construct NaiveBayes with the explicitly specified parameters
ncls - number of class labels
nftr - number of features
nval - number of values per each feature (assuming nominal - discrete finite-valued - features)
cpriors - prior probability distribution over class labels
m - equivalent sample size
ppriors - prior estimates of the probabilities P(f|C) (used for Bayesian parameter estimation
with equivalent sample size method)
This class implements a basic neural controller
It features a neural system model that is trained with off-line data
and a neural controller that is adapted on-line
The model can predict one or more service level metrics given a set of
configuration, workload, service level metrics and tuning controls
The controller can specify one or more tuning control values given a set of
configuration, workload, service levels, and current tuning control metrics
How to use this controller ....
perform linear normalization of the raw fitness values
also pre-compute the summed fitness values for roulette wheel selection
where the normalizedFitness of the best population member is
equal to 2 times the average fitness
Delivers the specified service event to all registered service
event listeners; should any service event listener fail to
receive the event, the listener is removed from the list and will
receive no furhter events until it reregisters.