

IBM Systems - iSeries

Database
Database programming

Version 5 Release 4

Note
Before using this information and the product it supports, read the information in

Seventh Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/0S (product number 5722-SS1) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Database programming . .1
What's new for V5R4 .1
Printable PDF . .1
Database file concepts . . .2
DB2 Universal Database for 1Ser1es .2
Interfaces to DB2 Universal Database for 1Ser1es .2
Traditional system interface .2
SQL o .2
iSeries Navigator . .3
IBM Query for iSeries .3
Database files . .3
How database files are descrlbed .4
Externally and program-described data .4
Dictionary-described data . .5
Record format description . .5
Access path description. . .6
Naming conventions used in a database frle . .6
Database data protection and momtormg .7
Database file sizes .7
Examples: Database f11e sizes .11
Set up database files .12
Create and describe database ﬁles 12
Create a library . .13
Set up source files . . .14
Why source files are used .14
Create a source file . .14
Describe database files. . 17
Describe database files using DDS 18
Specify database file and member attributes 27
Set up physical files 34
Create a physical file . . 34
Specify physical file and member attrrbutes
when creating a physical file . 35
Implicit journaling when creating a
physical file . 37
Set up logical files . . 38
Create a logical file . . .38
Create a logical file with more than one
record format. . . 39
Define logical file members . . 43
Describe logical file record formats . 44
Describe field use for logical files . . 46
Derive new fields from existing fields . 47
Describe floating-point fields in logical files 50
Describe access paths for logical files . . 50
Select and omit records using logical files 51
Use existing access paths . . 54
Set up a join logical file . 57
Basic concepts of joining two phy51ca1 flles
(example 1) . . 57
Set up a join logical file . . 65
Use more than one field to join flles
(example 2) . 66
Read duplicate records in secondary flles
(example 3) . 68

© Copyright IBM Corp. 1998, 2006

Use join fields whose attributes are
different (example 4)

Describe fields that never appear in the

record format (example 5)

Specify key fields in join logical files
(example 6)

Specify select/omit statements in]om
logical files

Join three or more phy51ca1 flles (example

7). .
Join a physrcal frle to 1tself (example 8)

Use default data for missing records from

secondary files (example 9) . .
A complex join logical file (example 10)
Join logical file considerations .

Describe access paths for database files .
Use arrival sequence access path for database

files .

Use a keyed sequence access path for database
. 83

files .

Arrange key flelds usmg an alternatlve

collating sequence .
Arrange key fields using the SRTSEQ
parameter . R
Arrange key f1elds in ascendmg or
descending sequence .
Use more than one key field.
Prevent duplicate key values
Arrange duplicate keys

Use existing access path specrfrcatlons

paths

Secure a database

Grant file and data authorrty

Authorize a user or group using 1Ser1es

Navigator .
Types of object authorlty
Types of data authority
Specify public authority .
Define public authority for a f11e usmg
iSeries Navigator

Set a default public authorrty for new frles

using iSeries Navigator
Use database file capabilities to control I/ O
operations .

Limit access to spec1f1c f1elds of a database f1le
.97
.97

Use logical files to secure data .

Process database files . .
Database file processing;: Runtlme consrderatlons

File and member name

File processing options .
Specify the type of processmg .
Specify the initial file position .
Reuse deleted records .
Ignore the keyed sequence access path
Delay end-of-file processing

. 69

.71

.72

.73

.73
.75

.76

. 80
. 82

. 82

. 83
. 84

. 85
. 86
. 87
. 88
.91
Use floating-point fields in database file access

.91
.9
.91

.91
.92
. 93
. 94

. 95

. 95

. 96
96

97

. 98
. 98
. 98
. 99
. 99

100

. 100

iii

iv

Specify the record length 101

Ignore record formatso 101
Determine if duplicate keys exrst ..o 101
Data recovery and integrity 101
Protect your file with journaling and
commitment control 101
Write data and access paths to aux1hary
storage 102
Check changes to the record format
description 102

Check for the explratlon date of the f1le 103
Prevent the job from changing data in the

file.103
Lock shared data103
Lock records.103
Lock files.104
Lock members104
Lock record format data. 104
Database lock considerations 105
Display locked rows using iSeries
Navigator . . . 106

Display locked records usrng the Dlsplay
Record Locks (DSPRCDLCK) command . 107
Share database files in the same job or

activation group . . . 107
Open considerations for ﬁles shared in a
job or activation group 108
Input/output considerations for frles
shared in a job or activation group . . . 109
Close considerations for files shared in a
job or activation group . . . 109

Sequential-only processing of database flles 113
Open considerations for sequential-only

processing . . P b
Input/output con51derat10ns for
sequential-only processing . . . 115
Close considerations for sequentral—only
processing 115
Summary of runtime con51derat10ns for
processing database files. 116
Storage pool paging option effect on database
performance.118
Open a database file119
Open a database file member 119
Use Open Database File (OPNDBF)
command. . . . 119

Use Open Query F11e (OPNQRYF) command 121
Create a query with the Open Query File
(OPNQRYF) command 122
Use an existing record format in the f11e 122
Use a file with a different record format 124
CL program coding with the Open Query

File (OPNQRYF) command. . . . 125
The zero-length literal and the contams

(*CT) function 126
Usage notes for Open Query F11e

(OPNQRYF) commando 126
Select records without using DDS .o 127
Considerations for creating a file and

using the FORMAT parameter. 153
Considerations for arranging records . . 153

IBM Systems - iSeries: Database Database programming

Considerations for distributed data
management files . .
Considerations for writing a hlgh level
language program.

Messages sent when the Open Query F11e
(OPNQRYF) command is run . .
Use the Open Query File (OPNQRYF)
command for more than just input .
Compare date, time, and timestamp using
the Open Query File (OPNQRYF)
command .
Perform date, t1me and tlmestamp
arithmetic using the Open Query File
(OPNQRYF) command .

Use the Open Query File (OPNQRYF)
command for random processing.

Open Query File (OPNQRYF) command
Performance considerations.

Open Query File (OPNQRYF) command
Performance considerations for sort
sequence tables.

Performance comparisons w1th other
database functions.

Field use . .

Files shared in a]ob .

Checking if the record format descrlptron
changed .

Other runtime con51derat10ns for the Open
. 166

Query File (OPNQRYF) command
Typical errors when using the Open
Query File (OPNQRYF) command
Open data path considerations
Field names .

Expressions .

Built-in functions .

Restricted built-in functlons

Basic database file operations in programs.
Set a position in the file .
Read database records

Read database records using an arrrval
sequence access path . .

Read database records using a keyed
sequence access path . .

Wait for more records when end of ﬁle is
reached .

Release locked records

Update database records
Add database records

Identify which record format to add ina
file with multiple formats .
Use the force-end-of-data operation .

Delete database records .

Close a database file . e
Monitor database file errors in a program .
System handling of error messages .

Effect of error messages on file positioning
Determine which messages you want to
monitor
Manage database files .
Basic operations for managing database frles
Copy a file .

. 153

. 154

. 154

. 156

. 157

. 157

. 161

. 161

. 163

. 164
. 164
. 165

. 166

. 168
. 169
. 169
. 170
. 173
. 186
. 188
. 188
. 189

. 189

. 190

. 192
. 194
. 195
. 196

. 196
. 198
. 199
. 200
. 201
. 201

201

. 201
. 202

202

. 202

Move a file . .
Manage database members . .
Member operations common to all database
files .
Add members to flles
Change member attributes .
Rename members .
Remove members from flles

Physical file member operations . .
Initialize data in a physical file member
Clear data from physical file members .
Reorganize a physical file .
Display records in a physical file member

Use database attribute and cross-reference
information .

Display 1nformatlon about database flles
Display attributes for a file using display
table description in iSeries Navigator
Display attributes for a file using the
Display File Description (DSPFD)
command
Display the descrrptrons of the flelds ina
file .

Display the relatlonshrps between flles on

the system . .

Display the files used by programs .

Display the system cross-reference files
Write the output from a command directly to
a database file .

Example: A command output frle

Output files for the Display File

Description (DSPFD) command

Output files for the Display Journal

(DSPJRN) command .

Output files for the Dlsplay Problem

(DSPPRB) command . . .

Change database file descriptions and attrrbutes

Effects of changing fields in a file description

Change a physical file description and

attributes .

Example 1: Change a physrcal frle
description and attributes
Example 2: Change a physical file
description and attributes
Change a logical file description and
attributes .
Recover and restore your database

Recover data in a database file
Manage journals . .
Ensure data integrity with commltment
control

Reduce time in access path recovery
Save access paths .

Restore access paths .

Journal access paths .
System-managed access-path protectron
Rebuild access paths . .

The database recovery process after an

abnormal system end.

Database file recovery durmg the IPL
Database file recovery after the IPL .

. 203
. 204

. 204
. 204
. 204
. 205
. 205
. 205

205

. 206
. 206

211

. 212
. 212

. 212

. 212

. 213

. 213
. 214

215

. 216
. 216

. 216

. 217

. 217
218
218

. 219

. 220

. 221

. 221
. 222
. 222
. 222

. 228
. 230
. 230
. 230
. 231

232

. 232

. 234
. 234
. 235

Effects of the storage pool paging option
on database recovery . .
Database file recovery options table

Database save and restore .
Database considerations for save and restore

Use source files.

Work with source files

Use the source entry utility (SEU)

Use device source files .

Copy source file data. .

Load and unload data from non-lSerles

systems .

Use source files in a program .

Create an object using a source file .

Create an object from source statements in

a batch job .

Determine which source frle member was

used to create an object .

Manage a source file .

Change source file attributes

Reorganize source file member data .

Determine when a source statement was

changed . .o .

Use source files for documentatron .
Control the integrity of your database with
constraints

Set up constraints for your database
Remove unique, primary key, or check
constraints

Work with a group of constramts

Details: Work with a group of constraints

Work with constraints that are in check

pending status .

Unique constraints
Primary key constraints .
Check constraints .
Ensure data integrity with referentral constramts
Add referential constraints .

Before you add referential constramts

Define the parent file in a referential

constraint. .

Define the dependent flle ina referentlal

constraint. .

Specify referential Constramt rules

Details: Add referential constraints .

Details: Avoid constraint cycles

Verify referential constraints
Enable or disable referential Constramts
Remove referential constraints. .
Details: Remove a constraint with the CST
parameter .
Details: Remove a Constramt w1th the
TYPE parameter
Details: Ensure data integrity w1th referentlal
constraints
Example: Ensure data mtegrlty w1th
referential constraints.
Referential integrity terms .
Referential integrity enforcement .

Foreign key enforcement

Parent key enforcement .

Contents

. 236
. 236
. 237

237

. 238
. 238
. 238
. 238
. 238

. 240
. 240
. 241

. 241

. 242
. 243
. 243
. 243

. 244
. 244

. 244
. 244

. 246
. 246

246

. 247
. 249
. 250

. 250
250

. 251
. 251

. 251

. 252
. 252
. 254
. 254
. 254
. 255

. 256

. 256

. 256

. 257

. 257
. 258
. 258
. 258
. 259

A\

vi

Constraint states
Check pending status in referen’aal
constraints
Dependent file restrlctlons in check
pending .
Parent file restr1ct10ns in check pendmg
Referential integrity and CL commands

Trigger automatic events in your database.

Uses for triggers .
Benefits of using triggers in your busmess
Create trigger programs .
Add triggers using iSeries Nav1gat0r
How trigger programs work
Other important information about
working with triggers
Examples: Trigger programs
Trigger buffer sections
Add triggers
Display triggers
Remove triggers .
Enable or disable phys1cal fﬂe trlggers .
Triggers and their relationship to CL
commands .
Triggers and their relatlonshlp to referentlal
integrity .

. 259

. 260

. 260

261

. 261
. 262
. 263

263

. 263
. 264
. 264

. 264
. 269
. 282
. 285
. 286
. 286
. 286

. 287

. 288

IBM Systems - iSeries: Database Database programming

Database distribution. . 289
Double-byte character set cons1derat10ns . 289
DBCS field data types . 289
DBCS field mapping con51derat10ns . 290
DBCS field concatenation . . 291
DBCS field substring operations . . 292
Compare DBCS fields in a logical file . 292
Use DBCS fields in the Open Query File
(OPNQRYF) command . . 292
Use the wildcard function w1th DBCS flelds 292
Compare DBCS fields through the Open
Query File (OPNQRYF) command . 293
Use concatenation with DBCS fields through
the Open Query File (OPNQRYF) command . 293
Use sort sequence with DBCS . . 294
Related information for database programming . . 294
Code license and disclaimer information . 295
Appendix. Notices . 297
Programming Interface Information . . 298
Trademarks . . . 299
Terms and conditions. . 299

Database programming

This database programming topic contains information about the DB2 Universal Database™" for iSeries
(DB2® UDB for iSeries) database management system, and describes how to set up and use the database
on iSeries servers using traditional system interfaces.

Note: By using the code examples, you agree to the terms of the |”Code license and disclaimed
[information” on page 295

What’s new for V5R4
This topic highlights the changes made to this topic collection for V5R4.

The following topics are updated:

* [“Database file sizes” on page 7|

+ [“Examples: Database file sizes” on page 11|

* [‘Referential integrity and CL commands” on page 261|

* [“Trigger automatic events in your database” on page 262|

* [‘Create trigger programs” on page 263

[“‘Add triggers using iSeries Navigator” on page 264|

* ["How trigger programs work” on page 264

* [“Trigger buffer field descriptions” on page 283|

[“Add triggers” on page 285|

* [‘Remove triggers” on page 286

[“Enable or disable physical file triggers” on page 286

* [“Triggers and their relationship to CL commands” on page 287

The following topics are added into the|“Use Open Query File (OPNQRYF) command” on page 121]topic:
* [‘Open data path considerations” on page 169

* [‘Field names” on page 169

* ["Expressions” on page 170|

[‘Built-in functions” on page 173

[‘Restricted built-in functions” on page 186

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:
* The ¥ image to mark where new or changed information begins.

e The <% image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the

Printable PDF

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select[Database programming| (about 4305 KB).

© Copyright IBM Corp. 1998, 2006 1

rbafo.pdf

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDFE.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the [Adobe Web site| (www.adobe.com/products/acrobat/ readstep.html)-.ld' .

Database file concepts

These topics provide some of the basic database concepts for setting up or working with IBM® i5/0S™
database files.

DB2 Universal Database for iSeries

DB2 Universal Database for iSeries is the integrated relational database manager on the i5/0S operating
system.

DB2 UDB for iSeries is part of the base operating system, and provides access to and protection for data.
It also provides advanced functions such as referential integrity and parallel database processing.

With DB2 UDB for iSeries, independent auxiliary storage pools (ASPs), or independent disk pools, allows
you to have one or more separate databases associated with each ASP group. Databases are set up using
primary independent disk pools.

Related concepts

[[ndependent disk pools|

Interfaces to DB2 Universal Database for iSeries
DB2 Universal Database for iSeries provides several independent interfaces to the database.

Traditional system interface
The i5/0S traditional system interface is the full set of system commands and other non-SQL facilities
that let users access and modify DB2 Universal Database for iSeries data.

The traditional system interface provides a control language (CL) that can be used to create database
objects. The system interface also has an integrated facility for describing data called data description
specifications (DDS).

WebSphere® Development Studio for iSeries, an IBM licensed program, provides several utilities to
describe and process data. The data file utility (DFU) can add, change, and delete data in a database file
described by RPG/400%, DDS, and Interactive data description utility (IDDU). The source entry utility
(SEU) can be used to specify and change data in files.

SQL

Structured Query Language (SQL) is a language that can be used within host programming languages or
interactively to access information from a database.

SQL is the industry standard database interface used for accessing and modifying relational database
products. SQL uses a relational model of data; that is, it perceives all data as existing in tables. The DB2

2 IBM Systems - iSeries: Database Database programming

http://www.adobe.com/products/acrobat/readstep.html

UDB for iSeries database has SQL processing capability integrated into the system. It processes compiled
programs that contain SQL statements. To develop SQL applications, you need DB2 UDB Query Manager
and SQL Development Kit, an IBM licensed program, for the system on which you develop your
applications.

Interactive SQL is a function of the DB2 UDB Query Manager and SQL Development Kit licensed
program that allows SQL statements to run dynamically instead of in batch mode. Every interactive SQL
statement is read from the work station, prepared, and run dynamically.

Related concepts
ISQL programming|
[Introduction to DB2 UDB for iSeries Structure Query Language]

iSeries Navigator

iSeries Navigator is a no-charge feature of iSeries Access for Windows® that is bundled with the i5/0S
operating system. It provides a graphical, Microsoft® Windows interface to common i5/0S management
functions, including database.

Most database operations that you can access using iSeries Navigator are based on Structured Query
Language (SQL) functions. However, some operations are based on traditional system interfaces, such as
control language (CL) commands.

Related concepts

iSeries Navigator]|

IBM Query for iSeries
IBM Query for iSeries is an IBM licensed program used to select, format, and analyze information from
database files to produce reports and other files.

Database files

A database file is one of the several types of the system object type *FILE. A database file contains
descriptions of how input data is to be presented to a program from internal storage and how output
data is to be presented to internal storage from a program.

Database files contain members and records.

Source file

A source file contains uncompiled programming code and input data needed to create some types of
objects. It can contain source statements for such items as high-level language programs and data
description specifications (DDS). A source file can be a source physical file, diskette file, tape file, or inline
data file.

Physical file

A physical file is a database file that stores application data. It contains a description of how data is to be
presented to or received from a program and how data is actually stored in the database.

A physical file consists of fixed-length records that can have variable-length fields. It contains one record

format and one or more members. From the perspective of the SQL interface, physical files are identical
to tables.

Database programming 3

Logical file

A logical file is a database file that logically represents one or more physical files. It contains a
description of how data is to be presented to or received from a program. This type of database file
contains no data, but it defines record formats for one or more physical files.

Logical files let users access data in a sequence and format that is different from the physical files they
represent. From the perspective of the SQL interface, logical files are identical to views and indexes.

Member

Members are different sets of data, each with the same format, within one database file. Before you
perform any input or output operations on a file, the file must have at least one member.

As a general rule, a database file has only one member, the one created when the file is created. If a file
contains more than one member, each member serves as a subset of the data in the file.

Record

A record is a group of related data within a file. From the perspective of the SQL interface, records are
identical to rows.

Related concepts

[“Why source files are used” on page 14|
A source file is used when a command alone cannot supply sufficient information for creating an
object.

How database files are described

This topic discusses the ways to describe records in database files.

Records in database files can be described in two ways:

* Field-level description. The fields in the record are described to the system. Some of the things you can
describe for each field include: name, length, data type, validity checks, and text description. Database
files that are created with field-level descriptions are referred to as externally described files.

* Record-level description. Only the length of the record in the file is described to the system. The
system does not know about fields in the file. These database files are referred to as program-described
files.

Whether a file is described to the field or record level, you must describe and create the file before you
can compile a program that uses that file. That is, the file must exist on the system before you use it.

Externally and program-described data
Programs can use either externally described or program-described files.

Programs can use file descriptions in two ways:

* The program uses the field-level descriptions that are part of the file. Because the field descriptions are
external to the program itself, the data is called externally described data.

* The program uses fields that are described in the program itself; therefore, the data is called
program-described data. Fields in files that are only described to the record level must be described in
the program using the file.

However, if you choose to describe a file to the field level, the system can do more for you. For example,
when you compile your programs, the system can extract information from an externally described file
and automatically include field information in your programs. Therefore, you do not have to code the
field information in each program that uses the file.

4 IBM Systems - iSeries: Database Database programming

The following figure shows the typical relationships between files and programs on the iSeries server:

Externally Program-
Described Described
File File

Field
Level

Description
of a File

2

Program Program Program
Externally Program- Program-
Described Described Described
Data Data Data

RBAFO500-0

1 Externally Described Data
The program uses the field-level description of a file that is defined to the system. At compilation
time, the language compiler copies the external description of the file into the program.

2 Program-Described Data
The program uses a file that is described to the field level to the system, but it does not use the
actual field descriptions. At compilation time, the language compiler does not copy the external
description of the file into the program. The fields in the file are described in the program. In this
case, the field attributes (for example, field length) used in the program must be the same as the
field attributes in the external description.

3 Program-Described Data
The program uses a file that is described only to the record level to the system. The fields in the
file must be described in the program.

Externally described files can also be described in a program. You might want to use this method for
compatibility with previous systems. For example, you want to run programs on the iSeries server that
originally came from a traditional file system. Those programs use program-described data, and the file
itself is only described to the record level. At a later time, you describe the file to the field level
(externally described file) to use more of the database functions available on the system. Your old
programs, containing program-described data, can continue to use the externally described file while new
programs use the field-level descriptions that are part of the file. Over time, you can change one or more
of your old programs to use the field-level descriptions.

Dictionary-described data
Either a program-described file or an externally described file can be defined with the record format
descriptions stored in the data dictionary.

You can describe the record format information using interactive data definition utility (IDDU). Even
though the file is program-described, IBM Query for iSeries, iSeries Access, and data file utility (DFU)
will use the record format description stored in the data dictionary.

You can use IDDU to describe a file, then create the file using IDDU. The file created is an externally
described file. You can also move into the data dictionary the file description stored in an externally
described file. The system always ensures that the definitions in the data dictionary and the description
stored in the externally described file are identical.

Record format description
When you describe a database file to the system, you describe the two major parts of the file: the record
format and the access path. The record format describes the order of the fields in each record.

Database programming 5

The record format also describes each field in detail, including: length, data type (for example, packed
decimal or character), validity checks, text description, and other information.

The following example shows the relationship between the record format and the records in a physical
file:

Specifications for Record Format ITMMST:
Field Description
ITEM Zoned decimal, 5 digits,

no decimal positions
DESCRP Character, 18 positions
PRICE Zoned decimal, 5 digits,

2 decimal positions

Records:

ITEM DESCRP PRICE
| >l
35406HAMMER 01486
92201SCREWDRIVER 00649

RBAFO501-0

In this example of specifications for record format ITMMST, there are three fields. Field ITEM is zoned
decimal, five digits, with no decimal position. Field DESCRP is character, with 18 positions. Field PRICE
is zoned decimal, five digits, with two decimal positions.

A physical file can have only one record format. The record format in a physical file describes the way
the data is actually stored.

A logical file contains no data. Logical files are used to arrange data from one or more physical files into
different formats and sequences. For example, a logical file can change the order of the fields in the
physical file, or present to the program only some of the fields stored in the physical file.

A logical file record format can change the length and data type of fields stored in physical files. The
system does the necessary conversion between the physical file field description and the logical file field
description. For example, a physical file can describe a field FLDA as a packed decimal field of five digits
and a logical file using FLDA might redefine it as a zoned decimal field of seven digits. In this case,
when your program uses the logical file to read a record, the system automatically converts (unpack)
FLDA to zoned decimal format.

Access path description

When you describe a database file to the system, you describe the two major parts of the file: the record
format and the access path. An access path describes the order in which records are to be retrieved. So
when you describe an access path, you describe whether it will be a keyed sequence or arrival sequence
access path.

Related concepts

[“Describe access paths for database files” on page 82|
These topics discuss the different ways of describing access paths for database files.

Naming conventions used in a database file

The file name, record format name, and field name can be as long as 10 characters and must follow all
system naming conventions. Some high-level languages have more restrictive naming conventions than
the system does.

6 IBM Systems - iSeries: Database Database programming

For example, the RPG/400 language allows only 6-character names, while the system allows 10-character
names. In some cases, you can temporarily change (rename) the system name to one that meets the
high-level language restrictions. For more information about renaming database fields in programs, see
your high-level language topic collection.

In addition, names must be unique as follows:
¢ Field names must be unique in a record format.
* Record format names and member names must be unique in a file.

* File names must be unique in a library.

Database data protection and monitoring

The system provides features to improve the integrity and consistency of your data. Two ways to protect
data are enforcing business rules and enforcing data type rules.

You can enforce business rules using the following methods:

* Referential constraints let you put controls (constraints) on data in files you define as having a mutual
dependency. A referential constraint lets you specify rules to be followed when changes are made to
files with constraints.

* Triggers let you run your own program to take any action or evaluate changes when files are changed.
When predefined changes are made or attempted, a trigger program is run.

The system performs data type checking in certain instances to ensure, for example, that data in a
numeric field is really numeric.

In addition, the system protects data from loss using the following methods:
* Journaling and commitment control functions
* System-managed access path protection (SMAPP) support

Related concepts

[“Ensure data integrity with referential constraints” on page 250
These topics discuss how to use referential constraints in your database to ensure that it contains only
valid data.

[‘Trigger automatic events in your database” on page 262

A trigger is a set of actions that run automatically when a specified change or read operation is
performed on a specified database file. On iSeries, you define a set of trigger actions in any supported
high-level language.

[‘Recover and restore your database” on page 222|
These topics discuss the iSeries functions of recovering or restoring your database after the system
loses data.

Database file sizes

When designing files on the iSeries server, you should keep in mind the sizes for database files.

The following table lists the maximum values for database files:

Description Maximum value
Number of bytes in a record 32 766 bytes

Number of fields in a record format 8 000 fields

Number of key fields in a file 120 fields

Size of key for physical and logical files 32 768 characters'

Size of key for ORDER BY (SQL) and KEYFLD 10 000 bytes
(OPNQRYF)

Number of records contained in a file member 4 294 967 294 records®

Database programming 7

Description Maximum value

Number of bytes in a file member 1 869 162 846 624 bytes®
Number of bytes in an access path 1 099 511 627 776 bytes® ®
Number of keyed logical files built over a physical file 3686 files

member

Number of physical file members in a logical file 32 members

member

Number of members that can be joined 256 members

Size of a character or DBCS field 32 766 bytes*

Size of a zoned decimal or packed decimal field 63 digits

Maximum number of distinct database files that can be ~ ~500 000

in use at one time

Maximum number of members in a physical or logical 32 767

file

Maximum number of constraints per physical file 300 constraints
Maximum number of triggers per physical file 300 triggers

Maximum number of recursive insert and update trigger 200

calls

! When a first-changed-first-out (FCFO) access path is specified for the file, the maximum value for the size of the
key for physical and logical files is 32 763 for ACCPTHSIZ(*MAXI1TB) and 1995 characters for
ACCPTHSIZ(*MAX4GB).

2 For files with keyed sequence access paths, the maximum number of records in a member varies and can be
estimated using the following formulas.

When ACCPTHSIZ(*MAX4GB) is specified, use the following formula:

2,867,200,000
10 + (.8 x key length)

When ACCPTHSIZ(*MAXI1TB) is specified, use the following formula:

725,680,000,000
12 + (.8 x key length)

These are estimated values. The actual maximum number of records can vary significantly.

3 Both the number of bytes in a file member and the number of bytes in an access path must be looked at when
message CPF5272 is sent indicating that the maximum system object size has been reached.

* The maximum size of a variable-length character or DBCS field is 32 740 bytes. DBCS-graphic field lengths are
expressed in terms of characters; therefore, the maximums are 16 383 characters (fixed length) and 16 370 characters
(variable length).

° The maximum is 4 294 966 272 bytes if the access path is created with a maximum size of 4 gigabytes (GB),
ACCPTHSIZ(*MAX4GB).

These are maximum values. There are situations where the actual limit you experience will be less than
the stated maximum. For example, certain high-level languages can have more restrictive limits than
those described above.

Keep in mind that performance can suffer as you approach some of these maximums. For example, the
more logical files you have built over a physical file, the greater the chance that system performance can
suffer (if you are frequently changing data in the physical file that causes a change in many logical file
access paths).

Normally, an iSeries database file can grow until it reaches the maximum size allowed on the system. The
system normally will not allocate all the file space at once. Rather, the system will occasionally allocate

8 IBM Systems - iSeries: Database Database programming

additional space as the file grows larger. This method of automatic storage allocation provides the best
combination of good performance and effective auxiliary storage space management.

If you want to control the size of the file, the storage allocation, and whether the file should be connected
to auxiliary storage, you can use the SIZE, ALLOCATE, and CONTIG parameters on the Create Physical
File (CRTPF) and the Create Source Physical File (CRTSRCPF) commands.

You can use the following formulas to estimate the disk size of your physical and logical files.
 For a physical file (excluding the access path) that does not contain null-capable fields:

Disk size = (number of valid and deleted records + 1) x
(record length + 1) + 20480 x (number of members) + 8192

The size of the physical file depends on the SIZE and ALLOCATE parameters on the CRTPF and
CRTSRCPF commands. If you specify ALLOCATE(*YES), the initial allocation and increment size on
the SIZE keyword must be used instead of the number of records.

* For a physical file (excluding the access path) that contains null-capable fields:

Disk size = (number of valid and deleted records + 1) x
(record length + 1) + 20480 x (number of members) +
8192 + ((number of fields in format + 8) rounded up) x
(number of valid and deleted records + 1)

The size of the physical file depends on the SIZE and ALLOCATE parameters on the CRTPF and
CRTSRCPF commands. If you specify ALLOCATE(*YES), the initial allocation and increment size on
the SIZE keyword must be used instead of the number of records.

* For a logical file (excluding the access path):

Disk size = (12288) x (number of members) + 8192

* For a keyed sequence access path the generalized equation for index size, per member, is:

let a = (LimbPageUtilization - LogicalPageHeaderSize) *
(LogicalPageHeaderSize - LeafPageUltilization - 2 * NodeSize)

let b = NumKeys * (TerminalTextPerKey + 2 * NodeSize) *
(LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)
+ CommonTextPerKey * [LimbPageUtilization + LeafPageUtilization
- 2 * (LogicalPageHeaderSize - NodeSize)]
- 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize
+ 2 * NodeSize)

let ¢ = CommonTextPerKey * [2 * NodeSize - CommonTextPerKey
- NumKeys * (TerminalTextPerKey + 2 * NodeSize)]
then NumberLogicalPages = ceil([-b - sqrt(b ** 2 - 4 * a * ¢)]
/(2% a)

and TotallndexSize = NumberLogicalPages * LogicalPageSize

This equation is used for both three and four byte indexes by changing the set of constants in the
equation as follows:

Database programming 9

Constant Three-byte index Four-byte index

NodeSize 3 4
LogicalPageHeaderSize 16 64
LimbPageUtilization .75 * LogicalPageSize .75 * LogicalPageSize
LeafPageUtilization .75 * LogicalPageSize .80 * LogicalPageSize

The remaining constants, CommonTextPerKey and TerminalTextPerKey, are probably best estimated by
using the following formulas:

CommonTextPerKey = [min(max(NumKeys - 256,0),256)
+ min(max(NumKeys - 256 * 256,0),256 * 256)
+ min(max(NumKeys - 256 * 256 * 256,0),
256 * 256 * 256)
+ min(max(NumKeys - 256 * 256 * 256 * 256,0),
256 * 256 * 256 * 256) |
* (NodeSize + 1) / NumKeys

TerminalTextPerKey = KeySizeInBytes - CommonTextPerKey

This should reduce everything needed to calculate the index size to the type of index (that is, 3 or 4
byte), the total key size, and the number of keys. The estimate should be greater than the actual index
size because the common text estimate is minimal.

Given this generalized equation for index size, the LogicalPageSize is as follows:

Table 1. LogicalPageSize values

Key Length *MAX4GB (3-byte) LogicalPageSize = *MAXITB (4-byte) LogicalPageSize
1 - 500 4096 bytes 8192 bytes

501 - 1000 8192 bytes 16 384 bytes

1001 - 2000 16 384 bytes 32 768 bytes

2001 - 10 000 N/A 65 536 bytes

10 001 - 18 000 N/A 131 072 bytes

18 001 - 26 000 N/A 262 144 bytes

26 001 - 32 768 N/A 524 288 bytes

The LogicalPageSizes in generate the following LimbPageUtilizations:

*MAX4GB (3-byte) *MAXITB (4-byte)
Key Length LimbPageUtilization LimbPageUtilization
1 - 500 3072 bytes 6144 bytes
501 - 1000 6144 bytes 12 288 bytes
1001 - 2000 12 288 bytes 24 576 bytes
2001 - 10 000 N/A 49 152 bytes
10 001 - 18 000 N/A 98 304 bytes
18 001 - 26 000 N/A 196 608 bytes
26 001 - 32 768 N/A 393 216 bytes

The LogicalPageSizes in generate the following LeafPageUtilizations:

*MAX4GB (3-byte) *MAXITB (4-byte)
Key Length LeafPageUtilization LeafPageUtilization
1 - 500 3072 bytes 6554 bytes
501 - 1000 6144 bytes 13 107 bytes
1001 - 2000 12 288 bytes 26 214 bytes
2001 - 10 000 N/A 52 428 bytes

10 IBM Systems - iSeries: Database Database programming

*MAX4GB (3-byte) *MAXITB (4-byte)

Key Length LeafPageUtilization LeafPageUtilization
10 001 - 18 000 N/A 104 857 bytes
18 001 - 26 000 N/A 209 715 bytes
26 001 - 32 768 N/A 419 430 bytes

Then to simplify the generalized equation for index size, let:

CommonTextPerKey = 0

which would cause:

TerminalTextPerKey = KeySizelnBytes

b = NumKeys * (KeySizeInBytes + 2 * NodeSize) *

(LimbPageUltilization - LogicalPageHeaderSize + 2 * NodeSize)
- 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize
+ 2 * NodeSize)

c=0
NumberLogicalPages = ceil([-b - sqrt(b ** 2)]
/ 2 * a))
=ceill (2 *b)/ (2*a)]
= ceil[-b/a]

Examples: Database file sizes

A *MAXITB (4-byte) access path with 120 byte keys and 500 000 records TotallndexSize has a
TotallndexSize in bytes as follows:

a

(LimbPageUtilization - LogicalPageHeaderSize) =
(LogicalPageHeaderSize - LeafPageUtilization - 2 * NodeSize)
(6144 - 64) *

(64 - 6554 - 2 * 4)

6080 * -6498

-39,507,840

NumKeys * (KeySizeInBytes + 2 * NodeSize) *
(LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)
- 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize
+ 2 * NodeSize)

500,000 * (120 + 2 x 4) *

(6144 - 64 + 2 4)

-2 %4 % (6554 - 64 + 2 % 4)

500,000 * 128 =*

6088
- 8 * 6498
= 3.896319%e+11
NumberLogicalPages = ceil[-b/a]
= ceil[-3.896319e+11/-39507840]
= 9863

TotalIndexSize

The equation for index size in previous versions of the operating system produces the following result:

NumberLogicalPages * LogicalPageSize
9863 * 8192
80,797,696 bytes

Database programming

11

(number of keys) * (key length + 8) =*
(0.8) * (1.85) + 4096

= (NumKeys) * (KeySizeInBytes + 8) =
(0.8) * (1.85) + 4096

500000 * 128 =

.8 % 1.85 + 4096

94,724,096

TotalIndexSize

This estimate can differ significantly from your file. The keyed sequence access path depends heavily on
the data in your records. The only way to get an accurate size is to load your data and display the file
description.

The following table shows wa list of minimum file sizes:

Description Minimum size
Physical file without a member 8192 bytes
Physical file with a single member 20 480 bytes
Keyed sequence access path 12 288 bytes

Note: Additional space is not required for an arrival sequence access path.

In addition to the file sizes, the system maintains internal formats and directories for database files.
(These internal objects are owned by user profile QDBSHR.) The following are estimates of the sizes of
those objects:

* For any file not sharing another file’s format:

Format size = (144 x number of fields) + 4096
* For files sharing their format with any other file:

Format sharing directory size = (16 x number of files
sharing the format) + 4096

* For each physical file and each physical file member having a logical file or logical file member built
over it:

Data sharing directory size = (16 x number of files
or members sharing data) + 4096

* For each file member having a logical file member sharing its access path:

Access path sharing directory size = (16 x number of files
or members sharing access path) + 4096

Set up database files

These topics discuss how to set up any iSeries database file, how to describe access paths for a database
file, and how to secure a database.

Create and describe database files

This topic provides an overview of the process of creating database files, libraries, source files, and
physical files.

The system supports several methods for describing and creating a database file:
* Interactive data definition utility (IDDU)

12 IBM Systems - iSeries: Database Database programming

You can create a database file by using IDDU, part of the WebSphere Development Studio for iSeries
licensed program. If you are using IDDU to describe your database files, you might also consider using
it to create your files.

* Control language (CL), using source entry utility (SEU) or data file utility (DFU) to specify data
description specifications (DDS).

You can create a database file by using CL. The CL database file create commands are: Create Physical
File (CRTPF), Create Logical File (CRTLF), and Create Source Physical File (CRTSRCPF). After a
database file is created, you can use SEU or DFU to describe data in the file. SEU and DFU are part of
IBM WebSphere Development Studio for iSeries licensed program. These topics focus on how to create
files using these methods.

* Structured Query Language (SQL)

You can create and describe a database file (table) by using SQL statements. SQL is the IBM relational
database language, and can be used on iSeries to interactively describe and create database files.

* iSeries Navigator
You can also create a database file (table) using iSeries Navigator.
Related concepts
[SQL programming]
[Create and use a table|
[Get started with iSeries Navigator

Create a library
A library is a system object that serves as a directory to other objects. It groups related objects and allows
the user to find objects by name.

The system-recognized identifier for the object type is *LIB. Before you can create a database file, you
must create a library to store it. You can create a library in the following ways:

* You can use iSeries Navigator to create a library (in SQL, called a schema).
* You can use the Create Library (CRTLIB) command to create the library.

When creating a library, you can specify the auxiliary storage pool (ASP) where the library is to be
stored. This allows you to create multiple, separate databases.

Create a library (schema) using iSeries Navigator

Learn how to create a library (in SQL, called schema) using iSeries Navigator.
1. From iSeries Navigator, expand the system you want to use.
Expand Databases and the database that you want to work with.
Right-click Schemas and click New Schema.
On the New Schema window, specify a schema name.
To add this schema to the list of schemas displayed, select Add to displayed list of schemas.
To create as a standard schema, select Create as a standard schema.
To create a data dictionary, select Create a data dictionary.
Specify a disk pool to contain the schema.
Specify a description.
Click OK.
Related reference
[Create Library (CRTLIB) command|

©C©X®NOOAOD

—_

Database programming 13

Set up source files
This topic describes how to set up source files and why you use them.

Related concepts

[“Use source files” on page 238
These topics describe how to enter and maintain data in a source file and how to use that source file
to create another object (for example, a file or program) on the system.

Why source files are used:
A source file is used when a command alone cannot supply sufficient information for creating an object.

A source file contains input (source) data needed to create some types of objects. For example, to create a
control language (CL) program, you must use a source file containing source statements, which are in the
form of commands. To create a logical file, you must use a source file containing data description
specifications (DDS).

To create the following objects, source files are required:
* High-level language programs

* Control language programs

* Logical files

¢ Intersystem communications function (ICF) files

¢ Commands

To create the following objects, source files can be used, but are not required:
* Physical files

* Display files

* Printer files

* Translate tables

A source file can be a database file, diskette file, tape file, or inline data file. (An inline data file is
included as part of a job.) A source database file is another type of database file. You can use a source
database file as you would any other database file on the system.

Related concepts

[‘Database files” on page 3|

A database file is one of the several types of the system object type *FILE. A database file contains
descriptions of how input data is to be presented to a program from internal storage and how output
data is to be presented to internal storage from a program.

Create a source file:
These topics describe how to create a source file.

Before creating a source file, you should first create a library. Then, to create a source file, use one of the
following commands:

e Create Source Physical File (CRTSRCPF) command

Normally, you use the CRTSRCPF command to create a source file, because many of the parameters
default to values that you usually want for a source file.

* Create Physical File (CRTPF), or Create Logical File (CRTLF) command

If you want to create a source file and define the record format and fields using data description
specifications (DDS), use the Create Physical File (CRTPF) or Create Logical File (CRTLF) command.

14 IBM Systems - iSeries: Database Database programming

As an alternative to creating a source file, you can use source files supplied with the i5/0S and other
licensed programs.

Related concepts

[‘Create a library” on page 13
A library is a system object that serves as a directory to other objects. It groups related objects and
allows the user to find objects by name.

Related reference
[Create Physical File (CRTPF) command]
[Create Logical File (CRTLF) command)

Create a source file using the Create Source Physical File (CRTSRCPF) command:

This example shows how to create a source file using the Create Source Physical File (CRTSRCPEF)
command and using the command defaults.

CRTSRCPF FILE(QGPL/FRSOURCE) TEXT('Source file')

The CRTSRCPF command creates a physical file, but with attributes appropriate for source physical files.
For example, the default record length for a source file is 92 (80 for the source data field, 6 for the source
sequence number field, and 6 for the source date field).

Related reference

[Create Source Physical File (CRTSRCPF) command|

Create source files with DDS:

If you want to create a source file with data description specifications (DDS), use the Create Physical File
(CRTPF) or Create Logical File (CRTLF) command.

If you want to create a source file for which you need to define the record format, use the CRTPF or
CRTLF command. If you create a source logical file, the logical file member should only refer to one

physical file member to avoid duplicate keys.

The following example shows the DDS needed to define the record format for a source file using the
CRTPF command:

A* R RECORD1

A F1 6S 2
A F2 6S
A F3 92A

Related reference
[Create Physical File (CRTPF) command|
[Create Logical File (CRTLF) command]

Create source files without DDS:

If many of the parameters of the Create Source Physical File (CRTSRCPF) command default to values that
you usually want for a source file, you can create the source file without data description specifications
(DDS).

When you create a source physical file without using DDS, but by specifying the record length (RCDLEN
parameter), the source created contains three fields: SRCSEQ, SRCDAT, and SRCDTA (The record length
must include 12 characters for sequence number and date-of-last-change fields so that the length of the
data portion of the record equals the record length minus 12.) The data portion of the record can be

Database programming 15

defined to contain more than one field (each of which must be character or zoned decimal). If you want
to define the data portion of the record as containing more than one field, you must define the fields
using DDS.

A record format consisting of the following three fields is automatically used for a source physical file
created using the CRTSRCPF command:

Field Name Data type and length Description

1 SRCSEQ Zoned decimal, 6 digits, 2 Sequence number for record
decimal positions

2 SRCDAT Zoned decimal, 6 digits, no Date of last update of record
decimal positions

3 SRCDTA Character, any length Data portion of the record (text)

Note: For all IBM-supplied database source files, the length of the data portion is 80 bytes. For
IBM-supplied device source files, the length of the data portion is the maximum record length for
the associated device.

IBM-supplied source files:

For your convenience, the i5/0S licensed program and other licensed programs provide a database
source file for each type of source.

This table shows these IBM-supplied source files.

File name Library name Used to create

QCBLSRC QGPL System /38" compatible COBOL

QCSRC QGPL C programs

QCLSRC QGPL CL programs

QCMDSRC QGPL Command definition statements

QDDSSRC QGPL Files

QFMTSRC QGPL Sort source

QLBLSRC QGPL COBOL/400® programs

QS36SRC #LIBRARY System/36" compatible COBOL
programs

QREXSRC QGPL Procedures Language 400/REXX
programs

QRPGSRC QRPG RPG/400 programs

QAPLISRC QPLI PL/I programs

QPLISRC QGPL PL/I programs

QARPGSRC QRPG38 System /38 environment RPG

QRPG3SRC QRPG38 System /38 environment RPG

QRPG2SRC #RPGLIB System /36 compatible RPG II

QS36PRC #RPGLIB System /36 compatible RPG II

QS36SRC #LIBRARY System /36 compatible RPG II (after
install)

QPASSRC QPAS Pascal programs

QTBLSRC QGPL Translation tables

QTXTSRC QPDA Text

You can either add your source members to these files or create your own source files. Normally, you
want to create your own source files using the same names as the IBM-supplied files, but in different
libraries (IBM-supplied files might get overlaid when a new release of the system is installed). The

IBM-supplied source files are created with the file names used for the corresponding create command (for

16 IBM Systems - iSeries: Database Database programming

example, the Create CL Program (CRTCLPGM) command uses the QCLSRC file name as the default).
Additionally, the IBM-supplied programmer menu uses the same default names. If you create your own
source files, do not place them in the same library as the IBM-supplied source files. (If you use the same
file names as the IBM-supplied names, you should ensure that the library containing your source files
precedes the library containing the IBM-supplied source files in the library list.)

Source file attributes:

This topic outlines the attributes common to most source files and the restrictions for using these
attributes.

Source files usually have the following attributes:

* A record length of 92 characters (this includes a 6-byte sequence number, a 6-byte date, and 80 bytes of
source).

* Keys (sequence numbers) that are unique even though the access path does not specify unique keys.
You are not required to specify a key for a source file. Default source files are created without keys
(arrival sequence access path). A source file created with an arrival sequence access path requires less
storage space and reduces save/restore time in comparison to a source file for which a keyed sequence
access path is specified.

* More than one member.
* Member names that are the same as the names of the objects that are created using them.
* The same record format for all records.

* Relatively few records in each member compared to most data files.

Some restrictions are:

* The source sequence number must be used as a key, if a key is specified.

* The key, if one is specified, must be in ascending sequence.

* The access path cannot specify unique keys.

* The ALTSEQ keyword is not allowed in data description specifications (DDS) for source files.

* The first field must be a 6-digit sequence number field containing zoned decimal data and two decimal
digits.

* The second field must be a 6-digit date field containing zoned decimal data and zero decimal digits.

* All fields following the second field must be zoned decimal or character.

Describe database files

These topics introduce several methods for describing iSeries database files, with focus on how to
describe database files using data description specifications (DDS) because DDS has the most options for
defining data.

If you want to describe a file just to the record level, you can use the record length (RCDLEN) parameter
on the Create Physical File (CRTPF) and Create Source Physical File (CRTSRCPF) commands. If you want
to describe your file to the field level, several methods can be used to describe data to the database
system: interactive data definition utility (IDDU), Structured Query Language (SQL) commands, or data
description specifications (DDS).

Interactive data definition utility (IDDU)

Physical files can be described using IDDU. You might use IDDU because it is a menu-driven,
interactive method of describing data. You might be familiar with describing data using IDDU on
a System/36. In addition, IDDU allows you to describe multiple-format physical files for use with
Query, iSeries Access, and data file utility (DFU).

When you use IDDU to describe your files, the file definition becomes part of the i5/0S data
dictionary.

Database programming 17

DB2 Universal Database for iSeries Structured Query Language (SQL)

SQL can be used to describe an iSeries database file. It supports statements to describe the fields
in the database file, and to create the file.

SQL was created by IBM to meet the need for a standard and common database language. It is
currently used on all IBM DB2 platforms and on many other database implementations from
many different manufacturers.

When database files are created using the DB2 UDB for iSeries SQL language, the description of
the file is automatically added to a data dictionary in the SQL collection. The data dictionary (or
catalog) is then automatically maintained by the system.

SQL is the language of choice for accessing databases on many other platforms. It is the only
language for distributed database and heterogeneous systems.

Data description specifications (DDS)

Externally described data files can be described using DDS. Using DDS, you provide descriptions
of the field, record, and file level information.

You might use DDS because it provides the most options for the programmer to describe data in
the database. For example, only with DDS can you describe key fields in logical files.

The DDS form provides a common format for describing data externally. DDS data is column
sensitive. The examples in this manual have numbered columns and show the data in the correct
columns.

After a database file is described, you can view the description.
Related concepts
[SQL programming|
[DB2 UDB for iSeries SQL Reference

[‘Display information about database files” on page 212
You can display the file attributes for database files and device files using the display table description
operation in iSeries Navigator.

Describe database files using DDS:

When you describe a database file using data description specifications (DDS), you can describe

information at the file, record-format, join, field, key, and select/omit levels.

* File-level DDS give the system information about the entire file. For example, you can specify whether
all the key field values in the file must be unique.

* Record format level DDS give the system information about a specific record format in the file. For
example, when you describe a logical file record format, you can specify the physical file that it is
based on.

* Join-level DDS give the system information about physical files used in a join logical file. For example,
you can specify how to join two physical files.

* Field-level DDS give the system information about individual fields in the record format. For example,
you can specify the name and attributes of each field.

* Key field level DDS give the system information about the key fields for the file. For example, you can
specify which fields in the record format are to be used as key fields.

* Select/omit field level DDS give the system information about which records are to be returned to the
program when processing the file. Select/omit specifications apply to logical files only.

Related concepts
[DDS for physical and logical files|

18 IBM Systems - iSeries: Database Database programming

Example: Describe a physical file using DDS:
This example shows how to describe a physical a file using DDS.

The DDS for a physical file, as shown in the next example, must be in the following order:

1 File-level entries (optional). The UNIQUE keyword is used to indicate that the value of the key
field in each record in the file must be unique. Duplicate key values are not allowed in this file.

2 Record format level entries. The record format name is specified, along with an optional text
description.

3 Field-level entries. The field names and field lengths are specified, along with an optional text
description for each field.

4 Key field level entries (optional). The field names used as key fields are specified.

5 Comment (optional).

Ax ORDER HEADER FILE (ORDHDRP)

A 5

A 1 UNIQUE

A 2 R ORDHDR TEXT('Order header record')
A 3 CUST 5 0 TEXT('Customer number')

A ORDER 5 0 TEXT('Order number')

A .

A

A .

A K CUST

A 4 K ORDER

The following example shows a physical file ORDHDRP (an order header file), with an arrival sequence
access path without key fields specified, and the DDS necessary to describe that file.

Record format of physical file ORDHDRP

Customer number (CUST) — Packed decimal length 5, No decimals

Order number (ORDER) — Packed Decimal Length 5, No decimals

Order date (ORDATE) — Packed decimal length 6, No decimals

Purchase order number (CUSORD) — Packed decimal length 15, No decimals
Shipping instructions (SHPVIA) — Character length 15

Order status (ORDSTS) — Character length 1

State (STATE) — Character length 2

Ax ORDER HEADER FILE (ORDHDRP)

A R ORDHDR TEXT('Order header record')
A CUST 5 0 TEXT('Customer Number')

A ORDER 5 0 TEXT('Order Number')

A ORDATE 6 0 TEXT('Order Date')

A CUSORD 15 0 TEXT('Customer Order No.')
A SHPVIA 15 TEXT('Shipping Instr')

A ORDSTS 1 TEXT('Order Status')

A OPRNME 10 TEXT('Operator Name')

A ORDAMT 9 2 TEXT('Order Amount')

A CUTYPE 1 TEXT('Customer Type')

A INVNBR 5 0 TEXT('Invoice Number')

A PRTDAT 6 0 TEXT('Printed Date')

A SEQNBR 5 0 TEXT('Sequence Number')

Database programming 19

> > > > >

OPNSTS 1 TEXT('Open Status')
LINES 3.0 TEXT('Order Lines')
ACTMTH 2 0 TEXT('Accounting Month')
ACTYR 2 0 TEXT('Accounting Year')
STATE 2 TEXT('State")

The R in position 17 indicates that a record format is being defined. The record format name ORDHDR is
specified in positions 19 through 28.

You make no entry in position 17 when you are describing a field; a blank in position 17 along with a
name in positions 19 through 28 indicates a field name.

The data type is specified in position 35. The valid data types are:

Entry Meaning

N A 0 T 7 ® v < »

Z
=]
-
(¢
[}

Character

Packed decimal

Zoned decimal

Binary

Floating point

Hexadecimal

Date

Time

Timestamp

1. For double-byte character set (DBCS) data types, see [“Double-byte character set|

fconsiderations” on page 289

2. The iSeries system performs arithmetic operations more efficiently for packed decimal than for
zoned decimal.

3. Some high-level languages do not support floating-point data.

4. Some special considerations that apply when you are using floating-point fields are:

The precision associated with a floating-point field is a function of the number of bits
(single or double precision) and the internal representation of the floating-point value. This
translates into the number of decimal digits supported in the significant and the maximum
values that can be represented in the floating-point field.

When a floating-point field is defined with fewer digits than supported by the precision
specified, that length is only a presentation length and has no effect on the precision used
for internal calculations.

Although floating-point numbers are accurate to 7 (single) or 15 (double) decimal digits of
precision, you can specify up to 9 or 17 digits. You can use the extra digits to uniquely
establish the internal bit pattern in the internal floating-point format so identical results are
obtained when a floating-point number in internal format is converted to decimal and back
again to internal format.

If the data type (position 35) is not specified, the decimal positions entry is used to determine the data
type. If the decimal positions (positions 36 through 37) are blank, the data type is assumed to be

character (A); if these positions contain a number 0 through 31, the data type is assumed to be packed
decimal (P).

20 IBM Systems - iSeries: Database Database programming

The length of the field is specified in positions 30 through 34, and the number of decimal positions (for
numeric fields) is specified in positions 36 and 37. If a packed or zoned decimal field is to be used in a
high-level language program, the field length must be limited to the length allowed by the high-level
language you are using. The length is not the length of the field in storage but the number of digits or
characters specified externally from storage. For example, a 5-digit packed decimal field has a length of 5
specified in DDS, but it uses only 3 bytes of storage.

