Data M odel Documentation

Table of Contents
[Data Model Documentation| .

a .

UJOQ
Q
<|
Q|
=
D
O
2

.
<
o

- ol -

|ass Hierarchy] .

oolean Data Objects
umeric Data Objects

ring Data Objectg

eneric Data Objectg
allLiteral Data Objectq .
[Extending the Data Objectd

pd

OO uUlhWERBEF

Data M odel Documentation

These HTML pages are available in book form as a postscript file and as a. PDF file.

Overview of the Data M odel

The Able data model provides acommon set of literal and variable data objects that are used in other Able
components, such asfilters, rule systems, and inference engines, and can be extended by others for private
needs.

Literals are immutable objects and are assigned avalue at construction time. Variablescan be assigned
values at any time, either from other variables or from literals. A set of operatorsallows comparing
literals and variables and assigning new values to variables.

All literals and variables are typed and fall into one of several categories:

Boolean - values are either true or false

Numeric - values are numbers, which are represented internally as Java doubles.
String - values are Java Strings.

Generic - values are any Java Object

List - alist of valuesthat are any Java Object

agrwbdE

When assigning or comparing values, some attempt is made at converting one data type to another. For
example, a numeric variable may be assigned a value from a boolean variable (or literal) since aboolean
data object, whose value is either true or false, is considered to have a numericvalue of either 1.0 or 0.0,
respectively. However, not all combinations of data assignment and comparison are possible, and
AbleDataExceptionare thrown when appropriate. For example, the lessthanoperator has no meaning for
generic datatypes whose "red" Java data types are not numbers or strings at the time an assignment or
comparison is made.

In adition to the data types mentioned above, there is another data type, called acall literal. Like other
literals, it is aread-onlyobject, but one that wraps an Able user-defined function. This meansthat every
time acal literal’s current value is requested, the data that is returned is actually the data obtained by
calling the wrappered function. The returned data can be any Java Object but must be, of course, atype
expected by the receiving application.

All literals and variables implement, at minimum, the following methods found in the AbleRd interface,
which isthe interface that must be implemented by all "readable"data objects:

publ i c bool ean get Bool eanVal ue()
public Abl eFuzzySet getFuzzyVal ue()

public Object get Generi cVal ue()
public double get Nuneri cVal ue()
public String get StringVal ue()

public AbleLiteral getValue()

AbleLiteral isapartia implementation of the AbleRd interface; AbleBooleanLiteral, AbleCallLiteral,
AbleFuzzySet, AbleGenericLiteral, AbleNumericLiteral, and AbleStringLiteral are the concrete
implementations.

Variablesimplement, at minimum, the additional following methods found in the AbleWr interface,
which isthe interface that must be implemented by all "writable" data objects:

public void setBool eanVal ue(bool ean)
public void setFuzzyVal ue(Abl eFuzzySet)
public void setGenericVal ue(oj ect)
public void setNunericVal ue(doubl e)
public void setStringVal ue(String)
public void setValue(AbleLiteral)

AbleVariableisapartia implementation of the AbleWr interface; AbleBooleanV ariable,
AbleCategorical Variable, AbleContinuousVariable, AbleDiscreteVariable, AbleFuzzyVariable,
AbleGenericVariable, AbleListVariable, AbleNumericVariable, and AbleStringV ariable are the concrete
implementations.

Given the "get" and "set" methods listed above, the following coding is possible:

doubl e aDbl = soneNumnericVar.get NunericVal ue();
bool ean aBool = soneNunericVar. get Bool eanVal ue();
String aStr = soneNunericVar.getStringVal ue();

anot her Nurer i cVar . set Nurrer i cVal ue(abbl) ;
anot her Nuneri cVar . set Nunmeri cVal ue(sonmeNuneri cVar. get Nuneri cVal ue());
anot her Nureri cVar . set Stri ngVal ue(asStr);

anot her Nurrer i cVar . set Val ue(soneNuneri cVar . get Val ue());

anyTypeOf Var . set Val ue(anyQ her Var . get Val ue());
anyTypeCOf Var . set Val ue(anyTypeCfLiteral);

if (soneNunericVar.getNunericVal ue() <= anot herNunericVar. get Nureri cVal ue())

