, a session is activated.

.2/ No errors occurred on the MC_ALLOCATE, so the RETURN_CODE is set to OK. A resource_ID is also
assigned to the conversation.

.3/ Program C is started, and Program A and Program C can now have a conversation.

.4/ Program A uses the MC_SEND_DATA verb to send data to the remote program, using the resource_ID
assigned to the conversation. Data is buffered and is not sent to Program C until Program A issues the
MC_PREPARE_TO_RECEIVE with TYPE(CONFIRM) (see step .6/).

.5/ Program C uses the MC_RECEIVE_AND_WAIT verb to wait for information to arrive on the specified conversa-
tion, but it does not receive information until Program A issues its next verb (see step .6/). The information can
be data, conversation status, or a request for confirmation.

.6/ and .7/ Program A uses the MC_PREPARE_TO_RECEIVE verb with TYPE(CONFIRM) to indicate that a confirmation is
requested, and that the mapped conversation should change from a send to a receive state. The RESOURCE
parameter specifies the resource_ID of the conversation on which data is to be sent. As a result of carrying out
the CONFIRM function on this verb, the LU flushes its send buffer, and data along with the confirm and change-
direction indicator flows across the line to the other system. Data is received by Program C, and a
RETURN_CODE(OK) indicates that no error was encountered.

The WHAT_RECEIVED parameter is returned to Program C with DATA_COMPLETE and CONFIRM_SEND
specified, which indicates that Program A has issued an MC_PREPARE_TO_RECEIVE with TYPE(CONFIRM)
and is requesting Program C to respond.

Note: The AS/400 system, for performance reasons, returns multiple values for WHAT_RECEIVED.

.8/ Program C responds by issuing an MC_CONFIRMED verb. The RETURN_CODE(OK) indication, which is
returned to Program A, indicates that Program C received data without errors.

.9/ Program C sends data to Program A using the MC_SEND_DATA verb (in response to an inquiry by Program
A). The data is buffered and does not flow across the line until Program C issues an MC_RECEIVE_AND_WAIT
(see step .11/).

.1ð/ Program A uses the MC_RECEIVE_AND_WAIT verb to wait for information to arrive on the specified conversa-
tion.

.11/ Program C issues the MC_RECEIVE_AND_WAIT verb to wait for information to arrive on the specified conver-
sation. As a result, the buffered data along with the change-direction indicator flows across the line.
RETURN_CODE(OK) returned to Program A indicates no errors were encountered when the data was received.

.12/ Program A issues an MC_DEALLOCATE verb with TYPE(FLUSH) to release the conversation from the remote
program. TYPE(FLUSH) flushes the local data buffer of the LU and deallocates the conversation normally. The
resource_ID that was assigned to this conversation is no longer assigned when deallocation is complete. The
RETURN_CODE(DEALLOCATE_NORMAL) tells Program C that the conversation is deallocated.

.13/ and .14/ The RETURN_CODE(OK) tells Program A that the conversation is successfully deallocated. Both Program A
and Program C complete normally.

 Chapter 5. Writing ICF APPC Application Programs 5-19

Communications
Support

Communications
Support

Program
A

Program
C

System X System Y

Program C is started

response

MC SEND DATA with
RESOURCE(resource ID)

MC RECEIVE AND WAIT

end of conversation

resource ID,
RETURN CODE(OK)

MC SEND DATA with
RESOURCE(resource ID)

data with change-
direction indicator

data with
confirm and

change-direction
indicator

MC RECEIVE AND WAIT

RETURN CODE(DEALLOCATE NORMAL)

Program C completes
normally

RETURN CODE(OK)

TPN (Program C),
sync level (confirm)

MC ALLOCATE with
start of session

(if not already available)

start of transaction

MC RECEIVE AND WAIT

DATA, RETURN CODE(OK)
WHAT RECEIVED(CONFIRM SEND,
DATA COMPLETE)

MC CONFIRMED

DATA, RETURN CODE(OK)

MC DEALLOCATE with
RESOURCE(resource ID)

TYPE (FLUSH)

RETURN CODE(OK)

Program A completes
normally

WHAT RECEIVED
(DATA COMPLETE, SEND)

RV2P752-1

MC PREPARE TO RECEIVE
RESOURCE(resource ID)

TYPE(CONFIRM)

Figure 5-5. Data Flow Using LU Type 6.2 Verbs

5-20 OS/400 APPC Programming V4R1

Chapter 6. Writing APPC Application Programs Using CPI Communications

CPI Communications provides an application programming
interface for applications that use program-to-program com-
munications. The interface uses the SNA LU 6.2 architecture
to perform the following services:

� Establishing a conversation (and its characteristics)

� Sending and receiving data

� Exchanging control information

� Ending a conversation

� Notifying a partner of errors in the communication.

This chapter contains the following information::

� A description of communications side information, which
stores the required initialization parameters that allow
the CPI Communications program to establish a conver-
sation with its partner program.

� How to create and manage communications side infor-
mation.

� A list of the AS/400 CPI Communications calls, which
allow a CPI Communications program to communicate
with its partner program.

� A mapping of CPI Communications calls to ICF oper-
ations and functions.

� An example of a data flow using AS/400 CPI Communi-
cations.

� A list of CPI Communications return codes.

For more detailed information about writing CPI Communi-
cations applications programs, see the CPI Communications
Reference.

Description of Communications Side
Information

For a program to establish a conversation with a partner
program, CPI Communications requires initialization parame-
ters, such as the name of the partner program and the name
of the LU at the node of the partner program. These may be
stored in the communications side information .

Your program must specify the communications side informa-
tion name as the symbolic destination name parameter on
the Initialize_Conversation call to use the stored character-
istics. If your program does not specify a communications
side information name (that is, the sym_dest_name is eight
space characters), your program must issue the
Set_Partner_LU_Name and Set_TP_Name calls before
issuing the Allocate call. Also, when no communications side
information name is specified, a mode_name of eight space
characters is used.

On the AS/400 system, the communications side information
is a system object of type *CSI (communications side infor-
mation). It contains information that defines the route to the
remote system, such as the RMTLOCNAME, RMTNETID,
and MODE parameters.

The AS/400 communications side information object also
contains additional information: the device description, the
local location name (local LU name), and the authority. The
remote network ID, remote location name, device description,
and local location name are used by the AS/400 system to
determine the route to the remote system. The additional
parameters allow you to use full APPN support while using
CPI Communications. Refer to “Using the Location
Parameters” on page 3-3 for a detailed description of how
the AS/400 system uses these parameters.

Table 6-1 describes the information contained in the commu-
nications side information object and maps it to the CPI
Communications counterparts.

Table 6-1 (Page 1 of 2). Description of Communications Side Information Object

AS/400 System Parame-
ters Description

Remote location name
and Remote network ID

The name of the logical unit (LU) on the remote system. These parameters correspond to the
partner_LU_name, which is defined by the CPI Communications architecture as a required characteristic for the
communications side information. A fully-qualified partner_LU_name is defined as the network ID concatenated
by a period with the network LU name (that is, network ID.network LU name). On the AS/400 system, the
remote network ID is the network ID, and the remote location name is the network LU name.

Mode The name of the mode used to control the session. It is used to designate the properties for the session that will
be allocated for the conversation, such as the class-of-service parameter to be used on the conversation. This
parameter corresponds to the CPI Communications mode_name characteristic.

To use a mode_name of eight blank characters, you must use the special value of BLANK. The AS/400 system
does not support sending a mode_name of 'BLANK␣␣␣' to a remote system.

 Copyright IBM Corp. 1997 6-1

Table 6-1 (Page 2 of 2). Description of Communications Side Information Object

AS/400 System Parame-
ters Description

Device description The name of the device description, which describes the characteristics of the logical connection between a
local and remote location. This AS/400 parameter further qualifies the route defined by the remote location
name and the remote network ID.

Local location name The name of the local location, which specifies the name of your local network LU name in a network. This
AS/400 parameter further qualifies the route defined by the remote location name and the remote network ID.

Program name Name of the target program that is to be started. This corresponds to the TP_name, which is defined by the CPI
Communications architecture as a required characteristic for the communications side information.

Authority The authority given to users who do not have specific authority to the communications side information object.
This is an AS/400 system parameter.

Managing the Communications Side
Information

To manage the communications side information object, the
AS/400 system provides CL commands (as well as command
prompting from a display) that allow you to create, display,
print, change, delete, and work with the communications side
information. The following is a list of the CL commands you
can use to manage the communications side information
object:

CRTCSI
Used to create the CPI Communications side information
object.

CHGCSI
Used to change the CPI Communications side informa-
tion object.

DSPCSI
Used to display or print the CPI Communications side
information object.

DLTCSI
Used to delete the CPI Communications side information
object.

WRKCSI
Provides a menu from which the user can create,
change, display, delete, or print the CPI Communications
side information object.

Specifying the Communications Side Information
Commands: The following describes the parameters for
the CRTCSI and CHGCSI commands and lists the values for
each parameter. Refer to “Using the Location Parameters” on
page 3-3 for more information on how the AS/400 system
uses the RMTNETID, RMTLOCNAME, DEV, LCLLOCNAME,
and MODE parameters.

CSI
Specifies the name of the communications side informa-
tion object. An object name must be specified.

side-information-name: Specify the name of the object
that will contain the desired communications side infor-

mation object. This is the name an application uses for
the sym_dest_name on an Initialize_Conversation
(CMINIT) call.

The possible library values are:

*CURLIB:
The current library for the job is used to create the
communications side information object. If no library
is specified as the current library for the job, the
QGPL library is used.

library-name: Specify the name of the library in
which the communications side information object
will be stored.

RMTLOCNAME
Specifies the remote location name associated with the
symbolic destination name. This name is the logical unit
on the remote system and corresponds to the second
part of the CPI Communications partner_LU_name. This
is a required parameter.

remote-location-name: Enter the name of the remote
location that should be associated with the symbolic des-
tination name.

TNSPGM
Specifies the name (up to 64 characters) of the trans-
action program to be started. This is a required param-
eter.

transaction-program-name: Specify the transaction
program name.

Notes:

1. If a program start request is received on the AS/400
system with an unqualified program name, (that is, it
has no library name) the system uses the library list
specified on the QUSRLIBL system value at the
time the subsystem that is handling the program
start request was started.

2. If a program start request is received on the AS/400
system with a qualified program name, the program
name can be in the form 'program.library' or in the
form 'library/program'.

3. Program names and library names on the AS/400
system are limited to 10 characters each.

6-2 OS/400 APPC Programming V4R1

4. To specify the SNA service transaction program
names, enter the hexadecimal representation of the
service transaction program name. For example, to
specify a service transaction program name in which
the hexadecimal representation is 21F0F0F1, you
would enter X'21FðFðF1'.

DEV
Specifies the name of the device description used for the
remote system.

The possible values are:

*LOC

The device is determined by the system.

device-name: Specify the name of the device that is
associated with the remote location.

LCLLOCNAME
Specifies the name of your location.

The possible values are:

*LOC: The local location name is determined by the
system.

*NETATR: The local location name that is in the network
attributes is used.

local-location-name: Specify the name of your location.
Specify the local location if you want to indicate a spe-
cific local location name for the remote location.

MODE
Specifies the mode used to control the session. This
name is the same as the CPI Communications
mode_name.

The possible values are:

*NETATR: The mode specified in the system network
attributes is used.

BLANK : The mode_name, consisting of 8 blank charac-
ters, is used.

mode-name: Specify the mode_name for the remote
location.

Note: The values SNASVCMG and CPSVCMG are not
allowed.

RMTNETID
Specifies the remote network ID used with the remote
location. The CPI Communications partner_LU_name,
which consists of the remote network identifier and the
remote location, determines the logical unit in the
network.

The possible values are:

*LOC: The remote network ID for the remote location is
used.

*NETATR: The remote network ID specified in the
network attributes is used.

*NONE: The remote network has no name.

remote-network-ID: Specify a remote network ID.

AUT
Specifies the authority you have given to users who do
not have specific authority to the object, who are not on
the authorization list, and whose users’ group has no
specific authority to the object.

The possible values are:

*LIBCRTAUT :
Public authority for the object is taken from the
CRTAUT parameter of the specified library. This
value is determined at create time. If the CRTAUT
value for the library changes after the object is
created, the new value does not affect any existing
objects.

*CHANGE:
Change authority allows the user to perform all
operations on the object except those limited to the
owner or controlled by object existence authority
and object management authority. The user can
change the object and perform basic functions on
the object. Change authority provides object opera-
tional authority and all data authority.

*ALL:
All authority allows the user to perform all oper-
ations on the object except those limited to the
owner or controlled by authorization list manage-
ment authority. The user can control the object’s
existence, specify the security for the object, change
the object, and perform basic functions on the
object. The user cannot transfer ownership of the
object.

*USE:
Use authority allows the user to perform basic oper-
ations on the object, such as run a program or read
a file. The user is prevented from changing the
object. Use authority provides object operational
authority and read authority.

*EXCLUDE:
Exclude authority prevents the user from accessing
the object.

authorization-list: Specify the name of the authori-
zation list whose authority is used for the communi-
cations side information.

TEXT
Specify text that briefly describes this object and its
function

The possible values are:

*BLANK : No text is specified.

'description': Specify no more than 50 characters,
enclosed in apostrophes.

 Chapter 6. Writing APPC Application Programs Using CPI Communications 6-3

Using Program Calls

CPI Communications programs communicate with each other
by making program calls , which are used to establish the
characteristics of the conversation and to exchange data and
control information between the programs. Default character-
istics for a conversation are established when a source
program issues a call to start a conversation with a target
program. For example, the default value for the
conversation_type characteristic is
CM_MAPPED_CONVERSATION. The CPI Communications
Reference provides a table of all the characteristics and their
default values.

When a program makes a CPI Communications call, the
program passes characteristics, data, and control information
to CPI Communications using input parameters. When the
call completes, CPI Communications passes characteristics,
data, and status information back to the program using
output parameters. The return_code parameter, for example,
is returned for all program calls. It indicates whether a call
completed successfully or if some error was detected that
caused the call to fail.

CPI Communications uses additional output parameters on
some calls to pass status and control information to the
program. These parameters include the
request_to_send_received indicator, the data_received indi-
cator, and the status_received indicator.

Program calls can be made from application programs
written in the following high-level programming languages:

 � ILE C/400

 � ILE COBOL/400

� Cross System Product (CSP) (implements the Applica-
tion Generator common programming interface)

 � FORTRAN/400

 � REXX/400

 � ILE RPG/400

The general call format is to show the name of the CPI Com-
munications call and the parameters used. An example of the
format is:

CALL CMPROG(parmð, parm1, parm2, . . parmN)

 where CMPROG is the name of the call and parmð, parm1,

parm2, and parmN represent the parameter list described in
the individual call description.

This format would be translated into the following syntax for
each of the following languages:

ILE C/400
CMPROG (parmð,parm1,parm2,...parmN)

ILE COBOL/400
CALL "CMPROG" USING parmð,parm1,parm2,...parmN

CSP
CALL CMPROG parmð,parm1,parm2,...parmN

FORTRAN/400
CALL CMPROG (parmð,parm1,parm2,...parmN)

REXX/400
ADDRESS CPICOMM 'CMPROG parmð parm1 parm2 ... parmN'

ILE RPG/400
CALL 'CMPROG' plist

Program Calls Supported by the AS/400
System

The CPI Communications program calls that the AS/400
system supports, along with their corresponding pseudonyms
and a brief description of each call, are listed in Table 6-2.
Pseudonyms for program calls are used to enhance under-
standing and readability. For example, Send_Data is the
pseudonym for the program call CMSEND, which is used by
a program to send information to a conversation partner.
Note that any phrase that contains an underscore in its name
is a pseudonym.

Table 6-2 (Page 1 of 3). Supported CPI Communications Program Calls

Call Name Pseudonym Description

CMACCP Accept_Conversation Used by a program to accept an incoming conversa-
tion

CMALLC Allocate Used by a program to establish a conversation

CMCFM Confirm Used by a program to send a confirmation request to
its partner

CMCFMD Confirmed Used by a program to send a confirmation reply to its
partner

CMCNVI Convert_Incoming Used by a program to convert from EBCDIC to the
local character codes. No conversion is done when
called on an AS/400 system.

CMCNVO Convert_Outgoing Used by a program to convert from the local character
codes to EBCDIC. No conversion is done when called
on an AS/400 system.

CMDEAL Deallocate Used by a program to end a conversation

6-4 OS/400 APPC Programming V4R1

Table 6-2 (Page 2 of 3). Supported CPI Communications Program Calls

Call Name Pseudonym Description

CMECS Extract_Conversation_State Used by a program to view the current
conversation_state conversation characteristic

CMECT Extract_Conversation_Type Used by a program to view the current
conversation_type conversation characteristic

CMEMBS Extract_Maximum_Buffer_Size Used by a program to view the maximum buffer size
supported by the system.

CMEMN Extract_Mode_Name Used by a program to view the current mode_name
conversation characteristic

CMEPLN Extract_Partner_LU_Name Used by a program to view the current
partner_LU_name conversation characteristic

CMESL Extract_Sync_Level Used by a program to view the current sync_level con-
versation characteristic

CMESUI Extract_Security_User_ID Used by a program to view the current
security_user_ID conversation characteristic

CMFLUS Flush Used by a program to flush the send buffer of the LU

CMINIT Initialize_Conversation Used by a program to initialize the conversation char-
acteristics

CMPTR Prepare_To_Receive Used by a program to change a conversation from
send to receive state in preparation to receive data

CMRCV Receive Used by a program to receive data

CMRTS Request_To_Send Used by a program to notify its partner that it would
like to send data

CMSCSP Set_Conversation_Security_ Password Used by a program to set the security_password and
the security_password_length conversation character-
istics

CMSCST Set_Conversation_Security_ Type Used by a program to set the
conversation_security_type conversation characteristic

CMSCSU Set_Conversation_Security_ User_ID Used by a program to set the security_user_ID and
the security_user_ID_length conversation character-
istics

CMSCT Set_Conversation_Type Used by a program to set the conversation_type con-
versation characteristic

CMSDT Set_Deallocate_Type Used by a program to set the deallocate_type conver-
sation characteristic

CMSED Set_Error_Direction Used by a program to set the error_direction conversa-
tion characteristic

CMSEND Send_Data Used by a program to send data

CMSERR Send_Error Used by a program to notify its partner of an error that
occurred during the conversation

CMSF Set_Fill Used by a program to set the fill conversation charac-
teristic

CMSLD Set_Log_Data Used by a program to set the log_data conversation
characteristic

CMSMN Set_Mode_Name Used by a program to set the mode_name conversa-
tion characteristic

CMSPLN Set_Partner_LU_Name Used by a program to set the partner_LU_name con-
versation characteristic

CMSPTR Set_Prepare_To_Receive_Type Used by a program to set the prepare_to_receive_type
conversation characteristic

CMSRC Set_Return_Control Used by a program to set the return_control conversa-
tion characteristic

CMSRT Set_Receive_Type Used by a program to set the receive_type conversa-
tion characteristic

 Chapter 6. Writing APPC Application Programs Using CPI Communications 6-5

Table 6-2 (Page 3 of 3). Supported CPI Communications Program Calls

Call Name Pseudonym Description

CMSSL Set_Sync_Level Used by a program to set the sync_level conversation
characteristic

CMSST Set_Send_Type Used by a program to set the send_type conversation
characteristic

CMSTPN Set_TP_Name Used by a program to set the TP_name conversation
characteristic

CMTRTS Test_Request_To_Send_Received Used by a program to determine whether or not the
remote program is requesting to send data

Using Pseudonyms When Writing
Applications

CPI Communications provides a set of system files that can
be used to define pseudonyms for the characteristics, vari-
ables, and parameters needed by a CPI Communications
application. Pseudonyms enhance the readability of the
program text and provide consistency in the naming of char-
acteristics, variables, and parameters that make up the call
interface. For example, instead of stating that the variable
return_code is set to an integer value of 0, it is shown to be
set to a pseudonym value of CM_OK.

Pseudonyms can also be used for integer values in program
code by making use of equate or define statements. On the
AS/400 system, pseudonym files for the supported high-level
languages are included in the library for the language you
are using. Table 6-3 shows the name of the member, the
source physical file, and the library containing the
pseudonym files for each high-level language supported by
CPI Communications on the AS/400 system.

Mapping of CPI Communications Calls to
ICF Operations and Functions

Table 6-4 lists the CPI Communications calls and
pseudonyms and the corresponding ICF operation or func-
tion, the DDS keyword, and the system-supplied format. The
mappings provided in this table apply when the CPI Commu-
nications conversations are at their default values. If a con-
versation characteristic is not a default value, one or more of
these mappings may differ. For example, if SEND_TYPE is
set to CM_SEND_AND_PREP_TO_RECEIVE, then the ICF
operation or function would show a write operation; however,
the DDS keyword would also include an ALWWRT.

Table 6-3. Pseudonym Files for High-Level Languages

Language
Member
Name

Source
Physical
File Library

ILE C/400 CMC H QSYSINC

COBOL/400 CMCOBOL QLBLSRC QSYSINC

ILE
COBOL/400

CMCOBOL QCBLLESRC QSYSINC

FORTRAN/400 CMFORTRN QIFOINC QFTN

RPG/400 CMRPG QRPGSRC QSYSINC

ILE RPG/400 CMRPG QRPGLESRC QSYSINC

Notes:

1. No pseudonym files are provided for CSP or REXX/400
languages on the AS/400 system.

2. The CPI Communications Reference provides example
pseudonym files for ILE C/400, FORTRAN/400, ILE
RPG/400, ILE COBOL/400, CSP, and REXX/400 lan-
guages.

Table 6-4 (Page 1 of 3). Mapping of CPI Communications Calls to ICF Operations and Functions

Program Call and
Pseudonym

ICF Operation or Function DDS Keyword System-Supplied Format

CMINIT Initialize_ Conversa-
tion

Open operation Not applicable Not applicable

CMALLC Allocate Combination of acquire opera-
tion and evoke function

EVOKE $$EVOKNI

6-6 OS/400 APPC Programming V4R1

Table 6-4 (Page 2 of 3). Mapping of CPI Communications Calls to ICF Operations and Functions

Program Call and
Pseudonym

ICF Operation or Function DDS Keyword System-Supplied Format

CMACCP
Accept_Conversation

Acquire to *REQUESTER Not applicable Not applicable

CMCFM Confirm Confirm function CONFIRM No equivalent

CMCFMD Confirmed Respond-to-Confirm function RSPCONFIRM No equivalent

CMCNVI Convert_Incoming No equivalent No equivalent No equivalent

CMCNVO Convert_Outgoing No equivalent No equivalent No equivalent

CMDEAL Deallocate Write operation with detach
function, and, depending on
the program, one of the
following:

� For a source program, an
end-of-session function, a
release, or a close opera-
tion can follow the detach.

� For a target program, an
end-of-session function or
close operation must
follow the detach.

DETACH EOS $$SENDET $$EOS

CMFLUS Flush Force-data function FRCDTA No equivalent

CMEMBS Extract_Maximum_
Buffer_Size

No equivalent No equivalent No equivalent

CMECS Extract_Conversation_
State

Get-attributes operation Not applicable Not applicable

CMECT Extract_Conversation_
Type

Get-attributes operation Not applicable Not applicable

CMEMN Extract_Mode_Name Get-attributes operation Not applicable Not applicable

CMEPLN Extract_Partner_
LU_Name

Get-attributes operation Not applicable Not applicable

CMESUI Extract_Security_
User_ID

Get-attributes operation Not applicable Not applicable

CMESL Extract_Sync_Level Get-attributes operation Not applicable Not applicable

CMPTR Prepare_To_Receive Allow-write or invite function

Note: CPI Communications
does not define an
equivalent function to
the implied LU 6.2
[MC_]POST_ON_RECEIPT
that is done for an ICF
invite function.

ALWWRT or INVITE $$SEND with 0 length

CMRCV Receive Read operation to a specific
program device

Not applicable Not applicable

CMRTS Request_To_Send Request-to-write function RQSWRT $$RCD

Note: This also causes an
invite to be issued.

CMSEND Send_Data Write operation of a format
with a data length greater than
0

Not applicable $$SENDNI with data length
greater than 0

CMSERR Send_Error Fail function FAIL $$FAIL

CMSCSP Set_Conversation_
Security_Password

Evoke function with security
password

SECURITY(2 'password') $$EVOKNI, $$EVOK, or
$$EVOKET with password

 Chapter 6. Writing APPC Application Programs Using CPI Communications 6-7

Table 6-4 (Page 3 of 3). Mapping of CPI Communications Calls to ICF Operations and Functions

Program Call and
Pseudonym

ICF Operation or Function DDS Keyword System-Supplied Format

CMSCST Set_Conversation_
Security_Type

Implicit in the security informa-
tion (or lack thereof) supplied
with an evoke function

SECURITY Implicit in the security informa-
tion (or lack thereof) supplied
with an evoke format

CMSCSU Set_Conversation_
Security_User_ID

Evoke function with security
user ID

SECURITY(3 user) $$EVOKNI, $$EVOK, or
$$EVOKET with user ID

CMSSL Set_Sync_Level Evoke function with synchroni-
zation level

SYNLVL No equivalent

CMTRTS Test_Request_To_
Send_Received

No equivalent; however, the
application program can check
the request-to-write indicator in
the I/O feedback area to deter-
mine if a Request_To_Send
was received.

Not applicable Not applicable

ICF to CPI Communications—Examples

Table 6-5 provides some example ICF operations and func-
tions that can be used in your application program and the
CPI Communications call to which it corresponds. This table
only provides DDS keyword examples and should be used to
supplement the more detailed DDS information contained in
Appendix A.

Notes:

1. Parameters that are required, such as the
conversation_ID and return_code, are not always listed
explicitly in the table.

2. These examples describe only one way of performing
the operation or function; other methods may exist.

Table 6-5 (Page 1 of 3). Mappings for Example ICF Operations and Functions

ICF Operations/Functions CPI Communications Call

An acquire operation followed by: Corresponds to
EVOKE([library-name/]program-name)

Note: It is the combination of an acquire operation and evoke func-
tion that corresponds to Allocate (CMALLC).

CALL CMALLC(conversation_ID)

With an evoke function, you can also specify any of the following:
[parameter-1...[parameter-255]] CPI Communications does not support sending PIP data.
SECURITY(3 \USER) or

SECURITY([1 profile ID] [2 password] [3 userid])

CALL CMSCST(CM_SECURITY_SAME) or

CALL CMSCST(CM_SECURITY_PROGRAM)

CALL CMSCSP(security_password)

CALL CMSCSU(security_user_ID)

SYNLVL(\NONE) or CALL CMSSL(CM_NONE) or

SYNLVL(\CONFIRM) or CALL CMSSL(CM_CONFIRM) or

SYNLVL(\COMMIT) CALL CMSSL(CM_SYNC_POINT) (CMSCST, CMSCSP, CMSCSU, and
CMSSL must all be called before the CMALLC call.)

...
...

Write (data length > ð) with CONFIRM CALL CMSST(CM_SEND_AND_CONFIRM) followed by CALL CMSEND

If your program specifies SYNLVL(*CONFIRM) and later uses the
CONFIRM DDS keyword, the remote program must then issue a

Corresponds to

RSPCONFIRM (positive response)

 or

FAIL (negative response)

CALL CMCFMD

 or

CALL CMSERR or CALL CMSED followed by CALL

CMSERR when in send-pending state

If the remote program issues a
Get-attributes operation, CALL CMESL

it can determine the SYNLVL established by the source program.
Your program issues a

FRCDTA

Corresponds to

CALL CMFLUS

6-8 OS/400 APPC Programming V4R1

Table 6-5 (Page 2 of 3). Mappings for Example ICF Operations and Functions

ICF Operations/Functions CPI Communications Call

Your program uses a Corresponds to
Write operation CALL CMSEND
to send data to the remote system, and then uses a
Read operation CALL CMRCV
to receive data from a specific program device (for example,
PGMDEVA) and waits to receive data before continuing.

If your program issues an: Corresponds to
INVITE

requesting data from the remote program to send data for a program
device (for example, PGMDEVA), your program receives control
without waiting for input.

You can also specify the following with the invite function:

CALL CMSPTR(CM_PREP_TO_RECEIVE_FLUSH) followed by CALL CMPTR

Note: CPI Communications does not support the implied LU 6.2
[MC]_POST_ON_RECEIPT that is done for the ICF invite
function.

TNSSYNLVL

unless your program specified SYNLVL(*COMMIT).

Later, your program can issue a

CALL CMSPTR(CM_PREP_TO_RECEIVE_SYNC_LEVEL) instead of CALL

CMSPTR(CM_PREP_TO_RECEIVE_FLUSH)

Read-from-invited-program-devices operation No CPI Communications equivalent.

A successful completion return code (set in the I/O feedback area)
tells your program that data has been received and is in your
program’s buffer.

However, you can issue a CMRCV with the receive_type set to
CM_RECEIVE_IMMEDIATE for each conversation that is already in
receive state. When this value is used, control is returned to your
program immediately regardless of whether data has been received.

Your program issues:

RQSWRT

to indicate that it wants to send data to the remote program rather
than continue receiving data.

Corresponds to

CALL CMRTS

Your program issues a: Corresponds to
Write with ALWWRT CALL CMSPTR(CM_PREP_TO_RECEIVE_FLUSH) or CALL

CMSST(CM_SEND_AND_PREP_TO_RECEIVE) and CALL CMSEND

to inform the remote program that your program is done sending data
and is ready to receive.

if data is sent with a change-direction indicator

Your program issues a: Corresponds to
Write with ALWWRT and TNSSYNLVL CALL CMSPTR(CM_PREP_TO_RECEIVE_SYNC_LEVEL) and CALL CMSEND
to inform the remote program that your program is done sending data
and is ready to receive.

If your program specified SYNLVL(*COMMIT), your program issues
a:

if data is sent with a change-direction indicator

Commit operation

to commit the changes.

Commit operation

Your program issues a: Corresponds to
Write with ALWWRT CALL CMSPTR(CM_PREP_TO_RECEIVE_FLUSH) and CALL CMPTR
to inform the remote program that your program is done sending data
and is ready to receive.

if no data is sent

Your program issues a: Corresponds to
Write with ALWWRT and TNSSYNLVL CALL CMSPTR(CM_PREP_TO_RECEIVE_SYNC_LEVEL) and CALL CMPTR
to inform the remote program that your program is done sending data
and is ready to receive.

If your program specified SYNLVL(*COMMIT), your program issues
a:

if no data is sent

Commit operation

to commit the changes.

Commit operation

Your program issues a:

Write without data and PRPCMT

Corresponds to:

No CPI Communications equivalent.

Note: Commit and rollback operations can be performed.
To end a session, a source program issues:

Write with DETACH, followed by

EOS or close

Note: The combination of DETACH and EOS corresponds to Deal-
locate (CMDEAL). The detach function indicates that the
record is the last record to be sent and causes an APPC
CEB to be sent.

Corresponds to

CALL CMSDT(CM_DEALLOCATE_FLUSH)

CALL CMSST(CM_SEND_AND_DEALLOCATE),

followed by CALL CMSEND

 or

CALL CMSDT(CM_DEALLOCATE_FLUSH)

followed by CALL CMDEAL

 Chapter 6. Writing APPC Application Programs Using CPI Communications 6-9

Table 6-5 (Page 3 of 3). Mappings for Example ICF Operations and Functions

ICF Operations/Functions CPI Communications Call

If your program issues: Corresponds to
DETACH with CONFIRM, followed by EOS or close, CALL CMSDT(CM_DEALLOCATE_CONFIRM) and CALL CMDEAL

the transaction does not end if the remote program sends a
FAIL (negative acknowledgement) CALL CMSERR

Note: The fail function causes an error code and an APPC FMH7 to
be sent to the remote system. Return codes are set in the file
dependent area of the I/O feedback area.

Note: The SEND_ERROR call causes the Deallocate call to receive
an error return_code.

The transaction ends if the remote program issues a Corresponds to
RSPCONFIRM CALL CMCFMD

If your program issues: Corresponds to:
DETACH with TNSSYNLVL CALL CMSDT(CM_DEALLOCATE_SYNC_LEVEL) followed by CALL CMDEAL

If your program specified SYNLVL(*COMMIT), the transaction does
not end until your program issues a:

Commit operation

to commit the changes.

Commit operation

If a program receives the following detach and commit indications for
a protected conversation

Corresponds to:

RCVDETACH and RCVTKCMT A status received of CM_TAKE_COMMIT_DEALLOCATE
(or it receives return codes 0259 or 0359), it should commit changes
using:

Commit operation Commit operation

If the program is a target program, started by a program start
request, and it receives a detach indication for an unprotected con-
versation using:

Corresponds to

RCVDETACH A return code of CM_DEALLOCATED_NORMAL
(or it receives return codes 0008, 0208, or 0308), it should end the
session using:

EOS or close Not applicable
If your program uses an

EOS

during an active transaction, both the transaction and the conversa-
tion are ended abnormally by APPC.

Corresponds to

CALL CMSDT(CM_DEALLOCATE_ABEND)

followed by CALL CMDEAL

Flow Diagram for Inquiry Applications
Using CPI Communications Calls

Figure 6-1 on page 6-13 shows the flow for the exchange of
information that occurs in an inquiry application using CPI
Communications calls. This flow parallels the one for ICF
inquiry applications on page 5-17.

The steps shown in Figure 6-1 are described in Table 6-6 :

Table 6-6 (Page 1 of 3). Description of Flow Diagram

Step Description

.1/ To communicate with its partner program, Program A must first establish a conversation. Program A uses the
Initialize_Conversation call to tell CPI Communications that it wants to do the following:

� Initialize a conversation.

� Identify the name of the target program (using sym_dest_name).

� Ask CPI Communications to establish the identifier that the program uses when referring to the conversation
(the conversation_ID).

 On successful completion of the Initialize_Conversation call, CPI Communications provides the conversation_ID
and returns it to Program A. The program must store the conversation_ID and use it on all subsequent calls
intended for that conversation.

6-10 OS/400 APPC Programming V4R1

Table 6-6 (Page 2 of 3). Description of Flow Diagram

Step Description

.2/ No errors occurred on the Initialize_Conversation call, so the return_code is set to CM_OK.

Two major tasks are now accomplished:

� CPI Communications has established a set of conversation characteristics for the conversation, based on the
sym_dest_name, and uniquely associates them with the conversation_ID.

� Default values for the conversation characteristics are established.

.3/ and .4/ Program A sets the sync_level characteristic to CM_CONFIRM by issuing the Set_Sync_Level call.

Note: Program A must set the sync_level characteristic before issuing the Allocate call (Step .9/) if the new
value is to take effect. Changing the sync_level after the conversation is allocated results in an error
condition.

.5/ and .6/ Program A sets the send_type characteristic to CM_SEND_AND_PREP_TO_RECEIVE by issuing the
Set_Send_Type call. Setting the send_type to CM_SEND_AND_PREP_TO_RECEIVE means that Program A will
be in Receive state after issuing a Send_Data call.

.7/ and .8/ Program A sets the deallocate_type characteristic to CM_DEALLOCATE_FLUSH by issuing the
Set_Deallocate_Type call.

Note: The default value for the deallocate_type conversation characteristic is CM_DEALLOCATE_SYNC_LEVEL.
A Deallocate call issued with a sync_level of CM_CONFIRM would start the Confirm call and if successful,
deallocate the conversation normally.

.9/ and .1ð/ Program A issues the Allocate call by using the conversation_ID to start the conversation. If a session between
the logical units (LUs) is not already available, one is activated. Also note that the conversation start-up request is
part of the Allocate processing.

A return_code of CM_OK indicates that the Allocate call was successful and that the LU has allocated the neces-
sary resources to the program for its conversation. Program A is now in Send state and can begin sending data.

.11/ Program A sends data (the part number) with the Send_Data call.

Note: The Send_Data call is issued with the following conversation characteristics: a send_type of
CM_SEND_AND_PREP_TO_RECEIVE; a prepare_to_receive_typeof
CM_PREP_TO_RECEIVE_SYNC_LEVEL; and a sync_level of CM_CONFIRM. Setting the conversation
characteristics to these values flushes the data, changes the data flow direction, and sends a confirmation
request to the partner program.

.12/ and .13/ Program C responds by issuing a call to Accept_Conversation, which places the conversation into Receive state.
The Accept_Conversation call is similar to the Initialize_Conversation call because it equates a conversation_ID
with a set of conversation characteristics. Program C, like Program A in Step .2/, receives a unique
conversation_ID that it will use in all future CPI Communications calls for that particular conversation. Some of the
default characteristic values for Program C are based on the information contained in the conversation start-up
request.

.14/ and .15/ Program C sets the send_type characteristic to CM_SEND_AND_PREP_TO_RECEIVE by issuing the
Set_Send_Type call.

.16/ and .17/ Program C sets the prepare_to_receive_type conversation characteristic to CM_PREP_TO_RECEIVE_FLUSH by
issuing the Set_Prepare_To_Receive_Type call.

.18/ Program C issues the Receive call to receive the data.

.19/ A return_code of CM_OK indicates successful receipt of data. Program C also receives a request for confirmation,
indicated by the status_received parameter, which is set to CM_CONFIRM_SEND_RECEIVED. Program C is in
Confirm-Send state and must respond to the confirmation request.

.2ð/ and .21/ Program C responds to the confirmation request by issuing a Confirmed call, which completes the program as
send data with a return_code of CM_OK.

.22/ Program A issues a Receive call to receive the data.

.23/ Program C sends the data that was requested using the Send_Data call, and is now in Receive state because the
send_type was set to CM_SEND_AND_PREP_TO_RECEIVE. The data and the permission-to-send indication are
transmitted to Program A.

The Receive call issued by Program A completes successfully. Program A received data with the permission-to-
send indication. Program A is in Send-Pending state and can send data to the partner program.

.24/ Program C uses the Receive call to receive the data.

 Chapter 6. Writing APPC Application Programs Using CPI Communications 6-11

Table 6-6 (Page 3 of 3). Description of Flow Diagram

Step Description

.25/ Program A issues a Deallocate call to release the conversation. Because the deallocate_type characteristic was
set to CM_DEALLOCATE_FLUSH (see Step .7/), the local data buffer of the LU is flushed and the conversation
is deallocated normally.

The partner program (Program C) receives the deallocate notification by means of a return_code of
CM_DEALLOCATED_NORMAL.

.26/ A return code of CM_OK tells Program A that the conversation is successfully deallocated. Both Program A and
Program C complete normally.

6-12 OS/400 APPC Programming V4R1

Program
A

Program
C

CPI
Communications

Initialize Conversation

conversation ID, return code = CM OK

return code = CM OK

Accept Conversation

(conversation ID)Confirmed

return code

conversation ID, data)

Deallocate (conversation ID)

CPI
Communications

(sym dest name)

Receive (conversation ID)

Set Sync Level (CM CONFIRM)

return code = CM OK

return code = CM OK

return code = CM OK

conversation start-up
request

Program C is started
return code = CM OK

(conversation ID)

confirmation request, data
permission to send

Set Send Type (CM SEND AND PREP TO RECEIVE)

= CM OK

Set Send Type (CM SEND AND PREP TO RECEIVE)

Receive (conversation ID)

return code

return code

Receive (conversation ID)

return code = CM DEALLOCATED NORMAL

data)(conversation ID,

confirmation reply

data, permission
to send

end of conversation

return code

status received

status received

Set Deallocate Type (CM DEALLOCATE FLUSH)

Allocate

Set Prepare To Receive Type
(CM PREP TO RECEIVE FLUSH)

Send Data (

start of session
(if not already available)

Send Data

RV2P753-1

AS/400 System AS/400 System

conversation ID, return code = CM OK

return code = CM OK

return code

SEND RECEIVED
= CM

= CM OK

= CM OK

= CM OK

= CM CONFIRM
SEND RECEIVED

= CM OK

Figure 6-1. Data Flow Using CPI Communications Calls

 Chapter 6. Writing APPC Application Programs Using CPI Communications 6-13

Return Codes for CPI Communications

The return codes for CPI Communications form a one-to-one
correspondence with the LU 6.2 architected return codes.
Table 6-7 on page 6-14 provides a return code mapping
between CPI Communications and the LU 6.2 architecture.
The CPI Communications Reference contains detailed expla-
nations of the return codes.

Table 6-7 (Page 1 of 2). Return Code Mapping for CPI Communications and LU 6.2

LU 6.2 Return Code CPI Communications Return Code

ALLOCATION_FAILURE_NO_RETRY CM_ALLOCATE_FAILURE_NO_RETRY

ALLOCATION_FAILURE_RETRY CM_ALLOCATE_FAILURE_RETRY

BACKED_OUT CM_TAKE_BACKOUT

BACKED_OUT ALL_AGREED None

BACKED_OUT LUW_OUTCOME_MIXED None

BACKED_OUT LUW_OUTCOME_PENDING None

CONVERSATION_TYPE_MISMATCH CM_CONVERSATION_TYPE_MISMATCH

DEALLOCATE_ABEND CM_DEALLOCATED_ABEND

DEALLOCATE_ABEND BACKOUT_REQUIRED CM_DEALLOCATED_ABEND_BO

DEALLOCATE_ABEND_PROG CM_DEALLOCATED_ABEND_PROG

DEALLOCATE_ABEND_PROG BACKOUT_REQUIRED CM_DEALLOCATED_ABEND_PROG_BO

DEALLOCATE_ABEND_SVC CM_DEALLOCATED_ABEND_SVC

DEALLOCATE_ABEND_SVC BACKOUT_REQUIRED CM_DEALLOCATED_ABEND_SVC_BO

DEALLOCATE_ABEND_TIMER CM_DEALLOCATED_ABEND_TIMER

DEALLOCATE_ABEND_TIMER BACKOUT_REQUIRED CM_DEALLOCATED_ABEND_TIMER_BO

DEALLOCATE_NORMAL CM_DEALLOCATED_NORMAL

OK CM_OK

PARAMETER_ERROR CM_PARAMETER_ERROR

PIP_NOT_SPECIFIED_CORRECTLY CM_PIP_NOT_SPECIFIED_CORRECTLY

PROG_ERROR_NO_TRUNC CM_PROGRAM_ERROR_NO_TRUNC

PROG_ERROR_PURGING CM_PROGRAM_ERROR_PURGING

PROG_ERROR_TRUNC CM_PROGRAM_ERROR_TRUNC

PROGRAM_PARAMETER_CHECK CM_PROGRAM_PARAMETER_CHECK

PROGRAM_STATE_CHECK CM_PROGRAM_STATE_CHECK

RESOURCE_FAILURE_NO_RETRY CM_RESOURCE_FAILURE_NO_RETRY

RESOURCE_FAILURE_NO_RETRY BACKOUT_REQUIRED CM_RESOURCE_FAIL_NO_RETRY_BO

RESOURCE_FAILURE_RETRY CM_RESOURCE_FAILURE_RETRY

RESOURCE_FAILURE_RETRY BACKOUT_REQUIRED CM_RESOURCE_FAILURE_RETRY_BO

SECURITY_NOT_VALID CM_SECURITY_NOT_VALID

SYNC_LEVEL_NOT_SUPPORTED_BY_LU CM_SYNC_LVL_NOT_SUPPORTED_LU

SYNC_LEVEL_NOT_SUPPORTED_BY_PGM CM_SYNC_LVL_NOT_SUPPORTED_PGM

SVC_ERROR_NO_TRUNC CM_SVC_ERROR_NO_TRUNC

SVC_ERROR_PURGING CM_SVC_ERROR_PURGING

SVC_ERROR_TRUNC CM_SVC_ERROR_TRUNC

TPN_NOT_RECOGNIZED CM_TPN_NOT_RECOGNIZED

TP_NOT_AVAIL_NO_RETRY CM_TP_NOT_AVAILABLE_NO_RETRY

TP_NOT_AVAIL_RETRY CM_TP_NOT_AVAILABLE_RETRY

UNSUCCESSFUL CM_UNSUCCESSFUL

6-14 OS/400 APPC Programming V4R1

Table 6-7 (Page 2 of 2). Return Code Mapping for CPI Communications and LU 6.2

LU 6.2 Return Code CPI Communications Return Code

Not applicable CM_PRODUCT_SPECIFIC_ERROR

 Chapter 6. Writing APPC Application Programs Using CPI Communications 6-15

6-16 OS/400 APPC Programming V4R1

Chapter 7. Application Considerations for ICF

This chapter describes the application considerations for the
ICF interface.

Before writing programs that use APPC, you should under-
stand some of the characteristics of the AS/400 environment.

 General Considerations
� The first operation following the open or acquire opera-

tion by a source program should be a write operation
with an evoke function specified. This causes the target
program, with which the source program is going to
communicate, to be started.

� The source program can send program initialization
parameters (PIP) to the target program only if the
remote system or program permits PIP data to be
received.

� Target programs on the AS/400 system establish a con-
nection to the session and transaction started by the
source program by issuing an acquire operation to the
program device associated with the remote location
name *REQUESTER (the requesting program device).

� The first operation following the open and acquire of the
requesting program device by a target program can be a
read operation. The target program always starts in the
receive state.

� When a program is in the receive state, it can issue a
read operation, an invite function, or a request-to-write
function. A write operation issued with a fail function may
also be used if your program is to send an error condi-
tion to the remote system.

� When a program is in the send state, all operations
except open (to the same ICF file), acquire (to the same
program device), and the request-to-write function are
valid.

� When a program is in the receive state, it must continue
to issue input operations until one of the following is
received:

– A minor return code indicating that your program
may now send. The RCVTRNRND keyword may
also be used to indicate that your program may
send.

– A minor return code indicating that detach has been
received. The RCVDETACH keyword may also be
used.

– A major and minor return code indicating an error
condition. For example, any of the 80 or 81 major
return codes.

– A minor return code indicating that a commit or
rollback request has been received. The
RCVTKCMT or RCVROLLB keyword may also be
used.

� If a target program never opens and acquires the
requesting program device, a diagnostic message,
CPF4059, is written to the job log when the target
program completes. The message is normal if there is
no need for the target program to communicate with the
source program. If the target program is supposed to
communicate with the source program, then this
message indicates a possible logic problem in your
program.

� The maximum length of a request unit (RU) is 32K
bytes.

Open and Acquire Operation
Considerations
� If a target program acquires (explicitly or implicitly) a

program device other than the requesting program
device, a new session is established and the connection
with the source program is not established. No error is
indicated because it is valid for a target program on one
session to be a source program on another session. If
the program issues an input operation as the first opera-
tion to the newly established session, it will receive a
return code indicating that no transaction is active.

� The conversation type specified on the program device
entry used by the target program can be the same as
the conversation type specified for the source program,
or it can be *SRCPGM. If the conversation types do not
match explicitly, the open or acquire will fail.

� When a session is established by a source program, the
CPI9803 message is sent to the history file. This
message is also sent to the history file when a target
program is started on an AS/400 system. The CPI9803
message contains the unit-of-work ID for the job.

� Multiple sessions that run at the same time can be
established with another system, providing that the other
system supports multiple sessions. The program device
names are used to distinguish the sessions within your
program.

� The program uses the location parameters on the
ADDICFDEVE or OVRICFDEVE commands to tell the
system to which remote location the session is to be
established. Refer toUsing the Location Parameters, for
information about specifying location information.

 Copyright IBM Corp. 1997 7-1

 WAITFILE Considerations

The WAITFILE parameter of the create, change, or override
ICF file command determines how long APPC support waits
for session resources to become available when performing
an acquire operation or an evoke function. If the WAITFILE
timer runs out, a return code of either 82B3 or 81C2 is
returned.

WAITFILE Considerations for Switched
Connections

Acquire operations and evoke functions rarely time out when
a switched connection (such as an SDLC switched line, an
X.25 SVC, an Ethernet connection, or a token-ring con-
nection) is used without APPN support (APPN(*NO)). In this
case (switched connection without APPN support), the
system only has to find the device that matches the parame-
ters of the ICF device entry before the WAITFILE timer runs
out. Therefore, unless your system is very slow, the
WAITFILE timer never runs out. However, if the device
already has one or more active conversations, the WAITFILE
timer also times the BIND command, which is sent to the
remote system. In this case (active conversations), the
acquire operation or evoke function may time out.

The WAITFILE value is not used when there are no active
sessions for an acquired device using a switched connection,
such as, an SDLC switched line, and X.25 SVC, Ethernet, or
a token-ring connection. Acquire operations and evoke func-
tions do not time out when using switched connections that
the acquire or evoke causes to be dialed. If the line is
already dialed, and one or more sessions are active, the
WAITFILE parameter is used.

Acquire operations and evoke functions may or may not time
out when a switched connection is used with APPN support
(APPN(*YES)). In this case (switched connection with APPN
support), the WAITFILE timer times the following system
activities:

1. Finding the device that matches the parameters of the
ICF device entry.

2. Verifying the remote location if the remote location name
does not match the remote control point name. (A
message is sent to the remote system, which must
respond appropriately.)

3. Dialing the line for the first hop.

4. Creating a device if necessary.

5. Varying on the device if necessary.

After the system has successfully done the preceding five
steps, it sends the BIND command. Normally, the BIND
command also completes successfully. However, the
WAITFILE timer does not time the BIND if a switched line is
used and the device does not have any active conversations.
(This is the same for switched connections with or without

APPN support.) Therefore, if the system does not receive a
response to the BIND command and the device does not
have any active conversations, the acquire operation or
evoke function does not time out and control does not return
to the application.

When an evoke function follows a successful detach function
that was already sent or received, the system sends a BIND
command. The WAITFILE timer times this BIND command. If
the switched line has already disconnected, the evoke func-
tion fails.

WAITFILE Considerations for APPN
Support

Because APPN sessions may cross multiple systems and
lines to reach the remote system, the WAITFILE timer should
be adjusted to allow more time in these cases. You should
not specify *IMMED for the WAITFILE parameter if your
application is running in a network configured to use APPN
functions. The value you specify for this parameter is
dependent on the size and type of the network.

 Output Considerations
� Handling write operations with a 0-length record: if

ALWWRT, CONFIRM, DETACH, EVOKE, or FAIL is
used with a 0-length record, APPC assumes that the
functions to be performed are only those indicated by
the keywords and the record is not placed in the trans-
mission block.

� Because APPC support can have up to 32K of data in
its buffer before sending it to the remote system, the
request-to-write or fail indicators from the remote system
may be delayed. Therefore, you need to design your
application program so that the time delay between
sending, receiving, and responding to these indicators is
kept to a minimum. You can do this by using the force-
data, confirm, invite, or allow-write function. These func-
tions allow you to force APPC to flush all buffered data
and make it available to the partner program.

� The force-data function causes any data currently held in
the buffer to be sent immediately to the remote system.
Because APPC support does not wait until its buffer is
full (there is 32KB of data in its buffer) before sending
the data, it takes more processing unit time to transfer a
large amount of data to the remote system than if the
system waited for each data buffer to be full. Therefore,
if you use the force-data function on each write opera-
tion, you should be aware that you may experience
slower response times because the data is less effi-
ciently transferred.

� You may want to send certain data as control data. The
Control-Data (CTLDTA) keyword allows you to make this
distinction. For more information about CTLDTA, see
“Sending Data” on page 5-5.

7-2 OS/400 APPC Programming V4R1

 Input Considerations
� The response indicators (RCVTRNRND, RCVDETACH,

RCVCTLDTA, and RCVCONFIRM) can be received
either with data or without data (indicators only). Your
program should examine the major return codes in the
communications device-dependent I/O feedback area to
determine if the record contains data. A major code of
00 or 02 indicates data has been received, and a major
code of 03 indicates no data has been received.

� When the actual length of the data received is less than
the length of the record format used to receive the data
and mapped conversation is being used, the system
pads the remainder of the record with blanks. The actual
received data length can be determined from the I/O
feedback area.

� The value of the ICF program device entry Overflow
Data (OVRFLWDTA) parameter is used to determine
whether to keep or discard the remainder of the data in
these cases:

– When the actual length of the data received is
greater than the length of the record format used to
receive the data and mapped conversation is being
used.

– Basic conversation is being used without the
VARBUFMGT keyword.

For more information on the overflow data function,
see OVRFLWDTA on page 5-3.

– When a read operation is issued in send state or a
turnaround indication was received as a result of
issuing the read operation, the system performs the
equivalent of an allow-write function and begins
waiting for data from the remote program.

 Confirm Considerations
� Your program requests that the remote program confirm

receiving the data by issuing an output request with the
confirm function.

� Your program is notified that it has received a confirma-
tion request from the remote program in the following
ways:

– A major return code of 00, 02, or 03, with minor
return codes of 13, 14, 15, 18, 1C, 1D, 44, 45, or
46,

– The RCVCONFIRM indicator is set.

Once your program has received a confirmation request,
it must either respond positively or negatively to the
request as follows:

– To respond positively, issue the RSPCONFIRM
function.

– To respond negatively to the request, do the
following:

- Issue a fail function. In this case, your program
is responsible for initiating the appropriate level
of error recovery.

- Abnormally end the transaction and session by
issuing either an end-of-session function or a
close operation.

- If an evoke function is issued with a confirma-
tion request, and the target program never
attaches to the transaction, a negative response
is returned to the source program when the
target program completes.

Do not use the confirm function with an evoke
function to start a target program that does not
read data from or write data to the source
program. If a confirmation is required by your
application program, the target program must
receive the confirmation request and perform
the necessary function to respond to the
confirm request.

- When it is essential to your application program
that the target program be started before you
issue output operations to it, specify the confirm
function with the evoke function. The evoke will
not complete until the target program responds
to the confirmation request.

- When it is not essential to your application
program that the target program be started
before you issue output operations to it, issue
the evoke function without a confirm function
specified. This allows your program to issue
subsequent output operations. These output
operations are processed during the program
start processing at the target system. If a
problem occurs when starting the target
program, the source program is not informed of
the problem until a later receive or send opera-
tion.

- Because the output operation with the confirm
function specified waits for a positive or nega-
tive response before control is returned to the
program, it is recommended that corresponding
source and target programs be coded to mini-
mize the amount of time between receiving the
confirm request and sending the response. If
the receiving program performs complex proc-
essing on each record, the time delay can be
significant.

- The confirm function causes any data currently
held in the buffer to be sent immediately to the
remote system. Because APPC support does
not wait until the buffer is full before sending
the data, it takes more time to transfer data to
the remote system than if the system waited for
the data buffer to be full. Therefore, if you use
the confirm function, you should be aware that
you may experience slower response times
because data is transferred less efficiently, and

 Chapter 7. Application Considerations for ICF 7-3

the program must wait for a response from the
remote program.

Two-Phase Commit Considerations

The following should be considered when programming for
two-phase commit.

 Committing Resources

Your program requests that protected resources are com-
mitted by using the commit operation or the PRPCMT func-
tion.

Your program is notified that it has received a commit
request from the remote program in the following ways:

� A major return code of 02 or 03 with minor return codes
of 57, 58, or 59.

� The RCVTKCMT response indicator is set. The
RCVTRNRND and RCVDETACH response indicators
may also be set.

When your program receives a commit request, it must
respond positively or negatively to the request as follows:

� To respond positively, do a commit operation.

� To respond negatively to the request, do one of the
following:

– Do a rollback operation.

– Issue a fail function. This causes the logical unit of
work to be rolled back if the partner issued a
commit operation. Otherwise, if the partner issued a
prepare-for-commit function, your program can
attempt error recovery.

– Abnormally end the transaction and session by
issuing either an end-of-session function or a close
operation.

Rolling Back Resources

Your program requests that protected resources are rolled
back by using the rollback operation.

Your program is notified that it has received a rollback
request from the remote program or that rollback is required
because of an error on the conversation in the following
ways.

� One of the following return codes is received.

 – 0054

 – 0254

– 80F9, 80FA, 80FB

– 81F0, 81F1, 81F2, 81F3, 81F4, 81F5

– 83FB, 83FC, 83FD, 83FE, 83FF

� The RCVROLLB response indicator is set.

When your program receives a rollback request, it must
respond with a rollback operation.

Exchanging Log Names

APPC uses a mechanism called exchange log name to
negotiate the exact two-phase commit capabilities used for a
protected conversation. The two systems at each end of the
conversation exchange information about their level of two-
phase commit support. Together, they decide which functions
to use.

Exchange log name processing is performed when the
system attempts to evoke its first protected conversation after
communications have been established between the two
systems. (The active session count between the two systems
goes from 0 to 1.) The evoke is pended until the exchange
log name processing has completed successfully.

Exchange log name processing brings up its own session to
do the negotiation. You need to configure the mode
description with one extra session that the system can use
for exchange log name processing.

 Performance

The following are performance considerations for two-phase
commit processing.

� The first protected conversation evoke between two
systems takes longer to complete because of the
exchange log name processing that takes place between
the systems.

� The user may experience slower response times due to
the two-phase commit processing needed to process the
commit and rollback operations. Commit and rollback
operations are done for each transaction program in the
two-phase commit transaction program network.

� The bigger the two-phase commit transaction program
network and the greater the number of commits issued
for each transaction, the slower the response time.

� If data integrity is critical to your application, you should
use two-phase commit processing. The extra processing
that is done to ensure data integrity slows the perform-
ance of applications that use two-phase commit proc-
essing.

End-of-Session, Release, and Close
Considerations

The following information describes how the end-of-session
function and the close and release operations are used to
end communications between your local program and the
target program.

� The end-of-session function is valid in any state, but will
abnormally end an active transaction with the remote

7-4 OS/400 APPC Programming V4R1

program and could also indicate a logic error in the
program.

� A target program cannot initiate error recovery using
close, release, and open and acquire logic. When a per-
manent session error occurs, the source program is
responsible for recovery.

� For source programs, when you issue a close operation
to a session with an active transaction while your
program is in a send state, the system sends any data in
the output buffer and then abnormally ends the trans-
action.

� A release operation performed by the target program
does not perform a detach function. The transaction with
the source program may be resumed by a subsequent
acquire of the requesting program device. That acquire
may be performed either by the program that initially had
the transaction or by another program running in the
same job.

� A transaction remains allocated to a target job until the
job ends even though a close or release operation was
issued and a detach sent. As long as the job is active,
the WRKCFGSTS commands will show the job as an
APPC target program. You can use the end-of-session
function to end the session associated with a job. In this
case, the job is no longer shown as active on the
WRKCFGSTS commands.

� Protected conversations must commit the current logical
unit of work before they can end normally. If an end-of-
session function is issued before the logical unit of work
is committed, APPC rolls back the logical unit of work.

� Application programs using protected conversations
should detach the conversation before ending the
session. The DETACH keyword issued with the
TNSSYNLVL keyword and followed by a commit opera-
tion causes the system to commit all changes in the
current logical unit of work and end the conversations.
Ignoring this advice and issuing a write with EOS when
there are still active protected conversations causes
APPC to do the following.

– Issue a DEALLOCATE_ABEND on those conversa-
tions.

– Roll back the current logical unit of work.

Prestart Jobs Considerations

To minimize the amount of time required to carry out a
program start request, you can use prestart jobs to start a
job on your system before the remote system sends a
program start request.

To use prestart jobs, you will need to define both communi-
cations and prestart job entries in the subsystem description,
and make certain programming changes to the prestart job
program with which the source program communicates. You
should make as many changes as possible before acquiring
the program with the RMTLOCNAME(*REQUESTER) param-
eter specified on the program device entry. For information
about how to use prestart job entries, refer to the ICF Pro-
gramming book. For information on the prestart job entry
format, refer to the Work Management book.

Prestart jobs can be used for protected conversations.
However, if a prestart job attempts an acquire operation to
the requesting program (*REQUESTOR) device and the pre-
start job has already evoked protected conversations, the
acquire operation is rejected. The prestart job must end any
protected conversations before it can acquire the
*REQUESTOR device. This only applies when protected con-
versations are already active. A prestart job can acquire the
*REQUESTOR device if there are unprotected conversations
already active.

Trace ICF Communications Considerations

The Trace ICF (TRCICF) command enables you to trace ICF
calls and data passed on those calls and directs the informa-
tion obtained to either a printer file or an output file. You can
use the TRCICF command for remote jobs by using it in con-
junction with the Start Service Job (STRSRVJOB), End
Service Job (ENDSRVJOB), and Display Service Status
(DSPSRVSTS) commands.

For more information about the Trace ICF command, refer to
the ICF Programming book.

 Chapter 7. Application Considerations for ICF 7-5

7-6 OS/400 APPC Programming V4R1

Chapter 8. Application Considerations for CPI Communications

This chapter describes the application considerations for the
CPI Communications interface.

Before writing programs that use CPI Communications and
APPC, you should understand some of the characteristics of
the AS/400 environment.

 General Considerations
� When a source program issues an Allocate (CMALLC)

call, a conversation start request (program start request)
is sent to the target system for the partner program.

� When an Allocate (CMALLC) call is issued and the con-
versation characteristic return_control is
CM_IMMEDIATE, control is returned immediately if an
active, locally controlled session is not available. This
implies special considerations when an APPN
partner_LU_name is requested. Because the request is
for an available session, APPN support will not dynam-
ically create or vary on the device, attach the required
mode_name, or issue the start mode (STRMOD)
command for you. You must use a return_control of
CM_WHEN_SESSION_ALLOCATED to take advantage
of these APPN services.

� A target program accepts an incoming conversation by
issuing an Accept_Conversation (CMACCP) call.

� When an Allocate or Accept_Conversation call com-
pletes successfully, the message CPI9803 is sent to the
history file. The CPI9803 message contains the unit-of-
work ID for the job. The unit-of-work ID can be used to
correlate which jobs are communicating with each other
when the local and target systems are AS/400 systems.

� Multiple conversations that run simultaneously can be
established within one source job. The conversation_ID
is used to distinguish the conversations in your program.

� A target program can also establish multiple conversa-
tions. A target program can have only one incoming con-
versation, which is established by issuing the
Accept_Conversation (CMACCP) call. A target program
can also establish additional conversations by issuing
the Initialize_Conversation (CMINIT) and Allocate
(CMALLC) calls.

� Once the incoming conversation has been deallocated, a
target program that is a prestart job can issue another
Accept_Conversation (CMACCP) call to wait for and
process another incoming conversation. Target programs
that are not prestart jobs can never accept another
incoming conversation, even when the first incoming
conversation is deallocated. See “Prestart Job
Considerations” on page 8-2 for more information.

� The maximum length of a request unit (RU) is 32K
bytes.

 Performance Considerations
� APPC can buffer up to 32KB of data internally before

sending the data to the partner program. This allows for
a more efficient transmission of data on the AS/400
system. The data is sent to the partner system when it
becomes full, or when a CPI Communications call is
issued that forces APPC to flush the buffer. The calls
that will cause APPC to flush the buffer are

 – Confirm

 – Deallocate

 – Flush

 – Prepare_to_Receive

 – Receive

– Send_Data when the send_type is anything other
than CM_BUFFER_DATA

� As a general rule, using a larger buffer size improves
performance. For example, a program that sends 10,000
records that are 100 bytes long will not perform as well
as a program that sends 1,000 records that are 1,000
bytes long, even though it is the same amount of data.
You may consider changing the programs to use a
conversation_type of CM_BASIC_CONVERSATION and
a fill of CM_FILL_BUFFER. Using this approach, your
program can send multiple records with each Send_Data
call, which can improve performance.

� Special consideration should be given to the frequency
with which your program issues any call that causes the
partner program to receive a status_received value of
CM_CONFIRM_RECEIVED,
CM_CONFIRM_SEND_RECEIVED, or
CM_CONFIRM_DEALLOC_RECEIVED. Your program
does not receive control until the partner program issues
an operation to respond to this call, such as Confirmed,
and the time delay may be significant. When perform-
ance is important, calls that require confirmation should
be used only when necessary.

� The time required to start a job to process an incoming
conversation can be significant. Refer to “Prestart Job
Considerations” on page 8-2 for information on reducing
this time delay.

� For slow lines, data compression may improve perform-
ance. For more information, see “APPC Data
Compression” on page 3-6.

Two-Phase Commit Considerations

The following should be considered when programming for
two-phase commit.

 Copyright IBM Corp. 1997 8-1

 Committing Resources

Your program requests that protected resources are com-
mitted by using the commit operation.

Your program is notified that it has received a commit
request from the remote program by the following return
codes.

 � CM_TAKE_COMMIT

 � CM_TAKE_COMMIT_SEND

 � CM_TAKE_COMMIT_DEALLOCATE

When your program receives a commit request, it must
respond positively or negatively to the request as follows:

� To respond positively, do a commit operation.

� To respond negatively to the request, do one of the
following:

– Do a rollback operation.

– Call CMSERR. In this case, your program is respon-
sible for initiating the appropriate level of error
recovery.

– Call CMSDT with CM_DEALLOCATE_ABEND.
Then call CMDEAL.

Rolling Back Resources

Your program requests that protected resources are rolled
back by using the rollback operation.

Your program is notified that it has received a rollback
request from the remote program or that rollback is required
because of an error on the conversation by the following
return codes.

 � CM_DEALLOCATED_ABEND_BO

 � CM_DEALLOCATED_ABEND_PROG_BO

 � CM_DEALLOCATED_ABEND_SVC_BO

 � CM_DEALLOCATED_ABEND_TIMER_BO

 � CM_RESOURCE_FAIL_NO_RETRY_BO

 � CM_RESOURCE_FAILURE_RETRY_BO

 � CM_TAKE_BACKOUT

When your program receives a rollback request, it must
respond with a rollback operation.

Exchanging Log Names

APPC uses a mechanism called exchange log name to
negotiate the exact two-phase commit capabilities used for a
protected conversation. The two logical units at each end of
the conversation exchange information about their level of
two-phase commit support. Together, they decide which
functions to use.

Exchange log name processing is performed when the
system attempts to allocate its first protected conversation
after communications have been established between the
two systems. (The active session count between the two
systems goes from 0 to 1.) The allocate is pended until the
exchange log name processing has completed successfully.

Exchange log name processing brings up its own session to
do the negotiation. You need to configure the mode
description with one extra session that the system can use
for exchange log name processing.

Immediate Return on Allocate

Because two-phase commit processing requires the
exchange log name processing to complete before allocating
protected conversations, conversations allocated with a
return_control of CM_IMMEDIATE do not return control to
the calling program immediately.

 Performance

The following are performance considerations for two-phase
commit processing.

� Allocation of the first protected conversation between
two systems takes longer to complete because of the
exchange log name processing that takes place between
the systems.

� The user may experience slower response times due to
the two-phase commit processing needed to process the
commit and rollback operations. Commit and rollback
operations are done for each transaction program in the
two-phase commit transaction program network.

� The bigger the two-phase commit transaction program
network and the greater the number of commits issued
for each transaction, the slower the response time.

� If data integrity is critical to your application, you should
use two-phase commit processing. The extra processing
that is done to ensure data integrity slows the perform-
ance of applications that use two-phase commit proc-
essing.

Prestart Job Considerations

To minimize the time required for your program to accept a
conversation with its partner program, you can use a prestart
job entry. When you use a prestart job entry, your program is
started before a program start request is received from the
partner program. Each prestart job entry contains a program
name, library name, user profile, and other attributes that the
subsystem uses to create and manage a pool of prestart
jobs.

To use a prestart job entry, you must

8-2 OS/400 APPC Programming V4R1

� Define a prestart job entry in the subsystem that con-
tains the communications entry using the Add Prestart
Job Entry (ADDPJE) command.

� Start the prestart job entry. The prestart job entry can be
started at the same time the subsystem is started, or
you can use the Start Prestart Jobs (STRPJ) command.

You should consider the following when writing a program
that uses a prestart job entry:

� A prestart job program should do as much work as pos-
sible before issuing the Accept_Conversation call (for
example, opening database files). This allows the initial
processing to be completed before the program start
request is received. The Accept_Conversation call will
not complete until a program start request is received for
your program. When the program start request is
received, your program receives control with a
return_code of CM_OK (assuming no authorization or
other problems are encountered), and your program can
immediately begin processing.

� When a prestart job program is done servicing a
program start request (a return_code of
CM_DEALLOCATED_NORMAL is received or a call to
Deallocate completes successfully), it may then make
itself available for another program start request by
issuing another Accept_Conversation call.

� Only resources that are specifically used for a conversa-
tion should be deallocated. For example, if a database
file is used for most conversations, there is no need to

close the file and then open it each time a conversation
is deallocated and a new conversation is accepted.

� Prestart jobs can be used for protected conversations.
However, if a prestart job attempts an
Accept_Conversation (CMACCP) call and the prestart
job has already allocated protected conversations, the
CMACCP call is rejected. The prestart job must end any
protected conversations before it can accept an
incoming protected conversation. This only applies when
protected conversations are already active. A prestart
job can accept an incoming protected conversation if
there are unprotected conversations already active.

See the Work Management book for more information on
prestart job entries.

Trace CPI Communications Considerations

The Trace CPI Communications (TRCCPIC) command
enables you to trace CPI Communications calls and data
passed on those calls and directs the information obtained to
either a printer file or an output file. You can use the
TRCCPIC command for remote jobs by using it in conjunc-
tion with the Start Service Job (STRSRVJOB), End Service
Job (ENDSRVJOB), and Display Service Status
(DSPSRVSTS) commands.

For more information about the Trace CPI Communications
command, refer to the Communications Management book.

 Chapter 8. Application Considerations for CPI Communications 8-3

8-4 OS/400 APPC Programming V4R1

Appendix A. ICF Operations, DDS Keywords, and System-Supplied
Formats

Information in this appendix includes the following for APPC:

� All valid language operations supported by ICF

� Valid operations for each programming language that
supports ICF

� Data description specifications (DDS) processing
keywords

 � System-supplied formats

 Language Operations

Table A-1 describes the language operations supported by
ICF.

Table A-1. Language Operations

ICF Operations Description

Open Opens the ICF file.

Acquire Establishes a session between the application and the remote location.

Get attributes Used to determine the status of the session.

Read Obtains data from a specific session.

Read-from-invited-program-devices Obtains data from any session that has responded to an invite function.

Write Passes data records from the issuing program to the other program in the transaction.

Write/Read Allows a write operation followed by a read operation.

Release Attempts to end a session.

Close Closes the ICF file.

Language Operations Supported

Use high-level language operations and ICF to communicate
with a program at a remote system. (See the specific high-
level language manual for the non-ICF operations.)

Table A-2 on page A-2 presents the ICF file operations used
with APPC communications and the equivalent high-level lan-
guage statement.

 Copyright IBM Corp. 1997 A-1

Table A-2. High-Level Language I/O Operations

ICF Operation
ILE RPG/400 Opera-
tion Code

ILE COBOL/400 Pro-
cedure Statement ILE C/400 Function 1

FORTRAN/400 State-
ment

Open OPEN OPEN fopen or _Ropen OPEN

Acquire ACQ ACQUIRE _Racquire Not supported2

Get attributes POST ACCEPT _Rdevatr Not supported

Read READ READ fread or _Rreadn READ

Read-from-invited-
program-devices

READ3 READ3 _Rreadindv Not supported

Write WRITE WRITE fwrite or _Rwrite WRITE

Write/Read EXFMT Not supported _Rwriterd Not supported

Release REL DROP _Rrelease Not supported

Close CLOSE CLOSE fclose or _Rclose CLOSE

Note:

1 ILE C/400 is case sensitive.

2 FORTRAN/400 does not support multiple sessions for one ICF file. Therefore, program device names are not used in a
FORTRAN/400 program. An implicit acquire must be used by specifying ACQPGMDEV (program device name) on the
CRTICFF, CHGICFF, or OVRICFF commands.

3 A read operation can be directed either to a specific program device or to any invited program device. The support pro-
vided by the compiler you are using determines whether to issue an ICF read or read-from-invited-program-devices opera-
tion, based on the format of the read operation. For example, if a read is issued with a specific format or program device
specified, the read operation is interpreted as an ICF read operation. Refer to the appropriate language reference manual
for more information.

Data Description Specifications Keywords

Table A-3 lists the DDS keywords that are valid for APPC.

Table A-3 (Page 1 of 2). DDS Keywords

DDS Keyword Description

INVITE Schedules an invite function.

PRPCMT Requests that the remote program prepare
to commit its protected resources.

Table A-3 (Page 1 of 2). DDS Keywords

DDS Keyword Description
RCVCONFIRM Indicates that the remote program is

requesting a confirmation of transaction
activity.

ALWWRT The record currently being written ends a
transmission. The program goes to receive
state.

RCVCTLDTA Informs the local program that control data
has been received.CONFIRM Requests that the remote program confirm

receipt of data.
RCVDETACH Indicates that the remote program has

ended the transaction.CTLDTA Causes the data to be sent as control data.

DETACH Informs the remote program that the
sending program is ending the transaction.

RCVFAIL Indicates that the remote program has
issued a fail indicator.

DFREVOKE Delays an evoke until one of the following
conditions is met.

� The send buffer is full.

� An ALWWRT, CONFIRM, DETACH,
FRCDTA, INVITE, PRPCMT, or READ
function is issued.

� A commit or rollback operation is done.

RCVROLLB Indicates that the local program needs to
rollback its protected resources.

RCVTKCMT Indicates that the local program needs to
determine if it can commit its protected
resources.

RCVTRNRND Indicates that the program is now in send
state.

RECID Used to allow the data content to identify
the record format to use to receive the
data.

EOS Used to specify an end-of-session function.

EVOKE Starts a program on the remote system.

FAIL Sends a fail indicator to the remote system. RQSWRT Specifies that the program is requesting
permission to write.FMTNAME Specifies that a format-name should be

sent on output operations. RSPCONFIRM Used to respond positively to a received
confirm request.FRCDTA Immediately sends communications data

currently in the buffer without waiting for
the buffer to become full.

SECURITY Includes security information needed to
start a program on the remote system.

A-2 OS/400 APPC Programming V4R1

 System-Supplied Formats

Table A-4 lists all the keyword functions performed by the
system-supplied formats that are valid for APPC. Refer to the
ICF Programming book for more information about system-
supplied formats.

Table A-3 (Page 2 of 2). DDS Keywords

DDS Keyword Description

SYNLVL Includes the synchronization level of the
program.

TIMER Allows the user to specify an interval of
time to wait before a read-from-invited-
program-devices operation receives a
timer-expired return code. Table A-4. System-Supplied Formats

System-Supplied Formats DescriptionTNSSYNLVL Specifies that synchronization for this trans-
action should be done at the level that the
SYNLVL keyword specified on the evoke.

$$EOS End-of-session
$$EVOK Evoke with invite
$$EVOKET Evoke with detachVARBUFMGT Allows the user to send or receive multiple

or partial records using one record format
for each read or write operation.

$$EVOKNI Evoke
$$FAIL Fail
$$RCD Request-write-with-invite

VARLEN Specifies that the length of the user data to
be sent will be specified in the 5 bytes of
the field specified.

$$SEND Send-then-invite or invite
$$SENDET Send-then-detach or detach
$$SENDNI Send
$$TIMER Timer

 Appendix A. Language Operations A-3

A-4 OS/400 APPC Programming V4R1

Appendix B. Sense Data and Return Codes

SNA Sense Data

For some ICF return codes, the negative-response data field
in the input/output feedback area contains SNA sense data
received from the remote system, indicating the reason for a
negative-response.

Note: CPI Communications does not return sense data.
Refer to the APPN Support book and the SNA
Formatsmanual for information about sense data.

 Return Codes

This section describes all the return codes that are valid for
APPC. These return codes are set in the I/O feedback area
of the ICF file; they report the results of each I/O operation
issued by your application program. Your program should
check the return code and act accordingly. Refer to your
high-level language manual for more information on how to
access these return codes.

Each return code is a four-digit hexadecimal value. The first
two digits contain the major code, and the last two digits
contain the minor code.

With some return codes, a message is also sent to the job
log or the system operator message queue (QSYSOPR).
You can refer to the message for additional information.

Notes:

1. In the return code descriptions, your program refers to
the local AS/400 application program that issues the
operation and receives a return code from ICF communi-
cations. The partnerprogram refers to the application
program on the remote system with which your program
is communicating through ICF.

2. Several references to input and output operations are
made in the descriptions. These operations can include
DDS keywords and system-supplied formats, which are
listed in Appendix A.

Major Code 00

Major Code 00 – Operation completed successfully.

Description: The operation issued by your program com-
pleted successfully. Your program may have sent or received
some data, or may have received a message from the
remote system.

Action: Examine the minor return code and continue with the
next operation.

Code Description/Action

0000 Description: For input operations issued by your
program, 0000 indicates that your program
received some data with a turnaroundindication.
The partner program is ready to receive data.

For output operations issued by your program,
0000 indicates that the last output operation
completed successfully and that your program
can continue to send data.

Action: If your program received a turnaround
on an input operation, issue an output operation.
For the actions which can be taken after 0000 is
received, refer to Table B-1:

0001 Description: On a successful input operation,
your program received some data. Your program
must continue to receive data until it receives a
turnaround indication (which allows your program
to send data) or a detach indication.

Action: Issue another input operation. If your
program detects a turnaround indication, it can
issue an output operation.

Table B-1. Actions for Return Code 0000

Type of
Session

Last Operation
Issued

Actions Your Program
Can Take

Started by a
source
program

Acquire or open Issue an evoke or timer
function, or a get-attributes
operation.

Evoke with detach or
write with detach

Issue another evoke func-
tion, issue a release opera-
tion, continue local
processing, or end.

Any other output
operation

Issue another output oper-
ation (except evoke), or
issue an input operation.

End-of-Session Continue local processing
or end.

Started by a
remote
program start
request1

Acquire or open Issue an input or output
operation.

Write with detach Continue local processing
or end. This session has
ended.

Any other output
operation

Issue another output oper-
ation (except evoke), or
issue an input operation.

End-of-Session Continue local processing
or end.

Note:

1 A target program (started by a program start request)
cannot issue an evoke function in this session; it can
issue an evoke function only in a different session
that it has first acquired.

 Copyright IBM Corp. 1997 B-1

0002 Description: For a receive operation, your
program received control data, sent with the
program start request, on the first input opera-
tion. Your program must continue to receive data
until it receives a turnaroundindication (which
allows your program to send data) or a detach
indication.

For an acquire operation, your program received
control data, sent with the program start request.

Action: Issue another input operation. If your
program detects a turnaround indication, it can
issue an output operation.

0004 Description: On a successful input operation,
your program received some control data with a
turnaround indication. The partnerprogram is
ready to receive data.

0005 Description: On a successful input operation,
your program received some control data. Your
program must continue to receive data until it
receives a turnaround indication (which allows
your program to send data) or a detach indi-
cation.

Action: Issue another input operation. If your
program detects a turnaround indication, it can
issue an output operation.

0006 Description: Your program received control
data, sent with the program start request, on the
first input operation, along with a
turnaroundindication.

0008 Description: On a successful input operation,
your program received a detach indication with
the last of the data. The communications trans-
action with the partner program has ended, but
the session with the partner system is still active.

Action: If your program started the session, it
can issue another evoke function (to start
another program), issue a release operation (to
perform local processing or to start another
session), or end. If a program start request from
the partner program started the transaction, your
program can either issue an end-of-session func-
tion or end.

000C Description: On a successful input operation,
your program received a detach indication with
the last of the control data. The communications
transaction with the partner program has ended,
but the session with the partner system is still
active.

Action: If your program started the session, it
can issue another evoke function (to start
another program), issue a release operation (to
perform local processing or to start another
session), or end. If a program start request from
the partnerprogram started the transaction, your
program can either issue an end-of-session func-
tion or end.

0010 Description: On a successful output operation,
your program received a request-to-write indi-
cation. The partner program will send data as
soon as possible. You should allow the partner
program to send this data.

Action: Issue an input operation as soon as
possible.

0011 Description: Your program received control
data, sent with the program start request, on the
first input operation, along with a detach indi-
cation. The communications transaction with the
partner program has ended, but the session with
the partner system is still active.

Action: Your program can either issue an end-
of-session function or end.

0013 Description: Your program received control
data, sent with the program start request, on the
first input operation, along with a
turnaroundindication. In addition, the partner
program requested confirmation.

Action: Process any control data received with
the request. If your program detects no errors,
respond to the confirm request with a
respond-to-confirm(RSPCONFIRM) function,
then issue an output operation. If your program
does detect an error, issue a fail function, or end
your program.

0014 Description: On a successful input operation,
your program received some data with a turn-
around indication. In addition, the partner
program requested confirmation.

Action: Process any data received with the
request. If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an output operation. If your program does detect
an error, issue a fail function, or end your
program.

0015 Description: On a successful input operation,
your program received some data. In addition,
the partner program requested confirmation.

Action: Process any data received with the
request. If your program detects no errors,
respond to the confirm request with a
respond-to-confirm(RSPCONFIRM) function,
then issue an input operation. If your program
does detect an error, issue a fail function, or end
your program.