Character or hexadecimal data can be defined as variable length by specifying the VARLEN field-level
keyword. Generally you would use variable length fields, for example, as an employee name within a
database. Names usually can be stored in a 30-byte field; however, there are times when you need 100
bytes to store a very long name. If you always define the field as 100 bytes, you waste storage. If you
always define the field as 30 bytes, some names are truncated.

You can use the DDS VARLEN keyword to define a character field as variable length. You can define this

field as:

* Variable-length with no allocated length. This allows the field to be stored using only the number of
bytes equal to the data (plus two bytes per field for the length value and a few overhead bytes per
record). However, performance might be affected because all data is stored in the variable portion of
the file, which requires two disk read operations to retrieve.

* Variable-length with an allocated length equal to the most likely size of the data. This allows most field
data to be stored in the fixed portion of the file and minimizes unused storage allocations common
with fixed-length field definitions. Only one read operation is required to retrieve field data with a
length less than the allocated field length. Field data with a length greater than the allocated length is
stored in the variable portion of the file and requires two read operations to retrieve the data.

Example: Describe a logical file using DDS:
This example shows how to describe a logical file using DDS.

The DDS for a logical file, shown in the next example, must be in the following order:

1 File-level entries (optional). In this example, the UNIQUE keyword indicates that for this file the
key value for each record must be unique; no duplicate key values are allowed.

For each record format:

2 Record format level entries. In this example, the record format name, the associated physical file,
and an optional text description are specified.

3 Field-level entries (optional). In this example, each field name used in the record format is
specified.

4 Key field level entries (optional). In this example, the Order field is used as a key field.

5 Select/omit field level entries (optional). In this example, all records whose Opnsts field contains

a value of N are omitted from the file’s access path. That is, programs reading records from this
file will never see a record whose OPNSTS field contains an N value.

6 Comment.
oot l 2 h B bbb B Bk T L8
Ax ORDER HEADER FILE (ORDHDRP)
A 6
A 1 UNIQUE
A 2 R ORDHDR PFILE (ORDHDRP)
A 3 ORDER TEXT('Order number')
A CUST TEXT('Customer number')
A .
A

Database programming 21

A .

A 4 K ORDER

A 0 OPNSTS 5 CMP(EQ 'N')
A S ALL

A logical file must be created after all physical files on which it is based are created. The PFILE keyword
in the previous example is used to specify the physical file or files on which the logical file is based.

Record formats in a logical file can be:
* A new record format based on fields from a physical file

e The same record format as in a previously described physical or logical file.

Fields in the logical file record format must either appear in the record format of at least one of the
physical files or be derived from the fields of the physical files on which the logical file is based.

Related concepts

[“Share existing record format descriptions in a database file” on page 25
A record format can be described once in either a physical or a logical file (except a join logical file)
and can be used by many files. When you describe a new file, you can specify that the record format
of an existing file is to be used by the new file.

[“Set up logical files” on page 3§|
These topics discuss some of the unique considerations for creating logical files.

Additional field definition functions you can describe with DDS:

You can describe additional information about the fields in the physical and logical file record formats
with function keywords (positions 45 through 80 on the DDS form).

Some of the things you can specify include:

* Validity checking keywords to verify that the field data meets your standards. For example, you can
describe a field to have a valid range of 500 to 900. (This checking is done only when data is typed on
a keyboard to the display.)

 Editing keywords to control how a field should be displayed or printed. For example, you can use the
EDTCDE(Y) keyword to specify that a date field is to appear as MM/DD/YY. The EDTCDE and
EDTWRD keywords can be used to control editing. (This editing is done only when used in a display
or printer file.)

* Documentation, heading, and name control keywords to control the description and name of a field.
For example, you can use the TEXT keyword to document a description of each field. This text
description is included in your compiler list to better document the files used in your program. The
TEXT and COLHDG keywords control text and column-heading definitions. The ALIAS keyword can
be used to provide a more descriptive name for a field. The alias, or alternative name, is used in a
program (if the high-level language supports alias names).

* Content and default value keywords to control the null content and default data for a field. The
ALWNULL keyword specifies whether a null value is allowed in the field. If ALWNULL is used, the
default value of the field is null. If ALWNULL is not present at the field level, the null value is not
allowed, character and hexadecimal fields default to blanks, and numeric fields default to zeros, unless
the DFT (default) keyword is used to specify a different value.

Use existing field descriptions and field reference files to describe a database file:

If a field was already described in an existing file, and you want to use that field description in a new file
you are setting up, you can request the system to copy that description into your new file description.

22 IBM Systems - iSeries: Database Database programming

DDS keywords REF and REFFLD allow you to refer to a field description in an existing file. This helps
reduce the effort of coding DDS statements. It also helps ensure that the field attributes are used
consistently in all files that use the field.

In addition, you can create a physical file for the sole purpose of using its field descriptions. That is, the
file does not contain data; it is used only as a reference for the field descriptions for other files. This type
of file is known as a field reference file. A field reference file is a physical file containing no data, just field
descriptions.

You can use a field reference file to simplify record format descriptions and to ensure that field
descriptions are used consistently. You can define all the fields you need for an application or any group
of files in a field reference file. You can create a field reference file using DDS and the Create Physical File
(CRTPF) command.

After the field reference file is created, you can build physical file record formats from this file without
describing the characteristics of each field in each file. When you build physical files, all you need to do
is to refer to the field reference file (using the REF and REFFLD keywords) and specify any changes. Any
changes to the field descriptions and keywords specified in your new file override the descriptions in the
field reference file.

In the following example, a field reference file named DSTREFP is created for distribution applications.
The following example shows the DDS needed to describe DSTREFP.

A* FIELD REFERENCE FILE (DSTREFP)
A R DSTREF TEXT('Field reference file')

A
Ax FIELDS DEFINED BY CUSTOMER MASTER RECORD (CUSMST)

A CuST 50 TEXT('Customer numbers')

A COLHDG('CUSTOMER' 'NUMBER')
A NAME 20 TEXT('Customer name')

A ADDR 20 TEXT('Customer address')

A

A CITY 20 TEXT('Customer city')

A

A STATE 2 TEXT('State abbreviation')
A CHECK (MF)

A CRECHK 1 TEXT('Credit check')

A VALUES('Y' 'N')

A SEARCH 6 0 TEXT('Customer name search')
A COLHDG('SEARCH CODE')

A ZIP 5 0 TEXT('Zip code')

A CHECK (MF)

A CUTYPE 15 COLHDG('CUSTOMER' 'TYPE')
A RANGE (1 5)

A

Ax FIELDS DEFINED BY ITEM MASTER RECORD (ITMAST)

A ITEM 5 TEXT('Item number')

A COLHDG('ITEM' 'NUMBER')

A CHECK(M10)

A DESCRP 18 TEXT('Item description')

A PRICE 5 2 TEXT('Price per unit')

A EDTCDE(J)

A CMP(GT 0)

A COLHDG (' PRICE")

A ONHAND 5 0 TEXT('On hand quantity')

A EDTCDE(Z)

A CMP(GE 0)

A COLHDG('ON HAND')

A WHSLOC 3 TEXT('Warehouse location')
A CHECK (MF)

A COLHDG('BIN NO')

A ALLOC R REFFLD (ONHAND *SRC)

Database programming 23

A TEXT('Allocated quantity')
A CMP(GE 0)
A COLHDG('ALLOCATED"')
A
Ax FIELDS DEFINED BY ORDER HEADER RECORD (ORDHDR)
A ORDER 5 0 TEXT('Order number')
A COLHDG('ORDER' 'NUMBER')
A ORDATE 6 0 TEXT('Order date')
A EDTCDE(Y)
A COLHDG('DATE' 'ORDERED')
A CUSORD 15 TEXT('Cust purchase ord no.")
A COLHDG('P.0." 'NUMBER')
A SHPVIA 15 TEXT('Shipping instructions')
A ORDSTS 1 TEXT('Order status code')
A COLHDG('ORDER' 'STATUS')
A OPRNME R REFFLD (NAME *SRC)
A TEXT('Operator name')
A COLHDG('OPERATOR NAME')
A ORDAMT 9 2 TEXT('Total order value')
A COLHDG('ORDER' 'AMOUNT')
A INVNBR 5 0 TEXT('Invoice number')
COLHDG('INVOICE"' 'NUMBER')
PRTDAT 6 0 EDTCDE(Y)
COLHDG('PRINTED" 'DATE')
SEQNBR 5 0 TEXT('Sequence number')
COLHDG('SEQ" 'NUMBER'")
OPNSTS 1 TEXT('Open status')
COLHDG('OPEN' 'STATUS')
LINES 30 TEXT('Lines on invoice')
COLHDG('TOTAL' 'LINES')
ACTMTH 2 0 TEXT('Accounting month')
COLHDG("ACCT' 'MONTH')
ACTYR 2 0 TEXT('Accounting year')

COLHDG('ACCT' 'YEAR')

* FIELDS DEFINED BY ORDER DETAIL/LINE ITEM RECORD (ORDDTL)

LINE 30 TEXT('Line no. this item')
COLHDG('LINE' 'NO')

QTYORD 3.0 TEXT('Quantity ordered')
COLHDG('QTY' 'ORDERED'
CMP(GE 0)

EXTENS 6 2 TEXT('Ext of QTYORD x PRICE')
EDTCDE (J)

COLHDG('EXTENSION')

* FIELDS DEFINED BY ACCOUNTS RECEIVABLE
ARBAL 8 2 TEXT('A/R balance due')
EDTCDE (J)

* WORK AREAS AND OTHER FIELDS THAT OCCUR IN MULTIPLE PROGRAMS
STATUS 12 TEXT('status description')

> > > >TTT>T>P>>>>>>>>> >

A

Assume that the DDS in the previous example is entered into a source file FRSOURCE; the member name
is DSTREFP. To create a field reference file, use the CRTPF command as follows:

CRTPF FILE(DSTPRODLB/DSTREFP)
SRCFILE(QGPL/FRSOURCE) MBR(*NONE)
TEXT('Distribution field reference file')

The parameter MBR(*NONE) tells the system not to add a member to the file (because the field reference
file never contains data and therefore does not need a member).

To describe the physical file ORDHDRP by referring to DSTREFP, use the following DDS example:

24 IBM Systems - iSeries: Database Database programming

A~ ORDER HEADER FILE (ORDHDRP) - PHYSICAL FILE RECORD DEFINITION
A REF (DSTREFP)

A R ORDHDR TEXT('Order header record')
A CUST

A ORDER
A ORDATE
A CUSORD
A SHPVIA
A ORDSTS
A OPRNME
A ORDAMT
A CUTYPE
A INVNBR
A PRTDAT
A SEQNBR
A OPNSTS
A LINES
A ACTMTH
A ACTYR
A STATE
A

VOOV OOOOOOON0OOOO0=D

The REF keyword (positions 45 through 80) with DSTREFP (the field reference file name) specified
indicates the file from which field descriptions are to be used. The R in position 29 of each field indicates
that the field description is to be taken from the reference file.

When you create the ORDHDREP file, the system uses the DSTREFP file to determine the attributes of the
fields included in the ORDHDR record format. To create the ORDHDRP file, use the CRTPF command.
Assume that the DDS in the previous example was entered into a source file QDDSSRC; the member
name is ORDHDRP.

CRTPF FILE(DSTPRODLB/ORDHDRP)
TEXT('Order Header physical file')

Note: The files used in some of the examples in this topic collection refer to this field reference file.
Use a data dictionary for field reference in a database file:

You can use a data dictionary and the interactive data description utility (IDDU) as an alternative to
using a DDS field reference file. IDDU allows you to define fields in a data dictionary.

Related concepts

[DDU Use PDFE

Share existing record format descriptions in a database file:

A record format can be described once in either a physical or a logical file (except a join logical file) and
can be used by many files. When you describe a new file, you can specify that the record format of an
existing file is to be used by the new file.

Sharing existing record format descriptions can help reduce the number of DDS statements that you
normally code to describe a record format in a new file and can save auxiliary storage space.

The file originally describing the record format can be deleted without affecting the files sharing the
record format. After the last file using the record format is deleted, the system automatically deletes the

record format description.

The following example shows the DDS for two files. The first file describes a record format, and the
second file shares the record format of the first file:

Database programming 25

A R RECORD1 PFILE(CUSMSTP)
A CUST

A NAME

A ADDR

A SEARCH

A K CUST

A

R RECORD1 PFILE (CUSMSTP)
FORMAT (CUSMSTL)
K NAME

The first example shows file CUSMSTL, in which the fields Cust, Name, Addr, and Search make up the
record format. The Cust field is specified as a key field.

The DDS in the second example shows file CUSTMSTLI, in which the FORMAT keyword names
CUSMSTL to supply the record format. The record format name must be RECORD], the same as the
record format name shown in the first example. Because the files are sharing the same format, both files
have fields Cust, Name, Addr, and Search in the record format. In file CUSMSTLI, a different key field,
Name is specified.

The following restrictions apply to shared record formats:

* A physical file cannot share the format of a logical file.

¢ Ajoin logical file cannot share the format of another file, and another file cannot share the format of a
join logical file.

* A view cannot share the format of another file, and another file cannot share the format of a view. (In

the Structured Query Language (SQL), a view is an alternative representation of data from one or more
tables. It can include all or some of the columns contained in the table or tables on which it is defined.)

If the original record format is changed by deleting all related files and creating the original file and all
the related files again, it is changed for all files that share it. If only the file with the original format is
deleted and re-created with a new record format, all files previously sharing that file’s format continue to
use the original format.

If a logical file is defined but no field descriptions are specified and the FORMAT keyword is not
specified, the record format of the first physical file (specified first on the PFILE keyword for the logical
file) is automatically shared. The record format name specified in the logical file must be the same as the
record format name specified in the physical file.

To find out if a file shares a format with another file, use the RCDFMT parameter on the Display
Database Relations (DSPDBR) command.

Record format relationships between physical and logical database files:

When you change, add, and delete fields with the Change Physical File (CHGPF) command, a certain
relationship exists between the physical and logical files that share the same record format.

* When you change the length of a field in a physical file, you also change the length of the logical file’s
field.

* When you add a field to the physical file, the field is also added to the logical file.

* When you delete a field in the physical file, the field is also deleted from the logical file unless there is
another dependency in DDS, such as a keyed field or a select/omit statement.

Record format sharing limitation with physical and logical database files:

26 IBM Systems - iSeries: Database Database programming

You might encounter this record format sharing limitation when you are duplicating the same database
object multiple times.

A record format can only be shared by 32K objects. Error messages are issued when you reach this
limitation.

Note: Format sharing is performed for files that are duplicated. The format is shared up to 32 767 times.
Beyond 32 767 times, if a file that shares the format is duplicated, a new format is created for the
duplicated file.

Specify database file and member attributes:

When you create a database file, database attributes are stored with the file and members. You specify
attributes with database command parameters.

Related concepts

[Control language (CL)|

Related reference

[Create Physical File (CRTPF) command|

[Create Logical File (CRTLF) command]

[Create Source Physical File (CRTSRCPF) command|
[Add Physical File Member (ADDPFM) command)|
[Add Logical File Member (ADDLFM) command|
[Change Physical File (CHGPF) command]

[Change Physical File Member (CHGPFM) command|
[Change Logical File (CHGLF) command|

[Change Logical File Member (CHGLFM) command|
[Change Source Physical File (CHGSRCPF) command|

Specify file name and member name (FILE and MBR) parameters:

When you create a database file, you can name the file and the member with the FILE and MBR
parameters.

You name a file with the FILE parameter in the create command. You also name the library where the file
is stored. When you create a physical or logical file, the system normally creates a member with the same
name as the file. You can, however, specify a member name with the MBR parameter in the create
command. You can also choose not to create any members by specifying MBR(*NONE) in the create
command.

Note: The system does not automatically create a member for a source physical file.
Specify the physical file member control (DTAMBRS) parameter:

You can control the reading of the physical file members with the DTAMBRS parameter on the Create
Logical File (CRTLF) command.

You can specify:
¢ The order in which the physical file members are to be read.
* The number of physical file members to be used.

Related concepts

Database programming 27

[‘Define logical file members” on page 43|
You can define members in logical files to separate the data into logical groups. The logical file
member can be associated with one or several physical file members.

Specify the source file and source member (SRCFILE and SRCMBR) parameters:

You can use the SRCFILE and SRCMBR parameters to specify the names of the source file and members
that contain the DDS statements.

If you do not specify a name:
* The default source file name is QDDSSRC.
* The default member name is the name specified on the FILE parameter.

Specify the database file type (FILETYPE) parameter:
You can specify the type of a database file with the FILETYPE parameter.

A database file type is either data (*DATA) or source (*SRC). The Create Physical File (CRTPF) and Create
Logical File (CRTLF) commands use the default data file type (*DATA).

Specify the maximum number of members allowed (MAXMBRS) parameter:
You can specify the maximum number of members that the file can hold with the MAXMBRS parameter.

The default maximum number of members for physical and logical files is one, and the default for source
physical files is *“NOMAX.

Specify where to store the data (UNIT) parameter:

The system finds a place for the file on auxiliary storage. You can specify where to store the file with the
UNIT parameter.

Note: Effective for Version 3 Release 6 the UNIT parameter is a no-operation (NOP) function for the
following commands:

* Create Physical File (CRTPF)

* Create Logical File (CRTLF)

* Create Source Physical File (CRTSRCPF)

¢ Change physical File (CHGPF)

* Change Logical File (CHGLF)

¢ Change Source Physical File (CHGSRCPF)

The parameter can still be coded; its presence does not cause an error. It will be ignored.
The UNIT parameter specifies:

* The location of data records in physical files.
* The access path for both physical files and logical files.

The data is placed on different units if:
* There is not enough space on the unit.
* The unit is not valid for your system.

An informational message indicating that the file was not placed on the requested unit is sent when file
members are added. (A message is not sent when the file member is extended.)

28 IBM Systems - iSeries: Database Database programming

UNIT parameter tips

In general, you should not specify the UNIT parameter. Let the system place the file on the disk unit of
its choosing. This is usually better for performance, and relieves you of the task of managing auxiliary
storage. If you specify a unit number and also an auxiliary storage pool, the unit number is ignored.

Related concepts

[Independent disk pools|

Specify the frequency of writing data to auxiliary storage (FRCRATIO) parameter:

You can control when database changes are written to auxiliary storage using the force write ratio
(FRCRATIO) parameter on the create, change, or override database file command.

Normally, the system determines when to write changed data from main storage to auxiliary storage.
Closing the file (except for a shared close) and the force-end-of-data operation forces remaining updates,
deletions, and additions to auxiliary storage. If you are journaling the file, the FRCRATIO parameter
should normally be *NONE.

FRCRATIO parameter tip

Using the FRCRATIO parameter has performance and recovery considerations for your system.

Related concepts

[‘Recover and restore your database” on page 222|
These topics discuss the iSeries functions of recovering or restoring your database after the system
loses data.

Specify the frequency of writing the access path (FRCACCPTH) parameter:

You can specify the frequency of writing the access path with the force access path (FRCACCPTH)
parameter. The FRCACCPTH parameter controls when an access path is written to auxiliary storage.

FRCACCPTH (*YES) forces the access path to auxiliary storage whenever the access path is changed. This
reduces the chance that the access path needs to be rebuilt if the system fails.

FRCACCPTH parameter tips

Specifying FRCACCPTH(*YES) can degrade performance when changes occur to the access path. An
alternative to forcing the access path is journaling the access path.

Related concepts

[‘Recover and restore your database” on page 222|
These topics discuss the iSeries functions of recovering or restoring your database after the system
loses data.

Specify the check for record format description changes (LVLCHK) parameter:

When the file is opened, the system checks for changes to the database file definition. You can specify the
check for record format description changes with the LVLCHK parameter.

When the file changes to an extent that your program might not be able to process the file, the system
notifies your program. The default is to do level checking. You can specify if you want level checking
when you:

* Create a file.
* Use a change database file command.

Database programming 29

You can override the system and ignore the level check using the Override with Database File (OVRDBF)
command.

Example: Level check

For example, assume that you compiled your program two months ago and, at that time, the file was
defined as having three fields in each record. Last week another programmer decided to add a new field
to the record format, so that now each record have four fields. The system notifies your program, when it
tries to open the file, that a significant change occurred to the definition of the file since the last time the
program was compiled. This notification is known as a record format level check.

Specify the current access path maintenance (MAINT) parameter:
You can specify how access paths are maintained for closed files with the MAINT parameter.

While a file is open, the system maintains the access path for this file when changes are made to the data
in it. However, because more than one access path can exist for the same data, changing data in one file
might cause changes in the access paths for other files that are not currently open (in use).

The three ways of maintaining access paths for closed files are:

¢ Immediate maintenance of an access path means that the access path is maintained when changes are
made to its associated data, whether the file is open or not. Access paths used by referential constraints
are always in immediate maintenance.

* Rebuild maintenance of an access path means that the access path is only maintained while the file is
open, not when the file is closed; the access path is rebuilt when the file is opened the next time. When
a file with rebuild maintenance is closed, the system stops maintaining the access path. When the file is
opened again, the access path is totally rebuilt. If one or more programs have opened a specific file
member with rebuild maintenance specified, the system maintains the access path for that member
until the last user closes the file member.

* Delayed maintenance of an access path means that any maintenance for the access path is done after
the file member is opened the next time and while it remains open. However, the access path is not
rebuilt as it is with rebuild maintenance. Changes to the access path are collected from the time the
member is closed until it is opened again. When it is opened, only the collected changes are merged
into the access path.

If you do not specify the type of maintenance for a file, the default is immediate maintenance.
MAINT parameter comparison:

This topic compares the influences of the immediate, rebuild, and delayed maintenances on opening and
processing files.

Table 2. MAINT values

Function Immediate maintenance Rebuild maintenance Delayed maintenance
Open Fast open because the Slow open because access =~ Moderately fast open
access path is current. path must be rebuilt. because the access path

does not have to be rebuilt,
but it must still be changed.
Slow open if extensive
changes are needed.

30 IBM Systems - iSeries: Database Database programming

Table 2. MAINT values (continued)

Function Immediate maintenance Rebuild maintenance Delayed maintenance
Process Slower update/output Faster update/output Moderately fast
operations when many operations when many update/output operations
access paths with access paths with rebuild when many access paths
immediate maintenance are maintenance are built over with delayed maintenance
built over changing data changing data and are not are built over changing
(the system must maintain ~ open (the system does not data and are not open, (the
the access paths). have to maintain the access system records the changes,
paths). but the access path itself is
not maintained).

Notes:
1. Delayed or rebuild maintenance cannot be specified for a file that has unique keys.

2. Rebuild maintenance cannot be specified for a file if its access path is being journaled.
MAINT parameter tips:

The type of access path maintenance to specify depends on the number of records and the frequency of
add, delete, or update operations on the file while it is closed.

You should use delayed maintenance for files that have relatively few changes to the access paths while
the file members are closed. Delayed maintenance reduces system overhead by reducing the number of
access paths that are maintained immediately. It might also result in faster open processing, because the
access paths do not have to be rebuilt.

You might want to specify immediate maintenance for access paths that are used frequently, or when you
cannot wait for an access path to be rebuilt when the file is opened. You might want to specify delayed
maintenance for access paths that are not used frequently, if infrequent changes are made to the record
keys that make up the access path.

In general, for files used interactively, immediate maintenance results in good response time. For files
used in batch jobs, either immediate, delayed, or rebuild maintenance is adequate, depending on the size
of the members and the frequency of changes.

Specify the recover (RECOVER) parameter:

After a failure, you must rebuild changed access paths that were not forced to auxiliary storage or
journaled with the RECOVER parameter.

To rebuild access paths and to recover data, you can use the RECOVER parameter on the following
commands. These commands specify when the access path is to be rebuilt:

* Create Physical File (CRTPF)
* Create Logical File (CRTLF)
* Create Source Physical File (CRTSRCPF)

Note: Access paths are rebuilt either during the initial program load (IPL), after the IPL, or when a file is
opened.

[Table 3 on page 32| shows your choices for possible combinations of duplicate key and maintenance
options.

Database programming 31

Table 3. Recovery options

With this duplicate key And this maintenance

option option Your recovery options are

Unique Immediate Rebuild during the IPL (*IPL) Rebuild after the IPL
(*AFTIPL, default) Do not rebuild at IPL, wait for first
open (*NO)

Not unique Immediate or delayed Rebuild during the IPL (*IPL) Rebuild after the IPL
(*AFTIPL) Do not rebuild at IPL, wait for first open
(*NO, default)

Not unique Rebuild Do not rebuild at IPL, wait for first open (*NO, default)

RECOVER parameter tip

A list of files with access paths that need to be recovered is shown on the Edit Rebuild of Access Paths
display during the next IPL if the IPL is in manual mode. You can edit the original recovery option for
the file by selecting the desired option on the display. After the IPL is complete, you can use the Edit
Rebuild of Access Paths (EDTRBDAP) command to set the sequence in which access paths are rebuilt. If
the IPL is unattended, the Edit Rebuild of Access Paths display is not shown and the access paths are
rebuilt in the order determined by the RECOVER parameter. You only see the *AFTIPL and *NO (open)
access paths.

Related concepts

[‘Recover and restore your database” on page 222
These topics discuss the iSeries functions of recovering or restoring your database after the system
loses data.

[Backup and Recovery PDH

Specify the file sharing (SHARE) parameter:

The database system allows multiple users to access and change a file at the same time. You can specify
the file sharing with the SHARE parameter.

The SHARE parameter allows sharing of opened files in the same job. For example, sharing a file in a job
allows programs in the job to share the file’s status, record position, and buffer. The file sharing can
improve performance by reducing:

* The amount of storage the job needs.
* The time required to open and close the file.
Related concepts

[‘Share database files in the same job or activation group” on page 107]

By default, the database management system lets one file be read and changed by many users at the
same time. However, you can share the database files in the same job or activation group through the
SHARE parameter.

Specify the locked file or record wait time (WAITFILE and WAITRCD) parameters:

When you create a file, you can specify how long a program waits for either the file or a record in the file
if another job has the file or record locked with the WAITFILE and WAITRCD parameters.

If the wait time ends before the file or record is released, a message is sent to the program indicating that
the job was not able to use the file or read the record.

Related concepts

["Lock records” on page 103
DB2 Universal Database for iSeries has built-in integrity for records. For example, if PGMA reads a

32 IBM Systems - iSeries: Database Database programming

record for update operation, it locks that record. Another program cannot read the same record for
update operation until PGMA releases the record, but another program can read the record just for
inquiry.

[‘Lock files” on page 104

Some file operations exclusively allocate the file for the length of the operation. When the file is
allocated exclusively, any program trying to open the file has to wait until it is released. However, you
can set a wait time for the file to become available using the WAITFILE parameter .

Specify the public authority (AUT) parameter:

Public authority is the authority a user has to a file (or other object on the system) if the user does not
have specific authority for the file or does not belong to a group with specific authority for the file. When
you create a file, you can specify public authority with the AUT parameter.

Related concepts

[“Specify public authority” on page 94|
When you create a file, you can specify and grant public authority. Read about the values you can
specify for public authority and how you can grant it.

Specify the system on which the file is created (SYSTEM) parameter:

You can specify the system on which the file is to be created with the SYSTEM parameter. You can
specify if the file is to be created on the local system or a remote system that supports distributed data
management (DDM).

Related concepts

[Distributed data management|

Specify the file and member text (TEXT) parameter:

You can specify a text description for each file and member you create with the TEXT parameter. The text
data is useful in describing information about your file and members.

Specify the coded character set identifier (CCSID) parameter:

You can specify a coded character set identifier (CCSID) for physical files with the CCSID parameter.
CCSID describes the encoding scheme and the character set for character type fields that are contained in
a file.

Related concepts

[i5/0S globalization|

Specify the sort sequence (SRTSEQ) parameter:
You can specify the sort sequence for a physical or logical file with the SRTSEQ parameter.

The values of the SRTSEQ parameter, along with the values of the CCSID and LANGID parameters,
determine which sort sequence table the file uses.

You can specify:

¢ System-supplied sort sequence tables with unique or shared collating weights. There are sort sequence
tables for each supported language.

* Any user-created sort sequence table.
* The hexadecimal value of the characters in the character set.

* The sort sequence of the current job or the one specified in the ALTSEQ parameter. The sort sequence
table is stored with the file, except when the sort sequence is *HEX.

Database programming 33

Specify the language identifier (LANGID) parameter:

You can specify the language identifier that the system uses when the SRTSEQ parameter value is
*LANGIDSHR or *LANGIDUNQ.

The values of the LANGID, CCSID, and SRTSEQ parameters determine which sort sequence table the file
uses. You can set the LANGID parameter for physical and logical files.

You can specify any language identifier supported on your system, or you can specify that the language
identifier for the current job be used.

Set up physical files

These topics discuss the unique considerations for creating a physical file.
Related concepts

[‘Describe access paths for database files” on page 82|
These topics discuss the different ways of describing access paths for database files.

Related reference

[“Example: Describe a physical file using DDS” on page 19|
This example shows how to describe a physical a file using DDS.

Create a physical file:
This topic shows how to create a physical file using data description specifications (DDS).
You need to create a library and a source file before you create a physical file.

To create a physical file, follow these steps:

1. If you are using DDS, enter DDS for the physical file into a source file. This can be done using the
source entry utility (SEU). SEU is part of IBM WebSphere Development Studio for iSeries.

2. Create the physical file. You can use the Create Physical File (CRTPF) command, or the Create Source
Physical File (CRTSRCPF) command.

The following command creates a one-member file using DDS and places it in a library called
DSTPRODLB.

CRTPF FILE(DSTPRODLB/ORDHDRP)
TEXT('Order header physical file')

As shown, this command uses defaults. For the SRCFILE and SRCMBR parameters, the system uses DDS
in the source file called QDDSSRC and the member named ORDHDRP (the same as the file name). The
file ORDHDRP with one member of the same name is placed in the library DSTPRODLB.

Similar to physical files are tables. Tables can be created using iSeries Navigator or using the CREATE
TABLE SQL statement.

Related concepts

[“Create a library” on page 13|
A library is a system object that serves as a directory to other objects. It groups related objects and
allows the user to find objects by name.

[“Create a source file” on page 14|
These topics describe how to create a source file.

[“Work with source files” on page 238
These topics describe how to enter and maintain data using various methods.

34 IBM Systems - iSeries: Database Database programming

[‘Describe database files” on page 17]

These topics introduce several methods for describing iSeries database files, with focus on how to
describe database files using data description specifications (DDS) because DDS has the most options
for defining data.

(Get started with iSeries Navigator]

Related reference

Create Physical File (CRTPF) command|

Create Source Physical File (CRTSRCPF) command|
[CREATE TABLE|

Specify physical file and member attributes when creating a physical file:

This topic describes some of the attributes you can specify for physical files and members on the Create
Physical File (CRTPF), Create Source Physical File (CRTSRCPF), Change Physical File (CHGPF), Change
Source Physical File (CHGSRCPF), Add Physical File Member (ADDPFM), and Change Physical File
Member (CHGPFM) commands.

Expiration date:

The EXPDATE parameter specifies an expiration date for each member in the file (ADDPFM, CHGPFM,
CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands).

If the expiration date is past, the system operator is notified when the file is opened. The system operator
can then override the expiration date and continue, or stop the job. Each member can have a different
expiration date, which is specified when the member is added to the file.

Related concepts

[‘Check for the expiration date of the file” on page 103
The system can verify that the data in the file you specify is still current. However, you can specify
the expiration date for the file using the EXPDATE and EXPCHK parameters.

Size of the physical file member:

The SIZE parameter specifies the maximum number of records that can be placed in each member
(CRTPF, CHGPE, CRTSRCPE, AND CHGSRCPF commands).

The following formula can be used to determine the maximum:
R+ (I*N)

where:
R is the starting record count
I is the number of records (increment) to add each time

N is the number of times to add the increment

The defaults for the SIZE parameter are:

R 10 000
I 1000
N 3 (CRTPF command)

499 (CRTSRCPF command)

Database programming 35

For example, assume that R is a file created for 5000 records plus 3 increments of 1000 records each. The
system can add 1000 to the initial record count of 5000 three times to make the total maximum 8000.
When the total maximum is reached, the system operator either stops the job or tells the system to add
another increment of records and continue. When increments are added, a message is sent to the system
history log. When the file is extended beyond its maximum size, the minimum extension is 10% of the
current size, even if this is larger than the specified increment. Instead of taking the default size or
specifying a size, you can specify *NOMAX.

Related reference

[“Database file sizes” on page 7
When designing files on the iSeries server, you should keep in mind the sizes for database files.

Storage allocation:

The ALLOCATE parameter controls the storage allocated for members when they are added to the file
(CRTPFE, CHGPFE, CRTSRCPF, and CHGSRCPF commands).

The storage allocated is large enough to contain the initial record count for a member. If you do not
allocate storage when the members are added, the system will automatically extend the storage allocation
as needed. You can use the ALLOCATE parameter only if you specified a maximum size on the SIZE
parameter. If SIZE(*NOMAX) is specified, then ALLOCATE(*YES) cannot be specified.

Method of allocating storage:

The CONTIG parameter controls the method of allocating physical storage for a member (CRTPF and
CRTSRCPF commands).

If you allocate storage, you can request that the storage for the starting record count for a member be
contiguous. That is, all the records in a member are to physically reside together. If there is not enough
contiguous storage, contiguous storage allocation is not used and an informational message is sent to the
job that requests the allocation, at the time the member is added.

Note: When a physical file is first created, the system always tries to allocate its initial storage
contiguously. The only difference between using CONTIG(*NO) and CONTIG(*YES) is that with
CONTIG(*YES) the system sends a message to the job log if it is unable to allocate contiguous
storage when the file is created. No message is sent when a file is extended after creation,
regardless of what you specified on the CONTIG parameter.

Record length:

The RCDLEN parameter specifies the length of records in the file (CRTPF and CRTSRCPF commands).

If the file is described to the record level only, then you specify the RCDLEN parameter when the file is
created. This parameter cannot be specified if the file is described using DDS, IDDU, or SQL (the system
automatically determines the length of records in the file from the field-level descriptions).

Deleted records:

The DLTPCT parameter specifies the percentage of deleted records a file can contain before you want the
system to send a message to the system history log (CRTPF, CHGPEF, CRTSRCPFE, and CHGSRCPF
commands).

When a file is closed, the system checks the member to determine the percentage of deleted records. If
the percentage exceeds the value specified in the DLTPCT parameter, a message is sent to the history log.
(For information about processing the history log, see the [Control language (CL)| topic. One reason you
might want to know when a file reaches a certain percentage of deleted records is to reclaim the space
used by the deleted records. After you receive the message about deleted records, you can run the

36 IBM Systems - iSeries: Database Database programming

Reorganize Physical File Member (RGZPFM) command to reclaim the space. You can also specify to
bypass the deleted records check by using the *NONE value for the DLTPCT parameter. *NONE is the
default for the DLTPCT parameter.

REUSEDLT parameter specifies whether deleted record space should be reused on subsequent write
operations (CRTPF and CHGPF commands). When you specify *YES for the REUSEDLT parameter, all
insert requests on that file try to reuse deleted record space. Reusing deleted record space allows you to
reclaim space used by deleted records without having to issue a RGZPFM command. When the CHGPF
command is used to change a file to reuse deleted records, it might take a long time to run, especially if
the file is large and there are already a lot of deleted records in it. It is important to note the following
items:

* The term arrival order loses its meaning for a file that reuses deleted record space. Records are no
longer always inserted at the end of the file when deleted record space is reused.

* If a new physical file is created with the reuse deleted record space attribute and the file is keyed, the
FIFO or LIFO access path attribute cannot be specified for the physical file, nor can any keyed logical
file with the FIFO or LIFO access path attribute be built over the physical file.

* You cannot change an existing physical file to reuse deleted record space if there are any logical files
over the physical file that specify FIFO or LIFO ordering for duplicate keys, or if the physical file has a
FIFO or LIFO duplicate key ordering.

* Reusing deleted record space should not be specified for a file that is processed as a direct file or if the
file is processed using relative record numbers.

Related concepts

[‘Reorganize a physical file” on page 206|

These topics describe how to reorganize physical files on the i5/0S operating system, how to suspend
or cancel reorganize operations and what type of reorganize operations you can choose.
Considerations for reorganizing physical files are also included.

[‘Reuse deleted records” on page 99|
Sometimes you might want to reuse deleted records for your database files. In this case, you can use
the REUSEDLT parameter.

Physical file capabilities:

File capabilities are used to control which input/output operations are allowed for a database file
independent of database file authority. The ALWUPD and ALWDLT parameters specify if the file is
update-capable and delete-capable (CRTPF and CRTSRCPF commands).

Related concepts

[‘Secure a database” on page 91|
These topics describe the actions you can take to secure your database.

Source type:

The SRCTYPE parameter specifies the source type for a member in a source file (ADDPFM and CHGPFM
commands).

The source type determines the syntax checker, prompting, and formatting that are used for the member.
If the user specifies a unique source type (other than iSeries supported types like COBOL and RPG), the

user must provide the programming to handle the unique type.

If the source type is changed, it is only reflected when the member is subsequently opened; members
currently open are not affected.

Implicit journaling when creating a physical file:
When a physical file is created, journaling can be started automatically.

Database programming 37

If the data area called QDFTJRN exists in the same library into which the physical file is created, and the
user is authorized to the data area, journaling will be started to the journal named in the data area if all
the following limitations are met:

* The identified library for the physical file must not be QSYS, QSYS2, QRECOVERY, QSPL, QRCL,
QRPLOB]J, QGPL, or QTEMP.

* The journal specified in the data area must exist and the user must be authorized to start journaling to
the journal.

* The first 10 bytes of the data area must contain the name of the library in which to find the journal.
¢ The second 10 bytes must contain the name of the journal.

* The third n bytes must contain the value *FILE. The value *NONE can be used to prevent journaling
from being started.

Set up logical files

These topics discuss some of the unique considerations for creating logical files.

Many of the rules for setting up logical files apply to all categories of logical files. In these topics, rules
that apply only to one category of logical file identify which category they refer to. Rules that apply to all
categories of logical files do not identify the specific categories they apply to.

Create a logical file
This topic shows how to create a logical file using data description specifications (DDS).

The physical file or files on which the logical file is based must already exist before you create a logical
file.

To create a logical file, follow these steps:

1. Type the DDS for the logical file into a source file. This can be done using the source entry utility
(SEU) or another method. The following example shows the DDS for logical file ORDHDRL (an order
header file):

Ax ORDER HEADER LOGICAL FILE (ORDHDRL)

A R ORDHDR PFILE(ORDHDRP)

A K ORDER
This file uses the key field Order (order number) to define the access path. The record format is the
same as the associated physical file ORDHDRP. The record format name for the logical file must be
the same as the record format name for the physical file because no field descriptions are given.

2. Create the logical file. You can use the Create Logical File (CRTLF) command. The following example
shows how the CRTLF command can be typed:

CRTLF FILE(DSTPRODLB/ORDHDRL)
TEXT('Order header logical file')

As shown, this command uses some defaults. For example, because the SRCFILE and SRCMBR
parameters are not specified, the system uses DDS from the IBM-supplied source file QDDSSRC, and the
source file member name is ORDHDRL (the same as the file name specified on the CRTLF command).
The file ORDHDRL with one member of the same name is placed in the library DSTPRODLB.

You can create multiple logical files over a single physical file. The maximum number of logical files that
can be created over a single physical file is 32K.

Similar to logical files are views. Views can be created using iSeries Navigator or using the CREATE
VIEW SQL statement.

Related concepts

38 IBM Systems - iSeries: Database Database programming

["Work with source files” on page 23§
These topics describe how to enter and maintain data using various methods.

[‘Identify which record format to add in a file with multiple formats” on page 19§

If your application uses a file name instead of a record format name for records to be added to the
database, and if the file used is a logical file with more than one record format, you need to write a
format selector program to determine where a record should be placed in the database.

[Create and use a view|

Related reference
[Create Logical File (CRTLF) command|

REATE VIEW

Create a logical file with more than one record format:

A multiple format logical file lets you use related records from two or more physical files by referring to
only one logical file. Each record format is always associated with one or more physical files. You can use
the same physical file in more than one record format.

The following example shows the data description specifications (DDS) for a physical file, ORDDTLP,
built from a field reference file:

Ax ORDER DETAIL FILE (ORDDTLP) - PHYSICAL FILE RECORD DEFINITION
A REF (DSTREF)

A R ORDDTL TEXT('Order detail record')
A CUST
A ORDER
A LINE

A ITEM

A QTYORD
A DESCRP
A PRICE
A EXTENS
A WHSLOC
A ORDATE
A CUTYPE
A STATE
A ACTMTH
A ACTYR
A

OO OOOOWOOOIOOOXD

A~ ORDER HEADER FILE (ORDHDRP) - PHYSICAL FILE RECORD DEFINITION
A REF (DSTREFP)

A R ORDHDR TEXT('Order header record')
A CUST

A ORDER
A ORDATE
A CUSORD
A SHPVIA
A ORDSTS
A OPRNME
A ORDMNT
A CUTYPE
A INVNBR
A PRTDAT
A SEQNBR
A OPNSTS
A LINES

OO0 OOOOOIOOD

Database programming 39

A ACTMTH R
A ACTYR R
A STATE R
A

The following example shows how to create a logical file ORDFILL with two record formats. One record
format is defined for order header records from the physical file ORDHDRP; the other is defined for
order detail records from the physical file ORDDTLP.

The logical file record format ORDHDR uses one key field, Order, for sequencing; the logical file record
format ORDDTL uses two keys fields, Order and Line, for sequencing.

The following example shows the DDS for the logical file ORDFILL.

Ax ORDER TRANSACTION LOGICAL FILE (ORDFILL)

A R ORDHDR PFILE(ORDHDRP)
A K ORDER

A

A R ORDDTL PFILE(ORDDTLP)
A K ORDER

A K LINE

A

To create the logical file ORDFILL with two associated physical files, use a Create Logical File (CRTLF)
command in the following way:

CRTLF FILE(DSTPRODLB/ORDFILL)
TEXT('Order transaction logical file')

The DDS source is in the member ORDFILL in the file QDDSSRC. The file ORDFILL with a member of
the same name is placed in the DSTPRODLB library. The access path for the logical file member
ORDFILL arranges records from both the ORDHDRP and ORDDTLP files. Record formats for both
physical files are keyed on Order as the common field. Because of the order in which they were specified
in the logical file description, they are merged in Order sequence with duplicates between files retrieved
first from the header file ORDHDRP and second from the detail file ORDDTLP. Because FIFO, LIFO, or
FCFO are not specified, the order of retrieval of duplicate keys in the same file is not guaranteed.

Note: In some circumstances, it is better to use multiple logical files, rather than to use a multiple-format
logical file. For example, when keyed access is used with a multiple-format logical file, it is
possible to experience poor performance if one of the files has very few records. Even though there
are multiple formats, the logical file has only one index, with entries from each physical file.
Depending on the kind of processing being done by the application program (for example, using
RPG SETLL and READE with a key to process the small file), the system might have to search all
index entries in order to find an entry from the small file. If the index has many entries, searching
the index might take a long time, depending on the number of keys from each file and the
sequence of keys in the index. (If the small file has no records, performance is not affected, because
the system can take a fast path and avoid searching the index.)

Control how records are retrieved in a file with multiple formats:
In a logical file with more than one record format, key field definitions are required. Each record format

has its own key definition, and the record format key fields can be defined to merge the records of the
different formats. Each record format does not have to contain every key field in the key.

40 IBM Systems - iSeries: Database Database programming

Consider the following records.

Table 4. Header record format

Record Order Cust Ordate
1 41882 41394 050688
2 32133 28674 060288

Table 5. Detail record format

Record Order Line Item Qtyord Extens
A 32133 01 46412 25 125000
B 32133 03 12481 4 001000
C 41882 02 46412 10 050000
D 32133 02 14201 110 454500
E 41882 01 08265 40 008000

In data description specifications (DDS), the header record format is defined before the detail record
format. If the access path uses the Order field as the first key field for both record formats and the Line
field as the second key field for only the second record format, both in ascending sequence, the order of
the records in the access path is:

* Record 2
* Record A
* Record D
* Record B
* Record 1
* Record E
* Record C

Note: Records with duplicate key values are arranged first in the sequence in which the physical files are
specified. Then, if duplicates still exist within a record format, the duplicate records are arranged
in the order specified by the FIFO, LIFO, or FCFO keyword. For example, if the logical file
specified the DDS keyword FIFO, then duplicate records within the format would be presented in
first-in-first-out sequence.

For logical files with more than one record format, you can use the *NONE DDS function for key fields
to separate records of one record format from records of other record formats in the same access path.
Generally, records from all record formats are merged based on key values. However, if “NONE is
specified in DDS for a key field, only the records with key fields that appear in all record formats before
the *NONE are merged. When such records are retrieved by key from more than one record format, only
key fields that appear in all record formats before the *NONE are used. To increase the number of key
fields that are used, limit the number of record formats considered.

The logical file in the following example contains three record formats, each associated with a different
physical file:

Record format Physical file Key fields

EMPMSTR EMPMSTR Empnbr (employee number) 1
EMPHIST EMPHIST Empnbr, Empdat (employed date) 2
EMPEDUC EMPEDUC Empnbr, Clsnbr (class number) 3

Note: All record formats have one key field in common, the Empnbr field.

Database programming 41

The DDS for this example is:

K EMPNBR 1

K EMPNBR 2
K EMPDAT

K EMPNBR 3
K *NONE
K CLSNBR

> > > > > >

*NONE is assumed for the second and third key fields for EMPMSTR and the third key field for
EMPHIST because no key fields follow these key field positions.

The following table shows the arrangement of the records:

Empnbr Empdat Clsnbr Record format name
426 EMPMSTR

426 6/15/74 EMPHIST

426 412 EMPEDUC

426 520 EMPEDUC

427 EMPMSTR

427 9/30/75 EMPHIST

427 412 EMPEDUC

*NONE serves as a separator for the record formats EMPHIST and EMPEDUC. All the records for
EMPHIST with the same Empnbr field are grouped together and sorted by the Empdat field. All the
records for EMPEDUC with the same Empnbr field are grouped together and sorted by the Clsnbr field.

Note: Because additional key field values are placed in the key sequence access path to guarantee the
above sequencing, duplicate key values are not predictable.

Related concepts

DDS concept

Control how records are added to a file with multiple formats:

To add a record to a multiple format logical file, you need to identify the member of the based-on
physical file to which you want the record written.

If the application you are using does not allow you to specify a particular member within a format, each
of the formats in the logical file needs to be associated with a single physical file member. If one or more
of the based-on physical files contain more than one member, you need to use the DTAMBRS parameter,
described in [“Define logical file members” on page 43 to associate a single member with each format.
Finally, give each format in the multiple format logical file a unique name. If the multiple format logical
file is defined in this way, then when you specify a format name on the add operation, you target a
particular physical file member into which the record is added.

When you add records to a multiple-format logical file and your application program uses a file name
instead of a record format name, you need to write a format selector program.

Related concepts

[‘Identify which record format to add in a file with multiple formats” on page 196]

If your application uses a file name instead of a record format name for records to be added to the
database, and if the file used is a logical file with more than one record format, you need to write a
format selector program to determine where a record should be placed in the database.

42 IBM Systems - iSeries: Database Database programming

Define logical file members:

You can define members in logical files to separate the data into logical groups. The logical file member
can be associated with one or several physical file members.

The following chart illustrates this concept:

LF1 LF1 LF1

M1 MW‘M2‘M3 M1‘M2
PF1 PF2 PF1
M1‘I:A2‘M3 M1‘M2‘M3 M1‘M2‘M3

LF1
I\/I1‘ I\/IZ‘ M3

PF1 :;jff::”:” \ “‘\‘PFZ PF3

e S N
M1‘M2 M1‘M2‘M3 MW‘MZ‘MS
RBAFO506-0

The record formats used with all logical members in a logical file must be defined in data description
specifications (DDS) when the file is created. If new record formats are needed, another logical file or
record format must be created.

The attributes of an access path are determined by the information specified in DDS and on commands
when the logical file is created. The selection of data members is specified in the DTAMBRS parameter on
the Create Logical File (CRTLF) and Add Logical File Member (ADDLFM) commands.

When a logical file is defined, the physical files used by the logical file are specified in DDS by the
record-level PFILE or JFILE keyword. If multiple record formats are defined in DDS, a PFILE keyword
must be specified for each record format. You can specify one or more physical files for each PFILE
keyword.

When a logical file is created or a member is added to the file, you can use the DTAMBRS parameter on
the CRTLF or the ADDLEFM command to specify which members of the physical files used by the logical
file are to be used for data. *NONE can be specified as the physical file member name if no members
from a physical file are to be used for data.

In the following example, the logical file has two record formats defined:

00010A R LOGRCD2 PFILE(PF1 PF2)

00020A R LOGRCD3 PFILE(PF1 PF2 PF3)

If the DTAMBRS parameter is specified on the CRTLF or ADDLFM command as in the following
example:

DTAMBRS ((PF1 M1) (PF2 (M1 M2)) (PF1 M1) (PF2 (*NONE)) (PF3 M3))

Database programming 43

Record format LOGRCD?2 is associated with physical file member M1 in PF1 and M1 and M2 in file PF2.
Record format LOGRCD3 is associated with M1 in PF1 and M3 in PF3. No members in PF2 are
associated with LOGRCD3. If the same physical file name is specified on more than one PFILE keyword,
each occurrence of the physical file name is handled as a different physical file.

If a library name is not specified for the file on the PFILE keyword, the library list is used to find the
physical file when the logical file is created. The physical file name and the library name then become
part of the logical file description. The physical file names and the library names specified on the
DTAMBRS parameter must be the same as those stored in the logical file description.

If a file name is not qualified by a library name on the DTAMBRS parameter, the library name defaults to
*CURRENT, and the system uses the library name that is stored in the logical file description for the
respective physical file name. This library name is either the library name that was specified for the file
on the PFILE DDS keyword or the name of the library in which the file was found using the library list
when the logical file was created.

When you add a member to a logical file, you can specify data members as follows:

* Specify no associated physical file members (DTAMBRS (*ALL) default). The logical file member is
associated with all the physical file members of all physical files in all the PFILE keywords specified in
the logical file DDS.

* Specify the associated physical file members (DTAMBRS parameter). If you do not specify library
names, the logical file determines the libraries used. When more than one physical file member is
specified for a physical file, the member names should be specified in the order in which records are to
be retrieved when duplicate key values occur across those members. If you do not want to include any
members from a particular physical file, either do not specify the physical file name or specify the
physical file name and *NONE for the member name. This method can be used to define a logical file
member that contains a subset of the record formats defined for the logical file.

You can use the Create Logical File (CRTLF) command to create the first member when you create the
logical file. Subsequent members must be added using the Add Logical File Member (ADDLFM)
command. However, if you are going to add more members, you must specify more than 1 for the
MAXMBRS parameter on the CRTLF command. The following example of adding a member to a logical
file uses the CRTLF command.

CRTLF ~ FILE(DSTPRODLB/ORDHDRL)

MBR(*FILE) DTAMBRS(*ALL)
TEXT('Order header Togical file')

*FILE is the default for the MBR parameter and means that the name of the member is the same as the
name of the file. All the members of the associated physical file (ORDHDRP) are used in the logical file
(ORDHDRL) member. The text description is the text description of the member.

Describe logical file record formats

For every logical file record format described with data description specifications (DDS), you must
specify a record format name and either the PFILE keyword (for simple and multiple format logical files),
or the JFILE keyword (for join logical files).

The file names specified on the PFILE or JFILE keyword are the physical files that the logical file is based
on. A simple or multiple-format logical file record format can be specified with DDS in any one of the
following ways:

* In the simple logical file record format, specify only the record format name and the PFILE keyword.
The record format for the only (or first) physical file specified on the PFILE keyword is the record
format for the logical file. The record format name specified in the logical file must be the same as the
record format name in the only (or first) physical file. Consider this example of a simple logical file:

44 1BM Systems - iSeries: Database Database programming

A R ORDDTL PFILE(ORDDTLP)

¢ Describe your own record format by listing the field names you want to include. You can specify the
field names in a different order, rename fields using the RENAME keyword, combine fields using the
CONCAT keyword, and use specific positions of a field using the SST keyword. You can also override
attributes of the fields by specifying different attributes in the logical file. Consider this example of a
simple logical file with fields specified::

R ORDHDR

A

A PFILE(ORDHDRP)
A ORDER

A

A

CUST
SHPVIA

* Specify the name of a database file for the file name on the FORMAT keyword. The record format is
shared from this database file by the logical file being described. The file name can be qualified by a
library name. If a library name is not specified, the library list is used to find the file. The file must
exist when the file you are describing is created. In addition, the record format name you specify in the
logical file must be the same as one of the record format names in the file you specify on the FORMAT
keyword. Consider this example:

PFILE (CUSMSTP)

A

A R CUSRCD
A FORMAT (CUSMSTL)
A

In the following example, a program needs:
* The fields placed in a different order
* A subset of the fields from the physical file

* The data types changed for some fields
* The field lengths changed for some fields

You can use a logical file to make these changes.