However, al of the assignment and comparison operations above can be better accomplished using the
built-in "operators' defined in the AbleRd and AbleWr classes. AbleRd, the interface that defines
"readable" data objects, defines these comparison operators, which are implemented in all AbleLiterals
and AbleVariables:

public bool ean cnpEq (AbleRd) // ==

public bool ean cnp& (AbleRd) // >

public bool ean cnp& Eq(Abl eRd) // >=

public double cnpls (AbleRd) // is, fuzzy conpare
public boolean cnpLt (AbleRd) // <

public bool ean cnpLt Eq(Abl eRd) // <=

public bool ean cnpNeq (AbleRd) // !=

AbleWr, the interface that defines "writable" data objects, defines these assignment operators, which are
implemented in all AbleVariables:

public void asgnEq(Abl eRd) /1 bool ean assi gnnent
public void asgnl s(Abl eRd) /1 fuzzy assignnent
public void asgnls(Abl eRd, double) // fuzzy asignnment with correlation

Given the above comparison and assignment operators, the following style of coding is possible:

if (someNumericVar.cnpLt Eq(anot her NunericVar)) {
soneStri ngVar . asgnEq(anot her Stri ngVar) ;

}

...and so on. In summary, these are the comparison operators implemented by all AbleLiterals and
AbleVariables:

Method Function Usage
cmpEq Boolean compare, equal to (== AbleRd.cmpEg(AbleRd)
cmpGt Boolean compare, greater than (>) AbleRd.cmpGt(AbleRd)

cmpGtEq | Boolean compare, greater than or equal to (>=) | AbleRd.cmpGtEq(AbleRd)

cmpls Fuzzy compare (is) AbleFuzzyV ariable.cmpl s(AbleFuzzy Set)

cmpLt Boolean compare, less than (<) AbleRd.cmpLt(AbleRd)

cmpLtEq | Boolean compare, less than or equal to (<=) AbleRd.cmpLtEq(AbleRd)

cmpNeq | Boolean compare, not equal to (1=) AbleRd.cmpNeq(AbleRd)

And these are the assignment operators implemented by all AbleVariables:

Method Function Usage
asgnEq Boolean assignment (=) AbleVariable.asgnEq(AbleRd)
asgnls Fuzzy assignment (is) AbleFuzzyV ariable.asgnEq(AbleFuzzy Set)

The remainder of this paper contains further details about all literals and variablesin the Able data
package.

ClassHierarchy

Here are the classes that make up the Able Data Model:

[IMAGE]

Remember that all literals and variables are classifed into basic types:

1. Boolean
2. Numeric
3. String

4. Generic
5. List

and lastly,
6. CdlLitera

Essentially, any data object can be compared to any other data object, and any data object and be assigned
to any variable. Thisis accomplished through the various get . . . Val ue() andset . .. Val ue() methods.
The following sections list the data objects in each category (boolean, numeric, string, and generic) and
contain a chart showing what each get . . . Val ue() method returns. Each method’ s return value depends,
of course, on the data object’s actual current "raw" value at the time the method isinvoked.

Looking at the chart for boolean data types, for example, you can see that when a boolean variable's
current value istrue, get Bool eanVal ue() returnstrue, get Nurrer i cVval ue() returns 1.0, and

get Stri ngVal ue() returns"True", but when the current value is false get Bool eanVval ue() returnsfalse,
get Nurrer i cVal ue() returns 0.0, and get St ri ngVval ue() returns"False". Thusit is possible to assign a
numeric variable a value from a boolean literal or variable, and so on.

When a particular combination is not possible, or when the current raw value of a particular data object
doesn't lend itself to conversion to another data type, an AbleDataException is thrown. This may happen,
for example, when trying to assign a numeric variable avalue from a string literal or string variable. If the
source string data object contains something like "123.456" or "-0.005", the assignment is possible,
because the string can be parsed into a number. But if the string data object contains something like
"Kilroy was here", an AbleDataException is thrown.

