
Data Model Documentation

Table of Contents
................. 1Data Model Documentation
............... 1Overview of the Data Model
.................. 3Class Hierarchy
................ 4Boolean Data Objects
................ 5Numeric Data Objects
................. 6String Data Objects
................ 8Generic Data Objects
................ 8CallLiteral Data Objects
............... 9Extending the Data Objects

i

Data Model Documentation
These HTML pages are available in book form as a postscript file and as a. PDF file.

Overview of the Data Model

The Able data model provides a common set of literal and variable data objects that are used in other Able
components, such as filters, rule systems, and inference engines, and can be extended by others for private
needs.

Literals are immutable objects and are assigned a value at construction time. Variables can be assigned
values at any time, either from other variables or from literals. A set of operators allows comparing
literals and variables and assigning new values to variables.

All literals and variables are typed, and fall into one of several categories:

1. Boolean - values are either true or false.
2. Numeric - values are numbers, which are represented internally as Java doubles.
3. String - values are Java Strings.
4. Generic - values are any Java Object.
5. List - a list of values that are any Java Object.

When assigning or comparing values, some attempt is made at converting one data type to another. For
example, a numeric variable may be assigned a value from a boolean variable (or literal) since a boolean
data object, whose value is either true or false, is considered to have a numeric value of either 1.0 or 0.0,
respectively. However, not all combinations of data assignment and comparison are possible, and
AbleDataExceptions are thrown when appropriate. For example, the less than operator has no meaning for
generic data types whose "real" Java data types are not numbers or strings at the time an assignment or
comparison is made.

In adition to the data types mentioned above, there is another data type, called a call literal. Like other
literals, it is a read-only object, but one that wraps an Able user-defined function. This means that every
time a call literal’s current value is requested, the data that is returned is actually the data obtained by
calling the wrappered function. The returned data can be any Java Object, but must be, of course, a type
expected by the receiving application.

All literals and variables implement, at minimum, the following methods found in the AbleRd interface,
which is the interface that must be implemented by all "readable" data objects:

 public boolean getBooleanValue()
 public AbleFuzzySet getFuzzyValue()
 public Object getGenericValue()
 public double getNumericValue()
 public String getStringValue()
 public AbleLiteral getValue()

1

AbleLiteral is a partial implementation of the AbleRd interface; AbleBooleanLiteral, AbleCallLiteral,
AbleFuzzySet, AbleGenericLiteral, AbleNumericLiteral, and AbleStringLiteral are the concrete
implementations.

Variables implement, at minimum, the additional following methods found in the AbleWr interface,
which is the interface that must be implemented by all "writable" data objects:

 public void setBooleanValue(boolean)
 public void setFuzzyValue(AbleFuzzySet)
 public void setGenericValue(Object)
 public void setNumericValue(double)
 public void setStringValue(String)
 public void setValue(AbleLiteral)

AbleVariable is a partial implementation of the AbleWr interface; AbleBooleanVariable,
AbleCategoricalVariable, AbleContinuousVariable, AbleDiscreteVariable, AbleFuzzyVariable,
AbleGenericVariable, AbleListVariable, AbleNumericVariable, and AbleStringVariable are the concrete
implementations.

Given the "get" and "set" methods listed above, the following coding is possible:

 double aDbl = someNumericVar.getNumericValue();
 boolean aBool = someNumericVar.getBooleanValue();
 String aStr = someNumericVar.getStringValue();

 anotherNumericVar.setNumericValue(aDbl);
 anotherNumericVar.setNumericValue(someNumericVar.getNumericValue());
 anotherNumericVar.setStringValue(aStr);

 anotherNumericVar.setValue(someNumericVar.getValue());

 anyTypeOfVar.setValue(anyOtherVar.getValue());
 anyTypeOfVar.setValue(anyTypeOfLiteral);

 if (someNumericVar.getNumericValue() <= anotherNumericVar.getNumericValue())