Logical File

Field D Field A Field C

Data type: Data type: Data type:
Zoned decimal | Zoned decimal| Zoned decimal

Length: 10,0 Length: 8,2 Length: 5,0
Physical File i J
Field A Field B Field C Field D
Data type: Data type:| Data type: Data type:
Zoned decimall Character Binary Character
Length: 8,2 Length: 32| Length: 2,0| Length: 10

[P PR S SUNPE SO FUIIURE Y. S . IS SR U SO ST SO
A
A R LOGREC PFILE(PF1)
A D 10S 0
A A
A C 55 0
A

RBAFO503-0

For the logical file, the DDS would be as follows:

Database programming 45

For the physical file, the DDS would be as follows:

A

A R PHYREC

A A 85 2
A B 32

A C 2B 0
A D 10

A

When a record is read from the logical file, the fields from the physical file are changed to match the
logical file description. If the program updates or adds a record, the fields are changed back. For an add
or update operation using a logical file, the program must supply data that conforms with the format
used by the logical file.

The following chart shows what types of data mapping are valid between physical and logical files.

Physical file Logical file data type
data type Character or Floating
hexadecimal |Zoned Packed Binary point Date Time Timestamp
Character or Valid See Notes |Not valid |Not valid |Not valid |Not Not Not valid
Hexadecimal 1 valid valid
Zoned See Notes 1 | Valid Valid See Notes | Valid Not Not Not Valid
2 valid valid
Packed Not valid Valid Valid See Notes | Valid Not Not Not valid
2 valid valid
Binary Not valid See Notes |See Notes |See Notes |See Notes |Not Not Not valid
2 2 3 2 valid valid
Floating point Not valid Valid Valid See Notes | Valid Not Not Not valid
2 valid valid
Date Not valid Valid Not valid |Not valid |Not valid | Valid Not Not valid
valid
Time Not valid Valid Not valid |Not valid |Not valid |Not Valid Not valid
valid
Time Stamp Not valid Not valid |Not valid [Not valid |Not valid |Valid |Valid Valid
Notes:
1. Valid only if the number of characters or bytes equals the number of digits.
2. Valid only if the binary field has zero decimal positions.
3. Valid only if both binary fields have the same number of decimal positions.

Related concepts

[“Double-byte character set considerations” on page 289|
These topics describe double-byte character set (DBCS) considerations as they apply to the database
on the iSeries system.

Describe field use for logical files:
You can specify that the fields in logical files are to be input-only, both (input/output), or neither fields.

Do this by specifying one of the following items in position 38:
Entry Meaning
Blank For simple or multiple format logical files, defaults to B (both) For join logical files, defaults to I

(input only).

46 IBM Systems - iSeries: Database Database programming

B Both input and output allowed; not valid for join logical files.
I Input only (read only).

N Neither input nor output; valid only for join logical files.

Note: The usage value (in position 38) is not used on a reference function. When another file refers to a
tield (using a REF or REFFLD keyword) in a logical file, the usage value is not copied into that
file.

Describe field use for logical files: Both:

A both field can be used for both input and output operations. Your program can read data from the field
and write data to the field. Both fields are not valid for join logical files because join logical files are
read-only files.

Describe field use for logical files: Input only:

An input-only field can be used for read operations only. Your program can read data from the field, but
cannot update the field in the file.

Typical cases of input-only fields are key fields (to reduce maintenance of access paths by preventing
changes to key field values), sensitive fields that a user can see but not update (for example, salary), and
fields for which either the translation table (TRNTBL) keyword or the substring (SST) keyword is
specified.

If your program updates a record in which you have specified input-only fields, the input-only fields are
not changed in the file. If your program adds a record that has input-only fields, the input-only fields
take default values (DFT keyword).

Describe field use for logical files: Neither:

A neither field is used neither for input nor for output. A neither field is valid only for join logical files. It
can be used as a join field in a join logical file, but your program cannot read or update a neither field.

Use neither fields when the attributes of join fields in the physical files do not match. In this case, one or
both join fields must be defined again. However, you cannot include these redefined fields in the record

format (the application program does not see the redefined fields.) Therefore, redefined join fields can be
coded N so that they do not appear in the record format.

A field with N in position 38 does not appear in the buffer used by your program. However, the field
description is displayed with the Display File Field Description (DSPFFD) command.

Neither fields cannot be used as select/omit or key fields.
Related reference

[“Describe fields that never appear in the record format (example 5)” on page 71|

Neither fields, which (N specified in position 38) can be used in join logical file for neither input nor
output, are not included in the record format. This example shows how to describe such fields that
never appear in the record format.

Derive new fields from existing fields:

Fields in a logical file can be derived from fields in the physical file on which the logical file is based or
from fields in the same logical file.

Database programming 47

For example, you can concatenate, using the CONCAT keyword, two or more fields from a physical file
to make them appear as one field in the logical file. Likewise, you can divide one field in the physical file
to make it appear as multiple fields in the logical file with the SST keyword.

Concatenated fields:

Using the CONCAT keyword, you can combine two or more fields from a physical file record format to
make one field in a logical file record format.

For example, a physical file record format contains the fields Month, Day, and Year. For a logical file, you
concatenate these fields into one field, Date.

The field length for the resulting concatenated field is the sum of the lengths of the included fields
(unless the fields in the physical file are binary or packed decimal, in which case they are changed to
zoned decimal). The field length of the resulting field is automatically calculated by the system. A
concatenated field can have:

* Column headings
* Validity checking
* Text description

* Edit code or edit word (numeric concatenated fields only)

Note: This editing and validity checking information is not used by the database management system
but is retrieved when field descriptions from the database file are referred to in a display or printer
file.

When fields are concatenated, the data types can change (the resulting data type is automatically
determined by the system). The following rules and restrictions apply:

* The operating system assigns the data type based on the data types of the fields that are being
concatenated.

* The maximum length of a concatenated field varies depending on the data type of the concatenated
field and the length of the fields being concatenated. If the concatenated field is zoned decimal (S), its
total length cannot exceed 31 bytes; if it is character (A), its total length cannot exceed 32 766 bytes.

* In join logical files, the fields to be concatenated must be from the same physical file. The first field
specified on the CONCAT keyword identifies which physical file is to be used. The first field must,
therefore, be unique among the physical files on which the logical file is based, or you must also
specify the JREF keyword to specify which physical file to use.

* The use of a concatenated field must be I (input only) if the concatenated field is variable length.
Otherwise, the use can be B (both input and output).

* REFSHIFT cannot be specified on a concatenated field that has been assigned a data type of O or J.
 If any of the fields contain the null value, the result of concatenation is the null value.

Note: For information about concatenating DBCS fields, see [‘Double-byte character set considerations’|

When only numeric fields are concatenated, the sign of the last field in the group is used as the sign of
the concatenated field.

Notes:

1. Numeric fields with decimal precision other than zero cannot be included in a concatenated
field.

2. Date, time, timestamp, and floating-point fields cannot be included in a concatenated field.

48 IBM Systems - iSeries: Database Database programming

The following example shows the field description in data description specifications (DDS) for
concatenation. (The CONCAT keyword is used to specify the fields to concatenate.)

A

00101A MONTH

00102A DAY

00103A YEAR

00104A DATE CONCAT (MONTH DAY YEAR)
A

In this example, the logical file record format includes the separate fields of Month, Day, and Year, as well
as the concatenated Date field. Any of the following formats can be used:

* A format with the separate fields of Month, Day, and Year
¢ A format with only the concatenated Date field
* A format with the separate fields Month, Day, Year and the concatenated Date field

When both separate and concatenated fields exist in the format, any updates to the fields are processed in
the sequence in which the DDS is specified. In the previous example, if the Date field contained 103188
and the Month field is changed to 12, when the record is updated, the month in the Date field would be
used. The updated record would contain 103188. If the Date field were specified first, the updated record
would contain 123188.

Concatenated fields can also be used as key fields and select/omit fields.
Substring fields:

You can use the SST keyword to specify which fields (character, hexadecimal, or zoned decimal) are in a
substring. You can also use substring with a packed field in a physical file by specifying S (zoned
decimal) as the data type in the logical file.

For example, assume that you defined the Date field in physical file PF1 as 6 characters in length. You can
describe the logical file with three fields, each 2 characters in length. You can use the SST keyword to
define MM as 2 characters starting in position 1 of the Date field, DD as 2 characters starting in position 3
of the Date field, and YY as 2 characters starting in position 5 of the Date field.

The following example shows the field descriptions in data description specifications (DDS) for these
substring fields. The SST keyword is used to specify the field to substring.

A R REC1 PFILE(PF1)

A

A MM I SST(DATE 1 2)
A DD I SST(DATE 3 2)
A YY I SST(DATE 5 2)
A

Note: The starting position of the substring is specified according to its position in the field being
operated on (Datfe), not according to its position in the file. The I in the Usage column indicates
input-only.

Substring fields can also be used as key fields and select/omit fields.

Renamed fields:

You can name a field in a logical file differently than in a physical file using the RENAME keyword. You
might want to rename a field in a logical file because the program was written using a different field
name or because the original field name does not conform to the naming restrictions of your high-level

language.

Database programming 49

Translated fields:

You can specify a translation table for a field using the TRNTBL keyword. When you read a logical file
record and a translation table was specified for one or more fields in the logical file, the system translates
the data from the field value in the physical file to the value determined by the translation table.

Describe floating-point fields in logical files:

You can use floating-point fields as mapped fields in logical files. A single- or double-precision
floating-point field can be mapped to or from a zoned, packed, zero-precision binary, or another
floating-point field. You cannot map between a floating-point field and a nonzero-precision binary field, a
character field, a hexadecimal field, or a double-byte character set (DBCS) field.

Mapping between floating-point fields of different precision, single or double, or between floating-point
fields and other numeric fields, can result in rounding or a loss of precision. Mapping a double-precision
floating-point number to a single-precision floating-point number can result in rounding, depending on
the particular number involved and its internal representation. Rounding is to the nearest (even) bit. The
result always contains as much precision as possible. A loss of precision can also occur between two
decimal numbers if the number of digits of precision is decreased.

You can inadvertently change the value of a field which your program did not explicitly change. For
floating-point fields, this can occur if a physical file has a double-precision field that is mapped to a
single-precision field in a logical file, and you issue an update for the record through the logical file. If
the internal representation of the floating-point number causes it to be rounded when it is mapped to the
logical file, then updating the logical record causes a permanent loss of precision in the physical file. If
the rounded number is the key of the physical record, then the sequence of records in the physical file
can also change.

A fixed-point numeric field can also be updated inadvertently if the precision is decreased in the logical
file.

Describe access paths for logical files
Use one of the ways to describe access paths for logical files.

The access path for a logical file record format can be specified in one of the following ways:

* Keyed sequence access path specification. Specify key fields after the last record or field-level
specification. The key field names must be in the record format. For join logical files, the key fields
must come from the first, or primary, physical file.

A R CUSRCD PFILE(CUSMSTP)
A K ARBAL
A K CRDLMT

* Encoded vector access path specification. You define the encoded vector access path with the SQL
CREATE INDEX statement.

* Arrival sequence access path specification. Specify no key fields. You can specify only one physical file

on the PFILE keyword (and only one of the physical file’s members when you add the logical file
member).

A R CUSRCD PFILE(CUSMSTP)

* Previously defined keyed-sequence access path specification (for simple and multiple format logical
files only). Specify the REFACCPTH keyword at the file level to identify a previously created database
file whose access path and select/omit specifications are to be copied to this logical file. You cannot
specify individual key or select/omit fields with the REFACCPTH keyword.

50 IBM Systems - iSeries: Database Database programming

Note: Even though the specified file’s access path specifications are used, the system determines which
file’s access path, if any, will actually be shared. The system always tries to share access paths,
regardless of whether the REFACCPTH keyword is used.

REFACCPTH(DSTPRODLIB/ORDHDRL)
A R CUSRCD PFILE(CUSMSTP)

When you define a record format for a logical file that shares key field specifications of another file’s
access path (using the DDS keyword, REFACCPTH), you can use any fields from the associated physical
file record format. These fields do not have to be used in the file that describes the access path. However,
all key and select/omit fields used in the file that describes the access path must be used in the new
record format.

Related reference
[CREATE INDEX|

Select and omit records using logical files:

The system can select and omit records when using a logical file. This can help you exclude records in a
file for processing convenience or for security.

The process of selecting and omitting records is based on comparisons identified in position 17 of the
DDS form for the logical file, and is similar to a series of comparisons coded in a high-level language
program. For example, in a logical file that contains order detail records, you can specify that the only
records you want to use are those in which the quantity ordered is greater than the quantity shipped. All
other records are omitted from the access path. The omitted records remain in the physical file but are
not retrieved for the logical file. If you are adding records to the physical file, all records are added, but
only selected records that match the select/omit criteria can be retrieved using the select/omit access
path.

In DDS, to specify select or omit, you specify an S (select) or O (omit) in position 17 of the DDS form.
You then name the field (in positions 19 through 28) that will be used in the selection or omission
process. In positions 45 through 80 you specify the comparison.

Note: Select/omit specifications appear after key specifications (if keys are specified).

Records can be selected and omitted by several types of comparisons:

¢ VALUES. The contents of the field are compared to a list of not more than 100 values. If a match is
found, the record is selected or omitted. In the following example, a record is selected if one of the
values specified in the VALUES keyword is found in the Itmnbr field.

A S ITMNBR VALUES (301542 306902 382101 422109 +
A 431652 486592 502356 556608 590307)
A

* RANGE. The contents of the field are compared to lower and upper limits. If the contents are greater
than or equal to the lower limit and less than or equal to the upper limit, the record is selected or
omitted. In the following example, all records with a range 301000 through 599999 in the Itmnbr field
are selected.

A S ITMNBR RANGE (301000 599999)
¢ CMP. The contents of a field are compared to a value or the contents of another field. Valid comparison
codes are EQ, NE, LT, NL, GT, NG, LE, and GE. If the comparison is met, the record is selected or

omitted. In the following example, a record is selected if its [tmnbr field is less than or equal to 599999:

S ITMNBR CMP(LE 599999)

Database programming 51

The value for a numeric field for which the CMP, VALUES, or RANGE keyword is specified is aligned
based on the decimal positions specified for the field and filled with zeros where necessary. If decimal
positions were not specified for the field, the decimal point is placed to the right of the farthest right digit
in the value. For example, for a numeric field with length 5 and decimal position 2, the value 1.2 is
interpreted as 001.20 and the value 100 is interpreted as 100.00.

The status of a record is determined by evaluating select/omit statements in the sequence you specify
them. If a record qualifies for selection or omission, subsequent statements are ignored.

Normally the select and omit comparisons are treated independently from one another; the comparisons
are ORed together. That is, if the select or omit comparison is met, the record is either selected or
omitted. If the condition is not met, the system proceeds to the next comparison. To connect comparisons
together, you leave a space in position 17 of the DDS form. Then, all the comparisons that were
connected in this fashion must be met before the record is selected or omitted. That is, the comparisons
are ANDed together.

The fewer comparisons, the more efficient the task is. So, when you have several select/omit
comparisons, try to specify the one that selects or omits the most records first.

The following examples show ways to code select/omit functions. In these examples, few records exist
for which the Rep field is JSMITH. The examples show how to use DDS to select all the records before
1988 for a sales representative named JSMITH in the state of New York. All give the same results with
different efficiency. 3 shows the most efficient way.

A S ST CMP(EQ 'NY') 1
A REP CMP(EQ 'JSMITH')
A YEAR CMP(LT 88)
A
[P I S S BUNPI AU SUNPR RUNY PR PN UL JOR S S|
A 0 YEAR CMP(GE 88) 2
A S ST CMP(EQ 'NY')
A REP CMP(EQ 'JSMITH')
A
[oet il 2 B b 5 Bk T L8
A 0 REP CMP(NE 'JSMITH') 3
A 0 ST CMP(NE 'NY')
A S YEAR CMP(LT 88)
A
1 All records must be compared with all of the select fields St, Rep, and Year before they can be

selected or omitted.

2 All records are compared with the Year field. Then, the records before 1988 must be compared
with the St and Rep fields.

3 All records are compared with the Rep field. Then, only the few for [SMITH are compared with
the St field. Then, the few records that are left are compared to the Year field.

As another example, assume that you want to select the following items:
* All records for departments other than Department 12.

* Only those records for Department 12 that contain an item number 112505, 428707, or 480100. No other
records for Department 12 are to be selected.

If you create the preceding example with a sort sequence table, the select/omit fields are translated

according to the sort table before the comparison. For example, with a sort sequence table using shared
weightings for uppercase and lowercase, NY and ny are equal.

52 IBM Systems - iSeries: Database Database programming

The following diagram shows the logic included in this example:

» Select

RBAFO504-0

This example is coded as follows using the DDS select and omit functions:

A S DPTNBR CMP(NE 12)
A S ITMNBR VALUES (112505 428707 480100)
A

It is possible to have an access path with select/omit values and process the file in arrival sequence. For
example, a high-level language program can specify that the keyed access path is to be ignored. In this
case, every record is read from the file in arrival sequence, but only those records meeting the select/omit
values specified in the file are returned to the high-level language program.

A logical file with key fields and select/omit values specified can be processed in arrival sequence or
using relative record numbers randomly. Records omitted by the select/omit values are not processed.
That is, if an omitted record is requested by relative record number, the record is not returned to the
high-level language program.

The system does not ensure that any additions or changes through a logical file will allow the record to
be accessed again in the same logical file. For example, if the selection values of the logical file specifies
only records with an A in FId1 and the program updates the record with a B in FId1, the program cannot
retrieve the record again using this logical file.

Note: You cannot select or omit based on the values of a floating-point field.

The two kinds of select/omit operations are: access path select/omit and dynamic select/omit. The
default is access path select/omit. The select/omit specifications themselves are the same in each kind,
but the system actually does the work of selecting and omitting records at different times.

You can also use the Open Query File (OPNQRYF) command to select or omit records.
Related concepts

DDS concept:

Access path select/omit:

Database programming 53

With the access path select/omit operation, the access path only contains keys that meet the select/omit
values specified for the logical file.

When you specify key fields for a file, an access path is kept for the file and maintained by the system
when you add or update records in the physical file(s) used by the logical file. The only index entries in
the access path are those that meet the select/omit values.

Dynamic select/omit:

With the dynamic select/omit operation, when a program reads records from the file, the system only
returns those records that meet the select/omit values. That is, the actual select/omit processing is done
when records are read by a program, rather than when the records are added or changed.

However, the keyed sequence access path contains all the keys, not just keys from selected records.
Access paths using dynamic select/omit allow more access path sharing, which can improve
performance.

To specify dynamic select/omit, use the dynamic selection (DYNSLT) keyword. With dynamic
select/omit, key fields are not required.

If you have a file that is updated frequently and read infrequently, you might not need to update the
access path for select/omit purposes until your program reads the file. In this case, dynamic select/omit
might be the correct choice. The following example helps describe this.

You use a code field (A=active, I=inactive), which is changed infrequently, to select/omit records. Your
program processes the active records and the majority (over 80%) of the records are active. It can be more
efficient to use DYNSLT to dynamically select records at processing time rather than perform access path
maintenance when the code field is changed.

Related concepts

[“Use existing access paths’]

When two or more files are based on the same physical files and the same key fields in the same
order, they automatically share the same keyed sequence access path. When access paths are shared,
the amount of system activity required to maintain access paths and the amount of auxiliary storage
used by the files is reduced.

Use the Open Query File (OPNQRYF) command to select and omit records:

Another method of selecting records is using the QRYSLT parameter on the Open Query File (OPNQRYF)
command. The open data path created by the OPNQRYF command is like a temporary logical file; that is,
it is automatically deleted when it is closed. A logical file, however, remains in existence until you
specifically delete it.
Related concepts
[“Use Open Query File (OPNQRYF) command” on page 121
The Open Query File (OPNQRYF) command is a control language (CL) command that allows you to
perform many data processing functions on database files. These topics discuss how to create a query
using the OPNQRYF command, how to specify parameters for its major functions, and how to use it
with your high-level language program.

Use existing access paths:

When two or more files are based on the same physical files and the same key fields in the same order,
they automatically share the same keyed sequence access path. When access paths are shared, the amount
of system activity required to maintain access paths and the amount of auxiliary storage used by the files
is reduced.

54 IBM Systems - iSeries: Database Database programming

When a logical file with a keyed sequence access path is created, the system always tries to share an
existing access path. For access path sharing to occur, an access path must exist on the system that
satisfies the following conditions:

The logical file member to be added must be based on the same physical file members that the existing
access path is based on.

The length, data type, and number of decimal positions specified for each key field must be identical
in both the new file and the existing file.

If the FIFO, LIFO, or FCFO keyword is not specified, the new file can have fewer key fields than the
existing access paths. That is, a new logical file can share an existing access path if the beginning part
of the key is identical. However, when a file shares a partial set of keys from an existing access path,
any record updates made to fields that are part of the set of keys for the shared access path might
change the record position in that access path.

The attributes of the access path (such as UNIQUE, LIFO, FIFO, or FCFO) and the attributes of the key
fields (such as DESCEND, ABSVAL, UNSIGNED, and SIGNED) must be identical.

Exceptions:

1. A FIFO access path can share an access path in which the UNIQUE keyword is specified if all the
other requirements for access path sharing are met.

2. A UNIQUE access path can share a FIFO access path that needs to be rebuilt (for example, has
*REBLD maintenance specified), if all the other requirements for access path sharing are met.

If the new logical file has select/omit specifications, they must be identical to the select/omit

specifications of the existing access path. However, if the new logical file specifies DYNSLT, it can

share an existing access path if the existing access path has either:

— The dynamic select (DYNSLT) keyword specified

— No select/omit keywords specified

The alternative collating sequence (ALTSEQ keyword) and the translation table (TRNTBL keyword) of

the new logical file member, if any, must be identical to the alternative collating sequence and

translation table of the existing access path.

Note: Logical files that contain concatenated or substring fields cannot share access paths with physical

files.

The owner of any access path is the logical file member that originally created the access path. For a
shared access path, if the logical member owning the access path is deleted, the first member to share the
access path becomes the new owner. The FRCACCPTH, MAINT, and RECOVER parameters on the
Create Logical File (CRTLF) command need not match the same parameters on an existing access path for
that access path to be shared. When an access path is shared by several logical file members, and the
FRCACCPTH, MAINT, and RECOVER parameters are not identical, the system maintains the access path
by the most restrictive value for each of the parameters specified by the sharing members. The following
list illustrates how this occurs:

MBRA specifies:

FRCACCPTH (*NO)
MAINT (*IMMED)
RECOVER (*AFTIPL)

MBRB specifies:

FRCACCPTH (*YES)
MAINT (*DLY)
RECOVER (*NO)

System does:

FRCACCPTH (*YES)
MAINT (*IMMED)
RECOVER (*AFTIPL)

Database programming 55

Access path sharing does not depend on sharing between members; therefore, it does not restrict the
order in which members can be deleted.

The Display File Description (DSPFD) and Display Database Relations (DSPDBR) commands show access
path sharing relationships.

Related concepts

[“Arrange duplicate keys” on page 88
If you do not specify the UNIQUE keyword in data description specifications (DDS), you can specify
how the system stores records with duplicate key values, if duplicate key values occur.

Example: Implicitly shared access paths:
This example shows how to implicitly share access path.

Two logical files, LFILE1 and LFILE2, are built over the physical file PFILE. LFILE1, which was created
first, has two key fields, KFD1 and KFD2. LFILE2 has three key fields, KFD1, KFD2, and KFD3. The two
logical files use two of the same key fields, but no access path is shared because the logical file with three
key fields was created after the file with two key fields.

Table 6. Physical and logical files before save and restore

Physical file (PFILE) Logical file 1 (LFILE1) Logical file 2 (LFILE2)
Access Path KFD1, KFD2 KFD1, KFD2, KFD3
Fields KFD1, KFD2, KFD3, A, B, C, D, KFD1, KFD2, KFED3, E, C, A KFD1, KFD2, KFED3, D, G, E E
E FG

An application uses LFILE1 to access the records and to change the KFD3 field to blank if it contains a C,
and to a C if it is blank. This application causes the user no unexpected results because the access paths
are not shared. However, after a save and restore of the physical file and both logical files, the program
appears to do nothing and takes longer to process.

Unless you do something to change the restoration, the iSeries system:
* Restores the logical file with the largest number of keys first
* Does not build unnecessary access paths

Because it has three key fields, LFILE2 is restored first. After recovery, LFILE1 implicitly shares the access
path for LFILE2. Users who do not understand implicitly shared access paths do not realize that when
they use LFILE1 after a recovery, they are really using the key for LFILE2.

Table 7. Physical and logical files after save and restore. Note that the only difference from before the save and
restore is that the logical files now share the same access path.

Physical file (PFILE) Logical file 1 (LFILE1) Logical file 2 (LFILE2)
Access Path KFD1, KFD2, KFD3 KFD1, KFD2, KFD3
Fields KFD1, KFD2, KFD3, A, B, C, D, KFD1, KFD2, KFD3, E, C, A KFD1, KFD2, KFD3, D, G, E E
E, EG

The records to be tested and changed contain:

Relative record KFD1 KFD2 KFD3
001 01 01 <blank>
002 01 01 <blank>
003 01 01 <blank>
004 01 01 <blank>

56 IBM Systems - iSeries: Database Database programming

The first record is read via the first key of 0101<blank> and changed to 0101C. The records now look like
this:

Relative record KFD1 KFD2 KFD3
001 01 01 C
002 01 01 <blank>
003 01 01 <blank>
004 01 01 <blank>

When the application issues a get next key, the next higher key above 0101<blank> is 0101C. This is the
record that was just changed. However, this time the application changes the KFD3 field from C to blank.

Because the user does not understand implicit access path sharing, the application accesses and changes
every record twice. The end result is that the application takes longer to run, and the records look like
they have not changed.

Set up a join logical file
These topics provide examples to illustrate how to set up a join logical file. Performance, integrity, and a
summary of rules for join logical files are also included.

In general, the examples in these topics include a picture of the files, data description specifications
(DDS) for the files, and sample data. For example 1, several cases are given that show how to join files in
different situations (when data in the physical files varies).

In these examples, for convenience and ease of recognition, join logical files are shown with the label JLF,
and physical files are illustrated with the labels PF1, PF2, PF3, and so forth.

Related concepts

[loin data from more than one table]

Basic concepts of joining two physical files (example 1):

A join logical file is a logical file that combines (in one record format) fields from two or more physical
files because in the record format not all the fields need to exist in all the physical files.

The following example illustrates a join logical file that joins two physical files. This example is used for
the five cases discussed in example 1.

JLF

Employee Number

Name

Salary
PF1 PF2
Employee Number Employee Number
Name Salary

RBAFO507-0

In this example, the join logical file (JLF) has field Employee number, Name, and Salary. Physical file 1 (PF1)
has Employee number and Name, while physical file 2 (PF2) has Employee number and Salary. Employee
number is common to both physical files (PF1 and PF2), but Name is found only in PF1, and Salary is
found only in PF2.

With a join logical file, the application program does one read operation (to the record format in the join

logical file) and gets all the data needed from both physical files. Without the join specification, the
logical file would contain two record formats, one based on PF1 and the other based on PF2, and the

Database programming 57

application program would have to do two read operations to get all the needed data from the two
physical files. Thus, join provides more flexibility in designing your database.

However, a few restrictions are placed on join logical files:

* You cannot change a physical file through a join logical file. To do update, delete, or write (add)
operations, you must create a second multiple format logical file and use it to change the physical files.
You can also use the physical files, directly, to do the change operations.

* You cannot use data file utility (DFU) to display a join logical file.
* You can specify only one record format in a join logical file.

¢ The record format in a join logical file cannot be shared.

* Ajoin logical file cannot share the record format of another file.

* Key fields must be fields defined in the join record format and must be fields from the first file
specified on the JFILE keyword (which is called the primary file).

* Select/omit fields must be fields defined in the join record format, but can come from any of the
physical files.

¢ Commitment control cannot be used with join logical files.

The following example shows the data description specifications (DDS) for example 1:

A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NBR NBR)
A NBR JREF(PF1)

A NAME

A SALARY

A K NBR

A

The following list describes the DDS for the join logical file in example 1:

The record-level specification identifies the record format name used in the join logical file.
R Identifies the record format. Only one record format can be placed in a join logical file.

JFILE Replaces the PFILE keyword used in simple and multiple-format logical files. You must specify at
least two physical files. The first file specified on the JFILE keyword is the primary file. The other
files specified on the JFILE keyword are secondary files.

The join specification describes the way a pair of physical files is joined. The second file of the pair is
always a secondary file, and there must be one join specification for each secondary file.

58 IBM Systems - iSeries: Database Database programming

JOIN

JFLD

Identifies the start of a join specification. You must specify at least one join specification in a join
logical file. A join specification ends at the first field name specified in positions 19 through 28 or
at the next | specified in position 17.

Identifies which two files are joined by the join specification. If only two physical files are joined
by the join logical file, the JOIN keyword is optional.

Identifies the join fields that join records from the physical files specified on the JOIN keyword.
JFLD must be specified at least once for each join specification. The join fields are fields common
to the physical files. The first join field is a field from the first file specified on the JOIN keyword,
and the second join field is a field from the second file specified on the JOIN keyword.

Join fields, except character type fields, must have the same attributes (data type, length, and
decimal positions). If the fields are character type fields, they do not need to have the same
length. If you are joining physical file fields that do not have the same attributes, you can
redefine them for use in a join logical file.

The field-level specification identifies the fields included in the join logical file.

Field names

JREF

Specifies which fields (in this example, Nbr, Name, and Salary) are used by the application
program. At least one field name is required. You can specify any field names from the physical
files used by the logical file. You can also use keywords like RENAME, CONCAT, or SST as you
would in simple and multiple format logical files.

In the record format (which follows the join specification level and precedes the key field level, if
any), the field names must uniquely identify which physical file the field comes from. In this
example, the Nbr field occurs in both PF1 and PF2. Therefore, the JREF keyword is required to
identify the file from which the Nbr field description will be used.

The key field level specification is optional, and includes the key field names for the join logical file.

K

Identifies a key field specification. The K appears in position 17. Key field specifications are
optional.

Key field names

Key field names (in this example, Nbr is the only key field) are optional and make the join logical
file an indexed (keyed sequence) file. Without key fields, the join logical file is an arrival
sequence file. In join logical files, key fields must be fields from the primary file, and the key
field name must be specified in positions 19 through 28 in the logical file record format.

The select/omit field level specification is optional, and includes select/omit field names for the join
logical file.

SorO

Identifies a select or omit specification. The S or O appears in position 17. Select/omit
specifications are optional.

Select/omit field names

Only those records meeting the select/omit values will be returned to the program using the
logical file. Select/omit fields must be specified in positions 19 through 28 in the logical file
record format.

Related concepts

Related reference

[‘Join three or more physical files (example 7)” on page 73|

You can use a join logical file to join as many as 32 physical files. These files must be specified on the
JFILE keyword. The first file specified on the JFILE keyword is the primary file; the other files are all
secondary files.

Database programming 59

[“Use join fields whose attributes are different (example 4)” on page 69
Fields from physical files that you use as join fields generally have the same attributes (length, data
type, and decimal positions). However, in some cases, the join fields might have different attributes.

Read a join logical file: The following cases describe how the join logical file in |”Basic concepts of]'oining|
|two physical files (example 1)” on page 57| presents records to an application programs.

The PF1 file is specified first on the JFILE keyword, and is therefore the primary file. When the
application program requests a record, the system does the following things:

1. Uses the value of the first join field in the primary file (the Nbr field in PF1).

2. Finds the first record in the secondary file with a matching join field (the Nbr field in PF2 matches the
Nbr field in PF1).

3. For each match, joins the fields from the physical files into one record and provides this record to
your program. Depending on how many records are in the physical files, one of the following
conditions might occur:

a. For all records in the primary file, only one matching record is found in the secondary file. The

resulting join logical file contains a single record for each record in the primary file. Seem
[records in primary and secondary files (case 1).”]

b. For some records in the primary file, no matching record is found in the secondary file.

If you specify the JDFTVAL keyword:

* For those records in the primary file that have a matching record in the secondary file, the system joins
to the secondary, or multiple secondaries. The result is one or more records for each record in the
primary file.

* For those records in the primary file that do not have a matching record in the secondary file, the
system adds the default value fields for the secondary file and continues the join operation. You can
use the DFT keyword in the physical file to define which defaults are used. See [“Record missing in|

secondary file: JDFTVAL keyword not specified (case 2A)” on page 61|and [“Record missing in|

secondary file: JDFTVAL keyword specified (case 2B)” on page 62

Note: If the DFT keyword is specified in the secondary file, the value specified for the DFT keyword is
used in the join. The result would be at least one join record for each primary record.

 If a record exists in the secondary file, but the primary file has no matching value, no record is
returned to your program. A second join logical file can be used that reverses the order of primary and
secondary files to determine if secondary file records exist with no matching primary file records.

If you do not specify the JDFTVAL keyword:

 If a matching record in a secondary file exists, the system joins to the secondary, or multiple
secondaries. The result is one or more records for each record in the primary file.

* If a matching record in a secondary file does not exist, the system does not return a record.

Note: When the JDFTVAL is not specified, the system returns a record only if a match is found in every
secondary file for a record in the primary file.

In the following examples, cases 1 through 4 describe sequential read operations, and case 5 describes
reading by key.

Match records in primary and secondary files (case 1):

Assume that a join logical file is specified as in|“Basic concepts of joining two physical files (example 1)]
and four records are contained in both PF1 and PF2, as shown in the following two tables.

60 IBM Systems - iSeries: Database Database programming

Table 8. Physical file 1 (PF1)

Employee number Name
235 Anne
440 Doug
500 Mark
729 Sue
Table 9. Physical file 2 (PF2)

Employee number Salary
235 1700.00
440 950.50
500 2100.00
729 1400.90

The program does four read operations and gets the following records.

Table 10. Join logical file (JLF)

Employee number Name Salary
235 Anne 1700.00
440 Doug 950.50
500 Mark 2100.00
729 Sue 1400.90

Record missing in secondary file: JDFTVAL keyword not specified (case 2A):

Assume that a join logical file is specified as in|“Basic concepts of joining two physical files (example 1)]

and there are four records in PF1 and three records in PF2, as shown in the following two

tables.

Table 11. Physical file 1 (PF1)

Employee number Name
235 Anne
440 Doug
500 Mark
729 Sue
Table 12. Physical file 2 (PF2)

Employee number Salary
235 1700.00
440 950.50
729 1400.90

In PF2, no record is found for number 500.

Database programming

61

The program reads the join logical file and gets the following records.

Table 13. Join logical file (JLF)

Employee number Name Salary
235 Anne 1700.00
440 Doug 950.50
729 Sue 1400.90

If you do not specify the JDFTVAL keyword and no match is found for the join field in the secondary
file, the record is not included in the join logical file.

Record missing in secondary file: [DFTVAL keyword specified (case 2B):

Assume that a join logical file is specified as in [“Basic concepts of joining two physical files (example 1)’]
except that the JDFTVAL keyword is specified, as shown in the following DDS:

JLF

PP AP SN S: NP PN SUNPIE SN PP PP UL JI S SR
A JDFTVAL
A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NBR NBR)
A NBR JREF(PF1)
A NAME
A SALARY
A K NBR
A

The program reads the join logical file and gets the following records.

Table 14. Join logical file (JLF)

Employee number Name Salary
235 Anne 1700.00
440 Doug 950.50
500 Mark 0000.00
729 Sue 1400.90

With JDFTVAL specified, the system returns a record for 500, even though the record is missing in PF2.
Without that record, some field values can be missing in the join record. In this case, the Salary field is
missing. With JDFTVAL specified, missing character fields normally use blanks; missing numeric fields
use zeros. Therefore, in this case, the value for the missing record in the join record is 0. However, if the
DFT keyword is specified for the field in the physical file, the default value specified on the DFT
keyword is used.

Secondary file has more than one match for a record in the primary file (case 3):

Assume that a join logical file is specified as in |”Basic concepts of joining two physical files (example 1)”|
and there are four records in PF1 and five records in PF2, as shown in the following two
tables.

Table 15. Physical file 1 (PF1)

Employee number Name
235 Anne
440 Doug

62 IBM Systems - iSeries: Database Database programming

Table 15. Physical file 1 (PF1) (continued)

Employee number Name
500 Mark
729 Sue

Table 16. Physical file 2 (PF2)

Employee number Salary
235 1700.00
235 1500.00
440 950.50
500 2100.00
729 1400.90

In PF2, the record for 235 is duplicated.

The program gets five records.

Table 17. Join logical file (JLF)

Employee number Name Salary
235 Anne 1700.00
235 Anne 1500.00
440 Doug 950.50
500 Mark 0000.00
729 Sue 1400.90

In the join records, the record for 235 is duplicated. The order of the records received for the duplicated
record is unpredictable unless the JDUPSEQ keyword is used.

Related reference

[‘Read duplicate records in secondary files (example 3)” on page 68|

Sometimes a join operation to a secondary file produces more than one record from the secondary file.
When this occurs, specifying the JDUPSEQ keyword in the join specification for that secondary file
tells the system to base the order of the duplicate records on the specified field in the secondary file.

Extra record in secondary file (case 4):

Assume that a join logical file is specified as in [“Basic concepts of joining two physical files (example 1)”]
and four records are contained in PF1 and five records in PF2.

The record for 301 exists only in PF2.

The program reads the join logical file and gets only four records. The record for 301 does not appear.

Table 18. Join logical file (JLF)

Employee number Name Salary
235 Anne 1700.00
440 Doug 950.50
500 Mark 2100.00

Database programming 63

Table 18. Join logical file (JLF) (continued)

Employee number Name Salary
729 Sue 1400.90

These results would be the same even if the JDFTVAL keyword were specified, because a record must
always be contained in the primary file to receive a join record.

Random access (case 5):

Assume that a join logical file is specified as in [“Basic concepts of joining two physical files (example 1)’]
Note that the join logical file has key fields defined. This case shows which records are
returned for a random access read operation using the join logical file.

Assume that PF1 and PF2 have the following records.
Table 19. Physical file 1 (PF1)

Employee number Name
235 Anne
440 Doug
500 Mark
729 Sue
997 Tim

Table 20. Physical file 2 (PF2)

Employee number Salary
235 1700.00
440 950.50
729 1400.90
984 878.25
997 331.00
997 555.00

In PF2, no record is found for record 500, record 984 exists only in PF2, and duplicate records are found
for 997.

The program can get the following records.

Given a value of 235 from the program for the Nbr field in the logical file, the system supplies the
following record.

Employee number Name Salary

235 Anne 1700.00

Given a value of 500 from the program for the Nbr field in the logical file and with the JDFTVAL
keyword specified, the system supplies the following record.

Employee number Name Salary

500 Mark 0000.00

64 IBM Systems - iSeries: Database Database programming

Note: If the JDFTVAL keyword was not specified in the join logical file, no record is found for a value of
500 because no matching record is contained in the secondary file.

Given a value of 984 from the program for the Nbr field in the logical file, the system supplies no record
and a no record found exception occurs because record 984 is not in the primary file.

Given a value of 997 from the program for the Nbr field in the logical file, the system returns one of the
following records.

Employee number Name Salary
997 Tim 331.00
or

Employee number Name Salary
997 Tim 555.00

Which record is returned to the program cannot be predicted. To specify which record is returned, specify
the JDUPSEQ keyword in the join logical file.

Notes:

1. With random access, the application programmer must be aware that duplicate records can be
contained in PF2, and ensure that the program does more than one read operation for records
with duplicate keys. If the program is using sequential access, a second read operation gets
the second record.

2. If you specify the JDUPSEQ keyword, the system can create a separate access path for the join
logical file (because there is less of a chance that the system will find an existing access path
that it can share). If you omit the JDUPSEQ keyword, the system can share the access path of
another file. (In this case, the system can share the access path of PF2.)

Related reference

[‘Read duplicate records in secondary files (example 3)” on page 68|

Sometimes a join operation to a secondary file produces more than one record from the secondary file.
When this occurs, specifying the JDUPSEQ keyword in the join specification for that secondary file
tells the system to base the order of the duplicate records on the specified field in the secondary file.

Set up a join logical file:
This topic shows how to set up a join logical file.

To set up a join logical file, follow these steps:

1. Find the names of all the physical file fields you want in the logical file record format. (You can
display the fields contained in files using the Display File Field Description (DSPFFD) command.)

2. Describe the fields in the record format. Write the field names in a vertical list. This is the start of the
record format for the join logical file.

Note: You can specify the field names in any order. If the same field names appear in different
physical files, specify the name of the physical file on the JREF keyword for those fields. You
can rename fields using the RENAME keyword, and concatenate fields from the same physical
file using the CONCAT keyword. A subset of an existing character, hexadecimal, or zoned
decimal field can be defined using the SST keyword. The substring of a character or zoned

Database programming 65

3.

decimal field is a character field, and the substring of a hexadecimal field is also a hexadecimal
field. You can redefine fields: changing their data type, length, or decimal positions.

Specify the names of the physical files as parameter values on the JFILE keyword. The first name you

specify is the primary file. The others are all secondary files. For best performance, specify the

secondary files with the least records first after the primary file.

For each secondary file, code a join specification. On each join specification, identify which pair of

files are joined (using the JOIN keyword; optional if only one secondary file), and identify which

fields are used to join the pair (using the JFLD keyword; at least one required in each join
specification).

Optional: Specify the following items:

a. The JDFTVAL keyword. Do this if you want to return a record for each record in the primary file
even if no matching record exists in a secondary file.

b. The JDUPSEQ keyword. Do this for fields that might have duplicate values in the secondary files.
JDUPSEQ specifies on which field (other than one of the join fields) to sort these duplicates, and
the sequence that should be used.

c. Key fields. Key fields cannot come from a secondary file. If you omit key fields, records are
returned in arrival sequence as they appear in the primary file.

d. Select/omit fields. In some situations, you must also specify the dynamic selection (DYNSLT)
keyword at the file level.

e. Neither fields.
Related reference

[‘Describe fields that never appear in the record format (example 5)” on page 71|

Neither fields, which (N specified in position 38) can be used in join logical file for neither input nor
output, are not included in the record format. This example shows how to describe such fields that
never appear in the record format.

Use more than one field to join files (example 2):

You can specify more than one join field to join a pair of files. This example shows the fields in the
logical file and the two physical files.

JLF

Part Number
Color

Price

Quantity on Hand

PF1 PF2
Part Number Part Number
Color Color
Price Quantity on Hand
Vendor Warehouse

RBAFO521-0

The join logical file (JLF) has fields Part number, Color, Price, and Quantity on hand. Physical file 1 (PF1)
has Part number, Color, Price, and Vendor, while physical file 2 (PF2) has Part number, Color, Quantity on
hand, and Warehouse. The data description specifications (DDS) for these files are shown as follows:

JLF
[P PO U/ DU FUNUUE SUIPY: SRR SN - S SR L PPN AP SR -
A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(PTNBR PTNBR)
A JFLD(COLOR COLOR)
A PTNBR JREF(PF1)
A COLOR JREF(PF1)
66 IBM Systems - iSeries: Database Database programming

A PRICE
A QUANTOH
A
PF1
[P AR S/ SUNN: FUNUUE NN SR SN - SRS AN T S S SR -
A R REC1
A PTNBR 4
A COLOR 20
A PRICE 7 2
A VENDOR 40
A
PF2
oot l b2 B bbb 5Bk T L8
A R REC2
A PTNBR 4
A COLOR 20
A QUANTOH 5 0
A WAREHSE 30
A

Assume that the physical files have the following records.

Table 21. Physical file 1 (PF1)

Part number Color Price Vendor
100 Black 22.50 ABC Corp.
100 White 20.00 Ajax Inc.
120 Yellow 3.75 ABC Corp.
187 Green 110.95 ABC Corp.
187 Red 110.50 ABC Corp.
190 Blue 40.00 Ajax Inc.
Table 22. Physical file 2 (PF2)

Part number Color Quantity on hand Warehouse
100 Black 23 ABC Corp.
100 White 15 Ajax Inc.
120 Yellow 102 ABC Corp.
187 Green 0 ABC Corp.
187 Red 2 ABC Corp.
190 Blue 2 Ajax Inc.

If the file is processed sequentially, the program receives the following records.

Table 23. Join logical file (JLF)

Part number
100
100
120
187
187

Color
Black
White
Yellow

Green

Red

Price
22.50
20.00
3.75
110.95
110.50

Quantity on hand
23

15

102

Database programming

67

Note: No record for part number 190, color blue, is available to the program, because a match was not
found on both fields in the secondary file. Because JDFTVAL was not specified, no record is
returned.

Read duplicate records in secondary files (example 3):
Sometimes a join operation to a secondary file produces more than one record from the secondary file.
When this occurs, specifying the JDUPSEQ keyword in the join specification for that secondary file tells

the system to base the order of the duplicate records on the specified field in the secondary file.

The data description specifications (DDS) for the physical files and for the join logical file are shown as
follows:

JLF
[ootei o 2 3 B Bk T L8
A R JREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NAME1 NAME2)
A JDUPSEQ(TELEPHONE)
A NAME1
A ADDR
A TELEPHONE
A
PF1
[cete il 2 B b 5Bk T L8
A R REC1
A NAME1 10
A ADDR 20
A
PF2
[oet il 2 B b 5Bk T L8
A R REC2
A NAME?2 10
A TELEPHONE 8
A

The physical files have the following records.
Table 24. Physical file 1 (PF1)

Name Address
Anne 120 1st St.
Doug 40 Pillsbury
Mark 2 Lakeside Dr.

Table 25. Physical file 2 (PF2)

Name Telephone
Anne 555-1111
Anne 555-6666
Anne 555-2222
Doug 555-5555

68 IBM Systems - iSeries: Database Database programming

The join logical file returns the following records.

Table 26. Join logical file (JLF)

Name Address Telephone
Anne 120 1st St. 555-1111
Anne 120 1st St. 555-2222
Anne 120 1st St. 555-6666
Doug 40 Pillsbury 555-5555

The program reads all the records available for Anne, then Doug, then Mark. Anne has one address, but
three telephone numbers. Therefore, there are three records returned for Anne.

The records for Anne sort in ascending sequence by telephone number because the JDUPSEQ keyword
sorts in ascending sequence unless you specify *DESCEND as the keyword parameter. The following
example shows the use of *DESCEND in DDS:

PP U U R SRR DR SR U S SR - I DRI : SPUIE SR SO .
A R JREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NAME1 NAME2)
A JDUPSEQ(TELEPHONE *DESCEND)
A NAME1
A ADDR
A TELEPHONE
A

When you specify JDUPSEQ with *DESCEND, the records are returned as follows.
Table 27. Join logical file (JLF)

Name Address Telephone
Anne 120 1st St. 555-6666
Anne 120 1st St. 555-2222
Anne 120 1st St. 555-1111
Doug 40 Pillsbury 555-5555

Note: The JDUPSEQ keyword applies only to the join specification in which it is specified.

Related reference

[“A complex join logical file (example 10)” on page 7§
This example shows a more complex join logical file.

Use join fields whose attributes are different (example 4):

Fields from physical files that you use as join fields generally have the same attributes (length, data type,
and decimal positions). However, in some cases, the join fields might have different attributes.

For example, as in [‘Read duplicate records in secondary files (example 3)” on page 68 |the Namel field is
a character field 10 characters long in physical file PF1, and can be joined to the Name? field, a character
field 10 characters long in physical file PF2. The Namel and Name? fields have the same characteristics
and, therefore, can easily be used as join fields.

Database programming 69

You can also use character type fields that have different lengths as join fields without requiring any
redefinition of the fields. For example, if the NAME] field of PF1 is 10 characters long and the NAME2
field of PF2 is 15 characters long, those fields can be used as join fields without redefining one of the
fields.

The following example shows the join fields that do not have the same attributes. Both physical files have
fields for employee number. The Nbr field in physical file PF1 and the Nbr field in physical file PF2 both
have a length of 3 specified in position 34, but in the PF1 file the field is zoned (S in position 35), and in
the PF2 file the field is packed (P in position 35). To join the two files using these fields as join fields, you
must redefine one or both fields to have the same attributes.

The following example illustrates the fields in the logical and physical files:

JLF

Employee Number

Name

Salary
PF1 PF2
Employee Number (zoned)| |Employee Number (packed)
Name Salary

RBAFO527-0

The join logical file (JLF) contains Employee number, Name, and Salary fields. Physical file 1 (PF1) contains
Employee number (zoned) and Name. Physical file 2 (PF2) contains Employee number (packed) and Salary.
The data description specifications (DDS) for these files are shown as follows:

JLF
P A R SR PPN U . D U - T DRI SRUIE S S .
A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NBR NBR)
A NBR S JREF(2)
A NAME
A SALARY
A
PF1
[P A S SS: NP U SRR A PRI PRI UL TR S S|
A R REC1
A NBR 3S 0 <-Zoned
A NAME 20
A K NBR
A
PF2
[cet il 2 B b b 5B kT L8
A R REC2
A NBR 3P 0 <-Packed
A SALARY 7 2
A K NBR
A

Note: In this example, the Nbr field in the logical file comes from PF2, because JREF(2) is specified.
Instead of specifying the physical file name, you can specify a relative file number on the JREF
keyword; in this example, the 2 indicates PF2.

Because the Nbr fields in the PF1 and PF2 files are used as the join fields, they must have the same
attributes. In this example, they do not. Therefore, you must redefine one or both of them to have the

70 IBM Systems - iSeries: Database Database programming

same attributes. In this example, to resolve the difference in the attributes of the two employee number
fields, the Nbr field in JLF (which is coming from the PF2 file) is redefined as zoned (S in position 35 of
JLF).

Describe fields that never appear in the record format (example 5):

Neither fields, which (N specified in position 38) can be used in join logical file for neither input nor
output, are not included in the record format. This example shows how to describe such fields that never
appear in the record format.

Programs using the join logical file cannot see or read neither fields. Neither fields are not included in the
record format. Neither fields cannot be key fields or used in select/omit statements in the joined file. You
can use a neither field for a join field (specified at the join specification level on the JFLD keyword) that
is redefined at the record level only to allow the join operation, but is not needed or wanted in the
program.

In the following example, the program reads the descriptions, prices, and quantity on hand of parts in

stock. The part numbers themselves are not wanted except to bring together the records of the parts.
However, because the part numbers have different attributes, at least one must be redefined.

JLF

Description
Price
Quantity on Hand

PF1 PF2
Description ‘

Part Number
Price
Quantity on Hand

Part Number

RBAFO528-0

The join logical file (JLF) has fields Description, Price, and Quantity on hand. Physical file 1 (PF1) has
Description and Part number, while physical file 2 (PF2) has Part number, Price, and Quantity on hand. The
data description specifications (DDS) for these files are shown as follows:

A R JOINREC JFILE(PF1 PF2)

A J JOIN(PF1 PF2)

A JFLD(PRTNBR PRTNBR)
A PRTNBR S N JREF(1)

A DESC

A PRICE

A QUANT

A K DESC

A

A

A PRTNBR 6
A PRICE 7
A QUANT 8
A

Database programming 71

In PF1, the Prinbr field is a packed decimal field; in PF2, the Prtnbr field is a zoned decimal field. In the
join logical file, they are used as join fields, and the Prtnbr field from PF1 is redefined to be a zoned
decimal field by specifying an S in position 35 at the field level. The JREF keyword identifies which
physical file the field comes from. However, the field is not included in the record format; therefore, N is
specified in position 38 to make it a neither field. A program using this file would not see the field.

In this example, a sales clerk can type a description of a part. The program can read the join logical file
for a match or a close match, and display one or more parts for the user to examine, including the
description, price, and quantity. This application assumes that part numbers are not necessary to
complete a customer order or to order more parts for the warehouse.

Specify key fields in join logical files (example 6):
This topic discusses the rules for specifying key fields in join logical files.

If you specify key fields in a join logical file, the following rules apply:
* The key fields must exist in the primary physical file.
* The key fields must be named in the join record format in the logical file in positions 19 through 28.