0018 Description: Your program received control
data, sent with the program start request, on the
first input operation. In addition, the partner
program requested confirmation.

Action: Process any data received with the
request. If your program detects no errors,

B-2 OS/400 APPC Programming V4R1

respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an input operation. If your program does detect
an error, issue a fail function, or end your
program.

001C Description: On a successful input operation,
your program received some data with a detach
indication. In addition, the partner program
requested confirmation.

Action: If your program detects no errors, it
should respond to the confirm request with a
respond-to-confirm (RSPCONFIRM) function,
and then:

� If your program started the transaction, it
can issue another evoke operation (to start
another program), issue a release operation
(to perform local processing or to start
another session), or end.

� If a program start request from the partner
program started the transaction, your
program can issue an end-of-session func-
tion or end.

If your program does detect an error, issue a fail
operation. The transaction remains active, and
your program and the partner program can
perform the necessary error recovery. To end
the transaction abnormally if your program
detects an error, issue an end-of-session func-
tion, or end your program.

001D Description: Your program received control
data, sent with the program start request, on the
first input operation, along with a detach indi-
cation. In addition, the partner program
requested confirmation.

Action: If your program detects no errors, it
should respond to the confirm request with a
respond-to-confirm (RSPCONFIRM) function,
and can then issue an end-of-session function or
end.

If your program does detect an error, issue a fail
operation. The transaction remains active, and
your program and the partner program can
perform the necessary error recovery. To end
the transaction abnormally if your program
detects an error, issue an end-of-session func-
tion, or end your program.

0044 Description: On a successful input operation,
your program received control data with a turn-
around indication. In addition, the partner
program requested confirmation.

Action: Process any data received with the
request. If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an output operation. If your program does detect
an error, issue a fail function, or end your
program.

0045 Description: On a successful input operation,
your program received some control data. In
addition, the partner program requested confir-
mation.

Action: Process any control data received with
the request. If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an input operation. If your program does detect
an error, issue a fail function, or end your
program.

0046 Description: On a successful input operation,
your program received some control data with a
detach indication. In addition, the partner
program requested confirmation.

Action: If your program detects no errors, it
should respond to the confirm request with a
respond-to-confirm (RSPCONFIRM) function,
and then:

� If your program started the transaction, it
can issue another evoke operation (to start
another program), issue a release operation
(to perform local processing or to start
another session), or end.

� If a program start request from the partner
program started the transaction, your
program can issue an end-of-session func-
tion or end.

If your program does detect an error, issue a fail
operation. The transaction remains active, and
your program and the partner program can
perform the necessary error recovery. To end
the transaction abnormally if your program
detects an error, issue an end-of-session func-
tion, or end your program.

0054 Description: Rollback is required. The trans-
action program (TP) has entered the rollback-
required state.

Note: This is only returned after an EOS func-
tion or a close operation has been
issued, so that local resources and other
remote resources must be rolled back.

Action: Use the rollback operation to roll back
all local protected resources.

 Appendix B. Sense Data and Return Codes B-3

Major Code 02

Major Code 02 – Input operation completed successfully, but
your job is being ended (controlled).

Description: The input operation issued by your program
completed successfully. Your program may have received
some data or a message from the remote system. However,
your job is being ended (controlled).

Action: Your program should complete its processing and
end as soon as possible. The system eventually changes a
job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

Code Description/Action

0200 Description: On a successful input operation,
your program received some data with a turn-
around indication. Also, your job is being ended
(controlled) The partnerprogram is ready to
receive data from your program.

Action: Your program can issue an output oper-
ation. However, the recommended action is to
complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0201 Description: On a successful input operation,
your program received some data. Also, your job
is being ended (controlled) Your program can
continue to receive data until it receives a turn-
around indication (which allows your program to
send data) or a detach indication.

Action: Your program can issue another input
operation. If your program detects the equivalent
of a turnaround indication, it can issue an output
operation. However, the recommended action is
to complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0202 Description: For a receive operation, your
program received control data, sent with the
program start request, on the first input opera-
tion. Also, your job is being ended (controlled)
Your program can continue to receive data until
it receives a turnaroundindication (which allows
your program to send data) or a detach indi-
cation.

For an acquire operation, your program received
control data, sent with the program start request.

Action: Your program can issue another input
operation. If your program detects the equivalent
of a turnaroundindication, it can issue an output
operation. However, the recommended action is

to complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0204 Description: On a successful input operation,
your program received some control data with a
turnaround indication. Also, your job is being
ended (controlled) The partnerprogram is ready
to receive data from your program.

Action: Your program can issue an output oper-
ation. However, the recommended action is to
complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0205 Description: On a successful input operation,
your program received some control data. Also,
your job is being ended (controlled) Your
program can continue to receive data until it
receives a turnaround indication (which allows
your program to send data) or a detach indi-
cation.

Action: Your program can issue another input
operation. If your program detects the equivalent
of a turnaround indication, it can issue an output
operation. However, the recommended action is
to complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0206 Description: Your program received control
data, sent with the program start request, on the
first input operation, along with a
turnaroundindication. Also, your job is being
ended (controlled) The partner program is ready
to receive data from your program.

Action: Your program can issue an
outputoperation. However, the recommended
action is to complete all processing and end your
program as soon as possible. The system even-
tually changes a job ended (controlled) to a job
ended (immediate) and forces all processing to
stop for your job.

0208 Description: On a successful input operation,
your program received a detach indication with
the last of the data. The communications trans-
action with the partner program has ended, but
the session with the partnersystem is still active.
Also, your job is being ended (controlled)

Action: If your program started the session, it
can issue another evoke function (to start
another program), issue a release operation (to
perform local processing or to start another

B-4 OS/400 APPC Programming V4R1

session), or end. If a program start request from
the partner program started the transaction, your
program can either issue an end-of-session func-
tion or end. However, the recommended action
is to complete all processing and end your
program as soon as possible. The system even-
tually changes a job ended (controlled) to a job
ended (immediate) and forces all processing to
stop for your job.

0211 Description: Your program received control
data, sent with the program start request, on the
first input operation, along with a detach indi-
cation. The communications transaction with the
partner program has ended, but the session with
the partner system is still active. Also, your job is
being ended (controlled)

Action: Your program can either issue an end-
of-session function or end. However, the recom-
mended action is to complete all processing and
end your program as soon as possible. The
system eventually changes a job ended (con-
trolled) to a job ended (immediate) and forces all
processing to stop for your job.

020C Description: On a successful input operation,
your program received a detach indication with
the last of the control data. The communications
transaction with the partner program has ended,
but the session with the partner system is still
active. Also, your job is being ended (controlled)

Action: If your program started the session, it
can issue another evoke function (to start
another program), issue a release operation (to
perform local processing or to start another
session), or end. If a program start request from
the partner program started the transaction, your
program can either issue an end-of-session func-
tion or end. However, the recommended action
is to complete all processing and end your
program as soon as possible. The system even-
tually changes a job ended (controlled) to a job
ended (immediate) and forces all processing to
stop for your job.

0213 Description: Your program received control
data, sent with the program start request, on the
first input operation, along with a
turnaroundindication. In addition, the partner
program requested confirmation. Also, your job
is being ended (controlled)

Action: Process any control data received with
the request. If your program detects no errors,
respond to the confirm request with a
respond-to-confirm(RSPCONFIRM) function,
then issue an output operation. If your program
does detect an error, issue a fail function, or end
your program. However, the recommended
action is to complete all processing and end your
program as soon as possible. The system even-

tually changes a job ended (controlled) to a job
ended (immediate) and forces all processing to
stop for your job.

0214 Description: On a successful input operation,
your program received some data with a turn-
around indication. In addition, the
partnerprogram requested confirmation. Also,
your job is being ended (controlled)

Action: Process any data received with the
request. If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an outputoperation. If your program does detect
an error, issue a fail function, or end your
program. However, the recommended action is
to complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0215 Description: On a successful input operation,
your program received some data. In addition,
the partner program requested confirmation.
Also, your job is being ended (controlled)

Action: Process any data received with the
request. If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an input operation. If your program does detect
an error, issue a fail function, or end your
program. However, the recommended action is
to complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0218 Description: Your program received control
data, sent with the program start request, on the
first input operation. In addition, the partner
program requested confirmation. Also, your job
is being ended (controlled)

Action: Process any data received with the
request. If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an input operation. If your program does detect
an error, issue a fail function, or end your
program. However, the recommended action is
to complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

021C Description: On a successful input operation,
your program received some data with a detach
indication. In addition, the partnerprogram

 Appendix B. Sense Data and Return Codes B-5

requested confirmation. Also, your job is being
ended (controlled)

Action: If your program detects no errors, it
should respond to the confirm request with a
respond-to-confirm (RSPCONFIRM) function,
and then:

� If your program started the transaction, it
can issue another evoke operation (to start
another program), issue a release operation
(to perform local processing or to start
another session), or end.

� If a program start request from the partner
program started the transaction, your
program can issue an end-of-session func-
tion or end.

If your program does detect an error, issue a fail
operation. The transaction remains active, and
your program and the partner program can
perform the necessary error recovery. If your
program detects an error and wants to end the
transaction abnormally, issue an end-of-session
function, or end your program.

However, the recommended action is to com-
plete all processing and end your program as
soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

021D Description: Your program received control
data, sent with the program start request, on the
first input operation, along with a detach indi-
cation. In addition, the partner program
requested confirmation. Also, your job is being
ended (controlled)

Action: If your program detects no errors, it
should respond to the confirm request with a
respond-to-confirm (RSPCONFIRM) function,
and can then issue an end-of-session function or
end. If your program does detect an error, issue
a fail operation. The transaction remains active,
and your program and the partnerprogram can
perform the necessary error recovery. To end a
transaction abnormally if your program detects
an error, issue an end-of-session function, or
end your program.

However, the recommended action is to com-
plete all processing and end your program as
soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0244 Description: On a successful input operation,
your program received some control data with a
turnaround indication. In addition, the partner
program requested confirmation. Also, your job
is being ended (controlled)

Action: Process any control data received with
the request. If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an output operation. If your program does detect
an error, issue a fail function, or end your
program. However, the recommended action is
to complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0245 Description: On a successful input operation,
your program received some control data. In
addition, the partner program requested confir-
mation. Also, your job is being ended (controlled)

Action: Process any data received with the
request. If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an input operation. If your program does detect
an error, issue a fail function, or end your
program. However, the recommended action is
to complete all processing and end your program
as soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0246 Description: On a successful input operation,
your program received some control data with a
detach indication. In addition, the partner
program requested confirmation. Also, your job
is being ended (controlled)

Action: If your program detects no errors, it
should respond to the confirm request with a
respond-to-confirm (RSPCONFIRM) function,
and then:

� If your program started the transaction, it
can issue another evoke operation (to start
another program), issue a release operation
(to perform local processing or to start
another session), or end.

� If a program start request from the partner
program started the transaction, your
program can issue an end-of-session func-
tion or end.

 If your program does detect an error, issue a
fail operation. The transaction remains active,
and your program and the partner program can
perform the necessary error recovery. To end
the transaction abnormally if your program
detects an error, issue an end-of-session func-
tion, or end your program.

However, the recommended action is to com-
plete all processing and end your program as
soon as possible. The system eventually

B-6 OS/400 APPC Programming V4R1

changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

0254 Description: Rollback is required. The trans-
action program (TP) has entered the rollback-
required state.

Note: This is only returned after an EOS func-
tion or a close operation has been
issued, so that local resources and other
remote resources must be rolled back.

 Also, your job is being ended (controlled)

Action: Use the rollback operation to roll back
all local protected resources.

0257 Description: The remote program has issued
either a commit operation or a prepare-for-
commit function. This requests the local program
to respond by issuing a commit operation in
order to perform the two-phase commit proc-
essing on all protected resources. Also, your job
is being ended (controlled)

Action: Do a commit operation to cause a posi-
tive response to be returned to the remote
program if the two-phase commit processing was
successful. To respond negatively, do a rollback
operation, an EOS function, or a fail function.

0258 Description: The remote program has issued an
allow-write function with the transaction-
synchronization-level function followed by either
a commit operation or a prepare-for-commit
function. The synchronization level is *COMMIT.
Your program will be in send state after issuing
a commit operation, once the commit operation
completes successfully. Also, your job is being
ended (controlled)

Action: Do a commit operation to cause a posi-
tive response to be returned to the remote
program if the two-phase commit processing was
successful. To respond negatively, do a rollback
operation, an EOS function, or a fail function.

0259 Description: The remote program has issued a
detach function with the transaction-
synchronization-level function followed by either
a commit operation or a prepare-for-commit
function. The synchronization level is *COMMIT.
Your program will be deallocated after issuing a
commit operation, once the commit operation
completes successfully. Also, your job is being
ended (controlled)

Action: Do a commit operation to cause a posi-
tive response to be returned to the remote
program if the two-phase commit processing was
successful. To respond negatively, do a rollback
operation, an EOS function, or a fail function.

Major Code 03

Major Code 03 – Input operation completed successfully, but
no data received.

Description: The input operation issued by your program
completed successfully, but no data was received.

Action: Examine the minor return code and continue with the
next operation.

Code Description/Action

0300 Description: On a successful input operation,
your program received a turnaround indication
without any data. The session is still active.

Action: Issue an output operation.

0301 Description: On a successful input operation,
your program received no data. Your program
must continue to receive input until it receives a
turnaround or detach indication.

Action: Issue an input operation.

0302 Description: Your program received a control
data record with a data length of zero, sent with
the program start request, on the first input oper-
ation. Your program must continue to receive
input until it receives a turnaround or detach indi-
cation.

Action: Issue an input operation.

0304 Description: On a successful input operation,
your program received a turnaround indication
with a control data record with a data length of
zero. The session is still active.

Action: Issue an output operation.

0305 Description: On a successful input operation,
your program received a control data record with
a data length of zero. Your program must con-
tinue to receive input until it receives a turn-
around or detach indication.

Action: Issue an input operation.

0306 Description: Your program received a control
data record with a data length of zero, sent with
the program start request, on the first input oper-
ation, along with a turnaround indication. The
session is still active.

Action: Issue an output operation.

0308 Description: On a successful input operation,
your program received a detach indication
without any data. The communications trans-
action with the partner program has ended, but
the session with the partnersystem is still active.

Action: If your program started the session, it
can issue another evoke function (to start
another program), issue a release operation (to
perform local processing or to start another
session), or end. If a program start request from

 Appendix B. Sense Data and Return Codes B-7

the partner program started the transaction, your
program can either issue an end-of-session func-
tion or end.

0309 Description: On a read-from-invited-program-
devices operation, your program did not receive
any data. Also, your job is being ended (con-
trolled)

Action: Your program can continue processing.
However, the recommended action is to com-
plete all processing and end your program as
soon as possible. The system eventually
changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for
your job.

Messages:

 � CPF4741 (Notify)

0311 Description: Your program received a control
data record with a data length of zero, sent with
the program start request, on the first input oper-
ation, along with a detach indication. The com-
munications transaction with the partner program
has ended, but the session with the
partnersystem is still active.

Action: Your program can either issue an end-
of-session function or end.

030C Description: On a successful input operation,
your program received a control data record with
a data length of zero, along with a detach indi-
cation. The communications transaction with the
partnerprogram has ended, but the session with
the partner system is still active.

Action: If your program started the session, it
can issue another evoke function (to start
another program), issue a release operation (to
perform local processing or to start another
session), or end. If a program start request from
the partner program started the transaction, your
program can either issue an end-of-session func-
tion or end.

0310 Description: On a read-from-invited-program-
devices operation, the time interval specified by
a timer function in your program or by the
WAITRCD value specified for the ICF file
expired.

Action: Issue the intended operation after the
specified time interval has ended. For example,
if you were using the time interval to control the
length of time to wait for data, you can issue
another read-from-invited-program-devices oper-
ation to receive the data.

Note: Since no specific program device name
is associated with the completion of this
operation, the program device name in
the common I/O feedback area is set to

*N. Therefore, your program should not
make any checks based on the program
device name after receiving the 0310
return code.

Messages:

 � CPF4742 (Status)

 � CPF4743 (Status)

0313 Description: Your program received a control
data record with a data length of zero, sent with
the program start request, on the first input oper-
ation, along with a turnaround indication. In addi-
tion, the partner program requested confirmation

Action: If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an input or output operation. If your program
does detect an error, issue a fail function, or end
your program.

0314 Description: On a successful input operation,
your program received a turnaround indication
without any data. In addition, the partner
program requested confirmation

Action: If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an input or output operation. If your program
does detect an error, issue a fail function, or end
your program.

0315 Description: On a successful input operation,
your program did not receive any data. In addi-
tion, the partner program requested confirmation

Action: If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an input operation. If your program does detect
an error, issue a fail function, or end your
program.

0318 Description: Your program received a control
data record with a data length of zero, sent with
the program start request, on the first input oper-
ation. In addition, the partner program requested
confirmation

Action: If your program detects no errors,
respond to the confirm request with a
respond-to-confirm(RSPCONFIRM) function,
then issue an input operation. If your program
does detect an error, issue a fail function, or end
your program.

031C Description: On a successful input operation,
your program received a detach indication
without any data. In addition, the partner
program requested confirmation

Action: If your program detects no errors, it
should respond to the confirm request with a

B-8 OS/400 APPC Programming V4R1

respond-to-confirm (RSPCONFIRM) function,
and then:

� If your program started the transaction, it
can issue another evoke operation (to start
another program), issue a release operation
(to perform local processing or to start
another session), or end.

� If a program start request from the partner
program started the transaction, your
program can issue an end-of-session func-
tion or end.

 If your program does detect an error, issue a
fail operation. The transaction remains active,
and your program and the partner program can
perform the necessary error recovery. If your
program detects an error and wants to end the
transaction abnormally, issue an end-of-session
function, or end your program.

031D Description: Your program received a control
data record with a data length of zero, sent with
the program start request, on the first input oper-
ation, along with a detach indication. In addition,
the partner program requested confirmation

Action: If your program detects no errors, it
should respond to the confirm request with a
respond-to-confirm (RSPCONFIRM) function,
and can then issue an end-of-session function or
end. If your program does detect an error, issue
a fail operation. The transaction remains active,
and your program and the partnerprogram can
perform the necessary error recovery. To end
the transaction abnormally if your program
detects an error, issue an end-of-session func-
tion, or end your program.

0344 Description: On a successful input operation,
your program received a control data record with
a data length of zero, along with a turnaround
indication. In addition, the partner program
requested confirmation

Action: If your program detects no errors,
respond to the confirm request with a
respond-to-confirm(RSPCONFIRM) function,
then issue an input or output operation. If your
program does detect an error, issue a fail func-
tion, or end your program.

0345 Description: On a successful input operation,
your program received a control data record with
a data length of zero. In addition, the partner
program requested confirmation

Action: If your program detects no errors,
respond to the confirm request with a respond-
to-confirm (RSPCONFIRM) function, then issue
an input operation. If your program does detect
an error, issue a fail function, or end your
program.

0346 Description: On a successful input operation,
your program received a control data record with
a data length of zero, along with a detach indi-
cation. In addition, the partner program
requested confirmation

Action: If your program detects no errors, it
should respond to the confirm request with a
respond-to-confirm(RSPCONFIRM) function, and
then:

� If your program started the transaction, it
can issue another evoke operation (to start
another program), issue a release operation
(to perform local processing or to start
another session), or end.

� If a program start request from the partner
program started the transaction, your
program can issue an end-of-session func-
tion or end.

 If your program does detect an error, issue a
fail operation. The transaction remains active,
and your program and the partner program can
perform the necessary error recovery. To end
the transaction abnormally if your program
detects an error, issue an end-of-session func-
tion, or end your program.

0357 Description: The remote program has issued
either a commit operation or a prepare-for-
commit function. This requests the local program
to respond by issuing a commit operation in
order to perform the two-phase commit proc-
essing on all protected resources.

Action: Do a commit operation to cause a posi-
tive response to be returned to the remote
program if the two-phase commit processing was
successful. To respond negatively, do a rollback
operation, an EOS function, or a fail function.

0358 Description: The remote program has issued an
allow-write function with the transaction-
synchronization-level function followed by either
a commit operation or a prepare-for-commit
function. The synchronization level is *COMMIT.
Your program will be in send state after issuing
a commit operation, once the commit operation
completes successfully.

Action: Do a commit operation to cause a posi-
tive response to be returned to the remote
program if the two-phase commit processing was
successful. To respond negatively, do a rollback
operation, an EOS function, or a fail function.

0359 Description: The remote program has issued a
detach function with the transaction-
synchronization-level function followed by either
a commit operation or a prepare-for-commit
function. The synchronization level is *COMMIT.
Your program will be deallocated after issuing a

 Appendix B. Sense Data and Return Codes B-9

commit operation, once the commit operation
completes successfully.

Action: Do a commit operation to cause a posi-
tive response to be returned to the remote
program if the two-phase commit processing was
successful. To respond negatively, do a rollback
operation, an EOS function, or a fail function.

Major Code 04

Major Code 04 – Output exception occurred.

Description: An output exception occurred because your
program attempted to send data when it should be receiving
data. The data from your output operation was not sent. You
can attempt to send the data later.

Action: Issue an input operation to receive the data.

Code Description/Action

0402 Description: Your program tried to select the
USRDFN, SFL, or SFLCTL keyword on a record
format, but these keywords are not supported for
the program device.

Action: Correct the error that caused your
program to select a keyword that was not valid.

Messages:

 � CPF5ð64 (Notify)

0412 Description: An output exception occurred
because your program attempted to send data
when it should have been receiving data that
was sent by the partner program. The data from
your output operation was not sent to the partner
system. Your program can attempt to send the
data later.

Action: Issue an input operation to receive the
data.

Messages:

 � CPF475ð (Notify)

 � CPF5ð76 (Notify)

 � CPF83D6 (Escape)

Major Codes 08 and 11

Major Codes 08 and 11 – Miscellaneous program errors
occurred.

Description: The operation just attempted by your program
was not successful. The operation may have failed because
it was issued at the wrong time.

Action: Refer to the minor code description for the appro-
priate recovery action.

Code Description/Action

0800 Description: The acquire operation just
attempted by your program was not successful.
Your program tried to acquire a program device
that was already acquired and is still active.

Action: If the session associated with the ori-
ginal acquire operation is the one needed, your
program can begin communicating in that
session since it is already available. If you want
a different session, issue another acquire opera-
tion for the new session by specifying a different
program device name in the PGMDEV param-
eter of the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command that precedes the
program.

Messages:

 � CPD4ð77 (Diagnostic)

 � CPF5ð41 (Status)

 � CPF5ðAð (Status)

1100 Description: The read-from-invited-program-
devices operation just attempted by your
program was not successful because your
program tried this operation when no program
devices were invited and no timer function was
in effect.

Action: Issue an invite function (or a combined
operation that includes an invite) followed by a
read-from-invited-program-devices operation.

Messages:

 � CPF474ð (Notify)

Major Code 34

Major Code 34 – Input exception occurred.

Description: The input operation attempted by your program
was not successful. The data received was too long for your
program's input buffer or was not compatible with the record
format specified on the input operation.

Action: Refer to the minor code description for the appro-
priate recovery action.

Code Description/Action

3421 Description: The input operation issued by your
program was not successful because the length
of the control data received exceeded your pro-
gram's input record length. The control data
received was truncated. The overflow data
(excess data received) will be discarded.

Action: Your program can issue another input
operation to receive the next record or any
control information that may have been sent with
the truncated data. For example, if the partner
program sent a detach indication with the data,

B-10 OS/400 APPC Programming V4R1

the next input operation completes with a return
code of 0308. However, the recommended
action is to either close the ICF file, end your
program, and then change your program so that
the input record length is at least as long as the
longest data record to be received; or specify
OVRFLWDTA(*RETAIN) on the CHGICFDEVE
or OVRICFDEVE command to keep overflow
data.

Messages:

 � CPF4936 (Notify)

3422 Description: Your program received a control
data record with the program start request. Your
program tried to receive the control data record
on the first input operation. The operation was
not successful because the length of the control
data received exceeded your program's input
record length. The control data received was
truncated. The overflow data (excess data
received) will be discarded.

Action: Your program can issue another input
operation to receive the next record or any
control information that may have been sent with
the truncated data. For example, if the partner
program sent a detach indication with the data,
the next input operation completes with a return
code of 0308. However, the recommended
action is to close the ICF file, end your program,
and then change your program so that the input
record length is at least as long as the longest
data record to be received; or specify
OVRFLWDTA(*RETAIN) on the CHGICFDEVE
or OVRICFDEVE command to keep overflow
data.

Messages:

 � CPF4936 (Notify)

3431 Description: The input operation issued by your
program was not successful because the length
of the data received exceeded your program's
input record length. The data received was trun-
cated. The overflow data (excess data received)
will be discarded.

Action: Your program can issue another input
operation to receive the next record or any
control information that may have been sent with
the truncated data. For example, if the partner
program sent a detach indication with the data,
the next input operation completes with a return
code of 0308. However, the recommended
action is to either close the ICF file, end your
program, and then change your program so that
the input record length is at least as long as the
longest data record to be received; or specify
OVRFLWDTA(*RETAIN) on the CHGICFDEVE
or OVRICFDEVE commands to keep overflow
data.

Messages:

 � CPF4911 (Notify)

3441 Description: A valid record format name was
specified with format selection type *RMTFMT or
*RECID. However, although the data received
matched one of the record formats in the ICF
file, it did not match the format specified on the
read operation.

Action: Correct your program to issue a read
operation that does not specify a record format
name, or specify the correct record format name
to process the data based on the format
selection option for the file.

Messages:

 � CPF5ð58 (Notify)

3451 Description: Your program specified a file
record size that was not large enough for the
indicators to be included with the data sent by
the partner program (for a file defined with a
nonseparate indicator area). Your program did
not receive any data. For a file using a nonsepa-
rate indicator area, the actual record length field
in the device-dependent I/O feedback area con-
tains the number of indicators specified by the
record format.

Action: End the session; close the file; correct
the file record size; then open the file again.

Messages:

 � CPF4768 (Notify)

3461 Description: The input operation issued by your
program was not successful because the partner
system sent a Fail (FMH7) return code before
completing the logical record. This error occurs
only on basic conversations.

Action: Issue an input operation to receive the
Fail (FMH7) return code, and perform any
recovery associated with the description.

Messages: No exception is created on this
return code.

3471 Description: The input operation issued by your
program was not successful because the length
of the data received exceeded your program's
input record length. The data received was trun-
cated. The overflow data (excess data received)
has been kept and will be returned on subse-
quent input operations.

Action: Issue a read operation to receive the
overflow data along with any control information
that may have been sent.

3481 Description: The input operation issued by your
program was not successful because the length
of the control data received exceeded your pro-
gram's input record length. The control data
received was truncated. The overflow control

 Appendix B. Sense Data and Return Codes B-11

data (excess control data received) has been
kept and will be returned on subsequent input
operations.

Action: Issue a read operation to receive the
overflow control data along with any control
information that may have been sent.

Major Code 80

Major Code 80 – Permanent system or file error
(irrecoverable).

Description: An irrecoverable file or system error has
occurred. The underlying communications support may have
ended and your session has ended. If the underlying commu-
nications support ended, it must be established again before
communications can resume. Recovery from this error is
unlikely until the problem causing the error is detected and
corrected.

Action: You can perform the following general actions for all
80xx return codes. Specific actions are given in each minor
code description.

� Close the file, open the file again, then establish the
session. If the operation is still not successful, your
program should end the session.

� Continue local processing.

 � End.

Note: If the session is started again, it starts from the
beginning, not at the point where the session error
occurred.

Code Description/Action

8081 Description: The operation attempted by your
program was not successful because a system
error condition was detected.

Action: Your communications configurations
may need to be varied off and then on again.
Your program can do one of the following:

� Continue local processing.

� Close the ICF file, open the file again, and
establish the session again.

 � End.

Messages:

 � CPF4ð61 (Diagnostic)

 � CPF417ð (Escape)

 � CPF4323 (Escape)

 � CPF451ð (Escape)

 � CPF5257 (Escape)

 � CPF5411 (Escape)

 � CPF5424 (Escape)

 � CPF5425 (Escape)

 � CPF5449 (Escape)

 � CPF5537 (Escape)

 � CPF5E7D (Escape)

 � CPF5E7E (Escape)

 � CPF5E7F (Escape)

 � CPF835ð (Escape)

 � CPF8362 (Escape)

 � CPF8364 (Escape)

 � CPF8365 (Escape)

 � CPF8367 (Escape)

8082 Description: The operation attempted by your
program was not successful because the device
supporting communications between your
program and the partner location is not usable.
For example, this may have occurred because
communications were stopped for the device by
a Hold Communications Device (HLDCMNDEV)
command. Your program should not issue any
operations to the device.

Action: Communications with the remote
program cannot resume until the device has
been reset to a varied on state. If the device has
been held, use the Release Communications
Device (RLSCMNDEV) command to reset the
device. If the device is in an error state, vary the
device off and then on again. Your program can
attempt to establish the session again, continue
local processing, or end.

Messages:

 � CPF4744 (Escape)

 � CPF5269 (Escape)

80B3 Description: The open operation issued by your
program was not successful because the ICF file
is in use by another process.

Action: Wait for the file to become available,
then issue another open operation. Otherwise,
your program may continue processing, or it can
end.

Consider increasing the WAITFILE parameter
with the Change ICF File (CHGICFF) or Override
ICF File (OVRICFF) command to allow more
time for the file resources to become available.

Messages:

 � CPF4128 (Escape)

80C0 Description: An irrecoverable error has
occurred on the session. The session was ended
abnormally either by the partner system or
because of a partner protocol error.

Note: On a mapped conversation, return codes
81C5 and 81C6 are translated into 80C0.

B-12 OS/400 APPC Programming V4R1

Action: Contact the partner system to determine
why the session was ended. Your program can
continue local processing or end.

Messages:

 � CPF4145 (Escape)

 � CPF51ð7 (Escape)

 � CPF528ð (Escape)

 � CPF5282 (Escape)

 � CPF5283 (Escape)

 � CPF5393 (Escape)

 � CPF5394 (Escape)

 � CPF5424 (Escape)

 � CPF5527 (Escape)

 � CPF5529 (Escape)

80D0 Description: The evoke function issued by your
program was not successful because the
program specified on the evoke function is not
available. The session has not ended, but the
evoke function cannot be issued again.

Action: Contact the partner system to determine
why the program specified on the evoke function
is not available.

Messages:

 � CPF5395 (Escape)

 � CPF5531 (Escape)

80EB Description: The open operation attempted by
your program was not successful due to one of
the following:

� Your program used an option of update or
delete to open the file, but that option is not
supported by the program device.

� Your program requested both blocked data
and user buffers on an open option, but
these formats cannot be selected together.

� Your program tried to open a source file, but
the file was not created as a source file.

� There is a mismatch on the INDARA
keyword between your program and the ICF
fileas to whether or not a separate indicator
area should be used.

� The file was originally opened as a shared
file; however, no program devices were ever
acquired for the file before your program
attempted the current open operation.

Action: After performing one of the following
actions, your program can try the open operation
again:

� If the update and delete options are not sup-
ported for the program device, use an option
of input, output, or both.

� If your program tried selecting user buffers
and blocked data together, it should try
selecting one or the other, but not both.

� If your program tried to open a non-source
file as a source file, either change the file
name or change the library name.

� If there was a mismatch on the INDARA
keyword, either correct the file or correct
your program so that the two match.

� If no program devices were previously
acquired for a shared file, acquire one or
more program devices for the file.

Messages:

 � CPF4133 (Escape)

 � CPF4156 (Escape)

 � CPF4238 (Escape)

 � CPF425ð (Escape)

 � CPF4345 (Escape)

 � CPF5522 (Escape)

 � CPF5549 (Escape)

80ED Description: The open operation attempted by
your program was not successful due to one of
the following:

� There is a record format level mismatch
between your program and the ICF file.

� Your program tried to use a temporary file
close option, but this option is not allowed
for this file type.

Action:

� If there was a file-level mismatch, first close
the file, then compile your program again to
match the file level of the ICF file, or change
or override the file to LVLCHK(*NO). Then
open the file again.

� If your program tried to use a temporary file
close option that was not valid, try a perma-
nent close instead. If the problem continues,
begin problem analysis using the ANZPRB
command.

Messages:

 � CPF4131 (Escape)

80EF Description: Your program attempted an open
operation on a file or library for which the user is
not authorized.

Action: Close the file. Either change the file or
library name on the open operation, or obtain
authority for the file or library from your security
officer. Then issue the open operation again.

Messages:

 � CPF41ð4 (Escape)

 Appendix B. Sense Data and Return Codes B-13

80F8 Description: The open operation attempted by
your program was not successful because one
of the following occurred:

� The file is already open.

� The file is marked in error on a previous
return code.

Action:

� If the file is already open, close the file and
end your program. Remove the duplicate
open operation from your program, then
issue the open operation again.

� If the file is marked in error, your program
can check the job log to see what errors
occurred previously, then take the appro-
priate recovery action for those errors.

Messages:

 � CPF4132 (Escape)

 � CPF5129 (Escape)

80F9 Description: The operation attempted by your
program was not successful because a system
error condition was detected. Rollback required.

Action: Your program must do a rollback opera-
tion. Your communications configurations may
need to be varied off and then on again. Your
program can do one of the following:

� Continue local processing.

� Close the ICF file, open the file again, and
establish the session again.

 � End.

Messages:

 � CPF4ð61 (Diagnostic)

 � CPF417ð (Escape)

 � CPF4323 (Escape)

 � CPF451ð (Escape)

 � CPF5257 (Escape)

 � CPF5411 (Escape)

 � CPF5424 (Escape)

 � CPF5425 (Escape)

 � CPF5449 (Escape)

 � CPF5537 (Escape)

80FA Description: The operation attempted by your
program was not successful because the device
supporting communications between your
program and the partner location is not usable.
For example, this may have occurred because
communications were stopped for the device by
a Hold Communications Device (HLDCMNDEV)
command. Your program should not issue any
operations to the device. Rollback required.

Action: Your program must do a rollback opera-
tion. Communications with the remote program
cannot resume until the device has been reset to
a varied on state. If the device has been held,
use the Release Communications Device
(RLSCMNDEV) command to reset the device. If
the device is in an error state, vary the device off
and then on again. Your program can attempt to
establish the session again, continue local proc-
essing, or end.

Messages:

 � CPF4744 (Escape)

 � CPF5269 (Escape)

80FB Description: An irrecoverable error has
occurred on the session. The session was ended
abnormally either by the partner system or
because of a partner protocol error.

Note: On a mapped conversation, return codes
81F3 and 81F4 are translated into 80FB.

 Rollback required.

Action: Your program must do a rollback opera-
tion. Contact the partner system to determine
why the session was ended. Your program can
continue local processing or end.

Messages:

 � CPF4145 (Escape)

 � CPF51ð7 (Escape)

 � CPF528ð (Escape)

 � CPF5282 (Escape)

 � CPF5283 (Escape)

 � CPF5393 (Escape)

 � CPF5394 (Escape)

 � CPF5424 (Escape)

 � CPF5527 (Escape)

 � CPF5529 (Escape)

Major Code 81

Major Code 81 – Permanent session error (irrecoverable).

Description: An irrecoverable session error occurred during
an I/O operation. Your session cannot continue and has
ended. Before communications can resume, the session
must be established again by using an acquire operation or
another program start request. Recovery from this error is
unlikely until the problem causing the error is detected and
corrected. Operations directed to other sessions associated
with the file should work.

Action: You can perform the following general actions for all
81xx return codes. Specific actions are given in each minor
return code description.

B-14 OS/400 APPC Programming V4R1

If your program started the session, you can:

� Correct the problem and establish the session again. If
the operation is still not successful, your program should
end the session.

� Continue processing without the session.

 � End.

If your session was started by a program start request from
the partnerprogram, you can:

� Continue processing without the session.

 � End.

Several of the minor codes indicate that an error condition
must be corrected by changing a value in the communi-
cations configuration or in the file.

� To change a parameter value in the communications
configuration, vary the configuration off, make the
change to the configuration description, then vary the
configuration on.

� To change a parameter value in the file, use the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command.

Note: When a parameter can be specified both in the
ADDICFDEVE or OVRICFDEVE command and
in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command over-
rides the value specified in the configuration (for
your program only). Therefore, in some cases,
you may choose to make a change with the
ADDICFDEVE or OVRICFDEVE command rather
than in the configuration.

Several other minor codes indicate a line or remote system
error and may require an operator to correct the error.

Note: If the session is started again, it starts from the
beginning, not at the point where the session error
occurred.

Code Description/Action

8101 Description: The protected password could not
be built for the evoke operation. The password
for the signed-on user was retrieved from the
security file. Any of the following conditions can
prevent the protected password from being built.

� The password was last changed on a
release earlier than Version 2 Release 2.

� The user profile does not exist on the
system.

� The password is *NONE.

� The user profile name is not valid.

� The user profile is disabled.

Action: Make sure the password for the
signed-on user is:

� A value other than *NONE.

� Has been changed on a system running
OS/400 Version 2 Release 2 or later.

 Make sure the user profile for the signed-on
user is:

� On the system.

 � Named properly.

 � Not disabled.

 Run your program again.

Messages:

 � CPF512A (Escape)

8140 Description: A cancel reply was received from
your program or from the operator in response to
a notify message, or was the result of a system
default, causing the session to be ended. The
session is no longer active.

Action: If your program started the session,
issue an acquire operation to start the session
again. If your program was started by a program
start request, it can continue local processing or
end.

Messages:

 � CPF51ð4 (Escape)

8191 Description: A network interface, permanent
line, or controller error occurred on an input or
output operation, and the system operator
attempted recovery in response to the error
message. You can learn what type of error
occurred by checking the system operator's
message queue. The session has ended. Data
may have been lost.

Action: If your program started the session,
issue an acquire operation to start the session
again. If your program was started by a program
start request from the partner program, it can
continue local processing or end.

Messages:

 � CPF4146 (Escape)

 � CPF41ðE (Escape)

 � CPF4155 (Escape)

 � CPF4193 (Escape)

 � CPF4291 (Escape)

 � CPF51ðE (Escape)

 � CPF5128 (Escape)

 � CPF5198 (Escape)

 � CPF5544 (Escape)

8196 Description: The partner system sent a
Systems Network Architecture (SNA) UNBIND
command to your system, or the session was
ended locally.

 Appendix B. Sense Data and Return Codes B-15

Action: To start another session, issue the
acquire operation again. Otherwise, your
program can continue local processing or end.

Messages:

 � CPF4ð6ð (Diagnostic)

 � CPF4145 (Escape)

 � CPF4299 (Escape)

 � CPF51ð7 (Escape)

 � CPF5166 (Escape)

 � CPF5524 (Escape)

8197 Description: On an input or output operation,
the partner system ended the transmission
abnormally because it could not continue the
session. The session has ended.

Action: If your program started the session,
issue an acquire operation to start the session
again. If your program was started by a program
start request from the partner program, it can
continue local processing or end.

Messages:

 � CPF4145 (Escape)

 � CPF51ð7 (Escape)

 � CPF5283 (Escape)

 � CPF5526 (Escape)

81C2 Description: The operation issued by your
program was not successful because the
session is not active.

Action: Issue another acquire operation, con-
tinue local processing, or end your program.

Messages:

 � CPF5396 (Escape)

81C5 Description: The partner program or
partnersystem abnormally ended the session
(TYPE=SVC).

Action: Contact the remote system to determine
why the error occurred.

Messages:

 � CPF4145 (Escape)

 � CPF51ð7 (Escape)

 � CPF5283 (Escape)

81C6 Description: The partner program or
partnersystem abnormally ended the session
(TYPE=TIMER). For example, the
partnerprogram may have been canceled by the
operator.

Action: Contact the remote system to determine
why the error occurred.

Messages:

 � CPF4145 (Escape)

 � CPF51ð7 (Escape)

 � CPF5283 (Escape)

81E9 Description: An input operation was issued and
the format selection option for the ICF file was
*RECID, but the data received did not match any
record formats in the file. There was no format in
the file defined without a RECID keyword, so
there was no default record format to use. The
session has ended.

Action: Verify that the data sent by the partner
program was correct. If the data was not correct,
have the operator on the partner system change
the partner program to send the correct data. If
the data was correct, add a RECID keyword
definition to the file that matches the data, or
define a record format in the file without a
RECID keyword so that a default record format
can be used on input operations. If your program
started the session, use another acquire opera-
tion to start the session again. If a program start
request started your program, continue local
processing or end.

Messages:

 � CPF5291 (Escape)

81F0 Description: A network interface, permanent
line, or controller error occurred on an input or
output operation, and the system operator
attempted recovery in response to the error
message. You can learn what type of error
occurred by checking the system operator
message queue (QSYSOPR). The session has
ended. Data may have been lost. Rollback
required.

Action: Do a rollback operation. If your program
started the session, issue an acquire operation
to start the session again. If your program was
started by a program start request from the
partner program, it can continue local processing
or end.

Messages:

 � CPF41ðE (Escape)

 � CPF4146 (Escape)

 � CPF4155 (Escape)

 � CPF4193 (Escape)

 � CPF4291 (Escape)

 � CPF51ðE (Escape)

 � CPF5128 (Escape)

 � CPF5198 (Escape)

 � CPF5544 (Escape)

B-16 OS/400 APPC Programming V4R1

81F1 Description: The partner system sent a
Systems Network Architecture (SNA) UNBIND
command to your system, or the session was
ended locally. Rollback required.

Action: Do a rollback operation. To start another
session, issue the acquire operation again. Oth-
erwise, your program can continue local proc-
essing or end.

Messages:

 � CPF4ð6ð (Diagnostic)

 � CPF4145 (Escape)

 � CPF4299 (Escape)

 � CPF51ð7 (Escape)

 � CPF5166 (Escape)

 � CPF5524 (Escape)

81F2 Description: On an input or output operation,
the partner system ended the transmission
abnormally because it could not continue the
session. The session has ended. Rollback
required.

Action: Do a rollback operation. If your program
started the session, issue an acquire operation
to start the session again. If your program was
started by a program start request from the
partner program, it can continue local processing
or end.

Messages:

 � CPF4145 (Escape)

 � CPF51ð7 (Escape)

 � CPF5283 (Escape)

 � CPF5526 (Escape)

81F3 Description: The partner program or
partnersystem abnormally ended the session
(TYPE=SVC). Rollback required.

Action: Do a rollback operation. Contact the
remote system to determine why the error
occurred.

Messages:

 � CPF4145 (Escape)

 � CPF51ð7 (Escape)

 � CPF5283 (Escape)

81F4 Description: The partner program or
partnersystem abnormally ended the session
(TYPE=TIMER). For example, the
partnerprogram may have been canceled by the
operator. Rollback required.

Action: Do a rollback operation. Contact the
remote system to determine why the error
occurred.

Messages:

 � CPF4145 (Escape)

 � CPF51ð7 (Escape)

 � CPF5283 (Escape)

81F5 Description: An input operation was issued and
the format selection option for the ICF file was
*RECID, but the data received did not match any
record formats in the file. There was no format in
the file defined without a RECID keyword, so
there was no default record format to use. The
session has ended. Rollback required.

Action: Do a rollback operation. Verify that the
data sent by the partner program was correct. If
the data was not correct, have the operator on
the partnersystem change the partner program
to send the correct data. If the data was correct,
add a RECID keyword definition to the file that
matches the data, or define a record format in
the file without a RECID keyword so that a
default record format can be used on input oper-
ations. If your program started the session, use
another acquire operation to start the session
again. If a program start request started your
program, continue local processing or end.

Messages:

 � CPF5291 (Escape)

Major Code 82

Major Code 82 – Open or acquire operation failed.

Description: Your attempt to establish a session was not
successful. The error may be recoverable or permanent, and
recovery from it is unlikely until the problem causing the error
is detected and corrected.

Action: You can perform the following general actions for all
82xx return codes. Specific actions are given in each minor
code description.

If your program was attempting to start the session, you can:

� Correct the problem and attempt to establish the session
again. The next operation could be successful only if the
error occurred because of some temporary condition
such as the communications line being in use at the
time. If the operation is still not successful, your
program should end.

� Continue processing without the session.

 � End.

If your session was started by a program start request from
the partnerprogram, you can:

� Correct the problem and attempt to connect to the
requesting program device again. If the operation is still
not successful, your program should end.

� Continue processing without the session.

 Appendix B. Sense Data and Return Codes B-17

 � End.

Several of the minor codes indicate that an error condition
must be corrected by changing a value in the communi-
cations configuration or in the file.

� To change a parameter value in the communications
configuration, vary the configuration off, make the
change to the configuration description, then vary the
configuration on.

� To change a parameter value in the file, use the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command.

Note: When a parameter can be specified both in the
ADDICFDEVE or OVRICFDEVE command and
in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command over-
rides the value specified in the configuration (for
your program only). Therefore, in some cases,
you may choose to make a change with the
ADDICFDEVE or OVRICFDEVE command rather
than in the configuration.

If no changes are needed in your file or in the configuration
(and depending on what the return code description says):

� If the attempted operation was an acquire, issue the
acquire operation again.

� If the attempted operation was an open, close the file
and issue the open operation again.

Code Description/Action

8209 Description: The open or acquire operation
issued by your program was not successful
because a prestart job is being canceled. One of
the following may have occurred:

� An End Job (ENDJOB), End Prestart Job
(ENDPJ), End Subsystem (ENDSBS), End
System (ENDSYS), or Power Down System
(PWRDWNSYS) command was being
issued.

� The maximum number of prestart jobs
(MAXJOBS parameter) was reduced by the
Change Prestart Job Entry (CHGPJE)
command.

� The value for the maximum number of
program start requests allowed (specified in
the MAXUSE parameter on the ADDPJE or
CHGPJE command) was exceeded.

� Too many unused prestart jobs exist.

� The prestart job had an initialization error.

Action: Complete all processing and end your
program as soon as possible. Correct the
system error before starting this job again.

Messages:

 � CPF4292 (Escape)

 � CPF5313 (Escape)

8233 Description: A program device name that was
not valid was detected. Either an ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command was
not run, or the program device name in your
program does not match the program device
name specified in the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE commandfor
the session being acquired. The session was not
started.

Action: If the error was in your program, change
your program to specify the correct program
device name. If an incorrect identifier was speci-
fied in the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command, specify the correct
value in the PGMDEV parameter.

Messages:

 � CPF4288 (Escape)

 � CPF5ð68 (Escape)

8281 Description: On an unsuccessful open or
acquire operation, a system error condition was
detected. For example, the file may previously
have been in error, or the file could not be
opened due to a system error.

Action: Your communications configurations
may need to be varied off and then on again.
Your program can do one of the following:

� Continue local processing.

� Close the ICF file, open the file again, and
acquire the program device again. However,
if this results in another 8281 return code,
your program should close the file and end.

� Close the file and end.

Messages:

 � CPF41ð6 (Escape)

 � CPF4168 (Escape)

 � CPF4182 (Escape)

 � CPF4369 (Escape)

 � CPF437ð (Escape)

 � CPF4375 (Escape)

 � CPF5257 (Escape)

 � CPF5274 (Escape)

 � CPF5317 (Escape)

 � CPF5318 (Escape)

 � CPF55ð7 (Escape)

 � CPF5536 (Escape)

8282 Description: The open or acquire operation
attempted by your program was not successful
because the device supporting communications
between your program and the partner location
is not usable. For example, this may have

B-18 OS/400 APPC Programming V4R1

occurred because communications were stopped
for the device by a Hold Communications Device
(HLDCMNDEV) command. Your program should
not issue any operations to the device. The
session was not started.

Action: Communications with the remote
program cannot resume until the device has
been reset to a varied on state. If the device has
been held, use the Release Communications
Device (RLSCMNDEV) command to reset the
device. If the device is in an error state, vary the
device off, then on again. Your program can
attempt to acquire the program device again,
continue local processing, or end.

Messages:

 � CPF4298 (Escape)

 � CPF4354 (Escape)

 � CPF5269 (Escape)

 � CPF5358 (Escape)

82A6 Description: On the open or acquire operation
attempted by your program, a negative-response
with sense data was received when the Systems
Network Architecture (SNA) BIND command was
sent to the user to start the session. The session
was not started.

Action: Close the file. Check for an error in the
format of the incorrect BIND command, or
contact the partner system to determine why the
command failed. After correcting the error, your
program can issue the acquire operation again
to start the session.

Messages:

 � CPF4333 (Escape)

 � CPF5281 (Escape)

 � CPF5538 (Escape)

82A8 Description: The acquire operation attempted
by your program was not successful because the
maximum number of program devices allowed
for the ICF file has been reached. The session
was not started.

Action: Your program can recover by releasing
a different program device and issuing the
acquire operation again. If more program
devices are needed, close the file and increase
the MAXPGMDEV value for the ICF file.

Messages:

 � CPF4745 (Diagnostic)

 � CPF5ð41 (Status)

82A9 Description: The acquire operation issued by
your program to a *REQUESTER device was not
successful due to one of the following causes:

� Your program has already acquired the
*REQUESTER device.

� The job was started by a program start
request with the *REQUESTER device
detached.

� The *REQUESTER device was released
because an end-of-session was requested.

� The job does not have a *REQUESTER
device; that is, the job was not started by a
program start request.

� A permanent error occurred on the session.

Action:

� If the *REQUESTER device is already
acquired and your program expects to com-
municate with the *REQUESTER device,
use the program device that acquired the
*REQUESTER.

� If the *REQUESTER device is not available
and your program expects to communicate
with the *REQUESTER device, the partner
program must send a program start request
without a detach function.

� If your program released its *REQUESTER
device, before trying to acquire it, correct
the error.

� If this job does not have a *REQUESTER
device, correct the error that caused your
program to attempt to acquire a
*REQUESTER device.

� If a permanent error caused the acquire
operation to fail, verify that your program
correctly handles the permanent error return
codes (80xx, 81xx) it received on previously
issued input and output operations. Because
your program was started by a program
start request, your program cannot attempt
error recovery after receiving a permanent
error return code. It is the responsibility of
the partner program to initiate error
recovery.

Messages:

 � CPF4366 (Escape)

 � CPF538ð (Escape)

 � CPF5381 (Escape)

82AA Description: The open or acquire operation
attempted by your program was not successful
because the remote location name does not
match any remote location configured on the
system or in the network that matches the
remote location name specified on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command. The session was not started.

 Appendix B. Sense Data and Return Codes B-19

Action: Your program can continue local proc-
essing, or close the file and end. Verify that the
name of the remote location is specified correctly
in the RMTLOCNAME parameter on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command.

Messages:

 � CPF41ð3 (Escape)

 � CPF4363 (Escape)

 � CPF4364 (Escape)

 � CPF4747 (Escape)

 � CPF5378 (Escape)

 � CPF5379 (Escape)

82AB Description: The open or acquire operation
attempted by your program was not successful
because the device description for the remote
location was not varied on. The session was not
started.

Action: Your program can wait until the commu-
nications configuration is varied on and then
issue the acquire operation again, it can try the
acquire operation again using a different device
description, continue local processing, or end.

Messages:

 � CPF4128 (Escape)

 � CPF5355 (Escape)

82B3 Description: The open or acquire operation
attempted by your program was not successful
because none of the sessions specified in the
communications configuration is currently avail-
able. The session was not started.

Action: Wait for one of the sessions to become
available, then issue the acquire operation again.
You can use the Work with Configuration Status
(WRKCFGSTS) command to determine which
job is using each session. Otherwise, your
program can continue local processing or end.

Messages:

 � CPF4128 (Escape)

 � CPF5355 (Escape)

82B6 Description: You tried to open or acquire a con-
versation previously acquired in the System/38
system environment.

Action Only ICF files may be used for the
*REQUESTER device. Correct your program
and try the request again.

Messages:

 � CPF411A (Escape)

82C3 Description: The open or acquire operation just
performed was not successful because one of
the following occurred:

� The mode specified on the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command
is not defined for the remote location.

� The class of service attached to the speci-
fied mode cannot be found.

 The session was not started.

Action: The mode and its attached class of
service must be configured on the system.

� Verify that the mode was specified correctly
in the MODE parameter on the
ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command. If the correct
name was specified, vary off the specified
remote location, define the mode for the
specified remote location, vary on the speci-
fied remote location, and issue the acquire
operation again. Otherwise, specify the
correct MODE parameter on the
ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command, and issue the
acquire operation again.

� Verify that the attached class of service is
defined on the system. If it is not defined,
either specify a class of service that is
already defined, or define the new class of
service. Vary the device associated with the
remote location off, then on again, and try
the request again.

Messages:

 � CPF42ð2 (Escape)

 � CPF4376 (Escape)

 � CPF5383 (Escape)

 � CPF5546 (Escape)

82EA Description: The open or acquire operation
attempted by your program was not successful.
A format selection of *RECID was specified on
the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command, but cannot be used
with the ICF file because the RECID DDS
keyword is not used on any of the record
formats in the file. The session was not started.

Action: Close the ICF file. Change the record
format selection (FMTSLT) parameter to select
formats by some means other than *RECID, or
use a file that has a RECID DDS keyword speci-
fied for at least one record format. Open the file
again.

Messages:

 � CPF4348 (Escape)

 � CPF5521 (Escape)

B-20 OS/400 APPC Programming V4R1

82EC Description: The acquire operation attempted
by your program was not successful because
CNVTYPE(*USER) does not support
FMTSLT(*RMTFMT).

Action: End your program, correct the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command, then run your program again.

Messages:

 � CPF4349 (Escape)

 � CPF5541 (Escape)

82EE Description: Your program attempted an open
or acquire operation to a device that is not sup-
ported. Your program tried to acquire a device
that is not a valid ICF communications type, or it
is trying to acquire the requesting program
device in a program that was not started by a
program start request. The session was not
started.

Action: Your program can continue local proc-
essing or end. Verify that the name of the
remote location is specified correctly in the
RMTLOCNAME parameter on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command. If your program was attempting to
acquire a non-ICF device, use the appropriate
interface for that communications type. If your
program was attempting to acquire a requesting
program device, verify that your program is
running in the correct environment.

Messages:

 � CPF41ð5 (Escape)

 � CPF4223 (Escape)

 � CPF4251 (Escape)

 � CPF476ð (Escape)

 � CPF5ð38 (Escape)

 � CPF555ð (Escape)

82EF Description: Your program attempted an
acquire operation (or an open operation that
implicitly acquires a session) to a device that the
user is not authorized to, or that is in service
mode. The session was not started.

Action: If the operation was an acquire, correct
the problem and issue the acquire again. If the
operation was an open, close the file, correct the
problem, then issue the open operation again.
To correct an authority error, obtain authority for
the device from your security officer or device
owner. If the device is in service mode, wait until
dedicated service tools (DST) are no longer
using the device before issuing the operation
again.

Messages:

 � CPF41ð4 (Escape)

 � CPF4186 (Escape)

 � CPF5278 (Escape)

 � CPF5279 (Escape)

82F0 Description: The open or acquire operation
attempted by your program to a requesting
program device was not successful because
there is an error in the ICF file.

Action: End your program, correct the error,
then have the partner program send the program
start request again.

Messages:

 � CPF4324 (Escape)

 � CPF554ð (Escape)

82F2 Description: The acquire operation issued by
your program was not successful because the
CNVTYPE specification on the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE commandwas
not valid.

Action: End your program, correct the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command, then run your program again.

Messages:

 � CPF435ð (Escape)

 � CPF4351 (Escape)

 � CPF5542 (Escape)

 � CPF5543 (Escape)

82F4 Description: The open or acquire operation
attempted by your program was not successful
because the open operation for input only is
valid only for a requesting program device.

Action: End your program, correct the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command, then run your program again.

Messages:

 � CPF4322 (Escape)

 � CPF5539 (Escape)

82FA Description: The local LU rejected the allocation
request because the local program specified a
synchronization level (on the evoke function) that
the remote LU does not support.

Action: Try the evoke function again using a
synchronization level that is supported by the
remote system.

Messages:

 � CPF51ðA (Escape)

82FB Description: Protected conversations are not
supported on single-session devices.

Action: Either change the single session
(SNGSSN) parameter of the device description

 Appendix B. Sense Data and Return Codes B-21

to *NO, or use a different device description that
specifies SNGSSN(*NO).

Messages:

 � CPF5ð1C (Notify)

82FC Description: Protected conversations are not
supported by the System/36 and System/38
environments.

Action: Do not try to use protected conversa-
tions while using the System/36 or System/38
environments.

Messages:

 � CPF413D (Escape)

 � CPF413E (Escape)

 � CPF512B (Escape)

 � CPF512C (Escape)

82FD Description: The exchange log name process
failed.

Action: Make sure the log names specified by
the local and remote system can be used
together. Then run your program again.

Messages:

 � CPF5E13 (Notify)

 � CPF5E15 (Escape)

82FE Description: The evoke function issued by your
program was not successful because a resource
could not be placed under commitment control.

Action: Refer to the recovery text of message
CPF8361.

Messages:

 � CPF8361 (Escape)

Major Code 83

Major Code 83 – Session error occurred (the error is recov-
erable).

Description: A session error occurred, but the session may
still be active. Recovery within your program might be pos-
sible.

Action: You can perform the following general actions for all
83xx return codes. Specific actions are given in each minor
code description.

� Correct the problem and continue processing with the
session. If the error occurred because of a resource
failure on the partner system or because the
partnersystem was not active at the time, a second
attempt may be successful. If the operation is still not
successful, your program should end the session.

� Issue an end-of-session function and continue proc-
essing without the session.

 � End.

Several of the minor codes indicate that an error condition
must be corrected by changing a value in the communi-
cations configuration or in the file.

� To change a parameter value in the communications
configuration, vary the configuration off, make the
change to the configuration description, then vary the
configuration on.

� To change a parameter value in the file, use the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command.

Note: When a parameter can be specified both in the
ADDICFDEVE or OVRICFDEVE command and
in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command over-
rides the value specified in the configuration (for
your program only). Therefore, in some cases,
you may choose to make a change with the
ADDICFDEVE or OVRICFDEVE command rather
than in the configuration.

If no changes are needed in your file or in the configuration,
and depending on what the return code description says, you
should notify the remote location that a change is required at
that location to correct the error received.

Code Description/Action

830B Description: Your program attempted an opera-
tion that was not valid because the session was
not yet acquired or has ended. The session may
have ended because of a release operation, an
end-of-session function, or a permanent error.
Your program may have incorrectly handled a
previous error.

Action: Verify that your program does not
attempt any operations without an active
session. Also verify that your program correctly
handles the permanent error or session-not-
acquired return codes (80xx, 81xx, 82xx) it
received on previously issued input and output
operations. To recover from an incorrectly
handled error condition, your program may or
may not be able to issue another acquire opera-
tion, depending on the return code.

Messages:

 � CPD4ð79 (Diagnostic)

 � CPF4739 (Status)

 � CPF5ð67 (Escape)

 � CPF5ð68 (Escape)

 � CPF5ð7ð (Escape)

8316 Description: The evoke function issued by your
program was not successful because the target
program could not be found.

B-22 OS/400 APPC Programming V4R1

Action: Verify that your program specified the
correct target program name on the evoke func-
tion. If necessary, contact the partner location to
determine if the program still exists on the
remote system.

Messages:

 � CPF4734 (Notify)

831E Description: The operation attempted by your
program was not valid, or a combination of oper-
ations that was not valid was specified. The
session is still active. The error may have been
caused by one of the following:

� Your program issued an operation that is
not recognizable or not supported by APPC.

� Your program requested a combination of
operations or keywords that was not valid,
such as a combined write-then-read opera-
tion with the invite function specified.

� Your program issued an input operation, or
an output operation with the invite or allow-
write function, for a file that was opened for
output only.

� Your program issued an output operation for
a file that was opened for input only.

� Your program issued a close operation with
a temporary close option.

� Your program issued a detach function for a
protected conversation without using the
transaction-synchronization-level function.

Action: Your program can try a different opera-
tion, issue a release operation or end-of-session
function, or end. Correct the error in your
program before trying to communicate with the
partner program.

If the file was opened for input only, do not issue
any output operations; or, if the file was opened
for output only, do not issue any input oper-
ations, and do not use the invite or allow-write
function on an output operation. If such an oper-
ation is needed, then release the session, close
the ICF file, and open the file again for input and
output.

Messages:

 � CPF47ðC (Notify)

 � CPF47ðD (Notify)

 � CPF47ðE (Notify)

 � CPF47ðF (Notify)

 � CPF4764 (Notify)

 � CPF4766 (Notify)

 � CPF479ð (Notify)

 � CPF5ð1D (Notify)

 � CPF5132 (Escape)

 � CPF5149 (Escape)

831F Description: Your program specified data or a
length for the operation that was not valid;
however, the session is still active. One of the
following caused the error indication:

� On an output operation, your program tried
to send a data record that was longer than
the MAXRCDLEN value specified for the
ICF file.

� The program used a read or write operation
that specified a data length greater than the
record format in the ICF file.

� If this was a timer function, the format of the
timer interval was not HHMMSS.

� If a system-defined format was used to
specify the operation, or if the variable-
length-data-record (VARLEN) function was
used, then the length of the user buffer was
not valid.

Action: If you want your program to recover, try
the operation again with a smaller data length. If
you do not need your program to recover imme-
diately, do one of the following:

� Change the record format length in the ICF
file, or change the record length in your
program and compile your program again.

� For an input operation, specify a data length
equal to or less than the record format
length, or do not specify a length at all.

� If the timer function was used, verify that the
format of the timer interval is HHMMSS.

� For an output operation that used the
variable-length-data-record (VARLEN) func-
tion, verify that the length specified is less
than the record length specified for the ICF
file when it was opened.

Messages:

 � CPF4762 (Notify)

 � CPF4765 (Notify)

 � CPF4767 (Notify)

8327 Description: The input or output operation
issued by your program was not successful
because there was no active transaction. Either
the transaction has ended, or the transaction
was never started.

Action: If your program is to start a transaction,
it can issue an evoke function. Otherwise, it can
issue an end-of-session function or end. If a
coding error in your program caused the error,
correct your program.

Messages:

 Appendix B. Sense Data and Return Codes B-23

 � CPF5ðð1 (Status)

 � CPF5ð78 (Notify)

 � CPF5ð98 (Notify)

 � CPF5277 (Escape)

 � CPF5525 (Escape)

8329 Description: An evoke function that was not
valid was detected in this session. Your program
was started by a program start request and,
therefore, cannot issue any evoke functions in
this session.

Action: To recover, your program can try a dif-
ferent operation or function. To issue an evoke
function in a different session, first issue an
acquire operation (using a different program
device name), then try the evoke function. Other-
wise, your program can issue an end-of-session
function, continue local processing, or end. If a
coding error caused your program to attempt an
evoke function that was not valid, correct your
program.

Messages:

 � CPF5ð99 (Notify)

832C Description: A release operation following an
invite function was detected. Because your
program issued the invite function, it cannot
issue a release operation to end the invited
session.

Action: Issue an input operation to satisfy the
invite function. Otherwise, issue an end-of-
session function to end the session. If a coding
error caused your program to attempt a release
operation that was not valid, correct your
program.

Messages:

 � CPF4769 (Notify)

832D Description: Following an invite function, your
program issued a request-to-write indication or
an additional invite function. This operation failed
because the original invite function must first be
satisfied by an input operation.

Action: Issue an input operation to receive the
data that was invited. Otherwise, issue an end-
of-session function to end the session. If a
coding error caused your program to attempt a
request-to-write indication or an additional invite
function, correct your program.

Messages:

 � CPF4924 (Notify)

832F Description: The evoke function issued by your
program was not successful because your
program attempted the operation while the
current transaction was still active. The operation
was not performed, but the session is still active.

Action: Use the detach function to end the
current transaction before issuing an evoke func-
tion. Correct the error that caused your program
to issue an evoke function during an active
transaction; then run your program again.

Messages:

 � CPF5ð99 (Notify)

8334 Description: The evoke function attempted by
your program was not valid. Your program speci-
fied a conversation type of *SYS on the
CNVTYPE parameter, but it also specified a
program name that started with a character
whose value was less than X'41'. For
CNVTYPE(*SYS), the first character of the
program name must be greater than X'40'.

Action: Correct your program so that it issues
the evoke correctly, then try the operation again.

Messages:

 � CPF5ð15 (Notify)

83C7 Description: On a successful input operation,
your program received a fail indication
(TYPE=PROG) with no data. No data has been
truncated. The partner program may have sent
the fail indication to indicate that the previous
data it sent or received was in error. The session
is still active.

Action: Issue another input operation.

Messages:

 � CPF5ð93 (Notify)

83C8 Description: On a successful input operation,
your program received a fail indication
(TYPE=SVC) with no data. No data has been
truncated. The partner program may have sent
the fail indication to indicate that the previous
data it sent or received was in error. The session
is still active.

Action: Issue another input operation.

Messages:

 � CPF4793 (Notify)

83C9 Description: On an input or output operation,
your program received a fail indication
(TYPE=PROG) with or without a confirm indi-
cation. Data may have been lost. Data was lost
if the fail indication was sent by the partner
program before receiving all the data sent by
your program. Data was not lost if the fail indi-
cation was received on an operation that speci-
fied a confirm function, or if the fail indication
was sent by the partnerprogram after receiving
all the data sent by your program. The partner
program may have sent the fail indication to indi-
cate that the data it received was in error. The

B-24 OS/400 APPC Programming V4R1

session is still active, and your program is in
receive state.

Action: Issue an input operation.

Messages:

 � CPF5ð93 (Notify)

83CA Description: On an input or output operation,
your program received a fail indication
(TYPE=SVC) with or without a confirm indication.
Data may have been lost. Data was lost if the
fail indication was sent by the partner program
before receiving all the data sent by your
program. Data was not lost if the fail indication
was received on an operation that specified a
confirm function, or if the fail indication was sent
by the partnerprogram after receiving all the data
sent by your program. The partner program may
have sent the fail indication to indicate that the
data it received was in error. The session is still
active, and your program is in receive state.

Action: Issue an input operation.

Messages:

 � CPF4793 (Notify)

83CB Description: On an input operation, your
program received a fail indication
(TYPE=PROG). The last logical record has been
truncated. Truncation occurs when the partner
program begins to send a logical record and
then sends a fail indication before sending the
complete logical record. The partner program
may have sent the fail indication to indicate that
the previous data it sent is in error. The session
is still active.

Action: Issue another input operation.

Messages:

 � CPF5ð94 (Notify)

83CC Description: On an input operation, your
program received a fail indication (TYPE=SVC).
The last logical record has been truncated.
Truncation occurs when the partner program
begins to send a logical record and then sends a
fail indication before sending the complete
logical record. The partner program may have
sent the fail indication to indicate that the pre-
vious data it sent is in error. The session is still
active.

Action: Issue another input operation.

Messages:

 � CPF4794 (Notify)

83CD Description: The input or output operation
issued by your program was not successful
because your program attempted a confirm func-
tion while it was still in receive state, or because
a confirm function was specified for a transaction

that was started with a synchronization level of
*NONE.

Action: If your program was still in receive state,
correct the error that caused your program to
attempt the confirm function. If your program is
to issue the confirm function while in send state,
issue an end-of-session function and change
your program to start the transaction with a syn-
chronization level of *CONFIRM.

Messages:

 � CPF5ð16 (Notify)

83CE Description: The partner location rejected the
evoke function issued by your program because
the access security information specified on the
evoke was not valid. This return code is issued
on the current evoke function when the program
specifies a confirm function in combination with
the evoke function; otherwise, it is returned on a
subsequent operation.

Action: Verify that your program specified the
correct security information on the evoke func-
tion. If necessary, contact the partner location to
determine if your access security information is
still valid.

Messages:

 � CPF4734 (Notify)

83CF Description: The partner location rejected the
evoke function issued by your program because
either your program or the partnerprogram does
not support the specified conversation type. This
return code is issued on the current evoke func-
tion when the program specifies a confirm func-
tion in combination with the evoke function;
otherwise, it is returned on a subsequent opera-
tion.

Action: Verify that the correct conversation type
was specified on the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command for
the program device. If necessary, contact the
partner location to determine if the specified con-
versation type is supported.

Messages:

 � CPF4734 (Notify)

83D0 Description: The partner location rejected the
evoke function issued by your program because
the program name specified on the evoke is one
that the partner location recognizes but currently
cannot start. The partner location may have
rejected the evoke function because no sessions
are currently available. This return code is
issued on the current evoke function when the
program specifies a confirm function in combina-
tion with the evoke function; otherwise, it is
returned on a subsequent operation.

 Appendix B. Sense Data and Return Codes B-25

Action: If the condition causing the target
program to be unavailable is temporary, your
program can try the evoke function again.

Messages:

 � CPF4736 (Notify)

83D1 Description: The partner location rejected the
evoke function issued by your program because
your program specified program initialization
parameters (PIP) on the evoke function but the
partner program does not allow PIP data. This
return code is issued on the current evoke func-
tion when the program specifies a confirm func-
tion in combination with the evoke function;
otherwise, it is returned on a subsequent opera-
tion.

Action: Verify that your program specifies PIP
data on the evoke function. If it does, contact the
partner location to determine if the specified
partnerprogram is in error.

Messages:

 � CPF4734 (Notify)

83D2 Description: The partner location rejected the
evoke function issued by your program because
the partner program has one or more subfields
defined in the program initialization parameters
(PIP), but your program specified no PIP data on
the evoke function, or the evoke function issued
by your program specified PIP data that does
not correspond in number to those defined for
the partner program. This return code is issued
on the current evoke function when the program
specifies a confirm function in combination with
the evoke function; otherwise, it is returned on a
subsequent operation.

Action: Verify that your program correctly speci-
fies the PIP data on the evoke function. If neces-
sary, contact the partnerlocation to determine if
the PIP data is defined correctly for the specified
partnerprogram.

Messages:

 � CPF4734 (Notify)

83D3 Description: The partner location rejected the
evoke function issued by your program because
the evoke specified a synchronization level that
the partner program does not support. This
return code is issued on the current evoke func-
tion when the program specifies a confirm func-
tion in combination with the evoke function;
otherwise, it is returned on a subsequent opera-
tion.

Action: Verify that your program specifies the
correct synchronization level on the evoke func-
tion. If necessary, contact the partner location to
determine if the synchronization level is defined
correctly for the partner program.

Messages:

 � CPF4734 (Notify)

83D5 Description: The partner program has sent a
confirm request to your program. Your program
must either accept or reject the confirmation
request.

Action: The condition may be corrected by one
of the following recovery actions:

� If your program detects no errors in the
data, respond to the confirm request with a
RSPCONFIRM function and then continue.

� If your program does detect an error, reject
the confirm request by issuing a fail func-
tion, or end the transaction abnormally by
issuing an end-of-session function or closing
the file. If your program issues a fail func-
tion, your program is responsible for the
necessary error recovery.

� If your program does not expect to use con-
firmation processing, have the
partnerprogram omit the confirm request.

Messages:

 � CPF4791 (Notify)

83D6 Description: The RSPCONFIRM function issued
by your program was not valid because the
partner program did not request confirmation, or
because the current transaction was started with
a synchronization level of *NONE.

Action: If the partner program did not request
confirmation, correct the error that caused your
program to issue the RSPCONFIRM function.
However, if both programs expect to use confir-
mation processing, the transaction must be
started with a synchronization level of
*CONFIRM.

Messages:

 � CPF4792 (Notify)

83E0 Description: Your program attempted an opera-
tion using a record format that was not defined
for the ICF file.

Action: Verify that the name of the record
format in your program is correct, then check to
see whether the record format is defined in the
file definition.

Messages:

 � CPF5ð54 (Notify)

83F1 Description: Your program closed the ICF file
while the transaction was still active. The system
abnormally ended the transaction with the
partner program.

Action: Examine your program to be sure that it
was correct to close the file while the transaction

B-26 OS/400 APPC Programming V4R1

was still active. Normally, a detach indication
should be sent or received before the file is
closed.

Messages:

 � CPF4ð6ð (Diagnostic)

83F3 Description: Your program issued an output
operation with an incorrect length specification
on a basic conversation.

Action: Change your program or the record
format to issue a valid length on the output oper-
ation.

Messages:

 � CPF5ð95 (Notify)

 � CPF5ð96 (Notify)

83F8 Description: Your program attempted to issue
an operation to a program device that is marked
in error due to a previous I/O or acquire opera-
tion. Your program may have handled the error
incorrectly.

Action: Release the program device, correct the
previous error, then acquire the program device
again.

Messages:

 � CPF5293 (Escape)

83F9 Description: An input operation or an output
operation with an allow-write, confirm, invite, or
detach function has been requested, but the
length specified in the last record indicated that
concatenated data is to follow. The data concat-
enation must be completed before the requested
function is allowed.

Action: Correct your program to issue an output
operation that completes the concatenated data,
then start the session again from the beginning.

Messages:

 � CPF4746 (Notify)

83FB Description: Your program closed the ICF file
while the transaction was still active. The system
abnormally ended the transaction with the
partner program. Rollback required.

Action: Do a rollback operation. Examine your
program to be sure that it was correct to close
the file while the transaction was still active.
Normally, a detach indication should be sent or
received before the file is closed.

Messages:

 � CPF4ð6ð (Diagnostic)

83FC Description: Your program attempted to issue
an operation to a program device that is marked
in error due to a previous I/O or acquire opera-
tion. Your program may have handled the error
incorrectly. Rollback required.

Action: Do a rollback operation. Release the
program device, correct the previous error, then
acquire the program device again.

Messages:

 � CPF5293 (Escape)

83FD Description: All protected resources have rolled
back in the part of the distributed transaction
affected by the function.

Action: Use the rollback operation to roll back
all local protected resources.

83FE Description: The state of one or more protected
resources is not known. The changes probably
are or will be rolled back, but changes to some
resources may be committed instead. Your pro-
tected LUW is in the rollback required state.

Action: Use the rollback operation to roll back
the protected LUW. To determine the outcome of
the protected LUW, use the Display Commitment
Control Status option of the Work with Job
(WRKJOB) or Display Job (DSPJOB) com-
mands.

83FF Description: The state of the protected
resources is not consistent. One or more
resource have advanced to a new synchroniza-
tion point (have been committed instead of rolled
back). Your protected LUW is in the rollback
required state.

This return code occurs only when processing
has been abnormally interrupted through oper-
ator intervention.

Action: Use the rollback operation to roll back
the protected LUW. Make sure the protected
LUW is in consistent states on all systems in the
transaction program network. To display the
status of the protected LUW, use the Display
Commitment Control Status option of the Work
with Job (WRKJOB) or Display Job (DSPJOB)
commands. You may have to do this on each
remote system as well.

CPI Communications Return Codes

Refer to the CPI Communications Reference for information
about CPI Communications return codes.

Program Start Request Errors

Sense codes returned by failed program start requests (such
as 084C0000, 084B6031, or 080F6051) indicate that the
remote system has rejected a request to do work on that
system.

When a program start request fails, the remote system will
post a CPF1269 message in the QSYSMSG message queue

 Appendix B. Sense Data and Return Codes B-27

and the history log. If the QSYSMSG message queue does
not exist, the remote system will post the CPF1269 message
in the QSYSOPR message queue and the history log.

CPF1269 contains a reason code that describes why the
program start request failed. For AS/400 systems running
V2R3 or later, the meaning of the reason code is included in
the message.

The SNA FMH7 sense data shown in Table B-2 is sent to
the remote system (the one that issued the program start
request). The reason code causes the associated message
text to be sent to the local system operator message queue.

Note: FMH7 sense data will only be sent if the conversation
is active and allows a response after the failure has
been detected (that is, the source program issues a
confirm or an input operation).

Table B-2 (Page 1 of 3). Reason Codes for Rejected Program Start Requests

SNA FMH7 Sense
Data Reason Code Reason Description

084B6031 401 Program start request received for a device that is not allocated to an active subsystem.

084B6031 403 User profile is not accessible.

084B6031 404 Job description is not accessible.

084B6031 405 Output queue is not accessible.

084B6031 406 Maximum number of jobs, defined by subsystem description, is already active.

084B6031 407 Maximum number of jobs, defined by communications entry, is already active.

084B6031 408 Maximum number of jobs, defined by routing entry, is already active.

084B6031 409 Library on library list is in use exclusively by another job.

084B6031 410 Group profile cannot be accessed.

084B6031 411 Insufficient storage in machine pool to start job.

084B6031 412 System job values not accessible.

084C0000 501 Job description is not found.

084C0000 502 Output queue is not found.

084C0000 503 Class is not found.

084C0000 504 Library on library list is not found.

084C0000 505 Job description or job description library is damaged.

084C0000 506 Library on library list is destroyed.

084C0000 507 Duplicate libraries are found on library list.

084C0000 508 Defined size of storage pool is zero.

10086021 602 Value of transaction program name is reserved but not supported.

10086021 604 Matching routing entry is not found.

10086021 605 Program was not found in the library you specified, or the program was not found in the
default library list (QSYSLIBL).

080F6051 704 Password is not valid.

080F6051 705 User is not authorized to device.

080F6051 706 User is not authorized to subsystem description.

080F6051 707 User is not authorized to job description.

080F6051 708 User is not authorized to output queue.

080F6051 709 User is not authorized to program.

080F6051 710 User is not authorized to class.

080F6051 711 User is not authorized to library on library list.

080F6051 712 User is not authorized to group profile.

080F6051 713 User ID is not valid.

080F6051 714 Default user profile is not valid.

080F6051 715 Neither password nor user ID is provided, and no default user profile is specified in the
communications entry.

B-28 OS/400 APPC Programming V4R1

Table B-2 (Page 2 of 3). Reason Codes for Rejected Program Start Requests

SNA FMH7 Sense
Data Reason Code Reason Description

080F6051 722 A user ID was received without a password.

080F6051 723 There is no password associated with the system user ID.

080F6051 725 User ID is not a valid AS/400 name.

080F6051 726 User profile disabled.

080F6051 727 Protected password invalid; either the user ID or password was longer than 8 characters,
or the password was created on a release prior to V2R3.

084B0000 728 No OS/400 license available.

084B6031 729 Program start request received for SYNLVL(*COMMIT) conversation before exchange log
names completed.

10086031 801 Program initialization parameters are present but not allowed.

084B6031 802 Program initialization parameter exceeds 2000 bytes.

084B6031 803 Subsystem is ending.

084B6031 804 Prestart job is inactive or is ending.

084B6031 805 WAIT(*NO) was specified on the prestart job entry, and no prestart job was available.

084B6031 806 The maximum number of prestart jobs that can be active on a prestart job entry was
exceeded.

084B6031 807 Prestart job ended when a program start request was being received.

10086032 901 Program initialization parameters are not valid.

10086032 902 Number of parameters for program not valid.

10086032 903 Program initialization parameters required but not present.

08640001 1001 System logic error; function check or unexpected return code encountered.

08640001 1002 System logic error; function check or unexpected return code encountered while receiving
initialization parameters.

10086021 1501 Character as procedure name is not valid.

10086021 1502 Procedure not found.

084C0000 1503 S/36 environment library not found.

084C0000 1504 Library QSSP not found.

084C0000 1505 File QS36PRC not found in library QSSP.

10086021 1506 S/36 Procedure or library name is greater than 8 characters.

084C0000 1507 Current library not found.

084C0000 1508 Not authorized to current library.

080F6051 1509 Not authorized to Q36PRC in current library.

080F6051 1510 Not authorized to procedure in current library.

080F6051 1511 Not authorized to S/36 environment library.

080F6051 1512 Not authorized to file QS36PRC in S/36 environment library.

080F6051 1513 Not authorized to procedure in S/36 environment.

080F6051 1514 Not authorized in library QSSP.

080F6051 1515 Not authorized to file QS36PRC in QSSP.

080F6051 1516 Not authorized to procedure in QS36PRC in QSSP.

08640001 1517 Unexpected return code from S/36 environment support.

10086021 1518 Problem phase program not found in QSSP.

080F6051 1519 Not authorized to problem phase program in QSSP.

084B6031 1520 Maximum number of target programs started (100 for S/36 environment).

10086000 2001 FMH5 length field is not correct.

 Appendix B. Sense Data and Return Codes B-29

Table B-2 (Page 3 of 3). Reason Codes for Rejected Program Start Requests

SNA FMH7 Sense
Data Reason Code Reason Description

1008200E 2002 Concatenation flag not valid.

10084001 2003 FMH type is not 5.

1008600B 2004 Command code field in FM header is not valid.

10086009 2005 Length for fixed-length fields not valid.

10086034 2006 Conversation type is not supported.

10086040 2007 Sync point level is not supported.

10086040 2008 Reconnection is not supported.

10086021 2009 Field length of transaction program name not valid.

10086005 2010 Access code subfield length not valid.

10086011 2011 UOW-ID subfield length not valid.

10086011 2012 UOW-ID contents not valid.