Boolean Data Objects
There are two boolean data objects. They are:

® AbleBooleanLiteral
® AbleBooleanVariable

Both the literal and the variable must be given an initial value of either true or false when created.

For convenience, there are two pre-defined, static AbleBooleanLiterals. AbleData.True and
AbleData.False.

Return values from boolean data object
get...Value() methods

Boolean

gsjr?((:atnf getBooleanValue() | getGenericValue() | getNumericValug() | getStringValue() getValue()

value
" " new

true true new Boolean(true) | 1.0 True AbleBooleanL iteral (true)
" " new

fase fase new Boolean(false) | 0.0 False AbleBooleanL iteral(false)

Numeric Data Objects

The numeric data objects are:

AbleContinuousV ariable

Continuous variables are numeric variables whose current value must be between aminimum and a
maximum, inclusive, both of which are specified when the variableis created. Any attempt to set a
continuous variable to avalue outside the specified range results in an AbleDataException.

For historical reasons, continuous variables have an initial value of Double.NaN.
AbleDiscreteVariable

Discrete variables are numeric variables whose current value must be a value chosen from afinite list
of numeric values. The list of acceptable values can be specified when a discrete variable is created,
or it can be set for the variable at anytime. Methods are also provided to add and remove values from
the list of acceptable values. However, changing a variable' s acceptable value list after avariableis
created and used can have ramifications for the variable's current value. Any attempt to set a discrete
variable to avalue not in the acceptable value list results in an AbleDataException.

For historical reasons, discrete variables have an initial value of Double.NaN.

AbleFuzzyVariable
AbleFuzzy Set

Fuzzy variables are numeric variables whose current value is afuzzy number represented by a fuzzy
set. Fuzzy variables can also have a crisp value, which is the defuzzifed fuzzy number. Fuzzy sets
represent fuzzy numbers and are AbleLiterals. Although not shown in the chart below, fuzzy
variables support get- and setFuzzyValue() and fuzzy sets support getFuzzyV alue().

AbleNumericLitera
AbleNumericVariable

Both the literal and the variable must be given an initial value when created. The value can be any
number as values are completely unrestricted.

Return values from numeric data object
get...Value() methods

Numeric

object’s

current
value

getBooleanValug()

getGenericValue()

getNumericValug()

getStringValue()

getValue()

0.0

false

new Double(0.0)

0.0

"0.0"

new
AbleNumericLiteral (0.0)

any
non-zero
number,
n.m

true

new Double(n.m)

nm

"n.m"

new
AbleNumericLiteral(n.m)

String Data Objects

The string data objects are:

® AbleCategoricalVariable

Categorical variables are string variables whose current value must be a value chosen from afinite
list of strings. Thelist of acceptable strings can be specified when a categorical variable is created, or
it can be set for the variable at anytime. Methods are al so provided to add and remove strings from
the list of acceptable strings. However, changing a variable' s acceptable value list after avariableis
created and used can have ramifications for the variabl€e' s current value. Any attempt to set a
categorical variable to astring not in the acceptable string list results in an AbleDataException.

For historical reasons, categorical variables have an initial value of AbleData.StringNull

(*Able_ NULL_Able").

AbleStringLiteral
AbleStringVariable

Both the literal and the variable must be given an initial value when created. The value can be any
string as values are completely unrestricted.

Return values from string data object
get...Value() methods

String
object’s
current

value

getBooleanValue()

getGenericValue() getNumericValue()

getStringValue()

getValue()

"true"
(case
insensitive)

true

new String("true") | AbleDataException

"true"

new
AbleStringLiteral ("true")

"false"
(case
insensitive)

fase

new String(“false") | AbleDataException

"false"

new
AbleStringLiteral ("false")

string form
of a
parsable
number,
m

AbleDataException

new String("n.m" (Double.valueOf("n.m")).doubleValue()

n.m

new
AbleStringLiteral ("n.m")

any other
string,
"f00"

AbleDataException

new String("foo") | AbleDataException

"f00"

new
AbleStringLiteral ("foo™)