* The key fields cannot be fields defined as neither fields (N specified in position 38 for the field) in the
logical file.

The following example illustrates the rules for key fields:

JLF
[cet il 2 B b b 5 Bk T L8
A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NBR NUMBER)
A JFLD(FLD3 FLD31)
A FLD1 RENAME (F1)
A FLD2 JREF(2)
A FLD3 35 N
A NAME
A TELEPHONE CONCAT (AREA LOCAL)
A K FLD1
A K NAME
A
PF1
P A A RPN SR PR S S - T DR PRI SR SO .
A R REC1
A NBR 4
A F1 20
A FLD2 7 2
A FLD3 40
A NAME 20
A
PF2
[oet il 2 B b S Bk T+ L8
A R REC2
A NUMBER 4
A FLD2 7 2
A FLD31 35
A AREA 3
A LOCAL 7
A

The following fields cannot be key fields:
¢ Nbr (not named in positions 19 through 28)
* Number (not named in positions 19 through 28)

72 IBM Systems - iSeries: Database Database programming

¢ F1 (not named in positions 19 through 28)

* FId31 (comes from a secondary file)

* Fld2 (comes from a secondary file)

* Fld3 (is a neither field)

* Area and Local (not named in positions 19 through 28)
* Telephone (is based on fields from a secondary file)

Specify select/omit statements in join logical files:
This topic discusses the rules for specifying select/omit statements in join logical files.

If you specify select/omit statements in a join logical file, the following rules apply:
* The fields can come from any physical file the logical file uses (specified on the JFILE keyword).

* The fields you specify on the select/omit statements cannot be fields defined as neither fields (N
specified in position 38 for the field).

* In some circumstances, you must specify the DYNSLT keyword when you specify select/omit
statements in join logical files.

Related concepts

Related reference

[“A complex join logical file (example 10)” on page 7§
This example shows a more complex join logical file.

Join three or more physical files (example 7):
You can use a join logical file to join as many as 32 physical files. These files must be specified on the
JFILE keyword. The first file specified on the JFILE keyword is the primary file; the other files are all

secondary files.

The physical files must be joined in pairs, with each pair described by a join specification. Each join
specification must have one or more join fields identified.

The following chart shows the fields in the files and one field common to all the physical files in the
logical file:

JLF2

Name
Address
Telephone
Salary

PF1 PF2 PF3

Name Name Name
Address Telephone Salary

RBAF0529-0

The join logical file (JLF2) contains Name, Address, Telephone, and Salary. Physical file 1 (PF1) has Name
and Address, physical file 2 (PF2) has Name and Telephone, and physical file 3 (PF3) has Name and Salary.
In this example, the Name field is common to all the physical files (PF1, PF2, and PF3), and serves as the
join field.

The following example shows the data description specifications (DDS) for the physical and logical files:

Database programming 73

oot Lo 23 S T R PR SR S S
A R JOINREC JFILE(PF1 PF2 P3)
A J JOIN(PF1 PF2)
A JFLD(NAME NAME)
A J JOIN(PF2 PF3)
A JFLD(NAME NAME)
A NAME JREF (PF1)
A ADDR
A TELEPHONE
A SALARY
A K NAME
A
PF1
[oot L 2 B U T U FUURE S SO S
A R REC1
A NAME 10
A ADDR 20
A K NAME
A
PF2
[P PR S SO SO PO SN S R U FUUE U SO SR
A R REC2
A NAME 10
A TELEPHONE 7
A K NAME
A
PF3
[cot il 2 B R T P ORI D S B
A R REC3
A NAME 10
A SALARY 9
A K NAME
A

Assume that the physical files have the following records.

Table 28. Physical file 1 (PF1)

Name Address
Anne 120 1st St.
Doug 40 Pillsbury
Mark 2 Lakeside Dr.
Tom 335 Elm St.
Table 29. Physical file 2 (PF2)

Name Telephone
Anne 555-1111
Doug 555-5555
Mark 555-0000
Sue 555-3210
Table 30. Physical file 3 (PF3)

Name Salary
Anne 1700.00

74 1BM Systems - iSeries: Database Database programming

Table 30. Physical file 3 (PF3) (continued)

Name Salary
Doug 950.00
Mark 2100.00

The program reads the following logical file records.

Table 31. Join logical file (JLF)

Name Address Telephone Salary

Anne 120 1st St. 555-1111 1700.00
Doug 40 Pillsbury 555-5555 950.00

Mark 2 Lakeside Dr.. 555-0000 2100.00
Doug 40 Pillsbury 555-5555

No record is returned for Tom because a record is not found for him in PF2 and PF3 and the JDFTVAL
keyword is not specified. No record is returned for Sue because the primary file has no record for Sue.

Join a physical file to itself (example 8):

You can join a physical file to itself to read records that are formed by combining two or more records
from the physical file itself.

The following chart shows how you can join a physical file to itself:

JLF

Employee Number
Name
Manager's Name

PF1

Employee Number
Name
Manager's Employee Number

RBAFO532-0

The join logical file (JLF) contains Employee number, Name, and Manager’s name. The physical file (PF1)
contains Employee number, Name, and Manager’s employee number. The following example shows the data
description specifications (DDS) for these files:

JLF
P R R SRR SRR SR U S SN - T DR SRUIE SR SO .
A JDFTVAL
A R JOINREC JFILE(PF1 PF1)
A J JOIN(1 2)
A JFLD(MGRNBR NBR)
A NBR JREF(1)
A NAME JREF(1)
A MGRNAME RENAME (NAME)
A JREF(2)
A
PF1
P U U R SRR DU S UNY: S SRR - T DR : SPUIE SR SO SRR

Database programming 75

> = = =

Notes:

Assume that the following records are contained in PF1.

NBR 3

NAME 10 DFT('none')

MGRNBR 3

. Relative file numbers must be specified on the JOIN keyword because the same file name is

specified twice on the JFILE keyword. Relative file number 1 refers to the first physical file
specified on the JFILE keyword, 2 refers to the second, and so forth.

each field specified at the field level.

Table 32. Physical file 1 (PF1)

. With the same physical files specified on the JFILE keyword, the JREF keyword is required for

Employee number Name
235 Anne

440 Doug
500 Mark

729 Sue

Manager’s employee number
440
729
440
888

The program reads the following logical file records.

Table 33. Join logical file (JLF)

Employee number Name Manager’s name
235 Anne Doug

440 Doug Sue

500 Mark Doug

729 Sue none

Notes:

specified.

physical file.

. A record is returned for the manager name of Sue because the JDFTVAL keyword was

. The value none is returned because the DFT keyword was used on the Name field in the PF1

Use default data for missing records from secondary files (example 9):

If you are joining more than two files and you specify the JDFTVAL keyword, the default value supplied
by the system for a join field missing from a secondary file is used to join to other secondary files.

If the DFT keyword is specified in the secondary file, the value specified for the DFT keyword is used in
the logical file.

The data description specifications (DDS) for the files are shown as follows:

76

JFLD(NAME NAME)

JDFTVAL
R JRCD JFILE(PF1 PF2 PF3)
J JOIN(PF1 PF2)
J JOIN(PF2 PF3)

IBM Systems - iSeries: Database Database programming

A JFLD(TELEPHONE TELEPHONE)
A NAME JREF (PF1)
A ADDR
A TELEPHONE JREF (PF2)
A LOC
A
PF1
PO PO S S: FUNPIE SRR SUNPIE DAY PP P UL JI S DU
A R RCD1
A NAME 20
A ADDR 40
A COUNTRY 40
A
PF2
[t l 2 F e B bbb Bt Bk T+ L8
A R RCD2
A NAME 20
A TELEPHONE 8 DFT('999-9999"')
A
PF3
[t l 2 F B b 5Bk T L8
A R RCD3
A TELEPHONE 8
A LoC 30 DFT('No location assigned')
A

Assume that PF1, PF2, and PF3 have the following records.
Table 34. Physical file 1 (PF1)

Name Address Country
Anne 120 1st St. USA
Doug 40 Pillsbury Canada
Mark 2 Lakeside Dr. Canada
Sue 120 Broadway USA

Table 35. Physical file 2 (PF2)

Name Telephone
Anne 555-1234
Doug 555-2222
Sue 555-1144

Table 36. Physical file 3 (PF3)

Telephone Location

555-1234 Room 312

555-2222 Main lobby

999-9999 No telephone number

Database programming

77

With JDFTVAL specified in the join logical file, the program reads the following logical file records.
Table 37. Join logical file (JLF)

Name Address Telephone Location

Anne 120 1st St. 555-1234 Room 312

Doug 40 Pillsbury 555-2222 Main lobby

Mark 2 Lakeside Dr. 999-9999 No telephone number
Sue 120 Broadway 555-1144 No location assigned

In this example, complete data is found for Anne and Doug. However, part of the data is missing for
Mark and Sue.

* PF2 is missing a record for Mark because he has no telephone number. The default value for the
Telephone field in PF2 is defined as 999-9999 using the DFT keyword. In this example, therefore,
999-9999 is the telephone number returned when no telephone number is assigned. The JDFTVAL
keyword specified in the join logical file causes the default value for the Telephone field (which is
999-9999) in PF2 to be used to match with a record in PF3. (In PF3, a record is included to show a
description for telephone number 999-9999.) Without the JDFTVAL keyword, no record would be
returned for Mark.

* Sue’s telephone number is not yet assigned a location; therefore, a record for 555-1144 is missing in
PF3. Without JDFTVAL specified, no record would be returned for Sue. With JDFTVAL specified, the
system supplies the default value specified on the DFT keyword in PF3 the Loc field (which is No
location assigned).

A complex join logical file (example 10):
This example shows a more complex join logical file.

Assume that the data is in the following three physical files:
Vendor Master File (PF1)

A R RCD1 TEXT('VENDOR INFORMATION')
A VDRNBR 5 TEXT('VENDOR NUMBER')

A VDRNAM 25 TEXT('VENDOR NAME')

A STREET 15 TEXT('STREET ADDRESS')

A CITY 15 TEXT('CITY')

A STATE 2 TEXT('STATE')

A ZIPCODE 5 TEXT('ZIP CODE')

A DFT('00000")

A PAY 1 TEXT('PAY TERMS')

A

Order File (PF2
[oecte il 2 B b S Bk T+ L8

A R RCD2 TEXT('VENDORS ORDER')

A VDRNUM 55 0 TEXT('VENDOR NUMBER')

A JOBNBR 6 TEXT('JOB NUMBER')

A PRTNBR 55 0 TEXT('PART NUMBER')

A DFT(99999)

A QORDER 350 TEXT('QUANTITY ORDERED')
A UNTPRC 6S 2 TEXT('PRICE')

A

Part File (PF3)

A R RCD3 TEXT('DESCRIPTION OF PARTS')
A PRTNBR 55 0 TEXT('PART NUMBER')

A DFT(99999)

A DESCR 25 TEXT('DESCRIPTION')

78 IBM Systems - iSeries: Database Database programming

A UNITPRICE 6S 2 TEXT('UNIT PRICE')

A WHSNBR 3 TEXT (' WAREHOUSE NUMBER')
A PRTLOC 4 TEXT('LOCATION OF PART')
A QOHAND 5 TEXT('QUANTITY ON HAND')
A

The join logical file record format should contain the following fields:
* Vdrnam (vendor name)

e Street, City, State, and Zipcode (vendor address)

* Jobnbr (job number)

* Prtnbr (part number)

* Descr (description of part)

* Qorder (quantity ordered)

* Untprc (unit price)

* Whsnbr (warehouse number)

* Prtloc (location of part)

The data description specifications (DDS) for this join logical file are shown as follows:
Join Logical File (JLF)

1 DYNSLT
2 JDFTVAL
R RECORD1 JFILE(PF1 PF2 PF3)
3 J JOIN(1 2)
JFLD(VDRNBR VDRNUM)
4 JDUPSEQ(JOBNBR)
5 J JOIN(2 3)
6 JFLD(PRTNBR PRTNBR)
JFLD(UNTPRC UNITPRICE)

7 VDRNUM 5A N TEXT('CHANGED ZONED TO CHAR')
VDRNAM
ADDRESS 8 CONCAT(STREET CITY STATE +
ZIPCODE)
JOBNBR
PRTNBR 9 JREF(2)
DESCR
QORDER
UNTPRC
WHSNBR
PRTLOC
10 S VDRNAM COMP(EQ 'SEWING COMPANY')
S QORDER COMP(GT 5)

> rT>T>>T > ITT>T>IT>>I>>I>>I>>>>>

The DYNSLT keyword is required because the JDFTVAL keyword and select fields are specified.
The JDFTVAL keyword is specified to pick up default values in physical files.

First join specification.

The JDUPSEQ keyword is specified because duplicate vendor numbers occur in PF2.

Second join specification.

SN Ul B W N =

Two JFLD keywords are specified to ensure that the correct records are joined from the PF2 and
PF3 files.

7 The Vdrnum field is redefined from zoned decimal to character (because it is used as a join field
and it does not have the same attributes in PF1 and PF2).

8 The CONCAT keyword concatenates four fields from the same physical file into one field.

Database programming 79

9 The JREF keyword must be specified because the Prinbr field exists in two physical files and you
want to use the one in PF2.

10 The select/omit fields are Vdrnam and Qorder.
Note: They come from two different physical files.)
Join logical file considerations:

These topics include the performance and integrity considerations for join logical files. They also provide
a summary of rules for join logical files.

Performance considerations:
This topic includes tips for the best performance of join logical files.

You can do the following things to improve the performance of join logical files:

* If the physical files you join have a different number of records, specify the physical file with fewest
records first (first parameter following the JOIN keyword).

* Consider using the DYNSLT keyword.

* Consider describing your join logical file so it can automatically share an existing access path.

Note: Join logical files always have access paths using the second field of the pair of fields specified in
the JFLD keyword. This field acts like a key field in simple logical files. If an access path does
not already exist, the access path is implicitly created with immediate maintenance.

Related concepts

[“Dynamic select/omit” on page 54|

With the dynamic select/omit operation, when a program reads records from the file, the system only
returns those records that meet the select/omit values. That is, the actual select/omit processing is
done when records are read by a program, rather than when the records are added or changed.

[‘Use existing access paths” on page 54|

When two or more files are based on the same physical files and the same key fields in the same
order, they automatically share the same keyed sequence access path. When access paths are shared,
the amount of system activity required to maintain access paths and the amount of auxiliary storage
used by the files is reduced.

Data integrity considerations:
Consider data integrity when using join logical files.

Unless you have a lock on the physical files used by the join logical file, the following situations can
occur:

* Your program reads a record for which there are two or more records in a secondary file. The system
supplies one record to your program.

* Another program updates the record in the primary file that your program has just read, changing the
join field.

* Your program issues another read request. The system supplies the next record based on the current
(new) value of the join field in the primary file.

These same considerations apply to secondary files as well.

Summary of rules:

This is a summary of rules for joining database files.

80 IBM Systems - iSeries: Database Database programming

Requirements:

Here are the principle requirements for join logical files.

Each join logical file must have:
— Only one record format, with the JFILE keyword specified for it.

— At least two physical file names specified on the JFILE keyword. (The physical file names on the
JFILE keyword do not have to be different files.)

— At least one join specification (J in position 17 with the JFLD keyword specified).
— A maximum of 255 secondary files.
— At least one field name with field use other than N (neither) at the field level.

If only two physical files are specified for the JFILE keyword, the JOIN keyword is not required. Only
one join specification can be included, and it joins the two physical files.

If more than two physical files are specified for the JFILE keyword, the following rules apply:

— The primary file must be the first file of the pair of files specified on the first JOIN keyword (the
primary file can also be the first of the pair of files specified on other JOIN keywords).

Note: Relative file numbers must be specified on the JOIN keyword and any JREF keyword when
the same file name is specified twice on the JFILE keyword.

— Every secondary file must be specified only once as the second file of the pair of files on the JOIN
keyword. This means that for every secondary file on the JFILE keyword, one join specification must
be included (two secondary files would mean two join specifications, three secondary files would
mean three join specifications).

— The order in which secondary files appear in join specifications must match the order in which they
are specified on the JFILE keyword.

Join fields:

Here are the rules for join fields.

Every physical file you join must be joined to another physical file by at least one join field. A join field
is a field specified as a parameter value on the JFLD keyword in a join specification.

Join fields (specified on the JFLD keyword) must have identical attributes (length, data type, and
decimal positions) or be redefined in the record format of the join logical file to have the same
attributes. If the join fields are of character type, the field lengths might be different.

Join fields need not be specified in the record format of the join logical file (unless you must redefine
one or both so that their attributes are identical).

If you redefine a join field, you can specify N in position 38 (making it a neither field) to prevent a
program using the join logical file from using the redefined field.

The maximum length of fields used in joining physical files is equal to the maximum size of keys for
physical and logical files.

Related reference

[“Database file sizes” on page 7]
When designing files on the iSeries server, you should keep in mind the sizes for database files.

Fields in join logical files:

Here are the rules for fields in join logical files.

Fields in a record format for a join logical file must exist in one of the physical files used by the logical
file or, if CONCAT, RENAME, TRNTBL, or SST is specified for the field, be a result of fields in one of
the physical files.

Database programming 81

* Fields specified as parameter values on the CONCAT keyword must be from the same physical file. If
the first field name specified on the CONCAT keyword is not unique among the physical files, you
must specify the JREF keyword for that field to identify which file contains the field descriptions you
want to use.

 If a field name in the record format for a join logical file is specified in more than one of the physical
files, you must uniquely specify on the JREF keyword which file the field comes from.

* Key fields, if specified, must come from the primary file. Key fields in the join logical file need not be
key fields in the primary file.

* Select/omit fields can come from any physical file used by the join logical file, but in some
circumstances the DYNSLT keyword is required.

* If specified, key fields and select/omit fields must be defined in the record format.

* Relative file numbers must be used for the JOIN and JREF keywords if the name of the physical file is
specified more than once on the JFILE keyword.

Miscellaneous rules:
Here are the other rules for using join logical files.

The rules include:
* Join logical files are read-only files.
* Join record formats cannot be shared, and cannot share other record formats.
* The following items are not allowed in a join logical file:
— The REFACCPTH and FORMAT keywords
— Both fields (B specified in position 38)

Describe access paths for database files

These topics discuss the different ways of describing access paths for database files.

An access path describes the order in which records are to be retrieved. Records in a physical or logical
file can be retrieved using an arrival sequence access path or a keyed sequence access path. For logical
files, you can also select and omit records based on the value of one or more fields in each record. A key
field is a field used to arrange the records of a particular type within a file member.

Related concepts

[“Access path description” on page 6|

When you describe a database file to the system, you describe the two major parts of the file: the
record format and the access path. An access path describes the order in which records are to be
retrieved. So when you describe an access path, you describe whether it will be a keyed sequence or
arrival sequence access path.

Use arrival sequence access path for database files

The arrival sequence access path for database files is based on the order in which the records arrive and
are stored in the file. This topic discusses what kind of file can use arrival sequence access path and how
you can use the path to describe the file.

For reading or updating, records can be accessed:
* Sequentially, where each record is taken from the next sequential physical position in the file.

¢ Directly by relative record number, where the record is identified by its position from the start of the
file.

An externally described file has an arrival sequence access path when no key fields are specified for the
file.

82 IBM Systems - iSeries: Database Database programming

An arrival sequence access path is valid only for the following files:

* Physical files

* Logical files in which each member of the logical file is based on only one physical file member
* Join logical files

* Views

You can use arrival sequence access paths in the following ways:

* Arrival sequence is the only processing method that allows a program to use the storage space
previously occupied by a deleted record by placing another record in that storage space. This method
requires explicit insertion of a record given a relative record number that you provide. Another
method, in which the system manages the space created by deleting records, is the reuse deleted
records attribute that can be specified for physical files.

* Through your high-level language, the Display Physical File Member (DSPPFM) command, and the
Copy File (CPYF) command, you can process a keyed sequence file in arrival sequence. You can use
this function for a physical file, a simple logical file based on one physical file member, or a join logical
file.

* Through your high-level language, you can process a keyed sequence file directly by relative record
number. You can use this function for a physical file, a simple logical file based on one physical file
member, or a join logical file.

* An arrival sequence access path does not take up any additional storage and is always saved or
restored with the file. (Because the arrival sequence access path is nothing more than the physical order
of the data as it was stored, when you save the data you save the arrival sequence access path.)

Related concepts

[‘Reuse deleted records” on page 99|
Sometimes you might want to reuse deleted records for your database files. In this case, you can use
the REUSEDLT parameter.

[‘Delete database records” on page 199
The delete operation allows you to delete an existing database record.

Use a keyed sequence access path for database files
A keyed sequence access path for database files is based on the contents of the key fields as defined in
data description specifications (DDS). This topic describes how the key fields are arranged for the file.

This type of access path is updated whenever records are added or deleted, or when records are updated
and the contents of a key field is changed. The keyed sequence access path is valid for both physical and
logical files. The sequence of the records in the file is defined in DDS when the file is created and is
maintained automatically by the system.

Key fields defined as character fields are arranged based on the sequence defined for EBCDIC characters.
Key fields defined as numeric fields are arranged based on their algebraic values, unless the UNSIGNED
(unsigned value) or ABSVAL (absolute value) DDS keywords are specified for the field. Key fields
defined as DBCS are allowed, but are arranged only as single bytes based on their bit representation.

Arrange key fields using an alternative collating sequence:

Keyed fields defined as character fields can be arranged based either on the sequence for EBCDIC
characters or on an alternative collating sequence.

Consider the following records.

Record Empname Deptnbr Empnbr
1 Jones, Mary 45 23318
2 Smith, Ron 45 41321

Database programming 83

Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322
4 Smith, ROBERT 27 56218
5 JONES, MARTIN 53 62213

If the Empname is the key field and is a character field, using the sequence for EBCDIC characters, the
records can be arranged as follows.

Record Empname Deptnbr Empnbr
1 Jones, Mary 45 23318
3 JOHNSON, JOHN 53 41322
5 JONES, MARTIN 53 62213
2 Smith, Ron 45 41321
4 Smith, ROBERT 27 56218

Notice that the EBCDIC sequence causes an unexpected sort order because the lowercase characters are
sorted before uppercase characters. Thus, Smith, Ron sorts before Smith, ROBERT. An alternative collating
sequence can be used to sort the records when the records were entered using uppercase and lowercase
as shown in the following example.

Record Empname Deptnbr Empnbr
3 JOHNSON, JOHN 53 41322
5 JONES, MARTIN 53 62213
1 Jones, Mary 45 23318
4 Smith, ROBERT 27 56218
2 Smith, Ron 45 41321

To use an alternative collating sequence for a character key field, specify the ALTSEQ DDS keyword, and
specify the name of the table containing the alternative collating sequence. When setting up a table, each
2-byte position in the table corresponds to a character. To change the order in which a character is sorted,
change its 2-digit value to the same value as the character it should be sorted equal to. For information
about sorting uppercase and lowercase characters regardless of their case, the QCASE256 table in library
QUSRSYS is provided for you.

Arrange key fields using the SRTSEQ parameter:

You can arrange key fields containing character data according to several sorting sequences available with
the SRTSEQ parameter.

Consider the following records.

Record Empname Deptnbr Empnbr
1 Jones, Marilyn 45 23318
2 Smith, Ron 45 41321
3 JOHNSON, JOHN 53 41322
4 Smith, ROBERT 27 56218
5 JONES, MARTIN 53 62213
6 Jones, Martin 08 29231

If the Empname field is the key field and is a character field, the *HEX sequence (the EBCDIC sequence)
arranges the records as follows.

84 IBM Systems - iSeries: Database Database programming

Record Empname Deptnbr Empnbr
1 Jones, Marilyn 45 23318
6 Jones, Martin 08 29231
3 JOHNSON, JOHN 53 41322
5 JONES, MARTIN 53 62213
2 Smith, Ron 45 41321
4 Smith, ROBERT 27 56218

Notice that with the *HEX sequence, all lowercase characters are sorted before the uppercase characters.
Thus, Smith, Ron sorts before Smith, ROBERT, and JOHNSON, JOHN sorts between the lowercase and
uppercase Jones. You can use the *LANGIDSHR sort sequence to sort records when the records were
entered using a mixture of uppercase and lowercase. The *LANGIDSHR sequence, which uses the same
collating weight for lowercase and uppercase characters, results in the following record.

Record Empname Deptnbr Empnbr
3 JOHNSON, JOHN 53 41322
1 Jones, Marilyn 45 23318
5 JONES, MARTIN 53 62213
6 Jones, Martin 08 29231
4 Smith, ROBERT 27 56218
2 Smith, Ron 45 41321

Notice that with the *LANGIDSHR sequence, the lowercase and uppercase characters are treated as
equal. Thus, JONES, MARTIN and Jones, Martin are equal and sort in the same sequence they have in the
base file. While this is not incorrect, it would look better in a report if all the lowercase Jones preceded
the uppercase JONES. You can use the *LANGIDUNQ sort sequence to sort the records when the records
were entered using an inconsistent uppercase and lowercase. The *LANGIDUNQ sequence, which uses
different but sequential collating weights for lowercase and uppercase characters, results in the following
record.

Record Empname Deptnbr Empnbr
3 JOHNSON, JOHN 53 41322
1 Jones, Marilyn 45 23318
6 Jones, Martin 08 29231
5 JONES, MARTIN 53 62213
4 Smith, ROBERT 27 56218
2 Smith, Ron 45 41321

The *LANGIDSHR and *LANGIDUNQ sort sequences exist for every language supported in your system.
The LANGID parameter determines which *LANGIDSHR or *LANGIDUNQ sort sequence to use. Use
the SRTSEQ parameter to specify the sort sequence and the LANGID parameter to specify the language.
Arrange key fields in ascending or descending sequence:

Key fields can be arranged in either ascending or descending sequence.

Consider the following records.

Record Empnbr Clsnbr Clsnam Cpdate
1 56218 412 Welding 1 032188
2 41322 412 Welding 1 011388
3 64002 412 Welding 1 011388

Database programming 85

Record Empnbr Clsnbr Clsnam Cpdate

4 23318 412 Welding 1 032188
5 41321 412 Welding 1 051888
6 62213 412 Welding 1 032188

If the Empnbr field is the key field, the two possibilities for organizing these records are:
* In ascending sequence, where the order of the records in the access path is.

Record Empnbr Clsnbr Clsnam Cpdate
4 23318 412 Welding 1 032188
5 41321 412 Welding 1 051888
2 41322 412 Welding 1 011388
1 56218 412 Welding 1 032188
6 62213 412 Welding 1 032188
3 64002 412 Welding I 011388

* In descending sequence, where the order of the records in the access path is.

Record Empnbr Clsnbr Clsnam Cpdate
3 64002 412 Welding 1 011388
6 62213 412 Welding 1 032188
1 56218 412 Welding 1 032188
2 41322 412 Welding I 011388
5 41321 412 Welding 1 051888
4 23318 412 Welding 1 032188

When you describe a key field, the default is ascending sequence. However, you can use the DESCEND
DDS keyword to specify that you want to arrange a key field in descending sequence.

Use more than one key field:

You can use more than one key field to arrange the records in a database file. The key fields do not have
to use the same sequence.

For example, when you use two key fields, one field can use ascending sequence while the other can use
descending sequence. Consider the following records.

Record Order Ordate Line Item Qtyord Extens
1 52218 063088 01 88682 425 031875
2 41834 062888 03 42111 30 020550
3 41834 062888 02 61132 4 021700
4 52218 063088 02 40001 62 021700
5 41834 062888 01 00623 50 025000

If the access path uses the Order field, then the Line field as the key fields, both in ascending sequence,
the order of the records in the access path is.

Record Order Ordate Line Item Qtyord Extens
5 41834 062888 01 00623 50 025000
3 41834 062888 02 61132 4 021700
2 41834 062888 03 42111 30 020550
1 52218 063088 01 88682 425 031875

86 IBM Systems - iSeries: Database Database programming

Record Order Ordate Line Item Qtyord Extens
4 52218 063088 02 40001 62 021700

If the access path uses the key field Order in ascending sequence, then the Line field in descending
sequence, the order of the records in the access path is.

Record Order Ordate Line Item Qtyord Extens
2 41834 062888 03 42111 30 020550
3 41834 062888 02 61132 4 021700
5 41834 062888 01 00623 50 025000
4 52218 063088 02 40001 62 021700
1 52218 063088 01 88682 425 031875

When a record has key fields whose contents are the same as the key field in another record in the same

file, then the file is said to have records with duplicate key values. However, the duplication must occur

for all key fields for a record if they are to be called duplicate key values. For example, if a record format
has two key fields Order and Ordate, duplicate key values occur when the contents of both the Order and
Ordate fields are the same in two or more records. These records have duplicate key values.

Order Ordate Line Item Otyord Extens
41834 062888 03 42111 30 020550
41834 062888 02 61132 04 021700
41834 062888 01 00623 50 025000

Using the Line field as a third key field defines the file so that there are no duplicate keys.

(First key field) (Second key field) (Third key field)

order ordate line Item Qtyord Extens
41834 062888 03 42111 30 020550
41834 062888 02 61132 04 021700
41834 062888 01 00623 50 025000

A logical file that has more than one record format can have records with duplicate key values, even
though the record formats are based on different physical files. That is, even though the key values come
from different record formats, they are considered duplicate key values.

Prevent duplicate key values:

DB2 Universal Database for iSeries allows records with duplicate key values in your files. However, you
might want to prevent duplicate key values in some of your files.

For example, you can create a file where the key field is defined as the customer number field. In this
case, you want the system to ensure that each record in the file has a unique customer number.

You can prevent duplicate key values in your files by specifying the UNIQUE keyword in data
description specifications (DDS). With the UNIQUE keyword specified, a record cannot be entered or
copied into a file if its key value is the same as the key value of a record already existing in the file. You
can also use unique constraints to enforce the integrity of unique keys.

If records with duplicate key values already exist in a physical file, the associated logical file cannot have
the UNIQUE keyword specified. If you try to create a logical file with the UNIQUE keyword specified,

Database programming 87

and the associated physical file contains duplicate key values, the logical file is not created. The system
sends you a message stating this and sends you messages (as many as 20) indicating which records
contain duplicate key values.

When the UNIQUE keyword is specified for a file, any record added to the file cannot have a key value
that duplicates the key value of an existing record in the file, regardless of the file used to add the new
record. For example, two logical files LF1 and LF2 are based on the physical file PF1. The UNIQUE
keyword is specified for LF1. If you use LF2 to add a record to PF1, you cannot add the record if it
causes a duplicate key value in LF1.

If any of the key fields allow null values, null values that are inserted into those fields might or might
not cause duplicates depending on how the access path was defined when the file was created. The
*INCNULL parameter of the UNIQUE keyword indicates that null values are included when determining
whether duplicates exist in the unique access path. The *EXCNULL parameter indicates that null values
are not included when determining whether duplicate values exist.

The following example shows the DDS for a logical file that requires unique key values:

Ax ORDER TRANSACTION LOGICAL FILE (ORDFILL)

A UNIQUE

A R ORDHDR PFILE (ORDHDRP)
A K ORDER

A

A R ORDDTL PFILE(ORDDTLP)
A K ORDER

A K LINE

A

In this example, the contents of the key fields (the Order field for the ORDHDR record format, and the
Order and Line fields for the ORDDTL record format) must be unique whether the record is added
through the ORDHDREP file, the ORDDTLP file, or the logical file defined here. With the Line field
specified as a second key field in the ORDDTL record format, the same value can exist in the Order key
field in both physical files. Because the physical file ORDDTLP has two key fields and the physical file
ORDHDRP has only one, the key values in the two files do not conflict.

Related concepts

[‘Control the integrity of your database with constraints” on page 244]

A constraint is a restriction or limitation placed on a file to ensure that the data in your database
remains consistent as you add, change, and remove records. These topics describe how to use
constraints to ensure data consistency.

DDS concept

Arrange duplicate keys:

If you do not specify the UNIQUE keyword in data description specifications (DDS), you can specify how
the system stores records with duplicate key values, if duplicate key values occur.

You specify that records with duplicate key values are stored in the access path in one of the following
ways:
¢ Last-in-first-out (LIFO). When the LIFO keyword is specified (1), records with duplicate key values are

retrieved in LIFO order by the physical sequence of the records. Here is an example of DDS using the
LIFO keyword.

A+ ORDERP2

A 1 LIFO
A R ORDER2

A .

88 IBM Systems - iSeries: Database Database programming

K ORDER

> > > >

¢ First-in-first-out (FIFO). If the FIFO keyword is specified, records with duplicate key values are
retrieved in FIFO order by the physical sequence of the records.

¢ First-changed-first-out (FCFO). If the FCFO keyword is specified, records with duplicate key values are
retrieved in FCFO order by the physical sequence of the keys.

* No specific order for duplicate key fields (the default). When the FIFO, FCFO, or LIFO keyword is not
specified, no guaranteed order is specified for retrieving records with duplicate keys. No specific order
for duplicate key fields allows more access path sharing, which can improve performance.

When a simple- or multiple-format logical file is based on more than one physical file member, records
with duplicate key values are read in the order in which the files and members are specified on the

DTAMBRS parameter of the Create Logical File (CRTLF) or Add Logical File Member (ADDLEM
command. Examples of logical files with more than one record format can be found in
The LIFO or FIFO order of records with duplicate key values is not determined by the sequence of the
updates made to the contents of the key fields, but only by the physical sequence of the records in the

file member. Assume that a physical file has the FIFO keyword specified (records with duplicate keys are
in FIFO order), and that the following table shows the order in which records were added to the file.

Order records were added to file Key value
1 A
2 B
3 C
4 C
5 D

The sequence of the access path is (FIFO, ascending key).

Record number Key value
1 A
2 B
3 C
4 C
5 D

Records 3 and 4, which have duplicate key values, are in FIFO order. That is, because record 3 was added
to the file before record 4, it is read before record 4. This would become apparent if the records were read
in descending order. This can be done by creating a logical file based on this physical file, with the
DESCEND keyword specified in the logical file.

The sequence of the access path is (FIFO, descending key).

Record number Key value

= N R W Ol
>w N NJY

Database programming 89

If the key value of physical record 1 is changed to C, the sequence of the access path for the physical file
is (FIFO, ascending key).

Record number Key value

Ol = W = N
gonNnnnNw

Finally, changing to descending order, the new sequence of the access path for the logical file is (FIFO,
descending key).

Record number Key value

N b= W= Ol
TNNONUT

After the change, record 1 does not appear after record 4, even though the contents of the key field were
updated after record 4 was added.

The FCFO order of records with duplicate key values is determined by the sequence of updates made to
the contents of the key fields. In the example above, after record 1 is changed such that the key value is
C, the sequence of the access path (FCFO, ascending key only) is.

Record number Key value

Ul = = W N
gnNnnnNw

For FCFO, the duplicate key ordering can change when the FCFO access path is rebuilt or when a
rollback operation is performed. In some cases, your key field can change but the physical key does not
change. In these cases, the FCFO ordering does not change, even though the key field has changed. For
example, when the index ordering is changed to be based on the absolute value of the key, the FCFO
ordering does not change. The physical value of the key does not change even though your key changes
from negative to positive. Because the physical key does not change, FCFO ordering does not change.

If the reuse deleted records attribute is specified for a physical file, the duplicate key ordering must be
allowed to default or must be FCFO. The reuse deleted records attribute is not allowed for the physical
file if either the key ordering for the file is FIFO or LIFO, or if any of the logical files defined over the
physical file have duplicate key ordering of FIFO or LIFO.

Related concepts

[‘Use existing access paths” on page 54|

When two or more files are based on the same physical files and the same key fields in the same
order, they automatically share the same keyed sequence access path. When access paths are shared,
the amount of system activity required to maintain access paths and the amount of auxiliary storage
used by the files is reduced.

90 IBM Systems - iSeries: Database Database programming

Use existing access path specifications
The keyword REFACCPTH in data description specifications (DDS) allows you to use another file’s access
path specifications. When the file is created, the system determines which access path to share.

The file using the REFACCPTH keyword does not necessarily share the access path of the file specified in
the REFACCPTH keyword. The REFACCPTH keyword is used to only reduce the number of DDS
statements that must be specified. That is, rather than code the key field specifications for the file, you
can specify the REFACCPTH keyword. When the file is created, the system copies the key field and
select/omit specifications from the file specified on the REFACCPTH keyword to the file being created.

Use floating-point fields in database file access paths

The collating sequence for records in a keyed database file depends on the presence of the SIGNED,
UNSIGNED, and ABSVAL keywords in data description specifications (DDS). For floating-point fields,
the sign is the farthest-left bit, the exponent is next, and the significant is last.

The collating sequence with UNSIGNED specified is:
* Positive real numbers—positive infinity

* Negative real numbers—negative infinity

A floating-point key field with the SIGNED keyword specified, or defaulted to, in DDS has an algebraic
numeric sequence. The collating sequence is negative infinity—real numbers—positive infinity.

A floating-point key field with the ABSVAL keyword specified in DDS has an absolute value numeric
sequence.

The following floating-point collating sequences are observed:

* Zero (positive or negative) collates in the same manner as any other positive/negative real number.
* Negative zero collates before positive zero for SIGNED sequences.

* Negative and positive zero collate the same for ABSVAL sequences.

You cannot use not-a-number (*NAN) values in key fields. If you attempt this, and a *NAN value is
detected in a key field during file creation, the file is not created.

Secure a database

These topics describe the actions you can take to secure your database.
Related concepts
[Security Reference PDF|

Grant file and data authority
Choose one of the ways to grant file and data authority.

* You can use iSeries Navigator to authorize a user or group.

* You can use the Grant Object Authority (GRTOBJAUT) command to specify the authority you want
users to have to access data in your database files.

* You can use the SQL GRANT statement.
Related reference
Grant Object Authority (GRTOBJAUT) command|

QL GRANT]

Authorize a user or group using iSeries Navigator:

Some users might require different authority to an object than the permissions allowed by public
authority. This topic describes how to authorize a user or group using iSeries Navigator.

Database programming 91

To authorize a user or group to an object, follow these steps:
1. From iSeries Navigator, expand the system you want to use.
2. Navigate until the object for which you want to edit permissions is visible.

3. Right-click the object for which you want to add permissions and click Permissions.
4. On the Permissions window, click Add.
5. On the Add window, select one or more users and groups or enter the name of a user or group in the

user or group name field.
6. Click OK. This adds the users or groups to the top of the list.

Note: The user or group is given the default authority to the object. You can change a user’s authority to
one of the types defined by the system or you can customize the authority.

You can also remove and customize authority using iSeries Navigator.

Types of object authority:

Listed here are the types of object authority to grant users access to database files.
Object operational authority

Users need object operational authority to:

* Open the file for processing. (You must also have at least one data authority.)
¢ Compile a program which uses the file description.

* Display descriptive information about active members of a file.

* Open the file for query processing. For example, the Open Query File (OPNQRYF) command opens a
file for query processing.

Note: You must also have the appropriate data authorities required by the options specified on the open
operation.

Object existence authority

Users need object existence authority to:
* Delete the file.

* Save, restore, and free the storage of the file. If the object existence authority has not been explicitly
granted to the user, the *SAVSYS special user authority allows the user to save, restore, and free the
storage of a file. *SAVSYS is not the same as object existence authority.

* Remove members from the file.
* Transfer ownership of the file.

Note: All these functions except save/restore also require object operational authority to the file.
Object management authority

Users need object management authority to:

* Create a logical file with a keyed sequence access path (object management authority is required for
the physical file referred to by the logical file).

¢ Grant and revoke authority. You can grant and revoke only the authority that you already have. (You
must also have object operational authority to the file.)

* Change the file.
* Add members to the file. (The owner of the file becomes the owner of the new member.)

92 IBM Systems - iSeries: Database Database programming

¢ Change the member in the file.

* Move the file.

* Rename the file.

* Rename a member of the file.

* Clear a member of the file. (Delete data authority is also required.)

¢ Initialize a member of the file. (Add data authority is also required to initialize with default records;
delete data authority is required to initialize with deleted records.)

¢ Reorganize a member of the file. (All data authorities are also required.)
Object alter authority

Users need object alter authority for many of the same operations as object management authority (see
preceding section). Object alter authority is a replacement authority for object management authority.

Object reference authority

Users need object reference authority to refer to an object from another object so that the operations on
that object can be restricted by the referencing object.

Adding a physical file referential constraint checks for either object management authority or object
reference authority to the parent file.

Related concepts

[‘Control the integrity of your database with constraints” on page 244|

A constraint is a restriction or limitation placed on a file to ensure that the data in your database
remains consistent as you add, change, and remove records. These topics describe how to use
constraints to ensure data consistency.

[“Ensure data integrity with referential constraints” on page 250

These topics discuss how to use referential constraints in your database to ensure that it contains only

valid data.

Types of data authority:

Listed here are the types of data authorities, or permissions, to grant users access to physical and logical

files.

Read authority

Users can read the records in the file.

Add authority

Users can add new records to the file.

Update authority

Users can update existing records. (To read a record for update, you must also have read authority.)
Delete authority

Users can delete existing records. (To read a record for deletion, you must also have read authority.)

Database programming

93

Execute authority

You can use execute authority to work with libraries and to start programs. For example, if you are
changing a file associated with a trigger, you must have execute authority to the trigger program. If you
do not have execute authority, the system will not start the trigger program.

Normally, the authority you have to the data in the file is not verified until you actually perform the
input/output operation. However, the Open Query File (OPNQRYF) and Open Database File (OPNDBF)
commands also verify data authority when the file is opened.

If object operational authority is not granted to a user for a file, the user cannot open the file.

The following example shows the relationship between authority granted for logical files and the physical
files used by the logical file. The logical files LF1, LF2, and LF3 are based on the physical file PF1.
USERA has read (*READ) and add (*ADD) authority to the data in PF1 and object operational
(*OBJOPR), read (*READ), and add (*ADD) authority for LF1 and LF2. This means that USERA cannot
open PF1 or use its data directly in any way because the user does not have object operational authority
(*OBJOPR) to PF1; USERA can open LF1 and LF2 and read records from and add records to PF1 through
LF1 and LF2.

Note: The user was not given authority for LF3 and, therefore, cannot use it.

GRTOBJAUT OBJ(LF1) USER(USERA) AUT(*OBJOPR)....

GRTOBJAUT OBJ(LF2) USER(USERA) AUT(*OBJOPR). ..

LF1 LF2 LF3
PFILE(PF1) PFILE(PF1) PFILE(PF1)

T

GRTOBJAUT OBJ(PF1)

el
I I
—

C

SER(USERA) AUT(*READ *ADD)....
RBAFO537-0

Related concepts

[“Trigger automatic events in your database” on page 262

A trigger is a set of actions that run automatically when a specified change or read operation is
performed on a specified database file. On iSeries, you define a set of trigger actions in any supported
high-level language.

Specify public authority
When you create a file, you can specify and grant public authority. Read about the values you can specify
for public authority and how you can grant it.

You can specify public authority through the AUT parameter on the Create Physical File (CRTPF) or
Create Source Physical File (CRTSRCPF) command. Public authority is the authority available to any user
who does not have specific authority to the file or who is not a member of a group that has specific
authority to the file. Public authority is the last authority check made. That is, if the user has specific
authority to a file or the user is a member of a group with specific authority, then the public authority is
not checked. Public authority can be specified as:

e *LIBCRTAUT. The library in which the file is created is checked to determine the public authority of
the file when the file is created. An authority is associated with each library. This authority is specified
when the library is created, and all files created into the library are given this public authority if the
*LIBCRTAUT value is specified for the AUT parameter of the Create File (CRTLF, CRTPFE, and
CRTSRCPF) commands. The *LIBCRTAUT value is the default public authority.

94 IBM Systems - iSeries: Database Database programming

* *CHANGE. All users that do not have specific user or group authority to the file have authority to
change data in the file.

+ *USE. All users that do not have specific user or group authority to the file have authority to read data
in the file.

* *EXCLUDE. Only the owner, security officer, users with specific authority, or users who are members
of a group with specific authority can use the file.

e *ALL. All users that do not have specific user or group authority to the file have all data authorities
along with object operational, object management, and object existence authorities.

e Authorization list name. The authorization list is a list of users and their authorities. The list allows
users and their different authorities to be grouped together.

Note: When you create a logical file, no data authorities are granted. Consequently, *CHANGE is the
same as *USE, and *ALL does not grant any data authority.

You can grant public authority in the following ways:
* Define public authority using iSeries Navigator.

* Use the Edit Object Authority (EDTOBJAUT), Grant Object Authority (GRTOBJAUT), or Revoke Object
Authority (RVKOBJAUT) command to grant or revoke the public authority of a file.

You can also use iSeries Navigator to set default public authority for a new file.
Related reference
[Create Physical File (CRTPF) command]
[Create Source Physical File (CRTSRCPF) command|
[Edit Object Authority (EDTOBJAUT) command|
[Grant Object Authority (GRTOBJAUT) command|
[Revoke Object Authority (RVKOBJAUT) command|

Define public authority for a file using iSeries Navigator:

Public authority is defined for every object on the system to describe what type of access a user has to
the object when that user has no specific access to it. This topic shows how to define public authority for
a file using the iSeries Navigator.

To define public authority, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

Navigate until the object for which you want to edit permissions is visible.
Right-click the object for which you want to add permissions and click Permissions.
On the Permissions window, select Public from the group list.

ok 0N

Click the Details button to implement detailed permissions. Apply the permissions that you want for
public authority by checking the appropriate box.

6. Click OK.

Set a default public authority for new files using iSeries Navigator:

Setting a default public authority allows you to have a common authority that is assigned to all new
objects when they are created in library. You can edit the permissions for individual objects that require a
different level of security. Follow this to set a default public authority for new files using the iSeries

Navigator.

To set a default public authority, follow these steps:
1. From iSeries Navigator, expand the system you want to use.

Database programming 95

Expand Databases.

Expand the database and library that you want to work with.

Right-click the library for which you want to set a public authority and click Permissions.
On the Permissions window, click New Object.

On the New Object window, select a default public authority.

No ok

To assign an Authorization List, you can enter or Browse for the name of the authorization list. To
view Authorization list properties, click Open.

8. Click OK.

From system value
Specifies to use the system value for the default public authority for a new object.

Use
Allows access to the object attributes and use of the object. The public can view, but not change, the
objects.

Change
Allows the contents of the object (with some exceptions) to be changed.

All
Allows all operations on the object, except those that are limited to the owner. The user or group can
control the object.s existence, specify the security for the object, change the object, and perform basic
functions on the object. The user or group can also change ownership of the object.

Exclude
All operations on the object are prohibited. No access nor operations are allowed to the object for the
users and groups having this permission. Specifies the public is not allowed to use the objects.

Use authorization list
Allows you specify an authorization list to use to secure the object.

Use database file capabilities to control I/0 operations
When you create a physical file, you can specify the file capabilities to control which input/output (I/0O)
operations are allowed for a database file independent of database file authority.

You can specify if the file is update-capable and delete-capable by using the ALWUPD and ALWDLT
parameters on the Create Physical File (CRTPF) and Create Source Physical File (CRTSRCPF) commands.
By creating a file that is not update-capable and not delete-capable, you can effectively enforce an
environment where data cannot be changed or deleted from a file after the data is written.

File capabilities cannot be explicitly set for logical files. The file capabilities of a logical file are
determined by the file capabilities of the physical files it is based on.

You cannot change file capabilities after the file is created. You must delete the file and then re-create it
with the capability that you want. The Display File Description (DSPFD) command can be used to
determine the capabilities of a file.

Related reference

Create Physical File (CRTPF) command]|

Create Source Physical File (CRTSRCPF) command|
Display File Description (DSPFD) command|

Limit access to specific fields of a database file
Choose one of the ways to restrict user update and read requests to specific fields of a physical database
file.

* Create a logical view of the physical file that includes only the fields to which you want your users to
have access.

96 IBM Systems - iSeries: Database Database programming

* Use the SQL GRANT statement to grant update authority to specific columns of a Structured Query
Language (SQL) table.

Related concepts

[“Use logical files to secure data’]
This topic discusses the ways you can use logical files to secure data.

[SQL programming]

Use logical files to secure data
This topic discusses the ways you can use logical files to secure data.

You can use a logical file to prevent a field in a physical file from being viewed. This is accomplished by
describing a logical file record format that does not include fields you do not want the user to see.

You can also use a logical file to prevent one or more fields from being changed in a physical file by
specifying, for those fields you want to protect, an I (input only) in position 38 of the DDS form.

You can use a logical file to secure records in a physical file based on the contents of one or more fields
in that record. To secure records based on the contents of a field, use the select and omit keywords when
describing the logical file.

Related concepts

[“Describe logical file record formats” on page 44|

For every logical file record format described with data description specifications (DDS), you must
specify a record format name and either the PFILE keyword (for simple and multiple format logical
files), or the JFILE keyword (for join logical files).

[‘Describe field use for logical files” on page 46
You can specify that the fields in logical files are to be input-only, both (input/output), or neither
fields.

[‘Select and omit records using logical files” on page 51|
The system can select and omit records when using a logical file. This can help you exclude records in
a file for processing convenience or for security.

Process database files

These topics discuss how to make your database files process more efficiently on the i5/0S operating
system, how to open, manipulate, and close database files, and how to monitor and manage error
messages related to your database files.

Database file processing: Runtime considerations

These topics describe the file processing parameters and other methods or considerations that can affect
database file processing.

Before a file is opened for processing, you need to consider how you want to use the file in the program
or job. A better understanding of the runtime file processing parameters can help you avoid unexpected
results and improve the performance of your program. The parameter values are determined by the
high-level language program, the file attributes, and any open or override commands processed before
the high-level language program is called.

When a file is opened, the attributes in the database file description are merged with the parameters in
the program. Normally, most of the information the system needs for your program to open and process
the file is found in the file attributes and in the application program itself.

Sometimes, however, it is necessary to override the processing parameters found in the file and in the
program. For example, if you want to process a member of the file other than the first member, you need
to tell the system to use the member you want to process. The Override with Database File (OVRDBF)

Database programming 97

command allows you to do this. The OVRDBF command also allows you to specify processing
parameters that can improve the performance of your job, but that cannot be specified in the file
attributes or in the program. The OVRDBF command parameters take precedence over the file and
program attributes.

Related concepts

[[LE Concepts PDH

[Control language (CL)|

Related reference

Create Physical File (CRTPF) command|

Create Logical File (CRTLF) command|

Create Source Physical File (CRTSRCPF) command|
IAdd Physical File Member (ADDPEM) command|
Add Logical File Member (ADDLFM) command|
Change Physical File (CHGPF) command|

[Change Physical File Member (CHGPFM) command|
[Change Logical File (CHGLF) command|

[Change Logical File Member (CHGLFM) command|
[Change Source Physical File (CHGSRCPF) command|
[Override with Database File (OVRDBF) command]
[Open Database File (OPNDBF) command]

[Open Query File (OPNQRYF) command|

[Close File (CLOF) command|

File and member name
Before you can process data in a database file, you must identify which file and member you want to use
with the FILE and MBR parameters.

Normally, you specify the file name and, optionally, the member name in your high-level language
program. The system then uses this name when your program requests the file to be opened. To override
the file name specified in your program and open a different file, you can use the TOFILE parameter on
the Override with Database File (OVRDBF) command. If no member name is specified in your program,
the first member of the file (as defined by the creation date and time) is processed.

If the member name cannot be specified in the high-level language program (some high-level languages
do not allow a member name), or you want a member other than the first member, you can use an
OVRDBF command or an open command (OPNDBF or OPNQRYF) to specify the file and member you
want to process (using the FILE and MBR parameters).

To process all the members of a file, use the OVRDBF command with the MBR(*ALL) parameter
specified. For example, if FILEX has three members and you want to process all the members, you can
specify:

OVRDBF ~ FILE(FILEX) MBR(*ALL)

If you specify MBR(*ALL) on the OVRDBF command, your program reads the members in the order they

were created. For each member, your program reads the records in keyed or arrival sequence, depending
on whether the file is an arrival sequence or keyed sequence file.

File processing options
These topics describe several runtime processing options.

Specify the type of processing:

98 IBM Systems - iSeries: Database Database programming

When you use a file in a program, the system needs to know what type of operation you plan to use for
that file. You can specify the type of processing with the OPTION parameter.

For example, the system needs to know if you plan to just read data in the file or if you plan to read and
update the data. The valid operation options are: input, output, update, and delete. The system
determines the options you are using from the information you specify in your high-level language
program or from the OPTION parameter on the Open Database File (OPNDBF) and Open Query File
(OPNQRYF) commands.

The system uses the options to determine which operations are allowed in your program. For example, if

you open a file for input only and your program tries an output operation, your program receives an
error.