084B6031 2013 Requested device is currently being held by a Hold Communications Device
(HLDCMNDEV) command.

10086021 2014 Transaction program name value is reserved but not supported.

10086021 2015 LU service request received but the LU service job is not active.

10086040 2016 SECURELOC(*NO) specified and program start request indicated remote system did verifi-
cation (AVI indicator).

080F6051 2017 No user ID is provided, but a password is sent.

080F6051 2018 No user ID is provided, but a profile ID is sent.

080F6051 2019 Remote system indicates it sent a verified user ID, but no user ID is provided.

080F6051 2020 Remote system sent a verified user ID, but also sent a password.

080F6051 2021 Remote system sent a user ID, which it had not verified, and failed to send a password.

080F6051 2022 Password received and system is a nonsecure system.

10086051 2023 The length of the attach sequence number is incorrect. It must be either 0 or 8 characters
long.

10086055 2024 The attach sequence number is required, but is not present in the FMH5.

B-30 OS/400 APPC Programming V4R1

Appendix C. Implementation of the LU Type 6.2 Architecture

This appendix contains a description of the AS/400 imple-
mentation of the SNA logical unit type 6.2 architecture. It
maps the LU type 6.2 architected verbs and supported
parameters to the AS/400 implementation. Each section con-
tains the architected verb and parameters followed by the
corresponding ICF functions and commands necessary to
support the architected verb. Also included in each section
are the DDS and system-supplied format specifications. LU
type 6.2 architected verbs that are not supported are not
listed.

For information on the CPI Communications implementation
of the LU type 6.2 architecture, refer to the CPI Communi-
cations Reference book.

AS/400 System Implementation of Control
Operator Verbs

This section contains the following types of control operator
verbs supported by the AS/400 system:

� Change number of sessions

 � Session control

 � LU definition

 Change-Number-of-Sessions Verbs

The following verbs are in a subcategory of control operator
verbs called the change-number-of-sessions, or CNOS,
verbs. The CNOS verbs change the session limit, which con-
trols the number of LU-LU sessions per mode name that are
available between two LUs for allocation to conversations.

Note: The AS/400 system supports multiple local LUs;
therefore, these verbs relate to a particular local LU
and a remote LU.

 CHANGE_SESSION_LIMIT: The
CHANGE_SESSION_LIMIT verb changes the session limit
and contention-winner polarities for parallel-sessions. Refer
to the SNA Transaction Programmer's Reference Manual for
LU Type 6.2 for details about the CHANGE_SESSION_LIMIT
verb.

AS/400 APPC uses the Change Session Maximum
(CHGSSNMAX) command as support for this verb. For more
information about this command, see page 4-3.

LU_NAME
RMTLOCNAME, LCLLOCNAME, and RMTNETID
parameters on the CHGSSNMAX command.

MODE_NAME
MODE parameter on the CHGSSNMAX command.

LU_MODE_SESSION_LIMIT
MAXSSN parameter on the CHGSSNMAX command.

RETURN_CODE
Messages are returned.

INITIALIZE_SESSION_LIMIT: AS/400 APPC uses the
Start Mode (STRMOD) command as support for this verb.
For more information about this command, see “Start Mode
(STRMOD) Command” on page 4-2.

LU_NAME
RMTLOCNAME, RMTNETID, and LCLLOCNAME
parameters on the STRMOD command.

MODE_NAME
MODE parameter on the STRMOD command.

MIN_CONWINNERS_SOURCE
LCLCTLSSN parameter on the CRTMODD command.

RETURN_CODE
Messages are returned.

PROCESS_SESSION_LIMIT: This verb processes the
session limit, contention-winner polarities, and related
change-number-of-sessions (CNOS) parameters from the
source LU and, if necessary, negotiates them to values
acceptable to the target LU. This verb is used for parallel
session connections only.

There are no AS/400 commands or parameters that map to
this verb.

RESET_SESSION_LIMIT: This verb resets to 0 the
session limit for both single or parallel-session connections,
and the contention-winner polarities for the parallel-session
connections.

DRAIN_TARGET(NO)
The complete pended requests (CPLPNDRQS) param-
eter on the ENDMOD command.

 Session-Control Verbs

The following verbs are in a subcategory of control operator
verbs called the session-control verbs, which are used to
activate and deactivate an LU-LU session.

ACTIVATE_SESSION: The ACTIVATE_SESSION verb
activates a session with the specified mode name to the
target LU. The session is activated as a contention winner for
either the source LU or target LU.

There are no AS/400 commands or parameters that map to
this verb.

 Copyright IBM Corp. 1997 C-1

 DEACTIVATE_SESSION: The DEACTIVATE_SESSION
verb deactivates the specified LU-LU session.

There are no AS/400 commands or parameters that map to
this verb.

LU Definition Verbs

The following verbs are in a subcategory of control operator
verbs called the LU definition verbs, which are used to
define, change, or examine the local operating parameters of
the local LU.

DEFINE_LOCAL_LU: The DEFINE_LOCAL_LU defines
the fully qualified name for the local LU, and initializes or
changes parameters that control the operation of the local
LU.

Note: AS/400 system supports multiple local LUs.

AS/400 APPC uses the CRTDEVAPPC command as support
for this verb.

FULLY_QUALIFIED_NAME
LCLLOCNAME parameter on the CRTDEVAPPC
command, or LCLNETID parameter on the CHGNETA
command.

RETURN_CODE
Messages are returned.

DEFINE_MODE: The DEFINE_MODE initializes or
changes parameters that control the operation of the local LU
in conjunction with a group of sessions to the specified
remote LU, the session group being identified by a mode
name.

AS/400 APPC uses the CRTMODD command as support for
this verb.

MODE_NAME
MODD parameter on the CRTMODD command.

SEND_MAX_RU_SIZE_UPPER_BOUND
MAXLENRU parameter on the CRTMODD command.

RECEIVE_MAX_RU_SIZE_UPPER_BOUND
MAXLENRU parameter on the CRTMODD command.

CONWINNER_AUTO_ACTIVATE_LIMIT
PREESTSSN parameter on the CRTMODD command.

LOCAL_MAX_SESSION_LIMIT
PREESTSSN parameter on the CRTMODD command.

RETURN_CODE
Messages are returned.

DEFINE_REMOTE_LU: The DEFINE_REMOTE_LU ini-
tializes or changes parameters that control the operation of
the local LU in conjunction with a remote LU.

AS/400 uses the CRTDEVAPPC command as support for
this verb.

Note: AS/400 supports multiple local LUs; therefore, the
remote LU is defined relative to a particular local LU.

FULLY_QUALIFIED_LU_NAME
RMTLOCNAME parameter on the CRTDEVAPPC
command.

PARALLEL_SESSION_SUPPORT
SNGSSN parameter on the CRTDEVAPPC command.

LU_LU_PASSWORD
LOCPWD parameter on the CRTDEVAPPC command.

SECURITY_ACCEPTANCE
SECURELOC parameter on the CRTDEVAPPC
command.

RETURN_CODE
Messages are returned.

 DISPLAY_LOCAL_LU: The DISPLAY_LOCAL_LU
returns current values of parameters that control the opera-
tion of the local LU.

AS/400 APPC uses the DSPDEVD command as support for
this verb.

DISPLAY_MODE: The DISPLAY_MODE verb returns
current values of parameters that control the operation of the
local LU in conjunction with a group of sessions to a remote
LU, the session group being identified by a mode name.

AS/400 APPC uses the Display Mode Description
(DSPMODD) and the Display Mode Status (DSPMODSTS)
commands as support for this verb. For more information
about this command, see “Displaying the Mode Status” on
page 4-5.

 DISPLAY_REMOTE_LU: The DISPLAY_REMOTE_LU
verb returns current values of parameters that control the
operation of the local LU in conjunction with a remote LU.

AS/400 APPC uses the DSPDEVD command as support for
this verb.

ICF Implementation of the LU Type 6.2
Architecture

This section provides the following information about the ICF
implementation of the LU type 6.2 architecture:

� Specifying the resource parameter

� Mapped conversation verbs

� Basic conversation verbs

C-2 OS/400 APPC Programming V4R1

 � Miscellaneous verbs

� Mapping of LU 6.2 return codes to ICF return codes.

Specifying the Resource Parameter

The RESOURCE parameter for LU type 6.2 verbs is speci-
fied in ICF by the program device name. The program device
name is specified in the PGMDEV parameter of the
ADDICFDEVE and OVRICFDEVE commands and in the fol-
lowing ways:

� ILE COBOL/400: The identifier parameter of the
ACQUIRE statement or the TERMINAL option of the
WRITE and READ statements.

� ILE RPG/400: The program device identifier specified in
factor 1 of the calculation specifications.

� ILE C/400: For the _Racquire and _Rrelease functions,
the program device name is specified as the second
positional parameter. The fread and fwrite functions
should be preceded by a _Rpgmdev statement to
specify the program device name to be used if multiple
sessions are active within the application.

� FORTRAN/400: Does not support multiple sessions for
one ICF file. Therefore, program device names are not
used. Instead, you must implicitly acquire the session by
specifying ACQPGMDEV (program device name) on the
CRTICFF, CHGICFF, and OVRICFF commands. You
must use a separate file for each ICF session.

Mapped Conversation Verbs

MC_ALLOCATE: There is no single ICF operation that is
equivalent to the MC_ALLOCATE verb. The functions of the
verb are accomplished by the combination of the acquire
operation and the evoke function.

Note: Some of the information used by these operations is
specified on commands that run before the applica-
tion program issues these requests.

LU_NAME
RMTLOCNAME, DEV, RMTNETID, LCLLOCNAME
parameters on the ADDICFDEVE, CHGICFDEVE, and
OVRICFDEVE commands.

MODE_NAME
MODE parameter on the ADDICFDEVE, CHGICFDEVE,
and OVRICFDEVE commands.

TPN
For data description specifications (DDS), the remote
program and library name are specified following the
evoke function.

For system-supplied formats, the remote program name
is in positions 1 through 8 of the data buffer of the
source program and the library name is in positions 25
through 32 of the same buffer.

Note: The local program is responsible for ensuring
that the remote program and library names are in
a format that is acceptable to the remote system
naming requirements.

TYPE
(BASIC_CONVERSATION/ MAPPED_CONVERSATION)

To allocate a basic conversation, the CNVTYPE param-
eter on the ADDICFDEVE, CHGICFDEVE, and
OVRICFDEVE commands must be specified as *USER.

To allocate a mapped conversation, the CNVTYPE
parameter on the ADDICFDEVE, CHGICFDEVE, and
OVRICFDEVE commands must be specified as *SYS.

RETURN_CONTROL
WHEN_SESSION_ALLOCATED is always used.

� SYNLVL DDS keyword (*NONE, *CONFIRM, or
*COMMIT supported) specified with EVOKE
keyword.

� For system-supplied formats, support always
defaulted to NONE. System-supplied formats do
not support CONFIRM processing.

SYNC_LEVEL(NONE/CONFIRM/SYNCPT)

� SYNLVL DDS keyword (*NONE, *CONFIRM, or
*COMMIT supported) specified with EVOKE
keyword.

� For system-supplied format, support is always
defaulted to NONE. System-supplied formats do
not support CONFIRM or SYNCPT processing.

SECURITY
SECURITY(NONE) is done by not specifying the SECU-
RITY DDS keyword or by specifying SECURITY(3
*NONE).

SECURITY(SAME) is done by specifying SECURITY(3
*USER). If a profile ID was received to start this job, it is
passed on whenever an EVOKE is done by specifying
SECURITY(3 *USER).

SECURITY(PGM) is done in the following manner:

� DDS SECURITY keyword (user ID, password, and
profile ID are all allowed) specified with the EVOKE
keyword.

� For system-supplied formats the following can be
specified in the source program's data buffer:

– Positions 9 through 16, password

– Positions 17 through 24, user ID

Note: For additional information on how to specify
security refer to “APPC Security
Considerations” on page 3-12.

PIP
For DDS, the parameter data can be specified on the
EVOKE keyword.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-3

For system-supplied formats, the parameter data is
specified in positions 57-xxxx of the data buffer of the
source program.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

MC_CONFIRM: The MC_CONFIRM verb ends a
message and asks the remote transaction program to
confirm that no errors have been detected in the message.
Support for MC_CONFIRM is provided by the CONFIRM
DDS keyword. MC_CONFIRM is not supported when using
system-supplied formats.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

REQUEST_TO_SEND_RECEIVED
Information is returned in the communications device
dependent area of the I/O feedback area as follows:

 � Request-to-write indicator

� Minor return code of 10 for major return code of 00

MC_CONFIRMED: The MC_CONFIRMED verb sends a
confirmation reply to the remote program. By sending
MC_CONFIRMED, the local application program takes
responsibility for any data it has received. This verb is only
valid in response to an MC_CONFIRM request.

A confirmed response is sent by using the RSPCONFIRM
DDS keyword.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

MC_DEALLOCATE: An AS/400 program starts deallo-
cation by issuing an output operation with the detach function
specified. If the program is a source program, then an end-
of-session function, release, or close operation must follow
the detach function to complete the deallocation. If the
program is a source program and the conversation has a
synchronization level of *COMMIT, a commit operation must
follow the detach function and precede the end-of-session
function, release operation, or close operation.

If an AS/400 program receives a return code indicating a
detach function was received, then an end-of-session or a
close operation may be used to complete the deallocation.
The RELEASE or close operation will deallocate the session,
only if the AS/400 program is a source program.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

TYPE(LOCAL)
This value is implicit when issuing an end-of-session
function, a release, or close operation after a detach
function has been received.

� For DDS, use the EOS keyword.

� For system-supplied formats, use $$EOS.

TYPE(SYNC_LEVEL)
Use if conversation was allocated with SYNLVL
(*COMMIT). It can also be used in place of
TYPE(CONFIRM) for SYNLVL (*CONFIRM) conversa-
tions or in place of TYPE(FLUSH) for SYNLVL (*NONE)
conversations.

� For data description specifications (DDS), use the
TNSSYNLVL keyword.

� Not supported for system-supplied formats.

TYPE(CONFIRM)
Use if conversation was allocated with SYNLVL
(*CONFIRM).

� For DDS, use the CONFIRM or TNSSYNLVL
keyword.

� Not supported for system-supplied formats.

TYPE(FLUSH)
Use if conversation was allocated with SYNLVL
(*NONE).

� For DDS, use the FRCDTA or TNSSYNLVL
keyword.

� Not supported for system-supplied formats.

TYPE(ABEND)
An end-of-session function, close operation (for source
program), or the application ended without sending or
receiving a detach function.

� For DDS, use the EOS keyword.

� For system-supplied formats, use $$EOS.

C-4 OS/400 APPC Programming V4R1

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of I/O feedback area

MC_FLUSH: The MC_FLUSH verb causes all buffered
data and control information to be sent. MC_FLUSH is done
by the AS/400 system following an output operation that
specifies the FRCDTA DDS keyword. This function is not
available when using system-supplied formats.

RESOURCE
Refer to the “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of I/O feedback area

 MC_GET_ATTRIBUTES: The MC_GET_ATTRIBUTES
verb requests information about the conversation that is
attached to the program. This verb is supported by the get-
attributes operation of ICF. Refer to “GET_ATTRIBUTES” on
page C-11 for information concerning this operation.

 MC_POST_ON_RECEIPT: The
MC_POST_ON_RECEIPT verb causes the LU to post the
specified conversation when information is available for the
program to receive. The information can be data, conversa-
tion status, or a request for confirmation. WAIT should be
issued after MC_POST_ON_RECEIPT in order to wait for
posting to occur.

Note: APPC uses the invite function to perform this verb.
There is no length parameter on the ICF invite func-
tion. The AS/400 system does not use a length value
to determine when to perform posting. The AS/400
system will only perform posting when a record is
received or when data is received.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of I/O feedback area

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

 MC_PREPARE_FOR_SYNCPT: The
MC_PREPARE_FOR_SYNCPT verb causes a single pro-
tected resource to be prepared to advance to the next syn-
chronization point. Using this verb allows a program to have
its own logic to respond if its partner cannot complete the
commit process. Support for MC_PREPARE_FOR_SYNCPT
is provided by the PRPCMT DDS keyword.
MC_PREPARE_FOR_SYNCPT is not supported when using
system-supplied formats.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of I/O feedback area

 MC_PREPARE_TO_RECEIVE: The
MC_PREPARE_TO_RECEIVE verb changes the conversa-
tion from send state to receive state so that the AS/400
program can receive data. This verb is performed in combi-
nation with a SEND_DATA operation when an allow-write or
invite function is specified on a DDS output format or for a
system-supplied format that also specifies an invite (for
example, $$SEND). Note that the invite function also per-
forms the MC_POST_ON_RECEIPT verb.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

TYPE(SYNC_LEVEL)
Use if conversation was allocated with
SYNLVL(*COMMIT). It can also be used in place of
TYPE(CONFIRM) for SYNLVL(*CONFIRM) conversa-
tions or in place of TYPE(FLUSH) for SYNLVL(*NONE)
conversations.

� For data description specifications (DDS), use the
TNSSYNLVL keyword. The TNSSYNLVL keyword is
not allowed with an invite function if the conversa-
tion was allocated with SYNLVL(*COMMIT).

� Not supported for system-supplied formats.

For SYNLVL(*COMMIT), the conversation enters defer
receive state. Defer receive state indicates that this
program wants to be in receive state after a commit
operation completes successfully. The only valid oper-
ations for the conversation in defer receive state are:
commit, rollback, PRPCMT, and EOS.

TYPE(CONFIRM)
Use if conversation was allocated with
SYNLVL(*CONFIRM).

� For DDS, use the CONFIRM or TNSSYNLVL
keyword.

� Not supported for system-supplied formats.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-5

TYPE(FLUSH)
This is done implicitly.

LOCKS(SHORT)
Implicit when CONFIRM is specified.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

 MC_RECEIVE_AND_..WAIT: The
MC_RECEIVE_AND_WAIT verb waits for information to
arrive on the specified conversation and then receives the
information. If information is already available, the program
receives it without waiting. The information can be data, con-
versation status, or a request for confirmation. To perform an
MC_RECEIVE_AND_WAIT, the AS/400 program issues a
READ operation.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

LENGTH
Requested length is the length of the record format.
Returned length is in the communications device
dependent area of the I/O feedback area.

MAP_NAME
The record format used for the READ operation is
returned in the communications device dependent area
of the I/O feedback area.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

REQUEST_TO_SEND_RECEIVED
Information is returned by the request-to-write indicator
in the communication device dependent area of the I/O
feedback area.

DATA
Application program's data buffer.

WHAT_RECEIVED
Response indicators and major and minor return codes
in communication device dependent area of I/O feed-
back area supply similar information. Supported values
are

 � DATA_COMPLETE

 � DATA_TRUNCATED

 � DATA_INCOMPLETE

 � CONTROL_DATA_COMPLETE

 � CONTROL_DATA_TRUNCATED

 � CONTROL_DATA_INCOMPLETE

 � SEND

 � CONFIRM

 � CONFIRM_SEND

 � CONFIRM_DEALLOCATE

 � TAKE_COMMIT

 � TAKE_COMMIT_SEND

 � TAKE_COMMIT_DEALLOCATE

Note: The AS/400 system can return more than one
value on the same call. For example,
DATA_COMPLETE and CONFIRM are indicated
by return code 0015 and a RCVCONFIRM DDS
response indicator.

The following lists contrast WHAT_RECEIVED with the
major and minor return codes and the response indica-
tors. Note that some major and minor return codes
provide more information than WHAT_RECEIVED. For
example, return code 0008 is equivalent to
DATA_COMPLETE and a RETURN_CODE of
DEALLOCATE_NORMAL. DATA_INCOMPLETE is sup-
ported when *RETAIN is specified for the OVRFLWDTA
parameter.

ICF Return Codes Mapped to WHAT_RECEIVED Values:
The following list shows ICF return codes with the corre-
sponding WHAT_RECEIVED values for the
MC_RECEIVE_AND_WAIT verb.

ICF Return Code WHAT_RECEIVED Values

0000 DATA_COMPLETE, SEND

0001 DATA_COMPLETE

0002 CONTROL_DATA_COMPLETE

0004 CONTROL_DATA_COMPLETE, SEND

0005 CONTROL_DATA_COMPLETE

0006 CONTROL_DATA_COMPLETE, SEND

00081 DATA_COMPLETE

000C1 CONTROL_DATA_COMPLETE

0010 DATA_COMPLETE

00111 CONTROL_DATA_COMPLETE

0013 CONTROL_DATA_COMPLETE,
CONFIRM_SEND

0014 DATA_COMPLETE, CONFIRM_SEND

0015 DATA_COMPLETE, CONFIRM

0018 CONTROL_DATA_COMPLETE, CONFIRM

001C DATA_COMPLETE, CONFIRM_DEALLOCATE

001D CONTROL_DATA_COMPLETE,
CONFIRM_DEALLOCATE

0044 CONTROL_DATA_COMPLETE,
CONFIRM_SEND

C-6 OS/400 APPC Programming V4R1

0045 CONTROL_DATA_COMPLETE, CONFIRM

0046 CONTROL_DATA_COMPLETE,
CONFIRM_DEALLOCATE

0200 DATA_COMPLETE, SEND

0201 DATA_COMPLETE

0202 CONTROL_DATA_COMPLETE

0204 CONTROL_DATA_COMPLETE, SEND

0205 CONTROL_DATA_COMPLETE

0206 CONTROL_DATA_COMPLETE, SEND

02081 DATA_COMPLETE

020C1 CONTROL_DATA_COMPLETE

02111 CONTROL_DATA_COMPLETE

0213 CONTROL_DATA_COMPLETE,
CONFIRM_SEND

0214 DATA_COMPLETE, CONFIRM_SEND

0215 DATA_COMPLETE, CONFIRM

0218 CONTROL_DATA_COMPLETE, CONFIRM

021C DATA_COMPLETE, CONFIRM_DEALLOCATE

021D CONTROL_DATA_COMPLETE,
CONFIRM_DEALLOCATE

0244 CONTROL_DATA_COMPLETE,
CONFIRM_SEND

0245 CONTROL_DATA_COMPLETE, CONFIRM

0246 CONTROL_DATA_COMPLETE,
CONFIRM_DEALLOCATE

0257 TAKE_COMMIT

0258 TAKE_COMMIT_SEND

0259 TAKE_COMMIT_DEALLOCATE

0300 SEND

0301

0302 CONTROL_DATA_COMPLETE

0304 CONTROL_DATA_COMPLETE, SEND

0305 CONTROL_DATA_COMPLETE

0306 CONTROL_DATA_COMPLETE, SEND

03081

030C1 CONTROL_DATA_COMPLETE

03111 CONTROL_DATA_COMPLETE

0313 CONTROL_DATA_COMPLETE,
CONFIRM_SEND

0314 CONFIRM_SEND

0315 CONFIRM

0318 CONTROL_DATA_COMPLETE, CONFIRM

031C CONFIRM_DEALLOCATE

031D CONTROL_DATA_COMPLETE,
CONFIRM_DEALLOCATE

0344 CONTROL_DATA_COMPLETE,
CONFIRM_SEND

0345 CONTROL_DATA_COMPLETE, CONFIRM

0346 CONTROL_DATA_COMPLETE,
CONFIRM_DEALLOCATE

0357 TAKE_COMMIT

0358 TAKE_COMMIT_SEND

0359 TAKE_COMMIT_DEALLOCATE

3421 CONTROL_DATA_TRUNCATED

3422 CONTROL_DATA_TRUNCATED

3431 DATA_TRUNCATED

3471 DATA_INCOMPLETE

3481 CONTROL_DATA_INCOMPLETE

1The LU 6.2 architected return code DEALLOCATE is
returned by this ICF return code.

WHAT_RECEIVED Values Mapped to ICF Return Codes:
The following list shows the WHAT_RECEIVED values for
the MC_RECEIVE_AND_WAIT verb with the corresponding
ICF return codes.

WHAT_RECEIVED Value ICF Return Codes

DATA_COMPLETE 0000, 0001, 00081, 0010, 0014, 0015,
001C, 0200, 0201, 02081, 0214, 0215, 021C

DATA_TRUNCATED 3431

DATA_INCOMPLETE 3471

CONTROL_DATA_COMPLETE 0002, 0004, 0005, 0006,
000C1, 00111, 0013, 0018, 001D, 0044, 0045,
0046, 0202, 0204, 0205, 0206, 020C1, 02111,
0213, 0218, 021D, 0244, 0245, 0246, 0302,
0304, 0305, 0306, 030C1, 03111, 0313, 0318,
031D, 0344, 0345, 0346

CONTROL_DATA_TRUNCATED 3421, 3422

CONTROL_DATA_INCOMPLETE 3481

SEND 0000, 0004, 0006, 0200, 0204, 0206, 0300,
0304, 0306

CONFIRM 0015, 0018, 0045, 0215, 0218, 0245, 0315,
0318, 0345

CONFIRM_SEND 0013, 0014, 0044, 0213, 0214, 0244,
0313, 0314 0344

CONFIRM_DEALLOCATE 001C, 001D, 0046, 021C, 021D,
0246, 031C, 031D, 0346

TAKE_COMMIT 0257, 0357

TAKE_COMMIT_SEND 0258, 0358

TAKE_COMMIT_DEALLOCATE 0259, 0359

1The LU 6.2 architected return code DEALLOCATE is
returned by this ICF return code.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-7

Response Indicators Mapped to WHAT_RECEIVED
Values: The following list shows the DDS response indica-
tors with the corresponding WHAT_RECEIVED values for the
MC_RECEIVE_AND_WAIT verb.

Response Indicators WHAT_RECEIVED Values

RCVCONFIRM CONFIRM, CONFIRM_SEND,
CONFIRM_DEALLOCATE

RCVTRNRND SEND, CONFIRM_SEND,
TAKE_COMMIT_SEND

RCVDETACH CONFIRM_DEALLOCATE,
TAKE_COMMIT_DEALLOCATE

RCVCTLDTA CONTROL_DATA_COMPLETE,
CONTROL_DATA_TRUNCATED,
CONTROL_DATA_INCOMPLETE

RCVTKCMT TAKE_COMMIT, TAKE_COMMIT_SEND,
TAKE_COMMIT_DEALLOCATE

Data Received with the Program Start Request: The fol-
lowing list shows ICF return codes with the corresponding
WHAT_RECEIVED values for the MC_RECEIVE_AND_WAIT
verb. These ICF return codes also indicate that data was
received with the program start request.

ICF Return Code WHAT_RECEIVED Values

0002 CONTROL_DATA_COMPLETE

0006 CONTROL_DATA_COMPLETE, SEND

00111 CONTROL_DATA_COMPLETE

0013 CONTROL_DATA_COMPLETE,
CONFIRM_SEND

0018 CONTROL_DATA_COMPLETE, CONFIRM

001D CONTROL_DATA_COMPLETE,
CONFIRM_DEALLOCATE

0202 CONTROL_DATA_COMPLETE

0206 CONTROL_DATA_COMPLETE, SEND

02111 CONTROL_DATA_COMPLETE

0213 CONTROL_DATA_COMPLETE,
CONFIRM_SEND

0218 CONTROL_DATA_COMPLETE, CONFIRM

021D CONTROL_DATA_COMPLETE,
CONFIRM_DEALLOCATE

0302 CONTROL_DATA_COMPLETE

0306 CONTROL_DATA_COMPLETE, SEND

03111 CONTROL_DATA_COMPLETE

0313 CONTROL_DATA_COMPLETE,
CONFIRM_SEND

0318 CONTROL_DATA_COMPLETE, CONFIRM

031D CONTROL_DATA_COMPLETE,
CONFIRM_DEALLOCATE

3422 CONTROL_DATA_TRUNCATED

1The LU 6.2 architected return code DEALLOCATE is
returned by this ICF return code.

MC_RECEIVE_IMMEDIATE: Receives any information
that is available from the specified mapped conversation, but
does not wait for information to arrive. The information can
be data, mapped conversation status, or a request for confir-
mation. Control is returned to the program with an indication
of whether any information was received and, if so, the type
of information.

There are no ICF operations or functions that map to this
verb.

 MC_REQUEST_TO_SEND: The
MC_REQUEST_TO_SEND verb tells the remote program
that the local program requests to enter send state for the
conversation. The conversation is changed to send state
when the local program receives a SEND indication from the
remote program.

The MC_REQUEST_TO_SEND verb is specified by using a
request-to-write function. The request-to-write function is
specified in DDS by using the RQSWRT keyword and in
system-supplied formats with a $$RCD. The DDS format
may also include the INVITE keyword. The system-supplied
format has an implicit invite specified. Note that the invite
function also performs the MC_POST_ON_RECEIPT verb.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

MC_SEND_DATA: The MC_SEND_DATA verb sends
data or control information to the remote program. This oper-
ation is verb is used with a write operation.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

DATA
Application program's data buffer.

LENGTH
For DDS, implicit by the record format or specified
explicitly by the VARLEN keyword.

For system-supplied formats, the first 4 bytes of the
output buffer of the application program contain the
length of data to send.

MAP_NAME
Indicates that map name processing is to be performed.

� For DDS use the FMTNAME keyword and specify

C-8 OS/400 APPC Programming V4R1

*RMTFMT on the ADDICFDEVE or OVRICFDEVE
command.

� Not supported by system-supplied formats.

USER_CONTROL_DATA
Indicates that the data record contains user control data.

� For DDS, use the CTLDTA keyword.

� Not supported by system-supplied formats.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

REQUEST_TO_SEND_RECEIVED
Communications device dependent area of the I/O feed-
back area as follows:

 � Request-to-write indicator

� Minor return code of 10 for major return code of 00

MC_SEND_ERROR: The MC_SEND_ERROR verb
informs the remote transaction program that the local
program detected an error. The AS/400 system uses the
FAIL DDS keyword or the $$FAIL system-supplied format to
provide this function.

If the conversation has a synchronization level of commit, the
fail function may cause the system to roll back the protected
LUW. If the fail function is in response to a commit operation,
the system rolls back the protected LUW. If the fail function
is in response to a prepare-for-commit function, the system
does not roll back the protected LUW.

RESOURCE
Refer to the “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

REQUEST_TO_SEND_RECEIVED
Communications device dependent area of the I/O feed-
back area as follows:

 � Request-to-write indicator

� Minor return code of 10 for major return code of 00

MC_TEST: The MC_TEST verb determines if the
requested status information is available. When using ICF
APPC, the application program can check the request-to-
write indicator in the I/O feedback area to determine if a
REQUEST_TO_SEND has been received. This field in the
I/O feedback area is only updated on an application I/O
boundary. If a REQUEST_TO_SEND is sent to a program
after it has issued its last operation, the field will not be
updated.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

TEST(Request_To_Send_Received)
Indicator in the communications device dependent area
of the I/O feedback area.

TEST(POSTED)
A get-attributes operation. Refer to position 41 in
Table C-1 on page C-11 for more information.

Note: The ICF APPC implementation does not have a func-
tion to perform the MC_TEST verb. Because this
function does not exist, the AS/400 system does not
reset the Request_to_Send_Received indicator value
in the same way as the architecture does when the
MC_TEST verb is issued.

Basic Conversation Verbs

ALLOCATE: The LU type 6.2 verb ALLOCATE builds a
conversation (AS/400 transaction) to a named partner
program at another logical unit (LU). For the AS/400 APPC
support, it is specified by the combination of the acquire
operation and evoke function.

Note: Some of the information used by these operations is
specified on commands that run before the applica-
tion program issues these requests.

LU_NAME
RMTLOCNAME, DEV, RMTNETID, and LCLLOCNAME
parameters on the ADDICFDEVE, CHGICFDEVE, and
OVRICFDEVE commands.

MODE_NAME
MODE parameter on the ADDICFDEVE, CHGICFDEVE,
and OVRICFDEVE commands.

TPN
For DDS, the remote program and library name are
specified following the EVOKE keyword.

For system-supplied formats, the remote program name
is in positions 1 through 8 of the data buffer of the
source program and the library name is positions 25
through 32 of the same buffer.

TYPE
(BASIC_CONVERSATION/ MAPPED_CONVERSATION)

To allocate a basic conversation, the CNVTYPE param-

 Appendix C. Implementation of the LU Type 6.2 Architecture C-9

eter on the ADDICFDEVE, CHGICFDEVE, and
OVRICFDEVE commands must be specified as *USER.

To allocate a mapped conversation, the CNVTYPE
parameter on the ADDICFDEVE, CHGICFDEVE, and
OVRICFDEVE commands must be specified as *SYS.

RETURN_CONTROL
WHEN_SESSION_ALLOCATED is always used.
CONVERSATION_GROUP_ID is not supported.

SYNC_LEVEL(NONE/CONFIRM/SYNCPT)

� SYNLVL DDS keyword (*NONE, *CONFIRM, or
*COMMIT supported) specified with EVOKE
keyword.

� For system-supplied format, support is always
defaulted to NONE. System-supplied formats do
not support CONFIRM or SYNCPT processing.

SECURITY
SECURITY(NONE) is done by not specifying the SECU-
RITY DDS keyword or by specifying SECURITY(3
*NONE).

SECURITY(SAME) is done by specifying SECURITY(3
*USER). If a profile ID was received to start this job, it is
passed on whenever an EVOKE is done by specifying
SECURITY(3 *USER).

SECURITY(PGM) is done in the following manner:

DDS SECURITY keyword (user ID, password, and
profile ID are all allowed) specified with the EVOKE
keyword.

For system-supplied formats the following can be speci-
fied in the source program's data buffer:

� Positions 9 through 16, password

� Positions 17 through 24, user ID

Note: For additional information on how to specify
security refer to “APPC Security Considerations”
on page 3-12.

PIP
For DDS, the parameter data can be specified on the
EVOKE keyword.

For system-supplied formats, the parameter data is
specified in positions 57-xxxx of the source program's
data buffer.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

CONFIRM: CONFIRM ends a message and asks the
remote transaction program to confirm that no errors have
been detected in the message. Support for CONFIRM is pro-
vided by the CONFIRM DDS keyword. CONFIRM is not sup-
ported when using system-supplied formats.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

REQUEST_TO_SEND_RECEIVED
Communications device dependent area of feedback
area as follows:

 � Request-to-write indicator

� Minor return code of 10 for major return code 00

CONFIRMED: CONFIRMED sends a confirmation reply to
the remote program. By sending CONFIRMED, the local
application program takes responsibility for any data it has
received. This verb is only valid in response to a CONFIRM
request.

A confirmed response is sent by using a DDS record format
with the RSPCONFIRM DDS keyword.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

DEALLOCATE: An AS/400 program starts deallocation by
issuing an output operation with detach function. If the
program is a source program, then an end-of-session func-
tion, release, or close operation must follow the detach func-
tion to complete the deallocation. If the program is a source
program and the conversation has a synchronization level of
*COMMIT, a commit operation must follow the detach func-
tion and precede the end-of-session function, release opera-
tion, or close operation.

If an AS/400 program receives a return code indicating a
detach function was received, then an end-of-session func-
tion or close operation may be used to complete the deallo-
cation. The release operation will deallocate the session, only
if the AS/400 program is a source program.

C-10 OS/400 APPC Programming V4R1

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

TYPE(LOCAL)
Implicit by issuing an end-of-session function, release, or
close operation after a detach indication has been
received.

� For DDS, use the EOS keyword

� For system-supplied formats, use $$EOS

TYPE(SYNC_LEVEL)
Use if conversation was allocated with SYNLVL
(*COMMIT). It can also be used in place of
TYPE(CONFIRM) for SYNLVL (*CONFIRM) conversa-
tions or in place of TYPE(FLUSH) for SYNLVL (*NONE)
conversations.

� For data description specifications (DDS), use the
TNSSYNLVL keyword.

� Not supported for system-supplied formats.

TYPE(CONFIRM)
Use if conversation was allocated with SYNLVL
(*CONFIRM).

� For data description specifications (DDS), use the
CONFIRM keyword.

� Not supported for system-supplied formats.

TYPE(FLUSH)
This is done implicitly for ICF. Use if conversation was
allocated with SYNLVL (*NONE).

� For DDS, use the DETACH keyword.

� For system-supplied formats, use $SENDET.

TYPE(ABEND_PROG)
An end-of-session function, a close operation (for source
program), or the application ended without sending or
receiving a detach indication.

� For DDS, use the EOS keyword.

� For system-supplied formats, use $$EOS.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of I/O feedback area

FLUSH: The FLUSH verb causes all buffered data and
control information to be sent. FLUSH is requested by using
the FRCDTA DDS keyword. This function is not available
when using system-supplied formats.

RESOURCE
Refer to the “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of I/O feedback area

GET_ATTRIBUTES: The GET_ATTRIBUTES verb
requests information about the conversation that is attached
to the program. This verb is supported by the get-attributes
ICF operation. The values are returned to your record buffer;
the length of the record buffer must be at least 144 bytes. To
receive the entire record, the length of the record buffer must
be at least 444 bytes. The values are returned in the order
specified in Table C-1.

Table C-1 (Page 1 of 3). Attribute Information Fields

Position Value Meaning

1 through 10 Name Program device name: The name the program used to identify the program device in the file it will
read and write from.

11 through 20 Name Device description name: The device description associated with the program device name (speci-
fied during configuration and optionally on the ADDICFDEVE or OVRICFDEVE command).

21 through 30 Name User ID: If the program was started locally, this is the user ID used to sign on the work station. If
the program was started as a result of a program start request, this is the user ID used to start the
target program.

31 I D U The device is an ICF device type. The device is a display device. Unknown.

32 through 37 APPC APPC communications type.

38 Y N This is a requesting program device. This is a session acquired by a source program.

39 Y N Program device has been acquired. Program device has not been acquired.

40 Y N Input is invited for this program device. Input is not invited for this program device.

41 Y N Invited input is available for this program device. Invited input is not available for this program
device.

42 through 50 Reserved Not applicable to communications.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-11

Table C-1 (Page 2 of 3). Attribute Information Fields

Position Value Meaning

51 Y N Session has an active transaction. Session does not have an active transaction.

521 0 1 2 Synchronization level is NONE. Synchronization level is CONFIRM. Synchronization level is
COMMIT.

53 M B Mapped conversation. Basic conversation.

54 through 61 Name Remote location name: This is the remote location associated with the program device name (spec-
ified during configuration and on the ADDICFDEVE or OVRICFDEVE command).

62 through 69 Name Local logical unit (LU) name.

70 through 77 Name Local network ID.

78 through 852 Name Remote LU name.

86 through 932 Name Remote network ID.

94 through 1013 Name Mode: This is the mode associated with the program device name (specified during configuration
and optionally on the ADDICFDEVE or OVRICFDEVE command).

102 through 104 Reserved Not applicable to communications.

105 APPC conversation state.

 X'00' Reset. No conversation exists.

 X'01' Send. Program can send data.

 X'02' Defer receive. Program enters receive state after a confirm, flush, or commit operation completes
successfully.

 X'03' Defer deallocate. Program enters deallocate state after a commit operation completes successfully.

 X'04' Receive. Program can receive data.

 X'05' Confirm. Program received a confirmation request.

 X'06' Confirm send. Program received a confirmation request and send control.

 X'07' Confirm deallocate. Program received a confirmation request and deallocate notification.

 X'08' Commit. Program received a commit request.

 X'09' Commit send. Program received a commit request and send control.

 X'0A' Commit deallocate. Program received a commit request and deallocate notification.

 X'0B' Deallocate. Program received a deallocate notification.

 X'0C' Rollback required. Program must roll back changes to protected resources.

106 through 113 Name Conversation correlator. The conversation correlator associates the conversation states with the
logical unit of work and is used during resynchronization.

114 through 144 Reserved

145 through 146 Binary ISDN remote number length in bytes, including type and plan.

147 through 148 00 ISDN unknown remote number type.

01 ISDN international remote number type.

02 ISDN national remote number type.

03 ISDN network specific remote number type.

04 ISDN subscriber remote number type.

06 ISDN abbreviated remote number type.

149 through 150 00 ISDN unknown remote number plan.

01 ISDN/telephony remote number plan.

03 ISDN data remote number plan.

04 ISDN Telex** remote number plan.

08 ISDN national standard remote number plan.

09 ISDN private remote number plan.

151 through 154 Reserved

155 through 190 Character ISDN remote number (blank padded EBCDIC).

191 through 194 Reserved

C-12 OS/400 APPC Programming V4R1

Table C-1 (Page 3 of 3). Attribute Information Fields

Position Value Meaning

195 through 196 Binary ISDN remote subaddress length in bytes, including type.

197 through 198 00 ISDN NSAP remote subaddress type.

02 ISDN user defined remote subaddress type.

199 through 238 Character ISDN remote subaddress (0 padded hexadecimal).

239 Reserved

240 0 Incoming ISDN call.

1 Outgoing ISDN call.

 2 Non-ISDN connection.

241 through 242 Binary X.25 remote network address length.

243 through 274 Character X.25 remote network address.

275 through 278 Reserved

279 through 280 Binary X.25 remote address extension length.

281 0 Address assigned according to ISO 8348/AD2.

2 Not an ISO 8348/AD2 type of address.

282 through 321 Character Remote address extension.

322 through 325 Reserved

326 0 Incoming X.25 switched virtual circuit (SVC).

1 Outgoing X.25 SVC.

2 Not X.25 SVC.

327 through 390 Character Evoked transaction program name.

391 Binary Length of the protected logical unit of work identifier (LUWID). Must be from 0 to 26.

392 Binary Length of the qualified LU name. Must be from 0 to 17.

393 through 409 Character Network-qualified protected LU name in the following form: netid.luname. netid is the network identi-
fier. luname is the logical unit name. This field may be blank.

410 through 415 Character Protected LUWID instance number.

416 through 417 Binary Protected LUWID sequence number.

Note: The protected LUWID identifies the current logical unit of work for a protected conversation.

418 Binary Length of the unprotected LUWID. Must be from 0 to 26.

419 Binary Length of the qualified LU name. Must be from 0 to 17.

420 through 436 Character Network-qualified unprotected LU name in the following form: netid.luname. netid is the network
identifier. luname is the logical unit name. This field may be blank.

437 through 442 Character Unprotected LUWID instance number.

443 through 444 Binary Unprotected LUWID sequence number.

Note: The unprotected LUWID identifies the current logical unit of work for conversations with a
synchronization level of none or confirm.

Note:

1 This is the SYNC_LEVEL.

2 Remote LU name is the PARTNER_LU_NAME. Remote network ID, when concatenated by a period (.) with the remote LU
name, is the PARTNER_FULLY_QUALIFIED_LU_NAME.

3 This is the MODE_NAME.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of I/O feedback area

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-13

POST_ON_RECEIPT: The POST_ON_RECEIPT verb
causes the LU to post the specified conversation when infor-
mation is available for the program to receive. The informa-
tion can be data, conversation status, or a request for
confirmation. WAIT should be issued after
POST_ON_RECEIPT in order to wait for posting to occur.

APPC uses the invite function to perform this verb.

Note: There is no length parameter on the ICF invite func-
tion. The AS/400 system does not use a length value
to determine when to perform posting. The AS/400
system will only perform posting when a complete LL
is received or when information other than data is
received.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

FILL(LL)
This is the only supported value.

 PREPARE_FOR_SYNCPT: The
PREPARE_FOR_SYNCPT verb causes a single protected
resource to be prepared to advance to the next synchroniza-
tion point. Using this verb allows a program to have its own
logic to respond if its partner cannot complete the commit
process.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of I/O feedback area

 PREPARE_TO_RECEIVE: The
PREPARE_TO_RECEIVE verb changes the conversation
from send state to receive state so that the program can
receive data. This verb is performed in combination with a
SEND_DATA operation when an allow write or invite function
is specified on a DDS output format, or for a system-supplied
format that also specifies an invite (for example, $$SEND).
Note that the invite function also performs the
POST_ON_RECEIPT verb.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

TYPE(SYNC_LEVEL)
Use if conversation was allocated with
SYNLVL(*COMMIT). It can also be used in place of
TYPE(CONFIRM) for SYNLVL(*CONFIRM) conversa-
tions or in place of TYPE(FLUSH) for SYNLVL(*NONE)
conversations.

� For data description specifications (DDS), use the
TNSSYNLVL keyword. The TNSSYNLVL keyword is
not allowed with an invite function if the conversa-
tion was allocated with SYNLVL(*COMMIT).

� Not supported for system-supplied formats.

For SYNLVL(*COMMIT), the conversation enters defer
receive state. Defer receive state indicates that this
program wants to be in receive state after a commit
operation completes successfully. The only valid oper-
ations for the conversation in defer receive state are:
commit, rollback, PRPCMT, and EOS.

TYPE(CONFIRM)
Use if conversation was allocated with SYNLVL
(*CONFIRM).

� For DDS, use the CONFIRM keyword.

� Not supported for system-supplied formats.

TYPE(FLUSH)
Use if conversation was allocated with SYNLVL
(*NONE).

LOCKS(SHORT)
Implicit when CONFIRM is specified.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

RECEIVE_AND_WAIT: The RECEIVE_AND_WAIT verb
waits for information to arrive on the specified conversation
and then receives the information. If information is already
available, the program receives it without waiting. The infor-
mation can be data, conversation status, or a request for
confirmation. To perform a RECEIVE_AND_WAIT the
AS/400 program issues a READ operation to a specific
program device name.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

FILL(LL)
VARBUFMGT DDS keyword not specified. Implicit when
using system-supplied formats.

FILL(BUFFER)
VARBUFMGT DDS keyword specified. Not supported
when using system-supplied formats.

LENGTH
Requested length is the length of the record format area.
Returned length is located in the first 2 bytes of the input
buffer and in the communications device dependent area
of the I/O feedback area.

C-14 OS/400 APPC Programming V4R1

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

REQUEST_TO_SEND_RECEIVED
Information is returned by the request-to-write indicator
in the communication device dependent area of the I/O
feedback area.

DATA
Application program's data buffer.

WHAT_RECEIVED
Response indicators and major and minor return codes
in communication device dependent area of I/O feed-
back area. For more information on this parameter, refer
to “MC_RECEIVE_AND_..WAIT” on page C-6.

The following lists contrast WHAT_RECEIVED with the major
and minor return codes and the response indicators. Note
that some major and minor return codes provide more infor-
mation than WHAT_RECEIVED. For example, return code
0008 is equivalent to DATA_COMPLETE and a
RETURN_CODE of DEALLOCATE _NORMAL.
DATA_INCOMPLETE is supported when *RETAIN is speci-
fied for the OVRFLWDTA parameter.

ICF Return Codes Mapped to WHAT_RECEIVED Values:
The following list shows ICF return codes with the corre-
sponding WHAT_RECEIVED values for the
RECEIVE_AND_WAIT verb.

ICF Return Code WHAT_RECEIVED Values

0000 DATA1, DATA_COMPLETE2, SEND

0001 DATA1, DATA_COMPLETE2

00083 DATA1, DATA_COMPLETE2

0010 DATA1, DATA_COMPLETE2

0014 DATA1, DATA_COMPLETE2, CONFIRM_SEND

0015 DATA1, DATA_COMPLETE2, CONFIRM

001C3 DATA1, DATA_COMPLETE2,
CONFIRM_DEALLOCATE

0200 DATA1, DATA_COMPLETE2, SEND

0201 DATA1, DATA_COMPLETE2

02083 DATA1, DATA_COMPLETE2

0214 DATA1, DATA_COMPLETE2, CONFIRM_SEND

0215 DATA1, DATA_COMPLETE2, CONFIRM

021C3 DATA1, DATA_COMPLETE2,
CONFIRM_DEALLOCATE

0257 TAKE_COMMIT

0258 TAKE_COMMIT_SEND

0259 TAKE_COMMIT_DEALLOCATE

0300 SEND

0301 DATA1, DATA_COMPLETE2

0314 CONFIRM_SEND

0315 CONFIRM

031C CONFIRM_DEALLOCATE

0357 TAKE_COMMIT

0358 TAKE_COMMIT_SEND

0359 TAKE_COMMIT_DEALLOCATE

3431 LL_TRUNCATED2

3471 DATA_INCOMPLETE

1 DATA is returned only when FILL(BUFFER) is
used with VARBUFMGT.

2 DATA_COMPLETE and LL_TRUNCATED are
returned only when FILL(LL) is used.

3 The LU 6.2 architected return code DEALLO-
CATE is returned by this ICF return code.

WHAT_RECEIVED Values Mapped to ICF Return Codes:
The following list shows the WHAT_RECEIVED values for
the RECEIVE_AND_WAIT verb with the corresponding ICF
return codes.

WHAT_RECEIVED Value ICF Return Codes

DATA1 0000, 0001, 00083, 0010, 0014, 0015, 001C3,
0200, 0201, 02083, 0214, 0215, 021C3, 0301

DATA_COMPLETE 2 0000, 0001, 00083, 0010, 0014, 0015,
001C3, 0200, 0201, 02083, 0214, 0215, 021C3,
0301

DATA_INCOMPLETE 3471

LL_TRUNCATED 2 3431

SEND 0000, 0200, 0300,

CONFIRM 0015, 0215, 0315,

CONFIRM_SEND 0014, 0214, 0314

CONFIRM_DEALLOCATE 001C3, 021C3, 031C3,

TAKE_COMMIT 0257, 0357

TAKE_COMMIT_SEND 0258, 0358

TAKE_COMMIT_DEALLOCATE 0259, 0359

1 DATA is returned only when FILL(BUFFER) is
used with VARBUFMGT.

2 DATA_COMPLETE and LL_TRUNCATED are
returned only when FILL(LL) is used.

3 The LU 6.2 architected return code DEALLO-
CATE is returned by this ICF return code.

Response Indicators Mapped to WHAT_RECEIVED
Values: The following list shows the DDS response indica-
tors with the corresponding WHAT_RECEIVED values for the
RECEIVE_AND_WAIT verb.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-15

Response Indicators WHAT_RECEIVED Values

RCVCONFIRM CONFIRM, CONFIRM_SEND,
CONFIRM_DEALLOCATE

RCVTRNRND SEND, CONFIRM_SEND,
TAKE_COMMIT_SEND

RCVDETACH CONFIRM_DEALLOCATE,
TAKE_COMMIT_DEALLOCATE

RCVTKCMT TAKE_COMMIT, TAKE_COMMIT_SEND,
TAKE_COMMIT_DEALLOCATE

RECEIVE_IMMEDIATE: Receives any information that is
available from the specified conversation, but does not wait
for information to arrive. The information can be data, con-
versation status, or a request for confirmation. Control is
returned to the program with an indication of whether any
information was received and, if so, the type of information.

There are no ICF operations or functions that map to this
verb.

REQUEST_TO_SEND: The REQUEST_TO_SEND verb
tells the remote program that the local program requests to
enter send state for the conversation. The conversation is
changed to send state when the local program receives a
SEND indication from the remote program.

The REQUEST_TO_SEND verb is specified with a request-
to-write function. The REQUEST WRITE is specified on a
DDS specification using the RQSWRT keyword and in
system-supplied formats with a $$RCD. The DDS format
may also include the INVITE keyword. The system-supplied
format has an implicit invite specified. Note that the invite
function also performs the POST_ON_RECEIPT verb.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

SEND_DATA: The SEND_DATA verb sends data or
control information to the remote program. Done with a write
operation of a format with a data length greater than zero.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

DATA
Application program's data buffer.

LENGTH
For DDS with the VARBUFMGT keyword specified,
implicit by the record format or specified explicitly by the
VARLEN keyword.

For DDS without the VARBUFMGT keyword specified,
the first 2 bytes in the output buffer of the application
program contain the length of data to send.

For system-supplied formats, the first 4 bytes in the
output buffer of the application program contain the
length of data to send.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

REQUEST_TO_SEND_RECEIVED
Communications device dependent area of the I/O feed-
back area as follows:

 � Request-to-write indicator

� Minor return code of 10 for major return code of 00

SEND_ERROR: The SEND_ERROR verb informs the
remote transaction program that the local program detected
an error. Use the FAIL DDS keyword or the $$FAIL system-
supplied format to provide this function.

If the conversation has a synchronization level of commit, the
fail function may cause the system to roll back the protected
LUW. If the fail function is in response to a commit operation,
the system rolls back the protected LUW. If the fail function
is in response to a prepare-for-commit function, the system
does not roll back the protected LUW.

RESOURCE
Refer to the “Specifying the Resource Parameter” on
page C-3.

TYPE(PROG)
Implicit. This is the only supported value.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

REQUEST_TO_SEND_RECEIVED
Communications device dependent area of the I/O feed-
back area as follows:

 � Request-to-write indicator

� Minor return code of 10 with major return code of 00

C-16 OS/400 APPC Programming V4R1

TEST: The TEST verb determines if the requested status
information is available. When using ICF APPC, the applica-
tion program can check the request-to-write indicator in the
I/O feedback area to determine if a REQUEST_TO_SEND
has been received. This field in the I/O feedback area is only
updated on an application I/O boundary. If a
REQUEST_TO_SEND is sent to a program after it has
issued its last operation, the field will not be updated.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

TEST(REQUEST_TO_SEND_RECEIVED)
Indicator in the communications device dependent area
of the I/O feedback area.

TEST(POSTED)
A get-attributes operation. Refer to position 41 in
Table C-1 on page C-11 for more information.

Note: The ICF APPC implementation does not have a func-
tion to perform the TEST verb. Because this function
does not exist, the AS/400 system does not reset the
Request_to_Send_Received indicator value in the
same way as the architecture does when the TEST
verb is issued.

 Miscellaneous Verbs

BACKOUT: The BACKOUT verb is used to restore all pro-
tected resources to their status as of the last successful
commit or rollback operation. This verb is supported by the
rollback operation of the AS/400 system.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

 GET_TP_PROPERTIES: The GET_TP_PROPERTIES
verb is used to return information pertaining to the local
transaction program. This verb is supported by the get-
attributes operation of ICF.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

OWN_FULLY_QUALIFIED_LU_NAME
On the AS/400 system, this is the local network ID con-
catenated by a period (.) with the local LU name. The
local LU name is returned in positions 62 through 69,
and the local network ID is returned in positions 70
through 77 of the data returned by ICF get-attributes
operation. Refer to Table C-1 on page C-11 for more
information.

SECURITY_USER_ID
This is returned in positions 21 through 30 of the data
returned by the ICF get-attributes operation. Refer to
Table C-1 on page C-11 for more information.

LUW_IDENTIFIER
This is returned in positions 437 through 444 of the data
returned by the ICF get-attributes operation. Refer to
Table C-1 on page C-11 for more information.

PROTECTED_LUW_IDENTIFIER
This is returned in positions 410 through 417 of the data
returned by the ICF get-attributes operation. Refer to
Table C-1 on page C-11 for more information.

GET_TYPE: The GET_TYPE verb is used to determine
the conversation type. This verb is supported by the get-
attributes operation of ICF.

RESOURCE
Refer to “Specifying the Resource Parameter” on
page C-3.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

TYPE
The conversation type is returned in position 53 of the
data returned. Refer to Table C-1 on page C-11 for
more information.

 SET_SYNCPT_OPTIONS: The
SET_SYNCPT_OPTIONS verb is used to change the options
governing the processing of the SYNCPT, BACKOUT,
PREPARE_FOR_SYNCPT, and
MC_PREPARE_FOR_SYNCPT verbs. This verb is supported
by the Change Commitment Options (QTNCHGCO) API.
Changes made using the QTNCHGCO API only affect the
activation group that it was called in. The System API Pro-
gramming book has information about the QTNCHGCO API.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

VOTE_READ_ONLY_PERMITTED

The vote read-only permitted parameter of the Change
Commitment Options (QTNCHGCO) API is equivalent to
this LU 6.2 parameter.

WAIT_FOR_OUTCOME

The wait for outcome parameter of the Change Commit-

 Appendix C. Implementation of the LU Type 6.2 Architecture C-17

ment Options (QTNCHGCO) API is equivalent to this LU
6.2 parameter.

ACTION_IF_PROBLEMS

The action if problems parameter of the Change Com-
mitment Options (QTNCHGCO) API is equivalent to this
LU 6.2 parameter.

Note: The QTNCHGCO API also has an action if ENDJOB
parameter that allows you to specify what the system
should do in the event of an ENDJOB.

SYNCPT: The SYNCPT verb is used to commit changes
to all protected resources. This verb is supported by the
commit operation of the AS/400 system.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

WAIT: The WAIT verb waits for data or information from
one or more active conversations. APPC uses the read-from-
invited-program-devices operation to wait for input from one
or more previously invited conversations.

RESOURCE_LIST
Implied by the previous invites.

RETURN_CODE
Information is returned as follows:

 � Messages

� Return codes in the communications device
dependent area of the I/O feedback area

RESOURCE_POSTED
Returned in the I/O feedback area.

Mapping of LU 6.2 Return Codes to ICF
Return Codes

Table C-2 provides a mapping between the LU 6.2 return
codes and the ICF return codes. The values (or subcodes)
for the LU 6.2 return codes listed in the table are passed to a
program after the LU has completed the processing of a
verb. The return code indicates the result of the processing
and can be passed on any verb that has a RETURN_CODE
parameter. For detailed descriptions of the LU 6.2 return
codes and subcodes, refer to the SNA Transaction Program-
mer's Reference Manual for LU Type 6.2

Also provided is a brief description of the ICF return codes.
For details of the ICF return code descriptions, refer to
Appendix B.

Note: Because the return code mapping is not one-to-one,
you should note that this table can only provide a
general guide as to how return codes correspond. For
example, the ICF return code 80C0 can correlate to
any of the following LU 6.2 return codes:

 � DEALLOCATE_ABEND

 � PRODUCT_SPECIFIC_ERROR

 � RESOURCE_FAILURE_NO_RETRY

 � RESOURCE_FAILURE_RETRY.

Table C-2 (Page 1 of 5). Mapping of LU 6.2 Return Codes to ICF Return Codes

LU 6.2 Return Code or Subcode ICF Return Code Description

ALLOCATION_ERROR 82FA Requested synchronization level not sup-
ported.

82FB Protected conversations not supported on
single-session connections.

82FC Protected conversations not supported by
System/36 and System/38 environments.

82FD Exchange log name processing failed.

C-18 OS/400 APPC Programming V4R1

Table C-2 (Page 2 of 5). Mapping of LU 6.2 Return Codes to ICF Return Codes

LU 6.2 Return Code or Subcode ICF Return Code Description

ALLOCATION_FAILURE_NO_RETRY 80EB Open not successful.
80ED Record format level mismatch occurred, or

temporary file close option not allowed for
this file type.

80F8 File already open or marked in error on a
previous return code.

8281 System error condition detected.
8282 Device is not usable.
82A6 BIND command was not successful.
82EA Format selection *RECID cannot be used

with the ICF file.
82EC CNVTYPE(*USER) does not support

FMTSLT(*RMTFMT).
82EE Device not supported, or your program is

trying to acquire the requesting program
device in a program that was not started by
a program start request.

82F0 Error in ICF file.
82F2 CNVTYPE specification not valid on the

ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command.

ALLOCATION_FAILURE_RETRY 80B3 ICF file in use.
80EB Open operation not successful.
80ED Record format level mismatch occurred, or

temporary file close option not allowed for
this file type.

81C2 Session not available.
82A8 Maximum number of program devices

allowed for ICF file reached.
82AB Device description not varied on.
82B3 No sessions currently available in the speci-

fied communications configuration.

CONVERSATION_TYPE_MISMATCH 83CF Either your program or the remote program
does not support the specified conversation
type.

DEALLOCATE_ABEND 80C0 Abnormal end of session or remote protocol
error.

80FB Abnormal end of session or remote protocol
error. Rollback required.

8197 Remote system ended transmission abnor-
mally, session ended.

81F2 Remote system ended transmission abnor-
mally, session ended. Rollback required.

8327 No active transaction.

DEALLOCATE_ABEND_PROG 8197 Abnormal end of session (program).
81F2 Abnormal end of session (program). Rollback

required.
83F1 Abnormal end of session (program).
83FB Abnormal end of session (program). Rollback

required.

DEALLOCATE_ABEND_SVC 81C5 Abnormal end of session (service).
81F3 Abnormal end of session (service). Rollback

required.

DEALLOCATE_ABEND_TIMER 81C6 Abnormal end of session (timer).
81F4 Abnormal end of session (timer). Rollback

required.

DEALLOCATE_NORMAL 0008 Detach indication received with data.
0308 Detach indication received without data.

MAP_EXECUTION_FAILURE None No mapping exists.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-19

Table C-2 (Page 3 of 5). Mapping of LU 6.2 Return Codes to ICF Return Codes

LU 6.2 Return Code or Subcode ICF Return Code Description

MAP_NOT_FOUND 83E0 Record format was not defined for the ICF
file.

MAPPING_NOT_SUPPORTED None No mapping exists.

OK Major return codes 00, 02, 03, or 34 Normal completion.

PARAMETER_ERROR 82AA Remote location name not found.
82C3 Mode specified not valid.
8334 Program name not specified correctly.
831E Operation not valid, or a combination of

operations that was not valid was specified.

PIP_NOT_ALLOWED 83D1 PIP data not allowed by remote program.

PIP_NOT_SPECIFIED_CORRECTLY 83D2 PIP data not specified correctly for remote
program.

POSTING_NOT_ACTIVE 1100 The read-from-invited-program-devices oper-
ation was not successful because your
program tried this operation when no
program devices were invited and no timer
function was in effect.

PROG_ERROR_NO_TRUNC 83C7 Your program received a fail indication
(TYPE=PROG) with no data. No data was
truncated.

PROG_ERROR_PURGING 83C9 Your program received a fail indication
(TYPE=PROG) with or without a confirm indi-
cation. Data may have been lost.

PROG_ERROR_TRUNC 83CB Your program received a fail indication
(TYPE=PROG). The last logical record has
been truncated.

PROGRAM_PARAMETER_CHECK 8233 Program device name not valid.
831F Program specified data or length not valid.
83CD The input or output operation issued by your

program was not successful because your
program attempted a confirm operation while
it was still in receive state, or because a
confirm operation was specified for a trans-
action that was started with a synchroniza-
tion level of *CONFIRM.

83F3 Length specification (LL) not valid.

PROGRAM_STATE_CHECK 0412 Output not allowed.
0800 Cannot acquire a session that is already

acquired.
82A9 Acquire to *REQUESTER device failed.
830B Session not active.
8327 No active transaction.
8329 An evoke function that was not valid was

detected in this session.
832C A release operation following an invite func-

tion was detected.
832D Following an invite function, your program

issued a request-to-write indication or an
additional invite function.

832F Transaction already active.
83CD Input or output operation was not successful.
83D5 Confirm request in progress.
83D6 RSPCONFIRM function not valid.
83F9 Length (LL) truncation error.

C-20 OS/400 APPC Programming V4R1

Table C-2 (Page 4 of 5). Mapping of LU 6.2 Return Codes to ICF Return Codes

LU 6.2 Return Code or Subcode ICF Return Code Description

RESOURCE_FAILURE_NO_RETRY 8082 Device is not usable.
80C0 Session ended abnormally or remote pro-

tocol error.
80EB Open operation not successful.
80FA Device is not usable. Rollback required.
80FB Session ended abnormally or remote pro-

tocol error. Rollback required.
8196 Session was ended locally.
8197 Remote system ended transmission abnor-

mally, session ended.
81F1 Session was ended locally. Rollback

required.
81F2 Remote system ended transmission abnor-

mally, session ended. Rollback required.

RESOURCE_FAILURE_RETRY 8081 System error detected.
80C0 Abnormal end of session or remote protocol

error.
80F9 System error detected. Rollback required.
80FB Abnormal end of session or remote protocol

error. Rollback required.
8191 Permanent line or controller error.
8196 Session was ended locally.
8197 Remote system ended transmission abnor-

mally, session ended.
81E9 Data received does not match any record

formats in file.
81F0 Permanent line or controller error. Rollback

required.
81F1 Session was ended locally. Rollback

required.
81F2 Remote system ended transmission abnor-

mally, session ended. Rollback required.
81F5 Data received does not match any record

formats in file. Rollback required.
83F8 Program device in error.
83FC Program device in error. Rollback required.

ROLLBACK_REQUIRED 0054 Rollback required.
0254 Rollback required.

ROLLED_BACK 83FD All affected protected resources rolled back.
83FE Rollback results not yet known.
83FF Transaction results mixed due to operator

intervention.

SECURITY_NOT_VALID 80EF Open operation not authorized to user.
82EF Acquire to device not authorized to user, or

device is in service mode.
83CE Security information specified not valid.

SYNC_LEVEL_NOT_SUPPORTED_
BY_PGM

83D3 Synchronization level not valid.

SVC_ERROR_NO_TRUNC 83C8 Your program received a fail indication
(TYPE=SVC) with no data. No data was trun-
cated.

SVC_ERROR_PURGING 83CA Your program received a fail indication
(TYPE=SVC) with or without a confirm indi-
cation. Data may have been lost.

SVC_ERROR_TRUNC 83CC Your program received a fail indication
(TYPE=SVC). The last logical record has
been truncated.

TPN_NOT_RECOGNIZED 8316 Target program could not be found.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-21

Table C-2 (Page 5 of 5). Mapping of LU 6.2 Return Codes to ICF Return Codes

LU 6.2 Return Code or Subcode ICF Return Code Description

TP_NOT_AVAIL_NO_RETRY 80D0 Program specified on evoke function not
available; program cannot issue another
evoke function.

TP_NOT_AVAIL_RETRY 83D0 Cannot start program specified on the evoke
function; program can try again.

UNSUCCESSFUL None No mapping exists.

For information on return code values for mapped conversa-
tion verbs using the WHAT_RECEIVED parameter, see the
lists under “MC_RECEIVE_AND_..WAIT” on page C-6. For
information on return code values for basic conversation
verbs using the WHAT_RECEIVED parameter, see the lists
under “RECEIVE_AND_WAIT” on page C-14.

LU 6.2 Conversation Verb Option Sets
Used by the AS/400 System

This section provides a table of the conversation verb option
sets that the AS/400 system supports. An LU 6.2 product
may provide support for all verbs or a permitted subset of
them. The permitted subset for LU 6.2 products is defined by
means of a base set and a number of option sets. By using

the option set numbering, any LU 6.2 product implementation
can precisely identify its support of LU 6.2 functions.

Base and option sets for the verbs also depend on local and
remote support. Local support refers to information flowing
only within a local LU or flowing from a local LU to a remote
LU; remote support refers to information flowing from a
remote LU to a local LU. In the following table, the option set
description provides information about the local and remote
support for the verbs that are in an option set.

Notes:

1. Table C-3 includes only those functions that are not in
the base option set. All other verbs that the AS/400
system supports and are described in this appendix are
assumed to be in the base option set.

2. Brackets [] indicate that the contents are optional.

Table C-3 (Page 1 of 4). Supported Option Sets

Set Number Set Name Set Description

101 Flush the LU's send buffer This option set allows a program to explicitly cause the LU to flush
its send buffer. This option set includes the [MC_]FLUSH verb, but
just for local support, because the remote support for this verb is in
the LU 6.2 base set of functions.

102 Get attributes This option set allows a program to obtain attributes of a mapped
conversation. This option set includes the MC_GET_ATTRIBUTES
verb; in contrast, the GET_ATTRIBUTES verb for basic conversa-
tions is part of the LU 6.2 base set of functions.

104 Post on receipt with wait This option set allows a program to request posting of multiple con-
versations and then to wait (suspend its processing) until information
is available on any one of the conversations. This option set includes
the [MC_]POST_ON_RECEIPT verb and the WAIT verb, which is a
type-independent verb. Option set 105 is a prerequisite.

105 Prepare to receive This option set allows a program to change the conversation from
send state to receive state and at the same time flush the LU's send
buffer, request confirmation, or request sync point. This option set
includes the [MC_]PREPARE_TO_RECEIVE verb, but just for local
support, because the remote support for this verb is in the LU 6.2
base set of functions.

106 Receive immediate This option set allows a program to receive whatever information is
available on a conversation without having to request posting of the
conversation. This option set includes the
[MC_]RECEIVE_IMMEDIATE verb. Option set 105 is a prerequisite.

Note: Supported only by CPI Communications.

C-22 OS/400 APPC Programming V4R1

Table C-3 (Page 2 of 4). Supported Option Sets

Set Number Set Name Set Description

108 Sync point services This option set allows a program to request sync point processing for
all protected resources of the transaction. This option set includes
the SYNCPT, BACKOUT, and SET_SYNCPT_OPTIONS verbs, all of
which are type-independent verbs. This option set relates to the
SYNC_LEVEL parameter of the [MC_]ALLOCATE,
[MC_]DEALLOCATE, [MC_]GET_ATTRIBUTES, DEFINE_TP, and
DISPLAY_TP verbs, to the PROTECTED_LUW_IDENTIFIER param-
eter of the GET_TP_PROPERTIES verb, and to the
CONVERSATION_STATE parameter of the
[MC_]GET_ATTRIBUTES verb.

110 Get conversation type This option set allows a program that supports both the basic conver-
sation and mapped conversation protocol boundaries to determine
which category of verbs it should use in conjunction with a
resource_ID. This option set includes the GET_TYPE verb, a type-
independent verb.

111 Recovery from program errors detected
during sync point

This option set allows a program to issue the
[MC_]PREPARE_FOR_SYNCPT verb to initiate a sync point opera-
tion on a conversation. If a program error return code is received
after this verb is issued, the program can attempt to correct the
problem and retry the sync point operation. This contrasts to the
SYNCPT verb, which backs out the transaction if a program error is
detected during the sync point operation. This option set includes the
[MC_]PREPARE_FOR_SYNCPT verb and affects the return code of
the BACKOUT verb. Option set 108 is a prerequisite.

203 Immediate allocation of a session This option set allows a program to allocate a contention-winner
session only if one is immediately available; otherwise, the allocation
is not successful. This option set relates to the RETURN_CONTROL
parameter of the [MC_]ALLOCATE verb.

Note: Supported only by CPI Communications.

204 Conversations between programs located
at the same LU

This option set allows a local program to allocate a conversation to a
program located at the same LU as the local program. This option
set relates to the LU_NAME parameter of the [MC_]ALLOCATE verb.

211 Session-level LU-LU verification This option set allows a program or an operator to designate the
LU-LU passwords, associated with remote LUs, that the local LU
uses to verify the identity of a remote LU at session activation time.
This option set relates to the LU_LU_PASSWORD of the
DEFINE_REMOTE_LU verb. This option set is a prerequisite for
every other security-related option set.

212 User ID verification This option set allows a program or an operator to designate the
user IDs and associated passwords that the local LU uses to verify
the identity of a user ID carried on allocation requests it receives,
and to designate the remote LUs that are permitted to send to the
local LU allocation requests carrying a user ID and either a password
or an already-verified indication. This option set also allows the
program allocating a conversation to specify that the allocation
request carry the user ID received on the request that started the
program, together with an already-verified indication. This option set
relates to the SECURITY parameter of the [MC_]ALLOCATE verb.
Option set 211 is a prerequisite.

213 Program-supplied user ID and password This option set allows the program allocating a conversation to
supply the user ID and password to be sent on the allocation
request. This option set relates to the SECURITY parameter of the
[MC_]ALLOCATE verb. Option set 211 is a prerequisite.

214 User ID authorization This option set allows a program or an operator to designate the
user IDs that are authorized access to specific resources of the LU,
such as transaction programs. This option set relates to the SECU-
RITY parameter of the [MC_]ALLOCATE verb. Option set 211 is a
prerequisite.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-23

Table C-3 (Page 3 of 4). Supported Option Sets

Set Number Set Name Set Description

217 Profile pass-through This option set allows the program allocating a conversation to
specify that the allocation request carry the profile received on the
request that started the program. This option set relates to the
SECURITY parameter of the [MC_]ALLOCATE verb. Option set 211
is a prerequisite.

218 Program-supplied profile This option set allows the program allocating a conversation to
supply the profile to be sent on the allocation request. This option set
relates to the SECURITY parameter of the [MC_]ALLOCATE verb.
Option set 213 or 224 is a prerequisite.

222 Receive sign-on transaction This option set receives the sign-on transaction. It is only used to
check the password independently of any user program. It can also
be used to change the password. Option set 212 is a prerequisite.

223 User password protection This option set allows a program to send passwords encrypted. It
changes the passwords used in option sets 212, 213, 219, 220, 221
and 222. Option set 211 is a prerequisite.

224 Program required password protection This option set forces the password to be encrypted. This option set
relates to the SECURITY parameter of the [MC_]ALLOCATE verb.
Option set 211 is a prerequisite.

Note: Supported only by CPI Communications.

241 Send PIP data This option set allows the local program allocating a conversation to
provide the remote program with initialization parameters. This option
set relates to the PIP parameter of the [MC_]ALLOCATE verb.

242 Receive PIP data This option set allows the local program to receive from the remote
program allocating a conversation some initialization parameters.
This option set relates to the PIP parameter of the [MC_]ALLOCATE
verb at the remote LU.

Note: ILE C/400 allows PIP data to be received, but does not allow
any way to control how much source the program should
provide.

243 Accounting This option set allows an LU implementation to generate and send
both a logical-unit-of-work (LUW) identifier and a conversation
correlator (CC) to the remote LU. This option set provides the LUW
and CC identifiers to be used, along with other information, for
accounting purposes. This option set relates to the
CONVERSATION_CORRELATOR and LUW_IDENTIFIER parame-
ters of the [MC_]GET_ATTRIBUTES verb.

245 Test for request-to-send received This option set allows a program to test whether a request-to-send
notification has been received on a conversation, for example, fol-
lowing sync point processing. This option set relates to the TEST
parameter of the [MC_]TEST verb.

Note: Supported only by CPI Communications.

246 Data mapping This option set allows a program using mapped conversations to
request mapping of the data by the local and remote LUs. This
option set relates to the MAP_NAME parameter of the
MC_SEND_DATA and MC_RECEIVE_AND_WAIT verbs.

247 User control data This option set allows programs to send and receive data records
containing user control data. The user control data has meaning only
to the application programs. This option set relates, for mapped con-
versations only, to the USER_CONTROL_DATA parameter of the
MC_SEND_DATA and DISPLAY_TP verbs.

249 Vote read-only response to a sync point
operation

This option set improves performance of sync point operations by
allowing the local LU to vote read-only when none of the protected
resources in its part of the distributed transaction have been
changed. This option set includes the
VOTE_READ_ONLY_PERMITTED parameter of the
SET_SYNCPT_OPTIONS verb, and affects the return code to the
SYNCPT verb. Option set 108 is a prerequisite.

C-24 OS/400 APPC Programming V4R1

Table C-3 (Page 4 of 4). Supported Option Sets

Set Number Set Name Set Description

290 Logging of data in a system log This option set allows a program to record error information in the
system's error log. This option set can be used on basic conversa-
tions only and relates to the LOG_DATA parameter of the
SEND_ERROR and DEALLOCATE verbs.

Note: Supported only by CPI Communications.

LU 6.2 Control-Operator Verb Option Sets
Used by the AS/400 System

This section provides a table of the control-operator verb
option sets that the AS/400 system supports.

Table C-4 (Page 1 of 2). Supported Option Sets

Set Number Set Name Set Description

501 CHANGE_SESSION_LIMIT verb This option set allows a program or an operator at the source LU to
request a change in the (LU,mode) session limit from one nonzero
value to another, or a change in the minimum number of contention-
winner sessions for the source LU or target LU. This option set
includes the CHANGE_SESSION_LIMIT verb, but just for local
support because the remote support for this verb is in the LU 6.2
base set of functions.

505 LU-definition verbs This option set allows a program or an operator to specify the oper-
ating parameters of its LU. This option set includes the
DEFINE_LOCAL_LU, DEFINE_MODE, DEFINE_REMOTE_LU,
DISPLAY_LOCAL_LU, DISPLAY_MODE, and
DISPLAY_REMOTE_LU verbs.

Note: The AS/400 implementation of this option set does not
provide support for DEFINE_TP.

603 DRAIN_TARGET(NO) parameter This option set allows a program or an operator at the source LU to
prevent the target LU from draining its allocation requests as a result
of resetting the (LU,mode) session limit to 0. This option set relates
to the DRAIN parameter of the RESET_SESSION_LIMIT verb.

605 LU-LU session limit This option set allows a program or an operator to specify the LU-LU
session limit. This option set relates to the LU_SESSION_LIMIT
parameter of the DEFINE_LOCAL_LU verb.

606 Locally-known LU names This option set allows a program or an operator to specify the locally-
known names of remote LUs. This option set relates to the
LOCALLY_KNOWN_LU_NAME parameter of the
DEFINE_REMOTE_LU and DISPLAY_REMOTE_LU verbs. The
locally-known LU name may be used in the LU_NAME parameter of
the [MC_]ALLOCATE verb and other verbs having the LU_NAME
parameter.

610 Maximum RU size bounds This option set allows a program or an operator to specify the lower
and upper bounds for the maximum RU sizes on sessions within an
(LU,mode) group. This option set relates to the following:

 � SEND_MAX_RU_SIZE_LOWER_BOUND

 � SEND_MAX_RU_SIZE_UPPER_BOUND

 � RECEIVE_MAX_RU_SIZE_LOWER_BOUND

� RECEIVE_MAX_RU_SIZE_UPPER_BOUND parameters of the
DEFINE_MODE and DISPLAY_MODE verbs.

612 Contention winner automatic activation
limit

This option set allows a program or an operator to specify the limit
for automatically activating contention-winner sessions within an
(LU,mode) group. This option set relates to the
CONWINNER_AUTO_ACTIVATE_LIMIT parameter of the
DEFINE_MODE and DISPLAY_MODE verbs.

 Appendix C. Implementation of the LU Type 6.2 Architecture C-25

Table C-4 (Page 2 of 2). Supported Option Sets

Set Number Set Name Set Description

613 Local maximum (LU,mode) session limit This option set allows a program or an operator to specify the
maximum value that can be used during change-number-of-sessions,
or CNOS, processing of the (LU,mode) session limit. This option set
relates to the CNOS_MAX_SESSION_LIMIT parameter of the
DEFINE_MODE and DISPLAY_MODE verbs.

C-26 OS/400 APPC Programming V4R1

Appendix D. APPC Configuration Examples

This appendix provides the following APPC configuration
examples:

� A two-system APPC network (without APPN, switched)

� A two-system APPC network (without APPN, non-
switched)

� X.21 Short-Hold Mode communications between two
AS/400 systems

� Defining controller descriptions for programs communi-
cating on the same system

The Communications Configuration book has an example of
configuring for APPC over TCP/IP support.

Switched Network without APPN
Support—Configuration Example

In this example, two AS/400 systems are being configured to
communicate with each other using switched connections
without APPN networking functions.

In this example, default values are used for all parameters
not explicitly defined. Refer to the description of the com-
mands in this chapter for a description of those parameters
that are specifically for APPC; see the CL Reference for the
complete syntax of the commands and the parameters.

The name assigned to each description created is the same
as the name of the destination being defined in that
description. For example, the line description configured in
New York for the connection to Los Angeles is named
LOSANGEL.

Names (such as location names), telephone numbers,
exchange identifiers, and other values shown in the exam-
ples are for illustration only. The values you assign to your
configuration are dependent on your network requirements.

Creating the Line Description (New York to
Los Angeles)

The line used in this example is an SDLC switched line. The
command used to create the line is CRTLINSDLC. The fol-
lowing displays show the creation of this line description.

à ð
 Create
Line Desc (SDLC) (CRTLINSDLC)

 Type choices, press Enter.

 Line description > LALINSW Name

 Resource names > LINð11 Name

+ for more values

 Online at IPL \YES \YES, \NO

 Data link role \NEG \NEG, \PRI, \SEC

 Physical interface \RS232V24 \RS232V24, \V35, \X21, ...

 Connection type> \SWTPP \NONSWTPP, \SWTPP, \MP, \SHM

 Vary on wait \NOWAIT \NOWAIT, 15-18ð (1 second)

 Autocall unit \NO \NO, \YES

 Exchange identifier > ð56ðððð1.1/ ð56ððððð-ð56FFFFF, \SYSGEN

 NRZI data encoding \YES \YES, \NO

 Line speed 96ðð 6ðð, 12ðð, 24ðð, 48ðð...

 Modem type supported \NORMAL \NORMAL, \V54, \IBMWRAP...

 Switched connection type \BOTH \BOTH, \ANS, \DIAL

 Autoanswer \YES \YES, \NO

 Autodial \NO \NO, \YES

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

à ð
Create Line Desc (SDLC)

(CRTLINSDLC)

 Type choices, press Enter.