However, all of the assignment and comparison operations above can be better accomplished using the
built-in "operators" defined in the AbleRd and AbleWr classes. AbleRd, the interface that defines
"readable" data objects, defines these comparison operators, which are implemented in all AbleLiterals
and AbleVariables:

 public boolean cmpEq (AbleRd) // ==
 public boolean cmpGt (AbleRd) // >
 public boolean cmpGtEq(AbleRd) // >=
 public double cmpIs (AbleRd) // is, fuzzy compare
 public boolean cmpLt (AbleRd) // <
 public boolean cmpLtEq(AbleRd) // <=
 public boolean cmpNeq (AbleRd) // !=

AbleWr, the interface that defines "writable" data objects, defines these assignment operators, which are
implemented in all AbleVariables:

 public void asgnEq(AbleRd) // boolean assignment
 public void asgnIs(AbleRd) // fuzzy assignment
 public void asgnIs(AbleRd, double) // fuzzy asignment with correlation

2

Given the above comparison and assignment operators, the following style of coding is possible:

 if (someNumericVar.cmpLtEq(anotherNumericVar)) {
 someStringVar.asgnEq(anotherStringVar);
 }

...and so on. In summary, these are the comparison operators implemented by all AbleLiterals and
AbleVariables:

Method Function Usage

cmpEq Boolean compare, equal to (==) AbleRd.cmpEq(AbleRd)

cmpGt Boolean compare, greater than (>) AbleRd.cmpGt(AbleRd)

cmpGtEq Boolean compare, greater than or equal to (>=) AbleRd.cmpGtEq(AbleRd)

cmpIs Fuzzy compare (is) AbleFuzzyVariable.cmpIs(AbleFuzzySet)

cmpLt Boolean compare, less than (<) AbleRd.cmpLt(AbleRd)

cmpLtEq Boolean compare, less than or equal to (<=) AbleRd.cmpLtEq(AbleRd)

cmpNeq Boolean compare, not equal to (!=) AbleRd.cmpNeq(AbleRd)

And these are the assignment operators implemented by all AbleVariables:

Method Function Usage

asgnEq Boolean assignment (=) AbleVariable.asgnEq(AbleRd)

asgnIs Fuzzy assignment (is) AbleFuzzyVariable.asgnEq(AbleFuzzySet)

The remainder of this paper contains further details about all literals and variables in the Able data
package.

Class Hierarchy

Here are the classes that make up the Able Data Model:

[IMAGE]

Remember that all literals and variables are classifed into basic types:

1. Boolean
2. Numeric
3. String

3

4. Generic
5. List

and lastly,

6. CallLiteral

Essentially, any data object can be compared to any other data object, and any data object and be assigned
to any variable. This is accomplished through the various get...Value() and set...Value() methods.
The following sections list the data objects in each category (boolean, numeric, string, and generic) and
contain a chart showing what each get...Value() method returns. Each method’s return value depends,
of course, on the data object’s actual current "raw" value at the time the method is invoked.

Looking at the chart for boolean data types, for example, you can see that when a boolean variable’s
current value is true, getBooleanValue() returns true, getNumericValue() returns 1.0, and
getStringValue() returns "True", but when the current value is false getBooleanValue() returns false,
getNumericValue() returns 0.0, and getStringValue() returns "False". Thus it is possible to assign a
numeric variable a value from a boolean literal or variable, and so on.

When a particular combination is not possible, or when the current raw value of a particular data object
doesn’t lend itself to conversion to another data type, an AbleDataException is thrown. This may happen,
for example, when trying to assign a numeric variable a value from a string literal or string variable. If the
source string data object contains something like "123.456" or "-0.005", the assignment is possible,
because the string can be parsed into a number. But if the string data object contains something like
"Kilroy was here", an AbleDataException is thrown.

Boolean Data Objects

There are two boolean data objects. They are:

AbleBooleanLiteral
AbleBooleanVariable

Both the literal and the variable must be given an initial value of either true or false when created.