Normally, the system verifies that you have the required data authority when you do an input/output
operation in your program. However, when you use the OPNQRYF or OPNDBF command, the system
verifies at the time the file is opened that you have the required data authority to perform the operations
specified on the OPTION parameter.

The system also uses these options to determine the locks to use to protect the data integrity of the files
and records being processed by your program.

Related concepts

[“Types of data authority” on page 93]

Listed here are the types of data authorities, or permissions, to grant users access to physical and
logical files.

[“Lock shared data” on page 103

By definition, all database files can be used by many users at the same time. However, some

operations can lock the file, member, or data records in a member to prevent them from being shared
across jobs.

Specify the initial file position:

After the file is opened, the system needs to know where it should start processing the file. You can
specify the initial file position with the POSITION parameter.

The default is to start just before the first record in the file (the first sequential read operation reads the
first record). But, you can tell the system to start at the end of the file, or at a certain record in the middle
of the file using the Override with Database File (OVRDBF) command. You can also dynamically set a
position for the file in your program.

Related concepts

[“Set a position in the file” on page 188|
After a file is opened by a job, the system maintains a position in the file for that job. The file position
is used in processing the file.

Reuse deleted records:

Sometimes you might want to reuse deleted records for your database files. In this case, you can use the
REUSEDLT parameter.

When you specify REUSEDLT(*YES) on the Create Physical File (CRTPF) or Change Physical File
(CHGPF) command, the following operations might work differently:

 Arrival order becomes meaningless for a file that reuses deleted record space. Records might not be
added at the end of the file.

* End-of-file delay does not work for the files that reuse deleted record space.

Database programming 99

* One hundred percent reuse of deleted record space is not guaranteed. A file full condition might be
reached or the file might be extended even though deleted record space still exists in the file.

Note: Because of the way the system reuses deleted record space, the following types of files should not
be created or changed to reuse deleted record space:

* Files processed using relative record numbers, and files used by an application to determine a
relative record number that is used as a key into another file

* Files used as queues

* Any files used by applications that assume new record insertions are at the end of the file

* When DB2 UDB Symmetric Multiprocessing is installed, files on which you expect to have
parallel index maintenance performed when rows are updated, inserted, or deleted

If you decide to change an existing physical file to reuse deleted record space, and there are logical files
with access paths with first-in-first-out (FIFO) or last-in-first-out (LIFO) duplicate key ordering over the
physical file, you can re-create the logical files without the FIFO or LIFO attribute and avoid rebuilding
the existing access path by following these steps:

1. Rename the existing logical file that has the FIFO or LIFO attribute.
2. Create a second logical file identical to the renamed file except that duplicate key ordering should not

be specified for the file. Give the new file the original file name. The new file shares the access path of
the renamed file.

3. Delete the renamed file.
Ignore the keyed sequence access path:

If a key field is defined for the file, the system automatically uses the keyed sequence access path.
However, sometimes, you can use the ACCPTH parameter to ignore the keyed sequence access path for
better performance.

You can use the ACCPTH parameter to ignore the keyed sequence access path and process the file in
arrival sequence. You can tell the system to ignore the keyed sequence access path in some high-level
languages, or on the Open Database File (OPNDBF) command.

When you ignore the keyed sequence access path, operations that read data by key are not allowed.
Operations are done sequentially along the arrival sequence access path. (If this option is specified for a
logical file with select/omit values defined, the arrival sequence access path is used and only those
records meeting the select/omit values are returned to the program. The processing is done as if the
DYNSLT keyword were specified for the file.)

Note: You cannot ignore the keyed sequence access path for logical file members that are based on more
than one physical file member.

Delay end-of-file processing:
When your program reaches the end of the data in a database file, the system normally signals your
program that there is no more data to read. If you want the system to hold your program until more data

arrives in the file, you can use the EOFDLY parameter to delay the end-of-file processing.

If you use the EOFDLY parameter on the Override with Database File (OVRDBF) command, the program
can read the newly arrived records when more data arrives in the file.

Note: End-of-file delay should not be used for files that reuse deleted records.
Related concepts

100 IBM Systems - iSeries: Database Database programming

[“Wait for more records when end of file is reached” on page 192|
End-of-file delay is a method of continuing to read sequentially from a database file (logical or
physical) after an end-of-file condition occurs.

Specify the record length:
As an option, you can specify the record length in your high-level language program.

The system needs to know the length of the record your program will be processing, but it is not
required that you specify the record length in your program. The system automatically determines this
information from the attributes and description of the file named in your program.

If the file that is opened contains records that are longer than the length specified in the program, the
system allocates a storage area to match the file member’s record length and this option is ignored. In
this case, the entire record is passed to the program. (However, some high-level languages allow you to
access only that portion of the record defined by the record length specified in the program.) If the file
that is opened contains records that are less than the length specified in the program, the system allocates
a storage area for the program-specified record length. The program can use the extra storage space, but
only the record lengths defined for the file member are used for input/output operations.

Ignore record formats:

When you use a multiple format logical file, the system assumes that you want to use all formats defined
for that file. However, if you do not want to use all of the formats, you can specify which formats you
want to use and which ones you want to ignore.

If you do not use this option to ignore formats, your program can process all formats defined in the file.
For more information about this processing option, see your high-level language topic collection.

Determine if duplicate keys exist:

The set of keyed sequence access paths used to determine if the key is a duplicate key differs depending
on the input/output (I/O) operation that is performed. You can determine if duplicate keys exist using
the DUPKEYCHK parameter.

For input operations (reads), the keyed sequence access path used is the one that the file is opened with.
Any other keyed sequence access path that can exist over the physical file are not considered. Also, any
records in the keyed sequence access path omitted because of select/omit specifications are not
considered when deciding if the key operation is a duplicate.

For output (write) and update operations, all nonunique keyed sequence access paths of *IMMED
maintenance that exist over the physical file are searched to determine if the key for this output or
update operation is a duplicate. Only keyed sequence access paths that have *REBLD and *DLY
maintenance are considered if the access paths are actively open over the file at feedback time.

When you process a keyed file with a COBOL program, you can specify duplicate key feedback to be
returned to your program through the COBOL language, or on the Open Database File (OPNDBF) or
Open Query File (OPNQRYF) command. However, in COBOL, having duplicate key feedback returned
can cause a decline in performance.

Data recovery and integrity
These topics include the data integrity runtime considerations for more efficient file processing.

Protect your file with journaling and commitment control:

Database programming 101

Journaling and commitment control are the preferred methods for data and transaction recovery on the
iSeries system. You can use the COMMIT parameter to protect your file with journaling and commitment
control.

Database file journaling is started by running the Start Journal Physical File (STRJRNPF) command for
the file. Access path journaling is started by running the Start Journal Access Path (STRJRNAP) command
for the file or by using System-Managed Access-Path Protection (SMAPP). You tell the system that you
want your files to run under commitment control through the Start Commitment Control (STRCMTCTL)
command and through high-level language specifications. You can also specify the commitment control
(COMMIIT) parameter on the Open Database File (OPNDBF) and Open Query File (OPNQRYF)
commands.

If you are performing insert, update, or delete operations on a file that is associated with a referential
constraint and the delete rule, update rule, or both are other than RESTRICT, you must use journaling.

Related concepts

[‘Manage journals” on page 222|
Journal management allows you to record all the data changes that occur to one or more database
files. You can then use the journal for recovery.

[“Ensure data integrity with commitment control” on page 228

Commitment control lets you define and process a number of changes to database files in a single unit
(transaction). It can ensure that complex application transactions are logically synchronized, even if
the job or system ends. Two-phase commitment control ensures that committable resources, such as
database files on multiple systems, remain synchronized.

[“Ensure data integrity with referential constraints” on page 250)
These topics discuss how to use referential constraints in your database to ensure that it contains only
valid data.

Write data and access paths to auxiliary storage:

Normally, DB2 Universal Database for iSeries determines when to write changed data from main storage
to auxiliary storage. However, you can control when database changes are written to auxiliary storage.

If you want to control when changed data are written from main storage to auxiliary storage, you can use
the force write ratio (FRCRATIO) parameter on the create, change, or override database file commands,
and the force access path (FRCACCPTH) parameter on the create and change database file commands.
Using the FRCRATIO and FRCACCPTH parameters have performance and recovery considerations for
your system.

Related concepts

[‘Recover and restore your database” on page 222|

These topics discuss the iSeries functions of recovering or restoring your database after the system
loses data.

Check changes to the record format description:

The system checks, when you open the file, if the description of the record format you are using was
changed since your program was compiled to an extent that it cannot process the file.

The system normally notifies your program of a level check. When you use the create or change file
command, you can specify that you want level checking. You can also override the level check attribute
defined for the file using the LVLCHK parameter on the Override with Database File (OVRDBF)
command.

Related concepts

[“Effects of changing fields in a file description” on page 218|
The system uses the information in the record format description to determine the level identifier.

102 IBM Systems - iSeries: Database Database programming

Changes to the fields in a file description cause the level identifier to change. Changes in key fields or
select/omit fields might cause unexpected results in programs using the new access path.

Check for the expiration date of the file:

The system can verify that the data in the file you specify is still current. However, you can specify the
expiration date for the file using the EXPDATE and EXPCHK parameters.

You can specify the expiration date for a file or member using the EXPDATE parameter on the create and
change file commands. You can specify whether the system is to check that date using the EXPCHK
parameter on the Override with Database File (OVRDBF) command. If you do check the expiration date
and the current date is greater than the expiration date, a message is sent to the system operator when
the file is opened.

Related concepts

[“Expiration date” on page 35
The EXPDATE parameter specifies an expiration date for each member in the file (ADDPFM,
CHGPFM, CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands).

Prevent the job from changing data in the file:

If you want to test your program, but do not want to actually change data in the file used for the test,
you can tell the system not to write (inhibit) any changes to the file that the program attempts to make.
For this operation, you can use the INHWRT parameter.

To inhibit any changes to the file, specify INHWRT(*YES) on the Override with Database File (OVRDBF)
command.

Lock shared data
By definition, all database files can be used by many users at the same time. However, some operations
can lock the file, member, or data records in a member to prevent them from being shared across jobs.

When the file, member, or record is locked, no other job can read the same data for update operations,
which keeps another job from unintentionally deleting the first job’s update.

You can lock a row in iSeries Navigator by opening a table and editing the row you want to lock, or use
the SQL LOCK TABLE statement. You can also use the following operations to lock files, members, or
data records, and display locked records using the Display Record Locks (DSPRCDLCK) command or
iSeries Navigator.

Related reference

OCK TABLE

Lock records:

DB2 Universal Database for iSeries has built-in integrity for records. For example, if PGMA reads a record
for update operation, it locks that record. Another program cannot read the same record for update
operation until PGMA releases the record, but another program can read the record just for inquiry.

In this way, the system ensures the integrity of the database. However, you can set your own wait time
for a locked record to be released using the WAITRCD parameter.

The system determines the lock condition based on the type of file processing specified in your program
and the operation requested. For example, if your open options include update or delete, each record
read is locked so that any number of users can read the record at the same time, but only one user can
update the record.

Database programming 103

The system normally waits a specific number of seconds for a locked record to be released before it sends
your program a message that it cannot get the record you are requesting. The default record wait time is
60 seconds; however, you can set your own wait time through the WAITRCD parameter on the create
and change file commands and the override database file command. If your program is notified that the
record it wants is locked by another operation, you can have your program take the appropriate action
(for example, you can send a message to the operator that the requested record is currently unavailable).

If the record lock is being implicitly acquired as a result of a referential integrity CASCADE DELETE,
SET NULL, or SET DEFAULT delete rule, the lock wait time is limited to 30 seconds.

The system automatically releases a lock when the locked record is updated or deleted. However, you
can release record locks without updating the record. For information about how to release a record lock,
see your high-level language topic collection.

Note: Using commitment control changes the record locking rules.

You can display locked records using either the Display Record Locks (DSPRCDLCK) command or iSeries
Navigator.

Related concepts

[Commitment controll

[‘Display locked records using the Display Record Locks (DSPRCDLCK) command” on page 107|

You can also use the Display Record Locks (DSPRCDLCK) command to display the current lock status
(wait or held) of records for a physical file member.

Related tasks

[‘Display locked rows using iSeries Navigator” on page 106
Use this procedure to display locked rows using iSeries Navigator.

Lock files:

Some file operations exclusively allocate the file for the length of the operation. When the file is allocated
exclusively, any program trying to open the file has to wait until it is released. However, you can set a
wait time for the file to become available using the WAITFILE parameter .

You can control the amount of time a program waits for the file to become available by specifying a wait
time on the WAITFILE parameter of the create and change file commands and the override database file
command. If you do not specifically request a wait time, the system defaults the file wait time to zero
seconds.

A file is exclusively allocated when an operation that changes its attributes is run. These operations (such
as move, rename, grant or revoke authority, change owner, or delete) cannot be run at the same time with
any other operation on the same file or on members of that file. Other file operations (such as display,
open, dump, or check object) only use the file definition, and thus lock the file less exclusively. They can
run at the same time with each other and with input/output operations on a member.

Lock members:

Member operations (such as add and remove) automatically allocate the file exclusively enough to
prevent other file operations from occurring at the same time. Input/output operations on the same
member cannot be run, but input/output operations on other members of the same file can run at the
same time.

Lock record format data:

104 1BM Systems - iSeries: Database Database programming

Sometimes you might want to lock the entire set of records associated with a record format (for example,
all the records in a physical file). In this case, you can use the RCDFMTLCK parameter on the Override
Database File (OVRDBF) command.

Database lock considerations:

Listed here are the commonly used database functions and the types of locks they place on database files.

able 38| summarizes some of the most commonly used database functions and the types of locks they

place on database files. The types of locks are explained on the next page.

Table 38. Database functions and locks

Function

Add Member
Change File
Attributes

Change Member
Attributes

Change Object Owner
Check Object
Clear Physical File
Member

Create Duplicate
Object

Create File

Delete File
Grant/Revoke
Authority

Initialize Physical File
Member

Move Object

Open File

Rebuild Access Path
Remove Member
Rename File
Rename Member
Reorganize Physical
File Member
Restore File

Save File

Command

ADDPFM, ADDLFM
CHGPF, CHGLF

CHGPFM, CHGLFM

CHGOBJOWN
CHKOBJ
CLRPFM

CRTDUPOB]

CRTPE, CRTLE,
CRTSRCPF
DLTF
GRTOBJAUT,
RVKOBJAUT
INZPFM

MOVOB]J

OPNDBF, OPNQRYF
EDTRBDAP, OPNDBF
RMVM

RNMOB]J

RNMM

RGZPFM

RSTLIB, RSTOB]
SAVLIB, SAVOBJ,
SAVCHGOB]

File Lock

*EXCLRD
*EXCL

*SHRRD

*EXCL
*SHRNUPD
*SHRRD

*EXCL (new object)
*SHRNUPD (object)
*EXCL

*EXCL
*EXCL

*SHRRD

*EXCL
*SHRRD
*SHRRD
*EXCLRD
*EXCL
*EXCLRD
*SHRRD

*EXCL
*SHRNUPD'

Member/Data Lock

*EXCLRD

*EXCLRD

*EXCLRD?

*EXCLRD

*SHRRD
*SHRRD
*EXCL
*EXCL
*EXCL
EXCL

*SHRNUPD?

Access Path Lock

*EXCLRD
*EXCLRD

*EXCLRD

*EXCLRD
*EXCLRD
*EXCLRD
*EXCL
*EXCL

1 For save-while-active, the file lock is *SHRUPD initially, and then the lock is reduced to *SHRRD. See the

@ for a description of save-while-active locks for the save commands.

2 For save-while-active, the member/data lock is *SHRRD.

% The clear operation does not happen if the member is open in this process or in any other process.

* If ALWCANCEL(*YES) is specified, the LOCK keyword can specify a *SHRUPD or *EXCLRD lock instead.

The following table shows the valid lock combinations:

Lock
*EXCL!

*EXCL

*EXCLRD

*SHRUPD

*SHRNUPD

*SHRRD

Database programming

105

Lock *EXCL *EXCLRD *SHRUPD *SHRNUPD *SHRRD

*EXCLRD? X
*SHRUPD? X X
SHRNUPD X X
*SHRRD? X X X X

! Exclusive lock (*EXCL). The object is allocated for the exclusive use of the requesting job; no other job can use the
object.

% Exclusive lock, allow read (*EXCLRD). The object is allocated to the job that requested it, but other jobs can read
the object.

% Shared lock, allow read and update (*SHRUPD). The object can be shared either for read or change with other
jobs.

* Shared lock, read only (*SHRNUPD). The object can be shared for read with other jobs.

5 Shared lock (*SHRRD). The object can be shared with another job if the job does not request exclusive use of the
object.

able 39| shows database locking for constraints of a database file, depending on whether the constraint is
associated with the parent file (PAR) or the dependent file (DEP).

Table 39. Database constraint locks. The numbers in parentheses refer to the notes at the end of the table.

Other
Type of function File type File® Member® Other file member
ADDPFM! DEP *EXCL *EXCL *EXCL *EXCL
ADDPFM! PAR *EXCL *EXCL *EXCL *EXCL
ADDPFCST” *REFCST *EXCL *EXCL *EXCL *EXCL
ADDPFCST® *UNQCST *PRIKEY *EXCL *EXCL *EXCL *EXCL
ADDPFCST *UNIQUE *PRIKEY *EXCL *EXCL
RMVM? DEP *EXCL *EXCL *EXCL *EXCL
RMVM? PAR *EXCL *EXCL *EXCL *EXCL
DLTF® DEP *EXCL *EXCL *EXCL *EXCL
DLTF? PAR *EXCL *EXCL *EXCL *EXCL
RMVPFCST” *REFCST *EXCL *EXCL *EXCL* *EXCL
RMVPFCST® *UNQCST *PRIKEY *EXCL *EXCL *EXCL *EXCL
RMVPFCST *UNIQUE *PRIKEY *EXCL *EXCL
CHGPFCST *EXCL *EXCL *SHRRD *EXCL

If adding a physical file member causes a referential constraint to be established.
2 If removing a physical file member causes an established referential constraint to become defined.
% When deleting a dependent or parent file that has constraints established or defined for the file.

* When the Remove Physical File Constraint (RMVPFCST) command is invoked for the parent file which has
constraints established or defined, the parent and any logical files over the parent file are all locked *EXCL.

® For referential constraints, the column refers to the dependent file or the dependent member.

6 Unique constraint or primary key constraint is a parent key in a referential constraint where the other file is a
dependent file.

7 The other file is a parent file.

Display locked rows using iSeries Navigator:

Use this procedure to display locked rows using iSeries Navigator.

106 1BM Systems - iSeries: Database Database programming

To display locked rows using iSeries Navigator, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Database » Libraries.

3. Click the library that contains the table for which you want to display locked row information.
4.

Right-click the table and click Locked Rows. The Locked Rows window displays the rows that are
locked.

Display locked records using the Display Record Locks (DSPRCDLCK) command:

You can also use the Display Record Locks (DSPRCDLCK) command to display the current lock status
(wait or held) of records for a physical file member.

The DSPRCDLCK command will also indicate what type of lock is currently held. Depending on the
parameters you specify, this command displays the lock status for a specific record or displays the lock
status of all records in the member. You can also display record locks from the Work with Job (WRKJOB)
display.

Related concepts

[Control language (CL)|

[Backup and Recovery|

Related reference
[Display Record Locks (DSPRCDLCK) command|

Share database files in the same job or activation group
By default, the database management system lets one file be read and changed by many users at the

same time. However, you can share the database files in the same job or activation group through the
SHARE parameter.

You can share a file in the same job or activation group by opening the database file:
* More than once in the same program.

¢ In different programs in the same job or activation group.

Note: For more information about open sharing in the Integrated Language Environment®, see the
Concepd # book.

The SHARE parameter on the create file, change file, and override database file commands allow sharing
in a job or activation group, including sharing the file, its status, its positions, and its storage area.
Sharing files in the job or activation group can improve performance by reducing the amount of main
storage needed and by reducing the time needed to open and close the file.

Using the SHARE(*YES) parameter lets two or more programs running in the same job or activation
group share an open data path (ODP). An open data path is the path through which all input/output
operations for the file are performed. In a sense, it connects the program to a file. If you do not specify
the SHARE(*YES) parameter, a new open data path is created every time a file is opened. If an active file
is opened more than once in the same job or activation group, you can use the active ODP for the file
with the current open of the file. You do not have to create a new open data path.

This reduces the amount of time required to open the file after the first open, and the amount of main
storage required by the job or activation group. SHARE(*YES) must be specified for the first open and
other opens of the same file for the ODP to be shared. A well-designed (for performance) application

normally shares an ODP with files that are opened in multiple programs in the same job or activation

group.

Database programming 107

Specifying SHARE(*NO) tells the system not to share the ODP for a file. Normally, this is specified only
for those files that are seldom used or require unique processing in specific programs.

Note: A high-level language program processes an open or a close operation as if the file were not being

shared. You do not specify that the file is being shared in the high-level language program. You
indicate that the file is being shared in the same job or activation group through the SHARE
parameter. The SHARE parameter is specified only on the create, change, and override database
file commands.

Open considerations for files shared in a job or activation group:

Listed here are the considerations for opening a database file that is shared in the same job or activation

group.

Make sure that when the shared file is opened for the first time in a job or activation group, all the
open options needed for subsequent opens of the file are specified. If the open options specified for
subsequent opens of a shared file do not match those specified for the first open of a shared file, an
error message is sent to the program. (You can correct this by making changes to your program or to
the Open Database File (OPNDBF) or Open Query File (OPNQRYF) command parameters, to remove
any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job or activation group and PGMA only
needs to read the file. However, PGMA calls PGMB, which will delete records from the same shared
file. Because PGMB will delete records from the shared file, PGMA will have to open the file as if it,
PGMA, is also going to delete records. You can accomplish this by using the correct specifications in
the high-level language. (To accomplish this in some high-level languages, you might have to use file
operation statements that are never run. See your high-level language topic collection for more details.)
You can also specify the file processing option on the OPTION parameter on the OPNDBF and
OPNQRYF commands.

Sometimes sharing a file within a job or activation group is not desirable. For example, one program
needs records from a file in arrival sequence and another program needs records in keyed sequence. In
this situation, you should not share the open data path (ODP). Specify SHARE(*NO) on the Override
with Database File (OVRDBF) command to ensure that the file is not shared within the job or
activation group.

If debug mode is entered with UPDPROD(*NO) after the first open of a shared file in a production
library, subsequent shared opens of the file share the original ODP and allow the file to be changed. To
prevent this, specify SHARE(*NO) on the OVRDBF command before opening files being debugged.

The use of commitment control for the first open of a shared file requires that all subsequent shared
opens also use commitment control.

Key feedback, insert key feedback, or duplicate key feedback must be specified on the full open if any
of these feedback types are desired on the subsequent shared opens of the file.

If you did not specify a library name in the program or on the OVRDBF command (*LIBL is used), the
system assumes that the library list has not changed since the last open of the same shared file with
*LIBL specified. If the library list has changed, you should specify the library name on the OVRDBF
command to ensure that the correct file is opened.

The record length that is specified on the full open is the record length that is used on subsequent
shared opens even if a larger record length value is specified on the shared opens of the file.

Overrides and program specifications specified on the first open of the shared file are processed.
Overrides and program specifications specified on subsequent opens, other than those that change the
file name or the value specified on the SHARE or LVLCHK parameter of the OVRDBF command, are
ignored.

Overrides specified for a first open using the OPNQRYF command can be used to change the names of
the files, libraries, and members that should be processed by the OPNQRYF command. Any parameter
values specified on the OVRDBF command other than TOFILE, MBR, LVLCHK, and SEQONLY are
ignored by the OPNQRYF command.

108 IBM Systems - iSeries: Database Database programming

The OPNDBF and OPNQRYF commands scope the ODP to the level specified on the Open Scope
(OPNSCOPE) parameter according to the following rules:

— The system searches for shared opens in the activation group first, and then in the job.
— Shared opens that are scoped to an activation group might not be shared between activation groups.
— Shared opens that are scoped to the job can be shared throughout the job, by any number of

activation groups at a time.

The CPF4123 diagnostic message lists the mismatches that can be encountered between the full open and
the subsequent shared opens. These mismatches do not cause the shared open to fail.

Note: The OPNQRYF command never shares an existing shared ODP in the job or activation group. If a

shared ODP already exists in the job or activation group with the same file, library, and member
name as the one specified on the OPNQRYF command, the system sends an error message and the
query file is not opened.

Input/output considerations for files shared in a job or activation group:

Listed here are the considerations for processing a database file that is shared in the same job or
activation group.

Because only one open data path is allowed for a shared file, only one record position is maintained
for all the programs in the job or activation group that is sharing the file. If a program establishes a
position for a record using a read or a read-for-update operation, and then calls another program that
also uses the shared file, the record position might have moved or a record lock been released when
the called program returns to the calling program. This can cause errors in the calling program because
of an unexpected record position or lock condition. When sharing files, it is your responsibility to
manage the record position and record locking considerations by re-establishing position and locks.

If a shared file is first opened for update operation, this does not necessarily cause every subsequent
program that shares the file to request a record lock. The system determines the type of record lock
needed for each program using the file. The system tries to keep lock contention to a minimum, while
still ensuring data integrity.

For example, PGMA is the first program in the job or activation group to open a shared file. PGMA
intends to update records in the file; therefore, when the program reads a record for update operation,
it locks the record. PGMA then calls PGMB. PGMB also uses the shared file, but it does not update any
records in the file; PGMB just reads records. Even though PGMA originally opened the shared file as
update-capable, PGMB does not lock the records it reads, because of the processing specifications in
PGMB. Thus, the system ensures data integrity, while minimizing record lock contention.

Close considerations for files shared in a job or activation group:

Listed here are the considerations for closing a database file that is shared in the same job or activation
group.
* The complete processing of a close operation (including releasing file, member, and record locks;

forcing changes to auxiliary storage; and destroying the open data path) is done only when the last
program to open the shared open data path closes it.

If the file was opened with the Open Database File (OPNDBF) or the Open Query File (OPNQRYF)
command, use the Close File (CLOF) command to close the file. The Reclaim Resources (RCLRSC)
command can also be used to close a file opened by the OPNQRYF command when one of the
following parameters is specified:

— OPNSCOPE(*ACTGRPDEN), and the open is requested from the default activation group.
- TYPE(*NORMAL)

If one of the following parameters is specified, the file remains open even if the Reclaim Resources
(RCLRSC) command is run:

Database programming 109

— OPNSCOPE(*ACTGRPDEN), and the open is requested from an activation group other than the
default.

— OPNSCOPE(*ACTGRP)
— OPNSCOPE(*JOB)
- TYPE(*PERM)

Example 1: A single set of files with similar processing options:
In this example, the user signs on and most of the programs that are used process the same set of files.

A control language (CL) program (PGMA) is used as the first program (to set up the application,
including overrides and opening the shared files). PGMA then transfers control to PGMB, which displays
the application menu. Assume, in this example, that files A, B, and C are used, and files A and B are to
be shared. Files A and B were created with SHARE(*NO); therefore the Override with Database File
(OVRDBF) command should precede each of the Open Database File (OPNDBF) commands to specify the
SHARE(*YES) option. File C was created with SHARE(*NO) and File C is not to be shared in this
example.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer
finformation” on page 295/

PGMA: PGM /* PGMA - Initial program =/
OVRDBF ~ FILE(A) SHARE(*YES)
OVRDBF FILE(B) SHARE(*YES)
OPNDBF ~ FILE(A) OPTION(*ALL)
OPNDBF FILE(B) OPTION(*INP) ...
TFRCTL PGMB
ENDPGM

PGMB: PGM /* PGMB - Menu program */
DCLF FILE(DISPLAY)
BEGIN: SNDRCVF RCDFMT (MENU)

IF (&RESPONSE *EQ '1') CALL PGM11
IF (RRESPONSE *EQ '2') CALL PGM12
IF (8RESPONSE *EQ '90') SIGNOFF
GOTO BEGIN

ENDPGM

The files opened in PGMA are either scoped to the job, or PGMA, PGM11, and PGM12 run in the same
activation group and the file opens are scoped to that activation group.

In this example, assume that:

* PGM11 opens files A and B. Because these files were opened as shared by the OPNDBF commands in
PGMA, the open time is reduced. The close time is also reduced when the shared open data path is
closed. The OVRDBF commands remain in effect even though control is transferred (with the Transfer
Control (TFRCTL) command in PGMA) to PGMB.

* PGM12 opens files A, B, and C. File A and B are already opened as shared and the open time is
reduced. Because file C is used only in this program, the file is not opened as shared.

In this example, the Close File (CLOF) was not used because only one set of files is required. When the
operator signs off, the files are automatically closed. It is assumed that PGMA (the initial program) is
called only at the start of the job. For more information about how to reclaim resources in the Integrated
Language Resources, see the ILE Concepts book.

110 IBM Systems - iSeries: Database Database programming

Note: The display file (DISPLAY) in PGMB can also be specified as a shared file, which can improve the
performance for opening the display file in any programs that use it later.

In Example 1, the OPNDBF commands are placed in a separate program (PGMA) so the other processing
programs in the job run as efficiently as possible. That is, the important files used by the other programs
in the job are opened in PGMA. After the files are opened by PGMA, the main processing programs
(PGMB, PGM11, and PGM12) can share the files; therefore, their open and close requests will process
faster. In addition, by placing the open commands (OPNDBF) in PGMA rather than in PGMB, the amount
of main storage used for PGMB is reduced.

Any overrides and opens can be specified in the initial program (PGMA); then, that program can be
removed from the job (for example, by transferring out of it). However, the open data paths that the
program created when it opened the files remain in existence and can be used by other programs in the
job.

Note: Overrides must be specified before the file is opened. Some of the parameters on the OVRDBF
command also exist on the OPNDBF command. If conflicts arise, the OVRDBF value is used.

Related concepts
[[LE Concepts PDH

Example 2: Multiple sets of files with similar processing options:

In this example, different files are used for each application. The user normally works with one
application for a considerable length of time before selecting a new application.

Assume that a menu requests the operator to specify the application program (for example, accounts
receivable or accounts payable) that uses the Open Database File (OPNDBF) command to open the
required files. When the application is ended, the Close File (CLOF) command closes the files. The CLOF
command is used to help reduce the amount of main storage needed by the job.

An example of the accounts receivable programs follows:

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 295
PGMC: PGM /* PGMC PROGRAM =*/

DCLF FILE(DISPLAY)
BEGIN: SNDRCVF RCDFMT(TOPMENU)

IF (8RESPONSE *EQ '1') CALL ACCRECV
IF (&RESPONSE *EQ '2') CALL ACCPAY
IF (&RESPONSE *EQ '90') SIGNOFF
GOTO BEGIN
ENDPGM

ACCREC: PGM /* ACCREC PROGRAM =/

DCLF FILE(DISPLAY)

OVRDBF FILE(A) SHARE(*YES)

OVRDBF FILE(B) SHARE(*YES)

OPNDBF FILE(A) OPTION(*ALL)

OPNDBF ~ FILE(B) OPTIONS(*INP) ...
BEGIN: SNDRCVF RCDFMT (ACCRMENU)

IF (8RESPONSE *EQ '1') CALL PGM21
IF (RRESPONSE *EQ '2') CALL PGM22
IF (8RESPONSE *EQ '88') DO /* Return */

CLOF FILE(A)

Database programming 111

CLOF FILE(B)
RETURN
ENDDO
GOTO BEGIN
ENDPGM

The program for the accounts payable menu would be similar, but with a different set of OPNDBF and
CLOF commands.

For this example, files A and B were created with SHARE(*NO). Therefore, an OVRDBF command must
precede the OPNDBF command. As in Example 1, the amount of main storage used by each job can be
reduced by placing the OPNDBF commands in a separate program and calling it. A separate program can
also be created for the CLOF commands. The OPNDBF commands can be placed in an application setup
program that is called from the menu, which transfers control to the specific application program menu
(any overrides specified in this setup program are kept). However, calling separate programs for these
functions also uses system resources and, depending on the frequency with which the different menus are
used, it might be better to include the OPNDBF and CLOF commands in each application program menu
as shown in this example.

Another choice is to use the Reclaim Resources (RCLRSC) command in PGMC (the setup program)
instead of using the CLOF command. The RCLRSC command closes any files and frees any leftover
storage associated with any files and programs that were called and have since returned to the calling
program. However, RCLRSC does nof close files that are opened with the following parameters specified
on the OPNDBF or Open Query File (OPNQRYF) command:

* OPNSCOPE(*ACTGRPDEN), and the open is requested from some activation group other than the
default.

* OPNSCOPE(*ACTGRP) reclaims if the RCLRSC command is from an activation group with an
activation group number that is lower than the activation group number of the open.

« OPNSCOPE(*JOB).
« TYPE(*PERM).

The following example shows the RCLRSC command used to close files:

IF (8RESPONSE *EQ '1') DO
CALL ACCRECV
RCLRSC
ENDDO

IF (8RESPONSE *EQ '2') DO
CALL ACCPAY
RCLRSC
ENDDO

Example 3: A single set of files with different processing requirements:

This example shows the methods that can be used if some programs need read-only file processing and
others need some or all of the options (input/update/add/delete).

The same methods apply if a file is to be processed with certain command parameters in some programs
and not in others (for example, sometimes the commit option should be used).

A single Open Database File (OPNDBF) command can be used to specify OPTION(*ALL) and the open
data path would be opened shared (if, for example, a previous Override with Database File (OVRDBEF)
command was used to specify SHARE(*YES)). Each program can then open a subset of the options. The
program requests the type of open depending on the specifications in the program. In some cases this

112 IBM Systems - iSeries: Database Database programming

does not require any more considerations because a program specifying an open for input only would
operate similarly as if it had not done a shared open (for example, no additional record locking occurs
when a record is read).

However, some options specified on the OPNDBF command can affect how the program operates. For

example, SEQONLY(*NO) is specified on the open command for a file in the program. An error would
occur if the OPNDBF command used SEQONLY(*YES) and a program attempted an operation that was
not valid with sequential-only processing.

The ACCPTH parameter must also be consistent with the way programs will use the access path (arrival
or keyed).

If COMMIT(*YES) is specified on the OPNDBF command and the Start Commitment Control
(STRCMTCTL) command specifies LCKLVL(*ALL) or LCKLVL(*CS), any read operation of a record locks
that record (per commitment control record locking rules). This can cause records to be locked
unexpectedly and cause errors in the program.

Two OPNDBF commands can be used for the same data (for example, one with OPTION(*ALL) and the
other specifying OPTION(*INP)). The second use must be a logical file pointing to the same physical
file(s). This logical file can then be opened as SHARE(*YES) and multiple uses made of it during the
same job.

Sequential-only processing of database files
If your program processes a database file sequentially for input only or output only, you might be able to

improve performance using the sequential-only processing (SEQONLY) parameter on the Override with
Database File (OVRDBF) or the Open Database File (OPNDBF) command.

To use SEQONLY processing, the file must be opened for input-only or output-only. The NBRRCDS
parameter can be used with any combination of open options. (The Open Query File (OPNQRYF)
command uses sequential-only processing whenever possible.) Depending on your high-level language
specifications, the high-level language can also use sequential-only processing as the default. For
example, if you open a file for input only and the only file operations specified in the high-level language
program are sequential read operations, then the high-level language automatically requests
sequential-only processing.

Note: File positioning operations are not considered sequential read operations; therefore, a high-level
language program containing positioning operations will not automatically request sequential-only
processing. (The SETLL operation in the RPG/400 language and the START operation in the
COBOL/400 language are examples of file positioning operations.) Even though the high-level
language program cannot automatically request sequential-only processing, you can request it
using the SEQONLY parameter on the Override with Database File (OVRDBF) command.

If you specify sequential-only processing, you can also specify the number of records to be moved as one
unit between the system database main storage area and the job’s internal data main storage area. If you
do not specify the sequential-only number of records to be moved, the system calculates a number based
on the number of records that fit into a 4096-byte buffer.

The system also provides you a way to control the number of records that are moved as a unit between
auxiliary storage and main storage. If you are reading the data in the file in the same order as the data is
physically stored, you can improve the performance of your job using the NBRRCDS parameter on the
OVRDBF command.

Note: Sequential-only processing should not be used with a keyed sequence access path file unless the

physical data is in the same order as the access path. SEQONLY(*YES) processing might cause
poor application performance until the physical data is reorganized into the access path’s order.

Database programming 113

Open considerations for sequential-only processing:

The considerations apply for opening files when sequential-only processing is specified. If the system
determines that sequential-only processing is not allowed, a message is sent to the program to indicate
that the request for sequential-only processing is not being accepted; however, the file is still opened for
processing.

If the program opened the member for output only, and if SEQONLY(*YES) was specified (number of
records was not specified) and either the opened member is a logical member, a uniquely keyed
physical member, or there are other access paths to the physical member, SEQONLY (*YES) is changed
to SEQONLY(*NO) so the program can handle possible errors (for example, duplicate keys, conversion
mapping, and select/omit errors) at the time of the output operation. If you want the system to run
sequential-only processing, change the SEQONLY parameter to include both the *YES value and
number of records specification.

Sequential-only processing can be specified only for input-only (read) or output-only (add) operations.
If the program specifies update or delete operations, sequential-only processing is not allowed by the
system.

If a file is being opened for output, it must be a physical file or a logical file based on one physical file
member.

Sequential-only processing can be specified with commitment control only if the member is opened for
output-only.

If sequential-only processing is being used for files opened with commitment control and a rollback
operation is performed for the job, the records that are in the job’s storage area during the rollback
operation are not written to the system storage area and never appear in the journal for the
commitment control transaction. If no records were ever written to the system storage area prior to a
rollback operation being performed for a particular commitment control transaction, the entire
commitment control transaction is not reflected in the journal.

For output-only, the number of records specified to be moved as a unit and the force ratio are
compared and automatically adjusted as necessary. If the number of records is larger than the force
ratio, the number of records is reduced to equal the force ratio. If the opposite is true, the force ratio is
reduced to equal the number of records.

If the program opened the member for output only, and if SEQONLY(*YES) was specified (number of
records was not specified), and duplicate or insert key feedback has been requested, SEQONLY (*YES)
will be changed to SEQONLY(*NO) to provide the feedback on a record-by-record basis when the
records are inserted into the file.

The number of records in a block will be changed to one if all of the following conditions are true:

— The member was opened for output-only processing.

— No override operations are in effect that have specified sequential-only processing.

— The file being opened is a file that cannot be extended because its increment number of records was
set to zero.

— The number of bytes available in the file is less than the number of bytes that fit into a block of
records.

The following considerations apply when sequential-only processing is not specified and the file is
opened using the Open Query File (OPNQRYF) command. If these conditions are satisfied, a message is
sent to indicate that sequential-only processing will be performed and the query file is opened.

If the OPNQRYF command specifies the name of one or more fields on the group field (GRPFLD)
parameter, or OPNQRYF requires group processing.

If the OPNQRYF command specifies one or more fields, or *ALL on the UNIQUEKEY parameter.

If a view is used with the DISTINCT option on the SQL SELECT statement, then SEQONLY (*YES)
processing is automatically performed.

Related concepts

114 1BM Systems - iSeries: Database Database programming

[Use Open Query File (OPNQRYF) command|

The Open Query File (OPNQRYF) command is a control language (CL) command that allows you to
perform many data processing functions on database files. These topics discuss how to create a query
using the OPNQRYF command, how to specify parameters for its major functions, and how to use it
with your high-level language program.

Input/output considerations for sequential-only processing:

The considerations apply for input/output operations on files when sequential-only processing is

specified.

* For input, your program receives one record at a time from the input buffer. When all records in the
input buffer are processed, the system automatically reads the next set of records.

Note: Changes made after records are read into the input buffer are not reflected in the input buffer.

 For output, your program must move one record at a time to the output buffer. When the output
buffer is full, the system automatically adds the records to the database.

Note: If you are using a journal, the entire buffer is written to the journal at one time as if the entries
had logically occurred together. This journal processing occurs before the records are added to
the database.

If you use sequential-only processing for output, you might not see all the changes made to the file as
they occur. For example, if sequential-only is specified for a file being used by PGMA, and PGMA is
adding new records to the file and the SEQONLY parameter was specified with 5 as the number of
records in the buffer, then only when the buffer is filled will the newly added records be transferred to
the database. In this example, only when the fifth record was added, would the first five records be
transferred to the database, and be available for processing by other jobs in the system.

In addition, if you use sequential-only processing for output, some additions might not be made to the
database if you do not handle the errors that can occur when records are moved from the buffer to the
database. For example, assume that the buffer holds five records, and the third record in the buffer had
a key that was a duplicate of another record in the file and the file was defined as a unique-key file. In
this case, when the system transfers the buffer to the database it would add the first two records and
then get a duplicate key error for the third. Because of this error, the third, fourth, and fifth records in
the buffer would not be added to the database.

* The force-end-of-data function can be used for output operations to force all records in the buffer to
the database (except those records that would cause a duplicate key in a file defined as having unique
keys, as described previously). The force-end-of-data function is only available in certain high-level
languages.

* The number of records in a block will be changed to one if all of the following conditions are true:
— The member was opened for output-only processing or sequential-only processing.
— No override operations are in effect that have specified sequential-only processing.
— The file being opened is being extended because the increment number of records was set to zero.

— The number of bytes available in the file is less than the number of bytes that fit into a block of
records.

Close considerations for sequential-only processing:
The considerations apply for closing files when sequential-only processing is specified.
When a file for which sequential-only processing is specified is closed, all records still in the output

buffer are added to the database. However, if an error occurs for a record, any records following that
record are not added to the database.

Database programming 115

If multiple programs in the same job are sharing a sequential-only output file, the output buffer is not
emptied until the final close occurs. Consequently, a close (other than the last close in the job) does not
cause the records still in the buffer to appear in the database for this or any other job.

Summary of runtime considerations for processing database files
This topic shows the parameters that control your program’s use of the database file member, where
these parameters can be specified.

For parameters that can be specified in more than one place, the system merges the values. The Override

with Database File (OVRDBF) command parameters take precedence over program parameters, and Open

Database File (OPNDBF) or Open Query File (OPNQRYF) command parameters take precedence over
create or change file parameters.

Note: Any override parameters other than TOFILE, MBR, LVLCHK, SEQONLY, SHARE, WAITRCD, and
INHWRT are ignored by the OPNQRYF command.

A table of database processing options specified on control language (CL) commands is shown here.

Table 40. Database processing options specified on CL commands

Description

Parameter

Command

CRTPE, CRTLF

CHGPE
CHGLF

OPNDBF

OPNQRYF

OVRDBF

File name

FILE

X

Xl

X

X

X

Library name

X

X2

X

X

X

Member
name

MBR

X

X

X

X

Member
processing
options

OPTION

Record format
lock state

RCDFMTLCK

Starting file
position after
open

POSITION

Program
performs only
sequential
processing

SEQONLY

Ignore keyed
sequence
access path

ACCPTH

Time to wait
for file locks

WAITFILE

Time to wait
for record
locks

WAITRCD

Prevent
overrides

SECURE

116 IBM Systems - iSeries: Database Database programming

Table 40. Database processing options specified on CL commands (continued)

Command
Description Parameter CHGPF,
CRTPE, CRTLF CHGLF OPNDBF OPNQRYF OVRDBF
Number of NBRRCDS X
records to be
transferred
from auxiliary
to main
storage
Share open SHARE X X X
data path
with other
programs
Format FMTSLR X3 X3 X
selector
Force ratio FRCRATIO X X X
Inhibit write INHWRT X
Level check LVLCHK X X X
record
formats
Expiration EXPCHK X
date checking
Expiration EXPDATE x* x* X
date
Force access FRCACCPTH X X
path
Commitment COMMIT X X
control
End-of-file EOFDLY X
delay
Duplicate key | DUPKEYCHK X X
check
Reuse deleted | REUSEDLT x4 x4
record space
Coded CCSID X* X4
character set
identifier
Sort Sequence SRTSEQ X X X
Language LANGID X X X
identifier
1 File name: The CHGPF and CHGLF commands use the file name for identification only. You cannot change the
file name.
2 Library name: The CHGPF and CHGLF commands use the library name for identification only. You cannot change
the library name.
3 Format selector: Used on the CRTLF and CHGLF commands only.
4 Expiration date, reuse deleted records, and coded character set identifier: Used on the CRTPF and CHGPF
commands only.

Database programming 117

A table of database processing options specified in programs is shown here.

Table 41. Database processing options specified in programs

RPG/400 COBOL/400

Description Language Language iSeries BASIC iSeries PL/I iSeries Pascal

File name X X X X

Library name

Member name

XX XX

X X

X X
Program record X X X X
length

<
<
<

Member X X
processing
options

Record format X X
lock state

Record formats X X
the program will
use

Clear physical file X X X
member of
records

Program X X X X
performs only
sequential
processing

Ignore keyed X X X X X
sequence access
path

Share open data X X
path with other
programs

Level check X X X X
record formats

Commitment X X X
control

Duplicate key X
check

Note: Control language (CL) programs can also specify many of these parameters. See [Table 40 on page 116 for
more information about the database processing options that can be specified on CL commands.

Storage pool paging option effect on database performance
The paging option of shared pools can have a significant impact on the performance of reading and
changing database files.
* A paging option of *FIXED causes the program to minimize the amount of memory it uses by:
— Transferring data from auxiliary storage to main memory in smaller blocks
— Writing file changes (updates to existing records or newly added records) to auxiliary storage
frequently

This option allows the system to perform much like it did before the paging option was added.

118 IBM Systems - iSeries: Database Database programming

* A paging option of *CALC might improve how the program performs when it reads and updates
database files. In cases where there is sufficient memory available within a shared pool, the program
might:

— Transfer larger blocks of data to memory from auxiliary storage.
— Write changed data to auxiliary storage less frequently.

The paging operations done on database files vary dynamically based on file use and memory
availability. Frequently referenced files are more likely to remain resident than those less often
accessed. The memory is used somewhat like a cache for popular data. The overall number of I/O
operations might be reduced using the *CALC paging option.

Related concepts

Performance

Open a database file

These topics describe how to use the Open Query File (OPNQRYF) and Open Database File (OPNDBF)
commands to open database file members in a program. Examples, performance considerations, and
guidelines for writing a high-level language program are included. Typical errors that might occur are
also discussed.

Open a database file member
You can open a database file member with statements in your high-level language program. You can also

use the control language (CL) open commands: Open Database File (OPNDBF) and Open Query File
(OPNQRYE).

To use a database file in a program, your program must issue an open operation to the database file. If
you do not specify an open operation in some programming languages, they automatically open the file
for you. If you did not specify a member name in your program or on an Override with Database File
(OVRDBF) command, the first member (as defined by creation date and time) in the file is used.

If you specify a member name, files that have the correct file name but do not contain the member name
are ignored. If you have multiple database files named FILEA in different libraries, the member that is
opened is the first one in the library list that matches the request. For example, LIB1, LIB2, and LIB3 are
in your library list and all three contain a file named FILEA. Only FILEA in LIB3 has a member named
MBRA that is to be opened. Member MRBA in FILEA in LIB3 is opened; the other FILEAs are ignored.

After finding the member, the system connects your program to the database file. This allows your
program to perform input/output operations to the file. For more information about opening files in your
high-level language program, see the appropriate high-level language topic collection.

You can also open a database file member with the OPNDBF command and the OPNQRYF command.
The OPNDBF command is useful in an initial program in a job for opening shared files. The OPNQRYF
command is very effective in selecting and arranging records outside your program. Then, your program
can use the information supplied by the OPNQRYF command to process only the data it needs.

Related concepts

[Control language (CL)|
Related reference
Open Database File (OPNDF) command|

Open Query File (OPNQRYF) command|

Use Open Database File (OPNDBF) command

Usually, when you use the Open Database File (OPNDBF) command, you use the defaults for the
command parameter values. Sometimes you might want to specify particular values, instead of using the
default values. Listed here are the parameters you can specify.

Database programming 119

ACCPTH parameter

If the file has a keyed sequence access path and either (1) the open option is *OUT, or (2) the open option
is *INP or *ALL, but your program does not use the keyed sequence access path, then you can specify
ACCPTH(*ARRIVAL) on the OPNDBF parameter. Ignoring the keyed sequence access path can improve
your job’s performance.

COMMIT parameter

Specify *YES if the application programs use commitment control. If you specify *YES, you must be
running in a commitment control environment (the Start Commitment Control (STRCMTCTL) command
was processed) or the OPNDBF command will fail. Use the default of *NO if the application programs do
not use commitment control.

DUPKEYCHK parameter

Specify whether you want duplicate key feedback. If you specify *YES, duplicate key feedback is returned
on I/0O operations. If you specify *NO, duplicate key feedback is not returned on I/O operations. Use the
default (*NO) if the application programs are not written in the COBOL /400 language or C/400®
language, or if your COBOL or C programs do not use the duplicate-key feedback information that is
returned.

MBR parameter

If a member, other than the first member in the file, is to be opened, you must specify the name of the
member to be opened or issue an Override with Database File (OVRDBF) command before the OPNDBF
command.

Note: You must specify a member name on the OVRDBF command to use a member (other than the first
member) to open in subsequent programs.

OPNID parameter

If an identifier other than the file name is to be used, you must specify it. The open identifier can be used
in other control language (CL) commands to process the file. For example, the Close File (CLOF)
command uses the identifier to specify which file is to be closed.

OPNSCOPE parameter

This parameter specifies the scoping of the open data path (ODP). Specify *ACTGRPDEN if the request is
from the default activation group, and the ODP is to be scoped to the call level of the program issuing
the command. If the request is from any other activation group, the ODP is scoped to that activation
group. Specify *ACTGRP if the ODP is to be scoped to the activation group of the program issuing the
command. Specify *JOB if the ODP is to be scoped to the job. If you specify this parameter and the TYPE
parameter you get an error message.

OPTION parameter

Specify the *INP option if your application programs use input-only processing (reading records without
updating records). This allows the system to read records without trying to lock each one for possible
update. Specify the *OUT option if your application programs use output-only processing (writing
records into a file but not reading or updating existing records).

Note: If your program does direct output operations to active records (updating by relative record
number), *ALL must be specified instead of *OUT. If your program does direct output operations

to deleted records only, *OUT must be specified.

120 IBM Systems - iSeries: Database Database programming

SEQONLY parameter

Specify *YES if subsequent application programs process the file sequentially. This parameter can also be
used to specify the number of records that should be transferred between the system data buffers and the
program data buffers. SEQONLY(*YES) is not allowed unless OPTION(*INP) or OPTION(*OUT) is also
specified on the Open Database File (OPNDBF) command. Sequential-only processing should not be used
with a keyed sequence access path file unless the physical data is in access path order.

TYPE parameter

Specify what you want to happen when exceptions that are not monitored occur in your application
program. If you specify *NORMAL, one of the following operations can happen:

* Your program can issue a Reclaim Resources (RCLRSC) command to close the files opened at a higher
level in the call stack than the program issuing the RCLRSC command.

* The high-level language you are using can perform a close operation.

Specify *PERM if you want to continue the application without opening the files again. TYPE(*NORMAL)
causes files to be closed if both of the following situations occur:

* Your program receives an error message.
* The files are opened at a higher level in the call stack.

TYPE(*PERM) allows the files to remain open even if an error message is received. Do not specify this
parameter if you specified the OPNSCOPE parameter.

Use Open Query File (OPNQRYF) command

The Open Query File (OPNQRYF) command is a control language (CL) command that allows you to
perform many data processing functions on database files. These topics discuss how to create a query
using the OPNQRYF command, how to specify parameters for its major functions, and how to use it with
your high-level language program.

Essentially, the OPNQRYF command acts as a filter between the processing program and the database
records. The database file can be a physical or logical file. Unlike the Create Physical File (CRTPF) or
Create Logical File (CRTLF) command, the OPNQRYF command creates only a temporary file for
processing the data; it does not create a permanent file.

The OPNQRYF command has functions similar to those in data description specifications (DDS) and the
CRTPF and CRTLF commands. DDS requires source statements and a separate step to create the file. The
OPNQRYF command allows a dynamic definition without using DDS. The OPNQRYF command does not
support all of the DDS functions, but it supports significant functions that go beyond the capabilities of
DDS. In addition, Query for iSeries can be used to perform some of the function the OPNQRYF
command performs. However, the OPNQRYF command is more useful as a programmer’s tool.

The OPNQRYF command parameters also have many functions similar to the SQL SELECT statements.
For example, the FILE parameter is similar to the SQL FROM statement, the QRYSLT parameter is similar
to the SQL WHERE statement, the GRPFLD parameter is similar to the SQL GROUP BY statement, and
the GRPSLT parameter is similar to the SQL HAVING statement.