 Calling number \NONE

 Station address > ð1.2/ ð1-FE

 Connect poll retry 7 ð-64

 Maximum frame size 521 265, 521, 1ð33, 2ð57

 Duplex \HALF \HALF, \FULL

 Inactivity timer 3ðð \NOMAX, 15ð-42ðð (ð.1 sec)

 Poll response delay ð ð-2ð48 (ð.ððð1 seconds)

 Nonproductive receive timer . . 32ð 16ð-42ðð (ð.1 seconds)

 Idle timer 3ð 5-3ðð (ð.1 seconds)

 Connect poll timer 3ð 2-3ðð (ð.1 seconds)

 Poll cycle pause ð ð-2ð48 (ð.ððð1 seconds)

 Frame retry 7 ð-64

 Data Set Ready drop timer . . . 6 3-6ð (seconds)

 Autoanswer type \DTR \DTR, \CDSTL

 Remote answer timer 6ð 3ð, 35, 4ð, 45 (seconds)...

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

à ð
Create Line Desc (SDLC) (CRTLINSDLC)

 Type choices, press Enter.

 Text 'description' > 'Line description for

NY to LA'

Considerations for specifying the CRTLINSDLC
command:

.1/The exchange identifier is used to identify the AS/400
system to the remote system.

.2/ Valid station addresses are hex ð1 to FE.

Creating the Controller Description (New York to
Los Angeles): Because this is an APPC environment
(AS/400 system to AS/400 system), the controller is an
APPC controller, and the CRTCTLAPPC command is used to
define the attributes of the controller. The following displays
show the creation of the controller description.

 Copyright IBM Corp. 1997 D-1

à ð
Create Ctl Desc (APPC) (CRTCTLAPPC)

 Type choices, press Enter.

 Controller description > LACTLSW Name

 Link type> \SDLC \ANYNW, \FAX, \FR, \IDLC...

 Online at IPL \YES \YES, \NO

 Switched connection > \YES \NO, \YES

 Short hold mode \NO \NO, \YES

 APPN-capable > \NO \YES, \NO

 Controller type \BLANK \BLANK, \FBSS, 3174, 3274...

 Switched line list > LALINSW.1/ Name

+ for more values

 Maximum frame size \LINKTYPE 265-16393, 256, 265, 512...

 Remote network identifier . . . \NETATR Name, \NETATR, \NONE, \ANY

 Remote control point Name, \ANY

 Exchange identifier > ð56ðððð2.2/ ðððððððð-FFFFFFFF

 Initial connection \DIAL \DIAL, \ANS

 Dial initiation \LINKTYPE \LINKTYPE, \IMMED, \DELAY

 Connection number > 81355551234.3/
 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

à ð
Create Ctl Desc (APPC) (CRTCTLAPPC)

 Type choices, press Enter.

 Data link role \NEG \NEG, \PRI, \SEC

 Station address > ð1.4/ ðð-FE

 Autocreate device \ALL \ALL, \NONE

 Text 'description' > 'Controller description NY to LA'

Considerations for specifying the CRTCTLAPPC
command:

.1/ The switched line list must already exist. This
value should match the corresponding line
description.

.2/ The exchange identifier is used to identify the
remote controller. This parameter is required for
switched SDLC lines with APPN(*NO) and no
remote control point name specified.

.3/ The connection number is required for APPC
controllers with a switched connection unless the
initial connection is specified as *ANS.

.4/ The station address must match the station
address specified in the corresponding line
description if the data link role is specified as
*NEG.

Creating the Device Description (New York to Los
Angeles): Because this is an APPC environment (AS/400
system to AS/400 system), the device is an APPC device,
and the CRTDEVAPPC command is used to define the attri-
butes of the device. The following displays show the creation
of the APPC device description.

à ð
 Create
Device Desc (APPC) (CRTDEVAPPC)

 Type choices, press Enter.

 Device description > LADEVSW Name

 Remote location > LOSANGEL .1/ Name

 Online at IPL \YES \YES, \NO

 Local location > NEWYORK.2/ Name, \NETATR

 Remote network identifier . . . \NETATR Name, \NETATR, \NONE

 Attached controller > LACTLSW Name

 Mode > BLANK Name, \NETATR

+ for more values > #BATCH

 Message queue QSYSOPR Name, QSYSOPR

Library \LIBL Name, \LIBL, \CURLIB

 APPN-capable> \NO \YES, \NO

 Single session:

Single session capable \NO \NO, \YES

Number of conversations . . . 1-512

 Location password \NONE

 Secure location \NO \NO, \YES, \VFYENCPWD

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

à ð
Create Device Desc (APPC) (CRTDEVAPPC)

 Type choices, press Enter.

 Text 'description' > 'Device description

NY to LA'

Considerations for specifying the CRTDEVAPPC
command:

.1/ The remote location name specifies the remote
location with which your system will be commu-
nicating. This value must match the local
location name specified on the remote system's
device description.

.2/ The local location name is the unique name by
which the AS/400 system is known. This value
must match the remote location name on the
remote system's device description.

Configuring System B (Los Angeles)

The following example program shows the CL commands
used to define the configuration for the system identified as
LOSANGEL. The example shows the commands used in a
CL program; the configuration can also be performed using
the configuration displays shown previously.

D-2 OS/400 APPC Programming V4R1

/\\\/

/\ \/

/\ MODULE: LANYAPPC LIBRARY: PUBSCFGS \/

/\ \/

/\ LANGUAGE: CL \/

/\ \/

/\ FUNCTION: CONFIGURES APPC NODES AS FOLLOWS: \/

/\ \/

/\ \/

/\ THIS IS: LOSANGEL TO NEWYORK (switched) \/

/\ \/

/\ \/

/\ \/

/\ \/

/\\\/

PGM /\ \/

/\ LOSANGEL TO NEWYORK (switched) \/

/\\\/

/\ Create line description for LOSANGEL to NEWYORK \/

CRTLINSDLC LIND(NYLINSW) RSRCNAME(LINð11) +

CNN(\SWTPP) EXCHID(ð56ðððð2) +

 STNADR(ð1)

/\ Create controller description for LOSANGEL to NEWYORK \/

CRTCTLAPPC CTLD(NYCTLSW) LINKTYPE(\SDLC) SWITCHED(\YES) +

SWTLINLST(NYLINSW) EXCHID(ð56ðððð1) +

INLCNN(\DIAL) CNNNBR('4317773333') APPN(\NO) +

 STNADR(ð1)

/\ Create device description for LOSANGEL to NEWYORK \/

CRTDEVAPPC DEVD(NYDEVSW) LOCADR(ðð) RMTLOCNAME(NEWYORK) +

LCLLOCNAME(LOSANGEL) APPN(\NO) +

CTL(NYCTLSW) MODE(BLANK #BATCH) ENDPGM

Nonswitched Network without APPN
Support—Configuration Example

The commands shown here are those used to configure two
AS/400 systems to communicate with each other without
using APPN networking functions.

In this example, default values are used for all parameters
not explicitly defined. Refer to the description of the com-
mands in this chapter for a description of those parameters
that are specifically for APPC; see the CL Reference for the
complete syntax of the commands and the parameters.

The name assigned to each description created is the same
as the name of the destination being defined in that
description. For example, the line description configured in
New York for the connection to Los Angeles is named
LOSANGEL.

Names (such as location names), telephone numbers,
exchange identifiers, and other values shown in the exam-
ples are for illustration only. The values you assign to your
configuration are dependent on your network requirements.

Configuring System A (New York)

The following CL commands are used to define the config-
uration for the system identified as NEWYORK. The example
shows the commands as used within a CL program; the con-
figuration can also be performed using the configuration
menus.

/\\\/

/\ \/

/\ MODULE: NYLAAPPC LIBRARY: PUBSCFGS \/

/\ \/

/\ LANGUAGE: CL \/

/\ \/

/\ FUNCTION: CONFIGURES APPC NODES AS FOLLOWS: \/

/\ \/

/\ \/

/\ THIS IS NEWYORK TO LOSANGEL (nonswitched) \/

/\ \/

/\\\/

PGM

/\\\/

/\ NEWYORK TO LOSANGEL (nonswitched) \/

/\\\/

/\ Create line description for NEWYORK to LOSANGEL \/

CRTLINSDLC LIND(LOSANGEL) RSRCNAME(LINð11)

/\ Create controller description for NEWYORK to LOSANGEL \/

CRTCTLAPPC CTLD(LOSANGEL) LINKTYPE(\SDLC) APPN(\NO)

LINE(LOSANGEL) RMTNETID(\NONE) STNADR(ð1)

/\ Create device description for NEWYORK to LOSANGEL \/

CRTDEVAPPC DEVD(LOSANGEL) LOCADR(ðð) RMTLOCNAME(LOSANGEL)

 LCLLOCNAME(NEWYORK) APPN(\NO)

CTL(LOSANGEL) MODE(BLANK #BATCH)

ENDPGM

Creating the Line Description (New York to
Los Angeles)

The line used in this example is an SDLC nonswitched line.
The command used to create the line is Create Line
Description (SDLC) (CRTLINSDLC). The parameters speci-
fied are:

LIND(LOSANGEL)
The name assigned to the line description is
LOSANGEL.

RSRCNAME(LIN011)
Specifies that the physical communications port named
LIN011 is being defined.

Creating the Controller Description (New
York to Los Angeles)

Because this is an APPC environment (AS/400 system to
AS/400 system), the controller is an APPC controller and the
CRTCTLAPPC command is used to define the attributes of
the controller. The following attributes are defined by the
CRTCTLAPPC command in the example:

CTLD(LOSANGEL)
The name assigned to the controller description is
LOSANGEL.

LINKTYPE(*SDLC)
Because this controller is to be attached through an
SDLC communications line, the value specified is
*SDLC. This value must correspond to the type of line
being used as defined by a create line description
command.

APPN(*NO)
This example does not need or use the APPN net-
working capabilities of the AS/400 system, so
APPN(*NO) is specified. All devices attached to this con-
troller must also specify APPN(*NO).

 Appendix D. APPC Configuration Examples D-3

LINE(LOSANGEL)
Specifies the name (LOSANGEL) of the line description
to which this controller is attached. This value must
match a name specified by the LIND parameter in a line
description.

RMTNETID(*NONE)
Because APPN(*NO) is specified, there is no need to
define a remote network identifier.

STNADR(01)
The address assigned to the remote controller is hex 01.

Creating the Device Description (New York
to Los Angeles)

Because this is an APPC environment (AS/400 system to
AS/400 system), the device is an APPC device and the
CRTDEVAPPC command is used to define the attributes of
the device. The following attributes are defined by the
example command:

DEVD(LOSANGEL)
Specifies that the name assigned to the device
description is LOSANGEL.

LOCADR(00)
The location address should always be specified as hex
00 when the device is associated with an APPC con-
troller.

RMTLOCNAME(LOSANGEL)
Specifies that the remote location name associated with
this device description is LOSANGEL.

This value matches the value specified for the
LCLLOCNAME parameter at the other system
(LOSANGEL).

LCLLOCNAME(NEWYORK)
Specifies the name assigned to the local location, which
is NEWYORK in the example.

This value matches the value specified for the
RMTLOCNAME parameter at the other system
(LOSANGEL).

APPN(*NO)
Specifies that the networking support is not used.

CTL(LOSANGEL)
Specifies that the device description is to be attached to
the controller description named LOSANGEL.

MODE(BLANK #BATCH)
Specifies that this device will use either of two modes:
BLANK, which is a mode name of all blanks (hex 40), or
#BATCH. Both these modes are supplied by IBM. Note
that the other location must also use one of these
modes when communicating with this location.

Configuring System B (Los Angeles)

The following CL commands are used to define the config-
uration for the system identified as LOSANGEL. The
example shows the commands as used within a CL program;
the configuration can also be performed using the configura-
tion menus.
/\\\/

/\ \/

/\ MODULE: LANYAPPC LIBRARY: PUBSCFGS \/

/\ \/

/\ LANGUAGE: CL \/

/\ \/

/\ FUNCTION: CONFIGURES APPC NODES AS FOLLOWS: \/

/\ \/

/\ \/

/\ THIS IS LOSANGEL TO NEWYORK (nonswitched) \/

/\ \/

/\\\/

PGM

/\\\/

/\ LOSANGEL TO NEWYORK (nonswitched) \/

/\\\/

/\ Create line description for LOSANGEL to NEWYORK \/

CRTLINSDLC LIND(NEWYORK) RSRCNAME(LINð12)

/\ Create controller description for LOSANGEL to NEWYORK \/

CRTCTLAPPC CTLD(NEWYORK) LINKTYPE(\SDLC) APPN(\NO)

LINE(NEWYORK) RMTNETID(\NONE) STNADR(ð1)

/\ Create device description for LOSANGEL to NEWYORK \/

CRTDEVAPPC DEVD(NEWYORK) LOCADR(ðð) RMTLOCNAME(NEWYORK)

 LCLLOCNAME(LOSANGEL) APPN(\NO)

CTL(NEWYORK) MODE(BLANK #BATCH)

ENDPGM

X.21 Short-Hold Mode—Configuration
Example

The following example shows a configuration used for X.21
SHM communications between two AS/400 systems,
NEWYORK and LOSANGEL.

Configuring the New York System

The following prompt displays show the configuration created
for the first AS/400 system, NEWYORK.

Creating the Line Description

à ð
Create Line Desc (SDLC) (CRTLINSDLC)

 Type choices, press Enter.

 Line description > SHMNEWY Name

 Resource names > LINð92.1/ Name

+ for more values

 Online at IPL> \NO \YES, \NO

 Data link role \NEG.2/ \NEG, \PRI, \SEC

 Physical interface> \X21 .3/ \RS232V24, \V35, \X21, ...

 Connection type> \SHM .3/ \NONSWTPP, \SWTPP, \MP, \SHM

 SHM node type \T21.2/ \T21, \T2ð

 Vary on wait \NOWAIT \NOWAIT, 15-18ð (1 second)

 Exchange identifier \SYSGEN ð56ððððð-ð56FFFFF, \SYSGEN

 NRZI data encoding> \NO \YES, \NO

 Maximum controllers 1 1-254

 Line speed 96ðð 6ðð, 12ðð, 24ðð, 48ðð...

 Modem type supported \NORMAL \NORMAL, \V54, \IBMWRAP...

 Switched connection type \BOTH \BOTH, \ANS, \DIAL

 Autoanswer \YES \YES, \NO

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

D-4 OS/400 APPC Programming V4R1

à ð
Create Line Desc (SDLC) (CRTLINSDLC)

 Type choices, press Enter.

 Autodial> \YES \NO, \YES

 Dial command type \NONE \NONE, \V25BIS

 SHM call timer > 5 \NONE, 1-6ð (minutes)

 SHM maximum connect timer . . . 8 \NOMAX, 1-254 (seconds)

 SHM answer delay timer 11 \NOMAX, 1-254 (ð.1 seconds)

 SHM call format \DNIC.4/ \DNIC, \DCC

 SHM access code > 17.5/ Character value

 Calling number > 31ð19764522.6/
 Short timer 5ð 1ð-6ðð (ð.1 seconds)

 Long timer 6ðð 1ðð-6ððð (ð.1 seconds)

 Short retry 7 ð-254

 Long retry 1 ð-254

 Call progress signal retry . . . \CPS41, \CPS42, \CPS43...

+ for more values

 Maximum frame size 521 265, 521, 1ð33, 2ð57

 Duplex> \FULL \HALF, \FULL

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

Notes:

á

ñ

.1/ Resource names (RSRCNAME parameter) are
specified to indicate to the system which ports
are used for the X.21 SHM line. Because mul-
tiple ports are not used in this example, only one
resource name is specified for the line
descriptions.

.2/ The Data link role (ROLE parameter) and SHM
node type (SHM parameter) must be specified
as shown for lines used with APPC controllers.

.3/ Physical interface (INTERFACE parameter) and
Connection type (CNN parameter) must be spec-
ified as shown for an X.21 SHM line.

.4/ The SHM call format (SHMCALLFMT parameter)
is set to *DNIC, indicating that the first 4 digits of
the Calling number (CALLNBR parameter) repre-
sent the data network identification code (DNIC)
of the local system.

.5/ The SHM access code (SHMACC parameter)
specifies the prefix or access code that is
attached in front of the international data
number.

.6/ The Calling number (CALLNBR parameter)
represents the connection number of the AS/400
system. For line descriptions that specify
SHMNODE(*T21), the calling number must
include the DNIC or DCC. In this example, the
system will not use the DNIC when placing calls
between the two AS/400 systems because both
systems have the same DNIC.

Creating the Controller Description

à ð
Create Ctl Desc (APPC) (CRTCTLAPPC)

 Type choices, press Enter.

 Controller description > LOSANGEL Name

 Link type> \SDLC \ANYNW, \FAX, \FR, \IDLC...

 Online at IPL \YES \YES, \NO

 Switched connection > \YES.1/ \NO, \YES

 Short hold mode > \YES.1/ \NO, \YES

 APPN-capable > \NO \YES, \NO

 Controller type \BLANK \BLANK, \FBSS, 3174, 3274...

 Switched line list > SHMNEWY.2/ Name

+ for more values

 Maximum frame size \LINKTYPE 265-16393, 256, 265, 512...

 Remote network identifier . . . \NETATR Name, \NETATR, \NONE, \ANY

 Remote control point > RCHASð45.3/ Name, \ANY

 Exchange identifier ðððððððð-FFFFFFFF

 Initial connection \DIAL \DIAL, \ANS

 Dial initiation \LINKTYPE \LINKTYPE, \IMMED, \DELAY

 Connection number > 31ð12981873.4/
 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

à ð
Create Ctl Desc (APPC) (CRTCTLAPPC)

 Type choices, press Enter.

 Data link role \NEG \NEG, \PRI, \SEC

 SHM disconnect limit 1ð 1-254, \NOMAX

 SHM disconnect timer 5ð 2-3ððð (ð.1 seconds)

 Station address > C1 ðð-FE

 Autocreate device \ALL \ALL, \NONE

 Text 'description' > 'APPC controller for SHM line to LOSANGEL'

Notes:

.1/ Both Switched connection (SWITCHED param-
eter) and Short hold mode (SHM parameter)
must be specified as *YES for X.21 SHM con-
troller descriptions.

.2/ The Switched line list (SWTLINLST parameter)
must include the name of the line description to
which the controller is attached (LIND parameter
on the CRTLINSDLC command).

.3/ The Remote control point name (RMTCPNAME
parameter) must match the LCLNETID and
LCLCPNAME network attributes specified at the
remote system.

.4/ The Connection number (CNNNBR parameter)
specifies the connection number for the remote
system. This value must match that specified for
the line description Calling number (CALLNBR
parameter).

Creating the Device Description

à ð
Create Device Desc (APPC) (CRTDEVAPPC)

 Type choices, press Enter.

 Device description > LOSANGEL Name

 Remote location > LOSANGEL.1/ Name

 Online at IPL> \NO \YES, \NO

 Local location > NEWYORK.1/ Name, \NETATR

 Remote network identifier . . . \NETATR Name, \NETATR, \NONE

 Attached controller > LOSANGEL.2/ Name

 Mode \NETATR Name, \NETATR

+ for more values

 Message queue QSYSOPR Name, QSYSOPR

Library \LIBL Name, \LIBL, \CURLIB

 APPN-capable> \NO \YES, \NO

 Single session:

Single session capable \NO \NO, \YES

Number of conversations . . . 1-512

 Location password \NONE

 Secure location \NO \NO, \YES, \VFYENCPWD

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

Notes:

á

ñ

 Appendix D. APPC Configuration Examples D-5

.1/ The Remote location name (RMTLOCNAME
parameter) and Local location name
(LCLLOCNAME parameter) must each match
the opposite parameter on the remote system:
The RMTLOCNAME value specified for this
system (NEWYORK) must match the
LCLLOCNAME specified in the device
description for the LOSANGEL system.

.2/ The Attached controller (CTL parameter) must
specify the name of the controller description to
which the device is attached (CTLD parameter
on the CRTCTLAPPC command).

Configuring the Los Angeles System

The following prompt displays show the configuration created
for the second AS/400 system, LOSANGEL. Considerations
for specifying the CRTLINSDLC, CRTCTLAPPC, and
CRTDEVAPPC commands are the same as for the
NEWYORK system.

Creating the Line Description

à ð
Create Line Desc (SDLC) (CRTLINSDLC)

 Type choices, press Enter.

 Line description > SHMLOSA Name

 Resource names > LINð51 Name

+ for more values

 Online at IPL> \NO \YES, \NO

 Data link role \NEG \NEG, \PRI, \SEC

 Physical interface> \X21 \RS232V24, \V35, \X21, ...

 Connection type> \SHM \NONSWTPP, \SWTPP, \MP, \SHM

 SHM node type \T21 \T21, \T2ð

 Vary on wait \NOWAIT \NOWAIT, 15-18ð (1 second)

 Exchange identifier \SYSGEN ð56ððððð-ð56FFFFF, \SYSGEN

 NRZI data encoding> \NO \YES, \NO

 Maximum controllers 1 1-254

 Line speed 96ðð 6ðð, 12ðð, 24ðð, 48ðð...

 Modem type supported \NORMAL \NORMAL, \V54, \IBMWRAP...

 Switched connection type \BOTH \BOTH, \ANS, \DIAL

 Autoanswer \YES \YES, \NO

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

à ð
Create Line Desc (SDLC) (CRTLINSDLC)

 Type choices, press Enter.

 Autodial> \YES \NO, \YES

 Dial command type \NONE \NONE, \V25BIS

 SHM call timer > 5 \NONE, 1-6ð (minutes)

 SHM maximum connect timer . . . 8 \NOMAX, 1-254 (seconds)

 SHM answer delay timer 11 \NOMAX, 1-254 (ð.1 seconds)

 SHM call format \DNIC \DNIC, \DCC

 SHM access code > 17 Character value

 Calling number > 31ð12981873

 Short timer 5ð 1ð-6ðð (ð.1 seconds)

 Long timer 6ðð 1ðð-6ððð (ð.1 seconds)

 Short retry 7 ð-254

 Long retry 1 ð-254

 Call progress signal retry . . . \CPS41, \CPS42, \CPS43...

+ for more values

 Maximum frame size 521 265, 521, 1ð33, 2ð57

 Duplex> \FULL \HALF, \FULL

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Creating the Controller Description

à ð
Create Ctl Desc (APPC) (CRTCTLAPPC)

 Type choices, press Enter.

 Controller description > NEWYORK Name

 Link type> \SDLC \ANYNW, \FAX, \FR, \IDLC...

 Online at IPL > \NO \YES, \NO

 Switched connection > \YES \NO, \YES

 Short hold mode > \YES \NO, \YES

 APPN-capable > \NO \YES, \NO

 Controller type \BLANK \BLANK, \FBSS, 3174, 3274...

 Switched line list > SHMLOSA Name

+ for more values

 Maximum frame size \LINKTYPE 265-16393, 256, 265, 512...

 Remote network identifier . . . \NETATR Name, \NETATR, \NONE, \ANY

 Remote control point > RCHAS32ð Name

 Exchange identifier ðððððððð-FFFFFFFF

 Initial connection \DIAL \DIAL, \ANS

 Dial initiation \LINKTYPE \LINKTYPE, \IMMED, \DELAY

 Connection number > 31ð19764522

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

à ð
Create Ctl Desc (APPC) (CRTCTLAPPC)

 Type choices, press Enter.

 Data link role \NEG \NEG, \PRI, \SEC

 SHM disconnect limit 1ð 1-254, \NOMAX

 SHM disconnect timer 5ð 2-3ððð (ð.1 seconds)

 Station address > C1 ðð-FE

 Autocreate device \ALL \ALL, \NONE

 Text 'description' > 'APPC controller for NEWYORK system'

Creating the Device Description

à ð
Create Device Desc (APPC) (CRTDEVAPPC)

 Type choices, press Enter.

 Device description > NEWYORK Name

 Remote location > NEWYORK Name

 Online at IPL> \NO \YES, \NO

 Local location > LOSANGEL Name, \NETATR

 Remote network identifier . . . \NETATR Name, \NETATR, \NONE

 Attached controller > NEWYORK Name

 Mode \NETATR Name, \NETATR

+ for more values

 Message queue QSYSOPR Name, QSYSOPR

Library \LIBL Name, \LIBL, \CURLIB

 APPN-capable> \NO \YES, \NO

 Single session:

Single session capable \NO \NO, \YES

Number of conversations . . . 1-512

 Location password \NONE

 Secure location \NO \NO, \YES, \VFYENCPWD

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Programs Communicating on the Same
System—Configuration Example

Using a configuration with a link type of *LOCAL is beneficial
for developing and debugging application programs before
they are used to communicate with a remote system over a
communications line.

The following example program shows the CL commands
used to define the configuration with a link type of *LOCAL.

D-6 OS/400 APPC Programming V4R1

/\\/

/\ Create controller and devices for LINKTYPE(\LOCAL) \/

/\\/

CRTCTLAPPC CTLD(T8189CTL) LINKTYPE(\LOCAL) ONLINE(\NO) +

TEXT('Controller description for APPC +

 examples')

CRTDEVAPPC DEVD(T8189DEV1) RMTLOCNAME(T8189LA) +

ONLINE(\NO) LCLLOCNAME(T8189NY) +

RMTNETID(\NETATR) CTL(T8189CTL) +

APPN(\NO) SECURELOC(\YES) +

TEXT('Device description for APPC examples')

CRTDEVAPPC DEVD(T8189DEV2) RMTLOCNAME(T8189NY) +

ONLINE(\NO) LCLLOCNAME(T8189LA) +

RMTNETID(\NETATR) CTL(T8189CTL) +

APPN(\NO) SECURELOC(\YES) +

TEXT('Device description for APPC examples')

 Appendix D. APPC Configuration Examples D-7

D-8 OS/400 APPC Programming V4R1

Appendix E. ICF Program Examples

This appendix provides example programs which demon-
strate how to use the APPC support on the AS/400 system
using ICF. The example programs included in this appendix
are also available in the QUSRTOOL library (see file
QATTINFO, member T8189INF in library QUSRTOOL).

The example programs are as follows:

� Example 1 (starting on page E-2) shows two partner ILE
C/400 programs.

� Example 2 (starting on page E-18) shows two partner
COBOL/400 programs.

� Example 3 (starting on page E-34) shows two partner
RPG/400 programs.

Each example contains two programs: the local program,
which starts the transaction, and the remote program, which
performs services relating to the processing of the trans-
action.

Note: The term remote program is used in the following
examples to refer to the program with which the local
program communicates, even though the remote
program may not be on a remote system. Similarly,
the term remote system may actually be the same
system in which the local program resides.

Figure E-1 illustrates the environment in which the example
programs run. The local program requests the entry of a part
number from the display station. That part number is then
transmitted to the partner program, where a database file is
searched. If the number is found, the partner program
responds with a positive response followed by the requested
information. If the part number is not found, the partner
program responds with a negative response followed by an
error message.

Objects Used by Program Examples

The following objects are used by the program examples:

� ICF file, T8189ICF

� Display file, T8189DSP

� Database file, T8189DB

ICF File Object (T8189ICF)

In this example program an ICF file is used to send records
to, and receive records from, the partner program. This file is
used by both the local and remote programs. This file was
created by using the following command, which must be
issued on the local and remote systems:
CRTICFF FILE(APPCLIB/T8189ICF) SRCFILE(QUSRTOOL/QATTDDS)

SRCMBR(TC8189) TEXT('ICF file for APPC examples')

The command needed to define the program device entry
used by the local programs is
ADDICFDEVE FILE(APPCLIB/T8189ICF) PGMDEV(ICFðð)

 RMTLOCNAME(T8189LA)

The command needed to define the program device entry
used by the remote programs is
ADDICFDEVE FILE(APPCLIB/T8189ICF) PGMDEV(ICFð1)

 RMTLOCNAME(\REQUESTER)

Note: Even though the ADDICFDEVE command is used, an
OVRICFDEVE command could also be used with the
same parameters.

The DDS source for the ICF file T8189ICF is shown in
Figure E-2 on page E-2.

Display
Station

Display File

Program

Remote AS/400 System

Database
File

Program

Local AS/400 System

RV2P754-0

Figure E-1. Inquiry Example

 Copyright IBM Corp. 1997 E-1

A\\

A\ \

A\ DDS \

A\ FOR THE ICF FILE \

A\ USED IN ITEM INQUIRY APPLICATIONS \

A\ \

A\\

A\

A\ FILE LEVEL INDICATORS:

A\

A INDARA

A\

A\\

A\ RECORD FORMATS \

A\\

A\

A R PGMSTR

A EVOKE(&PGMID);

A SECURITY(3 \USER)

A SYNLVL(\CONFIRM)

A PGMID 1ðA P

A\

A R ITEMRQ

A CONFIRM

A ALWWRT

A PARTNM 5A

A\

A R ITEMDS

A ALWWRT

A PARTDS 25A

A\

A R ERRDES

A ALWWRT

A ERRORD 4ðA

A\

A R PGMEND

A DETACH

A\

A R EOSREC

A EOS

A\

A R PGMERR

A FAIL

A\

A R ITEMOK

A RSPCONFIRM

Figure E-2. DDS Source for the ICF File T8189ICF

Display File Object (T8189DSP)

In this example a display file is used by the local program so
that a user can enter requests that are to be sent to the
remote program. The command used to create the display
device file is

CRTDSPF FILE(APPCLIB/T8189DSP) SRCFILE(QUSRTOOL/QATTDDS)

 SRCMBR(TD8189) SRCMBR(TD8189)

TEXT('Display file for APPC examples')

The DDS source for the display device file T8189DSP is
shown in Figure E-3.

A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ \

A\ DDS \

A\ FOR THE DISPLAY FILE \

A\USED IN ITEM INQUIRY APPLICATIONS \

A\ \

A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\

A DSPSIZ(24 8ð \DS3)

A INDARA

A CAð3(99)

A\

A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ RECORD FORMATS \

A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\

A R PROMPT

A 5 1ð'Part Number: '

A PARTN 5A B 5 25

A 1ð 1ð'Part Description: '

A PARTD 25A O 1ð 3ð

A ERRORL 4ðA O 12 1ðDSPATR(HI)

A 23 5'F3 = Exit'

Figure E-3. DDS Source for the Display Device File

Database File Object (T8189DB)

In this example the database file resides on the remote
system and contains the part numbers and associated
descriptions. The file is used to validate the part number
received from the local program. The command used to
create the database file (a physical file) is

CRTPF FILE(APPCLIB/T8189DB)

 SRCFILE(APPCLIB/QATTDDS) SRCMBR(1A8189)

TEXT('Database file for APPC examples')

The DDS source for the database file T8189DB is shown in
Figure E-4.

 A\\

 A\ \

 A\ DDS \

 A\ FOR THE DATABASE FILE \

 A\ USED IN ITEM INQUIRY APPLICATIONS \

 A\ \

 A\\

 A\

 A UNIQUE

 A R DBRCD

 A ITEMNM 5

 A ITEMD 25

 A K ITEMNM

Figure E-4. DDS Source for the Database File

ILE C/400 Local Program for Inquiry
Applications (Example 1)

The following explains the structure of the ILE C/400 local
program that sends requests to the partner program for proc-
essing.

E-2 OS/400 APPC Programming V4R1

 Program Explanation

The reference numbers in the explanation below correspond
to the statement numbers in the program example illustrated
in Figure E-5 on page E-5.

Note: On any type of error that is not expected (for
example, an unexpected ICF return code on an I/O
operation), the session is ended and the program
ends.

Statement 79 This section defines the ICF file (T8189ICF)
structures used in the program. T8189ICF is the
ICF file used to send records to, and receive
records from, the partner program. T8189ICF
uses the file-level keyword, INDARA, which indi-
cates that the file uses a separate indicator area.

Statement 101 This section defines the display file
(T8189DSP) structures used in the program.
T8189DSP is the display file used to receive a
user's requests and to report the requested infor-
mation received from the partner program based
on the part number specified by the user.
T8189DSP uses the file-level keyword, INDARA,
which indicates that the file uses a separate indi-
cator area.

Statement 122 The internal functions are prototyped so the
ILE C/400 compiler knows the type of value
returned and the type of parameters passed, if
any.

Statement 144 The open_files, start_conversation, and
get_cust_num functions are called to open files
used by the program, start a conversation with
the partner program, and obtain the part number
to be queried, respectively.

Statement 151 The program loops until either F3 is pressed
from the work station, which sets the indicator in
the indicator area of the display file, or an error
occurs in the transaction with the partner
program.

Statement 161 The part number is sent to the partner
program using a write operation. The write oper-
ation is issued using the ICF file record format
ITEMRQ, which contains the confirm (CONFIRM
keyword) and allow-write (ALWWRT keyword)
functions. When these functions are used, the
data is flushed, the data flow direction is
changed from send to receive, and a confirma-
tion request is sent to the partner program. The
partner program must now respond with a posi-
tive or negative response.

Statement 170 If the partner program responds with a posi-
tive response (ICF return code of 0001) to the
confirmation request, a read operation is issued
using the ICF file record format ITEMDS to receive
the part description. However, if the partner
program responds with a negative response (ICF
return code of 83C9) to the confirmation request,

a read operation is issued using the ICF file
record format ERRDES to receive the error
message.

Statement 193 The get_cust_num function is called to
display the information returned by the partner
program and to obtain the next part number to
be queried.

Statement 196 The cleanup function is called to perform
end-of-program processing.

Statement 214 The open_files function opens the display
and ICF files.

Statement 230 Separate indicator areas are defined for the
files T8189DSP and T8189ICF. The variables
dsp_indic and icf_indic are of the type
_SYSindara, which is a 99-character array.

Statement 233 The separate indicator area for the display
file T8189DSP is initialized.

Statement 243 The start_conversation function establishes
a conversation with the partner program.

Statement 245 The ICFðð program device is explicitly
acquired using the _Racquire function. The
acquire-program-device operation makes the
program device available for input or output
operations. A session is implicitly acquired for
the work station when T8189DSP is opened.

Note: The program device ICFðð was previ-
ously added to the ICF file T8189ICF by
the ADDICFDEVE command.

Statement 250 An evoke request is issued using a write
operation. The write operation is issued using
the ICF file record format PGMSTR, which contains
the EVOKE, SECURITY, and SYNLVL
keywords.

Note: On the EVOKE keyword, the library
name is not specified. If the remote
system is an AS/400 system, the library
list will be used to search for the
program. Also, the remote program that
is to be started can be any of the remote
programs in this appendix or in
Appendix F, CPI Communications
Program Examples.

Statement 260 The get_cust_num function displays the
requested information and reads the next
number. The part number field will be blank the
first time a part number is read.

Statement 277 The check_rc function determines whether
the actual ICF return code received on an opera-
tion matches what was expected. If the return
codes match, a value of 0 is returned; otherwise,
a value of 1 is returned.

Note: Because the I/O feedback areas are
updated after each ICF file I/O operation,
this function first updates the pointers to

 Appendix E. ICF Program Examples E-3

the new feedback areas before deter-
mining whether the return codes match.
Refer to the ICF Programming book for a
description of the I/O feedback areas.

Statement 325 The cleanup function performs end-of-
program processing.

Statement 328 If an unexpected error was detected and the
communications session is still active, a write
operation is issued using the ICF file record
format EOSREC, which contains the end-of-
session (EOS keyword) function. The end-of-

session function detaches the program from the
session.

Note: If the end-of-session function is issued
during an active transaction, APPC will
end the session abnormally.

Statement 338 If no error was detected, then a write opera-
tion is issued using the ICF file record format
PGMEND, which contains the detach (DETACH
keyword) function. The release operation
(_Rrelease function) is then issued to detach the
program from the session.

Statement 345 The ICF and display files are closed.

E-4 OS/400 APPC Programming V4R1

\ \ \ \ \ P R O L O G \ \ \ \ \

 Program : T8189ICS

Library : LAB

 Source file : QATTSYSC

Library : QUSRTOOL

 Source member : T8189ICS

 Text Description : APPC C program example ICF - Source

 Output : \PRINT

 Compiler options : \NOAGR \NOEXPMAC \LOGMSG \NOSECLVL

: \NOSHOWINC \SHOWSKP \NOXREF \USRINCPATH

 Checkout options : \NOACCURACY \NOENUM \NOEXTERN \NOGENERAL \NOGOTO \NOINIT

: \NOPARM \NOPORT \NOPPCHECK \NOPPTRACE

 Optimization : \NONE

 Debugging view : \NONE

 Define names :

 Language level : \SOURCE

 Source margins:

Left margin : 1

Right margin : 32754

 Sequence columns:

Left Column :

Right Column :

 Message flagging level : ð

 Compiler messages:

Message limit : \NOMAX

Message limit severity . . . : 3ð

 Replace module object : \YES

 User Profile : \USER

 Authority : \LIBCRTAUT

 Target release : \CURRENT

 System includes : \YES

 Last change : ð2/11/94 12:33:24

 Source description : APPC C program example ICF - Source

 Compiler : IBM ILE C/4ðð Compiler

\ \ \ \ \ S O U R C E \ \ \ \ \

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 1 |/\\\/

2 |/\ Program name.........: T8189ICS \/

3 |/\ Program description..: ICF local program \/

4 |/\ Language.............: C/4ðð \/

 5 |/\ \/

6 |/\ This program invokes a program to handle part inquiry on \/

7 |/\ the remote system. The acquire operation is used to \/

8 |/\ establish a communications session. A write operation \/

9 |/\ with the evoke function is then issued, which results in \/

1ð |/\ the establishment of a conversation with the remote \/

11 |/\ program. A display which prompts the user for the part \/

12 |/\ number for which part information is requested is then \/

13 |/\ displayed. When the user presses Enter, a write operation \/

14 |/\ is issued (the data sent to the partner program is the \/

15 |/\ part number). Note that the write operation was issued \/

16 |/\ with the confirm (CONFIRM) and allow-write (ALWWRT) \/

17 |/\ functions. These functions results in the flushing of the \/

18 |/\ data (to be sent to the partner program), the changing of \/

19 |/\ the data flow direction (the partner program can send the \/

2ð |/\ response), and the sending of a confirmation request to \/

21 |/\ the partner program. If the partner program responds \/

22 |/\ with a positive response to the confirmation request (using \/

23 |/\ the RSPCONFIRM function), the ICF return code on the \/

24 |/\ write operation will be set to ððð1 (indicating that \/

25 |/\ the part number was found); a read operation is then \/

26 |/\ issued to receive the part description. However, if \/

27 |/\ the partner program responds with a negative response \/

28 |/\ to the confirmation request (using the FAIL function), \/

29 |/\ the ICF return code on the write operation will be set \/

3ð |/\ to 83C9 (indicating that the part number was not found); \/

31 |/\ a read operation is issued to receive the error message. \/

 32 |/\ \/

Figure E-5 (Part 1 of 7). ILE C/400 Inquiry Example – Local Program

 Appendix E. ICF Program Examples E-5

33 |/\ The error message or part description (depending on \/

34 |/\ whether the part number was found) will be displayed on \/

35 |/\ the screen. \/

 36 |/\ \/

37 |/\ This program will continue to handle inquiries until the \/

38 |/\ user presses the F3=Exit key. When F3=Exit is pressed, \/

39 |/\ a write operation with the detach (DETACH) function \/

4ð |/\ is issued to end the conversation, and program processing \/

 41 |/\ ends. \/

 42 |/\ \/

43 |/\ NOTE 1: If an unexpected ICF return code is received on \/

44 |/\ any of the read or write operations, the \/

45 |/\ program will abnormally end the conversation (if \/

46 |/\ it is still active), and program processing will \/

 47 |/\ end. \/

 48 |/\ \/

49 |/\ NOTE 2: On the receive operation, if the actual received \/

5ð |/\ data length (obtained from the I/O feedback area) \/

51 |/\ does not match what was expected, or if the \/

52 |/\ ICF return code is not ðððð (indication that \/

53 |/\ the partner program is ready to receive data), the \/

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

54 |/\ program will abnormally end the conversation (if \/

55 |/\ it is still active), and program processing will \/

 56 |/\ end. \/

 57 |/\ \/

58 |/\ NOTE 3: This program can start ANY of the "remote" \/

59 |/\ program examples in the APPC Programmer's \/

6ð |/\ Guide by changing the PGMID variable to the \/

61 |/\ remote program that is to be started. \/

 62 |/\ \/

 63 |/\\\/

 64 |

 65 |

 66 |/\\\/

67 |/\ Retrieve various structures/utilities that are used in program. \/

 68 |/\\\/

69 |#include <stdio.h> /\ Standard I/O header \/

7ð |#include <stdlib.h> /\ General utilities \/

71 |#include <string.h> /\ String handling utilities \/

72 |#include <stddef.h> /\ Standard definition \/

73 |#include <xxfdbk.h> /\ Feedback area structures \/

74 |#include <recio.h> /\ Record i/o routines \/

 75 |

 76 |/\\\/

77 |/\ Define the structures used for reads/writes from/to the ICF file. \/

 78 |/\\\/

79 | struct {

8ð | char pgmid??(1ð??); /\ target program name \/

81 |} pgmstr_i_o = { "T8189ICT " };

 82 |

83 | struct {

84 | char partnm??(5??); /\ Part number \/

 85 |} itemrq_i_o;

 86 |

87 | struct {

88 | char partds??(25??); /\ part description \/

 89 |} itemds_i_o;

 9ð |

91 | struct {

92 | char errord??(4ð??); /\ error record \/

 93 |} errdes_i_o;

94 |char blank4ð??(4ð??) = " ";

 95 |

 96 |

Figure E-5 (Part 2 of 7). ILE C/400 Inquiry Example – Local Program

E-6 OS/400 APPC Programming V4R1

 97 |/\\\/

98 |/\ Define the structures used for reads/writes from/to the display \/

 99 |/\ file. \/

 1ðð |/\\\/

1ð1 | struct {

1ð2 | char partn??(5??); /\ part number \/

1ð3 | char partd??(25??); /\ part description \/

1ð4 | char errorl??(4ð??); /\ error record \/

1ð5 |} prompt_i_o = { " ", " ",

 1ð6 | " " };

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 1ð7 |

 1ð8 |/\\\/

1ð9 |/\ Define constants/flags used in program. \/

 11ð |/\\\/

111 |#define ERROR 1 /\ error during IO processing \/

112 |#define NOERROR ð

113 |#define MATCH 1 /\ ICF return code match indication\/

114 |#define NO_MATCH ð

115 |#define RC_ðððð ð /\ ICF return codes \/

116 |#define RC_ððð1 1

117 |#define RC_83C9 2

 118 |

 119 |/\\\/

12ð |/\ Declare global variables/functions. \/

 121 |/\\\/

 122 |int check_rc(int);

 123 |void cleanup(int);

 124 |void open_files(void);

 125 |void get_cust_num(void);

 126 |void start_conversation(void);

 127 |

128 |_RFILE \icffptr; /\ Pointer to the ICF file \/

129 |_RFILE \dspfptr; /\ Pointer to the display file \/

13ð |_XXIOFB_T \comm_fdbk; /\ IO Feedback for ICF unique info \/

131 |_XXIOFB_DSP_ICF_T \dsp_icf_fdbk; /\ IO Feedback - display & ICF file\/

132 |_SYSindara dsp_indic; /\ indicator area for dsp \/

133 |_SYSindara icf_indic; /\ indicator area for ICF \/

 134 |

 135 |

 136 |/\\\/

137 |/\ START OF PROGRAM \/

 138 |/\ \/

139 |/\ Files are opened, a conversation with the remote program is \/

14ð |/\ started, and the part inquiry screen is displayed. Inquiries \/

141 |/\ are handled until the user presses the F3=Exit key, in which case \/

142 |/\ the conversation will be ended and the program will end. \/

 143 |/\\\/

 144 |main()

 145 |{

146 1 | open_files();

147 2 | start_conversation();

 148 |

149 3 | get_cust_num();

 15ð |

151 4 | while (dsp_indic??(98??) != '1')

 152 | {

 153 |

 154 | /\\\/

155 | /\ The part number that the user has requested information \/

156 | /\ for is sent to the remote program using the write \/

157 | /\ operation with the confirm and allow-write functions. \/

 158 | /\\\/

159 5 | strncpy(itemrq_i_o.partnm, prompt_i_o.partn, 5);

Figure E-5 (Part 3 of 7). ILE C/400 Inquiry Example – Local Program

 Appendix E. ICF Program Examples E-7

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 16ð 6 | _Rformat(icffptr, "ITEMRQ ");

161 7 | _Rwrite(icffptr, &itemrq_i_o,; sizeof(itemrq_i_o));

 162 |

 163 |

 164 | /\\\/

165 | /\ The read operation is issued to receive the response \/

166 | /\ from the remote program (the response can either be \/

167 | /\ an error message or the part description, depending \/

168 | /\ on whether the part was found or not). \/

 169 | /\\\/

17ð 8 | if (check_rc(RC_ððð1) == MATCH)

 171 | {

 172 9 | _Rformat(icffptr, "ITEMDS ");

173 1ð | _Rreadn(icffptr, &itemds_i_o,; sizeof(itemds_i_o), __DFT);

 174 |

175 11 | strncpy(prompt_i_o.partd, itemds_i_o.partds, 25);

176 12 | strncpy(prompt_i_o.errorl, blank4ð, 4ð);

 177 | }

 178 | else

179 13 | if (check_rc(RC_83C9) == MATCH)

 18ð | {

 181 14 | _Rformat(icffptr, "ERRDES ");

182 15 | _Rreadn(icffptr, &errdes_i_o,; sizeof(errdes_i_o), __DFT);

 183 |

184 16 | strncpy(prompt_i_o.errorl, errdes_i_o.errord, 4ð);

 185 17 | strncpy(prompt_i_o.partd, " ", 25);

 186 | }

187 | else /\ Unexpected return code. \/

 188 18 | cleanup(ERROR);

 189 |

19ð 19 | if (check_rc(RC_ðððð) == NO_MATCH) /\ Read operations ok? \/

 191 2ð | cleanup(ERROR);

 192 |

 193 21 | get_cust_num();

194 | } /\ end of while \/

 195 |

196 22 | cleanup(NOERROR);

 197 |

198 |} /\ end of MAIN routine \/

 199 |

 2ðð |/\\\/

 2ð1 |/\ \/

 2ð2 |/\ \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\ \/

 2ð3 |/\ \ INTERNAL FUNCTIONS \ \/

 2ð4 |/\ \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\ \/

 2ð5 |/\ \/

 2ð6 |/\\\/

 2ð7 |

 2ð8 |/\\\/

2ð9 |/\ "OPEN_FILES" function \/

 21ð |/\ \/

211 |/\ This function opens the display and ICF files, and sets \/

212 |/\ indicator areas for each file. \/

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 213 |/\\\/

 214 |void open_files()

 215 |{

216 | if ((dspfptr=_Ropen("T8189DSP","ar+ indicators=y riofb=y"))

 217 1 | == NULL)

 218 | {

219 2 | printf("Display file failed to open.\n");

 22ð 3 | exit(ERROR);

 221 | }

 222 |

Figure E-5 (Part 4 of 7). ILE C/400 Inquiry Example – Local Program

E-8 OS/400 APPC Programming V4R1

223 | if ((icffptr=_Ropen("T8189ICF","ar+ indicators=y riofb=y"))

 224 4 | == NULL)

 225 | {

226 5 | printf("ICF file failed to open.\n");

 227 6 | exit(ERROR);

 228 | }

 229 |

23ð 7 | _Rindara(dspfptr, dsp_indic);

231 8 | _Rindara(icffptr, icf_indic);

 232 |

233 9 | memset(dsp_indic, 'ð', 99); /\ Initialize indicator area. \/

234 |} /\ end open_files... \/

 235 |

 236 |/\\\/

237 |/\ "START_CONVERSATION" function \/

 238 |/\ \/

239 |/\ This function establishes a conversation with the remote system. \/

24ð |/\ The program device is acquired, and an evoke request is issued \/

241 |/\ to start the program at the remote system. \/

 242 |/\\\/

 243 |void start_conversation()

 244 |{

245 1 | _Racquire(icffptr, "ICFðð ");

246 2 | if (check_rc(RC_ðððð) == NO_MATCH)

 247 3 | cleanup(ERROR);

 248 |

249 4 | _Rformat(icffptr, "PGMSTR ");

25ð 5 | _Rwrite(icffptr, &pgmstr_i_o,; sizeof(pgmstr_i_o));

251 6 | if (check_rc(RC_ðððð) == NO_MATCH)

 252 7 | cleanup(ERROR);

253 |} /\ end start_conversation... \/

 254 |

 255 |/\\\/

256 |/\ "GET_CUST_NUM" function \/

 257 |/\ \/

258 |/\ Get a customer number from the display. \/

 259 |/\\\/

 26ð |void get_cust_num()

 261 |{

262 1 | _Rformat(dspfptr,"PROMPT ");

263 2 | _Rwrite (dspfptr, &prompt_i_o,; sizeof(prompt_i_o));

264 3 | memset(dsp_indic, 'ð', 99);

265 4 | _Rreadn (dspfptr, &prompt_i_o,; sizeof(prompt_i_o), __DFT);

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

266 |} /\ end get_cust_num... \/

 267 |

 268 |/\\\/

269 |/\ "CHECK_RC" function \/

 27ð |/\ \/

271 |/\ This function compares the actual ICF return code received \/

272 |/\ on an operation with an ICF return code that was expected. \/

273 |/\ If the return codes match, then an indication that the return \/

274 |/\ codes matched is returned; otherwise, an error indication is \/

 275 |/\ returned. \/

 276 |/\\\/

 277 |check_rc(int rc_type)

 278 |{

279 1 | comm_fdbk = _Riofbk(icffptr);

28ð | dsp_icf_fdbk = (_XXIOFB_DSP_ICF_T \) ((char \) comm_fdbk +

 281 2 | comm_fdbk->file_dep_fb_offset);

 282 |

Figure E-5 (Part 5 of 7). ILE C/400 Inquiry Example – Local Program

 Appendix E. ICF Program Examples E-9

283 3 | if (rc_type == RC_ðððð)

 284 | {

285 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ðð", 2) == ð &&;

286 4 | strncmp(dsp_icf_fdbk->minor_ret_code, "ðð", 2) == ð)

 287 5 | return(MATCH);

 288 | else

 289 6 | return(NO_MATCH);

 29ð | }

 291 | else

292 7 | if (rc_type == RC_ððð1)

 293 | {

294 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ðð", 2) == ð &&;

295 8 | strncmp(dsp_icf_fdbk->minor_ret_code, "ð1", 2) == ð)

 296 9 | return(MATCH);

 297 | else

 298 1ð | return(NO_MATCH);

 299 | }

 3ðð | else

3ð1 11 | if (rc_type == RC_83C9)

3ð2 | {

3ð3 | if (strncmp(dsp_icf_fdbk->major_ret_code, "83", 2) == ð &&;

3ð4 12 | strncmp(dsp_icf_fdbk->minor_ret_code, "C9", 2) == ð)

 3ð5 13 | return(MATCH);

 3ð6 | else

 3ð7 14 | return(NO_MATCH);

3ð8 | }

 3ð9 | else

 31ð 15 | return(NO_MATCH);

311 |} /\ end check_rc... \/

 312 |

 313 |

 314 |/\\\/

315 |/\ "CLEANUP" function. \/

 316 |/\ \/

317 |/\ The following code handles the end-of-program processing. \/

318 |/\ This includes the ending of the conversation with \/

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

319 |/\ the remote system (if conversation is active) by either \/

32ð |/\ issuing a write operation with the detach function \/

321 |/\ followed by a release operation (for non-error conditions), \/

322 |/\ or by issuing a write operation with the end-of-session \/

323 |/\ function (for error conditions). \/

 324 |/\\\/

325 |void cleanup(int endtype)

 326 |{

 327 |

328 | if ((endtype == ERROR) &&;

329 | (strncmp(dsp_icf_fdbk->major_ret_code, "8ð", 2) != ð) &&;

33ð | (strncmp(dsp_icf_fdbk->major_ret_code, "81", 2) != ð) &&;

331 1 | (strncmp(dsp_icf_fdbk->major_ret_code, "82", 2) != ð))

 332 | {

 333 2 | _Rformat(icffptr, "EOSREC ");

334 3 | _Rwrite(icffptr, ð, ð);

 335 | }

 336 | else

 337 | {

 338 4 | _Rformat(icffptr, "PGMEND ");

339 5 | _Rwrite(icffptr, ð, ð);

 34ð |

 341 6 | _Rrelease(icffptr, "ICFðð ");

 342 | }

 343 |

Figure E-5 (Part 6 of 7). ILE C/400 Inquiry Example – Local Program

E-10 OS/400 APPC Programming V4R1

 344 |

345 7 | _Rclose (icffptr);

346 8 | _Rclose (dspfptr);

 347 |

348 9 | exit(endtype);

349 |} /\ end cleanup... \/

 35ð |

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ \ \ \ \ I N C L U D E S \ \ \ \ \

INCNBR Include Name Last change Actual Include Name

 1 stdio.h 12/ð2/93 14:12:18 QCLE/H/STDIO

 2 stdlib.h 12/ð2/93 14:12:19 QCLE/H/STDLIB

 3 string.h 12/ð2/93 14:12:19 QCLE/H/STRING

 4 stddef.h 12/ð2/93 14:12:17 QCLE/H/STDDEF

 5 xxfdbk.h 12/ð2/93 14:12:23 QCLE/H/XXFDBK

 6 recio.h 12/ð2/93 14:12:15 QCLE/H/RECIO

\ \ \ \ \ E N D O F I N C L U D E S \ \ \ \ \

\ \ \ \ \ M E S S A G E S U M M A R Y \ \ \ \ \

Total Informational(ðð) Warning(1ð) Error(3ð) Severe Error(4ð)

 ð ð ð ð ð

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

Program T8189ICS was created in library LAB on ð2/11/94 at 12:41:43.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-5 (Part 7 of 7). ILE C/400 Inquiry Example – Local Program

ILE C/400 Remote Program for Inquiry
Applications (Example 1)

The following explains the structure of the ILE C/400 remote
program that handles requests sent by the partner program.

 Program Explanation

The reference numbers in the explanation below correspond
to the statement numbers in the program example illustrated
in Figure E-6 on page E-13.

Note: On any type of error that is not expected (for
example, an unexpected ICF return code on an I/O
operation), the session is ended and the program
ends.

Statement 68 This structure defines the database file
(T8189DB) structures used in the program.
T8189DB is the database file used to read the
customer records.

Statement 76 This section defines the ICF file (T8189ICF)
structures used in the program. T8189ICF is the
ICF file used to send records to, and receive
records from, the partner program. T8189ICF
uses the file-level keyword, INDARA, which indi-
cates that the file uses a separate indicator area.

Statement 106 The internal functions are prototyped so the
ILE C/400 compiler knows the type of value
returned and the type of parameters passed, if
any.

Statement 138 The open_files and start_conversation
functions are called to open files used by the
program and to start a conversation with the
partner program, respectively.

Statement 141 The program loops until there are no more
requests to process, or an error occurs in the
transaction with the partner program.

Statement 149 A search of the database file is performed
using the part number received from the partner
program as the key.

Statement 159 If the part number is found in the database
file, a write operation is issued using the ICF file
record format ITEMOK, which contains the
respond-to-confirm (RSPCONFIRM keyword)
function. As a result, a positive response to the
received confirmation request is sent to the
partner program. This is followed by a second
write operation using the ICF file record format
ITEMDS, which contains the requested information
to be sent and the allow-write (ALWWRT
keyword) function. When the allow-write function
is used, the data is flushed and the data flow
direction is changed.

Statement 174 If the part number is not found in the data-
base file, a write operation is issued using the
ICF file record format PGMERR, which contains the
fail (FAIL keyword) function. As a result, a nega-
tive response to the received confirmation
request is sent to the partner program. This is
followed by a second write operation using the
ICF file record format ERRDES, which contains the
error message to be sent and the allow-write
function.

Statement 187 The cleanup function is called to perform
end-of-program processing.

Statement 204 The open_files function opens the database
and ICF files.

 Appendix E. ICF Program Examples E-11

Statement 220 A separate indicator area is defined for the
ICF file T8189ICF. The variable icf_indic is of
the type _SYSindara, which is a 99-character
array.

Statement 230 The start_conversation function establishes
a conversation with the partner program by
explicitly acquiring the ICFð1 program device
using the _Racquire function.

Note: The program device ICFð1 was previ-
ously added to the ICF file T8189ICF by
the ADDICFDEVE command.

Statement 243 The get_cust_num function waits for a
request from the partner program by issuing a
read operation using the ICF file record format
ITEMRQ.

Note: A transaction is processed if data is
received with a turnaround indication and
the partner program requested confirma-
tion. This is indicated by the ICF return
code 0014.

Statement 262 The check_rc function determines whether
the actual ICF return code received on an opera-
tion matches what was expected. If the return

codes match, a value of 0 is returned; otherwise,
a value of 1 is returned.

Note: Because the I/O feedback areas are
updated after each ICF file I/O operation,
this function first updates the pointers to
the new feedback areas before deter-
mining whether the return codes match.

Statement 315 The cleanup function performs end-of-
program processing.

Statement 317 If the ICF return code is 0308, indicating that
a detach was received, a release operation
(_Rrelease function) is issued to detach the
program from the session.

Statement 322 If a detach indication was not received and
the communications session is still active, a write
operation is issued using the ICF file record
format EOSREC, which contains the end-of-
session (EOS keyword) function. The end-of-
session function detaches the program from the
session.

Note: If the end-of-session function is issued
during an active transaction, APPC will
end the session abnormally.

Statement 330 The ICF and database files are closed.

E-12 OS/400 APPC Programming V4R1

\ \ \ \ \ P R O L O G \ \ \ \ \

 Program : T8189ICT

Library : LAB

 Source file : QATTSYSC

Library : QUSRTOOL

 Source member : T8189ICT

 Text Description : APPC C program example ICF - Target

 Output : \PRINT

 Compiler options : \NOAGR \NOEXPMAC \LOGMSG \NOSECLVL

: \NOSHOWINC \SHOWSKP \NOXREF \USRINCPATH

 Checkout options : \NOACCURACY \NOENUM \NOEXTERN \NOGENERAL \NOGOTO \NOINIT

: \NOPARM \NOPORT \NOPPCHECK \NOPPTRACE

 Optimization : \NONE

 Debugging view : \NONE

 Define names :

 Language level : \SOURCE

 Source margins:

Left margin : 1

Right margin : 32754

 Sequence columns:

Left Column :

Right Column :

 Message flagging level : ð

 Compiler messages:

Message limit : \NOMAX

Message limit severity . . . : 3ð

 Replace module object : \YES

 User Profile : \USER

 Authority : \LIBCRTAUT

 Target release : \CURRENT

 System includes : \YES

 Last change : ð2/11/94 12:33:31

 Source description : APPC C program example ICF - Target

 Compiler : IBM ILE C/4ðð Compiler

\ \ \ \ \ S O U R C E \ \ \ \ \

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 1 |/\\\/

2 |/\ Program name.........: T8189ICT \/

3 |/\ Program description..: ICF remote program \/

4 |/\ Language.............: C/4ðð \/

 5 |/\ \/

6 |/\ This program accepts the incoming conversation by issuing \/

7 |/\ the acquire operation to acquire the requesting program \/

8 |/\ device. A read operation is then issued to receive the \/

9 |/\ part number from the remote system. The read operation \/

1ð |/\ completes with an ICF return code of ðð14, indicating \/

11 |/\ that data with a turnaround indication was received, and \/

12 |/\ that the partner program also requested confirmation. The \/

13 |/\ database file T8189DB is searched for the received part \/

14 |/\ number. If the part number is found, a write operation \/

15 |/\ with the respond-to-confirm (RSPCONFIRM) function is \/

16 |/\ issued, followed by a write operation containing the \/

17 |/\ part description corresponding to the part number \/

18 |/\ retrieved from the database file. However, if the part \/

19 |/\ number is not found, a write operation with the \/

2ð |/\ negative-response (FAIL) function is issued, followed by \/

21 |/\ a write operation containing an error message describing \/

22 |/\ the error. The write operation sending either the part \/

23 |/\ description or the error message is issued with the \/

24 |/\ allow-write (ALWWRT) function. Using the allow-write \/

25 |/\ function results in the flushing of the data and the \/

26 |/\ changing of the data flow direction. The partner program \/

27 |/\ can send more inquiries. \/

 28 |/\ \/

29 |/\ This program will continue to handle inquiries from the \/

3ð |/\ partner program until a detach indication is received. \/

31 |/\ Then the program ends. \/

 32 |/\ \/

Figure E-6 (Part 1 of 6). ILE C/400 Inquiry Example – Remote Program

 Appendix E. ICF Program Examples E-13

33 |/\ NOTE 1: If an unexpected ICF return code is received on \/

34 |/\ any of the read or write operations, the \/

35 |/\ program will abnormally end the conversation (if \/

36 |/\ it is still active), and program processing will \/

 37 |/\ end. \/

 38 |/\ \/

39 |/\ NOTE 2: On the receive operation, if the actual received \/

4ð |/\ data length (obtained from the I/O feedback area) \/

41 |/\ does not match what was expected, or if the \/

42 |/\ ICF return code is not ðð14 (indication that \/

43 |/\ data was received with a turnaround indicator, \/

44 |/\ and partner program requested confirmation), the \/

45 |/\ program will abnormally end the conversation (if \/

46 |/\ it is still active), and program processing will \/

 47 |/\ end. \/

 48 |/\ \/

49 |/\ NOTE 3: This program can be started by ANY of the \/

5ð |/\ "local" program examples in the APPC Programmer's \/

 51 |/\ Guide. \/

 52 |/\ \/

 53 |/\\\/

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 54 |

 55 |/\\\/

56 |/\ Retrieve various structures/utilities that are used in program. \/

 57 |/\\\/

58 |#include <stdio.h> /\ Standard I/O header \/

59 |#include <stdlib.h> /\ General utilities \/

6ð |#include <string.h> /\ String handling utilities \/

61 |#include <stddef.h> /\ Standard definition \/

62 |#include <xxfdbk.h> /\ Feedback area structures \/

63 |#include <recio.h> /\ record i/o routines \/

 64 |

 65 |/\\\/

66 |/\ Define the structure used for reads from the database file. \/

 67 |/\\\/

 68 | struct {

 69 | char partn??(5??);

 7ð | char partd??(25??);

 71 |} part_rec;

 72 |

 73 |/\\\/

74 |/\ Define the structures used for reads/writes from/to the ICF file. \/

 75 |/\\\/

76 | struct errdes {

 77 | char errord??(4ð??);

 78 |} errdes_i_o;

 79 |

 8ð |struct {

 81 | char partnm??(5??);

 82 |} itemrq;

 83 |

 84 |struct {

 85 | char partds??(25??);

 86 |} itemds;

 87 |

 88 |

 89 |/\\\/

9ð |/\ Define constants/flags used in program. \/

 91 |/\\\/

92 |#define ERROR 1 /\ error during I/O processing \/

93 |#define NOERROR ð

94 |#define MATCH 1 /\ ICF return code match indication \/

95 |#define NO_MATCH ð

96 |#define MORE_REQUESTS ð /\ More request indicator \/

97 |#define NO_REQUESTS 1

98 |#define RC_ðððð ð /\ ICF return codes \/

99 |#define RC_ððð1 1

1ðð |#define RC_ð3ð8 2

Figure E-6 (Part 2 of 6). ILE C/400 Inquiry Example – Remote Program

E-14 OS/400 APPC Programming V4R1

1ð1 |#define RC_ðð14 3

 1ð2 |

 1ð3 |/\\\/

1ð4 |/\ Declare global variables/functions. \/

 1ð5 |/\\\/

 1ð6 |int check_rc(int);

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 1ð7 |int get_cust_num(void);

 1ð8 |void cleanup(void);

 1ð9 |void open_files(void);

 11ð |void start_conversation(void);

 111 |

112 |char part_not_found??(4ð??) =

113 | "THE REQUESTED PART WAS NOT FOUND ";

 114 |

115 |_RFILE \icffptr; /\ Pointer to the ICF file \/

116 |_RFILE \dbfptr; /\ Pointer to database file. \/

 117 |

118 |_XXIOFB_T \comm_fdbk; /\ IO Feedback for ICF unique info \/

119 |_XXIOFB_DSP_ICF_T \dsp_icf_fdbk; /\ IO feedback - display & ICF file \/

 12ð |

121 |_RIOFB_T \db_fdbk; /\ IO Feedback - data base file \/

 122 |

123 |_SYSindara icf_indic; /\ indicatior area for ICF

124 |size_t size; /\ "size_t" is a synonym for the \/

125 | /\ type of the value returned by \/

126 | /\ the "sizeof" operator. \/

 127 |

 128 |

 129 |/\\\/

13ð |/\ START OF PROGRAM \/

 131 |/\ \/

132 |/\ Files are opened, a conversation with the remote program is \/

133 |/\ started, and the part inquiry processing starts. Inquiries \/

134 |/\ are handled until a detach indication is received. \/

 135 |/\\\/

 136 |main()

 137 |{

138 1 | open_files();

139 2 | start_conversation();

 14ð |

141 3 | while (get_cust_num() != NO_REQUESTS)

 142 | {

 143 | /\\\/

144 | /\ A search of the database file is done using the part \/

145 | /\ number as the key. \/

 146 | /\\\/

 147 4 | strncpy (part_rec.partn,itemrq.partnm,5);

 148 5 | strncpy (part_rec.partd," ",25);

149 | db_fdbk = _Rreadk(dbfptr, &part_rec,; sizeof(part_rec),

15ð 6 | __KEY_EQ, &part_rec;partn, sizeof(part_rec.partn));

 151 |

 152 | /\\\/

153 | /\ If the part number is found, a positive response to the \/

154 | /\ confirmation request is issued, followed by a write \/

155 | /\ operation with the requested information. Otherwise, \/

156 | /\ a negative response to the confirmation request is issued, \/

157 | /\ followed by a write operation with an error message. \/

 158 | /\\\/

159 7 | if (db_fdbk -> num_bytes > ð) /\ if record was found \/

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 16ð | {

 161 8 | _Rformat(icffptr, "ITEMOK ");

162 9 | _Rwrite(icffptr, ð, ð);

163 1ð | if (check_rc(RC_ðððð) == NO_MATCH)

 164 11 | cleanup();

Figure E-6 (Part 3 of 6). ILE C/400 Inquiry Example – Remote Program

 Appendix E. ICF Program Examples E-15

 165 |

 166 12 | strncpy(itemds.partds,part_rec.partd,25);

 167 13 | _Rformat(icffptr, "ITEMDS ");

168 14 | _Rwrite(icffptr, &itemds,; sizeof(itemds));

169 15 | if (check_rc(RC_ððð1) == NO_MATCH)

 17ð 16 | cleanup();

 171 | }

172 | else /\ part description not found. \/

 173 | {

 174 17 | _Rformat(icffptr, "PGMERR ");

175 18 | _Rwrite(icffptr, ð ,ð);

176 19 | if (check_rc(RC_ðððð) == NO_MATCH)

 177 2ð | cleanup();

 178 |

179 21 | strncpy(errdes_i_o.errord, part_not_found, 4ð);

 18ð 22 | _Rformat(icffptr, "ERRDES ");

181 23 | _Rwrite(icffptr, &errdes_i_o,; sizeof(errdes_i_o));

182 24 | if (check_rc(RC_ððð1) == NO_MATCH)

 183 25 | cleanup();

 184 | }

185 | } /\ end WHILE \/

 186 |

187 26 | cleanup();

188 |} /\ end of main routine \/

 189 |

 19ð |/\\\/

 191 |/\ \/

 192 |/\ \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\ \/

 193 |/\ \ INTERNAL FUNCTIONS \ \/

 194 |/\ \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\ \/

 195 |/\ \/

 196 |/\\\/

 197 |

 198 |/\\\/

199 |/\ "OPEN_FILES" function \/

 2ðð |/\ \/

2ð1 |/\ This function opens the database and ICF files, and sets the \/

2ð2 |/\ indicator area for the ICF file. \/

 2ð3 |/\\\/

 2ð4 |void open_files()

 2ð5 |{

 2ð6 |

2ð7 | if ((icffptr= _Ropen("T8189ICF","ar+ indicators=y riofb=y"))

 2ð8 1 | == NULL)

 2ð9 | {

21ð 2 | printf("ICF file failed to open.\n");

 211 3 | exit(ERROR);

 212 | }

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 213 |

214 4 | if ((dbfptr= _Ropen("T8189DB", "rr riofb=n")) == NULL)

 215 | {

216 5 | printf("Data Base file failed to open.\n");

 217 6 | exit(ERROR);

 218 | }

 219 |

22ð 7 | _Rindara(icffptr, icf_indic);

 221 |

222 |} /\ end open_files... \/

 223 |

 224 |/\\\/

225 |/\ "START_CONVERSATION" function \/

 226 |/\ \/

227 |/\ This function establishes a conversation with the remote system. \/

228 |/\ The "requesting" program device is acquired. \/

 229 |/\\\/

Figure E-6 (Part 4 of 6). ILE C/400 Inquiry Example – Remote Program

E-16 OS/400 APPC Programming V4R1

23ð |void start_conversation()

 231 |{

232 1 | _Racquire(icffptr, "ICFð1 ");

233 2 | if (check_rc(RC_ðððð) == NO_MATCH)

 234 3 | cleanup();

235 |} /\ end start_conversation... \/

 236 |

 237 |/\\\/

238 |/\ "GET_CUST_NUM" function \/

 239 |/\ \/

24ð |/\ This subroutine waits for incoming data from the partner \/

241 |/\ program by issuing the read operation. \/

 242 |/\\\/

 243 |get_cust_num()

 244 |{

245 1 | _Rformat(icffptr, "ITEMRQ ");

246 2 | _Rreadn(icffptr, &itemrq,; sizeof(itemrq), __DFT);

247 3 | if (check_rc(RC_ðð14) == MATCH)

 248 4 | return(MORE_REQUESTS);

 249 | else

 25ð 5 | return(NO_REQUESTS);

251 |} /\ end get_cust_num... \/

 252 |

 253 |/\\\/

254 |/\ "CHECK_RC" function \/

 255 |/\ \/

256 |/\ This function compares the actual ICF return code received \/

257 |/\ on an operation with an ICF return code that was expected. \/

258 |/\ If the return codes match, then an indication that the return \/

259 |/\ codes matched is returned; otherwise, an indication that the \/

26ð |/\ return codes did not match will be returned. \/

 261 |/\\\/

 262 |check_rc(int rc_type)

 263 |{

264 1 | comm_fdbk = _Riofbk(icffptr);

265 | dsp_icf_fdbk = (_XXIOFB_DSP_ICF_T \) ((char \) comm_fdbk +

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 266 2 | comm_fdbk->file_dep_fb_offset);

 267 |

268 3 | if (rc_type == RC_ðððð)

 269 | {

27ð | if (strncmp(dsp_icf_fdbk->major_ret_code, "ðð", 2) == ð &&;

271 4 | strncmp(dsp_icf_fdbk->minor_ret_code, "ðð", 2) == ð)

 272 5 | return(MATCH);

 273 | else

 274 6 | return(NO_MATCH);

 275 | }

 276 | else

277 7 | if (rc_type == RC_ððð1)

 278 | {

279 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ðð", 2) == ð &&;

28ð 8 | strncmp(dsp_icf_fdbk->minor_ret_code, "ð1", 2) == ð)

 281 9 | return(MATCH);

 282 | else

 283 1ð | return(NO_MATCH);

 284 | }

 285 | else

286 11 | if (rc_type == RC_ð3ð8)

287 | {

288 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ð3", 2) == ð &&;

289 12 | strncmp(dsp_icf_fdbk->minor_ret_code, "ð8", 2) == ð)

 29ð 13 | return(MATCH);

 291 | else

 292 14 | return(NO_MATCH);

293 | }

Figure E-6 (Part 5 of 6). ILE C/400 Inquiry Example – Remote Program

 Appendix E. ICF Program Examples E-17

 294 | else

295 15 | if (rc_type == RC_ðð14)

 296 | {

297 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ðð", 2) == ð &&;

298 16 | strncmp(dsp_icf_fdbk->minor_ret_code, "14", 2) == ð)

 299 17 | return(MATCH);

 3ðð | else

 3ð1 18 | return(NO_MATCH);

 3ð2 | }

3ð3 | else

 3ð4 19 | return(NO_MATCH);

3ð5 |} /\ end check_rc... \/

 3ð6 |

 3ð7 |/\\\/

3ð8 |/\ "CLEANUP" function. \/

 3ð9 |/\ \/

31ð |/\ The following code handles the end-of-program processing. \/

311 |/\ This includes the ending of the conversation with \/

312 |/\ the remote system (if conversation is active), and the \/

313 |/\ closing of opened files. \/

 314 |/\\\/

 315 |void cleanup()

 316 |{

317 1 | if (check_rc(RC_ð3ð8) == MATCH)

 318 | {

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 319 2 | _Rrelease(icffptr, "ICFð1 ");

 32ð | }

 321 | else

322 | if ((strncmp(dsp_icf_fdbk->major_ret_code, "8ð", 2) != ð) &&;

323 | (strncmp(dsp_icf_fdbk->major_ret_code, "81", 2) != ð) &&;

324 3 | (strncmp(dsp_icf_fdbk->major_ret_code, "82", 2) != ð))

 325 | {

 326 4 | _Rformat(icffptr, "EOSREC ");

327 5 | _Rwrite(icffptr, ð, ð);

 328 | }

 329 |

33ð 6 | _Rclose(icffptr);

331 7 | _Rclose(dbfptr);

 332 |

333 8 | exit(ð);

334 |} /\ end cleanup... \/

 335 |

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ \ \ \ \ I N C L U D E S \ \ \ \ \

INCNBR Include Name Last change Actual Include Name

 1 stdio.h 12/ð2/93 14:12:18 QCLE/H/STDIO

 2 stdlib.h 12/ð2/93 14:12:19 QCLE/H/STDLIB

 3 string.h 12/ð2/93 14:12:19 QCLE/H/STRING

 4 stddef.h 12/ð2/93 14:12:17 QCLE/H/STDDEF

 5 xxfdbk.h 12/ð2/93 14:12:23 QCLE/H/XXFDBK

 6 recio.h 12/ð2/93 14:12:15 QCLE/H/RECIO

\ \ \ \ \ E N D O F I N C L U D E S \ \ \ \ \

\ \ \ \ \ M E S S A G E S U M M A R Y \ \ \ \ \

Total Informational(ðð) Warning(1ð) Error(3ð) Severe Error(4ð)

 ð ð ð ð ð

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

Program T8189ICT was created in library LAB on ð2/11/94 at 12:42:3ð.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-6 (Part 6 of 6). ILE C/400 Inquiry Example – Remote Program

COBOL/400 Local Program for Inquiry
Applications (Example 2)

The following explains the structure of the COBOL/400 local
program that sends requests to the partner program for proc-
essing.

E-18 OS/400 APPC Programming V4R1

 Program Explanation

The reference numbers in the explanation below correspond
to the numbers in the program example illustrated in
Figure E-7 on page E-21.

Note: On any type of error that is not expected (for
example, an unexpected ICF return code on an I/O
operation), the session is ended and the program
ends.

.1/ The files used in the program are described in
the file control section. T8189ICF is the ICF file
used to send records to, and receive records
from, the partner program. T8189ICF uses the
file-level keyword, INDARA, which indicates that
the file uses a separate indicator area.
T8189DSP is the name of the display device file
that is used to request an entry from the work
station and to display the results of the inquiry.
T8189DSP uses the file-level keyword, INDARA,
which indicates that the file uses a separate indi-
cator area.

.2/ This section of the program redefines the I/O
feedback areas for use within the program. Refer
to the ICF Programming book for a description of
the I/O feedback areas.

.3/ The OPEN-FILES, START-CONVERSATION, and
GET-CUST-NUM routines are called to open files
used by the program, start a conversation with
the partner program, and obtain the part number
to be queried, respectively.

.4/ The program loops until either F3 is pressed
from the work station, which sets the indicator in
the indicator area of the display file, or an error
occurs in the transaction with the partner
program.

.5/ The CLEAN-UP routine is called to perform end-of-
program processing.

.6/ The OPEN-FILES routine opens the display and
ICF files. A session is implicitly acquired for the
work station when T8189DSP is opened.

.7/ The separate indicator area for the display file
T8189DSP is initialized.

.8/ The START-CONVERSATION routine establishes a
conversation with the partner program.

.9/ The ICFðð program device is explicitly acquired
using the ACQUIRE statement. The acquire-
program-device operation makes the program
device available for input or output operations.

Note: The program device ICFðð was previ-
ously added to the ICF file T8189ICF by
the ADDICFDEVE command.

.1ð/ An evoke request is issued using a write opera-
tion. The write operation is issued using the ICF
file record format PGMSTR, which contains the
EVOKE, SECURITY, and SYNLVL keywords.

Note: On the EVOKE keyword, the library
name is not specified. If the remote
system is an AS/400 system, the library
list will be used to search for the
program. Also, the remote program that
is to be started can be any of the remote
programs in this appendix or in
Appendix F, CPI Communications
Program Examples.

.11/ The HANDLE-INQUIRY routine contains the body of
the loop that sends requests to the partner
program.

.12/ The part number is sent to the partner program
using a write operation. The write operation is
issued using the ICF file record format ITEMRQ,
which contains the confirm (CONFIRM keyword)
and allow-write (ALWWRT keyword) functions.
When these functions are used, the data is
flushed, the data flow direction is changed from
send to receive, and a confirmation request is
sent to the partner program. The partner
program must now respond with a positive or
negative response.

.13/ If the partner program responds with a positive
response (ICF return code of 0001) to the confir-
mation request, a read operation is issued using
the ICF file record format ITEMDS to receive the
part description. However, if the partner program
responds with a negative response (ICF return
code of 83C9) to the confirmation request, a
read operation is issued using the ICF file record
format ERRDES to receive the error message.

.14/ The get-attributes operation (ACCEPT statement)
is issued so that the I/O feedback areas are
updated.

.15/ The GET-CUST-NUM routine is called to display the
information returned by the partner program and
to obtain the next part number to be queried.

.16/ The GET-CUST-NUM routine displays the requested
information and reads the next number. The part
number field will be blank the first time the part
number is read.

.17/ The CLEAN-UP routine performs end-of-program
processing.

.18/ If no error was detected, then a write operation
is issued using the ICF file record format PGMEND,
which contains the detach (DETACH keyword)
function. The release operation (DROP statement)
is then issued to detach the program from the
session.

.19/ If an unexpected error was detected and the
communications session is still active, a write
operation is issued using the ICF file record
format EOSREC, which contains the end-of-
session (EOS keyword) function. The end-of-

 Appendix E. ICF Program Examples E-19

session function detaches the program from the
session.

Note: If the end-of-session function is issued
during an active transaction, APPC will
end the session abnormally.

.2ð/ The ICF and display files are closed.

E-20 OS/400 APPC Programming V4R1

 Program : T8189ILS

Library : APPCLIB

 Source file : QATTCBL

Library : QUSRTOOL

 Source member : T8189ILS ð9/26/9ð ð8:27:ð4

 Generation severity level : 29

 Text 'description' : \BLANK

 Source listing options : \NONE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

1 ðððð1ð IDENTIFICATION DIVISION.

 ðððð2ð

 2 ðððð3ð PROGRAM-ID. T8189ILS.