For convenience, there are two pre-defined, static AbleBooleanLiterals: AbleData.True and
AbleData.False.

4

Return values from boolean data object
get...Value() methods

Boolean
object’s
current
value

getBooleanValue() getGenericValue() getNumericValue() getStringValue() getValue()

true true new Boolean(true) 1.0 "True"
new
AbleBooleanLiteral(true)

false false new Boolean(false) 0.0 "False"
new
AbleBooleanLiteral(false)

Numeric Data Objects

The numeric data objects are:

AbleContinuousVariable

Continuous variables are numeric variables whose current value must be between a minimum and a
maximum, inclusive, both of which are specified when the variable is created. Any attempt to set a
continuous variable to a value outside the specified range results in an AbleDataException.

For historical reasons, continuous variables have an initial value of Double.NaN.

AbleDiscreteVariable

Discrete variables are numeric variables whose current value must be a value chosen from a finite list
of numeric values. The list of acceptable values can be specified when a discrete variable is created,
or it can be set for the variable at anytime. Methods are also provided to add and remove values from
the list of acceptable values. However, changing a variable’s acceptable value list after a variable is
created and used can have ramifications for the variable’s current value. Any attempt to set a discrete
variable to a value not in the acceptable value list results in an AbleDataException.

For historical reasons, discrete variables have an initial value of Double.NaN.

AbleFuzzyVariable
AbleFuzzySet

Fuzzy variables are numeric variables whose current value is a fuzzy number represented by a fuzzy
set. Fuzzy variables can also have a crisp value, which is the defuzzifed fuzzy number. Fuzzy sets
represent fuzzy numbers and are AbleLiterals. Although not shown in the chart below, fuzzy
variables support get- and setFuzzyValue() and fuzzy sets support getFuzzyValue().

AbleNumericLiteral
AbleNumericVariable

5

Both the literal and the variable must be given an initial value when created. The value can be any
number as values are completely unrestricted.

Return values from numeric data object
get...Value() methods

Numeric
object’s
current
value

getBooleanValue() getGenericValue() getNumericValue() getStringValue() getValue()

0.0 false new Double(0.0) 0.0 "0.0"
new
AbleNumericLiteral(0.0)

any
non-zero
number,
n.m

true new Double(n.m) n.m "n.m"
new
AbleNumericLiteral(n.m)

String Data Objects

The string data objects are:

AbleCategoricalVariable

Categorical variables are string variables whose current value must be a value chosen from a finite
list of strings. The list of acceptable strings can be specified when a categorical variable is created, or
it can be set for the variable at anytime. Methods are also provided to add and remove strings from
the list of acceptable strings. However, changing a variable’s acceptable value list after a variable is
created and used can have ramifications for the variable’s current value. Any attempt to set a
categorical variable to a string not in the acceptable string list results in an AbleDataException.

For historical reasons, categorical variables have an initial value of AbleData.StringNull
("Able_NULL_Able").

AbleStringLiteral
AbleStringVariable

Both the literal and the variable must be given an initial value when created. The value can be any
string as values are completely unrestricted.

6

Return values from string data object
get...Value() methods

String
object’s
current
value

getBooleanValue() getGenericValue() getNumericValue() getStringValue() getValue()

"true"
(case
insensitive)

true new String("true") AbleDataException "true"
new
AbleStringLiteral("true")

"false"
(case
insensitive)

false new String("false") AbleDataException "false"
new
AbleStringLiteral("false")

string form
of a
parsable
number,
"n.m"

AbleDataException new String("n.m") (Double.valueOf("n.m")).doubleValue() "n.m"
new
AbleStringLiteral("n.m")

any other
string,
"foo"

AbleDataException new String("foo") AbleDataException "foo"
new
AbleStringLiteral("foo")