The following list shows the major functions supplied by the OPNQRYF command:
¢ Dynamic record selection

* Dynamic keyed sequence access path

* Dynamic keyed sequence access path over a join

* Dynamic join

* Handling missing records in secondary join files

¢ Unique-key processing

Database programming 121

* Mapped field definitions

* Group processing

* Final total-only processing
* Improving performance

* Open query identifier (ID)

* Sort sequence processing

To understand the OPNQRYF command, you must be familiar with its two processing approaches: using
a format in the file, and using a file with a different format. The typical use of the OPNQRYF command
is to select, arrange, and format the data so it can be read sequentially by your high-level language
program.

Related concepts

SQL programminé

Control language (C_L)l

Related reference

[Open Query File (OPNQRYF) command|

Create a query with the Open Query File (OPNQRYF) command:

To create a query, you can use the Open Query File (OPNQRYF) command. Alternatively, you can create
a query using the Run SQL Scripts window in iSeries Navigator.

Related concepts

[Query your database using the Run SQL Scripts interface]

Related reference
[Open Query File (OPNQRYF) command|

Use an existing record format in the file:

The Open Query File (OPNQRYF) command does the record selection and your program processes only
the records that meet the selection values. You can use this approach to select a set of records, return
records in a different sequence than they are stored, or both.

Assume that you only want your program to process the records in which the Code field is equal to D.
You create the program as if there were only records with a D in the Code field. That is, you do not code
any selection operations in the program. You then run the OPNQRYF command and specify that only the
records with a D in the Code field are to be returned to the program. The following chart is an example of
using the OPNQRYF command to select and sequence records:

122 IBM Systems - iSeries: Database Database programming

Database
File

l

AA

Process
OVRDBF
Command

FILE ————

SHARE(*YES)

i

Process
OPNQRYF
Command

FILE

Selection and/or
Sequencing

Create
High-Level
Language
Program

Specifications

l FILE

Call Your
Program

l

Process CLOF
Command

!

Process
DLTOVR
Command RBAFO538-0

Create the high-level language program to process the database file as you would any normal
program using externally described data. Only one format can be used, and it must exist in the
file.

Run the Override with Database file (OVRDBF) command specifying the file and member to be
processed and SHARE(*YES). (If the member is permanently changed to SHARE(*YES) and the
first or only member is the one you want to use, this step is not necessary.)

The OVRDBF command can be run after the OPNQRYF command, unless you want to override
the file name specified in the OPNQRYF command. In this discussion and in these examples, the
OVRDBF command is shown first.

Some restrictions are placed on using the OVRDBF command with the OPNQRYF command. For
example, MBR(*ALL) causes an error message and the file is not opened.

Run the OPNQRYF command, specifying the database file, member, format names, any selection
options, any sequencing options, and the scope of influence for the opened file.

Call the high-level language program you created in step 1. Besides using a high-level language,
the Copy from Query File (CPYFRMQRYF) command can also be used to process the file created
by the OPNQRYF command. Other control language (CL) commands (for example, the Copy File
(CPYF) and the Display Physical File Member (DSPPFM) commands) and utilities (for example,
Query) do not work on files created with the OPNQRYF command.

Close the file that you opened in step 3, unless you want the file to remain open. The Close File
(CLOF) command can be used to close the file.

Delete the override specified in step 2 with the Delete Override (DLTOVR) command. It might
not always be necessary to delete the override, but the command is shown in all the examples for
consistency.

Related concepts

[“Files shared in a job” on page 165
In order for your application program to use the open data path built by the Open Query File

Database programming 123

(OPNQRYF) command, your program must share the query file. If your program does not open the
query file as shared, then it actually does a full open of the file it was originally compiled to use (not
the query open data path built by the OPNQRYF command).

Use a file with a different record format:

For more advanced functions of the Open Query File (OPNQRYF) command (such as dynamically joining
records from different files), you must define a new file that contains a different record format.

This new file is separate from the one you are going to process and contains the fields that you want to
create with the OPNQRYF command. This powerful capability also lets you define fields that do not
currently exist in your database records, but can be derived from them.

When you code your high-level language program, specify the name of the file with the different format
so the externally described field definitions of both existing and derived fields can be processed by the
program.

Before calling your high-level language program, you must specify an Override with Database File
(OVRDBF) command to direct your program file name to the open query file. On the OPNQRYF
command, specify both the database file and the new file with the special format to be used by your
high-level language program. If the file you are querying does not have SHARE(*YES) specified, you
must specify SHARE(*YES) on the OVRDBF command.

The following chart shows the process flow:

Database
File

l

Process
OVRDBF
Command

FILE ——————————|—
Create File

TOFILE with Different
» Format ha

«—

SHARE(*YES)

I

il Process
OPNQRYF
Command

Create
High-Level
Language
Program

FILE
FORMAT

Mapped Field
Definitions

l

Call Your
Program

i

Process CLOF
Command

FILE

Process
DLTOVR
Command

RBAFO539-0

1 Specify the data description specifications (DDS) for the file with the different record format, and
create the file. This file contains the fields that you want to process with your high-level language

124 IBM Systems - iSeries: Database Database programming

program. Normally, data is not contained in this file, and it does not require a member. You
normally create this file as a physical file without keys. A field reference file can be used to
describe the fields. The record format name can be different from the record format name in the
database file that is specified. You can use any database or DDM file for this function. The file
can be a logical file and it can be indexed. It can have one or more members, with or without
data.

2 Create the high-level language program to process the file with the record format that you
created in step 1. In this program, do not name the database file that contains the data.

3 Run the OVRDBF command. Specify the name of the file with the different (new) record format
on the FILE parameter. Specify the name of the database file that you want to query on the
TOFILE parameter. You can also specify a member name on the MBR parameter. If the database
member you are querying does not have SHARE(*YES) specified, you must also specify
SHARE(*YES) on the OVRDBF command.

4 Run the OPNQRYF command. Specify the database file to be queried on the FILE parameter, and
specify the name of the file with the different (new) format that was created in step 1 on the
FORMAT parameter. Mapped field definitions can be required on the OPNQRYF command to
describe how to map the data from the database file into the format that was created in step 1.
You can also specify selection options, sequencing options, and the scope of influence for the
opened file.

5 Call the high-level language program you created in step 2.

6 The first file named in step 4 for the FILE parameter was opened with OPNQRYF as
SHARE(*YES) and is still open. The file must be closed. The Close File (CLOF) command can be
used.

7 Delete the override that was specified in step 3.

The previous steps show the normal flow using externally described data. It is not necessary to create
unique DDS and record formats for each OPNQRYF command. You can reuse an existing record format.
However, all fields in the record format must be actual fields in the real database file or defined by
mapped field definitions. If you use program-described data, you can create the program at any time.

You can use the file created in step 1 to hold the data created by the OPNQRYF command. For example,
you can replace step 5 with a high-level language processing program that copies data to the file with the
different format, or you can use the Copy from Query File (CPYFRMQRYF) command. The Copy File
(CPYF) command cannot be used. You can then follow step 5 with the CPYF command or Query.

CL program coding with the Open Query File (OPNQRYF) command:

The Open Query File (OPNQRYF) command has these basic rules that can prevent coding errors.

1. Specify selection fields from a database file without an ampersand (&). Fields declared in the control
language (CL) program with DCL or DCLF require the ampersand.

2. Enclose fields defined in the CL program with DCL or DCLF within single quotation marks
("&testfld’, for example).

3. Enclose all parameter comparisons within quotation marks when compared to character fields, single
quotation marks when compared to numeric fields.

In the following example, the fields INVCUS and INVPRD are defined as character data:
QRYSLT('INVCUS *EQ "' *CAT &KICUST *CAT '" *AND +

INVPRD *GE "' *CAT &LPRD =CAT '" *AND +
INVPRD *LE "' *CAT &HPRD *CAT '"')

If the fields are defined numeric data, the QRYSLT parameter can look like this:

Database programming 125

QRYSLT('INVCUS *EQ ' *CAT &K1CUST *CAT ' *AND +
INVPRD =GE ' *CAT &LPRD *=CAT ' *AND +
INVPRD *LE ' =CAT &HPRD *CAT ' ')

Related concepts
["Usage notes for Open Query File (OPNQRYF) command”|
These usage notes pertain to the examples in the topics that describe how to specify the parameters

for the major functions of the Open Query File (OPNQRYF) command and how to use the OPNQRYF
command with your high-level language program.

The zero-length literal and the contains (*CT) function:

In the Open Query File (OPNQRYF) command, a zero-length literal is denoted as a quoted string with
nothing, not even a blank, between the quotation marks (""). Zero-length literal support changes the
results of a comparison when used as the compare argument of the contains (*CT) function.

The concept of a zero-length literal was introduced in Version 2, Release 1, Modification 1.

Consider this statement:
QRYSLT('field =CT ""')

With zero-length literal support, the statement returns records that contain anything. It is, in essence, a
wildcard comparison for any number of characters followed by any number of characters. It is equivalent
to:

'field = %WLDCRD("*x")'

Before zero-length literal support, (before Version 2, Release 1, Modification 1), the argument ("”
interpreted as a single-byte blank. The statement returned records that contained a single blank
somewhere in the field. It was, in essence, a wildcard comparison for any number of characters, followed
by a blank, followed by any number of characters. It was equivalent to:

'field = %WLDCRD("* ")’

) was

To get pre-Version 2, Release 1, Modification 1 results with the contains function, you must code the
QRYSLT to explicitly look for the blank:

QRYSLT('field =CT " "')
Related concepts
[“Usage notes for Open Query File (OPNQRYF) command”]
These usage notes pertain to the examples in the topics that describe how to specify the parameters

for the major functions of the Open Query File (OPNQRYF) command and how to use the OPNQRYF
command with your high-level language program.

Usage notes for Open Query File (OPNQRYF) command:

These usage notes pertain to the examples in the topics that describe how to specify the parameters for
the major functions of the Open Query File (OPNQRYF) command and how to use the OPNQRYF
command with your high-level language program.

Notes:

1. If you run the OPNQRYF command from a command entry line with the
OPNSCOPE(*ACTGRPDEN) or TYPE(*NORMAL) parameter option, error messages that occur
after the OPNQRYF command successfully runs will not close the file. Such messages would
have closed the file prior to Version 2 Release 3 when TYPE(*NORMAL) was used. The system
automatically runs the Reclaim Resources (RCLRSC) command if an error message occurs,
except for message CPF0001, which is sent when the system detects an error in the command.
However, the RCLRSC command only closes files opened from the default activation group at
a higher level in the call stack than the level at which the RCLRSC command was run.

126 IBM Systems - iSeries: Database Database programming

2. After running a program that uses the OPNQRYF command for sequential processing, the file
position is normally at the end of the file. If you want to run the same program or a different
program with the same files, you must position the file or close the file and open it with the
same OPNQRYF command. You can position the file with the Position Database File
(POSDBF) command. In some cases, a high-level language program statement can be used.

Related concepts

|“The zero-length literal and the contains (*CT) function” on page 126|

In the Open Query File (OPNQRYF) command, a zero-length literal is denoted as a quoted string with
nothing, not even a blank, between the quotation marks (""). Zero-length literal support changes the
results of a comparison when used as the compare argument of the contains (*CT) function.

[“Select records without using DDS’

Dynamic record selection allows you to request a subset of the records in a file without using data
description specifications (DDS).

Related tasks

[“CL program coding with the Open Query File (OPNQRYF) command” on page 125
The Open Query File (OPNQRYF) command has these basic rules that can prevent coding errors.

Select records without using DDS:

Dynamic record selection allows you to request a subset of the records in a file without using data
description specifications (DDS).

For example, you can select records that have a specific value or range of values (for example, all
customer numbers between 1000 and 1050). The Open Query File (OPNQRYF) command allows you to
combine these and other selection functions to produce powerful record selection capabilities.

Related concepts
[“Usage notes for Open Query File (OPNQRYF) command” on page 126
These usage notes pertain to the examples in the topics that describe how to specify the parameters

for the major functions of the Open Query File (OPNQRYF) command and how to use the OPNQRYF
command with your high-level language program.

Select records using the Open Query File (OPNQRYF) command:
These topics provide examples of selecting records using the Open Query File (OPNQRYF) command.

In all these examples, it is assumed that a single-format database file (physical or logical) is being
processed. (The FILE parameter on the OPNQRYF command allows you to specify a record format name
if the file is a multiple format logical file.)

Related concepts

[Control language (CL)|

Example 1: Select records using the Open Query File (OPNQRYF) command:

This example shows how to select records with a specific value using the Open Query File (OPNQRYF)
command.

Assume that you want to select all the records from FILEA where the value of the Code field is D. Your
processing program is PGMB. PGMB only sees the records that meet the selection value (you do not have
to test in your program).

Note: You can specify parameters easier by using the prompt function for the OPNQRYF command. For

example, you can specify an expression for the QRYSLT parameter without the surrounding
delimiters because the system will add the single quotation marks.

Database programming 127

Specify the following parameters:

OVRDBF FILE(FILEA) SHARE (*YES)

OPNQRYF FILE(FILEA) QRYSLT('CODE *EQ "D" ')
CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Notes:
1. The entire expression in the QRYSLT parameter must be enclosed in single quotation marks (’
I).
2. When specifying field names in the OPNQRYF command, the names in the record are not
enclosed in quotation marks.

non

3. Character literals must be enclosed by quotation marks (" ”). (The quotation mark character is
used in the examples.) It is important to place the character(s) between the quotation marks in
either uppercase or lowercase to match the value you want to find in the database. (The
examples are all shown in uppercase.)

4. To request a selection against a numeric constant, specify:
OPNQRYF FILE(FILEA) QRYSLT('AMT *GT 1000.00')

Note:
Numeric constants are not enclosed by quotation marks.

5. When comparing a field value to a control language (CL) variable, use apostrophes as follows
(only character CL variables can be used):

* If doing selection against a character, date, time, or timestamp field, specify:
OPNQRYF FILE(FILEA) QRYSLT('"' #CAT &CHAR *CAT '" *EQ FIELDA')

or, in reverse order:
OPNQRYF FILE(FILEA) QRYSLT('FIELDA *EQ "' %CAT &CHAR *CAT '"')

Note:
Single quotation marks (" ’) and quotation marks (" ") enclose the CL variables and *CAT
operators.

* If doing selection against a numeric field, specify:
OPNQRYF FILE(FILEA) QRYSLT(&CHARNUM *CAT ' *EQ NUM')

or, in reverse order:
OPNQRYF FILE(FILEA) QRYSLT('NUM *EQ ' *CAT &CHARNUM);

Note:
Single quotation marks enclose the field and operator only.

When comparing two fields or constants, the data types must be compatible. The following table
describes the valid comparisons.

Table 42. Valid data type comparisons for the OPNQRYF command

Any numeric Character Date’ Time" Timestamp”
Any numeric Valid Not valid Not valid Not valid Not valid
Character Not valid Valid Valid? Valid? Valid?
Date' Not valid Valid? Valid Not valid Not valid
Time'! Not valid Valid? Not valid Valid Not valid
Timestamp' Not valid Valid® Not valid Not valid Valid

128 IBM Systems - iSeries: Database Database programming

! Date, time, and timestamp data types can be represented by fields and expressions, but not constants;
however, character constants can represent date, time, or timestamp values.

% The character field or constant must represent a valid date value if compared to a date data type, a
valid time value if compared to a time data type, or a valid timestamp value if compared to a timestamp
data type.

The performance of record selection can be greatly enhanced if a file on the system uses the field being
selected in a keyed sequence access path. This allows the system to quickly access only the records that
meet the selection values. If no such access path exists, the system must read every record to determine if
it meets the selection values.

Even if an access path exists on the field you want to select from, the system might not use the access
path. For example, if it is faster for the system to process the data in arrival sequence, it will do so.

Related concepts

[‘Double-byte character set considerations” on page 289
These topics describe double-byte character set (DBCS) considerations as they apply to the database
on the iSeries system.

[“Open Query File (OPNQRYF) command: Performance considerations” on page 161|
Here are tips and techniques for optimizing the performance when you use the Open Query File
(OPNQRYF) command.

Example 2: Select records using the Open Query File (OPNQRYF) command:

This example shows how to select records with a specific date value using the Open Query File
(OPNQRYF) command.

Assume that you want to process all records in which the Date field in the record is the same as the
current date. Also assume that the Date field is in the same format as the system date. In a control
language (CL) program, you can specify:

DCL VAR(&CURDAT); TYPE(*CHAR) LEN(6)

RTVSYSVAL SYSVAL(QDATE) RTNVAR(&CURDAT);

OVRDBF FILE(FILEA) SHARE (*YES)

OPNQRYF FILE(FILEA) QRYSLT('"' *CAT &CURDAT *CAT '" *EQ DATE')

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

A CL variable is assigned with a leading ampersand (&) and is not enclosed in single quotation marks.
The whole expression is enclosed in single quotation marks. The CAT operators and CL variable are
enclosed in both single quotation marks and quotation marks.

It is important to know whether the data in the database is defined as character, date, time, timestamp, or
numeric. In the preceding example, the Date field is assumed to be character.

If the DATE field is defined as date data type, the preceding example can be specified as:

OVRDBF FILE(FILEA) SHARE (*YES)

OPNQRYF FILE(FILEA) QRYSLT('%CURDATE *EQ DATE')
CALL PGM(PGMB)

CLOF OPENID(FILEA)

DLTOVR FILE(FILEA)

Note: The date field does not have to have the same format as the system date.

You can also specify the example as:

Database programming 129

DCL VAR(&CVTDAT); TYPE(*CHAR) LEN(6)
DCL VAR(&CURDAT); TYPE(*CHAR) LEN(8)
RTVSYSVAL SYSVAL(QDATE) RTNVAR(&CVTDAT);
CVTDAT DATE(&CVTDAT); TOVAR(&CURDAT); TOSEP(/)
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA)
QRYSLT('"' *CAT &CURDAT *CAT '" *EQ DATE')
CALL PGM(PGMB)
CLOF OPNID (FILEA)
DLTOVR FILE(FILEA)

This is where DATE has a date data type in FILEA, the job default date format is MMDDYY, and the job
default date separator is the slash (/).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,
YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If, instead, you were using a constant, the QRYSLT would be specified as follows:
QRYSLT('"12/31/87" *EQ DATE')

The job default date format must be MMDDYY and the job default separator must be the slash (/).

If a numeric field exists in the database and you want to compare it to a variable, only a character
variable can be used. For example, to select all records where a packed Date field is greater than a
variable, you must ensure that the variable is in character form. Normally, this means that before the
OPNQRYF command, you use the Change Variable (CHGVAR) command to change the variable from a
decimal field to a character field. The CHGVAR command would be specified as follows:

CHGVAR VAR(&CHARVAR); VALUE('123188')

The QRYSLT parameter would be specified as follows (see the difference from the preceding examples):
QRYSLT(&CHARVAR *CAT ' *GT DATE')

If, instead, you were using a constant, the QRYSLT statement would be specified as follows:
QRYSLT('123187 *GT DATE')

Example 3: Select records using the Open Query File (OPNQRYF) command:

This example shows how to select records in a range of values using the Open Query File (OPNQRYF)
command.

Assume that you have a Date field specified in the character format YYMMDD and with the “.” separator,
and you want to process all records for 1988. You can specify:

OVRDBF FILE(FILEA) SHARE (*YES)
OPNQRYF FILE(FILEA) QRYSLT('DATE *EQ %RANGE("88.01.01" +

"88.12.31") ')
CALL PGM(PGMC)
CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

This example also works if the DATE field has a date data type, the job default date format is YYMMDD,
and the job default date separator is the period (.).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,
YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If the ranges are variables defined as character data types and the DATE field is defined as a character
data type, specify the QRYSLT parameter as follows:

130 IBM Systems - iSeries: Database Database programming

QRYSLT('DATE *EQ %RANGE("' *CAT &LORNG *CAT '"' =BCAT '"' +
*CAT &HIRNG *CAT '")')

However, if the DATE field is defined as a numeric data type, specify the QRYSLT parameter as follows:
QRYSLT('DATE *EQ %RANGE(' *CAT &LORNG *BCAT &HIRNG *CAT ')')

Note: *BCAT can be used if the QRYSLT parameter is in a control language (CL) program, but it is not
allowed in an interactive command.

Example 4: Select records using the Open Query File (OPNQRYF) command:

This example shows how to select records using the contains function of the Open Query File
(OPNQRYF) command.

Assume that you want to process all records in which the Addr field contains the street named
BROADWAY. The contains (*CT) function determines if the characters appear anywhere in the named
field. You can specify as follows:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT('ADDR *CT "BROADWAY" ')

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

In this example, assume that the data is in uppercase in the database record. If the data is in lowercase or
mixed case, you can specify a translation function to translate the lowercase or mixed case data to
uppercase before the comparison is made. The system-provided table QSYSTRNTBL translates the letters
a through z to uppercase. (You can use any translation table to perform the translation.) Therefore, you
can specify as follows:

OVRDBF FILE(FILEA) SHARE (*YES)
OPNQRYF FILE(FILEA) QRYSLT('%XLATE(ADDR QSYSTRNTBL) *CT +

"BROADWAY" ')
CALL PGM(PGMC)
CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

When the %XLATE function is used on the QRYSLT statement, the value of the field passed to the
high-level language program appears as it is in the database. You can force the field to appear in
uppercase using the %XLATE function on the MAPFLD parameter.

Example 5: Select records using the Open Query File (OPNQRYF) command:

This example shows how to select records using multiple fields of the Open Query File (OPNQRYF)
command.

Assume that you want to process all records in which either the Amt field is equal to zero, or the Lstdat
field (YYMMDD order in character format) is equal to or less than 88-12-31. You can specify:
OVRDBF FILE(FILEA) SHARE (*YES)
OPNQRYF FILE(FILEA) QRYSLT('AMT *EQ © *OR LSTDAT +
*LE "88-12-31" ')
CALL PGM(PGMC)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

This example also works if the LSTDAT field has a date data type. The LSTDAT field can be in any valid

date format; however, the job default date format must be YYMMDD and the job default date separator
must be the dash (-).

Database programming 131

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,
YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If variables are used, the QRYSLT parameter is typed as follows:

QRYSLT('AMT *EQ ' *CAT &VARAMT *CAT ' *OR +
LSTDAT *LE "' *CAT &VARDAT *CAT '"')

or, typed in reverse order:

QRYSLT('""' =CAT &VARDAT *CAT '" *GT LSTDAT *0R ' +
*CAT &VARAMT *CAT ' *EQ AMT')

Note:

The &VARAMT variable must be defined as a character type. If the variable is passed to your control
language (CL) program as a numeric type, you must convert it to a character type to allow concatenation.
You can use the Change Variable (CHGVAR) command to do this conversion.

Example 6: Select records using the Open Query File (OPNQRYF) command:
This example shows how to use the Open Query File (OPNQRYF) command many times in a program.

You can use the OPNQRYF command more than once in a high-level language program. For example,
assume you want to prompt the user for some selection values, then display one or more pages of
records. At the end of the first request for records, the user might want to specify other selection values
and display those records. This can be done by follow these steps:

1. Before calling the high-level language program, use an Override with Database File (OVRDBF)
command to specify SHARE(*YES).

2. In the high-level language program, prompt the user for the selection values.

3. Pass the selection values to a control language (CL) program that issues the OPNQRYF command (or
run the command with a call to program QCMDEXC). The file must be closed before your program
processes the OPNQRYF command. You normally use the Close File (CLOF) command and monitor
for the file not being open.

Return to the high-level language program.

Open the file in the high-level language program.
Process the records.

Close the file in the program.

© N oA

Return to step 2.

When the program completes, run the CLOF command or the Reclaim Resources (RCLRSC) command to
close the file, then delete the OVRDBF command specified in step 1.

Note: An override command in a called CL program does not affect the open in the main program. All
overrides are implicitly deleted when the program is ended. (However, you can use a call to
program QCMDEXC from your high-level language program to specify an override, if needed.)

Example 7: Select records using the Open Query File (OPNQRYF) command:

This example shows how to map fields for packed numeric data fields using the Open Query File
(OPNQRYF) command.

Assume that you have a packed decimal Date field in the format MMDDYY and you want to select all
the records for the year 1988. You cannot select records directly from a portion of a packed decimal field,
but you can use the MAPFLD parameter on the OPNQRYF command to create a new field that you can
then use for selecting part of the field.

132 IBM Systems - iSeries: Database Database programming

The format of each mapped field definition is:
(result field ‘expression’ attributes)

where:

result field
The name of the result field.

expression
How the result field should be derived. The expression can include substring, other built-in
functions, or mathematical statements.

attributes
The optional attributes of the result field. If no attributes are given (or the field is not defined in a
file), the OPNQRYF command calculates a field attribute determined by the fields in the
expression.
OVRDBF FILE(FILEA) SHARE (*YES)
OPNQRYF FILE(FILEA) QRYSLT('YEAR *EQ "88" ') +
MAPFLD((CHAR6 '%DIGITS(DATE)') +
(YEAR '%SST(CHAR6 5 2)' *CHAR 2))
CALL PGM(PGMC)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

In this example, if DATE was a date data type, it can be specified as follows:

OPNQRYF FILE(FILEA) +
QRYSLT ('YEAR *EQ 88') +
MAPFLD ((YEAR '%YEAR(DATE)'))

The first mapped field definition specifies that the Char6 field be created from the packed decimal Date
field. The %DIGITS function converts from packed decimal to character and ignores any decimal
definitions (that is, 1234.56 is converted to '123456’). Because no definition of the Char6 field is specified,
the system assigns a length of 6. The second mapped field defines the Year field as type *CHAR
(character) and length 2. The expression uses the substring function to map the last 2 characters of the
Char6 field into the Year field.

Note that the mapped field definitions are processed in the order in which they are specified. In this
example, the Date field was converted to character and assigned to the Char6 field. Then, the last two
digits of the Char6 field (the year) were assigned to the Year field. Any changes to this order would have
produced an incorrect result.

Note: Mapped field definitions are always processed before the QRYSLT parameter is evaluated.

You can accomplish the same result by specifying the substring on the QRYSLT parameter and dropping
one of the mapped field definitions as follows:

OPNQRYF FILE(FILEA) +
QRYSLT('%SST(CHARG 5 2) *EQ "88" ') +
MAPFLD ((CHARG '%DIGITS(DATE)'))

Example 8: Select records using the Open Query File (OPNQRYF) command:
This example shows the “wildcard” function of the Open Query File (OPNQRYF) command.

Assume that you have a packed decimal Date field in the format MMDDYY and you want to select the
records for March 1988. To do this, you can specify:

Database programming 133

OVRDBF FILE(FILEA) SHARE (*YES)
OPNQRYF FILE(FILEA) +
QRYSLT('%DIGITS(DATE) *EQ %WLDCRD("03_88")")
CALL PGM(PGMC)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Note that the only time the MAPFLD parameter is needed to define a database field for the result of the
%DIGITS function is when the result needs to be used with a function that only supports a simple field
name (not a function or expression) as an argument. The %WLDCRD operation has no such restriction on
the operand that appears before the *EQ operator.

Note that although the field in the database is in numeric form, quotation marks surround the literal to
make its definition the same as the Char6 field. The wildcard function is not supported for DATE, TIME,
or TIMESTAMP data types.

The %WLDCRD function lets you select any records that match your selection values, in which the
underline (_) will match any single character value. The two underline characters in Example 8 allow any
day in the month of March to be selected. The %WLDCRD function also allows you to name the wild
card character (underline is the default).

The wild card function supports two different forms:

* A fixed-position wild card as shown in the previous example in which the underline (or your
designated character) matches any single character as in this example:

QRYSLT('FLDA *EQ %WLDCRD("A C")")

This compares successfully to ABC, ACC, ADC, AxC, and so on. In this example, the field being
analyzed only compares correctly if it is exactly 3 characters in length. If the field is longer than 3
characters, you also need the second form of wild card support.

* A variable-position wild card matches any zero or more characters. The Open Query File (OPNQRYF)
command uses an asterisk (*) for this type of wild card variable character or you can specify your own
character. An asterisk is used in this example:

QRYSLT('FLDB *EQ %WLDCRD("AxC*") ')

This compares successfully to AC, ABC, AxC, ABCD, AxxxxxxxC, and so on. The asterisk causes the
command to ignore any intervening characters if they exist. Notice that in this example the asterisk is
specified both before and after the character or characters that can appear later in the field. If the
asterisk is omitted from the end of the search argument, it causes a selection only if the field ends with
the character C.

You must specify an asterisk at the start of the wild card string if you want to select records where the
remainder of the pattern starts anywhere in the field. Similarly, the pattern string must end with an
asterisk if you want to select records where the remainder of the pattern ends anywhere in the field.
For example, you can specify:

QRYSLT('FLDB *EQ %WLDCRD("*ABC*DEF*") ')

You get a match on ABCDEF, ABCxDEF, ABCxDEFx, ABCxxxxxxDEF, ABCxxxDEFxxx, xABCDEEF,
xABCxDEFx, and so on.

You can combine the two wildcard functions as shown in this example:
QRYSLT('FLDB *EQ %WLDCRD("ABC_*DEF*") ')

You get a match on ABCxDEF, ABCxxxxxxDEF, ABCxxxDEFxxx, and so on. The underline forces at least
one character to appear between the ABC and DEF (for example, ABCDEF would not match).

Assume that you have a Name field that contains:
* JOHNS
+ JOHNS SMITH

134 IBM Systems - iSeries: Database Database programming

- JOHNSON
- JOHNSTON

You only gets the first record if you specify:
QRYSLT('NAME *EQ "JOHNS"')

You would not select the other records because a comparison is made with blanks added to the value you
specified. The way to select all four names is to specify:

QRYSLT('NAME *EQ %WLDCRD("JOHNS*")")
Related concepts

[‘Double-byte character set considerations” on page 289|
These topics describe double-byte character set (DBCS) considerations as they apply to the database
on the iSeries system.

ontrol language (CL)
guag

Example 9: Select records using the Open Query File (OPNQRYF) command:

This example shows how to specify the complex selection statements when you select records using the
Open Query File (OPNQRYF) command.

Complex selection statements can also be specified. For example, you can specify:
QRYSLT('DATE *EQ "880101" *AND AMT *GT 5000.00')

QRYSLT('DATE *EQ "880101" *OR AMT *GT 5000.00')

You can also specify:
QRYSLT('CODE *EQ "A" *AND TYPE *EQ "X" *OR CODE *EQ "B")

The rules governing the priority of processing the operators are described in the Control language (CL)
topic. Some of the rules are:

* The *AND operations are processed first; therefore, the record would be selected if:

The Code field = "A” and The Type field = "X"
or
The Code field = "B”
* Parentheses can be used to control how the expression is handled, as shown in this example:

QRYSLT(' (CODE *EQ "A" *OR CODE =EQ "B") *AND TYPE *EQ "X" +
*OR CODE *EQ "C"')

The Code field
or

The Code field
or

The Code field

"A" and The Type field= "X"

"B" and The Type field = "X

HC//

You can also use the symbols described in the Control language (CL) topic, instead of the abbreviated
form (for example, you can use = instead of *EQ), as shown in this example:

QRYSLT('CODE = "A" & TYPE = "X" | AMT > 5000.00")
This command selects all records in which:
The Code field = "A” and The Type field = "X"

or
The Amt field > 5000.00

Database programming 135

A complex selection statement can also be written like this:

QRYSLT('CUSNBR = %RANGE("60000" "69999") & TYPE = "B" +
& SALES>0 & ACCRCV / SALES>.3')

This command selects all records in which:

The Cusnbr field is in the range 60000-69999 and
The Type field = "B" and

The Sales fields are greater than 0 and

Accrcov divided by Sales is greater than 30 percent

Example 10: Select records using the Open Query File (OPNQRYF) command:

This example shows the use of the coded character set identifiers (CCSIDs) when you run the Open
Query File (OPNQRYF) command to select records.

Each character and DBCS field in all database files is tagged with a CCSID. This CCSID allows you to
further define the data stored in the file so that any comparison, join, or display of the fields is performed
in a meaningful way. For example, if you compare FIELD1 in FILE1 where FIELD1 has a CCSID of 37
(USA) to FIELD2 in FILE2 where FILED2 has a CCSID of 273 (Austria, Germany), appropriate mapping
occurs to make the comparison meaningful.

OPNQRYF FILE(FILEA FILEB) FORMAT(RESULTF) +
JFLD((FILEA/NAME FILEB/CUSTOMER))

If field NAME has a CCSID of 37 and field CUSTOMER has a CCSID of 273, the mapping of either
NAME or CUSTOMER is performed during processing of the OPNQRYF command so that the join of the
two fields provides a meaningful result.

Normally, constants defined in the MAPFLD, QRYSLT, and GRPSLT parameters are tagged with the
CCSID defined to the current job. This suggests that when two users with different job CCSIDs run the
same OPNQRYF command (or a program containing an OPNQRYF command) and the OPNQRYF
command has constants defined in it, the users can get different results because the CCSID tagged to the
constants might cause the constants to be treated differently.

You can tag a constant with a specific CCSID by using the MAPFLD parameter. By specifying a MAPFLD
whose definition consists only of a constant and then specifying a CCSID for the MAPFLD, the constant
becomes tagged with the CCSID specified in the MAPFLD parameter. For example:

OPNQRYF FILE(FILEA) FORMAT(RESULTF) QRYSLT('NAME *EQ MAP1') +
MAPFLD((MAP1 '"Smith"' *CHAR 5 *N 37))

The constant “Smith” is tagged with the CCSID 37 regardless of the job CCSID of the user issuing the
OPNQRYF command. In this example, all users get the same result records (although the result records
would be mapped to the user’s job CCSID). Conversely, if the query is specified as:

OPNQRYF FILE(FILEA) FORMAT(RESULTF) QRYSLT('NAME *EQ "Smith"')

The results of the query might differ, depending on the job CCSID of the user issuing the OPNQRYF
command.

Related concepts
i5/0S globalization|

Example 11: Select records using the Open Query File (OPNQRYF) command:

This example shows the use of sort sequence and language identifier when you run the Open Query File
(OPNQRYF) command to select records.

136 IBM Systems - iSeries: Database Database programming

To see how to use a sort sequence, run the examples in this topic against the STAFF file shown in

Table 43. The STAFF file

ID NAME DEPT JOB YEARS SALARY COMM
10 Sanders 20 Mgr 7 18357.50 0
20 Pernal 20 Sales 8 18171.25 612.45
30 Merenghi 38 MGR 5 17506.75 0
40 OBrien 38 Sales 6 18006.00 846.55
50 Hanes 15 Mgr 10 20659.80 0

60 Quigley 38 SALES 00 16808.30 650.25
70 Rothman 15 Sales 7 16502.83 1152.00
80 James 20 Clerk 0 13504.60 128.20
90 Koonitz 42 sales 6 18001.75 1386.70
100 Plotz 42 mgr 6 18352.80 0

In the examples, the results are shown for a particular statement using each of the following sort
sequences:

* *HEX sort sequence.
* Shared-weight sort sequence for language identifier ENU.
* Unique-weight sort sequence for language identifier ENU.

Note: ENU is chosen as a language identifier by specifying either SRTSEQ(*LANGIDUNQ) or
SRTSEQ(*LANGIDSHR), and LANGID(ENU) in the OPNQRYF command.

The following command selects records with the value MGR in the JOB field:
OPNQRYF FILE(STAFF) QRYSLT('JOB *EQ "MGR"')

able 44| shows the record selection with the *HEX sort sequence. The records that match the record
selection criteria for the JOB field are selected exactly as specified in the QRYSLT statement; only the
uppercase MGR is selected.

Table 44. Use the "HEX sort sequence. OPNQRYF FILE(STAFF) QRYSLT(JOB *EQ "MGR") SRTSEQ(*HEX)

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

able 45|shows the record selection with the shared-weight sort sequence. The records that match the
record selection criteria for the JOB field are selected by treating uppercase and lowercase letters the
same. With this sort sequence, mgr, Mgr, and MGR values are selected.

Table 45. Use the shared-weight sort sequence. OPNQRYF FILE(STAFF) QRYSLT('JOB *EQ "MGR")
SRTSEQ(LANGIDSHR) LANGID(ENU)

ID NAME DEPT JOB YEARS SALARY COMM
10 Sanders 20 Mgr 7 18357.50 0

30 Merenghi 38 MGR 5 17506.75 0

50 Hanes 15 Mgr 10 20659.80 0
100 Plotz 42 mgr 6 18352.80 0

Database programming

137

able 46|shows the record selection with the unique-weight sort sequence. The records that match the
record selection criteria for the JOB field are selected by treating uppercase and lowercase letters as
unique. With this sort sequence, the mgr, Mgr, and MGR values are all different. The MGR value is selected.

Table 46. Use the unique-weight sort sequence. OPNQRYF FILE(STAFF) QRYSLT(JOB *EQ "MGR"’)
SRTSEQ(LANGIDUNQ) LANGID(ENU)

ID NAME DEPT JOB YEARS SALARY COMM
30 Merenghi 38 MGR 5 17506.75 0

Specify a keyed sequence access path without using DDS:

The dynamic access path function allows you to specify a keyed access path for the data to be processed.
If an access path that can be shared already exists, the system can share it. If a new access path is
required, it is built before any records are passed to the program.

Example 1: Specify a keyed sequence access path without using DDS:
This example shows how to arrange records using one key field.

Assume that you want to process the records in FILEA arranged by the value in the Cust field with
program PGMD. You can specify:

OVRDBF FILE(FILEA) SHARE (*YES)
OPNQRYF FILE(FILEA) KEYFLD(CUST)
CALL PGM (PGMD)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Note: The FORMAT parameter on the Open Query File (OPNQRYF) command is not needed because
PGMD is created by specifying FILEA as the processed file. FILEA can be an arrival sequence or a
keyed sequence file. If FILEA is keyed, its key field can be the Cust field or a totally different field.

Example 2: Specify a keyed sequence access path without using DDS:

This example shows how to arrange records using multiple key fields.

If you want the records to be processed by Cust sequence and then by Date in Cust, specify:
OPNQRYF FILE(FILEA) KEYFLD(CUST DATE)

If you want the Date to appear in descending sequence, specify:
OPNQRYF FILE(FILEA) KEYFLD((CUST) (DATE *DESCEND))

In these two examples, the FORMAT parameter is not used. (If a different format is defined, all key fields
must exist in the format.)

Example 3: Specify a keyed sequence access path without using DDS:
This example shows how to arrange records using a unique-weight sort sequence.
To process the records by the JOB field values with a unique-weight sort sequence using the STAFF file in

[Table 43 on page 137 specify:
OPNQRYF FILE(STAFF) KEYFLD(JOB) SRTSEQ(*LANGIDUNQ) LANGID(ENU)

This query results in a JOB field in the following sequence:
* Clerk

* mgr

138 IBM Systems - iSeries: Database Database programming

* Mgr
* Mgr
* MGR
* sales
* Sales
* Sales

e Sales
e SALES

Example 4: Specify a keyed sequence access path without using DDS:
This example shows how to arrange records using a shared-weight sort sequence.
To process the records by the JOB field values with a unique-weight sort sequence using the STAFF file in

[Table 43 on page 137, specify:
OPNQRYF FILE(STAFF) KEYFLD(JOB) SRTSEQ(*LANGIDSHR) LANGID(ENU)

The results from this query are similar to the results in Example 3. The mgr and sales entries can be in
any sequence because the uppercase and lowercase letters are treated as equals. That is, the
shared-weight sort sequence treats mgr, Mgr, and MGR as equal values. Likewise, sales, Sales, and SALES
are treated as equal values.

Specify key fields from different files:

A dynamic keyed sequence access path over a join logical file allows you to specify a processing
sequence in which the keys can be in different physical files (DDS restricts the keys to the primary file).

The specification is identical to the previous method. The access path is specified using whatever key
fields are required. There is no restriction on which physical file the key fields are in. However, if a key
field exists in other than the primary file of a join specification, the system must make a temporary copy
of the joined records. The system must also build a keyed sequence access path over the copied records
before the query file is opened. The key fields must exist in the format identified on the FORMAT
parameter.

Example: Specify key fields from different files
This example shows how to use a field in a secondary file as a key field.

Assume that you already have a join logical file named JOINLE FILEX is specified as the primary file
and is joined to FILEY. You want to process the records in JOINLF by the Descrp field which is in FILEY.

Assume that the file record formats contain the following fields:

FILEX FILEY JOINLF

Item Item Item

Qty Descrp Qty
Descrp

You can specify:

OVRDBF FILE(JOINLF) SHARE(*YES)
OPNQRYF FILE(JOINLF) KEYFLD(DESCRP)
CALL PGM (PGMC)

CLOF OPNID(JOINLF)

DLTOVR FILE(JOINLF)

Database programming 139

If you want to arrange the records by Qfy in Descrp (Descrp is the primary key field and Qty is a
secondary key field) you can specify:

OPNQRYF FILE(JOINLF) KEYFLD(DESCRP QTY)

Dynamically join database files without DDS:

The dynamic join function allows you to join files without having to first specify data description
specifications (DDS) and create a join logical file.

You must use the FORMAT parameter on the Open Query File (OPNQRYF) command to specify the
record format for the join. You can join any physical or logical file including a join logical file and a view
(DDS does not allow you to join logical files). You can specify either a keyed or arrival sequence access
path. If keys are specified, they can be from any of the files included in the join (DDS restricts keys to
just the primary file).

In the following examples, it is assumed that the file specified on the FORMAT parameter was created.
You normally want to create the file before you create the processing program so you can use the
externally described data definitions.

The default for the join order (JORDER) parameter is used in all of the following examples. The default
for the JORDER parameter is *YANY, which tells the system that it can determine the order in which to
join the files. That is, the system determines which file to use as the primary file and which as the
secondary files. This allows the system to try to improve the performance of the join function.

The join criterion, like the record selection criterion, is affected by the sort sequence (SRTSEQ) and the
language identifier (LANGID) specified.

Related reference

[“Example 11: Select records using the Open Query File (OPNQRYF) command” on page 136
This example shows the use of sort sequence and language identifier when you run the Open Query
File (OPNQRYF) command to select records.

Example 1: Dynamically join database files without DDS:
This example shows how to dynamically join database files without DDS.

Assume that you want to join FILEA and FILEB, and the files contain the following fields:

FILEA FILEB JOINAB
Cust Cust Cust
Name Amt Name
Addr Amt

The join field is Cust which exists in both files. Any record format name can be specified on the Open
Query File (OPNQRYF) command for the join file. The file does not need a member. The records are not
required to be in keyed sequence.

You can specify:

OVRDBF FILE(JOINAB) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +
JFLD((FILEA/CUST FILEB/CUST)) +
MAPFLD((CUST 'FILEA/CUST'))
CALL PGM(PGME) /* Created using file JOINAB as input */
CLOF OPNID(FILEA)
DLTOVR FILE(JOINAB)

140 IBM Systems - iSeries: Database Database programming

File JOINAB is a physical file with no data. This file contains the record format to be specified on the
FORMAT parameter of the OPNQRYF command.

Notice that the TOFILE parameter on the Override with Database File (OVRDBF) command specifies the
name of the primary file for the join operation (the first file specified for the FILE parameter on the
OPNQRYF command). In this example, the FILE parameter on the OPNQRYF command identifies the
files in the sequence they are to be joined (A to B). The format for the file is in the file JOINAB.

The JFLD parameter identifies the Cust field in FILEA to join to the Cust field in FILEB. Because the Cust
field is not unique across all of the joined record formats, it must be qualified on the JFLD parameter. The
system attempts to determine, in some cases, the most efficient values even if you do not specify the
JELD parameter on the OPNQRYF command. For example, using the previous example, if you specified:
OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

QRYSLT('FILEA/CUST *EQ FILEB/CUST') +
MAPFLD((CUST 'FILEA/CUST'))

The system joins FILEA and FILEB using the Cust field because of the values specified for the QRYSLT
parameter. Notice that in this example the JFLD parameter is not specified on the command. However, if
either JDFTVAL(*ONLYDEFT) or JDFTVAL(*YES) is specified on the OPNQRYF command, the JFLD
parameter must be specified.

The MAPFLD parameter is needed on the Open Query File (OPNQRYF) command to describe which file
should be used for the data for the Cust field in the record format for file JOINAB. If a field is defined on
the MAPFLD parameter, its unqualified name (the Cust field in this case without the file name
identification) can be used anywhere else in the OPNQRYF command. Because the Cust field is defined
on the MAPFLD parameter, the first value of the JFLD parameter need not be qualified. For example, the
same result can be achieved by specifying:

JFLD((CUST FILEB/CUST)) +
MAPFLD((CUST 'FILEA/CUST'))

Any other uses of the same field name in the OPNQRYF command to indicate a field from a file other
than the file defined by the MAPFLD parameter must be qualified with a file name.

Because no KEYFLD parameter is specified, the records appear in any sequence depending on how the
OPNQRYF command selects the records. You can force the system to arrange the records the same as the
primary file. To do this, specify *FILE on the KEYFLD parameter. You can specify this even if the primary
file is in arrival sequence.

The JDFTVAL parameter (similar to the JDFTVAL keyword in DDS) can also be specified on the
OPNQRYF command to describe what the system should do if one of the records is missing from the
secondary file. In this example, the JDFTVAL parameter was not specified, so only the records that exist
in both files are selected.

If you tell the system to improve the results of the query (through parameters on the OPNQRYF
command), it generally tries to use the file with the smallest number of records selected as the primary
file. However, the system also tries to avoid building a temporary file.

You can force the system to follow the file sequence of the join as you have specified it in the FILE
parameter on the OPNQRYF command by specifying JORDER(*FILE). If JDFTVAL(*YES) or
JDFTVAL(*ONLYDFT) is specified, the system will never change the join file sequence because a different
sequence can cause different results.

Example 2: Dynamically join database files without DDS:

This example shows how to read only those records with secondary file records when dynamically
joining database files without DDS.

Database programming 141

Assume that you want to join files FILEAB, FILECD, and FILEEF to select only those records with
matching records in secondary files. Define a file JOINF and describe the format that should be used.
Assume that the record formats for the files contain the following fields:

FILEAB FILECD FILEEF JOINF
Abitm Cditm Efitm Abitm
Abord Cddscp Efcolr Abord
Abdat Cdcolr Efqty Cddscp
Cdcolr
Efqty

In this case, all field names in the files that make up the join file begin with a 2-character prefix (identical
for all fields in the file) and end with a suffix that is identical across all the files (for example, xxitm). This
makes all field names unique and avoids having to qualify them.

The xxitm field allows the join from FILEAB to FILECD. The two fields xxitm and xxcolr allow the join
from FILECD to FILEEF. A keyed sequence access path does not have to exist for these files. However, if
a keyed sequence access path does exist, performance might improve significantly because the system
will attempt to use the existing access path to arrange and select records, where it can. If access paths do
not exist, the system automatically creates and maintains them as long as the file is open.
OVRDBF FILE(JOINF) TOFILE(FILEAB) SHARE(*YES)
OPNQRYF FILE(FILEAB FILECD FILEEF) +

FORMAT (JOINF) +

JFLD((ABITM CDITM) (CDITM EFITM) +

(CDCOLR EFCOLR))
CALL PGM(PGME) /* Created using file JOINF as input =/
CLOF OPNID(FILEAB)
DLTOVR FILE(JOINF)

The join field pairs do not have to be specified in the preceding order. For example, the same result is
achieved with a JFLD parameter value of:

JFLD((CDCOLR EFCOLR) (ABITM CDITM) (CDITM EFITM))

The attributes of each pair of join fields do not have to be identical. Normal padding of character fields
and decimal alignment for numeric fields occurs automatically.

The JDFTVAL parameter is not specified so *NO is assumed and no default values are used to construct
join records. If you specified JDFTVAL(*YES) and there is no record in file FILECD that has the same join
field value as a record in file FILEAB, defaults are used for the Cddscp and Cdcolr fields to join to file
FILEEEFE. Using these defaults, a matching record can be found in file FILEEF (depending on if the default
value matches a record in the secondary file). If not, a default value appears for these files and for the

Efgty field.
Example 3: Dynamically join database files without DDS:

This example shows how to use mapped fields as join fields when dynamically joining database files
without DDS.

You can use fields defined on the MAPFLD parameter for either one of the join field pairs. This is useful
when the key in the secondary file is defined as a single field (for example, a 6-character date field) and
there are separate fields for the same information (for example, month, day, and year) in the primary file.
Assume that FILEA has character fields Year, Month, and Day and needs to be joined to FILEB which has
the Date field in YYMMDD format. Assume that you have defined file JOINAB with the required format.
You can specify:

142 IBM Systems - iSeries: Database Database programming

OVRDBF FILE(JOINAB) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

JFLD((YYMMDD FILEB/DATE)) +

MAPFLD((YYMMDD 'YEAR *CAT MONTH *CAT DAY'))
CALL PGM(PGME) /* Created using file JOINAB as input */
CLOF OPNID(FILEA)
DLTOVR FILE(JOINAB)

The MAPFLD parameter defines the YYMMDD field as the concatenation of several fields from FILEA.
You do not need to specify field attributes (for example, length or type) for the YYMMDD field on the
MAPEFLD parameter because the system calculates the attributes from the expression.

Handle missing records in secondary join files:

The system allows you to control whether to allow defaults for missing records in secondary files (similar
to the JDFTVAL DDS keyword for a join logical file). You can also specify that only records with defaults
be processed. This allows you to select only those records in which there is a missing record in the
secondary file.

Example: Handle missing records in secondary join file

This example shows how to read records from the primary file that do not have a record in the secondary
file.

In|“Example 1: Dynamically join database files without DDS” on page 140] the JDFTVAL parameter is not
specified, so the only records read are the result of a successful join from FILEA to FILEB. If you want a
list of the records in FILEA that do not have a match in FILEB, you can specify *ONLYDFT on the
JDFTVAL parameter as shown in the this example:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA FILEB) FORMAT(FILEA) +

JFLD((CUST FILEB/CUST)) +
MAPFLD((CUST 'FILEA/CUST')) +

JDFTVAL (*ONLYDFT)
CALL PGM(PGME) /* Created using file FILEA as input */
CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

JDFTVAL(*ONLYDEFT) causes a record to be returned to the program only when there is no equivalent
record in the secondary file (FILEB).

Because any values returned by the join operation for the fields in FILEB are defaults, it is normal to use
only the format for FILEA. The records that appear are those that do not have a match in FILEB. The
FORMAT parameter is required whenever the FILE parameter describes more than a single file, but the
file name specified can be one of the files specified on the FILE parameter. The program is created using
FILEA.

Conversely, you can also get a list of all the records where there is a record in FILEB that does not have a
match in FILEA. You can do this by making the secondary file the primary file in all the specifications.
You can specify:

OVRDBF FILE(FILEB) SHARE (*YES)

OPNQRYF FILE(FILEB FILEA) FORMAT(FILEB) JFLD((CUST FILEA/CUST)) +
MAPFLD((CUST 'FILEB/CUST')) JDFTVAL(*ONLYDFT)

CALL PGM(PGMF) /* Created using file FILEB as input */

CLOF OPNID(FILEB)

DLTOVR FILE(FILEB)

Database programming 143

Note: The Override with Database File (OVRDBF) command in this example uses FILE(FILEB) because it
must specify the first file on the FILE parameter of the Open Query File (OPNQRYF) command.
The Close File (CLOF) command also names FILEB. The JFLD and MAPFLD parameters are also
changed. The program is created using FILEB.

Unique-key processing:

Unique-key processing allows you to process only the first record of a group. The group is defined by
one or more records with the same set of key values. Processing the first record implies that the records
you receive will have unique keys.

When you use unique-key processing, you can only read the file sequentially. The key fields are sorted
according to the specified sort sequence (SRTSEQ) and language identifier (LANGID).

If you specify unique-key processing, and the file actually has duplicate keys, you receive only a single
record for each group of records with the same key value.

Related reference

[“Example 3: Specify a keyed sequence access path without using DDS” on page 138
This example shows how to arrange records using a unique-weight sort sequence.

[“Example 4: Specify a keyed sequence access path without using DDS” on page 139
This example shows how to arrange records using a shared-weight sort sequence.

Example 1: Unique-key processing:
This example shows how to read only unique-key records.

Assume that you want to process FILEA, which has records with duplicate keys for the Cust field. You
want only the first record for each unique value of the Cust field to be processed by program PGMF. You
can specify:

OVRDBF FILE(FILEA) SHARE (*YES)

OPNQRYF FILE(FILEA) KEYFLD(CUST) UNIQUEKEY (*ALL)

CALL PGM (PGMF)

CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Example 2: Unique-key processing:
This example shows how to read records using only some of the key fields.