 ðððð4ð

 ðððð5ð\\

ðððð6ð\ Program name.........: T8189ILS \

ðððð7ð\ Program description..: ICF local program \

ðððð8ð\ Language.............: COBOL/4ðð \

 ðððð9ð\ \

ððð1ðð\ This program invokes a program to handle part inquiry on \

ððð11ð\ the remote system. The acquire operation is used to \

ððð12ð\ establish a communications session. A write operation \

ððð13ð\ with the evoke function is then issued, which results in \

ððð14ð\ the establishment of a conversation with the remote \

ððð15ð\ program. A display which prompts the user for the part \

ððð16ð\ number for which part information is requested is then \

ððð17ð\ displayed. When the user presses Enter, a write operation \

ððð18ð\ is issued (the data sent to the partner program is the \

ððð19ð\ part number). Note that the write operation was issued \

ððð2ðð\ with the confirm (CONFIRM) and allow-write (ALWWRT) \

ððð21ð\ functions. These functions results in the flushing of the \

ððð22ð\ data (to be sent to the partner program), the changing of \

ððð23ð\ the data flow direction (the partner program can send the \

ððð24ð\ response), and the sending of a confirmation request to \

ððð25ð\ the partner program. If the partner program responds \

ððð26ð\ with a positive response to the confirmation request (using\

ððð27ð\ the RSPCONFIRM function), the ICF return code on the \

ððð28ð\ write operation will be set to ððð1 (indicating that \

ððð29ð\ the part number was found); a read operation is then \

ððð3ðð\ issued to receive the part description. However, if \

ððð31ð\ the partner program responds with a negative response \

ððð32ð\ to the confirmation request (using the FAIL function), \

ððð33ð\ the ICF return code on the write operation will be set \

ððð34ð\ to 83C9 (indicating that the part number was not found); \

ððð35ð\ a read operation is issued to receive the error message. \

 ððð36ð\ \

ððð37ð\ The error message or part description (depending on \

ððð38ð\ whether the part number was found) will be displayed on \

ððð39ð\ the screen. \

 ððð4ðð\ \

ððð41ð\ This program will continue to handle inquiries until the \

ððð42ð\ user presses the F3=Exit key. When F3=Exit is pressed, \

ððð43ð\ a write operation with the detach (DETACH) function \

ððð44ð\ is issued to end the conversation, and program processing \

 ððð45ð\ ends. \

 ððð46ð\ \

Figure E-7 (Part 1 of 7). COBOL/400 Inquiry Example – Local Program

 Appendix E. ICF Program Examples E-21

ððð47ð\ NOTE 1: If an unexpected ICF return code is received on \

ððð48ð\ any of the read or write operations, the \

ððð49ð\ program will abnormally end the conversation (if \

ððð5ðð\ it is still active), and program processing will \

 ððð51ð\ end. \

 ððð52ð\ \

ððð53ð\ NOTE 2: On the receive operation, if the actual received \

ððð54ð\ data length (obtained from the I/O feedback area) \

ððð55ð\ does not match what was expected, or if the \

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ððð56ð\ ICF return code is not ðððð (indication that \

ððð57ð\ the partner program is ready to receive data), the \

ððð58ð\ program will abnormally end the conversation (if \

ððð59ð\ it is still active), and program processing will \

 ððð6ðð\ end. \

 ððð61ð\ \

ððð62ð\ NOTE 3: This program can start ANY of the "remote" \

ððð63ð\ program examples in the APPC Programmer's \

ððð64ð\ Guide by changing the PGMID variable to the \

ððð65ð\ remote program that is to be started. \

 ððð66ð\ \

 ððð67ð\\

 ððð68ð

3 ððð69ð ENVIRONMENT DIVISION.

 ððð7ðð

4 ððð71ð CONFIGURATION SECTION.

 ððð72ð

5 ððð73ð SOURCE-COMPUTER. IBM-AS4ðð.

6 ððð74ð OBJECT-COMPUTER. IBM-AS4ðð.

7 ððð75ð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FEEDBACK

8 ððð76ð OPEN-FEEDBACK IS OPEN-FBA.

 ððð77ð

9 ððð78ð INPUT-OUTPUT SECTION.

 ððð79ð

 1ð ððð8ðð FILE-CONTROL.

 ððð81ð

.1/ 11 ððð82ð SELECT T8189ICF ASSIGN TO WORKSTATION-T8189ICF

12 ððð83ð ORGANIZATION IS TRANSACTION

13 ððð84ð CONTROL-AREA IS TR-CTL-AREA

14 ððð85ð FILE STATUS IS STATUS-IND MAJMIN.

15 ððð86ð SELECT T8189DSP ASSIGN TO WORKSTATION-T8189DSP

16 ððð87ð ORGANIZATION IS TRANSACTION

17 ððð88ð CONTROL-AREA IS DISPLAY-FEEDBACK

18 ððð89ð FILE STATUS IS STATUS-DSP.

 ððð9ðð

19 ððð91ð DATA DIVISION.

 ððð92ð

2ð ððð93ð FILE SECTION.

 ððð94ð

 ððð95ð\\

ððð96ð\ File description for the ICF file. \

 ððð97ð\\

 ððð98ð

 21 ððð99ð FD T8189ICF

22 ðð1ððð LABEL RECORDS ARE STANDARD.

 23 ðð1ð1ð ð1 APPCREC.

24 ðð1ð2ð COPY DDS-ALL-FORMATS-I-O OF T8189ICF.

25 +ððððð1 ð5 T8189ICF-RECORD PIC X(4ð). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:PGMSTR FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 +ððððð4\ ð5 PGMSTR-I REDEFINES T8189ICF-RECORD. <-ALL-FMTS

+ððððð5\ OUTPUT FORMAT:PGMSTR FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð6\ <-ALL-FMTS

 26 +ððððð7 ð5 PGMSTR-O REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 27 +ððððð8 ð6 PGMID PIC X(1ð). <-ALL-FMTS

Figure E-7 (Part 2 of 7). COBOL/400 Inquiry Example – Local Program

E-22 OS/400 APPC Programming V4R1

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

+ððððð9\ I-O FORMAT:ITEMRQ FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð1ð\ <-ALL-FMTS

 28 +ðððð11 ð5 ITEMRQ REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 29 +ðððð12 ð6 PARTNM PIC X(5). <-ALL-FMTS

+ðððð13\ I-O FORMAT:ITEMDS FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð14\ <-ALL-FMTS

 3ð +ðððð15 ð5 ITEMDS REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 31 +ðððð16 ð6 PARTDS PIC X(25). <-ALL-FMTS

+ðððð17\ I-O FORMAT:ERRDES FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð18\ <-ALL-FMTS

 32 +ðððð19 ð5 ERRDES REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 33 +ðððð2ð ð6 ERRORD PIC X(4ð). <-ALL-FMTS

+ðððð21\ I-O FORMAT:PGMEND FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð22\ <-ALL-FMTS

 +ðððð23\ ð5 PGMEND REDEFINES T8189ICF-RECORD. <-ALL-FMTS

+ðððð24\ I-O FORMAT:EOSREC FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð25\ <-ALL-FMTS

 +ðððð26\ ð5 EOSREC REDEFINES T8189ICF-RECORD. <-ALL-FMTS

+ðððð27\ I-O FORMAT:PGMERR FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð28\ <-ALL-FMTS

 +ðððð29\ ð5 PGMERR REDEFINES T8189ICF-RECORD. <-ALL-FMTS

+ðððð3ð\ I-O FORMAT:ITEMOK FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð31\ <-ALL-FMTS

 +ðððð32\ ð5 ITEMOK REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 ðð1ð3ð

 ðð1ð4ð\\

ðð1ð5ð\ File description for the display file. \

 ðð1ð6ð\\

 ðð1ð7ð

 34 ðð1ð8ð FD T8189DSP

35 ðð1ð9ð LABEL RECORDS ARE STANDARD.

 36 ðð11ðð ð1 DSPREC.

37 ðð111ð COPY DDS-ALL-FORMATS-I-O OF T8189DSP.

38 +ððððð1 ð5 T8189DSP-RECORD PIC X(7ð). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:PROMPT FROM FILE T8189DSP OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 39 +ððððð4 ð5 PROMPT-I REDEFINES T8189DSP-RECORD. <-ALL-FMTS

 4ð +ððððð5 ð6 PARTN PIC X(5). <-ALL-FMTS

+ððððð6\ OUTPUT FORMAT:PROMPT FROM FILE T8189DSP OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð7\ <-ALL-FMTS

 41 +ððððð8 ð5 PROMPT-O REDEFINES T8189DSP-RECORD. <-ALL-FMTS

 42 +ððððð9 ð6 PARTN PIC X(5). <-ALL-FMTS

 43 +ðððð1ð ð6 PARTD PIC X(25). <-ALL-FMTS

 44 +ðððð11 ð6 ERRORL PIC X(4ð). <-ALL-FMTS

 ðð112ð

45 ðð113ð WORKING-STORAGE SECTION.

 ðð114ð

 46 ðð115ð 77 STATUS-IND PIC XX.

 47 ðð116ð 77 STATUS-DSP PIC XX.

 ðð117ð

 48 ðð118ð ð1 TR-CTL-AREA.

 49 ðð119ð ð5 FILLER PIC X(2).

 5ð ðð12ðð ð5 PGM-DEV-NME PIC X(1ð).

 51 ðð121ð ð5 RCD-FMT-NME PIC X(1ð).

 ðð122ð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 52 ðð123ð ð1 DSPF-INDIC-AREA.

 53 ðð124ð ð5 CMD3 PIC 1 INDIC 99.

 54 ðð125ð 88 CMD3-ON VALUE B"1".

 55 ðð126ð 88 CMD3-OFF VALUE B"ð".

 ðð127ð

Figure E-7 (Part 3 of 7). COBOL/400 Inquiry Example – Local Program

 Appendix E. ICF Program Examples E-23

.2/ 56 ðð128ð ð1 IO-FBA.

 57 ðð129ð ð5 COMMON-IO-FBA.

 58 ðð13ðð 1ð FILLER PIC X(144).

 59 ðð131ð ð5 FILE-DEP-IO-FBA.

 6ð ðð132ð 1ð FILLER PIC X(5).

61 ðð133ð 1ð ACTUAL-LENGTH PIC 9(9) COMP-4.

 62 ðð134ð 1ð FILLER PIC X(25).

 63 ðð135ð 1ð MAJ-MIN-S.

 64 ðð136ð 15 MAJ-S PIC X(2).

 65 ðð137ð 15 MIN-S PIC X(2).

 66 ðð138ð 1ð ERDTA PIC X(8).

 67 ðð139ð ð5 FILLER PIC X(21).

 ðð14ðð

 68 ðð141ð ð1 MAJMIN.

 69 ðð142ð ð5 MAJCOD PIC XX.

 7ð ðð143ð ð5 MINCOD PIC XX.

 ðð144ð

 71 ðð145ð ð1 DISPLAY-FEEDBACK.

 72 ðð146ð ð5 CMD-KEY PIC XX.

 73 ðð147ð ð5 FILLER PIC X(1ð).

 74 ðð148ð ð5 RCD-FMT PIC X(1ð).

 ðð149ð

75 ðð15ðð ð1 REQUEST-LENGTH PIC 9(9) COMP-4.

 ðð151ð

76 ðð152ð ð1 ERR-SWITCH PIC 9(9) COMP-4.

 77 ðð153ð 88 NO-ERROR-OCCURRED VALUE ð.

 78 ðð154ð 88 ERROR-OCCURRED VALUE 1.

 ðð155ð

79 ðð156ð PROCEDURE DIVISION.

 ðð157ð

 ðð158ð DECLARATIVES.

ðð159ð END DECLARATIVES.

 ðð16ðð

 ðð161ð\\

ðð162ð\ START OF PROGRAM \

 ðð163ð\ \

ðð164ð\ Files are opened, a conversation with the \

ðð165ð\ remote program is started, and the part inquiry \

ðð166ð\ screen is displayed. Inquiries are handled until \

ðð167ð\ the user presses the F3=Exit key, in which case \

ðð168ð\ the conversation will be ended and the program will end. \

 ðð169ð\\

 ðð17ðð

ðð171ð START-PROGRAM SECTION.

 ðð172ð

 ðð173ð START-PROGRAM-PARAGRAPH.

 ðð174ð

.3/ 8ð ðð175ð PERFORM OPEN-FILES.

 81 ðð176ð PERFORM START-CONVERSATION.

 ðð177ð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 82 ðð178ð PERFORM GET-CUST-NUM.

 ðð179ð

.4/ 83 ðð18ðð PERFORM HANDLE-INQUIRY UNTIL CMD3-ON.

 ðð181ð

84 ðð182ð SET NO-ERROR-OCCURRED TO TRUE.

.5/ 85 ðð183ð PERFORM CLEAN-UP.

 ðð184ð

 ðð185ð

 ðð186ð\\

ðð187ð\ "OPEN-FILES" routine. \

 ðð188ð\ \

ðð189ð\ This routine opens the display and ICF files. \

 ðð19ðð\\

 ðð191ð

.6/ ðð192ð OPEN-FILES.

 ðð193ð

86 ðð194ð OPEN I-O T8189ICF T8189DSP.

87 ðð195ð MOVE SPACES TO DSPREC.

.7/ 88 ðð196ð MOVE ZEROS TO DSPF-INDIC-AREA.

Figure E-7 (Part 4 of 7). COBOL/400 Inquiry Example – Local Program

E-24 OS/400 APPC Programming V4R1

 ðð197ð

 ðð198ð\\

ðð199ð\ "START-CONVERSATION" routine. \

 ðð2ððð\ \

ðð2ð1ð\ This subroutine establishes a conversation with the \

ðð2ð2ð\ remote program. \

 ðð2ð3ð\\

 ðð2ð4ð

.8/ ðð2ð5ð START-CONVERSATION.

 ðð2ð6ð

89 ðð2ð7ð SET ERROR-OCCURRED TO TRUE.

 ðð2ð8ð

 ðð2ð9ð\\

ðð21ðð\ The acquire operation is issued. \

 ðð211ð\\

.9/ 9ð ðð212ð ACQUIRE "ICFðð " FOR T8189ICF.

91 ðð213ð MOVE "ICFðð " TO PGM-DEV-NME.

 ðð214ð

92 ðð215ð IF MAJMIN = "ðððð" THEN

 ðð216ð NEXT SENTENCE

 ðð217ð ELSE

 93 ðð218ð PERFORM CLEAN-UP.

 ðð219ð

 ðð22ðð\\

ðð221ð\ A write operation with the evoke function is issued so \

ðð222ð\ that a conversation can be started. \

 ðð223ð\\

94 ðð224ð MOVE "T8189ILT" TO PGMID.

.1ð/95 ðð225ð WRITE APPCREC FORMAT IS "PGMSTR"

ðð226ð TERMINAL IS PGM-DEV-NME.

 ðð227ð

96 ðð228ð IF MAJMIN = "ðððð" THEN

 ðð229ð NEXT SENTENCE

 ðð23ðð ELSE

 97 ðð231ð PERFORM CLEAN-UP.

 ðð232ð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ðð233ð

 ðð234ð\\

ðð235ð\ "HANDLE-INQUIRY" routine. \

 ðð236ð\ \

ðð237ð\ This is the main loop of the program. Process the part \

ðð238ð\ number keyed in by the user until F3 (CMD3) is pressed. \

 ðð239ð\\

 ðð24ðð

.11/ ðð241ð HANDLE-INQUIRY.

 ðð242ð

 ðð243ð\\

ðð244ð\ The part number that the user has requested information \

ðð245ð\ for is sent to the remote program using the write \

ðð246ð\ operation with the confirm and allow-write functions. \

 ðð247ð\\

98 ðð248ð MOVE PARTN OF PROMPT-I TO PARTNM OF ITEMRQ.

.12/99 ðð249ð WRITE APPCREC FORMAT IS "ITEMRQ"

ðð25ðð TERMINAL IS PGM-DEV-NME.

 ðð251ð

 ðð252ð\\

ðð253ð\ The read operation is issued to receive the response \

ðð254ð\ from the remote program (the response can either be \

ðð255ð\ an error message or the part description, depending \

ðð256ð\ on whether the part was found or not). \

 ðð257ð\\

Figure E-7 (Part 5 of 7). COBOL/400 Inquiry Example – Local Program

 Appendix E. ICF Program Examples E-25

.13/1ðð ðð258ð IF MAJMIN = "ððð1" THEN

1ð1 ðð259ð MOVE 25 TO REQUEST-LENGTH

1ð2 ðð26ðð MOVE SPACES TO ERRORL

1ð3 ðð261ð READ T8189ICF FORMAT IS "ITEMDS"

ðð262ð TERMINAL IS PGM-DEV-NME

1ð4 ðð263ð MOVE PARTDS OF ITEMDS TO PARTD

 ðð264ð ELSE

1ð5 ðð265ð IF MAJMIN = "83C9" THEN

1ð6 ðð266ð MOVE 4ð TO REQUEST-LENGTH

1ð7 ðð267ð MOVE SPACES TO PARTD

1ð8 ðð268ð READ T8189ICF FORMAT IS "ERRDES"

1ð9 ðð269ð MOVE ERRORD OF ERRDES TO ERRORL

 ðð27ðð ELSE

 11ð ðð271ð PERFORM CLEAN-UP.

 ðð272ð

.14/111 ðð273ð ACCEPT IO-FBA FROM IO-FEEDBACK.

 ðð274ð

112 ðð275ð IF MAJMIN = "ðððð" AND

 ðð276ð ACTUAL-LENGTH = REQUEST-LENGTH THEN

 ðð277ð NEXT SENTENCE

 ðð278ð ELSE

 113 ðð279ð PERFORM CLEAN-UP.

 ðð28ðð

.15/114 ðð281ð PERFORM GET-CUST-NUM.

 ðð282ð

 ðð283ð\\

ðð284ð\ "GET-CUST-NUM" routine. \

 ðð285ð\ \

ðð286ð\ Get a customer number from the display. \

 ðð287ð\\

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ðð288ð

.16/ ðð289ð GET-CUST-NUM.
 ðð29ðð

115 ðð291ð WRITE DSPREC FORMAT IS "PROMPT".

116 ðð292ð READ T8189DSP INDICATORS ARE DSPF-INDIC-AREA.

 ðð293ð

 ðð294ð\\

ðð295ð\ "CLEAN-UP" routine. \

 ðð296ð\ \

ðð297ð\ The following code handles the end-of-program processing. \

ðð298ð\ This includes the ending of the conversation with \

ðð299ð\ the remote system (if conversation is active) by either \

ðð3ððð\ issuing a write operation with the detach function \

ðð3ð1ð\ followed by a release operation (for non-error conditions),\

ðð3ð2ð\ or by issuing a write operation with the end-of-session \

ðð3ð3ð\ function (for error conditions). \

 ðð3ð4ð\\

 ðð3ð5ð

.17/ ðð3ð6ð CLEAN-UP.

 ðð3ð7ð

117 ðð3ð8ð IF MAJCOD = "8ð" OR

 ðð3ð9ð MAJCOD = "81" OR

 ðð31ðð MAJCOD = "82" THEN

 ðð311ð NEXT SENTENCE

 ðð312ð ELSE

.18/118 ðð313ð IF NO-ERROR-OCCURRED THEN

119 ðð314ð WRITE APPCREC FORMAT IS "PGMEND"

12ð ðð315ð DROP "ICFðð " FROM T8189ICF

 ðð316ð ELSE

.19/121 ðð317ð WRITE APPCREC FORMAT IS "EOSREC".

 ðð318ð

.2ð/122 ðð319ð CLOSE T8189DSP T8189ICF.

 ðð32ðð

 123 ðð321ð STOP RUN.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure E-7 (Part 6 of 7). COBOL/400 Inquiry Example – Local Program

E-26 OS/400 APPC Programming V4R1

 STMT

\ MSGID: LBLð9ð4 SEVERITY: ðð SEQNBR:

Message : Unexpected source member type.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð1ð2ð

Message : No INPUT fields found for format PGMSTR.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð1ð2ð

Message : No INPUT fields found for format PGMEND.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð1ð2ð

Message : No INPUT fields found for format EOSREC.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð1ð2ð

Message : No INPUT fields found for format PGMERR.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð1ð2ð

Message : No INPUT fields found for format ITEMOK.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

6 1 5 ð ð ð

 Source records read : 321

 Copy records read : 43

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program T8189ILS created in library APPCLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-7 (Part 7 of 7). COBOL/400 Inquiry Example – Local Program

COBOL/400 Remote Program for Inquiry
Application (Example 2)

The following explains the structure of the COBOL/400
remote program that handles requests sent by the partner
program.

 Program Explanation

The reference numbers in the explanation below correspond
to the numbers in the program example illustrated in
Figure E-8 on page E-29.

Note: On any type of error that is not expected (for
example, an unexpected ICF return code on an I/O
operation), the session is ended and the program
ends.

.1/ The file division section defines the files used in
the program.

T8189ICF is the ICF file used to receive records
from, and send records to, the partner program.
T8189ICF uses the file-level keyword, INDARA,
which indicates that the file uses a separate indi-
cator area.

T8189DB is the database file that contains the
valid part numbers and part descriptions.

.2/ This section defines the I/O feedback areas for
use within the program.

.3/ The OPEN-FILES, START-CONVERSATION, and
GET-CUST-NUM routines are called to open files
used by the program, start a conversation with
the partner program, and wait on a request by
the partner program, respectively.

.4/ The program loops until there are no more
requests to process, or an error occurs in the
transaction with the partner program.

.5/ The CLEAN-UP routine is called to perform end-of-
program processing.

.6/ The OPEN-FILES routine opens the database and
ICF files.

.7/ The START-CONVERSATION routine establishes a
conversation with the partner program by explic-
itly acquiring the ICFð1 program device using the
ACQUIRE statement.

Note: The program device ICFð1 was previ-
ously added to the ICF file T8189ICF by
the ADDICFDEVE command.

.8/ The HANDLE-INQUIRY routine contains the body of
the loop that handles requests from the partner
program.

.9/ A search of the database file is performed using
the part number received from the partner
program as the key.

.1ð/ If the part number is found in the database file, a
write operation is issued using the ICF file record
format ITEMOK, which contains the respond-to-
confirm (RSPCONFIRM keyword) function. As a
result, a positive response to the received confir-
mation request is sent to the partner program.
This is followed by a second write operation
using the ICF file record format ITEMDS, which
contains the requested information to be sent
and the allow-write (ALWWRT keyword) function.
Using the allow-write function results in the
flushing of the data and the changing of the data
flow direction.

 Appendix E. ICF Program Examples E-27

.11/ If the part number is not found in the database
file, a write operation is issued using the ICF file
record format PGMERR, which contains the fail
(FAIL keyword) function. As a result, a negative
response to the received confirmation request is
sent to the partner program. This is followed by
a second write operation using the ICF file
record format ERRDES, which contains the error
message to be sent and the allow-write function.

.12/ If the session with the partner program is still
active, the GET-CUST-NUM routine is called to wait
on a request by the partner program.

.13/ The GET-CUST-NUM routine waits for a request
from the partner program by issuing a read oper-
ation using the ICF file record format ITEMRQ.

Note: A transaction is processed if data is
received with a turnaround indication,
and the partner program requested con-

firmation. This is indicated by the ICF
return code 0014.

.14/ The CLEAN-UP routine performs end-of-program
processing.

.15/ If no error was detected, a release operation
(DROP statement) is issued to detach the program
from the session.

.16/ If an unexpected error was detected and the
communications session is still active, a write
operation is issued using the ICF file record
format EOSREC, which contains the end-of-
session (EOS keyword) function. The end-of-
session function detaches the program from the
session.

Note: If the end-of-session function is issued
during an active transaction, APPC will
end the session abnormally.

.17/ The ICF and database files are closed.

E-28 OS/400 APPC Programming V4R1

 Program : T8189ILT

Library : APPCLIB

 Source file : QATTCBL

Library : QUSRTOOL

 Source member : T8189ILT ð9/26/9ð ð8:27:ð6

 Generation severity level : 29

 Text 'description' : \BLANK

 Source listing options : \NONE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

1 ðððð1ð IDENTIFICATION DIVISION.

 ðððð2ð

 2 ðððð3ð PROGRAM-ID. T8189ILT.

 ðððð4ð

 ðððð5ð\\

ðððð6ð\ Program name.........: T8189ILT \

ðððð7ð\ Program description..: ICF remote program \

ðððð8ð\ Language.............: COBOL/4ðð \

 ðððð9ð\ \

ððð1ðð\ This program accepts the incoming conversation by issuing \

ððð11ð\ the acquire operation to acquire the requesting program \

ððð12ð\ device. A read operation is then issued to receive the \

ððð13ð\ part number from the remote system. The read operation \

ððð14ð\ completes with an ICF return code of ðð14, indicating \

ððð15ð\ that data with a turnaround indication was received, and \

ððð16ð\ that the partner program also requested confirmation. The \

ððð17ð\ database file T8189DB is searched for the received part \

ððð18ð\ number. If the part number is found, a write operation \

ððð19ð\ with the respond-to-confirm (RSPCONFIRM) function is \

ððð2ðð\ issued, followed by a write operation containing the \

ððð21ð\ part description corresponding to the part number \

ððð22ð\ retrieved from the database file. However, if the part \

ððð23ð\ number is not found, a write operation with the \

ððð24ð\ negative-response (FAIL) function is issued, followed by \

ððð25ð\ a write operation containing an error message describing \

ððð26ð\ the error. The write operation sending either the part \

ððð27ð\ description or the error message is issued with the \

ððð28ð\ allow-write (ALWWRT) function. Using the allow-write \

ððð29ð\ function results in the flushing of the data and the \

ððð3ðð\ changing of the data flow direction. The partner program \

ððð31ð\ can send more inquiries. \

 ððð32ð\ \

ððð33ð\ This program will continue to handle inquiries from the \

ððð34ð\ partner program until a detach indication is received. \

ððð35ð\ Then the program ends. \

 ððð36ð\ \

ððð37ð\ NOTE 1: If an unexpected ICF return code is received on \

ððð38ð\ any of the read or write operations, the \

ððð39ð\ program will abnormally end the conversation (if \

ððð4ðð\ it is still active), and program processing will \

 ððð41ð\ end. \

 ððð42ð\ \

ððð43ð\ NOTE 2: On the receive operation, if the actual received \

ððð44ð\ data length (obtained from the I/O feedback area) \

ððð45ð\ does not match what was expected, or if the \

ððð46ð\ ICF return code is not ðð14 (indication that \

Figure E-8 (Part 1 of 6). COBOL/400 Inquiry Example – Remote Program

 Appendix E. ICF Program Examples E-29

ððð47ð\ data was received with a turnaround indicator, \

ððð48ð\ and partner program requested confirmation), the \

ððð49ð\ program will abnormally end the conversation (if \

ððð5ðð\ it is still active), and program processing will \

 ððð51ð\ end. \

 ððð52ð\ \

ððð53ð\ NOTE 3: This program can be started by ANY of the \

ððð54ð\ "local" program examples in the APPC Programmer's \

 ððð55ð\ Guide. \

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ððð56ð\ \

 ððð57ð\\

 ððð58ð

3 ððð59ð ENVIRONMENT DIVISION.

 ððð6ðð

4 ððð61ð CONFIGURATION SECTION.

 ððð62ð

5 ððð63ð SOURCE-COMPUTER. IBM-AS4ðð.

6 ððð64ð OBJECT-COMPUTER. IBM-AS4ðð.

7 ððð65ð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FEEDBACK

8 ððð66ð OPEN-FEEDBACK IS OPEN-FBA.

 ððð67ð

9 ððð68ð INPUT-OUTPUT SECTION.

 ððð69ð

 1ð ððð7ðð FILE-CONTROL.

 ððð71ð

.1/ 11 ððð72ð SELECT T8189ICF ASSIGN TO WORKSTATION-T8189ICF

12 ððð73ð ORGANIZATION IS TRANSACTION

13 ððð74ð CONTROL-AREA IS TR-CTL-AREA

14 ððð75ð FILE STATUS IS STATUS-IND MAJMIN.

15 ððð76ð SELECT T8189DB ASSIGN TO DATABASE-T8189DB

16 ððð77ð ORGANIZATION IS INDEXED

17 ððð78ð ACCESS IS RANDOM

18 ððð79ð RECORD KEY IS ITEMNM.

 ððð8ðð

19 ððð81ð DATA DIVISION.

 ððð82ð

2ð ððð83ð FILE SECTION.

 ððð84ð

 ððð85ð\\

ððð86ð\ File description for the ICF file. \

 ððð87ð\\

 ððð88ð

 21 ððð89ð FD T8189ICF

22 ððð9ðð LABEL RECORDS ARE STANDARD.

 23 ððð91ð ð1 APPCREC.

24 ððð92ð COPY DDS-ALL-FORMATS-I-O OF T8189ICF.

25 +ððððð1 ð5 T8189ICF-RECORD PIC X(4ð). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:PGMSTR FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 +ððððð4\ ð5 PGMSTR-I REDEFINES T8189ICF-RECORD. <-ALL-FMTS

+ððððð5\ OUTPUT FORMAT:PGMSTR FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð6\ <-ALL-FMTS

 26 +ððððð7 ð5 PGMSTR-O REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 27 +ððððð8 ð6 PGMID PIC X(1ð). <-ALL-FMTS

+ððððð9\ I-O FORMAT:ITEMRQ FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð1ð\ <-ALL-FMTS

 28 +ðððð11 ð5 ITEMRQ REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 29 +ðððð12 ð6 PARTNM PIC X(5). <-ALL-FMTS

+ðððð13\ I-O FORMAT:ITEMDS FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð14\ <-ALL-FMTS

 3ð +ðððð15 ð5 ITEMDS REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 31 +ðððð16 ð6 PARTDS PIC X(25). <-ALL-FMTS

+ðððð17\ I-O FORMAT:ERRDES FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð18\ <-ALL-FMTS

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 32 +ðððð19 ð5 ERRDES REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 33 +ðððð2ð ð6 ERRORD PIC X(4ð). <-ALL-FMTS

+ðððð21\ I-O FORMAT:PGMEND FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð22\ <-ALL-FMTS

Figure E-8 (Part 2 of 6). COBOL/400 Inquiry Example – Remote Program

E-30 OS/400 APPC Programming V4R1

 +ðððð23\ ð5 PGMEND REDEFINES T8189ICF-RECORD. <-ALL-FMTS
+ðððð24\ I-O FORMAT:EOSREC FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð25\ <-ALL-FMTS

 +ðððð26\ ð5 EOSREC REDEFINES T8189ICF-RECORD. <-ALL-FMTS

+ðððð27\ I-O FORMAT:PGMERR FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð28\ <-ALL-FMTS

 +ðððð29\ ð5 PGMERR REDEFINES T8189ICF-RECORD. <-ALL-FMTS

+ðððð3ð\ I-O FORMAT:ITEMOK FROM FILE T8189ICF OF LIBRARY APPCLIB <-ALL-FMTS

 +ðððð31\ <-ALL-FMTS

 +ðððð32\ ð5 ITEMOK REDEFINES T8189ICF-RECORD. <-ALL-FMTS

 ððð93ð

 ððð94ð\\

ððð95ð\ File description for the database file. \

 ððð96ð\\

 ððð97ð

 34 ððð98ð FD T8189DB

35 ððð99ð LABEL RECORDS ARE STANDARD.

 36 ðð1ððð ð1 DBREC.

37 ðð1ð1ð COPY DDS-ALL-FORMATS OF T8189DB.

38 +ððððð1 ð5 T8189DB-RECORD PIC X(3ð). <-ALL-FMTS

+ððððð2\ I-O FORMAT:DBRCD FROM FILE T8189DB OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

+ððððð4\ USER SUPPLIED KEY BY RECORD KEY CLAUSE <-ALL-FMTS

 39 +ððððð5 ð5 DBRCD REDEFINES T8189DB-RECORD. <-ALL-FMTS

 4ð +ððððð6 ð6 ITEMNM PIC X(5). <-ALL-FMTS

 41 +ððððð7 ð6 ITEMD PIC X(25). <-ALL-FMTS

 ðð1ð2ð

42 ðð1ð3ð WORKING-STORAGE SECTION.

 ðð1ð4ð

 43 ðð1ð5ð 77 STATUS-IND PIC XX.

 ðð1ð6ð

 44 ðð1ð7ð ð1 TR-CTL-AREA.

 45 ðð1ð8ð ð5 FILLER PIC X(2).

 46 ðð1ð9ð ð5 PGM-DEV-NME PIC X(1ð).

 47 ðð11ðð ð5 RCD-FMT-NME PIC X(1ð).

 ðð111ð

.2/ 48 ðð112ð ð1 IO-FBA.

 49 ðð113ð ð5 COMMON-IO-FBA.

 5ð ðð114ð 1ð FILLER PIC X(144).

 51 ðð115ð ð5 FILE-DEP-IO-FBA.

 52 ðð116ð 1ð FILLER PIC X(5).

53 ðð117ð 1ð ACTUAL-LENGTH PIC 9(9) COMP-4.

 54 ðð118ð 1ð FILLER PIC X(25).

 55 ðð119ð 1ð MAJMIN-S.

 56 ðð12ðð 15 MAJ-S PIC X(2).

 57 ðð121ð 15 MIN-S PIC X(2).

 58 ðð122ð 1ð ERDTA PIC X(8).

 59 ðð123ð ð5 FILLER PIC X(21).

 ðð124ð

 6ð ðð125ð ð1 ERROR-FND PIC X.

 61 ðð126ð ð1 MAJMIN.

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 62 ðð127ð ð5 MAJCOD PIC XX.

 63 ðð128ð ð5 MINCOD PIC XX.

 ðð129ð

 64 ðð13ðð ð1 NOT-FND-MSG PIC X(4ð)

65 ðð131ð VALUE "The requested part was not found. ".

 ðð132ð

66 ðð133ð PROCEDURE DIVISION.

 ðð134ð

 ðð135ð DECLARATIVES.

ðð136ð END DECLARATIVES.

 ðð137ð

ðð138ð START-PROGRAM SECTION.

 ðð139ð

 ðð14ðð START-PROGRAM-PARAGRAPH.

 ðð141ð

Figure E-8 (Part 3 of 6). COBOL/400 Inquiry Example – Remote Program

 Appendix E. ICF Program Examples E-31

 ðð142ð\\

ðð143ð\ START OF PROGRAM \

 ðð144ð\ \

ðð145ð\ Files are opened, a conversation with the \

ðð146ð\ remote program is started, and the part inquiry \

ðð147ð\ processing starts. Inquiries are handled until a \

ðð148ð\ detach indication is received. \

 ðð149ð\\

 ðð15ðð

.3/ 67 ðð151ð PERFORM OPEN-FILES.

 68 ðð152ð PERFORM START-CONVERSATION.

 69 ðð153ð PERFORM GET-CUST-NUM.

 ðð154ð

.4/ 7ð ðð155ð PERFORM HANDLE-INQUIRY UNTIL

ðð156ð NOT (MAJMIN IS EQUAL TO "ðð14").

 ðð157ð

.5/ 71 ðð158ð PERFORM CLEAN-UP.

 ðð159ð

 ðð16ðð\\

ðð161ð\ "OPEN-FILES" routine. \

 ðð162ð\ \

ðð163ð\ This routine opens the ICF and database files. \

 ðð164ð\\

 ðð165ð

.6/ ðð166ð OPEN-FILES.

 ðð167ð

72 ðð168ð OPEN I-O T8189ICF T8189DB.

 ðð169ð

 ðð17ðð\\

ðð171ð\ "START-CONVERSATION" routine. \

 ðð172ð\ \

ðð173ð\ This routine establishes a conversation with the \

ðð174ð\ remote program. \

 ðð175ð\\

 ðð176ð

 .7/ ðð177ð START-CONVERSATION.

 ðð178ð

 ðð179ð\\

ðð18ðð\ The acquire operation is issued. \

 ðð181ð\\

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

73 ðð182ð MOVE "ICFð1 " TO PGM-DEV-NME.

74 ðð183ð ACQUIRE "ICFð1 " FOR T8189ICF.

 ðð184ð

75 ðð185ð IF MAJMIN = "ðððð" THEN

 ðð186ð NEXT SENTENCE

 ðð187ð ELSE

 76 ðð188ð PERFORM CLEAN-UP.

 ðð189ð

 ðð19ðð\\

ðð191ð\ "HANDLE-INQUIRY" routine. \

 ðð192ð\ \

ðð193ð\ This is the main loop of the program. Process inquiry \

ðð194ð\ request until conversation is ended. \

 ðð195ð\\

 ðð196ð

.8/ ðð197ð HANDLE-INQUIRY.

77 ðð198ð MOVE "ð" TO ERROR-FND.

 ðð199ð

 ðð2ððð\\

ðð2ð1ð\ A search of the database file is done using the part \

ðð2ð2ð\ number as the key. \

 ðð2ð3ð\\

.9/ 78 ðð2ð4ð READ T8189DB FORMAT IS "DBRCD"

79 ðð2ð5ð INVALID KEY MOVE "1" TO ERROR-FND.

 ðð2ð6ð

Figure E-8 (Part 4 of 6). COBOL/400 Inquiry Example – Remote Program

E-32 OS/400 APPC Programming V4R1

 ðð2ð7ð\\

ðð2ð8ð\ If the part number is found, a positive response to the \

ðð2ð9ð\ confirmation request is issued, followed by a write \

ðð21ðð\ operation with the requested information. Otherwise, \

ðð211ð\ a negative response to the confirmation request is issued, \

ðð212ð\ followed by a write operation with an error message. \

 ðð213ð\\

.1ð/8ð ðð214ð IF ERROR-FND = "ð" THEN

81 ðð215ð WRITE APPCREC FORMAT IS "ITEMOK"

ðð216ð TERMINAL IS PGM-DEV-NME

82 ðð217ð IF MAJMIN = "ðððð" THEN

 ðð218ð NEXT SENTENCE

 ðð219ð ELSE

 83 ðð22ðð PERFORM CLEAN-UP

 ðð221ð END-IF

84 ðð222ð MOVE ITEMD TO PARTDS OF ITEMDS

85 ðð223ð WRITE APPCREC FORMAT IS "ITEMDS"

ðð224ð TERMINAL IS PGM-DEV-NME

 ðð225ð ELSE

.11/86 ðð226ð MOVE NOT-FND-MSG TO ERRORD OF ERRDES

87 ðð227ð WRITE APPCREC FORMAT IS "PGMERR"

ðð228ð TERMINAL IS PGM-DEV-NME

88 ðð229ð IF MAJMIN = "ðððð" THEN

 ðð23ðð NEXT SENTENCE

 ðð231ð ELSE

 89 ðð232ð PERFORM CLEAN-UP

 ðð233ð END-IF

9ð ðð234ð WRITE APPCREC FORMAT IS "ERRDES"

ðð235ð TERMINAL IS PGM-DEV-NME.

 ðð236ð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

.12/91 ðð237ð IF MAJMIN = "ððð1" THEN

 92 ðð238ð PERFORM GET-CUST-NUM

 ðð239ð ELSE

 93 ðð24ðð PERFORM CLEAN-UP.

 ðð241ð

 ðð242ð

 ðð243ð\\

ðð244ð\ "GET-CUST-NUM" routine. \

 ðð245ð\ \

ðð246ð\ This subroutine waits for incoming data from the partner \

ðð247ð\ program by issuing the read operation. \

 ðð248ð\\

 ðð249ð

.13/ ðð25ðð GET-CUST-NUM.

94 ðð251ð READ T8189ICF FORMAT IS "ITEMRQ".

95 ðð252ð ACCEPT IO-FBA FROM IO-FEEDBACK.

 ðð253ð

96 ðð254ð IF MAJMIN = "ðð14" THEN

97 ðð255ð IF ACTUAL-LENGTH = 5 THEN

 ðð256ð NEXT SENTENCE

 ðð257ð ELSE

 98 ðð258ð PERFORM CLEAN-UP

 ðð259ð ELSE

 ðð26ðð NEXT SENTENCE.

 ðð261ð

 ðð262ð\\

ðð263ð\ "CLEAN-UP" routine. \

 ðð264ð\ \

ðð265ð\ The following code handles the end-of-program processing. \

ðð266ð\ This includes the ending of the conversation with \

ðð267ð\ the remote system (if conversation is active), and the \

ðð268ð\ closing of opened files. \

 ðð269ð\\

Figure E-8 (Part 5 of 6). COBOL/400 Inquiry Example – Remote Program

 Appendix E. ICF Program Examples E-33

 ðð27ðð

.14/ ðð271ð CLEAN-UP.

 ðð272ð

 ðð273ð

99 ðð274ð IF MAJCOD = "8ð" OR

 ðð275ð MAJCOD = "81" OR

 ðð276ð MAJCOD = "82" THEN

 ðð277ð NEXT SENTENCE

 ðð278ð ELSE

.15/1ðð ðð279ð IF MAJMIN = "ð3ð8" THEN

1ð1 ðð28ðð DROP "ICFð1 " FROM T8189ICF

 ðð281ð ELSE

.16/1ð2 ðð282ð WRITE APPCREC FORMAT IS "EOSREC"

ðð283ð TERMINAL IS PGM-DEV-NME.

 ðð284ð

 ðð285ð

.17/1ð3 ðð286ð CLOSE T8189DB T8189ICF.

 ðð287ð

 1ð4 ðð288ð STOP RUN.

 ðð289ð

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 STMT

\ MSGID: LBLð9ð4 SEVERITY: ðð SEQNBR:

Message : Unexpected source member type.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ððð92ð

Message : No INPUT fields found for format PGMSTR.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ððð92ð

Message : No INPUT fields found for format PGMEND.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ððð92ð

Message : No INPUT fields found for format EOSREC.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ððð92ð

Message : No INPUT fields found for format PGMERR.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ððð92ð

Message : No INPUT fields found for format ITEMOK.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

6 1 5 ð ð ð

 Source records read : 289

 Copy records read : 39

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program T8189ILT created in library APPCLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-8 (Part 6 of 6). COBOL/400 Inquiry Example – Remote Program

RPG/400 Local Program for Inquiry
Applications (Example 3)

The following explains the structure of the RPG/400 local
program that sends requests to the partner program for proc-
essing.

 Program Explanation

The reference numbers in the explanation below correspond
to the numbers in the program example illustrated in
Figure E-9 on page E-36.

Note: On any type of error that is not expected (for
example, an unexpected ICF return code on an I/O
operation), the session is ended and the program
ends.

.1/ The files used in the program are described in
the file specifications section.

T8189ICF is the ICF file used to send records to,
and receive records from, the partner program.
T8189ICF uses the file-level keyword, INDARA,
which indicates that the file uses a separate indi-
cator area.

T8189DSP is the name of the display device file
that is used to request an entry from the work
station and to display the results of the inquiry.
T8189DSP uses the file-level keyword, INDARA,
which indicates that the file uses a separate indi-
cator area.

All files are implicitly opened at the beginning of
the RPG/400 program cycle.

The continuation lines for the T8189ICF file
specification define the following:

E-34 OS/400 APPC Programming V4R1

KNUM Specifies the maximum number of
devices to be acquired.

KINFDS Specifies that the file information
data structure is named FEEDBK.
This structure redefines the I/O
feedback areas. Refer to the ICF
Programming book for a description
of the I/O feedback areas.

KINFSR Specifies the subroutine FAIL is to
be called when a file exception con-
dition occurs.

KID Specifies that the device name for
T8189ICF is in the field PGMDEV.

.2/ The STRCNV subroutine is called to start a conver-
sation with the partner program. This is followed
by the EXFMT operation, which allows the user to
enter requests that are to be sent to the partner
program.

.3/ The program loops until either F3 is pressed
from the work station, which sets the indicator in
the separate indicator area of the display file, or
an error occurs in the transaction with the
partner program.

.4/ The part number is sent to the partner program
using a write operation. The write operation is
issued using the ICF file record format ITEMRQ,
which contains the confirm (CONFIRM keyword)
and allow-write (ALWWRT keyword) functions.
When these functions are used, the data is
flushed, the data flow direction is changed from
send to receive, and a confirmation request is
sent to the partner program. The partner
program must now respond with a positive or
negative response.

.5/ If the partner program responds with a positive
response (ICF return code of 0001) to the confir-
mation request, a read operation is issued using
the ICF file record format ITEMDS to receive the
part description. However, if the partner program
responds with a negative response (ICF return
code of 83C9) to the confirmation request, a
read operation is issued using the ICF file record
format ERRDES to receive the error message.

.6/ The EXFMT operation is issued to display the
information returned by the partner program and
to obtain the next part number to be queried.

.7/ The following section of code performs the end-
of-program processing. Indicator 85 determines
if an error was detected.

.8/ If no error was detected (indicator 85 is set on),
then a write operation is issued using the ICF file
record format PGMEND, which contains the detach
(DETACH keyword) function. The release opera-
tion (REL) is then issued to detach the program
from the session.

.9/ If an error was detected (indicator 85 is not set),
and the communications session is still active, a
write operation is issued using the ICF file record
format EOSREC, which contains the end-of-session
(EOS keyword) function. The end-of-session
function detaches the program from the session.

Note: If the end-of-session function is issued
during an active transaction, APPC will
end the session abnormally.

.1ð/ The last record indicator (LR) is set on. All files
are implicitly closed, and the program ends.

.11/ The STRCNV subroutine establishes a conversa-
tion with the partner program.

.12/ The ICFðð program device is explicitly acquired
using the ACQ operation. The acquire-program-
device operation makes the program device
available for input or output operations. A
session is implicitly acquired for the work station
when T8189DSP is opened.

Note: The program device ICFðð was previ-
ously added to the ICF file T8189ICF by
the ADDICFDEVE command.

.13/ An evoke request is issued using a write opera-
tion. The write operation is issued using the ICF
file record format PGMSTR, which contains the
EVOKE, SECURITY, and SYNLVL keywords.

Note: On the EVOKE keyword, the library
name is not specified. If the remote
system is an AS/400 system, the library
list will be used to search for the
program. Also, the remote program that
is to be started can be any of the remote
programs in this appendix and in
Appendix F, “ CPI Communications
Program Examples” on page F-1.

.14/ The FAIL subroutine takes control when a file
exception or error occurs. The FAIL subroutine
handles all file exceptions or errors by passing
control to the section of code that performs the
end-of-program processing (.7/).

 Appendix E. ICF Program Examples E-35

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : APPCLIB/T8189IRS

Source file : QUSRTOOL/QATTRPG

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 29

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : T8189IRS

File : QATTRPG

Library : QUSRTOOL

Last Change : ð9/26/9ð ð8:27:43

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 1ð H

.1/ 2ð FT8189DSPCF E WORKSTN

RECORD FORMAT(S): LIBRARY APPCLIB FILE T8189DSP.

EXTERNAL FORMAT PROMPT RPG NAME PROMPT

3ð FT8189ICFCF E WORKSTN

 4ð F KNUM 1

 5ð F KINFSR FAIL

 6ð F KINFDS FEEDBK

 7ð F KID PGMDEV

RECORD FORMAT(S): LIBRARY APPCLIB FILE T8189ICF.

EXTERNAL FORMAT PGMSTR RPG NAME PGMSTR

EXTERNAL FORMAT ITEMRQ RPG NAME ITEMRQ

EXTERNAL FORMAT ITEMDS RPG NAME ITEMDS

EXTERNAL FORMAT ERRDES RPG NAME ERRDES

EXTERNAL FORMAT PGMEND RPG NAME PGMEND

EXTERNAL FORMAT EOSREC RPG NAME EOSREC

EXTERNAL FORMAT PGMERR RPG NAME PGMERR

EXTERNAL FORMAT ITEMOK RPG NAME ITEMOK

Aðððððð INPUT FIELDS FOR RECORD PROMPT FILE T8189DSP FORMAT PROMPT.

 Aððððð1 1 5 PARTN

Bðððððð INPUT FIELDS FOR RECORD PGMSTR FILE T8189ICF FORMAT PGMSTR.

Cðððððð INPUT FIELDS FOR RECORD ITEMRQ FILE T8189ICF FORMAT ITEMRQ.

 Cððððð1 1 5 PARTNM

Dðððððð INPUT FIELDS FOR RECORD ITEMDS FILE T8189ICF FORMAT ITEMDS.

 Dððððð1 1 25 PARTDS

Eðððððð INPUT FIELDS FOR RECORD ERRDES FILE T8189ICF FORMAT ERRDES.

 Eððððð1 1 4ð ERRORD

Fðððððð INPUT FIELDS FOR RECORD PGMEND FILE T8189ICF FORMAT PGMEND.

Gðððððð INPUT FIELDS FOR RECORD EOSREC FILE T8189ICF FORMAT EOSREC.

Hðððððð INPUT FIELDS FOR RECORD PGMERR FILE T8189ICF FORMAT PGMERR.

Iðððððð INPUT FIELDS FOR RECORD ITEMOK FILE T8189ICF FORMAT ITEMOK.

 8ð IFEEDBK DS

9ð I B 372 375ðACTLEN

1ðð I 4ð1 4ð4 MAJMIN

11ð I 4ð1 4ð2 MAJCOD

12ð I 4ð3 4ð4 MINCOD

Figure E-9 (Part 1 of 6). RPG/400 Inquiry Example – Local Program

E-36 OS/400 APPC Programming V4R1

 13ð I\\

14ð I\ Program name.........: T8189IRS \

15ð I\ Program description..: ICF local program \

16ð I\ Language.............: RPG/4ðð \

 17ð I\ \

18ð I\ This program invokes a program to handle part inquiry on \

19ð I\ the remote system. The acquire operation is used to \

2ðð I\ establish a communications session. A write operation \

21ð I\ with the evoke function is then issued, which results in \

22ð I\ the establishment of a conversation with the remote \

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

23ð I\ program. A display which prompts the user for the part \

24ð I\ number for which part information is requested is then \

25ð I\ displayed. When the user presses Enter, a write operation \

26ð I\ is issued (the data sent to the partner program is the \

27ð I\ part number). Note that the write operation was issued \

28ð I\ with the confirm (CONFIRM) and allow-write (ALWWRT) \

29ð I\ functions. These functions results in the flushing of the \

3ðð I\ data (to be sent to the partner program), the changing of \

31ð I\ the data flow direction (the partner program can send the \

32ð I\ response), and the sending of a confirmation request to \

33ð I\ the partner program. If the partner program responds \

34ð I\ with a positive response to the confirmation request (using\

35ð I\ the RSPCONFIRM function), the ICF return code on the \

36ð I\ write operation will be set to ððð1 (indicating that \

37ð I\ the part number was found); a read operation is then \

38ð I\ issued to receive the part description. However, if \

39ð I\ the partner program responds with a negative response \

4ðð I\ to the confirmation request (using the FAIL function), \

41ð I\ the ICF return code on the write operation will be set \

42ð I\ to 83C9 (indicating that the part number was not found); \

43ð I\ a read operation is issued to receive the error message. \

 44ð I\ \

45ð I\ The error message or part description (depending on \

46ð I\ whether the part number was found) will be displayed on \

47ð I\ the screen. \

 48ð I\ \

49ð I\ This program will continue to handle inquiries until the \

5ðð I\ user presses the F3=Exit key. When F3=Exit is pressed, \

51ð I\ a write operation with the detach (DETACH) function \

52ð I\ is issued to end the conversation, and program processing \

 53ð I\ ends. \

 54ð I\ \

55ð I\ NOTE 1: If an unexpected ICF return code is received on \

56ð I\ any of the read or write operations, the \

57ð I\ program will abnormally end the conversation (if \

58ð I\ it is still active), and program processing will \

 59ð I\ end. \

 6ðð I\ \

61ð I\ NOTE 2: On the receive operation, if the actual received \

62ð I\ data length (obtained from the I/O feedback area) \

63ð I\ does not match what was expected, or if the \

64ð I\ ICF return code is not ðððð (indication that \

65ð I\ the partner program is ready to receive data), the \

66ð I\ program will abnormally end the conversation (if \

67ð I\ it is still active), and program processing will \

 68ð I\ end. \

 69ð I\ \

7ðð I\ NOTE 3: This program can start ANY of the "remote" \

71ð I\ program examples in the APPC Programmer's \

72ð I\ Guide by changing the PGMID variable to the \

73ð I\ remote program that is to be started. \

 74ð I\ \

 75ð I\\

 76ð I\

Figure E-9 (Part 2 of 6). RPG/400 Inquiry Example – Local Program

 Appendix E. ICF Program Examples E-37

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 77ð ILCLVAR DS

78ð I B 1 4ðREQLEN

 79ð C\

 8ðð C\\

81ð C\ START OF PROGRAM \

 82ð C\ \

83ð C\ Files are implicitly opened, a conversation with the \

84ð C\ remote program is started, and the part inquiry \

85ð C\ screen is displayed. Inquiries are handled until \

86ð C\ the user presses the F3=Exit key, in which case \

87ð C\ the conversation will be ended and the program will end. \

 88ð C\\

 89ð C\

9ðð C .2/ EXSR STRCNV

 91ð C EXFMTPROMPT

 92ð C\

93ð C .3/ \IN99 DOWEQ'ð' Bðð1

 94ð C\

 95ð C\\

96ð C\ The part number that the user has requested information \

97ð C\ for is sent to the remote program using the write \

98ð C\ operation with the confirm and allow-write functions. \

 99ð C\\

 1ððð C\

 1ð1ð C MOVE PARTN PARTNM ðð1

1ð2ð C .4/ WRITEITEMRQ 88 2 ðð1

 1ð3ð C\

 1ð4ð C\\

1ð5ð C\ The read operation is issued to receive the response \

1ð6ð C\ from the remote program (the response can either be \

1ð7ð C\ an error message or the part description, depending \

1ð8ð C\ on whether the part was found or not). \

 1ð9ð C\\

 11ðð C\

111ð C .5/ MAJMIN IFEQ 'ððð1' Bðð2

 112ð C Z-ADD25 REQLEN ðð2

 113ð C READ ITEMDS 88 3 ðð2

 114ð C MOVE PARTDS PARTD ðð2

 115ð C MOVE \BLANKS ERRORL ðð2

 116ð C ELSE Xðð2

 117ð C MAJMIN IFEQ '83C9' Bðð3

 118ð C Z-ADD4ð REQLEN ðð3

 119ð C READ ERRDES 88 3 ðð3

 12ðð C MOVE ERRORD ERRORL ðð3

 121ð C MOVE \BLANKS PARTD ðð3

 122ð C ELSE Xðð3

 123ð C GOTO ENDCNV ðð3

 124ð C END Eðð3

 125ð C END Eðð2

 126ð C\

 127ð C MAJMIN IFNE 'ðððð' Bðð2

 128ð C ACTLEN ORNE REQLEN ðð2

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 129ð C GOTO ENDCNV ðð2

 13ðð C END Eðð2

 131ð C\

132ð C .6/ EXFMTPROMPT ðð1

 133ð C\

 134ð C END Eðð1

 135ð C\

136ð C SETON 85 1

 137ð C\

Figure E-9 (Part 3 of 6). RPG/400 Inquiry Example – Local Program

E-38 OS/400 APPC Programming V4R1

 138ð C\\

139ð C\ The following code handles the end-of-program processing. \

14ðð C\ This includes the ending of the conversation with \

141ð C\ the remote system (if conversation is active) by either \

142ð C\ issuing a write operation with the detach function \

143ð C\ followed by a release operation (for non-error conditions),\

144ð C\ or by issuing a write operation with the end-of-session \

145ð C\ function (for error conditions). The last record \

146ð C\ indicator is then set on to end the program. \

 147ð C\\

 148ð C\

149ð C .7/ ENDCNV TAG

 15ðð C\

 151ð C MAJCOD IFNE '8ð' Bðð1

 152ð C MAJCOD ANDNE'81' ðð1

 153ð C MAJCOD ANDNE'82' ðð1

 154ð C\\

155ð C\ Indicator 85 (set previously) determines if the \

156ð C\ conversation is to end normally or abnormally. If the \

157ð C\ indicator is set on, conversation will be ended normally; \

158ð C\ otherwise, conversation will be ended abnormally. \

 159ð C\\

16ðð C .8/ 85 WRITEPGMEND 88 2 ðð1

161ð C 85 'ICFðð' REL T8189ICF ðð1

 162ð C\

163ð C .9/N85 WRITEEOSREC 88 2 ðð1

 164ð C END Eðð1

 165ð C\

 166ð C ENDPGM TAG

167ð C .1ð/ SETON LR 1

 168ð C\

 169ð C\\

17ðð C\ "STRCNV" subroutine. \

 171ð C\ \

172ð C\ This subroutine establishes a conversation with the \

173ð C\ remote program. \

 174ð C\\

 175ð C\

 176ð CSR.11/ STRCNV BEGSR

 177ð C\

 178ð C\\

179ð C\ The acquire operation is issued. \

 18ðð C\\

 181ð C\

 182ð CSR.12/ 'ICFðð' ACQ T8189ICF

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

183ð CSR MAJMIN CABNE'ðððð' ENDPGM

 184ð CSR MOVEL'ICFðð' PGMDEV 1ð

 185ð C\

 186ð C\\

187ð C\ A write operation with the evoke function is issued so \

188ð C\ that a conversation can be started. \

 189ð C\\

 19ðð C\

 191ð CSR MOVEL'T8189IRT'PGMID

 192ð CSR.13/ WRITEPGMSTR 88 2

193ð CSR MAJMIN CABNE'ðððð' ENDCNV

 194ð C\

 195ð CSR ENDSR

 196ð C\

 197ð C\\

198ð C\ "FAIL" subroutine. \

 199ð C\ \

2ððð C\ This subroutine handles file exception/errors. \

 2ð1ð C\\

 2ð2ð C\

 2ð3ð CSR.14/ FAIL BEGSR

 2ð4ð CSR GOTO ENDCNV

 2ð5ð CSR ENDSR

Figure E-9 (Part 4 of 6). RPG/400 Inquiry Example – Local Program

 Appendix E. ICF Program Examples E-39

Jðððððð OUTPUT FIELDS FOR RECORD PROMPT FILE T8189DSP FORMAT PROMPT.

 Jððððð1 PARTN 5 CHAR 5

 Jððððð2 PARTD 3ð CHAR 25

 Jððððð3 ERRORL 7ð CHAR 4ð

Kðððððð OUTPUT FIELDS FOR RECORD PGMSTR FILE T8189ICF FORMAT PGMSTR.

 Kððððð1 PGMID 1ð CHAR 1ð

Lðððððð OUTPUT FIELDS FOR RECORD ITEMRQ FILE T8189ICF FORMAT ITEMRQ.

 Lððððð1 PARTNM 5 CHAR 5

Mðððððð OUTPUT FIELDS FOR RECORD PGMEND FILE T8189ICF FORMAT PGMEND.

Nðððððð OUTPUT FIELDS FOR RECORD EOSREC FILE T8189ICF FORMAT EOSREC.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7111 SOURCE FILE MEMBER HAS AN UNEXPECTED SOURCE TYPE.

\ 7ð89 2ð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE T8189DSP.

\ 7ð89 3ð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE T8189ICF.

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð1 T8189DSP WORKSTN 2ðD

 PROMPT 2ðD Aðððððð 91ð 132ð Jðððððð

 ð2 T8189ICF WORKSTN 3ðD 161ð 182ð

 EOSREC 3ðD Gðððððð 163ð Nðððððð

 ERRDES 3ðD Eðððððð 119ð

 ITEMDS 3ðD Dðððððð 113ð

 ITEMOK 3ðD Iðððððð

 ITEMRQ 3ðD Cðððððð 1ð2ð Lðððððð

 PGMEND 3ðD Fðððððð 16ðð Mðððððð

 PGMERR 3ðD Hðððððð

 PGMSTR 3ðD Bðððððð 192ð Kðððððð

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

 \IN99 A(1) 93ð

 ACTLEN B(9,ð) 9ðD 128ð

ENDCNV TAG 123ð 129ð 149ðD 193ð 2ð4ð

 ENDPGM TAG 166ðD 183ð

 ERRORD A(4ð) Eððððð1D 12ðð

ERRORL A(4ð) 115ðM 12ððM Jððððð3D

 FAIL BEGSR 3ð 2ð3ðD

FEEDBK DS(4ð4) 3ð 8ðD

\ 7ð31 LCLVAR DS(4) 77ðD

MAJCOD A(2) 11ðD 151ð 152ð 153ð

MAJMIN A(4) 1ððD 111ð 117ð 127ð 183ð

 193ð

\ 7ð31 MINCOD A(2) 12ðD

 PARTD A(25) 114ðM 121ðM Jððððð2D

 PARTDS A(25) Dððððð1D 114ð

PARTN A(5) Aððððð1D 1ð1ð Jððððð1D

PARTNM A(5) Cððððð1D 1ð1ðM Lððððð1D

PGMDEV A(1ð) 184ðD

 PGMID A(1ð) 191ðM Kððððð1D

REQLEN B(9,ð) 78ðD 112ðM 118ðM 128ð

 STRCNV BEGSR 9ðð 176ðD

 \BLANKS LITERAL 115ð 121ð

'ICFðð' LITERAL 161ð 182ð 184ð

 'T8189IRT' LITERAL 191ð

 'ð' LITERAL 93ð

'ðððð' LITERAL 127ð 183ð 193ð

 'ððð1' LITERAL 111ð

 '8ð' LITERAL 151ð

 '81' LITERAL 152ð

Figure E-9 (Part 5 of 6). RPG/400 Inquiry Example – Local Program

E-40 OS/400 APPC Programming V4R1

 '82' LITERAL 153ð

 '83C9' LITERAL 117ð

 25 LITERAL 112ð

 4ð LITERAL 118ð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 \IN 93ð

 LR 167ðM

85 136ðM 16ðð 161ð 163ð

\ 7ð31 88 1ð2ðM 113ðM 119ðM 16ððM 163ðM 192ðM

 99 93ð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG7ð31 Severity: ðð Number: 3

Message : The Name or indicator is not referenced.

\ QRG7ð89 Severity: ðð Number: 2

Message : The RPG provides Separate-Indicator area for

 file.

\ QRG7111 Severity: ðð Number: 1

Message : Unexpected source type.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

6 6 ð ð ð ð ð

 Program Source Totals:

Records : 2ð5

Specifications : 62

Table Records : ð

Comments : 143

 PRM has been called.

 Program T8189IRS is placed in library APPCLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-9 (Part 6 of 6). RPG/400 Inquiry Example – Local Program

RPG/400 Remote Program for Inquiry
Application (Example 3)

The following explains the structure of the RPG/400 remote
program that handles requests sent by the partner program.

 Program Explanation

The reference numbers in the explanation below correspond
to the numbers in the program example illustrated in
Figure E-10 on page E-43.

Note: On any type of error that is not expected (for
example, open errors ICF return code on an I/O oper-
ation), the session is ended and the program ends.

.1/ The file specification defines the files used in the
program.

T8189ICF is the ICF file used to receive records
from, and send records to, the partner program.
T8189ICF uses the file-level keyword, INDARA,
which indicates that the file uses a separate indi-
cator area.

T8189DB is the database file that contains the
valid part numbers and part descriptions.

All files are implicitly opened at the beginning of
the RPG/400 program cycle.

The continuation lines for the T8189ICF file
specification define the following:

KNUM Specifies the maximum number of
devices to be acquired.

KINFDS Specifies that the file information
data structure is named FEEDBK.
This structure redefines the I/O
feedback areas.

KINFSR Specifies the subroutine FAIL is to
be called when a file exception con-
dition occurs.

.2/ The STRCNV and GETDTA subroutines are called to
start a conversation with the partner program
and wait on a request by the partner program,
respectively.

.3/ The program loops until there are no more
requests to process, or an error occurs in the
transaction with the partner program.

.4/ A search of the database file is performed using
the part number received from the partner
program as the key.

Note: If the part number is not found, indicator
98 is set on.

.5/ If indicator 98 is set on (indicating that the part
number was not found in the database file), a
write operation is issued using the ICF file record
format PGMERR, which contains the fail (FAIL
keyword) function. As a result, a negative
response to the received confirmation request is

 Appendix E. ICF Program Examples E-41

sent to the partner program. This is followed by
a second write operation using the ICF file
record format ERRDES, which contains the error
message to be sent and the allow-write
(ALWWRT keyword) function. When the allow-
write function is used, the data is flushed and
the data flow direction is changed.

If indicator 98 is not set on (indicating that the
part number was found in the database file), a
write operation is issued using the ICF file record
format ITEMOK, which contains the respond-to-
confirm (RSPCONFIRM keyword) function. As a
result, a positive response to the received confir-
mation request is sent to the partner program.
This is followed by a second write operation
using the ICF file record format ITEMDS, which
contains the requested information to be sent
and the allow-write function.

.6/ The GETDTA subroutine is called to wait on a
request by the partner program.

.7/ The following section of code performs the end-
of-program processing. Whether or not a detach
indication is received determines if an error was
detected.

.8/ If the ICF return code is 0308, indicating that a
detach was received, a release operation (REL) is
issued to detach the program from the session.

.9/ If a detach indication was not received and the
communications session is still active, a write
operation is issued using the ICF file record

format EOSREC, which contains the end-of-
session (EOS keyword) function. The end-of-
session function detaches the program from the
session.

Note: If the end-of-session function is issued
during an active transaction, APPC will
end the session abnormally.

.1ð/ The last record indicator (LR) is set on. All files
are implicitly closed, and the program ends.

.11/ The STRCNV subroutine establishes a conversa-
tion with the partner program by explicitly
acquiring the ICFð1 program device using the
ACQ operation.

Note: The program device ICFð1 was previ-
ously added to the ICF file T8189ICF by
the ADDICFDEVE command.

.12/ The GETDTA subroutine waits for a request from
the partner program by issuing a read operation
using the ICF file record format ITEMRQ.

Note: A transaction is processed if data is
received with a turnaround indication,
and the partner program requested con-
firmation. This is indicated by the ICF
return code 0014.

.13/ The FAIL subroutine takes control when a file
exception or error occurs. The FAIL subroutine
handles all file exceptions or errors by passing
control to the section of code that performs the
end-of-program processing (.7/).

E-42 OS/400 APPC Programming V4R1

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : APPCLIB/T8189IRT

Source file : QUSRTOOL/QATTRPG

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 29

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : T8189IRT

File : QATTRPG

Library : QUSRTOOL

Last Change : ð9/26/9ð ð8:27:45

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 1ð H

.1/ 2ð FT8189DB IF E K DISK

RECORD FORMAT(S): LIBRARY APPCLIB FILE T8189DB.

EXTERNAL FORMAT DBRCD RPG NAME DBRCD

3ð FT8189ICFCF E WORKSTN

 4ð F KNUM 1

 5ð F KINFSR FAIL

 6ð F KINFDS FEEDBK

RECORD FORMAT(S): LIBRARY APPCLIB FILE T8189ICF.

EXTERNAL FORMAT PGMSTR RPG NAME PGMSTR

EXTERNAL FORMAT ITEMRQ RPG NAME ITEMRQ

EXTERNAL FORMAT ITEMDS RPG NAME ITEMDS

EXTERNAL FORMAT ERRDES RPG NAME ERRDES

EXTERNAL FORMAT PGMEND RPG NAME PGMEND

EXTERNAL FORMAT EOSREC RPG NAME EOSREC

EXTERNAL FORMAT PGMERR RPG NAME PGMERR

EXTERNAL FORMAT ITEMOK RPG NAME ITEMOK

 7ð E MSG 1 1 4ð

Aðððððð INPUT FIELDS FOR RECORD DBRCD FILE T8189DB FORMAT DBRCD.

 Aððððð1 1 5 ITEMNM

 Aððððð2 6 3ð ITEMD

Bðððððð INPUT FIELDS FOR RECORD PGMSTR FILE T8189ICF FORMAT PGMSTR.

Cðððððð INPUT FIELDS FOR RECORD ITEMRQ FILE T8189ICF FORMAT ITEMRQ.

 Cððððð1 1 5 PARTNM

Dðððððð INPUT FIELDS FOR RECORD ITEMDS FILE T8189ICF FORMAT ITEMDS.

 Dððððð1 1 25 PARTDS

Eðððððð INPUT FIELDS FOR RECORD ERRDES FILE T8189ICF FORMAT ERRDES.

 Eððððð1 1 4ð ERRORD

Fðððððð INPUT FIELDS FOR RECORD PGMEND FILE T8189ICF FORMAT PGMEND.

Gðððððð INPUT FIELDS FOR RECORD EOSREC FILE T8189ICF FORMAT EOSREC.

Hðððððð INPUT FIELDS FOR RECORD PGMERR FILE T8189ICF FORMAT PGMERR.

Iðððððð INPUT FIELDS FOR RECORD ITEMOK FILE T8189ICF FORMAT ITEMOK.

 8ð IFEEDBK DS

9ð I B 372 375ðACTLEN

1ðð I 4ð1 4ð4 MAJMIN

11ð I 4ð1 4ð2 MAJCOD

12ð I 4ð3 4ð4 MINCOD

Figure E-10 (Part 1 of 5). RPG/400 Inquiry Example – Remote Program

 Appendix E. ICF Program Examples E-43

 13ð I\\

14ð I\ Program name.........: T8189IRT \

15ð I\ Program description..: ICF remote program \

16ð I\ Language.............: RPG/4ðð \

 17ð I\ \

18ð I\ This program accepts the incoming conversation by issuing \

19ð I\ the acquire operation to acquire the requesting program \

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

2ðð I\ device. A read operation is then issued to receive the \

21ð I\ part number from the remote system. The read operation \

22ð I\ completes with an ICF return code of ðð14, indicating \

23ð I\ that data with a turnaround indication was received, and \

24ð I\ that the partner program also requested confirmation. The \

25ð I\ database file T8189DB is searched for the received part \

26ð I\ number. If the part number is found, a write operation \

27ð I\ with the respond-to-confirm (RSPCONFIRM) function is \

28ð I\ issued, followed by a write operation containing the \

29ð I\ part description corresponding to the part number \

3ðð I\ retrieved from the database file. However, if the part \

31ð I\ number is not found, a write operation with the \

32ð I\ negative-response (FAIL) function is issued, followed by \

33ð I\ a write operation containing an error message describing \

34ð I\ the error. The write operation sending either the part \

35ð I\ description or the error message is issued with the \

36ð I\ allow-write (ALWWRT) function. Using the allow-write \

37ð I\ function results in the flushing of the data and the \

38ð I\ changing of the data flow direction. The partner program \

39ð I\ can send more inquiries. \

 4ðð I\ \

41ð I\ This program will continue to handle inquiries from the \

42ð I\ partner program until a detach indication is received. \

43ð I\ Then the program ends. \

 44ð I\ \

45ð I\ NOTE 1: If an unexpected ICF return code is received on \

46ð I\ any of the read or write operations, the \

47ð I\ program will abnormally end the conversation (if \

48ð I\ it is still active), and program processing will \

 49ð I\ end. \

 5ðð I\ \

51ð I\ NOTE 2: On the receive operation, if the actual received \

52ð I\ data length (obtained from the I/O feedback area) \

53ð I\ does not match what was expected, or if the \

54ð I\ ICF return code is not ðð14 (indication that \

55ð I\ data was received with a turnaround indicator, \

56ð I\ and partner program requested confirmation), the \

57ð I\ program will abnormally end the conversation (if \

58ð I\ it is still active), and program processing will \

 59ð I\ end. \

 6ðð I\ \

61ð I\ NOTE 3: This program can be started by ANY of the \

62ð I\ "local" program examples in the APPC Programmer's \

 63ð I\ Guide. \

 64ð I\ \

 65ð I\\

 66ð I\

 67ð C\\

68ð C\ START OF PROGRAM \

 69ð C\ \

7ðð C\ Files are implicitly opened, a conversation with the \

71ð C\ remote program is started, and the part inquiry \

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

72ð C\ processing starts. Inquiries are handled until a \

73ð C\ detach indication is received. \

 74ð C\\

 75ð C\

76ð C .2/ EXSR STRCNV

 77ð C EXSR GETDTA

Figure E-10 (Part 2 of 5). RPG/400 Inquiry Example – Remote Program

E-44 OS/400 APPC Programming V4R1

 78ð C\

 79ð C.3/ MAJMIN DOWEQ'ðð14' Bðð1

 8ðð C MOVE PARTNM ITEMNM ðð1

 81ð C\

 82ð C\\

83ð C\ A search of the database file is done using the part \

84ð C\ number as the key (indicator 98 is set on if the part \

85ð C\ number is not found). \

 86ð C\\

 87ð C\

88ð C.4/ ITEMNM CHAINDBRCD 98 1 ðð1

 89ð C\

 9ðð C\\

91ð C\ If the part number is not found, a write operation with \

92ð C\ the FAIL function is issued, and then a write operation \

93ð C\ with the error message is issued. Otherwise, a positive \

94ð C\ response to the confirmation request is issued, and then \

95ð C\ a write operation with the part description is issued. \

 96ð C\\

 97ð C\

 98ð C 98 .5/ WRITEPGMERR ðð1

 99ð C\

1ððð C N98 WRITEITEMOK ðð1

1ð1ð C MAJMIN CABNE'ðððð' ENDCNV ðð1

 1ð2ð C 98 MOVELMSG,1 ERRORD ðð1

 1ð3ð C 98 WRITEERRDES ðð1

1ð4ð C N98 MOVELITEMD PARTDS ðð1

1ð5ð C N98 WRITEITEMDS ðð1

1ð6ð C MAJMIN CABNE'ððð1' ENDCNV ðð1

 1ð7ð C\

 1ð8ð C.6/ EXSR GETDTA ðð1

 1ð9ð C END Eðð1

 11ðð C\

 111ð C\\

112ð C\ The following code handles the end-of-program processing. \

113ð C\ This includes the ending of the conversation with \

114ð C\ the remote system (if conversation is active) by either \

115ð C\ issuing a release operation (for non-error conditions), \

116ð C\ or by issuing a write operation with the end-of-session \

117ð C\ function (for error conditions). The last record \

118ð C\ indicator is then set on to end the program. \

 119ð C\\

 12ðð C\

 121ð C.7/ ENDCNV TAG

 122ð C\

 123ð C MAJCOD IFNE '8ð' Bðð1

 124ð C MAJCOD ANDNE'81' ðð1

 125ð C MAJCOD ANDNE'82' ðð1

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 126ð C.8/ MAJMIN IFEQ 'ð3ð8' Bðð2

 127ð C 'ICFð1' REL T8189ICF ðð2

 128ð C ELSE Xðð2

129ð C .9/ WRITEEOSREC 88 2 ðð2

 13ðð C END Eðð2

 131ð C END Eðð1

 132ð C\

 133ð C ENDPGM TAG

 134ð C .1ð/ SETON LR 1

 135ð C\

 136ð C\\

137ð C\ "STRCNV" subroutine. \

 138ð C\ \

139ð C\ This subroutine establishes a conversation with the \

14ðð C\ remote program. \

 141ð C\\

 142ð C\

143ð CSR .11/ STRCNV BEGSR

 144ð C\

Figure E-10 (Part 3 of 5). RPG/400 Inquiry Example – Remote Program

 Appendix E. ICF Program Examples E-45

 145ð C\\

146ð C\ The acquire operation is issued. \

 147ð C\\

 148ð C\

 149ð CSR 'ICFð1' ACQ T8189ICF

15ðð CSR MAJMIN CABNE'ðððð' ENDPGM

 151ð C\

 152ð CSR ENDSR

 153ð C\

 154ð C\\

155ð C\ "GETDTA" subroutine. \

 156ð C\ \

157ð C\ This subroutine waits for incoming data from the partner \

158ð C\ program by issuing a read operation. \

 159ð C\\

 16ðð C\

161ð CSR .12/ GETDTA BEGSR

 162ð C\

 163ð CSR READ ITEMRQ 88 3

 164ð C\

 165ð CSR MAJMIN IFEQ 'ðð14' Bðð1

 166ð CSR ACTLEN IFNE 5 Bðð2

 167ð CSR GOTO ENDCNV ðð2

 168ð CSR END Eðð2

 169ð CSR END Eðð1

 17ðð CSR ENDSR

 171ð C\

 172ð C\\

173ð C\ "FAIL" subroutine. \

 174ð C\ \

175ð C\ This subroutine handles file exception/errors. \

 176ð C\\

 177ð C\

178ð CSR .13/ FAIL BEGSR

 179ð CSR GOTO ENDCNV

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 18ðð CSR ENDSR

Jðððððð OUTPUT FIELDS FOR RECORD ITEMDS FILE T8189ICF FORMAT ITEMDS.

 Jððððð1 PARTDS 25 CHAR 25

Kðððððð OUTPUT FIELDS FOR RECORD ERRDES FILE T8189ICF FORMAT ERRDES.

 Kððððð1 ERRORD 4ð CHAR 4ð

Lðððððð OUTPUT FIELDS FOR RECORD EOSREC FILE T8189ICF FORMAT EOSREC.

Mðððððð OUTPUT FIELDS FOR RECORD PGMERR FILE T8189ICF FORMAT PGMERR.

Nðððððð OUTPUT FIELDS FOR RECORD ITEMOK FILE T8189ICF FORMAT ITEMOK.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7111 SOURCE FILE MEMBER HAS AN UNEXPECTED SOURCE TYPE.

\ 7ð89 3ð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE T8189ICF.

SEQUENCE LAST

 NUMBER \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 UPDATE

C o m p i l e - T i m e T a b l e s

 Table/Array : MSG

182ð The requested part was not found.

K e y F i e l d I n f o r m a t i o n

 PHYSICAL LOGICAL

FILE/RCD FIELD FIELD ATTRIBUTES

 ð1 T8189DB

 DBRCD

 ITEMNM CHAR 5

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð1 T8189DB DISK 2ðD

 DBRCD 2ðD Aðððððð 88ð

 ð2 T8189ICF WORKSTN 3ðD 127ð 149ð

Figure E-10 (Part 4 of 5). RPG/400 Inquiry Example – Remote Program

E-46 OS/400 APPC Programming V4R1

 EOSREC 3ðD Gðððððð 129ð Lðððððð

 ERRDES 3ðD Eðððððð 1ð3ð Kðððððð

 ITEMDS 3ðD Dðððððð 1ð5ð Jðððððð

 ITEMOK 3ðD Iðððððð 1ððð Nðððððð

 ITEMRQ 3ðD Cðððððð 163ð

 PGMEND 3ðD Fðððððð

 PGMERR 3ðD Hðððððð 98ð Mðððððð

 PGMSTR 3ðD Bðððððð

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

 ACTLEN B(9,ð) 9ðD 166ð

ENDCNV TAG 1ð1ð 1ð6ð 121ðD 167ð 179ð

 ENDPGM TAG 133ðD 15ðð

 ERRORD A(4ð) Eððððð1D 1ð2ðM Kððððð1D

 FAIL BEGSR 3ð 178ðD

FEEDBK DS(4ð4) 3ð 8ðD

GETDTA BEGSR 77ð 1ð8ð 161ðD

 ITEMD A(25) Aððððð2D 1ð4ð

ITEMNM A(5) Aððððð1D 8ððM 88ð

MAJCOD A(2) 11ðD 123ð 124ð 125ð

MAJMIN A(4) 1ððD 79ð 1ð1ð 1ð6ð 126ð

 15ðð 165ð

\ 7ð31 MINCOD A(2) 12ðD

 MSG(1) A(4ð) 7ðD

 MSG,1 1ð2ð

 PARTDS A(25) Dððððð1D 1ð4ðM Jððððð1D

 PARTNM A(5) Cððððð1D 8ðð

 STRCNV BEGSR 76ð 143ðD

 'ICFð1' LITERAL 127ð 149ð

 'ðððð' LITERAL 1ð1ð 15ðð

 'ððð1' LITERAL 1ð6ð

 'ððð8' LITERAL 126ð

'ðð14' LITERAL 79ð 165ð

 '8ð' LITERAL 123ð

 '81' LITERAL 124ð

 '82' LITERAL 125ð

 1 LITERAL 1ð2ð

 5 LITERAL 166ð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 LR 134ðM

\ 7ð31 88 129ðM 163ðM

98 88ðM 98ð 1ððð 1ð2ð 1ð3ð 1ð4ð

 1ð5ð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG7ð31 Severity: ðð Number: 2

Message : The Name or indicator is not referenced.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ QRG7111 Severity: ðð Number: 1

Message : Unexpected source type.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

4 4 ð ð ð ð ð

 Program Source Totals:

Records : 182

Specifications : 54

Table Records : 1

Comments : 126

 PRM has been called.

 Program T8189IRT is placed in library APPCLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-10 (Part 5 of 5). RPG/400 Inquiry Example – Remote Program

 Appendix E. ICF Program Examples E-47

E-48 OS/400 APPC Programming V4R1

Appendix F. CPI Communications Program Examples

This appendix provides example programs which demon-
strate how to use the APPC support on the AS/400 system
using CPI Communications. The example programs included
in this appendix are also available in the QUSRTOOL library
(see file QATTINFO, member T8189INF in library
QUSRTOOL).

The following example programs are provided:

� Example 1 (starting on page F-2) shows two ILE C/400
programs.

� Example 2 (starting on page F-16) shows two
COBOL/400 programs.

� Example 3 (starting on page F-33) shows two RPG/400
programs.

Each example contains two programs: the local program,
which initiates the transaction, and the remote program,
which performs services relating to the processing of the
transaction.

Note: The term remote program is used in the following
examples to refer to the program with which the local
program communicates, even though the remote
program may not be on a remote system. Similarly,
the term remote system may actually be the same
system in which the local program resides.

Figure F-1 on page F-2 illustrates the environment in which
the example programs run. The local program requests the
entry of a part number from the display station. That part
number is then transmitted to the partner program, where a
database file is searched. If the number is found, the partner
program responds with a positive response followed by the
requested information. If the part number is not found, the
partner program responds with a negative response followed
by an error message.

Objects Used by Program Examples

The following objects are used by the program examples:

� Communications side information, T8189CSI

� Display file, T8189DSP

� Database file, T8189DB

Communications Side Information Object
(T8189CSI)

In this example the side information object is used by the
local program to provide initialization information for the con-
versation characteristics, such as the partner_LU_name,
mode_name, and TP_name. The command used to create
the side information object used by the local programs is

CRTCSI CSI(APPCLIB/T8189CSI) RMTLOCNAME(T8189LA) TNSPGM(TP_NAME)

 MODE(BLANK) RMTNETID(\NETATR)

TEXT('Side information object for APPC examples')

Note: The side information object is not required. You can
specify a symbolic destination name
(sym_dest_name) of blanks on the
Initialize_Conversation (CMINIT) call. You must then
use the appropriate Set calls to set the following con-
versation characteristics: partner_LU_name,
mode_name, and TP_name. For the following exam-
ples, you would need to add source code in the local
programs that would use the Set_Partner_LU_Name
(CMSPLN) call to set the partner_LU_name to
T8189LA. The default mode_name that is used when
a sym_dest_name of blanks is used is BLANK, and
the Set_TP_Name (CMSTPN) call is already used in
the programs.