Behavior of string data object
set...Value() methods

Source
object’s
current

value

setBooleanValue()

setGenericValug() setNumericValue()

setStringValue()

setValue()

boolean
true

setStringValue("true")

N/A

boolean
false

setStringValue("false")

N/A

Boolean, b

N/A

setBooleanV alue(b.booleanVa ug())

N/A

Number, n

N/A

setNumericValue(n.doubleValue())

N/A

String, s

N/A

setStringValue(s)

N/A

AbleLiteral,
a

N/A

setValue(a)

N/A

Object, 0

N/A

AbleDataException

N/A

any double,
nm

N/A

setStringV alue(Double.toString(n.m))

N/A

any String,
"foo"

N/A

"foo"

For categorical
variables, "foo"
must be in the
list of acceptable
strings.

N/A

any
AbleLiteral,
a

N/A

cals
set...Value(aget...Vaug())
depending on type of
literal

Generic Data Objects
The generic data objects are:

® AbleGenericLiteral
® AbleGenericVariable

Both the literal and the variable must be given an initial value when created. The value can be any
Java Object as values are completely unrestricted.

Return values from generic data object

get...Value() methods

Generic
ggjr?zms getBooleanValue() getGenericValug() getNumericValue() getStringValue() getValue()
value
1.0if true; "True" if true; new
Boolean, b | b.booleanValue() b 0.0, if false "False’ if false AbleGenericLiteral (b)
faseif new
Number, n | n.doubl eVa! ue()==0.0; n n.doubleValue() Double.toString(n.doubleValue()) AbleGenericLiteral(n)
true otherwise
trueif
s-equalsignoreCase("true); (Double.valueOf(s)).doublevalue()
String, s falseif S or s new
s.equal ;I gnoreCase("false"); AbleDataException AbleGenericLiteral(s)
otherwise
AbleDataException
AbleLiteral, . . new
a a.getBooleanVa ue() a agetNumericValue() agetStringValue() AbleGenericLiteral(a)
any other . . . new
Object, 0 AbleDataException o AbleDataException o.toString() AbleGenericLiteral (o)

CallLiteral Data Objects

Thecall literal objects are:

® AbleCdlLiterd

A cdll literal isawrapper for an Able user-defined function. This means that every time acall literal’s
current value is requested, the data that is returned is actually the data obtained by immediately and
synchronously calling the wrappered function. Call literals more or less expect that the data returned by
the wrappered function is a Boolean, Number, or String, but in reality, any Java Object is allowed. The
returned data must be, of course, atype expected by the receiving application, which will most likely use
the get Generi cVal ue() method to obtain the call literal’ s value.

While call literals may appear on both the left-hand and right-hand side of comparison expressions, they
may appear only on the right-hand side of assignment expressions; that is, like any literal, you cannot
assign avaluetoit.

A get...Val ue() chartisnot given here, because the code dealing with return values from user-defined
functionsis too complex to summarize nesatly in atable.

Extending the Data Objects

Whileit is not possible to add completely new data types to the Able data model, it is possible to extend
any of the existing data objects with additional or modified behavior. If you want to create a
ComplexNumberVariable, for example, you might start by extending the AbleNumericVariable class, the
AbleContinuousVariable class, or the AbleDiscreteVariable class, depending on whether you want your
complex numbers completely unrestricted, limited within a certain range, or limited to one-of-n complex
values, respectively. If you choose to extend AbleContinuousV ariable so that you can limit your complex
numbers to arange, you probably need to override the setDiscourselof), setDiscourseHi(), and
withinUniversOf Discourse() methods, among others, to get the desired behavior. Y ou also need to
override or perhaps even add new "operator" methods appropriate for your new ComplexNumber data
object.

The AbleFuzzyVariable object is an example of a new variable derived from an existing class: it is
derived from AbleContinuousV ariable.

Last modified: Fri Feb 9 10:52:49 CST 2001

	Data Model Documentation
	
	
	Overview of the Data Model
	Class Hierarchy
	Boolean Data Objects
	Numeric Data Objects
	String Data Objects
	Generic Data Objects
	CallLiteral Data Objects
	Extending the Data Objects