Assume that you want to process the same file with the sequence: Slsman, Cust, Date, but you want only
one record per Slsman and Cust. Assume that the records in the file are:

Slsman Cust Date Record #
01 5000 880109 1
01 5000 880115 2
01 4025 880103 3
01 4025 880101 4
02 3000 880101 5

You specify the number of key fields that are unique, starting with the first key field.

OVRDBF FILE(FILEA) SHARE (*YES)

OPNQRYF FILE(FILEA) KEYFLD(SLSMAN CUST DATE) UNIQUEKEY(2)
CALL PGM(PGMD)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

144 1BM Systems - iSeries: Database Database programming

The following records are retrieved by the program:

Slsman Cust Date Record #
01 4025 880101 4
01 5000 880109 1
02 3000 880101 5

Note: Null values are treated as equal, so only the first null value would be returned.
Define fields derived from existing field definitions:
Listed here are the operations allowed by defining fields derived from existing field definitions.

Mapped field definitions:

+ Allow you to create internal fields that specify selection values, as shown in [“Example 7: Select records|
fusing the Open Query File (OPNQRYF) command” on page 132|.

* Allow you to avoid confusion when the same field name occurs in multiple files, as shown in
[“Example 1: Dynamically join database files without DDS” on page 140 .

+ Allow you to create fields that exist only in the format to be processed, but not in the database itself.
This allows you to perform translate, substring, concatenation, and complex mathematical operations.
The following examples describe this function.

Example 1: Define fields derived from existing field definitions:

This example shows the use of derived fields.

Assume that you have the Price and Qty fields in the record format. You can multiply one field by the
other by using the Open Query File (OPNQRYF) command to create the derived Exten field. You want

FILEA to be processed, and you have already created FILEAA. Assume that the record formats for the
files contain the following fields:

FILEA FILEAA
Order Order
Item Item
Qty Exten
Price Brfdsc
Descrp

The Exten field is a mapped field. Its value is determined by multiplying Qty times Price. It is not
necessary to have either the Qty or Price field in the new format, but they can exist in that format, too, if
you want. The Brfdsc field is a brief description of the Descrp field (it uses the first 10 characters).

Assume that you have specified PGMF to process the new format. To create this program, use FILEAA as
the file to read. You can specify:
OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FILEAA) +
MAPFLD ((EXTEN 'PRICE * QTY') +
(BRFDSC 'DESCRP'))
CALL PGM(PGMF) /* Created using file FILEAA as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FILEAA)

Notice that the attributes of the Exten field are those defined in the record format for FILEAA. If the
value calculated for the field is too large, an exception is sent to the program.

Database programming 145

It is not necessary to use the substring function to map to the Brfdsc field if you only want the characters
from the beginning of the field. The length of the Brfdsc field is defined in the FILEAA record format.

All fields in the format specified on the FORMAT parameter must be described on the OPNQRYF
command. That is, all fields in the output format must either exist in one of the record formats for the
files specified on the FILE parameter or be defined on the MAPFLD parameter. If you have fields in the
format on the FORMAT parameter that your program does not use, you can use the MAPFLD parameter
to place zeros or blanks in the fields. Assume the Fldc field is a character field and the Fldn field is a
numeric field in the output format, and you are using neither value in your program. You can avoid an
error on the OPNQRYF command by specifying:

MAPFLD((FLDC ' ™ " ')(FLDN 0))

Notice quotation marks enclose a blank value. By using a constant for the definition of an unused field,
you avoid having to create a unique format for each use of the OPNQRYF command.

Example 2: Define fields derived from existing field definitions:
This example shows the use of built-in functions.

Assume that you want to calculate a mathematical function that is the sine of the Fldm field in FILEA.
First create a file (assume it is called FILEAA) with a record format containing the following fields:

FILEA FILEAA

Code Code

Fldm Fldm
Sinm

You can then create a program (assume PGMF) using FILEAA as input and specify:

OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FILEAA) +
MAPFLD ((SINM '%SIN(FLDM)'))
CALL PGM(PGMF) /* Created using file FILEAA as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FILEAA)

The built-in function %SIN calculates the sine of the field specified as its argument. Because the Sinm
field is defined in the format specified on the FORMAT parameter, the Open Query File (OPNQRYF)
command converts its internal definition of the sine value (in floating point) to the definition of the Sinm
field. This technique can be used to avoid certain high-level language restrictions regarding the use of
floating-point fields. For example, if you defined the Sinm field as a packed decimal field, PGMF can be
written using any high-level language, even though the value was built using a floating-point field.

There are many other functions besides sine that can be used. See the OPNQRYF command in the
Control language (CL) topic for a complete list of built-in functions.

Related concepts
[Control language (CL)|

Example 3: Define fields derived from existing field definitions:

This example shows the use of derived fields and built-in functions.

Assume, in the previous example, that a field called Fldx also exists in FILEA, and the Fldx field has
appropriate attributes used to hold the sine of the Fldm field. Also assume that you are not using the

contents of the Fldx field. You can use the MAPFLD parameter to change the contents of a field before
passing it to your high-level language program. For example, you can specify:

146 IBM Systems - iSeries: Database Database programming

OVRDBF FILE(FILEA) SHARE (*YES)

OPNQRYF FILE(FILEA) MAPFLD((FLDX '%SIN(FLDM)'))

CALL PGM(PGMF) /* Created using file FILEA as input =/
CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

In this case, you do not need to specify a different record format on the FORMAT parameter. (The default
uses the format of the first file on the FILE parameter.) Therefore, the program is created by using FILEA.
When using this technique, you must ensure that the field you redefine has attributes that allow the
calculated value to process correctly. The least complicated approach is to create a separate file with the
specific fields you want to process for each query.

You can also use this technique with a mapped field definition and the %XLATE function to translate a
field so that it appears to the program in a different manner than what exists in the database. For
example, you can translate a lowercase field so the program only sees uppercase.

The sort sequence and language identifier can affect the results of the %MIN and %MAX built-in
functions. For example, the uppercase and lowercase versions of letters can be equal or unequal
depending on the selected sort sequence and language identifier.

Note: The translated field value is used to determine the minimum and maximum, but the untranslated
value is returned in the result record.

The example described uses FILEA as an input file. You can also update data using the Open Query File
(OPNQRYF) command. However, if you use a mapped field definition to change a field, updates to the
field are ignored.

Handle the divide-by-zero errors:

Dividing by zero is considered an error by the Open Query File (OPNQRYF) command. This topic
discusses how to handle the divide-by-zero error in case that you want a zero answer.

Record selection is normally done before field mapping errors occur. Therefore, a record can be omitted
that would have caused a divide-by-zero error and in this case, processing by the OPNQRYF command
would continue. If you want a zero answer, here is a solution that is practical for typical commercial data.

Assume that you want to divide A by B giving C (stated as A / B = C). Assume the following definitions
where B can be zero.

Field Digits Dec
A 6 2
B 3 0
C 6 2

The following algorithm can be used:
(A * B) / %MAX((B * B) .nnnnl)

The %MAX function returns the maximum value of either B * B or a small value. The small value must
have enough leading zeros so that it is less than any value calculated by B * B unless B is zero. In this
example, B has zero decimal positions so .1 can be used. The number of leading zeros should be 2 times
the number of decimals in B. For example, if B had 2 decimal positions, then .00001 should be used.

Specify the following MAPFLD definition:
MAPFLD((C '(A = B) / SMAX((B = B) .1)'))

Database programming 147

The intent of the first multiplication is to produce a zero dividend if B is zero. This ensures a zero result
when the division occurs. Dividing by zero does not occur if B is zero because the .1 value will be the
value used as the divisor.

Summarize data from database file records (grouping):
The group processing function allows you to summarize data from existing database records.

You can specify:

* The grouping fields

* Selection values both before and after grouping

* A keyed sequence access path over the new records

* Mapped field definitions that allow you to do such functions as sum, average, standard deviation, and
variance, as well as counting the records in each group

* The sort sequence and language identifier that supply the weights by which the field values are
grouped

You normally start by creating a file with a record format containing only the following types of fields:

* Grouping fields. Specified on the GRPFLD parameter that define groups. Each group contains a
constant set of values for all grouping fields. The grouping fields do not need to appear in the record
format identified on the FORMAT parameter.

* Aggregate fields. Defined by using the MAPFLD parameter with one or more of the following built-in
functions:

%COUNT
Counts the records in a group

%SUM
A sum of the values of a field over the group

%AVG
Arithmetic average (mean) of a field, over the group

%MAX
Maximum value in the group for the field

%MIN
Minimum value in the group for the field

%STDDEV
Standard deviation of a field, over the group

%VAR Variance of a field, over the group

* Constant fields. Allow constants to be placed in field values. The restriction that the Open Query File
(OPNQRYF) command must know all fields in the output format is also true for the grouping function.

When you use group processing, you can only read the file sequentially.

Example: Summarize data from database file records (grouping):

This example shows how to use the group processing functions to summarize data from existing database
records.

Assume that you want to group the data by customer number and analyze the amount field. Your

database file is FILEA and you create a file named FILEAA containing a record format with the following
fields:

148 1BM Systems - iSeries: Database Database programming

FILEA FILEAA

Cust Cust
Type Count (count of records per customer)
Amt Amtsum (summation of the amount field)

Amtavg (average of the amount field)
Amtmax (maximum value of the amount field)

When you define the fields in the new file, you must ensure that they are large enough to hold the
results. For example, if the Amt field is defined as 5 digits, you might need to define the Amtsum field as
7 digits. Any arithmetic overflow causes your program to end abnormally.

Assume that the records in FILEA have the following values:

Cust Type Amt
001 A 500.00
001 B 700.00
004 A 100.00
002 A 1200.00
003 B 900.00
001 A 300.00
004 A 300.00
003 B 600.00

You then create a program (PGMG) using FILEAA as input to print the records.

OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FILEAA) KEYFLD(CUST) +
GRPFLD(CUST) MAPFLD((COUNT '%COUNT') +
(AMTSUM '%SUM(AMT) ') +
(AMTAVG '%AVG(AMT)') +
(AMTMAX '%MAX (AMT) '))
CALL PGM(PGMG) /* Created using file FILEAA as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FILEAA)

The records retrieved by the program appear as:

Cust Count Amtsum Amtavg Amtmax
001 3 1500.00 500.00 700.00
002 1 1200.00 1200.00 1200.00
003 2 1500.00 750.00 900.00
004 2 400.00 200.00 300.00

Note: If you specify the GRPFLD parameter, the groups might not appear in ascending sequence. To
ensure a specific sequence, you should specify the KEYFLD parameter.

Assume that you want to print only the summary records in this example in which the Amtsum value is
greater than 700.00. Because the Amtsum field is an aggregate field for a given customer, use the GRPSLT
parameter to specify selection after grouping. Add the GRPSLT parameter:

GRPSLT('AMTSUM *GT 700.00")

Database programming 149

The records retrieved by your program are:

Cust Count Amtsum Amtavg Amtmax
001 3 1500.00 500.00 700.00
002 1 1200.00 1200.00 1200.00
003 2 1500.00 750.00 900.00

The Open Query File (OPNQRYF) command supports selection both before grouping (QRYSLT
parameter) and after grouping (GRPSLT parameter).

Assume that you want to select additional customer records in which the Type field is equal to A. Because

Type is a field in the record format for file FILEA and not an aggregate field, you add the QRYSLT
statement to select before grouping as follows:

QRYSLT('TYPE *EQ "A" ')
Note: Fields used for selection do not have to appear in the format processed by the program.

The records retrieved by your program are:

Cust Count Amtsum Amtavg Amtmax
001 2 800.00 400.00 500.00
002 1 1200.00 1200.00 1200.00

Note: The values for CUST 001 changed because the selection took place before the grouping took place.

Assume that you want to arrange the output by the Amtavg field in descending sequence, in addition to
the previous QRYSLT parameter value. You can do this by changing the KEYFLD parameter on the
OPNQRYF command as:

KEYFLD((AMTAVG *DESCEND))

The records retrieved by your program are:

Cust Count Amtsum Amtavg Amtmax
002 1 1200.00 1200.00 1200.00
001 2 800.00 400.00 500.00

Final total-only processing:

Final-total-only processing is a special form of grouping in which you do not specify grouping fields. The
output is only one record. All of the special built-in functions for grouping can be specified. You can also
specify the selection of records that make up the final total.

Example 1: Final total-only processing:

This example shows simple total processing.

Assume that you have a database file FILEA and decide to create file FINTOT for your final total record
as follows:

FILEA FINTOT
Code Count (count of all the selected records)
Amt Totamt (total of the amount field)

150 IBM Systems - iSeries: Database Database programming

FILEA FINTOT

Maxamt (maximum value in the amount field)

The FINTOT file is created specifically to hold the single record which is created with the final totals. You
can specify:
OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE (*YES)
OPNQRYF FILE(FILEA) FORMAT(FINTOT) +

MAPFLD((COUNT '%COUNT') +

(TOTAMT '%SUM(AMT) ') (MAXAMT '%MAX(AMT)'))

CALL PGM(PGMG) /* Created using file FINTOT as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FINTOT)

Example 2: Final total-only processing:
This example shows total-only processing with record selection.

Assume that you want to change the previous example so that only the records where the Code field is
equal to B are in the final total. You can add the QRYSLT parameter as follows:
OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FINTOT) +

QRYSLT('CODE *EQ "B" ') MAPFLD((COUNT '%COUNT') +

(TOTAMT '%SUM(AMT) ') (MAXAMT '%MAX(AMT)'))

CALL PGM(PGMG) /* Created using file FINTOT as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FINTOT)

You can use the GRPSLT keyword with the final total function. The GRPSLT selection values you specify
determines if you receive the final total record.

Example 3: Final total-only processing:
This example shows total-only processing using a new record format.

Assume that you want to process the new file/format with a control language (CL) program. You want to
read the file and send a message with the final totals. You can specify:

DCLF FILE(FINTOT)
DCL &COUNTA *CHAR LEN(7)
DCL &TOTAMTA *CHAR LEN(9)

OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FINTOT) MAPFLD((COUNT '%COUNT') +
(TOTAMT '%SUM(AMT) '))

RCVF

CLOF OPNID(FILEA)

CHGVAR &COUNTA &COUNT

CHGVAR &TOTAMTA &TOTAMT

SNDPGMMSG MSG('COUNT=" =CAT &COUNTA =CAT +
' Total amount=' =*CAT &TOTAMTA);

DLTOVR FILE(FINTOT)

You must convert the numeric fields to character fields to include them in an immediate message.
Control how the system runs the Open Query File (OPNQRYF) command:
The optimization function allows you to specify how you are going to use the results of the query.

When you use the Open Query File (OPNQRYF) command, there are two steps where performance
considerations exist. The first step is during the actual processing of the OPNQRYF command itself. This

Database programming 151

step decides if the OPNQRYF command is going to use an existing access path or build a new one for
this query request. The second step when performance considerations play a role is when the application
program is using the results of the OPNQRYF command to process the data.

For most batch type functions, you are usually only interested in the total time of both steps mentioned
in the preceding paragraph. Therefore, the default for the OPNQRYF command is OPTIMIZE(*ALLIO).
This means that the OPNQRYF command considers the total time it takes for both steps.

If you use the OPNQRYF command in an interactive environment, you might not be interested in
processing the entire file. You might want the first screen full of records to be displayed as quickly as
possible. For this reason, you want the first step to avoid building an access path, if possible. You can
specify OPTIMIZE(*FIRSTIO) in such a situation.

If you want to process the same results of the OPNQRYF command with multiple programs, you might
want the first step to make an efficient open data path (ODP). That is, you try to minimize the number of
records that must be read by the processing program in the second step by specifying
OPTIMIZE(*MINWAIT) on the OPNQRYF command.

If the KEYFLD or GRPFLD parameter on the OPNQRYF command requires that an access path be built
when there is no access path to share, the access path is built entirely regardless of the OPTIMIZE entry.
Optimization mainly affects selection processing.

Related concepts

[Database performance and query optimization|

Example 1: Control how the system runs the Open Query File (OPNQRYF) command:
This example shows how to optimize for the first set of records.

Assume that you have an interactive job in which the operator requests all records where the Code field is
equal to B. Your program’s subfile contains 15 records per screen. You want to get the first screen of
results to the operator as quickly as possible. You can specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT('CODE = "B" ') +

SEQONLY (*YES 15) OPTIMIZE(*FIRSTIO)
CALL PGM(PGMA)

CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

The system optimizes handling the query and fills the first buffer with records before completing the
entire query regardless of whether an access path already exists over the Code field.

Example 2: Control how the system runs the Open Query File command:
This example shows how to optimize to minimize the number of records read.

Assume that you have multiple programs that will access the same file which is built by the Open Query
File (OPNQRYF) command. In this case, you will want to optimize the performance so that the
application programs read only the data they are interested in. This means that you want OPNQRYF to
perform the selection as efficiently as possible. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT('CODE #EQ "B"') +
KEYFLD(CUST) OPTIMIZE (*MINWAIT)

CALL PGM(PGMA)

POSDBF ~ OPNID(FILEA) POSITION(*START)

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

152 IBM Systems - iSeries: Database Database programming

Considerations for creating a file and using the FORMAT parameter:
This topic discusses the considerations for creating a file and using the FORMAT parameter.

You must specify a record format name on the FORMAT parameter when you request join processing by
specifying multiple entries on the FILE parameter (that is, you cannot specify FORMAT(*FILE)). Also, a
record format name is normally specified with the grouping function or when you specify a complex
expression on the MAPFLD parameter to define a derived field. Consider the following guidelines and
rules:

* The record format name is any name you select. It can differ from the format name in the database file
you want to query.

* The field names are any names you select. If the field names are unique in the database files you are
querying, the system implicitly maps the values for any fields with the same name in a queried file
record format (FILE parameter) and in the query result format (FORMAT parameter).

e If the field names are unique, but the attributes differ between the file specified on the FILE parameter
and the file specified on the FORMAT parameter, the data is implicitly mapped.

¢ The correct field attributes must be used when using the MAPFLD parameter to define derived fields.
For example, if you are using the grouping %SUM function, you must define a field that is large
enough to contain the total. If not, an arithmetic overflow occurs and an exception is sent to the
program.

* Decimal alignment occurs for all field values mapped to the record format identified on the FORMAT
parameter. Assume that you have a field in the query result record format with 5 digits with 0
decimals, and the value that was calculated or must be mapped to that field is 0.12345. You will receive
a result of 0 in your field because digits to the right of the decimal point are truncated.

Related reference

[“Example 1: Dynamically join database files without DDS” on page 14()
This example shows how to dynamically join database files without DDS.

Considerations for arranging records:

This topic discusses the considerations for using the Open Query File (OPNQRYF) command to arrange
records.

The default processing for the OPNQRYF command provides records in any order that improves
performance and does not conflict with the order specified on the KEYFLD parameter. Therefore, unless
you specify the KEYFLD parameter to either name specific key fields or specify KEYFLD(*FILE), the
sequence of the records returned to your program can vary each time you run the same OPNQRYF
command.

When you specify the KEYFLD(*FILE) parameter option for the OPNQRYF command, and a sort
sequence other than *HEX has been specified for the query with the job default or the OPNQRYF
SRTSEQ parameter, you can receive your records in an order that does not reflect the true file order. If
the file is keyed, the query’s sort sequence is applied to the key fields of the file and informational
message CPI431F is sent. The file’s sort sequence and alternative collating sequence table are ignored for
the ordering, if they exist. This allows users to indicate which fields to apply a sort sequence to without
having to list all the field names. If a sort sequence is not specified for the query (for example, *HEX),
ordering is done as it was prior to Version 2 Release 3.

Considerations for distributed data management files:

The Open Query File (OPNQRYF) command can process distributed data management (DDM) files,
however, there are certain considerations.

Database programming 153

All DDM files identified on the FILE parameter must exist on the same IBM iSeries system or System/38
target system. The Open Query File (OPNQRYF) command which specifies group processing and uses a
DDM file requires that both the source and target system be the same type (either both System/38 or
both iSeries systems).

Considerations for writing a high-level language program:
There are certain considerations for writing a high-level language program.

If you omit the FORMAT parameter, your high-level language program is coded as if you were directly
accessing the database file. Selection or sequencing occurs external to your program, and the program
receives the selected records in the order you specified. The program does not receive records that are
omitted by your selection values. This same function occurs if you process through a logical file with
select/omit values.

If you use the FORMAT parameter, your program specifies the same file name used on the FORMAT
parameter. The program is written as if this file contained actual data.

If you read the file sequentially, your high-level language can automatically specify that the key fields are
ignored. Normally you write the program as if it were reading records in arrival sequence. If the
KEYFLD parameter is used on the Open Query File (OPNQRYF) command, you receive a diagnostic
message, which can be ignored.

If you process the file randomly by keys, your high-level language probably requires a key specification.
If you have selection values, it can prevent your program from accessing a record that exists in the
database. A Record not found condition can occur on a random read whether the OPNQRYF command
was used or whether a logical file created using DDS select/omit logic was used.

In some cases, you can monitor exceptions caused by mapping errors such as arithmetic overflow, but it
is better to define the attributes of all fields to correctly handle the results.

Related tasks

[Use an existing record format in the file|

The Open Query File (OPNQRYF) command does the record selection and your program processes
only the records that meet the selection values. You can use this approach to select a set of records,
return records in a different sequence than they are stored, or both.

Messages sent when the Open Query File (OPNQRYF) command is run:
When the Open Query File (OPNQRYF) command is run, messages are sent informing the interactive
user of the status of the OPNQRYF request. For example, if a keyed access path is built by the OPNQRYF

command to satisfy the request, a message is sent to the user.

The following messages might be sent during a run of the OPNQRYF command:

Message identifier Description

CPI4301 Query running.

CPI14302 Query running. Building access path...

CPI4303 Query running. Creating copy of file...

CPI4304 Query running. Selection complete...

CPI4305 Query running. Sorting copy of file...

CPI4306 Query running. Building access path from file...

CPI14307 Query running. Building hash table from file &I in
&2.

CPI4011 Query running. Number of records processed...

154 IBM Systems - iSeries: Database Database programming

To stop these status messages from appearing, you can see the discussion about message handling in the

Control language (CL) topic.

When your job is running under debug (by using the Start Debug (STRDBG) command), or requested
with query options file option of DEBUG_MESSAGES *YES, messages are sent to your job log. These

messages describe the implementation method that is used to process the OPNQRYF request. These
messages provide information about the optimization processing that occurred. You can use these

messages as a tool for tuning the OPNQRYF request to achieve the best performance. Listed here are

these messages:

CPI14321

Access path built for file...
CPI4322

Access path built from keyed file...
CPI4324

Temporary file built from file...
CPI4325

Temporary file built for query
CPI4326

File processed in join position...
CPI4327

File processed in join position 1.
CPI4328

Access path of file that is used...
CPI4329

Arrival sequence that is used for file...
CPI432A

Query optimizer timed out...
CPI432C

All access paths considered for file...
CPI432E

Selection fields mapped to different attributes...
CPI432F

Access path suggestion for file...
CPI433B

Unable to update query options file.
CPI4330

&6 tasks used for parallel &10 scan of file &1.
CPI4332

&6 tasks used for parallel index that is created over file...

CP14333
Hashing algorithm used to process join.

CPI4338
&1 access paths used for bitmap processing of file...

CPI4339
Query options retrieved file &2 in library &1.

Database programming

155

CPI4341
Performing distributed query.

CPI4342
Performing distributed join for query.

CPI4345
Temporary distributed result file &4 built...

CPI4346
Optimizer debug messages for query join step &1 of &2 follow:

CP14347
Query is processing in multiple steps.

Most of the messages provide a reason why the particular option was performed. The second level text
on each message gives an extended description of why the option was chosen. Some messages provide
suggestions to help improve the performance of the OPNQRYF request.

Related concepts

[Control language (CL)|

Use the Open Query File (OPNQRYF) command for more than just input:

The Open Query File (OPNQRYF) command supports the OPTION parameter to determine the type of
processing. The default is OPTION(*INP), so the file is opened for input only. You can also use other
OPTION values on the OPNQRYF command and a high-level language program to add, update, or
delete records through the open query file.

However, if you specify the UNIQUEKEY, GRPFLD, or GRPSLT parameter, use one of the aggregate
functions, or specify multiple files on the FILE parameter, your use of the file is restricted to input only.

A join logical file is limited to input-only processing. A view is limited to input-only processing, if group,
join, union, distinct processing, or a user-defined table function is specified in the definition of the view.
If the query optimizer needs to create a temporary file to implement the query, then the use of the file is
restricted to input only.

If you want to change a field value from the current value to a different value in some of the records in a
file, you can use a combination of the OPNQRYF command and a specific high-level language program.
For example, assume that you want to change all the records where the Fida field is equal to ABC so that
the Flda field is equal to XYZ. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) OPTION(*ALL) QRYSLT('FLDA *EQ "ABC" ')

CALL PGM (PGMA)

CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Program PGMA processes all records it can read, but the query selection restricts these to records where
the Flda field is equal to ABC. The program changes the field value in each record to XYZ and updates
the record.

You can also delete records in a database file using the OPNQRYF command. For example, assume that
you have a field in your record that, if equal to X, means the record should be deleted. Your program can
be written to delete any records it reads and use the OPNQRYF command to select those to be deleted
such as:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF ~ FILE(FILEA) OPTION(*ALL) QRYSLT('DLTCOD *EQ "X" ')

CALL PGM(PGMB)

CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

156 IBM Systems - iSeries: Database Database programming

You can also add records by using the OPNQRYF command. However, if the query specifications include
selection values, your program can be prevented from reading the added records because of the selection
values.

Compare date, time, and timestamp using the Open Query File (OPNQRYF) command:

A date, time, or timestamp value can be compared either with another value of the same data type or
with a string representation of that data type.

All comparisons are chronological, which means the farther a time is from January 1, 0001, the greater the
value of that time.

Comparisons involving time values and string representations of time values always include seconds. If
the string representation omits seconds, zero seconds are implied.

Comparisons involving timestamp values are chronological without regard to representations that might
be considered equivalent. Thus, the following predicate is true:

TIMESTAMP ("1990-02-23-00.00.00") > "1990-02-22-24.00.00

When a character, DBCS-open, or DBCS-either field or constant is represented as a date, time, or
timestamp, the following rules apply:

Date: The length of the field or literal must be at least 8 if the date format is *ISO, *USA, *EUR, *JIS,
*YMD, *MDY, or *DMY. If the date format is *JUL (yyddd), the length of the variable must be at least 6
(includes the separator between yy and ddd). The field or literal can be padded with blanks.

Time: For all of the time formats (*USA, *ISO, *EUR, *JIS, *HMS), the length of the field or literal must be
at least 4. The field or literal can be padded with blanks.

Timestamp: For the timestamp format (yyyy-mm-dd-hh.mm.ss.uuuuuu), the length of the field or literal
must be at least 16. The field or literal can be padded with blanks.

Perform date, time, and timestamp arithmetic using the Open Query File (OPNQRYF) command:
Date, time, and timestamp values can be incremented, decremented, and subtracted. These operations
might involve decimal numbers called durations. These topics include a definition of durations and a
specification of the rules for performing arithmetic operations on date, time, and timestamp values.
Durations:

A duration is a number representing an interval of time. This topic introduces various types of durations.

Date duration

A date duration represents a number of years, months, and days, expressed as a DECIMAL(8,0) number.
To be properly interpreted, the number must have the format yyyymmdd, where yyyy represents the
number of years, mm the number of months, and dd the number of days. The result of subtracting one
date value from another, as in the expression HIREDATE - BRTHDATE, is a date duration.

Labeled duration
A labeled duration represents a specific unit of time as expressed by a number (which can be the result of
an expression) used as an operand for one of the seven duration built-in functions: %DURYEAR,

%DURMONTH, %DURDAY, %DURHOUR, %DURMINUTE, %DURSEC, or %DURMICSEC. The
functions are for the duration of year, month, day, hour, minute, second, and microsecond, respectively.

Database programming 157

The number specified is converted as if it were assigned to a DECIMAL(15,0) number. A labeled duration
can only be used as an operand of an arithmetic operator when the other operand is a value of data type
*DATE, *TIME, or *TIMESTP. Thus, the expression HIREDATE + %DURMONTH(2) + %DURDAY(14) is
valid, whereas the expression HIREDATE + (%DURMONTH(2) + %DURDAY(14)) is not. In both of these
expressions, the labeled durations are %DURMONTH(2) and %DURDAY (14).

Time duration

A time duration represents a number of hours, minutes, and seconds, expressed as a DECIMAL(6,0)
number. To be properly interpreted, the number must have the format hhmmss, where hh represents the
number of hours, mm the number of minutes, and ss the number of seconds. The result of subtracting one
time value from another is a time duration.

Timestamp duration

A timestamp duration represents a number of years, months, days, hours, minutes, seconds, and
microseconds, expressed as a DECIMAL(20,6) number. To be properly interpreted, the number must have
the format yyyymmddhhmmsszzzzzz, where yyyy, mm, dd, hh, mm, ss, and zzzzzz represent, respectively, the
number of years, months, days, hours, minutes, seconds, and microseconds. The result of subtracting one
timestamp value from another is a timestamp duration.

Rules for date, time, and timestamp arithmetic:

The only arithmetic operations that can be performed on date and time values are addition and
subtraction. If a date or time value is the operand of addition, the other operand must be a duration. This
topic describes rules for performing date, time and timestamp arithmetic.

The specific rules governing the use of the addition operator with date and time values follow:

* If one operand is a date, the other operand must be a date duration or a labeled duration of years,
months, or days.

* If one operand is a time, the other operand must be a time duration or a labeled duration of hours,
minutes, or seconds.

* If one operand is a timestamp, the other operand must be a duration. Any type of duration is valid.

The rules for the use of the subtraction operator on date and time values are not the same as those for
addition because a date or time value cannot be subtracted from a duration, and because the operation of
subtracting two date and time values is not the same as the operation of subtracting a duration from a
date or time value. The specific rules governing the use of the subtraction operator with date and time
values follow:

* If the first operand is a date, the second operand must be a date, a date duration, a string
representation of a date, or a labeled duration of years, months, or days.

* If the second operand is a date, the first operand must be a date or a string representation of a date.

e If the first operand is a time, the second operand must be a time, a time duration, a string
representation of a time, or a labeled duration of hours, minutes, or seconds.

¢ If the second operand is a time, the first operand must be a time or string representation of a time.

e If the first operand is a timestamp, the second operand must be a timestamp, a string representation of
a timestamp, or a duration.

¢ If the second operand is a timestamp, the first operand must be a timestamp or a string representation
of a timestamp.

Subtract dates:

The result of subtracting one date (DATE2) from another (DATE1) is a date duration that specifies the
number of years, months, and days between the two dates.

158 IBM Systems - iSeries: Database Database programming

The data type of the result is DECIMAL(8,0). If DATEL1 is greater than or equal to DATE2, DATE2 is
subtracted from DATE]L. If DATEI is less than DATE2, however, DATE1 is subtracted from DATE2, and
the sign of the result is made negative. The following procedural description clarifies the steps involved
in the operation RESULT = DATE1 - DATE2.

If %DAY(DATE2) <= %DAY(DATE1) ;
then %DAY(RESULT) = %DAY(DATE1) - %DAY(DATER).

If %DAY(DATE2) > %DAY(DATE1) ;
then %DAY(RESULT) = N + %DAY(DATE1) - %DAY(DATE2) ;
where N = the last day of %MONTH(DATE2). ;
%MONTH(DATE?2) is then incremented by 1.

If %MONTH(DATE2) <= %MONTH(DATE1) ;
then %MONTH(RESULT) = %MONTH(DATE1) - %MONTH(DATER).

If %9MONTH(DATE2) > %MONTH(DATE1) ;
then %MONTH(RESULT) = 12 + %MONTH(DATE1) - %MONTH(DATE2). ;
%YEAR(DATE2) is then incremented by 1.

%YEAR(RESULT) = %YEAR(DATE1) - %YEAR(DATE2).

For example, the result of %DATE('3/15/2000") - 12/31/1999’ is 215 (or, a duration of 0 years, 2 months,
and 15 days).

Increment and decrement dates:
The result of adding a duration to a date, or of subtracting a duration from a date, is itself a date.

(For the purposes of this operation, a month denotes the equivalent of a calendar page. Adding months
to a date, then, is like turning the pages of a calendar, starting with the page on which the date appears.)
The result must fall between the dates January 1, 0001, and December 31, 9999, inclusive. If a duration of
years is added or subtracted, only the year portion of the date is affected. The month is unchanged, as is
the day unless the result would be February 29 of a year that is not a leap year. In this case, the day is
changed to 28.

Similarly, if a duration of months is added or subtracted, only months and, if necessary, years are
affected. The day portion of the date is unchanged unless the result would not be valid (September 31,
for example). In this case, the day is set to the last day of the month.

Adding or subtracting a duration of days, of course, affects the day portion of the date, and potentially
the month and year.

Date durations, whether positive or negative, can also be added to and subtracted from dates. As with
labeled durations, the result is a valid date.

When a positive date duration is added to a date, or a negative date duration is subtracted from a date,
the date is incremented by the specified number of years, months, and days, in that order. Thus, DATE1
+ X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression: DATE1 +
%DURYEAR(%YEAR(X)) + %DURMONTH(%MONTH(X)) + %DURDAY(%DAY (X))

When a positive date duration is subtracted from a date, or a negative date duration is added to a date,
the date is decremented by the specified number of days, months, and years, in that order. Thus, DATE1
- X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression: DATE1 -

%DURDAY (%DAY (X)) - %DURMONTH(%MONTH(X)) - %DURYEAR(%YEAR(X))

Database programming 159

When adding durations to dates, adding one month to a given date gives the same date one month later
unless that date does not exist in the later month. In that case, the date is set to that of the last day of the
later month. For example, January 28 plus one month gives February 28; and one month added to
January 29, 30, or 31 results in either February 28 or, for a leap year, February 29.

Note: If one or more months are added to a given date and then the same number of months is
subtracted from the result, the final date is not necessarily the same as the original date.

Subtract times:

The result of subtracting one time (TIME2) from another (TIME1) is a time duration that specifies the
number of hours, minutes, and seconds between the two times.

The data type of the result is DECIMAL(6,0). If TIMEL1 is greater than or equal to TIME2, TIME2 is
subtracted from TIME]. If TIMEI1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the
sign of the result is made negative. The following procedural description clarifies the steps involved in
the operation RESULT = TIMEL1 - TIME2.

If %SECOND(TIME2) <= %SECOND(TIMEI) ;
then %SECOND(RESULT) = %SECOND(TIME1) - %SECOND(TIMEZ).

If %SECOND(TIME2) > %SECOND(TIMEL]) ;
then %SECOND(RESULT) = 60 + %SECOND(TIMEL) - %SECOND(TIME2). ;
%MINUTE(TIME?) is then incremented by 1.

If %MINUTE(TIME2) <= %MINUTE(TIMEL) ;
then %MINUTE(RESULT) = %MINUTE(TIMEL) - %MINUTE(TIME2).

If %MINUTE(TIME2) > %MINUTE(TIME]) ;
then %MINUTE(RESULT) = 60 + %MINUTE(TIME1) - %MINUTE(TIME2). ;
%HOUR(TIME2) is then incremented by 1.

%HOUR(RESULT) = %HOUR(TIME1L) - %HOUR(TIME2).

For example, the result of %TIME("11:02:26”) - '00:32:56" is 102930 (a duration of 10 hours, 29 minutes, and
30 seconds).

Increment and decrement times:

The result of adding a duration to a time, or of subtracting a duration from a time, is itself a time. Any
overflow or underflow of hours is discarded, thereby ensuring that the result is always a time.

If a duration of hours is added or subtracted, only the hours portion of the time is affected. The minutes
and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if necessary, hours are
affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds, of course, affects the seconds portion of the time, and
potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted from times. The result
is a time that has been incremented or decremented by the specified number of hours, minutes, and
seconds, in that order.TIME1 + X, where X is a DECIMAL(6,0) number, is equivalent to the expression:
TIME1 + %DURHOUR(%HOUR(X)) + %DURMINUTE(%MINUTE(X)) + %DURSEC(%SECOND(X))

Subtract timestamps:

160 1BM Systems - iSeries: Database Database programming

The result of subtracting one timestamp (TS2) from another (TS1) is a timestamp duration that specifies
the number of years, months, days, hours, minutes, seconds, and microseconds between the two
timestamps.

The data type of the result is DECIMAL(20,6). If TS1 is greater than or equal to TS2, TS2 is subtracted
from TS1. If TS1 is less than TS2, however, TS1 is subtracted from TS2 and the sign of the result is made
negative. The following procedural description clarifies the steps involved in the operation RESULT = TS1
- TS2:

If %MICSEC(TS2) <= %MICSEC(TS1) ;
then %MICSEC(RESULT) = %MICSEC(TS1) - ;
%MICSEC(TS2).

If %MICSEC(TS2) > %MICSEC(TS1) ;
then %MICSEC(RESULT) = 1000000 + ;
%MICSEC(TS1) - %MICSEC(TS2) ;
and %SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in the rules for subtracting
times:

If %HOUR(TS2) <= %HOUR(TSI) ;
then %HOUR(RESULT) = %HOUR(TS1) - %HOUR(TS2).

If %HOUR(TS2) > %HOUR(TS1) ;
then %HOUR(RESULT) = 24 + %HOUR(TS1) - %HOUR(TS2) ;
and %DAY(TS2) is incremented by 1.
The date part of the timestamp is subtracted as specified in the rules for subtracting dates.

Increment and decrement timestamps:

The result of adding a duration to a timestamp, or of subtracting a duration from a timestamp, is itself a
timestamp.

Date and time arithmetic is performed as previously defined, except that an overflow or underflow of
hours is carried into the date part of the result, which must be within the range of valid dates.
Microseconds overflow into seconds.

Use the Open Query File (OPNQRYF) command for random processing;:

You can use the Open Query File (OPNQRYF) command for sequential processing. You can also use the
OPNQRYF command for random processing.

You can use the OPNQRYF command for random processing operations (for example, the RPG/400
language operation CHAIN or the COBOL/400 language operation READ). However, if you are using the
group or unique-key functions, you cannot process the file randomly.

Open Query File (OPNQRYF) command: Performance considerations:

Here are tips and techniques for optimizing the performance when you use the Open Query File
(OPNQRYF) command.

The best performance can occur when the OPNQRYF command uses an existing keyed sequence access
path. For example, if you want to select all the records where the Code field is equal to B and an access

Database programming 161

path exists over the Code field, the system can use the access path to perform the selection (key
positioning selection) rather than read the records and select at run time (dynamic selection).

The OPNQRYF command cannot use an existing index when any of the following conditions are true:
* The key field in the access path is derived from a substring function.
* The key field in the access path is derived from a concatenation function.

* Both listed here are true of the sort sequence table associated with the query (specified on the SRTSEQ
parameter):

— It is a shared-weight sequence table.

— It does not match the sequence table associated with the access path (a sort sequence table or an
alternate collating sequence table).

* Both listed here are true of the sort sequence table associated with the query (specified on the SRTSEQ
parameter):

— It is a unique-weight sequence table.

— It does not match the sequence table associated with the access path (a sort sequence table or an
alternate collating sequence table) when either:

- Ordering is specified (KEYFLD parameter).

- Record selection exists (QRYSLT parameter) that does not use *EQ, *NE, *CT, %WLDCRD, or
%VALUES.

- Join selection exists (JFLD parameter) that does not use *EQ or *NE operators.

Part of the OPNQRYF processing is to determine what is the fastest approach to satisfying your request.
If the file you are using is large and most of the records have the Code field equal to B, it is faster to use
arrival sequence processing than to use an existing keyed sequence access path. Your program still sees
the same records. The OPNQRYF processing can only make this type of decision if an access path exists
on the Code field. In general, if your request includes approximately 20% or more of the number of
records in the file, the OPNQRYF processing tends to ignore the existing access paths and read the file in
arrival sequence.

If no access path exists over the Code field, the program reads all of the records in the file and passes
only the selected records to your program. That is, the file is processed in arrival sequence.

The system can perform selection faster than your application program. If no appropriate keyed sequence
access path exists, either your program or the system makes the selection of the records you want to
process. Allowing the system to perform the selection process is considerably faster than passing all the
records to your application program.

This is especially true if you are opening a file for update operations because individual records must be
passed to your program, and locks are placed on every record read (in case your program needs to
update the record). By letting the system perform the record selection, the only records passed to your
program and locked are those that meet your selection values.

If you use the KEYFLD parameter to request a specific sequence for reading records, the fastest
performance results if an access path already exists that uses the same key specification or if a keyed
sequence access path exists that is similar to your specifications (such as a key that contains all the fields
you specified plus some additional fields on the end of the key). This is also true for the GRPFLD
parameter and on the to-fields of the JFLD parameter. If no such access path exists, the system builds an
access path and maintains it as long as the file is open in your job.

Processing all the records in a file by an access path that does not already exist is generally not as
efficient as using a full record sort, if the number of records to be arranged (not necessarily the total
number of records in the file) exceeds 1000 and is greater than 20% of the records in the file. While it is
generally faster to build the keyed sequence access path than to do the sort, faster processing allowed by

162 IBM Systems - iSeries: Database Database programming

the use of arrival sequence processing normally favors sorting the data when looking at the total job time.
If a usable access path already exists, using the access path can be faster than sorting the data. You can
use the ALWCPYDTA(*OPTIMIZE) parameter of the Open Query File (OPNQRYF) command to allow the
system to use a full record sort if this is the fastest method of processing records.

If you do not intend to read all of the query records and if the OPTIMIZE parameter is *FIRSTIO or
*MINWALIT, you can specify a number to indicate how many records you intend to retrieve. If the
number of records is considerably less than the total number the query is expected to return, the system
might select a faster access method.

If you use the grouping function, faster performance is achieved if you specify selection before grouping
(QRYSLT parameter) instead of selection after grouping (GRPSLT parameter). Only use the GRPSLT
parameter for comparisons involving aggregate functions.

For most uses of the OPNQRYF command, new or existing access paths are used to access the data and
present it to your program. In some cases of the OPNQRYF command, the system must create a
temporary file. The rules for when a temporary file is created are complex, but the following cases are
typical in which this occurs:

* When you specify a dynamic join, and the KEYFLD parameter describes key fields from different
physical files.

* When you specify a dynamic join and the GRPFLD parameter describes fields from different physical
files.

* When you specify both the GRPFLD and KEYFLD parameters but they are not the same.

* When the fields specified on the KEYFLD parameter total more than 2000 bytes in length.

* When you specify a dynamic join and *MINWAIT for the OPTIMIZE parameter.

* When you specify a dynamic join using a join logical file and the join type (JDFTVAL) of the join
logical file does not match the join type of the dynamic join.

* When you specify a logical file and the format for the logical file refers to more than one physical file.

* When you specify an SQL view, the system might require a temporary file to contain the results of the
view.

* When the ALWCPYDTA(*OPTIMIZE) parameter is specified and using a temporary result would
improve the performance of the query.

When a dynamic join occurs (JDFTVAL(*NO)), the OPNQRYF command attempts to improve
performance by reordering the files and joining the file with the smallest number of selected records to
the file with the largest number of selected records. To prevent the OPNQRYF command from reordering
the files, specify JORDER(*FILE). This forces the OPNQRYF command to join the files in the order
specified on the FILE parameter.

Related concepts

[Database performance and query optimization|

Open Query File (OPNQRYF) command: Performance considerations for sort sequence tables:
Here are tips and techniques for optimizing the performance of sort sequence tables.
Grouping, joining, and selection: Open Query File (OPNQRYF) command performance:

When using an existing index, the optimizer ensures that the attributes of the selection, join, and
grouping fields match the attributes of the keys in the existing index.

Also, the sort sequence table associated with the query must match the sequence table (a sort sequence

table or an alternate collating sequence table) associated with the key field of the existing index. If the
sequence tables do not match, the existing index cannot be used.

Database programming 163

However, if the sort sequence table associated with the query is a unique-weight sequence table
(including *HEX), some additional optimization is possible. The optimizer acts as though no sort
sequence table is specified for any grouping fields or any selection or join predicates that use the
following operators or functions:

« *EQ
* *NE
 *CT
%WLDCRD
%VALUES

The advantage is that the optimizer is free to use any existing access path where the keys match the field
and the access path either:

* Does not contain a sequence table.

* Contains a unique-weight sequence table (the table does not have to match the unique-weight sort
sequence table associated with the query).

Ordering: Open Query File (OPNQRYF) command performance:

For ordering fields, the optimizer is not free to use any existing access path. The sort sequence tables
associated with the index and the query must match unless the optimizer chooses to do a sort to satisfy
the ordering request.

When a sort is used, the translation is performed during the sort, leaving the optimizer free to use any
existing access path that meets the selection criteria.

Performance comparisons with other database functions:

The Open Query File (OPNQRYF) command uses the same database support as logical files and join
logical files. Therefore, the performance of functions like building a keyed access path or doing a join
operation is the same.

The selection functions done by the OPNQRYF command (for the QRYSLT and GRPSLT parameters) are
similar to logical file select/omit. The main difference is that for the OPNQRYF command, the system
decides whether to use access path selection or dynamic selection (similar to omitting or specifying the
DYNSLT keyword in the DDS for a logical file), as a result of the access paths available on the system
and what value was specified on the OPTIMIZE parameter.

Field use:

When the grouping function is used, all fields in the record format for the open query file (FORMAT
parameter) and all key fields (KEYFLD parameter) must be either grouping fields (specified on the
GRPFLD parameter) or mapped fields (specified on the MAPFLD parameter).

Mapped fields are defined using only grouping fields, constants, and aggregate functions.

The aggregate functions are: %AVG, %COUNT, %MAX (using only one operand), %MIN (using only one
operand), %STDDEYV, %SUM, and %VAR. Group processing is required in the following cases:

* When you specify grouping field names on the GRPFLD parameter
* When you specify group selection values on the GRPSLT parameter

* When a mapped field that you specified on the MAPFLD parameter uses an aggregate function in its
definition

Fields that have any of the large object data types: BLOB, CLOB, or DBCLOB, can only be read using the
Copy From Query File (CPYFRMQRYF) command or Structured Query Language (SQL). Large object

164 1BM Systems - iSeries: Database Database programming

field data cannot be directly accessed from an open query file. The CPYFRMQRYF command must be
used to access large object fields from an open query file. A field with a large object data type (BLOB,
CLOB or DBCLOB) cannot be specified on these OPNQRYF parameters: KEYFLD, UNIQUEKEY, JFLD,
and GRPFLD.

Fields of type DATALINK might not appear in selection, grouping, ordering, or joins. If a DATALINK
field appears in that format, it will be returned in its unprocessed form, as it exists in the data space.

Fields contained in a record format, identified on the FILE parameter, and defined (in the DDS used to
create the file) with a usage value of N (neither input nor output) cannot be specified on any parameter
of the OPNQRYF command. Only fields defined as either I (input-only) or B (both input and output)
usage can be specified. Any fields with usage defined as N in the record format identified on the
FORMAT parameter are ignored by the OPNQRYF command.

Fields in the open query file records normally have the same usage attribute (input-only or both input
and output) as the fields in the record format identified on the FORMAT parameter, with the exceptions
noted later in this topic. If the file is opened for any option (OPTION parameter) that includes output or
update and any usage, and if any B (both input and output) field in the record format identified on the
FORMAT parameter is changed to I (input only) in the open query file record format, then an
information message is sent by the OPNQRYF command.

If you request join processing or group processing, or if you specify UNIQUEKEY processing, all fields in
the query records are given input-only use. Any mapping from an input-only field from the file being
processed (identified on the FILE parameter) is given input-only use in the open query file record format.
Fields defined using the MAPFLD parameter are normally given input-only use in the open query file. A
field defined on the MAPFLD parameter is given a value that matches the use of its constituent field if
all of the following conditions are true:

* Input-only is not required because of any of the conditions previously described in this topic.

* The field-definition expression specified on the MAPFLD parameter is a field name (no operators or
built-in functions).

* The field used in the field-definition expression exists in one of the file, member, or record formats
specified on the FILE parameter (not in another field defined using the MAPFLD parameter).

* The base field and the mapped field are compatible field types (the mapping does not mix numeric
and character field types, unless the mapping is between zoned and character fields of the same
length).

* If the base field is binary with nonzero decimal precision, the mapped field must also be binary and
have the same precision.

Files shared in a job:

In order for your application program to use the open data path built by the Open Query File
(OPNQRYF) command, your program must share the query file. If your program does not open the
query file as shared, then it actually does a full open of the file it was originally compiled to use (not the
query open data path built by the OPNQRYF command).

Your program will share the query open data path, depending on the following conditions:

* Your application program must open the file as shared. Your program meets this condition when the
first or only member queried (as specified on the FILE parameter) has an attribute of SHARE(*YES). If
the first or only member has an attribute of SHARE(*NO), then you must specify SHARE(*YES) in an
Override with Database File (OVRDBF) command before calling your program.

* The file opened by your application program must have the same name as the file opened by the
OPNQRYF command. Your program meets this condition when the file specified in your program has
the same file and member name as the first or only member queried (as specified on the FILE

Database programming 165

parameter). If the first or only member has a different name, then you must specify an Override with
Database File (OVRDBF) command of the name of the file your program was compiled against to the
name of the first or only member queried.

* Your program must be running in the same activation group to which the query open data path (ODP)

is scoped. If the query ODP is scoped to the job, your program can run in any activation group within
the job.

The OPNQRYF command never shares an existing open data path in the job or activation group. A

request to open a query file fails with an error message if the open data path has the same library, file,

and member name that is in the open request, and if either of the following is true:

¢ OPNSCOPE(*ACTGRPDEN) or OPNSCOPE(*ACTGRP) is specified for the OPNQRYF command, and
the open data path is scoped to the same activation group or job from which the OPNQRYF command
is run.

* OPNSCOPE(*JOB) is specified for the OPNQRYF command, and the open data path is scoped to the
same job from which the OPNQRYF command is run.

Subsequent shared opens adhere to the same open options (such as SEQONLY) that were in effect when
the OPNQRYF command was run.

Related concepts

[‘Share database files in the same job or activation group” on page 107]

By default, the database management system lets one file be read and changed by many users at the
same time. However, you can share the database files in the same job or activation group through the
SHARE parameter.

Checking if the record format description changed:

If record format level checking is indicated, the format level number of the open query file record format
(identified on the FORMAT parameter) is checked against the record format your program was compiled
against. This occurs when your program shares the previously opened query file.

Your program’s shared open is checked for record-format level if the following conditions are met:

* The first or only file queried (as specified on the FILE parameter) must have the LVLCHK(*YES)
attribute.

* There must not be an override of the first or only file queried to LVLCHK(*NO).
Other runtime considerations for the Open Query File (OPNQRYF) command:

Read other runtime considerations for the Open Query File (OPNQRYF) command, including overrides
and copying from an open query file.

Overrides and the Open Query File (OPNQRYF) command:

Overrides can change the name of the file, library, and member that should be processed by the open
query file. However, any parameter values other than TOFILE, MBR, LVLCHK, INHWRT, or SEQONLY
specified on an Override with Database File (OVRDBF) command are ignored by the Open Query File
(OPNQRYF) command.

If a name change override applies to the first or only member queried, any additional overrides must be
against the new name, not the name specified for the FILE parameter on the OPNQRYF command.

Copy from an open query file:

The Copy from Query File (CPYFRMQRYF) command can be used to copy from an open query file to
another file or to print a formatted listing of the records.

166 IBM Systems - iSeries: Database Database programming

Any open query file, except those using distributed data management (DDM) files, specified with the
input, update, or all operation value on the FILE parameter of the Open Query File (OPNQRYF)
command can be copied using the CPYFRMQRYF command. The CPYFRMQRYF command cannot be
used to copy to logical files.

Although the CPYFRMQRYF command uses the open data path of the open query file, it does not open
the file. Consequently, you do not have to specify SHARE(*YES) for the database file you are copying.

Related concepts

[Database file management

Example 1: Copy from an open query file:

This example shows how to build a file with a subset of records using the Open Query File (OPNQRYF)
and Copy from Query File (CPYFRMQRYF) commands.

Assume that you want to create a file from the CUSTOMER/ADDRESS file that contains only records
where the value of the STATE field is Texas. You can specify as follows:

OPNQRYF FILE(CUSTOMER/ADDRESS) QRYSLT('STATE *EQ "TEXAS"')
CPYFRMQRYF FROMOPNID(ADDRESS) TOFILE(TEXAS/ADDRESS) CRTFILE(*YES)

Example 2: Copy from an open query file:

This example shows how to print records based on selection using the Open Query File (OPNQRYF) and
Copy from Query File (CPYFRMQRYF) commands.