Behavior of string data object
set...Value() methods

Source
object’s
current
value

setBooleanValue() setGenericValue() setNumericValue() setStringValue() setValue()

boolean
true

setStringValue("true") N/A

boolean
false

setStringValue("false") N/A

Boolean, b N/A setBooleanValue(b.booleanValue()) N/A

Number, n N/A setNumericValue(n.doubleValue()) N/A

String, s N/A setStringValue(s) N/A

AbleLiteral,
a

N/A setValue(a) N/A

Object, o N/A AbleDataException N/A

any double,
n.m

N/A setStringValue(Double.toString(n.m)) N/A

any String,
"foo"

N/A

"foo"
For categorical
variables, "foo"
must be in the
list of acceptable
strings.

N/A

any
AbleLiteral,
a

N/A

calls
set...Value(a.get...Value())
depending on type of
literal

7

Generic Data Objects

The generic data objects are:

AbleGenericLiteral
AbleGenericVariable

Both the literal and the variable must be given an initial value when created. The value can be any
Java Object as values are completely unrestricted.

Return values from generic data object
get...Value() methods

Generic
object’s
current
value

getBooleanValue() getGenericValue() getNumericValue() getStringValue() getValue()

Boolean, b b.booleanValue() b
1.0 if true;
0.0, if false

"True" if true;
"False" if false

new
AbleGenericLiteral(b)

Number, n
false if
n.doubleValue()==0.0;
true otherwise

n n.doubleValue() Double.toString(n.doubleValue())
new
AbleGenericLiteral(n)

String, s

true if
s.equalsIgnoreCase("true");
false if
s.equalsIgnoreCase("false");
otherwise
AbleDataException

s
(Double.valueOf(s)).doubleValue()
or
AbleDataException

s
new
AbleGenericLiteral(s)

AbleLiteral,
a

a.getBooleanValue() a a.getNumericValue() a.getStringValue()
new
AbleGenericLiteral(a)

any other
Object, o

AbleDataException o AbleDataException o.toString()
new
AbleGenericLiteral(o)

CallLiteral Data Objects

The call literal objects are:

AbleCallLiteral

A call literal is a wrapper for an Able user-defined function. This means that every time a call literal’s
current value is requested, the data that is returned is actually the data obtained by immediately and
synchronously calling the wrappered function. Call literals more or less expect that the data returned by
the wrappered function is a Boolean, Number, or String, but in reality, any Java Object is allowed. The
returned data must be, of course, a type expected by the receiving application, which will most likely use
the getGenericValue() method to obtain the call literal’s value.

While call literals may appear on both the left-hand and right-hand side of comparison expressions, they
may appear only on the right-hand side of assignment expressions; that is, like any literal, you cannot
assign a value to it.

8

A get...Value() chart is not given here, because the code dealing with return values from user-defined
functions is too complex to summarize neatly in a table.

Extending the Data Objects

While it is not possible to add completely new data types to the Able data model, it is possible to extend
any of the existing data objects with additional or modified behavior. If you want to create a
ComplexNumberVariable, for example, you might start by extending the AbleNumericVariable class, the
AbleContinuousVariable class, or the AbleDiscreteVariable class, depending on whether you want your
complex numbers completely unrestricted, limited within a certain range, or limited to one-of-n complex
values, respectively. If you choose to extend AbleContinuousVariable so that you can limit your complex
numbers to a range, you probably need to override the setDiscourseLo(), setDiscourseHi(), and
withinUniversOfDiscourse() methods, among others, to get the desired behavior. You also need to
override or perhaps even add new "operator" methods appropriate for your new ComplexNumber data
object.

The AbleFuzzyVariable object is an example of a new variable derived from an existing class: it is
derived from AbleContinuousVariable.

Last modified: Fri Feb 9 10:52:49 CST 2001

9

	Data Model Documentation
	
	
	Overview of the Data Model
	Class Hierarchy
	Boolean Data Objects
	Numeric Data Objects
	String Data Objects
	Generic Data Objects
	CallLiteral Data Objects
	Extending the Data Objects