Display File Object (T8189DSP)

In this example a display file is used by the local program so
that a user can enter requests that are to be sent to the
remote program. The command used to create the display
device file is:

CRTDSPF FILE(APPCLIB/T8189DSP) SRCFILE(QUSRTOOL/QATTDDS)

 SRCMBR(TD8189) SRCMBR(TD8189)

TEXT('Display file for APPC examples')

The DDS source for the display device file T8189DSP is
shown in Figure F-2.

 A\\

 A\ \

 A\ DDS \

A\ FOR THE DISPLAY FILE \

A\ USED IN ITEM INQUIRY APPLICATIONS \

 A\ \

 A\\

 A\

A DSPSIZ(24 8ð \DS3)

 A INDARA

 A CAð3(99)

 A\

 A\\

 A\ RECORD FORMATS \

 A\\

 A\

 A R PROMPT

A 5 1ð'Part Number: '

A PARTN 5A B 5 25

A 1ð 1ð'Part Description: '

A PARTD 25A O 1ð 3ð

A ERRORL 4ðA O 12 1ðDSPATR(HI)

A 23 5'F3 = Exit'

Figure F-2. DDS Source for the Display Device File

 Copyright IBM Corp. 1997 F-1

Database File Object (T8189DB)

In this example the database file resides on the remote
system and contains the part numbers and associated
descriptions. The file is used to validate the part number
received from the local program. The command used to
create the database file (a physical file) is
.CRTPF FILE(APPCLIB/T8189DB) SRCFILE(APPCLIB/QATTDDS) SRCMBR(TA8189)

TEXT('Database file for APPC examples')

The DDS source for the database file T8189DB is shown in
Figure F-3.

 A\\

 A\ \

 A\ DDS \

A\ FOR THE DATABASE FILE \

A\ USED IN ITEM INQUIRY APPLICATIONS \

 A\ \

 A\\

 A\

 A UNIQUE

 A R DBRCD

 A ITEMNM 5

 A ITEMD 25

 A K ITEMNM

Figure F-3. DDS Source for the Database File

ILE C/400 Local Program for Inquiry
Applications (Example 1)

The following explains the structure of the ILE C/400 local
program that sends requests to the partner program for proc-
essing.

 Program Explanation

The reference numbers in the explanation below correspond
to the statement numbers in the program example illustrated
in Figure F-4 on page F-4.

Note: On any type of error that is not expected (for
example, an unexpected CPI Communications
return_code on a call), the session is ended and the
program ends.

Statement 75 The preprocessor include directive #include
"QSYSINC/H/CMC" replaces the directive with the
contents of the AS/400 supplied CPI Communi-
cations pseudonym file CMC. Refer to “Using
Pseudonyms When Writing Applications” on
page 6-6 for further information on pseudonym
files.

Statement 99 This section defines the display file
(T8189DSP) structures used in the program.
T8189DSP is the display file used to receive a
user's requests and to report the requested infor-
mation received from the partner program based
on the part number specified by the user.
T8189DSP uses the file-level keyword, INDARA,
which indicates that the file uses a separate indi-
cator area.

Statement 115 The internal functions are prototyped so the
ILE C/400 compiler knows the type of value
returned and the type of parameters passed, if
any.

Statement 136 The open_files, start_conversation, and
get_cust_num functions are called to open files
used by the program, start a conversation with
the partner program, and obtain the part number
to be queried, respectively.

Statement 141 The program loops until either F3 is pressed
from the work station, which sets the indicator in
the separate indicator area of the display file, or

Display
Station

Display File

Program

Remote AS/400 System

Database
File

Program

Local AS/400 System

RV2P754-0

Figure F-1. Inquiry Example

F-2 OS/400 APPC Programming V4R1

an error occurs in the transaction with the
partner program.

Statement 149 The part number is sent to the partner
program using the Send_Data (CMSEND) call.
The CMSEND call is issued with the following
conversation characteristics (the conversation
characteristics were set in start_conversation):
a send_type of
CM_SEND_AND_PREP_TO_RECEIVE; a
prepare_to_receive_type of
CM_PREP_TO_RECEIVE_SYNC_LEVEL; and a
sync_level of CM_CONFIRM. Setting the con-
versation characteristics to these values flushes
the data, changes the data flow direction from
send to receive, and sends a confirmation
request to the partner program. The partner
program must now respond with a positive or
negative response.

Statement 158 If the partner program responds with a posi-
tive response (return_code of CM_OK) to the
confirmation request, a Receive (CMRCV) call is
issued to receive the part description. However,
if the partner program responds with a negative
response (return_code of
CM_PROGRAM_ERROR_PURGING) to the
confirmation request, a CMRCV call is issued to
receive the error message.

Statement 185 The get_cust_num function is called to
display the information returned by the partner
program and to obtain the next part number to
be queried.

Statement 188 The cleanup function is called to perform
end-of-program processing.

Statement 205 The open_files function opens the display
file.

Statement 214 A separate indicator area is defined for the
file T8189DSP. The variable dsp_indic is of the
type _SYSindara, which is a 99-character array.

Statement 216 The separate indicator area for the display
file T8189DSP is initialized.

Statement 225 The start_conversation function establishes
a conversation with the partner program and
sets various conversation characteristics.

Statement 232 The Initialize_Conversation (CMINIT) call is
issued to initialize the conversation character-
istics before the conversation is allocated.

Note: The sym_dest_name used is the side
information object T8189CSI.

Statement 242 The Set_TP_Name (CMSTPN) call is issued
so that the TP_name conversation characteristic
is set to the remote program.

Note: The remote program that is to be started
can be any of the remote programs in
this appendix and in Appendix E, “ ICF
Program Examples” on page E-1.

Statement 249 The Set_Sync_Level (CMSSL) call is issued
so that the sync_level conversation characteristic
is set to CM_CONFIRM.

Statement 255 The Allocate (CMALLC) call is issued so that
a conversation can be started using the
conversation_ID previously assigned by the
CMINIT call.

Statement 265 The Set_Send_Type (CMSST) call is issued
so that the send_type conversation characteristic
is set to CM_SEND_AND_PREP_TO_RECEIVE.

Statement 274 The get_cust_num function displays the
requested information, and reads the next
number. The part number field will be blank the
first time a part number is read.

Statement 292 The cleanup function performs end-of-
program processing.

Statement 294 If no error was detected, the deallocate_type
is set to CM_DEALLOCATE_FLUSH by issuing
the Set_Deallocate_Type (CMSDT) call, followed
by a call to Deallocate (CMDEAL) to end the
conversation normally.

Note: The CMSDT call must be performed
because the default deallocate_typeis
CM_DEALLOCATE_SYNC_LEVEL,
which would send a confirmation request
to the partner program when the
CMDEAL call is issued.

Statement 301 If an unexpected error was detected and the
conversation is still active, the deallocate_type is
set to CM_DEALLOCATE_ABEND by issuing
the CMSDT call, followed by a call to Deallocate
(CMDEAL) to end the conversation abnormally.

Statement 314 The display file is closed.

 Appendix F. CPI Communications Program Examples F-3

\ \ \ \ \ P R O L O G \ \ \ \ \

 Program : T8189CCS

Library : LAB

 Source file : QATTSYSC

Library : QUSRTOOL

 Source member : T8189CCS

 Text Description : APPC C program example CPIC - Source

 Output : \PRINT

 Compiler options : \NOAGR \NOEXPMAC \LOGMSG \NOSECLVL

: \NOSHOWINC \SHOWSKP \NOXREF \USRINCPATH

 Checkout options : \NOACCURACY \NOENUM \NOEXTERN \NOGENERAL \NOGOTO \NOINIT

: \NOPARM \NOPORT \NOPPCHECK \NOPPTRACE

 Optimization : \NONE

 Debugging view : \NONE

 Define names :

 Language level : \SOURCE

 Source margins:

Left margin : 1

Right margin : 32754

 Sequence columns:

Left Column :

Right Column :

 Message flagging level : ð

 Compiler messages:

Message limit : \NOMAX

Message limit severity . . . : 3ð

 Replace module object : \YES

 User Profile : \USER

 Authority : \LIBCRTAUT

 Target release : \CURRENT

 System includes : \YES

 Last change : ð2/11/94 12:33:ð8

 Source description : APPC C program example CPIC - Source

 Compiler : IBM ILE C/4ðð Compiler

\ \ \ \ \ S O U R C E \ \ \ \ \

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 1 |/\\\/

2 |/\ Program name.........: T8189CCS \/

3 |/\ Program description..: CPI-Communications local program \/

4 |/\ Language.............: C/4ðð \/

 5 |/\ \/

6 |/\ This program invokes a program to handle part inquiry on \/

7 |/\ the remote system. The Initialize_Conversation (CMINIT) \/

8 |/\ call is issued using the sym_dest_name of 'T8189CSI'. \/

9 |/\ The Allocate (CMALLC) call is issued, which results in \/

1ð |/\ the establishment of a conversation with the remote \/

11 |/\ program. A display which prompts the user for the part \/

12 |/\ number for which part information is requested is then \/

13 |/\ displayed. When the user presses Enter, a Send_Data \/

14 |/\ (CMSEND) call is issued (the data sent to the partner \/

15 |/\ program is the part number). Note that the CMSEND call \/

16 |/\ is issued with the following conversation \/

17 |/\ characteristics: a send_type of \/

18 |/\ CM_SEND_AND_PREP_TO_RECEIVE; a prepare_to_receive_type \/

19 |/\ of CM_PREP_TO_RECEIVE_SYNC_LEVEL; and a sync_level of \/

2ð |/\ CM_CONFIRM. Setting the conversation characteristics to \/

21 |/\ these values results in the flushing of the data, the \/

22 |/\ changing of the data flow direction, and the sending of \/

23 |/\ a confirmation request to the partner program. If the \/

24 |/\ partner program responds with the Confirmed (CMCFMD) \/

25 |/\ call to the confirmation request, the return_code \/

26 |/\ parameter value on the CMSEND call will be set to CM_OK; \/

27 |/\ the Receive (CMRCV) call is then issued to receive the \/

28 |/\ part description. However, if the partner program \/

Figure F-4 (Part 1 of 6). ILE C/400 Inquiry Example – Local Program

F-4 OS/400 APPC Programming V4R1

29 |/\ responds with the Send_Error (CMSERR) call to the \/

3ð |/\ confirmation request, the return_code parameter value on \/

31 |/\ the CMSEND call will be set to CM_PROGRAM_ERROR_PURGING; \/

32 |/\ a CMRCV call is issued to receive the error message. \/

 33 |/\ \/

34 |/\ The error message or part description (depending on \/

35 |/\ whether the part number was found) will be displayed on \/

36 |/\ the screen. \/

 37 |/\ \/

38 |/\ This program will continue to handle inquries until the \/

39 |/\ user presses the F3=Exit key. When F3=Exit is pressed, \/

4ð |/\ the Deallocate (CMDEAL) call is issued to end the \/

41 |/\ conversation (note that the deallocate_type conversation \/

42 |/\ characteristic is set to CM_DEALLOCATE_FLUSH), and \/

43 |/\ program processing ends. \/

 44 |/\ \/

45 |/\ NOTE 1: If an unexpected return_code value is received on \/

46 |/\ any of the CPI-Communications calls, the \/

47 |/\ program will abnormally end the conversation (if \/

48 |/\ it is still active), and program processing will \/

 49 |/\ end. \/

 5ð |/\ \/

51 |/\ NOTE 2: On the CMRCV call, if the data_received \/

52 |/\ parameter value does not indicate \/

53 |/\ CM_COMPLETE_DATA_RECEIVED, or if the \/

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

54 |/\ status_received parameter value does not indicate \/

55 |/\ CM_SEND_RECEIVED, the program will abnormally end \/

56 |/\ the conversation (if it is still active), and \/

57 |/\ program processing will end. \/

 58 |/\ \/

59 |/\ NOTE 3: This program can start ANY of the "remote" \/

6ð |/\ program examples in the APPC Programmer's \/

61 |/\ Guide by changing the TP_name variable to the \/

62 |/\ remote program that is to be started. \/

 63 |/\ \/

 64 |/\\\/

 65 |

 66 |/\\\/

67 |/\ Retrieve various structures/utilities that are used in program. \/

 68 |/\\\/

69 |#include <stdio.h> /\ Standard I/O header \/

7ð |#include <stdlib.h> /\ General utilities \/

71 |#include <string.h> /\ String handling utilities \/

72 |#include <stddef.h> /\ Standard definition \/

73 |#include <xxfdbk.h> /\ Feedback area structures \/

74 |#include <recio.h> /\ Record i/o routines \/

75 |#include "QSYSINC/H/CMC" /\ CPI-Communications pseudonyms \/

 76 |

 77 |/\\\/

78 |/\ Define variables used with CPI-Communications calls. \/

 79 |/\\\/

 8ð |CM_INT32 data_received;

 81 |CM_INT32 requested_length;

 82 |CM_INT32 received_length;

 83 |CM_INT32 request_to_send_received;

 84 |CM_INT32 return_code;

 85 |CM_INT32 send_length;

 86 |CM_INT32 send_type;

 87 |CM_INT32 status_received;

 88 |CM_INT32 deallocate_type;

 89 |CM_INT32 sync_level;

 9ð |CM_INT32 TP_name_length;

Figure F-4 (Part 2 of 6). ILE C/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-5

 91 |char conversation_ID??(8??);

 92 |char sym_dest_name??(8??);

 93 |char TP_name??(8??);

 94 |

 95 |/\\\/

96 |/\ Define the structures used for reads/writes from/to the display \/

 97 |/\ file. \/

 98 |/\\\/

99 | struct {

1ðð | char partn??(5??); /\ part number \/

1ð1 | char partd??(25??); /\ part description \/

1ð2 | char errorl??(4ð??); /\ error record \/

1ð3 |} prompt_i_o = { " ", " ",

 1ð4 | " " };

 1ð5 |

 1ð6 |/\\\/

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

1ð7 |/\ Define constants/flags used in program. \/

 1ð8 |/\\\/

1ð9 |#define ERROR 1 /\ error during IO processing \/

11ð |#define NOERROR ð

 111 |

 112 |/\\\/

113 |/\ Declare global variables/functions. \/

 114 |/\\\/

 115 |void cleanup(int);

 116 |void open_files(void);

 117 |void get_cust_num(void);

 118 |void start_conversation(void);

 119 |

12ð |_RFILE \dspfptr; /\ Pointer to the display file \/

121 |_XXIOFB_DSP_ICF_T \dsp_icf_fdbk; /\ IO Feedback - display file \/

122 |_SYSindara dsp_indic; /\ indicator area for dsp \/

123 |char blank4ð??(4ð??) = " ";

 124 |

 125 |

 126 |/\\\/

127 |/\ START OF PROGRAM \/

 128 |/\ \/

129 |/\ Files are opened, a conversation with the remote program is \/

13ð |/\ started, and the part inquiry screen is displayed. Inquiries \/

131 |/\ are handled until the user presses the F3=Exit key, in which case \/

132 |/\ the conversation will be ended and the program will end. \/

 133 |/\\\/

 134 |main()

 135 |{

136 1 | open_files();

137 2 | start_conversation();

 138 |

139 3 | get_cust_num();

 14ð |

141 4 | while (dsp_indic??(98??) != '1')

 142 | {

 143 |

 144 | /\\\/

145 | /\ The part number that the user has requested information \/

146 | /\ for is sent to the remote program using the CMSEND call. \/

 147 | /\\\/

148 5 | send_length = 5;

149 | CMSEND(conversation_ID, prompt_i_o.partn, &send_length,;

 15ð 6 | &request_to_send_received,; &return_code);;

 151 |

Figure F-4 (Part 3 of 6). ILE C/400 Inquiry Example – Local Program

F-6 OS/400 APPC Programming V4R1

 152 | /\\\/

153 | /\ The CMRCV call is issued to receive the response \/

154 | /\ from the remote program (the response can either be \/

155 | /\ an error message or the part description, depending \/

156 | /\ on whether the part was found or not). \/

 157 | /\\\/

158 7 | if (return_code == CM_OK)

 159 | {

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

16ð 8 | requested_length = 25;

161 | CMRCV(conversation_ID, prompt_i_o.partd, &requested_length,;

162 | &data_received,; &received_length,; &status_received,;

 163 9 | &request_to_send_received,; &return_code);;

 164 |

165 1ð | strncpy(prompt_i_o.errorl, blank4ð, 4ð);

 166 | }

 167 | else

168 11 | if (return_code == CM_PROGRAM_ERROR_PURGING)

 169 | {

17ð 12 | requested_length = 4ð;

171 | CMRCV(conversation_ID, prompt_i_o.errorl, &requested_length,;

172 | &data_received,; &received_length,; &status_received,;

 173 13 | &request_to_send_received,; &return_code);;

 174 |

 175 14 | strncpy(prompt_i_o.partd, " ", 25);

 176 | }

177 | else /\ Unexpected return code. \/

 178 15 | cleanup(ERROR);

 179 |

18ð | if ((return_code != CM_OK) ||

181 | (data_received != CM_COMPLETE_DATA_RECEIVED) ||

182 16 | (status_received != CM_SEND_RECEIVED))

 183 17 | cleanup(ERROR);

 184 |

 185 18 | get_cust_num();

186 | } /\ end of while \/

 187 |

188 19 | cleanup(NOERROR);

 189 |

19ð |} /\ end of MAIN routine \/

 191 |

 192 |/\\\/

 193 |/\ \/

 194 |/\ \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\ \/

 195 |/\ \ INTERNAL FUNCTIONS \ \/

 196 |/\ \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\ \/

 197 |/\ \/

 198 |/\\\/

 199 |

 2ðð |/\\\/

2ð1 |/\ "OPEN_FILES" function \/

 2ð2 |/\ \/

2ð3 |/\ This function opens the display file and sets the indicator area. \/

 2ð4 |/\\\/

 2ð5 |void open_files()

 2ð6 |{

2ð7 | if ((dspfptr=_Ropen("T8189DSP","ar+ indicators=y riofb=y"))

 2ð8 1 | == NULL)

 2ð9 | {

21ð 2 | printf("Display file failed to open.\n");

 211 3 | exit(ERROR);

 212 | }

Figure F-4 (Part 4 of 6). ILE C/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-7

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 213 |

214 4 | _Rindara(dspfptr, dsp_indic);

 215 |

216 5 | memset(dsp_indic, 'ð', 99); /\ Initialize indicator area. \/

217 |} /\ end open_files... \/

 218 |

 219 |/\\\/

22ð |/\ "START_CONVERSATION" function \/

 221 |/\ \/

222 |/\ This function establishes a conversation with the remote program, \/

223 |/\ and also sets various conversation characteristics. \/

 224 |/\\\/

 225 |void start_conversation()

 226 |{

 227 | /\\/

228 | /\ The CMINIT call is issued to initialize various \/

229 | /\ conversation characteristics. \/

 23ð | /\\/

231 1 | strncpy(sym_dest_name, "T8189CSI", 8);

232 2 | CMINIT(conversation_ID, sym_dest_name, &return_code);;

233 3 | if (return_code != CM_OK)

 234 4 | cleanup(ERROR);

 235 |

 236 | /\\/

237 | /\ The Set_TP_Name (CMSTPN) call is issued so that the \/

238 | /\ TP_name conversation characteristic is set to the remote program.\/

 239 | /\\/

24ð 5 | strncpy(TP_name, "T8189CCT", 8);

241 6 | TP_name_length = strlen(TP_name);

242 7 | CMSTPN(conversation_ID, TP_name, &TP_name_length,; &return_code);;

 243 |

 244 | /\\/

245 | /\ The Set_Sync_Level (CMSSL) call is issued so that the \/

246 | /\ sync_level conversation characteristic is set to CM_CONFIRM. \/

 247 | /\\/

248 8 | sync_level = CM_CONFIRM;

249 9 | CMSSL(conversation_ID, &sync_level,; &return_code);;

 25ð |

 251 | /\\/

252 | /\ The CMALLC call is issued so that a conversation can be started \/

253 | /\ using the conversation_ID previously assigned by the CMINIT call.\/

 254 | /\\/

255 1ð | CMALLC(conversation_ID, &return_code);;

256 11 | if (return_code != CM_OK)

 257 12 | cleanup(ERROR);

 258 |

 259 | /\\/

26ð | /\ The Set_Send_Type (CMSST) call is issued so that the send_type \/

261 | /\ conversation characteristic is set to \/

262 | /\ CM_SEND_AND_PREP_TO_RECEIVE. \/

 263 | /\\/

264 13 | send_type = CM_SEND_AND_PREP_TO_RECEIVE;

265 14 | CMSST(conversation_ID, &send_type,; &return_code);;

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 266 |

267 |} /\ end start_conversation... \/

 268 |

 269 |/\\\/

27ð |/\ "GET_CUST_NUM" function \/

 271 |/\ \/

272 |/\ Get a customer number from the display. \/

 273 |/\\\/

 274 |void get_cust_num()

Figure F-4 (Part 5 of 6). ILE C/400 Inquiry Example – Local Program

F-8 OS/400 APPC Programming V4R1

 275 |{

276 1 | _Rformat(dspfptr,"PROMPT ");

277 2 | _Rwrite (dspfptr, &prompt_i_o,; sizeof(prompt_i_o));

278 3 | memset(dsp_indic, 'ð', 99);

279 4 | _Rreadn (dspfptr, &prompt_i_o,; sizeof(prompt_i_o), __DFT);

28ð |} /\ end get_cust_num... \/

 281 |

 282 |/\\\/

283 |/\ "CLEANUP" function. \/

 284 |/\ \/

285 |/\ The following code handles the end-of-program processing. \/

286 |/\ This includes the ending of the conversation with \/

287 |/\ the remote system (if conversation is active) by \/

288 |/\ issuing a CMDEAL call with the deallocate_type set to either \/

289 |/\ CM_DEALLOCATE_FLUSH (for non-error conditions), \/

29ð |/\ or CM_DEALLOCATE_ABEND (for error conditions). \/

 291 |/\\\/

292 |void cleanup(int endtype)

 293 |{

294 1 | if (endtype == NOERROR)

 295 | {

296 2 | deallocate_type = CM_DEALLOCATE_FLUSH;

297 3 | CMSDT(conversation_ID, &deallocate_type,; &return_code);;

 298 4 | CMDEAL(conversation_ID, &return_code);;

 299 | }

 3ðð | else

3ð1 | if ((return_code != CM_ALLOCATE_FAILURE_RETRY) &&;

3ð2 | (return_code != CM_ALLOCATE_FAILURE_NO_RETRY) &&;

3ð3 | (return_code != CM_DEALLOCATED_ABEND) &&;

3ð4 | (return_code != CM_DEALLOCATED_NORMAL) &&;

3ð5 | (return_code != CM_PRODUCT_SPECIFIC_ERROR) &&;

3ð6 | (return_code != CM_RESOURCE_FAILURE_RETRY) &&;

3ð7 5 | (return_code != CM_RESOURCE_FAILURE_NO_RETRY))

 3ð8 | {

3ð9 6 | deallocate_type = CM_DEALLOCATE_ABEND;

31ð 7 | CMSDT(conversation_ID, &deallocate_type,; &return_code);;

 311 8 | CMDEAL(conversation_ID, &return_code);;

 312 | }

 313 |

314 9 | _Rclose (dspfptr);

 315 |

316 1ð | exit(endtype);

317 |} /\ end cleanup... \/

 318 |

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ \ \ \ \ I N C L U D E S \ \ \ \ \

INCNBR Include Name Last change Actual Include Name

 1 stdio.h 12/ð2/93 14:12:18 QCLE/H/STDIO

 2 stdlib.h 12/ð2/93 14:12:19 QCLE/H/STDLIB

 3 string.h 12/ð2/93 14:12:19 QCLE/H/STRING

 4 stddef.h 12/ð2/93 14:12:17 QCLE/H/STDDEF

 5 xxfdbk.h 12/ð2/93 14:12:23 QCLE/H/XXFDBK

 6 recio.h 12/ð2/93 14:12:15 QCLE/H/RECIO

 7 QSYSINC/H/CMC ð1/12/94 16:57:4ð QSYSINC/H/CMC

\ \ \ \ \ E N D O F I N C L U D E S \ \ \ \ \

\ \ \ \ \ M E S S A G E S U M M A R Y \ \ \ \ \

Total Informational(ðð) Warning(1ð) Error(3ð) Severe Error(4ð

 ð ð ð ð ð

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

Program T8189CCS was created in library LAB on ð2/11/94 at 12:39:25.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-4 (Part 6 of 6). ILE C/400 Inquiry Example – Local Program

ILE C/400 Remote Program for Inquiry
Applications (Example 1)

The following explains the structure of the ILE C/400 remote
program that handles requests sent by the partner program.

 Appendix F. CPI Communications Program Examples F-9

 Program Explanation

The reference numbers in the explanation below correspond
to the statement numbers in the program example illustrated
in Figure F-5 on page F-11.

Note: On any type of error that is not expected (for
example, an unexpected CPI Communications
return_code on a call), the session is ended and the
program ends.

Statement 63 The preprocessor include directive #include
"QSYSINC/H/CMC" causes the preprocessor to
replace the directive with the contents of the
AS/400-supplied CPI Communications
pseudonym file CMC.

Statement 68 This structure defines the database file
(T8189DB) structures used in the program.
T8189DB is the database file used to read the
customer records.

Statement 100 The internal functions are prototyped so the
ILE C/400 compiler knows the type of value
returned and the type of parameters passed, if
any.

Statement 125 The open_files and start_conversation
functions are called to open files used by the
program and to start a conversation with the
partner program, respectively.

Statement 128 The program loops until there are no more
requests to process or until an error occurs in
the transaction with the partner program.

Statement 135 A search of the database file is performed
using the part number received from the partner
program as the key.

Statement 142 If the part number is found in the database
file, the Confirmed (CMCFMD) call is issued. As
a result, a positive response to the received con-
firmation request is sent to the partner program.

Statement 153 If the part number is not found in the data-
base file, the Send_Error (CMSERR) call is
issued. As a result, a negative response to the
received confirmation request is sent to the
partner program.

Statement 166 The Send_Data (CMSEND) call is issued.
The data sent (set previously) is either an error
message (if the part was not found) or the part
description (if the part is found). The CMSEND
call is issued with the following conversation
characteristics (the conversation characteristics
were set in start_conversation): a send_type of

CM_SEND_AND_PREP_TO_RECEIVE and a
prepare_to_receive_type of
CM_PREP_TO_RECEIVE_FLUSH. Setting the
conversation characteristics to these values
flushes the data and changes the data flow
direction.

Statement 172 The cleanup function is called to perform
end-of-program processing.

Statement 188 The open_files function opens the database
file.

Statement 203 The start_conversation function establishes
a conversation with the partner program and
sets various conversation characteristics.

Statement 210 The Accept_Conversation (CMACCP) call is
issued so that a conversation can be started with
the partner program.

Statement 220 The Set_Send_Type (CMSST) call is issued
so that the send_type conversation characteristic
is set to CM_SEND_AND_PREP_TO_RECEIVE.

Statement 228 The Set_Prepare_To_Receive_Type
(CMSPTR) call is issued so that the
prepare_to_receive_type conversation character-
istic is set to CM_PREP_TO_RECEIVE_FLUSH.

Statement 238 The get_cust_num function waits for a
request from the partner program by issuing the
Receive (CMRCV) call.

Note: A transaction is processed if all the data is received
with a turnaround indication, and the partner program
requested confirmation. This is indicated by the
following:

� The value of the data_received variable on the
CMRCV call is
CM_COMPLETE_DATA_RECEIVED

� The value of the status_received variable on the
CMRCV call is
CM_CONFIRM_SEND_RECEIVED

Statement 265 The cleanup function performs end-of-
program processing.

Statement 267 If the conversation is still active, it is
assumed that an error was detected. The
deallocate_type is set to
CM_DEALLOCATE_ABEND by issuing the
Set_Deallocate_Type (CMSDT) call, followed by
a call to Deallocate (CMDEAL) to end the con-
versation abnormally.

Statement 280 The database file is closed.

F-10 OS/400 APPC Programming V4R1

\ \ \ \ \ P R O L O G \ \ \ \ \

 Program : T8189CCT

Library : LAB

 Source file : QATTSYSC

Library : QUSRTOOL

 Source member : T8189CCT

 Text Description : APPC C program example CPIC - Target

 Output : \PRINT

 Compiler options : \NOAGR \NOEXPMAC \LOGMSG \NOSECLVL

: \NOSHOWINC \SHOWSKP \NOXREF \USRINCPATH

 Checkout options : \NOACCURACY \NOENUM \NOEXTERN \NOGENERAL \NOGOTO \NOINIT

: \NOPARM \NOPORT \NOPPCHECK \NOPPTRACE

 Optimization : \NONE

 Debugging view : \NONE

 Define names :

 Language level : \SOURCE

 Source margins:

Left margin : 1

Right margin : 32754

 Sequence columns:

Left Column :

Right Column :

 Message flagging level : ð

 Compiler messages:

Message limit : \NOMAX

Message limit severity . . . : 3ð

 Replace module object : \YES

 User Profile : \USER

 Authority : \LIBCRTAUT

 Target release : \CURRENT

 System includes : \YES

 Last change : ð2/11/94 12:33:16

 Source description : APPC C program example CPIC - Target

 Compiler : IBM ILE C/4ðð Compiler

\ \ \ \ \ S O U R C E \ \ \ \ \

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 1 |/\\\/

2 |/\ Program name.........: T8189CCT \/

3 |/\ Program description..: CPI-Communications remote program \/

4 |/\ Language.............: C/4ðð \/

 5 |/\ \/

6 |/\ This program accepts the incoming conversation by \/

7 |/\ issuing an Accept_Conversation (CMACCP) call. It then \/

8 |/\ issues a Receive (CMRCV) call to receive the part number \/

9 |/\ from the remote system. When the CMRCV call completes, \/

1ð |/\ the status_received value will be CM_CONFIRM_SEND. The \/

11 |/\ database file T8189DB is searched for the received part \/

12 |/\ number. If the part number is found, the Confirmed \/

13 |/\ (CMCFMD) call is issued, followed by a Send_Data \/

14 |/\ (CMSEND) call (the data sent is the part description \/

15 |/\ corresponding to the part number retrieved from the \/

16 |/\ database file). However, if the part number is not \/

17 |/\ found, the Send_Error (CMSERR) call is issued, followed \/

18 |/\ by a CMSEND call (the data sent is a message describing \/

19 |/\ the error). The CMSEND call sending either the part \/

2ð |/\ description or the error message is issued with a \/

21 |/\ send_type conversation characteristic of \/

22 |/\ CM_SEND_AND_PREP_TO_RECEIVE and a \/

23 |/\ prepare_to_receive_type conversation characteristic of \/

24 |/\ CM_PREP_TO_RECEIVE_FLUSH. Setting the conversation \/

25 |/\ characteristics to these values results in the flushing \/

26 |/\ of the data, and the changing of the data flow \/

27 |/\ direction. The partner program can send more inquiries. \/

 28 |/\ \/

29 |/\ This program will continue to handle inquiries from the \/

3ð |/\ partner program until a return_code that is not CM_OK \/

31 |/\ is received. Then the program ends. \/

Figure F-5 (Part 1 of 6). ILE C/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-11

 32 |/\ \/

33 |/\ NOTE 1: If an unexpected return_code value is received on \/

34 |/\ any of the CPI-Communications calls, the \/

35 |/\ program will abnormally end the conversation \/

36 |/\ with a deallocate_type of CM_DEALLOCATED_ABEND, \/

37 |/\ and program processing will end. \/

 38 |/\ \/

39 |/\ NOTE 2: On the CMRCV call, if the data_received \/

4ð |/\ parameter value does not indicate \/

41 |/\ CM_COMPLETE_DATA_RECEIVED, or if the \/

42 |/\ status_received parameter value does not indicate \/

43 |/\ CM_CONFIRM_SEND_RECEIVED, the program will \/

44 |/\ abnormally end the conversation with a \/

45 |/\ deallocate_type of CM_DEALLOCATED_ABEND, \/

46 |/\ and program processing will end. \/

 47 |/\ \/

48 |/\ NOTE 3: This program can be started by ANY of the \/

49 |/\ "local" program examples in the APPC Programmer's \/

 5ð |/\ Guide. \/

 51 |/\ \/

 52 |/\\\/

 53 |

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 54 |/\\\/

55 |/\ Retrieve various structures/utilities that are used in program. \/

 56 |/\\\/

57 |#include <stdio.h> /\ Standard I/O header \/

58 |#include <stdlib.h> /\ General utilities \/

59 |#include <string.h> /\ String handling utilities \/

6ð |#include <stddef.h> /\ Standard definition \/

61 |#include <xxfdbk.h> /\ Feedback area structures \/

62 |#include <recio.h> /\ record i/o routines \/

63 |#include "QSYSINC/H/CMC" /\ CPI-Communications pseudonyms \/

 64 |

 65 |/\\\/

66 |/\ Define the structure used for reads from the database file. \/

 67 |/\\\/

 68 | struct {

 69 | char partn??(5??);

 7ð | char partd??(25??);

 71 |} part_rec;

 72 |

 73 |/\\\/

74 |/\ Define variables used with CPI-Communications calls. \/

 75 |/\\\/

 76 |CM_INT32 data_received;

 77 |CM_INT32 prep_to_receive_type;

 78 |CM_INT32 requested_length;

 79 |CM_INT32 received_length;

 8ð |CM_INT32 request_to_send_received;

 81 |CM_INT32 return_code;

 82 |CM_INT32 send_length;

 83 |CM_INT32 send_type;

 84 |CM_INT32 status_received;

 85 |CM_INT32 deallocate_type;

 86 |char conversation_ID??(8??);

 87 |char buffer??(4ð??);

 88 |

 89 |/\\\/

9ð |/\ Define constants/flags used in program. \/

 91 |/\\\/

92 |#define ERROR 1 /\ error during I/O processing \/

93 |#define NOERROR ð

94 |#define MORE_REQUESTS ð /\ More request indicator \/

95 |#define NO_REQUESTS 1

Figure F-5 (Part 2 of 6). ILE C/400 Inquiry Example – Remote Program

F-12 OS/400 APPC Programming V4R1

 96 |

 97 |/\\\/

98 |/\ Declare global variables/functions. \/

 99 |/\\\/

 1ðð |int get_cust_num(void);

 1ð1 |void cleanup(void);

 1ð2 |void open_files(void);

 1ð3 |void start_conversation(void);

 1ð4 |

1ð5 |char part_not_found??(4ð??) =

1ð6 | "THE REQUESTED PART WAS NOT FOUND ";

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 1ð7 |

1ð8 |_RFILE \dbfptr; /\ Pointer to database file. \/

1ð9 |_RIOFB_T \db_fdbk; /\ IO Feedback - data base file \/

 11ð |

111 |size_t size; /\ "size_t" is a synonym for the \/

112 | /\ type of the value returned by \/

113 | /\ the "sizeof" operator. \/

 114 |

 115 |

 116 |/\\\/

117 |/\ START OF PROGRAM \/

 118 |/\ \/

119 |/\ Files are opened, a conversation with the remote program is \/

12ð |/\ started, and the part inquiry processing starts. Inquiries \/

121 |/\ are handled until a CM_DEALLOCATED_NORMAL is received. \/

 122 |/\\\/

 123 |main()

 124 |{

125 1 | open_files();

126 2 | start_conversation();

 127 |

128 3 | while (get_cust_num() != NO_REQUESTS)

 129 | {

 13ð | /\\\/

131 | /\ A search of the database file is done using the part \/

132 | /\ number as the key. \/

 133 | /\\\/

 134 4 | strncpy (part_rec.partd," ",25);

135 | db_fdbk = _Rreadk(dbfptr, &part_rec,; sizeof(part_rec),

136 5 | __KEY_EQ, &part_rec;partn, sizeof(part_rec.partn));

 137 |

 138 | /\\\/

139 | /\ If the part number is found, the CMCFMD call is \/

14ð | /\ issued; otherwise, the CMSERR call is issued. \/

 141 | /\\\/

142 6 | if (db_fdbk -> num_bytes > ð) /\ if record was found \/

 143 | {

 144 7 | CMCFMD(conversation_ID, &return_code);;

145 8 | if (return_code != CM_OK)

 146 9 | cleanup();

 147 |

 148 1ð | strncpy(buffer,part_rec.partd,25);

149 11 | send_length = 25;

 15ð | }

151 | else /\ part description not found \/

 152 | {

153 12 | CMSERR(conversation_ID, &request_to_send_received,; &return_code);;

154 13 | if (return_code != CM_OK)

 155 14 | cleanup();

 156 |

157 15 | strncpy(buffer, part_not_found, 4ð);

158 16 | send_length = 4ð;

 159 | }

Figure F-5 (Part 3 of 6). ILE C/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-13

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 16ð |

 161 | /\\\/

162 | /\ The CMSEND call is issued. The data sent (set previously) \/

163 | /\ is either an error message (if the part was not found) \/

164 | /\ or the part description (if the part is found). \/

 165 | /\\\/

166 | CMSEND(conversation_ID, buffer, &send_length,;

 167 17 | &request_to_send_received,; &return_code);;

168 18 | if (return_code != CM_OK)

 169 19 | cleanup();

17ð | } /\ end WHILE \/

 171 |

172 2ð | cleanup();

173 |} /\ end of main routine \/

 174 |

 175 |/\\\/

 176 |/\ \/

 177 |/\ \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\ \/

 178 |/\ \ INTERNAL FUNCTIONS \ \/

 179 |/\ \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\ \/

 18ð |/\ \/

 181 |/\\\/

 182 |

 183 |/\\\/

184 |/\ "OPEN_FILES" function \/

 185 |/\ \/

186 |/\ This function opens the database file. \/

 187 |/\\\/

 188 |void open_files()

 189 |{

19ð 1 | if ((dbfptr= _Ropen("T8189DB", "rr riofb=n")) == NULL)

 191 | {

192 2 | printf("Data Base file failed to open.\n");

 193 3 | exit(ERROR);

 194 | }

195 |} /\ end open_files... \/

 196 |

 197 |/\\\/

198 |/\ "START_CONVERSATION" function \/

 199 |/\ \/

2ðð |/\ This function establishes a conversation with the remote system, \/

2ð1 |/\ and also sets various conversation characteristics. \/

 2ð2 |/\\\/

 2ð3 |void start_conversation()

 2ð4 |{

 2ð5 |

 2ð6 | /\\/

2ð7 | /\ The CMACCP call is issued so that a conversation can be \/

2ð8 | /\ started with the partner program. \/

 2ð9 | /\\/

21ð 1 | CMACCP(conversation_ID, &return_code);;

211 2 | if (return_code != CM_OK)

 212 3 | cleanup();

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 213 |

 214 | /\\/

215 | /\ The Set_Send_Type (CMSST) call is issued so that the \/

216 | /\ send_type conversation characteristic is set to \/

217 | /\ CM_SEND_AND_PREP_TO_RECEIVE. \/

 218 | /\\/

Figure F-5 (Part 4 of 6). ILE C/400 Inquiry Example – Remote Program

F-14 OS/400 APPC Programming V4R1

219 4 | send_type = CM_SEND_AND_PREP_TO_RECEIVE;

22ð 5 | CMSST(conversation_ID, &send_type,; &return_code);;

 221 |

 222 | /\\/

223 | /\ The Set_Prepare_To_Receive_Type (CMSPTR) call is issued \/

224 | /\ so that the prepare_to_receive_type conversation \/

225 | /\ characteristic is set to CM_PREP_TO_RECEIVE_FLUSH. \/

 226 | /\\/

227 6 | prep_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH;

228 7 | CMSPTR(conversation_ID, &prep_to_receive_type,; &return_code);;

 229 |

23ð |} /\ end start_conversation... \/

 231 |

 232 |/\\\/

233 |/\ "GET_CUST_NUM" function \/

 234 |/\ \/

235 |/\ This subroutine waits for incoming data from the partner \/

236 |/\ program by issuing the read operation. \/

 237 |/\\\/

 238 |get_cust_num()

 239 |{

24ð 1 | requested_length = 5;

241 | CMRCV(conversation_ID, part_rec.partn, &requested_length,;

242 | &data_received,; &received_length,; &status_received,;

 243 2 | &request_to_send_received,; &return_code);;

 244 |

245 3 | if (return_code == CM_OK)

 246 | {

247 | if ((data_received == CM_COMPLETE_DATA_RECEIVED) &&;

248 4 | (status_received == CM_CONFIRM_SEND_RECEIVED))

 249 5 | return(MORE_REQUESTS);

 25ð | else

 251 6 | return(NO_REQUESTS);

 252 | }

 253 | else

 254 7 | return(NO_REQUESTS);

255 |} /\ end get_cust_num... \/

 256 |

 257 |/\\\/

258 |/\ "CLEANUP" function. \/

 259 |/\ \/

26ð |/\ The following code handles the end-of-program processing. \/

261 |/\ This includes the ending of the conversation with \/

262 |/\ the remote system (if conversation is active), and the \/

263 |/\ closing of opened files. \/

 264 |/\\\/

 265 |void cleanup()

 Line STMT

\...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 266 |{

267 | if ((return_code != CM_ALLOCATE_FAILURE_RETRY) &&;

268 | (return_code != CM_ALLOCATE_FAILURE_NO_RETRY) &&;

269 | (return_code != CM_DEALLOCATED_ABEND) &&;

27ð | (return_code != CM_DEALLOCATED_NORMAL) &&;

271 | (return_code != CM_PRODUCT_SPECIFIC_ERROR) &&;

272 | (return_code != CM_RESOURCE_FAILURE_RETRY) &&;

273 1 | (return_code != CM_RESOURCE_FAILURE_NO_RETRY))

 274 | {

275 2 | deallocate_type = CM_DEALLOCATE_ABEND;

276 3 | CMSDT(conversation_ID, &deallocate_type,; &return_code);;

 277 4 | CMDEAL(conversation_ID, &return_code);;

 278 | }

 279 |

Figure F-5 (Part 5 of 6). ILE C/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-15

28ð 5 | _Rclose(dbfptr);

 281 |

282 6 | exit(ð);

283 |} /\ end cleanup... \/

 284 |

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ \ \ \ \ I N C L U D E S \ \ \ \ \

INCNBR Include Name Last change Actual Include Name

 1 stdio.h 12/ð2/93 14:12:18 QCLE/H/STDIO

 2 stdlib.h 12/ð2/93 14:12:19 QCLE/H/STDLIB

 3 string.h 12/ð2/93 14:12:19 QCLE/H/STRING

 4 stddef.h 12/ð2/93 14:12:17 QCLE/H/STDDEF

 5 xxfdbk.h 12/ð2/93 14:12:23 QCLE/H/XXFDBK

 6 recio.h 12/ð2/93 14:12:15 QCLE/H/RECIO

 7 QSYSINC/H/CMC ð1/12/94 16:57:4ð QSYSINC/H/CMC

\ \ \ \ \ E N D O F I N C L U D E S \ \ \ \ \

\ \ \ \ \ M E S S A G E S U M M A R Y \ \ \ \ \

Total Informational(ðð) Warning(1ð) Error(3ð) Severe Error(4ð

 ð ð ð ð ð

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

Program T8189CCT was created in library LAB on ð2/11/94 at 12:4ð:51.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-5 (Part 6 of 6). ILE C/400 Inquiry Example – Remote Program

COBOL/400 Local Program for Inquiry
Applications (Example 2)

The following explains the structure of the COBOL/400 local
program that sends requests to the partner program for proc-
essing.

 Program Explanation

The reference numbers in the explanation below correspond
to the numbers in the program example illustrated in
Figure F-6 on page F-18.

Note: On any type of error that is not expected (for
example, an unexpected CPI Communications
return_code on a call), the session is ended and the
program ends.

.1/ The files used in the program are described in
the file control section.

T8189DSP is the name of the display device file
that is used to request an entry from the work
station and to display the results of the inquiry.
T8189DSP uses the file-level keyword, INDARA,
which indicates that the file uses a separate indi-
cator area.

.2/ The COPY statement COPY CMCOBOL IN

QLBL-QILBINC places the contents of the
AS/400-supplied CPI Communications
pseudonym file CMCOBOL in the program.
Refer to “Using Pseudonyms When Writing
Applications” on page 6-6 for further information
on pseudonym files.

.3/ The OPEN-FILES, START-CONVERSATION, and
GET-CUST-NUM routines are called to open files
used by the program, start a conversation with
the partner program, and obtain the part number
to be queried, respectively.

.4/ The program loops until either F3 is pressed
from the work station, which sets the indicator in
the separate indicator area of the display file, or
an error occurs in the transaction with the
partner program.

.5/ The CLEAN-UP routine is called to perform end-of-
program processing.

.6/ The OPEN-FILES routine opens the display file.

.7/ The separate indicator area for the display file
T8189DSP is initialized.

.8/ The START-CONVERSATION routine establishes a
conversation with the partner program.

.9/ The Initialize_Conversation (CMINIT) call is
issued to initialize various conversation charac-
teristics before the conversation is allocated.

Note: The sym_dest_name used is the side
information object T8189CSI.

.1ð/ The Set_TP_Name (CMSTPN) call is issued so
that the TP_name conversation characteristic is
set to the remote program.

Note: The remote program that is to be started
can be any of the remote programs in
this appendix and in Appendix E, “ ICF
Program Examples” on page E-1.

.11/ The Set_Sync_Level (CMSSL) call is issued so
that the sync_level conversation characteristic is
set to CM_CONFIRM.

.12/ The Allocate (CMALLC) call is issued so that a
conversation can be started using the
conversation_ID previously assigned by the
CMINIT call.

.13/ The Set_Send_Type (CMSST) call is issued so
that the send_type conversation characteristic is
set to CM_SEND_AND_PREP_TO_RECEIVE.

F-16 OS/400 APPC Programming V4R1

.14/ The HANDLE-INQUIRY routine contains the body of
the loop that sends requests to the partner
program.

.15/ The part number is sent to the partner program
using the Send_Data (CMSEND) call. The
CMSEND call is issued with the following con-
versation characteristics (the conversation char-
acteristics were set in START-CONVERSATION): a
send_type of
CM_SEND_AND_PREP_TO_RECEIVE; a
prepare_to_receive_type of
CM_PREP_TO_RECEIVE_SYNC_LEVEL; and a
sync_level of CM_CONFIRM. Setting the con-
versation characteristics to these values flushes
the data, changes the data flow direction from
send to receive, and sends a confirmation
request to the partner program. The partner
program must now respond with a positive or
negative response.

.16/ If the partner program responds with a positive
response (return_code of CM_OK) to the confir-
mation request, a Receive (CMRCV) call is
issued to receive the part description. However,
if the partner program responds with a negative

response (return_code of
CM_PROGRAM_ERROR_PURGING) to the
confirmation request, a CMRCV call is issued to
receive the error message.

.17/ The GET-CUST-NUM routine is called to display the
information returned by the partner program and
to obtain the next part number to be queried.

.18/ The GET-CUST-NUM routine displays the requested
information, and reads the next number. The
part number field will be blank the first time a
part number is read.

.19/ The CLEAN-UP routine performs end-of-program
processing.

.2ð/ If the conversation is active, the Deallocate
(CMDEAL) call is issued to end the conversa-
tion.

Note: The deallocate_type(set previously in the
program) is either set to
CM_DEALLOCATE_FLUSH if no error
was detected, or
CM_DEALLOCATE_ABEND if an error
was detected.

.21/ The display file is closed.

 Appendix F. CPI Communications Program Examples F-17

 Program : T8189CLS

Library : APPCLIB

 Source file : QATTCBL

Library : QUSRTOOL

 Source member : T8189CLS ð9/26/9ð ð8:27:ðð

 Generation severity level : 29

 Text 'description' : \BLANK

 Source listing options : \NONE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

1 ðððð1ð IDENTIFICATION DIVISION.

 ðððð2ð

 2 ðððð3ð PROGRAM-ID. T8191CLS.

 ðððð4ð\\

ðððð5ð\ Program name.........: T8189CLS \

ðððð6ð\ Program description..: CPI Communications local program \

ðððð7ð\ Language.............: COBOL/4ðð \

 ðððð8ð\ \

ðððð9ð\ This program invokes a program to handle part inquiry on \

ððð1ðð\ the remote system. The Initialize_Conversation (CMINIT) \

ððð11ð\ call is issued using the sym_dest_name of 'T8189CSI'. \

ððð12ð\ The Allocate (CMALLC) call is issued, which results in \

ððð13ð\ the establishment of a conversation with the remote \

ððð14ð\ program. A display which prompts the user for the part \

ððð15ð\ number for which part information is requested is then \

ððð16ð\ displayed. When the user presses Enter, a Send_Data \

ððð17ð\ (CMSEND) call is issued (the data sent to the partner \

ððð18ð\ program is the part number). Note that the CMSEND call \

ððð19ð\ is issued with the following conversation \

ððð2ðð\ characteristics: a send_type of

ððð21ð\ CM_SEND_AND_PREP_TO_RECEIVE; a prepare_to_receive_type \

ððð22ð\ of CM_PREP_TO_RECEIVE_SYNC_LEVEL; and a sync_level of \

ððð23ð\ CM_CONFIRM. Setting the conversation characteristics to \

ððð24ð\ these values results in the flushing of the data, the \

ððð25ð\ changing of the data flow direction, and the sending of \

ððð26ð\ a confirmation request to the partner program. If the \

ððð27ð\ partner program responds with the Confirmed (CMCFMD) \

ððð28ð\ call to the confirmation request, the return_code \

ððð29ð\ parameter value on the CMSEND call will be set to CM_OK; \

ððð3ðð\ the Receive (CMRCV) call is then issued to receive the \

ððð31ð\ part description. However, if the partner program \

ððð32ð\ responds with the Send_Error (CMSERR) call to the \

ððð33ð\ confirmation request, the return_code parameter value on \

ððð34ð\ the CMSEND call will be set to CM_PROGRAM_ERROR_PURGING; \

ððð35ð\ a CMRCV call is issued to receive the error message. \

 ððð36ð\ \

ððð37ð\ The error message or part description (depending on \

ððð38ð\ whether the part number was found) will be displayed on \

ððð39ð\ the screen. \

 ððð4ðð\ \

ððð41ð\ This program will continue to handle inquiries until the \

ððð42ð\ user presses the F3=Exit key. When F3=Exit is pressed, \

ððð43ð\ the Deallocate (CMDEAL) call is issued to end the \

ððð44ð\ conversation (note that the deallocate_type conversation \

ððð45ð\ characteristic is set to CM_DEALLOCATE_FLUSH), and \

ððð46ð\ program processing ends. \

 ððð47ð\ \

Figure F-6 (Part 1 of 8). COBOL/400 Inquiry Example – Local Program

F-18 OS/400 APPC Programming V4R1

ððð48ð\ NOTE 1: If an unexpected return_code value is received on \

ððð49ð\ any of the CPI Communications calls, the \

ððð5ðð\ program will abnormally end the conversation (if \

ððð51ð\ it is still active), and program processing will \

 ððð52ð\ end. \

 ððð53ð\ \

ððð54ð\ NOTE 2: On the CMRCV call, if the data_received \

ððð55ð\ parameter value does not indicate \

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ððð56ð\ CM_COMPLETE_DATA_RECEIVED, or if the \

ððð57ð\ status_received parameter value does not indicate \

ððð58ð\ CM_SEND_RECEIVED, the program will abnormally end \

ððð59ð\ the conversation (if it is still active), and \

ððð6ðð\ program processing will end. \

 ððð61ð\ \

ððð62ð\ NOTE 3: This program can start ANY of the "remote" \

ððð63ð\ program examples in the APPC Programmer's \

ððð64ð\ Guide by changing the TP-NAME variable to the \

ððð65ð\ remote program that is to be started. \

 ððð66ð\ \

 ððð67ð\\

 ððð68ð

3 ððð69ð ENVIRONMENT DIVISION.

 ððð7ðð

4 ððð71ð CONFIGURATION SECTION.

 ððð72ð

5 ððð73ð SOURCE-COMPUTER. IBM-AS4ðð.

6 ððð74ð OBJECT-COMPUTER. IBM-AS4ðð.

 7 ððð75ð SPECIAL-NAMES.

 ððð76ð

8 ððð77ð INPUT-OUTPUT SECTION.

 ððð78ð

 9 ððð79ð FILE-CONTROL.

 ððð8ðð

 .1/1ð ððð81ð SELECT T8189DSP ASSIGN TO WORKSTATION-T8189DSP

11 ððð82ð ORGANIZATION IS TRANSACTION

12 ððð83ð CONTROL-AREA IS DISPLAY-FEEDBACK

13 ððð84ð FILE STATUS IS STATUS-DSP.

 ððð85ð

14 ððð86ð DATA DIVISION.

 ððð87ð

15 ððð88ð FILE SECTION.

 ððð89ð

 ððð9ðð\\

ððð91ð\ FILE DESCRIPTION FOR THE DISPLAY FILE FOR THIS PROGRAM. \

 ððð92ð\\

 ððð93ð

 16 ððð94ð FD T8189DSP

17 ððð95ð LABEL RECORDS ARE STANDARD.

 18 ððð96ð ð1 DSPREC.

19 ððð97ð COPY DDS-ALL-FORMATS-I-O OF T8189DSP.

2ð +ððððð1 ð5 T8189DSP-RECORD PIC X(7ð). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:PROMPT FROM FILE T8189DSP OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 21 +ððððð4 ð5 PROMPT-I REDEFINES T8189DSP-RECORD. <-ALL-FMTS

 22 +ððððð5 ð6 PARTN PIC X(5). <-ALL-FMTS

+ððððð6\ OUTPUT FORMAT:PROMPT FROM FILE T8189DSP OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð7\ <-ALL-FMTS

 23 +ððððð8 ð5 PROMPT-O REDEFINES T8189DSP-RECORD. <-ALL-FMTS

 24 +ððððð9 ð6 PARTN PIC X(5). <-ALL-FMTS

 25 +ðððð1ð ð6 PARTD PIC X(25). <-ALL-FMTS

 26 +ðððð11 ð6 ERRORL PIC X(4ð). <-ALL-FMTS

 ððð98ð

27 ððð99ð WORKING-STORAGE SECTION.

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ðð1ððð

 28 ðð1ð1ð 77 STATUS-DSP PIC XX.

 ðð1ð2ð

29 ðð1ð3ð ð1 CONVERSATION-STATUS PIC 9(9) COMP-4.

3ð ðð1ð4ð 88 CONVERSATION-INITIALIZED VALUE 1.

Figure F-6 (Part 2 of 8). COBOL/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-19

 ðð1ð5ð

 31 ðð1ð6ð ð1 TR-CTL-AREA.

 32 ðð1ð7ð ð5 FILLER PIC X(2).

 33 ðð1ð8ð ð5 PGM-DEV-NME PIC X(1ð).

 34 ðð1ð9ð ð5 RCD-FMT-NME PIC X(1ð).

 ðð11ðð

 35 ðð111ð ð1 DSPF-INDIC-AREA.

 36 ðð112ð ð5 CMD3 PIC 1 INDIC 99.

 37 ðð113ð 88 CMD3-ON VALUE B"1".

 38 ðð114ð 88 CMD3-OFF VALUE B"ð".

 ðð115ð

 ðð116ð

 39 ðð117ð ð1 DISPLAY-FEEDBACK.

 4ð ðð118ð ð5 CMD-KEY PIC XX.

 41 ðð119ð ð5 FILLER PIC X(1ð).

 42 ðð12ðð ð5 RCD-FMT PIC X(1ð).

 ðð121ð

 ðð122ð\\

ðð123ð\ Use the CPI Communications supplied pseudonyms. \

 ðð124ð\\

 ðð125ð

 .2/43 ðð126ð COPY CMCOBOL IN QLBL-QILBINC.

 +ðððð1ð\COPY CMCOBOL CMCOBOL

 +ðððð2ð\\\ CMCOBOL

+ðððð3ð\ NOTE: BUFFER MUST BE DEFINED IN WORKING STORAGE \ CMCOBOL

 +ðððð4ð\\\ CMCOBOL

 +ðððð5ð\ CMCOBOL

44 +ðððð6ð ð1 CONVERSATION-ID PIC X(8). CMCOBOL

 +ðððð7ð\ CMCOBOL

45 +ðððð8ð ð1 CONVERSATION-TYPE PIC 9(9) COMP-4. CMCOBOL

 46 +ðððð9ð 88 CM-BASIC-CONVERSATION VALUE ð. CMCOBOL

47 +ððð1ðð 88 CM-MAPPED-CONVERSATION VALUE 1. CMCOBOL

 +ððð11ð\ CMCOBOL

48 +ððð12ð ð1 CM-RETCODE PIC 9(9) COMP-4. CMCOBOL

+ððð13ð\ ===> RETURN-CODE IS A RESERVED WORD IN SOME <=== CMCOBOL

+ððð14ð\ ===> VERSIONS OF COBOL <=== CMCOBOL

 +ððð15ð\ CMCOBOL

 49 +ððð16ð 88 CM-OK VALUE ð. CMCOBOL

 5ð +ððð17ð 88 CM-ALLOCATE-FAILURE-NO-RETRY VALUE 1. CMCOBOL

 51 +ððð18ð 88 CM-ALLOCATE-FAILURE-RETRY VALUE 2. CMCOBOL

 52 +ððð19ð 88 CM-CONVERSATION-TYPE-MISMATCH VALUE 3. CMCOBOL

53 +ððð2ðð 88 CM-PIP-NOT-SPECIFIED-CORRECTLY VALUE 5. CMCOBOL

 54 +ððð21ð 88 CM-SECURITY-NOT-VALID VALUE 6. CMCOBOL

 55 +ððð22ð 88 CM-SYNC-LVL-NOT-SUPPORTED-LU VALUE 7. CMCOBOL

 56 +ððð23ð 88 CM-SYNC-LVL-NOT-SUPPORTED-PGM VALUE 8. CMCOBOL

 57 +ððð24ð 88 CM-TPN-NOT-RECOGNIZED VALUE 9. CMCOBOL

 58 +ððð25ð 88 CM-TP-NOT-AVAILABLE-NO-RETRY VALUE 1ð. CMCOBOL

 59 +ððð26ð 88 CM-TP-NOT-AVAILABLE-RETRY VALUE 11. CMCOBOL

 6ð +ððð27ð 88 CM-DEALLOCATED-ABEND VALUE 17. CMCOBOL

 61 +ððð28ð 88 CM-DEALLOCATED-NORMAL VALUE 18. CMCOBOL

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 62 +ððð29ð 88 CM-PARAMETER-ERROR VALUE 19. CMCOBOL

 63 +ððð3ðð 88 CM-PRODUCT-SPECIFIC-ERROR VALUE 2ð. CMCOBOL

 64 +ððð31ð 88 CM-PROGRAM-ERROR-NO-TRUNC VALUE 21. CMCOBOL

 65 +ððð32ð 88 CM-PROGRAM-ERROR-PURGING VALUE 22. CMCOBOL

 66 +ððð33ð 88 CM-PROGRAM-ERROR-TRUNC VALUE 23. CMCOBOL

 67 +ððð34ð 88 CM-PROGRAM-PARAMETER-CHECK VALUE 24. CMCOBOL

 68 +ððð35ð 88 CM-PROGRAM-STATE-CHECK VALUE 25. CMCOBOL

 69 +ððð36ð 88 CM-RESOURCE-FAILURE-NO-RETRY VALUE 26. CMCOBOL

 7ð +ððð37ð 88 CM-RESOURCE-FAILURE-RETRY VALUE 27. CMCOBOL

 71 +ððð38ð 88 CM-UNSUCCESSFUL VALUE 28. CMCOBOL

 72 +ððð39ð 88 CM-DEALLOCATED-ABEND-SVC VALUE 3ð. CMCOBOL

 73 +ððð4ðð 88 CM-DEALLOCATED-ABEND-TIMER VALUE 31. CMCOBOL

 74 +ððð41ð 88 CM-SVC-ERROR-NO-TRUNC VALUE 32. CMCOBOL

 75 +ððð42ð 88 CM-SVC-ERROR-PURGING VALUE 33. CMCOBOL

 76 +ððð43ð 88 CM-SVC-ERROR-TRUNC VALUE 34. CMCOBOL

 +ððð44ð\ CMCOBOL

Figure F-6 (Part 3 of 8). COBOL/400 Inquiry Example – Local Program

F-20 OS/400 APPC Programming V4R1

77 +ððð45ð ð1 DATA-RECEIVED PIC 9(9) COMP-4. CMCOBOL

 78 +ððð46ð 88 CM-NO-DATA-RECEIVED VALUE ð. CMCOBOL

 79 +ððð47ð 88 CM-DATA-RECEIVED VALUE 1. CMCOBOL

 8ð +ððð48ð 88 CM-COMPLETE-DATA-RECEIVED VALUE 2. CMCOBOL

81 +ððð49ð 88 CM-INCOMPLETE-DATA-RECEIVED VALUE 3. CMCOBOL

 +ððð5ðð\ CMCOBOL

82 +ððð51ð ð1 DEALLOCATE-TYPE PIC 9(9) COMP-4. CMCOBOL

83 +ððð52ð 88 CM-DEALLOCATE-SYNC-LEVEL VALUE ð. CMCOBOL

 84 +ððð53ð 88 CM-DEALLOCATE-FLUSH VALUE 1. CMCOBOL

 85 +ððð54ð 88 CM-DEALLOCATE-CONFIRM VALUE 2. CMCOBOL

 86 +ððð55ð 88 CM-DEALLOCATE-ABEND VALUE 3. CMCOBOL

 +ððð56ð\ CMCOBOL

87 +ððð57ð ð1 ERROR-DIRECTION PIC 9(9) COMP-4. CMCOBOL

 88 +ððð58ð 88 CM-RECEIVE-ERROR VALUE ð. CMCOBOL

 89 +ððð59ð 88 CM-SEND-ERROR VALUE 1. CMCOBOL

 +ððð6ðð\ CMCOBOL

9ð +ððð61ð ð1 FILL PIC 9(9) COMP-4. CMCOBOL

 91 +ððð62ð 88 CM-FILL-LL VALUE ð. CMCOBOL

 92 +ððð63ð 88 CM-FILL-BUFFER VALUE 1. CMCOBOL

 +ððð64ð\ CMCOBOL

93 +ððð65ð ð1 LOG-DATA PIC X(512). CMCOBOL

 +ððð66ð\ ð-512 BYTES CMCOBOL

 +ððð67ð\ CMCOBOL

94 +ððð68ð ð1 LOG-DATA-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ððð69ð\ CMCOBOL

95 +ððð7ðð ð1 MODE-NAME PIC X(8). CMCOBOL

 +ððð71ð\ ð-8 BYTES CMCOBOL

 +ððð72ð\ CMCOBOL

96 +ððð73ð ð1 MODE-NAME-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ððð74ð\ CMCOBOL

97 +ððð75ð ð1 PARTNER-LU-NAME PIC X(17). CMCOBOL

 +ððð76ð\ 1-17 BYTES CMCOBOL

 +ððð77ð\ CMCOBOL

98 +ððð78ð ð1 PARTNER-LU-NAME-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ððð79ð\ CMCOBOL

99 +ððð8ðð ð1 PREPARE-TO-RECEIVE-TYPE PIC 9(9) COMP-4. CMCOBOL

 1ðð +ððð81ð 88 CM-PREP-TO-RECEIVE-SYNC-LEVEL VALUE ð. CMCOBOL

 1ð1 +ððð82ð 88 CM-PREP-TO-RECEIVE-FLUSH VALUE 1. CMCOBOL

 1ð2 +ððð83ð 88 CM-PREP-TO-RECEIVE-CONFIRM VALUE 2. CMCOBOL

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 +ððð84ð\ CMCOBOL

1ð3 +ððð85ð ð1 RECEIVED-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ððð86ð\ CMCOBOL

1ð4 +ððð87ð ð1 RECEIVE-TYPE PIC 9(9) COMP-4. CMCOBOL

 1ð5 +ððð88ð 88 CM-RECEIVE-AND-WAIT VALUE ð. CMCOBOL

 1ð6 +ððð89ð 88 CM-RECEIVE-IMMEDIATE VALUE 1. CMCOBOL

 +ððð9ðð\ CMCOBOL

1ð7 +ððð91ð ð1 REQUESTED-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ððð92ð\ CMCOBOL

1ð8 +ððð93ð ð1 REQUEST-TO-SEND-RECEIVED PIC 9(9) COMP-4. CMCOBOL

 1ð9 +ððð94ð 88 CM-REQ-TO-SEND-NOT-RECEIVED VALUE ð. CMCOBOL

 11ð +ððð95ð 88 CM-REQ-TO-SEND-RECEIVED VALUE 1. CMCOBOL

 +ððð96ð\ CMCOBOL

111 +ððð97ð ð1 RETURN-CONTROL PIC 9(9) COMP-4. CMCOBOL

 112 +ððð98ð 88 CM-WHEN-SESSION-ALLOCATED VALUE ð. CMCOBOL

 113 +ððð99ð 88 CM-IMMEDIATE VALUE 1. CMCOBOL

 +ðð1ððð\ CMCOBOL

114 +ðð1ð1ð ð1 SEND-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ðð1ð2ð\ CMCOBOL

115 +ðð1ð3ð ð1 SEND-TYPE PIC 9(9) COMP-4. CMCOBOL

 116 +ðð1ð4ð 88 CM-BUFFER-DATA VALUE ð. CMCOBOL

 117 +ðð1ð5ð 88 CM-SEND-AND-FLUSH VALUE 1. CMCOBOL

 118 +ðð1ð6ð 88 CM-SEND-AND-CONFIRM VALUE 2. CMCOBOL

 119 +ðð1ð7ð 88 CM-SEND-AND-PREP-TO-RECEIVE VALUE 3. CMCOBOL

 12ð +ðð1ð8ð 88 CM-SEND-AND-DEALLOCATE VALUE 4. CMCOBOL

 +ðð1ð9ð\ CMCOBOL

Figure F-6 (Part 4 of 8). COBOL/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-21

121 +ðð11ðð ð1 STATUS-RECEIVED PIC 9(9) COMP-4. CMCOBOL

 122 +ðð111ð 88 CM-NO-STATUS-RECEIVED VALUE ð. CMCOBOL

 123 +ðð112ð 88 CM-SEND-RECEIVED VALUE 1. CMCOBOL

 124 +ðð113ð 88 CM-CONFIRM-RECEIVED VALUE 2. CMCOBOL

 125 +ðð114ð 88 CM-CONFIRM-SEND-RECEIVED VALUE 3. CMCOBOL

126 +ðð115ð 88 CM-CONFIRM-DEALLOC-RECEIVED VALUE 4. CMCOBOL

 +ðð116ð\ CMCOBOL

127 +ðð117ð ð1 SYNC-LEVEL PIC 9(9) COMP-4. CMCOBOL

 128 +ðð118ð 88 CM-NONE VALUE ð. CMCOBOL

 129 +ðð119ð 88 CM-CONFIRM VALUE 1. CMCOBOL

 +ðð12ðð\ CMCOBOL

13ð +ðð121ð ð1 SYM-DEST-NAME PIC X(8). CMCOBOL

 +ðð122ð\ CMCOBOL

131 +ðð123ð ð1 TP-NAME PIC X(64). CMCOBOL

 +ðð124ð\ 1-64 BYTES CMCOBOL

 +ðð125ð\ CMCOBOL

132 +ðð126ð ð1 TP-NAME-LENGTH PIC 9(9) COMP-4. CMCOBOL

 ðð127ð

133 ðð128ð PROCEDURE DIVISION.

 ðð129ð

ðð13ðð START-PROGRAM SECTION.

 ðð131ð

 ðð132ð START-PROGRAM-PARAGRAPH.

 ðð133ð

 ðð134ð\\

ðð135ð\ START OF PROGRAM \

 ðð136ð\ \

ðð137ð\ Files are opened, a conversation with the \

ðð138ð\ remote program is started, and the part inquiry \

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ðð139ð\ screen is displayed. Inquiries are handled until \

ðð14ðð\ the user presses the F3=Exit key, in which case \

ðð141ð\ the conversation will be ended and the program will end. \

 ðð142ð\\

 ðð143ð

.3/134 ðð144ð PERFORM OPEN-FILES.

 135 ðð145ð PERFORM START-CONVERSATION.

 ðð146ð

 136 ðð147ð PERFORM GET-CUST-NUM.

 ðð148ð

.4/137 ðð149ð PERFORM HANDLE-INQUIRY UNTIL CMD3-ON.

 ðð15ðð

138 ðð151ð SET CM-DEALLOCATE-FLUSH TO TRUE.

.5/139 ðð152ð PERFORM CLEAN-UP.

 ðð153ð

 ðð154ð

 ðð155ð\\

ðð156ð\ "OPEN-FILES" routine. \

 ðð157ð\ \

ðð158ð\ This routine opens the display file. \

 ðð159ð\\

 ðð16ðð

 .6/ ðð161ð OPEN-FILES.

14ð ðð162ð OPEN I-O T8189DSP.

141 ðð163ð MOVE SPACES TO DSPREC.

.7/142 ðð164ð MOVE ZEROS TO DSPF-INDIC-AREA.

 ðð165ð

 ðð166ð\\

ðð167ð\ "START-CONVERSATION" routine. \

 ðð168ð\ \

ðð169ð\ This routine establishes a conversation with the \

ðð17ðð\ remote program, and also sets various conversation \

 ðð171ð\ characteristics. \

 ðð172ð\\

 ðð173ð

.8/ ðð174ð START-CONVERSATION.

 ðð175ð

143 ðð176ð SET CM-DEALLOCATE-ABEND TO TRUE

 ðð177ð

 ðð178ð\\

Figure F-6 (Part 5 of 8). COBOL/400 Inquiry Example – Local Program

F-22 OS/400 APPC Programming V4R1

ðð179ð\ The CMINIT call is issued to initialize various \

ðð18ðð\ conversation characteristics. \

 ðð181ð\\

144 ðð182ð MOVE "T8189CSI" TO SYM-DEST-NAME.

.9/145 ðð183ð CALL "CMINIT" USING CONVERSATION-ID

 ðð184ð SYM-DEST-NAME

 ðð185ð CM-RETCODE.

 146 ðð186ð IF CM-OK

147 ðð187ð SET CONVERSATION-INITIALIZED TO TRUE

 ðð188ð ELSE

 148 ðð189ð PERFORM CLEAN-UP.

 ðð19ðð

 ðð191ð\\

ðð192ð\ The Set_TP_Name (CMSTPN) call is issued so that the \

ðð193ð\ TP_name conversation characteristic is set to the \

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ðð194ð\ remote program. \

 ðð195ð\\

149 ðð196ð MOVE "T8189CLT" TO TP-NAME.

15ð ðð197ð MOVE 8 TO TP-NAME-LENGTH.

.1ð/151 ðð198ð CALL "CMSTPN" USING CONVERSATION-ID

 ðð199ð TP-NAME

 ðð2ððð TP-NAME-LENGTH

 ðð2ð1ð CM-RETCODE.

 ðð2ð2ð

 ðð2ð3ð\\

ðð2ð4ð\ The Set_Sync_Level (CMSSL) call is issued so that the \

ðð2ð5ð\ sync_level conversation characteristic is set to \

 ðð2ð6ð\ CM_CONFIRM. \

 ðð2ð7ð\\

 ðð2ð8ð

152 ðð2ð9ð SET CM-CONFIRM TO TRUE.

.11/153 ðð21ðð CALL "CMSSL" USING CONVERSATION-ID

 ðð211ð SYNC-LEVEL

 ðð212ð CM-RETCODE.

 ðð213ð

 ðð214ð\\

ðð215ð\ The CMALLC call is issued so that a conversation can be \

ðð216ð\ started using the conversation_ID previously assigned by \

ðð217ð\ the CMINIT call. \

 ðð218ð\\

.12/154 ðð219ð CALL "CMALLC" USING CONVERSATION-ID

 ðð22ðð CM-RETCODE.

155 ðð221ð IF NOT CM-OK

 156 ðð222ð PERFORM CLEAN-UP.

 ðð223ð

 ðð224ð\\

ðð225ð\ The Set_Send_Type (CMSST) call is issued so that \

ðð226ð\ the send_type conversation characteristic is set to \

 ðð227ð\ CM_SEND_AND_PREP_TO_RECEIVE. \

 ðð228ð\\

157 ðð229ð SET CM-SEND-AND-PREP-TO-RECEIVE TO TRUE.

.13/158 ðð23ðð CALL "CMSST" USING CONVERSATION-ID

 ðð231ð SEND-TYPE

 ðð232ð CM-RETCODE.

 ðð233ð

 ðð234ð

 ðð235ð\\

ðð236ð\ "HANDLE-INQUIRY" routine. \

 ðð237ð\ \

ðð238ð\ This is the main loop of the program. Process the part \

ðð239ð\ number keyed in by the user until F3 (CMD3) is pressed. \

 ðð24ðð\\

 ðð241ð

.14/ ðð242ð HANDLE-INQUIRY.

 ðð243ð

 ðð244ð\\

ðð245ð\ The part number that the user has requested information \

ðð246ð\ for is sent to the remote program using the CMSEND call. \

 ðð247ð\\

159 ðð248ð MOVE 5 TO SEND-LENGTH.

Figure F-6 (Part 6 of 8). COBOL/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-23

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

.15/16ð ðð249ð CALL "CMSEND" USING CONVERSATION-ID

ðð25ðð PARTN OF PROMPT-I

 ðð251ð SEND-LENGTH

 ðð252ð REQUEST-TO-SEND-RECEIVED

 ðð253ð CM-RETCODE.

 ðð254ð

 ðð255ð\\

ðð256ð\ The CMRCV call is issued to receive the response \

ðð257ð\ from the remote program (the response can either be \

ðð258ð\ an error message or the part description, depending \

ðð259ð\ on whether the part was found or not). \

 ðð26ðð\\

.16/161 ðð261ð IF CM-OK

162 ðð262ð MOVE SPACES TO ERRORL

163 ðð263ð MOVE 25 TO REQUESTED-LENGTH

164 ðð264ð CALL "CMRCV" USING CONVERSATION-ID

ðð265ð PARTD OF PROMPT-O

 ðð266ð REQUESTED-LENGTH

 ðð267ð DATA-RECEIVED

 ðð268ð RECEIVED-LENGTH

 ðð269ð STATUS-RECEIVED

 ðð27ðð REQUEST-TO-SEND-RECEIVED

 ðð271ð CM-RETCODE

 ðð272ð ELSE

 165 ðð273ð IF CM-PROGRAM-ERROR-PURGING

166 ðð274ð MOVE 4ð TO REQUESTED-LENGTH

167 ðð275ð CALL "CMRCV" USING CONVERSATION-ID

ðð276ð ERRORL OF PROMPT-O

 ðð277ð REQUESTED-LENGTH

 ðð278ð DATA-RECEIVED

 ðð279ð RECEIVED-LENGTH

 ðð28ðð STATUS-RECEIVED

 ðð281ð REQUEST-TO-SEND-RECEIVED

 ðð282ð CM-RETCODE

168 ðð283ð MOVE SPACES TO PARTD

 ðð284ð ELSE

 169 ðð285ð PERFORM CLEAN-UP.

 ðð286ð

17ð ðð287ð IF CM-OK AND

 ðð288ð CM-COMPLETE-DATA-RECEIVED AND

 ðð289ð CM-SEND-RECEIVED

 ðð29ðð NEXT SENTENCE

 ðð291ð ELSE

 171 ðð292ð PERFORM CLEAN-UP.

 ðð293ð

.17/172 ðð294ð PERFORM GET-CUST-NUM.

 ðð295ð

 ðð296ð\\

ðð297ð\ "GET-CUST-NUM" routine. \

 ðð298ð\ \

ðð299ð\ Get a customer number from the display. \

 ðð3ððð\\

 ðð3ð1ð

.18/ ðð3ð2ð GET-CUST-NUM.

 ðð3ð3ð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

173 ðð3ð4ð WRITE DSPREC FORMAT IS "PROMPT".

174 ðð3ð5ð READ T8189DSP INDICATORS ARE DSPF-INDIC-AREA.

 ðð3ð6ð

 ðð3ð7ð\\

ðð3ð8ð\ "CLEAN-UP" routine. \

 ðð3ð9ð\ \

ðð31ðð\ The following code handles the end-of-program processing. \

ðð311ð\ This includes the ending of the conversation with \

ðð312ð\ the remote system (if conversation is active), and the \

ðð313ð\ closing of opened files. \

 ðð314ð\\

 ðð315ð

Figure F-6 (Part 7 of 8). COBOL/400 Inquiry Example – Local Program

F-24 OS/400 APPC Programming V4R1

.19/ ðð316ð CLEAN-UP.

 ðð317ð

.2ð/175 ðð318ð IF CONVERSATION-INITIALIZED AND NOT

 ðð319ð (CM-ALLOCATE-FAILURE-RETRY OR

 ðð32ðð CM-ALLOCATE-FAILURE-NO-RETRY OR

 ðð321ð CM-DEALLOCATED-ABEND OR

 ðð322ð CM-DEALLOCATED-NORMAL OR

 ðð323ð CM-PRODUCT-SPECIFIC-ERROR OR

 ðð324ð CM-RESOURCE-FAILURE-RETRY OR

 ðð325ð CM-RESOURCE-FAILURE-NO-RETRY)

 ðð326ð\\

ðð327ð\ The deallocated_type has been previously set to either \

ðð328ð\ CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_ABEND. \

 ðð329ð\\

176 ðð33ðð CALL "CMSDT" USING CONVERSATION-ID

 ðð331ð DEALLOCATE-TYPE

 ðð332ð CM-RETCODE

 ðð333ð

177 ðð334ð CALL "CMDEAL" USING CONVERSATION-ID

 ðð335ð CM-RETCODE

 ðð336ð END-IF.

 ðð337ð

.21/178 ðð338ð CLOSE T8189DSP.

 ðð339ð

 179 ðð34ðð STOP RUN.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 STMT

\ MSGID: LBLð9ð4 SEVERITY: ðð SEQNBR:

Message : Unexpected source member type.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

1 1 ð ð ð ð

 Source records read : 34ð

 Copy records read : 137

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : ð

LBLð9ð1 ðð Program T8189CLS created in library APPCLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-6 (Part 8 of 8). COBOL/400 Inquiry Example – Local Program

COBOL/400 Remote Program for Inquiry
Application (Example 2)

The following explains the structure of the COBOL/400
remote program that handles requests sent by the partner
program.

 Program Explanation

The reference numbers in the explanation below correspond
to the numbers in the program example illustrated in
Figure F-7 on page F-27.

Note: On any type of error that is not expected (for
example, an unexpected CPI Communications
return_code on a call), the session is ended and the
program ends.

.1/ The file division section defines the files used in
the program.

T8189DB is the database file that contains the
valid part numbers and part descriptions.

.2/ The COPY statement COPY CMCOBOL IN

QLBL-QILBINC places the contents of the
AS/400-supplied CPI Communications
pseudonym file CMCOBOL in the program.

.3/ The OPEN-FILES, START-CONVERSATION, and
GET-CUST-NUM routines are called to open files
used by the program, start a conversation with
the partner program, and wait on a request by
the partner program, respectively.

.4/ The program loops until there are no more
requests to process, or until an error occurs in
the transaction with the partner program.

.5/ The CLEAN-UP routine is called to perform end-of-
program processing.

.6/ The OPEN-FILES routine opens the database file.

.7/ The START-CONVERSATION routine establishes a
conversation with the partner program and sets
various conversation characteristics.

.8/ The Accept_Conversation (CMACCP) call is
issued so that a conversation can be started with
the partner program.

 Appendix F. CPI Communications Program Examples F-25

.9/ The Set_Send_Type (CMSST) call is issued so
that the send_type conversation characteristic is
set to CM_SEND_AND_PREP_TO_RECEIVE.

.1ð/ The Set_Prepare_To_Receive_Type (CMSPTR)
call is issued so that the
prepare_to_receive_type conversation character-
istic is set to CM_PREP_TO_RECEIVE_FLUSH.

.11/ The HANDLE-INQUIRY routine contains the body of
the loop that handles requests from the partner
program.

.12/ A search of the database file is performed using
the part number received from the partner
program as the key.