Assume that you want to print all records from FILEA where the value of the CITY field is Chicago. You
can specify as follows:

OPNQRYF FILE(FILEA) QRYSLT('CITY *EQ "CHICAGO"')
CPYFRMQRYF FROMOPNID(FILEA) TOFILE(*PRINT)

Example 3: Copy from an open query file:

This example shows how to copy a subset of records to a diskette using the Open Query File (OPNQRYF)
and Copy from Query File (CPYFRMQRYF) commands.

Assume that you want to copy all records from FILEB where the value of FIELDB is 10 to a diskette. You
can specify:

OPNQRYF FILE(FILEB) QRYSLT('FIELDB *EQ "10"') OPNID(MYID)

CPYFRMQRYF FROMOPNID(MYID) TOFILE(DISKI)

Example 4: Copy from an open query file:

This example shows how to create a copy of the output of a dynamic join using the Open Query File
(OPNQRYF) and Copy from Query File (CPYFRMQRYF) commands.

Assume that you want to create a physical file that has the format and data of the join of FILEA and
FILEB, and that the files contain the following fields:

FILEA FILEB JOINAB
Cust Cust Cust
Name Amt Name
Addr Amt

The join field is Cust, which exists in both files. To join the files and save a copy of the results in a new
physical file MYLIB/FILEC, you can specify:

Database programming 167

OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +
JFLD((FILEA/CUST FILEB/CUST)) +
MAPFLD((CUST 'FILEA/CUST')) OPNID(QRYFILE)
CPYFRMQRYF FROMOPNID(QRYFILE) TOFILE(MYLIB/FILEC) CRTFILE(*YES)

The file MYLIB/FILEC will be created by the CPYFRMQRYF command. The file will have file attributes
like those of FILEA although some file attributes might be changed. The format of the file will be like
JOINAB. The file will contain the data from the join of FILEA and FILEB using the Cust field. File FILEC
in library MYLIB can be processed like any other physical file with control language (CL) commands,
such as the Display Physical File Member (DSPPFM) command and utilities, such as Query.

Related concepts

atabase file managemen
g

Typical errors when using the Open Query File (OPNQRYF) command:

You must specify several functions correctly for the Open Query File (OPNQRYF) command and your
program to get the correct results.

The Display Job (DSPJOB) command is your most useful tool if problems occur. This command supports
both the open files option and the file overrides option. You can look at both options if you are having
problems.

Listed here are the most common problems you might encounter when using the OPNQRYF command
and the ways to correct them:

* Shared open data path (ODP). The OPNQRYF command operates through a shared ODP. In order for
the file to process correctly, the member must be opened for a shared ODP. If you are having problems,
use the open files option on the DSPJOB command to determine if the member is opened and has a
shared ODP.

There are normally two reasons that the file is not open:

— The member to be processed must be SHARE(*YES). Either use an Override with Database File
(OVRDBF) command or permanently change the member.

— The file is closed. You have run the OPNQRYF command with the OPNSCOPE(* ACTGRPDEN) or
TYPE(*NORMAL) parameter option from a program that was running in the default activation
group at a higher level in the call stack than the program that is getting an error message or that is
running the Reclaim Resources (RCLRSC) command. This closes the open query file because it was
opened from a program at a higher level in the call stack than the program that ran the RCLRSC
command. If the open query file was closed, you must run the OPNQRYF command again. Note
that when using the OPNQRYF command with the TYPE(*NORMAL) parameter option on releases
prior to Version 2 Release 3, the open query file is closed even if it was opened from the same
program that reclaims the resources.

* Level check. Level checking is normally used because it ensures that your program is running against
the same record format that the program was compiled with. If you are experiencing level check
problems, it is normally because of one of the following reasons:

— The record format was changed since the program was created. Creating the program again should
correct the problem.

— An override is directing the program to an incorrect file. Use the file overrides option on the
DSPJOB command to ensure that the overrides are correctly specified.

— The FORMAT parameter is needed but is either not specified or incorrectly specified. When a file is
processed with the FORMAT parameter, you must ensure:

- The OVRDBF command, used with the TOFILE parameter, describes the first file on the FILE
parameter of the OPNQRYF command.

- The FORMAT parameter identifies the file that contains the format used to create the program.

168 1BM Systems - iSeries: Database Database programming

— The FORMAT parameter is used to process a format from a different file (for example, for group
processing), but SHARE(*YES) was not requested on the OVRDBF command.

¢ The file to be processed is at end of file. The normal use of the OPNQRYF command is to process a file
sequentially where you can only process the file once. At that point, the position of the file is at the
end of the file and you will not receive any records if you attempt to process it again. To process the
file again from the start, you must either run the OPNQRYF command again or reposition the file
before processing. You can reposition the file by using the Position Database File (POSDBF) command,
or through a high-level language program statement.

* No records exist. This can be caused when you use the FORMAT keyword, but do not specify the
OVRDBF command.

* Syntax errors. The system found an error in the specification of the OPNQRYF command.

* Operation not valid. The definition of the query does not include the KEYFLD parameter, but the
high-level language program attempts to read the query file using a key field.

¢ Get option not valid. The high-level language program attempted to read a record or set a record
position before the current record position, and the query file used either the group by option, the
unique key option, or the distinct option on the SQL statement.

Open data path considerations:
This topic outlines the considerations for the open data path (ODP).

The file, library, and file member names used by ODP are the same as the first file and file member
names specified on the FILE parameter, unless an override forces the use of a different file or file member
name. The record format name of the open query file is the same as that specified on the FORMAT
parameter.

The Open Query File (OPNQRYF) command always opens a file with an ODP that is shared, as if
SHARE(*YES) were specified for the file. If the file, library, or file member name specified in the
high-level language (HLL) program differs from the name of the open query file, an override command
must be used to specify the correct file, library, and member names to allow the HLL program to share
the open query file ODP. If the first, or the only, member queried has an attribute of SHARE(*NO),
SHARE(*YES) must be specified in an override to enable an HLL program to share the query file ODP.

If the OPNQRYF command is scoped to the job, any subsequent open, other than a query open, of the
same file can share the ODP whether scoped to an activation group or the job. If the OPNQRYF
command is scoped to an activation group, any subsequent open, other than a query open, of the same
file can share the ODP if it is also scoped to the same activation group.

Field names:

Listed here are the requirements for specifying field names on the Open Query File (OPNQRYF)
command parameters.

The field name used as the first part of an element in the list specified on the MAPFLD parameter must
be a simple name, and the field names in the record format identified on the FORMAT parameter are
always treated as simple names. Any other field name specified on an OPNQRYF command parameter
(QRYSLT, KEYFLD, JFLD, GRPFLD, GRPSLT, or the field-definition expression part of the MAPFLD
parameter) is a qualified field name, specified as follows:

field-name
Specify a simple field name that identifies a field that is defined on the MAPFLD parameter, or
with a field name that is unique among all field names from all record formats included in the
list specified on the FILE parameter. This form is not allowed if there is no MAPFLD parameter
definition for the specified field name and the FILE parameter includes more than one record

Database programming 169

format that contains a field with the specified name, even if the same file and record format is
specified more than once in the list on the FILE parameter.

For example, AMOUNT is valid if the field named AMOUNT is defined on the MAPFLD
parameter. It is also valid if AMOUNT is not defined on the MAPFLD parameter, as long as there
is only one field named AMOUNT in any record format specified on the FILE parameter.

file-name/field-name
Specify a field name that is qualified with the simple name of the file specified on the FILE
parameter whose record format contains the field, but only if the simple file name is unique
among all file names specified on the FILE parameter. This form is not allowed if the same
simple file name is specified more than once in the list specified for the FILE parameter, even if
different library, member, or record format names are used.

For example, WHS01/PARTNBR is valid if there is a field named PARTNBR in the record format
for file WHS01, and file name WHS01 is only specified once on the FILE parameter.

file-nbr/field-name
Specify a simple field name that is qualified with the number of the element in the FILE
parameter list for the record format that contains the field. The file-nbr qualifier must be specified
without leading zeros. This form is only required if the same simple file name is specified more
than once in the list specified on the FILE parameter.

For example, 2/BALDUE is valid if the second file record format in the list specified on the FILE
parameter contains a field named BALDUE.

*MAPFLD/field-name
Specify a simple field name that is qualified with the special value *MAPFLD if the field is
defined on the MAPFLD parameter. When the field is defined, this form has the same meaning as
specifying the simple field name with no qualifier. If the field is not defined on the MAPFLD
parameter, *MAPFLD cannot be specified.

For example, *MAPFLD/AVGBAL is valid if the AVGBAL field is specified as the first part of one
of the mapped field list elements specified on the MAPFLD parameter.

Expressions:

This topic discusses the conventions for the expressions specified on the Open Query File (OPNQRYF)
command.

Expressions specified on the QRYSLT, GRPSLT, and MAPFLD parameters are similar to expressions
specified on other control language (CL) command parameters. Logical, relational, numeric, and string
operations are performed by using combinations of field values and constants. Symbolic and named
operators are supported, as well as many built-in functions, and parentheses are used to control the order
of evaluation.

There are also differences in the expressions specified on OPNQRYF parameters and on other CL
command parameters. Listed here are the ways that expressions on the QRYSLT, GRPSLT, and MAPFLD
parameters differ from normal CL expressions:

* The expression string must be enclosed in apostrophes if it contains embedded blanks or special
characters.

* The following differences affect numeric and string literals:

— Character string constants are quoted by using single quotation marks or quotation marks.

— The leading and trailing zeros of a numeric constant are significant parts of its attributes.

— Floating-point constants (including the special values *INF and *NEGINF) are used in expressions.
* The following differences contrast CL variables with database fields:

— No prefixed ampersand (&) is used in database field names.

— Qualified field names are supported.

170 IBM Systems - iSeries: Database Database programming

— No ’logical’ field type exists for database fields.
- Many additional data types are supported for database fields.
* The following CL operators are not supported on the OPNQRYF command:
- *BCAT or | >
- *TCAT or | <
* The following additional operators are supported beyond CL support:
— // for remainder
— ** for exponentiation
— *CT for ’contains’ (character scan)
— *XOR or && for "logical exclusive or’
* The following differences affect built-in function support:
— The %SWITCH built-in function is not supported.
- Many additional built-in functions are supported.

— Nested built-in functions and expressions for built-in function arguments (such as "%LOG(%SIN(x))")
generally are allowed.

— To support expressions as built-in function arguments, any argument that is a signed numeric value
or an expression (for example, “%MIN(3 (-2) x (y+4))’) must be enclosed in parentheses.

The following table shows the priority of all operators that are used for expressions on the QRYSLT,
GRPSLT, or MAPFLD parameters. Only operators listed for priorities 1 through 5, excluding the *NOT
and operators, are allowed in an expression specified on the MAPFLD parameter:

Priority Operators

+, - (When used for signed numeric values), *NOT, -

*3%

*,/,// (a / must have a space before the / and/or after the /)

+, - (When used between two operands)

*CAT, | |

*GT, *LT, *EQ, *GE, *LE, *NE, *NG, *NL, *CT, >, <, =, >=, <=, 7=, >, <
*AND, &

*OR, *XOR, |, &&

ool N e S R R AR R

Except for operators — and *NOT, the operators for priorities 1 through 4 are numeric operators, which
require numeric operands. The operators for priority 5 are string operators, which require operands to be
either character or DBCS strings. Priority 6 operators are called relational operators, which require at least
one operand that is a field name or a numeric or string expression (not a constant). The operators for
priorities 7 and 8, plus the = and *NOT operators (priority 1), are logical operators. The operands in a
logical expression are relations (constructed by using a relational operator with appropriate operands)
and other logical expressions.

The operands in a string expression, including string operands for a built-in function, are a combination
of character fields and DBCS fields and constants. If both operands of such an expression are DBCS-only
fields or constants, the final result from evaluation of the expression is a DBCS-only field value. If the
operands are a combination of DBCS or character fields or constants, the result is a DBCS-open field
value. When DBCS fields are concatenated, the extraneous shift-in and shift-out characters between the
fields are removed.

The result produced by a + or - sign prefixed operator has the same attributes as the operand, unless the
operand of a - sign prefixed operator is a *BIN2, in which case the result is a *BIN4. The result of an **

Database programming 171

operator (exponentiation) is a double-precision floating-point number (*FLT8). For other numeric
operators that require two operands, if either operand is a floating-point number, the result is a
double-precision floating point number (*FLT8). If both operands are fixed-point numbers, the system
uses the information in the following table to determine the number of total and fractional digits required
to produce a packed decimal (*DEC) result. If both operands are zero-precision binary fields and/or
integer constants, the result is a *BIN4, unless the operator is a "/". In that case, the result is the same as
for a fixed-point result. If the total number of digits required exceeds 31, the number of fraction digits is
reduced enough to enable calculation of the result with a total of 31 digits. If some fraction digits are
dropped and the attributes of the end result of the computation (the attributes specified on the MAPFLD
parameter for the field) require greater precision than that of the intermediate result, a warning message
is sent to indicate that some precision was lost in evaluating the expression.

Operation Result (Total Digits) Result (Fractional Digits)
+ MAX(d1-f1, d2-f2)+MAX(f1,£2)+1 MAX(f1, 2)
_ MAX (d1-f1, d2-f2)+MAX (f1,£2)+1 MAX(f1, £2)
* d1+d2 f1+£2

/ 31 31-(d1-f1+£2)
// MIN(d1-f1,d2-f2)+MAX(f1,£2) MAX(f1,£2)
Legend:

d1 Total digits in operand 1

f1 Fractional digits in operand 1

d2 Total digits in operand 2

2 Fractional digits in operand 2

When a numeric or string expression is specified on the MAPFLD parameter, the attributes of the final
result are used in one of the two ways. They are either used directly for the field value (if field-type
*CALC is specified and the field is not contained in the prototype record format identified on the
FORMAT parameter), or the final result is changed to match the attributes specified on the MAPFLD
parameter or contained in the field definition in the record format identified by the FORMAT parameter.

Both operands of a relational operator can be constants. The fields, constants, or expressions specified as
operands on the left and right side of a relational operator must be of the same type, either numeric or
string. Any combination of character and DBCS field operands are allowed except that a character field
cannot be related to a DBCS-only field.

There are two types of DBCS constants: DBCS-only and DBCS-open. A DBCS-only constant has only
DBCS data between its single quotation marks. This data must be enclosed in SO/SI characters. A
DBCS-open constant has a mixture of DBCS and alphameric data. An SO character (HEX OE) indicates the
start of a group of DBCS characters and an SI character (HEX OF) follows the last double-byte character
of the group.

If a numeric or string expression appears as a complex selection operand on the QRYSLT or GRPSLT
parameter, the attributes of the final result of the expression used for the selection operand are changed
to match the other relational operand.

It is not necessary for operands of a relational operator to have identical attributes, but numeric operands
cannot be mixed with character operands. If the operands do not have identical attributes, the system
changes them to identical attributes (except for the *CT operator, where the character string operands
might be of different lengths), before performing the operation. This change uses packed decimal format
if both operands are fixed-point numeric operands, or floating-point format if either operand is a
floating-point number. The changes for fixed-point numeric operands align their decimal points and pad
them with zeros. Numeric type changes might truncate fractional digits if more than 31 total digits are

172 IBM Systems - iSeries: Database Database programming

required for fixed-point numbers, or might drop some of the least significant digits if more than 15 total
digits are required for floating-point numbers. Character operands are changed by padding the shorter
operand with blanks.

The *CT operator performs a scan of the character field or string expression (except for expressions made
up of a single character string literal) that must be specified as the left side of the relation, in order to
determine if it contains the character string, field, or expression value specified as the right side of the
relation. The second operand (the search value) must be no longer than the first operand (the base
string).

If the string is found, the relation is satisfied and the result is a logical value of "true’; otherwise, the
result is a logical "false” value. The following example illustrates this process:

* Field BASEFLD contains the value "THIS IS A TEST".
e Field TESTFLD contains the value 'TE’.

Expression Result
"BASEFLD *CT IS A™” True
"BASEFLD *CT TESTFLD True
"BASEFLD *CT X"’ False
"BASEFLD *CT TESTFLD | | "2 False
'BASEFLD | | "ABC” *CT "TAB"” True

Built-in functions:

The built-in functions listed here are supported for the expression used to define a derived field on the
MAPFLD parameter or a complex selection operand specified on the QRYSLT or GRPSLT parameter.

A numeric argument is a numeric field, a numeric constant or a numeric expression. A string argument is
a character field, a character string literal, or a string expression. Unless otherwise noted, all built-in
functions allow expressions, including other built-in functions, to be used as arguments.

For a field that appears in the record format identified by the FORMAT parameter, and that is also
defined by an expression on the MAPFLD parameter, the expression result is calculated by using the
attributes described in the following paragraphs. Then the resultant value is mapped to match the
attributes of the field.

%ABSVAL (numeric-argument)
%ABSVAL accepts a numeric argument and returns the absolute value of the argument. The
returned value has the same attributes as the argument, unless the argument is a *BIN2, in which
case the returned value is a *BIN4.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a packed decimal number (*DEC) with 8 digits and 0 precision (date
duration), 6 digits and 0 precision (time duration), or 20 digits and 6 precision (timestamp
duration).

%ACOS (numeric-argument)
%ACOS accepts a numeric argument and returns the arc cosine of the argument, in radians.
%ACOS and %COS are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLTS8).

%AND (string-argument ...)

Database programming 173

%AND accepts two or more character or hexadecimal string arguments and returns a string that
is the bit-wise "AND’ (logical and) of the arguments. This function takes the first argument string,
ANDs it with the next string, and continues to AND each successive argument with the previous
result. If an argument is encountered that is shorter than the previous result, it is padded on the
right with blanks. The returned value is a string of type *HEX with the same length as the
longest argument. If any of the arguments are variable-length, the maximum length is used as the
length of the argument.

%ANTILOG (numeric-argument)

%ANTILOG accepts a numeric argument and returns the antilogarithm (base 10) of the argument.
%ANTILOG and %LOG are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLT8).

%ASIN (numeric-argument)

%ASIN accepts a numeric argument and returns the arc sine of the argument, in radians. %ASIN
and %SIN are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLT8).

%ATAN (numeric-argument)

%ATAN accepts a numeric argument and returns the arc tangent of the argument, in radians.
%ATAN and %TAN are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLT8).

%ATANH (numeric-argument)

%ATANH accepts a numeric argument and returns the hyperbolic arc tangent of the argument, in
radians. %ATANH and %TANH are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLTS).

%AVG (numeric-argument)

%AVG accepts a numeric argument and returns the average value of its argument for the group
of records defined on the GRPFLD parameter. The argument must be a field name or an
expression (not a literal).

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. If no records are selected, the result is the null value. Otherwise,

* If the argument is fixed-point, the result is a packed decimal number (*DEC) with 31 total
digits and the same number of integer digits as the argument.

¢ If the argument is floating-point, the result is a double-precision floating-point number (*FLTS).

e If the argument is date duration, time duration, or timestamp duration, the returned value is a
packed decimal number (*DEC) with 31 digits and 0 precision (date duration), 31 digits and 0
precision (time duration), or 31 digits and 6 precision (timestamp duration).

%AVG is an aggregate function that is used for a nongrouping field in a query that uses the
grouping function.

%CHAR (date/time-argument date/time-format)

%CHAR accepts a date/time argument and date/time format and returns the character

IBM Systems - iSeries: Database Database programming

representation of the argument using the specified format. The date/time argument can be a date,
time, or timestamp field. The returned value is of type *CHAR and is tagged with the CCSID of
the current job.

The date/time format is optional. If specified, it must be one of the following formats:
EUR European format

ISO International Standards Organization format

JIS Japanese Industrial Standard format

USA United States format

If the format is not specified, the job default format is used.

Example:

OPNQRYF
FILE(1ibrary/file)
GRPFLD(charf1d)
GRPSLT('charfld = %CHAR(timefld "USA")"')

%COS (numeric-argument)
%COS accepts a numeric argument and returns the cosine of the argument. The argument must
be specified in radians. %COS and %ACOS are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLTS8).

%COSH (numeric-argument)
%COSH accepts a numeric argument and returns the hyperbolic cosine of the argument. The
argument must be specified in radians.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLTS8).

%COT (numeric-argument)
%COT accepts a numeric argument and returns the cotangent of the argument. The argument
must be specified in radians.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLTS).

%COUNT

%COUNT does not support any arguments. It returns the count of the number of records
contained in the group of records defined on the GRPFLD parameter. The returned value is a
4-byte binary number (*BIN4) with 10 total decimal digits and no fraction digits. %COUNT is an
aggregate function that applies only to a query that uses the grouping function.

%CURDATE

%CURDATE does not support any arguments. It obtains the current date based on a reading of
the time-of-day clock. The returned value is of type *DATE. The format and separator are derived
from the job attributes.

%CURSERVER

%CURSERVER does not support any arguments. If only non-distributed files are specified then it
obtains the current server name (or RDB name) of the local system. If distributed files are
specified then it obtains the current server name (or RDB name) of the COORDINATOR node.
The returned value is of type variable-length character (*VCHAR) with a maximum length of 18.

Database programming 175

%CURTIME

%CURTIME does not support any arguments. It obtains the current time based on a reading of
the time-of-day clock. The returned value is of type *TIME. The format and separator are derived
from the job attributes.

%CURTIMESTP

%CURTIMESTP does not support any arguments. It obtains the current timestamp based on a
reading of the time-of-day clock. The returned value is of type *TIMESTP. The format and
separator will be derived from the job attributes.

%CURTIMEZONE

%CURTIMEZONE does not support any arguments. It obtains the current time zone. The
returned value is a packed decimal number (*DEC) with 6 digits and 0 precision.

%DATE (date/time-argument)
%DATE accepts a date/time argument and returns a date. The date/time argument can be a date
or timestamp field, a character or hexadecimal field containing the external form of a date, a date

literal, or a numeric field or literal value in the range 1 - 3,652,059. The returned value is of type
*DATE.

Example:

OPNQRYF
FILE(library/file)
QRYSLT(('%DATE(tstampfld) =
"1989-10-23""))

%DAY (date/time-argument)
%DAY accepts a date/time argument and returns the day part of the value. The date/time
argument can be a date or timestamp field, a date duration or timestamp duration (field or
literal), or a numeric field or literal. The returned value is of type *BIN4.

A numeric field argument must be defined as packed decimal (*DEC) with 8 digits and 0
precision for date duration or packed decimal (*DEC) with 20 digits and 6 precision for
timestamp duration. A numeric constant argument must have 8 digits followed by a decimal
point, or 14 digits followed by a decimal point and 6 digits.

%DAYS (date/time-argument)

%DAYS accepts a date/time argument and returns an integer representation of the date. The
date/time argument can be a date or timestamp field, a character or hexadecimal field containing
the external form of a date, or a date literal. The returned value is of type *BIN4.

%DIGITS (numeric-argument)

%DIGITS accepts a numeric argument and returns a character representation of its numeric value,
not including the sign or a decimal point. The result is tagged with the CCSID of the current job.
For example, %DIGITS (-1.5) returns the character string 15. The numeric argument must not be a
floating point number.

%DURDAY (integer-argument)
%DURDAY accepts an integer argument and returns a labeled duration of days. The integer
argument for this function can be a numeric expression, a field, or a literal.

This built-in function is allowed to stand by itself in the mapped-field-definition of the MAPFLD
parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a
date or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURHOUR (integer-argument)
%DURHOUR accepts an integer argument and returns a labeled duration of hours. The integer
argument for this function can be a numeric expression, a field, or a literal.

176 IBM Systems - iSeries: Database Database programming

This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD
parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a
time or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURMICSEC (integer-argument)
%DURMICSEC accepts an integer argument and returns a labeled duration of microseconds. The
integer argument for this function can be a numeric expression, a field, or a literal.

This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD
parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a
timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURMINUTE (integer-argument)
%DURMINUTE accepts an integer argument and returns a labeled duration of minutes. The
integer argument for this function can be a numeric expression, a field, or a literal.

This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD
parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a
time or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURMONTH (integer-argument)
%DURMONTH accepts an integer argument and returns a labeled duration of months. The
integer argument for this function can be a numeric expression, a field, or a literal.

This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD
parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a
date or timestamp field on the QRYSLT, GRPSLIT, or MAPFLD parameters.

%DURSEC (integer-argument)
%DURSEC accepts an integer argument and returns a labeled duration of seconds. The integer
argument for this function can be a numeric expression, a field, or a literal.

This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD
parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a
time or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURYEAR (integer-argument)
%DURYEAR accepts an integer argument and returns a labeled duration of years. The integer
argument for this function can be a numeric expression, a field, or a literal.

This built-in function is allowed to stand by itself in the mapped-field-definition value on the
MAPFLD parameter, and is allowed as part of an arithmetic (addition or subtraction) expression
with a date or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

Example:

OPNQRYF
FILE((Tibrary/file))
QRYSLT('startfld > %CURDATE + oneyear *AND
endfld < %CURDATE + %DURYEAR(2)')
MAPFLD((oneyear '%DURYEAR(1)'))

%EXP (numeric-argument)
%EXP accepts a numeric argument and returns a value that is the base of the natural logarithm
(e) raised to a power specified by the argument. %EXP and %LN are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLT8).

%HASH (expression-argument)
%HASH accepts a valid expression and returns a 4-byte binary number (*BIN4) with 10 total
decimal digits and no fraction digits. The returned value will be the partition number of the
record selected.

Database programming 177

A valid expression cannot include aggregate functions such as %COUNT, %AVG, %MIN, %MAX,
%SUM, and %STDDEV as operands to %HASH.

Use the %HASH function to determine what the partitions are if the partitioning key is composed
of EMPNO and LASTNAME. The following example returns the partition number for every row
in EMPLOYEE.

Example:

OPNQRYF
FILE((CORPDATA/EMPLOYEE))
FORMAT (FNAME)
MAPFLD ((HASH '%HASH((1/EMPNO) (1/LN))"))

%HEX (hexadecimal-argument)

%HEX accepts an argument and returns the hexadecimal equivalent of the argument’s value. The
hexadecimal argument can be of any type. The returned value is of type *CHAR, and is tagged
with the CCSID of the current job.

%HOUR (date/time-argument)

%HOUR accepts a date/time argument and returns the hour part of the value. The date/time
argument can be a time or timestamp field, a time duration or timestamp duration (either field or
literal), or a numeric field or literal. The returned value is of type *BIN4.

A numeric field argument must be defined as packed decimal (*DEC) with 6 digits and 0
precision for time duration or packed decimal (*DEC) with 20 digits and 6 precision for
timestamp duration. A numeric constant argument must have 6 digits followed by a decimal
point, or 14 digits followed by a decimal point and 6 digits.

Example:

Example:
OPNQRYF
FILE(1ibrary/file)
QRYSLT(('%HOUR(timef1d2) = 12'))

%LEN (length-argument)

178

%LEN accepts one argument and returns the number of bytes used to represent the value unless
the value is a graphic field type. If the value is a graphic field type, the number of graphic
characters is returned. The length argument can be of any type. The returned value is of type
*BIN4.

Example:
OPNQRYF
FILE(library/file)
QRYSLT('%LEN(varlenfld) <= 30")
Argument Type Result Length in Bytes
Character 1-32766
Hex 1-32766
DBCS-only 4-32766
DBCS-either 4-32766
DBCS-open 4-32766
DBCS-graphic 1-16383
Variable Character 0-32740
Variable Hex 0-32740

Variable DBCS-only 0-32740
Variable DBCS-either 0-32740
Variable DBCS-open 0-32740
Variable DBCS-graphic 0-16370

Date 4
Time 3
Timestamp 10
Binary *BIN4 2
Binary *BIN8 4

IBM Systems - iSeries: Database Database programming

Floating point *FLT4 4

Floating point *FLT8 8

Packed decimal (p,s) INTEGER(p/2)+1, (1-16)
Zoned decimal (p,s) p (1-31)

p=precision, s=scale

String notes: The %LEN function returns the length of the value as it is stored in the data space.
* For fixed-length fields, the length is always the same as the declared size of the field, not the
length of the actual data in the field.

 For variable-length fields, the length is the length of the actual data in the field, including
trailing blanks.

For example, assume FIXED10 is a *CHAR(10) field, and VAR10 is a *VCHAR(10) field. The
following example shows results of the %LEN function:

%LEN Statement Field Data Result

%LEN(fixed10) '1234567890' 10

%LEN(fixed10) '12345' 10
%LEN(var10) '1234567890"' 10
%LEN(var10) '12345"' 5
%LEN(varl0) '12345 ! 7
%LEN(var10) " 0

%LN (numeric-argument)

%LN accepts a numeric argument and returns the natural logarithm of the argument. %LN and
%EXP are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLTS8).

%LOG (numeric-argument)

%LOG accepts a numeric argument and returns the common logarithm (base 10) of the argument.
%LOG and %ANTILOG are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLT8).

%MAX (numeric-or-string-or-date/time-argument ...)

%MAX accepts one or more character-string, DBCS-string, numeric, or date/time arguments, and
returns the largest value from the list. Date/time arguments are arguments of type *DATE,
*TIME, or *TIMESTP, or arguments that are date, time, or timestamp durations. String arguments
must be no longer than 256 bytes.

If only one argument is specified, this function returns the maximum value of its argument for
the group of records defined on the GRPFLD parameter, and the returned value has the same
attributes as the argument. If no records are selected, the result is the null value. If the single
argument is a date duration, time duration, or timestamp duration, then the returned value is a
packed decimal number (*DEC) with 8 digits and 0 precision (date duration), 6 digits and 0
precision (time duration), or 20 digits and 6 precision (timestamp duration). When a single
argument is used, it must be a field name or an expression (not a literal). %MAX with only one
argument is an aggregate function that is used for a nongrouping field in a query that uses the
grouping function.

If multiple arguments are specified, %MAX returns the maximum value of all the arguments. All
arguments must be either character-string, DBCS-string, numeric, or date/time values. This
function calculates the maximum value of the first two arguments, and then continues to
determine the maximum value of the previous result and the next successive argument. The final
result is determined according to the following value conversion rules.

Database programming 179

If an argument has different attributes than the previous result, the two values are converted to
identical attributes and the operation continues. This conversion uses packed decimal if both
values are fixed-point numeric values, or floating-point if either value is floating-point. The
conversion for fixed-point numeric values aligns the decimal points and pads the values with
zeros. Numeric type changes might truncate fractional digits if more than 31 total digits are
required for fixed-point numbers, or drop some of the least significant digits if more than 15 total
digits are required for floating-point numbers. Character values are changed by padding the
shorter field with blanks.

%MICSEC (date/time-argument)

%MICSEC accepts a date/time argument and returns the microsecond part of the value. The
date/time argument can be a timestamp (field or literal), a timestamp duration (field or literal), a
character field that contains the external form of a timestamp, or a numeric field or literal. The
returned value is of type *BIN4. A numeric field argument must be defined as packed decimal
(*DEC) with 20 digits and 6 precision for timestamp duration. A numeric constant argument must
be 14 digits followed by a decimal point and 6 digits.

%MIN (numeric-or-string-or-date/time-argument ...)

%MIN accepts one or more character-string, DBCS-string, numeric, or date/time arguments, and
returns the smallest value from the list. Date/time arguments are arguments of type *DATE,
*TIME, or *TIMESTP, or arguments that are date, time, or timestamp durations. String arguments
must be no longer than 256 bytes.

If only one argument is specified, this function returns the minimum value of its argument for
the group of records defined on the GRPFLD parameter, and the returned value has the same
attributes as the argument. If no records are selected, the result is the null value. If the single
argument is a date duration, time duration, or timestamp duration, then the returned value is a
packed decimal number (*DEC) with 8 digits and 0 precision (date duration), 6 digits and 0
precision (time duration), or 20 digits and 6 precision (timestamp duration). When a single
argument is used, it must be a field name or an expression (not a literal). %MIN with only one
argument is an aggregate function that is used for a nongrouping field in a query that uses the
grouping function.

If multiple arguments are specified, %MIN returns the minimum value of all the arguments. All
arguments must be either character-string, DBCS-string, numeric, or date/time values. This
function calculates the minimum value of the first two arguments, and then continues to
determine the minimum value of the previous result and the next successive argument. The final
result is determined by the value change rules described below.

If an argument has different attributes than the previous one, the two values are changed to
identical attributes and the operation continues. This change uses packed decimal numbers if
both values are fixed-point numeric values, or floating-point numbers if either value is a
floating-point number. The change for fixed-point numeric values aligns the decimal points and
pads with zeros. Numeric type change might truncate fractional digits if more than 31 total digits
are required for fixed-point numbers, or might drop some of the least significant digits if more
than 15 total digits are required for floating-point numbers. Character values are changed by
padding the shorter field with blanks.

%MINUTE (date/time-argument)

180

%MINUTE accepts a date/time argument and returns the minute part of the value. The
date/time argument can be a time or timestamp field, a time duration or timestamp duration
(either field or literal), or a numeric field or literal. The returned value is of type *BIN4.

A numeric field argument must be defined as packed decimal (*DEC) with 6 digits and 0
precision for time duration or packed decimal (*DEC) with 20 digits and 6 precision for
timestamp duration. A numeric constant argument must have 6 digits followed by a decimal
point, or 14 digits followed by a decimal point and 6 digits.

IBM Systems - iSeries: Database Database programming

%MONTH (date/time-argument)

%MONTH accepts a date/time argument and returns the month part of the value. The date/time
argument can be a date or timestamp field, a date duration or timestamp duration (field or
literal), or a numeric field or literal. The returned value is of type *BIN4.

A numeric field argument must be defined as packed decimal (*DEC) with 8 digits and 0
precision for date duration or packed decimal (*DEC) with 20 digits and 6 precision for
timestamp duration. A numeric constant argument must have 8 digits followed by a decimal
point, or 14 digits followed by a decimal point and 6 digits.

%NODENAME (integer-argument)

%NODENAME accepts an integer-argument which is used to identify a file that has been
specified on the FILE parameter. The argument must be greater than 0 and less than or equal to
the number of files specified on the file parameter. The %NODENAME function returns the RDB
name for the record retrieved. The returned value is of type *VCHAR of length 18.

Find the node name for every record of the EMPLOYEE table.

Example:

OPNQRYF
FILE((CORPDATA/EMPLOYEE))
FORMAT (FNAME)
MAPFLD ((NODENAME '%NODENAME (1) '))

Join the EMPLOYEE and DEPARTMENT tables, select the employee number (EMPNO) and
determine the node from which each record involved in the join originated.

Example:

OPNQRYF
FILE ((CORPDATA/EMPLOYEE) (CORPDATA/DEPARTMENT))
FORMAT (FNAME)

JFLD((EMPLOYEE/DEPTNO DEPARTMENT/DEPTNO *EQ))
MAPFLD ((EMPNO 'EMPLOYEE/EMPNO')

(NODENAMEL '%NODENAME (1) ")

(NODENAME1 '%NODENAME(2)'))

Join the EMPLOYEE and DEPARTMENT tables, select all records of the result where the records
of the two tables are on the same node.

Example:

OPNQRYF
FILE ((CORPDATA/EMPLOYEE) (CORPDATA/DEPARTMENT))
FORMAT (FNAME)

JFLD((1/NODENAMEL 2/NODENAME2 EQ))
MAPFLD ((NODENAMEL '%NODENAME (1) ")
(NODENAME2 '%NODENAME (2) "))

%NODENUMBER (integer-argument)

%NODENUMBER accepts an integer-argument which is used to identify a file that has been
specified on the FILE parameter. The argument must be greater than zero and less than or equal
to the number of files specified on the file parameter. The %NODENUMBER function returns a
4-byte binary number (*BIN4) with 10 total decimal digits and no fraction digits. The returned
value will be the node number of the record selected.

If the argument identifies a non-distributed file, the value zero is returned.

For OPNQRYF the node number from the secondary file where the outer or exception join is
performed will be returned.

If CORPDATA.EMPLOYEE is a distributed file, then the node number for each record and the
employee name will returned.

Database programming 181

Example:

OPNQRYF
FILE((CORPDATA/EMPLOYEE))
FORMAT (FNAME)
MAPFLD ((NODENAME '%NODENUMBER(1) ')
(LNAME '1/LASTNAME'))

%NONNULL (argument ...)

%NONNULL accepts a list of two or more arguments and returns the first non-null value from
the list. The items in the argument list can be fields or literal values of any type. The type of the
returned value is that of the item selected from the list.

Example:

OPNQRYF
FILE(1ibrary/file)
QRYSLT('%NONNULL(f1d1 f1d2 0) > 0")

The above example selects records from the file where either field FLD1 or field FLD2 contains a
non-null value that is greater than zero. If both FLD1 and FLD2 were null, the %NONNULL
function specified in this example would return ‘0" because of the constant ‘0" passed as the third
argument. If any field is DBCS-graphic, all fields must be DBCS-graphic.

%NOT (string-argument)

%NOT accepts a character or hexadecimal string argument and returns a string that is the
bit-wise 'NOT’ (logical not) of the argument. The returned value is a string of type *HEX with the
same length as the argument.

%OR (string-argument ...)

%OR accepts two or more character-string arguments and returns a string that is the bit-wise
‘OR’ (logical inclusive or) of the arguments. This function takes the first argument string, ORs it
with the next string, and then continues to OR each successive argument with the previous result.
If an argument is encountered that is shorter than the previous result, it is padded with blanks.
The final result is a string with the same length as the longest argument. If any of the arguments
are variable-length, the maximum length is used as the length of the argument.

%PARTITION (integer-argument)

182

%PARTITION accepts an integer-argument which is used to identify a file that has been specified
on the FILE parameter. The argument must be greater than 0 and less than or equal to the
number of files specified on the file parameter. The partition function returns a 4-byte binary
number (*BIN4) with 10 total decimal digits and no fraction digits. The returned value will be the
partition number of the record.

If the argument identifies a non-distributed file then a value of zero will be returned.

Find the PARTITION number for every row of the EMPLOYEE table. This can be used to
determine if there is data skew.

Example:

OPNQRYF FILE((CORPDATA/EMPLOYEE))
FORMAT (FNAME)
MAPFLD((PART1 '%PARTITION(1)'))

Select the employee number (EMPNO) from the EMPLOYEE table for all records where the
partition number is equal to 100.

Example:

OPNQRYF
FILE((EMPLOYEE))
QRYSLT('%PARTITION(1) *EQ 100')

IBM Systems - iSeries: Database Database programming

Join the EMPLOYEE and DEPARTMENT tables, select all records of the result where the records
of the two tables have the same partition number

Example:

OPNQRYF
FILE((CORPDATA/EMPLOYEE) (CORPDATA/DEPARTMENT))
FORMAT (FNAME)

JFLD((1/PARTL 2/PART2 *EQ))
MAPFLD ((PART1 '%PARTITION(1)')
(PART2 '%PARTITION(2)'))

%SECOND (date/time-argument)
%SECOND accepts a date/time argument and returns the seconds part of the value. The
date/time argument can be a time or timestamp field, a time duration or timestamp duration
(either field or literal), or a numeric field or literal. The returned value is of type *BIN4.

A numeric field argument must be defined as packed decimal (*DEC) with 6 digits and 0
precision for time duration or packed decimal (*DEC) with 20 digits and 6 precision for
timestamp duration. A numeric constant argument must have 6 digits followed by a decimal
point, or 14 digits followed by a decimal point and 6 digits.

%SIN (numeric-argument)
%SIN accepts a numeric argument and returns the sine of the argument. The argument must be
specified in radians. %SIN and %ASIN are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLTS8).

%SINH (numeric-argument)
%SINH accepts a numeric argument and returns the hyperbolic sine of the argument. The
argument must be specified in radians.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLT8).

%SORT (numeric-argument)
%SQRT accepts a numeric argument and returns the square root of the argument.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLTS8).

%SST (string-argument start-position-expression <length-expression>)
%SST and %SUBSTRING accept a character, hexadecimal, DBCS, or graphic string, a starting
position expression, and an optional length expression as arguments. They return a substring of
the string argument that is of the same type and CCSID as the string argument and has length
equal to the value specified by the length-expression.

Single-byte substringing is done when these functions (%SST and %SUBSTRING) are used for
DBCS data. The shift-out and shift-in characters might be lost, which produces unusual results.
The result of the DBCS substring operation is the DBCS-open type.

The string argument can be a fixed- or variable-length character, hexadecimal, DBCS, or graphic
field or an expression which evaluates to a fixed- or variable-length character, hexadecimal,
DBCS, or graphic string.

The values derived from expressions for the second and third arguments must be valid integers.
The second argument must have a value between 1 and the length attribute (or maximum length
of a variable-length field) of the first argument, and the third argument must have a value
between 1 and the length attribute (or maximum length of a variable-length field) of the first
argument.

Database programming 183

If an argument is DBCS-graphic, the second and third arguments must also be specified as
DBCS-graphic characters, not bytes.

If an expression is given for the second or third arguments, the expression must be enclosed in
parentheses.

If the expressions evaluate to variable-length results, no validation of the range of these
expressions is guaranteed and errors might occur during input/output processing.

The maximum value allowed for the third argument (length) is 32766 except for DBCS-graphic,
which is 16383. However, if the third operand is represented by an expression, this causes the
result to be variable-length. Thus, the value of the expression cannot exceed 32740 except for
DBCS-graphic, which cannot exceed 16370.

The user can omit the third argument. If the third argument is not specified and the first
argument is:

¢ fixed-length, the default value for the third argument is LENGTH(argument_1) -
value_for_argument_2 + 1

e variable-length, the default value for the third argument is the maximum of 0 and
LENGTH(argument_1) - value_for_argument_2 + 1

* variable-length with a length less than the value for argument_2, the default value for the third
argument is zero and the result is the empty string.

Example:

OPNQRYF
FILE(1ibrary/file)
QRYSLT('fieldl =
%SST(field2 (numfldl+3)
(numf1d1+numf1d2))")

%STDDEV (numeric-argument)
“%STRIP accepts a character-, DBCS-, or graphic- string argument, an optional strip character, and
an optional strip function as arguments. It returns a result string with the strip character removed
from the string argument as specified by the strip function.

The string argument can be a literal, a fixed or variable-length character, hexadecimal, DBCS, or
graphic field, or an expression which evaluates to a fixed- or variable-length character,
hexadecimal, DBCS, or graphic string.

The strip character must be a single character, enclosed in apostrophes, with a data type
compatible to the source string. The default is a single SBCS space for character data, DBCS-open,
and DBCS-either, a single DBCS space for DBCS-only data, and a single graphic space for graphic
data.

The strip function can be one of three functions:

*LEAD
Remove leading strip character(s)

*TRAIL
Remove trailing strip character(s)

*BOTH
Remove both leading and trailing strip character(s)

The default strip function is *BOTH.

Example:

OPNQRYF
FILE(1ibrary/file)
QRYSLT('%STRIP(f1d '.' *TRAIL) = 'Mr')

184 IBM Systems - iSeries: Database Database programming

%SUBSTRING (string-field-name start-position length)

%SUBSTRING performs the same operation as %SST. See the %SST description for more
information.

%SUM (numeric-argument)
%SUM accepts a numeric argument and returns the sum of all the values for its argument in the
group of records defined on the GRPFLD parameter and must be enclosed in parentheses. The
argument must be a field name or an expression (not a literal).

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. If no records are selected, the result is the null value. Otherwise,

* If the argument is floating-point number, the returned value is a double-precision floating-point
number (*FLTS8).

e If the argument is a binary number with zero-precision, the returned value is *BIN4.

¢ If the argument is a binary number with nonzero precision or a fixed-point number, the
returned value is a packed decimal number (*DEC) with 31 total digits and as many fractional
digits as the argument.

¢ If the argument is of type date duration, time duration, or timestamp duration, the returned
value is a double-precision floating-point number (*FLTS).

%SUM is an aggregate function that is used for a nongrouping field in a query that uses the
grouping function.

%TAN (numeric-argument)
%TAN accepts a numeric argument and returns the tangent of the argument. The argument must
be specified in radians. %TAN and %ATAN are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The return value is a double-precision floating-point number (*FLT8).

%TANH (numeric-argument)
%TAN accepts a numeric argument and returns the hyperbolic tangent of the argument. The
argument must be specified in radians. %TANH and %ATANH are inverse operations.

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. Arguments of these types can be specified either as fields or literal values.
The returned value is a double-precision floating-point number (*FLTS8).

%TIME (date/time-argument)

%TIME accepts a date/time argument and returns a time. The date/time argument can be a time
or timestamp field, a character or hexadecimal field containing the external form of a time, or a
time literal. The returned value is of type *TIME.

%TIMESTP (date/time-argument date/time-argument)
%TIMESTP accepts one or two date/time arguments and returns a timestamp.

* If only one date/time argument is specified, it must be a timestamp (field or literal), or a
character or hexadecimal field containing the external form of a timestamp.

* If both arguments are specified,

1. The first date/time argument must be a date (field or literal), or a character or hexadecimal
field containing the external form of a date.

2. The second date/time argument must be a time (field or literal), or a character or
hexadecimal field containing the external form of a time.

The returned value is of type *TIMESTP.

Database programming 185

%USER

%USER does not support any arguments. It returns the user profile name of the job in which the
query is running. The returned value is of type variable-length character (*VYCHAR) with a
maximum length of 18.

Example:
OPNQRYF

FILE(1ibrary/file)
QRYSLT('field = %USER')

%VAR (numeric-argument)

%VAR accepts a numeric argument and returns the variance of its argument for the group of
records defined by the GRPFLD parameter. The argument must be a field name or an expression
(not a literal).

The following argument types are treated as numeric values: date duration, time duration, and
timestamp duration. If no records are selected, the result is the null value. Otherwise, the
returned value is a double-precision floating-point number (*FLT8). %VAR is an aggregate
function that is used for a nongrouping field in a query that uses the grouping function.

%XLATE (string-argument qualified-table)

%XLATE accepts a character-string argument and the name of a table object (*TBL), and returns a
string that is the value of the first argument translated by using the contents of the table. The
returned value is a string with the same length and CCSID as the first argument.

The second argument must be a simple or qualified table object name. If no library name is
specified, *LIBL is used to find the table.

%XOR (string-argument...)

%XOR accepts two or more character-string arguments and returns a string that is the bit-wise
"XOR’ (logical exclusive or) of the arguments. This function takes the first argument string, XORs
it with the next string, and then continues to XOR each successive argument with the previous
result. If an argument is encountered that is longer than the previous result, the previous result is
padded with blanks before the XOR operation. If any of the arguments is variable-length, the
maximum length is used as the length of the argument. The final result is a string of type *HEX
with the same length as the longest argument.

%YEAR

%YEAR accepts a date/time argument and returns the year part of the value. The date/time
argument can be a date or timestamp field, a date duration or timestamp duration (field or
literal), or a numeric field or literal. The returned value is of type *BIN4.

A numeric field argument must be defined as packed decimal (*DEC) with 8 digits and 0
precision for date duration or packed decimal (*DEC) with 20 digits and 6 precision for
timestamp duration. A numeric constant argument must have 8 digits followed by a decimal
point, or 14 digits followed by a decimal point and 6 digits.

Restricted built-in functions:

Listed here are several restricted built-in functions.

The following built-in function is supported only as the second operand of the ‘equal’ or 'not-equal’
relational operators specified on the QRYSLT or GRPSLT parameter.

%NULL

186 1B

%NULL accepts no arguments. It is used to select or omit records based on whether a field in the
record contains a null value.

Example:

M Systems - iSeries: Database Database programming

OPNQRYF
FILE(library/file)
QRYSLT('charfld = %NULL")

This query would select all the records where "charfld” contains the null value.

The following three built-in functions are supported only as the second operand of the ‘equal’ relational
operator specified on the QRYSLT or GRPSLT parameter.

%RANGE (low-value high-value)

%RANGE is used to identify the lower and upper boundaries for the value of a field or
expression. %RANGE must be specified as the right side of a relation whose operator is equal.
The low-value and high-value argument must be field names, character strings, or numeric
literals, to match the type of field or expression specified as left side of the relation. For example,
to select only records where the numeric field NBRFLD has a value ranging from 10 through 20,
specify as follows:

'nbrfld = %RANGE(10 20)'

If the low-value argument is greater than the high-value argument, the relation produces a logical
value of “false’.

%VALUES (allowed-value...)

%VALUES is used to identify a list of allowed values for a field or expression. %VALUES must
be specified as the right side of a relation whose operator is equal. The allowed-value arguments
must be character string or numeric literals, to match the type of the field or expression specified
as the left side of the relation. For example, to select only records where the second character of
field CHARFLD has a value that is one of the values "A’, 'E’, T, 'O’, or "U’, specify as follows:

'%SST(charfld 2 1) = %VALUES(''A'' "'E'' ''I'' ''Q'' '"'y'')’

%WLDCRD (”pattern-string’” "“wild-characters’)

%WLDCRD is used to specify a pattern that performs a wildcard scan of the character or
hexadecimal field or string expression (except for expressions made up of a single character-string
literal) that must be specified as the left side of the relation. %WLDCRD must be specified as the
right side of a relation whose operator is equal. The pattern-string argument must be a
character-string, DBCS, or graphic literal, to match the left side of the relation. The
wild-characters argument is an optional parameter that specifies what ‘wildcard” characters are
used in the pattern-string.

If specified for character data only (no DBCS data), the wild-characters argument must be a
character-string literal of exactly two characters. The first character is the value that matches any
single character in the search string. The second character is the value that matches a substring of
any zero or more characters. The two characters must not be the same, but there is no
requirement that either character appear in the pattern-string. If the wild-characters argument is
omitted, the default is for an underline ("_") to match any single character and an asterisk ("*’) to
match a substring of any zero or more characters.

If the wild-characters argument is specified for DBCS data only (no character data), the argument
must be a double-byte character-string literal of exactly two double-byte characters. The first
double-byte character is the value that will match any one double-byte character in the search
string. The second double-byte character is the value that will match a substring of any zero or
more characters. The two double-byte characters must not be the same, but there is no
requirement that either character appear in the pattern string. If the wild-characters argument is
omitted, the default is for a DBCS underline to match any one double-byte character and a DBCS
asterisk to match a substring of any zero or more double-byte characters.

If the wild-characters argument is specified for both character and DBCS data, in addition to the
previous rules, the argument must first contain a single-byte character-string literal (two
single-byte characters), then a double-byte character string (two double-byte characters).

Database programming 187

In this case, the first character matches any single-byte character in the character string, the
second character matches a substring of any number of single-byte or double-byte characters. The
first double-byte character matches any double-byte character in the character string. The second
double-byte character matches a substring of any number of single-byte or double-byte
characters.

The following example selects only records where the character field CHARFLD contains a 1",
followed by any two characters and an 'E’, appearing anywhere in the field.

'charfld = %WLDCRD(''*T__Ex'')'

Note: The asterisks at the start and end of the pattern-string are required to allow the "T” and "E’
to appear somewhere other than the first and last positions in the field:

To select only records where the character field CHARFLD starts with the string "ABC’, followed
by one or more other characters and then followed by the string "XYZ’ (but not necessarily at the
end of the field), specify the following.

'charfld = %WLDCRD(''ABC_*XYZx'')'

To select only records where the second character of field CHARFLD is an asterisk ("*’), the last
character is an underline ("_’"), and the letter ‘"M’ appears somewhere in between, specify as
follows:

'charfld = SWLDCRD(''#x.M._'' ''#.'')"

Basic database file operations in programs

These topics describe basic database file operations, including the read, update, write and delete
operations.

Set a position in the file
After a file is opened by a job, the system maintains a position in the file for that job. The file position is
used in processing the file.

For example, if a program does a read operation requesting the next sequential record, the system uses
the file position to determine which record to return to the program. The system then sets the file
position to the record just read, so that another read operation requesting the next sequential record can
return the correct record. The system keeps track of all file positions for each job. In addition, each job
can have multiple positions in the same file.

The file position is first set to the position specified in the POSITION parameter on the Override with
Database File (OVRDBF) command. If you do not use an OVRDBF command, or if you take the default
for the POSITION parameter, the file position is set just before the first record in the member’s access
path.

A program can change the current file position by using the appropriate high-level language program file
positioning operation (for example, SETLL in the RPG/400 language or START in the COBOL /400
language). A program can also change the file position by using the Position Database File (POSDBF)
command.

Note: File positioning by means of the OVRDBF command does not occur until the next time the file is
opened. Because a file can be opened only once within a control language (CL) program, this
command cannot be used within a single CL program to affect what is read through the Receive
File (RCVF) command.

At end of file, after the last read, the file member is positioned to *START or *END file position,
depending on whether the program was reading forward or backward through the file. The following
diagram shows *START and *END file positions