.13/ If the part number is found in the database file,
the Confirmed (CMCFMD) call is issued. As a
result, a positive response to the received confir-
mation request is sent to the partner program.

.14/ If the part number is not found in the database
file, the Send_Error (CMSERR) call is issued. As
a result, a negative response to the received
confirmation request is sent to the partner
program.

.15/ The Send_Data (CMSEND) call is issued. The
data sent (set previously) is either an error
message (if the part was not found) or the part
description (if the part is found). The CMSEND
call is issued with the following conversation
characteristics (the conversation characteristics
were set in START-CONVERSATION): a send_type of
CM_SEND_AND_PREP_TO_RECEIVE and a

prepare_to_receive_type of
CM_PREP_TO_RECEIVE_FLUSH. Setting the
conversation characteristics to these values
flushes the data and changes the data flow
direction from send to receive.

.16/ The GET-CUST-NUM routine is called to wait on a
request by the partner program.

.17/ The GET-CUST-NUM routine waits for a request
from the partner program by issuing the Receive
(CMRCV) call.

Note: A transaction is processed if all the data
is received with a turnaround indication,
and the partner program requested con-
firmation. This is indicated by the
following:

� The value of the data_received vari-
able on the CMRCV call is
CM_COMPLETE_DATA_RECEIVED

� The value of the status_received
variable on the CMRCV call is
CM_CONFIRM_SEND_RECEIVED

.18/ The CLEAN-UP routine performs end-of-program
processing.

.19/ If the conversation is still active, it is assumed
that an error was detected. The deallocate_type
is set to CM_DEALLOCATE_ABEND by issuing
the Set_Deallocate_Type (CMSDT) call, followed
by a call to Deallocate (CMDEAL) to end the
conversation abnormally.

.2ð/ The database file is closed.

F-26 OS/400 APPC Programming V4R1

 Program : T8189CLT

Library : APPCLIB

 Source file : QATTCBL

Library : QUSRTOOL

 Source member : T8189CLT ð9/26/9ð ð8:27:ð2

 Generation severity level : 29

 Text 'description' : \BLANK

 Source listing options : \NONE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

1 ðððð1ð IDENTIFICATION DIVISION.

 ðððð2ð

 2 ðððð3ð PROGRAM-ID. T8191CLT.

 ðððð4ð

 ðððð5ð\\

ðððð6ð\ Program name.........: T8189CLT \

ðððð7ð\ Program description..: CPI Communications remote program \

ðððð8ð\ Language.............: COBOL/4ðð \

 ðððð9ð\ \

ððð1ðð\ This program accepts the incoming conversation by \

ððð11ð\ issuing an Accept_Conversation (CMACCP) call. It then \

ððð12ð\ issues a Receive (CMRCV) call to receive the part number \

ððð13ð\ from the remote system. When the CMRCV call completes, \

ððð14ð\ the status_received value will be CM_CONFIRM_SEND. The \

ððð15ð\ database file T8189DB is searched for the received part \

ððð16ð\ number. If the part number is found, the Confirmed \

ððð17ð\ (CMCFMD) call is issued, followed by a Send_Data \

ððð18ð\ (CMSEND) call (the data sent is the part description \

ððð19ð\ corresponding to the part number retrieved from the \

ððð2ðð\ database file). However, if the part number is not \

ððð21ð\ found, the Send_Error (CMSERR) call is issued, followed \

ððð22ð\ by a CMSEND call (the data sent is a message describing \

ððð23ð\ the error). The CMSEND call sending either the part \

ððð24ð\ description or the error message is issued with a \

ððð25ð\ send_type conversation characteristic of \

ððð26ð\ CM_SEND_AND_PREP_TO_RECEIVE and a \

ððð27ð\ prepare_to_receive_type conversation characteristic of \

ððð28ð\ CM_PREP_TO_RECEIVE_FLUSH. Setting the conversation \

ððð29ð\ characteristics to these values results in the flushing \

ððð3ðð\ of the data, and the changing of the data flow \

ððð31ð\ direction. The partner program can send more inquiries. \

 ððð32ð\ \

ððð33ð\ This program will continue to handle inquiries from the \

ððð34ð\ partner program until a return_code that is not CM_OK \

ððð35ð\ is received. Then the program ends. \

 ððð36ð\ \

ððð37ð\ NOTE 1: If an unexpected return_code value is received on \

ððð38ð\ any of the CPI Communications calls, the \

ððð39ð\ program will abnormally end the conversation \

ððð4ðð\ with a deallocate_type of CM_DEALLOCATED_ABEND, \

ððð41ð\ and program processing will end. \

 ððð42ð\ \

ððð43ð\ NOTE 2: On the CMRCV call, if the data_received \

ððð44ð\ parameter value does not indicate \

ððð45ð\ CM_COMPLETE_DATA_RECEIVED, or if the \

ððð46ð\ status_received parameter value does not indicate \

ððð47ð\ CM_CONFIRM_SEND_RECEIVED, the program will \

Figure F-7 (Part 1 of 7). COBOL/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-27

ððð48ð\ abnormally end the conversation with a \

ððð49ð\ deallocate_type of CM_DEALLOCATED_ABEND, \

ððð5ðð\ and program processing will end. \

 ððð51ð\ \

ððð52ð\ NOTE 3: This program can be started by ANY of the \

ððð53ð\ "local" program examples in the APPC Programmer's \

 ððð54ð\ Guide. \

 ððð55ð\ \

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ððð56ð\\

 ððð57ð

3 ððð58ð ENVIRONMENT DIVISION.

 ððð59ð

4 ððð6ðð CONFIGURATION SECTION.

 ððð61ð

5 ððð62ð SOURCE-COMPUTER. IBM-AS4ðð.

6 ððð63ð OBJECT-COMPUTER. IBM-AS4ðð.

 7 ððð64ð SPECIAL-NAMES.

 ððð65ð

8 ððð66ð INPUT-OUTPUT SECTION.

 ððð67ð

 9 ððð68ð FILE-CONTROL.

 ððð69ð

1ð ððð7ðð SELECT T8189DB ASSIGN TO DATABASE-T8189DB

11 ððð71ð ORGANIZATION IS INDEXED

12 ððð72ð ACCESS IS RANDOM

13 ððð73ð RECORD KEY IS ITEMNM.

 ððð74ð

14 ððð75ð DATA DIVISION.

 ððð76ð

15 ððð77ð FILE SECTION.

 ððð78ð

 ððð79ð

 ððð8ðð\\

ððð81ð\ File description for the database file. \

 ððð82ð\\

 ððð83ð

.1/ 16 ððð84ð FD T8189DB

17 ððð85ð LABEL RECORDS ARE STANDARD.

 18 ððð86ð ð1 DBREC.

19 ððð87ð COPY DDS-ALL-FORMATS OF T8189DB.

2ð +ððððð1 ð5 T8189DB-RECORD PIC X(3ð). <-ALL-FMTS

+ððððð2\ I-O FORMAT:DBRCD FROM FILE T8189DB OF LIBRARY APPCLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

+ððððð4\ USER SUPPLIED KEY BY RECORD KEY CLAUSE <-ALL-FMTS

 21 +ððððð5 ð5 DBRCD REDEFINES T8189DB-RECORD. <-ALL-FMTS

 22 +ððððð6 ð6 ITEMNM PIC X(5). <-ALL-FMTS

 23 +ððððð7 ð6 ITEMD PIC X(25). <-ALL-FMTS

 ððð88ð

24 ððð89ð WORKING-STORAGE SECTION.

25 ððð9ðð ð1 SEND-BUFFER PIC X(4ð).

 ððð91ð

 26 ððð92ð ð1 NOT-FND-MSG PIC X(4ð)

27 ððð93ð VALUE "The requested part was not found. ".

 ððð94ð

28 ððð95ð ð1 ERROR-FND PIC X.

 ððð96ð

.2/ 29 ððð97ð COPY CMCOBOL IN QLBL-QILBINC.

 +ðððð1ð\COPY CMCOBOL CMCOBOL

 +ðððð2ð\\\ CMCOBOL

+ðððð3ð\ NOTE: BUFFER MUST BE DEFINED IN WORKING STORAGE \ CMCOBOL

 +ðððð4ð\\\ CMCOBOL

 +ðððð5ð\ CMCOBOL

3ð +ðððð6ð ð1 CONVERSATION-ID PIC X(8). CMCOBOL

Figure F-7 (Part 2 of 7). COBOL/400 Inquiry Example – Remote Program

F-28 OS/400 APPC Programming V4R1

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 +ðððð7ð\ CMCOBOL

31 +ðððð8ð ð1 CONVERSATION-TYPE PIC 9(9) COMP-4. CMCOBOL

 32 +ðððð9ð 88 CM-BASIC-CONVERSATION VALUE ð. CMCOBOL

33 +ððð1ðð 88 CM-MAPPED-CONVERSATION VALUE 1. CMCOBOL

 +ððð11ð\ CMCOBOL

34 +ððð12ð ð1 CM-RETCODE PIC 9(9) COMP-4. CMCOBOL

+ððð13ð\ ===> RETURN-CODE IS A RESERVED WORD IN SOME <=== CMCOBOL

+ððð14ð\ ===> VERSIONS OF COBOL <=== CMCOBOL

 +ððð15ð\ CMCOBOL

 35 +ððð16ð 88 CM-OK VALUE ð. CMCOBOL

 36 +ððð17ð 88 CM-ALLOCATE-FAILURE-NO-RETRY VALUE 1. CMCOBOL

 37 +ððð18ð 88 CM-ALLOCATE-FAILURE-RETRY VALUE 2. CMCOBOL

 38 +ððð19ð 88 CM-CONVERSATION-TYPE-MISMATCH VALUE 3. CMCOBOL

39 +ððð2ðð 88 CM-PIP-NOT-SPECIFIED-CORRECTLY VALUE 5. CMCOBOL

 4ð +ððð21ð 88 CM-SECURITY-NOT-VALID VALUE 6. CMCOBOL

 41 +ððð22ð 88 CM-SYNC-LVL-NOT-SUPPORTED-LU VALUE 7. CMCOBOL

 42 +ððð23ð 88 CM-SYNC-LVL-NOT-SUPPORTED-PGM VALUE 8. CMCOBOL

 43 +ððð24ð 88 CM-TPN-NOT-RECOGNIZED VALUE 9. CMCOBOL

 44 +ððð25ð 88 CM-TP-NOT-AVAILABLE-NO-RETRY VALUE 1ð. CMCOBOL

 45 +ððð26ð 88 CM-TP-NOT-AVAILABLE-RETRY VALUE 11. CMCOBOL

 46 +ððð27ð 88 CM-DEALLOCATED-ABEND VALUE 17. CMCOBOL

 47 +ððð28ð 88 CM-DEALLOCATED-NORMAL VALUE 18. CMCOBOL

 48 +ððð29ð 88 CM-PARAMETER-ERROR VALUE 19. CMCOBOL

 49 +ððð3ðð 88 CM-PRODUCT-SPECIFIC-ERROR VALUE 2ð. CMCOBOL

 5ð +ððð31ð 88 CM-PROGRAM-ERROR-NO-TRUNC VALUE 21. CMCOBOL

 51 +ððð32ð 88 CM-PROGRAM-ERROR-PURGING VALUE 22. CMCOBOL

 52 +ððð33ð 88 CM-PROGRAM-ERROR-TRUNC VALUE 23. CMCOBOL

 53 +ððð34ð 88 CM-PROGRAM-PARAMETER-CHECK VALUE 24. CMCOBOL

 54 +ððð35ð 88 CM-PROGRAM-STATE-CHECK VALUE 25. CMCOBOL

 55 +ððð36ð 88 CM-RESOURCE-FAILURE-NO-RETRY VALUE 26. CMCOBOL

 56 +ððð37ð 88 CM-RESOURCE-FAILURE-RETRY VALUE 27. CMCOBOL

 57 +ððð38ð 88 CM-UNSUCCESSFUL VALUE 28. CMCOBOL

 58 +ððð39ð 88 CM-DEALLOCATED-ABEND-SVC VALUE 3ð. CMCOBOL

 59 +ððð4ðð 88 CM-DEALLOCATED-ABEND-TIMER VALUE 31. CMCOBOL

 6ð +ððð41ð 88 CM-SVC-ERROR-NO-TRUNC VALUE 32. CMCOBOL

 61 +ððð42ð 88 CM-SVC-ERROR-PURGING VALUE 33. CMCOBOL

 62 +ððð43ð 88 CM-SVC-ERROR-TRUNC VALUE 34. CMCOBOL

 +ððð44ð\ CMCOBOL

63 +ððð45ð ð1 DATA-RECEIVED PIC 9(9) COMP-4. CMCOBOL

 64 +ððð46ð 88 CM-NO-DATA-RECEIVED VALUE ð. CMCOBOL

 65 +ððð47ð 88 CM-DATA-RECEIVED VALUE 1. CMCOBOL

 66 +ððð48ð 88 CM-COMPLETE-DATA-RECEIVED VALUE 2. CMCOBOL

67 +ððð49ð 88 CM-INCOMPLETE-DATA-RECEIVED VALUE 3. CMCOBOL

 +ððð5ðð\ CMCOBOL

68 +ððð51ð ð1 DEALLOCATE-TYPE PIC 9(9) COMP-4. CMCOBOL

69 +ððð52ð 88 CM-DEALLOCATE-SYNC-LEVEL VALUE ð. CMCOBOL

 7ð +ððð53ð 88 CM-DEALLOCATE-FLUSH VALUE 1. CMCOBOL

 71 +ððð54ð 88 CM-DEALLOCATE-CONFIRM VALUE 2. CMCOBOL

 72 +ððð55ð 88 CM-DEALLOCATE-ABEND VALUE 3. CMCOBOL

 +ððð56ð\ CMCOBOL

73 +ððð57ð ð1 ERROR-DIRECTION PIC 9(9) COMP-4. CMCOBOL

 74 +ððð58ð 88 CM-RECEIVE-ERROR VALUE ð. CMCOBOL

 75 +ððð59ð 88 CM-SEND-ERROR VALUE 1. CMCOBOL

 +ððð6ðð\ CMCOBOL

76 +ððð61ð ð1 FILL PIC 9(9) COMP-4. CMCOBOL

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 77 +ððð62ð 88 CM-FILL-LL VALUE ð. CMCOBOL

 78 +ððð63ð 88 CM-FILL-BUFFER VALUE 1. CMCOBOL

 +ððð64ð\ CMCOBOL

79 +ððð65ð ð1 LOG-DATA PIC X(512). CMCOBOL

 +ððð66ð\ ð-512 BYTES CMCOBOL

 +ððð67ð\ CMCOBOL

8ð +ððð68ð ð1 LOG-DATA-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ððð69ð\ CMCOBOL

81 +ððð7ðð ð1 MODE-NAME PIC X(8). CMCOBOL

 +ððð71ð\ ð-8 BYTES CMCOBOL

 +ððð72ð\ CMCOBOL

82 +ððð73ð ð1 MODE-NAME-LENGTH PIC 9(9) COMP-4. CMCOBOL

Figure F-7 (Part 3 of 7). COBOL/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-29

 +ððð74ð\ CMCOBOL

83 +ððð75ð ð1 PARTNER-LU-NAME PIC X(17). CMCOBOL

 +ððð76ð\ 1-17 BYTES CMCOBOL

 +ððð77ð\ CMCOBOL

84 +ððð78ð ð1 PARTNER-LU-NAME-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ððð79ð\ CMCOBOL

85 +ððð8ðð ð1 PREPARE-TO-RECEIVE-TYPE PIC 9(9) COMP-4. CMCOBOL

 86 +ððð81ð 88 CM-PREP-TO-RECEIVE-SYNC-LEVEL VALUE ð. CMCOBOL

 87 +ððð82ð 88 CM-PREP-TO-RECEIVE-FLUSH VALUE 1. CMCOBOL

 88 +ððð83ð 88 CM-PREP-TO-RECEIVE-CONFIRM VALUE 2. CMCOBOL

 +ððð84ð\ CMCOBOL

89 +ððð85ð ð1 RECEIVED-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ððð86ð\ CMCOBOL

9ð +ððð87ð ð1 RECEIVE-TYPE PIC 9(9) COMP-4. CMCOBOL

91 +ððð88ð 88 CM-RECEIVE-AND-WAIT VALUE ð. CMCOBOL

 92 +ððð89ð 88 CM-RECEIVE-IMMEDIATE VALUE 1. CMCOBOL

 +ððð9ðð\ CMCOBOL

93 +ððð91ð ð1 REQUESTED-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ððð92ð\ CMCOBOL

94 +ððð93ð ð1 REQUEST-TO-SEND-RECEIVED PIC 9(9) COMP-4. CMCOBOL

 95 +ððð94ð 88 CM-REQ-TO-SEND-NOT-RECEIVED VALUE ð. CMCOBOL

 96 +ððð95ð 88 CM-REQ-TO-SEND-RECEIVED VALUE 1. CMCOBOL

 +ððð96ð\ CMCOBOL

97 +ððð97ð ð1 RETURN-CONTROL PIC 9(9) COMP-4. CMCOBOL

 98 +ððð98ð 88 CM-WHEN-SESSION-ALLOCATED VALUE ð. CMCOBOL

 99 +ððð99ð 88 CM-IMMEDIATE VALUE 1. CMCOBOL

 +ðð1ððð\ CMCOBOL

1ðð +ðð1ð1ð ð1 SEND-LENGTH PIC 9(9) COMP-4. CMCOBOL

 +ðð1ð2ð\ CMCOBOL

1ð1 +ðð1ð3ð ð1 SEND-TYPE PIC 9(9) COMP-4. CMCOBOL

 1ð2 +ðð1ð4ð 88 CM-BUFFER-DATA VALUE ð. CMCOBOL

 1ð3 +ðð1ð5ð 88 CM-SEND-AND-FLUSH VALUE 1. CMCOBOL

 1ð4 +ðð1ð6ð 88 CM-SEND-AND-CONFIRM VALUE 2. CMCOBOL

 1ð5 +ðð1ð7ð 88 CM-SEND-AND-PREP-TO-RECEIVE VALUE 3. CMCOBOL

 1ð6 +ðð1ð8ð 88 CM-SEND-AND-DEALLOCATE VALUE 4. CMCOBOL

 +ðð1ð9ð\ CMCOBOL

1ð7 +ðð11ðð ð1 STATUS-RECEIVED PIC 9(9) COMP-4. CMCOBOL

 1ð8 +ðð111ð 88 CM-NO-STATUS-RECEIVED VALUE ð. CMCOBOL

 1ð9 +ðð112ð 88 CM-SEND-RECEIVED VALUE 1. CMCOBOL

 11ð +ðð113ð 88 CM-CONFIRM-RECEIVED VALUE 2. CMCOBOL

 111 +ðð114ð 88 CM-CONFIRM-SEND-RECEIVED VALUE 3. CMCOBOL

112 +ðð115ð 88 CM-CONFIRM-DEALLOC-RECEIVED VALUE 4. CMCOBOL

 +ðð116ð\ CMCOBOL

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

113 +ðð117ð ð1 SYNC-LEVEL PIC 9(9) COMP-4. CMCOBOL

 114 +ðð118ð 88 CM-NONE VALUE ð. CMCOBOL

 115 +ðð119ð 88 CM-CONFIRM VALUE 1. CMCOBOL

 +ðð12ðð\ CMCOBOL

116 +ðð121ð ð1 SYM-DEST-NAME PIC X(8). CMCOBOL

 +ðð122ð\ CMCOBOL

117 +ðð123ð ð1 TP-NAME PIC X(64). CMCOBOL

 +ðð124ð\ 1-64 BYTES CMCOBOL

 +ðð125ð\ CMCOBOL

118 +ðð126ð ð1 TP-NAME-LENGTH PIC 9(9) COMP-4. CMCOBOL

 ððð98ð

119 ððð99ð PROCEDURE DIVISION.

 ðð1ððð

ðð1ð1ð START-PROGRAM SECTION.

 ðð1ð2ð

 ðð1ð3ð START-PROGRAM-PARAGRAPH.

 ðð1ð4ð

 ðð1ð5ð\\

ðð1ð6ð\ START OF PROGRAM \

 ðð1ð7ð\ \

ðð1ð8ð\ Files are opened, a conversation with the \

ðð1ð9ð\ remote program is started, and the part inquiry \

ðð11ðð\ processing starts. Inquiries are handled until a \

ðð111ð\ CM_DEALLOCATED_NORMAL return_code is received. \

 ðð112ð\\

 ðð113ð

Figure F-7 (Part 4 of 7). COBOL/400 Inquiry Example – Remote Program

F-30 OS/400 APPC Programming V4R1

.3/12ð ðð114ð PERFORM OPEN-FILES.

 121 ðð115ð PERFORM START-CONVERSATION.

 122 ðð116ð PERFORM GET-CUST-NUM.

 ðð117ð

.4/123 ðð118ð PERFORM HANDLE-INQUIRY UNTIL

 ðð119ð NOT CM-OK.

 ðð12ðð

.5/124 ðð121ð PERFORM CLEAN-UP.

 ðð122ð

 ðð123ð\\

ðð124ð\ "OPEN-FILES" routine. \

 ðð125ð\ \

ðð126ð\ This routine opens the database file. \

 ðð127ð\\

 ðð128ð

.6/ ðð129ð OPEN-FILES.

 ðð13ðð

125 ðð131ð OPEN I-O T8189DB.

 ðð132ð

 ðð133ð\\

ðð134ð\ "START-CONVERSATION" routine. \

 ðð135ð\ \

ðð136ð\ This subroutine establishes a conversation with the \

ðð137ð\ remote program, and also sets various conversation \

 ðð138ð\ characteristics. \

 ðð139ð\\

 ðð14ðð

.7/ ðð141ð START-CONVERSATION.

 ðð142ð

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ðð143ð\\

ðð144ð\ The CMACCP call is issued so that a conversation can be \

ðð145ð\ started with the partner program. \

 ðð146ð\\

.8/126 ðð147ð CALL "CMACCP" USING CONVERSATION-ID

 ðð148ð CM-RETCODE.

127 ðð149ð IF CM-OK THEN

 ðð15ðð NEXT SENTENCE

 ðð151ð ELSE

 128 ðð152ð PERFORM CLEAN-UP.

 ðð153ð

 ðð154ð\\

ðð155ð\ The Set_Send_Type (CMSST) call is issued so that the \

ðð156ð\ send_type conversation characteristic is set to \

 ðð157ð\ CM_SEND_AND_PREP_TO_RECEIVE. \

 ðð158ð\\

129 ðð159ð SET CM-SEND-AND-PREP-TO-RECEIVE TO TRUE.

.9/13ð ðð16ðð CALL "CMSST" USING CONVERSATION-ID

 ðð161ð SEND-TYPE

 ðð162ð CM-RETCODE.

 ðð163ð

 ðð164ð\\

ðð165ð\ The Set_Prepare_To_Receive_Type (CMSPTR) call is issued \

ðð166ð\ so that the prepare_to_receive_type conversation \

ðð167ð\ characteristic is set to CM_PREP_TO_RECEIVE_FLUSH. \

 ðð168ð\\

131 ðð169ð SET CM-PREP-TO-RECEIVE-FLUSH TO TRUE.

.1ð/132 ðð17ðð CALL "CMSPTR" USING CONVERSATION-ID

 ðð171ð PREPARE-TO-RECEIVE-TYPE

 ðð172ð CM-RETCODE.

 ðð173ð

 ðð174ð\\

ðð175ð\ "HANDLE-INQUIRY" routine. \

 ðð176ð\ \

ðð177ð\ This is the main loop of the program. Process inquiry \

ðð178ð\ request until conversation is ended. \

 ðð179ð\\

 ðð18ðð

.11/ ðð181ð HANDLE-INQUIRY.

133 ðð182ð MOVE "ð" TO ERROR-FND.

 ðð183ð

Figure F-7 (Part 5 of 7). COBOL/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-31

 ðð184ð\\

ðð185ð\ A search of the database file is done using the part \

ðð186ð\ number as the key. \

 ðð187ð\\

.12/134 ðð188ð READ T8189DB FORMAT IS "DBRCD"

135 ðð189ð INVALID KEY MOVE "1" TO ERROR-FND.

 ðð19ðð

 ðð191ð\\

ðð192ð\ If the part number is found, the CMCFMD call is \

ðð193ð\ issued; otherwise, the CMSERR call is issued. \

 ðð194ð\\

136 ðð195ð IF ERROR-FND = "ð" THEN

137 ðð196ð MOVE 25 TO SEND-LENGTH

138 ðð197ð MOVE ITEMD TO SEND-BUFFER

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

.13/139 ðð198ð CALL "CMCFMD" USING CONVERSATION-ID

 ðð199ð CM-RETCODE

 ðð2ððð ELSE

14ð ðð2ð1ð MOVE 4ð TO SEND-LENGTH

141 ðð2ð2ð MOVE NOT-FND-MSG TO SEND-BUFFER

.14/142 ðð2ð3ð CALL "CMSERR" USING CONVERSATION-ID

 ðð2ð4ð REQUEST-TO-SEND-RECEIVED

 ðð2ð5ð CM-RETCODE.

 ðð2ð6ð

143 ðð2ð7ð IF CM-OK THEN

 ðð2ð8ð NEXT SENTENCE

 ðð2ð9ð ELSE

 144 ðð21ðð PERFORM CLEAN-UP.

 ðð211ð

 ðð212ð\\

ðð213ð\ The CMSEND call is issued. The data sent (set previously) \

ðð214ð\ is either an error message (if the part was not found) \

ðð215ð\ or the part description (if the part is found). \

 ðð216ð\\

 ðð217ð

.15/145 ðð218ð CALL "CMSEND" USING CONVERSATION-ID

 ðð219ð SEND-BUFFER

 ðð22ðð SEND-LENGTH

 ðð221ð REQUEST-TO-SEND-RECEIVED

 ðð222ð CM-RETCODE

146 ðð223ð IF CM-OK THEN

 147 ðð224ð PERFORM GET-CUST-NUM

 ðð225ð ELSE

 148 ðð226ð PERFORM CLEAN-UP.

 ðð227ð

 ðð228ð

 ðð229ð\\

ðð23ðð\ "GET-CUST-NUM" routine. \

 ðð231ð\ \

ðð232ð\ This subroutine waits for incoming data from the partner \

ðð233ð\ program by issuing the CMRCV call. \

 ðð234ð\\

 ðð235ð

.16/ ðð236ð GET-CUST-NUM.

 ðð237ð

149 ðð238ð MOVE 5 TO REQUESTED-LENGTH.

 ðð239ð

.17/15ð ðð24ðð CALL "CMRCV" USING CONVERSATION-ID

 ðð241ð ITEMNM

 ðð242ð REQUESTED-LENGTH

 ðð243ð DATA-RECEIVED

 ðð244ð RECEIVED-LENGTH

 ðð245ð STATUS-RECEIVED

 ðð246ð REQUEST-TO-SEND-RECEIVED

 ðð247ð CM-RETCODE.

 ðð248ð

151 ðð249ð IF CM-OK THEN

152 ðð25ðð IF CM-COMPLETE-DATA-RECEIVED AND

 ðð251ð CM-CONFIRM-SEND-RECEIVED

 ðð252ð NEXT SENTENCE

Figure F-7 (Part 6 of 7). COBOL/400 Inquiry Example – Remote Program

F-32 OS/400 APPC Programming V4R1

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ðð253ð ELSE

 153 ðð254ð PERFORM CLEAN-UP

 ðð255ð ELSE

 ðð256ð NEXT SENTENCE.

 ðð257ð

 ðð258ð\\

ðð259ð\ "CLEAN-UP" routine. \

 ðð26ðð\ \

ðð261ð\ The following code handles the end-of-program processing. \

ðð262ð\ This includes the ending of the conversation with \

ðð263ð\ the remote system (if conversation is active), and the \

ðð264ð\ closing of opened files. \

 ðð265ð\\

 ðð266ð

.18/ ðð267ð CLEAN-UP.

 ðð268ð

.19/154 ðð269ð IF NOT

 ðð27ðð (CM-ALLOCATE-FAILURE-RETRY OR

 ðð271ð CM-ALLOCATE-FAILURE-NO-RETRY OR

 ðð272ð CM-DEALLOCATED-ABEND OR

 ðð273ð CM-DEALLOCATED-NORMAL OR

 ðð274ð CM-PRODUCT-SPECIFIC-ERROR OR

 ðð275ð CM-RESOURCE-FAILURE-RETRY OR

 ðð276ð CM-RESOURCE-FAILURE-NO-RETRY)

 ðð277ð

155 ðð278ð SET CM-DEALLOCATE-ABEND TO TRUE

156 ðð279ð CALL "CMSDT" USING CONVERSATION-ID

 ðð28ðð DEALLOCATE-TYPE

 ðð281ð CM-RETCODE

 ðð282ð

157 ðð283ð CALL "CMDEAL" USING CONVERSATION-ID

 ðð284ð CM-RETCODE

 ðð285ð END-IF.

 ðð286ð

.2ð/158 ðð287ð CLOSE T8189DB.

 ðð288ð

 159 ðð289ð STOP RUN.

 ðð29ðð

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 STMT

\ MSGID: LBLð9ð4 SEVERITY: ðð SEQNBR:

Message : Unexpected source member type.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

1 1 ð ð ð ð

 Source records read : 29ð

 Copy records read : 133

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : ð

LBLð9ð1 ðð Program T8189CLT created in library APPCLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-7 (Part 7 of 7). COBOL/400 Inquiry Example – Remote Program

RPG/400 Local Program for Inquiry
Applications (Example 3)

The following explains the structure of the RPG/400 local
program that sends requests to the partner program for proc-
essing.

 Program Explanation

The reference numbers in the explanation below correspond
to the numbers in the program example illustrated in
Figure F-8 on page F-35.

Note: On any type of error that is not expected (for
example, an unexpected CPI Communications
return_code on a call), the session is ended and the
program ends.

.1/ The files used in the program are described in
the file specifications section.

T8189DSP is the name of the display device file

 Appendix F. CPI Communications Program Examples F-33

that is used to request an entry from the work
station and to display the results of the inquiry.
T8189DSP uses the file-level keyword, INDARA,
which indicates that the file uses a separate indi-
cator area.

All files are implicitly opened at the beginning of
the RPG/400 program cycle.

The continuation lines for the file specification
define the following:

KINFSR Specifies the subroutine FAIL is to
be called when a file exception con-
dition occurs.

.2/ The statement /COPY QRPG/QIRGINC,CMRPG places
the contents of the AS/400-supplied CPI Com-
munications pseudonym file CMRPG in the
program. Refer to “Using Pseudonyms When
Writing Applications” on page 6-6 for further
information on pseudonym files.

.3/ The STRCNV subroutine is called to start a conver-
sation with the partner program. This is followed
by the EXFMT operation, which allows the user to
enter requests that are to be sent to the partner
program.

.4/ The program loops until either F3 is pressed
from the work station, which sets the indicator in
the separate indicator area of the display file, or
an error occurs in the transaction with the
partner program.

.5/ The part number is sent to the partner program
using the Send_Data (CMSEND) call. The
CMSEND call is issued with the following con-
versation characteristics (the conversation char-
acteristics were set in STRCNV): a send_type of
CM_SEND_AND_PREP_TO_RECEIVE; a
prepare_to_receive_type of
CM_PREP_TO_RECEIVE_SYNC_LEVEL; and a
sync_level of CM_CONFIRM. Setting the con-
versation characteristics to these values flushes
the data, changes the data flow direction, and
sends a confirmation request to the partner
program. The partner program must now
respond with a positive or negative response.

.6/ If the partner program responds with a positive
response (return_code of CM_OK) to the confir-
mation request, a Receive (CMRCV) call is
issued to receive the part description. However,
if the partner program responds with a negative
response (return_code of
CM_PROGRAM_ERROR_PURGING) to the

confirmation request, a CMRCV call is issued to
receive the error message.

.7/ The EXFMT operation is issued to display the
information returned by the partner program and
to obtain the next part number to be queried.

.8/ The following section of code performs the end-
of-program processing. Indicator 85 determines
if an error was detected.

.9/ If the conversation is active, the Deallocate
(CMDEAL) call is issued to end the conversa-
tion.

Note: The deallocate_type(set previously in the
program) is either set to
CM_DEALLOCATE_FLUSH if no error
was detected, or
CM_DEALLOCATE_ABEND if an error
was detected.

.1ð/ The last record indicator (LR) is set on. All files
are implicitly closed, and the program ends.

.11/ The STRCNV subroutine establishes a conversa-
tion with the partner program.

.12/ The Initialize_Conversation (CMINIT) call is
issued to initialize various conversation charac-
teristics before the conversation is allocated.

Note: The sym_dest_name used is the side
information object T8189CSI.

.13/ The Set_TP_Name (CMSTPN) call is issued so
that the TP_name conversation characteristic is
set to the remote program.

Note: The remote program that is to be started
can be any of the remote programs in
this appendix and in Appendix E, “ ICF
Program Examples” on page E-1.

.14/ The Set_Sync_Level (CMSSL) call is issued so
that the sync_level conversation characteristic is
set to CM_CONFIRM.

.15/ The Allocate (CMALLC) call is issued so that a
conversation can be started using the
conversation_ID previously assigned by the
CMINIT call.

.16/ The Set_Send_Type (CMSST) call is issued so
that the send_type conversation characteristic is
set to CM_SEND_AND_PREP_TO_RECEIVE.

.17/ The FAIL subroutine gets control when a file
exception or error occurs. The FAIL subroutine
handles all file exceptions or errors by passing
control to the section of code that performs the
end-of-program processing (.8/).

F-34 OS/400 APPC Programming V4R1

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : APPCLIB/T8189CRS

Source file : QUSRTOOL/QATTRPG

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 29

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : T8189CRS

File : QATTRPG

Library : QUSRTOOL

Last Change : ð9/26/9ð ð8:27:4ð

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 1ð H

.1/ 2ð FT8189DSPCF E WORKSTN

 3ð F KINFSR FAIL

 4ð I\\

5ð I\ Program name.........: T8189CRS \

6ð I\ Program description..: CPI Communications local program \

7ð I\ Language.............: RPG/4ðð \

 8ð I\ \

9ð I\ This program invokes a program to handle part inquiry on \

1ðð I\ the remote system. The Initialize_Conversation (CMINIT) \

11ð I\ call is issued using the sym_dest_name of 'T8189CSI'. \

12ð I\ The Allocate (CMALLC) call is issued, which results in \

13ð I\ the establishment of a conversation with the remote \

14ð I\ program. A display which prompts the user for the part \

15ð I\ number for which part information is requested is then \

16ð I\ displayed. When the user presses Enter, a Send_Data \

17ð I\ (CMSEND) call is issued (the data sent to the partner \

18ð I\ program is the part number). Note that the CMSEND call \

19ð I\ is issued with the following conversation \

2ðð I\ characteristics: a send_type of \

21ð I\ CM_SEND_AND_PREP_TO_RECEIVE; a prepare_to_receive_type \

22ð I\ of CM_PREP_TO_RECEIVE_SYNC_LEVEL; and a sync_level of \

23ð I\ CM_CONFIRM. Setting the conversation characteristics to \

24ð I\ these values results in the flushing of the data, the \

25ð I\ changing of the data flow direction, and the sending of \

26ð I\ a confirmation request to the partner program. If the \

27ð I\ partner program responds with the Confirmed (CMCFMD) \

28ð I\ call to the confirmation request, the return_code \

29ð I\ parameter value on the CMSEND call will be set to CM_OK; \

3ðð I\ the Receive (CMRCV) call is then issued to receive the \

31ð I\ part description. However, if the partner program \

32ð I\ responds with the Send_Error (CMSERR) call to the \

33ð I\ confirmation request, the return_code parameter value on \

34ð I\ the CMSEND call will be set to CM_PROGRAM_ERROR_PURGING; \

35ð I\ a CMRCV call is issued to receive the error message. \

 36ð I\ \

37ð I\ The error message or part description (depending on \

38ð I\ whether the part number was found) will be displayed on \

39ð I\ the screen. \

 4ðð I\ \

Figure F-8 (Part 1 of 10). RPG/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-35

41ð I\ This program will continue to handle inquiries until the \

42ð I\ user presses the F3=Exit key. When F3=Exit is pressed, \

43ð I\ the Deallocate (CMDEAL) call is issued to end the \

44ð I\ conversation (note that the deallocate_type conversation \

45ð I\ characteristic is set to CM_DEALLOCATE_FLUSH), and \

46ð I\ program processing ends. \

 47ð I\ \

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

48ð I\ NOTE 1: If an unexpected return_code value is received on \

49ð I\ any of the CPI Communications calls, the \

5ðð I\ program will abnormally end the conversation (if \

51ð I\ it is still active), and program processing will \

 52ð I\ end. \

 53ð I\ \

54ð I\ NOTE 2: On the CMRCV call, if the data_received \

55ð I\ parameter value does not indicate \

56ð I\ CM_COMPLETE_DATA_RECEIVED, or if the \

57ð I\ status_received parameter value does not indicate \

58ð I\ CM_SEND_RECEIVED, the program will abnormally end \

59ð I\ the conversation (if it is still active), and \

6ðð I\ program processing will end. \

 61ð I\ \

62ð I\ NOTE 3: This program can start ANY of the "remote" \

63ð I\ program examples in the APPC Programmer's \

64ð I\ Guide by changing the TPNM variable to the \

65ð I\ remote program that is to be started. \

 66ð I\ \

 67ð I\\

 68ð I\

 69ð I\\

7ðð I\ Use the CPI Communications supplied pseudonyms. \

 71ð I\\

 72ð I\

.2/ 73ð I/COPY QRPG/QIRGINC,CMRPG

 Aðððððð+ MEMBER CMRPG IN FILE QIRGINC LIBRARY QRPG OPENED FOR /COPY.

 Aðððð1ð+ I\

Aðððð2ð+ I\ RPG INCLUDE FOR SAA COMMUNICATIONS SUPPORT

 Aðððð3ð+ I\

RECORD FORMAT(S): LIBRARY APPCLIB FILE T8189DSP.

EXTERNAL FORMAT PROMPT RPG NAME PROMPT

 Bðððððð+ INPUT FIELDS FOR RECORD PROMPT FILE T8189DSP FORMAT PROMPT.

 Bððððð1+ 1 5 PARTN

 Aðððð4ð+ ICMCONS DS

 Aðððð5ð+ I\\

Aðððð6ð+ I\ conversation_type values:

 Aðððð7ð+ I\

Aðððð8ð+ I\ CM_BASIC_CONVERSATION -- VALUE ð (BASIC)

Aðððð9ð+ I\ CM_MAPPED_CONVERSATION -- VALUE 1 (MAPPED)

 Aððð1ðð+ I\

 Aððð11ð+ I ð C BASIC

 Aððð12ð+ I 1 C MAPPED

 Aððð13ð+ I\\

Aððð14ð+ I\ data_received values:

 Aððð15ð+ I\

Aððð16ð+ I\ CM_NO_DATA_RECEIVED -- VALUE ð (NODATA)

Aððð17ð+ I\ CM_DATA_RECEIVED -- VALUE 1 (DATREC)

Aððð18ð+ I\ CM_COMPLETE_DATA_RECEIVED -- VALUE 2 (COMDAT)

Aððð19ð+ I\ CM_INCOMPLETE_DATA_RECEIVED -- VALUE 3 (INCDAT)

 Aððð2ðð+ I\

 Aððð21ð+ I ð C NODATA

 Aððð22ð+ I 1 C DATREC

 Aððð23ð+ I 2 C COMDAT

Figure F-8 (Part 2 of 10). RPG/400 Inquiry Example – Local Program

F-36 OS/400 APPC Programming V4R1

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 Aððð24ð+ I 3 C INCDAT

 Aððð25ð+ I\\

Aððð26ð+ I\ deallocate_type values:

 Aððð27ð+ I\

Aððð28ð+ I\ CM_DEALLOCATE_SYNC_LEVEL -- VALUE ð (DESYNC)

Aððð29ð+ I\ CM_DEALLOCATE_FLUSH -- VALUE 1 (DEFLUS)

Aððð3ðð+ I\ CM_DEALLOCATE_CONFIRM -- VALUE 2 (DECONF)

Aððð31ð+ I\ CM_DEALLOCATE_ABEND -- VALUE 3 (DEABTY)

 Aððð32ð+ I\

 Aððð33ð+ I ð C DESYNC

 Aððð34ð+ I 1 C DEFLUS

 Aððð35ð+ I 2 C DECONF

 Aððð36ð+ I 3 C DEABTY

 Aððð37ð+ I\\

Aððð38ð+ I\ error_direction values:

 Aððð39ð+ I\

Aððð4ðð+ I\ CM_RECEIVE_ERROR -- VALUE ð (RCVERR)

Aððð41ð+ I\ CM_SEND_ERROR -- VALUE 1 (SNDERR)

 Aððð42ð+ I\

 Aððð43ð+ I ð C RCVERR

 Aððð44ð+ I 1 C SNDERR

 Aððð45ð+ I\\

Aððð46ð+ I\ fill values:

 Aððð47ð+ I\

Aððð48ð+ I\ CM_FILL_LL -- VALUE ð (FILLL)

Aððð49ð+ I\ CM_FILL_BUFFER -- VALUE 1 (FILBUF)

 Aððð5ðð+ I\

 Aððð51ð+ I ð C FILLL

 Aððð52ð+ I 1 C FILBUF

 Aððð53ð+ I\\

Aððð54ð+ I\ prepare_to_receive_type values:

 Aððð55ð+ I\

Aððð56ð+ I\ CM_PREP_TO_RECEIVE_SYNC_LEVEL -- VALUE ð (PTRSL)

Aððð57ð+ I\ CM_PREP_TO_RECEIVE_FLUSH -- VALUE 1 (PTRFLS)

Aððð58ð+ I\ CM_PREP_TO_RECEIVE_CONFIRM -- VALUE 2 (PTRCON)

 Aððð59ð+ I\

 Aððð6ðð+ I ð C PTRSL

 Aððð61ð+ I 1 C PTRFLS

 Aððð62ð+ I 2 C PTRCON

 Aððð63ð+ I\\

Aððð64ð+ I\ receive_type values:

 Aððð65ð+ I\

Aððð66ð+ I\ CM_RECEIVE_AND_WAIT -- VALUE ð (RCVWAT)

Aððð67ð+ I\ CM_RECEIVE_IMMEDIATE -- VALUE 1 (RCVIMM)

 Aððð68ð+ I\

 Aððð69ð+ I ð C RCVWAT

 Aððð7ðð+ I 1 C RCVIMM

 Aððð71ð+ I\\

Aððð72ð+ I\ request_to_send_received values:

 Aððð73ð+ I\

Aððð74ð+ I\ CM_REQ_TO_SEND_NOT_RECEIVED -- VALUE ð (RTSNOT)

Aððð75ð+ I\ CM_REQ_TO_SEND_RECEIVED -- VALUE 1 (RTSREC)

 Aððð76ð+ I\

 Aððð77ð+ I ð C RTSNOT

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 Aððð78ð+ I 1 C RTSREC

 Aððð79ð+ I\\

Aððð8ðð+ I\ return_code values:

 Aððð81ð+ I\

Aððð82ð+ I\ CM_OK -- VALUE ð (CMOK)

Aððð83ð+ I\ CM_ALLOCATE_FAILURE_NO_RETRY -- VALUE 1 (ALFLNR)

Aððð84ð+ I\ CM_ALLOCATE_FAILURE_RETRY -- VALUE 2 (ALFLRE)

Aððð85ð+ I\ CM_CONVERSATION_TYPE_MISMATCH -- VALUE 3 (CNVMIS)

Aððð86ð+ I\ CM_PIP_NOT_SPECIFIED_CORRECTLY -- VALUE 5 (PIPNSC)

Aððð87ð+ I\ CM_SECURITY_NOT_VALID -- VALUE 6 (SECNVL)

Aððð88ð+ I\ CM_SYNC_LVL_NOT_SUPPORTED_LU -- VALUE 7 (SLNSLU)

Aððð89ð+ I\ CM_SYNC_LVL_NOT_SUPPORTED_PGM -- VALUE 8 (SLNSP)

Figure F-8 (Part 3 of 10). RPG/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-37

Aððð9ðð+ I\ CM_TPN_NOT_RECOGNIZED -- VALUE 9 (TPNAME)

Aððð91ð+ I\ CM_TP_NOT_AVAILABLE_NO_RETRY -- VALUE 1ð (TPNORE)

Aððð92ð+ I\ CM_TP_NOT_AVAILABLE_RETRY -- VALUE 11 (TPRET)

Aððð93ð+ I\ CM_DEALLOCATED_ABEND -- VALUE 17 (DEABND)

Aððð94ð+ I\ CM_DEALLOCATED_NORMAL -- VALUE 18 (DENORM)

Aððð95ð+ I\ CM_PARAMETER_ERROR -- VALUE 19 (PARERR)

Aððð96ð+ I\ CM_PRODUCT_SPECIFIC_ERROR -- VALUE 2ð (PRODER)

Aððð97ð+ I\ CM_PROGRAM_ERROR_NO_TRUNC -- VALUE 21 (PENOTR)

Aððð98ð+ I\ CM_PROGRAM_ERROR_PURGING -- VALUE 22 (PEPURG)

Aððð99ð+ I\ CM_PROGRAM_ERROR_TRUNC -- VALUE 23 (PETRNC)

Aðð1ððð+ I\ CM_PROGRAM_PARAMETER_CHECK -- VALUE 24 (PEPCHK)

Aðð1ð1ð+ I\ CM_PROGRAM_STATE_CHECK -- VALUE 25 (STACHK)

Aðð1ð2ð+ I\ CM_RESOURCE_FAILURE_NO_RETRY -- VALUE 26 (RFNORE)

Aðð1ð3ð+ I\ CM_RESOURCE_FAILURE_RETRY -- VALUE 27 (RFRET)

Aðð1ð4ð+ I\ CM_UNSUCCESSFUL -- VALUE 28 (UNSUCC)

Aðð1ð5ð+ I\ CM_DEALLOCATED_ABEND_SVC -- VALUE 3ð (DABSVC)

Aðð1ð6ð+ I\ CM_DEALLOCATED_ABEND_TIMER -- VALUE 31 (DABTIM)

Aðð1ð7ð+ I\ CM_SVC_ERROR_NO_TRUNC -- VALUE 32 (SVCENT)

Aðð1ð8ð+ I\ CM_SVC_ERROR_PURGING -- VALUE 33 (SVCEP)

Aðð1ð9ð+ I\ CM_SVC_ERROR_TRUNC -- VALUE 34 (SVCET)

 Aðð11ðð+ I\

 Aðð111ð+ I ð C CMOK

 Aðð112ð+ I 1 C ALFLNR

 Aðð113ð+ I 2 C ALFLRE

 Aðð114ð+ I 3 C CNVMIS

 Aðð115ð+ I 5 C PIPNSC

 Aðð116ð+ I 6 C SECNVL

 Aðð117ð+ I 7 C SLNSLU

 Aðð118ð+ I 8 C SLNSP

 Aðð119ð+ I 9 C TPNAME

 Aðð12ðð+ I 1ð C TPNORE

 Aðð121ð+ I 11 C TPRET

 Aðð122ð+ I 17 C DEABND

 Aðð123ð+ I 18 C DENORM

 Aðð124ð+ I 19 C PARERR

 Aðð125ð+ I 2ð C PRODER

 Aðð126ð+ I 21 C PENOTR

 Aðð127ð+ I 22 C PEPURG

 Aðð128ð+ I 23 C PETRNC

 Aðð129ð+ I 24 C PEPCHK

 Aðð13ðð+ I 25 C STACHK

 Aðð131ð+ I 26 C RFNORE

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 Aðð132ð+ I 27 C RFRET

 Aðð133ð+ I 28 C UNSUCC

 Aðð134ð+ I 3ð C DABSVC

 Aðð135ð+ I 31 C DABTIM

 Aðð136ð+ I 32 C SVCENT

 Aðð137ð+ I 33 C SVCEP

 Aðð138ð+ I 34 C SVCET

 Aðð139ð+ I\\

Aðð14ðð+ I\ return_control values:

 Aðð141ð+ I\

Aðð142ð+ I\ CM_WHEN_SESSION_ALLOCATED -- VALUE ð (SESALL)

Aðð143ð+ I\ CM_IMMEDIATE -- VALUE 1 (IMMED)

 Aðð144ð+ I\

 Aðð145ð+ I ð C SESALL

 Aðð146ð+ I 1 C IMMED

 Aðð147ð+ I\\

Aðð148ð+ I\ send_type values:

 Aðð149ð+ I\

Aðð15ðð+ I\ CM_BUFFER_DATA -- VALUE ð (BUFDAT)

Aðð151ð+ I\ CM_SEND_AND_FLUSH -- VALUE 1 (SNDFLS)

Aðð152ð+ I\ CM_SEND_AND_CONFIRM -- VALUE 2 (SNDCNF)

Aðð153ð+ I\ CM_SEND_AND_PREP_TO_RECEIVE -- VALUE 3 (SNDPTR)

Aðð154ð+ I\ CM_SEND_AND_DEALLOCATE -- VALUE 4 (SNDDEL)

Figure F-8 (Part 4 of 10). RPG/400 Inquiry Example – Local Program

F-38 OS/400 APPC Programming V4R1

 Aðð155ð+ I\

 Aðð156ð+ I ð C BUFDAT

 Aðð157ð+ I 1 C SNDFLS

 Aðð158ð+ I 2 C SNDCNF

 Aðð159ð+ I 3 C SNDPTR

 Aðð16ðð+ I 4 C SNDDEL

 Aðð161ð+ I\\

Aðð162ð+ I\ status_received values:

 Aðð163ð+ I\

Aðð164ð+ I\ CM_NO_STATUS_RECEIVED -- VALUE ð (NOSTAT)

Aðð165ð+ I\ CM_SEND_RECEIVED -- VALUE 1 (SNDREC)

Aðð166ð+ I\ CM_CONFIRM_RECEIVED -- VALUE 2 (CONRCV)

Aðð167ð+ I\ CM_CONFIRM_SEND_RECEIVED -- VALUE 3 (CONSND)

Aðð168ð+ I\ CM_CONFIRM_DEALLOC_RECEIVED -- VALUE 4 (CONDEL)

 Aðð169ð+ I\

 Aðð17ðð+ I ð C NOSTAT

 Aðð171ð+ I 1 C SNDREC

 Aðð172ð+ I 2 C CONRCV

 Aðð173ð+ I 3 C CONSND

 Aðð174ð+ I 4 C CONDEL

 Aðð175ð+ I\\

Aðð176ð+ I\ sync_level values:

 Aðð177ð+ I\

Aðð178ð+ I\ CM_NONE -- VALUE ð (NONE)

Aðð179ð+ I\ CM_CONFIRM -- VALUE 1 (CONFRM)

 Aðð18ðð+ I\

 Aðð181ð+ I ð C NONE

 Aðð182ð+ I 1 C CONFRM

 74ð I\

\ 411ð 411ð-\\

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 75ð ICMPARM DS

 76ð I 1 8 CONVID

 77ð I B 9 12ðRTNCOD

78ð I B 13 16ðDATRCV

79ð I B 17 2ððDLCTYP

8ðð I B 21 24ðRCVLEN

81ð I B 25 28ðREQLEN

82ð I B 29 32ðREQTSR

83ð I B 33 36ðSNDLEN

84ð I B 37 4ððSNDTYP

85ð I B 41 44ðSTSRCV

86ð I B 45 48ðSYNLVL

 87ð I 49 56 SYMDST

 88ð I 57 64 TPNAM

89ð I B 65 68ðTPNLEN

 9ðð C\\

91ð C\ START OF PROGRAM \

 92ð C\ \

93ð C\ Files are implicitly opened, a conversation with the \

94ð C\ remote program is started, and the part inquiry \

95ð C\ screen is displayed. Inquiries are handled until \

96ð C\ the user presses the F3=Exit key, in which case \

97ð C\ the conversation will be ended and the program will end. \

 98ð C\\

 99ð C\

.3/ 1ððð C EXSR STRCNV

 1ð1ð C EXFMTPROMPT

 1ð2ð C\

.4/ 1ð3ð C \IN99 DOWEQ'ð' Bðð1

 1ð4ð C\

 1ð5ð C\\

1ð6ð C\ The part number that the user has requested information \

1ð7ð C\ for is sent to the remote program using the CMSEND call. \

 1ð8ð C\\

 1ð9ð C\

 11ðð C Z-ADD5 SNDLEN ðð1

.5/ 111ð C CALL 'CMSEND' ðð1

 112ð C PARM CONVID ðð1

 113ð C PARM PARTN ðð1

Figure F-8 (Part 5 of 10). RPG/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-39

 114ð C PARM SNDLEN ðð1

 115ð C PARM REQTSR ðð1

 116ð C PARM RTNCOD ðð1

 117ð C\

 118ð C\\

119ð C\ The CMRCV call is issued to receive the response \

12ðð C\ from the remote program (the response can either be \

121ð C\ an error message or the part description, depending \

122ð C\ on whether the part was found or not). \

 123ð C\\

 124ð C\

 .6/ 125ð C RTNCOD IFEQ CMOK Bðð2

 126ð C Z-ADD25 REQLEN ðð2

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 127ð C CALL 'CMRCV' ðð2

 128ð C PARM CONVID ðð2

 129ð C PARM PARTD ðð2

 13ðð C PARM REQLEN ðð2

 131ð C PARM DATRCV ðð2

 132ð C PARM RCVLEN ðð2

 133ð C PARM STSRCV ðð2

 134ð C PARM REQTSR ðð2

 135ð C PARM RTNCOD ðð2

 136ð C MOVE \BLANKS ERRORL ðð2

 137ð C ELSE Xðð2

 138ð C RTNCOD IFEQ PEPURG Bðð3

 139ð C Z-ADD4ð REQLEN ðð3

 14ðð C CALL 'CMRCV' ðð3

 141ð C PARM CONVID ðð3

 142ð C PARM ERRORL ðð3

 143ð C PARM REQLEN ðð3

 144ð C PARM DATRCV ðð3

 145ð C PARM RCVLEN ðð3

 146ð C PARM STSRCV ðð3

 147ð C PARM REQTSR ðð3

 148ð C PARM RTNCOD ðð3

 149ð C MOVE \BLANKS PARTD ðð3

 15ðð C ELSE Xðð3

 151ð C GOTO ENDCNV ðð3

 152ð C END Eðð3

 153ð C END Eðð2

 154ð C\

 155ð C RTNCOD IFNE CMOK Bðð2

 156ð C DATRCV ORNE COMDAT ðð2

 157ð C STSRCV ORNE SNDREC ðð2

 158ð C GOTO ENDCNV ðð2

 159ð C END Eðð2

.7/ 16ðð C EXFMTPROMPT ðð1

 161ð C\

 162ð C END Eðð1

 163ð C\

 164ð C\\

165ð C\ The following code handles the end-of-program processing. \

166ð C\ This includes the ending of the conversation with \

167ð C\ the remote system (if conversation is active), and \

168ð C\ the setting of the last record indicator. \

 169ð C\\

 17ðð C\

 171ð C Z-ADDDEFLUS DLCTYP

 172ð C\

.8/ 173ð C ENDCNV TAG

 174ð C\

.9/ 175ð C RTNCOD IFNE ALFLNR Bðð1

 176ð C RTNCOD ANDNEALFLRE ðð1

 177ð C RTNCOD ANDNEDEABND ðð1

 178ð C RTNCOD ANDNEDENORM ðð1

 179ð C RTNCOD ANDNEPRODER ðð1

 18ðð C RTNCOD ANDNERFNORE ðð1

Figure F-8 (Part 6 of 10). RPG/400 Inquiry Example – Local Program

F-40 OS/400 APPC Programming V4R1

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 181ð C RTNCOD ANDNERFRET ðð1

 182ð C\\

183ð C\ The deallocated_type has been previously set to either \

184ð C\ CM_DEALLOCATED_NORMAL or CM_DEALLOCATED_ABEND. \

 185ð C\\

 186ð C CALL 'CMSDT' ðð1

 187ð C PARM CONVID ðð1

 188ð C PARM DLCTYP ðð1

 189ð C PARM RTNCOD ðð1

 19ðð C CALL 'CMDEAL' ðð1

 191ð C PARM CONVID ðð1

 192ð C PARM RTNCOD ðð1

 193ð C END Eðð1

 194ð C\

 195ð C ENDPGM TAG

.1ð/ 196ð C SETON LR 1

 197ð C\

 198ð C\\

199ð C\ "STRCNV" subroutine. \

 2ððð C\ \

2ð1ð C\ This subroutine establishes a conversation with the \

2ð2ð C\ remote program, and also sets various conversation \

 2ð3ð C\ characteristics. \

 2ð4ð C\\

 2ð5ð C\

.11/ 2ð6ð CSR STRCNV BEGSR

 2ð7ð C\

 2ð8ð C\\

2ð9ð C\ Set the local deallocate_type parameter variable to \

 21ðð C\ CM_DEALLOCATE_ABEND. \

 211ð C\\

 212ð C\

 213ð C Z-ADDDEABTY DLCTYP

 214ð C\

 215ð C\\

216ð C\ The CMINIT call is issued to initialize various \

217ð C\ conversation characteristics. \

 218ð C\\

 219ð C\

 22ðð CSR MOVEL'T8189CSI'SYMDST 8

.12/ 221ð CSR CALL 'CMINIT'

 222ð CSR PARM CONVID

 223ð CSR PARM SYMDST

 224ð CSR PARM RTNCOD

 225ð CSR RTNCOD CABNECMOK ENDPGM

 226ð C\

 227ð C\\

228ð C\ The Set_TP_Name (CMSTPN) call is issued so that the \

229ð C\ TP_name conversation characteristic is set to the \

23ðð C\ remote program. \

 231ð C\\

 232ð C\

 233ð CSR MOVEL'T8189CRT'TPNAM 8

 234ð CSR Z-ADD8 TPNLEN

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

.13/ 235ð CSR CALL 'CMSTPN'

 236ð CSR PARM CONVID

 237ð CSR PARM TPNAM

 238ð CSR PARM TPNLEN

 239ð CSR PARM RTNCOD

 24ðð C\

Figure F-8 (Part 7 of 10). RPG/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-41

 241ð C\\

242ð C\ The Set_Sync_Level (CMSSL) call is issued so that the \

243ð C\ sync_level conversation characteristic is set to \

 244ð C\ CM_CONFIRM. \

 245ð C\\

 246ð C\

 247ð CSR Z-ADDCONFRM SYNLVL

.14/ 248ð CSR CALL 'CMSSL'

 249ð CSR PARM CONVID

 25ðð CSR PARM SYNLVL

 251ð CSR PARM RTNCOD

 252ð C\

 253ð C\\

254ð C\ The CMALLC call is issued so that a conversation can be \

255ð C\ started using the conversation_ID previously assigned by \

256ð C\ the CMINIT call. \

 257ð C\\

 258ð C\

.15/ 259ð CSR CALL 'CMALLC'

 26ðð CSR PARM CONVID

 261ð CSR PARM RTNCOD

 262ð CSR RTNCOD CABNECMOK ENDCNV

 263ð C\

 264ð C\\

265ð C\ The Set_Send_Type (CMSST) call is issued so that \

266ð C\ the send_type conversation characteristic is set to \

 267ð C\ CM_SEND_AND_PREP_TO_RECEIVE. \

 268ð C\\

 269ð C\

 27ðð CSR Z-ADDSNDPTR SNDTYP

.16/ 271ð CSR CALL 'CMSST'

 272ð CSR PARM CONVID

 273ð CSR PARM SNDTYP

 274ð CSR PARM RTNCOD

 275ð C\

 276ð CSR ENDSR

 277ð C\

 278ð C\\

279ð C\ "FAIL" subroutine. \

 28ðð C\ \

281ð C\ This subroutine handles file exception/errors. \

 282ð C\\

 283ð C\

.17/ 284ð CSR FAIL BEGSR

 285ð CSR GOTO ENDCNV

 286ð CSR ENDSR

Cðððððð OUTPUT FIELDS FOR RECORD PROMPT FILE T8189DSP FORMAT PROMPT.

 Cððððð1 PARTN 5 CHAR 5

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 Cððððð2 PARTD 3ð CHAR 25

 Cððððð3 ERRORL 7ð CHAR 4ð

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7111 SOURCE FILE MEMBER HAS AN UNEXPECTED SOURCE TYPE.

\ 7ð89 2ð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE T8189DSP.

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð1 T8189DSP WORKSTN 2ðD

PROMPT 2ðD Bðððððð 1ð1ð 16ðð Cðððððð

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

\IN99 A(1) 1ð3ð

 ALFLNR CONST Aðð112ðD 175ð

 ALFLRE CONST Aðð113ðD 176ð

\ 7ð31 BASIC CONST Aððð11ðD

\ 7ð31 BUFDAT CONST Aðð156ðD

\ 7ð31 CMCONS DS(1) Aðððð4ðD

Figure F-8 (Part 8 of 10). RPG/400 Inquiry Example – Local Program

F-42 OS/400 APPC Programming V4R1

 CMOK CONST Aðð111ðD 125ð 155ð 225ð 262ð

\ 7ð31 CMPARM DS(68) 75ðD

\ 7ð31 CNVMIS CONST Aðð114ðD

 COMDAT CONST Aððð23ðD 156ð

\ 7ð31 CONDEL CONST Aðð174ðD

 CONFRM CONST Aðð182ðD 247ð

\ 7ð31 CONRCV CONST Aðð172ðD

\ 7ð31 CONSND CONST Aðð173ðD

CONVID A(8) 76ðD 112ð 128ð 141ð 187ð

191ð 222ð 236ð 249ð 26ðð

 272ð

\ 7ð31 DABSVC CONST Aðð134ðD

\ 7ð31 DABTIM CONST Aðð135ðD

DATRCV B(9,ð) 78ðD 131ð 144ð 156ð

\ 7ð31 DATREC CONST Aððð22ðD

 DEABND CONST Aðð122ðD 177ð

 DEABTY CONST Aððð36ðD 213ð

\ 7ð31 DECONF CONST Aððð35ðD

 DEFLUS CONST Aððð34ðD 171ð

 DENORM CONST Aðð123ðD 178ð

\ 7ð31 DESYNC CONST Aððð33ðD

DLCTYP B(9,ð) 79ðD 171ðM 188ð 213ðM

ENDCNV TAG 151ð 158ð 173ðD 262ð 285ð

 ENDPGM TAG 195ðD 225ð

ERRORL A(4ð) 136ðM 142ð Cððððð3D

 FAIL BEGSR 2ð 284ðD

\ 7ð31 FILBUF CONST Aððð52ðD

\ 7ð31 FILLL CONST Aððð51ðD

\ 7ð31 IMMED CONST Aðð146ðD

\ 7ð31 INCDAT CONST Aððð24ðD

\ 7ð31 MAPPED CONST Aððð12ðD

\ 7ð31 NODATA CONST Aððð21ðD

\ 7ð31 NONE CONST Aðð181ðD

\ 7ð31 NOSTAT CONST Aðð17ððD

\ 7ð31 PARERR CONST Aðð124ðD

 PARTD A(25) 129ð 149ðM Cððððð2D

PARTN A(5) Bððððð1D 113ð Cððððð1D

\ 7ð31 PENOTR CONST Aðð126ðD

\ 7ð31 PEPCHK CONST Aðð129ðD

 PEPURG CONST Aðð127ðD 138ð

\ 7ð31 PETRNC CONST Aðð128ðD

\ 7ð31 PIPNSC CONST Aðð115ðD

 PRODER CONST Aðð125ðD 179ð

\ 7ð31 PTRCON CONST Aððð62ðD

\ 7ð31 PTRFLS CONST Aððð61ðD

\ 7ð31 PTRSL CONST Aððð6ððD

\ 7ð31 RCVERR CONST Aððð43ðD

\ 7ð31 RCVIMM CONST Aððð7ððD

RCVLEN B(9,ð) 8ððD 132ð 145ð

\ 7ð31 RCVWAT CONST Aððð69ðD

REQLEN B(9,ð) 81ðD 126ðM 13ðð 139ðM 143ð

REQTSR B(9,ð) 82ðD 115ð 134ð 147ð

 RFNORE CONST Aðð131ðD 18ðð

 RFRET CONST Aðð132ðD 181ð

RTNCOD B(9,ð) 77ðD 116ð 125ð 135ð 138ð

148ð 155ð 175ð 176ð 177ð

178ð 179ð 18ðð 181ð 189ð

192ð 224ð 225ð 239ð 251ð

261ð 262ð 274ð

\ 7ð31 RTSNOT CONST Aððð77ðD

\ 7ð31 RTSREC CONST Aððð78ðD

\ 7ð31 SECNVL CONST Aðð116ðD

\ 7ð31 SESALL CONST Aðð145ðD

\ 7ð31 SLNSLU CONST Aðð117ðD

\ 7ð31 SLNSP CONST Aðð118ðD

\ 7ð31 SNDCNF CONST Aðð158ðD

\ 7ð31 SNDDEL CONST Aðð16ððD

\ 7ð31 SNDERR CONST Aððð44ðD

\ 7ð31 SNDFLS CONST Aðð157ðD

SNDLEN B(9,ð) 83ðD 11ððM 114ð

 SNDPTR CONST Aðð159ðD 27ðð

Figure F-8 (Part 9 of 10). RPG/400 Inquiry Example – Local Program

 Appendix F. CPI Communications Program Examples F-43

 SNDREC CONST Aðð171ðD 157ð

SNDTYP B(9,ð) 84ðD 27ððM 273ð

\ 7ð31 STACHK CONST Aðð13ððD

STRCNV BEGSR 1ððð 2ð6ðD

STSRCV B(9,ð) 85ðD 133ð 146ð 157ð

\ 7ð31 SVCENT CONST Aðð136ðD

\ 7ð31 SVCEP CONST Aðð137ðD

\ 7ð31 SVCET CONST Aðð138ðD

SYMDST A(8) 87ðD 22ððD 223ð

SYNLVL B(9,ð) 86ðD 247ðM 25ðð

TPNAM A(8) 88ðD 233ðD 237ð

\ 7ð31 TPNAME CONST Aðð119ðD

TPNLEN B(9,ð) 89ðD 234ðM 238ð

\ 7ð31 TPNORE CONST Aðð12ððD

\ 7ð31 TPRET CONST Aðð121ðD

\ 7ð31 UNSUCC CONST Aðð133ðD

 \BLANKS LITERAL 136ð 149ð

'CMALLC' LITERAL 259ð

'CMDEAL' LITERAL 19ðð

'CMINIT' LITERAL 221ð

 'CMRCV' LITERAL 127ð 14ðð

 'CMSDT' LITERAL 186ð

'CMSEND' LITERAL 111ð

 'CMSSL' LITERAL 248ð

 'CMSST' LITERAL 271ð

'CMSTPN' LITERAL 235ð

 'T8189CRT' LITERAL 233ð

 'T8189CSI' LITERAL 22ðð

 'ð' LITERAL 1ð3ð

 25 LITERAL 126ð

 4ð LITERAL 139ð

 5 LITERAL 11ðð

 8 LITERAL 234ð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 \IN 1ð3ð

 LR 196ðM

 99 1ð3ð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG411ð Severity: ðð Number: 1

Message : Data-structure specified without any subfields.

\ QRG7ð31 Severity: ðð Number: 5ð

Message : The Name or indicator is not referenced.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ QRG7111 Severity: ðð Number: 1

Message : Unexpected source type.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

53 53 ð ð ð ð ð

 Program Source Totals:

Records : 468

Specifications : 181

Table Records : ð

Comments : 287

 PRM has been called.

 Program T8189CRS is placed in library APPCLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-8 (Part 10 of 10). RPG/400 Inquiry Example – Local Program

RPG/400 Remote Program for Inquiry
Application (Example 3)

The following explains the structure of the RPG/400 remote
program that handles requests sent by the partner program.

F-44 OS/400 APPC Programming V4R1

 Program Explanation

The reference numbers in the explanation below correspond
to the numbers in the program example illustrated in
Figure F-9 on page F-46.

Note: On any type of error that is not expected (for
example, open errors CPI Communications
return_code on a call), the session is ended and the
program ends.

.1/ The file specification defines the files used in the
program.

T8189DB is the database file that contains the
valid part numbers and part descriptions.

All files are implicitly opened at the beginning of
the RPG/400 program cycle.

The continuation lines for the file specification
define the following:

KINFSR Specifies the subroutine FAIL is to
be called when a file exception con-
dition occurs.

.2/ The statement /COPY QRPG/QIRGINC,CMRPG places
the contents of the AS/400-supplied CPI Com-
munications pseudonym file CMRPG in the
program.

.3/ The STRCNV and GETDTA subroutines are called to
start a conversation with the partner program
and wait on a request by the partner program,
respectively.

.4/ The program loops until there are no more
requests to process, or until an error occurs in
the transaction with the partner program.

.5/ A search of the database file is performed using
the part number received from the partner
program as the key.

Note: If the part number is not found, indicator
98 is set on.

.6/ If indicator 98 is set on (indicating that the part
number was not found in the database file), the
Send_Error (CMSERR) call is issued. As a
result, a negative response to the received con-
firmation request is sent to the partner program.

If indicator 98 is not set on (indicating that the
part number was found in the database file), the
Confirmed (CMCFMD) call is issued. As a result,
a positive response to the received confirmation
request is sent to the partner program.

.7/ The Send_Data (CMSEND) call is issued. The
data sent (set previously) is either an error
message (if the part was not found) or the part
description (if the part is found). The CMSEND
call is issued with the following conversation

characteristics (the conversation characteristics
were set in STRCNV): a send_type of
CM_SEND_AND_PREP_TO_RECEIVE and a
prepare_to_receive_type of
CM_PREP_TO_RECEIVE_FLUSH. Setting the
conversation characteristics to these values
flushes the data and changes the data flow
direction.

.8/ The GETDTA subroutine is called to wait on a
request by the partner program.

.9/ The following section of code performs the end-
of-program processing.

If the conversation is still active, it is assumed
that an error was detected. The deallocate_type
is set to CM_DEALLOCATE_ABEND by issuing
the Set_Deallocate_Type (CMSDT) call, followed
by a call to Deallocate (CMDEAL) to end the
conversation abnormally.

.1ð/ The last record indicator (LR) is set on. All files
are implicitly closed, and the program ends.

.11/ The STRCNV subroutine establishes a conversa-
tion with the partner program and sets various
conversation characteristics.

.12/ The Accept_Conversation (CMACCP) call is
issued so that a conversation can be started with
the partner program.

.13/ The Set_Prepare_To_Receive_Type (CMSPTR)
call is issued so that the
prepare_to_receive_type conversation character-
istic is set to CM_PREP_TO_RECEIVE_FLUSH.

.14/ The Set_Send_Type (CMSST) call is issued so
that the send_type conversation characteristic is
set to CM_SEND_AND_PREP_TO_RECEIVE.

.15/ The GETDTA subroutine waits for a request from
the partner program by issuing the Receive
(CMRCV) call.

Note: A transaction is processed if all the data
is received with a turnaround indication,
and the partner program requested con-
firmation. This is indicated by the
following:

� The value of the data_received vari-
able on the CMRCV call is
CM_COMPLETE_DATA_RECEIVED

� The value of the status_received
variable on the CMRCV call is
CM_CONFIRM_SEND_RECEIVED

.16/ The FAIL subroutine gets control when a file
exception or error occurs. The FAIL subroutine
handles all file exceptions or errors by passing
control to the section of code that performs the
end-of-program processing (.9/).

 Appendix F. CPI Communications Program Examples F-45

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : APPCLIB/T8189CRT

Source file : QUSRTOOL/QATTRPG

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 29

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : T8189CRT

File : QATTRPG

Library : QUSRTOOL

Last Change : ð9/26/9ð ð8:27:42

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 1ð H

.1/ 2ð FT8189DB IF E K DISK

 3ð F KINFSR FAIL

RECORD FORMAT(S): LIBRARY APPCLIB FILE T8189DB.

EXTERNAL FORMAT DBRCD RPG NAME DBRCD

 4ð E MSG 1 1 4ð

 5ð I\\

6ð I\ Program name.........: T8189CRT \

7ð I\ Program description..: CPI Communications remote program \

8ð I\ Language.............: RPG/4ðð \

 9ð I\ \

1ðð I\ This program accepts the incoming conversation by \

11ð I\ issuing an Accept_Conversation (CMACCP) call. It then \

12ð I\ issues a Receive (CMRCV) call to receive the part number \

13ð I\ from the remote system. When the CMRCV call completes, \

14ð I\ the status_received value will be CM_CONFIRM_SEND. The \

15ð I\ database file T8189DB is searched for the received part \

16ð I\ number. If the part number is found, the Confirmed \

17ð I\ (CMCFMD) call is issued, followed by a Send_Data \

18ð I\ (CMSEND) call (the data sent is the part description \

19ð I\ corresponding to the part number retrieved from the \

2ðð I\ database file). However, if the part number is not \

21ð I\ found, the Send_Error (CMSERR) call is issued, followed \

22ð I\ by a CMSEND call (the data sent is a message describing \

23ð I\ the error). The CMSEND call sending either the part \

24ð I\ description or the error message is issued with a \

25ð I\ send_type conversation characteristic of \

26ð I\ CM_SEND_AND_PREP_TO_RECEIVE and a \

27ð I\ prepare_to_receive_type conversation characteristic of \

28ð I\ CM_PREP_TO_RECEIVE_FLUSH. Setting the conversation \

29ð I\ characteristics to these values results in the flushing \

3ðð I\ of the data, and the changing of the data flow \

31ð I\ direction. The partner program can send more inquiries. \

 32ð I\ \

33ð I\ This program will continue to handle inquiries from the \

34ð I\ partner program until a return_code that is not CM_OK \

35ð I\ is received. Then the program ends. \

 36ð I\ \

Figure F-9 (Part 1 of 10). RPG/400 Inquiry Example – Remote Program

F-46 OS/400 APPC Programming V4R1

37ð I\ NOTE 1: If an unexpected return_code value is received on \

38ð I\ any of the CPI Communications calls, the \

39ð I\ program will abnormally end the conversation \

4ðð I\ with a deallocate_type of CM_DEALLOCATED_ABEND, \

41ð I\ and program processing will end. \

 42ð I\ \

43ð I\ NOTE 2: On the CMRCV call, if the data_received \

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

44ð I\ parameter value does not indicate \

45ð I\ CM_COMPLETE_DATA_RECEIVED, or if the \

46ð I\ status_received parameter value does not indicate \

47ð I\ CM_CONFIRM_SEND_RECEIVED, the program will \

48ð I\ abnormally end the conversation with a \

49ð I\ deallocate_type of CM_DEALLOCATED_ABEND, \

5ðð I\ and program processing will end. \

 51ð I\ \

52ð I\ NOTE 3: This program can be started by ANY of the \

53ð I\ "local" program examples in the APPC Programmer's \

 54ð I\ Guide. \

 55ð I\ \

 56ð I\\

 57ð I\

 58ð I\\

59ð I\ Use the CPI Communications supplied pseudonyms. \

 6ðð I\\

 61ð I\

.2/ 62ð I/COPY QRPG/QIRGINC,CMRPG

 Aðððððð+ MEMBER CMRPG IN FILE QIRGINC LIBRARY QRPG OPENED FOR /COPY.

 Aðððð1ð+ I\

Aðððð2ð+ I\ RPG INCLUDE FOR SAA COMMUNICATIONS SUPPORT

 Aðððð3ð+ I\

 Bðððððð+ INPUT FIELDS FOR RECORD DBRCD FILE T8189DB FORMAT DBRCD.

 Bððððð1+ 1 5 ITEMNM

 Bððððð2+ 6 3ð ITEMD

 Aðððð4ð+ ICMCONS DS

 Aðððð5ð+ I\\

Aðððð6ð+ I\ conversation_type values:

 Aðððð7ð+ I\

Aðððð8ð+ I\ CM_BASIC_CONVERSATION -- VALUE ð (BASIC)

Aðððð9ð+ I\ CM_MAPPED_CONVERSATION -- VALUE 1 (MAPPED)

 Aððð1ðð+ I\

 Aððð11ð+ I ð C BASIC

 Aððð12ð+ I 1 C MAPPED

 Aððð13ð+ I\\

Aððð14ð+ I\ data_received values:

 Aððð15ð+ I\

Aððð16ð+ I\ CM_NO_DATA_RECEIVED -- VALUE ð (NODATA)

Aððð17ð+ I\ CM_DATA_RECEIVED -- VALUE 1 (DATREC)

Aððð18ð+ I\ CM_COMPLETE_DATA_RECEIVED -- VALUE 2 (COMDAT)

Aððð19ð+ I\ CM_INCOMPLETE_DATA_RECEIVED -- VALUE 3 (INCDAT)

 Aððð2ðð+ I\

 Aððð21ð+ I ð C NODATA

 Aððð22ð+ I 1 C DATREC

 Aððð23ð+ I 2 C COMDAT

 Aððð24ð+ I 3 C INCDAT

 Aððð25ð+ I\\

Aððð26ð+ I\ deallocate_type values:

 Aððð27ð+ I\

Aððð28ð+ I\ CM_DEALLOCATE_SYNC_LEVEL -- VALUE ð (DESYNC)

Aððð29ð+ I\ CM_DEALLOCATE_FLUSH -- VALUE 1 (DEFLUS)

Aððð3ðð+ I\ CM_DEALLOCATE_CONFIRM -- VALUE 2 (DECONF)

Aððð31ð+ I\ CM_DEALLOCATE_ABEND -- VALUE 3 (DEABTY)

Figure F-9 (Part 2 of 10). RPG/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-47

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 Aððð32ð+ I\

 Aððð33ð+ I ð C DESYNC

 Aððð34ð+ I 1 C DEFLUS

 Aððð35ð+ I 2 C DECONF

 Aððð36ð+ I 3 C DEABTY

 Aððð37ð+ I\\

Aððð38ð+ I\ error_direction values:

 Aððð39ð+ I\

Aððð4ðð+ I\ CM_RECEIVE_ERROR -- VALUE ð (RCVERR)

Aððð41ð+ I\ CM_SEND_ERROR -- VALUE 1 (SNDERR)

 Aððð42ð+ I\

 Aððð43ð+ I ð C RCVERR

 Aððð44ð+ I 1 C SNDERR

 Aððð45ð+ I\\

Aððð46ð+ I\ fill values:

 Aððð47ð+ I\

Aððð48ð+ I\ CM_FILL_LL -- VALUE ð (FILLL)

Aððð49ð+ I\ CM_FILL_BUFFER -- VALUE 1 (FILBUF)

 Aððð5ðð+ I\

 Aððð51ð+ I ð C FILLL

 Aððð52ð+ I 1 C FILBUF

 Aððð53ð+ I\\

Aððð54ð+ I\ prepare_to_receive_type values:

 Aððð55ð+ I\

Aððð56ð+ I\ CM_PREP_TO_RECEIVE_SYNC_LEVEL -- VALUE ð (PTRSL)

Aððð57ð+ I\ CM_PREP_TO_RECEIVE_FLUSH -- VALUE 1 (PTRFLS)

Aððð58ð+ I\ CM_PREP_TO_RECEIVE_CONFIRM -- VALUE 2 (PTRCON)

 Aððð59ð+ I\

 Aððð6ðð+ I ð C PTRSL

 Aððð61ð+ I 1 C PTRFLS

 Aððð62ð+ I 2 C PTRCON

 Aððð63ð+ I\\

Aððð64ð+ I\ receive_type values:

 Aððð65ð+ I\

Aððð66ð+ I\ CM_RECEIVE_AND_WAIT -- VALUE ð (RCVWAT)

Aððð67ð+ I\ CM_RECEIVE_IMMEDIATE -- VALUE 1 (RCVIMM)

 Aððð68ð+ I\

 Aððð69ð+ I ð C RCVWAT

 Aððð7ðð+ I 1 C RCVIMM

 Aððð71ð+ I\\

Aððð72ð+ I\ request_to_send_received values:

 Aððð73ð+ I\

Aððð74ð+ I\ CM_REQ_TO_SEND_NOT_RECEIVED -- VALUE ð (RTSNOT)

Aððð75ð+ I\ CM_REQ_TO_SEND_RECEIVED -- VALUE 1 (RTSREC)

 Aððð76ð+ I\

 Aððð77ð+ I ð C RTSNOT

 Aððð78ð+ I 1 C RTSREC

 Aððð79ð+ I\\

Aððð8ðð+ I\ return_code values:

 Aððð81ð+ I\

Aððð82ð+ I\ CM_OK -- VALUE ð (CMOK)

Aððð83ð+ I\ CM_ALLOCATE_FAILURE_NO_RETRY -- VALUE 1 (ALFLNR)

Aððð84ð+ I\ CM_ALLOCATE_FAILURE_RETRY -- VALUE 2 (ALFLRE)

Aððð85ð+ I\ CM_CONVERSATION_TYPE_MISMATCH -- VALUE 3 (CNVMIS)

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

Aððð86ð+ I\ CM_PIP_NOT_SPECIFIED_CORRECTLY -- VALUE 5 (PIPNSC)

Aððð87ð+ I\ CM_SECURITY_NOT_VALID -- VALUE 6 (SECNVL)

Aððð88ð+ I\ CM_SYNC_LVL_NOT_SUPPORTED_LU -- VALUE 7 (SLNSLU)

Aððð89ð+ I\ CM_SYNC_LVL_NOT_SUPPORTED_PGM -- VALUE 8 (SLNSP)

Aððð9ðð+ I\ CM_TPN_NOT_RECOGNIZED -- VALUE 9 (TPNAME)

Aððð91ð+ I\ CM_TP_NOT_AVAILABLE_NO_RETRY -- VALUE 1ð (TPNORE)

Aððð92ð+ I\ CM_TP_NOT_AVAILABLE_RETRY -- VALUE 11 (TPRET)

Aððð93ð+ I\ CM_DEALLOCATED_ABEND -- VALUE 17 (DEABND)

Aððð94ð+ I\ CM_DEALLOCATED_NORMAL -- VALUE 18 (DENORM)

Aððð95ð+ I\ CM_PARAMETER_ERROR -- VALUE 19 (PARERR)

Aððð96ð+ I\ CM_PRODUCT_SPECIFIC_ERROR -- VALUE 2ð (PRODER)

Aððð97ð+ I\ CM_PROGRAM_ERROR_NO_TRUNC -- VALUE 21 (PENOTR)

Aððð98ð+ I\ CM_PROGRAM_ERROR_PURGING -- VALUE 22 (PEPURG)

Figure F-9 (Part 3 of 10). RPG/400 Inquiry Example – Remote Program

F-48 OS/400 APPC Programming V4R1

Aððð99ð+ I\ CM_PROGRAM_ERROR_TRUNC -- VALUE 23 (PETRNC)

Aðð1ððð+ I\ CM_PROGRAM_PARAMETER_CHECK -- VALUE 24 (PEPCHK)

Aðð1ð1ð+ I\ CM_PROGRAM_STATE_CHECK -- VALUE 25 (STACHK)

Aðð1ð2ð+ I\ CM_RESOURCE_FAILURE_NO_RETRY -- VALUE 26 (RFNORE)

Aðð1ð3ð+ I\ CM_RESOURCE_FAILURE_RETRY -- VALUE 27 (RFRET)

Aðð1ð4ð+ I\ CM_UNSUCCESSFUL -- VALUE 28 (UNSUCC)

Aðð1ð5ð+ I\ CM_DEALLOCATED_ABEND_SVC -- VALUE 3ð (DABSVC)

Aðð1ð6ð+ I\ CM_DEALLOCATED_ABEND_TIMER -- VALUE 31 (DABTIM)

Aðð1ð7ð+ I\ CM_SVC_ERROR_NO_TRUNC -- VALUE 32 (SVCENT)

Aðð1ð8ð+ I\ CM_SVC_ERROR_PURGING -- VALUE 33 (SVCEP)

Aðð1ð9ð+ I\ CM_SVC_ERROR_TRUNC -- VALUE 34 (SVCET)

 Aðð11ðð+ I\

 Aðð111ð+ I ð C CMOK

 Aðð112ð+ I 1 C ALFLNR

 Aðð113ð+ I 2 C ALFLRE

 Aðð114ð+ I 3 C CNVMIS

 Aðð115ð+ I 5 C PIPNSC

 Aðð116ð+ I 6 C SECNVL

 Aðð117ð+ I 7 C SLNSLU

 Aðð118ð+ I 8 C SLNSP

 Aðð119ð+ I 9 C TPNAME

 Aðð12ðð+ I 1ð C TPNORE

 Aðð121ð+ I 11 C TPRET

 Aðð122ð+ I 17 C DEABND

 Aðð123ð+ I 18 C DENORM

 Aðð124ð+ I 19 C PARERR

 Aðð125ð+ I 2ð C PRODER

 Aðð126ð+ I 21 C PENOTR

 Aðð127ð+ I 22 C PEPURG

 Aðð128ð+ I 23 C PETRNC

 Aðð129ð+ I 24 C PEPCHK

 Aðð13ðð+ I 25 C STACHK

 Aðð131ð+ I 26 C RFNORE

 Aðð132ð+ I 27 C RFRET

 Aðð133ð+ I 28 C UNSUCC

 Aðð134ð+ I 3ð C DABSVC

 Aðð135ð+ I 31 C DABTIM

 Aðð136ð+ I 32 C SVCENT

 Aðð137ð+ I 33 C SVCEP

 Aðð138ð+ I 34 C SVCET

 Aðð139ð+ I\\

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

Aðð14ðð+ I\ return_control values:

 Aðð141ð+ I\

Aðð142ð+ I\ CM_WHEN_SESSION_ALLOCATED -- VALUE ð (SESALL)

Aðð143ð+ I\ CM_IMMEDIATE -- VALUE 1 (IMMED)

 Aðð144ð+ I\

 Aðð145ð+ I ð C SESALL

 Aðð146ð+ I 1 C IMMED

 Aðð147ð+ I\\

Aðð148ð+ I\ send_type values:

 Aðð149ð+ I\

Aðð15ðð+ I\ CM_BUFFER_DATA -- VALUE ð (BUFDAT)

Aðð151ð+ I\ CM_SEND_AND_FLUSH -- VALUE 1 (SNDFLS)

Aðð152ð+ I\ CM_SEND_AND_CONFIRM -- VALUE 2 (SNDCNF)

Aðð153ð+ I\ CM_SEND_AND_PREP_TO_RECEIVE -- VALUE 3 (SNDPTR)

Aðð154ð+ I\ CM_SEND_AND_DEALLOCATE -- VALUE 4 (SNDDEL)

 Aðð155ð+ I\

 Aðð156ð+ I ð C BUFDAT

 Aðð157ð+ I 1 C SNDFLS

 Aðð158ð+ I 2 C SNDCNF

 Aðð159ð+ I 3 C SNDPTR

 Aðð16ðð+ I 4 C SNDDEL

 Aðð161ð+ I\\

Aðð162ð+ I\ status_received values:

 Aðð163ð+ I\

Figure F-9 (Part 4 of 10). RPG/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-49

Aðð164ð+ I\ CM_NO_STATUS_RECEIVED -- VALUE ð (NOSTAT)

Aðð165ð+ I\ CM_SEND_RECEIVED -- VALUE 1 (SNDREC)

Aðð166ð+ I\ CM_CONFIRM_RECEIVED -- VALUE 2 (CONRCV)

Aðð167ð+ I\ CM_CONFIRM_SEND_RECEIVED -- VALUE 3 (CONSND)

Aðð168ð+ I\ CM_CONFIRM_DEALLOC_RECEIVED -- VALUE 4 (CONDEL)

 Aðð169ð+ I\

 Aðð17ðð+ I ð C NOSTAT

 Aðð171ð+ I 1 C SNDREC

 Aðð172ð+ I 2 C CONRCV

 Aðð173ð+ I 3 C CONSND

 Aðð174ð+ I 4 C CONDEL

 Aðð175ð+ I\\

Aðð176ð+ I\ sync_level values:

 Aðð177ð+ I\

Aðð178ð+ I\ CM_NONE -- VALUE ð (NONE)

Aðð179ð+ I\ CM_CONFIRM -- VALUE 1 (CONFRM)

 Aðð18ðð+ I\

 Aðð181ð+ I ð C NONE

 Aðð182ð+ I 1 C CONFRM

 63ð I\

\ 411ð 411ð-\\

 64ð ICMPARM DS

 65ð I 1 8 CONVID

 66ð I B 9 12ðRTNCOD

67ð I B 13 16ðDATRCV

68ð I B 17 2ððDLCTYP

69ð I B 21 24ðRCVLEN

7ðð I B 25 28ðREQLEN

71ð I B 29 32ðREQTSR

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

72ð I B 33 36ðSNDLEN

73ð I B 37 4ððSNDTYP

74ð I B 41 44ðSTSRCV

75ð I B 45 48ðPRERCV

 76ð I 49 88 SNDBUF

 77ð C\

 78ð C\\

79ð C\ START OF PROGRAM \

 8ðð C\ \

81ð C\ Files are implicitly opened, a conversation with the \

82ð C\ remote program is started, and the part inquiry \

83ð C\ processing starts. Inquiries are handled until a \

84ð C\ CM_DEALLOCATED_NORMAL return_code is received. \

 85ð C\\

 86ð C\

.3/ 87ð C EXSR STRCNV

 88ð C EXSR GETDTA

.4/ 89ð C RTNCOD DOWEQCMOK Bðð1

 9ðð C\

 91ð C\\

92ð C\ A search of the database file is done using the part \

93ð C\ number as the key (indicator 98 is set on if the part \

94ð C\ number is not found). \

 95ð C\\

 96ð C\

.5/ 97ð C ITEMNM CHAINDBRCD 98 1 ðð1

 98ð C\

 99ð C\\

1ððð C\ If the part number is not found, the CMSERR call is \

1ð1ð C\ issued; otherwise, the CMCFMD call is issued. \

 1ð2ð C\\

Figure F-9 (Part 5 of 10). RPG/400 Inquiry Example – Remote Program

F-50 OS/400 APPC Programming V4R1

 1ð3ð C\

.6/ 1ð4ð C 98 Z-ADD4ð SNDLEN ðð1

 1ð5ð C 98 MOVELMSG,1 SNDBUF ðð1

 1ð6ð C 98 CALL 'CMSERR' ðð1

 1ð7ð C PARM CONVID ðð1

 1ð8ð C PARM REQTSR ðð1

 1ð9ð C PARM RTNCOD ðð1

 11ðð C\

111ð C N98 Z-ADD25 SNDLEN ðð1

112ð C N98 MOVELITEMD SNDBUF ðð1

113ð C N98 CALL 'CMCFMD' ðð1

 114ð C PARM CONVID ðð1

 115ð C PARM RTNCOD ðð1

 116ð C RTNCOD CABNECMOK ENDCNV ðð1

 117ð C\

 118ð C\\

119ð C\ The CMSEND call is issued. The data sent (set previously) \

12ðð C\ is either an error message (if the part was not found) \

121ð C\ or the part description (if the part is found). \

 122ð C\\

 123ð C\

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

.7/ 124ð C CALL 'CMSEND' ðð1

 125ð C PARM CONVID ðð1

 126ð C PARM SNDBUF ðð1

 127ð C PARM SNDLEN ðð1

 128ð C PARM REQTSR ðð1

 129ð C PARM RTNCOD ðð1

 13ðð C RTNCOD CABNECMOK ENDCNV ðð1

 131ð C\

.8/ 132ð C EXSR GETDTA ðð1

 133ð C END Eðð1

 134ð C\

 135ð C\\

136ð C\ The following code handles the end-of-program processing. \

137ð C\ This includes the ending of the conversation with \

138ð C\ the remote system (if conversation is active), and \

139ð C\ the setting of the last record indicator. \

 14ðð C\\

 141ð C\

.9/ 142ð C ENDCNV TAG

 143ð C\

 144ð C RTNCOD IFNE ALFLNR Bðð1

 145ð C RTNCOD ANDNEALFLRE ðð1

 146ð C RTNCOD ANDNEDEABND ðð1

 147ð C RTNCOD ANDNEDENORM ðð1

 148ð C RTNCOD ANDNEPRODER ðð1

 149ð C RTNCOD ANDNERFNORE ðð1

 15ðð C RTNCOD ANDNERFRET ðð1

 151ð C Z-ADDDEABTY DLCTYP ðð1

 152ð C CALL 'CMSDT' ðð1

 153ð C PARM CONVID ðð1

 154ð C PARM DLCTYP ðð1

 155ð C PARM RTNCOD ðð1

 156ð C CALL 'CMDEAL' ðð1

 157ð C PARM CONVID ðð1

 158ð C PARM RTNCOD ðð1

 159ð C END Eðð1

 16ðð C\

 161ð C ENDPGM TAG

.1ð/ 162ð C SETON LR 1

 163ð C\

 164ð C\\

165ð C\ "STRCNV" subroutine. \

 166ð C\ \

167ð C\ This subroutine establishes a conversation with the \

168ð C\ remote program, and also sets various conversation \

 169ð C\ characteristics. \

 17ðð C\\

Figure F-9 (Part 6 of 10). RPG/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-51

 171ð C\

.11/ 172ð CSR STRCNV BEGSR

 173ð C\

 174ð C\\

175ð C\ The CMACCP call is issued so that a conversation can be \

176ð C\ started with the partner program. \

 177ð C\\

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 178ð C\

.12/ 179ð CSR CALL 'CMACCP'

 18ðð CSR PARM CONVID

 181ð CSR PARM RTNCOD

 182ð CSR RTNCOD CABNECMOK ENDPGM

 183ð C\

 184ð C\\

185ð C\ The Set_Prepare_To_Receive_Type (CMSPTR) call is issued \

186ð C\ so that the prepare_to_receive_type conversation \

187ð C\ characteristic is set to CM_PREP_TO_RECEIVE_FLUSH. \

 188ð C\\

 189ð C\

 19ðð CSR Z-ADDPTRFLS PRERCV

.13/ 191ð CSR CALL 'CMSPTR'

 192ð CSR PARM CONVID

 193ð CSR PARM PRERCV

 194ð CSR PARM RTNCOD

 195ð C\

 196ð C\\

197ð C\ The Set_Send_Type (CMSST) call is issued so that the \

198ð C\ send_type conversation characteristic is set to \

 199ð C\ CM_SEND_AND_PREP_TO_RECEIVE. \

 2ððð C\\

 2ð1ð C\

 2ð2ð CSR Z-ADDSNDPTR SNDTYP

.14/ 2ð3ð CSR CALL 'CMSST'

 2ð4ð CSR PARM CONVID

 2ð5ð CSR PARM SNDTYP

 2ð6ð CSR PARM RTNCOD

 2ð7ð C\

 2ð8ð C\

 2ð9ð CSR ENDSR

 21ðð C\

 211ð C\\

212ð C\ "GETDTA" subroutine. \

 213ð C\ \

214ð C\ This subroutine waits for incoming data from the partner \

215ð C\ program by issuing the CMRCV call. \

 216ð C\\

 217ð C\

.15/ 218ð CSR GETDTA BEGSR

 219ð CSR Z-ADD5 REQLEN

 22ðð CSR CALL 'CMRCV'

 221ð CSR PARM CONVID

 222ð CSR PARM ITEMNM

 223ð CSR PARM REQLEN

 224ð CSR PARM DATRCV

 225ð CSR PARM RCVLEN

 226ð CSR PARM STSRCV

 227ð CSR PARM REQTSR

 228ð CSR PARM RTNCOD

 229ð C\

 23ðð CSR RTNCOD IFEQ CMOK Bðð1

 231ð CSR DATRCV IFNE COMDAT Bðð2

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 232ð CSR STSRCV ORNE CONSND ðð2

 233ð CSR GOTO ENDCNV ðð2

 234ð CSR END Eðð2

 235ð CSR END Eðð1

 236ð CSR ENDSR

 237ð C\

Figure F-9 (Part 7 of 10). RPG/400 Inquiry Example – Remote Program

F-52 OS/400 APPC Programming V4R1

 238ð C\\

239ð C\ "FAIL" subroutine. \

 24ðð C\ \

241ð C\ This subroutine handles file exception/errors. \

 242ð C\\

 243ð C\

.16/ 244ð CSR FAIL BEGSR

 245ð CSR GOTO ENDCNV

 246ð CSR ENDSR

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7111 SOURCE FILE MEMBER HAS AN UNEXPECTED SOURCE TYPE.

SEQUENCE LAST

 NUMBER \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 UPDATE

C o m p i l e - T i m e T a b l e s

 Table/Array : MSG

248ð The requested part was not found.

K e y F i e l d I n f o r m a t i o n

 PHYSICAL LOGICAL

FILE/RCD FIELD FIELD ATTRIBUTES

 ð1 T8189DB

 DBRCD

 ITEMNM CHAR 5

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð1 T8189DB DISK 2ðD

 DBRCD 2ðD Bðððððð 97ð

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

 ALFLNR CONST Aðð112ðD 144ð

 ALFLRE CONST Aðð113ðD 145ð

\ 7ð31 BASIC CONST Aððð11ðD

\ 7ð31 BUFDAT CONST Aðð156ðD

\ 7ð31 CMCONS DS(1) Aðððð4ðD

 CMOK CONST Aðð111ðD 89ð 116ð 13ðð 182ð

 23ðð

\ 7ð31 CMPARM DS(88) 64ðD

\ 7ð31 CNVMIS CONST Aðð114ðD

 COMDAT CONST Aððð23ðD 231ð

\ 7ð31 CONDEL CONST Aðð174ðD

\ 7ð31 CONFRM CONST Aðð182ðD

\ 7ð31 CONRCV CONST Aðð172ðD

 CONSND CONST Aðð173ðD 232ð

CONVID A(8) 65ðD 1ð7ð 114ð 125ð 153ð

157ð 18ðð 192ð 2ð4ð 221ð

\ 7ð31 DABSVC CONST Aðð134ðD

\ 7ð31 DABTIM CONST Aðð135ðD

DATRCV B(9,ð) 67ðD 224ð 231ð

\ 7ð31 DATREC CONST Aððð22ðD

 DEABND CONST Aðð122ðD 146ð

 DEABTY CONST Aððð36ðD 151ð

\ 7ð31 DECONF CONST Aððð35ðD

\ 7ð31 DEFLUS CONST Aððð34ðD

 DENORM CONST Aðð123ðD 147ð

\ 7ð31 DESYNC CONST Aððð33ðD

DLCTYP B(9,ð) 68ðD 151ðM 154ð

ENDCNV TAG 116ð 13ðð 142ðD 233ð 245ð

 ENDPGM TAG 161ðD 182ð

 FAIL BEGSR 2ð 244ðD

\ 7ð31 FILBUF CONST Aððð52ðD

\ 7ð31 FILLL CONST Aððð51ðD

GETDTA BEGSR 88ð 132ð 218ðD

\ 7ð31 IMMED CONST Aðð146ðD

\ 7ð31 INCDAT CONST Aððð24ðD

 ITEMD A(25) Bððððð2D 112ð

ITEMNM A(5) Bððððð1D 97ð 222ð

\ 7ð31 MAPPED CONST Aððð12ðD

Figure F-9 (Part 8 of 10). RPG/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-53

 MSG(1) A(4ð) 4ðD

 MSG,1 1ð5ð

\ 7ð31 NODATA CONST Aððð21ðD

\ 7ð31 NONE CONST Aðð181ðD

\ 7ð31 NOSTAT CONST Aðð17ððD

\ 7ð31 PARERR CONST Aðð124ðD

\ 7ð31 PENOTR CONST Aðð126ðD

\ 7ð31 PEPCHK CONST Aðð129ðD

\ 7ð31 PEPURG CONST Aðð127ðD

\ 7ð31 PETRNC CONST Aðð128ðD

\ 7ð31 PIPNSC CONST Aðð115ðD

PRERCV B(9,ð) 75ðD 19ððM 193ð

 PRODER CONST Aðð125ðD 148ð

\ 7ð31 PTRCON CONST Aððð62ðD

 PTRFLS CONST Aððð61ðD 19ðð

\ 7ð31 PTRSL CONST Aððð6ððD

\ 7ð31 RCVERR CONST Aððð43ðD

\ 7ð31 RCVIMM CONST Aððð7ððD

RCVLEN B(9,ð) 69ðD 225ð

\ 7ð31 RCVWAT CONST Aððð69ðD

REQLEN B(9,ð) 7ððD 219ðM 223ð

REQTSR B(9,ð) 71ðD 1ð8ð 128ð 227ð

 RFNORE CONST Aðð131ðD 149ð

 RFRET CONST Aðð132ðD 15ðð

RTNCOD B(9,ð) 66ðD 89ð 1ð9ð 115ð 116ð

129ð 13ðð 144ð 145ð 146ð

147ð 148ð 149ð 15ðð 155ð

158ð 181ð 182ð 194ð 2ð6ð

 228ð 23ðð

\ 7ð31 RTSNOT CONST Aððð77ðD

\ 7ð31 RTSREC CONST Aððð78ðD

\ 7ð31 SECNVL CONST Aðð116ðD

\ 7ð31 SESALL CONST Aðð145ðD

\ 7ð31 SLNSLU CONST Aðð117ðD

\ 7ð31 SLNSP CONST Aðð118ðD

SNDBUF A(4ð) 76ðD 1ð5ðM 112ðM 126ð

\ 7ð31 SNDCNF CONST Aðð158ðD

\ 7ð31 SNDDEL CONST Aðð16ððD

\ 7ð31 SNDERR CONST Aððð44ðD

\ 7ð31 SNDFLS CONST Aðð157ðD

SNDLEN B(9,ð) 72ðD 1ð4ðM 111ðM 127ð

 SNDPTR CONST Aðð159ðD 2ð2ð

\ 7ð31 SNDREC CONST Aðð171ðD

SNDTYP B(9,ð) 73ðD 2ð2ðM 2ð5ð

\ 7ð31 STACHK CONST Aðð13ððD

 STRCNV BEGSR 87ð 172ðD

STSRCV B(9,ð) 74ðD 226ð 232ð

\ 7ð31 SVCENT CONST Aðð136ðD

\ 7ð31 SVCEP CONST Aðð137ðD

\ 7ð31 SVCET CONST Aðð138ðD

\ 7ð31 TPNAME CONST Aðð119ðD

\ 7ð31 TPNORE CONST Aðð12ððD

\ 7ð31 TPRET CONST Aðð121ðD

\ 7ð31 UNSUCC CONST Aðð133ðD

'CMACCP' LITERAL 179ð

'CMCFMD' LITERAL 113ð

'CMDEAL' LITERAL 156ð

 'CMRCV' LITERAL 22ðð

 'CMSDT' LITERAL 152ð

'CMSEND' LITERAL 124ð

'CMSERR' LITERAL 1ð6ð

'CMSPTR' LITERAL 191ð

 'CMSST' LITERAL 2ð3ð

 1 LITERAL 1ð5ð

 25 LITERAL 111ð

 4ð LITERAL 1ð4ð

 5 LITERAL 219ð

Figure F-9 (Part 9 of 10). RPG/400 Inquiry Example – Remote Program

F-54 OS/400 APPC Programming V4R1

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 LR 162ðM

98 97ðM 1ð4ð 1ð5ð 1ð6ð 111ð 112ð

 113ð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG411ð Severity: ðð Number: 1

Message : Data-structure specified without any subfields.

\ QRG7ð31 Severity: ðð Number: 52

Message : The Name or indicator is not referenced.

\ QRG7111 Severity: ðð Number: 1

Message : Unexpected source type.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

54 54 ð ð ð ð ð

 Program Source Totals:

Records : 43ð

Specifications : 163

Table Records : 1

Comments : 265

 PRM has been called.

 Program T8189CRT is placed in library APPCLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-9 (Part 10 of 10). RPG/400 Inquiry Example – Remote Program

 Appendix F. CPI Communications Program Examples F-55

F-56 OS/400 APPC Programming V4R1

 Appendix G. APPC Tools

AS/400 APPC File Transfer Protocol

The APPC File Transfer Protocol (AFTP) is an advanced
program-to-program communications (APPC) application pro-
tocol that provides file transfer services to application pro-
grams and end-users. With AFTP, you can copy text and
binary files between your computer and any computer that is
running the AFTP server.

Contact your IBM market representative or IBM business
partner for additional information about AS/400 APPC File
Transfer Protocol.

 ATELL Tools

ATELL is an APPC tool that is available in the library
QUSRTOOL. Information about his tool is available in the
file QUSRTOOL/QATTINFO. The member name is:

� TLTINFO (Information on ATELL)

 ATELL

ATELL is a sample program that allows a workstation user to
send a message to another workstation. ATELL is written in
the C language and uses CPI Communications.

ATELL is made up of two transaction programs: ATELL,
which runs on the client side, and ATELLD, which runs on
the server side.

Installing the tool ATELL

In order to use the ATELL tool, you must first create it.
Building the objects involves compiling the ILE C modules
used by ATELL and creating the ATELL and ATELLD pro-
grams. This is done by creating a CL program that builds the
objects you need. Table G-1 lists the source you need to
create the ATELL tool.

Table G-1. Source for the ATELL Tool

File Member Description.

QATTINFO TLTINFO Information on how to create, use and delete the ATELL
tool.

QATTCL TLTCRT The CL program source for the installation of ATELL.

QATTCL TLTDLT The CL program source for deleting the tool ATELL.

QATTSYSC TLTATELL C program source for the module ATELL.

QATTSYSC TLTATELD C program source for the module ATELLD.

QATTSYSC TLTCERR C program source for the module CPICERR.

QATTSYSC TLTCINIT C program source for the module CPICINIT.

QATTSYSC TLTCPORT C program source for the module CPICPORT.

QATTSYSC TLTCGOPT C program source for the module GETOPT.

QATTSYSC TLTHCPIC C header file.

QATTSYSC TLTHCMC C header file.

QATTSYSC TLTHERR C header file.

QATTSYSC TLTHDEFS C header file.

QATTSYSC TLTHPORT C header file.

QATTSYSC TLTHINIT C header file.

QATTSYSC TLTHGOPT C header file.

To create the ATELL tool you will need to do the following:

1. Create the CL installation program TLTCRT in library
MYLIB by entering:

CRTCLPGM PGM(MYLIB/TLTCRT) SRCFILE(QUSRTOOL/QATTCL)

 Where MYLIB is the library in which you want the CL
program to exist.

2. To call the installation program, enter:

CALL MYLIB/TLTCRT ATELL

 Where ATELL is the library in which you want the tools
ATELL and ATELLD to exist. If this library does not
already exist it will be created.

Table G-2 on page G-2 lists the objects created in the
library ATELL.

 Copyright IBM Corp. 1997 G-1

Table G-2. Objects Created for the ATELL Tool

Object Name Object Type Description.

ATELL *PGM The ATELL program.

ATELLD *PGM The ATELLD program.

ATELL *MODULE The ATELL module used in the ATELL program.

ATELLD *MODULE The ATELLD module used in the ATELLD program.

CPICERR *MODULE The CPICERR module used in both ATELL and ATELLD.

CPICINIT *MODULE The CPICINIT module used in both ATELL and ATELLD.

CPICPORT *MODULE The CPICPORT module used in both ATELL and ATELLD.

GETOPT *MODULE The GETOPT module used in both ATELL and ATELLD.

Deleting the tool ATELL

To delete the ATELL tool create the CL delete program
TLTDLT in library MYLIB:

CRTCLPGM PGM(MYLIB/TLTDLT) SRCFILE(QUSRTOOL/QATTCL)

Where MYLIB is the library in which you want the CL
program to exist.

Once the delete program is created you can do one of the
following:

1. If you want to delete only the source members in
QUSRTOOL, enter:

CALL MYLIB/TLTDLT (\YES \NONE)

2. If you want to delete only the library ATELL, enter:

CALL MYLIB/TLTDLT (\NO ATELL)

 Where ATELL is the library in which you created the
tools ATELL and ATELLD.

3. If you want to delete both the source members in
QUSRTOOL and the library ATELL, enter:

CALL MYLIB/TLTDLT (\YES ATELL)

 Where ATELL is the library in which you created the
tools ATELL and ATELLD.

Configuration Requirements for Using
ATELL

Before using ATELL there are configuration changes that will
need to be done. Refer to the information in the file
QATTINFO, member TLTINFO for details on these changes.

Note: ATELL must be installed on both the client and the
server system.

 Calling ATELL

To see the parameters used in calling ATELL, enter:

CALL ATELL/ATELL

An example call follows:

CALL ATELL/ATELL (USERðð1@NETSNA.CLIENT 'TESTING TESTING')

For more information on ATELL parameters, refer to the
information file QATTINFO, member TLTINFO.

Installation Example of an APPC Tool

The following screens show an example installation of the
tool ATELL.

After creating the library in which you want the CL installation
program to exist, create the CL program by entering the
following:

à ð
 Command Entry SERVER

 Request level: 1

 Previous commands and messages:

> CRTLIB LIB(MYLIB) TEXT('Library for APPC tools')

Library MYLIB created.

 Bottom
 Type command, press Enter.

 ===> CRTCLPGM PGM(MYLIB/TLRCRT) SRCFILE(QUSRTOOL/QATTCL)

TEXT('Program for

creating ATELL')

F3=Exit F4=Prompt F9=Retrieve F1ð=Include detailed messages

 F11=Display full F12=Cancel F13=Information Assistant F24=More keys

á

ñ

Now, call the installation program passing the library for the
tools to reside in as a parameter.

à ð
 Command Entry SERVER

 Request level: 1

 Previous commands and messages:

> CRTLIB LIB(MYLIB) TEXT('Library for APPC tools')

Library MYLIB created.

> CRTCLPGM PGM(MYLIB/TLRCRT) SRCFILE(QUSRTOOL/QATTCL) TEXT('Program for

 creating ATELL')

 Bottom
 Type command, press Enter.

 ===> call mylib/tlrcrt atell

F3=Exit F4=Prompt F9=Retrieve F1ð=Include detailed messages

 F11=Display full F12=Cancel F13=Information Assistant F24=More keys

á

ñ

G-2 OS/400 APPC Programming V4R1

The following screen shows the resulting objects that are
created as a result of running the installation program. (Note
that PF10 has been used to include the detailed messages
generated by the call to TLRCRT.)

à ð
 Command Entry SERVER

 Request level: 1

 All previous commands and messages:

> call appctemp/tlrcrt arexec

Library ATELL created.

Module ATELL was created in library ATELL on ð4/16/94 at 15:27:26

Module ATELLD was created in library ATELL on ð4/16/94 at 15:27:5

Module CPICERR was created in library ATELL on ð4/16/94 at 15:28:39.

Module CPICPORT was created in library ATELL on ð4/16/94 at 15:29:12.

Module CPICINIT was created in library ATELL on ð4/16/94 at 15:29:48.

Module GETOPT was created in library ATELL on ð4/16/94 at 15:3ð:ð4.

Program ATELL created in library ATELL.

Program ATELLD created in library ATELL.

 Bottom
 Type command, press Enter.

 ===>

F3=Exit F4=Prompt F9=Retrieve F1ð=Exclude detailed messages

 F11=Display full F12=Cancel F13=Information Assistant F24=More keys

á

ñ

 Appendix G. APPC Tools G-3

G-4 OS/400 APPC Programming V4R1

 Bibliography

This section lists a subset of IBM publications that contain
information about topics described or referred to in this
guide.

Planning and Installation Books

The following planning and installation book contains infor-
mation you may need when you use the AS/400 APPC
support.

� Local Device Configuration, SC41-5121

Customer and System Operation Books

The following customer and system operation books contain
information you may need when you use the AS/400 APPC
support.

� Work Management, SC41-5306

� Backup and Recovery, SC41-5304

� System Operation, SC41-4203

� Basic System Operation, Administration, and Problem
Handling, SC41-5206

AS/400 Communications Books

The following AS/400 communications books contain infor-
mation you may need when you use the AS/400 APPC
support.

� APPN Support, SC41-5407

� CICS/400 Administration and Operations Guide,
SC33-1387

� CICS/400 Application Programming Guide, SC33-1386

� SNA Distribution Services, SC41-5410

� ISDN Support, SC41-5403

� ICF Programming, SC41-5442

� Sockets Programming, SC41-5422

� Communications Configuration, SC41-5401

� DSNX Support, SC41-5409

� Remote Work Station Support, SC41-5402

� TCP/IP Configuration and Reference, SC41-5420

� 3270 Device Emulation Support, SC41-5408

AS/400 Programming Books

The following AS/400 programming books contain information
you may need when you use the AS/400 APPC support.

� DDS Reference, SC41-5712

� Distributed Data Management, SC41-5307

� CL Programming, SC41-5721

� CL Reference, SC41-5722

� Security - Reference, SC41-5302

Client Access/400 Books
� Client Access/400 for DOS with Extended Memory

Setup, SC41-3500

� Client Access/400 for DOS with Extended Memory User
Guide, SC41-3501

� Client Access/400 for DOS with Extended Memory Setup
(DBCS), SC41-3502

� Client Access/400 for DOS with Extended Memory User
Guide (DBCS), SC41-3503

� Client Access/400 for OS/2 Setup, SC41-3520

� Client Access/400 for OS/2 User Guide, SC41-3521

� Client Access/400 for OS/2 Setup (DBCS), SC41-3522

� Client Access/400 for OS/2 User Guide (DBCS),
SC41-3523

� Client Access/400 for DOS and OS/2 API Reference,
SC41-3562

� Client Access/400 for DOS and OS/2 Technical Refer-
ence, SC41-3563

 Communications Architectures

The following manuals provide information on the communi-
cations protocols: SNA synchronous data link control
(SDLC), X.25 packet-switched data networks, ISDN net-
works, and IBM Token-Ring Networks. Refer to these
manuals for descriptions of communications protocols.

� SNA Formats, GA27-3136.

� SNA Format and Protocol Reference Manual: Architec-
ture Logic for LU Type 6.2, SC30-3269, TNL:
SN30-3562.

� SNA Transaction Programmer’s Reference Manual for
LU Type 6.2, GC30-3084.

The following CD-ROM provides information about APPC,
APPN, and CPI Communications.

 Copyright IBM Corp. 1997 X-1

� The Best of APPC, APPN and CPI-C Collection Kit,
SK2T-2013. CPI Communications

� CPI Communications Reference, SC26-4399

� Common Programming Interface Communications Spec-
ification, SC31-6180.

X-2 OS/400 APPC Programming V4R1

 Index

A
acquire operation 5-3
acquire-program-device operation E-3, E-19, E-35
ACTIVATE_SESSION session control verb C-1
adaptive dictionary-based compression

definition 3-7
Add Intersystem Communications Function Program Device

Entry (ADDICFDEVE) command
description 5-1
parameters 5-2

ADDICFDEVE (Add Intersystem Communications Function
Program Device Entry) command

description 5-2
parameters 5-2

Advanced Peer-to-Peer Networking (APPN) support
configuration 2-1

See also db3401
definition 1-1
network

See also db5407
configuring 2-4
low-entry networking node limitations 2-4

relationship to APPC support 1-1
remote location names 3-3

advanced program-to-program communications (APPC)
application considerations

ICF 7-1
basic 3-2, 3-3
configuration 2-1

See also db3407
configuring an ISDN network 2-1
configuring for APPC over TCP/IP 2-1
configuring for frame-relay 2-2
configuring for sockets 2-1
defining 2-1
for APPC over TCP/IP 2-1
for sockets 2-1
frame-relay 2-2
in an ISDN network 2-1
list of commands used 2-1
network (without APPN support) 2-4

configuration examples D-1
configuring 2-1
conversation 3-2, 3-3

asynchronous 3-1
basic 3-1
limitations 1-2
mapped 3-1
protected 3-6
synchronous 3-1

data compression
adaptive dictionary-based 3-7
algorithms 3-7

advanced program-to-program communications (APPC) (con-
tinued)

data compression (continued)
considerations 3-7
data compression (DTACPR) parameter 3-8
definition 3-6
examples 3-10
fast and slow lines example 3-11
fast line example 3-10
how to determine if session uses 3-12
how to set up 3-8
inbound data compression (INDTACPR)

parameter 3-8
intermediate node data compression (DTACPRINM)

parameter 3-8
intermediate node request 3-9
line speed 3-9
LZ 3-7
minimum level chart 3-9
mode description 3-8
network attributes 3-8
one way heavy traffic example 3-11
outbound data compression (OUTDTACPR)

parameter 3-8
processor utilization example 3-11
run-length encoding (RLE) 3-7
settings 3-8
slow line example 3-10
specialized mode example 3-11
when do changes take effect 3-12

definition 1-1, 2-2
description and capabilities 1-1
devices created by the system 3-22
entering commands 2-1
ICF file operations

chart A-1
invalid password attempts 3-21
line description 2-2
mapped 3-2
network security 3-12
relationship to AnyNet/400 support 1-1
relationship to APPN support 1-1
remote location names 3-4
remote systems supported 1-1
resynchronization 3-6
return code

detailed descriptions B-1
running 4-1
security considerations 3-12
session description 3-1
session-level data compression

definition 3-6
overview 3-6

 Copyright IBM Corp. 1997 X-3

advanced program-to-program communications (APPC) (con-
tinued)

support provided by 1-1
two-phase commit 3-6
unit-of-work identifier 3-5
without APPN support 3-4
writing application programs

CPI Communications 6-1
alert

definition 4-7
alert support

See also db4409
definition 1-3

allow-write (ALWWRT) function 5-9
AnyNet/400 support 1-1
APING

command 1-3
APPC (advanced program-to-program communications)

application considerations
ICF 7-1

basic 3-2, 3-3
configuration 2-1

See also db3407
configuring an ISDN network 2-1
configuring for APPC over TCP/IP 2-1
configuring for frame-relay 2-2
configuring for sockets 2-1
defining 2-1
for APPC over TCP/IP 2-1
for sockets 2-1
frame-relay 2-2
in an ISDN network 2-1
list of commands used 2-1
network (without APPN support) 2-4

configuration examples D-1
configuring 2-1
conversation 3-2, 3-3

asynchronous 3-1
basic 3-1
limitations 1-2
mapped 3-1
protected 3-6
synchronous 3-1

data compression
adaptive dictionary-based 3-7
algorithms 3-7
considerations 3-7
data compression (DTACPR) parameter 3-8
definition 3-6
examples 3-10
fast and slow lines example 3-11
fast line example 3-10
how to determine if session uses 3-12
how to set up 3-8
inbound data compression (INDTACPR)

parameter 3-8
intermediate node data compression (DTACPRINM)

parameter 3-8

APPC (advanced program-to-program communications) (con-
tinued)

data compression (continued)
intermediate node request 3-9
line speed 3-9
LZ 3-7
minimum level chart 3-9
mode description 3-8
network attributes 3-8
one way heavy traffic example 3-11
outbound data compression (OUTDTACPR)

parameter 3-8
overview 3-6
processor utilization example 3-11
run-length encoding (RLE) 3-7
settings 3-8
slow line example 3-10
specialized mode example 3-11
when do changes take effect 3-12

definition 1-1, 2-2
description and capabilities 1-1
devices created by the system 3-22
entering commands 2-1
ICF file operations

chart A-1
invalid password attempts 3-21
line description 2-2
mapped 3-2
network security 3-12
relationship to AnyNet/400 support 1-1
relationship to APPN support 1-1
remote location names 3-4
remote systems supported 1-1
resynchronization 3-6
return code

detailed descriptions B-1
running 4-1
security considerations 3-12
session description 3-1
session-level data compression

definition 3-6
overview 3-6

support provided by 1-1
two-phase commit 3-6
unit-of-work identifier 3-5
without APPN support 3-4
writing application programs

CPI Communications 6-1
APPC over TCP/IP support 1-1
application considerations

CPI Communications
Accept_Conversation call 8-1
Allocate call 8-1
multiple conversations 8-1
performance 8-1
prestart job considerations 8-2
Trace CPI Communications (TRCCPIC) command 8-3

X-4 OS/400 APPC Programming V4R1

application considerations (continued)
CPI Communications (continued)

two-phase commit 8-1
ICF

close operation 7-4
confirm (CONFIRM) function 7-3
end-of-session (EOS) function 7-4
general considerations 7-1
input 7-3
open or acquire operation 7-1
output 7-2
prestart jobs 7-5
release operation 7-4
two-phase commit 7-4
WAITFILE parameter 7-2

application program
IBM-supplied 1-2
user-written

using CPI Communications calls 1-2
using EXEC CICS commands 1-1
using ICF files 1-2

APPN (Advanced Peer-to-Peer Networking) support
configuration 2-1

See also db3401
definition 1-1
network

See also db5407
configuring 2-4
low-entry networking node limitations 2-4

relationship to APPC support 1-1
remote location names 3-3

APPN information
displaying 3-12

architected length (LL)
definition 3-1
description 3-2

architecture
LU type 6.2 1-1
node type 2.1 1-1

AREXEC
command 1-3

AS/400 system
remote systems

APPC support 1-1
AS/400 system manuals X-1
asynchronous conversation

definition 3-1
ATELL tool G-1
attribute information

GET_ATTRIBUTES basic conversation verb
table C-11

authority
security officer 3-21

B
BACKOUT verb C-17
basic conversation

ICF 3-3
required knowledge 3-2

basic conversation verb
CONFIRMED C-10
FLUSH C-11
GET_ATTRIBUTES C-11
LU type 6.2 architecture C-9
POST_ON_RECEIPT C-14
PREPARE_FOR_SYNCPT C-14
PREPARE_TO_RECEIVE C-14
RECEIVE_AND_WAIT C-14
RECEIVE_IMMEDIATE C-16
REQUEST_TO_SEND C-16
SEND_DATA C-16
SEND_ERROR C-16
TEST C-17

book
Client Access/400 X-1
communications X-1
communications architecture X-1
CPI Communications X-2
customer X-1
installation X-1
planning X-1
programming X-1
system operation X-1

C
C/400 programming language 1-2

See also Integrated Language Environment C/40O (ILE
C/400) programming language

call
CPI Communications 6-4

Change Communications Side Information (CHGCSI)
command

parameters 6-2
Change Intersystem Communications Function File

(CHGICFF) command
description 5-1

Change Intersystem Communications Function Program
Device Entry (CHGICFDEVE) command

description 5-1
parameters 5-2

Change Mode Description (CHGMODD) command 3-8
Change Network Attributes (CHGNETA) command 3-8
Change Session Maximum (CHGSSNMAX) command

description 4-3
parameters 4-4

change-number-of-sessions verb
control operator verbs C-1

 Index X-5

CHANGE_SESSION_LIMIT control operator verb C-1
changing

mode description 3-8
network attributes 3-8

characteristics of CPI Communications 6-4
See also db4399

CHGCSI (Change Communications Side Information)
command

parameters 6-2
CHGICFDEVE (Change Intersystem Communications Func-

tion Program Device Entry) command
description 5-1
parameters 5-2

CHGICFF (Change Intersystem Communications Function
File) command 5-1

CHGMODD (Change Mode Description) command 3-8
CHGNETA (Change Network Attributes) command 3-8
CHGSSNMAX (Change Session Maximum) command

description 4-3
parameters 4-4

CICS/400 support 1-3
See also db1387
definition 1-3
writing applications 1-1

CICS/VS
requirement for APPC support 1-1

class of service 6-1
Client Access/400

books X-1
definition 1-3

close operation
description 5-11
ICF general considerations 7-4

COBOL/400 programming language
example program

CPI Communications local program for inquiry applica-
tions F-16

CPI Communications remote program for inquiry appli-
cations F-25

ICF local program for inquiry applications E-18
ICF remote program for inquiry applications E-27

command
APING 1-3
AREXEC 1-3
remote

running 1-3
verifying

connection 1-3
command prompt 2-1
command, CL 2-3

See also &b3406., &b3406n.
See also &b4722., &b4722n.
Add Intersystem Communications Function Program

Device Entry (ADDICFDEVE) command 5-1, 5-2
Change Communications Side Information (CHGCSI) 6-2
Change Intersystem Communications Function File

(CHGICFF) command 5-1

command, CL (continued)
Change Intersystem Communications Function Program

Device Entry (CHGICFDEVE) command 5-1, 5-2
Change Mode Description (CHGMODD) 3-8
Change Network Attributes (CHGNETA) 3-8
Change Session Maximum (CHGSSNMAX) 4-3
CHGMODD (Change Mode Description) 3-8
CHGNETA (Change Network Attributes) 3-8
communications side information 6-2
Create Communications Side Information (CRTCSI) 6-2
Create Intersystem Communications Function File

(CRTICFF) command 5-1
Create Mode Description (CRTMODD) 3-8
CRTMODD (Create Mode Description) 3-8
Delete Communications Side Information (DLTCSI) 6-2
Delete File (DLTF) command 5-1
Display APPN Information (DSPAPPNINF) 3-12
Display Communications Side Information (DSPCSI) 6-2
Display File Description (DSPFD) command 5-1
Display File Field Description (DSPFFD) command 5-1
Display Model Status (DSPMODSTS) 4-5
DSPAPPNINF (Display APPN Information) 3-12
End Mode (ENDMOD) 4-3
Override Intersystem Communications Function File

(OVRICFF) command 5-1
Override Intersystem Communications Function Program

Device Entry (OVRICFDEVE) command 5-1, 5-2
Remove Intersystem Communications Function Program

Device Entry (RMVICFDEVE) command 5-2
Start Mode (STRMOD) 4-2
Trace CPI Communications (TRCCPIC) command 8-3
Vary Configuration (VRYCFG) 4-1
Work with Communications Side Information

(WRKCSI) 6-2
communications

architecture manuals X-1
configuration

menu driven 1-3
data stream 3-1
lines supported 1-4

communications side information 6-1
commands 6-2
CPI Communications counterpart 6-1
description 6-1
managing 6-2
specifying parameter values 6-2

communications side information object T8189CSI
example F-1

compression
adaptive dictionary-based 3-7
algorithms 3-7
considerations 3-7
data compression (DTACPR) parameter 3-8
definition 3-6
examples 3-10
fast and slow lines example 3-11

X-6 OS/400 APPC Programming V4R1

compression (continued)
fast line example 3-10
how to determine if session uses 3-12
how to set up 3-8
inbound data compression (INDTACPR) parameter 3-8
intermediate node data compression (DTACPRINM)

parameter 3-8
intermediate node request 3-9
line speed 3-9
LZ 3-7
minimum level chart 3-9
mode description 3-8
network attributes 3-8
one way heavy traffic example 3-11
outbound data compression (OUTDTACPR)

parameter 3-8
overview 3-6
processor utilization example 3-11
run-length encoding (RLE) 3-7
settings 3-8
slow line example 3-10
specialized mode example 3-11
when do changes take effect 3-12

configuration 1-3
See also db3401
APPC network without APPN support 2-4
communications

menu driven 1-3
remote location names 3-3

requirements 1-3
specifying with APPN(*NO) 3-4
specifying with APPN(*YES) 3-4

configuration description
controller 2-2
deleting 2-4
device 2-3
line 2-2
mode 2-3

configuration example D-1
configuring

APPC 2-1
APPN network 2-4

See also db5407
confirm (CONFIRM) function

description 5-5
ICF general considerations 7-3

confirmation
effect on performance 8-1

CONFIRMED basic conversation verb C-10
connection list

definition 2-1
control data (CTLDTA) function

description 5-5
keyword 5-5

control operator verb
CHANGE_SESSION_LIMIT C-1

control operator verb (continued)
INITIALIZE_SESSION_LIMIT C-1
PROCESS_SESSION_LIMIT C-1
RESET_SESSION_LIMIT C-1

controller
limitations 2-3
naming devices 2-3

controller description
creating

nonswitched connection example D-3
switched connection example D-1

definition 2-2
for IP networks 2-2
for ISDN networks 2-2
X.21 short-hold mode example D-6

controlling
mode 4-2

conversation
APPC 3-1, 3-2, 3-3
asynchronous 3-1
basic 3-2, 3-3
CPI Communications 3-2
definition 3-1
ICF 3-2
mapped 3-1, 3-2
protected 3-6
synchronous 3-1
transaction 3-1

conversation verb
basic C-9
option sets C-22

converting
passwords 3-20
user IDs 3-20

converting user IDs and passwords to upper case 3-20
CPI Communications 6-1

See also db4399
characteristics 6-4
communications side information T8189CSI example F-1
conversation 3-2
corresponding ICF operation or function

table 6-6
database file T8189DB example F-2
display file T8189DSP example F-1
files for defining pseudonyms 6-6
flow diagram for inquiry application example 6-10
mapped 3-2
mapping to LU 6.2 return codes 6-14
program calls 6-4

characteristics 6-4
description 6-4
input and output parameters 6-4
lists 6-4
supported by AS/400 system 6-4

return codes 6-14, B-27
writing APPC application programs 6-1

 Index X-7

CPI Communications (continued)
writing application programs 1-2

CPU 3-6
See also processing unit

Create Communications Side Information (CRTCSI)
command

parameters 6-2
Create Intersystem Communications Function File

(CRTICFF) command
description 5-1

Create Mode Description (CRTMODD) command 3-8
creating

controller description
nonswitched connection example D-3
switched connection example D-1
X.21 short-hold mode example D-5, D-6

device description
nonswitched connection example D-4
switched connection example D-2
X.21 short-hold mode example D-5, D-6

line description
nonswitched connection example D-3
switched connection example D-1
X.21 short-hold mode example D-4, D-6

mode description 3-8
CRTCSI (Create Communications Side Information)

command
parameters 6-2

CRTICFF (Create Intersystem Communications Function
File) command 5-1

CRTMODD (Create Mode Description) command 3-8

D
data compression

definition 3-6
overview 3-6

data compression (DTACPR) parameter
mode description 3-8
network attribute 3-8

data network identification code (DNIC) D-5
data queue

waiting to use 5-8
data stream

communications
definition 3-1

general
definition 3-1

database file object T8189DB example E-2, F-2
DDI (distributed data interface)

communications line used by APPC 1-4
DDM (distributed data management) 1-2

See also db4307
definition 1-2

DDS keyword
ALWWRT keyword A-2

DDS keyword (continued)
CONFIRM keyword A-2
CTLDTA keyword A-2
DETACH keyword A-2
DFREVOKE keyword A-2
EOS keyword A-2
EVOKE keyword A-2
FAIL keyword A-2
FMTNAME keyword A-2
FRCDTA keyword A-2
INVITE keyword A-2
PRPCMT keyword A-2
RCVCONFIRM keyword A-2
RCVCTLDTA keyword A-2
RCVDETACH keyword A-2
RCVFAIL keyword A-2
RCVROLLB keyword A-2
RCVTKCMT keyword A-2
RCVTRNRND keyword A-2
RECID keyword A-2
RQSWRT keyword A-2
RSPCONFIRM keyword A-2
SECURITY keyword A-2
SYNLVL keyword A-2
TIMER keyword A-2
TNSSYNLVL keyword A-2
VARLEN keyword A-2

DEACTIVATE_SESSION session control verb C-2
DEFINE_LOCAL_LU definition verb C-2
DEFINE_MODE definition verb C-2
DEFINE_REMOTE_LU definition verb C-2
definition

protected password 3-18
Delete File (DLTF) command

description 5-1
deleting

configuration descriptions 2-4
detach function 5-9
device

deciding which to use 3-3
system-created for APPC 3-22

device description
definition 2-3
nonswitched connection example D-4
switched connection example D-2
X.21 short-hold mode example D-5, D-6

Display APPN Information (DSPAPPNINF) command 3-12
display file

waiting to use 5-8
Display File Description (DSPFD) command

description 5-1
Display File Field Description (DSPFFD) command

description 5-1
display file object T8189DSP example E-2, F-1
Display Mode Status (DSPMODSTS) command

description 4-5

X-8 OS/400 APPC Programming V4R1

Display Mode Status (DSPMODSTS) command (continued)
parameters 4-5

display station pass-through 1-2
See also db3402
definition 1-2

DISPLAY_LOCAL_LU definition verb C-2
DISPLAY_MODE definition verb C-2
DISPLAY_REMOTE_LU definition verb C-2
displaying

APPN information 3-12
distributed data interface (DDI)

communications line used by APPC 1-4
distributed data management (DDM) 1-2

See also db4307
definition 1-2

Distributed Relational Database Architecture (DRDA) 1-2
definition 1-2

distribution services
See also db3410
SNA (Systems Network Architecture) 1-2

DLTF (Delete File) command 5-1
DNIC (data network identification code) D-5
DRDA (Distributed Relational Database Architecture) 1-2

See also db3702
definition 1-2

DSPAPPNINF (Display APPN Information) command 3-12
DSPFD (Display File Description) command 5-1
DSPFFD (Display File Field Description) command 5-1
DSPMODSTS (Display Mode Status) command

description 4-5
DTACPR (data compression) parameter

mode description 3-8
network attribute 3-8

DTACPRINM (intermediate node data compression) param-
eter

network attribute 3-8
duplicate profiles 3-21

See also &b4302., &b4302n.

E
electronic customer support 1-3

See also db4121
definition 1-3

End Mode (ENDMOD) command
parameters 4-3

end-of-session (EOS) function
description 5-10
ICF general considerations 7-4
sending APPC FMH7 5-10

ending
communications support 4-1

ENDMOD (End Mode) command
parameters 4-3

error
program start request B-27

Ethernet
communications line used by APPC 1-4

evoke function
description 5-3
sending APPC FMH5 5-3
using device configured as SNGSSN(*YES) 5-3

example
compression

fast and slow lines 3-11
fast line 3-10
intermediate node request 3-11
one way heavy traffic 3-11
processor utilization 3-11
slow line 3-10
specialized mode 3-11

configuration
compression 3-10
defining controller descriptions for programs communi-

cating on the same system D-6
nonswitched connection without APPN support D-3
switched connection without APPN support D-1
two-system APPC network D-1, D-3
X.21 short-hold mode D-4

objects used by CPI Communications
communications side information F-1
database file F-2
display file F-1

objects used by ICF programs
database file object E-2
display file object E-2
ICF file object E-1

program
COBOL/400 CPI Communications local program for

inquiry application F-16
COBOL/400 CPI Communications remote program for

inquiry application F-25
COBOL/400 ICF local program for inquiry

application E-18
COBOL/400 ICF remote program for inquiry

application E-27
ILE C/400 CPI Communications local program for

inquiry application F-2
ILE C/400 CPI Communications remote program for

inquiry application F-9
ILE C/400 ICF local program for inquiry

application E-2
ILE C/400 ICF remote program for inquiry

application E-11
RPG/400 CPI Communications local program for

inquiry application F-33
RPG/400 CPI Communications remote program for

inquiry application F-44
RPG/400 ICF local program for inquiry

application E-34
RPG/400 ICF remote program for inquiry

application E-41
using CPI Communications F-1

 Index X-9

example (continued)
program (continued)

using ICF E-1
Extract_Conversation_State 6-7
Extract_Conversation_Type 6-7
Extract_Maximum_Buffer_Size 6-7
Extract_Partner_LU_Name 6-7
Extract_Security_User_ID 6-7

F
fail function

sending APPC FMH7 5-8
feedback area E-3
file object example E-1, E-2
file transfer support (FTS) 1-3

See also db3442
definition 1-3

flip-flop
half-duplex 3-1
send-and-receive mode 3-1

flow diagram
CPI Communications inquiry application 6-10
general description 5-17
ICF inquiry applications 5-17
inquiry applications using LU 6.2 verbs 5-19

FLUSH basic conversation verb C-11
force-data (FRCDTA) function 5-5
format-name (FMTNAME) function 5-6
FORTRAN/400 programming language

user-written applications 1-2
frame relay

communications line used by APPC 1-4
frame-relay

network interface description 2-2
FTS (file transfer support) 1-3

See also db3442
definition 1-3

function
allow-write (ALWWRT) 5-9
CONFIRM 5-5
control data (CTLDTA) 5-5
DETACH 5-9
end-of-session (EOS) 5-10
FAIL 5-8
force-data (FRCDTA) 5-5
format-name (FMTNAME) 5-6
INVITE 5-7
PRPCMT 5-5
request-to-write (RQSWRT) 5-9
respond-to-confirm (RSPCONFIRM) 5-9
timer 5-9
transaction-synchronization-level (TNSSYNLVL) 5-6
variable buffer management (VARBUFMGT)

on read operations 5-7
on write operations 5-6

G
GDS ID (general data stream identifier) 3-2

definition 3-1
general data stream

definition 3-1
general information

AS/400 system manuals X-1
communications architecture manuals X-1
customer manuals X-1
planning and installation manuals X-1
programming manuals X-1
system operation manuals X-1

general security considerations 3-20
get-attributes operation 5-9
GET_ATTRIBUTES basic conversation verb C-11
GET_TP_PROPERTIES verb C-17
GET_TYPE verb C-17

H
half-duplex flip-flop protocol 3-1
high-level language (HLL) A-1

chart A-1
HLL (high-level language)

chart A-1

I
I/O feedback area 5-12, E-3

See also db3442
IBM-supplied applications 1-2
ICF (intersystem communications function) 1-2

conversation
basic 3-3
protected 3-6

corresponding CPI Communications calls
table 6-6

file 1-2
See also db3442
commands for managing ICF file 5-1
description 5-1
object example E-1
waiting to use 5-8
writing application programs 1-2

interface
application considerations 7-1

language operations
chart A-1

operation
close 5-11
get-attributes 5-9
read 5-7
read-from-invited-program-devices 5-7
release 5-10

program
example of objects used E-1
file object example E-1, E-2

X-10 OS/400 APPC Programming V4R1

ICF (intersystem communications function) (continued)
return code 0014

turnaround indication E-12
identifier (GDS ID)

definition 3-1
IDLC (integrated services digital network data link control)

communications line used by APPC 1-4
ILE COBOL/400 programming language

user-written applications 1-2
ILE RPG/400 programming language

user-written applications 1-2
inbound data compression (INDTACPR) parameter

mode description 3-8
increasing performance

buffer size 8-1
INDTACPR (inbound data compression) parameter

mode description 3-8
Initialize_Conversation 6-6
INITIALIZE_SESSION_LIMIT control operator verb C-1
input

ICF general considerations 7-3
input parameter

description 6-4
inquiry application

CPI Communications local program example
COBOL/400 F-16
ILE C/400 F-2
RPG/400 F-33

CPI Communications remote program example
COBOL/400 F-25
ILE C/400 F-9
RPG/400 F-44

ICF local program example
COBOL/400 E-18
ILE C/400 E-2
RPG/400 E-34

ICF remote program example
COBOL/400 E-27
ILE C/400 E-11
RPG/400 E-41

Integrated Language Environment C/400 programming lan-
guage

example program
CPI Communications local program for inquiry applica-

tions F-2
CPI Communications remote program for inquiry appli-

cations F-9
ICF local program for inquiry applications E-2
ICF remote program for inquiry applications E-11

Integrated Language Environment C/40O (ILE C/400) pro-
gramming language

user-written applications 1-2
Integrated Language Environment COBOL/400 (ILE

COBOL/400) programming language
user-written applications 1-2

Integrated Language Environment RPG/400 (ILE RPG/400)
programming language

user-written applications 1-2
integrated services digital network (ISDN)

connection list 2-1
definition 1-4
network interface description 2-2

integrated services digital network data link control (IDLC)
communications line used by APPC 1-4

intermediate node
compression example 3-11
compression requests 3-9

intermediate node data compression (DTACPRINM) param-
eter

network attribute 3-8
intersystem communications function (ICF) 1-2

conversation
basic 3-3
protected 3-6

corresponding CPI Communications calls
table 6-6

file 1-2
See also db3442
commands for managing ICF file 5-1
description 5-1
object example E-1
waiting to use 5-8
writing application programs 1-2

interface
application considerations 7-1

language operations
chart A-1

operation
close 5-11
get-attributes 5-9
read 5-7
read-from-invited-program-devices 5-7
release 5-10

program
example of objects used E-1
file object example E-1, E-2

return code 0014
turnaround indication E-12

introduction
AS/400 APPC support 1-1

invalid password attempts using APPC 3-21
invite function 5-7
ISDN (integrated services digital network)

connection list 2-1
definition 1-4
network interface description 2-2

K
keyword

chart A-2

 Index X-11

L
language operation

chart A-1
Lempel-Ziv data compression 3-7

See also adaptive dictionary-based compression
line description

nonswitched connection example D-3
switched connection example D-1
X.21 short-hold mode example D-4, D-6

line speed
compression based on 3-9

location parameter
device description 3-3
local location name 3-3
mode 3-3
remote location name 3-3
remote network ID 3-3

low-entry networking node
APPN network limitations 2-4
definition 2-4

LU definition verb
DEFINE_LOCAL_LU C-2
DEFINE_MODE C-2
DEFINE_REMOTE_LU C-2
DISPLAY_LOCAL_LU C-2
DISPLAY_MODE C-2
DISPLAY_REMOTE_LU C-2

LU type 6.2 architecture
See also &db4399.
ACTIVATE_SESSION session control verb C-1
ALLOCATE basic conversation verb C-9
AS/400 control operator verbs C-1
AS/400 system implementation C-1
BACKOUT verb C-17
basic conversation verb

ALLOCATE C-9
CONFIRM C-10
CONFIRMED C-10
FLUSH C-11
GET_ATTRIBUTES C-11
POST_ON_RECEIPT C-14
PREPARE_FOR_SYNCPT C-14
PREPARE_TO_RECEIVE C-14
RECEIVE_AND_WAIT C-14
RECEIVE_IMMEDIATE C-16
REQUEST_TO_SEND C-16
SEND_DATA C-16
SEND_ERROR C-16
TEST C-17

change-number-of-sessions verbs C-1
CHANGE_SESSION_LIMIT control operator verb C-1
CONFIRM basic conversation verb C-10
CONFIRMED basic conversation verb C-10
control operator verb, AS/400

change-number-of-sessions verbs C-1
CHANGE_SESSION_LIMIT C-1

LU type 6.2 architecture (continued)
control operator verb, AS/400 (continued)

option sets C-25
conversation verb

basic C-9
option sets C-22

CPI Communications 6-14
DEACTIVATE_SESSION session control verb C-2
DEFINE_LOCAL_LU definition verb C-2
DEFINE_MODE definition verb C-2
DEFINE_REMOTE_LU definition verb C-2
definition verb C-2
DISPLAY_LOCAL_LU definition verb C-2
DISPLAY_MODE definition verb C-2
DISPLAY_REMOTE_LU definition verb C-2
FLUSH basic conversation verb C-11
GET_ATTRIBUTES basic conversation verb C-11
GET_TP_PROPERTIES verb C-17
GET_TYPE verb C-17
ICF implementation C-2
INITIALIZE_SESSION_LIMIT control operator verb C-1
LU definition verb

DEFINE_LOCAL_LU C-2
DEFINE_MODE C-2
DEFINE_REMOTE_LU C-2
DISPLAY_LOCAL_LU C-2
DISPLAY_MODE C-2
DISPLAY_REMOTE_LU C-2

mapped conversation verb C-3
MC_ALLOCATE C-3
MC_CONFIRM C-4
MC_CONFIRMED C-4
MC_DEALLOCATE C-4
MC_FLUSH C-5
MC_GET_ATTRIBUTES C-5
MC_POST_ON_RECEIPT C-5
MC_PREPARE_FOR_SYNCPT C-5
MC_PREPARE_TO_RECEIVE C-5
MC_RECEIVE_AND_WAIT C-6
MC_RECEIVE_IMMEDIATE C-8
MC_REQUEST_TO_SEND C-8
MC_SEND_DATA C-8
MC_SEND_ERROR C-9
MC_TEST C-9

MC_ALLOCATE mapped conversation verb C-3
MC_CONFIRM mapped conversation verb C-4
MC_CONFIRMED mapped conversation verb C-4
MC_DEALLOCATE mapped conversation verb C-4
MC_FLUSH mapped conversation verb C-5
MC_GET_ATTRIBUTES mapped conversation verb C-5
MC_POST_ON_RECEIPT mapped conversation

verb C-5
MC_PREPARE_FOR_SYNCPT mapped conversation

verb C-5
MC_PREPARE_TO_RECEIVE mapped conversation

verb C-5

X-12 OS/400 APPC Programming V4R1

LU type 6.2 architecture (continued)
MC_RECEIVE_AND_WAIT mapped conversation

verb C-6
MC_RECEIVE_IMMEDIATE mapped conversation

verb C-8
MC_REQUEST_TO_SEND mapped conversation

verb C-8
MC_SEND_DATA mapped conversation verb C-8
MC_SEND_ERROR mapped conversation verb C-9
MC_TEST mapped conversation verb C-9
miscellaneous verb

BACKOUT C-17
GET_TP_PROPERTIES C-17
GET_TYPE C-17
SET_SYNCPT_OPTIONS C-17
SYNCPT C-18
WAIT C-18

option sets for LU 6.2 control operator verb C-25
option sets for LU 6.2 conversation verb C-22
POST_ON_RECEIPT basic conversation verb C-14
PREPARE_FOR_SYNCPT basic conversation verb C-14
PREPARE_TO_RECEIVE basic conversation verb C-14
PROCESS_SESSION_LIMIT control operator verb C-1
RECEIVE_AND_WAIT basic conversation verb C-14
RECEIVE_IMMEDIATE basic conversation verb C-16
relationship to APPC support 1-1
REQUEST_TO_SEND basic conversation verb C-16
RESET_SESSION_LIMIT control operator verb C-1
return code mapping 6-14
return codes, mapping LU 6.2 to ICF C-18
SEND_DATA C-16
SEND_ERROR basic conversation verb C-16
session control verbs

ACTIVATE_SESSION C-1
DEACTIVATE_SESSION C-2

SET_SYNCPT_OPTIONS verb C-17
specifying the resource parameter C-3
SYNCPT verb C-18
TEST basic conversation verb C-17
verb

control operator C-25
miscellaneous C-17
session control C-1

WAIT verb C-18
LZ data compression 3-7

See also adaptive dictionary-based compression

M
manual

Client Access/400 X-1
communications X-1
communications architecture X-1
CPI Communications X-2
customer X-1
installation X-1

manual (continued)
planning X-1
programming X-1
system operation X-1

mapped conversation
CPI Communications 3-2
ICF 3-2

mapped conversation verb
MC_CONFIRM C-4
MC_CONFIRMED C-4
MC_DEALLOCATE C-4
MC_FLUSH C-5
MC_GET_ATTRIBUTES C-5
MC_POST_ON_RECEIPT C-5
MC_PREPARE_FOR_SYNCPT C-5
MC_PREPARE_TO_RECEIVE C-5
MC_RECEIVE_AND_WAIT C-6
MC_RECEIVE_IMMEDIATE C-8
MC_REQUEST_TO_SEND C-8
MC_SEND_DATA C-8
MC_SEND_ERROR C-9
MC_TEST C-9

mapping between LU 6.2 verbs 1-1
See also db4399

mapping LU type 6.2 and ICF return codes
table C-18

MC_ALLOCATE mapped conversation verb C-3
MC_CONFIRM mapped conversation verb C-4
MC_CONFIRMED mapped conversation verb C-4
MC_DEALLOCATE mapped conversation verb C-4
MC_FLUSH mapped conversation verb C-5
MC_GET_ATTRIBUTES mapped conversation verb C-5
MC_POST_ON_RECEIPT mapped conversation verb C-5
MC_PREPARE_FOR_SYNCPT mapped conversation

verb C-5
MC_PREPARE_TO_RECEIVE mapped conversation

verb C-5
MC_RECEIVE_AND_WAIT mapped conversation verb C-6
MC_RECEIVE_IMMEDIATE mapped conversation verb C-8
MC_REQUEST_TO_SEND mapped conversation verb C-8
MC_SEND_DATA mapped conversation verb C-8
MC_SEND_ERROR mapped conversation verb C-9
MC_TEST mapped conversation verb C-9
menu-driven communications configuration 1-3
message B-1
miscellaneous verb

BACKOUT C-17
GET_TP_PROPERTIES C-17
GET_TYPE C-17
SET_SYNCPT_OPTIONS C-17
SYNCPT C-18
WAIT C-18

mode description 2-4
See also &b3401., &b3406n.
changing 3-8
creating 3-8

 Index X-13

mode description (continued)
data compression parameters 3-8
definition 2-3

mode status
command description 4-5
displaying 4-5

N
network attributes

changing 3-8
data compression attributes 3-8

network interface description
definition 2-2

node type 2.1 architecture
relationship to APPC support 1-1

nonswitched connection
configuration example D-3

null password implementations
table 3-13

O
officer authority, security 3-21
open operation 5-3
open or acquire operation

ICF general considerations 7-1
operation

acquire 5-3
close 5-11
open 5-3
release 5-10

option set
control operator verb

table C-22
conversation verb

table C-18
outbound data compression (OUTDTACPR) parameter

mode description 3-8
OUTDTACPR (outbound data compression) parameter

mode description 3-8
output

ICF general considerations 7-2
output parameter

description 6-4
overflow data (OVRFLWDTA) parameter 5-3
Override Intersystem Communications Function File

(OVRICFF) command
description 5-1

Override Intersystem Communications Function Program
Device Entry (OVRICFDEVE) command

description 5-1
parameters 5-2

OVRICFDEVE (Override Intersystem Communications Func-
tion Program Device Entry) command 5-1

parameters 5-2

OVRICFF (Override Intersystem Communications Function
File) command

description 5-1

P
parameter

ENDMOD command 4-3
STRMOD command 4-2
VRYCFG (Vary Configuration) command 4-1

password attempts 3-21
password expiration management 3-21
PC Support/400 1-3

See also Client Access/400
physical security

description 3-12
PIP (program initialization parameters) data 5-4
POST_ON_RECEIPT basic conversation verb C-14
prepare-for-commit (PRPCMT) function

description 5-5
PREPARE_FOR_SYNCPT basic conversation verb C-14
PREPARE_TO_RECEIVE basic conversation verb C-14
prestart job

CPI Communications 8-2
prestart job entry 7-5, 8-3

See also &b3442., &b3442n.
See also &b4306., &b4306n.
See also db4306
description 7-5
format 7-5

PROCESS_SESSION_LIMIT control operator verb C-1
processing unit

data compression 3-6
profile

See also &b4302., &b4302n.
duplicate 3-21

program
example

CPI Communications F-1
ICF E-1

remote
definition E-1

program call
definition 6-4

program device entry command
description of parameters 5-2

program start request
errors B-27
ICF prestart jobs 7-5

protected conversation 3-6
protected password, definition 3-18
protected resource 3-6
protocol requirements, SNA 1-1
pseudonym

See also &b4399.
definition 6-4, 6-6

X-14 OS/400 APPC Programming V4R1

pseudonym (continued)
files for high-level languages 6-6
used for writing applications 6-6

Q
QUSRTOOL library

ATELL tool G-1

R
read operation 5-7
read-from-invited-program-devices 5-14
read-from-invited-program-devices operation 5-7
reason code

rejected program start requests
table B-28

receive-confirm (RCVCONFIRM) response indicator 5-11
receive-control-data (RCVCTLDTA) response indicator 5-12
receive-detach (RCVDETACH) response indicator 5-11
receive-fail (RCVFAIL) response indicator 5-11
receive-rollback (RCVROLLB) response indicator 5-12
receive-take-commit (RCVTKCMT) response indicator 5-12
receive-turnaround (RCVTRNRND) response indicator 5-11
RECEIVE_AND_WAIT basic conversation verb C-14
RECEIVE_IMMEDIATE basic conversation verb C-16
release operation 5-10, 7-4
remote

command
running 1-3

remote location name
considerations for using 3-3
device selection 3-4

remote program
definition E-1

Remove Intersystem Communications Function Program
Device Entry (RMVICFDEVE) command

description 5-2
request-to-write (RQSWRT) function

description 5-9
sending APPC SIGNAL 5-9

REQUEST_TO_SEND basic conversation verb C-16
REQUEST_TO_SEND_RECEIVED
RESET_SESSION_LIMIT control operator verb C-1
resource

protected 3-6
resource name

X.21 short-hold mode line D-5
respond-to-confirm (RSPCONFIRM) function 5-9
response indicator

receive-confirm 5-11
receive-control-data 5-12
receive-detach 5-11
receive-fail 5-11
receive-rollback 5-12
receive-take-commit 5-12

response indicator (continued)
receive-turnaround 5-11

resynchronization
definition 3-6

Retrieve Configuration Status (RTVCFGSTS) command 2-3
See also &b3406., &b3406n.

return code B-27
See also db4399
description B-1
major code 00 B-1
major code 02 B-4
major code 03 B-7
major code 04 B-10
major code 08 B-10
major code 11 B-10
major code 34 B-10
major code 80 B-12
major code 81 B-14
major code 82 B-17
major code 83 B-22
mapping between CPI Communications and LU 6.2 6-14
mapping LU type 6.2 and ICF C-18
using 5-13

REXX/400
user-written applications 1-2

RLE (run-length encoding)
definition 3-7

RMVICFDEVE (Remove Intersystem Communications Func-
tion Program Device Entry) command 5-2

RPG/400 programming language
example program

CPI Communications local program for inquiry applica-
tions F-33

CPI Communications remote program for inquiry appli-
cations F-44

ICF local program for inquiry applications E-34
ICF remote program for inquiry applications E-41

RTVCFGSTS (Retrieve Configuration Status) command 2-3
See also &b3406., &b3406n.

run-length encoding (RLE)
definition 3-7

running
APPC 4-1

S
SDLC (synchronous data link control)

communications line used by APPC 1-4
security

considerations 3-20
general considerations 3-12, 3-20
invalid password attempts 3-21
level 3-12
location 3-12
password expiration management 3-21
physical 3-12

 Index X-15

security (continued)
resource 3-12
session level 3-12
special authority (security officer and service) 3-21
user ID 3-12
validation tables for establishing a session 3-13

SECURITY DDS keyword
specified with evoke function 5-5

security level 3-12
See also &b4302., &b4302n.
in an APPC network 3-12

send message
ATELL tool G-1

SEND_DATA basic conversation verb C-16
SEND_ERROR basic conversation verb C-16
sense data B-1

See also db3407
session

description 3-1
ending APPC

using close operation 5-10
using end-of-session function 5-10
using release operation 5-10

establishing APPC
using open and acquire operations 5-3

session control verb
ACTIVATE_SESSION C-1
DEACTIVATE_SESSION C-2

session level security
description 3-12

session-level compression 3-6
See also compression

SET_SYNCPT_OPTIONS verb C-17
side information 6-1

See also communications side information
SNA (Systems Network Architecture) 1-2

See also db3410
definition 1-2
distribution services 1-2
protocol requirements 1-1

SNA Distribution Services (SNADS) 1-2
See also db3410

SNA FMH7 sense data
table B-28

SNA pass-through
communications line used by APPC 1-4

SNADS (SNA Distribution Services) 1-2
See also db3410

sockets 1-1
See also db4422

sockets over SNA support 1-2
special authority

security 3-21
Start Mode (STRMOD) command

parameters 4-2

starting
communications support 4-1
session

open and acquire operation 5-3
transaction

evoke function 5-3
STRMOD (Start Mode) command

parameters 4-2
subsystem description

prestart job entry 7-5
support provided by APPC

communications lines 1-4
network management 1-4

switched connection
configuration example D-1

SYNC_LEVEL_NOT_SUPPORTED_BY_PGM C-21
synchronization level

specified with evoke function 5-4
synchronous conversation

definition 3-1
synchronous data link control (SDLC)

communications line used by APPC 1-4
SYNCPT verb C-18
SYNLVL keyword 5-4
syntax, command 2-1, D-3

See also db4722
system name

important information 2-3
system-supplied format A-3

See also db3442
$$EOS system-supplied format A-3
$$EVOK system-supplied format A-3
$$EVOKET system-supplied format A-3
$$EVOKNI system-supplied format A-3
$$FAIL system-supplied format A-3
$$RCD system-supplied format A-3
$$SEND system-supplied format A-3
$$SENDET system-supplied format A-3
$$SENDNI system-supplied format A-3
$$TIMER system-supplied format A-3

Systems Network Architecture (SNA) 1-2
See also db3410
definition 1-2
distribution services 1-2
protocol requirements 1-1

T
target system

summary of user IDs 3-19
TEST basic conversation verb C-17
Test_Request_To_Send_Received 6-8
timer function 5-9
token-ring network

communications line used by APPC 1-4

X-16 OS/400 APPC Programming V4R1

Trace ICF (TRCICF) function
description 7-5, 8-3

transaction
APPC conversation 3-1
definition 3-1, 5-3
starting 5-3

transaction-synchronization-level (TNSSYNLVL) function
overview 5-6
with allow-write (ALWWRT) function 5-9
with detach function 5-10
with invite function 5-7

turnaround indication
ICF return code 0014 E-12

two-phase commit
CPI Communications 8-1
definition 3-6
ICF general considerations 7-4
resynchronization 3-6

U
underscore (_)

used in phrases 6-4
unit-of-work identifier

definition 3-5
upper case, converting

passwords 3-20
user IDs 3-20

user ID
target system 3-19

user IDs and passwords to upper case, converting 3-20
user-written application

using CPI Communications calls 1-2
using ICF files 1-2

V
validation table 3-13
variable buffer management (VARBUFMGT) function 5-6,

5-7
Vary Configuration (VRYCFG) command 4-1

See also &b3406., &b3406n.
example 4-2
parameters 4-1

vary off 4-1
vary on 4-1
verb

ALLOCATE basic conversation C-9
BACKOUT C-17
basic conversation C-9
change-number-of sessions

control operator C-1
types of C-1

change-number-of-sessions C-1
control operator

option sets C-25

verb (continued)
conversation

option sets C-22
DEACTIVATE_SESSION session control C-2
DEFINE_LOCAL_LU definition C-2
DEFINE_MODE definition C-2
DEFINE_REMOTE_LU definition C-2
DISPLAY_LOCAL_LU definition C-2
DISPLAY_MODE definition C-2
DISPLAY_REMOTE_LU definition C-2
FLUSH basic conversation C-11
GET_ATTRIBUTES basic conversation C-11
GET_TP_PROPERTIES C-17
GET_TYPE C-17
INITIALIZE_SESSION_LIMIT control operator C-1
LU definition C-2
mapped conversation C-3
MC_CONFIRM mapped conversation C-4
MC_CONFIRMED mapped conversation C-4
MC_DEALLOCATE mapped conversation C-4
MC_FLUSH mapped conversation C-5
MC_GET_ATTRIBUTES mapped conversation C-5
MC_POST_ON_RECEIPT mapped conversation C-5
MC_PREPARE_FOR_SYNCPT mapped

conversation C-5
MC_PREPARE_TO_RECEIVE mapped

conversation C-5
MC_RECEIVE_AND_WAIT mapped conversation C-6
MC_RECEIVE_IMMEDIATE mapped conversation C-8
MC_SEND_DATA mapped conversation C-8
MC_SEND_ERROR mapped conversation C-9
MC_TEST mapped conversation C-9
miscellaneous C-17
POST_ON_RECEIPT basic conversation C-14
PREPARE_FOR_SYNCPT basic conversation C-14
PREPARE_TO_RECEIVE basic conversation C-14
PROCESS_SESSION_LIMIT control operator C-1
RECEIVE_AND_WAIT basic conversation C-14
RECEIVE_IMMEDIATE basic conversation C-16
REQUEST_TO_SEND basic conversation C-16
RESET_SESSION_LIMIT control operator C-1
SEND_DATA basic conversation C-16
SEND_ERROR basic conversation C-16
session control C-1
SET_SYNCPT_OPTIONS C-17
SYNCPT C-18
WAIT C-18

Verify APPC Connection
command

verifying 1-3
VRYCFG (Vary Configuration) command 4-1

See also Vary Configuration (VRYCFG) command
example 4-2

 Index X-17

W
WAIT verb C-18
wireless

communications line used by APPC 1-4
Work with Configuration Status (WRKCFGSTS)

command 2-3
See also &b3406., &b3406n.

write operation 5-5
writing

APPC application program
CPI Communications 6-1
ICF 5-1

application program
See also db3442
See also db4399
using CPI Communications calls 1-2
using ICF files 1-2

CPI application programs 6-1
See also db4399

WRKCFGSTS (Work with Configuration Status)
command 2-3

See also &b3406., &b3406n.

X
X.21 short-hold mode

configuration example D-4
resource names D-5

X.25
packet-switching data network

communications line used by APPC 1-4

X-18 OS/400 APPC Programming V4R1

Communicating Your Comments to IBM

AS/400 Advanced Series
APPC Programming
Version 4

Publication No. SC41-5443-00

If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to
IBM. Whichever method you choose, make sure you send your name, address, and telephone number if you would like a
reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book.
However, the comments you send should pertain to only the information in this manual and the way in which the information is
presented. To request additional publications, or to ask questions or make comments about the functions of IBM products or
systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it
believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United States, you can give the RCF to the
local IBM branch office or IBM representative for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– United States and Canada: 1-800-937-3430
– Other countries: 1-507-253-5192

� If you prefer to send comments electronically, use this network ID:

 – IBMMAIL(USIB56RZ)
 – IDCLERK@RCHVMW2.VNET.IBM.COM

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

AS/400 Advanced Series
APPC Programming
Version 4

Publication No. SC41-5443-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it
believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC41-5443-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
ATTN DEPT 245
3605 HWY 52 N
ROCHESTER MN 55901-7829

Fold and Tape Please do not staple Fold and Tape

SC41-5443-00

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-5443-ðð

Spine information:

IBM AS/400 Advanced Series APPC Programming Version 4

